WorldWideScience

Sample records for water disinfection sodis

  1. Why Do People Stop Treating Contaminated Drinking Water with Solar Water Disinfection (SODIS)?

    Science.gov (United States)

    Tamas, Andrea; Mosler, Hans-Joachim

    2011-01-01

    Solar Water Disinfection (SODIS) is a simple method designed to treat microbiologically contaminated drinking water at household level. This article characterizes relapse behavior in comparison with continued SODIS use after a 7-month nonpromotion period. In addition, different subtypes among relapsers and continuers were assumed to diverge mainly…

  2. Solar water disinfection (SODIS): A review from bench-top to roof-top

    International Nuclear Information System (INIS)

    McGuigan, Kevin G.; Conroy, Ronán M.; Mosler, Hans-Joachim; Preez, Martella du; Ubomba-Jaswa, Eunice; Fernandez-Ibañez, Pilar

    2012-01-01

    Graphical abstract: . Water being treated by solar disinfection outside a primary school classroom in Southern Uganda. Students fill their bottles at home and expose them to the sun while they are at school. Highlights: ► A thorough review of current state of play of solar water disinfection. ► An examination of both laboratory and field studies. ► Description of the economic and behaviour change aspects of this technology. - Abstract: Solar water disinfection (SODIS) has been known for more than 30 years. The technique consists of placing water into transparent plastic or glass containers (normally 2 L PET beverage bottles) which are then exposed to the sun. Exposure times vary from 6 to 48 h depending on the intensity of sunlight and sensitivity of the pathogens. Its germicidal effect is based on the combined effect of thermal heating of solar light and UV radiation. It has been repeatedly shown to be effective for eliminating microbial pathogens and reduce diarrhoeal morbidity including cholera. Since 1980 much research has been carried out to investigate the mechanisms of solar radiation induced cell death in water and possible enhancement technologies to make it faster and safer. Since SODIS is simple to use and inexpensive, the method has spread throughout the developing world and is in daily use in more than 50 countries in Asia, Latin America, and Africa. More than 5 million people disinfect their drinking water with the solar disinfection (SODIS) technique. This review attempts to revise all relevant knowledge about solar disinfection from microbiological issues, laboratory research, solar testing, up to and including real application studies, limitations, factors influencing adoption of the technique and health impact.

  3. Solar water disinfection (SODIS): A review from bench-top to roof-top

    Energy Technology Data Exchange (ETDEWEB)

    McGuigan, Kevin G., E-mail: kmcguigan@rcsi.ie [Royal College of Surgeons in Ireland, Dublin 2 (Ireland); Conroy, Ronan M. [Royal College of Surgeons in Ireland, Dublin 2 (Ireland); Mosler, Hans-Joachim [EAWAG, Swiss Federal Institute of Aquatic Science and Technology, Ueberlandstrasse 133: CH-8600 Duebendorf (Switzerland); Preez, Martella du; Ubomba-Jaswa, Eunice [CSIR, Natural Resources and the Environment, Pretoria, Gauteng (South Africa); Fernandez-Ibanez, Pilar [Plataforma Solar de Almeria - CIEMAT, P.O. Box 22, 07200 Tabernas, Almeria (Spain)

    2012-10-15

    Graphical abstract: . Water being treated by solar disinfection outside a primary school classroom in Southern Uganda. Students fill their bottles at home and expose them to the sun while they are at school. Highlights: Black-Right-Pointing-Pointer A thorough review of current state of play of solar water disinfection. Black-Right-Pointing-Pointer An examination of both laboratory and field studies. Black-Right-Pointing-Pointer Description of the economic and behaviour change aspects of this technology. - Abstract: Solar water disinfection (SODIS) has been known for more than 30 years. The technique consists of placing water into transparent plastic or glass containers (normally 2 L PET beverage bottles) which are then exposed to the sun. Exposure times vary from 6 to 48 h depending on the intensity of sunlight and sensitivity of the pathogens. Its germicidal effect is based on the combined effect of thermal heating of solar light and UV radiation. It has been repeatedly shown to be effective for eliminating microbial pathogens and reduce diarrhoeal morbidity including cholera. Since 1980 much research has been carried out to investigate the mechanisms of solar radiation induced cell death in water and possible enhancement technologies to make it faster and safer. Since SODIS is simple to use and inexpensive, the method has spread throughout the developing world and is in daily use in more than 50 countries in Asia, Latin America, and Africa. More than 5 million people disinfect their drinking water with the solar disinfection (SODIS) technique. This review attempts to revise all relevant knowledge about solar disinfection from microbiological issues, laboratory research, solar testing, up to and including real application studies, limitations, factors influencing adoption of the technique and health impact.

  4. Solar water disinfection (SODIS): A review from bench-top to roof-top

    CSIR Research Space (South Africa)

    McGuigan, KG

    2012-10-01

    Full Text Available Solar water disinfection (SODIS) has been known for more than 30 years. The technique consists of placing water into transparent plastic or glass containers (normally 2 L PET beverage bottles) which are then exposed to the sun. Exposure times vary...

  5. Community challenges when using large plastic bottles for Solar Energy Disinfection of Water (SODIS

    Directory of Open Access Journals (Sweden)

    Preeti Borde

    2016-09-01

    Full Text Available Abstract Background Communities living in developing countries as well as populations affected by natural or man-made disasters can be left at great risk from water related diseases, especially those spread through the faecal-oral route. Conventional water treatments such as boiling and chlorination can be effective but may prove costly for impoverished communities. Solar water disinfection (SODIS has been shown to be a cheap and effective way for communities to treat their water. The exposure to sunlight is typically carried out in small volume plastic beverage bottles (up to 2 l. Given the water requirements of consumption and basic personal hygiene, this may not always meet the needs of communities. Recent work has shown 19-L plastic water dispenser containers to be effective SODIS reactors, comparable in efficacy to PET bottles. In this paper we outline the need for studying SODIS in large volumes and discuss 4 main associated challenges. Discussion Apart from clean water needed for consumption, access to adequate water is essential for sanitation and hygiene. Contamination of treated water through unwashed hands or vessels contributes heavily to the spread of water borne pathogens in communities. Traditional water treatments such as boiling and chlorination can be effective but may prove financially burdensome for low income communities. SODIS in large vessels could be used as a simple method to meet water requirements in low income and disaster affected populations. However, there have been some concerns associated with the conventional SODIS method; we identify the main ones to be: (1 cold or cloudy weather; (2 the fear of leaching in plastic bottles; (3 water turbidity, and; (4 community acceptance. Summary The application of SODIS in large bottles like WDCs has the potential to be an efficient and cost effective method of disinfecting water, either for consumption until more rigorous water treatments can be put in place, or for

  6. Effectiveness of solar disinfection (SODIS) in rural coastal Bangladesh.

    Science.gov (United States)

    Islam, Md Atikul; Azad, Abul Kalam; Akber, Md Ali; Rahman, Masudur; Sadhu, Indrojit

    2015-12-01

    Scarcity of drinking water in the coastal area of Bangladesh compels the inhabitants to be highly dependent on alternative water supply options like rainwater harvesting system (RWHS), pond sand filter (PSF), and rain-feed ponds. Susceptibility of these alternative water supply options to microbial contamination demands a low-cost water treatment technology. This study evaluates the effectiveness of solar disinfection (SODIS) to treat drinking water from available sources in the southwest coastal area of Bangladesh. A total of 50 households from Dacope upazila in Khulna district were selected to investigate the performance of SODIS. Data were collected in two rounds to examine fecal coliform (FC) and Escherichia coli (E. coli) contamination of drinking water at the household water storage containers and SODIS bottles, and thereby determined the effectiveness of SODIS in reducing fecal contamination. All water samples were analyzed for pH, electrical conductivity, turbidity and salinity. SODIS significantly reduced FC and E. coli contamination under household conditions. The median health risk reduction by SODIS was more than 96 and 90% for pond and RWHS, respectively. Besides, turbidity of the treated water was found to be less than 5 NTU, except pond water. Only 34% of the participating households routinely adopted SODIS during the study.

  7. Field comparison of solar water disinfection (SODIS) efficacy between glass and polyethylene terephalate (PET) plastic bottles under sub-Saharan weather conditions.

    Science.gov (United States)

    Asiimwe, J K; Quilty, B; Muyanja, C K; McGuigan, K G

    2013-12-01

    Concerns about photodegradation products leaching from plastic bottle material into water during solar water disinfection (SODIS) are a major psychological barrier to increased uptake of SODIS. In this study, a comparison of SODIS efficacy using glass and plastic polyethylene terephalate (PET) bottles was carried out under strong real sunlight and overcast weather conditions at Makerere University in central Uganda. Both clear and turbid natural water samples from shallow wells and open dug wells, respectively, were used. Efficacy was determined from the inactivation of a wild strain of Escherichia coli in solar-exposed contaminated water in both glass and PET bottles. The studies reveal no significant difference in SODIS inactivation between glass and PET bottles (95% CI, p > 0.05), for all water samples under the different weather conditions except for clear water under overcast conditions where there was a small but significant difference (95% CI, p = 0.047) with less viable bacterial counts in PET bottles at two intermediate time points but not at the end of the exposure. The results demonstrate that SODIS efficacy in glass under tropical field conditions is comparable to PET plastic. SODIS users in these regions can choose either of reactors depending on availability and preference of the user.

  8. Solar drinking water disinfection (SODIS to reduce childhood diarrhoea in rural Bolivia: a cluster-randomized, controlled trial.

    Directory of Open Access Journals (Sweden)

    Daniel Mäusezahl

    2009-08-01

    Full Text Available Solar drinking water disinfection (SODIS is a low-cost, point-of-use water purification method that has been disseminated globally. Laboratory studies suggest that SODIS is highly efficacious in inactivating waterborne pathogens. Previous field studies provided limited evidence for its effectiveness in reducing diarrhoea.We conducted a cluster-randomized controlled trial in 22 rural communities in Bolivia to evaluate the effect of SODIS in reducing diarrhoea among children under the age of 5 y. A local nongovernmental organisation conducted a standardised interactive SODIS-promotion campaign in 11 communities targeting households, communities, and primary schools. Mothers completed a daily child health diary for 1 y. Within the intervention arm 225 households (376 children were trained to expose water-filled polyethyleneteraphtalate bottles to sunlight. Eleven communities (200 households, 349 children served as a control. We recorded 166,971 person-days of observation during the trial representing 79.9% and 78.9% of the total possible person-days of child observation in intervention and control arms, respectively. Mean compliance with SODIS was 32.1%. The reported incidence rate of gastrointestinal illness in children in the intervention arm was 3.6 compared to 4.3 episodes/year at risk in the control arm. The relative rate of diarrhoea adjusted for intracluster correlation was 0.81 (95% confidence interval 0.59-1.12. The median length of diarrhoea was 3 d in both groups.Despite an extensive SODIS promotion campaign we found only moderate compliance with the intervention and no strong evidence for a substantive reduction in diarrhoea among children. These results suggest that there is a need for better evidence of how the well-established laboratory efficacy of this home-based water treatment method translates into field effectiveness under various cultural settings and intervention intensities. Further global promotion of SODIS for general use

  9. Disinfection of water using solar energy (SODIS): inactivation and reactivation of bacteria; Desinfeccao de agua utilizando energia solar (SODIS): inativacao e recrescimento bacteriano

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Marcelo Jacomini Moreira da

    2004-07-01

    Besides being an available natural source, the solar energy is very applicable in places where there are bad recourses and low money resources, because there are not either the need of chemical products neither a huge cost (commercial materials can be re-used). To make this job we used re-used half painted black PET bottles with the variables: exposed to heat times: 1, 2, 4 e 6 hours and we used also a concentrator of rays of sunshine. The affluent control parameters were: turbidity, apparent color, temperature, total coliforms and E. coli. The effluent parameters were just the last three: temperature, total coliforms and E.coli. To asses the bacteria reactivation the water was kept in bottles for 24 hours, pretending a situation that is very common in brazilian rural houses. We conclude that the use of the concentrator of rays of sunshine can reduce the exposition to heat from 6 to 4 hours, without prejudice the SODIS efficiency and using the concentrator of rays of sunshine for 6 hours we can obtain the process of solar pasteurization (SOPAS), with a 70 deg C water temperature and stopping the re-growth of bacteria. We also observed that when there are clouds in the sky the incidence of solar radiation and the SODIS efficiency decrease, even if the water temperature is higher during the disinfection, although this factor does not mean a significant influence statistically. (author)

  10. Carbon nanoparticles for solar disinfection of water.

    Science.gov (United States)

    Maddigpu, Pratap Reddy; Sawant, Bhairavi; Wanjari, Snehal; Goel, M D; Vione, Davide; Dhodapkar, Rita S; Rayalu, S

    2018-02-05

    The present manuscript deals with the application of carbon nano particles (CNP) and chitosan (CHIT) in the form of CHIT-CNP composite for the disinfection of water. The CHIT-CNP composite was prepared by the solution casting method and characterized by TEM, XRD and elemental analysis. In the present investigation we study the disinfection efficiency towards E. coli bacteria of both CNP and CHIT-CNP, under sunlight (SODIS) in identical experimental conditions. Both CNP and CHIT-CNP enhanced disinfection as compared to SODIS alone, and comparable performance was achieved when the same dose of CNP in the two materials was applied. However, the CHIT-CNP composite is in the form of a fabric and it is easier to use and handle as compared to the CNP powder, especially in rural and resource-constrained areas. Moreover the SODIS-CHIT-CNP setup, when used in a compound parabolic collector (CPC) reactor showed high bactericidal efficiency compared to SODIS alone, which is promising for practical applications. The disinfection potential of the CNP powder was compared with that of the well-known material TiO 2 Degussa P25 (DP 25 ): DP 25 gave 6-log kill of bacteria in 180min, whereas CNP produced 6-log kill in 150min. Copyright © 2017. Published by Elsevier B.V.

  11. Safety and durability of low-density polyethylene bags in solar water disinfection applications.

    Science.gov (United States)

    Danwittayakul, Supamas; Songngam, Supachai; Fhulua, Tipawan; Muangkasem, Panida; Sukkasi, Sittha

    2017-08-01

    Solar water disinfection (SODIS) is a simple point-of-use process that uses sunlight to disinfect water for drinking. Polyethylene terephthalate (PET) bottles are typically used as water containers for SODIS, but a new SODIS container design has recently been developed with low-density polyethylene (LDPE) bags and can overcome the drawbacks of PET bottles. Two nesting layers of LDPE bags are used in the new design: the inner layer containing the water to be disinfected and the outer one creating air insulation to minimize heat loss from the water to the surroundings. This work investigated the degradation of LDPE bags used in the new design in actual SODIS conditions over a period of 12 weeks. The degradation of the LDPE bags was investigated weekly using a scanning electron microscope, Fourier transform infrared spectroscopy, ultraviolet-visible spectrophotometer, and tensile strength tester. It was found that the LDPE bags gradually degraded under the sunlight due to photo-oxidation reactions, especially in the outer bags, which were directly exposed to the sun and surroundings, leading to the reduction of light transmittance (by 11% at 300 nm) and tensile strength (by 33%). In addition, possible leaching of organic compounds into the water contained in the inner bags was examined using gas chromatography-mass spectrometer. 2,4-Di-tert-butylphenol was found in some SODIS water samples as well as the as-received water samples, in the concentration range of 1-4 μg/L, which passes the Environmental Protection Agency Drinking Water Guidance on Disinfection By-Products.

  12. Evaluation of Plastic Household Biosand Filter (BSF) In Combination with Solar Disinfection (SODIS) For Water Treatment

    International Nuclear Information System (INIS)

    Hussain, G.; Haydar, S.; Bari, A. J.; Anis, M.; Asif, Z.; Aziz, J. A.

    2015-01-01

    Efficiency of a household plastic biosand filter (BSF) for the removal of turbidity and fecal contamination was evaluated. Water of river Ravi was used as influent. Water filtered through BSF was further treated using Solar Disinfection (SODIS). The study was conducted for raw water with low pollution level (total coliforms <500 MPN/100 ml) and high pollution level (total coliforms between 500-20,000 MPN/100 ml). The average value of turbidity removal by BSF was 94.5 percentage with 0.9 NTU as average turbidity of effluent. For raw water with low pollution level, the BSF was able to achieve a maximum of 2.2 log10 unit reduction (99.4 percentage) for total coliforms (39 MPN/100 mL in effluent) and 1.95 log10 unit reduction (98.5 percentage) for fecal coliforms (9 MPN/100 mL in effluent). While for raw water with high pollution level, the maximum removal of 1.5 log10 unit (97.5 percentage) for total coliforms (1430 MPN/100 mL in effluent) and 1.8 log10 units (98.4 percentage) for fecal coliforms (387 MPN/100 mL in effluent) was achieved in BSF. To make the effluent fit for drinking it was further treated using SODIS, which rendered the BSF effluent fit for drinking with zero fecal coliforms count (for full sunny and partially cloudy conditions). Newly proposed plastic BSF could be a good replacement of already used concrete household BSF (used in more than 63 countries) being cheaper in cost and lighter in weight by 85 percentage and 80 percentage, respectively than the concrete BSF. (author)

  13. A practical demonstration of water disinfection using TiO2 films and sunlight.

    Science.gov (United States)

    Gelover, Silvia; Gómez, Luis A; Reyes, Karina; Teresa Leal, Ma

    2006-10-01

    The scope of this study is the assessment of the efficiency of solar disinfection by heterogeneous photocatalysis with sol-gel immobilized (titanium dioxide) TiO2 films over glass cylinders. The solar disinfection process known as SODIS was considered as a reference. Spring water naturally polluted with coliform bacteria was exposed to sunlight in plastic bottles with and without TiO2 over simple solar collectors and the disinfection effectiveness was measured. Total and fecal coliforms quantification was performed by means of the chromogenic substrate method in order to obtain the efficiency of each disinfection treatment. The disinfection with TiO2 was more efficient than the SODIS process, inactivating total coliforms as well as fecal coliforms. On a sunny day (more than 1000 W m(-2) irradiance), it took the disinfection with immobilized TiO2 15 min of irradiation to inactivate the fecal coliforms to make them undetectable. For inactivation of total coliforms, 30 min was required, so that in less than half the time it takes SODIS, the treated water complies with the microbial standards for drinking water in Mexico. Another important part of this study has been to determine the bacterial regrowth in water after the disinfection processes were tested. After SODIS, bacterial regrowth of coliforms was observed. In contrast, when using the TiO2 catalyst, coliforms regrowth was not detected, neither for total nor for fecal coliforms. The disinfection process using TiO2 kept treated water free of coliforms at least for seven days after sun irradiation. This demonstration opens the possibility of application of this simple method in rural areas of developing countries.

  14. Disinfection of effluent of wastewater treated using solar energy (SODIS): evaluation of a solar concentrator device; Desinfeccao de efluentes com tratamento terciario utilizando energia solar (SODIS): avaliacao do uso do dispositivo para concentracao dos raios solares

    Energy Technology Data Exchange (ETDEWEB)

    Paterniani, Jose Euclides Stipp; Silva, Marcelo Jacomini Moreira da [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Faculdade de Engenharia Mecanica. Saneamento e Ambiente]. E-mail: pater@agr.unicamp.br

    2005-01-15

    Besides being an available natural resource, the solar energy is very applicable in places with few recourses and low money resources, because there aren't either the need of chemical products neither a huge cost (commercial materials can be reused). To make this job we re-used PET bottles half painted black with the variables: 1, 2, 4 and 6 hours of heat exposition and we also used a concentrator of rays of sunshine. The affluent control parameters were turbidity, apparent color, temperature, total coliforms and E. coli. These last three were evaluated before and after the disinfection process (effluent parameters). To assess the bacteria reactivation we kept the water in bottles for 24 hours, pretending a very common situation in Brazilian rural houses. We conclude that the use of the concentrator of rays of sunshine can reduce the heat exposition from 6 to 4 hours, without harm the SODIS efficiency. Using the concentrator of rays of sunshine for 6 hours we can obtain, besides SODIS, the process of solar pasteurization (SOPAS), which stops the re-growth of bacteria with a 70 deg C water temperature. We also observed that when the sky is cloudy the incidence of solar radiation and, therefore, the SODIS efficiency decrease, even if the water temperature is higher during the disinfection. Although, this factor doesn't mean a significant influence statistically. (author)

  15. Application of solar disinfection for treatment of contaminated public water supply in a developing country: field observations.

    Science.gov (United States)

    Mustafa, Atif; Scholz, Miklas; Khan, Sadia; Ghaffar, Abdul

    2013-03-01

    A sustainable and low-cost point-of-use household drinking water solar disinfection (SODIS) technology was successfully applied to treat microbiologically contaminated water. Field experiments were conducted to determine the efficiency of SODIS and evaluate the potential benefits and limitations of SODIS under local climatic conditions in Karachi, Pakistan. In order to enhance the efficiency of SODIS, the application of physical interventions were also investigated. Twenty per cent of the total samples met drinking water guidelines under strong sunlight weather conditions, showing that SODIS is effective for complete disinfection under specific conditions. Physical interventions, including black-backed and reflecting rear surfaces in the batch reactors, enhanced SODIS performance. Microbial regrowth was also investigated and found to be more controlled in reactors with reflective and black-backed surfaces. The transfer of plasticizer di(2-ethylhexyl)phthalate (DEHP) released from the bottle material polyethylene terephthalate (PET) under SODIS conditions was also investigated. The maximum DEHP concentration in SODIS-treated water was 0.38 μg/L less than the value of 0.71 μg/L reported in a previous study and well below the WHO drinking-quality guideline value. Thus SODIS-treated water can successfully be used by the people living in squatter settlements of mega-cities, such as Karachi, with some limitations.

  16. The performance and applicability study of a fixed photovoltaic-solar water disinfection system

    International Nuclear Information System (INIS)

    Jin, Yanchao; Wang, Yiping; Huang, Qunwu; Zhu, Li; Cui, Yong; Cui, Lingyun

    2016-01-01

    Highlights: • A fixed photovoltaic-SODIS (solar water disinfection) system was constructed. • The system could generate electricity and produce clean water simultaneously. • The daily solar generated electricity was much more than the system consumption. • The system can be used for about 90% of whole year in Lhasa and Chennai. • Temperature enhanced the SODIS process for about 60% days of whole year in Chennai. - Abstract: The objective of the study is to construct and evaluate a fixed PV (photovoltaic) cell integrated with SODIS (solar water disinfection) system to treat drinking water and generate electricity under different climate through experimental and simulation methods. The photovoltaic and disinfection performances of the hybrid system were studied by the disinfection of Escherichia coli. The applicability of the system in Lhasa and Chennai was evaluated by analyzing the daily radiation and predicting the daily water temperature and the system electricity output. The results confirm that the temperature would dramatically enhance the SODIS process and shorten the disinfection time, when the water temperature was above 45 °C. The PV cell in the hybrid system could work under low temperature because of the water layer and the generated electricity was much more than the system consumption. The simulation results show that the days with maximum water temperature above 45 °C were more than 60% of whole year in Chennai. The generated electricity of the hybrid system was 49682.3 W h and 45615.9 W h a year in Lhasa and Chennai respectively. It was sufficient to drive the system of whole year. The number of days which realized drinking water treatment was 324 days in Lhasa and 315 days in Chennai a year.

  17. Solar disinfection: an approach for low-cost household water treatment technology in Southwestern Ethiopia.

    Science.gov (United States)

    Dessie, Awrajaw; Alemayehu, Esayas; Mekonen, Seblework; Legesse, Worku; Kloos, Helmut; Ambelu, Argaw

    2014-01-10

    Disinfection of contaminated water using solar radiation (SODIS) is known to inactivate bacteria. Its inactivation efficiency depends on local conditions where the disinfection is made. This study was aiming to test the efficiency of solar disinfection using different water parameters as low-cost household water treatment technology. Inactivation of microbes was tested using fecal coliform as test organism. The SODIS experiment was carried out at turbidity 2NTU, pH 7, and various water temperature (38.1°C, 41.8°C, 45.6°Cand 51.1°C) and solar intensities, using clear and black plastic bottles filled to different depths. The results show that the rate of microbial inactivation in relation to depth of water, turbidity, container type, intensity of light and color of container was statistically significant (p solar disinfection. By adjusting the parameters, complete and irreversible fecal coliform inactivation was achieved within an exposure time of less than four hours in the areas where the solar irradiance is about 3.99 kW/m2 and above. Our results indicate that application of SODIS could play a significant role in the provision of safe water in rural communities of developing countries where there is ample sunshine, specifically in sub-Saharan African countries.

  18. Intracellular mechanisms of solar water disinfection

    Science.gov (United States)

    Castro-Alférez, María; Polo-López, María Inmaculada; Fernández-Ibáñez, Pilar

    2016-12-01

    Solar water disinfection (SODIS) is a zero-cost intervention measure to disinfect drinking water in areas of poor access to improved water sources, used by more than 6 million people in the world. The bactericidal action of solar radiation in water has been widely proven, nevertheless the causes for this remain still unclear. Scientific literature points out that generation of reactive oxygen species (ROS) inside microorganisms promoted by solar light absorption is the main reason. For the first time, this work reports on the experimental measurement of accumulated intracellular ROS in E. coli during solar irradiation. For this experimental achievement, a modified protocol based on the fluorescent probe dichlorodihydrofluorescein diacetate (DCFH-DA), widely used for oxidative stress in eukaryotic cells, has been tested and validated for E. coli. Our results demonstrate that ROS and their accumulated oxidative damages at intracellular level are key in solar water disinfection.

  19. A Novel TiQ2-Assisted Solar Photocatalytic Batch-Process Disinfection Reactor for the Treatment of Biological and Chemical Contaminants in Domestic Drinking Water in Developing Countries

    OpenAIRE

    Duffy, E. F.; Al Touati, F.; Kehoe, S. C.; McLoughlin, O. A.; Gill, L. W.; Gernjak, W.; Oller, I.; Maldonado, M. I.; Malato, S.; Cassidy, John; Reed, R. H.; McGuigan, K. G.

    2004-01-01

    he technical feasibility and performance of photocatalytic Ti02 coatings in batch-process solar disinfection (SODIS) reactors to improve potability of drinking water in developing countries have been studied. Borosilicate glass and PET plastic SODIS reactors fitted with flexible plastic inserts coated with Ti02 powder were shown to be 2(Jt1o and 25% more effective, respectively, than standard SODIS reactors for the inactivation of E. coli K12. Isopropanol at 100 ppm concentration levels was o...

  20. Randomized intervention study of solar disinfection of drinking water in the prevention of dysentery in Kenyan children aged under 5 years

    CSIR Research Space (South Africa)

    Du Preez, M

    2011-09-01

    Full Text Available The authors report the results of a randomized controlled intervention study (September 2007 to March 2009) investigating the effect of solar disinfection (SODIS) of drinking water on the incidence of dysentery, nondysentery diarrhea...

  1. Inactivation of enteropathogenic E. coli by solar disinfection (SODIS) under simulated sunlight conditions

    CSIR Research Space (South Africa)

    Ubomba-Jaswa, Eunice

    2008-12-01

    Full Text Available of limitations. An important limitation is the lack of SODIS inactivation studies on some waterborne pathogens in the developing world. SODIS inactivation of enteropathogenic E. coli (EPEC), a major cause of infantile diarrhoea is reported for the first time...

  2. Combining sun-based technologies (microalgae and solar disinfection) for urban wastewater regeneration.

    Science.gov (United States)

    Gutiérrez-Alfaro, Sergio; Rueda-Márquez, Juan J; Perales, José A; Manzano, Manuel A

    2018-04-01

    Solar disinfection (SODIS) of urban wastewater can be a suitable technology for improving the microbiological quality of reclaimed water as a complement to other extensive and environmentally friendly technologies such as microalgae biotreatment. The objective of this work is to evaluate the feasibility of incorporating the SODIS technology at the end of a pilot scale urban wastewater treatment plant (WWTP) where the processes are based on microalgae biotechnology and comprising three Upflow Anaerobic Sludge Blanket (UASB, 20m 3 each one) reactor, six High Rate Algal Ponds (HRAP, 32m 2 each one), and a Dissolved Air Flotation (DAF, 1m 3 ) unit. E. coli concentration was monitored at the effluent of the different units (UASB, HRAP, DAF) of the pilot WWTP. The efficiency of the SODIS process was studied for the inactivation of three of the commonly employed indicator microorganisms (Escherichia coli, Enterococcus spp. and Clostridium perfringens) using a compound parabolic collector (CPC) for five months under various conditions of irradiance and temperature. E. coli and Enterococcus spp. were more effectively disinfected by the SODIS unit (2.9 and 2.5 logarithms of reduction on average, respectively) than by the HRAP (2 and 1.1) or the DAF (0.9 and 0.1). On the contrary, the DAF technology achieved better reduction rates of C. perfringens (1.7) than the SODIS (0.9) and the HRAP (0.1). No regrowth of any microorganisms was detected during dark storage after the SODIS treatment. Incorporating a SODIS unit after the non-conventional WWTP processes substantially increases the possibilities for reuse of the treated water after receiving a cumulative UV radiation dose of 25W·h/m 2 (50min of normalized time of solar illumination). The surface requirement of the SODIS equipment would be 3.5 times smaller than the HRAP's surface. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Solar disinfection of water for low income communities; Desinfeccao solar de agua para comunidades de baixa renda

    Energy Technology Data Exchange (ETDEWEB)

    Felix, Lorna Falcao

    2010-03-15

    The use of solar energy for water disinfection, and is accessible to disadvantaged communities because of its low cost, has the advantage of using disposable materials such as bottles of polyethylene terephthalate (PET). We present a study that used two methods of disinfection: the methodology proposed by the project Solar Water Disinfection (SODIS), which consisted of water disinfection by solar radiation and temperature and the methodology which the temperature of the water for disinfection. In both, we seek to eliminate microorganisms that cause serious diseases such as dysentery, typhoid, cholera, etc. Water samples were collected in the community of Bass, where the population has low income and the incidence of waterborne diseases is high. The experiments were divided into two stages. In step 1 we studied the feasibility of disinfection and in step 2 the feasibility of the pilot plant to obtain adequate levels of disinfection temperatures desired. The results showed the efficiency of the disinfection process, reaching an average of 80 to 100% death of microorganisms, but regrowth was observed in some samples. Finally on the good results of stage 1, is designed and built and tested in an experimental pilot plant, which has shown to be feasible to promote water disinfection through the use of solar energy. The water after treatment is in accordance with the limits established by Brazilian legislation for clean water, maintaining a positive performance for the disinfection and acceptable levels of bacterial regrowth. (author)

  4. Uji Efektivitas Jeruk Nipis (Citrus aurantifolia dalam Mempercepat Laju Disinfeksi Bakteri Escheria Coli pada Proses Solar Water Disinfection

    Directory of Open Access Journals (Sweden)

    Saprian Saprian

    2015-08-01

    Full Text Available Solar Water Disinfection (SODIS memerlukan waktu rata-rata berkisar antara 5-6 jam untuk dapat membunuh bakteri 3-4 Log pada air berkapasitas maksimal 2 liter atau 1 jam dengan suhu di atas 50°C. Penelitian terbaru menunjukkan bahwa dengan mengkombinasikan SODIS dengan psoralens, zat aktif seperti yang terdapat pada jeruk Lemon (Citrus Limon dapat menginaktivasi bakteri hingga 5,6 Log reduksi dalam rentang waktu 30 menit pada suhu 29°C. Mengingat faktor ketersediaan dan harga jeruk lemon di Indonesia maka pada penelitian ini dilakukan pengamatan dengan menggunakan jeruk nipis (Citrus aurantifolia. Penelitian ini dilakukan untuk mengetahui seberapa besar potensi jeruk nipis untuk dipergunakan dalam mempercepat laju disinfeksi pada proses SODIS. Adapun faktor-faktor yang akan dipelajari terkait dengan hubungan antara variasi dosis jeruk nipis, perubahan pH dan suhu air terhadap efisiensi inaktivasi bakteri yang mampu dihasilkan. Variasi jeruk nipis yang digunakan adalah 0%, 2%, 4% dan 6% dengan variasi waktu 0 menit, 30 menit, 60 menit dan 120 menit. Hasil penelitian menunjukkan bahwa perlakuan SODIS dengan menggunakan jeruk nipis mampu menginaktivasi E. coli sebesar 5.4 Log dengan waktu 1 jam pada suhu 32°C. Hal ini menunjukkan bahwa Jeruk nipis berpotensi untuk digunakan dalam mempercepat laju disinfeksi E. coli pada air minum. Kata Kunci : SODIS, E.coli, Psoralens, Jeruk Nipis

  5. Focus on the CSIR research in pollution waste: Safe drinking water from the sun

    CSIR Research Space (South Africa)

    Du Preez, M

    2007-08-01

    Full Text Available The Water for Health group at the CSIR represents South Africa in an international project to demonstrate solar disinfection (SODIS) of drinking water. This project is set to demonstrate that SODIS is an effective, appropriate and acceptable...

  6. Rapid water disinfection using vertically aligned MoS_2 nanofilms and visible light

    International Nuclear Information System (INIS)

    Liu, Chong; Kong, Desheng; Hsu, Po-Chun; Yuan, Hongtao; Lee, Hyun-Wook

    2016-01-01

    Here, solar energy is readily available in most climates and can be used for water purification. However, solar disinfection of drinking water (SODIS) mostly relies on ultraviolet light, which represents only 4% of total solar energy, and this leads to slow treatment speed. The development of new materials that can harvest visible light for water disinfection, and speed up solar water purification, is therefore highly desirable. Here, we show that few-layered vertically aligned MoS_2 (FLV-MoS_2) films can be used to harvest the whole spectrum of visible light (~ 50% of solar energy) and achieve highly efficient water disinfection. The bandgap of MoS_2 was increased from 1.3 eV to 1.55 eV by decreasing the domain size, which allowed the FLV-MoS_2 to generate reactive oxygen species (ROS) for bacterial inactivation in water. The FLV-MoS_2 showed ~15 times better log inactivation efficiency of indicator bacteria compared to bulk MoS_2, and much faster inactivation of bacteria under both visible light and sunlight illumination compared to widely used TiO_2. Moreover, by using a 5 nm copper film on top of the FLV-MoS_2 as a catalyst to facilitate electron-hole pair separation and promote the generation of ROS, the disinfection rate was further increased 6 fold. With our approach, we achieved water disinfection of >99.999% inactivation of bacteria in 20 minutes with a small amount of material (1.6 mg/L) under simulated visible light.

  7. Batch solar disinfection inactivates oocysts of Cryptosporidium parvum and cysts of Giardia muris in drinking water.

    Science.gov (United States)

    McGuigan, K G; Méndez-Hermida, F; Castro-Hermida, J A; Ares-Mazás, E; Kehoe, S C; Boyle, M; Sichel, C; Fernández-Ibáñez, P; Meyer, B P; Ramalingham, S; Meyer, E A

    2006-08-01

    To determine whether batch solar disinfection (SODIS) can be used to inactivate oocysts of Cryptosporidium parvum and cysts of Giardia muris in experimentally contaminated water. Suspensions of oocysts and cysts were exposed to simulated global solar irradiation of 830 W m(-2) for different exposure times at a constant temperature of 40 degrees C. Infectivity tests were carried out using CD-1 suckling mice in the Cryptosporidium experiments and newly weaned CD-1 mice in the Giardia experiments. Exposure times of > or =10 h (total optical dose c. 30 kJ) rendered C. parvum oocysts noninfective. Giardia muris cysts were rendered completely noninfective within 4 h (total optical dose >12 kJ). Scanning electron microscopy and viability (4',6-diamidino-2-phenylindole/propidium iodide fluorogenic dyes and excystation) studies on oocysts of C. parvum suggest that inactivation is caused by damage to the oocyst wall. Results show that cysts of G. muris and oocysts of C. parvum are rendered completely noninfective after batch SODIS exposures of 4 and 10 h (respectively) and is also likely to be effective against waterborne cysts of Giardia lamblia. These results demonstrate that SODIS is an appropriate household water treatment technology for use as an emergency intervention in aftermath of natural or man-made disasters against not only bacterial but also protozoan pathogens.

  8. Comparative analysis of solar pasteurization versus solar disinfection for the treatment of harvested rainwater.

    Science.gov (United States)

    Strauss, André; Dobrowsky, Penelope Heather; Ndlovu, Thando; Reyneke, Brandon; Khan, Wesaal

    2016-12-09

    Numerous pathogens and opportunistic pathogens have been detected in harvested rainwater. Developing countries, in particular, require time- and cost-effective treatment strategies to improve the quality of this water source. The primary aim of the current study was thus to compare solar pasteurization (SOPAS; 70 to 79 °C; 80 to 89 °C; and ≥90 °C) to solar disinfection (SODIS; 6 and 8 hrs) for their efficiency in reducing the level of microbial contamination in harvested rainwater. The chemical quality (anions and cations) of the SOPAS and SODIS treated and untreated rainwater samples were also monitored. While the anion concentrations in all the samples were within drinking water guidelines, the concentrations of lead (Pb) and nickel (Ni) exceeded the guidelines in all the SOPAS samples. Additionally, the iron (Fe) concentrations in both the SODIS 6 and 8 hr samples were above the drinking water guidelines. A >99% reduction in Escherichia coli and heterotrophic bacteria counts was then obtained in the SOPAS and SODIS samples. Ethidium monoazide bromide quantitative polymerase chain reaction (EMA-qPCR) analysis revealed a 94.70% reduction in viable Legionella copy numbers in the SOPAS samples, while SODIS after 6 and 8 hrs yielded a 50.60% and 75.22% decrease, respectively. Similarly, a 99.61% reduction in viable Pseudomonas copy numbers was observed after SOPAS treatment, while SODIS after 6 and 8 hrs yielded a 47.27% and 58.31% decrease, respectively. While both the SOPAS and SODIS systems reduced the indicator counts to below the detection limit, EMA-qPCR analysis indicated that SOPAS treatment yielded a 2- and 3-log reduction in viable Legionella and Pseudomonas copy numbers, respectively. Additionally, SODIS after 8 hrs yielded a 2-log and 1-log reduction in Legionella and Pseudomonas copy numbers, respectively and could be considered as an alternative, cost-effective treatment method for harvested rainwater.

  9. Elimination of water pathogens with solar radiation using an automated sequential batch CPC reactor

    International Nuclear Information System (INIS)

    Polo-López, M.I.; Fernández-Ibáñez, P.; Ubomba-Jaswa, E.; Navntoft, C.; García-Fernández, I.; Dunlop, P.S.M.; Schmid, M.; Byrne, J.A.

    2011-01-01

    Solar disinfection (SODIS) of water is a well-known, effective treatment process which is practiced at household level in many developing countries. However, this process is limited by the small volume treated and there is no indication of treatment efficacy for the user. Low cost glass tube reactors, together with compound parabolic collector (CPC) technology, have been shown to significantly increase the efficiency of solar disinfection. However, these reactors still require user input to control each batch SODIS process and there is no feedback that the process is complete. Automatic operation of the batch SODIS process, controlled by UVA-radiation sensors, can provide information on the status of the process, can ensure the required UVA dose to achieve complete disinfection is received and reduces user work-load through automatic sequential batch processing. In this work, an enhanced CPC photo-reactor with a concentration factor of 1.89 was developed. The apparatus was automated to achieve exposure to a pre-determined UVA dose. Treated water was automatically dispensed into a reservoir tank. The reactor was tested using Escherichia coli as a model pathogen in natural well water. A 6-log inactivation of E. coli was achieved following exposure to the minimum uninterrupted lethal UVA dose. The enhanced reactor decreased the exposure time required to achieve the lethal UVA dose, in comparison to a CPC system with a concentration factor of 1.0. Doubling the lethal UVA dose prevented the need for a period of post-exposure dark inactivation and reduced the overall treatment time. Using this reactor, SODIS can be automatically carried out at an affordable cost, with reduced exposure time and minimal user input.

  10. Elimination of water pathogens with solar radiation using an automated sequential batch CPC reactor

    Energy Technology Data Exchange (ETDEWEB)

    Polo-Lopez, M.I., E-mail: mpolo@psa.es [Plataforma Solar de Almeria - CIEMAT, PO Box 22, 04200 Tabernas, Almeria (Spain); Fernandez-Ibanez, P., E-mail: pilar.fernandez@psa.es [Plataforma Solar de Almeria - CIEMAT, PO Box 22, 04200 Tabernas, Almeria (Spain); Ubomba-Jaswa, E., E-mail: euniceubombajaswa@yahoo.com [Natural Resources and the Environment, CSIR, PO Box 395, Pretoria (South Africa); Navntoft, C., E-mail: christian.navntoft@solarmate.com.ar [Instituto de Investigacion e Ingenieria Ambiental, Universidad Nacional de San Martin (3iA-UNSAM), Peatonal Belgrano 3563, B1650ANQ San Martin (Argentina); Universidad Tecnologica Nacional - Facultad Regional Buenos Aires - Departamento de Ingenieria Civil - Laboratorio de Estudios sobre Energia Solar, (UTN-FRBA-LESES), Mozart 2300, (1407) Ciudad Autonoma de Buenos Aires, Republica Argentina (Argentina); Garcia-Fernandez, I., E-mail: irene.garcia@psa.es [Plataforma Solar de Almeria - CIEMAT, PO Box 22, 04200 Tabernas, Almeria (Spain); Dunlop, P.S.M., E-mail: psm.dunlop@ulster.ac.uk [Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin 2 (Ireland); Schmid, M. [Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin 2 (Ireland); Byrne, J.A., E-mail: j.byrne@ulster.ac.uk [Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin 2 (Ireland); and others

    2011-11-30

    Solar disinfection (SODIS) of water is a well-known, effective treatment process which is practiced at household level in many developing countries. However, this process is limited by the small volume treated and there is no indication of treatment efficacy for the user. Low cost glass tube reactors, together with compound parabolic collector (CPC) technology, have been shown to significantly increase the efficiency of solar disinfection. However, these reactors still require user input to control each batch SODIS process and there is no feedback that the process is complete. Automatic operation of the batch SODIS process, controlled by UVA-radiation sensors, can provide information on the status of the process, can ensure the required UVA dose to achieve complete disinfection is received and reduces user work-load through automatic sequential batch processing. In this work, an enhanced CPC photo-reactor with a concentration factor of 1.89 was developed. The apparatus was automated to achieve exposure to a pre-determined UVA dose. Treated water was automatically dispensed into a reservoir tank. The reactor was tested using Escherichia coli as a model pathogen in natural well water. A 6-log inactivation of E. coli was achieved following exposure to the minimum uninterrupted lethal UVA dose. The enhanced reactor decreased the exposure time required to achieve the lethal UVA dose, in comparison to a CPC system with a concentration factor of 1.0. Doubling the lethal UVA dose prevented the need for a period of post-exposure dark inactivation and reduced the overall treatment time. Using this reactor, SODIS can be automatically carried out at an affordable cost, with reduced exposure time and minimal user input.

  11. Influence of solar water disinfection on immunity against cholera: a review

    CSIR Research Space (South Africa)

    Ssemakalu, CC

    2014-09-01

    Full Text Available of SODIS occurs in the intestinal mucosal 135 environment. The prospective antigens in SODIS water are acquired by Antigen Presenting 136 Cells (APCs) and transported to the mesenteric lymph nodes as well as the numerous small 137 isolated lymphoid... follicles along the wall of the intestine for presentation to T-cells. 138 Following the presentation of the antigens by the APC, the T cells are then activated with 139 subsequent migration to all the non-lymphoid tissues (Lefrancois & Puddington 2006...

  12. Elimination of water pathogens with solar radiation using an automated sequential batch CPC reactor.

    Science.gov (United States)

    Polo-López, M I; Fernández-Ibáñez, P; Ubomba-Jaswa, E; Navntoft, C; García-Fernández, I; Dunlop, P S M; Schmid, M; Byrne, J A; McGuigan, K G

    2011-11-30

    Solar disinfection (SODIS) of water is a well-known, effective treatment process which is practiced at household level in many developing countries. However, this process is limited by the small volume treated and there is no indication of treatment efficacy for the user. Low cost glass tube reactors, together with compound parabolic collector (CPC) technology, have been shown to significantly increase the efficiency of solar disinfection. However, these reactors still require user input to control each batch SODIS process and there is no feedback that the process is complete. Automatic operation of the batch SODIS process, controlled by UVA-radiation sensors, can provide information on the status of the process, can ensure the required UVA dose to achieve complete disinfection is received and reduces user work-load through automatic sequential batch processing. In this work, an enhanced CPC photo-reactor with a concentration factor of 1.89 was developed. The apparatus was automated to achieve exposure to a pre-determined UVA dose. Treated water was automatically dispensed into a reservoir tank. The reactor was tested using Escherichia coli as a model pathogen in natural well water. A 6-log inactivation of E. coli was achieved following exposure to the minimum uninterrupted lethal UVA dose. The enhanced reactor decreased the exposure time required to achieve the lethal UVA dose, in comparison to a CPC system with a concentration factor of 1.0. Doubling the lethal UVA dose prevented the need for a period of post-exposure dark inactivation and reduced the overall treatment time. Using this reactor, SODIS can be automatically carried out at an affordable cost, with reduced exposure time and minimal user input. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Water disinfection agents and disinfection by-products

    Science.gov (United States)

    Ilavský, J.; Barloková, D.; Kapusta, O.; Kunštek, M.

    2017-10-01

    The aim of this work is to describe factors of water quality change in the distribution network and legislative requirements in Slovakia for disinfectants and disinfection byproducts (DBPs). In the experimental part, the time dependence of the application of the chlorine dioxide and sodium hypochlorite on the formation of some by-products of disinfection for drinking water from WTP Hriňová is studied. We monitored trihalomethanes, free chlorine, chlorine dioxide and chlorites.

  14. Emergency Disinfection of Drinking Water

    Science.gov (United States)

    How to boil and disinfect water to kill most disease-causing microorganisms during emergency situations where regular water service has been interrupted and local authorities recommend using only bottled water, boiled water, or disinfected water.

  15. Spiral-shaped reactor for water disinfection

    KAUST Repository

    Soukane, Sofiane; Ait-Djoudi, Fariza; Naceur, Wahib M.; Ghaffour, NorEddine

    2016-01-01

    Chlorine-based processes are still widely used for water disinfection. The disinfection process for municipal water consumption is usually carried out in large tanks, specifically designed to verify several hydraulic and disinfection criteria

  16. Desinfecção de efluentes com tratamento terciário utilizando energia solar (SODIS: avaliação do uso do dispositivo para concentração dos raios solares Disinfection of effluent of wastewater treated using solar energy (SODIS: evaluation of a solar concentrator device

    Directory of Open Access Journals (Sweden)

    José Euclides Stipp Paterniani

    2005-03-01

    concentrator of rays of sunshine. The affluent control parameters were turbidity, apparent color, temperature, total coliforms and E. coli. These last three were evaluated before and after the desinfection process (effluent parameters. To assess the bacteria reactivation we kept the water in bottles for 24 hours, pretending a very common situation in Brazilian rural houses. We conclude that the use of the concentrator of rays of sunshine can reduce the heat exposion from 6 to 4 hours, without harm the SODIS efficience. Using the concentrator of rays of sunshine for 6 hours we can obtain, besides SODIS, the process of solar pasteurization (SOPAS, which stops the re-growth of bacteria with a 70ºC water temperature. We also observed that when the sky is cloudy the incidention of solar radiation and, therefore, the SODIS efficience decrease, even if the water temperature is higher during the desinfection. Although, this factor doesn't mean a significative influence statistically.

  17. Zinc oxide nanoparticles for water disinfection

    Directory of Open Access Journals (Sweden)

    Emelita Asuncion S. Dimapilis

    2018-03-01

    Full Text Available The world faces a growing challenge for adequate clean water due to threats coming from increasing demand and decreasing supply. Although there are existing technologies for water disinfection, their limitations, particularly the formation of disinfection-by-products, have led to researches on alternative methods. Zinc oxide, an essential chemical in the rubber and pharmaceutical industries, has attracted interest as antimicrobial agent. In nanoscale, zinc oxide has shown antimicrobial properties which make its potential great for various applications. This review discusses the synthesis of zinc oxide with focus on precipitation method, its antimicrobial property and the factors affecting it, disinfection mechanisms, and the potential application to water disinfection.

  18. DEVELOPMENT OF AN AUTOMATED BATCH-PROCESS SOLAR ...

    African Journals Online (AJOL)

    One of the shortcomings of solar disinfection of water (SODIS) is the absence of a feedback mechanism indicating treatment completion. This work presents the development of an automated batch-process water disinfection system aimed at solving this challenge. Locally sourced materials in addition to an Arduinomicro ...

  19. Silver disinfection in water distribution systems

    Science.gov (United States)

    Silvestry Rodriguez, Nadia

    Silver was evaluated as disinfectant to maintain water quality in water distribution system. It was used to inhibit growth of two opportunistic bacteria in planktonik form and in biofilm formation in Robbins devices with stainless steel and PVC surfaces. The results of this work show that silver is a potential secondary disinfectant to be used in water distribution systems.

  20. Disinfection of contaminated water by using solar irradiation.

    Science.gov (United States)

    Caslake, Laurie F; Connolly, Daniel J; Menon, Vilas; Duncanson, Catriona M; Rojas, Ricardo; Tavakoli, Javad

    2004-02-01

    Contaminated water causes an estimated 6 to 60 billion cases of gastrointestinal illness annually. The majority of these cases occur in rural areas of developing nations where the water supply remains polluted and adequate sanitation is unavailable. A portable, low-cost, and low-maintenance solar unit to disinfect unpotable water has been designed and tested. The solar disinfection unit was tested with both river water and partially processed water from two wastewater treatment plants. In less than 30 min in midday sunlight, the unit eradicated more than 4 log10 U (99.99%) of bacteria contained in highly contaminated water samples. The solar disinfection unit has been field tested by Centro Panamericano de Ingenieria Sanitaria y Ciencias del Ambiente in Lima, Peru. At moderate light intensity, the solar disinfection unit was capable of reducing the bacterial load in a controlled contaminated water sample by 4 log10 U and disinfected approximately 1 liter of water in 30 min.

  1. Recent advances in drinking water disinfection: successes and challenges.

    Science.gov (United States)

    Ngwenya, Nonhlanhla; Ncube, Esper J; Parsons, James

    2013-01-01

    Drinking water is the most important single source of human exposure to gastroenteric diseases, mainly as a result of the ingestion of microbial contaminated water. Waterborne microbial agents that pose a health risk to humans include enteropathogenic bacteria, viruses, and protozoa. Therefore, properly assessing whether these hazardous agents enter drinking water supplies, and if they do, whether they are disinfected adequately, are undoubtedly aspects critical to protecting public health. As new pathogens emerge, monitoring for relevant indicator microorganisms (e.g., process microbial indicators, fecal indicators, and index and model organisms) is crucial to ensuring drinking water safety. Another crucially important step to maintaining public health is implementing Water Safety Plans (WSPs), as is recommended by the current WHO Guidelines for Drinking Water Quality. Good WSPs include creating health-based targets that aim to reduce microbial risks and adverse health effects to which a population is exposed through drinking water. The use of disinfectants to inactivate microbial pathogens in drinking water has played a central role in reducing the incidence of waterborne diseases and is considered to be among the most successful interventions for preserving and promoting public health. Chlorine-based disinfectants are the most commonly used disinfectants and are cheap and easy to use. Free chlorine is an effective disinfectant for bacteria and viruses; however, it is not always effective against C. parvum and G. lamblia. Another limitation of using chlorination is that it produces disinfection by-products (DBPs), which pose potential health risks of their own. Currently, most drinking water regulations aggressively address DBP problems in public water distribution systems. The DBPs of most concern include the trihalomethanes (THMs), the haloacetic acids (HAAs), bromate, and chlorite. However, in the latest edition of the WHO Guidelines for Drinking Water Quality

  2. Disinfection of drinking water

    Energy Technology Data Exchange (ETDEWEB)

    Ensenauer, P

    1977-01-01

    Some methods for disinfecting drinking water are described, e.g. UV irradiation (optimal wavelength 210-250mm) with the advantage of constant water composition and the resulting danger of re-infection.

  3. Disinfection of drinking water

    International Nuclear Information System (INIS)

    Ensenauer, P.

    1977-01-01

    Some methods for disinfecting drinking water are described, e.g. UV irradiation (optimal wavelength 210-250mm) with the advantage of constant water composition and the resulting danger of re-infection. (AJ) [de

  4. UV disinfection in drinking water supplies.

    Science.gov (United States)

    Hoyer, O

    2000-01-01

    UV disinfection has become a practical and safely validatable disinfection procedure by specifying the requirements for testing and monitoring in DVGW standard W 294. A standardized biodosimetric testing procedure and monitoring with standardized UV sensors is introduced and successfully applied. On-line monitoring of irradiance can be counterchecked with handheld reference sensors and makes it possible that UV systems can be used for drinking water disinfection with the same level of confidence and safety as is conventional chemical disinfection.

  5. Fresh water disinfection by pulsed low electric field

    International Nuclear Information System (INIS)

    Zheng, C; Xu, Y; Liu, Z; Yan, K

    2013-01-01

    In this paper, we describe a pulsed low electric field process for water disinfection. Electric intensity of 0.6–1.7 kV cm −1 is applied. Experiments are performed with a 1.2 L axis-cylinder reactor. A bipolar pulsed power source with pulsed width of 25 μs and frequency of 100–3000 Hz is used. Water conductivity of 3–200 μs cm −1 is investigated, which can significantly affect pulsed voltage-current waveforms and injected energy. Energy per pulse rises with increased water conductivity. The initial E. Coli density and water conductivity are two major factors influencing the disinfection. No disinfection effect is performed with deionized water of 3 μs cm −1 . When water conductivity is 25 μs cm −1 and bacteria density is 10 4 –10 6 cfu ml −1 , significant disinfection effect is observed. More than 99% of the cells can be disinfected with an energy density of less than 70 J ml −1 , while water temperature is below 30 °C.

  6. Drinking water disinfection by means of ultraviolet radiation

    International Nuclear Information System (INIS)

    Gelzhaeuser, P.; Bewig, F.; Holm, K.; Kryschi, R.; Reich, G.; Steuer, W.

    1985-01-01

    The book presents all lectures held during a course at Technical Academy Esslingen, on September 10, 1985, on the subject of 'Drinking water disinfection by means of ultraviolet radiation'. The methods hitherto used for disinfection are no longer suitable because of the increasing amounts of organic pollutants found in the untreated water, and because of the necessity to make drinking water disinfection less expensive, non-polluting and thus environmentally compatible. U.V. irradiation is a method allowing technically simple and safe disinfection of the water, and also does not have any effect on the natural taste of the drinking water. The lectures presented discuss all aspects of the method, the equipment, and the performance of irradiation systems in practice. (orig./PW) [de

  7. Basic Information about Chloramines and Drinking Water Disinfection

    Science.gov (United States)

    Chloramines are disinfectants used to treat drinking water. Chloramines are most commonly formed when ammonia is added to chlorine to treat drinking water. Chloramines provide longer-lasting disinfection as the water moves through pipes to consumers.

  8. Studies on Disinfection By-Products and Drinking Water

    Science.gov (United States)

    Rostad, Colleen E.

    2007-01-01

    Drinking water is disinfected with chemicals to remove pathogens, such as Giardia and Cryptosproridium, and prevent waterborne diseases such as cholera and typhoid. During disinfection, by-products are formed at trace concentrations. Because some of these by-products are suspected carcinogens, drinking water utilities must maintain the effectiveness of the disinfection process while minimizing the formation of by-products.

  9. Drinking water contamination and it's disinfection

    International Nuclear Information System (INIS)

    Shah, P.M.J.

    2005-01-01

    High quality water is necessary for the survival of human life. In this paper, an effort has been made to highlight the various causes of water contamination. Some of the most common impurities present in water are pathogenic microorganisms along with organize and in organize pollutants. Different treatment methods are adopted to ensure the potability of water. They include physical, chemical and ultra viable treatment along with solar disinfection etc. The adoption of a particular disinfection strategy depends on the level of treatment required and the resources available to carry out such a treatment. (author)

  10. Impact of disinfection on drinking water biofilm bacterial community.

    Science.gov (United States)

    Mi, Zilong; Dai, Yu; Xie, Shuguang; Chen, Chao; Zhang, Xiaojian

    2015-11-01

    Disinfectants are commonly applied to control the growth of microorganisms in drinking water distribution systems. However, the effect of disinfection on drinking water microbial community remains poorly understood. The present study investigated the impacts of different disinfectants (chlorine and chloramine) and dosages on biofilm bacterial community in bench-scale pipe section reactors. Illumina MiSeq sequencing illustrated that disinfection strategy could affect both bacterial diversity and community structure of drinking water biofilm. Proteobacteria tended to predominate in chloraminated drinking water biofilms, while Firmicutes in chlorinated and unchlorinated biofilms. The major proteobacterial groups were influenced by both disinfectant type and dosage. In addition, chloramination had a more profound impact on bacterial community than chlorination. Copyright © 2015. Published by Elsevier B.V.

  11. Drinking Water Supply without Use of a Disinfectant

    Science.gov (United States)

    Rajnochova, Marketa; Tuhovcak, Ladislav; Rucka, Jan

    2018-02-01

    The paper focuses on the issue of drinking water supply without use of any disinfectants. Before the public water supply network operator begins to consider switching to operation without use of chemical disinfection, initial assessment should be made, whether or not the water supply system in question is suitable for this type of operation. The assessment is performed by applying the decision algorithm. The initial assessment is followed by another decision algorithm which serves for managing and controlling the process of switching to drinking water supply without use of a disinfectant. The paper also summarizes previous experience and knowledge of this way operated public water supply systems in the Czech Republic.

  12. A pilot solar water disinfecting system: performance analysis and testing

    Energy Technology Data Exchange (ETDEWEB)

    Saitoh, T.S.; El-Ghetany, H.H. [Tohoku University, Sendai (Japan). Dept. of Aeronautics and Space Engineering

    2002-07-01

    In most countries, contaminated water is the major cause of most water-borne diseases. Disinfection of water may be accomplished by a number of different physical-chemical treatments including direct application of thermal energy, chemical and filtration techniques. Solar energy also can be used effectively in this field because inactivation of microorganisms is done either by heating water to a disinfecting temperature or by exposing it to ultraviolet solar radiation. A pilot solar system for disinfecting contaminated water is designed, constructed and tested. Investigations are carried out to evaluate the performance of a wooden hot box solar facility as a solar disinfectant. Experimental data show that solar energy is viable for the disinfection process. A solar radiation model is presented and compared with the experimental data. A mathematical model of the solar disinfectant is also presented. The governing equations are solved numerically via the fourth-order Runge-Kutta method. The effects of environmental conditions (ambient temperature, wind speed, solar radiation, etc.) on the performance of the solar disinfectant are examined. Results showed that the system is affected by ambient temperature, wind speed, ultraviolet solar radiation intensity, the turbidity of the water, the quantity of water exposed, the contact area between the transparent water container in the solar disinfectant and the absorber plate as well as the geometrical parameters of the system. It is pointed out that for partially cloudy conditions with a low ambient temperature and high wind speeds, the thermal efficiency of the solar disinfectant is at a minimum. The use of solar energy for the disinfection process will increase the productivity of the system while completely eliminating the coliform group bacteria at the same time. (author)

  13. Effect of ultrasonic pretreatment on purified water disinfection

    International Nuclear Information System (INIS)

    Simon Andreu, P.; Lardin Mifsut, C.; Vergara Romero, L.; Polo Canas, P. M.; Perez Sanchez, P.; Rancano Perez, A.

    2009-01-01

    Due to the importance of a suitable water disinfection in order to insure a pollutant effect minimization against environment, this work has been carried out to determine how can affect an ultrasonic pre-treatment upon disinfection step. It has been confirmed the ultrasonic disintegration of bacterial cells in treated water and disinfectant power of treatment by itself, which is not enough to be used as a single method in water disinfection. It has also been proved that from a technical and economical point of view the combination of UV and ultrasound improves the UV treatment performance. Finally, it has been detected that an ultrasonic pre-treatment increases chlorination effectiveness, however the high cost in this combination makes it unfeasible of industrial scale. (Author) 6 refs

  14. Chlorine disinfection of grey water for reuse: effect of organics and particles.

    Science.gov (United States)

    Winward, Gideon P; Avery, Lisa M; Stephenson, Tom; Jefferson, Bruce

    2008-01-01

    Adequate disinfection of grey water prior to reuse is important to prevent the potential transmission of disease-causing microorganisms. Chlorine is a widely utilised disinfectant and as such is a leading contender for disinfection of grey water intended for reuse. This study examined the impact of organics and particles on chlorine disinfection of grey water, measured by total coliform inactivation. The efficacy of disinfection was most closely linked with particle size. Larger particles shielded total coliforms from inactivation and disinfection efficacy decreased with increasing particle size. Blending to extract particle-associated coliforms (PACs) following chlorine disinfection revealed that up to 91% of total coliforms in chlorinated grey water were particle associated. The organic concentration of grey water affected chlorine demand but did not influence the disinfection resistance of total coliforms when a free chlorine residual was maintained. Implications for urban water reuse are discussed and it is recommended that grey water treatment systems target suspended solids removal to ensure removal of PACs prior to disinfection.

  15. Ultraviolet disinfection of potable water

    Energy Technology Data Exchange (ETDEWEB)

    Wolfe, R. L. [Metropolitan Water District of Southern California, Los Angeles, CA (United States)

    1990-06-15

    Because of upcoming surface and groundwater regulations regarding the control of microbiological and chemical contaminants, there is a need to evaluate the feasibility and effectiveness of ultraviolet (UV) radiation for primary disinfection of potable water supplies. Data is presented on microbicidal wavelengths of UV and distribution of energy output for low and medium-pressure arc lamps. Both systems were found to perform equally well for inactivating microorganisms, but each had distinct advantages in different applications. Approximate dosages for 90% inactivation of selected microorganisms by UV is presented in a table. Cost analysis for disinfection is presented in two tables as well as the advantages and disadvantages of UV disinfection.

  16. Ultraviolet disinfection of potable water

    International Nuclear Information System (INIS)

    Wolfe, R.L.

    1990-01-01

    Because of upcoming surface and groundwater regulations regarding the control of microbiological and chemical contaminants, there is a need to evaluate the feasibility and effectiveness of ultraviolet (UV) radiation for primary disinfection of potable water supplies. Data is presented on microbicidal wavelengths of UV and distribution of energy output for low and medium-pressure arc lamps. Both systems were found to perform equally well for inactivating microorganisms, but each had distinct advantages in different applications. Approximate dosages for 90% inactivation of selected microorganisms by UV is presented in a table. Cost analysis for disinfection is presented in two tables as well as the advantages and disadvantages of UV disinfection

  17. Development of the electrical discharge method for water disinfection

    International Nuclear Information System (INIS)

    Vojtenko, L.M.; Kononov, O.V.; Starchik, P.D.; Samojlenko, L.S.; Stavs'ka, S.S.

    1995-01-01

    Studies of processes of bacterially polluted water disinfection by the method of pulse electrical discharge in water are presented. The studies was performed to improve the disinfection technology. Main attention was concentrated to clear up effect of discharge instability on the disinfection. An influence of the shape and sizes of electrodes on repeatability of discharges was also investigated. It was found that salts solved in water greatly influence ultraviolet radiation absorption coefficients

  18. Effectiveness of solar disinfection using batch reactors with non-imaging aluminium reflectors under real conditions: Natural well-water and solar light.

    Science.gov (United States)

    Navntoft, C; Ubomba-Jaswa, E; McGuigan, K G; Fernández-Ibáñez, P

    2008-12-11

    Inactivation kinetics are reported for suspensions of Escherichia coli in well-water using compound parabolic collector (CPC) mirrors to enhance the efficiency of solar disinfection (SODIS) for batch reactors under real, solar radiation (cloudy and cloudless) conditions. On clear days, the system with CPC reflectors achieved complete inactivation (more than 5-log unit reduction in bacterial population to below the detection limit of 4CFU/mL) one hour sooner than the system fitted with no CPC. On cloudy days, only systems fitted with CPCs achieved complete inactivation. Degradation of the mirrors under field conditions was also evaluated. The reflectivity of CPC systems that had been in use outdoors for at least 3 years deteriorated in a non-homogeneous fashion. Reflectivity values for these older systems were found to vary between 27% and 72% compared to uniform values of 87% for new CPC systems. The use of CPC has been proven to be a good technological enhancement to inactivate bacteria under real conditions in clear and cloudy days. A comparison between enhancing optics and thermal effect is also discussed.

  19. Ultraviolet (UV) disinfection of grey water: particle size effects.

    Science.gov (United States)

    Winward, G P; Avery, L M; Stephenson, T; Jefferson, B

    2008-02-01

    The impact of water quality on the ultraviolet (UV) disinfection of grey water was investigated with reference to urban water reuse. Direct UV disinfection of grey water did not meet the stringent California State Title 22 criteria for unrestricted urban water reuse due to the presence of particulate material ranging from or = 2000 microm in size. Grey water was manipulated by settling to produce fractions of varying particle size distributions and blending was employed post-disinfection to extract particle-associated coliforms (PACs). The efficacy of UV disinfection was found to be linked to the particle size of the grey water fractions. The larger particle size fractions with a mean particle size of 262 microm and above were observed to shield more coliforms from UV light than did the smaller particles with a mean particle size below 119 microm. Up to 70% of total coliforms in the larger particle size fractions were particle-associated following a UV dose (fluence) of 260 mJ.cm(-2) and would remain undetected by standard coliform enumeration techniques. Implications for urban water reuse are discussed and recommendations made for grey water treatment to ensure removal of particle-associated indicator bacteria and pathogens prior to UV disinfection.

  20. UV disinfection of water

    International Nuclear Information System (INIS)

    Skipperud, E.; Johansen; Myhrstad, J.A.

    1978-01-01

    UV radiation has been found to have advantages over chloration for the disinfection of water. New regulations for dietary conditions on Norwegian ships introduced in 1974 led to increased use of UV disinfection, and this has in the following years spread to waterworks. The present article is based on a study to determine possible limitation. The nature of the injuries to the microorganisms is first discussed, together with repair mechanisms. A table is given showing the energy required for 90 and 100 percent inactivation of a number of microorganisms. Some other factors affecting UV inactivation are briefly mentioned. (JIW)

  1. Ultraviolet (UV) Disinfection for Drinking Water Systems

    Science.gov (United States)

    UV disinfection is an effective process for inactivating many microbial pathogens in water with potential to serve as stand-alone treatment or in combination with other disinfectants. USEPA provided guidance on the validation of UV reactors nearly a decade ago. Since then, lesson...

  2. Selection criteria for water disinfection techniques in agricultural practices.

    Science.gov (United States)

    Haute, Sam van; Sampers, Imca; Jacxsens, Liesbeth; Uyttendaele, Mieke

    2015-01-01

    This paper comprises a selection tool for water disinfection methods for fresh produce pre- and postharvest practices. A variety of water disinfection technologies is available on the market and no single technology is the best choice for all applications. It can be difficult for end users to choose the technology that is best fit for a specific application. Therefore, the different technologies were characterized in order to identify criteria that influence the suitability of a technology for pre- or postharvest applications. Introduced criteria were divided into three principal components: (i) criteria related to the technology and which relate to the disinfection efficiency, (ii) attention points for the management and proper operation, and (iii) necessities in order to sustain the operation with respect to the environment. The selection criteria may help the end user of the water disinfection technology to obtain a systematic insight into all relevant aspects to be considered for preliminary decision making on which technologies should be put to feasibility testing for water disinfection in pre- and postharvest practices of the fresh produce chain.

  3. OPTIMAL SCHEDULING OF BOOSTER DISINFECTION IN WATER DISTRIBUTION SYSTEMS

    Science.gov (United States)

    Booster disinfection is the addition of disinfectant at locations distributed throughout a water distribution system. Such a strategy can reduce the mass of disinfectant required to maintain a detectable residual at points of consumption in the distribution system, which may lea...

  4. Inactivation model for disinfection of biofilms in drinking water

    International Nuclear Information System (INIS)

    Karlicki, A.; O'Leary, K.C.; Gagnon, G.A.

    2002-01-01

    The purpose of the project was to investigate experimentally the effects of free chlorine, monochloramine and chlorine dioxide on the removal of biofilm growth in water as it applies to drinking water in distribution systems. In particular, biofilm kill for a particular dosage of disinfectant was measured as a function of time for each disinfectant over a range of disinfectant concentrations. These results were used to formulate concentration-time (Ct) inactivation values for each disinfectant to compare the efficacy of the three disinfectants for biofilm control. The biofilm reactor system consisted of a 125 mL columns, each containing tightly packed 3 mm glass beads on which heterotrophic bacterial biofilm is established. Following an initial biofilm inoculation period, the glass beads were removed from the columns and placed into glass jars for disinfection with free chlorine, monochloramine and chlorine dioxide. Cell counts were determined on a time series basis with the goal of achieving a Ct inactivation model that is similar to models presently used for inactivation of suspended cells. Ultimately this research could be used to develop a rationale method for setting regulatory values for secondary disinfection in drinking water distribution systems, which presently in only a few states and provinces. (author)

  5. Disinfection aboard cruise liners and naval units: formation of disinfection by-products using chlorine dioxide in different qualities of drinking water.

    Science.gov (United States)

    Ufermann, Petra; Petersen, Hauke; Exner, Martin

    2011-12-01

    The world-wide deployment of cruise liners and naval units has caused an increased need for the disinfection of drinking water. The main cause for this is the unknown quality of drinking water in foreign harbours--besides the formation of bio-films due to the climatically disadvantageous conditions in the operational area. Water conduits on board are currently disinfected with calcium hypochlorite in case of microbiological contamination. Chemical and physical analyses after disinfection with calcium hypochlorite have shown that organic by-products consisting of trihalomethanes develop in considerable amounts during disinfection. Furthermore, the method is susceptible to handling errors and thus often leads to insufficient disinfection results. Hitherto, the use of other disinfection methods allowed by government regulations, especially chlorine dioxide, is not widely spread. Unlike disinfection with calcium hypochlorite, chlorine dioxide does not lead to the formation of trihalomethanes. Typical disinfection by-products (DBP) are the anions chlorite and chlorate, which are formed in oxidative processes. The formation conditions of these anions have not yet been elucidated. For this reason, the probability of the generation of inorganic by-products after disinfection with chlorine dioxide has been determined, and their occurrence in drinking water on board has been examined with respect to a possible correlation between water quality and the formation of chlorate and chlorite. Therefore, a chromatographic method was developed and validated in order to determine the periodical development of chlorate and chlorite from chorine dioxide in purified water at different pH-values as well as in actual drinking water samples from water conduits on board. The formation of the by-products chlorite and chlorate after disinfection with chlorine dioxide is influenced neither by pH-value nor by chemical properties of the disinfected water. Considering the examined conditions

  6. Solar water disinfecting system using compound parabolic concentrating collector

    Energy Technology Data Exchange (ETDEWEB)

    El-Ghetany, H.H.; Saitoh, T.S. [Tohoku Univ., Sendai (Japan)

    2000-05-31

    Solar water disinfection is an alternative technology using solar radiation and thermal treatment to inactivate and destroy pathogenic microorganisms present in water. The Compound Parabolic Concentrating, (CPC) collector can be used as an efficient key component for solar disinfectanting system. Two types of the CPC collectors are studied, namely the transparent-tube and the Copper-tube CPC collector. It is found that after 30 minutes of exposing the water sample to solar radiation or heating it up to 65 degree C for a few minuets all the coliform bacterial present in the contaminated water sample were completely eliminated. In this article, the effect of water temperature on the disinfecting process was presented. Thermal and micro-biological measurements were also made to evaluate the system performance. (author)

  7. Sewage disinfection towards protection of drinking water resources.

    Science.gov (United States)

    Kolch, A

    2000-01-01

    Wastewater applied in agriculture for irrigation could replace the use of natural drinking-water resources. With respect to high concentrations of human pathogens wastewater has to be disinfected prior to use. This paper introduces disinfection methods with emphasis on UV irradiation.

  8. Application of neutral electrolyzed water to disinfection of alginate impression.

    Science.gov (United States)

    Nagamatsu, Yuki; Chen, Ker-Kong; Nagamatsu, Hiroshi; Kozono, Yoshio; Shimizu, Hiroshi

    2016-01-01

    Neutral electrolyzed water was developed with new concepts of long-term good durability and minimum corrosiveness to metal in addition to its excellent bactericidal activities similar to acid type of electrolyzed waters. The present study examined the bactericidal effects of the neutral electrolyzed water on disinfection of the alginate impression of a dental arch model contaminated by bacteria. Only 1-min immersion in neutral electrolyzed water could sufficiently disinfect the alginate impression including the metallic tray under ultrasonic with no significant differences from acid electrolyzed waters. No bactericidal effects were found in any electrolyzed water when used as mixing water. Considering the advantages and disadvantages of each electrolyzed water in a comprehensive way, it was suggested that neutral electrolyzed water may be the most appropriate for the disinfection of alginate impression.

