WorldWideScience

Sample records for water decomposition final

  1. Economic comparison of hydrogen production using sulfuric acid electrolysis and sulfur cycle water decomposition. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Farbman, G.H.; Krasicki, B.R.; Hardman, C.C.; Lin, S.S.; Parker, G.H.

    1978-06-01

    An evaluation of the relative economics of hydrogen production using two advanced techniques was performed. The hydrogen production systems considered were the Westinghouse Sulfur Cycle Water Decomposition System and a water electrolysis system employing a sulfuric acid electrolyte. The former is a hybrid system in which hydrogen is produced in an electrolyzer which uses sulfur dioxide to depolarize the anode. The electrolyte is sulfuric acid. Development and demonstration efforts have shown that extremely low cell voltages can be achieved. The second system uses a similar sulfuric acid electrolyte technology in water electrolysis cells. The comparative technoeconomics of hydrogen produced by the hybrid Sulfur Cycle and by water electrolysis using a sulfuric acid electrolyte were determined by assessing the performance and economics of 380 million SCFD plants, each energized by a very high temperature nuclear reactor (VHTR). The evaluation concluded that the overall efficiencies of hydrogen production, for operating parameters that appear reasonable for both systems, are approximately 41% for the sulfuric acid electrolysis and 47% for the hybrid Sulfur Cycle. The economic evaluation of hydrogen production, based on a 1976 cost basis and assuming a developed technology for both hydrogen production systems and the VHTRs, indicated that the hybrid Sulfur Cycle could generate hydrogen for a total cost approximately 6 to 7% less than the cost from the sulfuric acid electrolysis plant.

  2. Hydrogen peroxide decomposition kinetics in aquaculture water

    DEFF Research Database (Denmark)

    Arvin, Erik; Pedersen, Lars-Flemming

    2015-01-01

    Hydrogen peroxide (HP) is used in aquaculture systems where preventive or curative water treatments occasionally are required. Use of chemical agents can be challenging in recirculating aquaculture systems (RAS) due to extended water retention time and because the agents must not damage the fish ...... in RAS by addressing disinfection demand and identify efficient and safe water treatment routines.......Hydrogen peroxide (HP) is used in aquaculture systems where preventive or curative water treatments occasionally are required. Use of chemical agents can be challenging in recirculating aquaculture systems (RAS) due to extended water retention time and because the agents must not damage the fish...... reared or the nitrifying bacteria in the biofilters at concentrations required to eliminating pathogens. This calls for quantitative insight into the fate of the disinfectant residuals during water treatment. This paper presents a kinetic model that describes the HP decomposition in aquaculture water...

  3. Organic fertilizer decomposition and nutrient loads in water reservoir ...

    African Journals Online (AJOL)

    Decomposition in aquatic ecosystems is controlled by various factors. The study investigated the trend of decomposition and the potential nutrients loaded in reservoir water. Analysis of water samples and organic fertilizer composition was according to APHA (1995) and Klute (1986) respectively. Reservoir water ...

  4. Hydrogen production by the decomposition of water

    Science.gov (United States)

    Hollabaugh, C.M.; Bowman, M.G.

    A process is described for the production of hydrogen from water by a sulfuric acid process employing electrolysis and thermo-chemical decomposition. The water containing SO/sub 2/ is electrolyzed to produce H/sub 2/ at the cathode and to oxidize the SO/sub 2/ to form H/sub 2/SO/sub 4/ at the anode. After the H/sub 2/ has been separated, a compound of the type M/sub r/X/sub s/ is added to produce a water insoluble sulfate of M and a water insoluble oxide of the metal in the radical X. In the compound M/sub r/X/sub s/, M is at least one metal selected from the group consisting of Ba/sup 2 +/, Ca/sup 2 +/, Sr/sup 2 +/, La/sup 2 +/, and Pb/sup 2 +/; X is at least one radical selected from the group consisting of molybdate (MoO/sub 4//sup 2 -/), tungstate (WO/sub 4//sup 2 -/), and metaborate (BO/sub 2//sup 1 -/); and r and s are either 1, 2, or 3 depending upon the valence of M and X. The precipitated mixture is filtered and heated to a temperature sufficiently high to form SO/sub 3/ gas and to reform M/sub r/X/sub s/. The SO/sub 3/ is dissolved in a small amount of H/sub 2/O to produce concentrated H/sub 2/SO/sub 4/, and the M/sub r/X/sub s/ is recycled to the process. Alternatively, the SO/sub 3/ gas can be recycled to the beginning of the process to provide a continuous process for the production of H/sub 2/ in which only water need be added in a substantial amount. (BLM)

  5. Decomposition of water into highly combustible hydroxyl gas used in ...

    African Journals Online (AJOL)

    The method proposed involves the decomposition of water into highly combustible hydroxyl gas via electrolysis, which is used in internal combustion engines of electrical generators for electricity generation. The by-product obtained from combustion of this gas is water vapour and oxygen to replenish the atmosphere.

  6. Spatial inequality of water footprint in China: A detailed decomposition of inequality from water use types and drivers

    Science.gov (United States)

    Sun, Siao; Fang, Chuanglin; Lv, Jinyan

    2017-10-01

    Given a limited volume of freshwater resources and increasing water demand in China, a relatively equal final water use distribution among different provinces is necessary to mitigate water scarcity faced by a great proportion of population. In this study, the Gini coefficient is used to measure inequality of provincial water footprints (WFs), which are computed based on the China multi-regional input-output table in 30 provinces. The inequality analysis indicates that in China, albeit improved equality of the WF via virtual water (VW) transfers in comparison to the real water use, provincial WFs still present inequality (with Gini coefficient 0.22). Inequality decomposition techniques are used to examine the main sectoral contributor and drivers of WF inequality. The decomposition of inequality in the total WF by sectoral water use types indicates that agricultural WF is the largest contributor, contributing 45.7% of the total inequality, followed by industrial WF (36.9%), tertiary WF (11.1%) and domestic water use (6.3%). Inequality decomposition in the total WF by drivers shows that the effect of natural water availability is insignificant. The main drivers of inequality in agricultural WF are real water use and water use efficiency, with the inter-class effect overwhelming inter-class effect based on classification according to these factors. Inequality in industrial and tertiary WFs is mainly driven by real water use and economic level. Policy inferences are given towards a more equal distribution of WF.

  7. A Decomposition and Comparison Analysis of International Water Footprint Time Series

    Directory of Open Access Journals (Sweden)

    Roberto Roson

    2015-04-01

    Full Text Available This paper deals with the construction, decomposition and comparison of water footprint time series in 40 countries and one aggregate macro-region, in the period 1995–2009. The analysis of the different “footpaths” allows us to investigate the possible causes behind the time evolution of water footprints in the various countries. We notice that the physical and economic impact of economic growth on water resources has been significantly lower than what it could have been, for several reasons. First, both production and consumption patterns are shifting away from water-intensive goods. Second, a large part of consumed water is actually not blue water, susceptible to alternative uses. Finally, we do not find strong evidence of gains in the economic productivity of water (dollars per water unit in many countries, but we do find evidence of indirect efficiency gains, related to a composition of factors in the production processes.

  8. Decomposition methods for analyzing changes of industrial water use

    Science.gov (United States)

    Shang, Yizi; Lu, Shibao; Shang, Ling; Li, Xiaofei; Wei, Yongping; Lei, Xiaohui; Wang, Chao; Wang, Hao

    2016-12-01

    Changes in industrial water use are of the utmost significance in rapidly developing countries. Such countries are experience rapid industrialization, which may stimulate substantial increases in their future industrial water use. Local governments face challenges in formulating industrial policies for sustainable development, particularly in areas that experience severe water shortages. This study addresses the factors driving increased industrial water use and the degrees to which these factors contribute, and determines whether the trend will change in the future. This study explores the options for quantitative analysis that analyzes changes in industrial water use. We adopt both the refined Laspeyres and the Logarithmic Mean Divisia Index models to decompose the driving forces of industrial water use. Additionally, we validate the decomposition results through a comparative study using empirical analysis. Using Tianjin, a national water-saving city in China, as a case study, we compare the performance of the two models. In the study, the driving forces of changes in industrial water use are summarized as output, technological, and structural forces. The comparative results indicate that the refined Laspeyres model may be preferable for this case, and further reveal that output and technology have long-term, stable effects on industrial water use. However, structure may have an uncertain influence on industrial water use. The reduced water use may be a consequence of Tianjin's attempts to target water savings in other areas. Therefore, we advise the Tianjin local government to restructure local industries towards water-saving targets.

  9. [Effects of aquatic plants during their decay and decomposition on water quality].

    Science.gov (United States)

    Tang, Jin-Yan; Cao, Pei-Pei; Xu, Chi; Liu, Mao-Song

    2013-01-01

    Taking 6 aquatic plant species as test objects, a 64-day decomposition experiment was conducted to study the temporal variation patterns of nutrient concentration in water body during the process of the aquatic plant decomposition. There existed greater differences in the decomposition rates between the 6 species. Floating-leaved plants had the highest decomposition rate, followed by submerged plants, and emerged plants. The effects of the aquatic plant species during their decomposition on water quality differed, which was related to the plant biomass density. During the decomposition of Phragmites australis, water body had the lowest concentrations of chemical oxygen demand, total nitrogen, and total phosphorus. In the late decomposition period of Zizania latifolia, the concentrations of water body chemical oxygen demand and total nitrogen increased, resulting in the deterioration of water quality. In the decomposition processes of Nymphoides peltatum and Nelumbo nucifera, the concentrations of water body chemical oxygen demand and total nitrogen were higher than those during the decomposition of other test plants. In contrast, during the decomposition of Potamogeton crispus and Myriophyllum verticillatum, water body had the highest concentrations of ammonium, nitrate, and total phosphorus. For a given plant species, the main water quality indices had the similar variation trends under different biomass densities. It was suggested that the existence of moderate plant residues could effectively promote the nitrogen and phosphorus cycles in water body, reduce its nitrate concentration to some extent, and decrease the water body nitrogen load.

  10. Sonochemical decomposition of hydrazine in water: effects of coal ash and pH on the decomposition and adsorption behavior.

    Science.gov (United States)

    Nakui, Hiroyuki; Okitsu, Kenji; Maeda, Yasuaki; Nishimura, Rokurou

    2009-07-01

    Sonochemical decomposition of hydrazine in aqueous suspension of coal ash particles was investigated in the different pH solutions. It was clearly found that the initial rate of hydrazine decomposition and adsorption is strongly dependent on the amount of coal ash and pH. At pH1, the amount of the hydrazine adsorption on coal ash was very small and hydrazine was mainly decomposed by ultrasonic irradiation. At pH4, hydrazine was mainly adsorbed on coal ash and not decomposed by ultrasonic irradiation. At pH8, the sonochemical decomposition and the adsorption on coal ash proceeded simultaneously. These results were due to the interactions between the degree of the protonation of hydrazine, the electric charge of coal ash and the amount of OH radicals formed in the sonolysis of water.

  11. Impact of water content and decomposition stage on the soil water repellency of peat soils

    Science.gov (United States)

    Dettmann, Ullrich; Sokolowsky, Liv; Piayda, Arndt; Tiemeyer, Bärbel; Bachmann, Jörg

    2017-04-01

    Soil water repellency is widely reported for all kinds of soils and mainly caused by hydrophobic organic compounds. It has a substantial influence on soil hydraulic processes such as water infiltration, preferential flow paths and evaporation and therefore on hydrological processes in general. The severity of soil water repellency strongly depends on the soil water content and the amount of soil organic carbon. Although peat soils are characterized by high soil organic carbon contents, studies about peat soils are rare and mostly available for horticultural substrates. Here, we present soil water repellency measurements for peat soils with varying porosities, bulk densities and stages of decomposition. The peat soils were sampled at two different sites in a bog complex. The sites have been drained for 1 and 100 years. Samples were taken from each soil layer and, additionally, in a vertical resolution of 0.03 m. To determine the soil water contents at which the peat becomes water repellent, we applied the commonly used water drop penetration time test on progressively dewatered samples. In order to identify the influence of the decomposition stage as determined by the depth within the soil profile and duration of drainage, the potential soil water repellency was measured at air-dried sieved samples by the sessile drop method. First results show that the soil water repellency of peat soils is strongly dependent on the soil water content. For air-dried peat samples, the influence of different decomposition stages of the bog peat is negligible. All air-dried samples are extremely water repellent with contact angles > 130°. However, comparing the results with the soil organic matter content shows a slightly tendency of increasing soil water repellency with increasing soil organic matter contents.

  12. Seasonal colonization and decomposition of rat carrion in water and on land in an open field in South Carolina.

    Science.gov (United States)

    Tomberlin, J K; Adler, P H

    1998-09-01

    Decomposition and insect colonization of rat, Rattus rattus L., carrion on land and in water were compared during summer and winter in a plowed field in northwestern South Carolina. During winter, carcasses on land reached the dried-remains stage of decomposition, whereas carcasses in water reached the early-floating stage. During summer, carcasses in both habitats entered the final-remains stage of decomposition in 1-2 wk. Fewer than 30 species of carrion insects were recorded from the carcasses over the duration of the study, probably reflecting the small size of the carcasses and the depauperate fauna of the habitat. Three species of blow flies--Cynomyopsis cadaverina (Robineau-Desvoidy), Calliphora vicina Robineau-Desvoidy, and Lucilia illustris (Meigen)--colonized carrion on land during winter, but no insects colonized carrion in water during winter. Two species of blow flies, Cochliomyia macellaria (F.) and Phaenicia sericata (Meigen), and 1 species of flesh fly, Sarcophaga bullata Parker, colonized the carrion on land and in water during summer; the blow fly, Phormia regina (Meigen), colonized only the carrion on land. This study demonstrated seasonal variation in decomposition and colonization patterns of carrion in contrasting habitats, with important implications for forensic entomology.

  13. The Effect of Water Vapor on the Thermal Decomposition of Pyrite in N2 Atmosphere

    Directory of Open Access Journals (Sweden)

    Nesrin BOYABAT

    2009-03-01

    Full Text Available In this study, the effect of water vapor on the thermal decomposition of pyrite mineral in nitrogen atmosphere has been investigated in a horizontal tube furnace. Temperature, time and water vapor concentration were used as experimental parameters. According to the data obtained at nitrogen/ water vapor environment, it was observed that the water vapor on the decomposition of pyrite increased the decomposition rate. The decomposition reaction is well represented by the "shrinking core" model and can be divided into two regions with different rate controlling step. The rate controlling steps were determined from the heat transfer through the gas film for the low conversions, while it was determined from the mass transfer through product ash layer for the high conversions. The activation energies of this gas and ash film mechanisms were found to be 77 and 81 kJ/mol-1, respectively.

  14. Confronting South Africa’s water challenge: A decomposition analysis of water intensity

    Directory of Open Access Journals (Sweden)

    Marcel Kohler

    2016-12-01

    Full Text Available Water is a vital natural resource, demanding careful management. It is essential for life and integral to virtually all economic activities, including energy and food production and the production of industrial outputs. The availability of clean water in sufficient quantities is not only a prerequisite for human health and well-being but the life-blood of freshwater ecosystems and the many services that these provide. Water resource intensity measures the intensity of water use in terms of volume of water per unit of value added. It is an internationally accepted environmental indicator of the pressure of economic activity on a country’s water resources and therefore a reliable indicator of sustainable economic development. The indicator is particularly useful in the allocation of water resources between sectors of the economy since in waterstressed countries like South Africa, there is competition for water among various users, which makes it necessary to allocate water resources to economic activities that are less intensive in their use of water. This study focuses on economy-wide changes in South Africa’s water intensity using both decomposition and empirical estimation techniques in an effort to identify and understand the impact of economic activity on changes in the use of the economy’s water resources. It is hoped that this study will help inform South Africa’s water conservation and resource management policies

  15. Water pulsejet research. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Payne, P.R.; Brown, R.G.; Brown, J.P.

    1979-04-01

    The steam water pulsejet (SWPJ) - a modern derivative of the Piot-McHugh putt-putt toy boat - is discussed. Studies have revealed that, like its air-breathing relatives, one type of SWPJ is a type of wave engine. This report first reviews the background literature and then summarizes recent improvements in our understanding of the engine's operation. An appendix attempts to show the various physical processes of the wave engine version in a quantifiable way. At low temperatures, the ideal cycle efficiency of this version is almost identical with the Carnot limit, diverging above a ..delta..T approx. = 150/sup 0/F. Maximum ideal cycle efficiency occurs in the 500/sup 0/-600/sup 0/F range, and is 30%-40%. In addition to the two wave engines (simple wave engine, and a wave engine with a water trap), the boundary layer boiler was developed which may but need not involve wave effects and the Piot-cycle. In the latter engine, some water is flashed rapidly to steam in a separate (but connected) compartment and reaches high pressure before the water column (because of its inertia) has moved appreciably. Ideal efficiencies for this cycle can be of the order of 10%-20%. Although a great deal of knowledge was gained, the present program was unsuccessful in applying the newly discovered cycles to build reliable and efficient solar powered pumps.

  16. Combination of ultraviolet irradiation and hydrogen peroxide addition for the elimination of problematic organic substances from waste water. Pt. 1. Investigations into the decomposition of fluoroanthene and lindane. Final report. Kombination von Ultraviolettbestrahlung und Wasserstoffperoxidzusatz zur Beseitigung problematischer organischer Substanzen aus Abwasser. T. 1. Untersuchung zum Abbau von Fluoranthen und Lindan. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Silva, M. de; Dullin, J.; Thiemann, W.; Viehweg, T.

    1992-01-01

    The method of combined UV/H[sub 2]O[sub 2] treatment was studied for its elimination performance relative to the ubiquitous, persistant pollutants fluoroanthene, lindan and atrazine. The decomposition of these compounds is a function of compound concentration, H[sub 2]O[sub 2]-dose, lamp type and of the use of acetone as photosensitizers. A number of toxic or carcinogenic decomposition products were identified (chloropenols, HCB, [alpha]-HCH) which were not eliminated until after prolonged treatment. An enhancement of mutagenicity of the solutions after UV and UV/H[sub 2]O[sub 2] treatment was observed in some cases. The results obtained in bidistilled water would be confirmed in principle in the batch and continuous flow methods and in doped gravitational water. Both BOD[sub 5] increase and COD decrease were found. (orig.) With 82 refs., 18 tabs., 42 figs.

  17. Hydrothermal decomposition of liquid crystal in subcritical water

    Energy Technology Data Exchange (ETDEWEB)

    Zhuang, Xuning [State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, No. 1239 Siping Road, Shanghai 200092 (China); Shanghai Cooperative Centre for WEEE Recycling, Shanghai Second Polytechnic University, No. 2360 Jinhai Road, Shanghai 201209 (China); He, Wenzhi, E-mail: hithwz@163.com [State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, No. 1239 Siping Road, Shanghai 200092 (China); Li, Guangming; Huang, Juwen; Lu, Shangming; Hou, Lianjiao [State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, No. 1239 Siping Road, Shanghai 200092 (China)

    2014-04-01

    Highlights: • Hydrothermal technology can effectively decompose the liquid crystal of 4-octoxy-4'-cyanobiphenyl. • The decomposition rate reached 97.6% under the optimized condition. • Octoxy-4'-cyanobiphenyl was mainly decomposed into simple and innocuous products. • The mechanism analysis reveals the decomposition reaction process. - Abstract: Treatment of liquid crystal has important significance for the environment protection and human health. This study proposed a hydrothermal process to decompose the liquid crystal of 4-octoxy-4′-cyanobiphenyl. Experiments were conducted with a 5.7 mL stainless tube reactor and heated by a salt-bath. Factors affecting the decomposition rate of 4-octoxy-4′-cyanobiphenyl were evaluated with HPLC. The decomposed liquid products were characterized by GC-MS. Under optimized conditions i.e., 0.2 mL H{sub 2}O{sub 2} supply, pH value 6, temperature 275 °C and reaction time 5 min, 97.6% of 4-octoxy-4′-cyanobiphenyl was decomposed into simple and environment-friendly products. Based on the mechanism analysis and products characterization, a possible hydrothermal decomposition pathway was proposed. The results indicate that hydrothermal technology is a promising choice for liquid crystal treatment.

  18. Differences in water depth determine leaf-litter decomposition in streams: implications on impact assessment reliability

    Directory of Open Access Journals (Sweden)

    Martínez A.

    2016-01-01

    Full Text Available Leaf-litter decomposition is a widespread functional indicator to assess the stream ecosystem status. However, the spatial location of leaf-bags could distort the impact assessment since intrinsic features of a given site have an important role in the spatial distribution of macroinvertebrates, which could affect decomposition rate. A source of variability that can be easily controlled is the water depth at which bags are incubated in stream bed. Therefore, we tested if water depth within a same mesohabitat (riffles can determine decomposition rates. Due to the seasonal variability of macroinvertebrate assemblages in temperate regions, the study was performed in autumn-winter and spring to test the consistency of the findings. In three streams from North of Spain 15 mesh bags with alder leaves were placed in riffles covering a gradient of depths. Depth had a positive effect on decomposition rates and biomass of associated total invertebrates and shredders in autumn-winter, fauna variables helping to explain the differences in rates. In spring, depth affected negatively rates, the observed variability being weakly explained by invertebrates, which did not show differences along depth. Despite the opposite trend between seasons, water depth influences the decomposition rates, which may reduce or increase differences among systems if the water depth distribution is greatly biased. Our study highlights the importance of covering a similar range of water depths in the different systems being compared.

  19. Variation of bacterial communities in water and sediments during the decomposition of Microcystis biomass.

    Science.gov (United States)

    Zhao, Dayong; Cao, Xinyi; Huang, Rui; Zeng, Jin; Wu, Qinglong L

    2017-01-01

    The bacterial community composition in water and sediment samples during the decomposition of Microcystis biomass were analyzed using the 454 pyrosequencing technique. We found dramatic shifts in the bacterial community composition of water and sediments after the addition of Microcystis biomass. Among all the detected phyla, only Firmicutes was found to be dominant in both water and sediment samples. The genus Clostridium sensu stricto was the absolutely dominant group in Firmicutes and showed drastic variations with incubation time during the decomposition process. Peak values in relative abundance of Clostridium sensu stricto appeared in the first few days for water and sediment samples. Environmental factors such as pH, dissolved oxygen (DO), and dissolved organic carbon (DOC) in water samples showed drastic variations during the decomposing process, which might be the prominent forces driving the variation of bacterial communities. The abundant genus, Clostridium sensu stricto, were thought to be well adapted to higher DOC and turbidity and lower pH and DO conditions. Compared with the sediment samples, the decomposition of Microcystis biomass had greater influence on the bacterial community composition in water and Clostridium sensu stricto might play important roles in the process of Microcystis biomass decomposition.

  20. Variation of bacterial communities in water and sediments during the decomposition of Microcystis biomass.

    Directory of Open Access Journals (Sweden)

    Dayong Zhao

    Full Text Available The bacterial community composition in water and sediment samples during the decomposition of Microcystis biomass were analyzed using the 454 pyrosequencing technique. We found dramatic shifts in the bacterial community composition of water and sediments after the addition of Microcystis biomass. Among all the detected phyla, only Firmicutes was found to be dominant in both water and sediment samples. The genus Clostridium sensu stricto was the absolutely dominant group in Firmicutes and showed drastic variations with incubation time during the decomposition process. Peak values in relative abundance of Clostridium sensu stricto appeared in the first few days for water and sediment samples. Environmental factors such as pH, dissolved oxygen (DO, and dissolved organic carbon (DOC in water samples showed drastic variations during the decomposing process, which might be the prominent forces driving the variation of bacterial communities. The abundant genus, Clostridium sensu stricto, were thought to be well adapted to higher DOC and turbidity and lower pH and DO conditions. Compared with the sediment samples, the decomposition of Microcystis biomass had greater influence on the bacterial community composition in water and Clostridium sensu stricto might play important roles in the process of Microcystis biomass decomposition.

  1. A study on the kinetics of ozone decomposition in waters of different quality

    Directory of Open Access Journals (Sweden)

    Takić Ljiljana M.

    2004-01-01

    Full Text Available The kinetics of ozone decomposition in waters of different quality, namely distilled water, tap water previously treated with ozone, tap water not treated with ozone and raw water from an accumulation lake, were studied in a batch stirred reactor at different temperatures (18-28°C. The dissolved ozone concentration was measured by the iodometric titration method. It was determined that an empirical kinetic equation of the form: dc(O3/dt= k0 + k1c(O3 fitted the experimental data better than a first-order reaction rate equation. The apparent reaction rate constants in the case of ozone decomposition in distilled water were shown to be a function of temperature in accordance with the Arrhenius equation.