  9. Toxic impact of bromide and iodide on drinking water disinfected with chlorine or chloramines.

    Science.gov (United States)

    Yang, Yang; Komaki, Yukako; Kimura, Susana Y; Hu, Hong-Ying; Wagner, Elizabeth D; Mariñas, Benito J; Plewa, Michael J

    2014-10-21

    Disinfectants inactivate pathogens in source water; however, they also react with organic matter and bromide/iodide to form disinfection byproducts (DBPs). Although only a few DBP classes have been systematically analyzed for toxicity, iodinated and brominated DBPs tend to be the most toxic. The objectives of this research were (1) to determine if monochloramine (NH2Cl) disinfection generated drinking water with less toxicity than water disinfected with free chlorine (HOCl) and (2) to determine the impact of added bromide and iodide in conjunction with HOCl or NH2Cl disinfection on mammalian cell cytotoxicity and genomic DNA damage induction. Water disinfected with chlorine was less cytotoxic but more genotoxic than water disinfected with chloramine. For both disinfectants, the addition of Br(-) and I(-) increased cytotoxicity and genotoxicity with a greater response observed with NH2Cl disinfection. Both cytotoxicity and genotoxicity were highly correlated with TOBr and TOI. However, toxicity was weakly and inversely correlated with TOCl. Thus, the forcing agents for cytotoxicity and genotoxicity were the generation of brominated and iodinated DBPs rather than the formation of chlorinated DBPs. Disinfection practices need careful consideration especially when using source waters containing elevated bromide and iodide.

  10. The efficiency of water treatment and disinfection by means of ultraviolet radiation

    International Nuclear Information System (INIS)

    Sobotka, J.

    1993-01-01

    Advantages and disadvantages of various water disinfection methods are discussed. The report examines the effectiveness of combined chlorine treatment and UV irradiation method of water disinfection and describes methods of determining UV radiation intensity, α absorption coefficient and radiation dose by means of measuring equipment constructed by the author. The α absorption coefficient dependence on the colour and turbidity of water exposed to radiation is defined. Enchytraeus albidus was applied as bioindicator in UV radiation intensity and disinfection effects measurements. The influence of UV radiation on microbiological, physical, chemical, and toxicological properties of water was determined. Prototype devices for water disinfection with UV radiation were made. (author)

  11. The efficiency of water treatment and disinfection by means of ultraviolet radiation

    Energy Technology Data Exchange (ETDEWEB)

    Sobotka, J [Medical Academy, Warsaw (Poland). Inst. of Social Medicine

    1993-01-01

    Advantages and disadvantages of various water disinfection methods are discussed. The report examines the effectiveness of combined chlorine treatment and UV irradiation method of water disinfection and describes methods of determining UV radiation intensity, [alpha] absorption coefficient and radiation dose by means of measuring equipment constructed by the author. The [alpha] absorption coefficient dependence on the colour and turbidity of water exposed to radiation is defined. Enchytraeus albidus was applied as bioindicator in UV radiation intensity and disinfection effects measurements. The influence of UV radiation on microbiological, physical, chemical, and toxicological properties of water was determined. Prototype devices for water disinfection with UV radiation were made. (author).

  12. A Review of Heterogeneous Photocatalysis for Water and Surface Disinfection

    Directory of Open Access Journals (Sweden)

    John Anthony Byrne

    2015-03-01

    Full Text Available Photo-excitation of certain semiconductors can lead to the production of reactive oxygen species that can inactivate microorganisms. The mechanisms involved are reviewed, along with two important applications. The first is the use of photocatalysis to enhance the solar disinfection of water. It is estimated that 750 million people do not have accessed to an improved source for drinking and many more rely on sources that are not safe. If one can utilize photocatalysis to enhance the solar disinfection of water and provide an inexpensive, simple method of water disinfection, then it could help reduce the risk of waterborne disease. The second application is the use of photocatalytic coatings to combat healthcare associated infections. Two challenges are considered, i.e., the use of photocatalytic coatings to give “self-disinfecting” surfaces to reduce the risk of transmission of infection via environmental surfaces, and the use of photocatalytic coatings for the decontamination and disinfection of medical devices. In the final section, the development of novel photocatalytic materials for use in disinfection applications is reviewed, taking account of materials, developed for other photocatalytic applications, but which may be transferable for disinfection purposes.

  13. High compliance randomized controlled field trial of solar disinfection of drinking water and its impact on childhood diarrhea in rural Cambodia

    CSIR Research Space (South Africa)

    McGuigan, KG

    2011-09-01

    Full Text Available of a 1 year randomized controlled trial investigating the effect of SODIS of drinking water on the incidence of dysentery and nondysentery diarrhea among children of age 6 months to 5 years living in rural communities in Cambodia. They compared 426...

  14. Solar disinfection of drinking water in the prevention of dysentery in South African children under 5 years: the role of participant motivation

    CSIR Research Space (South Africa)

    Du Preez, M

    2010-11-01

    Full Text Available This 1-year randomized controlled trial investigated the effect of SODIS of drinking water and motivation on the incidence of dysentery and nondysentery diarrhea among children of age 6 months to 5 years living in periurban communities in South...

  15. Biological Treatment of Water Disinfection Byproducts using ...

    Science.gov (United States)

    Major disinfection by-products (DBPs) from the chlorination process of drinking water include trihalomethanes (THMs) and haloacetic acides (HAA5). THMs mainly consist of chloroform, and other harsh chemicals. Prolonged consumptions of drinking water containing high levels of THMs has been linked with diseases of the liver, kidneys, bladder, or central nervous system and may increase likelihood of cancer. A risk also exists for THMs exposure via inhalation while showering, bathing or washing clothes and dishes. Due to these risks, the U.S. EPA regulate THMs content in drinking water. This research investigates biological degradation of THM using chloroform as a model compound. The study aims to decrease possible risks of THMs through filtration. Throughout this year’s presentations, there is a common theme of health and safety concerns. UC researchers are working hard to clean water ways of naturally occurring contaminates as well as man-made toxins found in our waterways. The significance of these presentations translates into the promise of safer environments, and more importantly saved lives, as UC’s faculty continues to produce real-world solutions to problems threatening the world around us. A biotech process has been developed and demonstrated that effectively remove and treat volatile disinfection by-products from drinking water. The process strips low concentration disinfection by-products, such as trihalomethanes, that are formed during the chlori

  16. Spiral-shaped reactor for water disinfection

    KAUST Repository

    Soukane, Sofiane

    2016-04-20

    Chlorine-based processes are still widely used for water disinfection. The disinfection process for municipal water consumption is usually carried out in large tanks, specifically designed to verify several hydraulic and disinfection criteria. The hydrodynamic behavior of contact tanks of different shapes, each with an approximate total volume of 50,000 m3, was analyzed by solving turbulent momentum transport equations with a computational fluid dynamics code, namely ANSYS fluent. Numerical experiments of a tracer pulse were performed for each design to generate flow through curves and investigate species residence time distribution for different inlet flow rates, ranging from 3 to 12 m3 s−1. A new nature-inspired Conch tank design whose shape follows an Archimedean spiral was then developed. The spiral design is shown to strongly outperform the other tanks’ designs for all the selected plug flow criteria with an enhancement in efficiency, less short circuiting, and an order of magnitude improvement in mixing and dispersion. Moreover, following the intensification philosophy, after 50% reduction in its size, the new design retains its properties and still gives far better results than the classical shapes.

  17. Spiral-shaped disinfection reactors

    KAUST Repository

    Ghaffour, Noreddine

    2015-08-20

    This disclosure includes disinfection reactors and processes for the disinfection of water. Some disinfection reactors include a body that defines an inlet, an outlet, and a spiral flow path between the inlet and the outlet, in which the body is configured to receive water and a disinfectant at the inlet such that the water is exposed to the disinfectant as the water flows through the spiral flow path. Also disclosed are processes for disinfecting water in such disinfection reactors.

  18. The Occurrence and Comparative Toxicity of Haloacetaldehyde Disinfection Byproducts in Drinking Water

    Science.gov (United States)

    The introduction of drinking water disinfection greatly reduced the incidence of waterborne diseases. However, the reaction between disinfectants and natural organic matter in the source water can lead to an unintended consequence, which is the formation of drinking water disinfe...

  19. Chloramination of Concentrated Drinking Water for Disinfection Byproduct Mixtures Creation- Indianapolis

    Science.gov (United States)

    Complex mixtures of disinfection by-products (DBPs) are formed when the disinfectant oxidizes constituents (e.g., natural organic matter (NOM) and organic pollutants) found in the source water. Since 1974, over 600 DBPs have been identified in drinking water. Despite intense iden...

  20. Enhancement of ultraviolet water disinfection process

    African Journals Online (AJOL)

    grabi-1

    2013-05-15

    May 15, 2013 ... disinfected water distribution systems, including. Legionella .... soft agar, mixed, incubated at room temperature for 2 min and poured onto the ... The determination of a log increase methodology was employed to quantify the ...

  1. MUTAGENICITY AND DISINFECTION BY-PRODUCTS IN SURFACE DRINKING WATER DISINFECTED WITH PERACETIC ACID

    Science.gov (United States)

    The aims of this research were to study the influence of peracetic acid (PAA) on the formation of mutagens in surface waters used for human consumption and to assess its potential application for the disinfection of drinking water. The results obtained using PAA were compared to ...

  2. Selection Criteria for Water Disinfection Techniques in Agricultural Practices

    OpenAIRE

    Haute, Sam van; Sampers, Imca; Jacxsens, Liesbeth; Uyttendaele, Mieke

    2013-01-01

    This paper comprises a selection tool for water disinfection methods for fresh produce pre- and postharvest practices. A variety of water disinfection technologies is available on the market and no single technology is the best choice for all applications. It can be difficult for end users to choose the technology that is best fit for a specific application. Therefore, the different technologies were characterized in order to identify criteria that influence the suitability of a technology fo...

  3. Efficacy of detergent and water versus bleach for disinfection of direct contact ophthalmic lenses.

    Science.gov (United States)

    Abbey, Ashkan M; Gregori, Ninel Z; Surapaneni, Krishna; Miller, Darlene

    2014-06-01

    Although manufacturers recommend cleaning ophthalmic lenses with detergent and water and then with a specific disinfectant, disinfectants are rarely used in ophthalmic practices. The aim of this pilot study was to evaluate the efficacy of detergent and water versus that of bleach, a recommended disinfectant, to eliminate common ocular bacteria and viruses from ophthalmic lenses. Three bacterial strains (Staphylococcus epidermidis, Corynebacterium straitum, and methicillin-resistant Staphylococcus aureus and 2 viral strains (adenovirus and herpes simplex virus [HSV] type-1) were individually inoculated onto 20 gonioscopy and laser lenses. The lenses were washed with detergent and water and then disinfected with 10% bleach. All the lenses were cultured after inoculation, after washing with detergent and water, and after disinfecting with the bleach. Bacterial cultures in thioglycollate broth were observed for 3 weeks, and viral cultures were observed for 2 weeks. The presence of viruses was also detected by multiplex polymerase chain reaction (PCR). All 20 lenses inoculated with S. epidermidis, C. straitum, adenovirus, and HSV-1 showed growth after inoculation but no growth after washing with detergent/water and after disinfecting with the bleach. All lenses showed positive HSV and adenovirus PCR results after inoculation and negative PCR results after washing with detergent/water and after disinfecting with bleach. All methicillin-resistant S. aureus-contaminated lenses showed growth after inoculation and no growth after washing with detergent and water. However, 1 lens showed positive growth after disinfecting with bleach. Cleaning with detergent and water seemed to effectively eliminate bacteria and viruses from the surface of contaminated ophthalmic lenses. Further studies are warranted to design practical disinfection protocols that minimize lens damage.

  4. Synergistic effect of solar radiation and solar heating to disinfect drinking water sources.

    Science.gov (United States)

    Rijal, G K; Fujioka, R S

    2001-01-01

    Waterborne diseases are still common in developing countries as drinking water sources are contaminated and feasible means to reliably treat and disinfect these waters are not available. Many of these developing countries are in the tropical regions of the world where sunlight is plentiful. The objective of this study was to evaluate the effectiveness of combining solar radiation and solar heating to disinfect contaminated water using a modified Family Sol*Saver System (FSP). The non-UV transmittable cover sheet of the former FSP system was replaced with an UV transmittable plastic cover sheet to enable more wavelengths of sunlight to treat the water. Disinfection efficiency of both systems was evaluated based on reduction of the natural populations of faecal coliform, E. coli, enterococci, C. perfringens, total heterotrophic bacteria, hydrogen sulphide producing bacteria and FRNA virus. The results showed that under sunny and partly sunny conditions, water was heated to critical temperature (60 degrees C) in both the FSP systems inactivating more than 3 log (99.9%) of the concentrations of faecal coliform and E. coli to undetectable levels of heat worked synergistically to enhance the inactivation of faecal indicator bacteria. The relative log removal of indicator microorganism in the FSP treated water was total heterotrophic bacteria heat and radiation effects of sunlight were important in disinfecting water by solar units. The data indicated that direct radiation of sunlight worked synergistically with solar heating of the water to disinfect the water. Thus, effective disinfection was observed even when the water temperature did not reach 60 degrees C. Finally, the hydrogen sulphide test is a simple and reliable test that householders can use to determine whether their water had been sufficiently disinfected.

  5. Practical considerations in the use of UV light for drinking water disinfection

    International Nuclear Information System (INIS)

    Jeyanayagam, S.; Cotton, C.

    2002-01-01

    Ultraviolet (UV) light was discovered approximately 150 years ago. The first commercial UV lamp was made in the early 1900s soon followed by the manufacture of the quartz sleeve. These technological advances allowed the first application of UV light for water disinfection in 1907 in France. In the mid 1980s, UV disinfection was named as a Best available technology (BAT) for wastewater disinfection in the United States. Fueled by the recent findings that UV disinfection can inactivate key pathogens at cost effective UV doses, the drinking water industry in North America is closely investigating its application in large installations. (author)

  6. Disinfection by-products and extractable organic compounds in South African tap water

    Directory of Open Access Journals (Sweden)

    Carien Nothnagel

    2008-04-01

    Full Text Available An important step in urban purification of drinking water is disinfection by e.g. chlorination where potential pathogenic micro-organisms in the water supply are killed. The presence of organic material in natural water leads to the formation of organic by- products during disinfection. Over 500 of these disinfection by-products (DBPs have been identified and many more are estimated to form during the disinfection step. Several DBPs such as trihalomethanes (THMs, which is carcinogenic, poses serious health risks to the community. There is very few quantitative data available which realizes the actual levels of these compounds present in drinking water. The levels of four THMs present in drinking water were measured. It included chloroform, bromodichloromethane, chlorodibromomethane and bromoform. Although microbiological parameters are considered to get more attention than disinfection by-products, the measurement of the levels of these compounds in South-African drinking water is essential together with establishing minimum acceptable concentration levels. The target range for total trihalomethanes (TTHMs established by the US EPA at the end of 2003 is 0-0.08ug/mL. The aim of this paper is to create an awareness of the problem as well as presenting preliminary results obtained with the method of analysis. Preliminary results indicate that urgent attention must be given to the regulation and monitoring of DBPs in South African drinking water.

  7. Drinking water disinfection by means of ultraviolet radiation. Desinfektion von Trinkwasser durch UV-Bestrahlung

    Energy Technology Data Exchange (ETDEWEB)

    Gelzhaeuser, P; Bewig, F; Holm, K; Kryschi, R; Reich, G; Steuer, W

    1985-01-01

    The book presents all lectures held during a course at Technical Academy Esslingen, on September 10, 1985, on the subject of 'Drinking water disinfection by means of ultraviolet radiation'. The methods hitherto used for disinfection are no longer suitable because of the increasing amounts of organic pollutants found in the untreated water, and because of the necessity to make drinking water disinfection less expensive, non-polluting and thus environmentally compatible. U.V. irradiation is a method allowing technically simple and safe disinfection of the water, and also does not have any effect on the natural taste of the drinking water. The lectures presented discuss all aspects of the method, the equipment, and the performance of irradiation systems in practice.

  8. Effect of μM Fe addition, mild heat and solar UV on sulfate radical-mediated inactivation of bacteria, viruses, and micropollutant degradation in water.

    Science.gov (United States)

    Marjanovic, Miloch; Giannakis, Stefanos; Grandjean, Dominique; de Alencastro, Luiz Felippe; Pulgarin, Cesar

    2018-09-01

    In this work, solar disinfection (SODIS) was enhanced by moderate addition of Fe and sodium peroxydisulfate (PDS), under solar light. A systematic assessment of the activating factors was performed, firstly isolated, then in pairs and concluded in the combined Fe/heat/solar UV-PDS activation process. Solar light was the most effective (single) activator, and its combination with Fe and heat (double activation) yielded high level of synergies (up to S = 2.13). The triple activation was able to reduce the bacterial load up to 6-log in less than 1 h, similarly to the photo-Fenton process done in comparison (SODIS alone: >5 h). Fe-oxides were suitable activators of PDS under the same conditions while the presence of organic matter enhanced bacterial inactivation by the triple activated PDS process. The degradation of a (selected) mixture of micropollutants (i.e. drugs, pesticides) was also achieved in similar order of magnitude, and faster than the photo-Fenton process. Finally, the removal of a viral pathogen indicator (MS2 bacteriophage) was attained at minute-range residence times. The aforementioned facts indicate the suitability of the mild, combined process, as a potential SODIS enhancement, producing safe drinking water for sunny and especially for developing countries. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Drinking water and biofilm disinfection by Fenton-like reaction.

    Science.gov (United States)

    Gosselin, F; Madeira, L M; Juhna, T; Block, J C

    2013-10-01

    A Fenton-like disinfection process was conducted with Fenton's reagent (H2O2) at pH 3 or 5 on autochthonous drinking water biofilms grown on corroded or non-corroded pipe material. The biofilm disinfection by Fenton-like oxidation was limited by the low content of iron and copper in the biomass grown on non-corroded plumbing. It was slightly improved by spiking the distribution system with some additional iron source (soluble iron II or ferrihydrite particles appeared as interesting candidates). However successful in situ disinfection of biofilms was only achieved in fully corroded cast iron pipes using H2O2 and adjusting the pH to 5. These new results provide additional support for the use of Fenton's processes for cleaning drinking water distribution systems contaminated with biological agents or organics. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. 40 CFR 141.72 - Disinfection.

    Science.gov (United States)

    2010-07-01

    ... PRIMARY DRINKING WATER REGULATIONS Filtration and Disinfection § 141.72 Disinfection. A public water... the direct influence of surface water and provides filtration treatment must provide disinfection...) Disinfection requirements for public water systems which provide filtration. Each public water system that...

  11. Peracetic acid in the disinfection of a hospital water system contaminated with Legionella species.

    Science.gov (United States)

    Ditommaso, Savina; Biasin, Cinzia; Giacomuzzi, Monica; Zotti, Carla Maria; Cavanna, Alberto; Ruggenini Moiraghi, Angela

    2005-05-01

    To assess the efficacy of an alternative disinfection method for hospital water distribution systems contaminated with Legionella. Disinfection with peracetic acid was performed in a small hospital contaminated with L. pneumophila serotype 1. The disinfectant was used at concentrations of 50 ppm (first three surveillance phases) and 1,000 ppm (fourth surveillance phase) for 30 minutes. Environmental monitoring revealed that disinfection was maintained 1 week after treatment; however, levels of recontamination surpassing baseline values were detected after approximately 1 month. Comparison of water temperatures measured at the distal outlets showed a statistically significant association between temperature and bacterial load. The circulating water temperature was found to be lower in the two wards farthest away from the hot water production plant than in other wards. It was thought that the lower water temperature in the two wards promoted the bacterial growth even after disinfection. Peracetic acid may be useful in emergency situations, but does not provide definitive protection even if used monthly.

  12. An overview of water disinfection in developing countries and the potential for solar thermal water pasteurization

    Energy Technology Data Exchange (ETDEWEB)

    Burch, J.; Thomas, K.E.

    1998-01-01

    This study originated within the Solar Buildings Program at the U.S. Department of Energy. Its goal is to assess the potential for solar thermal water disinfection in developing countries. In order to assess solar thermal potential, the alternatives must be clearly understood and compared. The objectives of the study are to: (a) characterize the developing world disinfection needs and market; (b) identify competing technologies, both traditional and emerging; (c) analyze and characterize solar thermal pasteurization; (d) compare technologies on cost-effectiveness and appropriateness; and (e) identify research opportunities. Natural consequences of the study beyond these objectives include a broad knowledge of water disinfection problems and technologies, introduction of solar thermal pasteurization technologies to a broad audience, and general identification of disinfection opportunities for renewable technologies.

  13. Disinfection of bore well water with chlorine dioxide/sodium hypochlorite and hydrodynamic cavitation.

    Science.gov (United States)

    Wang, Yifei; Jia, Aiyin; Wu, Yue; Wu, Chunde; Chen, Lijun

    2015-01-01

    The effect of hydrodynamic cavitation (HC) on potable water disinfection of chemicals was investigated. The bore well water was introduced into HC set-up to examine the effect of HC alone and combination of HC and chemicals such as chlorine dioxide and sodium hypochlorite. The effect of inlet pressure and geometrical parameters on disinfection was studied using HC alone and the results showed that increasing inlet pressure and using more and bigger holes of orifice plates can result in a higher disinfection rates. When HC was combined with chemicals, HC can reduce the doses of the chemicals and shorten the time of disinfection. It was also found that the decrease in bacteria concentration followed a first-order kinetic model. As for the experiment of combination of HC and sodium hypochlorite for disinfection, HC not only improves the disinfection rate but also degrades natural organic matter and chloroform. Compared with only sodium hypochlorite disinfection, combined processes get higher disinfection rate and lower production of chloroform, particularly the pretreatment with HC enhances the disinfection rate by 32% and there is a simultaneous reduction in production of chloroform by 39%.

  14. Genotoxicity of drinking water treated with different disinfectants and effects of disinfection conditions detected by umu-test.

    Science.gov (United States)

    Nie, Xuebiao; Liu, Wenjun; Zhang, Liping; Liu, Qing

    2017-06-01

    The genotoxicity of drinking water treated with 6 disinfection methods and the effects of disinfection conditions were investigated using the umu-test. The pretreatment procedure of samples for the umu-test was optimized for drinking water analysis. The results of the umu-test were in good correlation with those of the Ames-test. The genotoxicity and production of haloacetic acids (HAAs) were the highest for chlorinated samples. UV+chloramination is the safest disinfection method from the aspects of genotoxicity, HAA production and inactivation effects. For chloramination, the effects of the mass ratio of Cl 2 to N of chloramine on genotoxicity were also studied. The changes of genotoxicity were different from those of HAA production, which implied that HAA production cannot represent the genotoxic potential of water. The genotoxicity per chlorine decay of chlorination and chloramination had similar trends, indicating that the reaction of organic matters and chlorine made a great contribution to the genotoxicity. The results of this study are of engineering significance for optimizing the operation of waterworks. Copyright © 2016. Published by Elsevier B.V.

  15. High-performance, low-cost solar collectors for disinfection of contaminated water.

    Science.gov (United States)

    Vidal, A; Diaz, A I

    2000-01-01

    Although the germicidal action of sunlight has long been recognized, its potential for practical applications has to be researched more thoroughly. This paper summarizes the progress made toward a commercially practical collector for solar disinfection applications. Nontracking compound parabolic collectors (CPCs), developed originally for capturing solar photons for thermal energy applications, were examined as potential solar photoreactors. A field demonstration of solar disinfection treatment using commercially manufactured solar reactors was conducted. Field tests showed successful destruction of Escherichia coli and Enterococcus faecalis and have provided data for full-scale design of water treatment systems. From above observations, a throughput value of 50 L/m2 h for the low-cost CPC reactor tested was estimated. For a 190 m3/d (0.05 MGD) facility, the estimated total costs for disinfection using UV-A is U.S. $0.19/m3 ($0.70/1000 gal). The use of near-UV sunlight to disinfect water supplies seems promising in rural communities of developing countries where treated water is unavailable.

  16. Aggregation of Adenovirus 2 in Source Water and Impacts on Disinfection by Chlorine

    Science.gov (United States)

    Cromeans, Theresa L.; Metcalfe, Maureen G.; Humphrey, Charles D.; Hill, Vincent R.

    2016-01-01

    It is generally accepted that viral particles in source water are likely to be found as aggregates attached to other particles. For this reason, it is important to investigate the disinfection efficacy of chlorine on aggregated viruses. A method to produce adenovirus particle aggregation was developed for this study. Negative stain electron microscopy was used to measure aggregation before and after addition of virus particles to surface water at different pH and specific conductance levels. The impact of aggregation on the efficacy of chlorine disinfection was also examined. Disinfection experiments with human adenovirus 2 (HAdV2) in source water were conducted using 0.2 mg/L free chlorine at 5 °C. Aggregation of HAdV2 in source water (≥3 aggregated particles) remained higher at higher specific conductance and pH levels. However, aggregation was highly variable, with the percentage of particles present in aggregates ranging from 43 to 71 %. Upon addition into source water, the aggregation percentage dropped dramatically. On average, chlorination CT values (chlorine concentration in mg/L × time in min) for 3-log10 inactivation of aggregated HAdV2 were up to three times higher than those for dispersed HAdV2, indicating that aggregation reduced the disinfection rate. This information can be used by water utilities and regulators to guide decision making regarding disinfection of viruses in water. PMID:26910058

  17. Effect of Disinfectants on Preventing the Cross-Contamination of Pathogens in Fresh Produce Washing Water

    Directory of Open Access Journals (Sweden)

    Jennifer L. Banach

    2015-07-01

    Full Text Available The potential cross-contamination of pathogens between clean and contaminated produce in the washing tank is highly dependent on the water quality. Process wash water disinfectants are applied to maintain the water quality during processing. The review examines the efficacy of process wash water disinfectants during produce processing with the aim to prevent cross-contamination of pathogens. Process wash water disinfection requires short contact times so microorganisms are rapidly inactivated. Free chlorine, chlorine dioxide, ozone, and peracetic acid were considered suitable disinfectants. A disinfectant’s reactivity with the organic matter will determine the disinfectant residual, which is of paramount importance for microbial inactivation and should be monitored in situ. Furthermore, the chemical and worker safety, and the legislative framework will determine the suitability of a disinfection technique. Current research often focuses on produce decontamination and to a lesser extent on preventing cross-contamination. Further research on a sanitizer’s efficacy in the washing water is recommended at the laboratory scale, in particular with experimental designs reflecting industrial conditions. Validation on the industrial scale is warranted to better understand the overall effects of a sanitizer.

  18. Effect of Disinfectants on Preventing the Cross-Contamination of Pathogens in Fresh Produce Washing Water

    Science.gov (United States)

    Banach, Jennifer L.; Sampers, Imca; Van Haute, Sam; van der Fels-Klerx, H.J. (Ine)

    2015-01-01

    The potential cross-contamination of pathogens between clean and contaminated produce in the washing tank is highly dependent on the water quality. Process wash water disinfectants are applied to maintain the water quality during processing. The review examines the efficacy of process wash water disinfectants during produce processing with the aim to prevent cross-contamination of pathogens. Process wash water disinfection requires short contact times so microorganisms are rapidly inactivated. Free chlorine, chlorine dioxide, ozone, and peracetic acid were considered suitable disinfectants. A disinfectant’s reactivity with the organic matter will determine the disinfectant residual, which is of paramount importance for microbial inactivation and should be monitored in situ. Furthermore, the chemical and worker safety, and the legislative framework will determine the suitability of a disinfection technique. Current research often focuses on produce decontamination and to a lesser extent on preventing cross-contamination. Further research on a sanitizer’s efficacy in the washing water is recommended at the laboratory scale, in particular with experimental designs reflecting industrial conditions. Validation on the industrial scale is warranted to better understand the overall effects of a sanitizer. PMID:26213953

  19. Environmentally friendly disinfectant: Production, disinfectant action and efficiency

    Directory of Open Access Journals (Sweden)

    Čekerevac Milan I.

    2006-01-01

    Full Text Available Silver is a known disinfectant from ancient times, and it has been widely used for various purposes: for food and water disinfection, curing of wounds and as a universal antibiotic for a wide spectrum of diseases - until the Second World War and the discovery of penicillin. Until recently, it was assumed that silver, being a heavy metal, was toxic for humans and living beings. However, the newest research provides facts that the usage of silver, even for drinking water disinfection, is benign if it is added in small concentrations (in parts per billion. It has been shown in the newer scientific and technical literature that silver in colloidal form is a powerful (secondary disinfectant for drinking water, that it can be effectively used for the disinfection of water containers including swimming pools, installations in food industry, medicine, etc. Particularly, it has been shown that colloidal silver combined with hydrogen peroxide shows synergism having strong bactericidal and antiviral effects. The combination can be successfully used as a disinfectant in agriculture, food production and medicine. The original electrochemical process of production, the mechanism of physical-chemical reactions in that process and the mechanism of the antiseptic affect of the environmentally friendly disinfectant, based on the synergism of colloidal silver and hydrogen peroxide and the activity of electrochemically activated water, is shown. The starting solution was anolyte, obtained in electrochemical activation by water electrolysis of a highly diluted solution of K-tartarate in demineralized water (5.5-1CT4 M. The problem of electrolysis of very dilute aqueous solutions in membrane cells was particularly treated. It was shown that the efficiency of the electrolysis depends on the competition between the two processes: the rates of the processes of hydrogen and oxygen generation at the electrodes and the process of diffusion of hydrogen and hydroxyl ions

  20. Ultraviolet light-emitting diodes in water disinfection.

    Science.gov (United States)

    Vilhunen, Sari; Särkkä, Heikki; Sillanpää, Mika

    2009-06-01

    The novel system of ultraviolet light-emitting diodes (UV LEDs) was studied in water disinfection. Conventional UV lamps, like mercury vapor lamp, consume much energy and are considered to be problem waste after use. UV LEDs are energy efficient and free of toxicants. This study showed the suitability of LEDs in disinfection and provided information of the effect of two emitted wavelengths and different test mediums to Escherichia coli destruction. Common laboratory strain of E. coli (K12) was used and the effects of two emitted wavelengths (269 and 276 nm) were investigated with two photolytic batch reactors both including ten LEDs. The effects of test medium were examined with ultrapure water, nutrient and water, and nutrient and water with humic acids. Efficiency of reactors was almost the same even though the one emitting higher wavelength had doubled optical power compared to the other. Therefore, the effect of wavelength was evident and the radiation emitted at 269 nm was more powerful. Also, the impact of background was studied and noticed to have only slight deteriorating effect. In the 5-min experiment, the bacterial reduction of three to four log colony-forming units (CFU) per cubic centimeter was achieved, in all cases. When turbidity of the test medium was greater, part of the UV radiation was spent on the absorption and reactions with extra substances on liquid. Humic acids can also coat the bacteria reducing the sensitivity of the cells to UV light. The lower wavelength was distinctly more efficient when the optical power is considered, even though the difference of wavelengths was small. The reason presumably is the greater absorption of DNA causing more efficient bacterial breakage. UV LEDs were efficient in E. coli destruction, even if LEDs were considered to have rather low optical power. The effect of wavelengths was noticeable but the test medium did not have much impact. This study found UV LEDs to be an optimal method for bacterial

  1. Ionizing radiation in the disinfection of water contaminated with potentially pathogenic mycobacteria

    International Nuclear Information System (INIS)

    Kubin, M.; Sedlackova, J.; Vacek, K.

    1982-01-01

    Sterile drinking water samples were artificially colonized with M. kansasii, M. gardonae and M. fortuitum suspensions (the numbers of viable units in 1 ml were 1.2x10 3 , 48.5 and 3.2x10 3 , respectively) prepared from mycobacterial strains replicated in Tween 80-free liquid Dubos medium STO. The contaminated water samples were irradiated from a rotary cobalt 60 source (gamma radiation, E=1.17 and 1.33 MeV, dose rate 1 kJ/kg.h at room temperature) with doses 0.7, 1.5, 2.2, 3, 9, 16 and 27 kJ/kg. The disinfecting effectiveness was assessed by direct cultivation tests (0.5 ml volumes of water inoculated on egg medium) and by cultivation on membrane filtres after filtering the whole amount of the water examined (about 500 ml). Total disinfection was recorded for M. kansasii and M. fortuitum irradiated with 9 kJ/kg and for M. gordonae after irradiation with 1.5 kJ/kg. The calculated value of D 10 =0.4 kJ/kg (i.e., the radiation dose that reduces the number of viable mycobacteria by an order of magnitude) is suggestive of a strong disinfecting effect of ionizing radiation on the tested strains of potentially pathogenic mycobacteria. The results indicate that ionizing radiation could be applxcable in disinfecting supply and potable water contaminated with mycobacteria difficult to remove by other methods which, as a rule, cannot ensure permanent disinfection. (author)

  2. Ionizing radiation in the disinfection of water contaminated with potentially pathogenic mycobacteria

    Energy Technology Data Exchange (ETDEWEB)

    Kubin, M [Institut Hygieny a Epidemiologie, Prague (Czechoslovakia); Sedlackova, J; Vacek, K [Ustav Jaderneho Vyzkumu CSKAE, Rez (Czechoslovakia)

    1982-01-01

    Sterile drinking water samples were artificially colonized with M. kansasii, M. gardonae and M. fortuitum suspensions (the numbers of viable units in 1 ml were 1.2x10/sup 3/, 48.5 and 3.2x10/sup 3/, respectively) prepared from mycobacterial strains replicated in Tween 80-free liquid Dubos medium STO. The contaminated water samples were irradiated from a rotary cobalt 60 source (gamma radiation, E=1.17 and 1.33 MeV, dose rate 1 kJ/kg.h at room temperature) with doses 0.7, 1.5, 2.2, 3, 9, 16 and 27 kJ/kg. The disinfecting effectiveness was assessed by direct cultivation tests (0.5 ml volumes of water inoculated on egg medium) and by cultivation on membrane filtres after filtering the whole amount of the water examined (about 500 ml). Total disinfection was recorded for M. kansasii and M. fortuitum irradiated with 9 kJ/kg and for M. gordonae after irradiation with 1.5 kJ/kg. The calculated value of D/sub 10/=0.4 kJ/kg (i.e., the radiation dose that reduces the number of viable mycobacteria by an order of magnitude) is suggestive of a strong disinfecting effect of ionizing radiation on the tested strains of potentially pathogenic mycobacteria. The results indicate that ionizing radiation could be applicable in disinfecting supply and potable water contaminated with mycobacteria difficult to remove by other methods which, as a rule, cannot ensure permanent disinfection.

  3. Waterline ATS B. globigii spore water disinfection data

    Data.gov (United States)

    U.S. Environmental Protection Agency — Disinfection of B. globigii spores (a non-pathogenic surrogate for B. anthracis) in clean and dirty water using the ATS-Waterline system, which uses ultraviolet...

  4. O razlagi sodnih precedensov in sodb ter posebej sodb Evropskega sodišča za človekove pravice

    OpenAIRE

    Zupančič, Boštjan M.

    2014-01-01

    Sodba načeloma ni nekaj, kar je treba ali bi bilo sploh treba razlagati. Konkretna sodba inter partes mora razlagati abstraktno pravno normo. Vendar če bi bilo res, da so sodbe ESČP strogo omejene na učinek inter partes (kot je to zapisano v 46. členu Evropske konvencije), ne bi bilo potrebe po razlagi njihovega učinka erga omnes. Za ustavna sodišča in druga sodišča zadnje stopnje silogistično sklepanje (logična subsumpcija konkretnih dejstev pod abstraktno normo), ki so ga kontinentalni prav...

  5. [Complex technology for water and wastewater disinfection and its industrial realization in prototype unit].

    Science.gov (United States)

    Arakcheev, E N; Brunman, V E; Brunman, M V; Konyashin, A V; Dyachenko, V A; Petkova, A P

    Usage of complex automated electrolysis unit for drinking water disinfection and wastewater oxidation and coagulation is scoped, its ecological and energy efficiency is shown. Properties of technological process of anolyte production using membrane electrolysis of brine for water disinfection in municipal pipelines and potassium ferrate production using electrochemical dissolution of iron anode in NaOH solution for usage in purification plants are listed. Construction of modules of industrial prototype for anolyte and ferrate production and applied aspects of automation of complex electrolysis unit are proved. Results of approbation of electrolytic potassium ferrate for drinking water disinfection and wastewater, rain water and environmental water oxidation and coagulation are shown.

  6. Conventional and Alternative Disinfection Methods of Legionella in Water Distribution Systems – Review

    Directory of Open Access Journals (Sweden)

    Pūle Daina

    2016-12-01

    Full Text Available Prevalence of Legionella in drinking water distribution systems is a widespread problem. Outbreaks of Legionella caused diseases occur despite various disinfectants are used in order to control Legionella. Conventional methods like thermal disinfection, silver/copper ionization, ultraviolet irradiation or chlorine-based disinfection have not been effective in the long term for control of biofilm bacteria. Therefore, research to develop more effective disinfection methods is still necessary.

  7. Reduced Efficiency of Chlorine Disinfection of Naegleria fowleri in a Drinking Water Distribution Biofilm.

    Science.gov (United States)

    Miller, Haylea C; Wylie, Jason; Dejean, Guillaume; Kaksonen, Anna H; Sutton, David; Braun, Kalan; Puzon, Geoffrey J

    2015-09-15

    Naegleria fowleri associated with biofilm and biological demand water (organic matter suspended in water that consumes disinfectants) sourced from operational drinking water distribution systems (DWDSs) had significantly increased resistance to chlorine disinfection. N. fowleri survived intermittent chlorine dosing of 0.6 mg/L for 7 days in a mixed biofilm from field and laboratory-cultured Escherichia coli strains. However, N. fowleri associated with an attached drinking water distribution biofilm survived more than 30 times (20 mg/L for 3 h) the recommended concentration of chlorine for drinking water. N. fowleri showed considerably more resistance to chlorine when associated with a real field biofilm compared to the mixed laboratory biofilm. This increased resistance is likely due to not only the consumption of disinfectants by the biofilm and the reduced disinfectant penetration into the biofilm but also the composition and microbial community of the biofilm itself. The increased diversity of the field biofilm community likely increased N. fowleri's resistance to chlorine disinfection compared to that of the laboratory-cultured biofilm. Previous research has been conducted in only laboratory scale models of DWDSs and laboratory-cultured biofilms. To the best of our knowledge, this is the first study demonstrating how N. fowleri can persist in a field drinking water distribution biofilm despite chlorination.

  8. Nano-silver in drinking water and drinking water sources: stability and influences on disinfection by-product formation.

    Science.gov (United States)

    Tugulea, A-M; Bérubé, D; Giddings, M; Lemieux, F; Hnatiw, J; Priem, J; Avramescu, M-L

    2014-10-01

    Nano-silver is increasingly used in consumer products from washing machines and refrigerators to devices marketed for the disinfection of drinking water or recreational water. The nano-silver in these products may be released, ending up in surface water bodies which may be used as drinking water sources. Little information is available about the stability of the nano-silver in sources of drinking water, its fate during drinking water disinfection processes, and its interaction with disinfection agents and disinfection by-products (DBPs). This study aims to investigate the stability of nano-silver in drinking water sources and in the finished drinking water when chlorine and chloramines are used for disinfection and to observe changes in the composition of DBPs formed when nano-silver is present in the source water. A dispersion of nano-silver particles (10 nm; PVP-coated) was used to spike untreated Ottawa River water, treated Ottawa River water, organic-free water, and a groundwater at concentrations of 5 mg/L. The diluted dispersions were kept under stirred and non-stirred conditions for up to 9 months and analyzed weekly using UV absorption to assess the stability of the nano-silver particles. In a separate experiment, Ottawa River water containing nano-silver particles (at 0.1 and 1 mg/L concentration, respectively) was disinfected by adding sodium hypochlorite (a chlorinating agent) in sufficient amounts to maintain a free chlorine residual of approximately 0.4 mg/L after 24 h. The disinfected drinking water was then quenched with ascorbic acid and analyzed for 34 neutral DBPs (trihalomethanes, haloacetonitriles, haloacetaldehydes, 1,1 dichloro-2-propanone, 1,1,1 trichloro-2-propanone, chloropicrin, and cyanogen chloride). The results were compared to the profile of DBPs obtained under the same conditions in the absence of nano-silver and in the presence of an equivalent concentration of Ag(+) ions (as AgNO3). The stability of the nano-silver dispersions in

  9. Chloraminated Concentrated Drinking Water for Disinfection Byproduct Mixtures Research: Evaluating Free Chlorine Contact Times

    Science.gov (United States)

    Complex mixtures of disinfection by-products (DBPs) are formed when the disinfectant oxidizes constituents (e.g., natural organic matter (NOM) and organic pollutants) present in the source water. Since 1974, over 600 DBPs have been identified in drinking water, yet a large portio...

  10. Chloramination of Concentrated Drinking Water: Evaluation of Disinfection Byproduct Formation and Dosing Scenarios - Portland

    Science.gov (United States)

    Complex mixtures of disinfection by-products (DBPs) are formed when the disinfectant oxidizes constituents (e.g., natural organic matter (NOM) and organic pollutants) found in the source water. Since 1974, over 600 DBPs have been identified in drinking water. Despite intense iden...

  11. Rapid water disinfection using vertically aligned MoS2 nanofilms and visible light

    International Nuclear Information System (INIS)

    Liu, Chong; Kong, Desheng; Hsu, Po-Chun; Yuan, Hongtao; Lee, Hyun-Wook

    2016-01-01

    In most climates, solar energy is readily available and can be used for water purification. But, solar disinfection of drinking water mostly relies on ultraviolet light, which represents only 4% of the total solar energy, and this leads to a slow treatment speed. Therefore, the development of new materials that can harvest visible light for water disinfection, and so speed up solar water purification, is highly desirable. Here we show that few-layered vertically aligned MoS_2 (FLV-MoS_2) films can be used to harvest the whole spectrum of visible light (~50% of solar energy) and achieve highly efficient water disinfection. The bandgap of MoS_2 was increased from 1.3 to 1.55 eV by decreasing the domain size, which allowed the FLV-MoS_2 to generate reactive oxygen species (ROS) for bacterial inactivation in the water. The FLV-MoS_2 showed a ~15 times better log inactivation efficiency of the indicator bacteria compared with that of bulk MoS_2, and a much faster inactivation of bacteria under both visible light and sunlight illumination compared with the widely used TiO_2. Moreover, by using a 5 nm copper film on top of the FLV-MoS_2 as a catalyst to facilitate electron–hole pair separation and promote the generation of ROS, the disinfection rate was increased a further sixfold. Here, we achieved water disinfection of >99.999% inactivation of bacteria in 20 min with a small amount of material (1.6 mg l–1) under simulated visible light.

  12. Chlorine dioxine DBPs (disinfection by-products in drinking water

    Directory of Open Access Journals (Sweden)

    C. Lasagna

    2013-01-01

    Full Text Available Since the 1970s it has been well known that, though water for human consumption is generally disinfected before being distributed along the network, the use of chemicals results in the formation of many different Disinfection By-Products (DBPs. In the case of chlorine dioxide, the most important and represented DBPs are chlorite and chlorate: after an introduction concerning the current Italian regulation on this subject, in the experimental part the results of a 7-year minitoring campaign, concerning water of different origin collected from taps in various Italian regions, are shown. The analytical technique used for the determination of chlorite and chlorate was Ion Chromatography. The result obtained are finally discussed.

  13. A review on wastewater disinfection

    Directory of Open Access Journals (Sweden)

    Mohammad Mehdi Amin

    2013-01-01

    Full Text Available Changes in regulations and development of new technologies have affected the selection of alternative for treated wastewater disinfection. Disinfection is the last barrier of wastewater reclamation process to protect ecosystem safety and human health. Driving forces include water scarcity and drinking water supply, irrigation, rapid industrialization, using reclaimed water, source protection, overpopulation, and environmental protection. The safe operation of water reuse depends on effluent disinfection. Understanding the differences in inactivation mechanisms is critical to identify rate-limiting steps involved in the inactivation process as well as to develop more effective disinfection strategies. Disinfection byproducts discharged from wastewater treatment plants may impair aquatic ecosystems and downstream drinking-water quality. Numerous inorganic and organic micropollutants can undergo reactions with disinfectants. Therefore, to mitigate the adverse effects and also to enhance that efficiency, the use of alternative oxidation/disinfection systems should be evaluated as possible alternative to chlorine. This review gives a summary of the traditional, innovative, and combined disinfection alternatives and also disinfection byproducts for effluent of municipal wastewater treatment plants.

  14. New Water Disinfection Technology for Earth and Space Applications as Part of the NPP Fellowship Research

    Science.gov (United States)

    SilvestryRodriquez, Nadia

    2010-01-01

    There is the need for a safe, low energy consuming and compact water disinfection technology to maintain water quality for human consumption. The design of the reactor should present no overheating and a constant temperature, with good electrical and optical performance for a UV water treatment system. The study assessed the use of UVA-LEDs to disinfectant water for MS2 Bacteriophage. The log reduction was sufficient to meet US EPA standards as a secondary disinfectant for maintaining water quality control. The study also explored possible inactivation of Pseudomonas aeruginosa and E. coli.

  15. Optimization of fixed titanium dioxide film on PET bottles and visual indicator for water disinfection

    Science.gov (United States)

    Heredia-Munoz, Manuel Antonio

    Water is perhaps the most important resource that sustains human life. According to the World Health Organization (WHO), almost two billion people do not have access to the required water that is needed to satisfy their daily needs and one billion do not have access to clean sources of water for consumption, most of them living in isolated and poor areas around the globe. Poor quality water increases the risk of cholera, typhoid fever and dysentery, and other water-borne illness making this problem a real crisis that humankind is facing. Several water disinfection technologies have been proposed as solutions for this problem. Solar water disinfection using TiO2 coated PET bottles was the alternative that is studied in this work. This technology does not only inactivate bacteria but also disintegrates organic chemicals that can be present in water. The objectives of this work address the optimization of the TiO 2 coated PET bottles technologies. The improvement on the bottle coating process, using two coats of 10% W/V of TiO2 in a solution of vinegar and sodium bicarbonate to form the TiO2 film, the use of a different indigo carmine (1.25 X 10-1mg/pill) concentration in the pill indicator of contamination, the increase of the disinfection rate through shaking the bottles, degradation under intermittent UV radiation and the effect of bottle size on photocatalytic water disinfection were among the most important findings. A new mathematical model that describes better photocatalytic water disinfection in TiO2 coated bottles and simulates water disinfection under different working conditions was another important achievement. These results can now be used to design a strategy for disseminating this technology in areas where it is required and, in that way, generate the greatest positive impact on the people needing safe drinking water.

  16. Evaluation of Electrochemically Generated Potable Water Disinfectants for Use on the International Space Station

    Science.gov (United States)

    Rodriquez, Branelle; Anderson, Molly; Adams, Niklas; Vega, Leticia; Botkin, Douglas

    2013-01-01

    Microbial contamination and subsequent growth in spacecraft water systems are constant concerns for missions involving human crews. The current potable water disinfectant for the International Space Station (ISS) is iodine; however, with the end of the Space Shuttle Program, there is a need to develop redundant biocide systems that do not require regular up-mass dependencies. Throughout the course of a year, four different electrochemical systems were investigated as a possible biocide for potable water on the ISS. Research has indicated that a wide variability exists with regards to efficacy in both concentration and exposure time of these disinfectants; therefore, baseline efficacy values were established. This paper describes a series of tests performed to establish optimal concentrations and exposure times for four disinfectants against single and mixed species planktonic and biofilm bacteria. Results of the testing determined whether these electrochemical disinfection systems are able to produce a sufficient amount of chemical in both concentration and volume to act as a biocide for potable water on the ISS.

  17. Zeolites modified with silver for the development of a water disinfection system

    International Nuclear Information System (INIS)

    Aparicio V, S.

    2013-01-01

    In spite of great strides that have been taken in sanitation technologies, there still exist health problems due to microbiological contamination by water. The waterborne diseases have not been completely eradicated and are a big problem of economic interest and health. Moreover, the microbicidal properties of silver have been used for a long time. The use of silver as a disinfectant has many advantages; for example it inhibits a wide spectrum of microorganisms, it has oligo dynamic properties and owing its mechanisms of cell inactivation, it also does not allow the emergence of new resistant strains. In the present research, the kinetics of water disinfection with silver has been investigated, to develop small system for water disinfection, based in silver modified Mexican clinoptilolite. The chemical species of silver play a significant role in the disinfection processes. For this reason, in this work, were both the Ag + and nanoparticles of Ag ο considered. The synthesis of nanoparticles of Ag ο woes performed by thermal and chemical reduction. It was found that the chemical reduction of Ag + to Ag ο was more efficient because it presented more defined nano structures and better distribution than those of thermal reduction. Clinoptilolite of Taxco (Guerrero) was chosen to exchange the native ions from the clinoptilolite by Ag + from the aqueous medium, or to deposit the nanoparticles of Ag ο on this surface. These silver modified zeolitic materials were characterized by scanning electron microscopy (Sem), elemental analyses (EDS), X-ray diffraction (XRD) and neutron activation analysis (NAA). The results showed that the crystallographic structure of the clinoptilolite did not change during thermal and chemical reduction treatments of Ag + to obtain the nanoparticles of Ag ο . The bactericide activity of the silver modified zeolitic materials (with Ag + or nanoparticles of Ag ο ) was evaluated on Escherichia coli Atcc 8739, in both distilled water and well

  18. Innovative Approach to Validation of Ultraviolet (UV) Reactors for Disinfection in Drinking Water Systems - presentation

    Science.gov (United States)

    UV disinfection is an effective process for inactivating many microbial pathogens found in source waters with the potential as stand-alone treatment or in combination with other disinfectants. For surface and groundwater sourced drinking water applications, the U.S. Environmental...

  19. Impact of chlorinated disinfection on copper corrosion in hot water systems

    Energy Technology Data Exchange (ETDEWEB)

    Montes, J. Castillo [Centre Scientifique et Technique du Bâtiment Nantes, 11 rue Henri Picherit, BP 82341, 44323 Nantes Cedex 03 (France); Laboratoire des Sciences de l’Ingénieur pour l’Environnement, UMR-CNRS 7356, Université de La Rochelle, Avenue Michel Crépeau, 17042 La Rochelle Cedex 1 (France); Hamdani, F. [Laboratoire des Sciences de l’Ingénieur pour l’Environnement, UMR-CNRS 7356, Université de La Rochelle, Avenue Michel Crépeau, 17042 La Rochelle Cedex 1 (France); Creus, J., E-mail: jcreus@univ-lr.fr [Laboratoire des Sciences de l’Ingénieur pour l’Environnement, UMR-CNRS 7356, Université de La Rochelle, Avenue Michel Crépeau, 17042 La Rochelle Cedex 1 (France); Touzain, S. [Laboratoire des Sciences de l’Ingénieur pour l’Environnement, UMR-CNRS 7356, Université de La Rochelle, Avenue Michel Crépeau, 17042 La Rochelle Cedex 1 (France); Correc, O. [Centre Scientifique et Technique du Bâtiment Nantes, 11 rue Henri Picherit, BP 82341, 44323 Nantes Cedex 03 (France)

    2014-09-30

    Highlights: • Impact of disinfectant treatment on the durability of copper pipes. • Synergy between disinfectant concentration and temperature. • Pitting corrosion of copper associated to the corrosion products formation on copper. - Abstract: In France, hot water quality control inside buildings is occasionally ensured by disinfection treatments using temperature increases or addition of sodium hypochlorite (between 0.5 ppm and 1 ppm residual free chlorine). This disinfectant is a strong oxidiser and it could interact with metallic pipes usually used in hot water systems. This work deals with the study of the impact of these treatments on the durability of copper pipes. The objective of this work was to investigate the influence of sodium hypochlorite concentration and temperature on the copper corrosion mechanism. Copper samples were tested under dynamic and static conditions of ageing with sodium hypochlorite solutions ranging from 0 to 100 ppm with temperature at 50 °C and 70 °C. The efficiency of a corrosion inhibitor was investigated in dynamic conditions. Visual observations and analytical analyses of the internal surface of samples was studied at different ageing duration. Corrosion products were characterised by X-ray diffraction and Raman spectroscopy. Temperature and disinfectant were found to considerably affect the copper corrosion mechanism. Surprisingly, the corrosiveness of the solution was higher at lower temperatures. The temperature influences the nature of corrosion products. The protection efficiency is then strongly depend on the nature of the corrosion products formed at the surface of copper samples exposed to the aggressive solutions containing different concentration of disinfectant.

  20. Efficient Disinfection of Tap and Surface Water with Single High Power 285 nm LED and Square Quartz Tube

    Directory of Open Access Journals (Sweden)

    Martin Hessling

    2016-01-01

    Full Text Available A small water disinfection system based on the combination of a strong single 25 mW LED with a wavelength of 285 nm and a short quartz tube with an outer rectangular cross section is presented. For the disinfection tests clear tap water and slightly turbid and yellow pond water are contaminated with high concentrations of Escherichia coli bacteria. These water samples are exposed to the germicidal 285 nm LED radiation while they flow through the quartz tube. The portion of surviving germs is determined by membrane filtration for different water qualities and flow rates. For clear tap water the bacteria concentration can be reduced by at least three orders of magnitude up to flow rates of about 20 L/h. In pond water the maximum flow rate for such a reduction is less than 3 L/h. These high disinfection capabilities and the small size of this system, allow its integration in medical systems for point of use disinfection or even its application in the Third World for decentralized water disinfection powered by small solar cells, because this disinfection capacity should be sufficient for small groups or families.

  1. Life Cycle Environmental Impacts of Disinfection Technologies Used in Small Drinking Water Systems.

    Science.gov (United States)

    Jones, Christopher H; Shilling, Elizabeth G; Linden, Karl G; Cook, Sherri M

    2018-03-06

    Small drinking water systems serve a fifth of the U.S. population and rely heavily on disinfection. While chlorine disinfection is common, there is interest in minimizing chemical addition, especially due to carcinogenic disinfection byproducts and chlorine-resistant pathogens, by using ultraviolet technologies; however, the relative, broader environmental impacts of these technologies are not well established, especially in the context of small (environmental trade-offs between chlorine and ultraviolet disinfection via comparative life cycle assessment. The functional unit was the production of 1 m 3 of drinking water to U.S. Treatment included cartridge filtration followed by either chlorine disinfection or ultraviolet disinfection with chlorine residual addition. Environmental performance was evaluated for various chlorine contact zone materials (plastic, concrete, steel), ultraviolet validation factors (1.2 to 4.4), and electricity sources (renewable; U.S. average, high, and low impact grids). Performance was also evaluated when filtration and chlorine residual were not required. From a life cycle assessment perspective, replacing chlorine with UV was preferred only in a limited number of cases (i.e., high pumping pressure but filtration is not required). In all others, chlorine was environmentally preferred, although some contact zone materials and energy sources had an impact on the comparison. Utilities can use these data to inform their disinfection technology selection and operation to minimize environmental and human health impacts.

  2. Transformation of pharmaceuticals during oxidation/disinfection processes in drinking water treatment

    Energy Technology Data Exchange (ETDEWEB)

    Postigo, Cristina [Institute for Environmental Assessment and Water Research (IDAEA)—Spanish National Research Council (CID-CSIC), Barcelona (Spain); Richardson, Susan D., E-mail: richardson.susan@sc.edu [Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC (United States)

    2014-08-30

    Graphical abstract: - Highlights: • Review of transformation pathways of pharmaceuticals during disinfection processes. • DBPs are formed with chlorine, chloramine, ozone, chlorine dioxide, UV, or UV/H{sub 2}O{sub 2}. • Chlorine reacts with amine and reduced sulfur groups and activated aromatic systems. • Chlorine dioxide and ozone react with electron-rich functional groups. • Potential health effects are noted for some pharmacuetical DBPs when available. - Abstract: Pharmaceuticals are emerging contaminants of concern and are widespread in the environment. While the levels of these substances in finished drinking waters are generally considered too low for human health concern, there are now concerns about their disinfection by-products (DBPs) that can form during drinking water treatment, which in some cases have been proven to be more toxic than the parent compounds. The present manuscript reviews the transformation products of pharmaceuticals generated in water during different disinfection processes, i.e. chlorination, ozonation, chloramination, chlorine dioxide, UV, and UV/hydrogen peroxide, and the main reaction pathways taking place. Most of the findings considered for this review come from controlled laboratory studies involving reactions of pharmaceuticals with these oxidants used in drinking water treatment.

  3. Transformation of pharmaceuticals during oxidation/disinfection processes in drinking water treatment

    International Nuclear Information System (INIS)

    Postigo, Cristina; Richardson, Susan D.

    2014-01-01

    Graphical abstract: - Highlights: • Review of transformation pathways of pharmaceuticals during disinfection processes. • DBPs are formed with chlorine, chloramine, ozone, chlorine dioxide, UV, or UV/H 2 O 2 . • Chlorine reacts with amine and reduced sulfur groups and activated aromatic systems. • Chlorine dioxide and ozone react with electron-rich functional groups. • Potential health effects are noted for some pharmacuetical DBPs when available. - Abstract: Pharmaceuticals are emerging contaminants of concern and are widespread in the environment. While the levels of these substances in finished drinking waters are generally considered too low for human health concern, there are now concerns about their disinfection by-products (DBPs) that can form during drinking water treatment, which in some cases have been proven to be more toxic than the parent compounds. The present manuscript reviews the transformation products of pharmaceuticals generated in water during different disinfection processes, i.e. chlorination, ozonation, chloramination, chlorine dioxide, UV, and UV/hydrogen peroxide, and the main reaction pathways taking place. Most of the findings considered for this review come from controlled laboratory studies involving reactions of pharmaceuticals with these oxidants used in drinking water treatment

  4. Models for predicting disinfection byproduct (DBP) formation in drinking waters: a chronological review.

    Science.gov (United States)

    Chowdhury, Shakhawat; Champagne, Pascale; McLellan, P James

    2009-07-01

    Disinfection for the supply of safe drinking water forms a variety of known and unknown byproducts through reactions between the disinfectants and natural organic matter. Chronic exposure to disinfection byproducts through the ingestion of drinking water, inhalation and dermal contact during regular indoor activities (e.g., showering, bathing, cooking) may pose cancer and non-cancer risks to human health. Since their discovery in drinking water in 1974, numerous studies have presented models to predict DBP formation in drinking water. To date, more than 48 scientific publications have reported 118 models to predict DBP formation in drinking waters. These models were developed through laboratory and field-scale experiments using raw, pretreated and synthetic waters. This paper aims to review DBP predictive models, analyze the model variables, assess the model advantages and limitations, and to determine their applicability to different water supply systems. The paper identifies the current challenges and future research needs to better control DBP formation. Finally, important directions for future research are recommended to protect human health and to follow the best management practices.

  5. A comparison of disinfection by-products formation during sequential or simultaneous disinfection of surface waters with chlorine dioxide and chlor(am)ine.

    Science.gov (United States)

    Shi, Yanwei; Ling, Wencui; Qiang, Zhimin

    2013-01-01

    The effect of chlorine dioxide (ClO2) oxidation on the formation of disinfection by-products (DBPs) during sequential (ClO2 pre-oxidation for 30 min) and simultaneous disinfection processes with free chlorine (FC) or monochloramine (MCA) was investigated. The formation of DBPs from synthetic humic acid (HA) water and three natural surface waters containing low bromide levels (11-27 microg/L) was comparatively examined in the FC-based (single FC, sequential ClO2-FC, and simultaneous ClO2/FC) and MCA-based (single MCA, ClO2-MCA, and ClO2/MCA) disinfection processes. The results showed that much more DBPs were formed from the synthetic HA water than from the three natural surface waters with comparative levels of dissolved organic carbon. In the FC-based processes, ClO2 oxidation could reduce trihalomethanes (THMs) by 27-35% and haloacetic acids (HAAs) by 14-22% in the three natural surface waters, but increased THMs by 19% and HAAs by 31% in the synthetic HA water after an FC contact time of 48 h. In the MCA-based processes, similar trends were observed although DBPs were produced at a much lower level. There was an insignificant difference in DBPs formation between the sequential and simultaneous processes. The presence of a high level of bromide (320 microg/L) remarkably promoted the DBPs formation in the FC-based processes. Therefore, the simultaneous disinfection process of ClO2/MCA is recommended particularly for waters with a high bromide level.

  6. ANALYTICAL METHODS FOR WATER DISINFECTION BY-PRODUCTS IN FOODS AND BEVERAGES

    Science.gov (United States)

    The determination of exposure to drinking water disinfection byproducts (DBPs) requires an understanding of how drinking waters come into contact with the human through multiple pathways. The most significant pathway is the ingestion of drinking water. However, ingestion can oc...

  7. Performance analysis of a solar photovoltaic hybrid system for electricity generation and simultaneous water disinfection of wild bacteria strains

    International Nuclear Information System (INIS)

    Pichel, N.; Vivar, M.; Fuentes, M.

    2016-01-01

    Highlights: • A new hybrid solar water disinfection and energy generation system was designed and tested. • SOLWAT comprises a water disinfection reactor and a PV module fully integrated into a single unit. • Natural water with wild strains of E. coli, Enterococcus spp. and C. perfringens were studied. • The water disinfection reactor located above the PV module did not affect the final energy output. • The SOLWAT disinfection results were always higher than conventional PET bottles. - Abstract: A hybrid solar water disinfection and energy generation system for meeting the needs of safe drinking water and electricity was designed and tested in Alcalá de Henares (Spain) under summer climatic conditions to demonstrate the feasibility of the concept. Natural water sources with wild strains of Escherichia coli, total coliforms, Enterococcus spp. and Clostridium perfringens (including spores) were studied. Results showed that SOLWAT disinfection efficiency was higher than conventional PET bottles and that the water disinfection reactor located above the PV module did not affect the total energy output produced by the hybrid system in comparison to the single PV module, achieving the same power losses over the 6 h of sun exposure in relation to their power at standard test conditions (STC).

  8. Chlorine dioxide as a disinfectant for Ralstonia solanacearum control in water, storage and equipment

    Directory of Open Access Journals (Sweden)

    Popović Tatjana

    2016-01-01

    Full Text Available Brown rot or bacterial wilt caused by bacterium Ralstonia solanacearum is the main limiting factor in potato production. Quarantine measures are necessary to avoid spread of disease to disease-free areas. R. solanacearum has been shown to contaminate watercourses from which crop irrigation is then prohibited causing further potential losses in yield and quality. The bacteria also spread via surfaces that diseased seed potatoes come into contact with. This study showed bactericidal activity of chlorine dioxide (CIO2 on R. solanacearum for disinfection of water, surface and equipment. The results showed that CIO2 solution at concentration of 2 ppm at 30 minutes of exposure time had bactericidal effect for disinfection of water. For surface and equipment disinfection, concentration of 50 ppm showed total efficacy at 30 min and 5 sec exposure time, respectively. Results suggest that use of CIO2 as a disinfectant has a potential for control of brown rot pathogen in water, storage and equipment.

  9. development of an automated batch-process solar water disinfection

    African Journals Online (AJOL)

    user

    This work presents the development of an automated batch-process water disinfection system ... Locally sourced materials in addition to an Arduinomicro processor were used to control ..... As already mentioned in section 3.1.1, a statistical.

  10. Can water disinfection prevent the transmission of infectious koi herpesvirus to naïve carp? - a case report.

    Science.gov (United States)

    Bergmann, S M; Monro, E S; Kempter, J

    2017-07-01

    Hygienic measures such as disinfection are important tools for the maintenance of fish health in aquaculture. While little information is available on the disinfection of water intended for fish containment, Huwa-San ® , a disinfectant used in food and water industries, was used for daily treatment at concentrations of approximately 60 ppm over a total period of 3 months (experiment 1) with a 3-week treatment-free interval after 2 months (experiment 2). During this period, koi herpesvirus (KHV) was added to the water of two aquaria, one used as a normal contact control, the other one receiving daily water disinfectant treatments that prevented KHV infection of carp. In the second experiment, Huwa-San ® treatment was interrupted and KHV infection was prevalent. However, when naïve fish were introduced to the same aquarium after re-application of disinfectant, KHV could not be detected in those naïve fish. Whilst KHV could not be detected in samples where disinfectant had been applied, it was present in samples of naïve fish cohabiting with infection contact control animals which had undergone no disinfectant treatment over experiments 1 and 2. The results presented here show that water treatment with a disinfectant may prevent transmission of infectious KHV to naïve carp cohabited with infected carp. © 2016 John Wiley & Sons Ltd.

  11. Transformation of pharmaceuticals during oxidation/disinfection processes in drinking water treatment.

    Science.gov (United States)

    Postigo, Cristina; Richardson, Susan D

    2014-08-30

    Pharmaceuticals are emerging contaminants of concern and are widespread in the environment. While the levels of these substances in finished drinking waters are generally considered too low for human health concern, there are now concerns about their disinfection by-products (DBPs) that can form during drinking water treatment, which in some cases have been proven to be more toxic than the parent compounds. The present manuscript reviews the transformation products of pharmaceuticals generated in water during different disinfection processes, i.e. chlorination, ozonation, chloramination, chlorine dioxide, UV, and UV/hydrogen peroxide, and the main reaction pathways taking place. Most of the findings considered for this review come from controlled laboratory studies involving reactions of pharmaceuticals with these oxidants used in drinking water treatment. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Efficacy of Detergent and Water Versus Bleach for the Disinfection of Direct Contact Ophthalmic Lenses

    Science.gov (United States)

    Abbey, Ashkan M.; Gregori, Ninel Z.; Surapaneni, Krishna; Miller, Darlene

    2014-01-01

    Purpose While manufacturers recommend cleaning ophthalmic lenses with detergent and water and then a specific disinfectant, disinfectants are rarely used in ophthalmic practices. The aim of this pilot study was to evaluate the efficacy of detergent and water versus bleach, a recommended disinfectant, to eliminate common ocular bacteria and viruses from ophthalmic lenses. Methods Three bacterial strains (Staphylococcus epidermidis, Corynebacterium straitum, and methicillin-resistant Staphylococcus aureus (MRSA) and two viral strains (adenovirus and herpes simplex virus (HSV) type-1) were individually inoculated to 20 gonioscopy and laser lenses. Lenses were washed with detergent and water and then disinfected with 10% bleach. All lenses were cultured after inoculation, after detergent and water, and after the bleach. Bacterial cultures in thioglycollate broth were observed for 3 weeks and viral cultures for 2 weeks. The presence of viruses was also detected by multiplex polymerase chain reaction (PCR). Results All 20 lenses inoculated with Staphylococcus epidermidis, Corynebacterium straitum, adenovirus, and HSV-1 showed growth after inoculation, but no growth after detergent/water and after the bleach. All lenses showed positive HSV and adenovirus PCR after inoculation and negative PCR after detergent/water and after bleach. All MRSA contaminated lenses showed growth after inoculation and no growth after detergent and water. However, one lens showed positive growth after bleach. Conclusions Cleaning with detergent and water appeared to effectively eliminate bacteria and viruses from the surface of contaminated ophthalmic lenses. Further studies are warranted to design practical disinfection protocols that minimize lens damage. PMID:24747806

  13. Formation of nitrogenous disinfection by-products in 10 chlorinated and chloraminated drinking water supply systems.

    Science.gov (United States)

    Liew, Deborah; Linge, Kathryn L; Joll, Cynthia A

    2016-09-01

    The presence of nitrogenous disinfection by-products (N-DBPs) in drinking water supplies is a public health concern, particularly since some N-DBPs have been reported to be more toxic than the regulated trihalomethanes and haloacetic acids. In this paper, a comprehensive evaluation of the presence of N-DBPs in 10 drinking water supply systems in Western Australia is presented. A suite of 28 N-DBPs, including N-nitrosamines, haloacetonitriles (HANs), haloacetamides (HAAms) and halonitromethanes (HNMs), were measured and evaluated for relationships with bulk parameters in the waters before disinfection. A number of N-DBPs were frequently detected in disinfected waters, although at generally low concentrations (water, N-DBP concentrations were significantly correlated with dissolved organic carbon (DOC) and ammonia, and these, in addition to high bromide in one of the waters, led to elevated concentrations of brominated HANs (26.6 μg/L of dibromoacetonitrile). There were significant differences in the occurrence of all classes of N-DBPs between chlorinated and chloraminated waters, except for HNMs, which were detected at relatively low concentrations in both water types. Trends observed in one large distribution system suggest that N-DBPs can continue to form or degrade within distribution systems, and redosing of disinfectant may cause further by-product formation.

  14. Disinfection of municipal water using solar radiation: an economical approach for rural dwellers in the coastal region of Karachi

    International Nuclear Information System (INIS)

    Ahmed, M.F.; Saleem, M.

    2010-01-01

    At present acquiring safe drinking water in rural or remote areas of Pakistan is a challenging task for dwellers. Coast line of Karachi is a sporadic habitat of villages not having access to safe drinking water. Many incidents of waterborne diseases have been reported in that area and attributed to contaminated municipal water supply. Solution of the problem is disinfection however, general methods of water disinfection such as boiling, UV-lamp, ozonation and chemical additive are costly or require skilled manpower. Present study investigates the solar disinfection method to treat municipal water supply at Karachi Institute of Power Engineering (KINPOE) located at the coastal belt of Karachi. Effect of exposure time, bottle material and turbidity of water on the process performance was evaluated. Model indicator bacteria total coliform (TC) was used to evaluate the solar disinfection process. Study revealed that in order to disinfect the municipal water, samples should be filled in PET transparent bottles, having turbidity below 23 NTU, and expose to solar radiation in the study area at least for one hour. Study shows that solar disinfection may provide safe drinking water meeting national and international water quality standards at minimum cost and effort in sunshine rich areas and not having access to other water purification systems. (author)

  15. Efficacy of Various Chemical Disinfectants on Biofilms Formed in Spacecraft Potable Water System Component

    Science.gov (United States)

    Wong, Willy; Garcia, Veronica; Castro, Victoria; Ott, Mark; Duane

    2009-01-01

    As the provision of potable water is critical for successful habitation of the International Space Station (ISS), life support systems were installed in December 2008 to recycle both humidity from the atmosphere and urine to conserve available water in the vehicle. Pre-consumption testing from the dispensing needle at the Potable Water Dispenser (PWD) indicated that bacterial concentrations exceeded the current ISS specifications of 50 colony forming units (CFU) per ml. Subsequent investigations revealed that a corrugated stainless steel flex hose upstream of the dispensing needle in the PWD was filled with non-sterile water and left at room temperature for over one month before launch. To simulate biofilm formation that was suspected in the flight system, sterile flex hoses were seeded with a consortium of bacterial isolates previously recovered from other ISS water systems, which included Ralstonia pickettii, Burkholderia multivorans, Caulobacter vibrioides., and Cupriavidus pauculus. After 5 days of incubation, these hoses were challenged with various chemical disinfectants including hydrogen peroxide, colloidal silver, and buffered pH solutions to determine the ability of the disinfectants to decrease and maintain bacterial concentrations below ISS specifications. Disinfection efficacy over time was measured by collecting daily heterotrophic plate counts following exposure to the disinfectants. A single flush with either 6% hydrogen peroxide solution or a mixture of 3% hydrogen peroxide and 400 ppb colloidal silver effectively reduced the bacterial concentrations to less than 1 CFU/ml for a period of up to 2 months. Testing results indicated that hydrogen peroxide and mixtures of hydrogen peroxide and colloidal silver have tremendous potential as alternative disinfectants for ISS water systems.

  16. Disinfection of drinking water by ultraviolet light

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    It is no longer mandatory that a given residue of chlorine is present in drinking water and this has led to interest in the use of ultraviolet radiation for disinfection of water in large public waterworks. After a brief discussion of the effect of ultraviolet radiation related to wavelength, the most usual type of irradiation equipment is briefly described. Practioal considerations regarding the installation, such as attenuation of the radiation due to water quality and deposits are presented. The requirements as to dose and residence time are also discussed and finally it is pointed out that hydraulic imperfections can reduce the effectiveness drastically. (JIW)Ψ

  17. ANALYTICAL METHODS FOR WATER DISINFECTION BY-PRODUCTS IN FOODS AND BEVERAGES

    Science.gov (United States)

    The determination of exposure to drinking water disinfection byproducts (DBPs) requires an understanding of how drinking water comes in contact with humans through multiple pathways. In order to facilitate the investigation of human exposure to DBPs via foods and beverages, analy...

  18. Alternative disinfection technology for water purification systems; Josui shori ni okeru enso daitai shodoku gijutsu

    Energy Technology Data Exchange (ETDEWEB)

    Aizawa, T. [The Institute of Public Health, Tokyo (Japan)

    1998-09-10

    This paper describes chlorination substituting disinfection technologies used in water purification systems. Chloramine treatment is regarded as effective in reducing trihalomethane (THM). Chlorine is injected in the initial stage in the form of free chlorine to disinfect pathogenic microorganisms in a short time, which is then added with ammonia to convert it into chloramine for further utilization. Chlorine dioxide has not been used in Japan, but introduced in Europe and America to treat THM. Ozone has the strongest oxidizing power, and is used for disinfection, virus inactivation, decomposition of THM precursors, and removal of fungus odor. The ozone treatment will produce aldehyde if an organic matter is present, but aldehyde can be removed by treatment using organismic activated carbon. Ultraviolet ray treatment has an advantage of being difficult of producing byproducts. This system was experimentally compared with free chlorine treatment on disinfection effect, mutagenicity, suppression of producing THM byproducts, and odor removal. In order to assure reliability of microorganismic and chemical safety in tap water supply systems, assurance by considering the entire system is important, not only by operating the disinfection units, but also combining such physical water purifying technologies as coagulation, sedimentation, filtration, and membrane treatment. The use of chlorine substituting disinfectants is also a part of the conception. 6 refs., 8 figs., 5 tabs.

  19. The effect of chlorine and combined chlorine/UV treatment on coliphages in drinking water disinfection.

    Science.gov (United States)

    Zyara, Alyaa M; Torvinen, Eila; Veijalainen, Anna-Maria; Heinonen-Tanski, Helvi

    2016-08-01

    Chlorine disinfection is a globally used method to ensure the safety of drinking water. However, it has not always been successful against viruses and, therefore, it is important to find new methods to disinfect water. Seventeen different coliphages were isolated from the treated municipal wastewater. These coliphages and MS2 were treated with different dosages of chlorine in drinking water, and a combined chlorine/ultraviolet irradiation treatment for the chlorine-resistant coliphages. Chlorine disinfection with 0.3-0.5 mg/L total chlorine (free Cl-dosage 0.12-0.21 mg/L) for 10 min achieved 2.5-5.7 Log10-reductions for 11 sensitive coliphages. The six most resistant coliphages showed no reduction with these chlorine concentrations. MS2 was intermediate in chlorine resistance, and thus it is not a good indicator for viruses in chlorine disinfection. In the combined treatment total chlorine of 0.05-0.25 mg/L (free Cl-dosage 0.02-0.08 mg/L) and ultraviolet irradiation (14-22 mWs/cm(2)) were more effective than chlorine alone, and 3-5 Log10-reductions were achieved for the chlorine-resistant strains. The chlorination efficiency could be increased by higher dosages and longer contact times, but this could increase the formation of disinfection by-products. Therefore, the combination treatment is a recommended disinfection method.

  20. Ultraviolet light in the use of water disinfection

    International Nuclear Information System (INIS)

    Dabbagh, R.

    1999-01-01

    Ultraviolet light is an effective method in the use of water disinfection for swimming pools, potable water and industry required water. For many reasons Ultraviolet light and Ultraviolet compounded with chlorine (Ultraviolet/chlorine) has been brought to attention ed in resent years. In this research, a swimming pool water disinfection was carried out by means of a system with the use of a reactor which was made of stainless steel (SS-304) and with many another standards required. Operation of system was carried out at first in the pilot plant and then installation in essential water treatment integrated. Inactivation of pollution index, E. Coli or Total coliform and Pseudomonas aeroginosa studies with 6000,16000 and 30000 μW.s/cm 2 Ultraviolet dose and then in presence of 0.3,0.6,0.9 and 1.2 mg/1 free chlorine (Ultraviolet/chlorine). In swimming pools minimum free chlorine residual usually is 1.5 mg/1. Optimum Ultraviolet dose was 16000 μW.s/cm 2 attention to 50 percent Ultraviolet absorption ca sued to TSS,TDS and turbidity. In the Ultraviolet/chlorine system suitable rate was 16000μW.s/cm 2 Ultraviolet dose/0.6 mg/1 chlorine in the 2.4 * 10 5 CFU/100 ml for Total coliform and 3600 CFU/100 ml for Pseudomonas aeroginosa. Most probable number (MPN) estimated multiple tube fermentation technique. In this way the flow rate for system indicated about 240 cm 3 /s or 0.9 m 3 /h. The samples polluted for secondary pollution with 54000 CFU/100 ml for E. Coli and 1800 CFU/100ml Pseudomonas aeroginosa. The number of microbes decreased to zero duration after 45 minutes contact time in presence of free chlorine residual in samples. In practical conditions which that disinfectant system was installed in essential water treatment circuit under 1.4 atm hydraulic pressure no growth was seen for pollution index in disinfected water with Ultraviolet in microbial density about 840 CFU/100 ml for Total coliform and 12 CFU/100 ml for pseudomonas aeroginosa. Attention to lower

  1. Ultraviolet light in the use of water disinfection

    International Nuclear Information System (INIS)

    Dabbagh, R.

    1999-01-01

    Ultraviolet light is an effective method in the use of water disinfection for swimming pools, potable water and industry required water. For many reasons UV light and UV compounded with chlorine (UV/chlorine) has been brought to attention in resent years. In this research, a swimming pool water disinfection was carried out by means of a system with the use of a reactor which was made of stainless steel (SS-304) and with many another standards required. Operation of system was carried out at first in the pilot plant and then installation in essential water treatment integrated. Inactivation of pollution index, E. Coli or Total coliform and Pseudomonas aeroginosa studied with 6000,16000 and 30000 μW.s/cm 2 UV dose and then in presence of 0.3,0.6,0.9 and 1.2 mg/1 free chlorine (UV/chlorine). In swimming pools minimum free chlorine residual usually is 1.5 mg/1. Optimum UV dose was 16000 μW.s/cm 2 attention to 50 percent UV absorption caused to TSS,TDS and turbidity. In the UV/chlorine system suitable rate was 16000μW.s/cm 2 UV dose /0.6 mg/1 chlorine in the 2.4 * 10 5 CFU/100 ml for Total coliform and 3600CFU/100 ml for Pseudomonas aeroginosa. Most probable number(MPN) estimated multiple tube fermentation technique. In this way the flow rate for system indicated about 240 cm 3 /s or 0.9 m 3 /h. The samples polluted for secondary pollution with 54000 CFU/100 ml for E.Coli and 1800 CFU/100ml Pseudomonas aeroginosa. The number of microbes decreased to zero duration after 45 minutes contact time in presence of free chlorine residual in samples. In practical conditions which that disinfectant system was installed in essential water treatment circuit under 1.4 atm hydraulic pressure no growth was seen for pollution index in disinfected water with UV in microbial density about 840 CFU/100 ml for Total coliform and 12CFU/100 ml for Pseudomonas aeroginosa. Attention to lower turbidity, TSS and TDS in tap water, higher flow rate about 560 cm 3 /s or 2 m 3 /h acessesed

  2. Characterization of a stirred tank electrochemical cell for water disinfection processes

    International Nuclear Information System (INIS)

    Polcaro, A.M.; Vacca, A.; Mascia, M.; Palmas, S.; Pompei, R.; Laconi, S.

    2007-01-01

    Laboratory experiments were performed to characterize the behaviour of an electrochemical cell equipped with boron-doped diamond anodes and to verify its effectiveness in water disinfection. The hydrodynamic regime was determined when the cell worked either in batch or in continuous mode. Galvanostatic electrolyses of aqueous 1 mM Na 2 SO 4 solutions were performed to investigate on the oxidant production in different experimental conditions. The same solutions contaminated by E. coli, enterococci and coliforms were used as test media to verify the effectiveness of the system in the disinfection process. Experimental results indicated that the major inactivation mechanism of bacteria in the electrochemical cell is a disinfection by electrochemically generated oxidants, however a cooperative effect of superficial reaction has to be taken into account. The great capability of BDD anode to produce reactive oxygen species (ROS) and other oxidizing species during the electrolysis allows to establish a chlorine-free disinfection process

  3. The impact of iodinated X-ray contrast agents on formation and toxicity of disinfection by-products in drinking water.

    Science.gov (United States)

    Jeong, Clara H; Machek, Edward J; Shakeri, Morteza; Duirk, Stephen E; Ternes, Thomas A; Richardson, Susan D; Wagner, Elizabeth D; Plewa, Michael J

    2017-08-01

    The presence of iodinated X-ray contrast media (ICM) in source waters is of high concern to public health because of their potential to generate highly toxic disinfection by-products (DBPs). The objective of this study was to determine the impact of ICM in source waters and the type of disinfectant on the overall toxicity of DBP mixtures and to determine which ICM and reaction conditions give rise to toxic by-products. Source waters collected from Akron, OH were treated with five different ICMs, including iopamidol, iopromide, iohexol, diatrizoate and iomeprol, with or without chlorine or chloramine disinfection. The reaction product mixtures were concentrated with XAD resins and the mammalian cell cytotoxicity and genotoxicity of the reaction mixture concentrates was measured. Water containing iopamidol generated an enhanced level of mammalian cell cytotoxicity and genotoxicity after disinfection. While chlorine disinfection with iopamidol resulted in the highest cytotoxicity overall, the relative iopamidol-mediated increase in toxicity was greater when chloramine was used as the disinfectant compared with chlorine. Four other ICMs (iopromide, iohexol, diatrizoate, and iomeprol) expressed some cytotoxicity over the control without any disinfection, and induced higher cytotoxicity when chlorinated. Only iohexol enhanced genotoxicity compared to the chlorinated source water. Copyright © 2017. Published by Elsevier B.V.

  4. Seasonal evaluation of disinfection by-products throughout two full-scale drinking water treatment plants.

    Science.gov (United States)

    Zhong, Xin; Cui, Chongwei; Yu, Shuili

    2017-07-01

    Carbonyl compounds can occur alpha-hydrogens or beta-diketones substitution reactions with disinfectants contributed to halogenated by-products formation. The objective of this research was to study the occurrence and fate of carbonyl compounds as ozonation by-products at two full-scale drinking water treatment plants (DWTPs) using different disinfectants for one year. The quality of the raw water used in both plants was varied according to the season. The higher carbonyl compounds concentrations were found in raw water in spring. Up to 15 (as the sum of both DWTPs) of the 24 carbonyl compounds selected for this work were found after disinfection. The dominant carbonyl compounds were formaldehyde, glyoxal, methyl-glyoxal, fumaric, benzoic, protocatechuic and 3-hydroxybenzoic acid at both DWTPs. In the following steps in each treatment plant, the concentration patterns of these carbonyl compounds differed depending on the type of disinfectant applied. Benzaldehyde was the only aromatic aldehyde detected after oxidation with ozone in spring. As compared with DWTP 1, five new carbonyl compounds were formed (crotonaldehyde, benzaldehyde, formic, oxalic and malonic acid) disinfection by ozone, and the levels of the carbonyl compounds increased. In addition, pre-ozonation (PO) and main ozonation (OZ) increased the levels of carbonyl compounds, however coagulation/flocculation (CF), sand filtration (SF) and granular activated carbon filtration (GAC) decreased the levels of carbonyl compounds. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Evaluation of an Innovative Approach to Validation of Ultraviolet (UV) Reactors for Disinfection in Drinking Water Systems

    Science.gov (United States)

    UV disinfection is an effective process for inactivating many microbial pathogens found in source waters with the potential as stand-alone treatment or in combination with other disinfectants. For surface and groundwater sourced drinking water applications, the U.S. Environmental...

  6. Spiral-shaped disinfection reactors

    KAUST Repository

    Ghaffour, NorEddine; Ait-Djoudi, Fariza; Naceur, Wahib Mohamed; Soukane, Sofiane

    2015-01-01

    This disclosure includes disinfection reactors and processes for the disinfection of water. Some disinfection reactors include a body that defines an inlet, an outlet, and a spiral flow path between the inlet and the outlet, in which the body

  7. Bactericidal efficacy of silver impregnated activated carbon for disinfection of water

    International Nuclear Information System (INIS)

    Sultana, L.; Khan, F.A.; Usmani, T.H.

    2009-01-01

    When highly contaminated water was passed through two types of silver coated activated carbon and their mixtures with sand, the former was found to be far better medium for disinfection of water, with bactericidal efficacy of about 2.5 times that of the latter. (author)

  8. Decontamination of B. globigii spores from drinking water infrastructure using disinfectants

    Data.gov (United States)

    U.S. Environmental Protection Agency — Decontamination of Bacillus spores adhered to common drinking water infrastructure surfaces was evaluated using a variety of disinfectants. Corroded iron and...

  9. Integrated Disinfection By-Products Mixtures Research: Concentration by Reverse Osmosis Membrane Techniques of Disinfection By-Products from Water Disinfected by Chlorination and Ozonation/Postchlorination

    Science.gov (United States)

    To conduct the health-effect studies described in subsequent articles in this series, concentrated aqueous mixtures of disinfection by-products were required for the two water treatment trains described in the preceding article (Miltner et al., 2008). To accomplish this, the fini...

  10. Disinfection of deionised water inoculated with enterobacter using ultra violet light

    International Nuclear Information System (INIS)

    Mathrani, M.

    2001-01-01

    For the first time the enterobacter, not the escherichia coli,was used as a model bacteria to asses the disinfection of microorganisms in water by UV (Ultra Violet) irradiation. The cell density of the liquid culture was followed by optical density of 1.837 at 600 nm on spectrometer. For the disinfection purpose, a laboratory scale batch reactor (10 cm wide, 20 cm long, and 10 cm height), containing 250 ml sterilised deionized water inoculated with enterobacter,was run under supra-band gap light (wavelength < 400 nm, peaking between 340 and 365 nm with a maximum of 350 nm). After carrying out seven batch experiments it is concluded that the complete inactivation of Enterobacter ( approx. equal to x 10/sup 6/ CFU/ml) in the water can be achieved by UV irradiation for 2 hours. (author)

  11. Methodology for modeling the disinfection efficiency of fresh-cut leafy vegetables wash water applied on peracetic acid combined with lactic acid.

    Science.gov (United States)

    Van Haute, S; López-Gálvez, F; Gómez-López, V M; Eriksson, Markus; Devlieghere, F; Allende, Ana; Sampers, I

    2015-09-02

    A methodology to i) assess the feasibility of water disinfection in fresh-cut leafy greens wash water and ii) to compare the disinfectant efficiency of water disinfectants was defined and applied for a combination of peracetic acid (PAA) and lactic acid (LA) and comparison with free chlorine was made. Standardized process water, a watery suspension of iceberg lettuce, was used for the experiments. First, the combination of PAA+LA was evaluated for water recycling. In this case disinfectant was added to standardized process water inoculated with Escherichia coli (E. coli) O157 (6logCFU/mL). Regression models were constructed based on the batch inactivation data and validated in industrial process water obtained from fresh-cut leafy green processing plants. The UV254(F) was the best indicator for PAA decay and as such for the E. coli O157 inactivation with PAA+LA. The disinfection efficiency of PAA+LA increased with decreasing pH. Furthermore, PAA+LA efficacy was assessed as a process water disinfectant to be used within the washing tank, using a dynamic washing process with continuous influx of E. coli O157 and organic matter in the washing tank. The process water contamination in the dynamic process was adequately estimated by the developed model that assumed that knowledge of the disinfectant residual was sufficient to estimate the microbial contamination, regardless the physicochemical load. Based on the obtained results, PAA+LA seems to be better suited than chlorine for disinfecting process wash water with a high organic load but a higher disinfectant residual is necessary due to the slower E. coli O157 inactivation kinetics when compared to chlorine. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. IDENTIFICATION OF TI02/UV DISINFECTION BYPRODUCTS IN DRINKING WATER

    Science.gov (United States)

    Due to concern over the presence of trihalomethanes (THMs) and other chlorinated byproducts in chlorinated drinking water, alternative disinfection methods are being explored. One of the alternative treatment methods currently being evaluated for potential use with small systems ...

  13. Limnoithona sinensis as refuge for bacteria: protection from UV radiation and chlorine disinfection in drinking water treatment.

    Science.gov (United States)

    Lin, Tao; Cai, Bo; Chen, Wei

    2014-11-01

    In this study, we tested the potential of Limnoithona sinensis to provide its attached bacteria refuge against disinfection. The experimental results indicated that in water devoid of zooplankton, both UV radiation and chlorine disinfection significantly decreased the viability of free-living bacteria. In the presence of L. sinensis, however, the attached bacteria could survive and rapidly recover from disinfection. This demonstrated that L. sinensis provided protection from external damage to various aquatic bacteria that were attached to its body. The surviving bacteria remained on L. sinensis after disinfection exposure, which enabled a rapid increase in the bacterial population followed by their subsequent release into the surrounding water. Compared with UV radiation, chlorine disinfection was more effective in terms of inactivating attached bacteria. Both UV radiation and chlorine disinfection had little effect in terms of preventing the spread of undesirable bacteria, due to the incomplete inactivation of the bacteria associated with L. sinensis.

  14. Evaluation of bactericidal efficacy of silver ions on Escherichia coli for drinking water disinfection.

    Science.gov (United States)

    Pathak, Satya P; Gopal, K

    2012-07-01

    The purpose of this study is the development of a suitable process for the disinfection of drinking water by evaluating bactericidal efficacy of silver ions from silver electrodes. A prototype of a silver ioniser with silver electrodes and control unit has been fabricated. Silver ions from silver electrodes in water samples were estimated with an atomic absorption spectrophotometer. A fresh culture of Escherichia coli (1.75 × 10(3) c.f.u./ml) was exposed to 1, 2, 5, 10 and 20 ppb of silver ions in 100 ml of autoclaved tap water for 60 min. The effect of different pH and temperatures on bactericidal efficacy was observed at constant silver ion concentration (5 ppb) and contact time of 30 min. The maximum bactericidal activity (100%) was observed at 20 ppb of silver ion concentration indicating total disinfection after 20 min while minimum bactericidal activity (25%) was observed after 10 min at 01 ppb of silver ions. Likewise, 100% bactericidal activity was noticed with 2, 5 and 10 ppb of silver ions after 60, 50 and 40 min, respectively. Bactericidal activity at pH 5, 6, 7, 8 and 9 was observed at 79.9%, 79.8%, 80.5%, 100% and 100%, respectively, whereas it was 80.4%, 88.3%, 100%, 100% and 100% at 10°C, 20°C, 30°C, 40°C and 50°C, respectively. The findings of this study revealed that very low concentrations of silver ions at pH 8-9 and temperature >20°C have bactericidal efficacy for total disinfection of drinking water. Silver ionisation is suitable for water disinfection and an appropriate alternative to chlorination which forms carcinogenic disinfection by-products.

  15. Evaluation of thirteen haloacetic acids and ten trihalomethanes formation by peracetic acid and chlorine drinking water disinfection.

    Science.gov (United States)

    Xue, Runmiao; Shi, Honglan; Ma, Yinfa; Yang, John; Hua, Bin; Inniss, Enos C; Adams, Craig D; Eichholz, Todd

    2017-12-01

    Free chlorine is a commonly used disinfectant in drinking water treatment. However, disinfection by-products (DBPs) are formed during water disinfection. Haloacetic acids (HAAs) and trihalomethanes (THMs) are two major groups of DBPs. Iodo-HAAs and iodo-THMs (I-HAAs and I-THMs) are formed during the disinfection of the water containing high levels of iodide and are much more toxic than their chlorinated and brominated analogs. Peracetic acid (PAA) is a strong antimicrobial disinfectant that is expected to reduce the formation of HAAs and THMs during disinfection. In this study, the formations of thirteen HAAs and ten THMs, including the iodinated forms, have been investigated during PAA disinfection and chlorination as the comparison. The DBP formations under different iodide concentrations, pHs, and contact times were systematically investigated. Two types of commercial PAAs containing different concentrations of PAA and hydrogen peroxide (H 2 O 2 ) were studied. A solid-phase microextraction gas chromatography-mass spectrometry method was upgraded for THM analysis including I-THMs. HAAs were analyzed by following a recently developed high performance ion chromatography-tandem mass spectrometry method. Results show that the ratio of PAA and H 2 O 2 concentration significantly affect the formation of I-THMs and I-HAAs. During PAA disinfection with lower PAA than H 2 O 2 , no detectable levels of THMs and HAAs were observed. During PAA disinfection with higher PAA than H 2 O 2 , low levels of monoiodoacetic acid, diiodoacetic acid, and iodoform were formed, and these levels were enhanced with the increase of iodide concentration. No significant quantities of chloro- or bromo-THMs and HAAs were formed during PAA disinfection treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Kinetic model of water disinfection using peracetic acid including synergistic effects.

    Science.gov (United States)

    Flores, Marina J; Brandi, Rodolfo J; Cassano, Alberto E; Labas, Marisol D

    2016-01-01

    The disinfection efficiencies of a commercial mixture of peracetic acid against Escherichia coli were studied in laboratory scale experiments. The joint and separate action of two disinfectant agents, hydrogen peroxide and peracetic acid, were evaluated in order to observe synergistic effects. A kinetic model for each component of the mixture and for the commercial mixture was proposed. Through simple mathematical equations, the model describes different stages of attack by disinfectants during the inactivation process. Based on the experiments and the kinetic parameters obtained, it could be established that the efficiency of hydrogen peroxide was much lower than that of peracetic acid alone. However, the contribution of hydrogen peroxide was very important in the commercial mixture. It should be noted that this improvement occurred only after peracetic acid had initiated the attack on the cell. This synergistic effect was successfully explained by the proposed scheme and was verified by experimental results. Besides providing a clearer mechanistic understanding of water disinfection, such models may improve our ability to design reactors.

  17. Bench-Scale Evaluation of Peracetic Acid and Twin Oxide ™ as Disinfectants in Drinking Water

    Science.gov (United States)

    Chlorine is widely used as an inexpensive and potent disinfectant in the United States for drinking water. However, chlorine has the potential for forming carcinogenic and mutagenic disinfection by-products (DBPs). In this study, bench scale experiments were conducted at the U.S...

  18. A Comparison of Different Disinfectants on the Microbiological Quality of Water from the Dental Unit Waterlines of a Military Hospital

    International Nuclear Information System (INIS)

    Ma, M.S.; Zalini Yunus; Ahmad Razi Mohamed Yunus; Zukri Ahmad; Farizah Abdul Fatah

    2015-01-01

    Water from the dental unit waterlines (DUWLs) is known to contaminate with microbial from the biofilm that formed in the tubing system. The water quality from DUWLs is important to patients and dental health care professionals as they could be infected either directly from the contaminated water or aerosol that is generated during dental procedures. Suppliers claimed that dental units supplied to the hospital can only use a specific disinfectant which is uneconomic compared with the others. The aims of this study were to evaluate and compare the efficacy of different disinfectant on the water quality of DUWLs. Four disinfectants (Calbenium, A-dec ICX tablet, Dentel 5, Metassys) and distil water were evaluated. 350 mL water sample was collected separately, from the outlet of high-speed hand piece, scaler, 3-ways syringe and cup filler into a sterile thiosulfate bag on the 1st, 2nd, 4th, 8th, 12th and 24th weeks of the study. The samples were tested on the following day for total viable count (TVC). There is significant difference in the efficacies of the different disinfectants. Only one disinfectant consistently produces water quality within the recommended level of American Dental Association (ADA). Within the limitation of this study, it was found that there is alternative disinfectant that can reduce the TVC to the level recommended by ADA. However, the water qualities produced with these disinfectants were not consistent although they did not cause any technical problem to the dental units during the period of study. (author)

  19. Ozone Disinfection of Vibrio vulnificus in Shrimp Pond Water

    Science.gov (United States)

    Dyah Pita Rengga, Wara; Cahya Julyta Putri, Echa; Wulansarie, Ria; Suryanto, Agus

    2018-03-01

    One variety of shrimp, L.Vanamei, often uses brackish water during the operation in the shrimp pond. Chlorination and ultraviolet are usually used for disinfection of brackish water. However, it is ineffective and forms sediment in the water distribution. It can be a negative impact on the water quality cause a contamination on the shrimp, so the farmers might have loss of profit because Vibrio vulnificus causes infection and dead on the shrimp. It affects the safety of consumers and should be minimized. The purpose of this study is to reduce the number of V. vulnificus bacteria in the pond water. The water was put in the storage tanks then pumped to filter out the impurities of the water. Furthermore, the water set the flow rate in 1 LPM, 2 LPM, and 3 LPM. After that, the ozone was injected to the water flow to sterilize the V. vulnificus bacteria. Finally, the water was returned to the original tank. The water from the tank was taken through a valve and analyzed in 0, 3, 7, 12, 18, 24, 30 minutes. The sample was analyzed immediately using a Total Plate Count method to determine the number of V. vulnificus bacteria in the shrimp pond water. The flow rate shows that the longer time of ozone made a lower amount of Vibrio v. bacteria. In 2 LPM water, it shows the optimum results of V. vulnificus. bacteria reduction for 88.1% compared to the flow rate of 1 LPM and 3 LPM with the bacteria reduction of 68,8% and 70.6%. This study shows that the ozone with a flow rate of 2 LPM circulation is the most effective method to help reducing the number of V. vulnificus in brackish water distribution system in the shrimp environment and potentially as a disinfectant.

  20. A community randomised controlled trial evaluating a home-based environmental intervention package of improved stoves, solar water disinfection and kitchen sinks in rural Peru: rationale, trial design and baseline findings.

    Science.gov (United States)

    Hartinger, S M; Lanata, C F; Hattendorf, J; Gil, A I; Verastegui, H; Ochoa, T; Mäusezahl, D

    2011-11-01

    Pneumonia and diarrhoea are leading causes of death in children. There is a need to develop effective interventions. We present the design and baseline findings of a community-randomised controlled trial in rural Peru to evaluate the health impact of an Integrated Home-based Intervention Package in children aged 6 to 35 months. We randomised 51 communities. The intervention was developed through a community-participatory approach prior to the trial. They comprised the construction of improved stoves and kitchen sinks, the promotion of hand washing, and solar drinking water disinfection (SODIS). To reduce the potential impact of non-blinding bias, a psychomotor stimulation intervention was implemented in the control arm. The baseline survey included anthropometric and socio-economic characteristics. In a sub-sample we determined the level of faecal contamination of drinking water, hands and kitchen utensils and the prevalence of diarrhoegenic Escherichia coli in stool specimen. We enrolled 534 children. At baseline all households used open fires and 77% had access to piped water supplies. E. coli was found in drinking water in 68% and 64% of the intervention and control households. Diarrhoegenic E. coli strains were isolated from 45/139 stool samples. The proportion of stunted children was 54%. Randomization resulted in comparable study arms. Recently, several critical reviews raised major concerns on the reliability of open health intervention trials, because of uncertain sustainability and non-blinding bias. In this regard, the presented trial featuring objective outcome measures, a simultaneous intervention in the control communities and a 12-month follow up period will provide valuable evidence. Copyright © 2011 Elsevier Inc. All rights reserved.

  1. Thermal disinfection of hotels, hospitals, and athletic venues hot water distribution systems contaminated by Legionella species.

    Science.gov (United States)

    Mouchtouri, Varvara; Velonakis, Emmanuel; Hadjichristodoulou, Christos

    2007-11-01

    Legionella spp. (> or = 500 cfu liter(-1)) were detected in 92 of 497 water distribution systems (WDS) examined. Thermal disinfection was applied at 33 WDS. After the first and second application of the disinfection procedure, 15 (45.4%) and 3 (9%) positive for remedial actions WDS were found, respectively. Legionella pneumophila was more resistant to thermal disinfection than Legionella non-pneumophila spp. (relative risk [RR]=5.4, 95% confidence intervals [CI]=1-35). WDS of hotels with oil heater were more easily disinfected than those with electrical or solar heater (RR=0.4 95% CI=0.2-0.8). Thermal disinfection seems not to be efficient enough to eliminate legionellae, unless repeatedly applied and in combination with extended heat flushing, and faucets chlorine disinfection.

  2. Effects of Disinfectants in Water on Mir- and Earth-Grown Wheat

    Science.gov (United States)

    Campbell, William .F.; Bubenheim, D. L.; Bugbee, B.; Salisbury, F. B.; Bingham, G. E.; Levinskikh, M.; Sytchev, V. N.; Ivanova, I.; Chernova, L.; Podolsky, I.

    2002-01-01

    Iodine and silver fluoride are used to purify water onboard U. S. Shuttles and the Russian Space Station, Mir, respectively. In 1995, iodine-treated water, which ranged from 1.0-4.0 mg x kg(exp -1) with a mean of 2.9 mg x kg(exp -1), was applied to Super Dwarf wheat (Triticum aestivum L.) plants when Mir water (grey or tech grade) became scarce. The potential phytotoxicity of iodine on Super Dwarf wheat is an unknown. Since use of iodine-treated water was not part of the experiment, we sought to determine whether it accounted for the subsequent poor wheat seedling growth and floral development onboard the Mir. Super Dwarf wheat seeds were imbibed in iodine or silver fluoride concentrations of 0.0, 1.0, 2.0, 4.0, 8.0 or 16.0 mg x kg(exp -1) for 96 h at 4 C. Five seeds were then planted per 13.3 cm x 13.3 cm pots containing a granular clinoptilolite (Cp) zeolite (1 -2 mm dia.) and placed in Percival(TM) growth chambers programmed for 20/15 C and 18/6 h d/n regime. Plants were irrigated with distilled water, and Iodine- or silver fluoride-treated distilled water. In separate experiments, seeds were treated as above and germination and early seedling growth were determined by examining seedling responses to disinfectants in rolled paper towels. Silver fluoride had very little effect on wheat seed germination. By contrast, iodine reduced germination at all treatment levels. Seedlings exposed to 1.0, 2.0, and 4.0 mg x kg(exp -1) of iodine or silver fluoride levels exhibited a slight stimulation in shoot and root growth. Both disinfectants at 8 and 16 mg x kg(exp -1) showed significantly (p is less than or equal to 0.01) reduced seedling shoot and root lengths and fresh biomasses compared to the control and lower disinfectant levels. The number of spikelets per spike, florets per spikelet, seeds per spike and seed weight were also significantly reduced at the 8 and 16 mg x kg(exp -1) compared to the control and lower levels of disinfectant. Based on these ground

  3. Efficacy of various chemical disinfectants on biofilms formed in spacecraft potable water system components.

    Science.gov (United States)

    Wong, Wing C; Dudinsky, Lynn A; Garcia, Veronica M; Ott, Charlie M; Castro, Victoria A

    2010-07-01

    As the provision of potable water is critical for successful habitation of the International Space Station (ISS), life support systems were installed in December 2008 to recycle both humidity from the atmosphere and urine to conserve available water in the Station. In-flight pre-consumption testing from the dispensing needle at the Potable Water Dispenser (PWD) indicated that bacterial concentrations exceeded the current ISS specifications of 50 colony-forming units (CFU) ml(-1). Subsequent investigations revealed that a corrugated stainless steel flex hose upstream of the dispensing needle in the PWD was filled with nonsterile water and left at room temperature for more than 1 month before launch. To simulate biofilm formation that was suspected in the flight system, sterile flex hoses were seeded with a consortium of bacterial isolates previously recovered from other ISS water systems, including Ralstonia pickettii, Burkholderia multivorans, Caulobacter vibrioides, and Cupriavidus pauculus. After incubation for 5 days, the hoses were challenged with various chemical disinfectants including hydrogen peroxide (H2O2), colloidal silver, and buffered pH solutions to determine the ability of the disinfectants to decrease and maintain bacterial concentrations below ISS specifications. The disinfection efficacy over time was measured by collecting daily heterotrophic plate counts after exposure to the disinfectants. A single flush with either 6% H2O2 solution or a mixture of 3% H2O2 and 400 ppb colloidal silver effectively reduced the bacterial concentrations to <1 CFU ml(-1) for a period of up to 3 months.

  4. Electrochemically activated water as an alternative to chlorine for decentralized disinfection

    KAUST Repository

    Ghebremichael, Kebreab A.; Muchelemba, E.; Petruševski, Branislav; Amy, Gary L.

    2011-01-01

    Electrochemically activated (ECA) water is being extensively studied and considered as an alternative to chlorine for disinfection. Some researchers claim that ECA is by and large a chlorine solution, while others claim the presence of reactive

  5. Effect of ultrasonic pretreatment on purified water disinfection; Efecto del pretratamiento con ultrasonidos sobre la desinfeccion de agua depurada

    Energy Technology Data Exchange (ETDEWEB)

    Simon Andreu, P.; Lardin Mifsut, C.; Vergara Romero, L.; Polo Canas, P. M.; Perez Sanchez, P.; Rancano Perez, A.

    2009-07-01

    Due to the importance of a suitable water disinfection in order to insure a pollutant effect minimization against environment, this work has been carried out to determine how can affect an ultrasonic pre-treatment upon disinfection step. It has been confirmed the ultrasonic disintegration of bacterial cells in treated water and disinfectant power of treatment by itself, which is not enough to be used as a single method in water disinfection. It has also been proved that from a technical and economical point of view the combination of UV and ultrasound improves the UV treatment performance. Finally, it has been detected that an ultrasonic pre-treatment increases chlorination effectiveness, however the high cost in this combination makes it unfeasible of industrial scale. (Author) 6 refs.

  6. UV disinfection of injection and drinking water - an accepted method on offshore oil platforms

    International Nuclear Information System (INIS)

    Brunner, H.; Klein, H.P.

    1985-01-01

    Ultraviolet disinfection packages have been developed for the treatment of drinking water and injection water on offshore oil platforms. Large-scale tests with sulphate reducing bacteria out outlined. (Auth.)

  7. Photoreactivation Study of Wastewater Treatment Effluent Disinfected by UV-disinfection for Water Reuse

    International Nuclear Information System (INIS)

    Yoon, C.G.; Jung, K.W.; Ham, J.H.; Jeon, J.H.

    2003-01-01

    Photoreactivation of microorganism following UV-disinfection is one of the research topics of interest in assessing the UV-disinfection performance. Apparent photoreactivation was examined under fluorescent lamp and solar radiation as well as in darkness. Total coliform, fecal coliform, and Escherichia coli were used as indicator microorganisms, and their concentration of 10~30 MPN/100mL increased to the level of 100 MPN/100mL after 24 hours, which implied that part of damaged microorganisms by UV-disinfection might be repairable with time

  8. [Disinfection efficiency of peracetic acid, alone and in combination with hypochlorite, against Mycobacterium avium in drinking water].

    Science.gov (United States)

    Schiavano, G F; Sisti, M; De Santi, M; Brandi, G

    2006-01-01

    Peracetic acid (PAA) is a disinfectant with a wide spectrum of antimicrobial activity, but little is known about the feasibility of using it in the field of drinking water treatment. The aim of this study has been assess disinfectant efficacy of PAA, alone or in combination with hypochlorite, against M. avium in drinking water M. avium is a common opportunistic pathogen in immunocompromised subjects that is able to survive and grow in drinking water distribution systems. In this study PAA did not show appreciable activity against the greater number of tested strains (16/21) up to 5 ppm of PAA, a weak activity was seen on 4 strains, while a significant reduction in viable cells (about 50%) was seen only on 1 strain after 48 h of treatment with 5 ppm of PAA. We also evidenced that M. avium was unaffected by chlorine concentration usually present in drinking water distribution system. Finally, the combination of PAA and sodium hypochlorite did not promote enhanced antimicrobial efficacy respect to the single disinfectants. In conclusion, our result would indicate that PAA is an unlikely candidate for the disinfection of drinking water from M. avium and further strategies are required to eliminate M. avium from drinking water system.

  9. Impact of wastewater infrastructure upgrades on the urban water cycle: Reduction in halogenated reaction byproducts following conversion from chlorine gas to ultraviolet light disinfection

    Energy Technology Data Exchange (ETDEWEB)

    Barber, Larry B. [U.S. Geological Survey, 3215 Marine St., Boulder, CO 80303 (United States); Hladik, Michelle L. [U.S. Geological Survey, 6000 J Street Placer Hall, Sacramento, CA 95819 (United States); Vajda, Alan M. [University of Colorado, Department of Integrative Biology, CB 171, Denver, CO 80217 (United States); Fitzgerald, Kevin C. [U.S. Geological Survey, 3215 Marine St., Boulder, CO 80303 (United States); AECOM, 500 West Jefferson St., Ste. 1600, Louisville, KY 40202 (United States); Douville, Chris [City of Boulder, 4049 75th Street, Boulder, CO 80301 (United States)

    2015-10-01

    The municipal wastewater treatment facility (WWTF) infrastructure of the United States is being upgraded to expand capacity and improve treatment, which provides opportunities to assess the impact of full-scale operational changes on water quality. Many WWTFs disinfect their effluent prior to discharge using chlorine gas, which reacts with natural and synthetic organic matter to form halogenated disinfection byproducts (HDBPs). Because HDBPs are ubiquitous in chlorine-disinfected drinking water and have adverse human health implications, their concentrations are regulated in potable water supplies. Less is known about the formation and occurrence of HDBPs in disinfected WWTF effluents that are discharged to surface waters and become part of the de facto wastewater reuse cycle. This study investigated HDBPs in the urban water cycle from the stream source of the chlorinated municipal tap water that comprises the WWTF inflow, to the final WWTF effluent disinfection process before discharge back to the stream. The impact of conversion from chlorine-gas to low-pressure ultraviolet light (UV) disinfection at a full-scale (68,000 m{sup 3} d{sup −1} design flow) WWTF on HDBP concentrations in the final effluent was assessed, as was transport and attenuation in the receiving stream. Nutrients and trace elements (boron, copper, and uranium) were used to characterize the different urban source waters, and indicated that the pre-upgrade and post-upgrade water chemistry was similar and insensitive to the disinfection process. Chlorinated tap water during the pre-upgrade and post-upgrade samplings contained 11 (mean total concentration = 2.7 μg L{sup −1}; n = 5) and 10 HDBPs (mean total concentration = 4.5 μg L{sup −1}), respectively. Under chlorine-gas disinfection conditions 13 HDBPs (mean total concentration = 1.4 μg L{sup −1}) were detected in the WWTF effluent, whereas under UV disinfection conditions, only one HDBP was detected. The chlorinated WWTF effluent had

  10. Impact of wastewater infrastructure upgrades on the urban water cycle: Reduction in halogenated reaction byproducts following conversion from chlorine gas to ultraviolet light disinfection

    International Nuclear Information System (INIS)

    Barber, Larry B.; Hladik, Michelle L.; Vajda, Alan M.; Fitzgerald, Kevin C.; Douville, Chris

    2015-01-01

    The municipal wastewater treatment facility (WWTF) infrastructure of the United States is being upgraded to expand capacity and improve treatment, which provides opportunities to assess the impact of full-scale operational changes on water quality. Many WWTFs disinfect their effluent prior to discharge using chlorine gas, which reacts with natural and synthetic organic matter to form halogenated disinfection byproducts (HDBPs). Because HDBPs are ubiquitous in chlorine-disinfected drinking water and have adverse human health implications, their concentrations are regulated in potable water supplies. Less is known about the formation and occurrence of HDBPs in disinfected WWTF effluents that are discharged to surface waters and become part of the de facto wastewater reuse cycle. This study investigated HDBPs in the urban water cycle from the stream source of the chlorinated municipal tap water that comprises the WWTF inflow, to the final WWTF effluent disinfection process before discharge back to the stream. The impact of conversion from chlorine-gas to low-pressure ultraviolet light (UV) disinfection at a full-scale (68,000 m 3 d −1 design flow) WWTF on HDBP concentrations in the final effluent was assessed, as was transport and attenuation in the receiving stream. Nutrients and trace elements (boron, copper, and uranium) were used to characterize the different urban source waters, and indicated that the pre-upgrade and post-upgrade water chemistry was similar and insensitive to the disinfection process. Chlorinated tap water during the pre-upgrade and post-upgrade samplings contained 11 (mean total concentration = 2.7 μg L −1 ; n = 5) and 10 HDBPs (mean total concentration = 4.5 μg L −1 ), respectively. Under chlorine-gas disinfection conditions 13 HDBPs (mean total concentration = 1.4 μg L −1 ) were detected in the WWTF effluent, whereas under UV disinfection conditions, only one HDBP was detected. The chlorinated WWTF effluent had greater relative

  11. Microbial quality of swimming pool water with treatment without disinfection, with ultrafiltration, with UV-based treatment and with chlorination

    NARCIS (Netherlands)

    Keuten, M.G.A.; Peters, M.C.F.M.; van Dijk, J.C.; van Loosdrecht, Mark C.M.; Rietveld, L.C.

    2017-01-01

    Swimming pools are traditionally disinfected with a residual disinfectant such as sodium hypochlorite. Nowadays, swimming water without a residual disinfectant is increasingly popular, as can be seen by the growing number of (natural) swimming ponds (Weilandt 2015), but health risks for bathers do

  12. TIC-Tox: A preliminary discussion on identifying the forcing agents of DBP-mediated toxicity of disinfected water.

    Science.gov (United States)

    Plewa, Michael J; Wagner, Elizabeth D; Richardson, Susan D

    2017-08-01

    The disinfection of drinking water is a major public health achievement; however, an unintended consequence of disinfection is the generation of disinfection by-products (DBPs). Many of the identified DBPs exhibit in vitro and in vivo toxicity, generate a diversity of adverse biological effects, and may be hazards to the public health and the environment. Only a few DBPs are regulated by several national and international agencies and it is not clear if these regulated DBPs are the forcing agents that drive the observed toxicity and their associated health effects. In this study, we combine analytical chemical and biological data to resolve the forcing agents associated with mammalian cell cytotoxicity of drinking water samples from three cities. These data suggest that the trihalomethanes (THMs) and haloacetic acids may be a small component of the overall cytotoxicity of the organic material isolated from disinfected drinking water. Chemical classes of nitrogen-containing DBPs, such as the haloacetonitriles and haloacetamides, appear to be the major forcing agents of toxicity in these samples. These findings may have important implications for the design of epidemiological studies that primarily rely on the levels of THMs to define DBP exposure among populations. The TIC-Tox approach constitutes a beginning step in the process of identifying the forcing agents of toxicity in disinfected water. Copyright © 2017. Published by Elsevier B.V.

  13. Applications of Photocatalytic Disinfection

    Directory of Open Access Journals (Sweden)

    Joanne Gamage

    2010-01-01

    Full Text Available Due to the superior ability of photocatalysis to inactivate a wide range of harmful microorganisms, it is being examined as a viable alternative to traditional disinfection methods such as chlorination, which can produce harmful byproducts. Photocatalysis is a versatile and effective process that can be adapted for use in many applications for disinfection in both air and water matrices. Additionally, photocatalytic surfaces are being developed and tested for use in the context of “self-disinfecting” materials. Studies on the photocatalytic technique for disinfection demonstrate this process to have potential for widespread applications in indoor air and environmental health, biological, and medical applications, laboratory and hospital applications, pharmaceutical and food industry, plant protection applications, wastewater and effluents treatment, and drinking water disinfection. Studies on photocatalytic disinfection using a variety of techniques and test organisms are reviewed, with an emphasis on the end-use application of developed technologies and methods.

  14. Formation and occurrence of new polar iodinated disinfection byproducts in drinking water.

    Science.gov (United States)

    Pan, Yang; Li, Wenbin; An, Hao; Cui, Hao; Wang, Ying

    2016-02-01

    During drinking water disinfection, iodinated disinfection byproducts (I-DBPs) can be generated through reactions between iodide, disinfectants, and natural organic matter. Drinking water I-DBPs have been increasingly attracting attention as emerging organic pollutants as a result of their significantly higher toxicity and growth inhibition than their chloro- and bromo-analogues. In this study, by adopting ultra performance liquid chromatography/electrospray ionization-triple quadrupole mass spectrometry precursor ion scan, multiple reaction monitoring, and product ion scan analyses, 11 new polar I-DBPs with confirmed structures and eight new polar I-DBPs with proposed structures were detected in simulated drinking water samples. Chloramination of simulated raw waters containing natural organic matter with higher aromaticity produced higher levels of new phenolic I-DBPs. Formation of new polar I-DBPs and total organic iodine (TOI) was most favored in chloramination, followed by chlorine dioxide treatment, and relatively minor in chlorination. Lower pH in chloramination substantially enhanced the formation of new polar I-DBPs and TOI. NH2Cl and dissolved organic nitrogen could be important nitrogen sources and precursors for formation of the two new nitrogenous phenolic I-DBPs. Notably, in tap water samples collected from nine major cities located in the Yangtze River Delta region of China, seven of the 11 new polar I-DBPs with confirmed structures were detected at levels from 0.11 to 28 ng/L, and the two new nitrogenous phenolic I-DBPs were ubiquitous with concentrations from 0.12 to 24 ng/L, likely due to the relatively high dissolved organic nitrogen levels in regional source waters. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Disinfection of titanium dioxide nanotubes using super-oxidized water decrease bacterial viability without disrupting osteoblast behavior

    Energy Technology Data Exchange (ETDEWEB)

    Beltrán-Partida, Ernesto [Department of Biomaterials, Dental Materials and Tissue Engineering, Faculty of Dentistry Mexicali, Autonomous University of Baja California, Av. Zotoluca and Chinampas St., 21040 Mexicali, Baja California (Mexico); Department of Corrosion and Materials, Engineering Institute, Autonomous University of Baja California, Blvd. Benito Juarez and Normal St., 21280 Mexicali, Baja California (Mexico); Valdez-Salas, Benjamín, E-mail: benval@uabc.edu.mx [Department of Corrosion and Materials, Engineering Institute, Autonomous University of Baja California, Blvd. Benito Juarez and Normal St., 21280 Mexicali, Baja California (Mexico); Escamilla, Alan; Curiel, Mario [Department of Corrosion and Materials, Engineering Institute, Autonomous University of Baja California, Blvd. Benito Juarez and Normal St., 21280 Mexicali, Baja California (Mexico); Valdez-Salas, Ernesto [Ixchel Medical Centre, Av. Bravo y Obregón, 21000 Mexicali, Baja California (Mexico); Nedev, Nicola [Department of Corrosion and Materials, Engineering Institute, Autonomous University of Baja California, Blvd. Benito Juarez and Normal St., 21280 Mexicali, Baja California (Mexico); Bastidas, Jose M. [National Centre for Metallurgical Research, CSIC, Av. Gregorio del Amo 8, 28040 Madrid (Spain)

    2016-03-01

    Amorphous titanium dioxide (TiO{sub 2}) nanotubes (NTs) on Ti6Al4V alloy were synthesized by anodization using a commercially available super-oxidized water (SOW). The NT surfaces were sterilized by ultraviolet (UV) irradiation and disinfected using SOW. The adhesion and cellular morphology of pig periosteal osteoblast (PPO) cells and the behavior of Staphylococcus aureus (S. aureus) cultured on the sterilized and disinfected surfaces were investigated. A non-anodized Ti6Al4V disc sterilized by UV irradiation (without SOW) was used as control. The results of this study reveal that the adhesion, morphology and filopodia development of PPO cells in NTs are dramatically improved, suggesting that SOW cleaning may not disrupt the benefits obtained by NTs. Significantly decreased bacterial viability in NTs after cleaning with SOW and comparing with non-cleaned NTs was seen. The results suggest that UV and SOW could be a recommendable method for implant sterilization and disinfection without altering osteoblast behavior while decreasing bacterial viability. - Highlights: • The effect of super-oxidized water cleaning was studied on Ti6Al4V nanotubes. • Super oxidized-water cleaning caused a decline in S. aureus viability. • Osteoblast behavior was not disrupted after super-oxidized water disinfection. • Super-oxidized water is suggested as a cleaning protocol for TiO{sub 2} nanotubes.

  16. Disinfection of titanium dioxide nanotubes using super-oxidized water decrease bacterial viability without disrupting osteoblast behavior

    International Nuclear Information System (INIS)

    Beltrán-Partida, Ernesto; Valdez-Salas, Benjamín; Escamilla, Alan; Curiel, Mario; Valdez-Salas, Ernesto; Nedev, Nicola; Bastidas, Jose M.

    2016-01-01

    Amorphous titanium dioxide (TiO_2) nanotubes (NTs) on Ti6Al4V alloy were synthesized by anodization using a commercially available super-oxidized water (SOW). The NT surfaces were sterilized by ultraviolet (UV) irradiation and disinfected using SOW. The adhesion and cellular morphology of pig periosteal osteoblast (PPO) cells and the behavior of Staphylococcus aureus (S. aureus) cultured on the sterilized and disinfected surfaces were investigated. A non-anodized Ti6Al4V disc sterilized by UV irradiation (without SOW) was used as control. The results of this study reveal that the adhesion, morphology and filopodia development of PPO cells in NTs are dramatically improved, suggesting that SOW cleaning may not disrupt the benefits obtained by NTs. Significantly decreased bacterial viability in NTs after cleaning with SOW and comparing with non-cleaned NTs was seen. The results suggest that UV and SOW could be a recommendable method for implant sterilization and disinfection without altering osteoblast behavior while decreasing bacterial viability. - Highlights: • The effect of super-oxidized water cleaning was studied on Ti6Al4V nanotubes. • Super oxidized-water cleaning caused a decline in S. aureus viability. • Osteoblast behavior was not disrupted after super-oxidized water disinfection. • Super-oxidized water is suggested as a cleaning protocol for TiO_2 nanotubes.

  17. A review on wastewater disinfection

    OpenAIRE

    Mohammad Mehdi Amin; Hassan Hashemi; Amir Mohammadi Bovini; Yung Tse Hung

    2013-01-01

    Changes in regulations and development of new technologies have affected the selection of alternative for treated wastewater disinfection. Disinfection is the last barrier of wastewater reclamation process to protect ecosystem safety and human health. Driving forces include water scarcity and drinking water supply, irrigation, rapid industrialization, using reclaimed water, source protection, overpopulation, and environmental protection. The safe operation of water reuse depends on effluent d...

  18. Electrochemical disinfection of bacteria-laden water using antimony-doped tin-tungsten-oxide electrodes.

    Science.gov (United States)

    Ghasemian, Saloumeh; Asadishad, Bahareh; Omanovic, Sasha; Tufenkji, Nathalie

    2017-12-01

    Electrochemical disinfection has been shown to be an efficient method with a shortrequired contact time for treatment of drinking water supplies, industrial raw water supplies, liquid foodstuffs, and wastewater effluents. In the present work, the electrochemical disinfection of saline water contaminated with bacteria was investigated in chloride-containing solutions using Sb-doped Sn 80% -W 20% -oxide anodes. The influence of current density, bacterial load, initial chloride concentration, solution pH, and the type of bacteria (E. coli D21, E. coli O157:H7, and E. faecalis) on disinfection efficacy was systematically examined. The impact of natural organic matter and a radical scavenger on the disinfection process was also examined. The electrochemical system was highly effective in bacterial inactivation for a 0.1 M NaCl solution contaminated with ∼10 7  CFU/mL bacteria by applying a current density ≥1 mA/cm 2 through the cell.100% inactivation of E. coli D21 was achieved with a contact time of less than 60 s and power consumption of 48 Wh/m 3 , by applying a current density of 6 mA/cm 2 in a 0.1 M NaCl solution contaminated with ∼10 7 CFU/mL. Reactive chlorine species as well as reactive oxygen species (e.g. hydroxyl radicals) generated in situ during the electrochemical process were determined to be responsible for inactivation of bacteria. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Socioeconomic status and exposure to disinfection by-products in drinking water in Spain

    Directory of Open Access Journals (Sweden)

    Serra Consol

    2011-03-01

    Full Text Available Abstract Background Disinfection by-products in drinking water are chemical contaminants that have been associated with cancer and other adverse effects. Exposure occurs from consumption of tap water, inhalation and dermal absorption. Methods We determined the relationship between socioeconomic status and exposure to disinfection by-products in 1271 controls from a multicentric bladder cancer case-control study in Spain. Information on lifetime drinking water sources, swimming pool attendance, showering-bathing practices, and socioeconomic status (education, income was collected through personal interviews. Results The most highly educated subjects consumed less tap water (57% and more bottled water (33% than illiterate subjects (69% and 17% respectively, p-value = 0.003. These differences became wider in recent time periods. The time spent bathing or showering was positively correlated with attained educational level (p Conclusions The most highly educated subjects were less exposed to chlorination by-products through ingestion but more exposed through dermal contact and inhalation in pools and showers/baths. Health risk perceptions and economic capacity may affect patterns of water consumption that can result in differences in exposure to water contaminants.

  20. Non-PRASA Drinking Water Research on UV Disinfection in Puerto Rico

    Science.gov (United States)

    The U.S. EPA and InterAmerican University of San German worked with water treatment operators from Patillas, Puerto Rico on the installation, training and testing of pretreatment/UV disinfection systems in the communities of La Sofia and Apeadero. This presentation provides path...

  1. Antimicrobial-Coated Granules for Disinfecting Water

    Science.gov (United States)

    Akse, James R.; Holtsnider, John T.; Kliestik, Helen

    2011-01-01

    Methods of preparing antimicrobialcoated granules for disinfecting flowing potable water have been developed. Like the methods reported in the immediately preceding article, these methods involve chemical preparation of substrate surfaces (in this case, the surfaces of granules) to enable attachment of antimicrobial molecules to the surfaces via covalent bonds. A variety of granular materials have been coated with a variety of antimicrobial agents that include antibiotics, bacteriocins, enzymes, bactericides, and fungicides. When employed in packed beds in flowing water, these antimicrobial-coated granules have been proven effective against gram-positive bacteria, gram-negative bacteria, fungi, and viruses. Composite beds, consisting of multiple layers containing different granular antimicrobial media, have proven particularly effective against a broad spectrum of microorganisms. These media have also proven effective in enhancing or potentiating the biocidal effects of in-line iodinated resins and of very low levels of dissolved elemental iodine.

  2. Disinfection of drain water of tomato by means of UV radiation and slow sand filtration in real greenhouse circumstances.

    Science.gov (United States)

    De Rocker, E; Goen, K; Van Poucke, K

    2006-01-01

    The efficiency of the disinfection of drain water was tested at 11 greenhouses with tomato cultivation on rockwool substrate in Flanders (Belgium) by means of mycological analysis. In addition the presence of phytopathogenic fungi in the drain water was analysed at 2 supplementary greenhouses with recirculation without disinfection.

  3. Halogenated by-products of disinfecting ozonised recreational waters; Subproductos halaogenados de desinfeccion en aguas recreacionales ozonizadas

    Energy Technology Data Exchange (ETDEWEB)

    Goma i Huguet, A.; Quintana i Comte, J.; Soler i Vilaro, J.

    2005-07-01

    Recreational water like the present in swimming pools suffers, more than water from supply, formation of certain by-products in the local disinfection system because a mechanism of accumulation. Using advanced oxidation process, like onization, drives to a reduction of such an effect. Assessment of the presence of these disinfection by-products with and without onization, as well as the discussion of certain key aspects of how to ozonate, are the aim of this paper. (Author) 7 refs.

  4. Evaluation of the efficiency of the photo Fenton disinfection of natural drinking water source during the rainy season in the Sahelian region

    Energy Technology Data Exchange (ETDEWEB)

    Ndounla, J., E-mail: juliette.ndounla@epfl.ch [Ecole Polytechnique Fédérale de Lausanne, Institute of Chemical Sciences and Engineering GPAO, Station 6, CH 1015 Lausanne (Switzerland); Institut International d' Ingénierie de l' Eau et de l' Environnement, Laboratoire Eau, Dépollution, Ecosystème et Santé (LEDES), 01 BP 594 Ouagadougou 01 (Burkina Faso); Pulgarin, C., E-mail: Cesar.pulgarin@epfl.ch [Ecole Polytechnique Fédérale de Lausanne, Institute of Chemical Sciences and Engineering GPAO, Station 6, CH 1015 Lausanne (Switzerland)

    2014-09-15

    The photo-disinfection of water from two different wells (W1, pH: 4.6–5.1 ± 0.02) and (W2 pH: 5.6–5.7 ± 0.02) was carried out during the rainy season at Ouagadougou–Burkina Faso, West Africa. The weather variation during the rainy season significantly affects the photo-disinfection processes (solar disinfection and photo-Fenton). The dilution of the water by rainwater highly affected the chemical composition of the wells' water used in this study; very low iron contents Compared to the ones recorded during the dry season were recorded in all water samples. Both photo-disinfection processes were used to treat 25 L of water in a compound parabolic collector (CPC). None of them have shown the total inactivation of both wild enteric bacteria strains (total coliforms/E. coli and Salmonella spp.) involved in the treatment. However, the total coliforms/E. coli strains were totally inactivated during the exposure under most of the photo-Fenton treatment. Also, the remaining strains, especially those of Salmonella spp. were achieved during the subsequent 24 h of dark storage under the action of the Fenton process. Under uniquely solar radiation, total inactivation was recorded only in the total coliforms/E. coli strains. The impact of the available irradiance on the efficiency of the photo-Fenton disinfection of natural water was highlighted during the exposure under high intermittent solar radiation. The impact of the HCO{sub 3}{sup −} concentration of both wells' water on the evolution of the pH during the photo-disinfection was recorded. Drastic decrease was noticed after the initial fast increase in presence of low HCO{sub 3}{sup −} concentration while a steady state was observed after the increase in presence of higher concentration. The redox activities of the nitrogen components of the water during both photo-disinfection processes have led to increased concentration of nitrite in all the cases and variations were noticed in that of nitrate and

  5. Evaluation of the efficiency of the photo Fenton disinfection of natural drinking water source during the rainy season in the Sahelian region

    International Nuclear Information System (INIS)

    Ndounla, J.; Pulgarin, C.

    2014-01-01

    The photo-disinfection of water from two different wells (W1, pH: 4.6–5.1 ± 0.02) and (W2 pH: 5.6–5.7 ± 0.02) was carried out during the rainy season at Ouagadougou–Burkina Faso, West Africa. The weather variation during the rainy season significantly affects the photo-disinfection processes (solar disinfection and photo-Fenton). The dilution of the water by rainwater highly affected the chemical composition of the wells' water used in this study; very low iron contents Compared to the ones recorded during the dry season were recorded in all water samples. Both photo-disinfection processes were used to treat 25 L of water in a compound parabolic collector (CPC). None of them have shown the total inactivation of both wild enteric bacteria strains (total coliforms/E. coli and Salmonella spp.) involved in the treatment. However, the total coliforms/E. coli strains were totally inactivated during the exposure under most of the photo-Fenton treatment. Also, the remaining strains, especially those of Salmonella spp. were achieved during the subsequent 24 h of dark storage under the action of the Fenton process. Under uniquely solar radiation, total inactivation was recorded only in the total coliforms/E. coli strains. The impact of the available irradiance on the efficiency of the photo-Fenton disinfection of natural water was highlighted during the exposure under high intermittent solar radiation. The impact of the HCO 3 − concentration of both wells' water on the evolution of the pH during the photo-disinfection was recorded. Drastic decrease was noticed after the initial fast increase in presence of low HCO 3 − concentration while a steady state was observed after the increase in presence of higher concentration. The redox activities of the nitrogen components of the water during both photo-disinfection processes have led to increased concentration of nitrite in all the cases and variations were noticed in that of nitrate and ammonia. - Graphical

  6. Point-of-use water disinfection using ultraviolet and visible light-emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Lui, Gough Yumu, E-mail: gough@student.unsw.edu.au [UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052 (Australia); School of Photovoltaics and Renewable Energy Engineering, University of New South Wales, Sydney, NSW 2052 (Australia); Roser, David, E-mail: djroser@unsw.edu.au [UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052 (Australia); Corkish, Richard, E-mail: r.corkish@unsw.edu.au [School of Photovoltaics and Renewable Energy Engineering, University of New South Wales, Sydney, NSW 2052 (Australia); Ashbolt, Nicholas J., E-mail: ashbolt@ualberta.ca [UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052 (Australia); School of Public Health, South Academic Building, University of Alberta, Edmonton, Alberta T6G 2G7 (Canada); Stuetz, Richard, E-mail: r.stuetz@unsw.edu.au [UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052 (Australia)

    2016-05-15

    Improvements in point-of-use (POU) drinking water disinfection technologies for remote and regional communities are urgently needed. Conceptually, UV-C light-emitting diodes (LEDs) overcome many drawbacks of low-pressure mercury tube based UV devices, and UV-A or visible light LEDs also show potential. To realistically evaluate the promise of LED disinfection, our study assessed the performance of a model 1.3 L reactor, similar in size to solar disinfection bottles. In all, 12 different commercial or semi-commercial LED arrays (270–740 nm) were compared for their ability to inactivate Escherichia coli K12 ATCC W3110 and Enterococcus faecalis ATCC 19433 over 6 h. Five log{sub 10} and greater reductions were consistently achieved using the 270, 365, 385 and 405 nm arrays. The output of the 310 nm array was insufficient for useful disinfection while 430 and 455 nm performance was marginal (≈ 4.2 and 2.3-log{sub 10}s E. coli and E. faecalis over the 6 h). No significant disinfection was observed with the 525, 590, 623, 660 and 740 nm arrays. Delays in log-phase inactivation of E. coli were observed, particularly with UV-A wavelengths. The radiation doses required for > 3-log{sub 10} reduction of E. coli and E. faecalis differed by 10 fold at 270 nm but only 1.5–2.5 fold at 365–455 nm. Action spectra, consistent with the literature, were observed with both indicators. The design process revealed cost and technical constraints pertaining to LED electrical efficiency, availability and lifetime. We concluded that POU LED disinfection using existing LED technology is already technically possible. UV-C LEDs offer speed and energy demand advantages, while UV-A/violet units are safer. Both approaches still require further costing and engineering development. Our study provides data needed for such work. - Highlights: • Disinfection of E. coli and E. faecalis achieved with 270 and 365–455 nm LEDs • No significant disinfection was found with 310 and > 455 nm LEDs

  7. Point-of-use water disinfection using ultraviolet and visible light-emitting diodes

    International Nuclear Information System (INIS)

    Lui, Gough Yumu; Roser, David; Corkish, Richard; Ashbolt, Nicholas J.; Stuetz, Richard

    2016-01-01

    Improvements in point-of-use (POU) drinking water disinfection technologies for remote and regional communities are urgently needed. Conceptually, UV-C light-emitting diodes (LEDs) overcome many drawbacks of low-pressure mercury tube based UV devices, and UV-A or visible light LEDs also show potential. To realistically evaluate the promise of LED disinfection, our study assessed the performance of a model 1.3 L reactor, similar in size to solar disinfection bottles. In all, 12 different commercial or semi-commercial LED arrays (270–740 nm) were compared for their ability to inactivate Escherichia coli K12 ATCC W3110 and Enterococcus faecalis ATCC 19433 over 6 h. Five log_1_0 and greater reductions were consistently achieved using the 270, 365, 385 and 405 nm arrays. The output of the 310 nm array was insufficient for useful disinfection while 430 and 455 nm performance was marginal (≈ 4.2 and 2.3-log_1_0s E. coli and E. faecalis over the 6 h). No significant disinfection was observed with the 525, 590, 623, 660 and 740 nm arrays. Delays in log-phase inactivation of E. coli were observed, particularly with UV-A wavelengths. The radiation doses required for > 3-log_1_0 reduction of E. coli and E. faecalis differed by 10 fold at 270 nm but only 1.5–2.5 fold at 365–455 nm. Action spectra, consistent with the literature, were observed with both indicators. The design process revealed cost and technical constraints pertaining to LED electrical efficiency, availability and lifetime. We concluded that POU LED disinfection using existing LED technology is already technically possible. UV-C LEDs offer speed and energy demand advantages, while UV-A/violet units are safer. Both approaches still require further costing and engineering development. Our study provides data needed for such work. - Highlights: • Disinfection of E. coli and E. faecalis achieved with 270 and 365–455 nm LEDs • No significant disinfection was found with 310 and > 455 nm LEDs. • UV

  8. Effect of Disinfectants on Preventing the Cross-Contamination of Pathogens in Fresh Produce Washing Water

    NARCIS (Netherlands)

    Banach, J.L.; Sampers, I.; Haute, van S.; Fels, van der H.J.

    2015-01-01

    The potential cross-contamination of pathogens between clean and contaminated produce in the washing tank is highly dependent on the water quality. Process wash water disinfectants are applied to maintain the water quality during processing. The review examines the efficacy of process wash water

  9. The Use of Genetic Algorithms in UV Disinfection of Drinking Water

    OpenAIRE

    Hugo Zaldaña; Emerson Castañeda

    2015-01-01

    In order to have drinking water, some countries have to use chlorine. It is use cause is effective and it’s cheap. An alternative to this process is the UV disinfection of drinking water. Most of the devices in the market use UV bulbs or mercury lamps. The UV LED, which is cheaper and smaller, allows creating new smaller devices. The main contribution of this paper is the use of Genetic Algorithms to help design a drinking water device with UV LEDs.

  10. Disinfection of Spacecraft Potable Water Systems by Photocatalytic Oxidation Using UV-A Light Emitting Diodes

    Science.gov (United States)

    Birmele, Michele N.; O'Neal, Jeremy A.; Roberts, Michael S.

    2011-01-01

    Ultraviolet (UV) light has long been used in terrestrial water treatment systems for photodisinfection and the removal of organic compounds by several processes including photoadsorption, photolysis, and photocatalytic oxidation/reduction. Despite its effectiveness for water treatment, UV has not been explored for spacecraft applications because of concerns about the safety and reliability of mercury-containing UV lamps. However, recent advances in ultraviolet light emitting diodes (UV LEDs) have enabled the utilization of nanomaterials that possess the appropriate optical properties for the manufacture of LEDs capable of producing monochromatic light at germicidal wavelengths. This report describes the testing of a commercial-off-the-shelf, high power Nichia UV-A LED (250mW A365nnJ for the excitation of titanium dioxide as a point-of-use (POD) disinfection device in a potable water system. The combination of an immobilized, high surface area photocatalyst with a UV-A LED is promising for potable water system disinfection since toxic chemicals and resupply requirements are reduced. No additional consumables like chemical biocides, absorption columns, or filters are required to disinfect and/or remove potentially toxic disinfectants from the potable water prior to use. Experiments were conducted in a static test stand consisting of a polypropylene microtiter plate containing 3mm glass balls coated with titanium dioxide. Wells filled with water were exposed to ultraviolet light from an actively-cooled UV-A LED positioned above each well and inoculated with six individual challenge microorganisms recovered from the International Space Station (ISS): Burkholderia cepacia, Cupriavidus metallidurans, Methylobacterium fujisawaense, Pseudomonas aeruginosa, Sphingomonas paucimobilis and Wautersia basilensis. Exposure to the Nichia UV-A LED with photocatalytic oxidation resulted in a complete (>7-log) reduction of each challenge bacteria population in UV-A LEDs and semi

  11. Solar disinfection of drinking water and oral rehydration solutions

    Energy Technology Data Exchange (ETDEWEB)

    Acra, A; Raffoul, Z; Karahagopian, Y

    1984-01-01

    This document provides concise information on oral rehydration therapy for the control of diarrheal diseases in developing countries; however, the main emphasis has been placed on the disinfection of oral rehydration solutions, or the water used in their preparation, as achieved by exposure to sunlight in transparent containers. The fundamental principles of solar energy are presented as well as studies which demonstrate the efficacy of the method. 2 figures, 6 tables.

  12. Assessing microbiological water quality in drinking water distribution systems with disinfectant residual using flow cytometry.

    Science.gov (United States)

    Gillespie, Simon; Lipphaus, Patrick; Green, James; Parsons, Simon; Weir, Paul; Juskowiak, Kes; Jefferson, Bruce; Jarvis, Peter; Nocker, Andreas

    2014-11-15

    Flow cytometry (FCM) as a diagnostic tool for enumeration and characterization of microorganisms is rapidly gaining popularity and is increasingly applied in the water industry. In this study we applied the method to obtain a better understanding of total and intact cell concentrations in three different drinking water distribution systems (one using chlorine and two using chloramines as secondary disinfectants). Chloramine tended to result in lower proportions of intact cells than chlorine over a wider residual range, in agreement with existing knowledge that chloramine suppresses regrowth more efficiently. For chlorinated systems, free chlorine concentrations above 0.5 mg L(-1) were found to be associated with relatively low proportions of intact cells, whereas lower disinfectant levels could result in substantially higher percentages of intact cells. The threshold for chlorinated systems is in good agreement with guidelines from the World Health Organization. The fact that the vast majority of samples failing the regulatory coliform standard also showed elevated proportions of intact cells suggests that this parameter might be useful for evaluating risk of failure. Another interesting parameter for judging the microbiological status of water, the biological regrowth potential, greatly varied among different finished waters providing potential help for investment decisions. For its measurement, a simple method was introduced that can easily be performed by water utilities with FCM capability. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Ultraviolet disinfection of treated municipal wastewaters

    Energy Technology Data Exchange (ETDEWEB)

    Vander Laan, H; Cairns, B

    1993-12-31

    A wastewater disinfection system developed by a Canadian company, Trojan Technologies Inc., was discussed. Disinfection for pathogen reduction prior to discharge of treated municipal wastewater back into rivers and lakes has been either ignored or treated by the use of chemicals. In 1979 the first pilot ultraviolet (UV) wastewater disinfection system was established. Since then, over 500 municipal UV installations have been commissioned. The largest installation can process 212 million gallons of water per day. The advantages of UV as a disinfectant are: (1) It is more effective than chlorine. (2) There are no mutagenic/carcinogenic byproducts formed with UV. (3) No toxic chemical residuals are discharged. (4) UV is safe to both the operators and the public. (5) It is cost effective. Europe has not been as active in wastewater disinfection as has North America. One result of the absence of wastewater disinfection in Europe is that the Rhine River, for example, carries 50 million salmonella per second. Disinfection of wastewater effluents is, of course, indispensable in protecting our drinking water supply. 2 figs.

  14. Breakthrough analysis for water disinfection using silver nanoparticles coated resin beads in fixed-bed column

    International Nuclear Information System (INIS)

    Mthombeni, Nomcebo H.; Mpenyana-Monyatsi, Lizzy; Onyango, Maurice S.; Momba, Maggie N.B.

    2012-01-01

    Highlights: ► Performance of silver nanoparticles coated resin in water disinfection is presented. ► Sigmoidal models are used to describe breakthrough curves. ► The performance of the media in water disinfection is affected by process variables. ► Test with environmental water shows the media is effective in water disinfection. - Abstract: This study demonstrates the use of silver nanoparticles coated resin beads in deactivating microbes in drinking water in a column filtration system. The coated resin beads are characterized using X-ray diffraction (XRD), Fourier transform infra-red (FT-IR), scanning electron microscope (SEM), transmission electron microscope (TEM) and energy dispersive spectroscopy (EDS) to confirm the functional groups, morphology and the presence of silver nanoparticles on the surface of the resin. The performance of the coated resin is evaluated as a function of bed mass, initial bacterial concentration and flow rate using Escherichia coli as model microbial contaminant in water. The survival curves of E. coli are expressed as breakthrough curves (BTCs), which are modeled using sigmoidal regression equations to obtain relevant rate parameters. The number of bed volumes processed at breakthrough point and capacity of the bed are used as performance indicators. Results show that performance increases with a decrease in initial bacterial concentration, an increase in flow rate and an increase in bed mass.

  15. Electrochemically activated water as an alternative to chlorine for decentralized disinfection

    KAUST Repository

    Ghebremichael, Kebreab A.

    2011-06-01

    Electrochemically activated (ECA) water is being extensively studied and considered as an alternative to chlorine for disinfection. Some researchers claim that ECA is by and large a chlorine solution, while others claim the presence of reactive oxygen species such as ozone and hydroxyl radicals in addition to chlorine. This study compares sodium hypochlorite (NaOCl) and ECA in terms of disinfection efficacy, trihalomethanes (THMs) formation, stability and composition. The studies were carried out under different process conditions (pH 5,7 and 9, disinfectant concentrations of 2-5 mg/L and dissolved organic carbon (DOC) concentration of 2-4 mg/L). The results indicated that in the presence of low DOC (<2 mg/L) ECA showed better disinfection efficacy for Escherichia coli inactivation, formed lower THM and had better stability compared with NaOCl at both pH 5 and 7. Stability studies of stock solutions showed that over a period of 30 days, ECA decayed by only 5% while NaOCl decayed by 37.5% at temperatures of 4 °C. In a fresh ECA of 200 mg/L chlorine, about 5.3 mg/L ozone and 36.9 mg/L ClO2 were detected. The study demonstrates that ECA could be a suitable alternative to NaOCl where decentralized production and use are required. © IWA Publishing 2011.

  16. Combined effects of coagulation and adsorption on ultrafiltration membrane fouling control and subsequent disinfection in drinking water treatment.

    Science.gov (United States)

    Xing, Jiajian; Liang, Heng; Cheng, Xiaoxiang; Yang, Haiyan; Xu, Daliang; Gan, Zhendong; Luo, Xinsheng; Zhu, Xuewu; Li, Guibai

    2018-06-02

    This study investigated the combined effects of coagulation and powdered activated carbon (PAC) adsorption on ultrafiltration (UF) membrane fouling control and subsequent disinfection efficiency through filtration performance, dissolved organic carbon (DOC) removal, fluorescence excitation-emission matrix (EEM) spectroscopy, and disinfectant curve. The fouling behavior of UF membrane was comprehensively analyzed especially in terms of pollutant removal and fouling reversibility to understand the mechanism of fouling accumulation and disinfectant dose reduction. Pre-coagulation with or without adsorption both achieved remarkable effect of fouling mitigation and disinfection dose reduction. The two pretreatments were effective in total fouling control and pre-coagulation combined with PAC adsorption even decreased hydraulically irreversible fouling notably. Besides, pre-coagulation decreased residual disinfectant decline due to the removal of hydrophobic components of natural organic matters (NOM). Pre-coagulation combined with adsorption had a synergistic effect on further disinfectant decline rate reduction and decreased total disinfectant consumption due to additional removal of hydrophilic NOM by PAC adsorption. The disinfectant demand was further reduced after membrane. These results show that membrane fouling and disinfectant dose can be reduced in UF coupled with pretreatment, which could lead to the avoidance of excessive operation cost disinfectant dose for drinking water supply.

  17. The effect of inorganic precursors on disinfection byproduct formation during UV-chlorine/chloramine drinking water treatment.