  2. Water dissociation in a radio-frequency electromagnetic field with ex situ electrodes—decomposition of perfluorooctanoic acid and tetrahydrofuran

    Science.gov (United States)

    Schneider, Jens; Holzer, Frank; Kraus, Markus; Kopinke, Frank-Dieter; Roland, Ulf

    2016-10-01

    The application of radio waves with a frequency of 13.56 MHz on electrolyte solutions in a capillary reactor led to the formation of reactive hydrogen and oxygen species and finally to molecular oxygen and hydrogen. This process of water splitting can be principally used for the elimination of hazardous chemicals in water. Two compounds, namely perfluorooctanoic acid (PFOA) and tetrahydrofuran, were converted using this process. Their main decomposition products were highly volatile and therefore transferred to a gas phase, where they could be identified by GC-MS analyses. It is remarkable that the chemical reactions could benefit from both the oxidizing and reducing species formed in the plasma process, which takes place in gas bubbles saturated with water vapor. The breaking of C-C and C-F bonds was proven in the case of PFOA, probably initiated by electron impacts and radical reactions.

  3. Daily water level forecasting using wavelet decomposition and artificial intelligence techniques

    Science.gov (United States)

    Seo, Youngmin; Kim, Sungwon; Kisi, Ozgur; Singh, Vijay P.

    2015-01-01

    Reliable water level forecasting for reservoir inflow is essential for reservoir operation. The objective of this paper is to develop and apply two hybrid models for daily water level forecasting and investigate their accuracy. These two hybrid models are wavelet-based artificial neural network (WANN) and wavelet-based adaptive neuro-fuzzy inference system (WANFIS). Wavelet decomposition is employed to decompose an input time series into approximation and detail components. The decomposed time series are used as inputs to artificial neural networks (ANN) and adaptive neuro-fuzzy inference system (ANFIS) for WANN and WANFIS models, respectively. Based on statistical performance indexes, the WANN and WANFIS models are found to produce better efficiency than the ANN and ANFIS models. WANFIS7-sym10 yields the best performance among all other models. It is found that wavelet decomposition improves the accuracy of ANN and ANFIS. This study evaluates the accuracy of the WANN and WANFIS models for different mother wavelets, including Daubechies, Symmlet and Coiflet wavelets. It is found that the model performance is dependent on input sets and mother wavelets, and the wavelet decomposition using mother wavelet, db10, can further improve the efficiency of ANN and ANFIS models. Results obtained from this study indicate that the conjunction of wavelet decomposition and artificial intelligence models can be a useful tool for accurate forecasting daily water level and can yield better efficiency than the conventional forecasting models.

  4. Decomposition of water into highly combustible hydroxyl gas used in ...

    African Journals Online (AJOL)

    Global warming is on the increase and the current energy trends are headed towards the use of alternative sources of energy that produce less amounts of carbon dioxide. This paper proposes water as an alternative energy source that is cheap, abundant in nature and will achieve minimum emission goal. The method ...

  5. Stage efficiency in the analysis of thermochemical water decomposition processes

    Science.gov (United States)

    Conger, W. L.; Funk, J. E.; Carty, R. H.; Soliman, M. A.; Cox, K. E.

    1976-01-01

    The procedure for analyzing thermochemical water-splitting processes using the figure of merit is expanded to include individual stage efficiencies and loss coefficients. The use of these quantities to establish the thermodynamic insufficiencies of each stage is shown. A number of processes are used to illustrate these concepts and procedures and to demonstrate the facility with which process steps contributing most to the cycle efficiency are found. The procedure allows attention to be directed to those steps of the process where the greatest increase in total cycle efficiency can be obtained.

  6. Method of generating hydrogen by catalytic decomposition of water

    Science.gov (United States)

    Balachandran, Uthamalingam; Dorris, Stephen E.; Bose, Arun C.; Stiegel, Gary J.; Lee, Tae-Hyun

    2002-01-01

    A method for producing hydrogen includes providing a feed stream comprising water; contacting at least one proton conducting membrane adapted to interact with the feed stream; splitting the water into hydrogen and oxygen at a predetermined temperature; and separating the hydrogen from the oxygen. Preferably the proton conducting membrane comprises a proton conductor and a second phase material. Preferable proton conductors suitable for use in a proton conducting membrane include a lanthanide element, a Group VIA element and a Group IA or Group IIA element such as barium, strontium, or combinations of these elements. More preferred proton conductors include yttrium. Preferable second phase materials include platinum, palladium, nickel, cobalt, chromium, manganese, vanadium, silver, gold, copper, rhodium, ruthenium, niobium, zirconium, tantalum, and combinations of these. More preferably second phase materials suitable for use in a proton conducting membrane include nickel, palladium, and combinations of these. The method for generating hydrogen is preferably preformed in the range between about 600.degree. C. and 1,700.degree. C.

  7. Efficient decomposition of perchlorate to chloride ions in subcritical water by use of steel slag.

    Science.gov (United States)

    Hori, Hisao; Kamijo, Ayae; Inoue, Miki; Chino, Asako; Wu, Qian; Kannan, Kurunthachalam

    2016-08-03

    Decomposition of perchlorate (ClO4(-)) in subcritical water in the presence of steel slag, a by-product of the steel industry, was investigated. Reactivity of ClO4(-) was low in pure subcritical water state up to 300 °C, whereas adding steel slag efficiently accelerated the decomposition of ClO4(-) to Cl(-), with no leaching of heavy metals such as chromium and other environmentally undesirable elements (boron and fluorine). When the reaction was performed in subcritical water at a relatively low temperature (250 °C) for 6 h, virtually all ClO4(-) ions were removed from the reaction solution. The concentration of Cl(-) after the reaction was well accounted for by the sum of the amount of Cl(-) ascribed to the decomposition of ClO4(-) and the amount of Cl(-) leached from the slag. This method was successfully applied to decompose ClO4(-) in water samples collected from a man-made reflection pond following a fireworks display, even though these samples contained much higher concentrations of Cl(-) and SO4(2-) than ClO4(-).

  8. Interactive plant functional group and water table effects on decomposition and extracellular enzyme activity in Sphagnum peatlands

    Science.gov (United States)

    Magdalena M. Wiedermann; Evan S. Kane; Lynette R. Potvin; Erik A. Lilleskov

    2017-01-01

    Peatland decomposition may be altered by hydrology and plant functional groups (PFGs), but exactly how the latter influences decomposition is unclear, as are potential interactions of these factors.We used a factorial mesocosm experiment with intact 1 m3 peat monoliths to explore how PFGs (sedges vs Ericaceae) and water table level individually...

  9. Hydrogen production by water decomposition using a combined electrolytic-thermochemical cycle

    Science.gov (United States)

    Farbman, G. H.; Brecher, L. E.

    1976-01-01

    A proposed dual-purpose power plant generating nuclear power to provide energy for driving a water decomposition system is described. The entire system, dubbed Sulfur Cycle Water Decomposition System, works on sulfur compounds (sulfuric acid feedstock, sulfur oxides) in a hybrid electrolytic-thermochemical cycle; performance superior to either all-electrolysis systems or presently known all-thermochemical systems is claimed. The 3345 MW(th) graphite-moderated helium-cooled reactor (VHTR - Very High Temperature Reactor) generates both high-temperature heat and electric power for the process; the gas stream at core exit is heated to 1850 F. Reactor operation is described and reactor innards are illustrated. A cost assessment for on-stream performance in the 1990's is optimistic.

  10. Standalone hydrogen generator based on chemical decomposition of water by aluminum

    OpenAIRE

    Milinchuk, V.K.; Klinshpont, E.R.; Belozerov, V.I.

    2015-01-01

    A standalone hydrogen generator (SHG) has been developed based on chemical decomposition of water in heterogeneous compositions containing finely dispersed aluminum powder and crystallohydrates of sodium metasilicate. The kinetics of hydrogen generation has been studied depending on constants of the aluminum activation and oxidation rate, and aluminum and oxygen concentrations. In the hydrogen accumulation kinetics, the length of the induction period is determined by the concentration of oxyg...

  11. A Reaction-Based River/Stream Water Quality Model: Reaction Network Decomposition and Model Application

    Directory of Open Access Journals (Sweden)

    Fan Zhang

    2012-01-01

    Full Text Available This paper describes details of an automatic matrix decomposition approach for a reaction-based stream water quality model. The method yields a set of equilibrium equations, a set of kinetic-variable transport equations involving kinetic reactions only, and a set of component transport equations involving no reactions. Partial decomposition of the system of water quality constituent transport equations is performed via Gauss-Jordan column reduction of the reaction network by pivoting on equilibrium reactions to decouple equilibrium and kinetic reactions. This approach minimizes the number of partial differential advective-dispersive transport equations and enables robust numerical integration. Complete matrix decomposition by further pivoting on linearly independent kinetic reactions allows some rate equations to be formulated individually and explicitly enforces conservation of component species when component transport equations are solved. The methodology is demonstrated for a case study involving eutrophication reactions in the Des Moines River in Iowa, USA and for two hypothetical examples to illustrate the ability of the model to simulate sediment and chemical transport with both mobile and immobile water phases and with complex reaction networks involving both kinetic and equilibrium reactions.

  12. Decomposition of the Urban Water Footprint of Food Consumption: A Case Study of Xiamen City

    Directory of Open Access Journals (Sweden)

    Jiefeng Kang

    2017-01-01

    Full Text Available Decomposition of the urban water footprint can provide insight for water management. In this paper, a new decomposition method based on the log-mean Divisia index model (LMDI was developed to analyze the driving forces of water footprint changes, attributable to food consumption. Compared to previous studies, this new approach can distinguish between various factors relating to urban and rural residents. The water footprint of food consumption in Xiamen City, from 2001 to 2012, was calculated. Following this, the driving forces of water footprint change were broken down into considerations of the population, the structure of food consumption, the level of food consumption, water intensity, and the population rate. Research shows that between 2001 and 2012, the water footprint of food consumption in Xiamen increased by 675.53 Mm3, with a growth rate of 88.69%. Population effects were the leading contributors to this change, accounting for 87.97% of the total growth. The food consumption structure also had a considerable effect on this increase. Here, the urban area represented 94.96% of the water footprint increase, driven by the effect of the food consumption structure. Water intensity and the urban/rural population rate had a weak positive cumulative effect. The effects of the urban/rural population rate on the water footprint change in urban and rural areas, however, were individually significant. The level of food consumption was the only negative factor. In terms of food categories, meat and grain had the greatest effects during the study period. Controlling the urban population, promoting a healthy and less water-intensive diet, reducing food waste, and improving agriculture efficiency, are all elements of an effective approach for mitigating the growth of the water footprint.

  13. Water retention in a peatland with organic matter in different decomposition stages

    Directory of Open Access Journals (Sweden)

    José Ricardo da Rocha Campos

    2011-08-01

    Full Text Available Peatlands are ecosystems formed by successive pedogenetic processes, resulting in progressive accumulation of plant remains in the soil column under conditions that inhibit the activity of most microbial decomposers. In Diamantina, state of Minas Gerais, Brazil, a peatland is located at 1366 m asl, in a region with a quartz-rich lithology and characteristic wet grassland vegetation. For this study, the peat area was divided in 12 transects, from which a total of 90 soil samples were collected at a distance of 20 m from each other. The properties rubbed fiber content (RF, bulk density (Bd, mineral material (MM, organic matter (OM, moisture (Moi and maximum water holding capacity (MWHC were analyzed in all samples. From three selected profiles of this whole area, samples were collected every 27 cm from the soil surface down to a depth of 216 cm. In these samples, moisture was additionally determined at a pressure of 10 kPa (Moi10 or 1500 kPa (Moi1500, using Richards' extractor and soil organic matter was fractionated by standard procedures. The OM decomposition stage of this peat was found to increase with soil depth. Moi and MWHC were highest in layers with less advanced stages of OM decomposition. The humin levels were highest in layers in earlier stages of OM decomposition and with higher levels of water retention at MWHC and Moi10. Humic acid contents were higher in layers at an intermediate stage of decomposition of organic matter and with lowest levels of water retention at MWHC, Moi10 and Moi1500.

  14. Combining experiment and theory to elucidate the role of supercritical water in sulfide decomposition.

    Science.gov (United States)

    Kida, Yuko; Class, Caleb A; Concepcion, Anthony J; Timko, Michael T; Green, William H

    2014-05-28

    The cleavage of C-S linkages plays a key role in fuel processing and organic geochemistry. Water is known to affect these processes, and several hypotheses have been proposed, but the mechanism has been elusive. Here we use both experiment and theory to demonstrate that supercritical water reacts with intermediates formed during alkyl sulfide decomposition. During hexyl sulfide decomposition in supercritical water, pentane and CO + CO2 were detected in addition to the expected six carbon products. A multi-step reaction sequence for hexyl sulfide reacting with supercritical water is proposed which explains the surprising products, and quantum chemical calculations provide quantitative rates that support the proposed mechanism. The key sequence is cleavage of one C-S bond to form a thioaldehyde via radical reactions, followed by a pericyclic addition of water to the C[double bond, length as m-dash]S bond to form a geminal mercaptoalcohol. The mercaptoalcohol decomposes into an aldehyde and H2S either directly or via a water-catalyzed 6-membered ring transition state. The aldehyde quickly decomposes into CO plus pentane by radical reactions. The time is ripe for quantitative modelling of organosulfur reaction kinetics based on modern quantum chemistry.

  15. Decomposition of water Raman stretching band with a combination of optimization methods

    Science.gov (United States)

    Burikov, Sergey; Dolenko, Sergey; Dolenko, Tatiana; Patsaeva, Svetlana; Yuzhakov, Viktor

    2010-03-01

    In this study, an investigation of the behaviour of stretching bands of CH and OH groups of water-ethanol solutions at alcohol concentrations ranging from 0 to 96% by volume has been performed. A new approach to decomposition of the wide structureless water Raman band into spectral components based on modern mathematical methods of solution of inverse multi-parameter problems-combination of Genetic Algorithm and the method of Generalized Reduced Gradient-has been demonstrated. Application of this approach to decomposition of Raman stretching bands of water-ethanol solutions allowed obtaining new interesting results practically without a priori information. The behaviour of resolved spectral components of Raman stretching OH band in binary mixture with rising ethanol concentration is in a good agreement with the concept of clathrate-like structure of water-ethanol solutions. The results presented in this paper confirm existence of essential structural rearrangement in water-ethanol solutions at ethanol concentrations 20-30% by volume.

  16. Water Complexes of Cytochrome P450: Insights from Energy Decomposition Analysis

    Directory of Open Access Journals (Sweden)

    Hajime Hirao

    2013-06-01

    Full Text Available Water is a small molecule that nevertheless perturbs, sometimes significantly, the electronic properties of an enzyme’s active site. In this study, interactions of a water molecule with the ferric heme and the compound I (Cpd I intermediate of cytochrome P450 are studied. Energy decomposition analysis (EDA schemes are used to investigate the physical origins of these interactions. Localized molecular orbital EDA (LMOEDA implemented in the quantum chemistry software GAMESS and the EDA method implemented in the ADF quantum chemistry program are used. EDA reveals that the electrostatic and polarization effects act as the major driving force in both of these interactions. The hydrogen bonding in the Cpd I•••H2O complex is similar to that in the water dimer; however, the relative importance of the electrostatic effect is somewhat larger in the water dimer.

  17. Final Report, DE-FG01-06ER25718 Domain Decomposition and Parallel Computing

    Energy Technology Data Exchange (ETDEWEB)

    Widlund, Olof B. [New York Univ. (NYU), NY (United States). Courant Inst.

    2015-06-09

    The goal of this project is to develop and improve domain decomposition algorithms for a variety of partial differential equations such as those of linear elasticity and electro-magnetics.These iterative methods are designed for massively parallel computing systems and allow the fast solution of the very large systems of algebraic equations that arise in large scale and complicated simulations. A special emphasis is placed on problems arising from Maxwell's equation. The approximate solvers, the preconditioners, are combined with the conjugate gradient method and must always include a solver of a coarse model in order to have a performance which is independent of the number of processors used in the computer simulation. A recent development allows for an adaptive construction of this coarse component of the preconditioner.

  18. Search for memory effects in methane hydrate: structure of water before hydrate formation and after hydrate decomposition.

    Science.gov (United States)

    Buchanan, Piers; Soper, Alan K; Thompson, Helen; Westacott, Robin E; Creek, Jefferson L; Hobson, Greg; Koh, Carolyn A

    2005-10-22

    Neutron diffraction with HD isotope substitution has been used to study the formation and decomposition of the methane clathrate hydrate. Using this atomistic technique coupled with simultaneous gas consumption measurements, we have successfully tracked the formation of the sI methane hydrate from a water/gas mixture and then the subsequent decomposition of the hydrate from initiation to completion. These studies demonstrate that the application of neutron diffraction with simultaneous gas consumption measurements provides a powerful method for studying the clathrate hydrate crystal growth and decomposition. We have also used neutron diffraction to examine the water structure before the hydrate growth and after the hydrate decomposition. From the neutron-scattering curves and the empirical potential structure refinement analysis of the data, we find that there is no significant difference between the structure of water before the hydrate formation and the structure of water after the hydrate decomposition. Nor is there any significant change to the methane hydration shell. These results are discussed in the context of widely held views on the existence of memory effects after the hydrate decomposition.

  19. Standalone hydrogen generator based on chemical decomposition of water by aluminum

    Directory of Open Access Journals (Sweden)

    V.K. Milinchuk

    2015-12-01

    Full Text Available A standalone hydrogen generator (SHG has been developed based on chemical decomposition of water in heterogeneous compositions containing finely dispersed aluminum powder and crystallohydrates of sodium metasilicate. The kinetics of hydrogen generation has been studied depending on constants of the aluminum activation and oxidation rate, and aluminum and oxygen concentrations. In the hydrogen accumulation kinetics, the length of the induction period is determined by the concentration of oxygen. The SHG design, hydrogen selection and capacity are discussed. The availability and low cost of domestically manufactured chemical agents make the SHG a promising choice as the source of hydrogen for various applications, including nuclear power plants (NPP.

  20. Partial oxidation of n-hexadecane through decomposition of hydrogen peroxide in supercritical water

    KAUST Repository

    Alshammari, Y.M.

    2015-01-01

    © 2014 The Institution of Chemical Engineers. This work reports the experimental analysis of partial oxidation of n-hexadecane under supercritical water conditions. A novel reactor flow system was developed which allows for total decomposition of hydrogen peroxide in a separate reactor followed partial oxidation of n-hexadecane in a gasification reactor instead of having both reactions in one reactor. The kinetics of hydrothermal decomposition of hydrogen peroxide was studied in order to confirm its full conversion into water and oxygen under the desired partial oxidation conditions, and the kinetic data were found in a good agreement with previously reported literature. The gas yield and gasification efficiency were investigated under different operating parameters. Furthermore, the profile of C-C/C=C ratio was studied which showed the favourable conditions for maximising yields of n-alkanes via hydrogenation of their corresponding 1-alkenes. Enhanced hydrogenation of 1-alkenes was observed at higher O/C ratios and higher residence times, shown by the increase in the C-C/C=C ratio to more than unity, while increasing the temperature has shown much less effect on the C-C/C=C ratio at the current experimental conditions. In addition, GC-MS analysis of liquid samples revealed the formation of heavy oxygenated compounds which may suggest a new addition reaction to account for their formation under the current experimental conditions. Results show new promising routes for hydrogen production with in situ hydrogenation of heavy hydrocarbons in a supercritical water reactor.

  1. The Conceptual Design of an Integrated Nuclearhydrogen Production Plant Using the Sulfur Cycle Water Decomposition System

    Science.gov (United States)

    Farbman, G. H.

    1976-01-01

    A hydrogen production plant was designed based on a hybrid electrolytic-thermochemical process for decomposing water. The sulfur cycle water decomposition system is driven by a very high temperature nuclear reactor that provides 1,283 K helium working gas. The plant is sized to approximately ten million standard cubic meters per day of electrolytically pure hydrogen and has an overall thermal efficiently of 45.2 percent. The economics of the plant were evaluated using ground rules which include a 1974 cost basis without escalation, financing structure and other economic factors. Taking into account capital, operation, maintenance and nuclear fuel cycle costs, the cost of product hydrogen was calculated at $5.96/std cu m for utility financing. These values are significantly lower than hydrogen costs from conventional water electrolysis plants and competitive with hydrogen from coal gasification plants.

  2. A study on the photocatalytic decomposition reactions of organics dissolved in water (II)

    Energy Technology Data Exchange (ETDEWEB)

    Sung, K. W.; Na, J. W.; Cho, Y. H.; Chung, H. H

    2001-01-01

    Experiments on aqueous TiO{sup 2} photocatalytic reaction characteristics of 4 nitrogen-containing and 12 aromatic organic compounds were carried out. Based on the values calculated for the distribution of ionic species and atomic charge, the characteristics of their photocatalytic decomposition were estimated. It was shown that the dependence of decomposition of the N-containing compounds were linearly proportional to their nitrogen atomic charge values, while that of the aromatic compounds were inversely proportional. The effects of aqueous pH, oxygen content and concentration on the TiO{sup 2} photocatalytic characteristics of EDTA-Cu(II) and EDTA-Fe(III) were experimentally investigated. All EDTA systems were decomposed better in the pH range of 2.5{approx}3.0 and with more dissolved oxygen. These results could be applied to a unit process for removal of organic impurities dissolved in a source water of the system water, and for treatment of EDTA-containing liquid waste produced by chemical cleaning process in the domestic NPPs.

  3. Decomposition behavior of hemicellulose and lignin in the step-change flow rate liquid hot water.

    Science.gov (United States)

    Zhuang, Xinshu; Yu, Qiang; Wang, Wen; Qi, Wei; Wang, Qiong; Tan, Xuesong; Yuan, Zhenhong

    2012-09-01

    Hemicellulose and lignin are the main factors limiting accessibility of hydrolytic enzymes besides the crystallinity of cellulose. The decomposition behavior of hemicellulose and lignin in the step-change flow rate hot water system was investigated. Xylan removal increased from 64.53% for batch system (solid concentration 4.25% w/v, 18 min, 184°C) to 83.78% at high flow rates of 30 ml/min for 8 min, and then 10 ml/min for 10 min. Most of them (80-90%) were recovered as oligosaccharide. It was hypothesized that the flowing water could enhance the mass transfer to improve the sugars recovery. In addition, the solubilization mechanism of lignin in the liquid hot water was proposed according to the results of Fourier transform-infrared spectroscopy and scanning electron microscopy of the water-insoluble fraction and gas chromatography-mass spectrometry of the water-soluble fraction. It was proposed that lignin in the liquid hot water first migrated out of the cell wall in the form of molten bodies, and then flushed out of the reactor. A small quantity of them was further degraded into monomeric products such as vanillin, syringe aldehyde, coniferyl aldehyde, ferulic acid, and p-hydroxy-cinnamic acid. All of these observations would provide important information for the downstream processing, such as purification and concentration of sugars and the enzymatic digestion of residual solid.

  4. Litter Decomposition in a Semiarid Dune Grassland: Neutral Effect of Water Supply and Inhibitory Effect of Nitrogen Addition.

    Directory of Open Access Journals (Sweden)

    Yulin Li

    Full Text Available The decomposition of plant material in arid ecosystems is considered to be substantially controlled by water and N availability. The responses of litter decomposition to external N and water, however, remain controversial, and the interactive effects of supplementary N and water also have been largely unexamined.A 3.5-year field experiment with supplementary nitrogen and water was conducted to assess the effects of N and water addition on mass loss and nitrogen release in leaves and fine roots of three dominant plant species (i.e., Artemisia halondendron, Setaria viridis, and Phragmites australis with contrasting substrate chemistry (e.g. N concentration, lignin content in this study in a desertified dune grassland of Inner Mongolia, China. The treatments included N addition, water addition, combination of N and water, and an untreated control. The decomposition rate in both leaves and roots was related to the initial litter N and lignin concentrations of the three species. However, litter quality did not explain the slower mass loss in roots than in leaves in the present study, and thus warrant further research. Nitrogen addition, either alone or in combination with water, significantly inhibited dry mass loss and N release in the leaves and roots of the three species, whereas water input had little effect on the decomposition of leaf litter and fine roots, suggesting that there was no interactive effect of supplementary N and water on litter decomposition in this system. Furthermore, our results clearly indicate that the inhibitory effects of external N on dry mass loss and nitrogen release are relatively strong in high-lignin litter compared with low-lignin litter.These findings suggest that increasing precipitation hardly facilitates ecosystem carbon turnover but atmospheric N deposition can enhance carbon sequestration and nitrogen retention in desertified dune grasslands of northern China. Additionally, litter quality of plant species

  5. Litter Decomposition in a Semiarid Dune Grassland: Neutral Effect of Water Supply and Inhibitory Effect of Nitrogen Addition.