    Science.gov (United States)

    Lyon, Bonnie A; Dotson, Aaron D; Linden, Karl G; Weinberg, Howard S

    2012-10-01

    Ultraviolet (UV) disinfection is being increasingly used in drinking water treatment. It is important to understand how its application to different types of water may influence finished water quality, particularly as anthropogenic activity continues to impact the quality of source waters. The objective of this study was to evaluate the effect of inorganic precursors on the formation of regulated and unregulated disinfection byproducts (DBPs) during UV irradiation of surface waters when combined with chlorination or chloramination. Samples were collected from three drinking water utilities supplied by source waters with varying organic and inorganic precursor content. The filtered samples were treated in the laboratory with a range of UV doses delivered from low pressure (LP, UV output at 253.7 nm) and medium pressure (MP, polychromatic UV output 200-400 nm) mercury lamps followed by chlorination or chloramination, in the presence and absence of additional bromide and nitrate. The regulated trihalomethanes and haloacetic acids were not affected by UV pretreatment at disinfection doses (40-186 mJ/cm²). With higher doses (1000 mJ/cm²), trihalomethane formation was increased 30-40%. While most effects on DBPs were only observed with doses much higher than typically used for UV disinfection, there were some effects on unregulated DBPs at lower doses. In nitrate-spiked samples (1-10 mg N/L), chloropicrin formation doubled and increased three- to six-fold with 40 mJ/cm² MP UV followed by chloramination and chlorination, respectively. Bromopicrin formation was increased in samples containing bromide (0.5-1 mg/L) and nitrate (1-10 mg N/L) when pretreated with LP or MP UV (30-60% with 40 mJ/cm² LP UV and four- to ten-fold increase with 40 mJ/cm² MP UV, after subsequent chlorination). The formation of cyanogen chloride doubled and increased three-fold with MP UV doses of 186 and 1000 mJ/cm², respectively, when followed by chloramination in nitrate-spiked samples but

  18. Impact of wastewater infrastructure upgrades on the urban water cycle: Reduction in halogenated reaction byproducts following conversion from chlorine gas to ultraviolet light disinfection

    Science.gov (United States)

    Barber, Larry B.; Hladik, Michelle; Vajda, Alan M.; Fitzgerald, Kevin C.; Douville, Chris

    2015-01-01

    The municipal wastewater treatment facility (WWTF) infrastructure of the United States is being upgraded to expand capacity and improve treatment, which provides opportunities to assess the impact of full-scale operational changes on water quality. Many WWTFs disinfect their effluent prior to discharge using chlorine gas, which reacts with natural and synthetic organic matter to form halogenated disinfection byproducts (HDBPs). Because HDBPs are ubiquitous in chlorine-disinfected drinking water and have adverse human health implications, their concentrations are regulated in potable water supplies. Less is known about the formation and occurrence of HDBPs in disinfected WWTF effluents that are discharged to surface waters and become part of the de facto wastewater reuse cycle. This study investigated HDBPs in the urban water cycle from the stream source of the chlorinated municipal tap water that comprises the WWTF inflow, to the final WWTF effluent disinfection process before discharge back to the stream. The impact of conversion from chlorine-gas to low-pressure ultraviolet light (UV) disinfection at a full-scale (68,000 m3 d−1 design flow) WWTF on HDBP concentrations in the final effluent was assessed, as was transport and attenuation in the receiving stream. Nutrients and trace elements (boron, copper, and uranium) were used to characterize the different urban source waters, and indicated that the pre-upgrade and post-upgrade water chemistry was similar and insensitive to the disinfection process. Chlorinated tap water during the pre-upgrade and post-upgrade samplings contained 11 (mean total concentration = 2.7 μg L−1; n=5) and 10 HDBPs (mean total concentration = 4.5 μg L−1), respectively. Under chlorine-gas disinfection conditions 13 HDBPs (mean total concentration = 1.4 μg L−1) were detected in the WWTF effluent, whereas under UV disinfection conditions, only one HDBP was detected. The chlorinated WWTF effluent had greater relative

  19. The Use of Genetic Algorithms in UV Disinfection of Drinking Water

    Directory of Open Access Journals (Sweden)

    Hugo Zaldaña

    2015-06-01

    Full Text Available In order to have drinking water, some countries have to use chlorine. It is use cause is effective and it’s cheap. An alternative to this process is the UV disinfection of drinking water. Most of the devices in the market use UV bulbs or mercury lamps. The UV LED, which is cheaper and smaller, allows creating new smaller devices. The main contribution of this paper is the use of Genetic Algorithms to help design a drinking water device with UV LEDs.

  20. Organic chloramines in chlorine-based disinfected water systems: A critical review.

    Science.gov (United States)

    How, Zuo Tong; Kristiana, Ina; Busetti, Francesco; Linge, Kathryn L; Joll, Cynthia A

    2017-08-01

    This paper is a critical review of current knowledge of organic chloramines in water systems, including their formation, stability, toxicity, analytical methods for detection, and their impact on drinking water treatment and quality. The term organic chloramines may refer to any halogenated organic compounds measured as part of combined chlorine (the difference between the measured free and total chlorine concentrations), and may include N-chloramines, N-chloramino acids, N-chloraldimines and N-chloramides. Organic chloramines can form when dissolved organic nitrogen or dissolved organic carbon react with either free chlorine or inorganic chloramines. They are potentially harmful to humans and may exist as an intermediate for other disinfection by-products. However, little information is available on the formation or occurrence of organic chloramines in water due to a number of challenges. One of the biggest challenges for the identification and quantification of organic chloramines in water systems is the lack of appropriate analytical methods. In addition, many of the organic chloramines that form during disinfection are unstable, which results in difficulties in sampling and detection. To date research has focussed on the study of organic monochloramines. However, given that breakpoint chlorination is commonly undertaken in water treatment systems, the formation of organic dichloramines should also be considered. Organic chloramines can be formed from many different precursors and pathways. Therefore, studying the occurrence of their precursors in water systems would enable better prediction and management of their formation. Copyright © 2017. Published by Elsevier B.V.

  1. Bromination of Marine Dissolved Organic Matter following Full Scale Electrochemical Ballast Water Disinfection.

    Science.gov (United States)

    Gonsior, Michael; Mitchelmore, Carys; Heyes, Andrew; Harir, Mourad; Richardson, Susan D; Petty, William Tyler; Wright, David A; Schmitt-Kopplin, Philippe

    2015-08-04

    An extensively diverse array of brominated disinfection byproducts (DBPs) were generated following electrochemical disinfection of natural coastal/estuarine water, which is one of the main treatment methods currently under consideration for ballast water treatment. Ultra-high-resolution mass spectrometry revealed 462 distinct brominated DBPs at a relative abundance in the mass spectra of more than 1%. A brominated DBP with a relative abundance of almost 22% was identified as 2,2,4-tribromo-5-hydroxy-4-cyclopentene-1,3-dione, which is an analogue to several previously described 2,2,4-trihalo-5-hydroxy-4-cyclopentene-1,3-diones in drinking water. Several other brominated molecular formulas matched those of other known brominated DBPs, such as dibromomethane, which could be generated by decarboxylation of dibromoacetic acid during ionization, dibromophenol, dibromopropanoic acid, dibromobutanoic acid, bromohydroxybenzoic acid, bromophenylacetic acid, bromooxopentenoic acid, and dibromopentenedioic acid. Via comparison to previously described chlorine-containing analogues, bromophenylacetic acid, dibromooxopentenoic acid, and dibromopentenedioic acid were also identified. A novel compound at a 4% relative abundance was identified as tribromoethenesulfonate. This compound has not been previously described as a DBP, and its core structure of tribromoethene has been demonstrated to show toxicological implications. Here we show that electrochemical disinfection, suggested as a candidate for successful ballast water treatment, caused considerable production of some previously characterized DBPs in addition to novel brominated DBPs, although several hundred compounds remain structurally uncharacterized. Our results clearly demonstrate that electrochemical and potentially direct chlorination of ballast water in estuarine and marine systems should be approached with caution and the concentrations, fate, and toxicity of DBP need to be further characterized.

  2. [Improvement of effectivity of photo disinfection of water from bacterial contaminants in the presence of heterogeneous sensitizers based on phthalocyanines grafted to aminopropyl silicagel].

    Science.gov (United States)

    Maksimkina, T N; Artemova, T Z; Kuznetsova, N A; Sinitsyna, O O; Gipp, E K; Zagaĭnova, A V; Butorina, N N; Iuzhakova, O A; Krasniak, A V

    2012-01-01

    The possibility of using 12 heterogeneous sensitizers (HS) based on phthalocyanines covalently grafted to aminopropyl silicagel for disinfection of water from bacteria has been studied. For reliable water quality control the technique of performing bacteriological analysis in the presence of HS beads in the sample has been elaborated. The conditions increasing the efficiency of photo disinfection in the presence of HS were studied. Algorithm for estimation of photo disinfectant effect of HS against bacteria was substantiated. Obtained data confirm the perspective of further studies on the substantiation of the possibility of the application of HS for water disinfection.

  3. Biological efficacy and toxic effect of emergency water disinfection process based on advanced oxidation technology.

    Science.gov (United States)

    Tian, Yiping; Yuan, Xiaoli; Xu, Shujing; Li, Rihong; Zhou, Xinying; Zhang, Zhitao

    2015-12-01

    An innovative and removable water treatment system consisted of strong electric field discharge and hydrodynamic cavitation based on advanced oxidation technologies was developed for reactive free radicals producing and waterborne pathogens eliminating in the present study. The biological efficacy and toxic effects of this advanced oxidation system were evaluated during water disinfection treatments. Bench tests were carried out with synthetic microbial-contaminated water, as well as source water in rainy season from a reservoir of Dalian city (Liaoning Province, China). Results showed that high inactivation efficiency of Escherichia coli (>5 log) could be obtained for synthetic contaminated water at a low concentration (0.5-0.7 mg L(-1)) of total oxidants in 3-10 s. The numbers of wild total bacteria (108 × 10(3) CFU mL(-1)) and total coliforms (260 × 10(2) MPN 100 mL(-1)) in source water greatly reduced to 50 and 0 CFU mL(-1) respectively after treated by the advanced oxidation system, which meet the microbiological standards of drinking water, and especially that the inactivation efficiency of total coliforms could reach 100%. Meanwhile, source water qualities were greatly improved during the disinfection processes. The values of UV254 in particular were significantly reduced (60-80%) by reactive free radicals. Moreover, the concentrations of possible disinfection by-products (formaldehyde and bromide) in treated water were lower than detection limits, indicating that there was no harmful effect on water after the treatments. These investigations are helpful for the ecotoxicological studies of advanced oxidation system in the treatments of chemical polluted water or waste water. The findings of this work suggest that the developed water treatment system is ideal in the acute phases of emergencies, which also could offer additional advantages over a wide range of applications in water pollution control.

  4. Pulsed-Plasma Disinfection of Water Containing Escherichia coli

    Science.gov (United States)

    Satoh, Kohki; MacGregor, Scott J.; Anderson, John G.; Woolsey, Gerry A.; Fouracre, R. Anthony

    2007-03-01

    The disinfection of water containing the microorganism, Escherichia coli (E. coli) by exposure to a pulsed-discharge plasma generated above the water using a multineedle electrode (plasma-exposure treatment), and by sparging the off-gas of the pulsed plasma into the water (off-gas-sparging treatment), is performed in the ambient gases of air, oxygen, and nitrogen. For the off-gas-sparging treatment, bactericidal action is observed only when oxygen is used as the ambient gas, and ozone is found to generate the bactericidal action. For the plasma-exposure treatment, the density of E. coli bacteria decreases exponentially with plasma-exposure time for all the ambient gases. It may be concluded that the main contributors to E. coli inactivation are particle species produced by the pulsed plasma. For the ambient gases of air and nitrogen, the influence of acidification of the water in the system, as a result of pulsed-plasma exposure, may also contribute to the decay of E. coli density.

  5. Disinfection of Water and Wastewater Using Gamma Irradiation in Isfahan Water and Wastewater Treatment Plants

    Directory of Open Access Journals (Sweden)

    Hassan Hashemi

    2011-01-01

    Full Text Available To investigate the effect of gamma irradiation on the disinfection of water and wastewater, water samples were collected from raw and filtered water and wastewater samples were taken from the effluent of the secondary sedimentation, polished effluent (1-day retention time, and also from filtered (rapid sand filter effluent. The samples were irradiated with gamma collimated beam in a batch system using a Co-60 therapeutic gamma radiation machine with a radioactive source emission rate of 405.38CGy/min at different doses of 20-160 Gy and 80-240 Gy, respectively. The samples were analyzed before and after irradiation for total and fecal coliforms. It was observed that nearly 100% reduction was achieved in total and fecal coliforms in water samples treated with a dose of 160 Gy. Depending on effluent quality, disinfection efficiencies achieved using 240 Gy gamma irradiation for inactivation of total coliforms in wastewater samples were 83, 64, and 56 percent for filtered, clarified, and secondary effluents, respectively. The same values were nearly 81, 58, and 46 percent, respectively, for inactivation of fecal coliforms. At lower doses of 120-240Gy, the coliform bacteria were successfully inactivated. It was concluded that a linear correlation holds between the dose delivered and the inactivation of microorganisms, so that inactivation increases with increasing irradiation time.

  6. UV disinfection of water. 1. Effect on microorganisms/virus conditions which can limit the use of UV radiation as a means of disinfection

    Energy Technology Data Exchange (ETDEWEB)

    Skipperud, E; Johansen,; Myhrstad, J A [Statens Inst. for Folkehelse, Oslo (Norway)

    1978-01-01

    UV radiation has been found to have advantages over chloration for the disinfection of water. New regulations for dietary conditions on Norwegian ships introduced in 1974 led to increased use of UV disinfection, and this has in the following years spread to waterworks. The present article is based on a study to determine possible limitation. The nature of the injuries to the microorganisms is first discussed, together with repair mechanisms. A table is given showing the energy required for 90 and 100 percent inactivation of a number of microorganisms. Some other factors affecting UV inactivation are briefly mentioned. (JIW).

  7. Disinfection for small water supplies: a technical guide

    CSIR Research Space (South Africa)

    Solsona, F

    1990-01-01

    Full Text Available This guide will present some disinfection systems, which will be useful in supporting disinfection programmes. The description of the different systems will provide a guideline for the selection of equipment base on balancing the simplicity...

  8. Risk of viral acute gastrointestinal illness from non-disinfected drinking water distribution systems

    Science.gov (United States)

    Acute gastrointestinal illness (AGI) resulting from pathogens directly entering the piping of drinking water distribution systems is insufficiently understood. Here, we estimate AGI incidence attributable to virus intrusions into non-disinfecting municipal distribution systems. Viruses were enumerat...

  9. 17β-estradiol as precursors of Cl/Br-DBPs in the disinfection process of different water samples.

    Science.gov (United States)

    Shao, Yanan; Pan, Zihan; Rong, Chuan; Wang, Yinghui; Zhu, Hongxiang; Zhang, Yuanyuan; Yu, Kefu

    2018-05-21

    During chlorine disinfection process, reactions between the disinfectant and 17β-estradiol (E2) lead to the formation of halogenated disinfection byproducts (DBPs) which can be a risk to both ecosystem and human health. The degradation and transformation products of E2 in sodium hypochlorite (NaClO) disinfection processes of different water samples were investigated. The reaction kinetics research showed that the degradation rates of E2 were considerably dependent on the initial pH value and the types of water samples. In fresh water, synthetic marine aquaculture water and seawater, the reaction rate constant was 0.133 min -1 , 2.067 min -1 and 2.592 min -1 , respectively. The reasons for the above phenomena may be due to the different concentrations of bromide ions (Br - ) in these three water samples which could promote the reaction between NaClO and E2. Furthermore, Br - could also cause the formation of brominated DBPs (Br-DBPs). The main DBPs, reaction centers and conceivable reaction pathways were explored. Seven halogenated DBPs have been observed including three chlorinated DBPs (Cl-DBPs) and four Br-DBPs. The active sites of E2 were found to be the pentabasic cyclic ring and the ortho position of the phenol moiety as well as C9-C10 position. The identified Cl/Br-DBPs were also confirmed in actual marine aquaculture water from a shrimp pond. The comparison of bio-concentration factors (BCF) values based on calculation of EPI-suite showed that the toxicities of the Br-DBPs were stronger than that of their chloride analogues. The absorbable organic halogens (AOX) analysis also suggested that the DBPs produced in the marine aquaculture water were more toxic than that in the fresh water system. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Effect of drinking water disinfection by-products in human peripheral blood lymphocytes and sperm.

    Science.gov (United States)

    Ali, Aftab; Kurzawa-Zegota, Malgorzata; Najafzadeh, Mojgan; Gopalan, Rajendran C; Plewa, Michael J; Anderson, Diana

    2014-12-01

    Drinking water disinfection by-products (DBPs) are generated by the chemical disinfection of water and may pose hazards to public health. Two major classes of DBPs are found in finished drinking water: haloacetic acids (HAAs) and trihalomethanes (THMs). HAAs are formed following disinfection with chlorine, which reacts with iodide and bromide in the water. Previously the HAAs were shown to be cytotoxic, genotoxic, mutagenic, teratogenic and carcinogenic. To determine the effect of HAAs in human somatic and germ cells and whether oxidative stress is involved in genotoxic action. In the present study both somatic and germ cells have been examined as peripheral blood lymphocytes and sperm. The effects of three HAA compounds: iodoacetic acid (IAA), bromoacetic acid (BAA) and chloroacetic acid (CAA) were investigated. After determining appropriate concentration responses, oxygen radical involvement with the antioxidants, butylated hydroxanisole (BHA) and the enzyme catalase, were investigated in the single cell gel electrophoresis (Comet) assay under alkaline conditions, >pH 13 and the micronucleus assay. In the Comet assay, BHA and catalase were able to reduce DNA damage in each cell type compared to HAA alone. In the micronucleus assay, micronuclei (MNi) were found in peripheral lymphocytes exposed to all three HAAs and catalase and BHA were in general, able to reduce MNi induction, suggesting oxygen radicals play a role in both assays. These observations are of concern to public health since both human somatic and germ cells show similar genotoxic responses. Copyright © 2014. Published by Elsevier B.V.

  11. Evaluation of the efficiency of the photo Fenton disinfection of natural drinking water source during the rainy season in the Sahelian region.

    Science.gov (United States)

    Ndounla, J; Pulgarin, C

    2014-09-15

    The photo-disinfection of water from two different wells (W1, pH: 4.6-5.1 ± 0.02) and (W2 pH: 5.6-5.7 ± 0.02) was carried out during the rainy season at Ouagadougou-Burkina Faso, West Africa. The weather variation during the rainy season significantly affects the photo-disinfection processes (solar disinfection and photo-Fenton). The dilution of the water by rainwater highly affected the chemical composition of the wells' water used in this study; very low iron contents Compared to the ones recorded during the dry season were recorded in all water samples. Both photo-disinfection processes were used to treat 25 L of water in a compound parabolic collector (CPC). None of them have shown the total inactivation of both wild enteric bacteria strains (total coliforms/E. coli and Salmonella spp.) involved in the treatment. However, the total coliforms/E. coli strains were totally inactivated during the exposure under most of the photo-Fenton treatment. Also, the remaining strains, especially those of Salmonella spp. were achieved during the subsequent 24h of dark storage under the action of the Fenton process. Under uniquely solar radiation, total inactivation was recorded only in the total coliforms/E. coli strains. The impact of the available irradiance on the efficiency of the photo-Fenton disinfection of natural water was highlighted during the exposure under high intermittent solar radiation. The impact of the HCO3(-) concentration of both wells' water on the evolution of the pH during the photo-disinfection was recorded. Drastic decrease was noticed after the initial fast increase in presence of low HCO3(-) concentration while a steady state was observed after the increase in presence of higher concentration. The redox activities of the nitrogen components of the water during both photo-disinfection processes have led to increased concentration of nitrite in all the cases and variations were noticed in that of nitrate and ammonia. Copyright © 2014 Elsevier B

  12. The study of interrelationship between raw water quality parameters, chlorine demand and the formation of disinfection by-products

    Science.gov (United States)

    Abdullah, Md. Pauzi; Yee, Lim Fang; Ata, Sadia; Abdullah, Abass; Ishak, Basar; Abidin, Khairul Nidzham Zainal

    Disinfection is the most crucial process in the treatment of drinking water supply and is the final barrier against bacteriological impurities in drinking water. Chlorine is the primary disinfectant used in the drinking water treatment process throughout Malaysia. However, the occurrence of various disinfection by-products such as trihalomethanes (THM) and haloacetic acids created a major issue on the potential health hazards which may pose adverse health effects in both human and animals. To simulate real water treatment conditions and to represent the conditions inherent in a tropical country, this study was performed at an urbanized water treatment plant with a daily production of about 549,000 m 3 of treated water. The purpose of this work is to examine the relationship between the water quality parameters in the raw water with chlorine demand and the formation of disinfection by-products. This study also investigated the possibility of the statistical model applications for the prediction of chlorine demand and the THM formation. Two models were developed to estimate the chlorine demand and the THM formation. For the statistical evaluation, correlation and simple linear regression analysis were conducted using SPSS. The results of Kolmogorov-Smirnov test for the estimation of goodness-of-fit of the dependent variables of the models to the normal distribution showed that all the dependent variables followed the normal distribution at significance level of 0.05. Good linear correlations were observed between the independent parameters and formation of THM and the chlorine demand. This study also revealed that ammonia and the specific ultraviolet absorbent (SUVA) were the function of chlorine consumption in the treatment process. Chlorine dosage and SUVA increase the yield of THM. Chlorine demand and THM formation was moderately sensitive, but significant to the pH. The level of significance ( α) for the statistical tests and the inclusion of a variable in the

  13. A new silver based composite material for SPA water disinfection.

    Science.gov (United States)

    Tartanson, M A; Soussan, L; Rivallin, M; Chis, C; Penaranda, D; Lapergue, R; Calmels, P; Faur, C

    2014-10-15

    A new composite material based on alumina (Al2O3) modified by two surface nanocoatings - titanium dioxide (TiO2) and silver (Ag) - was studied for spa water disinfection. Regarding the most common microorganisms in bathing waters, two non-pathogenic bacteria Escherichia coli (Gram-negative) and Staphylococcus epidermidis (Gram positive) were selected as surrogates for bacterial contamination. The bactericidal properties of the Al2O3-TiO2-Ag material were demonstrated under various operating conditions encountered in spa water (temperature: 22-37 °C, presence of salt: CaCO3 or CaCl2, high oxygen content, etc.). Total removal of 10(8) CFU mL(-1) of bacteria was obtained in less than 10 min with 16 g L(-1) of material. Best results were observed for both conditions: a temperature of 37 °C and under aerobic condition; this latest favouring Reactive Oxygen Species (ROS) generation. The CaCO3 salt had no impact on the bactericidal activity of the composite material and CaCl2 considerably stabilized the silver desorption from the material surface thanks to the formation of AgCl precipitate. Preliminary tests of the Al2O3-TiO2-Ag bactericidal behaviour in a continuous water flow confirmed that 2 g L(-1) of material eliminated more than 90% of a 2.0 × 10(8) CFU mL(-1) bacterial mixture after one water treatment recycle and reached the disinfection standard recommended by EPA (coliform removal = 6 log) within 22 h. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Selective Photocatalytic Disinfection by Coupling StrepMiniSog to the Antibody Catalyzed Water Oxidation Pathway.

    Science.gov (United States)

    Wurtzler, Elizabeth M; Wendell, David

    2016-01-01

    For several decades reactive oxygen species have been applied to water quality engineering and efficient disinfection strategies; however, these methods are limited by disinfection byproduct and catalyst-derived toxicity concerns which could be improved by selectively targeting contaminants of interest. Here we present a targeted photocatalytic system based on the fusion protein StrepMiniSOG that uses light within the visible spectrum to produce reactive oxygen species at a greater efficiency than current photosensitizers, allowing for shorter irradiation times from a fully biodegradable photocatalyst. The StrepMiniSOG photodisinfection system is unable to cross cell membranes and like other consumed proteins, can be degraded by endogenous digestive enzymes in the human gut, thereby reducing the consumption risks typically associated with other disinfection agents. We demonstrate specific, multi-log removal of Listeria monocytogenes from a mixed population of bacteria, establishing the StrepMiniSOG disinfection system as a valuable tool for targeted pathogen removal, while maintaining existing microbial biodiversity.

  15. Selective Photocatalytic Disinfection by Coupling StrepMiniSog to the Antibody Catalyzed Water Oxidation Pathway.

    Directory of Open Access Journals (Sweden)

    Elizabeth M Wurtzler

    Full Text Available For several decades reactive oxygen species have been applied to water quality engineering and efficient disinfection strategies; however, these methods are limited by disinfection byproduct and catalyst-derived toxicity concerns which could be improved by selectively targeting contaminants of interest. Here we present a targeted photocatalytic system based on the fusion protein StrepMiniSOG that uses light within the visible spectrum to produce reactive oxygen species at a greater efficiency than current photosensitizers, allowing for shorter irradiation times from a fully biodegradable photocatalyst. The StrepMiniSOG photodisinfection system is unable to cross cell membranes and like other consumed proteins, can be degraded by endogenous digestive enzymes in the human gut, thereby reducing the consumption risks typically associated with other disinfection agents. We demonstrate specific, multi-log removal of Listeria monocytogenes from a mixed population of bacteria, establishing the StrepMiniSOG disinfection system as a valuable tool for targeted pathogen removal, while maintaining existing microbial biodiversity.

  16. Use of reflectors to enhance the synergistic effects of solar heating and solar wavelengths to disinfect drinking water sources.

    Science.gov (United States)

    Rijal, G K; Fujioka, R S

    2003-01-01

    Aluminum reflectors were added to solar units designed to inactivate faecal microorganisms (faecal coliform, E. coli, enterococci, FRNA coliphage, C. perfringens) in stream water and diluted sewage by the two mechanisms (solar heat, solar UV) known to inactivate microorganisms. During sunny conditions, solar units with and without reflectors inactivated E. coli to water standards. Solar units with reflectors disinfected the water sooner by increasing the water temperature by 8-10 degrees C to 64-75 degrees C. However, FRNA coliphages were still detected in these samples, indicating that this treatment may not inactivate pathogenic human enteric viruses. During cloudy conditions, reflectors only increased the water temperature by 3-4 degrees C to a maximum of 43-49 degrees C and E. coli was not completely inactivated. Under sunny and cloudy conditions, the UV wavelengths of sunlight worked synergistically with increasing water temperatures and were able to disinfect microorganisms at temperatures (45-56 degrees C), which were not effective in inactivating microorganisms. Relative resistance to the solar disinfecting effects were C. perfringens > FRNA coliphages > enterococci > E. coli > faecal coliform.

  17. [Water disinfection by the combined exposure to super-high frequency energy and available chlorine produced during water electrolysis].

    Science.gov (United States)

    Klimarev, S I; Siniak, Iu E

    2014-01-01

    The article reports the results of studying the effects on polluted water of SHF-energy together with the residual free (active) chlorine as a by-product of electrolysis action on dissolved chlorine-containing salts. Purpose of the studies was to evaluate input of these elements to the water disinfection effect. The synergy was found to kill microorganisms without impacts on the physicochemical properties of processed water or nutrient medium; therefore, it can be used for water treatment, and cultivation of microorganisms in microbiology.

  18. Disinfection Methods for Swimming Pool Water: Byproduct Formation and Control

    Directory of Open Access Journals (Sweden)

    Huma Ilyas

    2018-06-01

    Full Text Available This paper presents a comprehensive and critical comparison of 10 disinfection methods of swimming pool water: chlorination, electrochemically generated mixed oxidants (EGMO, ultraviolet (UV irradiation, UV/chlorine, UV/hydrogen peroxide (H2O2, UV/H2O2/chlorine, ozone (O3/chlorine, O3/H2O2/chlorine, O3/UV and O3/UV/chlorine for the formation, control and elimination of potentially toxic disinfection byproducts (DBPs: trihalomethanes (THMs, haloacetic acids (HAAs, haloacetonitriles (HANs, trihaloacetaldehydes (THAs and chloramines (CAMs. The statistical comparison is carried out using data on 32 swimming pools accumulated from the reviewed studies. The results indicate that O3/UV and O3/UV/chlorine are the most promising methods, as the concentration of the studied DBPs (THMs and HANs with these methods was reduced considerably compared with chlorination, EGMO, UV irradiation, UV/chlorine and O3/chlorine. However, the concentration of the studied DBPs including HAAs and CAMs remained much higher with O3/chlorine compared with the limits set by the WHO for drinking water quality. Moreover, the enhancement in the formation of THMs, HANs and CH with UV/chlorine compared with UV irradiation and the increase in the level of HANs with O3/UV/chlorine compared with O3/UV indicate the complexity of the combined processes, which should be optimized to control the toxicity and improve the quality of swimming pool water.

  19. Secondary formation of disinfection by-products by UV treatment of swimming pool water

    DEFF Research Database (Denmark)

    Spiliotopoulou, Aikaterini; Hansen, Kamilla Marie Speht; Andersen, Henrik Rasmus

    2015-01-01

    Formation of disinfection by-products (DBPs) during experimental UV treatment of pool water has previously been reported with little concurrence between laboratory studies, field studies and research groups. In the current study, changes in concentration of seven out of eleven investigated volatile...

  20. Ozone and hydrogen peroxide applications for disinfection by-products control in drinking water

    International Nuclear Information System (INIS)

    Collivignarelli, C.; Sorlini, S.; Riganti, V.

    2001-01-01

    A great interest has been developed during the last years for ozone in drinking water treatments thanks to its strong oxidant and disinfectant power and for its efficiency in disinfection by-products (DBPs) precursors removal. However ozonization produces some specific DBPs, such as aldehydes and ketones; moreover, the presence of bromide in raw water engages ozone in a complex cycle in which both organic bromide and inorganic bromate are end products. In this paper the combination of hydrogen peroxide with ozone (known as peroxone process) and the ozone alone process were experimented on one surface water coming from the lake of Brugneto (Genova) in order to investigate bromate formation and trihalomethanes precursors removal during the oxidation process. The results show that the advanced peroxone process can be applied for bromate reduction (about 30-40%) with better results in comparison with the ozone alone process, while no advantages are shown for THMs precursors removal. The addition of in-line filtration step after pre-oxidation improves both bromate and THMs precursors removal, particularly with increasing hydrogen peroxide/ozone ratio in the oxidation step [it

  1. Frequency of use controls chemical leaching from drinking-water containers subject to disinfection.

    Science.gov (United States)

    Andra, Syam S; Makris, Konstantinos C; Shine, James P

    2011-12-15

    Microbial-, and chemical-based burden of disease associated with lack of access to safe water continues to primarily impact developing countries. Cost-effective health risk-mitigating measures, such as of solar disinfection applied to microbial-contaminated water stored in plastic bottles have been increasingly tested in developing countries adversely impacted by epidemic water-borne diseases. Public health concerns associated with chemical leaching from water packaging materials led us to investigate the magnitude and variability of antimony (Sb) and bromine (Br) leaching from reused plastic containers (polyethylene terephthalate, PET; and polycarbonate, PC) subject to UV and/or temperature-driven disinfection. The overall objective of this study was to determine the main and interactive effects of temperature, UV exposure duration, and frequency of bottle reuse on the extent of leaching of Sb and Br from plastic bottles into water. Regardless of UV exposure duration, frequency of reuse (up to 27 times) was the major factor that linearly increased Sb leaching from PET bottles at all temperatures tested (13-47 °C). Leached Sb concentrations (∼360 ng L(-1)) from the highly reused (27 times) PET bottles (minimal Sb leaching from PC bottles, water at much lower concentrations. Additional research on potential leaching of organic chemicals from water packaging materials is deemed necessary under relevant environmental conditions. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Evidence of arsenic release promoted by disinfection by-products within drinking-water distribution systems.

    Science.gov (United States)

    Andra, Syam S; Makris, Konstantinos C; Botsaris, George; Charisiadis, Pantelis; Kalyvas, Harris; Costa, Costas N

    2014-02-15

    Changes in disinfectant type could trigger a cascade of reactions releasing pipe-anchored metals/metalloids into finished water. However, the effect of pre-formed disinfection by-products on the release of sorbed contaminants (arsenic-As in particular) from drinking water distribution system pipe scales remains unexplored. A bench-scale study using a factorial experimental design was performed to evaluate the independent and interaction effects of trihalomethanes (TTHM) and haloacetic acids (HAA) on arsenic (As) release from either scales-only or scale-biofilm conglomerates (SBC) both anchored on asbestos/cement pipe coupons. A model biofilm (Pseudomonas aeruginosa) was allowed to grow on select pipe coupons prior experimentation. Either TTHM or HAA individual dosing did not promote As release from either scales only or SBC, detecting water. In the case of scales-only coupons, the combination of the highest spike level of TTHM and HAA significantly (pwater in pipe networks remains to be investigated in the field. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Predictive model for disinfection by-product in Alexandria drinking water, northern west of Egypt.

    Science.gov (United States)

    Abdullah, Ali M; Hussona, Salah El-dien

    2013-10-01

    Chlorine has been utilized in the early stages of water treatment processes as disinfectant. Disinfection for drinking water reduces the risk of pathogenic infection but may pose a chemical threat to human health due to disinfection residues and their by-products (DBP) when the organic and inorganic precursors are present in water. In the last two decades, many modeling attempts have been made to predict the occurrence of DBP in drinking water. Models have been developed based on data generated in laboratory-scale and field-scale investigations. The objective of this paper is to develop a predictive model for DBP formation in the Alexandria governorate located at the northern west of Egypt based on field-scale investigations as well as laboratory-controlled experimentations. The present study showed that the correlation coefficient between trihalomethanes (THM) predicted and THM measured was R (2)=0.88 and the minimum deviation percentage between THM predicted and THM measured was 0.8 %, the maximum deviation percentage was 89.3 %, and the average deviation was 17.8 %, while the correlation coefficient between dichloroacetic acid (DCAA) predicted and DCAA measured was R (2)=0.98 and the minimum deviation percentage between DCAA predicted and DCAA measured was 1.3 %, the maximum deviation percentage was 47.2 %, and the average deviation was 16.6 %. In addition, the correlation coefficient between trichloroacetic acid (TCAA) predicted and TCAA measured was R (2)=0.98 and the minimum deviation percentage between TCAA predicted and TCAA measured was 4.9 %, the maximum deviation percentage was 43.0 %, and the average deviation was 16.0 %.

  4. Isolation of Bacillus subtilis as indicator in the disinfection of residual water by means of gamma radiation

    International Nuclear Information System (INIS)

    Mata J, M.; Colin C, A.; Lopez V, H.; Brena V, M.; Carrasco A, H.; Pavon R, S.

    2002-01-01

    In the attempt to get more alternatives of disinfection of residual water, the Bacillus subtilis was isolated by means of gamma radiation as a bio indicator of disinfection since it turned out to be resistant to the 5 KGy dose, comparing this one with other usual microorganisms as biondicators like E. coli and S typhimurium which turn out more sensitive to such dose. (Author)

  5. A low-energy intensive electrochemical system for the eradication of Escherichia coli from ballast water: Process development, disinfection chemistry, and kinetics modeling

    International Nuclear Information System (INIS)

    Nadeeshani Nanayakkara, K.G.; Khorshed Alam, A.K.M.; Zheng Yuming; Paul Chen, J.

    2012-01-01

    The invasion of biological organisms via ballast water has created threats to the environment and human health. In this study, a cost-effective electrochemical disinfection reactor was developed to inactivate Escherichia coli, one of the IMO-regulated indicator microbes, in simulated ballast water. The complete inactivation of E. coli could be achieved within a very short time (150, 120, or 60 s) with an energy consumption as low as 0.0090, 0.0074 or 0.0035 kWh/m 3 for ballast water containing E. coli at concentrations of 10 8 , 10 7 and 10 6 CFU/100 mL, respectively. Electrochemical chlorination was the major disinfection mechanism in chloride-abundant electrolytes, whereas oxidants such as ozone and free radicals contributed to 20% of the disinfection efficiency in chloride-free electrolytes. Moreover, a disinfection kinetics model was successfully developed to describe the inactivation of E. coli.

  6. Use of reflectors to enhance the synergistic effects of solar heating and solar wavelengths to disinfect drinking water sources

    Energy Technology Data Exchange (ETDEWEB)

    Rijal, G.K. [Metropolitan Water Reclamation District of Greater Chicago, Cicero, Illinois (United States); Fujioka, R.S. [University of Hawaii, Honolulu (United States). Water Resources Research Center

    2004-07-01

    Aluminum reflectors were added to solar units designed to inactivate faecal microorganisms (faecal coliform, E. coli, enterococci, FRNA coliphage, C. perfringens) in stream water and diluted sewage by the two mechanisms (solar heat, solar UV) known to inactivate microorganisms. During sunny conditions, solar units with and without reflectors inactivated E. coli to <1 CFU/100 ml to meet drinking water standards. Solar units with reflectors disinfected to the water sooner by increasing the water temperature by 8-10{sup o}C to 64-75{sup o}C. However, FRNA coliphages were still detected in these samples, indicating that this treatment may not inactivate pathogenic human enteric viruses. During cloudy conditions, reflectors only increased the water temperature by 3-4{sup o}C to a maximum of 43-49{sup o}C and E. coli was not completely inactivated. Under sunny and cloudy conditions, the UV wavelengths of sunlight worked synergistically with increasing water temperatures and were able to disinfect microorganisms at temperatures (45-56{sup o}C), which were not effective in inactivating microorganisms. Relative resistance to the solar disinfecting effects were C perfringens > FRNA coliphages > enterococci >E. coli > faecal coliform. (author)

  7. Utilization of ultraviolet radiation of cold hollow cathode discharge plasma for water disinfection

    International Nuclear Information System (INIS)

    Soloshenko, I.O.; Bazhenov, V.Yu.; Khomych, V.O.; Tsiolko, V.V.; Potapchenko, N.G.; Goncharuk, V.V.

    2006-01-01

    We study the possibility to use the ultraviolet radiation of a hollow cathode discharge plasma for water disinfection. We have performed the comparative experiments on the influence of ultraviolet radiation of the mentioned discharge plasma, as well as that of a standard low pressure mercury lamp

  8. Validation of the analytical method for sodium dichloroisocyanurate aimed at drinking water disinfection

    International Nuclear Information System (INIS)

    Martinez Alvarez, Luis Octavio; Alejo Cisneros, Pedro; Garcia Pereira, Reynaldo; Campos Valdez, Doraily

    2014-01-01

    Cuba has developed the first effervescent 3.5 mg sodium dichloroisocyanurate tablets as a non-therapeutic active principle. This ingredient releases certain amount of chlorine when dissolved into a litre of water and it can cause adequate disinfection of drinking water ready to be taken after 30 min. Developing and validating an analytical iodometric method applicable to the quality control of effervescent 3.5 mg sodium dichloroisocyanurate tablets

  9. Disinfection and physical and chemical changes in waste waters, sludge and agricultural wastes

    International Nuclear Information System (INIS)

    Groneman, A.F.; Oosterheert, W.F.

    1980-01-01

    It is of interest for agriculture to consider recycling scenarios that use undigested sludges as they contain higher concentrations of nitrogen, phosphorus and organic matter than digested sludges. Also from the point of view of waste water management, this approach is of interest because it reduces the time and number of treatments of sludges, thus resulting in technological and economic advantages. However, the utilization of this type of sludge in agriculture is restricted by the presence of human pathogens. Therefore studies concerning the disinfection efficiency of gamma irradiation in undigested sludge at pilot plant level were performed and results compared with the disinfection efficiency of this radiation treatment in digested sludge. (Auth.)

  10. Determination of several common disinfection by-products in frozen foods.

    Science.gov (United States)

    Cardador, Maria Jose; Gallego, Mercedes

    2018-01-01

    Disinfected water and/or disinfectants are commonly used by the freezing industry in such processes as sanitising, washing, blanching, cooling and transporting the final product. For this reason, disinfection by-products (DBPs) can be expected in frozen foods. This study focused on the presence of DBPs in a wide variety of frozen vegetables, meats and fish. For this purpose, the 14 halogenated DBPs more prevalent in disinfected water were selected (four trihalomethanes, seven haloacetic acids, two haloacetonitriles and trichloronitromethane). Up to seven DBPs were found in vegetables, whereas only four DBPs were present in meats and fish, and at lower concentrations, since their contact with disinfected water is lower than in frozen vegetables. It is important to emphasise that trichloronitromethane (the most abundant nitrogenous DBP in disinfected water) was found for the first time in foods. Finally, it was concluded that the freezing process can keep the compounds stable longer than other preservation processes (viz. sanitising, canning) and, therefore, frozen foods present higher DBP concentrations than other food categories (minimally processed vegetables, or canned vegetables and meats).

  11. Effect of peracetic acid, ultraviolet radiation, nanofiltration-chlorine in the disinfection of a non conventional source of water (Tula Valley).

    Science.gov (United States)

    Trujillo, J; Barrios, J A; Jimenez, B

    2008-01-01

    Water supply for human consumption requires certain quality that reduces health risks to consumers. In this sense, the process of disinfection plays an important role in the elimination of pathogenic microorganisms. Even though chlorination is the most applied process based on its effectiveness and cost, its application is being questioned considering the formation of disinfection by-products (DBPs). Therefore, alternative disinfectants are being evaluated and some treatment processes have been proposed to remove DBPs precursors (organic matter. This paper reports the results of disinfection of a non conventional source of water (aquifer recharged unintentionally with raw wastewater) with peracetic acid (PAA) and ultraviolet radiation (UV) as well as nanofiltration (NF) followed by chlorination to produce safe drinking water. The results showed that a dose of 2 mg/L PAA was needed to eliminate total and faecal coliforms. For UV light, a dose of 12.40 mWs/cm2 reduced total and faecal coliforms below the detection limit. On the other hand, chlorine demand of water before NF was 1.1-1.3 mg/L with a trihalomethane formation potential (THMFP) of 118.62 microg/L, in contrast with chlorination after NF where the demand was 0.5 mg/L and THMFP of 17.64 microg/L. The recommended scheme is nanofiltration + chlorination.

  12. The Occurrence and Toxicity of Disinfection Byproducts in European Drinking Waters in Relation with the HIWATE Epidemiology Study

    Science.gov (United States)

    Jeong, Clara H.; Wagner, Elizabeth D.; Siebert, Vincent R.; Anduri, Sridevi; Richardson, Susan D.; Daiber, Eric J.; McKague, A. Bruce; Kogevinas, Manolis; Villanueva, Cristina M.; Goslan, Emma H.; Luo, Wentai; Isabelle, Lorne M.; Pankow, James F.; Grazuleviciene, Regina; Cordier, Sylvaine; Edwards, Susan C.; Righi, Elena; Nieuwenhuijsen, Mark J.; Plewa, Michael J.

    2012-01-01

    The HIWATE (Health Impacts of long-term exposure to disinfection byproducts in drinking WATEr) project was a systematic analysis that combined the epidemiology on adverse pregnancy outcomes and other health effects with long term exposure to low levels of drinking water disinfection byproducts (DBPs) in the European Union. The present study focused on the relationship of the occurrence and concentration of DBPs with in vitro mammalian cell toxicity. Eleven drinking water samples were collected from 5 European countries. Each sampling location corresponded with an epidemiological study for the HIWATE program. Over 90 DBPs were identified; the range in the number of DBPs and their levels reflected the diverse collection sites, different disinfection processes, and the different characteristics of the source waters. For each sampling site, chronic mammalian cell cytotoxicity correlated highly with the numbers of DBPs identified and the levels of DBP chemical classes. Although there was a clear difference in the genotoxic responses among the drinking waters, these data did not correlate as well with the chemical analyses. Thus, the agents responsible for the genomic DNA damage observed in the HIWATE samples may be due to unresolved associations of combinations of identified DBPs, unknown emerging DBPs that were not identified, or other toxic water contaminants. This study represents the first to integrate quantitative in vitro toxicological data with analytical chemistry and human epidemiologic outcomes for drinking water DBPs. PMID:22958121

  13. Do Iodine Contrast Media Compounds Used for Medical Imaging Contribute to the Formation of Iodinated Disinfection By-Products in Drinking Water?

    Science.gov (United States)

    Iodinated disinfection byproducts (DBPs) have recently gained attention due to their cyto- and genotoxicity and increased formation in drinking water treated with chloramine, which has become an increasingly popular disinfectant in the United States. One of these—iodoacetic acid...

  14. Genotoxicity of the disinfection by-products resulting from peracetic acid- or hypochlorite-disinfected sewage wastewater.

    Science.gov (United States)

    Crebelli, R; Conti, L; Monarca, S; Feretti, D; Zerbini, I; Zani, C; Veschetti, E; Cutilli, D; Ottaviani, M

    2005-03-01

    Wastewater disinfection is routinely carried out to prevent the spread of human pathogens present in wastewater effluents. To this aim, chemical and physical treatments are applied to the effluents before their emission in water bodies. In this study, the influence of two widely used disinfectants, peracetic acid (PAA) and sodium hypochlorite (NaClO), on the formation of mutagenic by-products was investigated. Wastewater samples were collected before and after disinfection, in winter and in summer, at a pilot plant installed in a municipal wastewater-treatment plant. Samples were adsorbed using silica C18 cartridges and the concentrates were tested for mutagenicity in the Salmonella typhimurium reversion test with strains TA98 and TA100. Non-concentrated water samples were tested with two plant genotoxicity assays (the Allium cepa root anaphase aberration test and the Tradescantia/micronucleus test). Mutagenicity assays in bacteria and in Tradescantia showed borderline mutagenicity in some of the wastewater samples, independent of the disinfection procedure applied. Negative results were obtained in the A. cepa anaphase aberration test. These results indicate that, in the conditions applied, wastewater disinfection with PAA and NaClO does not lead to the formation of significant amounts of genotoxic by-products.

  15. Water and sewage sludge disinfection by irradiation. Pt. 4 and 5

    International Nuclear Information System (INIS)

    Alexandre, D.

    1978-01-01

    Estimation of cost shows that water disinfection by irradiation is too expensive. Liquid wastes can be treated by low and medium energy accelerators but they are competitive with thermal process only for large installations. Dry sludges can be treated by radioelements, energy saving is important with gamma ray sources, this process is cheaper especially for small installations, results with high energy accelerators are encouraging for dry sludges and large installations [fr

  16. Bacterial community changes in copper and PEX drinking water pipeline biofilms under extra disinfection and magnetic water treatment.

    Science.gov (United States)

    Inkinen, J; Jayaprakash, B; Ahonen, M; Pitkänen, T; Mäkinen, R; Pursiainen, A; Santo Domingo, J W; Salonen, H; Elk, M; Keinänen-Toivola, M M

    2018-02-01

    To study the stability of biofilms and water quality in pilot scale drinking water copper and PEX pipes in changing conditions (extra disinfection, magnetic water treatment, MWT). Next-generation sequencing (NGS) of 16S ribosomal RNA genes (rDNA) to describe total bacterial community and ribosomal RNA (rRNA) to describe active bacterial members in addition to traditional microbiological methods were applied. Biofilms from control copper and PEX pipes shared same most abundant bacteria (Methylobacterium spp., Sphingomonas spp., Zymomonas spp.) and average species diversities (Shannon 3·8-4·2) in rDNA and rRNA libraries, whereas few of the taxa differed by their abundance such as lower total Mycobacterium spp. occurrence in copper (disinfection (total chlorine increase from c. 0·5 to 1 mg l -1 ) affected total and active population in biofilms seen as decrease in many bacterial species and diversity (Shannon 2·7, P disinfected copper and PEX samples formed separate clusters in unweighted non-metric multidimensional scaling plot (rRNA) similarly to MWT-treated biofilms of copper (but not PEX) pipes that instead showed higher species diversity (Shannon 4·8, P < 0·05 interaction). Minor chlorine dose addition increased selection pressure and many species were sensitive to chlorination. Pipe material seemed to affect mycobacteria occurrence, and bacterial communities with MWT in copper but not in PEX pipes. This study using rRNA showed that chlorination affects especially active fraction of bacterial communities. Copper and PEX differed by the occurrence of some bacterial members despite similar community profiles. © 2017 The Society for Applied Microbiology.

  17. Evaluation of Filtration and UV Disinfection for Inactivation of Viruses in Non-Community Water Systems in Minnesota

    Science.gov (United States)

    This study evaluated filtration and disinfection processes for removal and inactivation of pathogens in non-community water systems (NCWS) in two surface water supplies. Pretreatment systems included 1) pressure sand filtration, and 2) granular activated carbon adsorption, and 3...

  18. Alternative disinfectant in drinking water systems. The peracetic acid; Disinfettanti alternativi in potabilizzazione. L`acido peracetico

    Energy Technology Data Exchange (ETDEWEB)

    Ragazzo, Patrizia; Navazio, Giancarlo [Padua, Univ. (Italy). Fac. di Ingegneria. Dipt. dei Processi Chimici dell`Ingegneria; Cavadore, Alberto [Solvay Interox, Rosignano (Italy); Babato, Ferdinando [Consorzio per l`Acquedotto del Basso Piave, S. Dona` di Piave (Italy)

    1997-03-01

    The need to use oxidation techniques in mains water systems, especially when treating surface water, has brought about a greater awareness as to the health risks associated to the presence of residual chemical compounds or disinfection by-products (DBP), which are commonly found in water supplies treated by means of traditional disinfectants (i.e. Cl{sub 2}, ClO{sub 2}, NH{sub 2}Cl, O{sub 3}, etc.). As a consequence, legislative standards have had to define greater restrictions regarding their use. In the light of this situation, the authors have set out to examine the feasibility of employing peracetic acid (PAA), which features low production of DBPs, as an alternative disinfectant. Preliminary experimental tests have been carried out on water samples taken from several process points within a water treatment plant at the Basso Piave mains water system, located in Jesolo, near Venice in Italy. These samples were treated with batch PAA doses ranging from 1 to 5 ppm for a variety of different exposition periods, also with varying temperature, pH and water properties. These experiments made it possible to asses the decay kinetics of PAA as well as reduction of characteristic microbiological parameters in raw and treated incoming and outgoing water throughout the various stages of the treatment process. The results achieved during these tests appear to provide ample evidence regarding the possibilities of use for PAA (with medium dosage of 1.5 to 2 ppm, contact times from 30` to 60` and abatement up to 95 %), after having assessed its compatibility, especially in order to the increase of the assimilable organic carbon, with the characteristics of the plant and distribution network, by continuous reactors and pilot plants.

  19. New chlorinated amphetamine-type-stimulants disinfection-by-products formed during drinking water treatment.

    Science.gov (United States)

    Huerta-Fontela, Maria; Pineda, Oriol; Ventura, Francesc; Galceran, Maria Teresa

    2012-06-15

    Previous studies have demonstrated high removal rates of amphetamine-type-stimulants (ATSs) through conventional drinking water treatments; however the behaviour of these compounds through disinfection steps and their transformation into disinfection-by-products (DBPs) is still unknown. In this work, for the first time, the reactivity of some ATSs such as amphetamine, methamphetamine, 3,4-methylenedioxyamphetamine (MDA), 3,4-methylenedioxymethamphetamine (MDMA) and 3,4-methylenedioxyethylamphetamine (MDEA) with chlorine has been investigated under simulated and real drinking water treatment conditions in order to evaluate their ability to give rise to transformation products. Two new DBPs from these illicit drugs have been found. A common chlorinated-by-product (3-chlorobenzo)-1,3-dioxole, was identified for both MDA and MDEA while for MDMA, 3-chlorocatechol was found. The presence of these DBPs in water samples collected through drinking water treatment was studied in order to evaluate their formation under real conditions. Both compounds were generated through treatment from raw river water samples containing ATSs at concentration levels ranging from 1 to 15 ng/L for MDA and from 2.3 to 78 ng/L for MDMA. One of them, (3-chlorobenzo)-1,3-dioxole, found after the first chlorination step, was eliminated after ozone and GAC treatment while the MDMA DBP mainly generated after the postchlorination step, showed to be recalcitrant and it was found in final treated waters at concentrations ranging from 0.5 to 5.8 ng/L. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. UV disinfection for reuse applications in North America.

    Science.gov (United States)

    Sakamoto, G; Schwartzel, D; Tomowich, D

    2001-01-01

    In an effort to conserve and protect limited water resources, the States of Florida and California have actively promoted wastewater reclamation and have implemented comprehensive regulations covering a range of reuse applications. Florida has a semi-tropical climate with heavy summer rains that are lost due to run off and evaporation. Much of California is arid and suffers periodic droughts, low annual rainfall and depleted ground water supplies. The high population density combined with heavy irrigation demands has depleted ground water supplies resulting in salt-water intrusion. During the past decade, Florida reuse sites have increased dramatically from 118 to 444 plants representing a total flow capacity of 826 MGD. California presently has over 250 plants producing 1 BGD with a projected increase of 160 sites over the next 20 years. To prevent the transmission of waterborne diseases, disinfection of reclaimed water is controlled by stringent regulations. Many states regulate wastewater treatment processes, nutrient removal, final effluent quality and disinfection criteria based upon the specific reuse application. As a rule, the resulting effluents have low turbidity and suspended solids. For such effluents, UV technology can economically achieve the most stringent disinfection targets that are required by the States of California and Florida for restricted and unrestricted reuse. This paper compares UV disinfection for wastewater reuse sites in California and Florida and discusses the effect of effluent quality on UV disinfection.

  1. Peracetic acid for secondary effluent disinfection: a comprehensive performance assessment.

    Science.gov (United States)

    Antonelli, M; Turolla, A; Mezzanotte, V; Nurizzo, C

    2013-01-01

    The paper is a review of previous research on secondary effluent disinfection by peracetic acid (PAA) integrated with new data about the effect of a preliminary flash-mixing step. The process was studied at bench and pilot scale to assess its performance for discharge in surface water and agricultural reuse (target microorganisms: Escherichia coli and faecal coliform bacteria). The purposes of the research were: (1) determining PAA decay and disinfection kinetics as a function of operating parameters, (2) evaluating PAA suitability as a disinfectant, (3) assessing long-term disinfection efficiency, (4) investigating disinfected effluent biological toxicity on some aquatic indicator organisms (Vibrio fischeri, Daphnia magna and Selenastrum capricornutum), (5) comparing PAA with conventional disinfectants (sodium hypochlorite, UV irradiation). PAA disinfection was capable of complying with Italian regulations on reuse (10 CFU/100 mL for E. coli) and was competitive with benchmarks. No regrowth phenomena were observed, as long as needed for agricultural reuse (29 h after disinfection), even at negligible concentrations of residual disinfectant. The toxic effect of PAA on the aquatic environment was due to the residual disinfectant in the water, rather than to chemical modification of the effluent.

  2. Reproductive toxicity of a mixture of regulated drinking-water disinfection by-products in a multigenerational rat bioassay

    Science.gov (United States)

    BACKGROUND:Trihalomethanes (THMs) and haloaretic acids (HAAs) are regulated disinfection by-products (DBPs); their joint reproductive toxicity in drinking water is unknown.OBJECTIVE: We aimed to evaluate a drinking water mixture of the four regulated THMs and five regulated HAAs ...

  3. Shift in the microbial ecology of a hospital hot water system following the introduction of an on-site monochloramine disinfection system.

    Science.gov (United States)

    Baron, Julianne L; Vikram, Amit; Duda, Scott; Stout, Janet E; Bibby, Kyle

    2014-01-01

    Drinking water distribution systems, including premise plumbing, contain a diverse microbiological community that may include opportunistic pathogens. On-site supplemental disinfection systems have been proposed as a control method for opportunistic pathogens in premise plumbing. The majority of on-site disinfection systems to date have been installed in hospitals due to the high concentration of opportunistic pathogen susceptible occupants. The installation of on-site supplemental disinfection systems in hospitals allows for evaluation of the impact of on-site disinfection systems on drinking water system microbial ecology prior to widespread application. This study evaluated the impact of supplemental monochloramine on the microbial ecology of a hospital's hot water system. Samples were taken three months and immediately prior to monochloramine treatment and monthly for the first six months of treatment, and all samples were subjected to high throughput Illumina 16S rRNA region sequencing. The microbial community composition of monochloramine treated samples was dramatically different than the baseline months. There was an immediate shift towards decreased relative abundance of Betaproteobacteria, and increased relative abundance of Firmicutes, Alphaproteobacteria, Gammaproteobacteria, Cyanobacteria and Actinobacteria. Following treatment, microbial populations grouped by sampling location rather than sampling time. Over the course of treatment the relative abundance of certain genera containing opportunistic pathogens and genera containing denitrifying bacteria increased. The results demonstrate the driving influence of supplemental disinfection on premise plumbing microbial ecology and suggest the value of further investigation into the overall effects of premise plumbing disinfection strategies on microbial ecology and not solely specific target microorganisms.

  4. Shift in the microbial ecology of a hospital hot water system following the introduction of an on-site monochloramine disinfection system.

    Directory of Open Access Journals (Sweden)

    Julianne L Baron

    Full Text Available Drinking water distribution systems, including premise plumbing, contain a diverse microbiological community that may include opportunistic pathogens. On-site supplemental disinfection systems have been proposed as a control method for opportunistic pathogens in premise plumbing. The majority of on-site disinfection systems to date have been installed in hospitals due to the high concentration of opportunistic pathogen susceptible occupants. The installation of on-site supplemental disinfection systems in hospitals allows for evaluation of the impact of on-site disinfection systems on drinking water system microbial ecology prior to widespread application. This study evaluated the impact of supplemental monochloramine on the microbial ecology of a hospital's hot water system. Samples were taken three months and immediately prior to monochloramine treatment and monthly for the first six months of treatment, and all samples were subjected to high throughput Illumina 16S rRNA region sequencing. The microbial community composition of monochloramine treated samples was dramatically different than the baseline months. There was an immediate shift towards decreased relative abundance of Betaproteobacteria, and increased relative abundance of Firmicutes, Alphaproteobacteria, Gammaproteobacteria, Cyanobacteria and Actinobacteria. Following treatment, microbial populations grouped by sampling location rather than sampling time. Over the course of treatment the relative abundance of certain genera containing opportunistic pathogens and genera containing denitrifying bacteria increased. The results demonstrate the driving influence of supplemental disinfection on premise plumbing microbial ecology and suggest the value of further investigation into the overall effects of premise plumbing disinfection strategies on microbial ecology and not solely specific target microorganisms.

  5. Cyto- and genotoxic profile of groundwater used as drinking water supply before and after disinfection.

    Science.gov (United States)

    Pellacani, C; Cassoni, F; Bocchi, C; Martino, A; Pinto, G; Fontana, F; Furlini, M; Buschini, A

    2016-12-01

    The assessment of the toxicological properties of raw groundwater may be useful to predict the type and quality of tap water. Contaminants in groundwater are known to be able to affect the disinfection process, resulting in the formation of substances that are cytotoxic and/or genotoxic. Though the European directive (98/83/EC, which establishes maximum levels for contaminants in raw water (RW)) provides threshold levels for acute exposure to toxic compounds, the law does not take into account chronic exposure at low doses of pollutants present in complex mixture. The purpose of this study was to evaluate the cyto- and genotoxic load in the groundwater of two water treatment plants in Northern Italy. Water samples induced cytotoxic effects, mainly observed when human cells were treated with RW. Moreover, results indicated that the disinfection process reduced cell toxicity, independent of the biocidal used. The induction of genotoxic effects was found, in particular, when the micronucleus assay was carried out on raw groundwater. These results suggest that it is important to include bio-toxicological assays as additional parameters in water quality monitoring programs, as their use would allow the evaluation of the potential risk of groundwater for humans.

  6. Reducing the chlorine dioxide demand in final disinfection of drinking water treatment plants using activated carbon.

    Science.gov (United States)

    Sorlini, Sabrina; Biasibetti, Michela; Collivignarelli, Maria Cristina; Crotti, Barbara Marianna

    2015-01-01

    Chlorine dioxide is one of the most widely employed chemicals in the disinfection process of a drinking water treatment plant (DWTP). The aim of this work was to evaluate the influence of the adsorption process with granular activated carbon (GAC) on the chlorine dioxide consumption in final oxidation/disinfection. A first series of tests was performed at the laboratory scale employing water samples collected at the outlet of the DWTP sand filter of Cremona (Italy). The adsorption process in batch conditions with seven different types of GAC was studied. A second series of tests was performed on water samples collected at the outlet of four GAC columns installed at the outlet of the DWTP sand filter. The results showed that the best chlorine dioxide demand (ClO2-D) reduction yields are equal to 60-80% and are achieved in the first 30 min after ClO2 addition, during the first 16 days of the column operation using a mineral, coal-based, mesoporous GAC. Therefore, this carbon removes organic compounds that are more rapidly reactive with ClO2. Moreover, a good correlation was found between the ClO2-D and UV absorbance at wavelength 254 nm using mineral carbons; therefore, the use of a mineral mesoporous GAC is an effective solution to control the high ClO2-D in the disinfection stage of a DWTP.

  7. Suitability of electrolyzed oxidizing water for the disinfection of hard surfaces and equipment in radiology.

    Science.gov (United States)

    Pintaric, Robert; Matela, Joze; Pintaric, Stefan

    2015-01-01

    Hospitals are faced with increasingly resistant strains of micro-organisms. When it comes to disinfection, individual parts of electronic equipment of angiology diagnostics such as patient couches of computer tomography (CT) and magnetic resonance imaging (MRI) scanners prove to be very hard to disinfect. Disinfectants of choice are therefore expected to possess properties such as rapid, residue-free action without any damaging effect on the sensitive electronic equipment. This paper discusses the use of the neutral electrolyzed oxidizing water (EOW) as a biocide for the disinfection of diagnostic rooms and equipment. The CT and MRI rooms were aerosolized with EOW using aerosolization device. The presence of micro-organisms before and after the aerosolization was recorded with the help of sedimentation and cyclone air sampling. Total body count (TBC) was evaluated in absolute and log values. The number of micro-organisms in hospital rooms was low as expected. Nevertheless, a possible TBC reduction between 78.99-92.50% or 50.50-70.60% in log values was recorded. The research has shown that the use of EOW for the air and hard surface disinfection can considerably reduce the presence of micro-organisms and consequently the possibility of hospital infections. It has also demonstrated that the sedimentation procedure is insufficient for the TBC determination. The use of Biocide aerosolization proved to be efficient and safe in all applied ways. Also, no eventual damage to exposed devices or staff was recorded.

  8. What's in The Pool? A Comprehensive Identification Of Disinfection By-Products and Assessment of Mutagenicity of Chlorinated and Brominated Swimming Pool Water

    Science.gov (United States)

    Swimming pool disinfectants and disinfection by-products (DBPs) have been linked to human health effects, including asthma and bladder cancer, but no studies have provided a comprehensive identification of DBPs in the water and related that to mutagenicity. We performed a compreh...

  9. What's in the pool? A comprehensive identification of disinfection by-products and assessment of mutagenicity of chlorinated and brominated swimming pool water

    NARCIS (Netherlands)

    Richardson, S.D.; Demarini, D.M.; Kogevinas, M.; Fernandez, P.; Marco, E.; Lourencetti, C.; Balleste, C.; Heederik, D.|info:eu-repo/dai/nl/072910542; Meliefste, K.; McKague, A.B.; Marcos, R.; Font-Ribera, L.; Grimalt, J.O.; Villanueva, C.M.

    2010-01-01

    BACKGROUND: Swimming pool disinfectants and disinfection by-products (DBPs) have been linked to human health effects, including asthma and bladder cancer, but no studies have provided a comprehensive identification of DBPs in the water and related that to mutagenicity. OBJECTIVES: We performed a

  10. Disinfection of bacteriophage MS2 by copper in water.

    Science.gov (United States)

    Armstrong, Andrew M; Sobsey, Mark D; Casanova, Lisa M

    2017-09-01

    Households that lack piped water supply are often forced to meet water needs by storing in the home, leaving water vulnerable to contamination by viruses. Storage in copper containers can potentially prevent this type of contamination, but the inactivation kinetics of viruses by copper need to be described to make appropriate storage recommendations. This work characterized inactivation kinetics of bacteriophage MS2 as a surrogate for enteric viruses by dissolved ionic copper in water. Reduction of MS2 increased with increasing doses of copper. At 0.3 mg/L, there was a 1.8-log 10 reduction of MS2 within 6 h. At 1 and 3 mg/L, 2-2.5 log 10 inactivation could be achieved between 6 and 24 h. Parameters for the Chick-Watson, Hom, and One Hit-Two Population models of inactivation were calculated and evaluated, all of which demonstrated strong goodness-of-fit and predictability at various contact times. Copper inactivates MS2 under controlled conditions at doses between 0.3 and 3 mg/L. Although requiring longer contact times than conventional disinfectants, it is a candidate for improving the safety of stored drinking water.

  11. Study and application of herbal disinfectants in China.

    Science.gov (United States)

    Chen, Zhao-Bin

    2004-12-01

    Disinfection means killing or removing pathogenic microorganisms in media to realize a harmless process. A disinfectant, which is also referred to as a disinfection medicine in relevant regulations, is the medicine used to kill microorganisms for the purpose of disinfection. The disinfectants prepared from plants (including traditional Chinese herbal medicines) and the extracts thereof are called herbal disinfectants. China has a long history of using herbal disinfectants. As early as in 533 A.D., the use of Cornel to sterilize well water was recorded in Necessary Techniques for Qi People by Jia Enxie of the Beiwei Dynasty. During the Dragon Boat Festival, people often use fumigants made of traditional Chinese herbal medicines like Chinese Atractylodes, Argy Wormwood Leaf and Red Arsenic Sulfide to smoke their houses, so as to ward off plagues and drive away evils. In fact this is now a kind of disinfection practice.

  12. [Decontamination of dental unit waterlines using disinfectants and filters].

    Science.gov (United States)

    Monarca, S; Garusi, G; Gigola, P; Spampinato, L; Zani, C; Sapelli, P L

    2002-10-01

    Bacterial contamination of the dental unit water system can become a health problem for patients, particularly if they are immunodepressed. The present study has had the purpose of evaluating the effectiveness of methods of chemical decontamination using different disinfectants (peracetic acid, hydrogen peroxide, silver salts, chloramine T, glutaraldehyde T4) and methods of physical decontamination using synthetic membranes for the filtration of water. A preliminary removal procedure of the biofilm present in the waterline has been followed in a dental unit prepared on purpose for the research; subsequently different 2-week long maintenance procedures were applied using disinfectants injected by a pump and finally the bacterial contamination of the water flowing from the waterline was evaluated. The physical decontamination was performed using 0.22 mm membrane filters, which have been installed also in another dental unit, and the filtered water was analyzed to detect bacterial contamination. The preliminary procedure of biofilm removal succeeded obtaining germ-free water. Among the disinfectants used for the maintenance of the water quality only glutaraldehyde T4 was able to reduce the bacterial contamination under the limit suggested by the ADA. The membrane filter system was not able to purify the water, but when a disinfectant (peracetic acid) was used in the last part of the waterline good results were obtained. At present no decontamination system of dental waterline is available, and glutaraldehyde T4 seems to be the best disinfectant only if integrated with periodic biofilm removal for the maintenance of the water quality.

  13. Balancing the risks and benefits of drinking water disinfection: disability adjusted life-years on the scale.

    OpenAIRE

    Havelaar, A H; De Hollander, A E; Teunis, P F; Evers, E G; Van Kranen, H J; Versteegh, J F; Van Koten, J E; Slob, W

    2000-01-01

    To evaluate the applicability of disability adjusted life-years (DALYs) as a measure to compare positive and negative health effects of drinking water disinfection, we conducted a case study involving a hypothetical drinking water supply from surface water. This drinking water supply is typical in The Netherlands. We compared the reduction of the risk of infection with Cryptosporidium parvum by ozonation of water to the concomitant increase in risk of renal cell cancer arising from the produc...

  14. Virus Disinfection in Water by Biogenic Silver Immobilized in Polyvinylidene Fluoride Membranes

    Energy Technology Data Exchange (ETDEWEB)

    B De Gusseme; T Hennebel; E Christiaens; H Saveyn; K Verbeken; J Fitts; N Boon; W Vertraete

    2011-12-31

    The development of innovative water disinfection strategies is of utmost importance to prevent outbreaks of waterborne diseases related to poor treatment of (drinking) water. Recently, the association of silver nanoparticles with the bacterial cell surface of Lactobacillus fermentum (referred to as biogenic silver or bio-Ag{sup 0}) has been reported to exhibit antiviral properties. The microscale bacterial carrier matrix serves as a scaffold for Ag{sup 0} particles, preventing aggregation during encapsulation. In this study, bio-Ag{sup 0} was immobilized in different microporous PVDF membranes using two different pre-treatments of bio-Ag{sup 0} and the immersion-precipitation method. Inactivation of UZ1 bacteriophages using these membranes was successfully demonstrated and was most probably related to the slow release of Ag{sup +} from the membranes. At least a 3.4 log decrease of viruses was achieved by application of a membrane containing 2500 mg bio-Ag{sup 0}{sub powder} m{sup -2} in a submerged plate membrane reactor operated at a flux of 3.1 L m{sup -2} h{sup -1}. Upon startup, the silver concentration in the effluent initially increased to 271 {mu}g L{sub -1} but after filtration of 31 L m{sup -2}, the concentration approached the drinking water limit (= 100 {mu}g L{sup -1}). A virus decline of more than 3 log was achieved at a membrane flux of 75 L m{sup -2} h{sup -1}, showing the potential of this membrane technology for water disinfection on small scale.

  15. Sequential use of ultraviolet light and chlorine for reclaimed water disinfection

    Institute of Scientific and Technical Information of China (English)

    Xiujuan Wang; Xuexiang Hu; Chun Hu; Dongbin Wei

    2011-01-01

    Several disinfection processes of ultraviolet (UV),chlorine or UV followed by chlorine were investigated in municipal wastewater according to the inactivation of Escherichia coli,Shigella dysenteriae and toxicity formation.The UV inactivation of the tested pathogenic bacteria was not affected by the quality of water.It was found that the inactivated bacteria were obviously reactivated after one day in dark.Fluorescent light irradiation increased the bacteria repair.The increase of UV dosage could cause more damage to bacteria to inhibit bacteria self-repair.No photoreactivation was detected when the UV dose was up to 80 mJ/cm2 for E.coli DH5α,and 23 mJ/cm2 for S.dysenteriae.Nevertheless,sequential use of 8 mJ/cm2 of UV and low concentration of chlorine (1.5mg/L) could effectively inhibit the photoreactivation and inactivate E.coli below the detection limits within seven days.Compared to chlorination alone,the sequential disinfection decreased the genotoxicity of treated wastewater,especially for the sample with high NH3-N concentration.

  16. Comparison of permanganate preoxidation and preozonation on algae containing water: cell integrity, characteristics, and chlorinated disinfection byproduct formation.

    Science.gov (United States)

    Xie, Pengchao; Ma, Jun; Fang, Jingyun; Guan, Yinghong; Yue, Siyang; Li, Xuchun; Chen, Liwei

    2013-12-17

    Aqueous suspensions of Microcystis aeruginosa were preoxidized with either ozone or permanganate and then subjected to chlorination under conditions simulating drinking water purification. The impacts of the two oxidants on the algal cells and on the subsequent production of dissolved organic matter and disinfection byproducts were investigated. Preozonation dramatically increased disinfection byproduct formation during chlorination, especially the formation of haloaldehydes, haloacetonitriles, and halonitromethanes. Preoxidation with permanganate had much less effect on disinfection byproduct formation. Preozonation destroyed algal cell walls and cell membranes to release intracellular organic matter (IOM), and less than 2.0% integrated cells were left after preozonation with the dosage as low as 0.4 mg/L. Preoxidation with permanganate mainly released organic matter adsorbed on the cells' surface without causing any damage to the cells' integrity, so the increase in byproduct formation was much less. More organic nitrogen and lower molecular weight precursors were produced in a dissolved phase after preozonation than permanganate preoxidation, which contributes to the significant increase of disinfection byproducts after preozonation. The results suggest that permanganate is a better choice than ozone for controlling algae derived pollutants and disinfection byproducts.

  17. Application and study of conjunctival sac disinfectants in ophthalmic surgeries

    Directory of Open Access Journals (Sweden)

    Yan-Fei Luo

    2016-01-01

    Full Text Available Postoperative endophthalmitis is the most serious complications of ophthalmic surgeries. Conjunctival sac disinfection is currently recognized as an effectively important way to reduce the risk of endophthalmitis. At present, there are some disinfectants has been used in clinic or in the researches:mercury agent, gentamicin, povidone iodine and acid electrolytic water. All kinds of disinfectants play the role of disinfection by different ways. Povidone iodine is the most widely used conjunctival sac disinfectant. Mercurial and gentamicin have been rarely used because they pollute the environment, are easy to cause drug resistant bacteria, localized side reactions and so on. The acid electrolyte water is not used in clinic at present. With the popularization and development of the ophthalmic surgeries, the ophthalmologists have become more and more concerned about the postoperative eye comfort, the research and application of conjunctival sac disinfectant in the future will continue to be updated and developed.

  18. Water Purification and Disinfection by using Solar Energy: Towards Green Energy Challenge

    Directory of Open Access Journals (Sweden)

    Md Z.H. Khan

    2015-12-01

    Full Text Available The aim of this work was to design a solar water treatment plant for household purpose. Water purification is the process of eradicating detrimental chemicals, biological poisons, suspended solids and gases from contaminated water. In this work we have reported an investigation of compact filter which is cost effective for developing countries and ease of maintenance. We have arranged a solar water disinfection system that improves the microbiological quality of drinking water at household level. We get 14 L pure water and 16 ml water vapour within 240 min by using filtration method. From our work we get hot water up to 49°C. The efficiency of the system at sunny days and cloudy days are 18.23% and 18.13% respectively. This simple solar hybrid system helps to remove turbidity as well as chemical and pathogenic contaminants from water sources in the most affordable, and expedient manner possibly.

  19. Electrochemical disinfection of simulated ballast water on PbO2/graphite felt electrode

    International Nuclear Information System (INIS)

    Chen, Shuiping; Hu, Weidong; Hong, Jianxun; Sandoe, Steve

    2016-01-01

    A novel PbO 2 /graphite felt electrode was constructed by electrochemical deposition of PbO 2 on graphite felt and characterized by X-ray powder diffraction (XRD) and scanning electron microscopy (SEM) analysis. The prepared electrode is a viable technology for inactivation of Escherichia coli, Enterococcus faecalis, and Artemia salina as indicator organisms in simulated ballast water treatment, which meets the International Maritime Organization (IMO) Regulation D-2. The effects of contact time and current density on inactivation were investigated. An increase in current density generally had a beneficial effect on the inactivation of the three species. E.faecalis and A.salina were more resistant to electrochemical disinfection than E. coli. The complete disinfection of E.coli was achieved in <8 min at an applied current density of 253 A/m 2 . Complete inactivation of E. faecalis and A.salina was achieved at the same current density after 60 and 40 min of contact time, respectively. A. salina inactivation follows first-order kinetics. - Highlights: •A novel PbO 2 /graphite felt anode was developed for the electrochemical treatment of the simulated ballast water. •The technology meets the IMO D‐2 regulation and provides a high degree of removal of the microorganisms of ballast water without any additional chemical substances. •E.faecalis, E.coli, and A.salina cells in simulated ballast water were completely inactivated after 60, 8 and 40 min of contact time at 253 A/m 2 of current density, respectively.

  20. Analysis, Occurrence and Toxicity of Haloacetaldehydes in Drinking Waters: Iodacetaldehyde as an Emerging Disinfection ByProduct.

    Science.gov (United States)

    Chlorinated and brominated haloacetaldehydes (HALs) are consideredthe 3rd largest class of disinfection by-products (DBPs) by weight. The iodinatedHAL, iodoacetaldehyde, has been recently reported as an emerging DBP infinished drinking waters. Overall, iodinated DBPs, e.g., iodoa...

  1. 40 CFR 141.709 - Developing the disinfection profile and benchmark.

    Science.gov (United States)

    2010-07-01

    ... Cryptosporidium Disinfection Profiling and Benchmarking Requirements § 141.709 Developing the disinfection profile...) of the water before or at the first customer and prior to each additional point of disinfectant...) before or at the first customer during peak hourly flow. (ii) Determine successive CTcalc/CT99.9 values...

  2. Evaluation of disinfectants in the domestic environment under 'in use' conditions.

    Science.gov (United States)

    Scott, E.; Bloomfield, S. F.; Barlow, C. G.

    1984-01-01

    An 'in use' test was developed to investigate effectiveness of disinfectant application and of detergent of hot water cleaning at kitchen, bathroom and toilet sites in the domestic environment. Detergent and hot water cleaning produced no observable reduction in microbial contamination. Single and daily application tests demonstrated that hypochlorite and phenolic disinfectants can be used to produce substantial reductions in bacterial contamination in the home. Results indicate that maximum protection afforded by disinfection is relatively brief; 3-6 h after disinfection, contamination levels were only marginally less than those observed at pretreatment. Some suggestions are made for improvements in home hygiene. PMID:6323576

  3. CHO cell cytotoxicity and genotoxicity analyses of disinfection by-products: An updated review

    Institute of Scientific and Technical Information of China (English)

    Elizabeth D.Wagner; Michael J.Plewa

    2017-01-01

    The disinfection of drinking water is an important public health service that generates high quality,safe and palatable tap water.The disinfection of drinking water to reduce waterborne disease was an outstanding public health achievement of the 20th century.An unintended consequence is the reaction of disinfectants with natural organic matter,anthropogenic contaminants and bromide/iodide to form disinfection by-products (DBPs).A large number of DBPs are cytotoxic,neurotoxic,mutagenic,genotoxic,carcinogenic and teratogenic.Epidemiological studies demonstrated low but significant associations between disinfected drinking water and adverse health effects.The distribution of DBPs in disinfected waters has been well defined by advances in high precision analytical chemistry.Progress in the analytical biology and toxicology of DBPs has been forthcoming.The objective of this review was to provide a detailed presentation of the methodology for the quantitative,comparative analyses on the induction of cytotoxicity and genotoxicity of 103 DBPs using an identical analytical biological platform and endpoints.A single Chinese hamster ovary cell line was employed in the assays.The data presented are derived from papers published in the literature as well as additional new data and represent the largest direct quantitative comparison on the toxic potency of both regulated and emerging DBPs.These data may form the foundation of novel research to define the major forcing agents of DBP-mediated toxicity in disinfected water and may play an important role in achieving the goal of making safe drinking water better.

  4. Drugs, diagnostic agents and disinfectants in wastewater and water--a review.

    Science.gov (United States)

    Kümmerer, K

    2000-01-01

    After administration pharmaceuticals are excreted by the patients into the aquatic environment via wastewater. Unused medications are sometimes disposed of in drains. The drugs may enter the aquatic environment and eventually reach drinking water, if they are not biodegraded or eliminated during sewage treatment. Additionally, antibiotics and disinfectants are assumed to disturb the wastewater treatment process and the microbial ecology in surface waters. Furthermore, resistant bacteria may be selected in the aeration tanks of sewage treatment plants by the antibiotic substances present. Since the 1980s, data on the occurrence of pharmaceuticals in natural surface waters and the effluents of sewage treatment plants have been reported. More recently, pharmaceuticals have been detected in ground and drinking water. However, only little is known about the risk imposed on humans by pharmaceuticals and their metabolites in surface and drinking water. An overview of input, occurrence, elimination (e.g. biodegradability) and possible effects of different pharmaceutical groups such as anti-tumour drugs, antibiotics and contrast media as well as AOX resulting from hospitals effluent input into sewage water and surface water is presented.

  5. On the factors influencing the performance of solar reactors for water disinfection with photosensitized singlet oxygen.

    Science.gov (United States)

    Manjón, Francisco; Villén, Laura; García-Fresnadillo, David; Orellana, Guillermo

    2008-01-01

    Two solar reactors based on compound parabolic collectors (CPCs) were optimized for water disinfection by photosensitized singlet oxygen (1O2) production in the heterogeneous phase. Sensitizing materials containing Ru(II) complexes immobilized on porous silicone were produced, photochemically characterized, and successfully tested for the inactivation of up to 10(4) CFU mL(-1) of waterborne Escherichia coli (gram-negative) or Enterococcus faecalis (gram-positive) bacteria. The main factors determining the performance of the solar reactors are the type of photosensitizing material, the sensitizer loading, the CPC collector geometry (fin- vs coaxial-type), the fluid rheology, and the balance between concurrent photothermal--photolytic and 1O2 effects on the microorganisms' inactivation. In this way, at the 40 degrees N latitude of Spain, water can be disinfected on a sunny day (0.6-0.8 MJ m(-2) L(-1) accumulated solar radiation dose in the 360-700 nm range, typically 5-6 h of sunlight) with a fin-type reactor containing 0.6 m2 of photosensitizing material saturated with tris(4,7-diphenyl-1,10-phenanthroline)ruthenium(II) (ca. 2.0 g m(-2)). The optimum rheological conditions require laminar-to-transitional water flow in both prototypes. The fin-type system showed better inactivation efficiency than the coaxial reactor due to a more important photolytic contribution. The durability of the sensitizing materials was tested and the operational lifetime of the photocatalyst is at least three months without any reduction in the bacteria inactivation efficiency. Solar water disinfection with 1O2-generating films is demonstrated to be an effective technique for use in isolated regions of developing countries with high yearly average sunshine.

  6. Water disinfection with solar radiation; Desinfeccion del agua con radiacion solar

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Alejandra; Cortes, Juana E; Rodriguez, Miriam; Mundo, Alfredo; Vazquez, Sandra [Instituto Mexicano de Tecnologia del Agua, Jiutepec, Morelos (Mexico); Estrada, Claudio A [Centro de Investigacion en Energia, Temixco, Morelos (Mexico)

    2000-07-01

    Water disinfection by exposure to solar radiation is a low cost and easy application option to rural communities. The treatment of water can be done using plastic bags or plastic bottles of two litters setting on a reflective material. The efficient of the plastic bottles is lower than the one plastic bags, but the plastic bottles have a much better control of the treated water avoiding its recontamination. In order to increase the efficiency of disinfection using plastic bottles, two solar concentrators, using flat mirrors, were designed and built. Effluent water from a treatment plant of residual waters was used for the testing. Several comparison were carried out taking into account the position of the concentrators, the transparency of the bottles and the bags. The results show that using the concentrator that adjust its position to the sun every hour, a 100% disinfection is obtained in 4 hours of direct exposure to the sun rays in a sunny day. The period of time can be reduced up to 2 hours, if instead using transparent bottles, the bottles are black painted at their bottom half. With these results, the basis to design a cheap concentrator of easy construction to be used in rural communities have been settle. [Spanish] La desinfeccion del agua por exposicion a la luz solar fotodesinfeccion es una opcion de bajo costo y facil aplicacion para las comunidades rurales. El tratamiento puede llevarse a cabo utilizando bolsas o botellas de plastico transparente de dos litros de capacidad colocadas sobre un material reflejante. Las botellas son menos eficientes que las bolsas, pero permiten un mejor control del agua tratada evitando su recontaminacion. Para aumentar la eficiencia de la desinfeccion utilizando las botellas, se disenaron y construyeron dos concentradores solares de espejos planos que permitieron disminuir el tiempo de exposicion requerido cuando se utilizan estas. Para las pruebas de desinfeccion se utilizo agua del efluente de una planta de tratamiento

  7. Toxicity of drinking water disinfection byproducts: cell cycle alterations induced by the monohaloacetonitriles.

    Science.gov (United States)

    Komaki, Yukako; Mariñas, Benito J; Plewa, Michael J

    2014-10-07

    Haloacetonitriles (HANs) are a chemical class of drinking water disinfection byproducts (DBPs) that form from reactions between disinfectants and nitrogen-containing precursors, the latter more prevalent in water sources impacted by algae bloom and municipal wastewater effluent discharge. HANs, previously demonstrated to be genotoxic, were investigated for their effects on the mammalian cell cycle. Treating Chinese hamster ovary (CHO) cells with monoHANs followed by the release from the chemical treatment resulted in the accumulation of abnormally high DNA content in cells over time (hyperploid). The potency for the cell cycle alteration followed the order: iodoacetonitrile (IAN) > bromoacetonitrile (BAN) ≫ chloroacetonitrile (CAN). Exposure to 6 μM IAN, 12 μM BAN and 900 μM CAN after 26 h post-treatment incubation resulted in DNA repair; however, subsequent cell cycle alteration effects were observed. Cell proliferation of HAN-treated cells was suppressed for as long as 43 to 52 h. Enlarged cell size was observed after 52 h post-treatment incubation without the induction of cytotoxicity. The HAN-mediated cell cycle alteration was mitosis- and proliferation-dependent, which suggests that HAN treatment induced mitosis override, and that HAN-treated cells proceeded into S phase and directly into the next cell cycle. Cells with multiples genomes would result in aneuploidy (state of abnormal chromosome number and DNA content) at the next mitosis since extra centrosomes could compromise the assembly of bipolar spindles. There is accumulating evidence of a transient tetraploid state proceeding to aneuploidy in cancer progression. Biological self-defense systems to ensure genomic stability and to eliminate tetraploid cells exist in eukaryotic cells. A key tumor suppressor gene, p53, is oftentimes mutated in various types of human cancer. It is possible that HAN disruption of the normal cell cycle and the generation of aberrant cells with an abnormal number of

  8. Comparison of electrochemical method with ozonation, chlorination and monochloramination in drinking water disinfection

    Energy Technology Data Exchange (ETDEWEB)

    Li Hongna, E-mail: lihongna@gmail.com [Department of Environmental Engineering, Peking University, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871 (China); Zhu Xiuping [Department of Environmental Engineering, Peking University, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871 (China); Ni Jinren, E-mail: nijinren@iee.pku.edu.cn [Department of Environmental Engineering, Peking University, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871 (China)

    2011-11-30

    Highlights: > Electrochemical, O{sub 3}, NaClO and NH{sub 2}Cl were compared at respective optimal condition. > Disinfection efficacy was similar for different bacteria in electrolysis. > Harsh Bacillus was inactivated more difficult in O{sub 3}, NaClO and NH{sub 2}Cl system. > Efficient disinfection of electrolysis was attributed to nonselectivity of {center_dot}OH. > Cell surface damage was more obvious in electrochemical process than the others. - Abstract: Electrochemical process in chloride-free electrolytes was proved to be powerful in disinfection due to the strong oxidants produced in the electrolysis and no formation of disinfection byproducts (DBPs). In this study, disinfection experiments were conducted by electrochemical treatment compared with ordinary and advanced methods (ozonation, chlorination and monochloramination), with Escherichia coli (E. coli) K-12, Staphylococcus aureus (S. aureus) A106, Bacillus subtilis (BST) and an isolated Bacillus as the representative microorganisms. Firstly, factor tests were performed on E. coli to obtain the optimal conditions of the four disinfection procedures. At their respective optimal condition, CT (concentration of disinfectant x contact time) value of a 4-log E. coli inactivation was 33.5, 1440, 1575, 1674 mg min L{sup -1} for electrochemical process, ozonation, chlorination and monochloramination, respectively. It was demonstrated that the disinfection availability was in the following order: electrochemical process > ozonation > chlorination > monochloramination, which could be attributed to the hydroxyl radical generated in the electrolysis, with strong oxidizing ability and non-selectivity compared with the other three disinfectants. Moreover, the disinfection efficacy of the four disinfection procedures was compared for four different bacteria. It was found that the disinfection efficacy was similar for the selected four bacteria in electrochemical process, while in the other three treatments

  9. Comparison of electrochemical method with ozonation, chlorination and monochloramination in drinking water disinfection

    International Nuclear Information System (INIS)

    Li Hongna; Zhu Xiuping; Ni Jinren

    2011-01-01

    Highlights: → Electrochemical, O 3 , NaClO and NH 2 Cl were compared at respective optimal condition. → Disinfection efficacy was similar for different bacteria in electrolysis. → Harsh Bacillus was inactivated more difficult in O 3 , NaClO and NH 2 Cl system. → Efficient disinfection of electrolysis was attributed to nonselectivity of ·OH. → Cell surface damage was more obvious in electrochemical process than the others. - Abstract: Electrochemical process in chloride-free electrolytes was proved to be powerful in disinfection due to the strong oxidants produced in the electrolysis and no formation of disinfection byproducts (DBPs). In this study, disinfection experiments were conducted by electrochemical treatment compared with ordinary and advanced methods (ozonation, chlorination and monochloramination), with Escherichia coli (E. coli) K-12, Staphylococcus aureus (S. aureus) A106, Bacillus subtilis (BST) and an isolated Bacillus as the representative microorganisms. Firstly, factor tests were performed on E. coli to obtain the optimal conditions of the four disinfection procedures. At their respective optimal condition, CT (concentration of disinfectant x contact time) value of a 4-log E. coli inactivation was 33.5, 1440, 1575, 1674 mg min L -1 for electrochemical process, ozonation, chlorination and monochloramination, respectively. It was demonstrated that the disinfection availability was in the following order: electrochemical process > ozonation > chlorination > monochloramination, which could be attributed to the hydroxyl radical generated in the electrolysis, with strong oxidizing ability and non-selectivity compared with the other three disinfectants. Moreover, the disinfection efficacy of the four disinfection procedures was compared for four different bacteria. It was found that the disinfection efficacy was similar for the selected four bacteria in electrochemical process, while in the other three treatments inactivation of the two

  10. Hepatitis A Virus Disinfection in Water by Solar Photo-Fenton Systems.

    Science.gov (United States)

    Polo, David; García-Fernández, Irene; Fernández-Ibañez, Pilar; Romalde, Jesús L

    2018-06-01

    This study evaluates and compares the effectiveness of solar photo-Fenton systems for the inactivation of hepatitis A virus (HAV) in water. The effect of solar irradiance, dark- Fenton reaction and three different reactant concentrations (2.5/5, 5/10 and 10/20 mg/L of Fe 2+ /H 2 O 2 ) on the photo-Fenton process were tested in glass bottle reactors (200 mL) during 6 h under natural sunlight. Disinfection kinetics were determined both by RT-qPCR and infectivity assays. Mean water temperatures ranged from 25 to 27.3 °C, with a maximum local noon UV irradiances of 22.36 W/m 2 . Photo-Fenton systems yielded increased viral reduction rates in comparison with the isolated effect under the Fenton reaction in darkness (negligible viral reduction) or the solar radiation (0.25 Log of RNA reduction). With the highest concentration employed (10-20 mg/L Fe 2+ -H 2 O 2 ), an average RNA reduction rate of ~ 1.8 Log (initial concentration of 10 5 pfu/mL) and a reduction of 80% in the infectivity capacity were reached. Results showed a strong synergistic effect between Fe 2+ /H 2 O 2 and sunlight, demonstrating that significant disinfection rates of HAV under photo-Fenton systems may occur with relatively higher efficiency at middle environmental temperatures and without the need for an energy-intensive light source.

  11. Modelling formation of disinfection by-products in water distribution: Optimisation using a multi-objective evolutionary algorithm

    KAUST Repository

    Radhakrishnan, Mohanasundar; Pathirana, Assela; Ghebremichael, Kebreab A.; Amy, Gary L.

    2012-01-01

    Concerns have been raised regarding disinfection by-products (DBPs) formed as a result of the reaction of halogen-based disinfectants with DBP precursors. In order to appreciate the chemical and biological tradeoffs, it is imperative to understand the formation trends of DBPs and their spread in the distribution network. However, the water at a point in a complex distribution system is a mixture from various sources, whose proportions are complex to estimate and requires advanced hydraulic analysis. To understand the risks of DBPs and to develop mitigation strategies, it is important to understand the distribution of DBPs in a water network, which requires modelling. The goal of this research was to integrate a steady-state water network model with a particle backtracking algorithm and chlorination as well as DBPs models in order to assess the tradeoffs between biological and chemical risks in the distribution network. A multi-objective optimisation algorithm was used to identify the optimal proportion of water from various sources, dosages of alum, and dosages of chlorine in the treatment plant and in booster locations to control the formation of chlorination DBPs and to achieve a balance between microbial and chemical risks. © IWA Publishing 2012.

  12. Modelling formation of disinfection by-products in water distribution: Optimisation using a multi-objective evolutionary algorithm

    KAUST Repository

    Radhakrishnan, Mohanasundar

    2012-05-01

    Concerns have been raised regarding disinfection by-products (DBPs) formed as a result of the reaction of halogen-based disinfectants with DBP precursors. In order to appreciate the chemical and biological tradeoffs, it is imperative to understand the formation trends of DBPs and their spread in the distribution network. However, the water at a point in a complex distribution system is a mixture from various sources, whose proportions are complex to estimate and requires advanced hydraulic analysis. To understand the risks of DBPs and to develop mitigation strategies, it is important to understand the distribution of DBPs in a water network, which requires modelling. The goal of this research was to integrate a steady-state water network model with a particle backtracking algorithm and chlorination as well as DBPs models in order to assess the tradeoffs between biological and chemical risks in the distribution network. A multi-objective optimisation algorithm was used to identify the optimal proportion of water from various sources, dosages of alum, and dosages of chlorine in the treatment plant and in booster locations to control the formation of chlorination DBPs and to achieve a balance between microbial and chemical risks. © IWA Publishing 2012.

  13. Compliance Determination for Inactivation Requirements of the National Primary Drinking Water Regulations when a Public Water Systems Uses Dichlor and Trichlor for Primary Disinfection

    Science.gov (United States)

    This memorandum has been developed to assist SDWA primacy agencies (EPA Regions, states and territories) when considering inactivation/disinfection compliance requirements for those water systems that choose to use Dichlor or Trichlor.

  14. THM reduction on water distribution network with chlorine dioxide as disinfectant

    International Nuclear Information System (INIS)

    Ventura, G.; Gorriz, D.; Pascual, E.; Romero, M.

    2009-01-01

    A disinfectant change on water distribution network, by chlorine dioxide in that case, avoids THM formation. In the other hand it creates big doubts about utilization and analytical determination of another oxidant different to chlorine. Just a need to comply the current legislation points us to make a change as the one mentioned above and carried out in DWTP Rio Verde, being managed by Acosol, where the THM formation is been reduced to 80%, according to the new limit of 100μg/l, along the 200 km of the supply network. (Author) 13 refs.

  15. Disinfection Byproduct Formation in Reverse-Osmosis Concentrated and Lyophilized Natural Organic Matter from a Drinking Water Source

    Science.gov (United States)

    Drinking water treatment and disinfection byproduct (DBP) research can be complicated by natural organic matter (NOM) temporal variability. NOM preservation by lyophilization (freeze-drying) has been long practiced to address this issue; however, its applicability for drinking wa...

  16. Technical considerations during disinfection by UV

    International Nuclear Information System (INIS)

    Ekhtiarzadeh, Z.; Sadeghpur, H.

    2002-01-01

    The use of new methods for treatment of water and wastewater in the country is one the rise and therefore the theoretical and practical knowledge of the industry's engineers should increase simultaneously. Ultraviolet is one of the new technologies used both for treatment of water as well as wastewater. The UV disinfection system consists of different components such as the lamp, ballast and the lamp fixtures. Each has a specification, which should be taken into account prior to design, order and purchase. The subject of price is also among the important considerations. The article presents figures cost comparison in various sections. It does not try to either approve or reject other disinfection systems such as chlorination, but the writer believes that any method should find its own practice and conditions of use, and the disinfection system designers should opt for the best system suited to their plans and avoid limiting themselves to a single one

  17. Electrochemical disinfection of coliform and Escherichia coli for drinking water treatment by electrolysis method using carbon as an electrode

    Science.gov (United States)

    Riyanto; Agustiningsih, W. A.

    2018-04-01

    Disinfection of coliform and E. Coli in water has been performed by electrolysis using carbon electrodes. Carbon electrodes were used as an anode and cathode with a purity of 98.31% based on SEM-EDS analysis. This study was conducted using electrolysis powered by electric field using carbon electrode as the anode and cathode. Electrolysis method was carried out using variations of time (30, 60, 90, 120 minutes at a voltage of 5 V) and voltage (5, 10, 15, 20 V for 30 minutes) to determine the effect of the disinfection of the bacteria. The results showed the number of coliform and E. coli in water before and after electrolysis was 190 and 22 MPN/100 mL, respectively. The standards quality of drinking water No. 492/Menkes/Per/IV/2010 requires the zero content of coliform and E. Coli. Electrolysis with the variation of time and potential can reduce the number of coliforms and E. Coli but was not in accordance with the standards. The effect of hydrogen peroxide (H2O2) to the electrochemical disinfection was determined using UV-Vis spectrophotometer. The levels of H2O2 formed increased as soon after the duration of electrolysis voltage but was not a significant influence to the mortality of coliform and E.coli.

  18. Disinfection of dental impressions - compliance to accepted standards.

    Science.gov (United States)

    Almortadi, N; Chadwick, R G

    2010-12-18

    The responsibility of ensuring impressions have been cleaned and disinfected before dispatch to the dental laboratory lies solely with the dentist. Uncertainty of impression disinfection risks both the health of the receiving dental technician and potential repeat disinfection of an already disinfected impression with detrimental consequences for its dimensions. To ascertain, from the perspectives of dentists and dental technicians, current impression decontamination and disinfection practices with, in the case of the technicians, an estimate of the relative prevalence of contaminated voids within apparently disinfected impressions. Anonymous postal questionnaire. Dentist (n = 200) and dental technician (n = 200) potential participants, selected at random from the registers held by the General Dental Council, were invited to complete an anonymous postal questionnaire that sought to establish current practices and perceived effectiveness of impression disinfection. Questionnaire return rates of 42.1% and 31.2% were recorded for dentists and dental technicians respectively. A wide range of solutions, at different dilutions of the same product, was used by the dentists to disinfect dental impressions. 37.2% rinsed the impressions with water, and 2.6% always brushed debris away, before disinfection. 24.7% of dentists did not inform the laboratory of disinfection. Irrespective of the disinfection status of the received impressions, 50% of the responding dental technicians disinfected all impressions. 95% of them had received blood-contaminated impressions. 15% had encountered blood-filled voids upon trimming back the peripheries of impressions. 64.7% were confident that the impressions received by them had been disinfected by the dentists. Compliance with good practice is less than ideal and education in impression disinfection for both dentists and dental technicians is required to address this.

  19. Drinking Water Disinfection By-products, Genetic Polymorphisms, and Birth Outcomes in a European Mother-Child Cohort Study.

    Science.gov (United States)

    Kogevinas, Manolis; Bustamante, Mariona; Gracia-Lavedán, Esther; Ballester, Ferran; Cordier, Sylvaine; Costet, Nathalie; Espinosa, Ana; Grazuleviciene, Regina; Danileviciute, Asta; Ibarluzea, Jesus; Karadanelli, Maria; Krasner, Stuart; Patelarou, Evridiki; Stephanou, Euripides; Tardón, Adonina; Toledano, Mireille B; Wright, John; Villanueva, Cristina M; Nieuwenhuijsen, Mark

    2016-11-01

    We examined the association between exposure during pregnancy to trihalomethanes, the most common water disinfection by-products, and birth outcomes in a European cohort study (Health Impacts of Long-Term Exposure to Disinfection By-Products in Drinking Water). We took into account exposure through different water uses, measures of water toxicity, and genetic susceptibility. We enrolled 14,005 mothers (2002-2010) and their children from France, Greece, Lithuania, Spain, and the UK. Information on lifestyle- and water-related activities was recorded. We ascertained residential concentrations of trihalomethanes through regulatory records and ad hoc sampling campaigns and estimated route-specific trihalomethane uptake by trimester and for whole pregnancy. We examined single nucleotide polymorphisms and copy number variants in disinfection by-product metabolizing genes in nested case-control studies. Average levels of trihalomethanes ranged from around 10 μg/L to above the regulatory limits in the EU of 100 μg/L between centers. There was no association between birth weight and total trihalomethane exposure during pregnancy (β = 2.2 g in birth weight per 10 μg/L of trihalomethane, 95% confidence interval = 3.3, 7.6). Birth weight was not associated with exposure through different routes or with specific trihalomethane species. Exposure to trihalomethanes was not associated with low birth weight (odds ratio [OR] per 10 μg/L = 1.02, 95% confidence interval = 0.95, 1.10), small-for-gestational age (OR = 0.99, 0.94, 1.03) and preterm births (OR = 0.98, 0.9, 1.05). We found no gene-environment interactions for mother or child polymorphisms in relation to preterm birth or small-for-gestational age. In this large European study, we found no association between birth outcomes and trihalomethane exposures during pregnancy in the total population or in potentially genetically susceptible subgroups. (See video abstract at http://links.lww.com/EDE/B104.).

  20. Activity and action screening of selected disinfectants

    Directory of Open Access Journals (Sweden)

    Kateřina Balharová

    2006-01-01

    Full Text Available This research work is aimed to monitoring of selected disinfectants´activity in operational conditions. Hereby there have been monitored two acidic disinfectants Despon K and Mikasan D, which have had-by their producer-stated different recommended concentration. These solutions were monitored in viewpoint of their activity at different temperature, time of circulation, pH and water hardness. In this work there were measured pH of solutions in unloaded medium to be compared with pH of solutions in loaded medium and this measuring was carried out regularly each week within a one month period. During this period there was also monitored total plate count (TPC, which was stated in the dairy, where samples were taken two-times monthly. It has been found, that the disinfectants Mikasan D and Mikal 94D are effective even by high water hardness.

  1. Household water treatment in developing countries: comparing different intervention types using meta-regression.

    Science.gov (United States)

    Hunter, Paul R

    2009-12-01

    Household water treatment (HWT) is being widely promoted as an appropriate intervention for reducing the burden of waterborne disease in poor communities in developing countries. A recent study has raised concerns about the effectiveness of HWT, in part because of concerns over the lack of blinding and in part because of considerable heterogeneity in the reported effectiveness of randomized controlled trials. This study set out to attempt to investigate the causes of this heterogeneity and so identify factors associated with good health gains. Studies identified in an earlier systematic review and meta-analysis were supplemented with more recently published randomized controlled trials. A total of 28 separate studies of randomized controlled trials of HWT with 39 intervention arms were included in the analysis. Heterogeneity was studied using the "metareg" command in Stata. Initial analyses with single candidate predictors were undertaken and all variables significant at the P Risk and the parameter estimates from the final regression model. The overall effect size of all unblinded studies was relative risk = 0.56 (95% confidence intervals 0.51-0.63), but after adjusting for bias due to lack of blinding the effect size was much lower (RR = 0.85, 95% CI = 0.76-0.97). Four main variables were significant predictors of effectiveness of intervention in a multipredictor meta regression model: Log duration of study follow-up (regression coefficient of log effect size = 0.186, standard error (SE) = 0.072), whether or not the study was blinded (coefficient 0.251, SE 0.066) and being conducted in an emergency setting (coefficient -0.351, SE 0.076) were all significant predictors of effect size in the final model. Compared to the ceramic filter all other interventions were much less effective (Biosand 0.247, 0.073; chlorine and safe waste storage 0.295, 0.061; combined coagulant-chlorine 0.2349, 0.067; SODIS 0.302, 0.068). A Monte Carlo model predicted that over 12 months

  2. Identification and characterization of phenylacetonitrile as a nitrogenous disinfection byproduct derived from chlorination of phenylalanine in drinking water.

    Science.gov (United States)

    Ma, Xiaoyan; Deng, Jing; Feng, Jiao; Shanaiah, Narasimhamurthy; Smiley, Elizabeth; Dietrich, Andrea M

    2016-10-01

    Unregulated disinfection byproducts (DBPs), including nitrogenous disinfection byproducts (N-DBPs), originating from chlorination of the precursor amino acid phenylalanine in aqueous systems, were identified in laboratory reactions and distributed tap. The major N-DBP identified was phenylacetonitrile, and minor DBPs of benzyl chloride, phenylacetaldehyde, 2-chlorobenzyl cyanide, and 2, 6-diphenylpyridine were also formed. Phenylacetonitrile was generated through decarboxylation, dechlorination and/or hydrolysis processes. With an aromatic structure, phenylacetonitrile has an unpleasant odor of various descriptors and an odor threshold concentration of 0.2 ppt-v as measured through gas chromatography-olfactometry. The half-life of phenylacetonitrile in reagent water and chlorinated water at 19 °C were 121 h and 792 h, respectively. The occurrence of phenylacetonitrile as an N-DBP in tap water was investigated for the first time; the results revealed that μg/L concentrations were present in nine different distributed drinking waters in China and the United States. Phenylacetonitrile deteriorates the aesthetic quality of drinking water and may present risk due to its prolonged existence in drinking water, especially in the presence of residual chlorine. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Quantification of pathogen inactivation efficacy by free chlorine disinfection of drinking water for QMRA.

    Science.gov (United States)

    Petterson, S R; Stenström, T A

    2015-09-01

    To support the implementation of quantitative microbial risk assessment (QMRA) for managing infectious risks associated with drinking water systems, a simple modeling approach for quantifying Log10 reduction across a free chlorine disinfection contactor was developed. The study was undertaken in three stages: firstly, review of the laboratory studies published in the literature; secondly, development of a conceptual approach to apply the laboratory studies to full-scale conditions; and finally implementation of the calculations for a hypothetical case study system. The developed model explicitly accounted for variability in residence time and pathogen specific chlorine sensitivity. Survival functions were constructed for a range of pathogens relying on the upper bound of the reported data transformed to a common metric. The application of the model within a hypothetical case study demonstrated the importance of accounting for variable residence time in QMRA. While the overall Log10 reduction may appear high, small parcels of water with short residence time can compromise the overall performance of the barrier. While theoretically simple, the approach presented is of great value for undertaking an initial assessment of a full-scale disinfection contactor based on limited site-specific information.

  4. Baby bottle steam sterilizers for disinfecting home nebulizers inoculated with non-tuberculous mycobacteria.

    Science.gov (United States)

    Towle, D; Callan, D A; Lamprea, C; Murray, T S

    2016-03-01

    Non-tuberculous mycobacteria (NTMb), present in environmental water sources, can contribute to respiratory infection in patients with chronic pulmonary disease. Contaminated nebulizers are a potential source of respiratory infection. Treatment with baby bottle steam sterilizers disinfects home nebulizers inoculated with bacterial pathogens but whether this method works for disinfection of NTMb is unclear. Baby bottle steam sterilization was compared with vigorous water washing for disinfecting home nebulizers inoculated with NTMb mixed with cystic fibrosis sputum. No NTMb was recovered from any nebulizers after steam treatment whereas viable NTMb grew after water washing, demonstrating that steam sterilization effectively disinfects NTMb-inoculated nebulizers. Copyright © 2015 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.

  5. Nitrogenous disinfection byproducts in English drinking water supply systems: Occurrence, bromine substitution and correlation analysis.

    Science.gov (United States)

    Bond, Tom; Templeton, Michael R; Mokhtar Kamal, Nurul Hana; Graham, Nigel; Kanda, Rakesh

    2015-11-15

    Despite the recent focus on nitrogenous disinfection byproducts in drinking water, there is limited occurrence data available for many species. This paper analyses the occurrence of seven haloacetonitriles, three haloacetamides, eight halonitromethanes and cyanogen chloride in 20 English drinking water supply systems. It is the first survey of its type to compare bromine substitution factors (BSFs) between the haloacetamides and haloacetonitriles. Concentrations of the dihalogenated haloacetonitriles and haloacetamides were well correlated. Although median concentrations of these two groups were lower in chloraminated than chlorinated surface waters, median BSFs for both in chloraminated samples were approximately double those in chlorinated samples, which is significant because of the higher reported toxicity of the brominated species. Furthermore, median BSFs were moderately higher for the dihalogenated haloacetamides than for the haloacetonitriles. This indicates that, while the dihalogenated haloacetamides were primarily generated from hydrolysis of the corresponding haloacetonitriles, secondary formation pathways also contributed. Median halonitromethane concentrations were remarkably unchanging for the different types of disinfectants and source waters: 0.1 μg · mgTOC(-1) in all cases. Cyanogen chloride only occurred in a limited number of samples, yet when present its concentrations were higher than the other N-DBPs. Concentrations of cyanogen chloride and the sum of the halonitromethanes were not correlated with any other DBPs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Determination of the minor disinfection by-products formed in the water plant of Sant Joan Despi (Barcelona, Spain); Determinacion de los subproductos de desinfeccion minoritarios formados en la planta de Sant Joan Despi (Barcelona)

    Energy Technology Data Exchange (ETDEWEB)

    Cancho, B.; Galceran, M.T. [Universitat de Barcelona (Spain); Ventura, F. [AGBAR. Societat General d` Aigues de Barcelona, S.A. (Spain)

    1997-09-01

    Chlorine is widely used in drinking water disinfection due to be a powerful and not expense disinfection. Although the benefits of disinfection, the formation of stable disinfection by-products of the health concern, is the result of the interaction of aqueous chlorine with natural organic matter presents in water. Disinfection by-products generated in major concentration are trihalomethane and haloacetic acids. Disinfection by-products generated in minor concentration are haloacetonitriles, haloketones,chloral hydrate and chloropicrin and some new groups such as cyanogen halides and trihaloacetaldydes. In this work two analytical methods.: headspace/gas chromatography/electron capture detector and liquid-liquid microextraction/gas chromatography/electron capture detector are studied and compared to determine the minor by-products and to establish finally, a systematic control of them in the different stages of the Water Treatment Plant of San Joan Despi (Barcelona, Spain). (Author) 12 refs.

  7. ASSESSMENT OF THE EFFICIENCY OF DISINFECTION METHOD ...

    African Journals Online (AJOL)

    eobe

    ABSTRACT. The efficiencies of three disinfection methods namely boiling, water guard and pur purifier were assessed. ... Water is an indispensable resource for supporting life systems [2- ...... developing country context: improving decisions.

  8. Inhibition of trihalomethane formation in city water by radiation-ozone treatment and rapid composting of radiation disinfected sewage sludge

    International Nuclear Information System (INIS)

    Takehisa, M.; Arai, H.; Arai, M.

    1985-01-01

    Humic acid and Fulvic acid in natural water are precursors of carcinogenic THM which is formed during chlorine disinfection in city water processing. The radiation-oxidation process in the presence of ozone is effective to remove the precursors. The THM formation was reduced more than the decrease in TOC by the combination treatment. This is mainly due to a change in the chemical structure of the oxidation products. A composting of radiation disinfected sludge cake for agricultural reuse could be achieved within 3 days primary fermentation in a sewage plant. The rapid fermentation with use of radiation is effective to scale down of a fermentor of composting plant and the process reduces a health risk from the workers as well as final users. (author)

  9. Inhibition of trihalomethane formation in city water by radiation-ozone treatment and rapid composting of radiation disinfected sewage sludge

    Energy Technology Data Exchange (ETDEWEB)

    Takehisa, M; Arai, H; Arai, M

    1985-01-01

    Humic acid and Fulvic acid in natural water are precursors of carcinogenic THM which is formed during chlorine disinfection in city water processing. The radiation-oxidation process in the presence of ozone is effective to remove the precursors. The THM formation was reduced more than the decrease in TOC by the combination treatment. This is mainly due to a change in the chemical structure of the oxidation products. A composting of radiation disinfected sludge cake for agricultural reuse could be achieved within 3 days primary fermentation in a sewage plant. The rapid fermentation with use of radiation is effective to scale down a fermentor of a composting plant and the process reduces health risk for the workers as well as final users.

  10. Evaluating Evidence for Association of Human Bladder Cancer with Drinking-Water Chlorination Disinfection By-Products

    Science.gov (United States)

    Hrudey, Steve E.; Backer, Lorraine C.; Humpage, Andrew R.; Krasner, Stuart W.; Michaud, Dominique S.; Moore, Lee E.; Singer, Philip C.; Stanford, Benjamin D.

    2015-01-01

    Exposure to chlorination disinfection by-products (CxDBPs) is prevalent in populations using chlorination-based methods to disinfect public water supplies. Multifaceted research has been directed for decades to identify, characterize, and understand the toxicology of these compounds, control and minimize their formation, and conduct epidemiologic studies related to exposure. Urinary bladder cancer has been the health risk most consistently associated with CxDBPs in epidemiologic studies. An international workshop was held to (1) discuss the qualitative strengths and limitations that inform the association between bladder cancer and CxDBPs in the context of possible causation, (2) identify knowledge gaps for this topic in relation to chlorine/chloramine-based disinfection practice(s) in the United States, and (3) assess the evidence for informing risk management. Epidemiological evidence linking exposures to CxDBPs in drinking water to human bladder cancer risk provides insight into causality. However, because of imprecise, inaccurate, or incomplete estimation of CxDBPs levels in epidemiologic studies, translation from hazard identification directly to risk management and regulatory policy for CxDBPs can be challenging. Quantitative risk estimates derived from toxicological risk assessment for CxDBPs currently cannot be reconciled with those from epidemiologic studies, notwithstanding the complexities involved, making regulatory interpretation difficult. Evidence presented here has both strengths and limitations that require additional studies to resolve and improve the understanding of exposure response relationships. Replication of epidemiologic findings in independent populations with further elaboration of exposure assessment is needed to strengthen the knowledge base needed to better inform effective regulatory approaches. PMID:26309063

  11. Evaluating Evidence for Association of Human Bladder Cancer with Drinking-Water Chlorination Disinfection By-Products.

    Science.gov (United States)

    Hrudey, Steve E; Backer, Lorraine C; Humpage, Andrew R; Krasner, Stuart W; Michaud, Dominique S; Moore, Lee E; Singer, Philip C; Stanford, Benjamin D

    2015-01-01

    Exposure to chlorination disinfection by-products (CxDBPs) is prevalent in populations using chlorination-based methods to disinfect public water supplies. Multifaceted research has been directed for decades to identify, characterize, and understand the toxicology of these compounds, control and minimize their formation, and conduct epidemiologic studies related to exposure. Urinary bladder cancer has been the health risk most consistently associated with CxDBPs in epidemiologic studies. An international workshop was held to (1) discuss the qualitative strengths and limitations that inform the association between bladder cancer and CxDBPs in the context of possible causation, (2) identify knowledge gaps for this topic in relation to chlorine/chloramine-based disinfection practice(s) in the United States, and (3) assess the evidence for informing risk management. Epidemiological evidence linking exposures to CxDBPs in drinking water to human bladder cancer risk provides insight into causality. However, because of imprecise, inaccurate, or incomplete estimation of CxDBPs levels in epidemiologic studies, translation from hazard identification directly to risk management and regulatory policy for CxDBPs can be challenging. Quantitative risk estimates derived from toxicological risk assessment for CxDBPs currently cannot be reconciled with those from epidemiologic studies, notwithstanding the complexities involved, making regulatory interpretation difficult. Evidence presented here has both strengths and limitations that require additional studies to resolve and improve the understanding of exposure response relationships. Replication of epidemiologic findings in independent populations with further elaboration of exposure assessment is needed to strengthen the knowledge base needed to better inform effective regulatory approaches.

  12. Chemical disinfection of combined sewer overflow waters using performic acid or peracetic acids.

    Science.gov (United States)

    Chhetri, Ravi Kumar; Thornberg, Dines; Berner, Jesper; Gramstad, Robin; Öjstedt, Ulrik; Sharma, Anitha Kumari; Andersen, Henrik Rasmus

    2014-08-15

    We investigated the possibility of applying performic acid (PFA) and peracetic acid (PAA) for disinfection of combined sewer overflow (CSO) in existing CSO management infrastructures. The disinfection power of PFA and PAA towards Escherichia coli (E. coli) and Enterococcus was studied in batch-scale and pre-field experiments. In the batch-scale experiment, 2.5 mg L(-1) PAA removed approximately 4 log unit of E. coli and Enterococcus from CSO with a 360 min contact time. The removal of E. coli and Enterococcus from CSO was always around or above 3 log units using 2-4 mg L(-1) PFA; with a 20 min contact time in both batch-scale and pre-field experiments. There was no toxicological effect measured by Vibrio fischeri when CSO was disinfected with PFA; a slight toxic effect was observed on CSO disinfected with PAA. When the design for PFA based disinfection was applied to CSO collected from an authentic event, the disinfection efficiencies were confirmed and degradation rates were slightly higher than predicted in simulated CSO. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Disinfection Pilot Trial for Little Miami WWTP | Science ...

    Science.gov (United States)

    There is a serious interest growing nationally towards the use of PAA at various stages of public waste water treatment facilities; one of such use is secondary waste water treatment. MSDGC is currently interested in improving efficiency and economic aspects of waste water treatment. MSDGC requested for ORD’s support to evaluate alternative cost-effective disinfectants. This report herein is based on the data generated from the field pilot test conducted at the Little Miami Wastewater Treatment Plant. Chlorine assisted disinfection of wastewaters created the concern regarding the formation of high levels of toxic halogenated disinfection byproducts (DBPs) detrimental to aquatic life and public health. Peracetic acid is emerging as a green alternative to chlorine and claimed to have economic and social benefits. In addition, it is a relatively simple retrofit to the existing chlorine treated wastewater treatment facilities. PAA is appealed to possess a much lower aquatic toxicity profile than chlorine and decays rapidly in the environment, even if overdosed. As a result, PAA generally does not need a quenching step, such as dechlorination, reducing process complexity, sodium pollution and cost. PAA treatment does not result in the formation of chlorinated disinfection by-products such as trihalomethanes (THMs), haloacetic acids and other byproducts such as cyanide and n-Nitrosodimethylamine (NDMA).

  14. Evaluation of associations between lifetime exposure to drinking water disinfection by-products and bladder cancer in dogs.

    Science.gov (United States)

    Backer, Lorraine C; Coss, Angela M; Wolkin, Amy F; Flanders, W Dana; Reif, John S

    2008-06-01

    To assess the risk of bladder cancer in dogs from exposure to drinking water disinfection by-products and determine whether dogs could serve as sentinels for human bladder cancer associated with such exposures. Case-control study. 100 dogs with cancer of the urinary bladder and 100 control dogs. Case and control dogs were frequency-matched by age (within 2 years) and sex. Owners of dogs enrolled provided verbal informed consent and were interviewed by telephone. The telephone questionnaire included a complete residence history for each dog. Each dog's total exposure history to trihalomethanes was reconstructed from its residence history and corresponding drinking water utility company data. No association was detected between increasing years of exposure to chlorinated drinking water and risk of bladder cancer. Dogs with bladder cancer were exposed to higher total trihalomethanes concentrations than control dogs; however, the difference was not significant. Although humans and their dogs live in the same household, the activity patterns of dogs may lead to lower exposures to household tap water. Thus, although exposure to disinfection by-products in tap water may be a risk factor for human bladder cancer, this may not be true for canine bladder cancer at the concentrations at which dogs are exposed.

  15. Virus disinfection in water by biogenic silver immobilized in polyvinylidene fluoride membranes

    Energy Technology Data Exchange (ETDEWEB)

    Gusseme, B.D.; Fitts, J.; Hennebel, T.; Christiaens, E.; Saveyn, H.; Verbeken, K.; Boon, N.; Verstraete, W.

    2011-03-01

    The development of innovative water disinfection strategies is of utmost importance to prevent outbreaks of waterborne diseases related to poor treatment of (drinking) water. Recently, the association of silver nanoparticles with the bacterial cell surface of Lactobacillus fermentum (referred to as biogenic silver or bio-Ag{sup 0}) has been reported to exhibit antiviral properties. The microscale bacterial carrier matrix serves as a scaffold for Ag{sup 0} particles, preventing aggregation during encapsulation. In this study, bio-Ag{sup 0} was immobilized in different microporous PVDF membranes using two different pre-treatments of bio-Ag{sup 0} and the immersion-precipitation method. Inactivation of UZ1 bacteriophages using these membranes was successfully demonstrated and was most probably related to the slow release of Ag{sup +} from the membranes. At least a 3.4 log decrease of viruses was achieved by application of a membrane containing 2500 mg bio-Ag{sub powder}{sup 0} m{sup -2} in a submerged plate membrane reactor operated at a flux of 3.1 L m{sup -2} h{sup -1}. Upon startup, the silver concentration in the effluent initially increased to 271 {micro}g L{sup -1} but after filtration of 31 L m{sup -2}, the concentration approached the drinking water limit (= 100 {micro}g L{sup -1}). A virus decline of more than 3 log was achieved at a membrane flux of 75 L m{sup -2} h{sup -1}, showing the potential of this membrane technology for water disinfection on small scale. In biogenic silver, silver nanoparticles are attached to a bacterial carrier matrix. Bio-Ag{sup 0} was successfully immobilized in PVDF membranes using immersion-precipitation. The antiviral activity of this material was demonstrated in a plate membrane reactor. The antimicrobial mechanism was most probably related to the slow release of Ag{sup +} ions. The membranes can be applied for treatment of limited volumes of contaminated water.

  16. Effect of alginate chemical disinfection on bacterial count over gypsum cast

    OpenAIRE

    Haralur, Satheesh B.; Al-Dowah, Omir S.; Gana, Naif S.; Al-Hytham, Abdullah

    2012-01-01

    PURPOSE To evaluate the efficacy of sodium hypochlorite (1 : 10) and iodophor disinfectants on alginate impressions along with their effect on the survived bacterium count on the gypsum cast. MATERIALS AND METHODS Four alginate impression on each dentate patients were made, of which Group I were not washed or disinfected, Group II impressions were merely washed with water, Group III were disinfected by spraying with sodium hypochlorite (1 : 10), Group IV were disinfected with iodophor (1 : 21...

  17. Effectiveness of disinfectant wipes for decontamination of bacteria on patients' environmental and medical equipment surfaces at Siriraj Hospital.

    Science.gov (United States)

    Seenama, Chakkraphong; Tachasirinugune, Peenithi; Jintanothaitavorn, Duangporn; Kachintorn, Kanchana; Thamlikitkul, Visanu

    2013-02-01

    To determine the effectiveness of Virusolve+ disinfectant wipes and PAL disinfectant wipes for decontamination of inoculated bacteria on patients' environmental and medical equipment surfaces at Siriraj Hospital. Tryptic soy broths containing MRSA and XDR A. baumannii were painted onto the surfaces of patient's stainless steel bed rail, patient's fiber footboard, control panel of infusion pump machine and control panel of respirator. The contaminated surfaces were cleaned by either tap water, tap water containing detergent, Virusolve+ disinfectant wipes or PAL disinfectant wipes. The surfaces without any cleaning procedures served as the control surface. The contaminated surfaces cleaned with the aforementioned procedures and control surfaces were swabbed with cotton swabs. The swabs were streaked on agar plates to determine the presence of MRSA and XDR A. baumannii. MRSA and XDR A. baumannii were recovered from all control surfaces. All surfaces cleaned with tap water or tap water containing detergent revealed presence of both MRSA and XDR A. baumannii. However the amounts of bacteria on the surfaces cleaned with tap water containing detergent were less than those cleaned with tap water alone. All surfaces cleaned with PAL disinfectant wipes also revealed presence of both MRSA and XDR A. baumannii. However the amounts of bacteria on the surfaces cleaned with PAL disinfectant wipes were less than those cleaned with tap water containing detergent. No bacteria were recovered from all surfaces cleaned with Virusolve+ disinfectant wipes. Virusolve+ disinfectant wipes were more effective than tap water; tap water containing detergent and PAL disinfectant wipes for decontamination of bacteria inoculated on patients environmental and medical equipment surfaces at Siriraj Hospital.

  18. Less skin irritation from alcohol-based disinfectant than from detergent used for hand disinfection

    DEFF Research Database (Denmark)

    Pedersen, L K; Held, E; Johansen, J D

    2005-01-01

    and forearms of 17 healthy volunteers. A control area was included. After 4 weeks an SLS patch was applied to each area. Irritant reactions were quantified with a visual score recording and measurements of transepidermal water loss (TEWL) and skin colour were performed on days 1, 5, 11, 38 and 40. RESULTS...... was found on the disinfectant-treated area compared with the control area and detergent area, and a similar trend was found for TEWL, although it was not statistically significant. CONCLUSION: Alcohol-based disinfectant caused less visible skin irritation and less skin barrier disruption than the use...

  19. A Summary of Publications on the Development of Mode-of-Action Information and Statistical Tools for Evaluating Health Outcomes from Drinking Water Disinfection By-Product (DBP) Exposures

    Science.gov (United States)

    Chemical contaminants are formed as a consequence of chemical disinfection of public drinking waters. Chemical disinfectants, which are used to kill harmful microorganisms, react with natural organic matter (NOM), bromide, iodide, and other compounds, forming complex mixtures...

  20. EPIDEMIOLOGIC EVALUATION OF THE POTENTIAL ASSOCIATION BETWEEN EXPOSURE TO DRINKING WATER DISINFECTION BY-PRODUCTS (DBP) AND SEMEN QUALITY

    Science.gov (United States)

    Epidemiologic Evaluation of the Potential Association between Exposure to Drinking Water Disinfection By-Products and Semen Quality*Morris, R; +Olshan, A; +Lansdell, L; *Jeffay, S; *Strader, L; *Klinefelter, G; *Perreault, S.* U.S. EPA/ORD/NHEERL/RTD/GEEBB, Research ...

  1. Formation of trihalomethanes as disinfection byproducts in herbal spa pools.

    Science.gov (United States)

    Fakour, Hoda; Lo, Shang-Lien

    2018-04-09

    Herbal spa treatments are favorite recreational activities throughout the world. The water in spas is often disinfected to control pathogenic microorganisms and guarantee hygiene. However, chlorinated water may cause the formation of disinfection byproducts (DBPs). Although there have been many studies on DBP formation in swimming pools, the role of organic matter derived from herbal medicines applied in herbal spa water has been largely neglected. Accordingly, the present study investigated the effect of herbal medicines on the formation of trihalomethanes (THMs) in simulated herbal spa water. Water samples were collected from a spa pool, and then, disinfection and herbal addition experiments were performed in a laboratory. The results showed that the organic molecules introduced by the herbal medicines are significant precursors to the formation of THMs in spa pool water. Since at least 50% of THMs were produced within the first six hours of the reaction time, the presence of herbal medicines in spa water could present a parallel route for THM exposure. Therefore, despite the undeniable benefits of herbal spas, the effect of applied herbs on DBP formation in chlorinated water should be considered to improve the water quality and health benefits of spa facilities.

  2. Effect of Different Disinfection Protocols on Microbial and Biofilm Contamination of Dental Unit Waterlines in Community Dental Practices

    Directory of Open Access Journals (Sweden)

    Laura Dallolio

    2014-02-01

    Full Text Available Output water from dental unit waterlines (DUWLs may be a potential source of infection for both dental healthcare staff and patients. This study compared the efficacy of different disinfection methods with regard to the water quality and the presence of biofilm in DUWLs. Five dental units operating in a public dental health care setting were selected. The control dental unit had no disinfection system; two were disinfected intermittently with peracetic acid/hydrogen peroxide 0.26% and two underwent continuous disinfection with hydrogen peroxide/silver ions (0.02% and stabilized chlorine dioxide (0.22%, respectively. After three months of applying the disinfection protocols, continuous disinfection systems were more effective than intermittent systems in reducing the microbial contamination of the water, allowing compliance with the CDC guidelines and the European Council regulatory thresholds for drinking water. P. aeruginosa, Legionella spp, sulphite-reducing Clostridium spores, S. aureus and β-haemolytic streptococci were also absent from units treated with continuous disinfection. The biofilm covering the DUWLs was more extensive, thicker and more friable in the intermittent disinfection dental units than in those with continuous disinfection. Overall, the findings showed that the products used for continuous disinfection of dental unit waterlines showed statistically better results than the intermittent treatment products under the study conditions.

  3. Effect of different disinfection protocols on microbial and biofilm contamination of dental unit waterlines in community dental practices.

    Science.gov (United States)

    Dallolio, Laura; Scuderi, Amalia; Rini, Maria S; Valente, Sabrina; Farruggia, Patrizia; Sabattini, Maria A Bucci; Pasquinelli, Gianandrea; Acacci, Anna; Roncarati, Greta; Leoni, Erica

    2014-02-18

    Output water from dental unit waterlines (DUWLs) may be a potential source of infection for both dental healthcare staff and patients. This study compared the efficacy of different disinfection methods with regard to the water quality and the presence of biofilm in DUWLs. Five dental units operating in a public dental health care setting were selected. The control dental unit had no disinfection system; two were disinfected intermittently with peracetic acid/hydrogen peroxide 0.26% and two underwent continuous disinfection with hydrogen peroxide/silver ions (0.02%) and stabilized chlorine dioxide (0.22%), respectively. After three months of applying the disinfection protocols, continuous disinfection systems were more effective than intermittent systems in reducing the microbial contamination of the water, allowing compliance with the CDC guidelines and the European Council regulatory thresholds for drinking water. P. aeruginosa, Legionella spp, sulphite-reducing Clostridium spores, S. aureus and β-haemolytic streptococci were also absent from units treated with continuous disinfection. The biofilm covering the DUWLs was more extensive, thicker and more friable in the intermittent disinfection dental units than in those with continuous disinfection. Overall, the findings showed that the products used for continuous disinfection of dental unit waterlines showed statistically better results than the intermittent treatment products under the study conditions.

  4. Modelling of Disinfection by-products formation via UV irradiation of the water from Tajan River (source water for Sari drinking water, Iran

    Directory of Open Access Journals (Sweden)

    Allahbakhsh Javid

    2013-11-01

    Full Text Available Background & Aims of the Study Irradiation with ultraviolet light (UV is used for the disinfection of bacterial contaminants in the production of potable water. The main objective of the study was to investigate and model Disinfection By-Products (DBPs formation due to the UV Irradiation of the Tajan River water under different Irradiation conditions. Materials & Methods:  Water samples were collected throughout September 2011 to August 2013. Transportation of the sample to the laboratory was done on ice in a cooler, and physiochemical analysis was conducted immediately within one day. Dissolved organic carbon (DOC was determined by a TOC analyzer. Irradiation experiments were conducted in a series of 25 mL glass serum bottles with Teflon septa. The present study adopts an orthogonal design. The design involved irradiation with UV at a UV/DOC ratio of 0.5–3.0 and incubating (headspace-free storage for 5–25 sec. A 1 mM phosphate buffer maintained the pH at 6, 7, or 8 respectively, and an incubator maintained the temperature (Temp at 15, 20, or 25 °C respectively. The development of empirical models for DBPs formation used a multivariate regression procedure (stepwise which applied the SPSS System for Windows (Version 16.0. Results:  The results showed that the total DBPs formation ranged between 12.3 and 67.4 mg/l and that control of the levels was primarily due to the reaction time and the dissolved organic carbon level (DOC in the water. Conclusions:  Reaction time and level of DOC concentrations in water exerted a dominant influence on the formation of DBPs during the UV irradiation of water from the Tajan River. The relationships between the measured and predicted values were satisfactory with R 2 values ranging from 0.89 (for Octanal–0.92 (for Formaldehydes. The DOC level in water is the key factor in controlling DBPs formation.

  5. Water and Wastewater Disinfection with Peracetic Acid and UV Radiation and Using Advanced Oxidative Process PAA/UV

    Directory of Open Access Journals (Sweden)

    Jeanette Beber de Souza

    2015-01-01

    Full Text Available The individual methods of disinfection peracetic acid (PAA and UV radiation and combined process PAA/UV in water (synthetic and sanitary wastewater were employed to verify the individual and combined action of these advanced oxidative processes on the effectiveness of inactivation of microorganisms indicators of fecal contamination E. coli, total coliforms (in the case of sanitary wastewater, and coliphages (such as virus indicators. Under the experimental conditions investigated, doses of 2, 3, and 4 mg/L of PAA and contact time of 10 minutes and 60 and 90 s exposure to UV radiation, the results indicated that the combined method PAA/UV provided superior efficacy when compared to individual methods of disinfection.

  6. Enhanced formation of disinfection byproducts in shale gas wastewater-impacted drinking water supplies.

    Science.gov (United States)

    Parker, Kimberly M; Zeng, Teng; Harkness, Jennifer; Vengosh, Avner; Mitch, William A

    2014-10-07

    The disposal and leaks of hydraulic fracturing wastewater (HFW) to the environment pose human health risks. Since HFW is typically characterized by elevated salinity, concerns have been raised whether the high bromide and iodide in HFW may promote the formation of disinfection byproducts (DBPs) and alter their speciation to more toxic brominated and iodinated analogues. This study evaluated the minimum volume percentage of two Marcellus Shale and one Fayetteville Shale HFWs diluted by fresh water collected from the Ohio and Allegheny Rivers that would generate and/or alter the formation and speciation of DBPs following chlorination, chloramination, and ozonation treatments of the blended solutions. During chlorination, dilutions as low as 0.01% HFW altered the speciation toward formation of brominated and iodinated trihalomethanes (THMs) and brominated haloacetonitriles (HANs), and dilutions as low as 0.03% increased the overall formation of both compound classes. The increase in bromide concentration associated with 0.01-0.03% contribution of Marcellus HFW (a range of 70-200 μg/L for HFW with bromide = 600 mg/L) mimics the increased bromide levels observed in western Pennsylvanian surface waters following the Marcellus Shale gas production boom. Chloramination reduced HAN and regulated THM formation; however, iodinated trihalomethane formation was observed at lower pH. For municipal wastewater-impacted river water, the presence of 0.1% HFW increased the formation of N-nitrosodimethylamine (NDMA) during chloramination, particularly for the high iodide (54 ppm) Fayetteville Shale HFW. Finally, ozonation of 0.01-0.03% HFW-impacted river water resulted in significant increases in bromate formation. The results suggest that total elimination of HFW discharge and/or installation of halide-specific removal techniques in centralized brine treatment facilities may be a better strategy to mitigate impacts on downstream drinking water treatment plants than altering

  7. Occurrence of nitrogenous and carbonaceous disinfection byproducts in drinking water distributed in Shenzhen, China.

    Science.gov (United States)

    Huang, Huang; Zhu, Haihui; Gan, Wenhui; Chen, Xue; Yang, Xin

    2017-12-01

    A 12-month sampling program was conducted throughout a drinking water distribution system in Shenzhen and the data from 251 samples provide a comprehensive picture of the spatial and seasonal variability of 17 species disinfection by-products (DBPs) in a city with subtropical monsoon climate. The carbonaceous disinfection by-product (C-DBPs) included four trihalomethanes (THMs), three trihaloacetaldehydes (THAs) and two haloketones (HKs). Their median concentrations over the entire period were 19.9 μg/L, 3.4 μg/L and 1.4 μg/L, respectively. The nitrogenous DBPs (N-DBPs) monitored were four haloacetonitriles (HANs) and four haloacetamides (HAcAms). Their median levels were 2.0 μg/L and 1.5 μg/L, respectively. Low levels of brominated DBP species (bromine substitution factors ≤ 0.5) were observed. The BSF of each DBP class followed the trend: THMs ≈ DHAcAms > DHANs > THAs. All the DBP concentrations showed clear seasonal variations with the highest average concentrations in spring. Correlation analyses showed that the THMs and CH levels in Shenzhen drinking water could be used as statistical indicators of the levels of unregulated N-DBPs (0.4 water in China, and provide an important reference data set for DBP occurrence in cities with a subtropical monsoon climate around the world. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Electrochemical disinfection of simulated ballast water on PbO2/graphite felt electrode.

    Science.gov (United States)

    Chen, Shuiping; Hu, Weidong; Hong, Jianxun; Sandoe, Steve

    2016-04-15

    A novel PbO2/graphite felt electrode was constructed by electrochemical deposition of PbO2 on graphite felt and characterized by X-ray powder diffraction (XRD) and scanning electron microscopy (SEM) analysis. The prepared electrode is a viable technology for inactivation of Escherichia coli, Enterococcus faecalis, and Artemia salina as indicator organisms in simulated ballast water treatment, which meets the International Maritime Organization (IMO) Regulation D-2. The effects of contact time and current density on inactivation were investigated. An increase in current density generally had a beneficial effect on the inactivation of the three species. E.faecalis and A.salina were more resistant to electrochemical disinfection than E. coli. The complete disinfection of E.coli was achieved in <8min at an applied current density of 253A/m(2). Complete inactivation of E. faecalis and A.salina was achieved at the same current density after 60 and 40min of contact time, respectively. A. salina inactivation follows first-order kinetics. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. TiO{sub 2}-based photocatalytic disinfection of microbes in aqueous media: A review

    Energy Technology Data Exchange (ETDEWEB)

    Laxma Reddy, P.Venkata [Program in Environmental Science and Engineering, University of Texas El Paso, El Paso, TX 799038 (United States); Kavitha, Beluri [Department of Pharmacology, Kamineni Institute of Medical Sciences, Dr. NTRUHS, Vijayawada, Andhra Pradesh 520008 (India); Kumar Reddy, Police Anil [School of Chemical Engineering, Yeungnam University, Gyeongsan, Gyeongbuk 38541 (Korea, Republic of); Kim, Ki-Hyun, E-mail: kkim61@hanyang.ac.kr [Department of Civil & Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763 (Korea, Republic of)

    2017-04-15

    The TiO{sub 2} based photocatalyst has great potential for the disinfection/inactivation of harmful pathogens (such as E.coli in aqueous media) along with its well-known usefulness on various chemical pollutants. The disinfection property of TiO{sub 2} is primarily attributed to surface generation of reactive oxygen species (ROS) as well as free metal ions formation. Furthermore, its disinfection capacity and overall performance can be significantly improved through modifications of the TiO{sub 2} material. In this review, we provide a brief survey on the effect of various TiO{sub 2} materials in the disinfection of a wide range of environmentally harmful microbial pathogens (e.g., bacteria, fungi, algae, and viruses) in aqueous media. The influencing factors (such as reactor design, water chemistry, and TiO{sub 2} modifications) of such processes are discussed along with the mechanisms of such disinfection. It is believed that the combined application of disinfection and decontamination will greatly enhance the utilization of TiO{sub 2} photocatalyst as a potential alternative to conventional methods of water purification. - Highlights: • The advent of industrialization jeopardized the quality of drinking water. • TiO{sub 2} photocatalysis holds promise both in the degradation of pollutants and for disinfection. • The applicability of TiO{sub 2}-based decontamination is explored for microbial disinfection. • Here we provide a comprehensive review on titania-based photocatalysts for disinfection.

  10. Candida auris: Disinfectants and Implications for Infection Control.

    Science.gov (United States)

    Ku, Tsun S N; Walraven, Carla J; Lee, Samuel A

    2018-01-01

    Candida auris is a rapidly emerging pathogen and is able to cause severe infections with high mortality rates. It is frequently misidentified in most clinical laboratories, thus requiring more specialized identification techniques. Furthermore, several clinical isolates have been found to be multidrug resistant and there is evidence of nosocomial transmission in outbreak fashion. Appropriate infection control measures will play a major role in controlling the management and spread of this pathogen. Unfortunately, there are very few data available on the effectiveness of disinfectants against C. auris . Chlorine-based products appear to be the most effective for environmental surface disinfection. Other disinfectants, although less effective than chlorine-based products, may have a role as adjunctive disinfectants. A cleaning protocol will also need to be established as the use of disinfectants alone may not be sufficient for maximal decontamination of patient care areas. Furthermore, there are fewer data on the effectiveness of antiseptics against C. auris for patient decolonization and hand hygiene for healthcare personnel. Chlorhexidine gluconate has shown some efficacy in in vitro studies but there are reports of patients with persistent colonization despite twice daily body washes with this disinfectant. Hand hygiene using soap and water, with or without chlorhexidine gluconate, may require the subsequent use of alcohol-based hand sanitizer for maximal disinfection. Further studies will be needed to validate the currently studied disinfectants for use in real-world settings.

  11. Chemical disinfection of combined sewer overflow waters using performic acid or peracetic acids

    DEFF Research Database (Denmark)

    Chhetri, Ravi Kumar; Thornberg, Dines; Berner, Jesper

    2014-01-01

    We investigated the possibility of applying performic acid (PFA) and peracetic acid (PAA) for disinfection of combined sewer overflow (CSO) in existing CSO management infrastructures. The disinfection power of PFA and PAA towards Escherichia coli (E. coli) and Enterococcus was studied in batch......-scale and pre-field experiments. In the batch-scale experiment, 2.5 mg L− 1 PAA removed approximately 4 log unit of E. coli and Enterococcus from CSO with a 360 min contact time. The removal of E. coli and Enterococcus from CSO was always around or above 3 log units using 2–4 mg L− 1 PFA; with a 20 min contact...... time in both batch-scale and pre-field experiments. There was no toxicological effect measured by Vibrio fischeri when CSO was disinfected with PFA; a slight toxic effect was observed on CSO disinfected with PAA. When the design for PFA based disinfection was applied to CSO collected from an authentic...

  12. In situ disinfection of sewage contaminated shallow groundwater: a feasibility study.

    Science.gov (United States)

    Bailey, Morgan M; Cooper, William J; Grant, Stanley B

    2011-11-01

    Sewage-contaminated shallow groundwater is a potential cause of beach closures and water quality impairment in marine coastal communities. In this study we set out to evaluate the feasibility of several strategies for disinfecting sewage-contaminated shallow groundwater before it reaches the coastline. The disinfection rates of Escherichia coli (EC) and enterococci bacteria (ENT) were measured in mixtures of raw sewage and brackish shallow groundwater collected from a coastal community in southern California. Different disinfection strategies were explored, ranging from benign (aeration alone, and aeration with addition of brine) to aggressive (chemical disinfectants peracetic acid (PAA) or peroxymonosulfate (Oxone)). Aeration alone and aeration with brine did not significantly reduce the concentration of EC and ENT after 6 h of exposure, while 4-5 mg L(-1) of PAA or Oxone achieved >3 log reduction after 15 min of exposure. Oxone disinfection was more rapid at higher salinities, most likely due to the formation of secondary oxidants (e.g., bromine and chlorine) that make this disinfectant inappropriate for marine applications. Using a Lagrangian modeling framework, we identify several factors that could influence the performance of in-situ disinfection with PAA, including the potential for bacterial regrowth, and the non-linear dependence of disinfection rate upon the residence time of water in the shallow groundwater. The data and analysis presented in this paper provide a framework for evaluating the feasibility of in-situ disinfection of shallow groundwater, and elucidate several topics that warrant further investigation. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Health impact assessment of Solar Disinfection (SODIS) of drinking water in three African countries

    CSIR Research Space (South Africa)

    du Preez, M

    2010-09-01

    Full Text Available in the form of diarrhoea. Globally diarrhoea ranks as the second largest cause of morbidity (UNICEF/WHO, 2009). One in five deaths in children is caused by diarrhoea bringing the number to a staggering 1.5 million children each year (UNICEF/WHO, 2009...

  14. Combining Mass Spectrometry and Toxicology for a Multi-Country European Epidemiologic Study on Drinking Water Disinfection By-Products

    Science.gov (United States)

    The HiWATE (Health Impacts of long-term exposure to disinfection by-products in drinking WATEr) project is the first systematic analysis that combines the epidemiology on adverse pregnancy outcomes with analytical chemistry and analytical biology in the European Union. This study...

  15. Reduction of Acid-Fast and Non-Acid-Fast Bacteria by Point of Use Coagulation-Flocculation-Disinfection

    Directory of Open Access Journals (Sweden)

    Lisa M. Casanova

    2015-11-01

    Full Text Available Point of use (POU household water treatment is increasingly being adopted as a solution for access to safe water. Non-tuberculous Mycobacteria (NTM are found in water, but there is little research on whether NTM survive POU treatment. Mycobacteria may be removed by multi-barrier treatment systems that combine processes such as coagulation, settling and disinfection. This work evaluated removal of a non-tuberculous Mycobacterium (Mycobaterium terrae and a Gram-negative non-acid-fast environmental bacterium (Aeromonas hydrophila by combined coagulation-flocculation disinfection POU treatment. Aeromonas hydrophila showed 7.7 log10 reduction in demand free buffer, 6.8 log10 in natural surface water, and 4 log10 reduction in fecally contaminated surface water. Turbidity after treatment was <1 NTU. There was almost no reduction in levels of viable M. terrae by coagulant-flocculant-disinfectant in natural water after 30 minutes. The lack of Mycobacteria reduction was similar for both combined coagulant-flocculant-disinfectant and hypochlorite alone. A POU coagulant-flocculant-disinfectant treatment effectively reduced A. hydrophila from natural surface waters but not Mycobacteria. These results reinforce previous findings that POU coagulation-flocculation-disinfection is effective against gram-negative enteric bacteria. POU treatment and safe storage interventions may need to take into account risks from viable NTM in treated stored water and consider alternative treatment processes to achieve NTM reductions.

  16. Disinfection of herbal spa pool using combined chlorine dioxide and sodium hypochlorite treatment.

    Science.gov (United States)

    Hsu, Ching-Shan; Huang, Da-Ji

    2015-02-01

    The presence of pathogenic microorganisms in public spa pools poses a serious threat to human health. The problem is particularly acute in herbal spas, in which the herbs and microorganisms may interact and produce undesirable consequences. Accordingly, the present study investigated the effectiveness of a combined disinfectant containing chlorine dioxide and sodium hypochlorite in improving the water quality of a public herbal spa in Taiwan. Water samples were collected from the spa pool and laboratory tests were then performed to measure the variation over time of the microorganism content (total CFU and total coliforms) and residual disinfectant content given a single disinfection mode (SDM) with disinfectant concentrations of 5.2 × 10, 6.29 × 10, 7.4 × 10, and 11.4 × 10(-5) N, respectively. Utilizing the experience gained from the laboratory tests, a further series of on-site investigations was performed using three different disinfection modes, namely SDM, 3DM (once every 3 h disinfection mode), and 2DM (once every 2 h disinfection mode). The laboratory results showed that for all four disinfectant concentrations, the CFU concentration reduced for the first 6 h following SDM treatment, but then increased. Moreover, the ANOVA results showed that the sample treated with the highest disinfectant concentration (11.4 × 10(-5) N) exhibited the lowest rate of increase in the CFU concentration. In addition, the on-site test results showed that 3DM and 2DM treatments with disinfectant concentrations in excess of 9.3 × 10 and 5.5 × 10(-5) N, respectively, provided an effective reduction in the total CFU concentration. In conclusion, the experimental results presented in this study provide a useful source of reference for spa businesses seeking to improve the water quality of their spa pools.

  17. Disinfection potential of ozone, ultraviolet-C and their combination in wash water for the fresh-cut vegetable industry.

    Science.gov (United States)

    Selma, María V; Allende, Ana; López-Gálvez, Francisco; Conesa, María A; Gil, María I

    2008-09-01

    The purpose of this research was to investigate the disinfection efficacy of ozone (O(3)) and UV-C illumination (UV), and their combination (O(3)-UV) for reducing microbial flora of fresh-cut onion, escarole, carrot, and spinach wash waters collected from the industry. Furthermore, the influence of water physicochemical parameters on the decontamination efficacy and the effect of these technologies on physicochemical quality of wash water were analyzed. O(3), UV, and O(3)-UV were effective disinfection treatments on vegetable wash water, with a maximum microbial reduction of 6.6 log CFU mL(-1) after 60 min treatment with O(3)-UV. However, maximum total microbial reductions achieved by UV and O(3) treatments after 60 min were 4.0 and 5.9 log CFU mL(-1), lower than by O(3)-UV treatment. Furthermore, turbidity of wash water was reduced significantly by O(3) and O(3)-UV treatments, while UV treatment did not affect the physicochemical quality of the water. Conclusions derived from this study illustrate that O(3) and O(3)-UV are alternatives to other sanitizers used in the fresh-cut washing processes. The use of these technologies would allow less frequent changing of spent water and the use of much lower sanitizer doses. Nevertheless, in specific applications such as carrot wash water, where levels of undesirable microbial and chemical constituents are lower than other vegetable wash water, UV treatment could be an appropriate treatment considering cost-effectiveness criteria.