    Science.gov (United States)

    Li, Yulin; Ning, Zhiying; Cui, Duo; Mao, Wei; Bi, Jingdong; Zhao, Xueyong

    2016-01-01

    The decomposition of plant material in arid ecosystems is considered to be substantially controlled by water and N availability. The responses of litter decomposition to external N and water, however, remain controversial, and the interactive effects of supplementary N and water also have been largely unexamined. A 3.5-year field experiment with supplementary nitrogen and water was conducted to assess the effects of N and water addition on mass loss and nitrogen release in leaves and fine roots of three dominant plant species (i.e., Artemisia halondendron, Setaria viridis, and Phragmites australis) with contrasting substrate chemistry (e.g. N concentration, lignin content in this study) in a desertified dune grassland of Inner Mongolia, China. The treatments included N addition, water addition, combination of N and water, and an untreated control. The decomposition rate in both leaves and roots was related to the initial litter N and lignin concentrations of the three species. However, litter quality did not explain the slower mass loss in roots than in leaves in the present study, and thus warrant further research. Nitrogen addition, either alone or in combination with water, significantly inhibited dry mass loss and N release in the leaves and roots of the three species, whereas water input had little effect on the decomposition of leaf litter and fine roots, suggesting that there was no interactive effect of supplementary N and water on litter decomposition in this system. Furthermore, our results clearly indicate that the inhibitory effects of external N on dry mass loss and nitrogen release are relatively strong in high-lignin litter compared with low-lignin litter. These findings suggest that increasing precipitation hardly facilitates ecosystem carbon turnover but atmospheric N deposition can enhance carbon sequestration and nitrogen retention in desertified dune grasslands of northern China. Additionally, litter quality of plant species should be considered

  6. A study on the photo catalytic decomposition reactions of organics dissolved in water (II)

    Energy Technology Data Exchange (ETDEWEB)

    Sung, K.W.; Na, J. W.; Cho, Y. H.; Chung, H. H

    2000-01-01

    Experiments on aqueous TiO{sub 2} photo catalytic reaction of nitrogen containing organic compounds such as ethylamine, phenylhydrazine, pyridine, urea and EDTA were carried out. Based on the values calculated for the distribution of ionic species and atomic charge, the characteristics of their photo catalytic decomposition were estimated. It was shown that the decomposition characteristics was linearly proportional to nitrogen atomic charge value. On the other hand, the effects of aqueous pH, oxygen content and concentration on the TiO{sub 2} photo catalytic characteristics of EDTA, EDTA-Cu(II) and EDTA-Fe(III) were experimentally investigated. All EDTA systems were decomposed better in the pH range of 2.5-3.0 and with more dissolved oxygen. These results could be applied to construction of a process for removal of organic impurities dissolved in a source of system water, or for treatment of EDTA-containing liquid waste produced by a chemical cleaning in the domestic NPPs. (author)

  7. Effect of Oxygen Gas on the Decomposition of Dye by Pulsed Discharge in Water Droplet Spray

    Science.gov (United States)

    Nose, Taisuke; Yokoyama, Yuzo; Nakamura, Akira; Minamitani, Yasushi

    Effect of O2 on the decolorization of indigo carmine and on the production of dissolved species such as NO2-, NO3-, O3 and H2O2 in the treatment water by pulsed discharge in water droplet spray was investigated by controlling the O2/N2 ratios as carrier gases in the reactor. The decolorization rate gradually increased with rise in O2 ratio, which reached a constant value in the range of 50% to 90% O2 ratio and decreased in pure O2. The maximum value was about 2 times as high as that of 20% O2 ratio. The decolorization efficiency was not affected by gas flow rate in the range of 4 L/min to 50 L/min. NO2- in the treatment water was only detected in pure N2, but NO3- was produced in O2/N2. NO2- added to the treatment water was not oxidized in pure N2, but was perfectly converted to NO3- in O2/N2. These results implied that hydroxyl radical produced in gas phase does not directly contribute to the oxidation of substances in water. O3 concentration gradually increased with rise in O2 ratio, whereas H2O2 concentration decreased. In the range of 50 to 80% O2 ratio, O3 and H2O2 concentrations were approximately constant value, similar to the trend of decolorization rate. Moreover rate constants on various gas mixing ratio of O2/N2 were determined from the kinetics study. These results suggested that hydroxyl radical produced in the treatment water by the chain reactions of O3 and hydroperoxy radical (HO2·) plays an important role of the decomposition of molecules in water.

  8. Field Water Balance of Landfill Final Covers

    Science.gov (United States)

    Landfill covers are critical to waste containment, yet field performance of specific cover designs has not been well documented and seldom been compared in side-by-side testing. A study was conducted to assess the ability of landfill final covers to control percolation into unde...

  9. Are fire, soil fertility and toxicity, water availability, plant functional diversity, and litter decomposition related in a Neotropical savanna?

    Science.gov (United States)

    Carvalho, Gustavo Henrique; Batalha, Marco Antônio; Silva, Igor Aurélio; Cianciaruso, Marcus Vinicius; Petchey, Owen L

    2014-07-01

    Understanding how biodiversity and ecosystem functioning respond to changes in the environment is fundamental to the maintenance of ecosystem function. In realistic scenarios, the biodiversity-ecosystem functioning path may account for only a small share of all factors determining ecosystem function. Here, we investigated the strength to which variations in environmental characteristics in a Neotropical savanna affected functional diversity and decomposition. We sought an integrative approach, testing a number of pairwise hypotheses about how the environment, biodiversity, and functioning were linked. We used structural equation modelling to connect fire frequency, soil fertility, exchangeable Al, water availability, functional diversity of woody plants, tree density, tree height, and litter decomposition rates in a causal chain. We found significant effects of soil nutrients, water availability, and Al on functional diversity and litter decomposition. Fire did not have a significant direct effect on functional diversity or litter decomposition. However, fire was connected to both variables through soil fertility. Functional diversity did not influence rates of litter decomposition. The mediated effects that emerged from pairwise interactions are encouraging not only for predicting the functional consequences of changes in environmental variables and biodiversity, but also to caution against predictions based on only environmental or only biodiversity change.

  10. Solar Photocatalytic decomposition of pentachlorophenol in water; Descomposicion de pentaclorofenol en agua mediante fotocatalisis solar

    Energy Technology Data Exchange (ETDEWEB)

    Malato Rodriguez, S.

    1997-09-01

    In recent years, research in new water purification methods has focused on processes that chemically destroy the pollutants. During the last two decades, several laboratories have been using heterogeneous photocatalysis for the decomposition of very persistent organic substances dissolved in water using different kinds of lamps as the source of illumination and reactors designed to be illuminated by them. Since 1990, several research programs in the United States and the European Union have addressed the technological development necessary to use solar energy as the light source. The Plataforma Solar de Almeria (PSA) in the co-ordinator of several of the European programs, which has enabled it to install the facility used for the work presented here. This thesis focuses on :(i) the design, installation and start-up of the first pilot plant that allowed these projects to be undertaken at the PSA, (ii) the preliminary characterisation studies necessary to evaluate the data from experiments carried out in the plant and (iii) tests with a known pollutant in order to find out the pilot plant response to variation of different parameters selected as determinants in laboratory experimentation. The photocatalytic system used for this was: pentachlorophenol (CAS 87-86-5) as typical contaminant, ultraviolet made up to twelve parabolic-trough solar collectors (384 m``2), modified for photochemical use, 2500 L of water with tens of mg L``-1 of pollutant were treated (maximum). (Author)

  11. Suppressing NOM access to controlled porous TiO2 particles enhances the decomposition of target water contaminants

    Science.gov (United States)

    Suppressing access of natural organic matter (NOM) to TiO2 is a key to the successful photocatalytic decomposition of a target contaminant in water. This study first demonstrates simply controlling the porous structure of TiO2 can significantly improve the selective oxidation.

  12. Water quality criteria for hexachloroethane: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Davidson, K.A.; Hovatter, P.S.; Ross, R.H.

    1988-03-01

    The available data regarding the environmental fate, aquatic toxicity, and mammalian toxicity of hexachloroethane, which is used in military screening smokes, were reviewed. The USEPA guidelines were used to generate water quality criteria for the protection of aquatic life and its uses and of human health. 16 tabs.

  13. Rhizosphere impacts on peat decomposition and nutrient cycling across a natural water table gradient

    Science.gov (United States)

    Gill, A. L.; Finzi, A.

    2014-12-01

    High latitude forest and peatland soils represent a major terrestrial carbon store sensitive to climate change. Warming temperatures and increased growing-season evapotranspiration are projected to reduce water table (WT) height in continental peatlands. WT reduction increases peat aerobicity and facilitates vascular plant and root growth. Root-associated microbial communities are exposed to a different physical and chemical environment than microbial communities in non-root associated "bulk" peat, and therefore have distinct composition and function within the soil system. As the size of the peatland rhizosphere impacts resources available to the microbial communities, transitions from a root-free high water table peatland to a root-dominated low WT peatland may alter seasonal patterns of microbial community dynamics, enzyme production, and carbon storage within the system. We used a natural water table gradient in Caribou Bog near Orono, ME to explore the influence of species composition, root biomass, and rhizosphere size on seasonal patterns in microbial community structure, enzyme production, and carbon mineralization. We quantified root biomass across the water table gradient and measured microbial biomass carbon and nitrogen, C mineralization, N mineralization, and exoenzyme activity in root-associated and bulk peat samples throughout the 2013 growing season. Microbial biomass was consistently higher in rhizosphere-associated soils and peaked in the spring. Microbial biomass CN and enzyme activity was higher in rhizosphere-associated soil, likely due to increased mycorrhizal abundance. Exoenzyme activity peaked in the fall, with a larger relative increase in enzyme activity in rhizosphere peat, while carbon mineralization rates did not demonstrate a strong seasonal pattern. The results suggest that rhizosphere-associated peat sustains higher and more variable rates of enzyme activity throughout the growing season, which results in higher rates of carbon

  14. Waste water heat recovery appliance. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Chapin, H.D.; Armstrong, P.R.; Chapin, F.A.W.

    1983-11-21

    An efficient convective waste heat recovery heat exchanger was designed and tested. The prototype appliance was designed for use in laundromats and other small commercial operations which use large amounts of hot water. Information on general characteristics of the coin-op laundry business, energy use in laundromats, energy saving resources already in use, and the potential market for energy saving devices in laundromats was collected through a literature search and interviews with local laundromat operators in Fort Collins, Colorado. A brief survey of time-use patterns in two local laundromats was conducted. The results were used, with additional information from interviews with owners, as the basis for the statistical model developed. Mathematical models for the advanced and conventional types were developed and the resulting computer program listed. Computer simulations were made using a variety of parameters; for example, different load profiles, hold-up volumes, wall resistances, and wall areas. The computer simulation results are discussed with regard to the overall conclusions. Various materials were explored for use in fabricating the appliance. Resistance to corrosion, workability, and overall suitability for laundromat installations were considered for each material.

  15. Thermoanalytical study of the decomposition of yttrium trifluoroacetate thin films

    Energy Technology Data Exchange (ETDEWEB)

    Eloussifi, H. [GRMT, GRMT, Department of Physics, University of Girona, Campus Montilivi, E17071 Girona, Catalonia (Spain); Laboratoire de Chimie Inorganique, Faculté des Sciences de Sfax, Université de Sfax, BP 1171, 3000 Sfax (Tunisia); Farjas, J., E-mail: jordi.farjas@udg.cat [GRMT, GRMT, Department of Physics, University of Girona, Campus Montilivi, E17071 Girona, Catalonia (Spain); Roura, P. [GRMT, GRMT, Department of Physics, University of Girona, Campus Montilivi, E17071 Girona, Catalonia (Spain); Ricart, S.; Puig, T.; Obradors, X. [Institut de Ciència de Materials de Barcelona (CSIC), Campus UAB, 08193 Bellaterra, Catalonia (Spain); Dammak, M. [Laboratoire de Chimie Inorganique, Faculté des Sciences de Sfax, Université de Sfax, BP 1171, 3000 Sfax (Tunisia)

    2013-10-31

    We present the use of the thermal analysis techniques to study yttrium trifluoroacetate thin films decomposition. In situ analysis was done by means of thermogravimetry, differential thermal analysis, and evolved gas analysis. Solid residues at different stages and the final product have been characterized by X-ray diffraction and scanning electron microscopy. The thermal decomposition of yttrium trifluoroacetate thin films results in the formation of yttria and presents the same succession of intermediates than powder's decomposition, however, yttria and all intermediates but YF{sub 3} appear at significantly lower temperatures. We also observe a dependence on the water partial pressure that was not observed in the decomposition of yttrium trifluoroacetate powders. Finally, a dependence on the substrate chemical composition is discerned. - Highlights: • Thermal decomposition of yttrium trifluoroacetate films. • Very different behavior of films with respect to powders. • Decomposition is enhanced in films. • Application of thermal analysis to chemical solution deposition synthesis of films.

  16. The use of proper orthogonal decomposition (POD) meshless RBF-FD technique to simulate the shallow water equations

    Science.gov (United States)

    Dehghan, Mehdi; Abbaszadeh, Mostafa

    2017-12-01

    The main aim of this paper is to develop a fast and efficient local meshless method for solving shallow water equations in one- and two-dimensional cases. The mentioned equation has been classified in category of advection equations. The solutions of advection equations have some shock, thus, especial numerical methods should be employed for example discontinuous Galerkin and finite volume methods. Here, based on the proper orthogonal decomposition approach we want to construct a fast meshless method. To this end, we consider shallow water models and obtain a suitable time-discrete scheme based on the predictor-corrector technique. Then by applying the proper orthogonal decomposition technique a new set of basis functions can be built for the solution space in which the size of new solution space is less than the original problem. Thus, by employing the new bases the CPU time will be reduced. Some examples have been studied to show the efficiency of the present numerical technique.

  17. [Effects of snow cover on water soluble and organic solvent soluble components during foliar litter decomposition in an alpine forest].

    Science.gov (United States)

    Xu, Li-Ya; Yang, Wan-Qin; Li, Han; Ni, Xiang-Yin; He, Jie; Wu, Fu-Zhong

    2014-11-01

    Seasonal snow cover may change the characteristics of freezing, leaching and freeze-thaw cycles in the scenario of climate change, and then play important roles in the dynamics of water soluble and organic solvent soluble components during foliar litter decomposition in the alpine forest. Therefore, a field litterbag experiment was conducted in an alpine forest in western Sichuan, China. The foliar litterbags of typical tree species (birch, cypress, larch and fir) and shrub species (willow and azalea) were placed on the forest floor under different snow cover thickness (deep snow, medium snow, thin snow and no snow). The litterbags were sampled at snow formation stage, snow cover stage and snow melting stage in winter. The results showed that the content of water soluble components from six foliar litters decreased at snow formation stage and snow melting stage, but increased at snow cover stage as litter decomposition proceeded in the winter. Besides the content of organic solvent soluble components from azalea foliar litter increased at snow cover stage, the content of organic solvent soluble components from the other five foliar litters kept a continue decreasing tendency in the winter. Compared with the content of organic solvent soluble components, the content of water soluble components was affected more strongly by snow cover thickness, especially at snow formation stage and snow cover stage. Compared with the thicker snow covers, the thin snow cover promoted the decrease of water soluble component contents from willow and azalea foliar litter and restrain the decrease of water soluble component content from cypress foliar litter. Few changes in the content of water soluble components from birch, fir and larch foliar litter were observed under the different thicknesses of snow cover. The results suggested that the effects of snow cover on the contents of water soluble and organic solvent soluble components during litter decomposition would be controlled by

  18. Mass transfer in fuel cells. [electron microscopy of components, thermal decomposition of Teflon, water transport, and surface tension of KOH solutions

    Science.gov (United States)

    Walker, R. D., Jr.

    1973-01-01

    Results of experiments on electron microscopy of fuel cell components, thermal decomposition of Teflon by thermogravimetry, surface area and pore size distribution measurements, water transport in fuel cells, and surface tension of KOH solutions are described.

  19. Prediction of the maximum temperature for life based on the stability of metabolites to decomposition in water.

    Science.gov (United States)

    Bains, William; Xiao, Yao; Yu, Changyong

    2015-03-26

    The components of life must survive in a cell long enough to perform their function in that cell. Because the rate of attack by water increases with temperature, we can, in principle, predict a maximum temperature above which an active terrestrial metabolism cannot function by analysis of the decomposition rates of the components of life, and comparison of those rates with the metabolites' minimum metabolic half-lives. The present study is a first step in this direction, providing an analytical framework and method, and analyzing the stability of 63 small molecule metabolites based on literature data. Assuming that attack by water follows a first order rate equation, we extracted decomposition rate constants from literature data and estimated their statistical reliability. The resulting rate equations were then used to give a measure of confidence in the half-life of the metabolite concerned at different temperatures. There is little reliable data on metabolite decomposition or hydrolysis rates in the literature, the data is mostly confined to a small number of classes of chemicals, and the data available are sometimes mutually contradictory because of varying reaction conditions. However, a preliminary analysis suggests that terrestrial biochemistry is limited to environments below ~150-180 °C. We comment briefly on why pressure is likely to have a small effect on this.

  20. Prediction of the Maximum Temperature for Life Based on the Stability of Metabolites to Decomposition in Water

    Directory of Open Access Journals (Sweden)

    William Bains

    2015-03-01

    Full Text Available The components of life must survive in a cell long enough to perform their function in that cell. Because the rate of attack by water increases with temperature, we can, in principle, predict a maximum temperature above which an active terrestrial metabolism cannot function by analysis of the decomposition rates of the components of life, and comparison of those rates with the metabolites’ minimum metabolic half-lives. The present study is a first step in this direction, providing an analytical framework and method, and analyzing the stability of 63 small molecule metabolites based on literature data. Assuming that attack by water follows a first order rate equation, we extracted decomposition rate constants from literature data and estimated their statistical reliability. The resulting rate equations were then used to give a measure of confidence in the half-life of the metabolite concerned at different temperatures. There is little reliable data on metabolite decomposition or hydrolysis rates in the literature, the data is mostly confined to a small number of classes of chemicals, and the data available are sometimes mutually contradictory because of varying reaction conditions. However, a preliminary analysis suggests that terrestrial biochemistry is limited to environments below ~150–180 °C. We comment briefly on why pressure is likely to have a small effect on this.

  1. A hydrologic retention system and water quality monitoring program for a human decomposition research facility: concept and design.

    Science.gov (United States)

    Wozniak, Jeffrey R; Thies, Monte L; Bytheway, Joan A; Lutterschmidt, William I

    2015-01-01

    Forensic taphonomy is an essential research field; however, the decomposition of human cadavers at forensic science facilities may lead to nutrient loading and the introduction of unique biological compounds to adjacent areas. The infrastructure of a water retention system may provide a mechanism for the biogeochemical processing and retention of nutrients and compounds, ensuring the control of runoff from forensic facilities. This work provides a proof of concept for a hydrologic retention system and an autonomous water quality monitoring program designed to mitigate runoff from The Southeast Texas Applied Forensic Science (STAFS) Facility. Water samples collected along a sample transect were analyzed for total phosphorous, total nitrogen, NO3-, NO2-, NH4, F(-), and Cl(-). Preliminary water quality analyses confirm the overall effectiveness of the water retention system. These results are discussed with relation to how this infrastructure can be expanded upon to monitor additional, more novel, byproducts of forensic science research facilities. © 2014 American Academy of Forensic Sciences.

  2. [Effects of brackish water irrigation on soil enzyme activity, soil CO2 flux and organic matter decomposition].

    Science.gov (United States)

    Zhang, Qian-qian; Wang, Fei; Liu, Tao; Chu, Gui-xin

    2015-09-01

    Brackish water irrigation utilization is an important way to alleviate water resource shortage in arid region. A field-plot experiment was set up to study the impact of the salinity level (0.31, 3.0 or 5.0 g · L(-1) NaCl) of irrigated water on activities of soil catalase, invertase, β-glucosidase, cellulase and polyphenoloxidase in drip irrigation condition, and the responses of soil CO2 flux and organic matter decomposition were also determined by soil carbon dioxide flux instrument (LI-8100) and nylon net bag method. The results showed that in contrast with fresh water irrigation treatment (CK), the activities of invertase, β-glucosidase and cellulase in the brackish water (3.0 g · L(-1)) irrigation treatment declined by 31.7%-32.4%, 29.7%-31.6%, 20.8%-24.3%, respectively, while soil polyphenoloxidase activity was obviously enhanced with increasing the salinity level of irrigated water. Compared to CK, polyphenoloxidase activity increased by 2.4% and 20.5%, respectively, in the brackish water and saline water irrigation treatments. Both soil microbial biomass carbon and microbial quotient decreased with increasing the salinity level, whereas, microbial metabolic quotient showed an increasing tendency with increasing the salinity level. Soil CO2 fluxes in the different treatments were in the order of CK (0.31 g · L(-1)) > brackish water irrigation (3.0 g · L(-1)) ≥ saline water irrigation (5.0 g · L(-1)). Moreover, CO2 flux from plastic film mulched soil was always much higher than that from no plastic film mulched soil, regardless the salinity of irrigated water. Compared with CK, soil CO2 fluxes in the saline water and brackish water treatments decreased by 29.8% and 28.2% respectively in the boll opening period. The decomposition of either cotton straw or alfalfa straw in the different treatments was in the sequence of CK (0.31 g · L(-1)) > brackish water irrigation (3.0 g · L(-1)) > saline water treatment (5.0 g · L(-1)). The organic matter

  3. Effects of micro-water on decomposition of the environment-friendly insulating medium C5F10O

    Science.gov (United States)

    Xiao, Song; Li, Yi; Zhang, Xiaoxing; Tian, Shuangshuang; Deng, Zaitao; Tang, Ju

    2017-06-01

    SF6 is widely used in all kinds of high-voltage electrical equipment because of its excellent insulation and arc-extinguishing performance. However, this compound leads to serious greenhouse effect, which harms the environment. Many research institutions are now actively in search of SF6 alternative gas. C5F10O has attracted much attention as an alternative gas with low global warming potential (GWP) and excellent dielectric strength. In this paper, we analyzed the possible decomposition paths of C5F10O under micro-water environment through density functional theory. We also evaluated the ionization parameters and toxicity of the decomposition products. The results show that OH• and H• produced by H2O exhibited a catalytic effect on the decomposition of C5F10O. CF4, C2F6, C3F6, C3F8, C4F10, C5F12, C6F14, C3F7COH, C3F7OH, CF3COH, C3F7H, and CF3OH were produced in the micro-water environment. Based on molecular configuration calculation, the ionization parameters of these products were inferior to perfluorocarbons, such as C3F8, leading to reduced insulation performance of the system. Moreover, CF2O and HF are hazardous to human health and equipment safety. Results will provide a basis for further study of the insulation characteristic of the C5F10O gas mixture under micro-water condition to guide the formulation of their relevant international standards prior to engineering applications.

  4. Effects of micro-water on decomposition of the environment-friendly insulating medium C5F10O

    Directory of Open Access Journals (Sweden)

    Song Xiao

    2017-06-01

    Full Text Available SF6 is widely used in all kinds of high-voltage electrical equipment because of its excellent insulation and arc-extinguishing performance. However, this compound leads to serious greenhouse effect, which harms the environment. Many research institutions are now actively in search of SF6 alternative gas. C5F10O has attracted much attention as an alternative gas with low global warming potential (GWP and excellent dielectric strength. In this paper, we analyzed the possible decomposition paths of C5F10O under micro-water environment through density functional theory. We also evaluated the ionization parameters and toxicity of the decomposition products. The results show that OH• and H• produced by H2O exhibited a catalytic effect on the decomposition of C5F10O. CF4, C2F6, C3F6, C3F8, C4F10, C5F12, C6F14, C3F7COH, C3F7OH, CF3COH, C3F7H, and CF3OH were produced in the micro-water environment. Based on molecular configuration calculation, the ionization parameters of these products were inferior to perfluorocarbons, such as C3F8, leading to reduced insulation performance of the system. Moreover, CF2O and HF are hazardous to human health and equipment safety. Results will provide a basis for further study of the insulation characteristic of the C5F10O gas mixture under micro-water condition to guide the formulation of their relevant international standards prior to engineering applications.

  5. Effects of Plant Growth Form and Water Substrates on the Decomposition of Submerged Litter: Evidence of Constructed Wetland Plants in a Greenhouse Experiment

    Directory of Open Access Journals (Sweden)

    Yunmei Ping

    2017-10-01

    Full Text Available Wetland plants are important components in constructed wetlands (CWs, and one of their most important functions in CWs is to purify the water. However, wetland plant litter can also increase eutrophication of water via decomposition and nutrient release, and few studies have focused on the interspecific variation in the decomposition rate and nutrient release of multiple plant species in CWs. Here a greenhouse litter-bag experiment was conducted to quantify the decomposition rates and nutrient release of 7 dominant macrophytes (2 floating plants and 5 emergent plants in three types of water substrate. The results showed that plant litter species and growth forms significantly affected the litter mass losses. The nutrient release was significantly different among plant litter species, but not between floating and emergent plants. Litter traits, such as litter lignin, total nitrogen (TN and total phosphorus (TP can well predict the decomposition rates of submerged litter. These results indicated that submerging litter in water did not change the relationships between litter traits and litter decomposition rates, and leaching might play a more important role in the decomposition of submerged litter in CWs than that in other terrestrial ecosystems. These findings can provide suggestions for managers about the maintenance of constructed wetlands.