  18. Disinfection byproduct formation from chlorination of pure bacterial cells and pipeline biofilms.

    Science.gov (United States)

    Wang, Jun-Jian; Liu, Xin; Ng, Tsz Wai; Xiao, Jie-Wen; Chow, Alex T; Wong, Po Keung

    2013-05-15

    Disinfection byproduct (DBP) formation is commonly attributed to the reaction between natural organic matters and disinfectants, yet few have considered the contribution from disinfecting bacterial materials - the essential process of water disinfection. Here, we explored the DBP formation from chlorination and chloramination of Escherichia coli and found that most selected DBPs were detectable, including trihalomethanes, haloacetonitriles, chloral hydrate, chloropicrin, and 1,1,1-trichloro-2-propanone. A positive correlation (P = 0.08-0.09) between DBP formation and the log reduction of E. coli implied that breaking down of bacterial cells released precursors for DBP formation. As Pseudomonas aeruginosa is a dominant bacterial species in pipeline biofilms, the DBP formation potentials (DBPFPs) from its planktonic cells and biofilms were characterized. Planktonic cells formed 7-11 times greater trihalomethanes per carbon of those from biofilms but significantly lower (P biofilms on polyvinyl chloride compared to that on galvanized zinc. This study revealed both the in situ disinfection of bacterial planktonic cells in source water and ex situ reaction between biofilms and residual chlorine in pipeline networks as hitherto unknown DBP sources in drinking water. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Quantification of Helicobacter pylori in the viable but nonculturable state by quantitative PCR in water disinfected with ozone.

    Science.gov (United States)

    Casasola-Rodríguez, B; Orta de Velásquez, M T; Luqueño-Martínez, V G; Monje-Ramírez, I

    2013-01-01

    Helicobacter pylori is a Gram-negative spiral-shaped bacterium that colonizes the gastric mucosa and is associated with gastric diseases. It may present a morphological adaptation when it is out of its natural environment, such as in water. The morphological adaptation is a coccoid form, which is a viable but non-culturable state (VNC) in which the DNA remains active and therefore infective. Due to the impossibility of culture by traditional methods in the VNC state, we developed a methodology that includes a molecular technique, quantitative polymerase chain reaction (qPCR), which is capable of measuring the bacteria in both forms (helical and coccoidal) and therefore is able to measure a disinfection process and to estimate the resistance of the bacteria to ozone. The methodology developed measures the efficiency of the ozone disinfection when bacteria are in a VNC state only. Bacterial culture at 9 × 10(8)CFU/mL diluted in 40 mL reaction volumes were exposed to a wide range of CT values (0.11-15 mg min/L). The results show a 3.92-log reduction when treated with 15 mg min/L. Our results demonstrate the feasibility of using qPCR for the quantification and detection of H. pylori, in coccoid form, in water systems treated with an ozone disinfection process.

  20. Application of an electrochemical chlorine-generation system combined with solar energy as appropriate technology for water disinfection.

    Science.gov (United States)

    Choi, Jusol; Park, Chan Gyu; Yoon, Jeyong

    2013-02-01

    Affordable water disinfection is key to reducing the waterborne disease experienced worldwide where resources are limited. A simple electrochemical system that can generate chlorine as a disinfectant from the electrolysis of sodium chloride is an appropriate technology to produce clean water, particularly if driven by solar energy. This study examined the affordability of an electrochemical chlorine generation system using solar energy and developed the necessary design information for its implementation. A two-electrode batch reactor, equipped with commercial IrO(2)-coated electrodes and a solar panel (approximate area 0.2 m(2)), was used to produce chlorine from a 35g/L solution of NaCl. Within 1 h, sufficient chlorine (0.8 g) was generated to produce clean drinking water for about 80 people for 1 day (target microorganism: Escherichia coli; daily drinking water requirement: 2 L per person; chlorine demand: 4 mg/L; solar power: 650 W/m(2) in Seoul, Korea. Small household batteries were demonstrated to be a suitable alternative power source when there is insufficient solar irradiation. Using a 1 m(2) solar panel, the reactor would take only 15 min in Seoul, Korea, or 7 min in the tropics (solar power 1300 W/m(2)), to generate 1 g of chlorine. The solar-powered electrochemical chlorine generation system for which design information is provided here is a simple and affordable way to produce chlorine with which to convert contaminated water into clean drinking water.

  1. Candida auris: Disinfectants and Implications for Infection Control

    Directory of Open Access Journals (Sweden)

    Tsun S. N. Ku

    2018-04-01

    Full Text Available Candida auris is a rapidly emerging pathogen and is able to cause severe infections with high mortality rates. It is frequently misidentified in most clinical laboratories, thus requiring more specialized identification techniques. Furthermore, several clinical isolates have been found to be multidrug resistant and there is evidence of nosocomial transmission in outbreak fashion. Appropriate infection control measures will play a major role in controlling the management and spread of this pathogen. Unfortunately, there are very few data available on the effectiveness of disinfectants against C. auris. Chlorine-based products appear to be the most effective for environmental surface disinfection. Other disinfectants, although less effective than chlorine-based products, may have a role as adjunctive disinfectants. A cleaning protocol will also need to be established as the use of disinfectants alone may not be sufficient for maximal decontamination of patient care areas. Furthermore, there are fewer data on the effectiveness of antiseptics against C. auris for patient decolonization and hand hygiene for healthcare personnel. Chlorhexidine gluconate has shown some efficacy in in vitro studies but there are reports of patients with persistent colonization despite twice daily body washes with this disinfectant. Hand hygiene using soap and water, with or without chlorhexidine gluconate, may require the subsequent use of alcohol-based hand sanitizer for maximal disinfection. Further studies will be needed to validate the currently studied disinfectants for use in real-world settings.

  2. Zeolites modified with silver for the development of a water disinfection system; Zeolitas modificadas con plata para el desarrollo de un sistema de desinfeccion de agua

    Energy Technology Data Exchange (ETDEWEB)

    Aparicio V, S.

    2013-07-01

    In spite of great strides that have been taken in sanitation technologies, there still exist health problems due to microbiological contamination by water. The waterborne diseases have not been completely eradicated and are a big problem of economic interest and health. Moreover, the microbicidal properties of silver have been used for a long time. The use of silver as a disinfectant has many advantages; for example it inhibits a wide spectrum of microorganisms, it has oligo dynamic properties and owing its mechanisms of cell inactivation, it also does not allow the emergence of new resistant strains. In the present research, the kinetics of water disinfection with silver has been investigated, to develop small system for water disinfection, based in silver modified Mexican clinoptilolite. The chemical species of silver play a significant role in the disinfection processes. For this reason, in this work, were both the Ag{sup +} and nanoparticles of Ag{sup ο} considered. The synthesis of nanoparticles of Ag{sup ο} woes performed by thermal and chemical reduction. It was found that the chemical reduction of Ag{sup +} to Ag{sup ο} was more efficient because it presented more defined nano structures and better distribution than those of thermal reduction. Clinoptilolite of Taxco (Guerrero) was chosen to exchange the native ions from the clinoptilolite by Ag{sup +} from the aqueous medium, or to deposit the nanoparticles of Ag{sup ο} on this surface. These silver modified zeolitic materials were characterized by scanning electron microscopy (Sem), elemental analyses (EDS), X-ray diffraction (XRD) and neutron activation analysis (NAA). The results showed that the crystallographic structure of the clinoptilolite did not change during thermal and chemical reduction treatments of Ag{sup +} to obtain the nanoparticles of Ag{sup ο}. The bactericide activity of the silver modified zeolitic materials (with Ag{sup +} or nanoparticles of Ag{sup ο}) was evaluated on

  3. Solar light (hv) and H2O2/hv photo-disinfection of natural alkaline water (pH 8.6) in a compound parabolic collector at different day periods in Sahelian region.

    Science.gov (United States)

    Ndounla, J; Pulgarin, C

    2015-11-01

    The photo-disinfection of natural alkaline surface water (pH 8.6 ± 0.3) for drinking purposes was carried out under solar radiation treatments. The enteric bacteria studied were the wild total coliforms/Escherichia coli (10(4) CFU/ml) and Salmonella spp. (10(4) CFU/ml) naturally present in the water. The photo-disinfection of a 25-l water sample was carried out in a solar compound parabolic collector (CPC) in the absence and in the presence of hydrogen peroxide (H2O2). The addition of H2O2 (10 mg/L) to the sample water was sufficient to enhance the photo-disinfection and ensure an irreversible lethal action on the wild enteric bacteria contents of the sample. The inactivation kinetic of the system was significantly enhanced compared to the one carried out without H2O2 addition. The effect of the solar radiation parameters on the efficiency of the photo-disinfection were assessed. The pH has increased during the treatment in all the photo-disinfection processes (hv and H2O2/hv). The Salmonella spp strain has shown the best effective inactivate time in alkaline water than the one recorded under acidic or near-neutral conditions. The evolution of some physico-chemical parameters of the water (turbidity, NO2(-), NO3(-), NH4(+), HPO4(2-), and bicarbonate (HCO3(-))) was monitored during the treatment. Finally, the possible mechanistic process involved during the enteric bacteria inactivation was suggested.

  4. Disinfection studies of Nahar (Mesua ferrea) seed kernel oil using ...

    African Journals Online (AJOL)

    GREGORY

    2011-12-16

    Dec 16, 2011 ... with a k value of -0.040. Key words: Nahar (Mesua ferrea) seed kernel oil, extraction, gum Arabic, disinfection, kinetics. INTRODUCTION. Disinfection plays a key role in the reclamation and reuse of wastewater for eliminating infectious diseases, this, in part, augments domestic water supply and decreases ...

  5. Characterization of soluble microbial products as precursors of disinfection byproducts in drinking water supply.

    Science.gov (United States)

    Liu, Jin-Lin; Li, Xiao-Yan; Xie, Yue-Feng; Tang, Hao

    2014-02-15

    Water pollution by wastewater discharge can cause the problem of disinfection byproducts (DBPs) in drinking water supply. In this study, DBP formation characteristics of soluble microbial products (SMPs) as the main products of wastewater organic biodegradation were investigated. The results show that SMPs can act as DBP precursors in simulated wastewater biodegradation process. Under the experimental conditions, stabilized SMPs had DBPFP (DBP formation potential) yield of around 5.6 μmol mmol(-1)-DOC (dissolved organic carbon) and DBP speciation profile different from that of the conventional precursor, natural organic matter (NOM). SMPs contained polysaccharides, proteins, and humic-like substances, and the latter two groups can act as reactive DBP precursors. SMP fraction with molecular weight of water treatment processes, more efforts are needed to control wastewater-derived DBP problem in water resource management. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Peracetic acid as an alternative disinfection technology for wet weather flows.

    Science.gov (United States)

    Coyle, Elizabeth E; Ormsbee, Lindell E; Brion, Gail M

    2014-08-01

    Rain-induced wet weather flows (WWFs) consist of combined sewer overflows, sanitary sewer overflows, and stormwater, all of which introduce pathogens to surface waters when discharged. When people come into contact with the contaminated surface water, these pathogens can be transmitted resulting in severe health problems. As such, WWFs should be disinfected. Traditional disinfection technologies are typically cost-prohibitive, can yield toxic byproducts, and space for facilities is often limited, if available. More cost-effective alternative technologies, requiring less space and producing less harmful byproducts are currently being explored. Peracetic acid (PAA) was investigated as one such alternative and this research has confirmed the feasibility and applicability of using PAA as a disinfectant for WWFs. Peracetic acid doses ranging from 5 mg/L to 15 mg/L over contact times of 2 to 10 minutes were shown to be effective and directly applicable to WWF disinfection.

  7. TiO2-based photocatalytic disinfection of microbes in aqueous media: A review.

    Science.gov (United States)

    Laxma Reddy, P Venkata; Kavitha, Beluri; Kumar Reddy, Police Anil; Kim, Ki-Hyun

    2017-04-01

    The TiO 2 based photocatalyst has great potential for the disinfection/inactivation of harmful pathogens (such as E.coli in aqueous media) along with its well-known usefulness on various chemical pollutants. The disinfection property of TiO 2 is primarily attributed to surface generation of reactive oxygen species (ROS) as well as free metal ions formation. Furthermore, its disinfection capacity and overall performance can be significantly improved through modifications of the TiO 2 material. In this review, we provide a brief survey on the effect of various TiO 2 materials in the disinfection of a wide range of environmentally harmful microbial pathogens (e.g., bacteria, fungi, algae, and viruses) in aqueous media. The influencing factors (such as reactor design, water chemistry, and TiO 2 modifications) of such processes are discussed along with the mechanisms of such disinfection. It is believed that the combined application of disinfection and decontamination will greatly enhance the utilization of TiO 2 photocatalyst as a potential alternative to conventional methods of water purification. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. UV DISINFECTION GUIDANCE MANUAL FOR THE ...

    Science.gov (United States)

    Provides technical information on selection, design and operation of UV systems; provides regulatory agencies with guidance and the necessary tools to assess UV systems at the design, start-up, and routine operation phase; provides manufacturers with the testing and performance standards for UV components and systems for treating drinking water. Provide guidance to water systems, regulators and manufacturers on UV disinfection of drinking water.

  9. Models for estimation of the presence of non-regulated disinfection by-products in small drinking water systems.

    Science.gov (United States)

    Guilherme, Stéphanie; Rodriguez, Manuel J

    2017-10-23

    Among all the organic disinfection by-products (DBPs), only trihalomethanes (THMs) and haloacetic acids (HAAs) are regulated in drinking water, while most DBPs are not. Very little information exists on the occurrence of non-regulated DBPs, particularly in small water systems (SWS). Paradoxically, SWS are more vulnerable to DBPs because of a low capacity to implement adequate treatment technologies to remove DBP precursors. Since DBP analyses are expensive, usually SWS have difficulties to implement a rigorous characterization of these contaminants. The purpose of this study was to estimate non-regulated DBP levels in SWS from easy measurements of relevant parameters regularly monitored. Since no information on non-regulated DBPs in SWS was available, a sampling program was carried out in 25 SWS in two provinces of Canada. Five DBP families were investigated: THMs, HAAs, haloacetonitriles (HANs), halonitromethanes (HNMs), and haloketones (HKs). Multivariate linear mixed regression models were developed to estimate HAN, HK, and HNM levels from water quality characteristics in the water treatment plant, concentrations of regulated DBPs, and residual disinfectant levels. The models obtained have a good explanatory capacity since R 2 varies from 0.77 to 0.91 according to compounds and conditions for application (season and type of treatment). Model validation with an independent database suggested their ability for generalization in similar SWS in North America.

  10. DOES MICRO LC/MS OFFER ADVANTAGES OVER CONVENTIONAL LC/MS IN IDENTIFYING DISINFECTION BY-PRODUCTS

    Science.gov (United States)

    Lower maximum contaminant levels (MCLs) of disinfection by-products were set for drinking water municipalities by the Stage 1 DBP Rule in November, 1998. With these new regulations, additional water treatment plants are expected to choose alternative disinfectants to chlorine. Al...

  11. The placing of the disinfection stage in a reclamation plant to reduce haloform formation

    Energy Technology Data Exchange (ETDEWEB)

    Hart, O O

    1979-10-01

    Chlorination of water containing organic matter leads to the formation of various volatile halogenated hydrocarbons (VHH). Various process configurations of a water reclamation plant were studied to determine the best position of the primary disinfection stage in the plant to achieve the greatest possible reduction of haloform concentration in the water distribution system. The pros and cons of ozone and chlorine as disinfectants were also investigated. Experiment methodology is explained. Results indicate that breakpoint chlorination ahead of two active carbon adsorption stages is the preferred process sequence and disinfectant to assure the lowest possible VHH production in the distribution system. (3 diagrams, 1 drawing, 8 graphs, 54 references, 2 tables)

  12. Evaluation of 5 Cleaning and Disinfection Methods for Nets Used to Collect Zebrafish (Danio rerio)

    OpenAIRE

    Collymore, Chereen; Porelli, Gina; Lieggi, Christine; Lipman, Neil S

    2014-01-01

    Few standardized methods of cleaning and disinfecting equipment in zebrafish facilities have been published, even though the effectiveness of these procedures is vital to preventing the transmission of pathogenic organisms. Four chemical disinfectants and rinsing with municipal tap water were evaluated for their ability to disinfect nets used to capture zebrafish. The disinfectants included benzalkonium chloride+methylene blue, sodium hypochlorite, chlorine dioxide, and potassium peroxymonosu...

  13. An EPR study on wastewater disinfection by peracetic acid, hydrogen peroxide and UV irradiation.

    Science.gov (United States)

    Bianchini, Roberto; Calucci, Lucia; Caretti, Cecilia; Lubello, Claudio; Pinzino, Calogero; Piscicelli, Michela

    2002-09-01

    EPR spectroscopy was applied to obtain qualitative and quantitative information on the radicals produced in disinfection processes of wastewater for agricultural reuse. The DEPMPO spin trap was employed to detect hydroxyl and carbon-centered short living radicals in two different peracetic acid solutions and a hydrogen peroxide solution used for water disinfection either in the absence or in the presence of UV-C irradiation. Moreover, three different kinds of water (wastewater, demineralized water, distilled water) were analysed in order to assess the contribution of Fenton reactions to the radical production. The spectroscopic results were discussed in relation to the efficiency of the different oxidizing agents and UV irradiation in wastewater disinfection evaluated as Escherichia Coli, Faecal and Total Coliforms inactivation.

  14. Chlorine dioxide oxidation of Escherichia coli in water - A study of the disinfection kinetics and mechanism.

    Science.gov (United States)

    Ofori, Isaac; Maddila, Suresh; Lin, Johnson; Jonnalagadda, Sreekantha B

    2017-06-07

    This study investigated the kinetics and mechanism of chlorine dioxide (ClO 2 ) inactivation of a Gram-negative bacteria Escherichia coli (ATCC 35218) in oxidant demand free (ODF) water in detail as a function of disinfectant concentration (0.5-5.0 mg/L), water pH (6.5-8.5), temperature variations (4-37°C) and bacterial density (10 5 -10 7 cfu/mL). The effects of ClO 2 on bacterial cell morphology, outer membrane permeability, cytoplasmic membrane disruption and intracellular enzymatic activity were also studied to elucidate the mechanism of action on the cells. Increasing temperature and disinfectant concentration were proportional to the rate of cell killing, but efficacy was found to be significantly subdued at 0.5 mg/L and less dependent on the bacterial density. The bactericidal efficiency was higher at alkaline pH of 8 or above as compared to neutral and slightly acidic pH of 7 and 6.5 respectively. The disinfection kinetic curves followed a biphasic pattern of rapid inactivation within the initial 2 min which were followed by a tailing even in the presence of residual biocide. The curves were adequately described by the C avg Hom model. Transmission Electron Microscopy images of the bacteria cells exposed to lethal concentrations of ClO 2 indicated very little observable morphological damage to the outer membranes of the cells. ClO 2 however was found to increase the permeability of the outer and cytoplasmic membranes leading to the leakage of membrane components such as 260 nm absorbing materials and inhibiting the activity of the intracellular enzyme β-D-galactosidase. It is suggested that the disruption of the cytoplasmic membrane and subsequent efflux of intracellular components result in the inactivation of the Gram-negative bacteria.

  15. Disinfection efficacy of chlorine and peracetic acid alone or in combination against Aspergillus spp. and Candida albicans in drinking water.

    Science.gov (United States)

    Sisti, Maurizio; Brandi, Giorgio; De Santi, Mauro; Rinaldi, Laura; Schiavano, Giuditta F

    2012-03-01

    The aim of the present study was to evaluate the fungicidal activity of chlorine and peracetic acid in drinking water against various pathogenic Aspergillus spp. and Candida albicans strains. A. nidulans exhibited the greatest resistance, requiring 10 ppm of chlorine for 30 min contact time for a complete inactivation. Under the same experimental conditions, peracetic acid was even less fungicidal. In this case, A. niger proved to be the most resistant species (50 ppm for 60 min for complete inactivation). All Aspergillus spp. were insensitive to 10 ppm even with extended exposure (>5 h). The combination of chlorine and peracetic acid against Aspergillus spp. did not show synergistic effects except in the case of A. flavus. Complete growth inhibition of C. albicans was observed after about 3 h contact time with 0.2 ppm. C. albicans was less sensitive to peracetic acid. Hence the concentrations of chlorine that are usually present in drinking water distribution systems are ineffective against several Aspergillus spp. and peracetic acid cannot be considered an alternative to chlorine for disinfecting drinking water. The combination of the two biocides is not very effective in eliminating filamentous fungi at the concentrations permitted for drinking water disinfection.

  16. Detection of genotoxic effects of drinking water disinfection by-products using Vicia faba bioassay.

    Science.gov (United States)

    Hu, Yu; Tan, Li; Zhang, Shao-Hui; Zuo, Yu-Ting; Han, Xue; Liu, Na; Lu, Wen-Qing; Liu, Ai-Lin

    2017-01-01

    Plant-based bioassays have gained wide use among the toxicological and/or ecotoxicological assessment procedures because of their simplicity, sensitivity, low cost, and reliability. The present study describes the use of Vicia faba (V. faba) micronucleus (MN) test and V. faba comet assay in the evaluation of the genotoxic potential of disinfection by-products (DBPs) commonly found in chlorine-disinfected drinking water. Five haloacetic acids and three halogenated acetonitriles were chosen as representatives of DBPs in this study because they are of potentially great public health risk. Results of the MN test indicated that monochloroacetic acid (MCA), monobromoacetic acid (MBA), dichloroacetic acid (DCA), dibromoacetic acid (DBA), trichloroacetic acid (TCA), and trichloroacetonitrile (TCAN) caused a statistically significant increase in MN frequency in V. faba root tip cells. However, no genotoxic response was observed for dichloroacetonitrile (DCAN) and dibromoacetonitrile (DBAN). Results of the comet assay showed that all tested DBPs induced a statistically significant increase in genomic DNA damage to V. faba root tip cells. On considering the capacity to detect genomic damage of a different nature, we suggest that a combination of V. faba MN test and V. faba comet assay is a useful tool for the detection of genotoxic effects of DBPs. It is worthy of assessing the feasibility of using V. faba comet assay combined with V. faba MN test to screen for the genotoxic activity of chlorinated drinking water in future work.

  17. Comparison of UV-LED and low pressure UV for water disinfection: Photoreactivation and dark repair of Escherichia coli.

    Science.gov (United States)

    Li, Guo-Qiang; Wang, Wen-Long; Huo, Zheng-Yang; Lu, Yun; Hu, Hong-Ying

    2017-12-01

    Studies on ultraviolet light-emitting diode (UV-LED) water disinfection have shown advantages, such as safety, flexible design, and lower starting voltages. However, information about reactivation after UV-LED disinfection is limited, which is an important issue of UV light-based technology. In this study, the photoreactivation and dark repair of Escherichia coli after UV-LEDs and low pressure (LP) UV disinfection were compared. Four UV-LED units, 265 nm, 280 nm, the combination of 265 + 280 (50%), and 265 + 280 (75%) were tested. 265 nm LEDs was more effective than 280 nm LEDs and LP UV lamps for E. coli inactivation. No synergic effect for disinfection was observed from the combination of 265 and 280 nm LEDs. 265 nm LEDs had no different reactivation performances with that of LP UV, while 280 nm LEDs could significantly repress photoreactivation and dark repair at a low irradiation intensity of 6.9 mJ/cm 2 . Furthermore, the UV-induced damage of 280 nm LEDs was less repaired which was determined by endonuclease sensitive site (ESS) assay. The impaired protein activities by 280 nm LEDs might be one of the reasons that inhibited reactivation. A new reactivation rate constant, K max , was introduced into the logistic model to simulate the reactivation data, which showed positive relationship with the maximum survival ratio and was more reasonable to interpret the results of photoreactivation and dark repair. This study revealed the distinct roles of different UV lights in disinfection and reactivation, which is helpful for the future design of UV-LED equipment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Improved Drinking Water Disinfection with UVC-LEDs for Escherichia Coli and Bacillus Subtilis Utilizing Quartz Tubes as Light Guide

    Directory of Open Access Journals (Sweden)

    Andrej Gross

    2015-08-01

    Full Text Available A new approach is investigated utilizing light guidance capabilities of optical pure quartz glass in order to maximize drinking water disinfection efficiency with UVC-light-emitting diodes (LEDs. Two experimental setups consisting of soda-lime AR® glass (VWR, Darmstadt, Germany or HSQ® 100 quartz glass (Heraeus, Wasserburg, Germany reactors were designed to compare disinfection rates with and without total reflection of UVC radiation along the reactor walls. Each reactor was filled with 9 mL bacteria samples containing either E. coli DSM (Deutsche Sammlung von Mikroorganismen 498 or B. subtilis DSM 402 strains (concentration 1–3 × 106 colony forming units (CFU/mL with and without additional mixing and irradiation periods of 10, 40, and 90 s. Disinfection rates were increased up to 0.95 log10 (E. coli and 0.75 log10 (B. subtilis by the light guide approach in stagnant samples. The same experiments with mixing of the samples resulted in an increased disinfection efficiency of 3.07 log10 (E. coli and 1.59 log10 (B. subtilis. Optical calculations determine that total reflection is achieved with the applied UVC-LED’s viewing angle of 15°. Furthermore measurements show that HSQ® 100 quartz has a transmittance of 92% at 280 nm UVC irradiation compared to the transmittance of soda-lime glass of 2% (1 mm wall thickness.

  19. CONTROL OF MICROBIAL CONTAMINANTS AND DISINFECTION BY-PRODUCTS (DBPS): COST AND PERFORMANCE

    Science.gov (United States)

    The USEPA is in the process of developing a sophisticated regulatory strategy in an attempt to balance the complex trade-offs in risks associated with controlling disinfectants and disinfection by-products (D/DBPs) in drinking water. EPA first attempted to control DBPs in 1974, w...

  20. The effect of disinfectant solutions on the hardness of acrylic resin denture teeth.

    Science.gov (United States)

    Pavarina, A C; Vergani, C E; Machado, A L; Giampaolo, E T; Teraoka, M T

    2003-07-01

    This investigation studied the effects of disinfectant solutions on the hardness of acrylic resin denture teeth. The occlusal surfaces of 64 resin denture teeth were ground flat with abrasives up to 400-grit silicon carbide paper. Measurements were made after polishing and after the specimens were stored in water at 37 degrees C for 48 h. The specimens were then divided into four groups and immersed in chemical disinfectants (4% chlorhexidine; 1% sodium hypochlorite and sodium perborate) for 10 min. The disinfection methods were performed twice to simulate clinical conditions and hardness measurements were made. Specimens tested as controls were immersed in water during the same disinfection time. Eight specimens were produced for each group. After desinfection procedures, testing of hardness was also performed after the samples were stored at 37 degrees C for 7, 30, 60, 90 and 120 days. Data were analysed using two-way analysis of variance (anova) and Tukey's test at 95% confidence level. According to the results, no significant differences were found between materials and immersion solutions (P > 0.05). However, a continuous decrease in hardness was noticed after ageing (P surfaces of both acrylic resin denture teeth softened upon immersion in water regardless the disinfecting solution.

  1. Identification of developmentally toxic drinking water disinfection byproducts and evaluation of data relevant to mode of action

    International Nuclear Information System (INIS)

    Colman, Joan; Rice, Glenn E.; Wright, J. Michael; Hunter, E. Sidney; Teuschler, Linda K.; Lipscomb, John C.; Hertzberg, Richard C.; Simmons, Jane Ellen; Fransen, Margaret; Osier, Mark; Narotsky, Michael G.

    2011-01-01

    Reactions between chemicals used to disinfect drinking water and compounds present in source waters produce chemical mixtures containing hundreds of disinfection byproducts (DBPs). Although the results have been somewhat inconsistent, some epidemiological studies suggest associations may exist between DBP exposures and adverse developmental outcomes. The potencies of individual DBPs in rodent and rabbit developmental bioassays suggest that no individual DBP can account for the relative risk estimates reported in the positive epidemiologic studies, leading to the hypothesis that these outcomes could result from the toxicity of DBP mixtures. As a first step in a mixtures risk assessment for DBP developmental effects, this paper identifies developmentally toxic DBPs and examines data relevant to the mode of action (MOA) for DBP developmental toxicity. We identified 24 developmentally toxic DBPs and four adverse developmental outcomes associated with human DBP exposures: spontaneous abortion, cardiovascular defects, neural tube defects, and low birth weight infancy. A plausible MOA, involving hormonal disruption of pregnancy, is delineated for spontaneous abortion, which some epidemiologic studies associate with total trihalomethane and bromodichloromethane exposures. The DBP data for the other three outcomes were inadequate to define key MOA steps.

  2. Comparison of cleaning efficacy between in-use disinfectant and electrolysed water in an English residential care home.

    Science.gov (United States)

    Meakin, N S; Bowman, C; Lewis, M R; Dancer, S J

    2012-02-01

    Infection control in hospitals and care homes remains a key issue. They are regularly inspected regarding standards of hygiene, but visual assessment does not necessarily correlate with microbial cleanliness. Pathogens can persist in the inanimate environment for extended periods of time. This prospective study compared the effectiveness of a novel sanitizer containing electrolysed water, in which the active ingredient is stabilized hypochlorous acid (Aqualution™), with the effectiveness of the quaternary ammonium disinfectant in current use for microbial removal from hand-touch surfaces in a care home. The study had a two-period crossover design. Five surfaces were cleaned daily over a four-week period, with screening swabs taken before and after cleaning. Swabs were cultured in order to compare levels of surface microbial contamination [colony-forming units (cfu)/cm(2)] before and after cleaning with each product. Cleaning with electrolysed water reduced the mean surface bacterial load from 2.6 [interquartile range (IQR) 0.30-30.40] cfu/cm(2) to 0.10 (IQR 0.10-1.40) cfu/cm(2) [mean log(10) reduction factor 1.042, 95% confidence interval (CI) 0.79-1.30]. Cleaning with the in-use quaternary ammonium disinfectant increased the bacterial load from 0.90 (IQR 0.10-8.50) cfu/cm(2) to 93.30 (IQR 9.85-363.65) cfu/cm(2) (mean log(10) reduction -1.499, 95% CI -1.87 to -1.12) (P effective bacterial kill than the in-use quaternary ammonium disinfectant, which suggests that it may be useful as a surface sanitizer in environments such as care homes. Copyright © 2011 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.

  3. Numerical and experimental investigation of UV disinfection for water treatment

    International Nuclear Information System (INIS)

    Li, H.Y.; Osman, H.; Kang, C.W.; Ba, T.

    2017-01-01

    Highlights: • UV irradiation for water treatment is numerically and experimentally investigated. • Fluence rate E increases exponentially with the increase of UVT. • UV dose distribution moves to a high range with increase of UVT and lamp power. • A linear relationship is observed between fluence rate E and average UV dose D_a_v_e. • D_a_v_e decreases with the increase of UVT and fluid flow rate. - Abstract: Disinfection by ultraviolet (UV) for water treatment in a UV reactor is numerically and experimentally investigated in this paper. The flow of water, UV radiation transportation as well as microorganism particle trajectories in the UV reactor is simulated. The effects of different parameters including UV transmittance (UVT), lamp power and water flow rate on the UV dose distribution and average UV dose are studied. The UV reactor performance in terms of average UV dose under these parameters is analysed. Comparisons are made between experiments and simulations on the average UV dose and reasonable agreement is achieved. The results show that the fluence rate increases exponentially with the increase of UVT. The UV dose distribution profiles moves to a high range of UV dose with the increase of UVT and lamp power. The increase of water flow rate reduces the average exposure time of microorganism particles to the UV light, resulting in the shifting of UV dose distribution to a low range of UV dose. A linear relationship is observed between fluence rate and the average UV dose. The average UV dose increases with the increase of lamp power while it decreases with the increase of UVT and water flow rate.

  4. Role of ultraviolet (UV) disinfection in infection control and environmental cleaning.

    Science.gov (United States)

    Qureshi, Zubair; Yassin, Mohamed H

    2013-06-01

    Ultraviolet (UV) radiation is capable of disinfecting surfaces, water and air. The UV technology was used for many years. However, safer and more effective delivery systems of UV radiation, make it a very useful option for disinfection. Effective disinfection of environmental surfaces is a key step in the prevention of spread of infectious agents. The traditional manual cleaning is essential in assuring adequate elimination of contamination. However, terminal cleaning is frequently suboptimal or unpredictable in many circumstances. UV-C radiation is an adjunctive disinfectant new technology that could kill a wide array of microorganisms including both vegetative and spore forming pathogens. The technology is getting more affordable and has produced consistent reproducible significant reduction of bacterial contamination.

  5. Microbial electrolytic disinfection process for highly efficient Escherichia coli inactivation

    DEFF Research Database (Denmark)

    Zhou, Shaofeng; Huang, Shaobin; Li, Xiaohu

    2018-01-01

    extensively studied for recalcitrant organics removal, its application potential towards water disinfection (e.g., inactivation of pathogens) is still unknown. This study investigated the inactivation of Escherichia coli in a microbial electrolysis cell based bio-electro-Fenton system (renamed as microbial......Water quality deterioration caused by a wide variety of recalcitrant organics and pathogenic microorganisms has become a serious concern worldwide. Bio-electro-Fenton systems have been considered as cost-effective and highly efficient water treatment platform technology. While it has been......]OH was identified as one potential mechanism for disinfection. This study successfully demonstrated the feasibility of bio-electro-Fenton process for pathogens inactivation, which offers insight for the future development of sustainable, efficient, and cost-effective biological water treatment technology....

  6. Disinfection Contact Time study plan (100-N Area tracer protocol). Revision 1

    International Nuclear Information System (INIS)

    Kretzschmar, S.P.; Bedi, G.S.; Martinez, P.; Ervin, K.

    1996-07-01

    Bechtel Hanford, Inc. will prepare an Engineering Tracer Study Protocol for the determination of contact time for the disinfection process at Group A Non-transient Non-community water treatment plant for the 100-N Water Plant at the Hanford Site in Richland, Washington. Included in this report are the results of a study that determine the actual detention time within the plant clearwell, and thus the disinfection contact time at several clearwell effluent flow rates

  7. 76 FR 39092 - Agency Information Collection Activities; Proposed Collection; Comment Request; Disinfectants...

    Science.gov (United States)

    2011-07-05

    ... Office of Management and Budget (OMB). The ICRs scheduled to expire are Disinfectants/Disinfection...) enhance the quality, utility, and clarity of the information to be collected; and (iv) minimize the burden...-community water systems such as restaurants and campgrounds. What should I consider when I prepare my...

  8. Inactivation and injury of total coliform bacteria after primary disinfection of drinking water by TiO2 photocatalysis

    International Nuclear Information System (INIS)

    Rizzo, Luigi

    2009-01-01

    In this study the potential application of TiO 2 photocatalysis as primary disinfection system of drinking water was investigated in terms of coliform bacteria inactivation and injury. As model water the effluent of biological denitrification unit for nitrate removal from groundwater, which is characterized by high organic matter and bacteria release, was used. The injury of photocatalysis on coliform bacteria was characterized by means of selective (mEndo) and less selective (mT7) culture media. Different catalyst loadings as well as photolysis and adsorption effects were investigated. Photocatalysis was effective in coliform bacteria inactivation (91-99% after 60 min irradiation time, depending on both catalyst loading and initial density of coliform bacteria detected by mEndo), although no total removal was observed after 60 min irradiation time. The contribution of adsorption mechanism was significant (60-98% after 60 min, depending on catalyst loading) compared to previous investigations probably due to the nature of source water rich in particulate organic matter and biofilm. Photocatalysis process did not result in any irreversible injury (98.8% being the higher injury) under investigated conditions, thus a bacteria regrowth may take place under optimum environment conditions if any final disinfection process (e.g., chlorine or chlorine dioxide) is not used.

  9. Generation of ozone foam and its application for disinfection

    Science.gov (United States)

    Hiragaki, Keisuke; Ishimaru, Tomiya; Nakanishi, Masaru; Muraki, Ryouji; Nieda, Masanori; Yamabe, Chobei

    2015-07-01

    Generated ozone foam was applied to the disinfection of Pseudomonas fluorescens. The effect of disinfection has been confirmed experimentally and new equipment for the disinfection of hands using this ozone foam has been put on the market for the practical use. The ozone foam was produced in the foam generator after mixing the water including surfactant (30 mL/min) and air including ozone (1000 ppm = 2.14 g/m3 ~ 1600 ppm = 3.4 g/m3, 300 mL/min). The liquid-to-gas ratio is 100 L/m3. The concentration of dissolved ozone in the thin liquid films of the bubbles was about 3 mg/L which was measured by the chemical method of the KI absorption and titration of sodium thiosulfate solution. The disinfection test samples were prepared using the PET disk on which Pseudomonas fluorescens of its number of more than 108 were attached. Test sample was inserted into ozone foam set on the glass plate for one to 6 min. The survival rate log (N/N0 decreased with time and its value of about-2.6 (i.e., ~1/400) was obtained at 6 min (2 min × 3 times repeated). It was also confirmed that the ozone foam was useful for the disinfection of hands. For more effective disinfection (in case of taking a long time for foam melting), the ozone foam was broken by force and changed into ozone water by which the survival rate decreased ×4 (i.e., N/N0 = 1/10 000) at 4 ~ 6 min. Contribution to the topical issue "The 14th International Symposium on High Pressure Low Temperature Plasma Chemistry (HAKONE XIV)", edited by Nicolas Gherardi, Ronny Brandenburg and Lars Stollenwark

  10. Suitability of electrolyzed oxidizing water for the disinfection of hard surfaces and equipment in radiology

    OpenAIRE

    Pintaric, Robert; Matela, Joze; Pintaric, Stefan

    2015-01-01

    Background Hospitals are faced with increasingly resistant strains of micro-organisms. When it comes to disinfection, individual parts of electronic equipment of angiology diagnostics such as patient couches of computer tomography (CT) and magnetic resonance imaging (MRI) scanners prove to be very hard to disinfect. Disinfectants of choice are therefore expected to possess properties such as rapid, residue-free action without any damaging effect on the sensitive electronic equipment. This pap...

  11. Experimental and simulation validation of ABHE for disinfection of Legionella in hot water systems

    International Nuclear Information System (INIS)

    Altorkmany, Lobna; Kharseh, Mohamad; Ljung, Anna-Lena; Staffan Lundström, T.

    2017-01-01

    Highlights: • ABHE system can supply a continues thermal treatment of water with saving energy. • Mathematical and experimental validation of ABHE performance are presented. • EES-based model is developed to simulate ABHE system. • Energy saving by ABHE is proved for different initial working parameters. - Abstract: The work refers to an innovative system inspired by nature that mimics the thermoregulation system that exists in animals. This method, which is called Anti Bacteria Heat Exchanger (ABHE), is proposed to achieve continuous thermal disinfection of bacteria in hot water systems with high energy efficiency. In particular, this study aims to demonstrate the opportunity to gain energy by means of recovering heat over a plate heat exchanger. Firstly, the thermodynamics of the ABHE is clarified to define the ABHE specification. Secondly, a first prototype of an ABHE is built with a specific configuration based on simplicity regarding design and construction. Thirdly, an experimental test is carried out. Finally, a computer model is built to simulate the ABHE system and the experimental data is used to validate the model. The experimental results indicate that the performance of the ABHE system is strongly dependent on the flow rate, while the supplied temperature has less effect. Experimental and simulation data show a large potential for saving energy of this thermal disinfection method by recovering heat. To exemplify, when supplying water at a flow rate of 5 kg/min and at a temperature of 50 °C, the heat recovery is about 1.5 kW while the required pumping power is 1 W. This means that the pressure drop is very small compared to the energy recovered and consequently high saving in total cost is promising.

  12. Effect of Hypochlorite-Based Disinfectants on Inactivation of Murine Norovirus and Attempt to Eliminate or Prevent Infection in Mice by Additionto Drinking Water

    Science.gov (United States)

    Takimoto, Kazuhiro; Taharaguchi, Motoko; Sakai, Koji; Takagi, Hirotaka; Tohya, Yukinobu; Yamada, Yasuko K

    2013-01-01

    We evaluated the in vitro efficacy of weak acid hypochlorous solution (WAHS) against murine norovirus (MNV) by plaque assay and compared the efficacy with diluted NaOCl (Purelox) and 70% ethanol. WAHS was as effective as 70% ethanol and diluted Purelox for 0.5-min reactions. For 0.5-min reactions in the presence of mouse feces emulsion, the efficacy of WHAS and 1:600 diluted Purelox was decreased, reducing the virus titers by 2.3 and 2.6 log10, respectively, while 70% ethanol reduced the titer by more than 5 log10. However, WAHS showed more than 5 log10 reductions for the 5-min reaction even in the presence of feces emulsion. Since WAHS showed enough efficacy in inactivating MNV in vitro, we tried to eliminate MNV from MNV-infected mice by substituting WAHS for their drinking water. However, MNV was found to be positive in feces of mice drinking WAHS by an RT-nested PCR and plaque assay. To investigate whether hypochlorite-based disinfectants could prevent infection of a mouse with MNV, WAHS or 1:6,000 diluted Purelox was substituted for the drinking water of mice for 2 or 4 weeks, and then the mice were placed in a cage with an MNV-infected mouse. The supply of disinfectants was continued after cohabitation, but MNV was detected in the feces of all the mice at 1 week after cohabitation. In this study, we tried to eliminate and prevent MNV infection from mice by supplying hypochlorite-based disinfectants as an easy and low-cost method. Unfortunately, drinking disinfectants was ineffective, so it is important to keep the facility environment clean by use of effective disinfectants. Also, animals introduced into facilities should be tested as MNV free by quarantine and periodically confirmed as MNV free by microbiological monitoring. PMID:23903059

  13. Disinfection and regrowth potential of bacillus subtilis spores by ozone, ultraviolet rays and gamma irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hae Yeon; Lee, O Mi; Kim, Tae Hun; Lee, Myun Joo; Yu, Seung Ho [Korea Atomic Energy Research Institute, Jeongeup (Korea, Republic of)

    2009-06-15

    Chlorination has been the most commonly adopted disinfection process for the treatment of drinking water. However, Cryptosporidium parvum oocysts and Giardia lamblia cysts were not treated effectively by the common chlorine-based disinfectants. Additionally the regrowth of pathogenic microorganisms is associated with hygienic and aesthetic problems for the consumers of drinking water. Study on alternative disinfection processes such as ozone, UV-C, VUV and gamma irradiation were conducted. Bacillus subtilis spores have been used as a surrogate microorganism for Cryptosporidium parvum oocysts and Giardia lamblia cyst. Inactivation efficiency by ozone was from 30% to 96% within the range of 5 min to 120 min exposures. Inactivation efficiencies by UV-C and VUV were 95.18%, 95.07% at 30 sec, respectively. Inactivation efficiency at gamma irradiation dose of 2 kGy was 99.4%. Microbial regrowths after ozone, UV-C, VUV and gamma irradiation disinfections were also evaluated for 4 days. Bacillus subtilis spores after ozone treatment for 120 min exposure at the rate of 1.68 mg {center_dot} min{sup -1} showed 96.02% disinfection efficiency and significant microbial regrowth. Bacillus subtilis spores after UV-C (99.25% disinfection efficiency) and VUV (99.67% disinfection efficiency) treatments for 5 min showed gradual regrowth. However, inactivation efficiency of gamma irradiation at dose of 1 kGy was 98.8% and the disinfected sample showed no microbial regrowth for 4 days. Therefore, gamma irradiation is the most effective process for the disinfection of pathogenic microorganisms such as oocysts of protozoan parasites among four disinfection process.

  14. Disinfection and regrowth potential of bacillus subtilis spores by ozone, ultraviolet rays and gamma irradiation

    International Nuclear Information System (INIS)

    Kim, Hae Yeon; Lee, O Mi; Kim, Tae Hun; Lee, Myun Joo; Yu, Seung Ho

    2009-01-01

    Chlorination has been the most commonly adopted disinfection process for the treatment of drinking water. However, Cryptosporidium parvum oocysts and Giardia lamblia cysts were not treated effectively by the common chlorine-based disinfectants. Additionally the regrowth of pathogenic microorganisms is associated with hygienic and aesthetic problems for the consumers of drinking water. Study on alternative disinfection processes such as ozone, UV-C, VUV and gamma irradiation were conducted. Bacillus subtilis spores have been used as a surrogate microorganism for Cryptosporidium parvum oocysts and Giardia lamblia cyst. Inactivation efficiency by ozone was from 30% to 96% within the range of 5 min to 120 min exposures. Inactivation efficiencies by UV-C and VUV were 95.18%, 95.07% at 30 sec, respectively. Inactivation efficiency at gamma irradiation dose of 2 kGy was 99.4%. Microbial regrowths after ozone, UV-C, VUV and gamma irradiation disinfections were also evaluated for 4 days. Bacillus subtilis spores after ozone treatment for 120 min exposure at the rate of 1.68 mg · min -1 showed 96.02% disinfection efficiency and significant microbial regrowth. Bacillus subtilis spores after UV-C (99.25% disinfection efficiency) and VUV (99.67% disinfection efficiency) treatments for 5 min showed gradual regrowth. However, inactivation efficiency of gamma irradiation at dose of 1 kGy was 98.8% and the disinfected sample showed no microbial regrowth for 4 days. Therefore, gamma irradiation is the most effective process for the disinfection of pathogenic microorganisms such as oocysts of protozoan parasites among four disinfection process

  15. Water and Wastewater Disinfection with Peracetic Acid and UV Radiation and Using Advanced Oxidative Process PAA/UV

    OpenAIRE

    Beber de Souza, Jeanette; Queiroz Valdez, Fernanda; Jeranoski, Rhuan Felipe; Vidal, Carlos Magno de Sousa; Cavallini, Grasiele Soares

    2015-01-01

    The individual methods of disinfection peracetic acid (PAA) and UV radiation and combined process PAA/UV in water (synthetic) and sanitary wastewater were employed to verify the individual and combined action of these advanced oxidative processes on the effectiveness of inactivation of microorganisms indicators of fecal contamination E. coli, total coliforms (in the case of sanitary wastewater), and coliphages (such as virus indicators). Under the experimental conditions investigated, doses o...

  16. Disinfection of treated sewage. [Ultra-violet irradiation

    Energy Technology Data Exchange (ETDEWEB)

    From, J O

    1976-09-02

    The release of treated sewage in the vicinity of bathing places, drinking water sources or fish and shellfish culture plants is undesirable due to high bacterial content. Disinfection by chlorine would be relatively expensive and the toxicity would result in a local dead zone. The formation of small, but measurable, amounts of persistent chlorated hydrocarbons could also lead to long-term biological effects. Disinfection by ozone or gamma radiation would involve investments unacceptable in small plants. Ultraviolet radiation with wavelength 2500-2600 A has a powerful bacteriocidal effect and has been demonstrated to give bacterial mortality of 99.96 to 99.997 %. A standard plant produced in USA with a capacity of 11.3 m/sup 3//h is illustrated. UV radiation has no effect on the chemical composition of the water and the operating costs are low.

  17. Ultraviolet light - nature's own disinfection process

    Energy Technology Data Exchange (ETDEWEB)

    Munkeberg, T [Thorolf Gregersen a/s, Oslo (Norway)

    1978-05-18

    Ultraviolet radiation from the sun is the means by which natural pollution products, as well as much of the smaller amount of pollution products produced by man, are converted and returned to the cycle of nature. Artificial ultraviolet radiation offers an optimum method for the disinfection of drinking water and can be used in the long term without undesireable effects on man or the enviromment. There is no evidence that ultraviolet irradiation leads to radiation resistant mutations of bacteria. The geometrical arrangement of ultraviolet disinfection units is described and the capacities of typical units is mentioned as being 600-800 m/sup 3/ /hr, though there is no reason why this should not be increased.

  18. Ultraviolet light - nature's own disinfection process

    International Nuclear Information System (INIS)

    Munkeberg, T.

    1978-01-01

    Ultraviolet radiation from the sun is the means by which natural pollution products, as well as much of the smaller amount of pollution products produced by man, are converted and returned to the cycle of nature. Artificial ultraviolet radiation offers an optimum method for the disinfection of drinking water and can be used in the long term without undesireable effects on man or the enviromment. There is no evidence that ultraviolet irradiation leads to radiation resistant mutations of bacteria. The geometrical arrangement of ultraviolet disinfection units is described and the capacities of typical units is mentioned as being 600-800 m 3 /hr, though there is no reason why this should not be increased. (JIW)

  19. Risk analysis of drinking water microbial contamination versus disinfection by-products (DBPs)

    International Nuclear Information System (INIS)

    Ashbolt, Nicholas John

    2004-01-01

    Managing the provision of safe drinking water has a renewed focus in light of the new World Health Organization (WHO) water safety plans. Risk analysis is a necessary component to assist in selecting priority hazards and identifying hazardous scenarios, be they qualitative to quantitative assessments. For any approach, acute diarrhoeal pathogens are often the higher risk issue for municipal water supplies, no matter how health burden is assessed. Furthermore, potential sequellae (myocarditis, diabetes, reactive arthritis and cancers) only further increase the potential health burden of pathogens; despite the enormous uncertainties in determining pathogen exposures and chemical dose-responses within respective microbial and chemical analyses. These interpretations are currently being improved by Bayesian and bootstrapping approaches to estimate parameters for stochastic assessments. A case example, covering the health benefits of ozonation for Cryptosporidium inactivation versus potential cancers from bromate exposures, illustrated the higher risks from a pathogen than one of the most likely disinfection by-products (DBPs). Such analyses help justify the industries long-held view of the benefits of multiple barriers to hazards and that microbial contamination of water supplies pose a clear public health risk when treatment is inadequate. Therefore, efforts to reduce potential health risks from DBP must not compromise pathogen control, despite socio-political issues

  20. Isolation of a bacteria of the Bacillus genus as indicator in the disinfection of residual waters by means of the ionizing radiation (e- , γ)

    International Nuclear Information System (INIS)

    Mata J, M.

    2003-01-01

    The pollutants of the water can be chemical, physical and biological. Among those biological we find to the microorganisms: bacterias, virus and protozoa. These cause important infections in many countries, mainly of Latin America. With the advance of the technology and the quick demographic growth, the biological pollution of the water has already become an important topic since it would damage the public health and it causes that their disinfection has greater attention. In the treatment of residual waters three basic treatments exist the one primary, secondary and tertiary; in this last we find the disinfection, which can be taken to end by chemical and physical methods. For this work of investigation it was used the ionizing radiation, because it is an innovative technology that it eliminates microorganisms in residual waters. The investigation consisted on treating, samples of residual water after the biological treatment of the plant RECICLAGUA with ionizing radiation (electrons and gammas), for the case of electrons it was used the dose of 0.5 kGy and for gamma the dose, of 5 kGy, later the survivor bacteria was isolated to these doses in both cases and they were carried out the tests of identification. In accordance with the obtained results can say that it is about a B. subtilis. The isolated B.subtilis was presented as a pollutant of the flora of the residual water, having a greater survival to the dose of 0.5 and 5 kGy with electrons and gammas, respectively that other present polluting microorganisms in the samples of residual water. For it fits signalize that this microorganism shows characteristics as it easy isolation and identification, the presence with pathogen microorganisms and a greater survival when being irradiated, therefore it can use as indicator in the disinfection of residual waters through ionizing radiation (electrons and gammas). (Author)

  1. N-nitrosamine formation by monochloramine, free chlorine, and peracetic acid disinfection with presence of amine precursors in drinking water system.

    Science.gov (United States)

    West, Danielle M; Wu, Qihua; Donovan, Ariel; Shi, Honglan; Ma, Yinfa; Jiang, Hua; Wang, Jianmin

    2016-06-01

    In this study, the formation of eight N-nitrosamines, N-nitrosodimethylamine (NDMA), N-nitrosodiethylamine, N-nitrosomethylamine, N-nitrosodi-n-propylamine, N-nitrosodi-n-butylamine, N-Nitrosopiperidine, N-Nitrosopyrrolidine, N-Nitrosomorpholine, were systematically evaluated with respect to seven N-nitrosamine precursors (dimethylamine, trimethylamine, 3-(dimethylaminomethyl)indole, 4-dimethylaminoantipyrine, ethylmethylamine, diethylamine, dipropylamine) and three disinfectants (monochloramine, free chlorine, peracetic acid) under variable dosages, exposure times, and pH in a drinking water system. Without the presence of the seven selected N-nitrosamine precursors N-nitrosamine formation was not observed under any tested condition except very low levels of N-Nitrosopyrrolidine under some conditions. With selected N-nitrosamine precursors present N-nitrosamines formed at different levels under different conditions. The highest N-nitrosamine formation was NDMA with a maximum concentration of 1180 ng/L by monochloramine disinfection with precursors present; much lower levels of N-nitrosamines were formed by free chlorine disinfection; and no detectable level of N-nitrosamines were observed by peracetic acid disinfection except low level of N-Nitrosodi-n-propylamine under some conditions. NDMA formation was not affected by pH while four other N-nitrosamine formations were slightly affected by sample pH tested between 7 and 9, with formation decreasing with increasing pH. Monochloramine exposure time study displayed fast formation of N-nitrosamines, largely formed in four hours of exposure and maximized after seven days. This was a systematic study on the N-nitrosamine formation with the seven major N-nitrosamine precursors presence and absence under different conditions, including peracetic acid disinfection which has not been studied elsewhere. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Modelling of Non-Linear Pilot Disinfection Water System: A Bond Graph Approach

    Directory of Open Access Journals (Sweden)

    Naoufel ZITOUNI

    2012-08-01

    Full Text Available The ultraviolet (UV irradiations are used to solve the bacteriological problem of the drinking water quality. A discharge-gas lamp is used to produce this type of irradiation. The UV lamp is fed by photovoltaic (PV energy via electronic ballast composed by an inverter, a transformer and resonant circuit (RLC. The aim of this work is to give a useful global model of the system. In particular, we introduce the complicated UV lamp model and the water disinfection kinetics, where the radiant energy flux emitted by the discharge-gas lamp and the arc voltage are a complex functions of the current and time. This system is intended to be mainly used in rural zones, the photovoltaic modules as source of energy is an adequate solution. To optimise the power transfer from the PV array to ballast and UV lamp, a Maximum Power Point Tracking (MPPT device may be located between PV array and the loads. In this paper, we developed a bond-graph model which gives the water quality from UV flow, gas type, pressure, lamp current and geometrical characteristic. Finally reliable simulations are established and compared with experimental tests.

  3. Characterization of unknown iodinated disinfection byproducts during chlorination/chloramination using ultrahigh resolution mass spectrometry

    International Nuclear Information System (INIS)

    Wang, Xin; Wang, Juan; Zhang, Yahe; Shi, Quan; Zhang, Haifeng; Zhang, Yu; Yang, Min

    2016-01-01

    Iodinated disinfection byproducts (I-DBPs), formed from the reaction of disinfectant(s) with organic matter in the presence of iodide in raw water, have recently been focused because of their more cytotoxic and genotoxic properties than their chlorinated or brominated analogues. To date, only a few I-DBPs in drinking water have been identified. In this study, C18 solid phase extraction coupled with electrospray ionization ultrahigh resolution Fourier transform ion cyclotron resonance mass spectrometry (ESI FT-ICR MS) was used to characterize unknown I-DBPs in chloraminated/chlorinated water spiked with iodide and humic substances. In total, 178 formulas for one-iodine-containing products, 13 formulas for two-iodine-containing products, and 15 formulas for one-chlorine and one-iodine-containing products were detected in the chloraminated water sample, while only 9 formulas for one-iodine-containing products and 6 formulas for one-chlorine and one-iodine-containing products were found in the chlorinated water sample. Most I-DBPs have corresponding chlorine-containing analogues with identical CHO compositions. As indicated by the modified aromaticity index (AI mod ), in the C18 extracts, more than 68% of the I-DBPs have aromatic structures or polycyclic aromatic structures. This result demonstrates that the use of chloramination as an alternative disinfection method may lead to the formation of abundant species of I-DBPs in the presence of iodide. Thus, the suitability of adopting chloramination as an alternative disinfection method should be reevaluated, particularly when iodide is present in raw water. - Highlights: • The formulas of 206 iodinated DBPs in chloraminated drinking water were proposed. • More than 68% of the I-DBPs might have aromatic or polycyclic aromatic structures. • Precursors with high aromaticity is preferential to form iodinated DBPs.

  4. Characterization of unknown iodinated disinfection byproducts during chlorination/chloramination using ultrahigh resolution mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xin; Wang, Juan [State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085 (China); Zhang, Yahe; Shi, Quan [State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249 (China); Zhang, Haifeng; Zhang, Yu [State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085 (China); Yang, Min, E-mail: yangmin@rcees.ac.cn [State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085 (China)

    2016-06-01

    Iodinated disinfection byproducts (I-DBPs), formed from the reaction of disinfectant(s) with organic matter in the presence of iodide in raw water, have recently been focused because of their more cytotoxic and genotoxic properties than their chlorinated or brominated analogues. To date, only a few I-DBPs in drinking water have been identified. In this study, C18 solid phase extraction coupled with electrospray ionization ultrahigh resolution Fourier transform ion cyclotron resonance mass spectrometry (ESI FT-ICR MS) was used to characterize unknown I-DBPs in chloraminated/chlorinated water spiked with iodide and humic substances. In total, 178 formulas for one-iodine-containing products, 13 formulas for two-iodine-containing products, and 15 formulas for one-chlorine and one-iodine-containing products were detected in the chloraminated water sample, while only 9 formulas for one-iodine-containing products and 6 formulas for one-chlorine and one-iodine-containing products were found in the chlorinated water sample. Most I-DBPs have corresponding chlorine-containing analogues with identical CHO compositions. As indicated by the modified aromaticity index (AI{sub mod}), in the C18 extracts, more than 68% of the I-DBPs have aromatic structures or polycyclic aromatic structures. This result demonstrates that the use of chloramination as an alternative disinfection method may lead to the formation of abundant species of I-DBPs in the presence of iodide. Thus, the suitability of adopting chloramination as an alternative disinfection method should be reevaluated, particularly when iodide is present in raw water. - Highlights: • The formulas of 206 iodinated DBPs in chloraminated drinking water were proposed. • More than 68% of the I-DBPs might have aromatic or polycyclic aromatic structures. • Precursors with high aromaticity is preferential to form iodinated DBPs.

  5. Moist Heat Disinfection and Revisiting the A0 Concept.

    Science.gov (United States)

    McCormick, Patrick J; Schoene, Michael J; Dehmler, Matthew A; McDonnell, Gerald

    2016-04-02

    Moist heat is employed in the medical device, pharmaceutical, and food processing industries to render products and goods safe for use and human consumption. Applications include its use to pasteurize a broad range of foods and beverages, the control of microbial contamination of blood products, and treatment of bone tissue transplants and vaccines. In the pharmaceutical industry, water heated to 65°C to 80°C is used to sanitize high-purity water systems. In healthcare, it has been employed for decades to disinfect patient care items ranging from bedpans to anesthesia equipment. There is a good understanding of the conditions necessary to achieve disinfection of microorganisms at temperatures ranging from 65°C to 100°C. Based on this information, the efficacy of moist heat processes at a range of exposure times and temperatures can be quantified based on mathematical models such as the A0 calculation. While the A0 concept is recognized within the European healthcare community, it has yet to be widely adopted within the United States. This article provides information regarding the A0 concept, a brief overview of the classification of thermal disinfection for use with healthcare applications within the United States, and recent data on reinvestigating the thermal disinfection of a selected panel of microorganisms and a mixed culture biofilm.

  6. The effect of disinfectants on fungal diseases of potato and vegetables

    Directory of Open Access Journals (Sweden)

    Hilkka Koponen

    1993-03-01

    Full Text Available Treatments of one and ten minutes were too short for all disinfectants against fungi in peat and plant debris. The best effect was achieved with a treatment of 90 min. Sodium hypochlorite (NaOCl was the most effective and Korsolin and Virkon S were the least effective in the control of Fusarium culmorum and F. oxysporum. Virkon S (2% was the most effective against Mycocentrospora acerina and Phoma foveata. Soaking for 15 min and 60 min in a disinfection suspension eradicated Botrytis cinerea and P. foveata totally from the contaminated plastic pots. Fusarium spp. were the most difficult fungi to disinfect and these were best controlled with formaline, lobac P, Menno-Ter-forte and sodium hypochlorite. lobac P, formaline, Menno-Ter-forte, Taloset and Virkon S were the most effective disinfectants against club rot (Plasmodiophora hrassicae. Washing under running water was not sufficient to eradicate club rot. Against Rhizoctonia -induced damping off of cauliflower the most effective disinfectants were formaline and Virkon S.

  7. Biofilms and Oxidizing Biocides; Evaluation of Disinfection and Removal Effects by Using Established Microbial Systems.

    Science.gov (United States)

    Tachikawa, Mariko

    2017-01-01

    The formation of bacterial biofilms and their disinfection and removal have been important subjects in the maintenance of water quality in areas such as public spas, swimming pools, food processing lines, industrial water systems, and in the hygienic control of medical devices, hospital procedures, etc. Presented here is an outline of biofilm formation, as well as studies on the disinfection and removal of biofilms by oxidizing biocides using established biofilms. These studies using established biofilms may increase the understanding of the variable response of biofilms to planktonic bacteria, and the unique aspects of oxidizing biocides in the disinfection and removal of biofilms.

  8. Disinfection of hepatitis A virus and MS-2 coliphage in water by ultraviolet irradiation: comparison of UV-susceptibility

    Energy Technology Data Exchange (ETDEWEB)

    Widenmann, A.; Fischer, B.; Straub, U.; Wang, C. H.; Flehmig, B.; Schoenen, D. [Abteilung für Allgemeine Hygiene und Umwelthygiene, Hygiene-Institut der Universitat Tubingen, D-7400 Tubingen (Germany)

    1993-07-01

    Ultraviolet irradiation is gaining importance as a disinfection procedure for drinking water and in waste water treatment. Since water is one of the main transmission routes of hepatitis A virus the susceptibility of HAV to UV rays is of special interest. MS-2 coliphage resembles HAV in size and structure, is easy to handle, and might tlierefore serve as indicator organism for the assessment of water quality and for evaluating the quality of water treatment processes. Hepatitis A virus and MS-2 coliphage were suspended in 0.9% sodium chloride solution and were irradiated in a 20-ml quarz cuvette at 254 nm. For a reduction rate of four log units a three times lighter UV dose was required with MS-2 than with HAV.

  9. Inactivation and injury of total coliform bacteria after primary disinfection of drinking water by TiO{sub 2} photocatalysis

    Energy Technology Data Exchange (ETDEWEB)

    Rizzo, Luigi, E-mail: l.rizzo@unisa.it [Department of Civil Engineering, University of Salerno, 84084 Fisciano (Italy)

    2009-06-15

    In this study the potential application of TiO{sub 2} photocatalysis as primary disinfection system of drinking water was investigated in terms of coliform bacteria inactivation and injury. As model water the effluent of biological denitrification unit for nitrate removal from groundwater, which is characterized by high organic matter and bacteria release, was used. The injury of photocatalysis on coliform bacteria was characterized by means of selective (mEndo) and less selective (mT7) culture media. Different catalyst loadings as well as photolysis and adsorption effects were investigated. Photocatalysis was effective in coliform bacteria inactivation (91-99% after 60 min irradiation time, depending on both catalyst loading and initial density of coliform bacteria detected by mEndo), although no total removal was observed after 60 min irradiation time. The contribution of adsorption mechanism was significant (60-98% after 60 min, depending on catalyst loading) compared to previous investigations probably due to the nature of source water rich in particulate organic matter and biofilm. Photocatalysis process did not result in any irreversible injury (98.8% being the higher injury) under investigated conditions, thus a bacteria regrowth may take place under optimum environment conditions if any final disinfection process (e.g., chlorine or chlorine dioxide) is not used.

  10. Combined Sewer Overflow pretreatment with chemical coagulation and a particle settler for improved peracetic acid disinfection

    DEFF Research Database (Denmark)

    Chhetri, Ravi Kumar; Bonnerup, Arne; Andersen, Henrik Rasmus

    2016-01-01

    Full scale disinfection by peracetic acid (PAA) was achieved on Combined Sewer Overflow (CSO) water, which was pre-treated physically by a fast settling-filtration unit. Disinfection of untreated CSO water using PAA was compared to treatment using a particle separator (Hydro......Separator®) and additional coagulation with poly-aluminum-chloride. Disinfection for Enterococcus increased with the applied dose of PAA and additional improvement was achieved when it was preceded by chemical coagulation with 5 mg L−1 poly-aluminum-chloride. When Enterococcus was reduced by treatment in the Hydro...

  11. UV disinfection and flocculation-chlorination sachets to reduce hepatitis E virus in drinking water.

    Science.gov (United States)

    Guerrero-Latorre, Laura; Gonzales-Gustavson, Eloy; Hundesa, Ayalkibet; Sommer, Regina; Rosina, Girones

    2016-07-01

    Hepatitis E Virus (HEV) is a major cause of waterborne outbreaks in areas with poor sanitation. As safe water supplies are the keystone for preventing HEV outbreaks, data on the efficacy of disinfection treatments are urgently needed. Here, we evaluated the ability of UV radiation and flocculation-chlorination sachets (FCSs) to reduce HEV in water matrices. The HEV-p6-kernow strain was replicated in the HepG2/C3A cell line, and we quantified genome number using qRT-PCR and infectivity using an immunofluorescence assay (IFA). UV irradiation tests using low-pressure radiation showed inactivation kinetics for HEV of 99.99% with a UV fluence of 232J/m(2) (IC 95%, 195,02-269,18). Moreover, the FCSs preparations significantly reduced viral concentrations in both water matrices, although the inactivation results were under the baseline of reduction (4.5 LRV) proposed by WHO guidelines. Copyright © 2016 Elsevier GmbH. All rights reserved.

  12. Effects of different cavity‑disinfectants and potassium titanyl ...

    African Journals Online (AJOL)

    disinfectants and potassium titanyl phosphate (KTP) laser on microtensile bond strength to primary dentin. Chlorhexidine (CHX), propolis (PRO), ozonated water (OW), gaseous ozone (OG) and KTP laser were used for this purpose. Methodology: ...

  13. Antifungal efficacy of hydrogen peroxide in dental unit waterline disinfection.

    Science.gov (United States)

    Szymańska, Jolanta

    2006-01-01

    The concentration and composition of fungal flora in dental unit waterlines (DUWL) were evaluated. For this purpose, water samples from unit reservoirs and high-speed handpieces, and biofilm samples from the waterline walls from units were collected. Subsequently, analogous samples from DUWL were taken before and after disinfection using agent containing hydrogen peroxide. In the examined samples, the yeast-like fungi Candida albicans and Candida curvata were found. The following species of mould were also identified: Aspergillus amstelodami, Aspergillus fumigatus, Aspergillus glaucus group, Aspergillus (=Eurotium herbariorum) repens, Citromyces spp., Geotrichum candidum, Penicillium (glabrum) frequentans, Penicillium pusillum, Penicillium turolense and Sclerotium sclerotiorum (Sclerotinia sclerotiorum). Before disinfection, Candida curvata and Candida albicans constituted the greatest proportion of the total fungi in the reservoirs water; in the water of handpieces--Candida albicans and Aspergillus glaucus group; and in the biofilm samples--Aspergillus glaucus group and Candida albicans. After disinfection, in all 3 kinds of samples, Candida albicans prevailed, constituting from 31.2-85.7 % of the total fungi. The application of agent containing hydrogen peroxide caused a significant decrease both in the number of total fungi and individual fungal species, which confirms the product effectiveness in fungal decontamination of DUWL.

  14. Point-of-Use Removal of Cryptosporidium parvum from Water: Independent Effects of Disinfection by Silver Nanoparticles and Silver Ions and by Physical Filtration in Ceramic Porous Media.

    Science.gov (United States)

    Abebe, Lydia S; Su, Yi-Hsuan; Guerrant, Richard L; Swami, Nathan S; Smith, James A

    2015-11-03

    Ceramic water filters (CWFs) impregnated with silver nanoparticles are a means of household-level water treatment. CWFs remove/deactivate microbial pathogens by employing two mechanisms: metallic disinfection and physical filtration. Herein we report on the independent effects of silver salt and nanoparticles on Cryptosporidium parvum and the removal of C. parvum by physical filtration in porous ceramic filter media. Using a murine (mouse) model, we observed that treatment of oocysts with silver nitrate and proteinate-capped silver nanoparticles resulted in decreased infection relative to untreated oocysts. Microscopy and excystation experiments were conducted to support the disinfection investigation. Heat and proteinate-capped silver-nanoparticle treatment of oocysts resulted in morphological modifications and decreased excystation rates of sporozoites. Subsequently, disk-shaped ceramic filters were produced to investigate the transport of C. parvum. Two factors were varied: sawdust size and clay-to-sawdust ratio. Five disks were prepared with combinations of 10, 16, and 20 mesh sawdust and sawdust percentage that ranged from 9 to 11%. C. parvum removal efficiencies ranged from 1.5 log (96.4%) to 2.1 log (99.2%). The 16-mesh/10% sawdust had the greatest mean reduction of 2.1-log (99.2%), though there was no statistically significant difference in removal efficiency. Based on our findings, physical filtration and silver nanoparticle disinfection likely contribute to treatment of C. parvum for silver impregnated ceramic water filters, although the contribution of physical filtration is likely greater than silver disinfection.

  15. Continuous-flow solar UVB disinfection reactor for drinking water.

    Science.gov (United States)

    Mbonimpa, Eric Gentil; Vadheim, Bryan; Blatchley, Ernest R

    2012-05-01

    Access to safe, reliable sources of drinking water is a long-standing problem among people in developing countries. Sustainable solutions to these problems often involve point-of-use or community-scale water treatment systems that rely on locally-available resources and expertise. This philosophy was used in the development of a continuous-flow, solar UVB disinfection system. Numerical modeling of solar UVB spectral irradiance was used to define temporal variations in spectral irradiance at several geographically-distinct locations. The results of these simulations indicated that a solar UVB system would benefit from incorporation of a device to amplify ambient UVB fluence rate. A compound parabolic collector (CPC) was selected for this purpose. Design of the CPC was based on numerical simulations that accounted for the shape of the collector and reflectance. Based on these simulations, a prototype CPC was constructed using materials that would be available and inexpensive in many developing countries. A UVB-transparent pipe was positioned in the focal area of the CPC; water was pumped through the pipe to allow exposure of waterborne microbes to germicidal solar UVB radiation. The system was demonstrated to be effective for inactivation of Escherichia coli, and DNA-weighted UV dose was shown to govern reactor performance. The design of the reactor is expected to scale linearly, and improvements in process performance (relative to results from the prototype) can be expected by use of larger CPC geometry, inclusion of better reflective materials, and application in areas with greater ambient solar UV spectral irradiance than the location of the prototype tests. The system is expected to have application for water treatment among communities in (developing) countries in near-equatorial and tropical locations. It may also have application for disaster relief or military field operations, as well as in water treatment in areas of developed countries that receive

  16. A biocoagulant slow sand filtration for disinfection of Toxoplasma ...

    African Journals Online (AJOL)

    An integrated low-tech biocoagulant-sand filter drum for disinfection of oocysts of Toxoplasma gondii targeted for developing countries was evaluated. Dirty and turbid water (130.3 NTU) from Mezam River and leachates from dump sites and stagnant water in Bamenda, Cameroon, was analyzed microscopically after ...

  17. Destruction of disinfection byproducts and their precursors in swimming pool water by combined UV treatment and ozonation

    DEFF Research Database (Denmark)

    Cheema, Waqas Akram; Kaarsholm, Kamilla Marie Speht; Andersen, Henrik Rasmus

    Both UV treatment and ozonation are used to reduce different types of disinfection byproducts (DBP) in swimming pools. UV treatment is most common as it is particularly efficient in removing the repulsive chlorine like smelling chloramines (combined chlorine). UV treatment of a pool water increased...... chlorine reactivity and formation of chlor-organic DBP such as trihalomethanes. Based on the similar selective reactivity of ozone and chlorine we hypothesized that the created reactivity towards chlorine by UV treatment of dissolved organic matter in pool water might also be expressed as an increased...... reactivity towards ozone and that ozonation might saturate the chlorine reactivity created by UV treatment and mitigate the increased DBP formation. By experimentally treating pool water samples, we found that UV treatment makes pool water highly reactive to ozone. The created reactivity towards chlorine...

  18. Can pulsed xenon ultraviolet light systems disinfect aerobic bacteria in the absence of manual disinfection?

    Science.gov (United States)

    Jinadatha, Chetan; Villamaria, Frank C; Ganachari-Mallappa, Nagaraja; Brown, Donna S; Liao, I-Chia; Stock, Eileen M; Copeland, Laurel A; Zeber, John E

    2015-04-01

    Whereas pulsed xenon-based ultraviolet light no-touch disinfection systems are being increasingly used for room disinfection after patient discharge with manual cleaning, their effectiveness in the absence of manual disinfection has not been previously evaluated. Our study indicates that pulsed xenon-based ultraviolet light systems effectively reduce aerobic bacteria in the absence of manual disinfection. These data are important for hospitals planning to adopt this technology as adjunct to routine manual disinfection. Published by Elsevier Inc.

  19. Resistance to disinfection of a polymicrobial association contaminating the surface of elastomeric dental impressions.

    Science.gov (United States)

    Giammanco, Giovanni M; Melilli, Dario; Rallo, Antonio; Pecorella, Sonia; Mammina, Caterina; Pizzo, Giuseppe

    2009-04-01

    The aim of this study was to evaluate the ability to resist disinfection of a polymicrobial association contaminating the surface of dental impressions obtained with two different elastomers: a polyether (Impregum) and an addition-polymerized silicone (Elite). Impressions were contaminated with a mixture of three biofilm-forming microorganisms (Staphylococcus aureus, Pseudomonas aeruginosa and Candida albicans) and disinfected immediately after contamination, or after microbial layers were allowed to develop during a six-hour storage. Two commercial disinfectants were tested: MD 520 containing 0.5% glutaraldehyde and Sterigum Powder without glutaraldehyde. Residual contamination was recovered by mechanical rinsing immediately after disinfection and after a six-hour storage of disinfected impressions, and assessed by colony counting. Both disinfectants tested were shown to be effective in reducing the microbial presence on the impression materials, achieving at least a 102 reduction of microbial counts compared to water rinsing. However, Sterigum was generally less effective on the Elite elastomer and could not grant disinfection on six-hour aged P. aeruginosa and C. albicans microbial layers. The results of this study suggest that the materials used for the impressions influence the efficacy of disinfection. Disinfectants should be tested according to conditions encountered in everyday clinical practice and the need for immediate disinfection of impressions should be clearly indicated by manufacturers.

  20. Bioanalytical assessment of adaptive stress responses in drinking water: A predictive tool to differentiate between micropollutants and disinfection by-products.

    Science.gov (United States)

    Hebert, Armelle; Feliers, Cedric; Lecarpentier, Caroline; Neale, Peta A; Schlichting, Rita; Thibert, Sylvie; Escher, Beate I

    2018-04-01

    Drinking water can contain low levels of micropollutants, as well as disinfection by-products (DBPs) that form from the reaction of disinfectants with organic and inorganic matter in water. Due to the complex mixture of trace chemicals in drinking water, targeted chemical analysis alone is not sufficient for monitoring. The current study aimed to apply in vitro bioassays indicative of adaptive stress responses to monitor the toxicological profiles and the formation of DBPs in three drinking water distribution systems in France. Bioanalysis was complemented with chemical analysis of forty DBPs. All water samples were active in the oxidative stress response assay, but only after considerable sample enrichment. As both micropollutants in source water and DBPs formed during treatment can contribute to the effect, the bioanalytical equivalent concentration (BEQ) approach was applied for the first time to determine the contribution of DBPs, with DBPs found to contribute between 17 and 58% of the oxidative stress response. Further, the BEQ approach was also used to assess the contribution of volatile DBPs to the observed effect, with detected volatile DBPs found to have only a minor contribution as compared to the measured effects of the non-volatile chemicals enriched by solid-phase extraction. The observed effects in the distribution systems were below any level of concern, quantifiable only at high enrichment and not different from bottled mineral water. Integrating bioanalytical tools and the BEQ mixture model for monitoring drinking water quality is an additional assurance that chemical monitoring is not overlooking any unknown chemicals or transformation products and can help to ensure chemically safe drinking water. Copyright © 2017. Published by Elsevier Ltd.

  1. Comparison of the disinfection efficacy of chlorine-based products for inactivation of viral indicators and pathogenic bacteria in produce wash water.

    Science.gov (United States)

    Chaidez, Cristobal; Moreno, Maria; Rubio, Werner; Angulo, Miguel; Valdez, Benigno

    2003-09-01

    Outbreaks of pathogenic bacteria infections associated with the consumption of fresh produce has occurred with increased frequency in recent years. This study was undertaken to determine the efficacy of three commonly used disinfectants in packing-houses of Culiacan, Mexico (sodium hypochlorite [NaOCl], trichlor-s-triazinetrione [TST] and thrichlormelamine [TCM]) for inactivation of viral indicators and pathogenic bacteria inoculated onto produce wash water. Each microbial challenge consisted of 2 L of water containing approximately 8 log10 bacterial CFU ml(-1), and 8 log10 viral PFU ml(-1) treated with 100 and 300 mg l(-1) of total chlorine with modified turbidity. Water samples were taken after 2 min of contact with chlorine-based products and assayed for the particular microorganisms. TST and NaOCl were found to effectively reduce for bacterial pathogens and viral indicators 8 log10 and 7 log10, respectively (alpha=0.05). The highest inactivation rate was observed when the turbidity was low and the disinfectant was applied at 300 mg l(-1). TCM did not show effective results when compared with the TST and NaOCl (Pturbidity created by the organic and inorganic material present in the water tanks carried by the fresh produce may affect the efficacy of the chlorine-based products.

  2. The efficacy of potassium ferrate as a chemical disinfectant on E. coli, Vibrio cholera, human adenovirus, and Giardia lamblia

    Science.gov (United States)

    Introduction: Drinking water and wastewater go through numerous treatments to remove microorganisms and other contaminants one of many processes along the treatment train is disinfection. There are different ways to disinfect these waters, however to date the most common disinf...

  3. Dielectric Barrier Discharge based Mercury-free plasma UV-lamp for efficient water disinfection.

    Science.gov (United States)

    Prakash, Ram; Hossain, Afaque M; Pal, U N; Kumar, N; Khairnar, K; Mohan, M Krishna

    2017-12-12

    A structurally simple dielectric barrier discharge based mercury-free plasma UV-light source has been developed for efficient water disinfection. The source comprises of a dielectric barrier discharge arrangement between two co-axial quartz tubes with an optimized gas gap. The outer electrode is an aluminium baked foil tape arranged in a helical form with optimized pitch, while the inner electrode is a hollow aluminium metallic rod, hermetically sealed. Strong bands peaking at wavelengths 172 nm and 253 nm, along with a weak band peaking at wavelength 265 nm have been simultaneously observed due to plasma radiation from the admixture of xenon and iodine gases. The developed UV source has been used for bacterial deactivation studies using an experimental setup that is an equivalent of the conventional house-hold water purifier system. Deactivation studies for five types of bacteria, i.e., E. coli, Shigella boydii, Vibrio, Coliforms and Fecal coliform have been demonstrated with 4 log reductions in less than ten seconds.

  4. Disinfection of hepatitis A virus and MS-2 coliphage in water by ultraviolet irradiation: comparison of UV-susceptibilty

    Energy Technology Data Exchange (ETDEWEB)

    Wiedenmann, A; Fischer, B; Straub, U; Wang, C -H; Flehmig, B [Tuebingen Univ. (Germany). Hygiene-Inst.; Schoenen, D [Bonn Univ. (Germany). Hygiene-Inst.

    1993-01-01

    Ultraviolet irradiation is gaining importance as a disinfection procedure for drinking water and in waste water treatment. Since water is one of the main transmission routes of hepatitis A virus the susceptibility of Hepatitis A Virus (HAV) to UV rays is of special interest. MS-2 coliphage resembles HAV in size and structure, is easy to handle, and might therefore serve as indicator organism for the assessment of water quality and for evaluating the quality of water treatment processes. Hepatitis A virus and MS-2 coliphage were suspended in 0.9% sodium chloride solution and were irradiated in a 20-ml quartz cuvette at 254 nm. For a reduction rate of four log units a three times higher UV dose was required with MS-2 than with HAV. (author).

  5. Disinfection of hepatitis A virus and MS-2 coliphage in water by ultraviolet irradiation: comparison of UV-susceptibilty

    International Nuclear Information System (INIS)

    Wiedenmann, A.; Fischer, B.; Straub, U.; Wang, C.-H.; Flehmig, B.; Schoenen, D.

    1993-01-01

    Ultraviolet irradiation is gaining importance as a disinfection procedure for drinking water and in waste water treatment. Since water is one of the main transmission routes of hepatitis A virus the susceptibility of Hepatitis A Virus (HAV) to UV rays is of special interest. MS-2 coliphage resembles HAV in size and structure, is easy to handle, and might therefore serve as indicator organism for the assessment of water quality and for evaluating the quality of water treatment processes. Hepatitis A virus and MS-2 coliphage were suspended in 0.9% sodium chloride solution and were irradiated in a 20-ml quartz cuvette at 254 nm. For a reduction rate of four log units a three times higher UV dose was required with MS-2 than with HAV. (author)

  6. Disinfection of bacteria attached to granular activated carbon.

    Science.gov (United States)

    LeChevallier, M W; Hassenauer, T S; Camper, A K; McFeters, G A

    1984-01-01

    Heterotrophic plate count bacteria, coliform organisms, and pathogenic microorganisms attached to granular activated carbon particles were examined for their susceptibility to chlorine disinfection. When these bacteria were grown on carbon particles and then disinfected with 2.0 mg of chlorine per liter (1.4 to 1.6 mg of free chlorine residual per liter after 1 h) for 1 h, no significant decrease in viable counts was observed. Washed cells attached to the surface of granular activated carbon particles showed similar resistance to chlorine, but a progressive increase in sublethal injury was found. Observations made by scanning electron microscope indicated that granular activated carbon was colonized by bacteria which grow in cracks and crevices and are coated by an extracellular slime layer. These data suggest a possible mechanism by which treatment and disinfection barriers can be penetrated and pathogenic bacteria may enter drinking water supplies. Images PMID:6508306

  7. Chemical cleaning/disinfection and ageing of organic UF membranes: a review.

    Science.gov (United States)

    Regula, C; Carretier, E; Wyart, Y; Gésan-Guiziou, G; Vincent, A; Boudot, D; Moulin, P

    2014-06-01

    Membrane separation processes have become a basic unit operation for process design and product development. These processes are used in a variety of separation and concentration steps, but in all cases, the membranes must be cleaned regularly to remove both organic and inorganic material deposited on the surface and/or into the membrane bulk. Cleaning/disinfection is a vital step in maintaining the permeability and selectivity of the membrane in order to get the plant to its original capacity, to minimize risks of bacteriological contamination, and to make acceptable products. For this purpose, a large number of chemical cleaning/disinfection agents are commercially available. In general, these cleaning/disinfection agents have to improve the membrane flux to a certain extent. However, they can also cause irreversible damages in membrane properties and performances over the long term. Until now, there is considerably less literature dedicated to membrane ageing than to cleaning/disinfection. The knowledge in cleaning/disinfection efficiency has recently been improved. But in order to develop optimized cleaning/disinfection protocols there still remains a challenge to better understand membrane ageing. In order to compensate for the lack of correlated cleaning/disinfection and ageing data from the literature, this paper investigates cleaning/disinfection efficiencies and ageing damages of organic ultrafiltration membranes. The final aim is to provide less detrimental cleaning/disinfection procedures and to propose some guidelines which should have been taken into consideration in term of membrane ageing studies. To carry out this study, this article will detail the background of cleaning/disinfection and aging membrane topics in a first introductive part. In a second part, key factors and endpoints of cleaning/disinfection and aging membranes will be discussed deeply: the membrane role and the cleaning parameters roles, such as water quality, storing conditions

  8. Disinfecting the iPad: evaluating effective methods.

    Science.gov (United States)

    Howell, V; Thoppil, A; Mariyaselvam, M; Jones, R; Young, H; Sharma, S; Blunt, M; Young, P

    2014-06-01

    Tablet computers are increasingly used in healthcare, but they may carry nosocomial pathogens. There are few data available on how to clean an iPad effectively for use in the clinical setting. We aimed to identify the most effective method of decontaminating the Apple iPad, without causing damage, and establish the duration of any residual effect. Following contamination with a microbial broth (meticillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant enterococcus (VRE) and Clostridium difficile), we examined efficacy of iPad disinfection in the laboratory using six different disinfectant wipes: Sani-Cloth CHG 2% (chlorhexidine 2%/alcohol 70%), Clorox, Tristel, Trigene, soap and water, and plain cloth. Following cleaning, iPads were recontaminated to examine residual activity. After 480 Sani-Cloth CHG 2% disinfecting episodes, functional and visual analysis of iPads was performed by blinded subjects. With the exception of Clostridium difficile, Sani-Cloth CHG 2% and Clorox wipes were most effective against MRSA and VRE, and they were significantly better than the Apple-recommended plain cloth (P ≤ 0.001). A substantial residual antimicrobial effect was seen for >6h after wiping the iPad with Sani-Cloth CHG 2% despite repeated recontamination and without further disinfection. The functionality or visual appearance of the iPad was not damaged by repeated use of Sani-Cloth CHG 2% wipes. Sani-Cloth CHG 2% wipes effectively disinfect the iPad against MRSA and VRE, with a residual antibacterial effect and without causing damage. Copyright © 2014 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.

  9. An environmental disinfection odyssey: evaluation of sequential interventions to improve disinfection of Clostridium difficile isolation rooms.

    Science.gov (United States)

    Sitzlar, Brett; Deshpande, Abhishek; Fertelli, Dennis; Kundrapu, Sirisha; Sethi, Ajay K; Donskey, Curtis J

    2013-05-01

    OBJECTIVE. Effective disinfection of hospital rooms after discharge of patients with Clostridium difficile infection (CDI) is necessary to prevent transmission. We evaluated the impact of sequential cleaning and disinfection interventions by culturing high-touch surfaces in CDI rooms after cleaning. DESIGN. Prospective intervention. SETTING. A Veterans Affairs hospital. INTERVENTIONS. During a 21-month period, 3 sequential tiered interventions were implemented: (1) fluorescent markers to provide monitoring and feedback on thoroughness of cleaning facility-wide, (2) addition of an automated ultraviolet radiation device for adjunctive disinfection of CDI rooms, and (3) enhanced standard disinfection of CDI rooms, including a dedicated daily disinfection team and implementation of a process requiring supervisory assessment and clearance of terminally cleaned CDI rooms. To determine the impact of the interventions, cultures were obtained from CDI rooms after cleaning and disinfection. RESULTS. The fluorescent marker intervention improved the thoroughness of cleaning of high-touch surfaces (from 47% to 81% marker removal; P disinfection, whereas during interventions periods 1, 2, and 3 the percentages of CDI rooms with positive cultures after disinfection were reduced to 57%, 35%, and 7%, respectively. CONCLUSIONS. An intervention that included formation of a dedicated daily disinfection team and implementation of a standardized process for clearing CDI rooms achieved consistent CDI room disinfection. Culturing of CDI rooms provides a valuable tool to drive improvements in environmental disinfection.

  10. Wastewater disinfection by peracetic acid: assessment of models for tracking residual measurements and inactivation.

    Science.gov (United States)

    Santoro, Domenico; Gehr, Ronald; Bartrand, Timothy A; Liberti, Lorenzo; Notarnicola, Michele; Dell'Erba, Adele; Falsanisi, Dario; Haas, Charles N

    2007-07-01

    With its potential for low (if any) disinfection byproduct formation and easy retrofit for chlorine contactors, peracetic acid (PAA) or use of PAA in combination with other disinfectant technologies may be an attractive alternative to chlorine-based disinfection. Examples of systems that might benefit from use of PAA are water reuse schemes or plants discharging to sensitive receiving water bodies. Though PAA is in use in numerous wastewater treatment plants in Europe, its chemical kinetics, microbial inactivation rates, and mode of action against microorganisms are not thoroughly understood. This paper presents results from experimental studies of PAA demand, PAA decay, and microbial inactivation, with a complementary modeling analysis. Model results are used to evaluate techniques for measurement of PAA concentration and to develop hypotheses regarding the mode of action of PAA in bacterial inactivation. Kinetic and microbial inactivation rate data were collected for typical wastewaters and may be useful for engineers in evaluating whether to convert from chlorine to PAA disinfection.

  11. Inactivation Effect of Antibiotic-Resistant Gene Using Chlorine Disinfection

    Directory of Open Access Journals (Sweden)

    Takashi Furukawa

    2017-07-01

    Full Text Available The aim of this study was to elucidate the inactivation effects on the antibiotic-resistance gene (vanA of vancomycin-resistant enterococci (VRE using chlorination, a disinfection method widely used in various water treatment facilities. Suspensions of VRE were prepared by adding VRE to phosphate-buffered saline, or the sterilized secondary effluent of a wastewater treatment plant. The inactivation experiments were carried out at several chlorine concentrations and stirring time. Enterococci concentration and presence of vanA were determined. The enterococci concentration decreased as chlorine concentrations and stirring times increased, with more than 7.0 log reduction occurring under the following conditions: 40 min stirring at 0.5 mg Cl2/L, 20 min stirring at 1.0 mg Cl2/L, and 3 min stirring at 3.0 mg Cl2/L. In the inactivation experiment using VRE suspended in secondary effluent, the culturable enterococci required much higher chlorine concentration and longer treatment time for complete disinfection than the cases of suspension of VRE. However, vanA was detected in all chlorinated suspensions of VRE, even in samples where no enterococcal colonies were present on the medium agar plate. The chlorine disinfection was not able to destroy antibiotic-resistance genes, though it can inactivate and decrease bacterial counts of antibiotic-resistant bacteria (ARB. Therefore, it was suggested that remaining ARB and/or antibiotic-resistance gene in inactivated bacterial cells after chlorine disinfection tank could be discharged into water environments.

  12. Solar optics-based active panel for solar energy storage and disinfection of greywater.

    Science.gov (United States)

    Lee, W; Song, J; Son, J H; Gutierrez, M P; Kang, T; Kim, D; Lee, L P

    2016-09-01

    Smart city and innovative building strategies are becoming increasingly more necessary because advancing a sustainable building system is regarded as a promising solution to overcome the depleting water and energy. However, current sustainable building systems mainly focus on energy saving and miss a holistic integration of water regeneration and energy generation. Here, we present a theoretical study of a solar optics-based active panel (SOAP) that enables both solar energy storage and photothermal disinfection of greywater simultaneously. Solar collector efficiency of energy storage and disinfection rate of greywater have been investigated. Due to the light focusing by microlens, the solar collector efficiency is enhanced from 25% to 65%, compared to that without the microlens. The simulation of greywater sterilization shows that 100% disinfection can be accomplished by our SOAP for different types of bacteria including Escherichia coli . Numerical simulation reveals that our SOAP as a lab-on-a-wall system can resolve the water and energy problem in future sustainable building systems.

  13. Singlet oxygen sensitizing materials based on porous silicone: photochemical characterization, effect of dye reloading and application to water disinfection with solar reactors.

    Science.gov (United States)

    Manjón, Francisco; Santana-Magaña, Montserrat; García-Fresnadillo, David; Orellana, Guillermo

    2010-06-01

    Photogeneration of singlet molecular oxygen ((1)O(2)) is applied to organic synthesis (photooxidations), atmosphere/water treatment (disinfection), antibiofouling materials and in photodynamic therapy of cancer. In this paper, (1)O(2) photosensitizing materials containing the dyes tris(4,4'-diphenyl-2,2'-bipyridine)ruthenium(II) (1, RDB(2+)) or tris(4,7-diphenyl-1,10-phenanthroline)ruthenium(II) (2, RDP(2+)), immobilized on porous silicone (abbreviated RDB/pSil and RDP/pSil), have been produced and tested for waterborne Enterococcus faecalis inactivation using a laboratory solar simulator and a compound parabolic collector (CPC)-based solar photoreactor. In order to investigate the feasibility of its reuse, the sunlight-exposed RDP/pSil sensitizing material (RDP/pSil-a) has been reloaded with RDP(2+) (RDP/pSil-r). Surprisingly, results for bacteria inactivation with the reloaded material have demonstrated a 4-fold higher efficiency compared to those of either RDP/pSil-a, unused RDB/pSil and the original RDP/pSil. Surface and bulk photochemical characterization of the new material (RDP/pSil-r) has shown that the bactericidal efficiency enhancement is due to aggregation of the silicone-supported photosensitizer on the surface of the polymer, as evidenced by confocal fluorescence lifetime imaging microscopy (FLIM). Photogenerated (1)O(2) lifetimes in the wet sensitizer-doped silicone have been determined to be ten times longer than in water. These facts, together with the water rheology in the solar reactor and the interfacial production of the biocidal species, account for the more effective disinfection observed with the reloaded photosensitizing material. These results extend and improve the operational lifetime of photocatalytic materials for point-of-use (1)O(2)-mediated solar water disinfection.

  14. Efficacy of common laboratory disinfectants and heat on killing trypanosomatid parasites

    Directory of Open Access Journals (Sweden)

    Tyler Kevin M

    2008-09-01

    Full Text Available Abstract The disinfectants TriGene, bleach, ethanol and liquid hand soap, and water and temperature were tested for their ability to kill bloodstream forms of Trypanosoma brucei, epimastigotes of Trypanosoma rangeli and promastigotes of Leishmania major. A 5-min exposure to 0.2% TriGene, 0.1% liquid hand soap and 0.05% bleach (0.05% NaOCl killed all three trypanosomatids. Ethanol and water destroyed the parasites within 5 min at concentrations of 15–17.5% and 80–90%, respectively. All three organisms were also killed when treated for 5 min at 50°C. The results indicate that the disinfectants, water and temperature treatment (i.e. autoclaving are suitable laboratory hygiene measures against trypanosomatid parasites.

  15. 9 CFR 71.12 - Sodium orthophenylphenate as permitted disinfectant for premises infected with tuberculosis.

    Science.gov (United States)

    2010-01-01

    ... disinfectant for premises infected with tuberculosis. 71.12 Section 71.12 Animals and Animal Products ANIMAL... disinfectant for premises infected with tuberculosis. (a) A permitted brand of sodium orthophenylphenate in a proportion of at least one pound to 12 gallons of water is permitted in tuberculosis eradication work for...

  16. Drinking-Water Disinfection By-products and Semen Quality: A Cross-Sectional Study in China

    Science.gov (United States)

    Zeng, Qiang; Wang, Yi-Xin; Xie, Shao-Hua; Xu, Liang; Chen, Yong-Zhe; Li, Min; Yue, Jing; Li, Yu-Feng; Liu, Ai-Lin

    2014-01-01

    Background: Exposure to disinfection by-products (DBPs) has been demonstrated to impair male reproductive health in animals, but human evidence is limited and inconsistent. Objective: We examined the association between exposure to drinking-water DBPs and semen quality in a Chinese population. Methods: We recruited 2,009 men seeking semen analysis from the Reproductive Center of Tongji Hospital in Wuhan, China, between April 2011 and May 2012. Each man provided a semen sample and a urine sample. Semen samples were analyzed for sperm concentration, sperm motility, and sperm count. As a biomarker of exposure to drinking-water DBPs, trichloroacetic acid (TCAA) was measured in the urine samples. Results: The mean (median) urinary TCAA concentration was 9.58 (7.97) μg/L (interquartile range, 6.01–10.96 μg/L). Compared with men with urine TCAA in the lowest quartile, increased adjusted odds ratios (ORs) were estimated for below-reference sperm concentration in men with TCAA in the second and fourth quartiles (OR = 1.79; 95% CI: 1.19, 2.69 and OR = 1.51; 95% CI: 0.98, 2.31, respectively), for below-reference sperm motility in men with TCAA in the second and third quartiles (OR = 1.46; 95% CI: 1.12, 1.90 and OR = 1.30; 95% CI: 1.00, 1.70, respectively), and for below-reference sperm count in men with TCAA in the second quartile (OR 1.62; 95% CI: 1.04, 2.55). Nonmonotonic associations with TCAA quartiles were also estimated for semen parameters modeled as continuous outcomes, although significant negative associations were estimated for all quartiles above the reference level for sperm motility. Conclusion: Our findings suggest that exposure to drinking-water DBPs may contribute to decreased semen quality in humans. Citation: Zeng Q, Wang YX, Xie SH, Xu L, Chen YZ, Li M, Yue J, Li YF, Liu AL, Lu WQ. 2014. Drinking-water disinfection by-products and semen quality: a cross-sectional study in China. Environ Health Perspect 122:741–746; http://dx.doi.org/10.1289/ehp

  17. A bacteriological study of hospital beds before and after disinfection with phenolic disinfectant

    Directory of Open Access Journals (Sweden)

    Andrade Denise de

    2000-01-01

    Full Text Available In hospitals, one of the ways to control microbial contamination is by disinfecting the furniture used by patients. This study's main objective was to evaluate the microbiological condition of hospital mattresses before and after such disinfection, in order to identify bacteria that are epidemiologically important in nosocomial infection, such as Staphylococcus aureus and Pseudomonas aeruginosa. RODAC plates with two different culture media were used to collect specimens. Patient beds were selected according to previously established criteria, and surface areas on the mattresses were chosen at random. From the total of 1 040 plate cultures from 52 mattresses, positive results were obtained from 500 of them (48.1%, 263 before disinfection and 237 after disinfection. Considering the selectivity of the culture media, the positivity rate was high. There were high prevalences of S. aureus both before and after mattress disinfection. The study results suggest that the usual disinfection procedures, instead of diminishing the number of microbes, merely displace them from one part of the mattress to another, and the number of microorganisms remains the same.

  18. A bacteriological study of hospital beds before and after disinfection with phenolic disinfectant

    Directory of Open Access Journals (Sweden)

    Denise de Andrade

    2000-03-01

    Full Text Available In hospitals, one of the ways to control microbial contamination is by disinfecting the furniture used by patients. This study's main objective was to evaluate the microbiological condition of hospital mattresses before and after such disinfection, in order to identify bacteria that are epidemiologically important in nosocomial infection, such as Staphylococcus aureus and Pseudomonas aeruginosa. RODAC plates with two different culture media were used to collect specimens. Patient beds were selected according to previously established criteria, and surface areas on the mattresses were chosen at random. From the total of 1 040 plate cultures from 52 mattresses, positive results were obtained from 500 of them (48.1%, 263 before disinfection and 237 after disinfection. Considering the selectivity of the culture media, the positivity rate was high. There were high prevalences of S. aureus both before and after mattress disinfection. The study results suggest that the usual disinfection procedures, instead of diminishing the number of microbes, merely displace them from one part of the mattress to another, and the number of microorganisms remains the same.

  19. Antimicrobial activity of disinfectant agents incorporated into type IV dental stone.

    Science.gov (United States)

    Pereira, Rodrigo de Paula; Lucas, Matheus Guilherme; Spolidorio, Denise Madalena Palomari; Arioli Filho, João Neudenir

    2012-06-01

    This study evaluated the antimicrobial activity of two disinfectant agents, 2% chlorhexidine digluconate solution (CHX) and 98% chlorhexidine hydrochloride powder (HYD), incorporated into type IV dental stone at the time of mixing. Agar diffusion test was used for the following microorganisms: Escherichia coli, Staphylococcus aureus, Bacillus subtilis and Candida albicans. The specimens were grouped in: (1) dental stone mixed with sterile distilled water; (2) paper disc soaked with CHX; (3) dental stone mixed with CHX; and (4) dental stone with incorporation of HYD, in 1% proportion of the dental stone mass and mixed with sterile distilled water. The culture medium was inoculated with microbial suspensions 1 and 24 h after pouring of the dental stone. The antimicrobial activity was evaluated by the average diameter of microbial growth inhibition zones. The data were analysed with a nested anova (p < 0.05) and Tukey test for specific comparisons. The disinfectant agents demonstrated antimicrobial activity against all microorganisms, with the exception of C. albicans, against which the CHX was ineffective in two periods of analysis. Significant differences between disinfectants were found with all microorganisms. The disinfectant agents analysed were effective against most of the microorganisms tested, except C. albicans. © 2011 The Gerodontology Society and John Wiley & Sons A/S.

  20. Evaluation of 5 cleaning and disinfection methods for nets used to collect zebrafish (Danio rerio).

    Science.gov (United States)

    Collymore, Chereen; Porelli, Gina; Lieggi, Christine; Lipman, Neil S

    2014-11-01

    Few standardized methods of cleaning and disinfecting equipment in zebrafish facilities have been published, even though the effectiveness of these procedures is vital to preventing the transmission of pathogenic organisms. Four chemical disinfectants and rinsing with municipal tap water were evaluated for their ability to disinfect nets used to capture zebrafish. The disinfectants included benzalkonium chloride+methylene blue, sodium hypochlorite, chlorine dioxide, and potassium peroxymonosulfate+sodium chloride for a soak time of 5 or 30 min. Disinfection effectiveness was evaluated by using an ATP-based system that measured the reduction in absolute number and percentage of relative light units. In addition, nets were cultured aerobically on blood and MacConkey agar plates to determine the number of bacteria remaining after disinfection procedures. Soaking nets in sodium hypochlorite for 30 min and in potassium peroxymonosulfate+sodium chloride for 5 or 30 min were effective means of disinfection, according to at least 90% reduction in the number of relative light units and no bacterial growth after cleaning. These results will aid facility managers, veterinarians and investigators in selecting net cleaning and disinfection protocols.

  1. Chemical disinfection of combined sewer overflow waters using performic acid or peracetic acids

    OpenAIRE

    Chhetri, Ravi Kumar; Thornberg, Dines; Berner, Jesper; Gramstad, Robin; Öjstedt, Ulrik; Sharma, Anitha Kumari; Andersen, Henrik Rasmus

    2014-01-01

    We investigated the possibility of applying performic acid (PFA) and peracetic acid (PAA) for disinfection of combined sewer overflow (CSO) in existing CSO management infrastructures. The disinfection power of PFA and PAA towards Escherichia coli (E. coli) and Enterococcus was studied in batch-scale and pre-field experiments. In the batch-scale experiment, 2.5 mg L− 1 PAA removed approximately 4 log unit of E. coli and Enterococcus from CSO with a 360 min contact time. The removal of E. coli ...

  2. Disinfection of drinking water by ultraviolet light. Minimum dose and shortest time of residence are central criteria when choosing plant

    Energy Technology Data Exchange (ETDEWEB)

    1977-06-23

    It is no longer mandatory that a given residue of chlorine is present in drinking water and this has led to interest in the use of ultraviolet radiation for disinfection of water in large public waterworks. After a brief discussion of the effect of ultraviolet radiation related to wavelength, the most usual type of irradiation equipment is briefly described. Practioal considerations regarding the installation, such as attenuation of the radiation due to water quality and deposits are presented. The requirements as to dose and residence time are also discussed and finally it is pointed out that hydraulic imperfections can reduce the effectiveness drastically.

  3. Influence of ozone and paracetic acid disinfection on adhesion of resilient liners to acrylic resin.

    Science.gov (United States)

    Ekren, Orhun; Ozkomur, Ahmet

    2016-08-01

    The aim of this study was to evaluate the effect of paracetic acid (PAA) and ozone disinfection on the tensile bond strength (TBS) of silicone-based resilient liners to acrylic resins. One hundred and twenty dumbbell shaped heat-polymerized acrylic resins were prepared. From the mid segment of the specimens, 3 mm of acrylic were grinded off and separated parts were reattached by resilient liners. The specimens were divided into 2 control (control1, control7) and 4 test groups of PAA and ozone disinfection (PAA1, PAA7, ozone1 and ozone7; n=10). While control groups were immersed in distilled water for 10 min (control1) and 7 days (control7), test groups were subjected to PAA (16 g/L) or ozone rich water (4 mg/L) for 1 cycle (10 min for PAA and 60 min for ozone) per day for 7 days prior to tensile tests. Measurements of the TBS were analyzed using 3-way ANOVA and Tukey's HSD test. Adhesive strength of Mollosil decreased significantly by application of ozone disinfection. PAA disinfection had no negative effect on the TBS values of Mollosil and Molloplast B to acrylic resin. Single application of ozone disinfection did not have any negative effect on TBS values of Molloplast B, but prolonged exposure to ozone decreased its adhesive strength. The adhesion of resilient liners to acrylic was not adversely affected by PAA disinfection. Immersion in ozonated water significantly decreased TBS of Mollosil. Prolonged exposure to ozone negatively affects adhesion of Molloplast B to denture base materials.

  4. Modern technologies for improving cleaning and disinfection of environmental surfaces in hospitals.

    Science.gov (United States)

    Boyce, John M

    2016-01-01

    Experts agree that careful cleaning and disinfection of environmental surfaces are essential elements of effective infection prevention programs. However, traditional manual cleaning and disinfection practices in hospitals are often suboptimal. This is often due in part to a variety of personnel issues that many Environmental Services departments encounter. Failure to follow manufacturer's recommendations for disinfectant use and lack of antimicrobial activity of some disinfectants against healthcare-associated pathogens may also affect the efficacy of disinfection practices. Improved hydrogen peroxide-based liquid surface disinfectants and a combination product containing peracetic acid and hydrogen peroxide are effective alternatives to disinfectants currently in widespread use, and electrolyzed water (hypochlorous acid) and cold atmospheric pressure plasma show potential for use in hospitals. Creating "self-disinfecting" surfaces by coating medical equipment with metals such as copper or silver, or applying liquid compounds that have persistent antimicrobial activity surfaces are additional strategies that require further investigation. Newer "no-touch" (automated) decontamination technologies include aerosol and vaporized hydrogen peroxide, mobile devices that emit continuous ultraviolet (UV-C) light, a pulsed-xenon UV light system, and use of high-intensity narrow-spectrum (405 nm) light. These "no-touch" technologies have been shown to reduce bacterial contamination of surfaces. A micro-condensation hydrogen peroxide system has been associated in multiple studies with reductions in healthcare-associated colonization or infection, while there is more limited evidence of infection reduction by the pulsed-xenon system. A recently completed prospective, randomized controlled trial of continuous UV-C light should help determine the extent to which this technology can reduce healthcare-associated colonization and infections. In conclusion, continued efforts to

  5. Estimating retrospective exposure of household humidifier disinfectants.

    Science.gov (United States)

    Park, D U; Friesen, M C; Roh, H S; Choi, Y Y; Ahn, J J; Lim, H K; Kim, S K; Koh, D H; Jung, H J; Lee, J H; Cheong, H K; Lim, S Y; Leem, J H; Kim, Y H; Paek, D M

    2015-12-01

    We conducted a comprehensive humidifier disinfectant exposure characterization for 374 subjects with lung disease who presumed their disease was related to humidifier disinfectant use (patient group) and for 303 of their family members (family group) for an ongoing epidemiological study. We visited the homes of the registered patients to investigate disinfectant use characteristics. Probability of exposure to disinfectants was determined from the questionnaire and supporting evidence from photographs demonstrating the use of humidifier disinfectant, disinfectant purchase receipts, any residual disinfectant, and the consistency of their statements. Exposure duration was estimated as cumulative disinfectant use hours from the questionnaire. Airborne disinfectant exposure intensity (μg/m(3)) was estimated based on the disinfectant volume (ml) and frequency added to the humidifier per day, disinfectant bulk level (μg/ml), the volume of the room (m(3)) with humidifier disinfectant, and the degree of ventilation. Overall, the distribution patterns of the intensity, duration, and cumulative exposure to humidifier disinfectants for the patient group were higher than those of the family group, especially for pregnant women and patients ≤6 years old. Further study is underway to evaluate the association between the disinfectant exposures estimated here with clinically diagnosed lung disease. Retrospective exposure to household humidifier disinfectant as estimated here can be used to evaluate associations with clinically diagnosed lung disease due to the use of humidifier disinfectant in Korea. The framework, with modifications to account for dispersion and use patterns, can also be potentially adapted to assessment of other household chemical exposures. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. Introducing a new disinfectant for U.S. aquaculture - peracetic acid

    Science.gov (United States)

    Peracetic acid (PAA) is a promising disinfectant for biosecurity in the US aquaculture industry to prevent disease outbreaks from fish pathogens. PAA is a stabilized mixture of acetic acid, hydrogen peroxide and water that breaks down quickly to water and vinegar. It is being increasingly used to ...

  7. Hazard assessment of three haloacetic acids, as byproducts of water disinfection, in human urothelial cells.

    Science.gov (United States)

    Marsà, Alicia; Cortés, Constanza; Hernández, Alba; Marcos, Ricard

    2018-04-07

    Disinfection by-products (DBPs) are compounds produced in the raw water disinfection processes. Although increased cancer incidence has been associated with exposure to this complex mixture, the carcinogenic potential of individual DBPs remains not well known; thus, further studies are required. Haloacetic acids (HAAs) constitute an important group among DBPs. In this study, we have assessed the in vitro carcinogenic potential of three HAAs namely chloro-, bromo-, and iodoacetic acids. Using a long-term (8 weeks) and sub-toxic doses exposure scenario, different in vitro transformation markers were evaluated using a human urothelial cell line (T24). Our results indicate that long-term exposure to low doses of HAAs did not reproduce the genotoxic effects observed in acute treatments, where oxidative DNA damage was induced. No changes in the transformation endpoints analyzed were observed, as implied by the absence of significant morphological, cell growth rate and anchorage-independent cell growth pattern modifications. Interestingly, HAA-long-term exposed cells developed resistance to oxidative stress damage, what would explain the observed differences between acute and long-term exposure conditions. Accordingly, data obtained under long-term exposure to sub-toxic doses of HAAs could be more accurate, in terms of risk assessment, than under acute exposure scenarios. Copyright © 2018. Published by Elsevier Inc.

  8. Source Water Management for Disinfection By-Product Control using New York City's Operations Support Tool and On-Line Monitoring

    Science.gov (United States)

    Weiss, W. J.; Becker, W.; Schindler, S.

    2012-12-01

    The United States Environmental Protection Agency's 2006 Stage 2 Disinfectant / Disinfection Byproduct Rule (DBPR) for finished drinking waters is intended to reduce overall DBP levels by limiting the levels of total trihalomethanes (TTHM) and five of the haloacetic acids (HAA5). Under Stage 2, maximum contaminant levels (MCLs), 80 μg/L for TTHM and 60 μg/L for HAA5, are based on a locational running annual average for individual sites instead of as the system-wide quarterly running annual average of the Stage 1 DBPR. This means compliance will have to be met at sampling locations of peak TTHM and HAA5 concentrations rather than an average across the entire system. Compliance monitoring under the Stage 2 DBPR began on April 1, 2012. The New York City (NYC) Department of Environmental Protection (DEP) began evaluating potential impacts of the Stage 2 DBPR on NYC's unfiltered water supply in 2002 by monitoring TTHM and HAA5 levels at various locations throughout the distribution system. Initial monitoring indicated that HAA5 levels could be of concern in the future, with the potential to intermittently violate the Stage 2 DBPR at specific locations, particularly those with high water age. Because of the uncertainty regarding the long-term prospect for compliance, DEP evaluated alternatives to ensure compliance, including operational changes (reducing chlorine dose, changing flow configurations to minimize water age, altering pH, altering source water withdrawals); changing the residual disinfectant from free chlorine to chloramines; and engineered treatment alternatives. This paper will discuss the potential for using DEP's Operations Support Tool (OST) and enhanced reservoir monitoring to support optimization of source water withdrawals to minimize finished water DBP levels. The OST is a state-of-the-art decision support system (DSS) to provide computational and predictive support for water supply operations and planning. It incorporates a water supply system

  9. Effect of alginate chemical disinfection on bacterial count over gypsum cast.

    Science.gov (United States)

    Haralur, Satheesh B; Al-Dowah, Omir S; Gana, Naif S; Al-Hytham, Abdullah

    2012-05-01

    To evaluate the efficacy of sodium hypochlorite (1 : 10) and iodophor disinfectants on alginate impressions along with their effect on the survived bacterium count on the gypsum cast. Four alginate impression on each dentate patients were made, of which Group I were not washed or disinfected, Group II impressions were merely washed with water, Group III were disinfected by spraying with sodium hypochlorite (1 : 10), Group IV were disinfected with iodophor (1 : 213). Gypsum cast (type III) were made from all the impression. Impressions and gypsum cast were swabbed in mid palatal region for bacterial culture. Bacterial colony counting done after 3 days of incubation at 37℃ in blood agar media. The data obtained was analyzed by one way ANOVA test at a significant difference level of 0.05. Group I and Group II showed significantly more bacteria compared to Group III and Group IV. Bacterial colonies on the alginate impression and gypsum cast in group disinfected with Sodium hypochlorite (1 : 10) were 0.18, 0.82 respectively compared to group treated with iodophor (1 : 213). There was an increase in bacterial count on dental cast compared to source alginate impressions. Sodium hypochlorite (1 : 10) was found to be better disinfectant for alginate impression. There was an indication of increase in number of bacteria from alginate impression to making of dental cast. Additional gypsum cast disinfectant procedures need to be encouraged to completely eliminate cross infection to dental laboratory.

  10. Prevalence and distribution of Legionella spp in potable water systems in Germany, risk factors associated with contamination, and effectiveness of thermal disinfection.

    Science.gov (United States)

    Kruse, Eva-Brigitta; Wehner, Arno; Wisplinghoff, Hilmar

    2016-04-01

    Worldwide, Legionella spp are a common cause of community-acquired pneumonia. Potable water systems are a main reservoir; however, exposure in the community is unknown. Water samples from 718 buildings in Germany were collected. Possible risk factors were prospectively recorded. All samples were tested for Legionella spp using cultural microbiologic methods. Samples were assigned to 1 of 5 levels of contamination. Statistical analysis was performed to determine the influence of risk factors for contamination and, in a subgroup of buildings, for unsuccessful thermal disinfection. In total, 4,482 water samples from 718 different water supply systems were analyzed. In 233 buildings (32.7%), Legionella spp were identified, 148 (63.5%) of which had a medium or higher level of contamination. The most common species was Legionella pneumophila (94%). Contamination was strongly associated with temperature in the circulation, but not with the size of the building, time of the year, or transport time to the laboratory. Thermal disinfection was successful in fewer than half of the buildings. There is relevant exposure to Legionella spp in the community. Water systems are not always up to current technical standards. Although microbiological risk assessment remains a challenge, there is a case for monitoring for Legionella spp outside of hospitals. Copyright © 2016 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.

  11. Ozonization effects on trihalo methane formation during the disinfection of drinking water with chlorine; Efectos de la ozonizacion sobre la formacion de trihalometanos durante la desinfeccion final del agua potable con cloro

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez Vidal, F. J.; Perez Serrano, A.; Orozco Barrentxea, C.; Sanllorente Santamaria, M. C.; Ibeas Reoyo, M. V.

    2001-07-01

    One of the main aspects in the control of drinking water treatment is the formation of disinfection by-products (DBP), some of the most important are the trihalomethanes (THM). The use of ozone as primary disinfectant in drinking water treatment plants reduces noticeably the amount of THM generated after the chlorination at the end of the treatment. The aim of this work is to study the main factors influencing the ozone effect in this process: the delay between the time of ozonization and chlorination, the applied ozone dose and the presence of bromide ion ind the raw water. These factors have been studied on natural waters (Uzquiza Reservoir-Burgos) and on synthetic waters (fulvic and humic acids extracted from the mentioned reservoir). (Author) 36 refs.

  12. Surface disinfection tests with Salmonella and a putative indicator bacterium, mimicking worst-case scenarios in poultry houses

    DEFF Research Database (Denmark)

    Gradel, K.O.; Sayers, A.R.; Davies, R.H.

    2004-01-01

    Surface disinfection studies mimicking worst-case scenarios in badly cleaned poultry houses were made with 3 bacterial isolates (Salmonella enteritidis, Salmonella senftenberg, and Enterococcus faecalis), and 3 1% disinfectant solutions, formaldehyde (F; 24.5% vol/vol), glutaraldehyde...... hard water, except when feed chain links with fats were disinfected using 30degreesC before and after disinfection, for which the peroxygen compound seemed more effective. Enterococcus faecalis was equally or less susceptible than S. enteritidis and S. senftenberg, indicating its suitability...... as an indicator bacterium. For the peroxygen compound, S. senftenberg was more susceptible than S. enteritidis in spite of higher minimum inhibitory concentrations to this disinfectant for the former....

  13. Effect of Electrolyzed Water on the Disinfection of Bacillus cereus Biofilms: The Mechanism of Enhanced Resistance of Sessile Cells in the Biofilm Matrix.

    Science.gov (United States)

    Hussain, Mohammad Shakhawat; Kwon, Minyeong; Tango, Charles Nkufi; Oh, Deog Hwan

    2018-05-01

    This study examined the disinfection efficacy and mechanism of electrolyzed water (EW) on Bacillus cereus biofilms. B. cereus strains, ATCC 14579 and Korean Collection for Type Cultures (KCTC) 13153 biofilms, were formed on stainless steel (SS) and plastic slide (PS) coupons. Mature biofilms were treated with slightly acidic EW (SAEW), acidic EW (AEW), and basic EW (BEW). SAEW (available chlorine concentration, 25 ± 1.31 mg L -1 ; pH 5.71 ± 0.16; and oxidation reduction potential, 818 to 855 mV) reduced ATCC 14579 biofilms on plastic slides to below the detection limit within 30 s. However, biofilms on SS coupons showed a higher resistance to the SAEW treatment. When the disinfection activities of three types of EW on biofilms were compared, AEW showed a higher bactericidal activity, followed by SAEW and BEW. In contrast, BEW showed a significantly ( P biofilm dispersal activity than AEW and SAEW. SAEW disinfection of the B. cereus biofilms was due to the disruption of the B. cereus plasma membrane. The higher resistance of biofilms formed on the SS coupon might be due to the higher number of attached cells and extracellular polymeric substances formation that reacts with the active chlorine ions, such as hypochlorous acid and hypochlorite ion of SAEW, which decreased the disinfection efficacy of SAEW. This study showed that the EW treatment effectively disinfected B. cereus biofilms, providing insight into the potential use of EW in the food processing industry to control the biofilm formation of B. cereus.

  14. Removal of soluble microbial products as the precursors of disinfection by-products in drinking water supplies.

    Science.gov (United States)

    Liu, Jin-Lin; Li, Xiao-Yan

    2015-01-01

    Water pollution worsens the problem of disinfection by-products (DBPs) in drinking water supply. Biodegradation of wastewater organics produces soluble microbial products (SMPs), which can be important DBP precursors. In this laboratory study, a number of enhanced water treatment methods for DBP control, including enhanced coagulation, ozonation, and activated carbon adsorption, were evaluated for their effectiveness in treating SMP-containing water for the DBP reduction purpose. The results show that enhanced coagulation with alum could remove SMPs only marginally and decrease the DBP formation potential (DBPFP) of the water by less than 20%. Although ozone could cause destruction of SMPs in water, the overall DBPFP of the water did not decrease but increased after ozonation. In contrast, adsorption by granular activated carbon could remove the SMP organics from water by more than 60% and reduce the DBPFP by more than 70%. It is apparent that enhanced coagulation and ozonation are not suitable for the removal of SMPs as DBP precursors from polluted water, although enhanced coagulation has been commonly used to reduce the DBP formation caused by natural organic matter. In comparison, activated carbon adsorption is shown as a more effective means to remove the SMP content from water and hence to control the wastewater-derived DBP problem in water supply.

  15. Real-time ArcGIS and heterotrophic plate count based chloramine disinfectant control in water distribution system.

    Science.gov (United States)

    Bai, Xiaohui; Zhi, Xinghua; Zhu, Huifeng; Meng, Mingqun; Zhang, Mingde

    2015-01-01

    This study investigates the effect of chloramine residual on bacteria growth and regrowth and the relationship between heterotrophic plate counts (HPCs) and the concentration of chloramine residual in the Shanghai drinking water distribution system (DWDS). In this study, models to control HPCs in the water distribution system and consumer taps are also developed. Real-time ArcGIS was applied to show the distribution and changed results of the chloramine residual concentration in the pipe system by using these models. Residual regression analysis was used to get a reasonable range of the threshold values that allows the chloramine residual to efficiently inhibit bacteria growth in the Shanghai DWDS; the threshold values should be between 0.45 and 0.5 mg/L in pipe water and 0.2 and 0.25 mg/L in tap water. The low residual chloramine value (0.05 mg/L) of the Chinese drinking water quality standard may pose a potential health risk for microorganisms that should be improved. Disinfection by-products (DBPs) were detected, but no health risk was identified.

  16. Modern technologies for improving cleaning and disinfection of environmental surfaces in hospitals

    Directory of Open Access Journals (Sweden)

    John M. Boyce

    2016-04-01

    Full Text Available Abstract Experts agree that careful cleaning and disinfection of environmental surfaces are essential elements of effective infection prevention programs. However, traditional manual cleaning and disinfection practices in hospitals are often suboptimal. This is often due in part to a variety of personnel issues that many Environmental Services departments encounter. Failure to follow manufacturer’s recommendations for disinfectant use and lack of antimicrobial activity of some disinfectants against healthcare-associated pathogens may also affect the efficacy of disinfection practices. Improved hydrogen peroxide-based liquid surface disinfectants and a combination product containing peracetic acid and hydrogen peroxide are effective alternatives to disinfectants currently in widespread use, and electrolyzed water (hypochlorous acid and cold atmospheric pressure plasma show potential for use in hospitals. Creating “self-disinfecting” surfaces by coating medical equipment with metals such as copper or silver, or applying liquid compounds that have persistent antimicrobial activity surfaces are additional strategies that require further investigation. Newer “no-touch” (automated decontamination technologies include aerosol and vaporized hydrogen peroxide, mobile devices that emit continuous ultraviolet (UV-C light, a pulsed-xenon UV light system, and use of high-intensity narrow-spectrum (405 nm light. These “no-touch” technologies have been shown to reduce bacterial contamination of surfaces. A micro-condensation hydrogen peroxide system has been associated in multiple studies with reductions in healthcare-associated colonization or infection, while there is more limited evidence of infection reduction by the pulsed-xenon system. A recently completed prospective, randomized controlled trial of continuous UV-C light should help determine the extent to which this technology can reduce healthcare-associated colonization and infections

  17. The efficiency of different disinfecting agents in inactivating microorganisms detected in natural and treated waters; Eficiencia de diferentes agentes desinfectantes en la inactivacion de microorganismos detectados en aguas naturales y tratadas

    Energy Technology Data Exchange (ETDEWEB)

    Perez Recuerda, R.; Sanchez, J.M.; Borrego, J.J.

    1998-12-01

    The efficiency of microbial inactivation and sublethal injury of six disinfectants (chlorine, chloramines, uV-light, potassium permanganate, fluor and ozone) applied at different dose on several bacterial strains, yeast and viruses has been studied comparatively. Disinfectant effect was higher on Gramnegative bacteria (Salmonella, Pseudomonas, Escherichia and Klebsiella) than on Gram-positive (Clostridium, Enterococcus and Stanphylococcus); although the least inactivation effect was obtained on the MS-2 bacteriophage. The global efficiency ranking of the disinfectants assayed to produce the microbial inactivation was as follows; ozone>chlorine>UV-light>chloramines>permanganate>fluor. On the other hand, on Escherichia coli and Pseudomonas aerugionosa were observed the highest sublethal injuries provokes by the disinfectants and dose assayed. Therefore, these microorganisms are the main candidates to regrow and to form biofilm in drinking water distribution systems. 34 refs. (Author)

  18. From Source Water to Tap Water to Spa and Swimming Pool Water: Effects of Disinfectanta and Precursors and Implications for Exposure and Toxicity

    Science.gov (United States)

    Introduction The current study investigated the effect of different disinfection treatments on the disinfection by-products (DBPs) formed in finished drinking water vs. tap water vs. swimming pool water vs. spa waters. To this end, samples across the complete water pathway (untr...

  19. Disinfection technology with ozone for cryptosporidium; Cryptosporidium taisaku to shite no ozone shodoku gijutsu

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Y.; Takahashi, K. [Fuji Electric Co. Ltd., Tokyo (Japan); Motoyama, N. [Fuji Electric Corporate Research and Development, Ltd., Kanagawa (Japan)

    1998-06-10

    Measures against Cryptosporidium parvum (C. parvum) in the waterworks are discussed. C. parvum is a pathogenic protozoan, and exists in the form of oocyst protected by a hard shell. It does not multiply in water or food, but does in human intestines and causes violent diarrhea and bellyache. A grave concern was created when many people were infected with the protozoan via tap water in Japan and the United States. Under such circumstances, ozone is used in an experiment to inactivate C. parvum. It is found that the C. parvum oocyst inactivation effect is evaluated by using a Ct value (disinfectant concentration Cmg/Ltimescontact time in minute) and that ozone treatment inactivates 90-99% of the protozoan. When various advanced water treatment technologies are being introduced for the purpose of serving safe and tasty water, the outcome of this study conveniently offers an ozone treatment method that will additionally inactivate pathogenic protozoa. Studies will be continued to elucidate the effects of factors of ozone treatment and water quality for the completion of an ideal disinfection process. Reference is made to an example of disinfection work implemented at a water purification plant of Milwaukie City, United States. 9 refs., 6 figs., 4 tabs.

  20. Strontium Adsorption and Desorption Reactions in Model Drinking Water Distribution Systems

    Science.gov (United States)

    2014-02-04

    disinfected drinking water and the other with the same water with secondary chloramine disinfection . Flow...systems (DWDS). One system was maintained with chlorine- disinfected drinking water and the other with the same water with secondary chloramine... disinfectant concen- tration in drinking water can decrease during periods of stagnation, i.e., minimal to no water flow (Al-Jasser 2007). These

  1. Kinetic model for the radical degradation of tri-halonitromethane disinfection byproducts in water

    International Nuclear Information System (INIS)

    Mezyk, Stephen P.; Mincher, Bruce J.; Cooper, William J.; Kirkham Cole, S.; Fox, Robert V.; Gardinali, Piero R.

    2012-01-01

    The halonitromethanes (HNMs) are byproducts of the ozonation and chlorine/chloramine treatment of drinking waters. Although typically occurring at low concentrations HNMs have high cytotoxicity and mutagenicity, and may therefore represent a significant human health hazard. In this study, we have investigated the radical based mineralization of fully-halogenated HNMs in water using the congeners bromodichloronitromethane and chlorodibromonitromethane. We have combined absolute reaction rate constants for their reactions with the hydroxyl radical and the hydrated electron as measured by electron pulse radiolysis and analytical measurements of stable product concentrations obtained by 60 Co steady-state radiolysis with a kinetic computer model that includes water radiolysis reactions and halide/nitrogen oxide radical chemistry to fully elucidate the reaction pathways of these HNMs. These results are compared to our previous similar study of the fully chlorinated HNM chloropicrin. The full optimized computer model, suitable for predicting the behavior of this class of compounds in irradiated drinking water, is provided. - Highlights: ► Radical-based mineralization of aqueous halonitromethane disinfection byproducts. ► Constructed kinetic computer model for tri-halogenated halonitromethane removal. ► Model predicted that superoxide reaction is unimportant for halonitromethanes. ► Measured superoxide reaction with chloropicrin was negligibly slow, 4 M −1 s −1 . ► Determined that superoxide reaction with nitrate also insignificant at ∼10 4 M −1 s −1 .

  2. STERILIZATION AND DISINFECTION IN A PRIVATE CLINIC

    African Journals Online (AJOL)

    Oral examination is done with a mirror and probe. The mirror is then washed under the tap water and disinfected in 'V3 sterilizing' fluid concentrate. The probe is placed in a tray with ... Protective glasses are worn additionally to the gloves and facemask, when cavity preparation. is being performed. The handpiece is wiped.

  3. Acanthamoeba polyphaga resuscitates viable non-culturable Legionella pneumophila after disinfection.

    Science.gov (United States)

    García, María Teresa; Jones, Snake; Pelaz, Carmen; Millar, Richard D; Abu Kwaik, Yousef

    2007-05-01

    Amoebae are the natural hosts for Legionella pneumophila and play essential roles in bacterial ecology and infectivity to humans. When L. pneumophila colonizes an aquatic installation, it can persist for years despite repeated treatments with disinfectants. We hypothesized that freshwater amoebae play an important role in bacterial resistance to disinfectants, and in subsequent resuscitation of viable non-culturable (VNC) L. pneumophila that results in re-emergence of the disease-causing strain in the disinfected water source. Our work showed that in the absence of Acanthamoeba polyphaga, seven L. pneumophila strains became non-culturable after treatment by 256 p.p.m. of sodium hypochlorite (NaOCl). In contrast, intracellular L. pneumophila within A. polyphaga was resistant to 1024 p.p.m. of NaOCl. In addition, L. pneumophila-infected A. polyphaga exhibited increased resistance to NaOCl. When chlorine-sterilized water samples were co-cultured with A. polyphaga, the non-culturable L. pneumophila were resuscitated and proliferated robustly within A. polyphaga. Upon treatment by NaOCl, uninfected amoebae differentiated into cysts within 48 h. In contrast, L. pneumophila-infected A. polyphaga failed to differentiate into cysts, and L. pneumophila was never detected in cysts of A. polyphaga. We conclude that amoebic trophozoites protect intracellular L. pneumophila from eradication by NaOCl, and play an essential role in resuscitation of VNC L. pneumophila in NaOCl-disinfected water sources. Intracellular L. pneumophila within trophozoites of A. polyphaga block encystation of the amoebae, and the resistance of both organisms to NaOCl is enhanced. To ensure long-term eradication and complete loss of the VNC state of L. pneumophila, we recommend that Legionella-protozoa co-culture should be an important tool to ensure complete loss of the VNC state of L. pneumophila.

  4. UV drinking water disinfection with photovoltaic power supply. UV-Trinkwasserentkeimung mit photovoltaischer Stromversorgung

    Energy Technology Data Exchange (ETDEWEB)

    Scharmer, K; Pappers, B; Guenner, C

    1990-06-01

    The study carried out on commission of the BMFT describes in the first three chapters UV disinfectation systems as well as experience gained from their use in industry and developing countries. In the chapter 4-7 special requirements for the use in developing countries are specified and compared to the results of other projects of the BMFT, GTZ and UNIDO. Chapter 5 gives a matrix of cost in which UV and chlorine disinfectation are compared to each other. In the final chapters 8 and 9 test programs and laboratory tests are described which are to serve as basis for planned field tests. (ORU).

  5. Calcium hypochlorite as a disinfecting additive for dental stone.

    Science.gov (United States)

    Twomey, Jonathan O; Abdelaziz, Khalid M; Combe, Edward C; Anderson, Dwight L

    2003-09-01

    Dental casts come into direct contact with impression materials and other items that are contaminated by saliva and blood from a patient's mouth, leaving the casts susceptible to cross-contamination. Topical methods of disinfecting casts are difficult to control, while immersion methods are potentially destructive. Thus, an additional method to control cross-contamination between patients and laboratory personnel is needed. This study was undertaken in an attempt to develop a dental stone with disinfecting properties and adequate compressive and tensile strengths. Calcium hypochlorite [Ca(OCl)(2)] in aqueous solution in concentrations from 0 to 1.5% was tested as a disinfecting additive to type V dental stone. The compressive and tensile strength properties of the modified stone were measured (MPa) using a universal testing machine at a consistency similar to unmodified stone. Strength data were analyzed by 1-way ANOVA and post hoc Tukey-Kramer procedure (alpha CaviCide, and 3 impressions rinsed in water served as controls. In general, the effect of adding the disinfectant to the stone was a decrease in strength. Exceptions were the dry compressive strength, for which there was a significant increase in strength (P=.048) at 0.5%, and the wet compressive and wet tensile strength, which showed no significant difference between the 1.5% and the control. When Ca(OCl)(2) was added at the concentration 0.5% (2765 ppm available chlorine), the gypsum had acceptable mechanical properties; dry compressive strength was 78.86 +/- 4.12 MPa, and dry tensile strength was 10.64 +/- 1.27 MPa, compared to control values of 67.85 +/- 6.28 and 13.41 +/- 1.24 MPa, respectively. At concentrations of 0.3% and higher (36 1650 ppm of available chlorine), calcium hypochlorite was able to completely inactivate phi29. It is possible to prepare a type V dental stone that contains a disinfectant, has adequate mechanical properties, and will reduce numbers of residual microorganisms. For example

  6. Disinfection byproduct formation in drinking water sources: A case study of Yuqiao reservoir.

    Science.gov (United States)

    Zhai, Hongyan; He, Xizhen; Zhang, Yan; Du, Tingting; Adeleye, Adeyemi S; Li, Yao

    2017-08-01

    This study investigated the potential formation of disinfection byproducts (DBPs) during chlorination and chloramination of 20 water samples collected from different points of Yuqiao reservoir in Tianjin, China. The concentrations of dissolved organic matter and ammonia decreased downstream the reservoir, while the specific UV absorbance (SUVA: the ratio of UV 254 to dissolved organic carbon) increased [from 0.67 L/(mg*m) upstream to 3.58 L/(mg*m) downstream]. The raw water quality played an important role in the formation of DBPs. During chlorination, haloacetic acids (HAAs) were the major DBPs formed in most of the water samples, followed by trihalomethanes (THMs). CHCl 3 and CHCl 2 Br were the major THM species, while trichloroacetic acid (TCAA) and dichloroacetic acid (DCAA) were the major HAA species. Chloramination, on the other hand, generally resulted in lower concentrations of THMs (CHCl 3 ), HAAs (TCAA and DCAA), and haloacetonitriles (HANs). All the species of DBPs formed had positive correlations with the SUVA values, and HANs had the highest one (R 2  = 0.8). The correlation coefficients between the analogous DBP yields and the SUVA values in chlorinated samples were close to those in chloraminated samples. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Disinfection Byproducts in Drinking Water and Evaluation of Potential Health Risks of Long-Term Exposure in Nigeria.

    Science.gov (United States)

    Benson, Nsikak U; Akintokun, Oyeronke A; Adedapo, Adebusayo E

    2017-01-01

    Levels of trihalomethanes (THMs) in drinking water from water treatment plants (WTPs) in Nigeria were studied using a gas chromatograph (GC Agilent 7890A with autosampler Agilent 7683B) equipped with electron capture detector (ECD). The mean concentrations of the trihalomethanes ranged from zero in raw water samples to 950  μ g/L in treated water samples. Average concentration values of THMs in primary and secondary disinfection samples exceeded the standard maximum contaminant levels. Results for the average THMs concentrations followed the order TCM > BDCM > DBCM > TBM. EPA-developed models were adopted for the estimation of chronic daily intakes (CDI) and excess cancer incidence through ingestion pathway. Higher average intake was observed in adults (4.52 × 10 -2  mg/kg-day), while the ingestion in children (3.99 × 10 -2  mg/kg-day) showed comparable values. The total lifetime cancer incidence rate was relatively higher in adults than children with median values 244 and 199 times the negligible risk level.

  8. Improving stethoscope disinfection at a children's hospital.

    Science.gov (United States)

    Zaghi, Justin; Zhou, Jing; Graham, Dionne A; Potter-Bynoe, Gail; Sandora, Thomas J

    2013-11-01

    Stethoscopes are contaminated with pathogenic bacteria and pose a risk for transmission of infections, but few clinicians disinfect their stethoscope after every use. We sought to improve stethoscope disinfection rates among pediatric healthcare providers by providing access to disinfection materials and visual reminders to disinfect stethoscopes. Prospective intervention study. Inpatient units and emergency department of a major pediatric hospital. Physicians and nurses with high anticipated stethoscope use. Baskets filled with alcohol prep pads and a sticker reminding providers to regularly disinfect stethoscopes were installed outside of patient rooms. Healthcare providers' stethoscope disinfection behaviors were directly observed before and after the intervention. Multivariable logistic regression models were created to identify independent predictors of stethoscope disinfection. Two hundred twenty-six observations were made in the preintervention period and 261 in the postintervention period (83% were of physicians). Stethoscope disinfection compliance increased significantly from a baseline of 34% to 59% postintervention (P stethoscope disinfection supplies and visible reminders outside of patient rooms significantly increased stethoscope disinfection rates among physicians and nurses at a children's hospital. This simple intervention could be replicated at other healthcare facilities. Future research should assess the impact on patient infections.

  9. Conducts of disinfection, pouring and storage of irreversible hydrocolloid impressions by undergraduate students

    Directory of Open Access Journals (Sweden)

    Thalisson Saymo de Oliveira SILVA

    Full Text Available Abstract Introduction Obtaining dental models that accurately represent the molded oral tissue requires professional attention, especially when using irreversible hydrocolloid as a molding material. Objective To evaluate the conducts of undergraduate dental students at different internships for the disinfecting procedures, pouring, and storage of irreversible hydrocolloid impressions. Material and method This is an observational, cross-sectional and descriptive study with a census sample of 89 students enrolled in the supervised internships I, II, III and IV. Data collection was performed using a structured questionnaire containing eight questions. Data were analyzed at the 5% significance level. Result Most of the students (88.8% performed the disinfection procedure, for which the most widely used method (64.6% was the application of sodium hypochlorite 1% spray stored in a sealed container. The most common disinfection time was 10 minutes (86.1%. Students in the early internships performed better in regard to the proportion of water/plaster to be used compared with students in the final internships. At all internships, pouring and storage of the ensemble of mold and model were neglected during the setting reaction. There was a statistically significant association between the stage and the disinfection method, the ratio of water/powder and pouring of the model (p<0.05. Conclusion Students exhibited appropriate conduct of disinfection; however, they should be encouraged to use evidence-based clinical practices in order to improve the procedures of pouring and storage of irreversible hydrocolloid molds.

  10. Sensitivity to disinfection of bacterial indicator organisms for monitoring the Salmonella Enteritidis status of layer farms after cleaning and disinfection.

    Science.gov (United States)

    Dewaele, I; Ducatelle, R; Herman, L; Heyndrickx, M; De Reu, K

    2011-06-01

    The present study evaluated Escherichia coli, Enterococcus faecalis, and Enterococcus hirae as potential indicator organisms for the possible Salmonella Enteritidis (SE) presence in layer farms after cleaning and disinfection by comparing their susceptibility to disinfection. A quantitative suspension disinfection test according to European Standard EN1656 was performed using disinfection products CID20 and Virocid (both from CID Lines, Ieper, Belgium). In a preliminary test, the sensitivity to both disinfection products was compared between ATCC strains of SE, E. coli, En. faecalis, and En. hirae. The sensitivity of SE to disinfection was most comparable to that of E. coli. A second disinfection test compared the elimination of E. coli to SE ATCC strains as well as field strains. Results showed no significant effect regarding the strain (P > 0.05 for CID20 and Virocid), meaning that no difference was detected in sensitivity toward disinfection. When comparing the sensitivity in general at species level for all concentrations of disinfectant used, no significant difference was found between E. coli and SE in sensitivity to Virocid (P > 0.05). In conclusion, because of its similar response to disinfection in a suspension disinfection test, E. coli could be used as an indicator for possible Salmonella presence after cleaning and disinfection.

  11. Isolation of Bacillus subtilis as indicator in the disinfection of residual water by means of gamma radiation; Aislamiento de Bacillus subtilis como indicador en la desinfeccion de aguas residuales mediante radiacion gamma

    Energy Technology Data Exchange (ETDEWEB)

    Mata J, M; Colin C, A [Facultad de Quimica, UAEM, Paseo Colon esq. Tollocan s/n, Toluca, 50000 Estado de Mexico (Mexico); Lopez V, H; Brena V, M; Carrasco A, H; Pavon R, S [Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    2002-07-01

    In the attempt to get more alternatives of disinfection of residual water, the Bacillus subtilis was isolated by means of gamma radiation as a bio indicator of disinfection since it turned out to be resistant to the 5 KGy dose, comparing this one with other usual microorganisms as biondicators like E. coli and S typhimurium which turn out more sensitive to such dose. (Author)

  12. Microbiological Efficacy Test Methods of Disinfectants

    OpenAIRE

    Şahiner, Aslı

    2015-01-01

    Disinfection process is required in every area where microbiological contamination and infection risk is present, especially in medical sector, food, veterinary and general common living areas hence many disinfectants and antiseptics are being produced for different purposes. Disinfectants are made up a large group of biocidal products. Depending on the chemical properties of active substances, targeted microorganisms may differ While some disinfectants are effective in a large spectrum, othe...

  13. DISINFECTION BY-PRODUCT FORMATION BY ALTERNATIVE DISINFECTANTS AND REMOVAL BY GRANULAR ACTIVATED CARBON

    Science.gov (United States)

    The effects of the use of the alternative disinfectants on the formation of halogenated disinfection by–products (DBPs) including total organic halide, trihalomethanes, haloacetic acids, haloacetonitriles, haloketones, chloral hydrate, and chloropicrin, were examined along ...

  14. Evaluation of Handheld Assays for the Detection of Ricin and Staphylococcal Enterotoxin B in Disinfected Waters

    Directory of Open Access Journals (Sweden)

    Mary Margaret Wade

    2011-01-01

    Full Text Available Development of a rapid field test is needed capable of determining if field supplies of water are safe to drink by the warfighter during a military operation. The present study sought to assess the effectiveness of handheld assays (HHAs in detecting ricin and Staphylococcal Enterotoxin B (SEB in water. Performance of HHAs was evaluated in formulated tap water with and without chlorine, reverse osmosis water (RO with chlorine, and RO with bromine. Each matrix was prepared, spiked with ricin or SEB at multiple concentrations, and then loaded onto HHAs. HHAs were allowed to develop and then read visually. Limits of detection (LOD were determined for all HHAs in each water type. Both ricin and SEB were detected by HHAs in formulated tap water at or below the suggested health effect levels of 455 ng/mL and 4.55 ng/mL, respectively. However, in brominated or chlorinated waters, LODs for SEB increased to approximately 2,500 ng/mL. LODs for ricin increased in chlorinated water, but still remained below the suggested health effect level. In brominated water, the LOD for ricin increased to approximately 2,500 ng/mL. In conclusion, the HHAs tested were less effective at detecting ricin and SEB in disinfected water, as currently configured.

  15. [The effect of disinfectant soaking on dental gypsum model size].

    Science.gov (United States)

    Zhu, Cao-yun; Xu, Yun-wen; Xu, Kan

    2012-12-01

    To study the influence of disinfectant soaking on the dimensional stability of three kinds of dental gypsum model. Three commonly used gypsums ( type III,IV,Vtype) in clinic were used to make 24 specimens for 50 mm×15 mm×10 mm in size. One hour after release, the specimens were placed for 24 h. A digital caliper was used to measure the size of the gypsum model. Distilled water immersion was as used control, glutaraldehyde disinfectant and Metrix CaviCide disinfectant soaking were used for the experimental group. After soaking for 0.5h, the gypsum models were removed and placed for 0.5 h, 1 h, 2 h, 24 h. The size of the models was measured again using the same method. The data was analyzed with SPSS10.0 software package. The initial gypsum model length was (50.07±0.017) mm, (50.048±0.015) mm and (50.027±0.015) mm. After soaking for different times, the size of the model changed little, and the dimensions changed less than 0.01%. The results show that disinfectant soaking has no significant effect on dental model dimensions.

  16. Ultraviolet radiation as disinfection for fish surgical tools

    Energy Technology Data Exchange (ETDEWEB)

    Walker, Ricardo W.; Markillie, Lye Meng; Colotelo, Alison HA; Geist, David R.; Gay, Marybeth E.; Woodley, Christa M.; Eppard, M. B.; Brown, Richard S.

    2013-04-04

    Telemetry is frequently used to examine the behavior of fish, and the transmitters used are normally surgically implanted into the coelomic cavity of fish. Implantation requires the use of surgical tools such as scalpels, forceps, needle holders, and sutures. When fish are implanted consecutively, as in large telemetry studies, it is common for surgical tools to be sterilized or, at minimum, disinfected between each use so that pathogens that may be present are not spread among fish. To determine the efficacy for this application, ultraviolet (UV) radiation was used to disinfect surgical tools exposed to one of four aquatic organisms that typically lead to negative health issues for salmonids. These organisms included Aeromonas salmonicida, Flavobacterium psychrophilum, Renibacterium salmoninarum, and Saprolegnia parasitica, causative agents of furunculosis, coldwater disease, bacterial kidney disease, and saprolegniasis (water mold), respectively. Four experiments were conducted to address the question of UV efficacy. In the first experiment, forceps were exposed to the three bacteria at three varying concentrations. After exposure to the bacterial culture, tools were placed into a mobile Millipore UV sterilization apparatus. The tools were then exposed for three different time periods – 2, 5, or 15 min. UV radiation exposures at all durations were effective at killing all three bacteria on forceps at the highest bacteria concentrations. In the second experiment, stab scalpels, sutures, and needle holders were exposed to A. salmonicida using the same methodology as used in Experiment 1. UV radiation exposure at 5 and 15 min was effective at killing A. salmonicida on stab scalpels and sutures but not needle holders. In the third experiment, S. parasitica, a water mold, was tested using an agar plate method and forceps-pinch method. UV radiation was effective at killing the water mold at all three exposure durations. Collectively, this study shows that UV

  17. Ammonium ion interaction with conditioned natural zeolite with silver and its effect on the disinfection of polluted water in front of a consortium of gram (+) and gram (-) microorganisms

    International Nuclear Information System (INIS)

    Gonzaga G, V. E.

    2013-01-01

    Clinoptilolite zeolite material is a relative abundance in Mexico, which has ion exchange properties, therefore, has the ability to retain metal ions giving it an application in the process of disinfecting of water contaminated with pathogenic microorganisms. In this research, we conducted a study of disinfection of water contaminated with a microbial consortium, from a zeolite rock clinoptilolite from a deposit located in the State of Guerrero. Initially, the zeolite prepared by the grinding and sieving, for conditioning with NaCl and subsequently with AgNO 3 , finally to be characterized using the techniques of scanning electron microscopy and X-ray diffraction. Tests using columns packed with zeolite material, the effect of zeolite bactericidal conditioned with silver (ZGAg) against a microbial consortium consisting of Escherichia coli and Sthapyloccocus aureus in aqueous solution in the presence of ammonium ions used to increase the ion exchange with zeolite fitted with silver. To describe curves disinfecting a continuous flow system is adapted Gu pta model, which describes the kinetics and equilibrium adsorption process, considering the microorganisms as the adsorbate and the sanitizing agent (conditioned with silver zeolite) as the adsorbent. Characterization results show that in the scanning electron microscopy (Sem), no changes were obtained on the morphology of typical clinoptilolite crystals before and after that was modified with sodium and then with silver, it is worth mentioning however that fitted with silver zeolite (ZGAg), small particles are seen on the zeolite material which when analyzed by energy dispersive spectroscopy (EDS), we found a high concentration of Ag +. The disinfection period is increased as the concentration increased ammonium ions, this behavior is attributed to the ion exchange that occurs between the ammonium ions and silver ions. A lower percentage of inactivation is due, therefore, to a lesser amount of money available to be

  18. 9 CFR 166.14 - Cleaning and disinfecting.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Cleaning and disinfecting. 166.14... AGRICULTURE SWINE HEALTH PROTECTION SWINE HEALTH PROTECTION General Provisions § 166.14 Cleaning and disinfecting. (a) Disinfectants to be used. Disinfection required under the regulations in this Part shall be...