  6. Alkaloid decomposition by DC pin-hole discharge in water solution

    Science.gov (United States)

    Klimova, Edita J.; Krcma, Frantisek; Jonisova, Lenka

    2016-08-01

    DC diaphragm discharge generated in a batch reactor was used to decompose two selected model alkaloids, caffeine and quinine in concentrations ranging from 10 to 50 ppm or 5 to 15 ppm, respectively. UV-vis spectrometry was utilized in evaluation of H2O2 production during the process as well as degradation of caffeine. Fluorescence spectrometry was used for quantification of quinine. High rates of decomposition were reached in both cases in the anode part of the reactor. On the other hand, up to four times lower decomposition was observed in the cathode part. Total removal efficiency gained up to 300 mg/kWh for caffeine and 210 mg/kWh for quinine. Contribution to the topical issue "6th Central European Symposium on Plasma Chemistry (CESPC-6)", edited by Nicolas Gherardi, Ester Marotta and Cristina Paradisi

  7. Determination of The Minimal Amount of Water for Effective Suppression of The Thermal Decomposition of Forest Combustible Materials

    Directory of Open Access Journals (Sweden)

    Zhdanova Alena О.

    2016-01-01

    Full Text Available Forest fires are big problem for whole the world community. The development of new effective methods is needed to increase the efficiency of the firefighting. We have investigated experimentally the suppression of thermal decomposition of different typical forest combustibles using water aerosol. Droplet sizes were 0.02-0.2mm; the concentration −3.8·10−5 m3 of water/m3, the flow rate −0.00035 l/s, flow velocity −2 m/s. Registration of the aerosol propagation and interaction with combustibles was done by high-speed video camera using Shadow Photography and Particle Tracking Velocimetry methods. The effective water volumes for fire suppression were determined together with corresponding suppression times. The obtained results could be used for improvement of the fire-fighting technologies.

  8. Alumina nanowire growth by water decomposition and the peritectic reaction of decagonal Al{sub 65}Cu{sub 15}Co{sub 20} quasicrystals

    Energy Technology Data Exchange (ETDEWEB)

    Téllez-Vázquez, J.O., E-mail: oswald.tellez@gmail.com [Instituto de Investigaciones en Metalurgia y Materiales, UMSNH, Edificio U, Ciudad Universitaria, CP 58060 Morelia Michoacán, México (Mexico); Patiño-Carachure, C., E-mail: cpatino@pampano.unacar.mx [Facultad de Ingeniería, Universidad Autónoma del Carmen, Campus III, Avenida Central S/N, Esq. Con Fracc. Mundo Maya, C.P. 24115 Ciudad del Carmen, Campeche, México (Mexico); Rosas, G., E-mail: grtrejo@yahoo07.com.mx [Instituto de Investigaciones en Metalurgia y Materiales, UMSNH, Edificio U, Ciudad Universitaria, CP 58060 Morelia Michoacán, México (Mexico)

    2016-02-15

    In this paper, the results of the Al{sub 2}O{sub 3} nanowires' growth through a chemical reaction between Al and water vapor at 1050 °C are presented. Our approach is based on two primary considerations. First, at room temperature, the Al{sub 65}Cu{sub 15}Co{sub 20} alloy is affected by the following mechanism: 2Al (s) + 3H{sub 2}O (g) → Al{sub 2}O{sub 3} (s) + H{sub 2} (g). In this reaction, the released hydrogen induces cleavage fracture of the material to form small particles. Second, the Al{sub 65}Cu{sub 15}Co{sub 20} quasicrystalline phase is transformed on heating to liquid + Al (Cu, Co) cubic phase through a peritectic reaction at 1050 °C. The Al-rich liquid then reacts with water vapor, forming Al{sub 2}O{sub 3} nanowires. X-ray diffraction (XRD) analysis shows that the formed nanowires have a hexagonal structure, and infrared analysis further confirms the presence of α-Al{sub 2}O{sub 3} phase in the final products. Transmission electron microscopy observations show that nanoparticles are present at the end of nanowires, suggesting the VLS growth mechanism. Elemental analysis by energy dispersive spectroscopy (EDS) indicates that the particles at the tip of the nanowires are mainly formed by Co and Cu alloying elements and small amounts of Al. Electron microscopy observations showed nanowires with diameters ranging from 20 to 70 nm; the average diameter was 37 nm and the nanowire lengths were up to several micrometers. - Highlights: • Hexagonal alumina nanowires are grown at 1050 °C through the VLS process. • Alumina nanowires are obtained by the decomposition of decagonal quasicrystalline phase. • The decagonal phase decomposition follows a peritectic reaction at 1030 °C. • Nanoparticles are obtained by hydrogen embrittlement mechanism. • The nanoparticles catalyze the water decomposition to form wires.

  9. Evidence for organic phosphorus activation and transformation at the sediment-water interface during plant debris decomposition.

    Science.gov (United States)

    Zhang, Wenqiang; Zhu, Xiaolei; Jin, Xin; Meng, Xin; Tang, Wenzhong; Shan, Baoqing

    2017-04-01

    The processes and mechanisms through which phosphorus (P) is released from sediment and organic P is transformed, induced by the decomposition of plant (duckweed (Lemma minor L.)) debris, were studied experimentally. In the simulation experiments, the dissolved oxygen concentration, pH, and oxidation-reduction potential at the water-sediment interface first decreased rapidly. The lowest oxidation-reduction potential reached was 225.4mV, and the solution became weakly acidic (pH5.14) and anoxic (dissolved oxygen concentration 0.17mg·L(-1)). The dissolved oxygen concentration, pH, and oxidation-reduction potential then became stable. The soluble reactive P, total dissolved P, and total P concentrations in the overlying water all increased rapidly because of the particulate P and dissolved organic P released as the plant debris decomposed. (31)P NMR analysis of the solution showed that orthophosphate monoesters were the main organic P compounds in the sediment. The orthophosphate monoester and orthophosphate diester concentrations were higher during the first 7d of the experiment (at 71.2 and 15.3mg·kg(-1), respectively) than later (60.8 and 14.6mg·kg(-1), respectively). The decomposition of the duckweed could have mineralized the orthophosphate monoesters and orthophosphate diesters to give orthophosphate. The results indicated that the decomposition of aquatic plant debris is a key factor in the release of P from sediment even when external P is excluded. It is therefore necessary to remove plant debris from freshwater ecosystems to control the release of P from plant debris and sediment. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Thermal Decomposition of Hydrocalumite over a Temperature Range of 400–1500°C and Its Structure Reconstruction in Water

    Directory of Open Access Journals (Sweden)

    Jiao Tian

    2014-01-01

    Full Text Available The thermal decomposition process and structure memory effect of hydrocalumite were investigated systematically for the first time over a wide temperature range of 400–1500°C. The calcined hydrocalumite samples and their rehydrated products were characterized by XRD, FT-IR, and SEM-EDX. The results show that the calcination products at temperatures ranging from 500 to 900°C are basically mayenite and lime, while one of the final products obtained by calcination at and above 1000°C is probably tricalcium aluminate (Ca3Al2O6. For the hydrocalumite samples calcined at temperatures below 1000°C, their lamellar structure can be completely recovered in deionized water at room temperature. However, the further increase of calcination temperature could impair the regeneration ability of hydrocalumite via contact with water. Upon calcination of hydrocalumite at 1000–1500°C followed by reaction with water, a stable compound tricalcium aluminate hexahydrate (Ca3Al2O6·6H2O was produced, which is the reason why less hydrocalumite could be regenerated.

  11. The final treatment of FGD-waste water sludge

    Energy Technology Data Exchange (ETDEWEB)

    Brugghen, F.W. van der (N.V. KEMA, Arnhem (Netherlands))

    1993-01-01

    FGD installations based on lime/limestone gypsum processes produce waste water. This waste water has to be treated prior to discharge. The sludge formed during this waste water treatment contains gypsum, CaF[sub 2], Al[sub 2]O[sub 3], SiO[sub 2], Fe[sub 2]O[sub 3] and MgO as well as minor amounts of heavy metals like As, Cd, Pb, Zn and Hg. There are three methods for the final treatment of the sludges: disposal; mixing with gypsum; coffering in the boiler. An inventory has been made of the amounts and composition of the sludge produced by FGD plants in The Netherlands. The consequences of the three treatment methods for emissions, by-product quality and costs are described and compared. 1 ref., 2 figs., 7 tabs.

  12. A theoretical study of water adsorption and decomposition on low-index spinel ZnGa2O4 surfaces: correlation between surface structure and photocatalytic properties.

    Science.gov (United States)

    Jia, Chuanyi; Fan, Weiliu; Yang, Fei; Zhao, Xian; Sun, Honggang; Li, Pan; Liu, Li

    2013-06-11

    Water adsorption and decomposition on stoichiometrically perfect and oxygen vacancy containing ZnGa2O4 (100), (110), and (111) surfaces were investigated through periodic density functional theory (DFT) calculations. The results demonstrated that water adsorption and decomposition are surface-structure-sensitive processes. On a stoichiometrically perfect surface, the most stable molecular adsorption that could take place involved the generation of hydrogen bonds. For dissociative adsorption, the adsorption energy of the (111) surface was more than 4 times the energies of the other two surfaces, indicating it to be the best surface for water decomposition. A detailed comparison of these three surfaces showed that the primary reason for this observation was the special electronic state of the (111) surface. When water dissociated on the (111) surface, the special Ga3c-4s and 4p hybridization states at the Fermi level had an obvious downshift to the lower energies. This large energy gain greatly promoted the dissociation of water. Because the generation of O(3c) vacancy defects on the (100) and (110) surfaces could increase the stability of the dissociative adsorption states with few changes to the energy barrier, this type of defect would make the decomposition of water molecules more favorable. However, for the (111) surface, the generation of vacancy defects could decrease the stability of the dissociative adsorption states and significantly increase their energy barriers. Therefore, the decomposition of water molecules on the oxygen vacancy defective (111) surface would be less favorable than the perfect (111) surface. These findings on the decomposition of H2O on the ZnGa2O4 surfaces can be used toward the synthesis of water-splitting catalysts.

  13. Synthesis, Optical Characterization, and Thermal Decomposition of Complexes Based on Biuret Ligand

    National Research Council Canada - National Science Library

    Wang, Mei-Ling; Zhong, Guo-Qing; Chen, Ling

    2016-01-01

    .... The nickel and manganese ions were all hexacoordinated. The thermal decomposition processes of the complexes under air included the loss of water molecule, the pyrolysis of ligands, and the decomposition of inorganic salts, and the final residues were nickel oxide and manganese oxide, respectively.

  14. Efficient decomposition of a new fluorochemical surfactant: perfluoroalkane disulfonate to fluoride ions in subcritical and supercritical water.

    Science.gov (United States)

    Hori, Hisao; Saito, Hiroki; Sakai, Hidenori; Kitahara, Toshiyuki; Sakamoto, Takehiko

    2015-06-01

    Decomposition of (-)O3SC3F6SO3(-) in subcritical and supercritical water was investigated, and the results were compared with the results for C3F7SO3(-). This is the first report on the decomposition of perfluoroalkane disulfonates, which are being introduced in electronics industry as greener alternatives to environmentally persistent and bioaccumulative perfluoroalkyl surfactants. Addition of zerovalent iron to the reaction system dramatically increased the yield of F(-) in the reaction solution: when the reaction of (-)O3SC3F6SO3(-) was carried out in subcritical water at 350°C for 6h, the F(-) yield was 70%, which was 23times the yield without zerovalent iron. Prolonged reaction increased the F(-) formation: after 18h, the F(-) yield from the reaction of (-)O3SC3F6SO3(-) reached 81%, which was 2.1times the F(-) yield from the reaction of C3F7SO3(-). Although the reactivity of FeO toward these substrates was lower than zerovalent iron in subcritical water, the reactivity was enhanced when the reaction temperature was elevated to supercritical state, at which temperature FeO underwent in situ disproportionation to form zerovalent iron, which acted as the reducing agent. When the reaction of (-)O3SC3F6SO3(-) was carried out in the presence of FeO in supercritical water at 380°C for 18h, the F(-) yield reached 92%, which was the highest yield among tested. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Bacterial communities associated with the decomposition of Fucus vesiculosus in transitional waters

    Science.gov (United States)

    Martins, Patrícia; Lopes, Marta Lobão; Rodrigues, Ana Maria; Gomes, Newton C. M.; Quintino, Victor

    2012-09-01

    In this work we study the temporal and spatial patterns of the bacterial communities associated with the decomposition of Fucus vesiculosus and a control substrate in a transitional ecosystem. Leaf-bags with 5 mm mesh-size and containing the experimental substrates were placed in three areas, euhaline, mesohaline and limnetic, covering the full salinity gradient. The substrates were submerged at day 0 and three replicates were randomly collected per site, at days 3, 7, 15, 30 and 60. The complexity and structural changes of the bacterial communities inhabiting F. vesiculosus and the control substrates were assessed by denaturing gradient gel electrophoresis (DGGE). Bacterial community fingerprints showed no significant differences between areas only at day 3, for both substrates. The bacterial community associated with F. vesiculosus showed significant differences over time in the euhaline and mesohaline areas but not in the limnetic area. A different trend was observed for the artificial substrate. Comparing the bacterial communities of F. vesiculosus and the artificial substrate, the results indicated that the significant differences between the two substrates were detected from day 7 in the euhaline area and only later, at day 15, in the other areas. These results are coherent with the fastest decomposition rate of the alga in the euhaline area, where it occurs naturally, and the slowest in the limnetic area, where it does not naturally exists.

  16. Role of litter decomposition sensitivity to water content in non-additive litter mixture effect: theoretical demonstration and validation with a peatland litter experiment

    Science.gov (United States)

    Gogo, Sébastien; Leroy, Fabien; Zoccatelli, Renata; Bernard-Jannin, Léonard; Laggoun-Défarge, Fatima

    2017-04-01

    In this work, we showed theoretically that differences in litter water content, evaporation rate and reaction rate sensitivity to water content can give account of non-additive litter mixture effect. More specifically two litters with the same dependence to litter water content and contrasted water content, and 2 litters with contrasted decomposition sensitivity to litter water content can exert synergistic mixture effect on decomposition when the 2 litters interact. In these situations, water can flow from the wettest to the driest litter, changing the whole reaction rate without changing the whole litter water content. The reaction rate increase of the litter receiving the water was relatively more important than the reaction rate decrease of the litter supplying the water. These theoretical considerations were validated with experimental data. Sphagnum rubellum and Molinia caerulea decompose faster in measured mixture than expected from the rates obtained in monoculture incubation. Sphagnum rubellum litter can contain more water, which evaporates at a slower rate than Molinia caerulea. It is thus proposed that water flowed from Sphagnum rubellum litter to the Molinia caerulea litter, with a substantial increase of the decomposition of the latter. The physical and biochemical litter characteristics towards water explains a fraction of the synergistic effect of mixing the 2 litters, which suggests that other factors intervene in this effect, such as the carbon substrate.

  17. Final technical report. Can microbial functional traits predict the response and resilience of decomposition to global change?

    Energy Technology Data Exchange (ETDEWEB)

    Allison, Steven D. [Univ. of California, Irvine, CA (United States)

    2015-09-24

    The role of specific micro-organisms in the carbon cycle, and their responses to environmental change, are unknown in most ecosystems. This knowledge gap limits scientists’ ability to predict how important ecosystem processes, like soil carbon storage and loss, will change with climate and other environmental factors. The investigators addressed this knowledge gap by transplanting microbial communities from different environments into new environments and measuring the response of community composition and carbon cycling over time. Using state-of-the-art sequencing techniques, computational tools, and nanotechnology, the investigators showed that microbial communities on decomposing plant material shift dramatically with natural and experimentally-imposed drought. Microbial communities also shifted in response to added nitrogen, but the effects were smaller. These changes had implications for carbon cycling, with lower rates of carbon loss under drought conditions, and changes in the efficiency of decomposition with nitrogen addition. Even when transplanted into the same conditions, microbial communities from different environments remained distinct in composition and functioning for up to one year. Changes in functioning were related to differences in enzyme gene content across different microbial groups. Computational approaches developed for this project allowed the conclusions to be tested more broadly in other ecosystems, and new computer models will facilitate the prediction of microbial traits and functioning across environments. The data and models resulting from this project benefit the public by improving the ability to predict how microbial communities and carbon cycling functions respond to climate change, nutrient enrichment, and other large-scale environmental changes.

  18. Electrochemical decomposition of fluorinated wetting agents in plating industry waste water.

    Science.gov (United States)

    Fath, Andreas; Sacher, Frank; McCaskie, John E

    2016-01-01

    Electrochemical decomposition of fluorinated surfactants (PFAS, perfluorinated alkyl substances) used in the plating industry was analyzed and the decomposition process parameters optimized at the laboratory scale and production scale of a 500-liter reactor using lead electrodes. The method and system was successfully demonstrated under production conditions to treat PFAS) with up to 99% efficiency in the concentration range of 1,000-20,000 μg/l (1 ppm-20 ppm). The treatment also reduced hexavalent chromium (Cr(6+)) ions to trivalent chromium (Cr(3+)) ions in the wastewater. If the PFAS-containing wastewater is mixed with other wastewater streams, specifically from nickel plating drag out solution or when pH values >5, the treatment process is ineffective. For the short chain PFAS, (perfluorobutylsulfonate) the process was less efficient than C6-C8 PFAS. The process is automated and has safety procedures and controls to prevent hazards. The PFAS were decomposed to hydrogen fluoride (HF) under the strong acid electrochemical operating conditions. Analytical tests showed no evidence of organic waste products remaining from the process. Conventional alternative PFAS removal systems were tested on the waste streams and compared with each other and with the-E-destruct (electrochemical oxidation) process. For example, ion exchange resin (IX resin) treatment of wastewater to complex and remove PFAS was found to be seven times more efficient when compared to the conventional activated carbon absorption (C-treat) process. However, the E-destruct process is higher in capacity, exhibits longer service life and lower operating costs than either IX or C-treat methods for elimination of PFAS from these electroplating waste streams.

  19. Mechanistic insights into the dissociation and decomposition of carbonic acid in water via the hydroxide route: an ab initio metadynamics study.

    Science.gov (United States)

    Galib, Mirza; Hanna, Gabriel

    2011-12-22

    The dissociation and decomposition of carbonic acid (H2CO3) in water are important reactions in the pH regulation in blood, CO2 transport in biological systems, and the global carbon cycle. H2CO3 is known to have three conformers [cis-cis (CC), cis-trans (CT), and trans-trans (TT)], but their individual reaction dynamics in water has not been probed experimentally. In this paper, we have investigated the energetics and mechanisms of the conformational changes, dissociation (H2CO3 -->/decomposition via the hydroxide route (HCO3(-) --> CO2+OH(-)) of all three conformers of H2CO3 in water using Car-Parrinello molecular dynamics (CPMD) in conjunction with metadynamics. It was found that, unlike in the gas phase, the interconversion between the various conformers occurs via two different pathways, one involving a change in one of the two dihedral angles (O=C-O-H) and the other a proton transfer through a hydrogen-bond wire. The free energy barriers/changes for the various conformational changes via the first pathway were calculated and contrasted with the previously calculated values for the gas phase. The CT and TT conformers were found to undergo decomposition in water via a two-step process: first, the dissociation and then the decomposition of HCO3(-) into CO2 and OH(-). The CC conformer does not directly decompose but first undergoes a conformational change to CT or TT prior to decomposition. This is in contrast with the concerted mechanism proposed for the gas phase, which involves a dehydroxylation of one of the OH groups and a simultaneous deprotonation of the other OH group to yield CO2 and H2O. The dissociation in water was seen to involve the repeated formation and breakage of a hydrogen-bond wire with neighboring water molecules, whereas the decomposition is initiated by the diffusion of H(+) away from HCO3(-); this decomposition mechanism differs from that proposed for the water route dehydration (HCO3(-) + H3O(+) --> CO2 + H2O), which involves the

  20. To prevent the occurrence of black water agglomerate through delaying decomposition of cyanobacterial bloom biomass by sediment microbial fuel cell.

    Science.gov (United States)

    Zhou, Yan-Li; Jiang, He-Long; Cai, Hai-Yuan

    2015-04-28

    Settlement of cyanobacterial bloom biomass (CBB) into sediments in eutrophic lakes often induced the occurrence of black water agglomerate and then water quality deterioration. This study investigated the effect of sediment microbial fuel cell (SMFC) on CBB removal in sediments and related water pollution. Sediment bulking and subsequent black water from decomposition of settled CBB happened without SMFC, but were not observed over 100-day experiments with SMFC employment. While CBB in sediments improved power production from SMFC, the removal efficiency of organic matters in CBB-amended sediments with SMFC was significantly lower than that without SMFC. Pyrosequencing analysis showed higher abundances of the fermentative Clostridium and acetoclastic methanogen in CBB-amended bulk sediments without SMFC than with SMFC at the end of experiments. Obviously, SMFC operation changed the microbial community in CBB-amended sediments, and delayed the CBB degradation against sediment bulking. Thus, SMFC could be potentially applied as pollution prevention in CBB-settled and sensitive zones in shallow lakes. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Newly developed Fe3O4-Cr2O3magnetic nanocomposite for photocatalytic decomposition of 4-chlorophenol in water.

    Science.gov (United States)

    Singh, Khoirakpam Kesho; Senapati, Kula Kamal; Borgohain, Chandan; Sarma, Kanak Chandra

    2017-02-01

    Chlorophenols, typically 4-chlorophenols are highly toxic and non-biodegradable organic contaminants which pose serious threat to the environment, particularly when released into aqueous medium. The removal of these pollutants by efficient method has received worldwide concern in recent past. A new Fe 3 O 4 -Cr 2 O 3 magnetic nanocomposite was synthesized by wet chemical method under ultrasonic irradiation. Microstructure and morphology of the nanocomposite were characterized by powder X-ray diffraction (XRD), Fourier transform infrared (FT-IR), and a transmission electron microscope (TEM). Magnetic and optical properties were studied by a vibrating sample magnetometer (VSM) and an ultraviolet-visible (UV-Vis) spectrophotometer respectively. The magnetic nanocomposite (MNC) was used as photocatalyst for effective decomposition of 4-chlorophenol in water under ultraviolet (UV) irradiation. Copyright © 2015. Published by Elsevier B.V.

  2. The potential of dual-energy computed tomography for quantitative decomposition of soft tissues to water, protein and lipid in brachytherapy

    Science.gov (United States)

    Malusek, A.; Karlsson, M.; Magnusson, M.; Alm Carlsson, G.

    2013-02-01

    Dosimetric accuracy of radiation treatment planning in brachytherapy depends on knowledge of tissue composition. It has been speculated that soft tissues can be decomposed to water, lipid and protein. The aim of our work is to evaluate the accuracy of such tissue decomposition. Selected abdominal soft tissues, whose average elemental compositions were taken from literature, were decomposed using dual energy computed tomography to water, lipid and protein via the three-material decomposition method. The quality of the decomposition was assessed using relative differences between (i) mass energy absorption and (ii) mass energy attenuation coefficients of the analyzed and approximated tissues. It was found that the relative differences were less than 2% for photon energies larger than 10 keV. The differences were notably smaller than the ones for water as the transport and dose scoring medium. The choice of the water, protein and lipid triplet resulted in negative elemental mass fractions for some analyzed tissues. As negative elemental mass fractions cannot be used in general purpose particle transport computer codes using the Monte Carlo method, other triplets should be used for the decomposition. These triplets may further improve the accuracy of the approximation as the differences were mainly caused by the lack of high-Z materials in the water, protein and lipid triplet.

  3. Is the U.S. experience replicable? A decomposition of U.S. water use since 1950

    Science.gov (United States)

    Debaere, P.

    2014-12-01

    Blue water withdrawals in the United States since 1950 show a remarkable pattern. After doubling between 1950 and 1980, water use slightly declined in spite of a doubling in GDP, 30 percent population growth and a 70 percent increase in per capita GDP since 1980. We relate this remarkable pattern to the changing long-term structural changes of the U.S. economy as it became a service economy, experiencing a decrease in relative share of manufacturing and a secular decline in agriculture. Drawing on Leontief (1970)'s seminal analysis, we decompose the U.S. water use in terms of scale, composition and technology. We find that about 1/3 of water saving can be attributed to shifting final demand by domestic and foreign buyers for U.S. products; slightly more than a 1/3 relates to the changing input output structure that characterizes U.S. production, and less than 1/3 is to be attributed to water productivity gains related to improvements in technology. In addition, our estimates indicate that the vast majority of the water productivity gains due to technological improvements stem from gains in water/KWh in electricity generation. Finally, while globalization and the growing water content of net imports increased for the U.S. since 1950, they by no means overturn the increased water saving due to changing sectoral composition of the U.S. economy.

  4. Spatial Decomposition of Translational Water–Water Correlation Entropy in Binding Pockets

    Science.gov (United States)

    2015-01-01

    A number of computational tools available today compute the thermodynamic properties of water at surfaces and in binding pockets by using inhomogeneous solvation theory (IST) to analyze explicit-solvent simulations. Such methods enable qualitative spatial mappings of both energy and entropy around a solute of interest and can also be applied quantitatively. However, the entropy estimates of existing methods have, to date, been almost entirely limited to the first-order terms in the IST’s entropy expansion. These first-order terms account for localization and orientation of water molecules in the field of the solute but not for the modification of water–water correlations by the solute. Here, we present an extension of the Grid Inhomogeneous Solvation Theory (GIST) approach which accounts for water–water translational correlations. The method involves rewriting the two-point density of water in terms of a conditional density and utilizes the efficient nearest-neighbor entropy estimation approach. Spatial maps of this second order term, for water in and around the synthetic host cucurbit[7]uril and in the binding pocket of the enzyme Factor Xa, reveal mainly negative contributions, indicating solute-induced water–water correlations relative to bulk water; particularly strong signals are obtained for sites at the entrances of cavities or pockets. This second-order term thus enters with the same, negative, sign as the first order translational and orientational terms. Numerical and convergence properties of the methodology are examined. PMID:26636620

  5. Dynamics of phosphorus-iron-sulfur at the sediment-water interface influenced by algae blooms decomposition.

    Science.gov (United States)

    Han, Chao; Ding, Shiming; Yao, Lei; Shen, Qiushi; Zhu, Chungang; Wang, Yan; Xu, Di

    2015-12-30

    This study addresses the previously unknown effects of algae blooms on the dynamics of phosphorus (P), iron (Fe) and sulfur (S) across a lacustrine sediment-water interface (SWI). A mesocosm experiment was conducted in-situ to investigate these effects based on two recently-developed diffusive gradients in thin-films techniques (DGT). Soluble P, Fe(II), and S(-II) exhibited similar changing trends in a water column subject to the algae addition. Peak concentrations appeared on day 7 of the 16-day experiment. The lowest Eh occurred at the experiment's midway point indicating a strong algae degradation. A maximum increase in DGT-labile S appeared on day 8 near the SWI, while the DGT-labile P and Fe exhibited persistent increases almost to the end of experiment. Significantly positive correlations of labile P were observed switching from between labile Fe and labile S in sediments, suggesting a significant change in original Fe-coupled dynamics of P under algae decomposition. Apparent fluxes were calculated based on DGT profiles where a simultaneous release of P and S occurred from degraded algae, resulting in bidirectional diffusion fluxes from sediment to overlying water. In contrast, sediment acted as a major source of labile Fe due to added depth and apparently positive fluxes. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Graph Decompositions

    DEFF Research Database (Denmark)

    Merker, Martin

    The topic of this PhD thesis is graph decompositions. While there exist various kinds of decompositions, this thesis focuses on three problems concerning edgedecompositions. Given a family of graphs H we ask the following question: When can the edge-set of a graph be partitioned so that each part...... induces a subgraph isomorphic to a member of H? Such a decomposition is called an H-decomposition. Apart from the existence of an H-decomposition, we are also interested in the number of parts needed in an H-decomposition. Firstly, we show that for every tree T there exists a constant k(T) such that every...... k(T)-edge-connected graph whose size is divisible by the size of T admits a T-decomposition. This proves a conjecture by Barát and Thomassen from 2006. Moreover, we introduce a new arboricity notion where we restrict the diameter of the trees in a decomposition into forests. We conjecture...

  7. Effect of Electrolytes on the Decomposition of Dye by Pulsed Discharge in Air Spraying Water Droplets

    Science.gov (United States)

    Nose, Taisuke; Yokoyama, Yuzo; Minamitani, Yasushi

    Effect of electrolytes on the decolorization of indigo carmine and on the production of H2O2 by pulsed discharge in air spraying water droplets was performed in sodium chloride and magnesium sulfate solutions. Peak voltage of the discharge decreased with increasing solution conductivity, but peak current and discharge energy increased. Decolorization rate and decolorization efficiency of indigo carmine and the yield of H2O2 decreased with increasing chloride and sulfate ion concentrations. It was found that the decolorization of indigo carmine and the production of H2O2 are affected by the ion concentration even in the case of discharge in air spraying water droplets. However it was less effective than that of discharge in water. Chloride ion was more effective than sulfate ion regarding the decrease of decolorization rate and the production of H2O2. Decolorization rate of indigo carmine was strongly related to the production of H2O2. These results also indicated that decolorization of indigo carmine depends on the production of hydroxyl radical.

  8. OTEC Advanced Composite Cold Water Pipe: Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Alan Miller; Matthew Ascari

    2011-09-12

    Ocean Thermal Energy Conversion can exploit natural temperature gradients in the oceans to generate usable forms of energy (for example, cost-competitive baseload electricity in tropical regions such as Hawaii) free from fossil fuel consumption and global warming emissions.The No.1 acknowledged challenge of constructing an OTEC plant is the Cold Water Pipe (CWP), which draws cold water from 1000m depths up to the surface, to serve as the coolant for the OTEC Rankine cycle. For a commercial-scale plant, the CWP is on the order of 10m in diameter.This report describes work done by LMSSC developing the CWP for LM MS2 New Ventures emerging OTEC business. The work started in early 2008 deciding on the minimum-cost CWP architecture, materials, and fabrication process. In order to eliminate what in previous OTEC work had been a very large assembly/deployment risk, we took the innovative approach of building an integral CWP directly from theOTEC platform and down into the water. During the latter half of 2008, we proceeded to a successful small-scale Proof-of-Principles validation of the new fabrication process, at the Engineering Development Lab in Sunnyvale. During 2009-10, under the Cooperative Agreement with the US Dept. of Energy, we have now successfully validated key elements of the process and apparatus at a 4m diameter scale suitable for a future OTEC Pilot Plant. The validations include: (1) Assembly of sandwich core rings from pre-pultruded hollow 'planks,' holding final dimensions accurately; (2) Machine-based dispensing of overlapping strips of thick fiberglass fabric to form the lengthwise-continuous face sheets, holding accurate overlap dimensions; (3) Initial testing of the fabric architecture, showing that the overlap splices develop adequate mechanical strength (work done under a parallel US Naval Facilities Command program); and (4) Successful resin infusion/cure of 4m diameter workpieces, obtaining full wet-out and a non-discernable knitline

  9. Estimation of Paddy Rice Variables with a Modified Water Cloud Model and Improved Polarimetric Decomposition Using Multi-Temporal RADARSAT-2 Images

    Directory of Open Access Journals (Sweden)

    Zhi Yang

    2016-10-01

    Full Text Available Rice growth monitoring is very important as rice is one of the staple crops of the world. Rice variables as quantitative indicators of rice growth are critical for farming management and yield estimation, and synthetic aperture radar (SAR has great advantages for monitoring rice variables due to its all-weather observation capability. In this study, eight temporal RADARSAT-2 full-polarimetric SAR images were acquired during rice growth cycle and a modified water cloud model (MWCM was proposed, in which the heterogeneity of the rice canopy in the horizontal direction and its phenological changes were considered when the double-bounce scattering between the rice canopy and the underlying surface was firstly considered as well. Then, three scattering components from an improved polarimetric decomposition were coupled with the MWCM, instead of the backscattering coefficients. Using a genetic algorithm, eight rice variables were estimated, such as the leaf area index (LAI, rice height (h, and the fresh and dry biomass of ears (Fe and De. The accuracy validation showed the MWCM was suitable for the estimation of rice variables during the whole growth season. The validation results showed that the MWCM could predict the temporal behaviors of the rice variables well during the growth cycle (R2 > 0.8. Compared with the original water cloud model (WCM, the relative errors of rice variables with the MWCM were much smaller, especially in the vegetation phase (approximately 15% smaller. Finally, it was discussed that the MWCM could be used, theoretically, for extensive applications since the empirical coefficients in the MWCM were determined in general cases, but more applications of the MWCM are necessary in future work.

  10. The effects of leachate recirculation with supplemental water addition on methane production and waste decomposition in a simulated tropical landfill.

    Science.gov (United States)

    Sanphoti, N; Towprayoon, S; Chaiprasert, P; Nopharatana, A

    2006-10-01

    In order to increase methane production efficiency, leachate recirculation is applied in landfills to increase moisture content and circulate organic matter back into the landfill cell. In the case of tropical landfills, where high temperature and evaporation occurs, leachate recirculation may not be enough to maintain the moisture content, therefore supplemental water addition into the cell is an option that could help stabilize moisture levels as well as stimulate biological activity. The objectives of this study were to determine the effects of leachate recirculation and supplemental water addition on municipal solid waste decomposition and methane production in three anaerobic digestion reactors. Anaerobic digestion with leachate recirculation and supplemental water addition showed the highest performance in terms of cumulative methane production and the stabilization period time required. It produced an accumulated methane production of 54.87 l/kg dry weight of MSW at an average rate of 0.58 l/kg dry weight/d and reached the stabilization phase on day 180. The leachate recirculation reactor provided 17.04 l/kg dry weight at a rate of 0.14l/kg dry weight/d and reached the stabilization phase on day 290. The control reactor provided 9.02 l/kg dry weight at a rate of 0.10 l/kg dry weight/d, and reached the stabilization phase on day 270. Increasing the organic loading rate (OLR) after the waste had reached the stabilization phase made it possible to increase the methane content of the gas, the methane production rate, and the COD removal. Comparison of the reactors' efficiencies at maximum OLR (5 kgCOD/m(3)/d) in terms of the methane production rate showed that the reactor using leachate recirculation with supplemental water addition still gave the highest performance (1.56 l/kg dry weight/d), whereas the leachate recirculation reactor and the control reactor provided 0.69 l/kg dry weight/d and 0.43 l/kg dry weight/d, respectively. However, when considering

  11. Workshops capacity building for agricultural water demand management; final report

    NARCIS (Netherlands)

    Vehmeijer, P.W.; Wolters, W.

    2004-01-01

    Agricultural Water Demand Management (AWDM) is at the core of the Water for Food Programme launched as a result of a pledge by the Netherlands' Minister for Agriculture at the 2nd World Water Forum in March 2000, The Hague. One of the projects that was started after the March 2000 pledge was

  12. Uses of warmed water in agriculture. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Garrett, R.E.

    1978-11-01

    Energy in the form of warmed water is available from condenser cooling water from fossil fuel or nuclear-electric power-generating facilities, geothermal power plants, geothermal fluids, or spent steam and cooling water from industrial processes. A re-analysis of the characteristics of possible agricultural uses of warmed water has revealed the need to decouple considerations of warmed water sources from those of warmed water users. Conflicting objectives and managerial requirements seem to preclude an integrated system approach. Rather an interface must be established with separate costs and benefits identified for a reliable warmed water source and for its various potential uses. These costs and benefits can be utilized as a basis for decisions separately by the energy supplier and the prospective energy users. A method of classifying uses of warmed water according to need, volume, objective, temperature, and quality is presented and preliminary classifications are discussed for several potential agricultural uses of warmed water. Specific uses for soil warming, space heating in greenhouses, and irrigation are noted. Specific uses in aquaculture for catfish, lobster, and prawn production are discussed. Warmed water use in animal shelters is mentioned. Low-quality heat is required for methane generation from biomass and warmed water heating could be utilized in this industry. 53 references. (MCW)

  13. Decomposition techniques

    Science.gov (United States)

    Chao, T.T.; Sanzolone, R.F.

    1992-01-01

    Sample decomposition is a fundamental and integral step in the procedure of geochemical analysis. It is often the limiting factor to sample throughput, especially with the recent application of the fast and modern multi-element measurement instrumentation. The complexity of geological materials makes it necessary to choose the sample decomposition technique that is compatible with the specific objective of the analysis. When selecting a decomposition technique, consideration should be given to the chemical and mineralogical characteristics of the sample, elements to be determined, precision and accuracy requirements, sample throughput, technical capability of personnel, and time constraints. This paper addresses these concerns and discusses the attributes and limitations of many techniques of sample decomposition along with examples of their application to geochemical analysis. The chemical properties of reagents as to their function as decomposition agents are also reviewed. The section on acid dissolution techniques addresses the various inorganic acids that are used individually or in combination in both open and closed systems. Fluxes used in sample fusion are discussed. The promising microwave-oven technology and the emerging field of automation are also examined. A section on applications highlights the use of decomposition techniques for the determination of Au, platinum group elements (PGEs), Hg, U, hydride-forming elements, rare earth elements (REEs), and multi-elements in geological materials. Partial dissolution techniques used for geochemical exploration which have been treated in detail elsewhere are not discussed here; nor are fire-assaying for noble metals and decomposition techniques for X-ray fluorescence or nuclear methods be discussed. ?? 1992.

  14. Parotid fat contents in healthy subjects evaluated with iterative decomposition with echo asymmetry and least squares fat-water separation.

    Science.gov (United States)

    Chang, Hing-Chiu; Juan, Chun-Jung; Chiu, Hui-Chu; Liu, Yi-Jui; Cheng, Cheng-Chieh; Chiu, Su-Chin; Chen, Cheng-Yu; Huang, Guo-Shu; Chung, Hsiao-Wen

    2013-06-01

    To evaluate the effectiveness of three fat measurement methods for parotid glands in healthy subjects, with or without metallic dental implants. The institutional review board approved this study, with informed consent obtained from 114 volunteers undergoing magnetic resonance (MR) imaging at 1.5 T. Fat-saturated (FS) and non-fat-saturated (NFS) fast spin-echo T1-weighted imaging (T1 method), FS and NFS T2-weighted periodically rotated overlapping parallel lines with enhanced reconstruction fast spin-echo imaging (T2 method), and gradient-echo imaging with fat-water separation using iterative decomposition with echo asymmetry and least squares (IDEAL) method were used to derive parotid fat contents. Two raters examined the homogeneity of fat saturation to determine whether parotid fat quantification was successful, with the success rate in the 114 subjects recorded for each protocol. In subjects whose fat quantification was successful with all three imaging methods, linear regression was used to analyze the correlation between any pair of the three parotid fat content measurement methods. Success rates in parotid fat measurements by using T1, T2, and IDEAL methods were 87.7% (100 of 114), 87.7% (100 of 114), and 100% (114 of 114), respectively. The means of measured parotid fat contents revealed significant differences (P measurement methods. The parotid fat contents measured with the three methods were significantly correlated with each other between any pair of combinations. The IDEAL method provided a high success rate for parotid fat measurements, even in subjects with metallic dental implants.

  15. 77 FR 30280 - Final National Recommended Ambient Water Quality Criteria for Carbaryl-2012

    Science.gov (United States)

    2012-05-22

    ... quality criteria and State or Tribal water quality standards? Water quality standards consist of three...; June 1998); and EPA Review and Approval of State and Tribal Water Quality Standards (65 FR 24641; April... AGENCY Final National Recommended Ambient Water Quality Criteria for Carbaryl--2012 AGENCY: Environmental...

  16. Characterization, non-isothermal decomposition kinetics and photocatalytic water splitting of green chemically synthesized polyoxoanions of molybdenum containing phosphorus as hetero atom

    Energy Technology Data Exchange (ETDEWEB)

    D’Cruz, Bessy [Department of Chemistry, Mar Ivanios College, Thiruvananthapuram 695015 (India); Samuel, Jadu, E-mail: jadu_samuel@yahoo.co.in [Department of Chemistry, Mar Ivanios College, Thiruvananthapuram 695015 (India); George, Leena [Catalysis and Inorganic Chemistry Division, National Chemical Laboratory, Pune 411008 (India)

    2014-11-20

    Highlights: • CPM nanorods were synthesized by applying the principles of green chemistry. • The isoconversional method was used to analyze the effective activation energy. • The appropriate reaction models of the two decomposition stages were determined. • Photocatalytic water splitting was investigated in the presence of platinum co-catalyst. - Abstract: In here, the green synthesis and thermal characterization of a novel polyoxoanions of molybdenum containing phosphorus as hetero atom are reported. The composition and morphology of the nanorods were established by fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), thermogravimetric analysis (TGA) and inductively coupled plasma atomic emission spectroscopic (ICP-AES) techniques. Thermal properties of the nanoparticles were investigated by non-isothermal analysis under nitrogen atmosphere. The values activation energy of each stage of thermal decomposition for all heating rates was calculated by Flynn–Wall–Ozawa (FWO) and Kissinger–Akahira–Sunnose (KAS) methods. Invariant kinetic parameter (IKP) method and master plot method were also used to evaluate the kinetic parameters and mechanism for the thermal decomposition of cetylpyridinium phosphomolybdate (CPM). Photocatalytic water oxidation mechanism using CPM catalyst in the presence of platinum (Pt) co-catalyst enhances the H{sub 2} evolution and was found to be 1.514 mmol/g/h.

  17. Water quality mitigation banking : final report, December 2009.

    Science.gov (United States)

    2009-12-01

    Current practice in New Jersey for mitigating stormwater impacts caused by transportation infrastructure : projects is established by NJDEP Stormwater Regulations (N.J.A.C. 7:8). These rules outline specific : processes to offset impacts to water qua...

  18. The role of Fe(III) on phosphate released during the photo-decomposition of organic phosphorus in deionized and natural waters.

    Science.gov (United States)

    Jiang, Yongcan; Kang, Naixin; Zhou, Yiyong; Liu, Guanglong; Zhu, Duanwei

    2016-12-01

    The photo-decomposition of organic phosphorus is an important route for the phosphorus cycle by which phosphate is regenerated in the aquatic environment. In this study, the role of Fe(3+) as a natural photosensitizer toward the decomposition of organic phosphorus to release phosphate was examined in deionized and natural waters under UV and sunlight irradiation using glyphosate as the organic phosphorus model. The results showed that the concentration of glyphosate decreased with irradiation time in the Fe(3+)/UV and Fe(3+)/sunlight systems and TOC gradually decreased, which confirmed that glyphosate was degraded by Fe(3+). The amount of phosphate released from the photo-decomposition of glyphosate was higher in the presence of Fe(3+) than that of the control experiment under UV and sunlight irradiation conditions, and the generation rate of phosphate also increased with increasing Fe(3+)concentrations. The formation of hydroxyl radicals (·OH) in the Fe(3+)/UV and Fe(3+)/sunlight systems was identified according to the photoluminescence spectra (PL) using coumarin as the trapping molecule, and the steady-state concentrations of ·OH for the Fe(3+)/UV and Fe(3+)/sunlight systems were 1.06 × 10(-14) M and 0.09 × 10(-14) M, respectively. When natural water was spiked with glyphosate and Fe(3+), the phosphate that was released in the Fe(3+) was higher than that of the control, and the phosphate that was released was inhibited when isopropanol was added to the reaction. All of these results demonstrate that the photochemical activity of Fe(3+) has significantly impact in the release of phosphate from the photo-decomposition of organic phosphorus. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Water and land availability for energy farming. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Schooley, F.A.; Mara, S.J.; Mendel, D.A.; Meagher, P.C.; So, E.C.

    1979-10-01

    The physical and economic availability of land and water resources for energy farming were determined. Ten water subbasins possessing favorable land and water availabilities were ranked according to their overall potential for biomass production. The study results clearly identify the Southeast as a favorable area for biomass farming. The Northwest and North-Central United States should also be considered on the basis of their highly favorable environmental characteristics. Both high and low estimates of water availability for 1985 and 2000 in each of 99 subbasins were prepared. Subbasins in which surface water consumption was more than 50% of surface water supply were eliminated from the land availability analysis, leaving 71 subbasins to be examined. The amount of acreage potentially available for biomass production in these subbasins was determined through a comparison of estimated average annual net returns developed for conventional agriculture and forestry with net returns for several biomass production options. In addition to a computerized method of ranking subbasins according to their overall potential for biomass production, a methodology for evaluating future energy farm locations was developed. This methodology included a general area selection procedure as well as specific site analysis recommendations. Thirty-five general factors and a five-step site-specific analysis procedure are described.

  20. Composition decomposition

    DEFF Research Database (Denmark)

    Dyson, Mark

    2003-01-01

    . Not only have design tools changed character, but also the processes associated with them. Today, the composition of problems and their decomposition into parcels of information, calls for a new paradigm. This paradigm builds on the networking of agents and specialisations, and the paths of communication...

  1. Microprocessor control of a ground water heat pump. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1980-01-01

    This project was a demonstration of the energy savings available to a small well-insulated facility when a properly designed heat pump is operated against a source of constant temperature ground water or pond water. To date, we have assembled the electronic logging devices required to prove the resultant savings. Data to date, (15 November, 1980) is sparse as we are just entering a full heating season. It is expected that a complete data log will be submitted next spring. Initial energy savings computations follow - the system efficiency is impressive. A typical winter day savings is about $24.00 or $720.00 monthly. The system utilizes the 55/sup 0/F ground water directly for summer cooling. The summer savings are estimated to be about $18.00/day or $540.00 monthly. Circuits and diagrams of the microprocessor control system and data logger are presented. Some sample data are included. (WHK)

  2. Supercritical water oxidation data acquisition testing. Final report, Volume I

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-11-01

    This report discusses the phase one testing of a data acquisition system for a supercritical water waste oxidation system. The system is designed to destroy a wide range of organic materials in mixed wastes. The design and testing of the MODAR Oxidizer is discussed. An analysis of the optimized runs is included.

  3. 78 FR 52192 - Final Aquatic Life Ambient Water Quality Criteria For Ammonia-Freshwater 2013

    Science.gov (United States)

    2013-08-22

    ... is the relationship between the ammonia criteria recommendations and state or tribal water quality...); and EPA Review and Approval of State and Tribal Water Quality Standards (65FR24641). You can find... AGENCY Final Aquatic Life Ambient Water Quality Criteria For Ammonia-- Freshwater 2013 AGENCY...

  4. Influence of drainage status on soil and water chemistry, litter decomposition and soil respiration in central Amazonian forests on sandy soils

    Directory of Open Access Journals (Sweden)

    Antônio Ocimar Manzi

    2011-04-01

    Full Text Available Central Amazonian rainforest landscape supports a mosaic of tall terra firme rainforest and ecotone campinarana, riparian and campina forests, reflecting topography-induced variations in soil, nutrient and drainage conditions. Spatial and temporal variations in litter decomposition, soil and groundwater chemistry and soil CO2 respiration were studied in forests on sandy soils, whereas drought sensitivity of poorly-drained valley soils was investigated in an artificial drainage experiment. Slightly changes in litter decomposition or water chemistry were observed as a consequence of artificial drainage. Riparian plots did experience higher litter decomposition rates than campina forest. In response to a permanent lowering of the groundwater level from 0.1 m to 0.3 m depth in the drainage plot, topsoil carbon and nitrogen contents decreased substantially. Soil CO2 respiration decreased from 3.7±0.6 µmol m-2 s-1 before drainage to 2.5±0.2 and 0.8±0.1 µmol m-2 s-1 eight and 11 months after drainage, respectively. Soil respiration in the control plot remained constant at 3.7±0.6 µmol m-2 s-1. The above suggests that more frequent droughts may affect topsoil carbon and nitrogen content and soil respiration rates in the riparian ecosystem, and may induce a transition to less diverse campinarana or short-statured campina forest that covers areas with strongly-leached sandy soil.

  5. Dechlorination Technology Manual. Final report. [Utility cooling water discharge systems

    Energy Technology Data Exchange (ETDEWEB)

    Aschoff, A.F.; Chiesa, R.J.; Jacobs, M.H.; Lee, Y.H.; Mehta, S.C.; Meko, A.C.; Musil, R.R.; Sopocy, D.M.; Wilson, J.A.

    1984-11-01

    On November 19, 1982, the United States Environmental Protection Agency (EPA) promulgated regulations severely restricting chlorination practices as they relate to utility cooling water discharge systems. EPRI authorized the preparation of a manual on dechlorination technology to assist utilities in evaluating the various alternatives available to them to meet these new requirements. The Dechlorination Technology Manual emphasizes the engineering aspects involved in the selection and design of dechlorination systems. However, background information is included concerning chemistry, regulatory requirements, environmental considerations and aquatic impacts. There is also a brief discussion of the various alternatives to dechlorination. Case studies are given to acquaint the user with the use of the manual for the design of chlorination facilities given various site-related characteristics, such as salt versus fresh waters. Numerous graphs and tables are presented to facilitate the selection and design process. 207 references, 66 figures, 60 tables.

  6. Water Management of Noninsulating and Insulating Sheathings: Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Smegal, J.; Lstiburek, J.

    2012-04-01

    There is an increasing market in liquid (or fluid) applied water management barriers for residential applications that could be used in place of tapes and other self-adhering membranes if applied correctly, especially around penetrations in the enclosure. This report discusses current best practices, recommends ways in which the best practices can be improved, and looks at some current laboratory testing and testing standards.