  19. A Modern Approach to Disinfection, as Old as the Evolution of Vertebrates

    Directory of Open Access Journals (Sweden)

    Franco Migliarina

    2014-12-01

    Full Text Available The immune system of vertebrates “naturally” produces hypochlorous acid (HOCl to fight against bacteria and pathogens. A patented electrochemical technology mirrors the above defense system, allowing the synthesis of HOCl solutions through the electrolysis of water enriched in salts, at the level of a few grams per liter. The system allows for the careful control of the pH of produced solutions, with consequent optimization of their activity. Once the HOCl is introduced into the water system; it is able to remove the biofilm from pipe network; significantly decreasing the level of Legionella colonization; within 8–10 weeks from the beginning of the disinfection approach. The technology has been applied in a variety of healthcare facilities, both in Italy and in neighboring European countries. In the present paper, two successful case studies are briefly presented: Data were obtained from experiences in two different healthcare facilities, one in Italy and the other in Germany. Destruction of biofilm was indirectly testified by an increase of total organic carbon content of water; as a consequence, and because of the dosing of the disinfecting agent, some μg/L of total halomethanes were also formed. However, both compositional features were only observed during the initial stages of the disinfection treatment.

  20. Disinfection of sewage water and sludge using gamma radiation

    International Nuclear Information System (INIS)

    Musaad, R.M.A.

    2008-04-01

    This study has been carried out to assess the efficiency of gamma radiation in disinfecting sewage water and sludge from harmful pathogenic bacteria (e.g. Streptococcus, Salmonella, Shigella, total E-coli and total coliform), parasites (Ascaris ova) as well as its ability to degrade organic matter (BOD). Samples were exposed to gamma-radiation doses ranging from 0.5 to 8 KGy using Co''6 0 cell. Amongst pathogenic bacteria which are subjected to different doses of gamma-radiation Streptococcus faecalis revealed to be the most resistance bacterial indicator since complete elimination of these bacteria could be attained at 3.5 KGy. While total e-coli shown to be the most sensitive with lethal dose at 2 KGy. The radiation doses that required for reducing the bacterial population by 90% (D 10 ) and 50% (D 50 ) were determined for each species. The D 10 values found ranged from 0.75 KGy for Streptococcus and 2.75 KGy for total count bacteria. On the other hand, D 50 fall within the range of 0.5 KGy for total count bacteria, total coliform and Streptococcus, and 1.0 KGy for total e-coli. With regard to the efficiency of radiation treatment to destroy Ascaris ova viability it was found that no larvae were viable after exposure to 1.0 KGy following incubation of exposed ova for four weeks period.(Author)

  1. Effective reprocessing of reusable dispensers for surface disinfection tissues – the devil is in the details

    Science.gov (United States)

    Kampf, Günter; Degenhardt, Stina; Lackner, Sibylle; Ostermeyer, Christiane

    2014-01-01

    Background: It has recently been reported that reusable dispensers for surface disinfection tissues may be contaminated, especially with adapted Achromobacter species 3, when products based on surface-active ingredients are used. Fresh solution may quickly become recontaminated if dispensers are not processed adequately. Methods: We evaluated the abilities of six manual and three automatic processes for processing contaminated dispensers to prevent recolonisation of a freshly-prepared disinfectant solution (Mikrobac forte 0.5%). Dispensers were left at room temperature for 28 days. Samples of the disinfectant solution were taken every 7 days and assessed quantitatively for bacterial contamination. Results: All automatic procedures prevented recolonisation of the disinfectant solution when a temperature of 60–70°C was ensured for at least 5 min, with or without the addition of chemical cleaning agents. Manual procedures prevented recontamination of the disinfectant solution when rinsing with hot water or a thorough cleaning step was performed before treating all surfaces with an alcohol-based disinfectant or an oxygen-releaser. Other cleaning and disinfection procedures, including the use of an alcohol-based disinfectant, did not prevent recolonisation. Conclusions: These results indicate that not all processes are effective for processing reusable dispensers for surface-disinfectant tissues, and that a high temperature during the cleaning step or use of a biofilm-active cleaning agent are essential. PMID:24653973

  2. Effective reprocessing of reusable dispensers for surface disinfection tissues – the devil is in the details

    Directory of Open Access Journals (Sweden)

    Kampf, Günter

    2014-03-01

    Full Text Available [english] Background: It has recently been reported that reusable dispensers for surface disinfection tissues may be contaminated, especially with adapted , when products based on surface-active ingredients are used. Fresh solution may quickly become recontaminated if dispensers are not processed adequately. Methods: We evaluated the abilities of six manual and three automatic processes for processing contaminated dispensers to prevent recolonisation of a freshly-prepared disinfectant solution (Mikrobac forte 0.5%. Dispensers were left at room temperature for 28 days. Samples of the disinfectant solution were taken every 7 days and assessed quantitatively for bacterial contamination. Results: All automatic procedures prevented recolonisation of the disinfectant solution when a temperature of 60–70°C was ensured for at least 5 min, with or without the addition of chemical cleaning agents. Manual procedures prevented recontamination of the disinfectant solution when rinsing with hot water or a thorough cleaning step was performed before treating all surfaces with an alcohol-based disinfectant or an oxygen-releaser. Other cleaning and disinfection procedures, including the use of an alcohol-based disinfectant, did not prevent recolonisation.Conclusions: These results indicate that not all processes are effective for processing reusable dispensers for surface-disinfectant tissues, and that a high temperature during the cleaning step or use of a biofilm-active cleaning agent are essential.

  3. Biodosimetric analysis of medium pressure UV disinfection reactor treating unfiltered surface water

    International Nuclear Information System (INIS)

    Leinan, B.E.; Craik, S.A.; Smith, D.W.; Belosevic, M.

    2002-01-01

    Many small and medium-sized communities use chlorination of surface water as their sole treatment of potable water. Ultraviolet (UV) disinfection may offer these communities a cost effective treatment option for protection against pathogens not readily inactivated by chlorine. The effectiveness of UV reactors for microorganism reduction, however, is sensitive to UV dose delivery, which is in turn influenced by water quality characteristics. The effectiveness of a Calgon Carbon Inc. Sentinel medium-pressure UV reactor for microorganism reduction was determined using biodosimetry with two non-pathogenic indicator organisms - MS2 phage and Bacillus subtilis. Testing was conducted using low turbidity (<0.5 NTU) lake water characterized by relatively high absorbance in the UV range (UVT of approx. 87 to 88% at 254 nm). The efficiency of UV dose delivery in the reactor was determined for various operating conditions by calculating the normalized reductive equivalent irradiance (REI). With a single lamp in operation, the normalized REI measured with B. subtilis increased significantly when the flow rate through the reactor was increased from 380 L/min to 1140 L/min. This increase in reactor efficiency was believed to be due to improved reactor hydrodynamics and axial mixing that accompanied the higher flow rates. In contrast, treatment efficiency based on biodosimetry with MS2 phage was found to decrease with increasing flow rate when a single lamp was in operation. In general, treatment efficiency was greater when more than one adjacent lamp was in operation, suggesting that the influence of flow short-circuiting with single lamp operation. Differences between the outcomes observed with the two indicator microorganisms were not resolved, however, it was concluded that reactor efficiency was sensitive to both water flow rate and the number of adjacent lamps that were in operation. (author)

  4. Disinfection of Spacecraft Potable Water Systems by Passivation with Ionic Silver

    Science.gov (United States)

    Birmele, Michele N.; McCoy, LaShelle e.; Roberts, Michael S.

    2011-01-01

    Microbial growth is common on wetted surfaces in spacecraft environmental control and life support systems despite the use of chemical and physical disinfection methods. Advanced control technologies are needed to limit microorganisms and increase the reliability of life support systems required for long-duration human missions. Silver ions and compounds are widely used as antimicrobial agents for medical applications and continue to be used as a residual biocide in some spacecraft water systems. The National Aeronautics and Space Administration (NASA) has identified silver fluoride for use in the potable water system on the next generation spacecraft. Due to ionic interactions between silver fluoride in solution and wetted metallic surfaces, ionic silver is rapidly depleted from solution and loses its antimicrobial efficacy over time. This report describes research to prolong the antimicrobial efficacy of ionic silver by maintaining its solubility. Three types of metal coupons (lnconel 718, Stainless Steel 316, and Titanium 6AI-4V) used in spacecraft potable water systems were exposed to either a continuous flow of water amended with 0.4 mg/L ionic silver fluoride or to a static, pre-treatment passivation in 50 mg/L ionic silver fluoride with or without a surface oxidation pre-treatment. Coupons were then challenged in a high-shear, CDC bioreactor (BioSurface Technologies) by exposure to six bacteria previously isolated from spacecraft potable water systems. Continuous exposure to 0.4 mg/L ionic silver over the course of 24 hours during the flow phase resulted in a >7-log reduction. The residual effect of a 24-hour passivation treatment in 50 mg/L of ionic silver resulted in a >3-log reduction, whereas a two-week treatment resulted in a >4-log reduction. Results indicate that 0.4 mg/L ionic silver is an effective biocide against many bacteria and that a prepassivation of metal surfaces with silver can provide additional microbial control.

  5. Evaluation of toothbrush disinfection via different methods

    Directory of Open Access Journals (Sweden)

    Adil BASMAN

    2016-01-01

    Full Text Available The aim of this study was to compare the efficacy of using a dishwasher or different chemical agents, including 0.12% chlorhexidine gluconate, 2% sodium hypochlorite (NaOCl, a mouthrinse containing essential oils and alcohol, and 50% white vinegar, for toothbrush disinfection. Sixty volunteers were divided into five experimental groups and one control group (n = 10. Participants brushed their teeth using toothbrushes with standard bristles, and they disinfected the toothbrushes according to instructed methods. Bacterial contamination of the toothbrushes was compared between the experimental groups and the control group. Data were analyzed by Kruskal–Wallis and Duncan's multiple range tests, with 95% confidence intervals for multiple comparisons. Bacterial contamination of toothbrushes from individuals in the experimental groups differed from those in the control group (p < 0.05. The most effective method for elimination of all tested bacterial species was 50% white vinegar, followed in order by 2% NaOCl, mouthrinse containing essential oils and alcohol, 0.12% chlorhexidine gluconate, dishwasher use, and tap water (control. The results of this study show that the most effective method for disinfecting toothbrushes was submersion in 50% white vinegar, which is cost-effective, easy to access, and appropriate for household use.

  6. Water-Quality Constituents, Dissolved-Organic-Carbon Fractions, and Disinfection By-Product Formation in Water from Community Water-Supply Wells in New Jersey, 1998-99

    Science.gov (United States)

    Hopple, Jessica A.; Barringer, Julia L.; Koleis, Janece

    2007-01-01

    Water samples were collected from 20 community water-supply wells in New Jersey to assess the chemical quality of the water before and after chlorination, to characterize the types of organic carbon present, and to determine the disinfection by-product formation potential. Water from the selected wells previously had been shown to contain concentrations of dissolved organic carbon (DOC) that were greater than 0.2 mg/L. Of the selected wells, five are completed in unconfined (or semi-confined) glacial-sediment aquifers of the Piedmont and Highlands (New England) Physiographic Provinces, five are completed in unconfined bedrock aquifers of the Piedmont Physiographic Province, and ten are completed in unconsolidated sediments of the Coastal Plain Physiographic Province. Four of the ten wells in the Coastal Plain are completed in confined parts of the aquifers; the other six are in unconfined aquifers. One or more volatile organic compounds (VOCs) were detected in untreated water from all of the 16 wells in unconfined aquifers, some at concentrations greater than maximum contaminant levels. Those compounds detected included aliphatic compounds such as trichloroethylene and 1,1,1-trichloroethane, aromatic compounds such as benzene, the trihalomethane compound, chloroform, and the gasoline additive methyl tert-butyl ether (MTBE). Concentrations of sodium and chloride in water from one well in a bedrock aquifer and sulfate in water from another exceeded New Jersey secondary standards for drinking water. The source of the sulfate was geologic materials, but the sodium and chloride probably were derived from human inputs. DOC fractions were separated by passing water samples through XAD resin columns to determine hydrophobic fractions from hydrophilic fractions. Concentrations of hydrophobic acids were slightly lower than those of combined hydrophilic acids, neutral compounds, and low molecular weight compounds in most samples. Water samples from the 20 wells were adjusted

  7. Determinants of disinfectant pretreatment efficacy for nitrosamine control in chloraminated drinking water.

    Science.gov (United States)

    McCurry, Daniel L; Krasner, Stuart W; von Gunten, Urs; Mitch, William A

    2015-11-01

    Utilities using chloramines need strategies to mitigate nitrosamine formation to meet potential future nitrosamine regulations. The ability to reduce NDMA formation under typical post-chloramination conditions of pretreatment with ultraviolet light from a low pressure mercury lamp (LPUV), free chlorine (HOCl), ozone (O3), and UV light from a medium pressure mercury lamp (MPUV) were compared at exposures relevant to drinking water treatment. The order of efficacy after application to waters impacted by upstream wastewater discharges was O3 > HOCl ≈ MPUV > LPUV. NDMA precursor abatement generally did not correlate well between oxidants, and waters exhibited different behaviors with respect to pH and temperature, suggesting a variety of source-dependent NDMA precursors. For wastewater-impacted waters, the observed pH dependence for precursor abatement suggested the important role of secondary or tertiary amine precursors. Although hydroxyl radicals did not appear to be important for NDMA precursor abatement during O3 or MPUV pretreatment, the efficacy of MPUV correlated strongly with dissolved organic carbon concentration (p = 0.01), suggesting alternative indirect photochemical pathways. The temperature dependences during pre- and post-disinfection indicated that NDMA formation is likely to increase during warm seasons for O3 pretreatment, decrease for HOCl pretreatment, and remain unchanged for MPUV treatment, although seasonal changes in source water quality may counteract the temperature effects. For two waters impacted by relatively high polyDADMAC coagulant doses, pretreatment with HOCl, O3, and MPUV increased NDMA formation during post-chloramination. For O3 pretreatment, hydroxyl radicals likely led to precursor formation from the polymer in the latter tests. MPUV treatment of polymer-impacted water increased subsequent NDMA formation through an indirect photochemical process. Many factors may mitigate the importance of this increased NDMA formation

  8. [Analysis of Pathogenic Bacteria in Reclaimed Water and Impact of UV Disinfection on the Removal of Pathogenic Bacteria].

    Science.gov (United States)

    Jing, Ming; Wang, Lei

    2016-02-15

    In the study, 454-pyrosequencing technology was employed to investigate the species of pathogenic bacteria and the proportion of each pathogen in secondary effluent. Culture-based, qPCR and Q-RT-PCR methods were employed to analyze the removal of indicator (E. coli) and pathogen (Salmonella and Mycobacterium) by ultraviolet (UV) disinfection at a dose of 60 mJ x Cm(-2). The results showed that 11 kinds of pathogenic bacteria were found and the most abundant potentially pathogenic bacteria in the secondary effluent were affiliated with the genera of Clostridium (2.96%), Arcobacter (0.82%) and Mycobacterium (0.36%). 99.9% of culturable E. coli and Salmonella were removed by UV disinfection (60 mJ x cm(-2), however, less than 90% of culturable Mycobacterium were removed. The removal efficiencies of viable E. coli, Salmonella and Mycobacterium were low. Q-RT-PCR seemed to be a promising method for evaluating viable microorganisms in samples. Besides, pathogenic bacteria entered into VBNC state at a UV dose of 60 mJ x cm(-2). Other advanced treatment processes were needed to ensure safe utilization of reclaimed water.

  9. The effect of various disinfectants on dental shade guides.

    Science.gov (United States)

    Huang, Peterson Y; Masri, Radi; Romberg, Elaine; Driscoll, Carl F

    2014-09-01

    Dental shade guides are used to evaluate tooth color before prosthodontic procedures and are subjected to disinfection after use. The effect of disinfection on shade guides has not been thoroughly investigated. The purpose of this study was to evaluate the effect of disinfectants on the color of shade tabs. Changes in the color (ΔE) of VITA Classical Shade Guide tabs were measured with a VITA Easyshade spectrophotometer in the CIELAB system and calculated after being subjected to Cavicide, Asepticare TB, Sporicidin, and distilled water (control) over a simulated period of 2 years. Statistical analysis was accomplished by a 2-way analysis of variance followed by the Tukey honestly significant difference (HSD) test (α=.05). A significant difference was noted in the degree of shade tab color change, depending on the type of disinfectant used (F=153.2, PCavicide (ΔE=1.198). The average total CIELAB color difference for 50% human perceptibility is approximately 1 unit (under standardized laboratory conditions). In the oral cavity, however, an average change of 3.7 ΔE units could still allow teeth to be perceived as having the same color. Therefore, although the results are statistically significant, they may not be clinically important. Copyright © 2014 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  10. Photovoltaic powered ultraviolet and visible light-emitting diodes for sustainable point-of-use disinfection of drinking waters.

    Science.gov (United States)

    Lui, Gough Yumu; Roser, David; Corkish, Richard; Ashbolt, Nicholas; Jagals, Paul; Stuetz, Richard

    2014-09-15

    For many decades, populations in rural and remote developing regions will be unable to access centralised piped potable water supplies, and indeed, decentralised options may be more sustainable. Accordingly, improved household point-of-use (POU) disinfection technologies are urgently needed. Compared to alternatives, ultraviolet (UV) light disinfection is very attractive because of its efficacy against all pathogen groups and minimal operational consumables. Though mercury arc lamp technology is very efficient, it requires frequent lamp replacement, involves a toxic heavy metal, and their quartz envelopes and sleeves are expensive, fragile and require regular cleaning. An emerging alternative is semiconductor-based units where UV light emitting diodes (UV-LEDs) are powered by photovoltaics (PV). Our review charts the development of these two technologies, their current status, and challenges to their integration and POU application. It explores the themes of UV-C-LEDs, non-UV-C LED technology (e.g. UV-A, visible light, Advanced Oxidation), PV power supplies, PV/LED integration and POU suitability. While UV-C LED technology should mature in the next 10 years, research is also needed to address other unresolved barriers to in situ application as well as emerging research opportunities especially UV-A, photocatalyst/photosensitiser use and pulsed emission options. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Bactericidal active ingredient in cryopreserved plasma-treated water with the reduced-pH method for plasma disinfection

    Science.gov (United States)

    Kitano, Katsuhisa; Ikawa, Satoshi; Nakashima, Yoichi; Tani, Atsushi; Yokoyama, Takashi; Ohshima, Tomoko

    2016-09-01

    For the plasma disinfection of human body, plasma sterilization in liquid is crucial. We found that the plasma-treated water (PTW) has strong bactericidal activity under low pH condition. Physicochemical properties of PTW is discussed based on chemical kinetics. Lower temperature brings longer half-life and the bactericidal activity of PTW can be kept by cryopreservation. High performance PTW, corresponding to the disinfection power of 22 log reduction (B. subtilis spore), can be obtained by special plasma system equipped with cooling device. This is equivalent to 65% H2O2, 14% sodium hypochlorite and 0.33% peracetic acid, which are deadly poison for human. But, it is deactivated soon at higher temperature (4 sec. at body temperature), and toxicity to human body seems low. For dental application, PTW was effective on infected models of human extracted tooth. Although PTW has many chemical components, respective chemical components in PTW were isolated by ion chromatography. In addition to peaks of H2O2, NO2- and NO3-, a specific peak was detected. and only this fraction had bactericidal activity. Purified active ingredient of PTW is the precursor of HOO, and further details will be discussed in the presentation. MEXT (15H03583, 23340176, 25108505). NCCE (23-A-15).

  12. Plant stress activated by chlorine from disinfectants prepared on the base of sodium hypochlorite

    Directory of Open Access Journals (Sweden)

    Fargašová Agáta

    2017-12-01

    Full Text Available In this study, the phytotoxicity of disinfectants prepared on the base of sodium hypochlorite was determined. For our tests two commercial products, Savo and Dom Amor, as well as 10% NaClO solution were used. While Savo contained only NaClO, Dom Amor contained NaClO and earthworm enzymes. Products on the base of NaClO are used in households for cleaning and disinfection of floors, furniture, sanitary and kitchen equipment. Savo may be used for the disinfection of drinking waters as well. Products with NaClO are also used for bacteria, algae and pathogens reduction in irrigation waters. As a subject, young seedlings of mustard Sinapis alba L. were used for the study of chronic toxicity. The observed parameters of the inhibition of roots and shoots growth, dry (DM and fresh (FM mass as well as photosynthetic pigments production (chlorophyll a, b, carotenoids and water content in the plants were determined. The results point out that Dom Amor was the most toxic for S. alba seedlings growth and the rank order of the FAC contents for both plant parts was arranged as: Dom Amor > Savo > NaClO. All disinfectants reduced the DM and FM of roots; however, they stimulated biomass production in the shoots. On the basis of the obtained results it could be concluded, that disinfectants stimulated photosynthetic pigments production and reduced water content mainly in the roots. Dom Amor did not significantly reduced the water content in the shoots and for this parameter the following rank orders of inhibition for roots and shoots could be arranged as NaClO > Dom Amor > Savo and NaClO > Savo > Dom Amor, respectively. All commercial products increased chlorophyll a (Chla and the carotenoids (Car content in the shoots. As significant increase was confirmed first for Chla whose content in the presence of NaClO at concentration 24 mL/L overextended that in the control by 3.5 times. The rank orders of stimulation for Chla and Car were NaClO > Savo > Dom Amor and Dom

  13. Exopolymeric substances from drinking water biofilms: Dynamics of production and relation with disinfection by products.

    Science.gov (United States)

    Lemus Pérez, M F; Rodríguez Susa, M

    2017-06-01

    Exopolymeric substances (EPS) as an external matrix of biofilm could react with disinfectants in drinking water networks forming disinfection by-products (DBP). Based on an experimental setup using two chlorine conditions-biofilm 1 (2.6 ± 0.8 mgCl/L) and biofilm 2 (0.7 ± 0.2 mg Cl/L)-samples of biofilms were recovered during 9 campaigns and EPS were extracted. Analyses of SUVA, fluorescence and amino acid (AA) content were carried out on the EPS to observe variation over time and correlations with DBP formation potential (DBP fp ) after chlorination. SUVA values were under 2 L/mgC*m showing that both EPS were hydrophilic. Slightly higher SUVA in biofilm 2 with low variation over time was observed. Fluorescence showed that aromatic proteins and fulvic like substances were the principal components and increased in biofilm 1 over time. AA decreased with time, and higher values of alanine, threonine, proline and isoleucine were observed in biofilm 2. Based on general associations, the SUVA of biofilm 2 correlated well with chloroform (CF) (r = 0.80). Generally, in both biofilms, tryptophan-like substances were negatively correlated with DBP while humic acid-like substances correlated positively, but with low indexes (r = 0.3-0.6). Correlations of data from individual sampling increased the indices (r over 0.8), suggesting a temporal influence of other factors on DBP fp such as inorganics, filtered water and the structural composition of EPS. In biofilm 1, Br-haloacetic acids (Br-HAA), dibromoacetonitrile and bromochloro acetonitrile were inversely associated with arginine and valine, as were di and trichloropropanone to arginine. On the contrary, in biofilm 2, the following amino acids correlated positively with DBP: alanine with Br-HAA, alanine with CF, alanine with N-DBP (chloropicrin, di and tri-chloro acetonitrile), and valine with CF. As this is the first report about the relation between temporal variation of EPS and DBP fp of biofilms in two

  14. The effect of disinfecting solutions on the dimensional stability of dental alginate impression materials.

    Science.gov (United States)

    Muzaffar, Danish; Braden, Michael; Parker, Sandra; Patel, Mangala P

    2012-07-01

    Dimensional changes occur in set dental alginate impression materials when immersed in disinfecting solutions. In this contribution the dimensional changes of two alginates in two disinfecting solutions, and for two specimen thicknesses, have been studied. The results were analyzed theoretically. The dimensional changes of two commercial alginates (Blueprint Cremix and Hydrogum), have been measured, in distilled water and two disinfecting solutions (Perform ID/sodium hypochlorite), using a traveling microscope, at 5 min intervals over a period of 1h. Samples of simple geometry have been studied, namely rectangular strips with thicknesses of 1.5 and 3mm, respectively. In all cases, both alginates continuously shrank with time, in the three immersion liquids, over the hour of measurement, indicating transfer of water from the alginate into the external water or disinfecting solution. The t(1/2) shrinkage plots were generally linear, but with an intercept on the t(1/2) axis, indicating the possibility of an initial expansion at very short times. In most cases, the ratios of slopes for both thicknesses were 1.33-1.54, in contrast to the theoretical value of 2. Perform ID however gave anomalous results for the 1.5mm thick samples. At 10 min their shrinkage was 1.34-1.72%, compared with -0.42% to 0.67% in the other two media. The effects of thickness observed were not in accord with simple Fickian theory because of the various ions diffusing into and out of the alginate. Moreover, the water content of the alginate decreased consequent on the cross-linking process. Copyright © 2012 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  15. The Use of Normal Colon Cell Culture to Assess Toxicities and Cancer Molecular Pathway Alterations Induced by Disinfection Byproducts.

    Science.gov (United States)

    Recent Epidemiological studies have linked the consumption of disinfected surface waters to an increased risk of colorectal cancer (Bove, GE, Jr et al., Int. J. Health Geogr., 6:18, 2007). Approximately 600 disinfection byproducts (DBP) have been identified. Because it would be...

  16. Alternating electric field fluidized bed disinfection performance with different types of granular activated carbon

    NARCIS (Netherlands)

    Racyte, J.; Yntema, D.R.; Kazlauskaite, L.; DuBois, A.; Bruning, H.; Rijnaarts, H.H.M.

    2014-01-01

    The removal of pathogens from effluents is important to promote the reuse of these water resources and safeguarding human health, especially in water scarce areas worldwide. Previously a proof-of-principle of a method for water disinfection consisting of fluidized bed electrodes (FBE) with RX3 EXTRA

  17. Humidifier disinfectants, unfinished stories

    Directory of Open Access Journals (Sweden)

    Yeyong Choi

    2016-02-01

    Full Text Available Once released into the air, humidifier disinfectants became tiny nano-size particles, and resulted in chemical bronchoalveolitis. Families had lost their most beloved members, and even some of them became broken. Based on an estimate of two million potential victims who had experienced adverse effects from the use of humidifier disinfectants, we can say that what we have observed was only the tip of the iceberg. Problems of entire airways, as well as other systemic effects, should be examined, as we know these nano-size particles can irritate cell membranes and migrate into systemic circulation. The story of humidifier disinfectant is not finished yet.

  18. Environmental cleaning and disinfection.

    Science.gov (United States)

    Traverse, Michelle; Aceto, Helen

    2015-03-01

    The guidelines in this article provide veterinarians, veterinary technicians, and veterinary health care workers with an overview of evidence-based recommendations for the best practices associated with environmental cleaning and disinfection of a veterinary clinic that deals with small animals. Hospital-associated infections and the control and prevention programs necessary to alleviate them are addressed from an environmental perspective. Measures of hospital cleaning and disinfection include understanding mechanisms and types of contamination in veterinary settings, recognizing areas of potential concern, addressing appropriate decontamination techniques and selection of disinfectants, the management of potentially contaminated equipment, laundry, and waste management, and environmental surveillance strategies. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. 75 FR 75761 - Water Quality Standards for the State of Florida's Lakes and Flowing Waters

    Science.gov (United States)

    2010-12-06

    ... from high levels of nitrates, possible formation of disinfection byproducts in drinking water, and... treat drinking water react with organic carbon (from the algae in source waters). Some disinfection... nitrate limit of 10 mg/L and nitrite limit of 1 mg/L for the protection of human health in drinking water...

  20. The influence of disinfectants on mutagenicity and on toxicity of urban waste water; Valutazione di trattamenti di disinfezione di acque reflue urbane mediante test di tossicita' e di mutagenesi

    Energy Technology Data Exchange (ETDEWEB)

    Monarca, S. [Brescia Univ., Brescia (IT). Dipt. di Medicina Sperimentale e Applicata] [and others

    1999-12-01

    The aim of the research was to study the influence of disinfectants alternative to chlorine, such as chlorine dioxide, ozone, peracetic acid and UV radiation, have on the formation of mutagenic and toxic compounds in waste water disinfection. Preliminary results are presented and discussed. [Italian] Scopo del lavoro e' stato lo studio dell'azione antimicrobica di diversi disinfettanti su acque reflue urbane dopo trattamento secondario, correlando tale parametro con l'attivita' tossica e genotossica prodotta dalla disinfezione. I risultati vengono presentati e discussi.

  1. Radiation sterilization of harmful algae in water

    International Nuclear Information System (INIS)

    Byung Chull An; Jae-Sung Kim; Seung Sik Lee; Shyamkumar Barampuram; Eun Mi Lee; Byung Yeoup Chung

    2007-01-01

    Complete text of publication follows. Objective: Drinking water, water used in food production and for irrigation, water for fish farming, waste water, surface water, and recreational water have been recently recognized as a vector for the transmission of harmful micro-organisms. The human and animal harmful algae is a waterborne risk to public health and economy because the algae are ubiquitous and persistent in water and wastewater, not completely removed by physical-chemical treatment processes, and relatively resistant to chemical disinfection. Gamma and electron beam radiation technology is of growing in the water industry since it was demonstrated that gamma and electron beam radiation is very effective against harmful algae. Materials and Methods: Harmful algae (Scenedesmus quadricauda(Turpin) Brebisson 1835 (AG10003), Chlorella vulgaris Beijerinck 1896 (AG30007) and Chlamydomonas sp. (AG10061)) were distributed from Korean collection for type cultures (KCTC). Strains were cultured aerobically in Allen's medium at 25□ and 300 umol/m2s for 1 week using bioreactor. We investigated the disinfection efficiency of harmful algae irradiated with gamma (0.05 to 10 kGy for 30 min) and electron beam (1 to 19 kGy for 5 sec) rays. Results and Conclusion: We investigated the disinfection efficiency of harmful algae irradiated with gamma and electron beam rays of 50 to 19000 Gy. We established the optimum sterilization condition which use the gamma and electron beam radiation. Gamma ray disinfected harmful algae at 400 Gy for 30 min. Also, electron beam disinfected at 1000 Gy for 5 sec. This alternative disinfection practice had powerful disinfection efficiency. Hence, the multi-barrier approach for drinking water treatment in which a combination of various disinfectants and filtration technologies are applied for removal and inactivation of different microbial pathogens will guarantee a lower risk of microbial contamination.

  2. Predictors of stethoscope disinfection among pediatric health care providers.

    Science.gov (United States)

    Muniz, Jeanette; Sethi, Rosh K V; Zaghi, Justin; Ziniel, Sonja I; Sandora, Thomas J

    2012-12-01

    Stethoscopes are contaminated with bacteria, but predictors of stethoscope disinfection frequency are unknown. We sought to describe health care provider stethoscope disinfection attitudes and practices and determine predictors of frequent disinfection. We used an anonymous online survey of nurses, nurse practitioners, and physicians at a pediatric hospital. We assessed frequency and methods of disinfection, perceptions of contamination, and barriers to disinfection. Multivariate logistic regression models were used to identify independent predictors of disinfecting after every use. One thousand four hundred one respondents completed the survey: 76% believed that infection transmission occurs via stethoscopes, but only 24% reported disinfecting after every use. In multivariate analyses, belief that infection transmission occurs via stethoscopes significantly increased the odds of disinfection after every use (odds ratio [OR], 2.06 [95% confidence interval (CI): 1.38-3.06]). The odds of disinfection after every use were significantly decreased in those who perceived the following barriers: lack of time (OR, 0.31 [95% CI: 0.18-0.54]), lack of access to disinfection material (OR, 0.41 [95% CI: 0.29-0.57]), or lack of visual reminders to disinfect (OR, 0.22 [95% CI: 0.14-0.34]). Only a minority of pediatric health care providers reported disinfecting their stethoscopes after every use. Increasing access to disinfection materials and visual reminders in health care facilities may improve stethoscope disinfection practices. Copyright © 2012 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Mosby, Inc. All rights reserved.

  3. The efficacy of potassium ferrate as a chemical disinfectant on E. coli, Vibrio cholera, human adenovirus, and Giardia lamblia - Abstract

    Science.gov (United States)

    Introduction: Drinking water and wastewater effluents go through numerous treatments to remove microorganisms and other contaminants in the United States. One of many processes along the treatment train is disinfection, and to date the most common disinfectants still remain chemi...

  4. Long-term spatial and temporal microbial community dynamics in a large-scale drinking water distribution system with multiple disinfectant regimes.

    Science.gov (United States)

    Potgieter, Sarah; Pinto, Ameet; Sigudu, Makhosazana; du Preez, Hein; Ncube, Esper; Venter, Stephanus

    2018-08-01

    Long-term spatial-temporal investigations of microbial dynamics in full-scale drinking water distribution systems are scarce. These investigations can reveal the process, infrastructure, and environmental factors that influence the microbial community, offering opportunities to re-think microbial management in drinking water systems. Often, these insights are missed or are unreliable in short-term studies, which are impacted by stochastic variabilities inherent to large full-scale systems. In this two-year study, we investigated the spatial and temporal dynamics of the microbial community in a large, full scale South African drinking water distribution system that uses three successive disinfection strategies (i.e. chlorination, chloramination and hypochlorination). Monthly bulk water samples were collected from the outlet of the treatment plant and from 17 points in the distribution system spanning nearly 150 km and the bacterial community composition was characterised by Illumina MiSeq sequencing of the V4 hypervariable region of the 16S rRNA gene. Like previous studies, Alpha- and Betaproteobacteria dominated the drinking water bacterial communities, with an increase in Betaproteobacteria post-chloramination. In contrast with previous reports, the observed richness, diversity, and evenness of the bacterial communities were higher in the winter months as opposed to the summer months in this study. In addition to temperature effects, the seasonal variations were also likely to be influenced by changes in average water age in the distribution system and corresponding changes in disinfectant residual concentrations. Spatial dynamics of the bacterial communities indicated distance decay, with bacterial communities becoming increasingly dissimilar with increasing distance between sampling locations. These spatial effects dampened the temporal changes in the bulk water community and were the dominant factor when considering the entire distribution system. However

  5. Occurrence of disinfection byproducts in United States wastewater treatment plant effluents

    KAUST Repository

    Krasner, Stuart W.; Westerhoff, Paul K.; Chen, Baiyang; Rittmann, Bruce E.; Amy, Gary L.

    2009-01-01

    Effluents from wastewater treatment plants (WWTPs) contain disinfection byproducts (DBPs) of health concern when the water is utilized downstream as a potable water supply. The pattern of DBP formation was strongly affected by whether or not the WWTP achieved good nitrification. Chlorine addition to poorly nitrified effluents formed low levels of halogenated DBPs, except for (in some cases) dihalogenated acetic acids, but often substantial amounts of N-nitrosodimethyamine (NDMA). Chlorination of well-nitrified effluent typically resulted in substantial formation of halogenated DBPs but much less NDMA. For example, on a median basis after chlorine addition, the well-nitrified effluents had 57 μg/L of trihalomethanes [THMs] and 3 ng/L of NDMA, while the poorly nitrified effluents had 2 μg/L of THMs and 11 ng/L of NDMA. DBPs with amino acid precursors (haloacetonitriles, haloacetaldehydes) formed at substantial levels after chlorination of well-nitrified effluent. The formation of halogenated DBPs but not that of NDMA correlated with the formation of THMs in WWTP effluents disinfected with free chlorine. However, THM formation did not correlate with the formation of other DBPs in effluents disinfected with chloramines. Because of the relatively high levels of bromide in treated wastewater, bromine incorporation was observed in various classes of DBPs. © 2009 American Chemical Society.

  6. Occurrence of disinfection byproducts in United States wastewater treatment plant effluents

    KAUST Repository

    Krasner, Stuart W.

    2009-11-01

    Effluents from wastewater treatment plants (WWTPs) contain disinfection byproducts (DBPs) of health concern when the water is utilized downstream as a potable water supply. The pattern of DBP formation was strongly affected by whether or not the WWTP achieved good nitrification. Chlorine addition to poorly nitrified effluents formed low levels of halogenated DBPs, except for (in some cases) dihalogenated acetic acids, but often substantial amounts of N-nitrosodimethyamine (NDMA). Chlorination of well-nitrified effluent typically resulted in substantial formation of halogenated DBPs but much less NDMA. For example, on a median basis after chlorine addition, the well-nitrified effluents had 57 μg/L of trihalomethanes [THMs] and 3 ng/L of NDMA, while the poorly nitrified effluents had 2 μg/L of THMs and 11 ng/L of NDMA. DBPs with amino acid precursors (haloacetonitriles, haloacetaldehydes) formed at substantial levels after chlorination of well-nitrified effluent. The formation of halogenated DBPs but not that of NDMA correlated with the formation of THMs in WWTP effluents disinfected with free chlorine. However, THM formation did not correlate with the formation of other DBPs in effluents disinfected with chloramines. Because of the relatively high levels of bromide in treated wastewater, bromine incorporation was observed in various classes of DBPs. © 2009 American Chemical Society.

  7. Iodine Disinfection in the Use of Individual Water Purification Devices

    Science.gov (United States)

    2006-03-01

    Effect of Resin Disinfectants-I3 and –I5 on Giardia muris and Giardia lamblia. Applied and Environmental Microbiology, 46(5), 965-969. 24. AWWA... Giardia or Cryptosporidium). Iodine-using IWPDs meeting these standards are considered effective against disease causing bacteria, viruses, and...CT = 65 mg-min/L) for a 2-log inactivation of E. histolytica cysts (references 9 and 10). Another study using Giardia cysts showed CT’s up to 3

  8. Disinfection of sewage water and sludge using gamma radiation

    Energy Technology Data Exchange (ETDEWEB)

    Musaad, R M.A. [Department of Radiation Chemistry, Atomic Energy Research Coordination Council, Sudan Academy of Sciences, Khartoum (Sudan)

    2008-04-15

    This study has been carried out to assess the efficiency of gamma radiation in disinfecting sewage water and sludge from harmful pathogenic bacteria (e.g. Streptococcus, Salmonella, Shigella, total E-coli and total coliform), parasites (Ascaris ova) as well as its ability to degrade organic matter (BOD). Samples were exposed to gamma-radiation doses ranging from 0.5 to 8 KGy using Co''6{sup 0} cell. Amongst pathogenic bacteria which are subjected to different doses of gamma-radiation Streptococcus faecalis revealed to be the most resistance bacterial indicator since complete elimination of these bacteria could be attained at 3.5 KGy. While total e-coli shown to be the most sensitive with lethal dose at 2 KGy. The radiation doses that required for reducing the bacterial population by 90% (D{sub 10}) and 50% (D {sub 50}) were determined for each species. The D{sub 10} values found ranged from 0.75 KGy for Streptococcus and 2.75 KGy for total count bacteria. On the other hand, D{sub 50} fall within the range of 0.5 KGy for total count bacteria, total coliform and Streptococcus, and 1.0 KGy for total e-coli. With regard to the efficiency of radiation treatment to destroy Ascaris ova viability it was found that no larvae were viable after exposure to 1.0 KGy following incubation of exposed ova for four weeks period.(Author)

  9. The introduction of peracetic acid as a new disinfectant for U.S. aquaculture

    Science.gov (United States)

    Peracetic acid (PAA) is a promising disinfectant for biosecurity in the US aquaculture industry to prevent disease outbreaks from fish pathogens. PAA is a stabilized mixture of acetic acid, hydrogen peroxide and water that breaks down quickly to water and vinegar. It is being increasingly used to ...

  10. The determination and fate of disinfection by-products from ozonation of polluted raw water

    International Nuclear Information System (INIS)

    Huang, W.-J.; Fang, G.-C.; Wang, C.-C.

    2005-01-01

    The major disinfection by-products (DBPs) resulting from ozone treatment of polluted surface water were investigated. By-products of either health concern or which may contribute to biological instability of treated drinking water were investigated. The major DBPs were analyzed in two fractions: carbonyl compounds and brominated organic compounds. The natural organic matter (NOM) was also isolated and fractionated from polluted water for subsequent ozonation and DBPs identification under conditions of typical drinking treatment. The main identified carbonyl compounds were low molecular weight carboxylic acids, benzoic compounds, aliphatic aldehydes and odorous aldehydes, respectively. Brominated organics were also found in ozonated water, including bromoform (CHBr 3 ), monobromoacetic acid (MBAA), dibromoacetic acid (DBAA), 2,4-dibromophenol (2,4-DBP) and dibromoacetonitrile (DBAN), respectively. It was also found that the characteristic of organic precursors have significant influences on brominated organic by-products formation. Humic acid demonstrated the highest CHBr 3 , DBAA and 2,4-DBP formations, whereas hydrophilic neutral produced less CHBr 3 and 2,4-DBP than the rest of the organic fractions but produced the highest amount of DBAN. In addition to the other target compounds, a total of 59 different organic compounds were detected by means of gas chromatograph/high-resolution electron-impact mass spectrometry (GC/EI-MS) detection and tentatively identified using mass spectral library searching, mainly aromatics, acids/esters, alcohols, aldehydes, phthalates and amines/amino acids were analyzed. The percentage of elimination or formation levels reached during ozonation is also discussed in this study

  11. Cleaning and Disinfection of Bacillus cereus Biofilm.

    Science.gov (United States)

    Deal, Amanda; Klein, Dan; Lopolito, Paul; Schwarz, John Spencer

    2016-01-01

    Methodology has been evolving for the testing of disinfectants against bacterial single-species biofilms, as the difficulty of biofilm remediation continues to gain much-needed attention. Bacterial single-species biofilm contamination presents a real risk to good manufacturing practice-regulated industries. However, mixed-species biofilms and biofilms containing bacterial spores remain an even greater challenge for cleaning and disinfection. Among spore-forming microorganisms frequently encountered in pharmaceutical manufacturing areas, the spores of Bacillus cereus are often determined to be the hardest to disinfect and eradicate. One of the reasons for the low degree of susceptibility to disinfection is the ability of these spores to be encapsulated within an exopolysachharide biofilm matrix. In this series of experiments, we evaluated the disinfectant susceptibility of B. cereus biofilms relative to disassociated B. cereus spores and biofilm from a non-spore-forming species. Further, we assessed the impact that pre-cleaning has on increasing that susceptibility. Methodology has been evolving for the testing of disinfectants against bacterial single-species biofilms, as the difficulty of biofilm remediation continues to gain much-needed attention. Bacterial single-species biofilm contamination presents a real risk to good manufacturing practice-regulated industries. However, mixed-species biofilms and biofilms containing bacterial spores remain an even greater challenge for cleaning and disinfection. Among spore-forming microorganisms frequently encountered in pharmaceutical manufacturing areas, the spores of Bacillus cereus are often determined to be the hardest to disinfect and eradicate. One of the reasons for the low degree of susceptibility to disinfection is the ability of these spores to be encapsulated within an exopolysachharide biofilm matrix. In this series of experiments, we evaluated the disinfectant susceptibility of B. cereus biofilms relative to

  12. Discharges of produced waters from oil and gas extraction via wastewater treatment plants are sources of disinfection by-products to receiving streams

    Science.gov (United States)

    Hladik, Michelle; Focazio, Michael J.; Engle, Mark

    2014-01-01

    Fluids co-produced with oil and gas production (produced waters) are often brines that contain elevated concentrations of bromide. Bromide is an important precursor of several toxic disinfection by-products (DBPs) and the treatment of produced water may lead to more brominated DBPs. To determine if wastewater treatment plants that accept produced waters discharge greater amounts of brominated DBPs, water samples were collected in Pennsylvania from four sites along a large river including an upstream site, a site below a publicly owned wastewater treatment plant (POTW) outfall (does not accept produced water), a site below an oil and gas commercial wastewater treatment plant (CWT) outfall, and downstream of the POTW and CWT. Of 29 DBPs analyzed, the site at the POTW outfall had the highest number detected (six) ranging in concentration from 0.01 to 0.09 μg L− 1 with a similar mixture of DBPs that have been detected at POTW outfalls elsewhere in the United States. The DBP profile at the CWT outfall was much different, although only two DBPs, dibromochloronitromethane (DBCNM) and chloroform, were detected, DBCNM was found at relatively high concentrations (up to 8.5 μg L− 1). The water at the CWT outfall also had a mixture of inorganic and organic precursors including elevated concentrations of bromide (75 mg L− 1) and other organic DBP precursors (phenol at 15 μg L− 1). To corroborate these DBP results, samples were collected in Pennsylvania from additional POTW and CWT outfalls that accept produced waters. The additional CWT also had high concentrations of DBCNM (3.1 μg L− 1) while the POTWs that accept produced waters had elevated numbers (up to 15) and concentrations of DBPs, especially brominated and iodinated THMs (up to 12 μg L− 1 total THM concentration). Therefore, produced water brines that have been disinfected are potential sources of DBPs along with DBP precursors to streams wherever these wastewaters are discharged.

  13. Detection, formation and occurrence of 13 new polar phenolic chlorinated and brominated disinfection byproducts in drinking water.

    Science.gov (United States)

    Pan, Yang; Wang, Ying; Li, Aimin; Xu, Bin; Xian, Qiming; Shuang, Chendong; Shi, Peng; Zhou, Qing

    2017-04-01

    Recently, 13 new polar phenolic chlorinated and brominated disinfection byproducts (Cl- and Br-DBPs) were identified and quantified in simulated chlorinated drinking water by adopting product ion scan, precursor ion scan, and multiple reaction monitoring (MRM) analyses using ultra performance liquid chromatography/electrospray ionization-triple quadrupole mass spectrometry (UPLC/ESI-tqMS). The 13 new DBPs have been drawing increasing concern not only because they possess significantly higher growth inhibition, developmental toxicity, and chronic cytotoxicity than commonly known aliphatic DBPs, but also because they act as intermediate DBPs that can decompose to form the U.S. EPA regulated DBPs. In this study, through MS parameter optimization of the UPLC/ESI-tqMS MRM analysis, the instrument detection and quantitation limits of the 13 new DBPs were substantially lowered to 0.42-6.44 and 1.35-16.51 μg/L, respectively. The total levels of the 13 new DBPs formed in chlorination were much higher than those formed in chloramination within a contact time of 3 d. In chlorination, the 13 new DBPs formed quickly and decomposed rapidly, and their total concentration kept on decreasing with contact time. In chloramination, the levels of the dominant species (i.e., trihalo-phenols) firstly increased and then decreased with contact time, whereas the levels of the other new DBPs were relatively low and kept on increasing with contact time. An increasing of pH from 6.0 to 9.0 decreased the formation of the 13 new DBPs by 57.8% and 62.3% in chlorination and chloramination, respectively. Gallic acid was found to be present in various simulated and real source water samples and was demonstrated to be a precursor of the 13 new DBPs with elucidated formation pathways. Furthermore, 12 of the 13 new DBPs were detected in 16 tap water samples obtained from major cities in East China, at total levels from 9.5 to 329.8 ng/L. The concentrations of the new DBPs were higher in samples

  14. Peracids in water treatment:a critical review

    OpenAIRE

    Luukkonen, T. (Tero); Pehkonen, S. O. (Simo O.)

    2017-01-01

    Abstract Peracids have gained interest in the water treatment over the last few decades. Peracetic acid (CH₃CO₃H) has already become an accepted alternative disinfectant in wastewater disinfection whereas performic acid (CHO₃H) has been studied much less, although it is also already commercially available. Additionally, peracids have been studied for drinking water disinfection, oxidation of aqueous (micro)pollutants, sludge treatment, and ballast water treatment, to name just a few exampl...

  15. Performance of UV disinfection and the microbial quality of greywater effluent along a reuse system for toilet flushing

    International Nuclear Information System (INIS)

    Friedler, Eran; Gilboa, Yael

    2010-01-01

    This paper examines the microbial quality of treated RBC (Rotating Biological Contactor) and MBR (Membrane Bioreactor) light greywater along a continuous pilot-scale reuse system for toilet flushing, quantifies the efficiency of UV disinfection unit, and evaluates the regrowth potential of selected microorganisms along the system. The UV disinfection unit was found to be very efficient in reducing faecal coliforms and Staphylococcus aureus. On the other hand, its efficiency of inactivation of HPC (Heterotrophic Plate Count) and Pseudomonas aeruginosa was lower. Some regrowth occurred in the reuse system as a result of HPC regrowth which included opportunistic pathogens such as P. aeruginosa. Although the membrane (UF) of the MBR system removed all bacteria from the greywater, bacteria were observed in the reuse system due to 'hopping phenomenon.' The microbial quality of the disinfected greywater was found to be equal or even better than the microbial quality of 'clean' water in toilet bowls flushed with potable water (and used for excretion). Thus, the added health risk associated with reusing the UV-disinfected greywater for toilet flushing (regarding P. aeruginosa and S. aureus), was found to be insignificant. The UV disinfection unit totally removed (100%) the viral indicator (F-RNA phage, host: E. coli F amp + ) injected to the treatment systems simulating transient viral contamination. To conclude, this work contributes to better design of UV disinfection reactors and provides an insight into the long-term behavior of selected microorganisms along on-site greywater reuse systems for toilet flushing.

  16. 77 FR 8865 - Public Water System Supervision Program Approval for the State of Illinois; Tentative Approval

    Science.gov (United States)

    2012-02-15

    ... Enhanced Surface Water Treatment Rule. Illinois is also applying its Stage 2 Disinfectants and Disinfection... for Long-Term 2 Enhanced Surface Water Treatment and Stage 2 Disinfectants and Disinfection By-product..., Ground Water and Drinking Water Branch (WG-15J), 77 West Jackson Boulevard, Chicago, Illinois 60604. FOR...

  17. In vitro study on the disinfectability of two split-septum needle-free connection devices using different disinfection procedures

    Directory of Open Access Journals (Sweden)

    Engelhart, Steffen

    2015-12-01

    Full Text Available This in vitro study investigated the external disinfection of two needle-free connection devices (NFC using Octeniderm (spraying and wiping technique vs. Descoderm pads (wiping technique. The split-septum membrane of the NFC was contaminated with >10 CFU . The efficacy of the disinfection at 30 sec. exposure time was controlled by taking a swab sample and by flushing the NFC with sterile 0.9% sodium chloride solution. Disinfection with octenidine dihydrochloride 0.1 g, 1-Propanol 30.0 g, and 2-Propanol 45.0 g in solution was highly effective (CFU reduction ≥4 log against both microorganisms, whereas the use of 63.1 g 2-Propanol in 100 ml solution led to residual contamination with . Our investigation underlines that (i in clinical practice disinfection of NFCs before use is mandatory, and that (ii details of disinfection technique are of utmost importance regarding their efficacy. Our investigation revealed no significant differences between both split-septum NFC types. Clinical studies are needed to confirm a possible superiority of disinfectants with long-lasting residual antimicrobial activity.

  18. Disinfection by-products/precursor control using an innovative treatment process -- high energy electron beam irradiation

    International Nuclear Information System (INIS)

    Sawal, K.; Millington, B.; Slifker, R.A.; Cooper, W.J.; Nickelsen, M.G.; Kurucz, C.N.; Waite, T.D.

    1993-01-01

    When waters containing naturally occurring humic substances, precursors, are chlorinated, reaction (disinfection) by-products (DBPs) that may compromise the chemical water quality of the drinking water are formed. Two options exist for the treatment of THMs and other DBPs, removal of precursor material prior to chlorination, or destruction of the by-products once they are formed. The authors have initiated a study using an innovative process, high energy electron beam irradiation, as an alternative treatment for the destruction of toxic organic compounds. Preliminary studies indicated that the process would also be effective in the removal of precursors. An added advantage of this process is that is would serve as a primary disinfectant, destroying any toxic compounds in the source water and may assist in the removal of algae and cyanobacteria toxins. This paper discusses studies in precursor removal and control of THMs

  19. Adverse health effects of humidifier disinfectants in Korea: lung toxicity of polyhexamethylene guanidine phosphate.

    Science.gov (United States)

    Kim, Ha-Ryong; Hwang, Gi-Wook; Naganuma, Akira; Chung, Kyu-Hyuck

    2016-01-01

    Exposure to humidifier disinfectants was identified in 2011 as the potential cause of an outbreak of lung disease in Korea. It is estimated that over 8 million people have been exposed to humidifier disinfectants-chemicals added to the water used in humidifiers to prevent the growth of microorganisms-since their commercial introduction. The primary component of humidifier disinfectant products involved was polyhexamethylene guanidine phosphate (PHMG-P), a guanidine-based antimicrobial agent. Lesions observed in the lungs of patients were similar to those observed in laboratory animals exposed to PHMG-P. In this review, we outline the physicochemical and toxicological properties of PHMG-P, and introduce a putative mechanism for its lung toxicity based in large part on research findings to date.

  20. Effects of Disinfection on Legionella spp., Eukarya, and Biofilms in a Hot Water System

    Science.gov (United States)

    Moletta-Denat, Marina; Frère, Jacques; Onillon, Séverine; Trouilhé, Marie-Cécile; Robine, Enric

    2012-01-01

    Legionella species are frequently detected in hot water systems, attached to the surface as a biofilm. In this work, the dynamics of Legionella spp. and diverse bacteria and eukarya associated together in the biofilm, coming from a pilot scale 1 system simulating a real hot water system, were investigated throughout 6 months after two successive heat shock treatments followed by three successive chemical treatments. Community structure was assessed by a fingerprint technique, single-strand conformation polymorphism (SSCP). In addition, the diversity and dynamics of Legionella and eukarya were investigated by small-subunit (SSU) ribosomal cloning and sequencing. Our results showed that pathogenic Legionella species remained after the heat shock and chemical treatments (Legionella pneumophila and Legionella anisa, respectively). The biofilm was not removed, and the bacterial community structure was transitorily affected by the treatments. Moreover, several amoebae had been detected in the biofilm before treatments (Thecamoebae sp., Vannella sp., and Hartmanella vermiformis) and after the first heat shock treatment, but only H. vermiformis remained. However, another protozoan affiliated with Alveolata, which is known as a host cell for Legionella, dominated the eukaryal species after the second heat shock and chemical treatment tests. Therefore, effective Legionella disinfection may be dependent on the elimination of these important microbial components. We suggest that eradicating Legionella in hot water networks requires better study of bacterial and eukaryal species associated with Legionella in biofilms. PMID:22820326

  1. Effectiveness of Disinfectants in Killing Enterobacter sakazakii in Suspension, Dried on the Surface of Stainless Steel, and in a Biofilm▿

    OpenAIRE

    Kim, Hoikyung; Ryu, Jee-Hoon; Beuchat, Larry R.

    2006-01-01

    The effectiveness of 13 disinfectants used in hospitals, day-care centers, and food service kitchens in killing Enterobacter sakazakii in suspension, dried on the surface of stainless steel, and in biofilm was determined. E. sakazakii exhibited various levels of resistance to the disinfectants, depending on the composition of the disinfectants, amount and type of organic matrix surrounding cells, and exposure time. Populations of planktonic cells suspended in water (7.22 to 7.40 log CFU/ml) d...

  2. Sanitizers and Disinfectants Guide. Revised

    Science.gov (United States)

    Healthy Schools Network, Inc., 2012

    2012-01-01

    Sanitizers and disinfectants can play an important role in protecting public health. They are designed to kill "pests," including infectious germs and other microorganisms such as bacteria, viruses, and fungi. Unfortunately, sanitizers and disinfectants also contain chemicals that are "pesticides." Exposure to persistent toxic…

  3. Disinfection of grey water

    OpenAIRE

    Winward, Gideon Paul

    2007-01-01

    The reuse of grey water, for applications such as toilet flushing and irrigation, represents a potential sustainable solution to water shortages experienced by regions worldwide. Although reused grey water is not intended for potable use, the potential for transmission of waterborne pathogens by aerosol inhalation, topical contact, or indirect ingestion is a key concern for grey water reuse. This thesis explores the pathogen content of grey water and investigates pathogen remov...

  4. Clinical evaluation of the efficacy of removing microorganisms to disinfect patient-derived dental impressions.

    Science.gov (United States)

    Egusa, Hiroshi; Watamoto, Takao; Matsumoto, Takuya; Abe, Keiko; Kobayashi, Munemasa; Akashi, Yoshihiro; Yatani, Hirofumi

    2008-01-01

    Disinfection of dental impressions is an indispensable procedure for the control of cross-contamination; however, there is limited information on the efficacy of disinfection under clinical conditions. The objective of this study was to clinically evaluate the disinfection efficacy of commercially available agents in removing oral pathogens from patient-derived impressions. Impressions from 54 patients were divided into groups and either left undisinfected or underwent 1 of 5 disinfection treatments: (1) 2% glutaraldehyde (GA), (2) 1% sodium hypochlorite (SH), (3) 0.25% benzalkonium chloride (BC), (4) 1 ppm ozonated water (OW), or (5) the Hygojet/MD520 system (HJ). An impression culture technique using a brain heart infusion agar medium was used to visualize the microbial contamination on the surface of the impression cultures. The persistent presence of oral pathogens on the impression cultures was examined using selective isolation agar plates. The isolation frequencies of streptococci, staphylococci, Candida, methicillin-resistant Staphylococcus aureus, and Pseudomonas aeruginosa species from undisinfected impressions were 100%, 55.6%, 25.9%, 25.9% and 5.6%, respectively. Disinfection with HJ and BC removed the microorganisms with the greatest efficacy, followed by GA, SH, and OW. Potential bacterial contamination could be detected even after disinfection had been performed. Combined use of BC plus GA or SH removed oral pathogens almost completely from dental impressions. This investigation showed that potential contaminants are still present, even after general disinfection procedures. Therefore, either HJ or the combined use of BC with GA or SH is recommended for clinical and laboratory use.

  5. Ultraviolet Light Disinfection in the Use of Individual Water Purification Devices

    Science.gov (United States)

    2006-03-01

    adenovirus, Giardia lamblia, Giardia muris , and Cryptosporidium parvum. Adenovirus was evaluated because it is considered the most resistant to...7 reproduce cannot infect and are thereby inactivated. Subsequently, when evaluating UV disinfection capability, Giardia cyst and...0.25 to 20 NTU resulted in a 0.8-log and 0.5-log decrease in inactivation of Cryptosporidium and Giardia , respectively (reference 3). The type of

  6. Balancing the risks and benefits of drinking water disinfection: disability adjusted life-years on the scale.

    Science.gov (United States)

    Havelaar, A H; De Hollander, A E; Teunis, P F; Evers, E G; Van Kranen, H J; Versteegh, J F; Van Koten, J E; Slob, W

    2000-04-01

    To evaluate the applicability of disability adjusted life-years (DALYs) as a measure to compare positive and negative health effects of drinking water disinfection, we conducted a case study involving a hypothetical drinking water supply from surface water. This drinking water supply is typical in The Netherlands. We compared the reduction of the risk of infection with Cryptosporidium parvum by ozonation of water to the concomitant increase in risk of renal cell cancer arising from the production of bromate. We applied clinical, epidemiologic, and toxicologic data on morbidity and mortality to calculate the net health benefit in DALYs. We estimated the median risk of infection with C. parvum as 10(-3)/person-year. Ozonation reduces the median risk in the baseline approximately 7-fold, but bromate is produced in a concentration above current guideline levels. However, the health benefits of preventing gastroenteritis in the general population and premature death in patients with acquired immunodeficiency syndrome outweigh health losses by premature death from renal cell cancer by a factor of > 10. The net benefit is approximately 1 DALY/million person-years. The application of DALYs in principle allows us to more explicitly compare the public health risks and benefits of different management options. In practice, the application of DALYs may be hampered by the substantial degree of uncertainty, as is typical for risk assessment.

  7. Future directions in water quality regulations

    International Nuclear Information System (INIS)

    Pontius, F.W.

    1997-01-01

    The Safe Drinking Water Act amendments of 1996 have imposed new requirements on the US Environmental Protection Agency (USEPA) to establish drinking water regulations. The regulatory process has been revised and now requires the use of sound science. Costs, benefits, and competing risks may also be considered. Current regulations for fluoride, volatile organic chemicals, total coliforms, surface water treatment, Phase 2 and Phase 5 synthetic organic and inorganic contaminants, and lead and copper remain basically unchanged. New deadlines are established for the regulation of arsenic, sulfate, radon, disinfectants and disinfection by-products, enhanced surface water treatment, and groundwater disinfection

  8. Hospital disinfection: efficacy and safety issues.

    Science.gov (United States)

    Dettenkofer, Markus; Block, Colin

    2005-08-01

    To review recent publications relevant to hospital disinfection (and cleaning) including the reprocessing of medical instruments. The key question as to whether the use of disinfectants on environmental surfaces rather than cleaning with detergents only reduces nosocomial infection rates still awaits conclusive studies. New disinfectants, mainly peroxygen compounds, show good sporicidal properties and will probably replace more problematical substances such as chlorine-releasing agents. The safe reprocessing of medical devices requires a well-coordinated approach, starting with proper cleaning. New methods and substances show promising activity for preventing the transmission of prions. Different aspects of virus inactivation have been studied, and the transmissibility, e.g. of norovirus, shows the need for sound data on how different disinfectant classes perform. Biofilms or other forms of surface-adherent organisms pose an extraordinary challenge to decontamination. Although resistance to biocides is generally not judged to be as critical as antibiotic resistance, scientific data support the need for proper use, i.e. the avoidance of widespread application, especially in low concentrations and in consumer products. Chemical disinfection of heat-sensitive instruments and targeted disinfection of environmental surfaces are established components of hospital infection control. To avoid danger to staff, patients and the environment, prudent use as well as established safety precautions are required. New technologies and products should be evaluated with sound methods. As emerging resistant pathogens will challenge healthcare facilities in the future even more than at present, there is a need for well-designed studies addressing the role of disinfection in hospital infection control.

  9. The role of surface disinfection in infection prevention

    Science.gov (United States)

    Gebel, Jürgen; Exner, Martin; French, Gary; Chartier, Yves; Christiansen, Bärbel; Gemein, Stefanie; Goroncy-Bermes, Peter; Hartemann, Philippe; Heudorf, Ursel; Kramer, Axel; Maillard, Jean-Yves; Oltmanns, Peter; Rotter, Manfred; Sonntag, Hans-Günther

    2013-01-01

    Background: The Rudolf Schuelke Foundation addresses topics related to hygiene, infection prevention and public health. In this context a panel of scientists from various European countries discussed “The Role of Surface Disinfection in Infection Prevention”. The most important findings and conclusions of this meeting are summarised in the present consensus paper. Aim: Although the relevance of surface disinfection is increasingly being accepted, there are still a number of issues which remain controversial. In particular, the following topics were addressed: Transferral of microbes from surface to patients as a cause of infection, requirements for surface disinfectants, biocidal resistance and toxicity, future challenges. Methods and findings: After discussion and review of current scientific literature the authors agreed that contaminated surfaces contribute to the transmission of pathogens and may thus pose an infection hazard. Targeted surface disinfection based on a risk profile is seen as an indispensable constituent in a multibarrier approach of universal infection control precautions. Resistance and cross-resistance depend on the disinfectant agent as well as on the microbial species. Prudent implementation of surface disinfection regimens tested to be effective can prevent or minimize adverse effects. Conclusions: Disinfection must be viewed as a holistic process. There is a need for defining standard principles for cleaning and disinfection, for ensuring compliance with these principles by measures such as written standard operating procedures, adequate training and suitable audit systems. Also, test procedures must be set up in order to demonstrate the efficacy of disinfectants including new application methods such as pre-soaked wipes for surface disinfection. PMID:23967396

  10. The role of surface disinfection in infection prevention

    Directory of Open Access Journals (Sweden)

    Gebel, Jürgen

    2013-04-01

    Full Text Available [english] Background: The Rudolf Schuelke Foundation addresses topics related to hygiene, infection prevention and public health. In this context a panel of scientists from various European countries discussed “The Role of Surface Disinfection in Infection Prevention”. The most important findings and conclusions of this meeting are summarised in the present consensus paper.Aim: Although the relevance of surface disinfection is increasingly being accepted, there are still a number of issues which remain controversial. In particular, the following topics were addressed: Transferral of microbes from surface to patients as a cause of infection, requirements for surface disinfectants, biocidal resistance and toxicity, future challenges.Methods and findings: After discussion and review of current scientific literature the authors agreed that contaminated surfaces contribute to the transmission of pathogens and may thus pose an infection hazard. Targeted surface disinfection based on a risk profile is seen as an indispensable constituent in a multibarrier approach of universal infection control precautions. Resistance and cross-resistance depend on the disinfectant agent as well as on the microbial species. Prudent implementation of surface disinfection regimens tested to be effective can prevent or minimize adverse effects.Conclusions: Disinfection must be viewed as a holistic process. There is a need for defining standard principles for cleaning and disinfection, for ensuring compliance with these principles by measures such as written standard operating procedures, adequate training and suitable audit systems. Also, test procedures must be set up in order to demonstrate the efficacy of disinfectants including new application methods such as pre-soaked wipes for surface disinfection.

  11. Peracetic acid: the long road to introduction of this disinfectant into U.S. aquaculture

    Science.gov (United States)

    Peracetic acid (PAA) is a promising disinfectant for biosecurity in the US aquaculture industry to prevent disease outbreaks from fish pathogens. PAA is a stabilized mixture of acetic acid, hydrogen peroxide and water that breaks down quickly to water and vinegar. It has replaced chlorine in some ...

  12. Precursors of nitrogenous disinfection by-products in drinking water--A critical review and analysis

    Energy Technology Data Exchange (ETDEWEB)

    Bond, Tom [Department of Civil and Environmental Engineering, Imperial College London, London SW7 2AZ (United Kingdom); Templeton, Michael R.; Graham, Nigel [Department of Civil and Environmental Engineering, Imperial College London, London SW7 2AZ (United Kingdom)

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer The proportion of N-DBP formation attributable to specific precursors was calculated. Black-Right-Pointing-Pointer Precursor concentrations are typically insufficient to account for observed N-DBP formation, except CNX and NDMA. Black-Right-Pointing-Pointer Amino acid precursors are easier to remove during water treatment than suggested by laboratory studies. - Abstract: In recent years research into the formation of nitrogenous disinfection by-products (N-DBPs) in drinking water - including N-nitrosodimethylamine (NDMA), the haloacetonitriles (HANs), haloacetamides (HAcAms), cyanogen halides (CNX) and halonitromethanes (HNMs) - has proliferated. This is partly due to their high reported toxicity of N-DBPs. In this review paper information about the formation yields of N-DBPs from model precursors, and about environmental precursor occurrence, has been employed to assess the amount of N-DBP formation that is attributable to known precursors. It was calculated that for HANs and HAcAms, the concentrations of known precursors - mainly free amino acids are insufficient to account for the observed concentrations of these N-DBP groups. However, at least in some waters, a significant proportion of CNX and NDMA formation can be explained by known precursors. Identified N-DBP precursors tend to be of low molecular weight and low electrostatic charge relative to bulk natural organic matter (NOM). This makes them recalcitrant to removal by water treatment processes, notably coagulation, as confirmed by a number of bench-scale studies. However, amino acids have been found to be easier to remove during water treatment than would be suggested by the known molecular properties of the individual free amino acids.

  13. Chemical degradation of drinking water disinfection byproducts by millimeter-sized particles of iron-silicon and magnesium-aluminum alloys.

    Science.gov (United States)

    Li, Tianyu; Chen, Yongmei; Wan, Pingyu; Fan, Maohong; Yang, X Jin

    2010-03-03

    The candidature of Fe-Si and Mg-Al alloys at millimeter-scale particle sizes for chemical degradation of disinfection byproducts (DBPs) in drinking water systems was substantiated by their enhanced corrosion resistance and catalytic effect on the degradation. The Mg-Al particles supplied electrons for reductive degradation, and the Fe-Si particles acted as a catalyst and provided the sites for the reaction. The alloy particles are obtained by mechanical milling and stable under ambient conditions. The proposed method for chemical degradation of DBPs possesses the advantages of relatively constant degradation performance, long-term durability, no secondary contamination, and ease of handling, storage and maintenance in comparison with nanoparticle systems.

  14. [DESIDENT CaviCide a new disinfectant].

    Science.gov (United States)

    Severa, J; Klaban, V

    2009-01-01

    The properties of the new disinfection agent DESIDENT CaviCide, such as characteristics, disinfection efficiency, biological degradability and ecotoxicity are described. Also areas and forms of usage this biocidal agent are mentioned.

  15. SOME ASPECTS REGARING CHLORINE DECAY IN WATER DISTRIBUTION NETWORKS

    Directory of Open Access Journals (Sweden)

    LIANA IOANA VUŢĂ

    2011-03-01

    Full Text Available A major objective of drinking water treatment is to provide microbiologically safe drinking water. The combination of conventional drinking water treatment and disinfection has proved to be one of the major public health advances in modern times. The quality of drinking water delivered to the customer’s tap is influenced by a number of processes; namely water treatment, disinfection and changes during transport of treated water via the distribution system. All natural waters and even treated drinking water exerts disinfectant demand due to the reactions with NOM and other constituents in water. Therefore, the applied disinfectant dose must be sufficient to meet the inherent demand in the treated water, to provide sufficient protection against microbial infection. Thus, controlling free residual chlorine properly is definitely important to ensure meeting regulatory requirements and satisfying customer needs.This paper presents the main aspects regarding chlorine decay in drinking-water distribution networks and, also a free chlorine decay simulation with EPANET2 on Ramnicu Valcea water distribution system.

  16. Optimization of Chlorination Process for Mature Leachate Disinfection Using Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Hamzeh Ali Jamali1

    2014-06-01

    Full Text Available Background: leachate from landfill contains high level of microbial pathogens which is considered as one of the most important threats for the environment. One of the common and simple methods for water and wastewater disinfection is chlorination, but it rarely has been used for leachate disinfection. The objective of this study was evaluating the efficiency of chlorine for leachate disinfection and optimization of the effect of concentration and contact time on the death of total and fecal coliforms, as a microbial contamination index. Methods: In this descriptive-analysis study, microbial indices monitoring in leachates initiated from landfill of Qazvin city were conducted for one year. After pre-tests, the range of chlorine concentration and contact time on the inactivation of microbial indices were determined. Central composite design (CCD and response surface methodology (RSM were applied to optimize chlorine concentration and contact time parameters effect on microbial inactivation. 13 runs of tests were performed on samples. Tests were included BOD, COD, total and fecal coliforms. All analytical experiments were according to the standard methods for the examination of water and wastewater. Results: Results of the study showed that microbial indices had relatively high sensitivity to inactivation by chlorination, which in the chlorine concentration of 2 mg/L and contact time of 9 min, and chlorine concentration of 0.5 mg/L and contact time of 12 min, 100% of total and fecal coliforms inactivated, respectively. The RSM method was used for analysis of bacterial inactivation. Analyses showed that in contact time of 9.4 min and chlorine concentration of 2.99 mg/L, the inactivation efficiency of total and fecal coliforms were 89.16% and 100%, respectively. Conclusions: Chlorine could be used for leachate disinfection. However, in high concentrations of organic matter in leachates, due to production potential of chlorination by-products, health

  17. Water Supply and Treatment Equipment. Change Notice 1

    Science.gov (United States)

    2014-08-05

    Coagulation Filtration Total Dissolved Solids Water Quality Conductivity Potable water Turbidity Water Treatment/Purification Disinfection ...microorganisms (pathogenic) found in the raw water . The preferred Army field method of water disinfection is chlorination. Filtration Filtration...senses. It looks, tastes, and smells good and is neither too hot nor too cold. Potable water Water that is safe for drinking . Reverse osmosis

  18. 9 CFR 83.7 - Shipping containers; cleaning and disinfection.

    Science.gov (United States)

    2010-01-01

    ... HEMORRHAGIC SEPTICEMIA § 83.7 Shipping containers; cleaning and disinfection. (a) All live fish that are to be... been cleaned and disinfected. (1) Cleaning and disinfection of shipping containers must be monitored by... who issues the ICI. (2) Cleaning and disinfection must be sufficient to neutralize any VHS virus to...

  19. Effects of two water disinfectants (chloramine T and peracetic acid) on the epidermis and gills of Garra rufa used in human ichthyotherapy.

    Science.gov (United States)

    Sirri, R; Zaccaroni, A; Di Biase, A; Mordenti, O; Stancampiano, L; Sarli, G; Mandrioli, L

    2013-01-01

    Doctor fish (Garra rufa) have recently been used for aesthetic purposes and as a medical treatment in patients with psoriasis (ichthyotherapy). For this particular kind of human therapy it is essential to guarantee adequate hygienic conditions for both people and fish. The aim of this study was to test two concentrations of water disinfectants, chloramine T and peracetic acid, on Garra rufa to ascertain possible exposure damage to the epidermis and gills. Fish were exposed to 2 mg/l and 10 mg/l of chloramine T and to 15 microl/l and 45 microl/l of peracetic acid in a 40-minute static bath up to six times a day for one week. The epidermis and gills were checked for histological changes and the number of epidermal mucous cells, club cells and taste buds were quantified; mucous cells were also characterized histochemically to detect alterations in mucin production. No mortality or severe histological changes were found in treated or control fish. Cell count showed a significant increase (p peracetic acid independently of the dose. Club cell number showed a significant (p peracetic acid (mean 78.17 +/- 10.5) compared to controls (mean 107.0 +/- 19.2). Histochemical evaluation of mucous cells did not reveal changes in mucin type in fish exposed to the two disinfectants. The results suggest a good tolerability of Garra rufa to the two disinfectants at the concentrations tested.

  20. A bacteriological study of hospital beds before and after disinfection with phenolic disinfectant

    OpenAIRE

    Denise de Andrade; Emília L. S. Angerami; Carlos Roberto Padovani

    2000-01-01

    In hospitals, one of the ways to control microbial contamination is by disinfecting the furniture used by patients. This study's main objective was to evaluate the microbiological condition of hospital mattresses before and after such disinfection, in order to identify bacteria that are epidemiologically important in nosocomial infection, such as Staphylococcus aureus and Pseudomonas aeruginosa. RODAC plates with two different culture media were used to collect specimens. Patient beds were se...