  7. Final report on the oxidation of energetic materials in supercritical water. Final Air Force report

    Energy Technology Data Exchange (ETDEWEB)

    Buelow, S.J.; Allen, D.; Anderson, G.K. [and others

    1995-04-03

    The objective of this project was to determine the suitability of oxidation in supercritical fluids (SCO), particularly water (SCWO), for disposal of propellants, explosives, and pyrotechnics (PEPs). The SCO studies of PEPs addressed the following issues: The efficiency of destruction of the substrate. The products of destruction contained in the effluents. Whether the process can be conducted safely on a large scale. Whether energy recovery from the process is economically practicable. The information essential for process development and equipment design was also investigated, including issues such as practical throughput of explosives through a SCWO reactor, reactor materials and corrosion, and models for process design and optimization.

  8. Multi-Applications Small Light Water Reactor - NERI Final Report

    Energy Technology Data Exchange (ETDEWEB)

    S. Michale Modro; James E. Fisher; Kevan D. Weaver; Jose N. Reyes, Jr.; John T. Groome; Pierre Babka; Thomas M. Carlson

    2003-12-01

    The Multi-Application Small Light Water Reactor (MASLWR) project was conducted under the auspices of the Nuclear Energy Research Initiative (NERI) of the U.S. Department of Energy (DOE). The primary project objectives were to develop the conceptual design for a safe and economic small, natural circulation light water reactor, to address the economic and safety attributes of the concept, and to demonstrate the technical feasibility by testing in an integral test facility. This report presents the results of the project. After an initial exploratory and evolutionary process, as documented in the October 2000 report, the project focused on developing a modular reactor design that consists of a self-contained assembly with a reactor vessel, steam generators, and containment. These modular units would be manufactured at a single centralized facility, transported by rail, road, and/or ship, and installed as a series of self-contained units. This approach also allows for staged construction of an NPP and ''pull and replace'' refueling and maintenance during each five-year refueling cycle.

  9. Green River Formation water flood demonstration project. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Pennington, B.I.; Dyer, J.E.; Lomax, J.D. [Inland Resources, Inc. (United States)]|[Lomax Exploration Co., Salt Lake City, UT (United States); Deo, M.D. [Utah Univ., Salt Lake City, UT (United States). Dept. of Chemical and Fuels Engineering

    1996-11-01

    The objectives of the project were to understand the oil production mechanisms in the Monument Butte unit via reservoir characterization and reservoir simulations and to transfer the water flooding technology to similar units in the vicinity, particularly the Travis and the Boundary units. The reservoir characterization activity in the project basically consisted of extraction and analysis of a full diameter core, Formation Micro Imaging (FMI) logs from several wells and Magnetic Resonance Imaging (MRI) logs from two wells. In addition, several side-wall cores were drilled and analyzed, oil samples from a number of wells were physically and chemically characterized (using high-temperature gas chromatography), oil-water relative permeabilities were measured and pour points and cloud points of a few oil samples were determined. The reservoir modeling activity comprised of reservoir simulation of all the three units at different scales and near well-bore modeling of the wax precipitation effects. The reservoir simulation activities established the extent of pressurization of the sections of the reservoirs in the immediate vicinity of the Monument Butte unit. This resulted in a major expansion of the unit and the production from this expanded unit increased from about 300 barrels per day to about 2,000 barrels per day.

  10. Richard B. Russell Dam and Reservoir: Potential Water Quality Effects of Initial Filling and Decomposition of Vegetation.

    Science.gov (United States)

    1984-01-01

    Vegetation is very labile while soil serves as a steady slow-release type of material, and the BOD of the vegetation should be comparable to the BOD of...readily available to microorganisms, COD includes BOD plus materials less readily available to microorganisms plus materials ... . that are oxidizable ...by 22 approximately 3,000 mg/m after 50 days of flooding, primarily due to 0 " 0 decomposition of labile vegetation. 82. In addition to the

  11. Revisions to the Clean Water Act Regulatory Definition of Discharge of Dredged Material; Final Rule

    Science.gov (United States)

    The U.S. Army Corps of Engineers (Corps) and the Environmental Protection Agency (EPA) promulgated a final rule Amending a Clean Water Act (CWA) section 404 regulation that defines the term discharge of dredged material.

  12. Final Critical Habitat for the Huachuca water umbel (Lilaeopsis schaffneriana var. recurva)

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — To provide the user with a general idea of areas where final critical habitat for Huachuca water umbel (Lilaeopsis schaffneriana var. recurva) occur based on the...

  13. EXPOSURES AND INTERNAL DOSES OF TRIHALOMETHANES IN HUMANS: MULTI-ROUTE CONTRIBUTIONS FROM DRINKING WATER (FINAL)

    Science.gov (United States)

    The National Center for Environmental Assessment (NCEA) has released a final report that presents and applies a method to estimate distributions of internal concentrations of trihalomethanes (THMs) in humans resulting from a residential drinking water exposure. The report presen...

  14. Climate Change Vulnerability Assessments: Four Case Studies of Water Utility Practices (2011 Final)

    Science.gov (United States)

    EPA has released the final report titled, Climate Change Vulnerability Assessments: Four Case Studies of Water Utility Practices. This report was prepared by the National Center for Environmental Assessment's Global Climate Research Staff in the Office of Research and D...

  15. Effect of water in salt repositories. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Baes, C.F. Jr.; Gilpatrick, L.O.; Kitts, F.G.; Bronstein, H.R.; Shor, A.J.

    1983-09-01

    Additional results confirm that during most of the consolidation of polycrystalline salt in brine, the previously proposed rate expression applies. The final consolidation, however, proceeds at a lower rate than predicted. The presence of clay hastens the consolidation process but does not greatly affect the previously observed relationship between permeability and void fraction. Studies of the migration of brine within polycrystalline salt specimens under stress indicate that the principal effect is the exclusion of brine as a result of consolidation, a process that evidently can proceed to completion. No clear effect of a temperature gradient could be identified. A previously reported linear increase with time of the reciprocal permeability of salt-crystal interfaces to brine was confirmed, though the rate of increase appears more nearly proportional to the product of sigma ..delta..P rather than sigma ..delta..P/sup 2/ (sigma is the uniaxial stress normal to the interface and ..delta..P is the hydraulic pressure drop). The new results suggest that a limiting permeability may be reached. A model for the permeability of salt-crystal interfaces to brine is developed that is reasonably consistent with the present results and may be used to predict the permeability of bedded salt. More measurements are needed, however, to choose between two limiting forms of the model.

  16. Sensitized photoelectrolysis of water with sunlight. Final report, June 1, 1977-December 31, 1978

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, A.K.; Maruska, H.P.

    1978-12-01

    A study was made of solar driven water photoelectrolysis cells employing semiconductor electrodes. An extensive review of the literature was undertaken, and the three major problem areas for these devices were identified: corrosion, poor sunlight absorption, and external bias requirement. Although many semiconductors had been tested, none had proven free of all three defects. Two approaches were thus followed for the experimental studies: impurity sensitization of wide band gap stable oxides, and heterostructure formation between unstable sunlight absorbers and corrosion resistant oxides. Water decomposition was achieved with visible light excitation of Cr-doped TiO/sub 2/. Transport properties were studies for TiO/sub 2/ and SrTiO/sub 3/ electrodes doped with V, Cr, Mn, Fe, Co, and Ni. The correlation between bias requirement and electron affinity of oxides was identified. Performance of heterostructure electrodes was shown to be limited either by pin hole problems or by potential barriers between the valence bands.

  17. Final report : testing and evaluation for solar hot water reliability.

    Energy Technology Data Exchange (ETDEWEB)

    Caudell, Thomas P. (University of New Mexico, Albuquerque, NM); He, Hongbo (University of New Mexico, Albuquerque, NM); Menicucci, David F. (Building Specialists, Inc., Albuquerque, NM); Mammoli, Andrea A. (University of New Mexico, Albuquerque, NM); Burch, Jay (National Renewable Energy Laboratory, Golden CO)

    2011-07-01

    Solar hot water (SHW) systems are being installed by the thousands. Tax credits and utility rebate programs are spurring this burgeoning market. However, the reliability of these systems is virtually unknown. Recent work by Sandia National Laboratories (SNL) has shown that few data exist to quantify the mean time to failure of these systems. However, there is keen interest in developing new techniques to measure SHW reliability, particularly among utilities that use ratepayer money to pay the rebates. This document reports on an effort to develop and test new, simplified techniques to directly measure the state of health of fielded SHW systems. One approach was developed by the National Renewable Energy Laboratory (NREL) and is based on the idea that the performance of the solar storage tank can reliably indicate the operational status of the SHW systems. Another approach, developed by the University of New Mexico (UNM), uses adaptive resonance theory, a type of neural network, to detect and predict failures. This method uses the same sensors that are normally used to control the SHW system. The NREL method uses two additional temperature sensors on the solar tank. The theories, development, application, and testing of both methods are described in the report. Testing was performed on the SHW Reliability Testbed at UNM, a highly instrumented SHW system developed jointly by SNL and UNM. The two methods were tested against a number of simulated failures. The results show that both methods show promise for inclusion in conventional SHW controllers, giving them advanced capability in detecting and predicting component failures.

  18. Multi-Application Small Light Water Reactor Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Modro, S.M.; Fisher, J.E.; Weaver, K.D.; Reyes, J.N.; Groome, J.T.; Babka, P.; Carlson, T.M.

    2003-12-01

    The Multi-Application Small Light Water Reactor (MASLWR) project was conducted under the auspices of the Nuclear Energy Research Initiative (NERI) of the U.S. Department of Energy (DOE). The primary project objectives were to develop the conceptual design for a safe and economic small, natural circulation light water reactor, to address the economic and safety attributes of the concept, and to demonstrate the technical feasibility by testing in an integral test facility. This report presents the results of the project. After an initial exploratory and evolutionary process, as documented in the October 2000 report, the project focused on developing a modular reactor design that consists of a self-contained assembly with a reactor vessel, steam generators, and containment. These modular units would be manufactured at a single centralized facility, transported by rail, road, and/or ship, and installed as a series of self-contained units. This approach also allows for staged construction of an NPP and ''pull and replace'' refueling and maintenance during each five-year refueling cycle. Development of the baseline design concept has been sufficiently completed to determine that it complies with the safety requirements and criteria, and satisfies the major goals already noted. The more significant features of the baseline single-unit design concept include: (1) Thermal Power--150 MWt; (2) Net Electrical Output--35 MWe; (3) Steam Generator Type--Vertical, helical tubes; (4) Fuel UO{sub 2}, 8% enriched; (5) Refueling Intervals--5 years; (6) Life-Cycle--60 years. The economic performance was assessed by designing a power plant with an electric generation capacity in the range of current and advanced evolutionary systems. This approach allows for direct comparison of economic performance and forms a basis for further evaluation, economic and technical, of the proposed design and for the design evolution towards a more cost competitive concept

  19. Interacting CO2 and O3 effects on litter production, chemistry and decomposition in an aggrading northern forest ecosystem: final report

    Energy Technology Data Exchange (ETDEWEB)

    Rihard L. Lindroth

    2004-08-03

    The overall purpose of this research was to evaluate the independent and interactive effects of elevated levels of CO{sub 2} and O{sub 3} on tree leaf litter quality and decomposition. This research was conducted at the Aspen FACE (Free Air CO{sub 2} Enrichment) facility near Rhinelander, Wisconsin. This research comprised one facet of a larger project assessing how CO{sub 2} and O{sub 3} pollutants will alter carbon sequestration and nutrient cycling in north temperate forest ecosystems.

  20. Carbon dynamics in peatlands under changing hydrology. Effects of water level drawdown on litter quality, microbial enzyme activities and litter decomposition rates

    Energy Technology Data Exchange (ETDEWEB)

    Strakova, P.

    2010-07-01

    Pristine peatlands are carbon (C) accumulating wetland ecosystems sustained by a high water level (WL) and consequent anoxia that slows down decomposition. Persistent WL drawdown as a response to climate and/or land-use change directly affects decomposition: increased oxygenation stimulates decomposition of the 'old C' (peat) sequestered under prior anoxic conditions. Responses of the 'new C' (plant litter) in terms of quality, production and decomposability, and the consequences for the whole C cycle of peatlands are not fully understood. WL drawdown induces changes in plant community resulting in shift in dominance from Sphagnum and graminoids to shrubs and trees. There is increasing evidence that the indirect effects of WL drawdown via the changes in plant communities will have more impact on the ecosystem C cycling than any direct effects. The aim of this study is to disentangle the direct and indirect effects of WL drawdown on the 'new C' by measuring the relative importance of (1) environmental parameters (WL depth, temperature, soil chemistry) and (2) plant community composition on litter production, microbial activity, litter decomposition rates and, consequently, on the C accumulation. This information is crucial for modelling C cycle under changing climate and/or land-use. The effects of WL drawdown were tested in a large-scale experiment with manipulated WL at two time scales and three nutrient regimes. Furthermore, the effect of climate on litter decomposability was tested along a north-south gradient. Additionally, a novel method for estimating litter chemical quality and decomposability was explored by combining Near infrared spectroscopy with multivariate modelling. WL drawdown had direct effects on litter quality, microbial community composition and activity and litter decomposition rates. However, the direct effects of WL drawdown were overruled by the indirect effects via changes in litter type composition and

  1. Production of Hydrogen by Superadiabatic Decomposition of Hydrogen Sulfide - Final Technical Report for the Period June 1, 1999 - September 30, 2000

    Energy Technology Data Exchange (ETDEWEB)

    Rachid B. Slimane; Francis S. Lau; Javad Abbasian

    2000-10-01

    The objective of this program is to develop an economical process for hydrogen production, with no additional carbon dioxide emission, through the thermal decomposition of hydrogen sulfide (H{sub 2}S) in H{sub 2}S-rich waste streams to high-purity hydrogen and elemental sulfur. The novel feature of the process being developed is the superadiabatic combustion (SAC) of part of the H{sub 2}S in the waste stream to provide the thermal energy required for the decomposition reaction such that no additional energy is required. The program is divided into two phases. In Phase 1, detailed thermochemical and kinetic modeling of the SAC reactor with H{sub 2}S-rich fuel gas and air/enriched air feeds is undertaken to evaluate the effects of operating conditions on exit gas products and conversion efficiency, and to identify key process parameters. Preliminary modeling results are used as a basis to conduct a thorough evaluation of SAC process design options, including reactor configuration, operating conditions, and productivity-product separation schemes, with respect to potential product yields, thermal efficiency, capital and operating costs, and reliability, ultimately leading to the preparation of a design package and cost estimate for a bench-scale reactor testing system to be assembled and tested in Phase 2 of the program. A detailed parametric testing plan was also developed for process design optimization and model verification in Phase 2. During Phase 2 of this program, IGT, UIC, and industry advisors UOP and BP Amoco will validate the SAC concept through construction of the bench-scale unit and parametric testing. The computer model developed in Phase 1 will be updated with the experimental data and used in future scale-up efforts. The process design will be refined and the cost estimate updated. Market survey and assessment will continue so that a commercial demonstration project can be identified.

  2. Water level determination for transportation projects : mean high water manual, final report, November 2009.

    Science.gov (United States)

    2009-11-01

    To ensure proficient network management and safe usage of navigable waterways especially in waters that are : subject to tides, it is essential that the height of the water at various tidal phases be known. This knowledge is also : essential for prop...

  3. Organic Contaminants and Treatment Chemicals in Steam-Water Cycles : Thermal stability, decomposition products and flow-accelerated corrosion

    NARCIS (Netherlands)

    Moed, D.H.

    2015-01-01

    Boiler feedwater and steam have to be of high purity, because of the susceptibility of the steam-water cycle to corrosion. Organic contaminants break down in boilers by hydrothermolysis, leading to the formation of organic acid anions, which are suspected to cause corrosion of steam-water cycle

  4. Nanomaterial Case Studies: Nanoscale Titanium Dioxide in Water Treatment and in Topical Sunscreen (Final)

    Science.gov (United States)

    EPA announced the availability of the final report, Nanomaterial Case Studies: Nanoscale Titanium Dioxide in Water Treatment and in Topical Sunscreen. This report is a starting point to determine what is known and what needs to be known about selected nanomaterials as par...

  5. Public Interest Energy Research (PIER) Program. Final Project Report. California Energy Balance Update and Decomposition Analysis for the Industry and Building Sectors

    Energy Technology Data Exchange (ETDEWEB)

    de la Rue du Can, Stephane [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Hasanbeigi, Ali [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Sathaye, Jayant [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2010-12-01

    This report on the California Energy Balance version 2 (CALEB v2) database documents the latest update and improvements to CALEB version 1 (CALEB v1) and provides a complete picture of how energy is supplied and consumed in the State of California. The CALEB research team at Lawrence Berkeley National Laboratory (LBNL) performed the research and analysis described in this report. CALEB manages highly disaggregated data on energy supply, transformation, and end-use consumption for about 40 different energy commodities, from 1990 to 2008. This report describes in detail California's energy use from supply through end-use consumption as well as the data sources used. The report also analyzes trends in energy demand for the "Manufacturing" and "Building" sectors. Decomposition analysis of energy consumption combined with measures of the activity driving that consumption quantifies the effects of factors that shape energy consumption trends. The study finds that a decrease in energy intensity has had a very significant impact on reducing energy demand over the past 20 years. The largest impact can be observed in the industry sector where energy demand would have had increased by 358 trillion British thermal units (TBtu) if subsectoral energy intensities had remained at 1997 levels. Instead, energy demand actually decreased by 70 TBtu. In the "Building" sector, combined results from the "Service" and "Residential" subsectors suggest that energy demand would have increased by 264 TBtu (121 TBtu in the "Services" sector and 143 TBtu in the "Residential" sector) during the same period, 1997 to 2008. However, energy demand increased at a lesser rate, by only 162 TBtu (92 TBtu in the "Services" sector and 70 TBtu in the "Residential" sector). These energy intensity reductions can be indicative of energyefficiency improvements during the past 10 years. The research presented in this report provides a basis for developing an energy-efficiency performance index to measure

  6. Oxidation of substituted phenols in supercritical water. Final technical report, September 1992--August 1996

    Energy Technology Data Exchange (ETDEWEB)

    Savage, P.E.

    1996-11-01

    Wastewaters from coal-conversion processes contain phenolic compounds in appreciable concentrations. These compounds need to be removed so that the water can be discharged or reused. Oxidation in supercritical water is one potential means of treating coal-conversion wastewaters, and this project examined the reactions of model pollutants in supercritical water. The decomposition of cresols, hydroxybenzaidehydes, nitrophenols, and benzenediols was studied in dilute aqueous solutions in both the presence and absence of oxygen at 460{degrees}C and 250 atm. Experimental data from the oxidation of these compounds were fit to global, power-law rate expressions. The resulting rate laws showed that the reactivity of the different isomers at 460{degrees}C was in the order of ortho > para > meta for cresols and hydroxybenzaldehydes. Moreover, the CHO-substituted phenol was more reactive than the analogous CH{sub 3}-substituted phenol, and all of these substituted phenols were more reactive than phenol itself. Identifying and quantifying the reaction products of incomplete oxidation allowed us to assemble a general reaction network for the oxidation of cresols in supercritical water. This network comprises parallel primary paths to phenol, to a hydroxybenzaldehyde, and to ring-opening products. The hydroxybenzaldehyde reacts through parallel paths to phenol and to ring-opening products. Phenol also reacts via two parallel paths, but these lead to phenol dimers; and ring-opening products. The dimers are eventually converted to ring-opening products, and the ring-opening products are ultimately converted to CO{sub 2} The relative rates of the different paths in the reaction network are strong functions of the location of the substituent on the phenolic ring.

  7. Halogens in pore water of peat bogs – the role of peat decomposition and dissolved organic matter

    Directory of Open Access Journals (Sweden)

    H. Biester

    2006-01-01

    Full Text Available Halogens are strongly enriched in peat and peatlands and such they are one of their largest active terrestrial reservoir. The enrichment of halogens in peat is mainly attributed to the formation of organohalogens and climatically controlled humification processes. However, little is known about release of halogens from the peat substrate and the distribution of halogens in the peat pore water. In this study we have investigated the distribution of chlorine, bromine and iodine in pore water of three pristine peat bogs located in the Magellanic Moorlands, southern Chile. Peat pore waters were collected using a sipping technique, which allows in situ sampling down to a depth greater than 6m. Halogens and halogen species in pore water were determined by ion-chromatography (IC (chlorine and IC-ICP-MS (bromine and iodine. Results show that halogen concentrations in pore water are 15–30 times higher than in rainwater. Mean concentrations of chlorine, bromine and iodine in pore water were 7–15 mg l−1, 56–123 μg l−1, and 10–20 μg l−1, which correspond to mean proportions of 10–15%, 1–2.3% and 0.5–2.2% of total concentrations in peat, respectively. Organobromine and organoiodine were the predominant species in pore waters, whereas chlorine in pore water was mostly chloride. Advection and diffusion of halogens were found to be generally low and halogen concentrations appear to reflect release from the peat substrate. Release of bromine and iodine from peat depend on the degree of peat degradation, whereas this relationship is weak for chlorine. Relatively higher release of bromine and iodine was observed in less degraded peat sections, where the release of dissolved organic carbon (DOC was also the most intensive. It has been concluded that the release of halogenated dissolved organic matter (DOM is the predominant mechanism of iodine and bromine release from peat.

  8. Water Conservation Study for Manastash Creek Water Users, Kittias County, Washington, Final Report 2002.

    Energy Technology Data Exchange (ETDEWEB)

    Montgomery Watson Harza (Firm)

    2002-12-31

    Manastash Creek is tributary of the Yakima River and is located southwest and across the Yakima River from the City of Ellensburg. The creek drains mountainous terrain that ranges in elevation from 2,000 feet to over 5,500 feet and is primarily snowmelt fed, with largest flows occurring in spring and early summer. The creek flows through a narrow canyon until reaching a large, open plain that slopes gently toward the Yakima River and enters the main stem of the Yakima River at river mile 154.5. This area, formed by the alluvial fan of the Creek as it leaves the canyon, is the subject of this study. The area is presently dominated by irrigated agriculture, but development pressures are evident as Ellensburg grows and develops as an urban center. Since the mid to late nineteenth century when irrigated agriculture was established in a significant manner in the Yakima River Basin, Manastash Creek has been used to supply irrigation water for farming in the area. Adjudicated water rights dating back to 1871 for 4,465 acres adjacent to Manastash Creek allow appropriation of up to 26,273 acre-feet of creek water for agricultural irrigation and stock water. The diversion of water from Manastash Creek for irrigation has created two main problems for fisheries. They are low flows or dewatered reaches of Manastash Creek and fish passage barriers at the irrigation diversion dams. The primary goal of this study, as expressed by Yakama Nation and BPA, is to reestablish safe access in tributaries of the Yakima River by removing physical barriers and unscreened diversions and by adding instream flow where needed for fisheries. The goal expressed by irrigators who would be affected by these projects is to support sustainable and profitable agricultural use of land that currently uses Manastash Creek water for irrigation. This study provides preliminary costs and recommendations for a range of alternative projects that will partially or fully meet the goal of establishing safe access

  9. Macrophyte decomposition in a surface-flow ammonia-dominated constructed wetland: Rates associated with environmental and biotic variables

    Science.gov (United States)

    Thullen, J.S.; Nelson, S. M.; Cade, B.S.; Sartoris, J.J.

    2008-01-01

    Decomposition of senesced culm material of two bulrush species was studied in a surface-flow ammonia-dominated treatment wetland in southern California. Decomposition of the submerged culm material during summer months was relatively rapid (k = 0.037 day-1), but slowed under extended submergence (up to 245 days) and during fall and spring sampling periods (k = 0.009-0.014 day-1). Stepwise regression of seasonal data indicated that final water temperature and abundance of the culm-mining midge, Glyptotendipes, were significantly associated with culm decomposition. Glyptotendipes abundance, in turn, was correlated with water quality parameters such as conductivity and dissolved oxygen and ammonia concentrations. No differences were detected in decomposition rates between the bulrush species, Schoenoplectus californicus and Schoenoplectus acutus.

  10. Supercritical water oxidation of polyvinyl alcohol and desizing wastewater: influence of NaOH on the organic decomposition.

    Science.gov (United States)

    Zhang, Jie; Wang, Shuzhong; Guo, Yang; Xu, Donghai; Gong, Yanmeng; Tang, Xingying

    2013-08-01

    Polyvinyl alcohol is a refractory compound widely used in industry. Here we report supercritical water oxidation of polyvinyl alcohol solution and desizing wastewater with and without sodium hydroxide addition. However, it is difficult to implement complete degradation of organics even though polyvinyl alcohol can readily crack under supercritical water treatment. Sodium hydroxide had a significant catalytic effect during the supercritical water oxidation of polyvinyl alcohol. It appears that the OH- ion participated in the C-C bond cleavage of polyvinyl alcohol molecules, the CO2-capture reaction and the neutralization of intermediate organic acids, promoting the overall reactions moving in the forward direction. Acetaldehyde was a typical intermediate product during reaction. For supercritical water oxidation of desizing wastewater, a high destruction rate (98.25%) based on total organic carbon was achieved. In addition, cases where initial wastewater was alkaline were favorable for supercritical water oxidation treatment, but salt precipitation and blockage issues arising during the process need to be taken into account seriously.

  11. The Characterization and Hydrogen Production from Water Decomposition with Methanol in a Semi-Batch Type Reactor Using In, P-TiO2s

    Directory of Open Access Journals (Sweden)

    Joonwoo Kim

    2011-01-01

    Full Text Available The photocatalytic production of hydrogen from water using solar energy is potentially a clean and renewable source for hydrogen fuel. This study examines the production of hydrogen over In, P-TiO2s photocatalysts. 1 mol% In-TiO2 and P-TiO2 were produced using the solvothermal method and were treated at 500 and 800∘C to obtain anatase and rutile structure, respectively. The photocatalysts were characterized by X-ray diffraction, photoluminescence spectra, X-ray spectroscopy, UV-visible spectroscopy, and scanning electron microscopy. The production of H2 from methanol photodecomposition was greater over the rutile structure than over the anatase structure of TiO2. Moreover, the amount of hydrogen was enhanced over In-TiO2 and P-TiO2 compared to that over pure TiO2; the production increased by about 30%. The structural effect and the addition of In, P have significant influence on the H2 production from methanol/water decomposition.

  12. Solar Photocatalytic Hydrogen Production from Water Using a Dual Bed Photosystem - Phase I Final Report and Phase II Proposal

    Energy Technology Data Exchange (ETDEWEB)

    Clovis A. Linkous; Darlene K. Slattery

    2000-09-11

    In this work we are attempting to perform the highly efficient storage of solar energy in the form of H{sub 2} via photocatalytic decomposition of water. While it has been demonstrated that H{sub 2} and O{sub 2} can be evolved from a single vessel containing a single suspended photocatalyst (Sayama 1994; 1997), we are attempting to perform net water-splitting by using two photocatalysts immobilized in separate containers, or beds. A schematic showing how the device would work is shown.

  13. The effect of nutrient enrichment of either the bank or the surface water on shoreline vegetation and decomposition

    NARCIS (Netherlands)

    Sarneel, J.M.; Geurts, J.J.M.; Beltman, B.; Lamers, L.P.M.; Nijzink, M.M.; Verhoeven, J.T.A.

    2010-01-01

    Riparian ecosystems can harbor great diversity and provide important ecological functions such as improving water quality. The impact of eutrophication on riparian ecosystems, however, is unclear. We conducted a mesocosm experiment to study the effects of nutrient loading on riparian ecosystems. We

  14. Exploring amino acid side chain decomposition using enzymatic digestion and HPLC-MS: combined lysine transformations in chlorinated waters.

    Science.gov (United States)

    Walse, Spencer S; Plewa, Michael J; Mitch, William A

    2009-09-15

    Characterizing the transformations of polypeptides is important across a broad range of scientific disciplines. As polypeptides are an important constituent of dissolved organic matter within seawater and freshwater, it is important to understand their (bio)geochemical fate. Oxidants, formed in blood as part of the immunological response or applied to waters for disinfection, react with polypeptides to form transformation products that may exert toxicity. An analytical method was developed to characterize and quantify modifications to the side chains of amino acid residues within polypeptides. Enzymatic digestion of polypeptides using Pronase E, a protease cocktail, proved preferable to common strong acid digestion techniques, because the circumneutral pH conditions employed during enzymatic digestion prevent artifacts arising from extreme pH conditions. Lysine nitrile, one of the predicted transformation products of lysine residues within polypeptides, was destroyed during strong acid digestion but not enzymatic digestion. Due to the potential variability in enzymatic digestion efficiencies, the liberation of a mass-labeled leucine monomer from an octapeptide spiked standard was employed as a measure of complete digestion efficiency for each sample and enabled quantification of modified amino acid residues within polypeptides. A multivariate statistical analysis was conducted to evaluate the influence on digestion efficiency of Pronase E loadings, salinity, natural organic matter concentration, and pH across the range of conditions relevant to blood, seawater, and concentrated freshwaters and disinfected drinking/recreational waters. At Pronase E loadings of 10 mg, the analysis indicated that digestion efficiencies ranged from 25 to 55% over the range of conditions expected for typical drinking waters concentrated from 1 L to 10 mL. The analytical method was applied to triplicate 1 L samples of a chlorinated tap water and a chlorinated indoor pool water. For the

  15. Solar heating and hot water system installed at St. Louis, Missouri. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1980-04-01

    Information is provided on the solar heating and hot water system installed at the William Tao and Associates, Inc., office building in St. Louis, Missouri. The information consists of description, photos, maintenance and construction problems, final drawing, system requirements and manufacturer's component data. The solar system was designed to provide 50% of the hot water requirements and 45% of the space heating needs for a 900 square foot office space and drafting room. The solar facility has 252 square foot of glass tube concentrator collectors and a 1000 gallon steel storage tank buried below a concrete slab floor. Freeze protection is provided by a propylene glycol/water mixture in the collector loop. The collectors are roof mounted on a variable tilt array which is adjusted seasonally and is connected to the solar thermal storage tank by a tube-in-shell heat exchanger. Incoming city water is preheated through the solar energy thermal storage tank.

  16. Quality control of lightweight aggregate concrete based on initial and final water absorption tests

    Science.gov (United States)

    Maghfouri, M.; Shafigh, P.; Ibrahim, Z. Binti; Alimohammadi, V.

    2017-06-01

    Water absorption test is used to evaluate overall performance of concrete in terms of durability. The water absorption of lightweight concrete might be considerably higher than the conventional concrete due to higher rate of pores in concrete and lightweight aggregate. Oil palm shell is a bio-solid waste in palm oil industry, which could be used as lightweight aggregate in the concrete mixture. The present study aims to measure the initial and final water absorption and compressive strength of oil palm shell lightweight concrete in order to evaluation of quality control and durability performance. Total normal coarse aggregates were substituted with coarse oil palm shell in a high strength concrete mixture. The quality of concrete was then evaluated based on the compressive strength and water absorption rates. The results showed that fully substitution of normal coarse aggregates with oil palm shell significantly reduced the compressive strength. However, this concrete with the 28-day compressive strength of 40 MPa still can be used as structural concrete. The initial and final water absorption test results also showed that this concrete is not considered as a good concrete in terms of durability. Therefore, it is recommended that both compressive strength and waster absorption tests must be performed for quality control of oil palm shell concretes.

  17. Soil water repellency and its implications for organic matter decomposition - is there a link to extreme climatic events?

    OpenAIRE

    Goebel, Marc-O.; Bachmann, Jörg; Reichstein, Markus; Janssens, Ivan A; Guggenberger, Georg

    2011-01-01

    Abstract: Earth system models associate the ongoing global warming with increasing frequency and intensity of extreme events such as droughts and heat waves. The carbon balance of soils may be more sensitive to the impact of such extremes than to homogeneously distributed changes in soil temperature (Ts) or soil water content (θs). One parameter influenced by more pronounced drying/rewetting cycles or increases in Ts is the wettability of soils. Results from laboratory and field studies showe...

  18. Multiunit water resource systems management by decomposition, optimization and emulated evolution : a case study of seven water supply reservoirs in Tunisia

    NARCIS (Netherlands)

    Milutin, D.

    1998-01-01

    Being one of the essential elements of almost any water resource system, reservoirs are indispensable in our struggle to harness, utilize and manage natural water resources. Consequently, the derivation of appropriate reservoir operating strategies draws significant attention in water

  19. Plant litter decomposition and carbon sequestration for arable soils. Final report of works. April 2005; Biodegradation des litieres et sequestration du carbone dans les ecosystemes cultives et perennes. Rapport final des travaux Avril 2005

    Energy Technology Data Exchange (ETDEWEB)

    Recous, S.; Barrois, F.; Coppens, F.; Garnier, P.; Grehan, E. [Institut National de Recherches Agronomiques (INRA), Unite d' Agronomie Laon-Reims-Mons (France); Balesdent, J. [CNRS-CEA-Univ.de la Mediterranee, UMR 6191, Lab. d' Ecologie Microbienne de la Rhizosphere, 13 - Saint Paul lez Durance (France); Dambrine, E.; Zeller, B. [Institut National de Recherches Agronomiques (INRA), Unite Biogeochimie des Ecosystemes Forestiers, 54 - Nancy (France); Loiseau, P.; Personeni, E. [Institut National de Recherches Agronomiques (INRA), Unite d' Agronomie, 63 - Clermont-Ferrand (France)

    2002-07-01

    The general objective of this project was to contribute to the evaluation of land use and management impacts on C sequestration and nitrogen dynamics in soils. The land used through the presence/absence of crops and their species, and the land management through tillage, localisation of crop residues, fertilizer applications,... are important factors that affect the dynamics of organic matters in soils, particularly the mineralization of C and N, the losses to the atmosphere and hydrosphere, the retention of carbon into the soil. This project was conducted by four research groups, three of them having expertise in nutrient cycling of three major agro-ecosystems (arable crops, grasslands, forests) and the fourth one having expertise in modelling long term effects of land use on C storage into the soils. Within this common project one major objective was to better understand the fate of plant litter entering the soil either as above litter or as root litter. The focus was put on two factors that particularly affect decomposition: the initial biochemical quality of plant litter, and the location of the decomposing litter. One innovative aspect of the project was the use of stable isotope as {sup 13}C for carbon, based on the use of enriched or depleted {sup 13}C material, the only option to assess the dynamics of 'new' C entering the soil on the short term, in order to reveal the effects of decomposition factors. Another aspect was the simultaneous study of C and N. The project consisted in experiments relevant for each agro-ecosystem, in forest, grassland and arable soils for which interactions between residue quality and nitrogen availability on the one hand, residue quality and location on the other hand, was investigated. A common experiment was set up to investigate the potential degradability of the various residue used (beech leaf rape straw, young rye, Lolium and dactylic roots) in a their original soils and in a single soil was assessed. Based on

  20. Waring decompositions of monomials

    National Research Council Canada - National Science Library

    Buczyńska, Weronika; Buczyński, Jarosław; Teitler, Zach

    2013-01-01

    .... We prove that any Waring decomposition of a monomial is obtained from a complete intersection ideal, determine the dimension of the set of Waring decompositions, and give the conditions under which...

  1. Iterative decomposition of water and fat with echo asymmetry and least-squares estimation (IDEAL magnetic resonance imaging as a biomarker for symptomatic multiple myeloma.

    Directory of Open Access Journals (Sweden)

    Miyuki Takasu

    Full Text Available To evaluate the effectiveness of iterative decomposition of water and fat with echo asymmetry and least-squares estimation (IDEAL magnetic resonance imaging (MRI to discriminate between symptomatic and asymptomatic myeloma in lumbar bone marrow without visible focal lesions.The lumbar spine was examined with 3-T MRI in 11 patients with asymptomatic myeloma and 24 patients with symptomatic myeloma. The fat-signal fraction was calculated from the ratio of the signal intensity in the fat image divided by the signal intensity of the corresponding ROI in the in-phase IDEAL image. The t test was used to compare the asymptomatic and symptomatic groups. ROC curves were constructed to determine the ability of variables to discriminate between symptomatic and asymptomatic myeloma.Univariate analysis showed that β2-microglobulin and bone marrow plasma cell percent (BMPC% were significantly higher and fat-signal fraction was significantly lower with symptomatic myeloma than with asymptomatic myeloma. Areas under the curve were 0.847 for β2;-microglobulin, 0.834 for fat-signal fraction, and 0.759 for BMPC%.The fat-signal fraction as a biomarker for multiple myeloma enables discrimination of symptomatic myeloma from asymptomatic myeloma. The fat-signal fraction offers superior sensitivity and specificity to BMPC% of biopsy specimens.

  2. Solar process water heat for the Iris Images Custom Color Photo Lab. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1980-03-01

    This is the final technical report of the solar facility locted at Iris Images Custom Photo Laboratory in Mill Valley, California. It was designed to provide 59 percent of the hot water requirements for developing photographic film and domestic hot water use. The design load is to provide 6 gallons of hot water per minute for 8 hours per working day at 100/sup 0/F. It has 640 square feet of flat plate collectors and 360 gallons of hot water storage. The auxiliary back up system is a conventional gas-fired water heater. Freeze protection in this mild climate was originally provided by closed-loop circulation of hot water from the storage tank. Later this was changed to a drain-down system due to a freeze when electrical power failed. This system has been relatively successful with little or no scheduled maintenance. The site and building description, subsystem description, as-built drawings, cost breakdown and analysis, performance analysis, lessons learned, and the operation and maintenance manual are included.

  3. Water, Rather than Temperature, Dominantly Impacts How Soil Fauna Affect Dissolved Carbon and Nitrogen Release from Fresh Litter during Early Litter Decomposition

    Directory of Open Access Journals (Sweden)

    Shu Liao

    2016-10-01

    Full Text Available Longstanding observations suggest that dissolved materials are lost from fresh litter through leaching, but the role of soil fauna in controlling this process has been poorly documented. In this study, a litterbag experiment employing litterbags with different mesh sizes (3 mm to permit soil fauna access and 0.04 mm to exclude fauna access was conducted in three habitats (arid valley, ecotone and subalpine forest with changes in climate and vegetation types to evaluate the effects of soil fauna on the concentrations of dissolved organic carbon (DOC and total dissolved nitrogen (TDN during the first year of decomposition. The results showed that the individual density and community abundance of soil fauna greatly varied among these habitats, but Prostigmata, Isotomidae and Oribatida were the dominant soil invertebrates. At the end of the experiment, the mass remaining of foliar litter ranged from 58% for shrub litter to 77% for birch litter, and the DOC and TDN concentrations decreased to 54%–85% and increased to 34%–269%, respectively, when soil fauna were not present. The effects of soil fauna on the concentrations of both DOC and TDN in foliar litter were greater in the subalpine forest (wetter but colder during the winter and in the arid valley (warmer but drier during the growing season, and this effect was positively correlated with water content. Moreover, the effects of fauna on DOC and TDN concentrations were greater for high-quality litter and were related to the C/N ratio. These results suggest that water, rather than temperature, dominates how fauna affect the release of dissolved substances from fresh litter.

  4. 75 FR 43160 - Clean Water Act Section 303(d): Final Agency Action on One Arkansas Total Maximum Daily Load (TMDL)

    Science.gov (United States)

    2010-07-23

    .../region6/water/npdes/tmdl/index.htm . FOR FURTHER INFORMATION CONTACT: Diane Smith at (214) 665-2145. EPA... Final TMDL may be found at http://www.epa.gov/region6/water/npdes/tmdl/index.htm . Dated: July 15, 2010. Claudia V. Hosch, Acting Director, Water Quality Protection Division, EPA Region 6. BILLING CODE 6560-50-P ...

  5. Influence of drainage status on soil and water chemistry, litter decomposition and soil respiration in central Amazonian forests on sandy soils

    NARCIS (Netherlands)

    Berton Zanchi, F.; Waterloo, M.J.; Dolman, A.J.; Groenendijk, M.; Kruijt, B.

    2011-01-01

    Central Amazonian rainforest landscape supports a mosaic of tall terra firme rainforest and ecotone campinarana, riparian and campina forests, reflecting topography-induced variations in soil, nutrient and drainage conditions. Spatial and temporal variations in litter decomposition, soil and

  6. WEXA: exergy analysis for increasing the efficiency of air/water heat pumps - Final report

    Energy Technology Data Exchange (ETDEWEB)

    Gasser, L.; Wellig, B.; Hilfiker, K.

    2008-04-15

    This comprehensive final report for the Swiss Federal Office of Energy (SFOE) presents the results of a study at the made by the Engineering and Architecture department at the Lucerne University of Applied Sciences and Arts. The subject of the WEXA study (Waermepumpen-Exergie-Analyse - heat pump exergy analysis) is the analysis of the operation of air/water heat-pumps using exergy analysis methods. The basic thermodynamics of heating systems using heat-pumps is discussed. The exergy analyses and exergy balances for the various components and processes of an air/water heat-pump are presented and discussed. Comparisons are presented for heat-pumps with on/off and continuous control systems for their compressors and fans. The paper is concluded with a collection of appendices on the subject.

  7. New Mexico cloud super cooled liquid water survey final report 2009.

    Energy Technology Data Exchange (ETDEWEB)

    Beavis, Nick; Roskovensky, John K.; Ivey, Mark D.

    2010-02-01

    Los Alamos and Sandia National Laboratories are partners in an effort to survey the super-cooled liquid water in clouds over the state of New Mexico in a project sponsored by the New Mexico Small Business Assistance Program. This report summarizes the scientific work performed at Sandia National Laboratories during the 2009. In this second year of the project a practical methodology for estimating cloud super-cooled liquid water was created. This was accomplished through the analysis of certain MODIS sensor satellite derived cloud products and vetted parameterizations techniques. A software code was developed to analyze multiple cases automatically. The eighty-one storm events identified in the previous year effort from 2006-2007 were again the focus. Six derived MODIS products were obtained first through careful MODIS image evaluation. Both cloud and clear-sky properties from this dataset were determined over New Mexico. Sensitivity studies were performed that identified the parameters which most influenced the estimation of cloud super-cooled liquid water. Limited validation was undertaken to ensure the soundness of the cloud super-cooled estimates. Finally, a path forward was formulized to insure the successful completion of the initial scientific goals which include analyzing different of annual datasets, validation of the developed algorithm, and the creation of a user-friendly and interactive tool for estimating cloud super-cooled liquid water.

  8. Improved methods for water shutoff. Final technical progress report, October 1, 1997--September 30, 1998

    Energy Technology Data Exchange (ETDEWEB)

    Seright, R.S.; Liang, J.T.; Schrader, R.; Hagstrom, J. II; Liu, J.; Wavrik, K.

    1998-10-01

    In the United States, more than 20 billion barrels of salt water are produced each year during oilfield operations. A tremendous economic incentive exists to reduce water production if that can be accomplished without significantly sacrificing hydrocarbon production. This three-year research project had three objectives. The first objective was to identify chemical blocking agents that will (a) during placement, flow readily through fractures without penetrating significantly into porous rock and with screening out or developing excessive pressure gradients and (b) at a predictable and controllable time, become immobile and resistant breakdown upon exposure to moderate to high pressure gradients. The second objective was to identify schemes that optimize placement of the above blocking agents. The third objective was to explain why gels and other chemical blocking agents reduce permeability to one phase (e.g., water) more than that to another phase (e.g., oil or gas). The authors also wanted to identify conditions that maximize this phenomenon. This project consisted of three tasks, each of which addressed one of the above objectives. This report describes work performed during the third and final period of the project. During this three-year project, they: (1) Developed a procedure and software for sizing gelant treatments in hydraulically fractured production wells; (2) Developed a method (based on interwell tracer results) to determine the potential for applying gel treatments in naturally fractured reservoirs; (3) Characterized gel properties during extrusion through fractures; (4) Developed a method to predict gel placement in naturally fractured reservoirs; (5) Made progress in elucidating the mechanism for why some gels can reduce permeability to water more than that to oil; (6) Demonstrated the limitations of using water/oil ratio diagnostic plots to distinguish between channeling and coning; and (7) Proposed a philosophy for diagnosing and attacking water

  9. Final report of the SIM.QM-S7 supplementary comparison, trace metals in drinking water

    Science.gov (United States)

    Yang, Lu; Nadeau, Kenny; Gedara Pihillagawa, Indu; Meija, Juris; Grinberg, Patricia; Mester, Zoltan; Valle Moya, Edith; Solís González, Faviola Alejandra; del Rocio Arvizu Torres, María; Yañez Muñoz, Oscar; Velina Lara-Manzano, Judith; Mazzitello, Gisela; Prina, Pedro; Acosta, Osvaldo; Napoli, Romina; Pérez Zambra, Ramiro; Ferreira, Elizabeth; Dobrovolskiy, Vladimir; Aprelev, Aleksei; Stakheev, Aleksei; Frolov, Dmitriy; Gusev, Leonid; Ivanova, Veronika; Näykki, Teemu; Sara-Aho, Timo; Venegas Padilla, Jimmy; Acuña Cubillo, Carlos; Bremmer, Dwyte; Freemantle, Ruel; Taebunpakul, Sutthinun; Tangpaisarnkul, Nongluck; Rodruangthum, Patumporn; Kaewkhomdee, Nattikarn; Thiengmanee, Usana; Tangjit, Tararat; Buzoianu, Mirella; Alejandro Ahumada Forigua, Diego; Abella Gamba, Johanna Paola; Alfredo Chavarro Medina, Luis; Sobina, Egor; Tabatchikova, Tatyana; Alexopoulos, Charalambos; Kakoulides, Elias; Delgado, Mabel; Flores, Liliana; Knox, Saira; Siewlal, Kester; Maharaj, Avinash

    2018-01-01

    SIM.QM-S7 was performed to assess the analytical capabilities of National Metrology Institutes (NMIs) and Designated Institutes (DIs) of SIM members (or other regions) for the accurate determination of trace metals in drinking water. The study was proposed by the coordinating laboratories National Research Council Canada (NRC) and Centro Nacional de Metrologia (CENAM) as an activity of Inorganic Analysis Working Group (IAWG) of Consultative Committee for Amount of Substance - Metrology in Chemistry and Biology (CCQM). Participants included 16 NMIs/DIs from 15 countries. No measurement method was prescribed by the coordinating laboratories. Therefore, NMIs used measurement methods of their choice. However, the majority of NMIs/DIs used ICP-MS. This SIM.QM-S7 Supplementary Comparison provides NMIs/DIs with the needed evidence for CMC claims for trace elements in fresh waters and similar matrices. Main text To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCQM, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  10. Influence of cement shade and water storage on the final color of leucite-reinforced ceramics.

    Science.gov (United States)

    Karaagaclioglu, Lale; Yilmaz, Burak

    2008-01-01

    Leucite-reinforced ceramics have a translucent structure, which may have an advantage when fabricating esthetic restorations. However, the different shades of cement and water storage may adversely affect the final color of translucent restorations. Over time, the final color of a restoration may be significantly affected by the shade of the cement. This in vitro study evaluated the effect of two different cement shades (Vita A1 and A3) and water storage on the final color of leucite-reinforced ceramics over time. Twenty disks of standardized thickness (0.8 mm), diameter (5 mm) and color (shade 110, Chromascope) were prepared from leucite-reinforced glass-ceramic (IPS Empress). Ten freshly extracted human molars were used as the underlying structure, and both the buccal and lingual surfaces of each tooth were prepared with a diamond rotary cutting instrument and flat surfaces were created. Initially, all of the disks were bonded to the flat surfaces of the teeth with a thin layer of bonding agent (Single Bond, 3M Dental Products) to ensure immobilization of the specimens (baseline). The teeth and ceramic specimens were not etched and silanated for easy removal of the specimens. The color of the ceramic specimens was measured with a colorimeter. All disks were gently removed from the tooth surfaces, and 10 specimens (Group A1) were luted to the buccal surfaces of teeth using a dual-polymerizing resin composite cement (Vita A1, Rely X ARC), while the remaining 10 specimens (Group A3) were luted to the lingual surfaces of the teeth with a different shade (Vita A3, Rely X ARC) of the same cement. The final color of the specimens was measured immediately after cementation and at 3-, 30- and 90-day intervals after cementation. Color coordinates L*, a*, b* were recorded. The teeth were stored in 37 degrees C saline solution during measurement intervals. The Mann-Whitney U-test (post-hoc test) was performed to compare the results (alpha=0.05). The color difference of

  11. Respiration rates in subsurface waters of the northern Indian Ocean: Evidence for low decomposition rates of organic matter within the water column in the Bay of Bengal

    Digital Repository Service at National Institute of Oceanography (India)

    Naqvi, S.W.A.; Shailaja, M.S.; DileepKumar, M.; Sengupta, R.

    of activity of the respiratory electron transport system (ETS) have been generated at several locations in the northern Indian Ocean. The results reveal much lower ETS activities in subsurface waters of the Bay of Bengal than those measured in the Arabian... provided recently by Naqvi and Shailaja (1993) and Naqvi et al. (1993) based on measurements of activity of the respiratory electron transport system (ETS), their results were confined to the oxygen- minimum layer. Here we provide additional data from...

  12. Hydraulic Fracturing for Oil and Gas: Impacts from the Hydraulic Fracturing Water Cycle on Drinking Water Resources in the United States (Final Report)

    Science.gov (United States)

    This final report provides a review and synthesis of available scientific information concerning the relationship between hydraulic fracturing activities and drinking water resources in the United States. The report is organized around activities in the hydraulic...

  13. Spectral Decomposition Algorithm (SDA)

    Data.gov (United States)

    National Aeronautics and Space Administration — Spectral Decomposition Algorithm (SDA) is an unsupervised feature extraction technique similar to PCA that was developed to better distinguish spectral features in...

  14. Reducing the chlorine dioxide demand in final disinfection of drinking water treatment plants using activated carbon.

    Science.gov (United States)

    Sorlini, Sabrina; Biasibetti, Michela; Collivignarelli, Maria Cristina; Crotti, Barbara Marianna

    2015-01-01

    Chlorine dioxide is one of the most widely employed chemicals in the disinfection process of a drinking water treatment plant (DWTP). The aim of this work was to evaluate the influence of the adsorption process with granular activated carbon (GAC) on the chlorine dioxide consumption in final oxidation/disinfection. A first series of tests was performed at the laboratory scale employing water samples collected at the outlet of the DWTP sand filter of Cremona (Italy). The adsorption process in batch conditions with seven different types of GAC was studied. A second series of tests was performed on water samples collected at the outlet of four GAC columns installed at the outlet of the DWTP sand filter. The results showed that the best chlorine dioxide demand (ClO2-D) reduction yields are equal to 60-80% and are achieved in the first 30 min after ClO2 addition, during the first 16 days of the column operation using a mineral, coal-based, mesoporous GAC. Therefore, this carbon removes organic compounds that are more rapidly reactive with ClO2. Moreover, a good correlation was found between the ClO2-D and UV absorbance at wavelength 254 nm using mineral carbons; therefore, the use of a mineral mesoporous GAC is an effective solution to control the high ClO2-D in the disinfection stage of a DWTP.

  15. Final Report: Development of a Thermal and Water Management System for PEM Fuel Cell

    Energy Technology Data Exchange (ETDEWEB)

    Zia Mirza, Program Manager

    2011-12-06

    This final program report is prepared to provide the status of program activities performed over the period of 9 years to develop a thermal and water management (TWM) system for an 80-kW PEM fuel cell power system. The technical information and data collected during this period are presented in chronological order by each calendar year. Balance of plant (BOP) components of a PEM fuel cell automotive system represents a significant portion of total cost based on the 2008 study by TIAX LLC, Cambridge, MA. The objectives of this TWM program were two-fold. The first objective was to develop an advanced cooling system (efficient radiator) to meet the fuel cell cooling requirements. The heat generated by the fuel cell stack is a low-quality heat (small difference between fuel cell stack operating temperature and ambient air temperature) that needs to be dissipated to the ambient air. To minimize size, weight, and cost of the radiator, advanced fin configurations were evaluated. The second objective was to evaluate air humidification systems which can meet the fuel cell stack inlet air humidity requirements. The moisture from the fuel cell outlet air is transferred to inlet air, thus eliminating the need for an outside water source. Two types of humidification devices were down-selected: one based on membrane and the other based on rotating enthalpy wheel. The sub-scale units for both of these devices have been successfully tested by the suppliers. This project addresses System Thermal and Water Management.

  16. Effect of some parameters on the rate of the catalysed decomposition of hydrogen peroxide by iron(III)-nitrilotriacetate in water.

    Science.gov (United States)

    De Laat, Joseph; Dao, Yen Hai; El Najjar, Nasma Hamdi; Daou, Claude

    2011-11-01

    The decomposition rate of H(2)O(2) by iron(III)-nitrilotriacetate complexes (Fe(III)NTA) has been investigated over a large range of experimental conditions: 3 pH pH immediately lead to the formation of intermediates (presumably peroxocomplexes of Fe(III)NTA) which absorb light in the region 350-600 nm where Fe(III)NTA and H(2)O(2) do not absorb. Kinetic experiments showed that the decomposition rates of H(2)O(2) were first-order with respect to H(2)O(2) and that the apparent first-order rate constants were found to be proportional to the total concentration of Fe(III)NTA complexes, were at a maximum at pH 7.95 ± 0.10 and depend on the [NTA](T,0)/[Fe(III)](T,0) and [H(2)O(2)](0)/[Fe(III)](T,0) molar ratios. The addition of increasing concentrations of tert-butanol or sodium bicarbonate significantly decreased the decomposition rate of H(2)O(2), suggesting the involvement of HO· radicals in the decomposition of H(2)O(2). The decomposition of H(2)O(2) by Fe(III)NTA at neutral pH was accompanied by a production of dioxygen and by the oxidation of NTA. The degradation of the organic ligand during the course of the reaction led to a progressive decomplexation of Fe(III)NTA followed by a subsequent precipitation of iron(III) oxyhydroxides and by a significant decrease in the catalytic activity of Fe(III) species for the decomposition of H(2)O(2). Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Replacement of chemical intensive water treatment processes with energy saving membrane. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Mickley, M.C.; Goering, S.W.

    1983-11-01

    The project investigated the use of charged ultrafiltration membranes to treat hard water. More specifically, the work was undertaken to (1) make charged ultrafiltration membranes to demonstrate the technical feasibility of the chemical grafting approach; (2) evaluate the market potential for charged ultrafiltration membranes; and (3) evaluate the cost and energy savings for using charged ultrafiltration as compared to lime-based clarification and other treatment methods. The results suggest that chemical grafting is a relatively simple, reproducible and low-cost way to modify existing substrate materials to give them enhanced transport performance. Process studies lead to the identification of good market potential for membrane processes using charged ultrafiltration membranes. Capital and operating costs relative to lime-based clarification are favorable for low- and medium-sized treatment plants. Finally, substantial energy savings are apparent as compared to lime-based precipitation systems which incur substantial energy consumption in the lime production and transportation steps.

  18. Carbon and water footprint of pork supply chain in Catalonia: From feed to final products.

    Science.gov (United States)

    Noya, Isabel; Aldea, Xavier; Gasol, Carles M; González-García, Sara; Amores, Maria José; Colón, Joan; Ponsá, Sergio; Roman, Isabel; Rubio, Miguel A; Casas, Eudald; Moreira, María Teresa; Boschmonart-Rives, Jesús

    2016-04-15

    A systematic tool to assess the Carbon Footprint (CF) and Water Footprint (WF) of pork production companies was developed and applied to representative Catalan companies. To do so, a cradle-to-gate environmental assessment was carried out by means of the LCA methodology, taking into account all the stages involved in the pork chain, from feed production to the processing of final products, ready for distribution. In this approach, the environmental results are reported based on eight different functional units (FUs) according to the main pork products obtained. With the aim of ensuring the reliability of the results and facilitating the comparison with other available reports, the Product Category Rules (PCR) for Catalan pork sector were also defined as a basis for calculations. The characterization results show fodder production as the main contributor to the global environmental burdens, with contributions higher than 76% regardless the environmental indicator or the life cycle stage considered, which is in agreement with other published data. In contrast, the results in terms of CF and WF lay above the range of values reported elsewhere. However, major discrepancies are mainly due to the differences in the co-products allocation criteria. In this sense, economic/physical allocation and/or system expansion have been mostly considered in literature. In contrast, no allocation was considered appropriate in this study, according to the characteristics of the industries and products under assessment; thus, the major impacts fall on the main product, which derives on comparatively higher environmental burdens. Finally, due to the relevance of fodder production in the overall impact assessment results, strategies to reduce greenhouse gases (GHG) emissions as well as water use associated to this stage were proposed in the pork supply chain. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Thermal decomposition of hemicelluloses

    OpenAIRE

    Werner, Kajsa; Pommer, Linda; Broström, Markus

    2014-01-01

    Decomposition modeling of biomass often uses commercially available xylan as model compound representing hemicelluloses, not taking in account the heterogeneous nature of that group of carbohydrates. In this study, the thermal decomposition behavior of seven different hemicelluloses (beta-glucan, arabinogalactan, arabinoxylan, galactomannan, glucomannan, xyloglucan, and xylan) were investigated in inert atmosphere using (i) thermogravimetric analysis coupled to Fourier transform infrared spec...

  20. Multiresolution signal decomposition schemes

    NARCIS (Netherlands)

    J. Goutsias (John); H.J.A.M. Heijmans (Henk)

    1998-01-01

    textabstract[PNA-R9810] Interest in multiresolution techniques for signal processing and analysis is increasing steadily. An important instance of such a technique is the so-called pyramid decomposition scheme. This report proposes a general axiomatic pyramid decomposition scheme for signal analysis

  1. Azimuthal decomposition of optical modes

    CSIR Research Space (South Africa)

    Dudley, Angela L

    2012-07-01

    Full Text Available This presentation analyses the azimuthal decomposition of optical modes. Decomposition of azimuthal modes need two steps, namely generation and decomposition. An azimuthally-varying phase (bounded by a ring-slit) placed in the spatial frequency...

  2. Graph Decompositions and Factorizing Permutations

    Directory of Open Access Journals (Sweden)

    Christian Capelle

    2002-12-01

    Full Text Available A factorizing permutation of a given graph is simply a permutation of the vertices in which all decomposition sets appear to be factors. Such a concept seems to play a central role in recent papers dealing with graph decomposition. It is applied here for modular decomposition and we propose a linear algorithm that computes the whole decomposition tree when a factorizing permutation is provided. This algorithm can be seen as a common generalization of Ma and Hsu for modular decomposition of chordal graphs and Habib, Huchard and Spinrad for inheritance graphs decomposition. It also suggests many new decomposition algorithms for various notions of graph decompositions.

  3. Decompositions of manifolds

    CERN Document Server

    Daverman, Robert J

    2007-01-01

    Decomposition theory studies decompositions, or partitions, of manifolds into simple pieces, usually cell-like sets. Since its inception in 1929, the subject has become an important tool in geometric topology. The main goal of the book is to help students interested in geometric topology to bridge the gap between entry-level graduate courses and research at the frontier as well as to demonstrate interrelations of decomposition theory with other parts of geometric topology. With numerous exercises and problems, many of them quite challenging, the book continues to be strongly recommended to eve

  4. Polyethylene hydroperoxide decomposition products

    National Research Council Canada - National Science Library

    Lacoste, J; Carlsson, David James (Dave); Falicki, S; Wiles, D. M

    1991-01-01

    The decomposition products from pre-oxidized, linear low-density polyethylene have been identified and quantified for films exposed in the absence of oxygen to ultra-violet irradiation, heat or γ-irradiation...

  5. Litter Decomposition Rates, 2015

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This data set contains decomposition rates for litter of Salicornia pacifica, Distichlis spicata, and Deschampsia cespitosa buried at 7 tidal marsh sites in 2015....

  6. Orthogonal tensor decompositions

    Energy Technology Data Exchange (ETDEWEB)

    Tamara G. Kolda

    2000-03-01

    The authors explore the orthogonal decomposition of tensors (also known as multi-dimensional arrays or n-way arrays) using two different definitions of orthogonality. They present numerous examples to illustrate the difficulties in understanding such decompositions. They conclude with a counterexample to a tensor extension of the Eckart-Young SVD approximation theorem by Leibovici and Sabatier [Linear Algebra Appl. 269(1998):307--329].

  7. Final Scientific/Technical Report. A closed path methane and water vapor gas analyzer

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Liukang [LI-COR Inc., Lincoln, NE (United States); McDermitt, Dayle [LI-COR Inc., Lincoln, NE (United States); Anderson, Tyler [LI-COR Inc., Lincoln, NE (United States); Riensche, Brad [LI-COR Inc., Lincoln, NE (United States); Komissarov, Anatoly [LI-COR Inc., Lincoln, NE (United States); Howe, Julie [LI-COR Inc., Lincoln, NE (United States)

    2012-02-01

    Robust, economical, low-power and reliable closed-path methane (CH4), carbon dioxide (CO2), and water vapor (H2O) analyzers suitable for long-term measurements are not readily available commercially. Such analyzers are essential for quantifying the amount of CH4 and CO2 released from various ecosystems (wetlands, rice paddies, forests, etc.) and other surface contexts (e.g. landfills, animal husbandry lots, etc.), and for understanding the dynamics of the atmospheric CH4 and CO2 budget and their impact on climate change and global warming. The purpose of this project is to develop a closed-path methane, carbon dioxide gas and water vapor analyzer capable of long-term measurements in remote areas for global climate change and environmental research. The analyzer will be capable of being deployed over a wide range of ecosystems to understand methane and carbon dioxide exchange between the atmosphere and the surface. Measurements of methane and carbon dioxide exchange need to be made all year-round with limited maintenance requirements. During this Phase II effort, we successfully completed the design of the electronics, optical bench, trace gas detection method and mechanical infrastructure. We are using the technologies of two vertical cavity surface emitting lasers, a multiple-pass Herriott optical cell, wavelength modulation spectroscopy and direct absorption to measure methane, carbon dioxide, and water vapor. We also have designed the instrument application software, Field Programmable Gate Array (FPGA), along with partial completion of the embedded software. The optical bench has been tested in a lab setting with very good results. Major sources of optical noise have been identified and through design, the optical noise floor is approaching -60dB. Both laser modules can be temperature controlled to help maximize the stability of the analyzer. Additionally, a piezo electric transducer has been

  8. [Analysis of the bacterial community developing in the course of Sphagnum moss decomposition].

    Science.gov (United States)

    Kulichevskaia, I S; Belova, S E; Kevbrin, V V; Dedysh, S N; Zavarzin, G A

    2007-01-01

    Slow degradation of organic matter in acidic Sphagnum peat bogs suggests a limited activity of organotrophic microorganisms. Monitoring of the Sphagnum debris decomposition in a laboratory simulation experiment showed that this process was accompanied by a shift in the water color to brownish due to accumulation of humic substances and by the development of a specific bacterial community with a density of 2.4 x 10(7) cells ml(-1). About half of these organisms are metabolically active and detectable with rRNA-specific oligonucleotide probes. Molecular identification of the components of this microbial community showed the numerical dominance of bacteria affiliated with the phyla Alphaproteobacteria, Actinobacteria, and Phanctomycetes. The population sizes of Firmicutes and Bacteroidetes, which are believed to be the main agents of bacterially-mediated decomposition in eutrophic wetlands, were low. The numbers of planctomycetes increased at the final stage of Sphagnum decomposition. The representative isolates of Alphaproteobacteria were able to utilize galacturonic acid, the only low-molecular-weight organic compound detected in the water samples; the representatives of Planctomycetes were able to decompose some heteropolysaccharides, which points to the possible functional role of these groups of microorganisms in the community under study. Thus, the composition of the bacterial community responsible for Sphagnum decomposition in acidic and low-mineral oligotrophic conditions seems to be fundamentally different from that of the bacterial community which decomposes plant debris in eutrophic ecosystems at neutral pH.

  9. Puget Sound Tidal Energy In-Water Testing and Development Project Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Collar, Craig W

    2012-11-16

    Tidal energy represents potential for the generation of renewable, emission free, environmentally benign, and cost effective energy from tidal flows. A successful tidal energy demonstration project in Puget Sound, Washington may enable significant commercial development resulting in important benefits for the northwest region and the nation. This project promoted the United States Department of Energy's Wind and Hydropower Technologies Program's goals of advancing the commercial viability, cost-competitiveness, and market acceptance of marine hydrokinetic systems. The objective of the Puget Sound Tidal Energy Demonstration Project is to conduct in-water testing and evaluation of tidal energy technology as a first step toward potential construction of a commercial-scale tidal energy power plant. The specific goal of the project phase covered by this award was to conduct all activities necessary to complete engineering design and obtain construction approvals for a pilot demonstration plant in the Admiralty Inlet region of the Puget Sound. Public Utility District No. 1 of Snohomish County (The District) accomplished the objectives of this award through four tasks: Detailed Admiralty Inlet Site Studies, Plant Design and Construction Planning, Environmental and Regulatory Activities, and Management and Reporting. Pre-Installation studies completed under this award provided invaluable data used for site selection, environmental evaluation and permitting, plant design, and construction planning. However, these data gathering efforts are not only important to the Admiralty Inlet pilot project. Lessons learned, in particular environmental data gathering methods, can be applied to future tidal energy projects in the United States and other parts of the world. The District collaborated extensively with project stakeholders to complete the tasks for this award. This included Federal, State, and local government agencies, tribal governments, environmental groups, and

  10. Aridity and decomposition processes in complex landscapes

    Science.gov (United States)

    Ossola, Alessandro; Nyman, Petter

    2015-04-01

    Decomposition of organic matter is a key biogeochemical process contributing to nutrient cycles, carbon fluxes and soil development. The activity of decomposers depends on microclimate, with temperature and rainfall being major drivers. In complex terrain the fine-scale variation in microclimate (and hence water availability) as a result of slope orientation is caused by differences in incoming radiation and surface temperature. Aridity, measured as the long-term balance between net radiation and rainfall, is a metric that can be used to represent variations in water availability within the landscape. Since aridity metrics can be obtained at fine spatial scales, they could theoretically be used to investigate how decomposition processes vary across complex landscapes. In this study, four research sites were selected in tall open sclerophyll forest along a aridity gradient (Budyko dryness index ranging from 1.56 -2.22) where microclimate, litter moisture and soil moisture were monitored continuously for one year. Litter bags were packed to estimate decomposition rates (k) using leaves of a tree species not present in the study area (Eucalyptus globulus) in order to avoid home-field advantage effects. Litter mass loss was measured to assess the activity of macro-decomposers (6mm litter bag mesh size), meso-decomposers (1 mm mesh), microbes above-ground (0.2 mm mesh) and microbes below-ground (2 cm depth, 0.2 mm mesh). Four replicates for each set of bags were installed at each site and bags were collected at 1, 2, 4, 7 and 12 months since installation. We first tested whether differences in microclimate due to slope orientation have significant effects on decomposition processes. Then the dryness index was related to decomposition rates to evaluate if small-scale variation in decomposition can be predicted using readily available information on rainfall and radiation. Decomposition rates (k), calculated fitting single pool negative exponential models, generally

  11. Commercialization of air conditioning heat pump/water heater. Final technical report, Volume 1: Transmittal documents; Executive summary; Project summary

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-01-30

    This is the final technical report on a commercialization project for an air conditioning heat pump water heater. The objective of the project was to produce a saleable system which would be economically competitive with natural gas and cost effective with regard to initial cost versus annual operating costs. The development and commercialization of the system is described.

  12. Development Of Nutrient And Water Recycling Capabilities In Algae Biofuels Production Systems. Final Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    Lundquist, Tryg [California Polytechnic State Univ. (CalPoly), San Luis Obispo, CA (United States). Civil and Environmental Engineering Dept.; Spierling, Ruth [California Polytechnic State Univ. (CalPoly), San Luis Obispo, CA (United States); Poole, Kyle [California Polytechnic State Univ. (CalPoly), San Luis Obispo, CA (United States); Blackwell, Shelley [California Polytechnic State Univ. (CalPoly), San Luis Obispo, CA (United States); Crowe, Braden [California Polytechnic State Univ. (CalPoly), San Luis Obispo, CA (United States); Hutton, Matt [California Polytechnic State Univ. (CalPoly), San Luis Obispo, CA (United States); Lehr, Corinne [California Polytechnic State Univ. (CalPoly), San Luis Obispo, CA (United States). Dept. of Chemistry and Biochemistry

    2018-01-25

    inhibition was only observed in the final fifth round of reuse. 11. No decline in productivity was detected after 15 rounds of water recycling with nutrients provided by whole digestate in lab cultivation. Lab tests allowed for steady light and temperature, increasing the ability to detect inhibition. 12. In initial pilot inhibition studies, wastewater growth media was reused once while productivity was monitored. Media reuse was accomplished with triplicate sets of 33-m2 raceways operated in series. First-round gross productivity (based on effluent biomass flow) averaged 23 g/m2-day annually while second-round gross productivity averaged 19 g/m2-day annually. In terms of net productivity (based on raceway effluent biomass minus influent biomass), the first-round productivity averaged 15 g/m2-d and second round averaged 13 g/m2-d during June-September operation. The higher productivity in the first-round ponds was likely due to heterotrophic/mixotrophic growth on the wastewater organic matter. 13. In a culminating pilot experiment, coagulant was used to decrease the carry-over of unsettled algae into subsequent rounds of growth. Over nearly 8 months, 93% of the media (the equivalent of 14 rounds of water reuse) was recycled without significant productivity loss compared to controls. Ponds receiving both recycled water and nutrients had net productivities of 14-24 g/m2-d during fall and mid-summer, respectively. 14. Techno-economic analysis of the proposed facility found minimum fuel selling price to range from $7.01/gallon gasoline equivalent without revenue other than fuel to $3.85/GGE with revenue from wastewater treatment fees and LCFS and RIN (Low Carbon Fuel Standard and Renewable Identification Numbers) credits. 15. Life cycle assessment indicated GHG emissions of 40.7 g CO2/MJ fuel and a net energy ratio (energy required/energy produced) of 0.37.

  13. Solar heating and hot water system installed at office building, One Solar Place, Dallas, Texas. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1980-06-01

    This document is the Final Report of the Solar Energy System Installed at the First Solar Heated Office Building, One Solar Place, Dallas, Texas. The Solar System was designed to provide 87 percent of the space heating needs, 100 percent of the potable hot water needs and is sized for future absorption cooling. The collection subsystem consists of 28 Solargenics, series 76, flat plate collectors with a total area of 1596 square feet. The solar loop circulates an ethylene glycol-water solution through the collectors into a hot water system heat exchanger. The hot water storage subsystem consists of a heat exchanger, two 2300 gallon concrete hot water storage tanks with built in heat exchangers and a back-up electric boiler. The domestic hot water subsystem sends hot water to the 10,200 square feet floor area office building hot water fixtures. The building cold water system provides make-up to the solar loop, the heating loop, and the hot water concrete storage tanks. The design, construction, cost analysis, operation and maintenance of the solar system are described. The system became operational July 11, 1979.

  14. KINETICS OF HYDROXIDE PHOMOTED DECOMPOSITION 0F ...

    African Journals Online (AJOL)

    1991-04-26

    (Received July 2?. 1990; revised April 26, 1991). ABSTRACT. The effects of varying concentrations of dimethyl sulphoxide in mixture with water on rates and activation parameters for the hydroxide promoted decomposition of tetraphenylphosphonium chloride have been studied. Increasing the DMSO content of the reaction ...

  15. Water-splitting using photocatalytic porphyrin-nanotube composite devices

    Science.gov (United States)

    Shelnutt, John A [Tijeras, NM; Miller, James E [Albuquerque, NM; Wang, Zhongchun [Albuquerque, NM; Medforth, Craig J [Winters, CA

    2008-03-04

    A method for generating hydrogen by photocatalytic decomposition of water using porphyrin nanotube composites. In some embodiments, both hydrogen and oxygen are generated by photocatalytic decomposition of water.

  16. Decomposing Nekrasov decomposition

    Energy Technology Data Exchange (ETDEWEB)

    Morozov, A. [ITEP,25 Bolshaya Cheremushkinskaya, Moscow, 117218 (Russian Federation); Institute for Information Transmission Problems,19-1 Bolshoy Karetniy, Moscow, 127051 (Russian Federation); National Research Nuclear University MEPhI,31 Kashirskoe highway, Moscow, 115409 (Russian Federation); Zenkevich, Y. [ITEP,25 Bolshaya Cheremushkinskaya, Moscow, 117218 (Russian Federation); National Research Nuclear University MEPhI,31 Kashirskoe highway, Moscow, 115409 (Russian Federation); Institute for Nuclear Research of Russian Academy of Sciences,6a Prospekt 60-letiya Oktyabrya, Moscow, 117312 (Russian Federation)

    2016-02-16

    AGT relations imply that the four-point conformal block admits a decomposition into a sum over pairs of Young diagrams of essentially rational Nekrasov functions — this is immediately seen when conformal block is represented in the form of a matrix model. However, the q-deformation of the same block has a deeper decomposition — into a sum over a quadruple of Young diagrams of a product of four topological vertices. We analyze the interplay between these two decompositions, their properties and their generalization to multi-point conformal blocks. In the latter case we explain how Dotsenko-Fateev all-with-all (star) pair “interaction” is reduced to the quiver model nearest-neighbor (chain) one. We give new identities for q-Selberg averages of pairs of generalized Macdonald polynomials. We also translate the slicing invariance of refined topological strings into the language of conformal blocks and interpret it as abelianization of generalized Macdonald polynomials.

  17. 77 FR 12076 - Final Programmatic Environmental Impact Statement and Integrated Water Resource Management Plan...

    Science.gov (United States)

    2012-02-28

    ... Management Plan, Yakima River Basin, Water Enhancement Project, Benton, Kittitas, Klickitat, and Yakima... analyzed the elements of the Integrated Water Resource Management Plan in the FPEIS. The FPEIS addresses... management plan includes three major components (Habitat, Systems Modification, and Water Supply) which are...

  18. Final Environmental Impact Statement : Water rights acquisition for Lahontan Valley Wetlands : Volume 1

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The Truckee-Carson-Pyramid Lake Water Rights Settlement Act (Public Law 1 0 1-618) directs the Secretary of the Interior to acquire enough water and water rights to...

  19. Aquatic invertebrates in final void water bodies at an open-cut coal mine in central Queensland

    Energy Technology Data Exchange (ETDEWEB)

    Proctor, H.; Grigg, A. [Griffith University, Nathan, Qld. (Australia). Australian School of Environmental Studies

    2006-07-01

    We describe the diversity of aquatic invertebrates colonising water-filled final voids produced by an open-cut coal mine near Moura, central Queensland. Ten disused pits that had been filled with water from < 1 year to 22 years prior to the survey and three nearby 'natural' water bodies were sampled in December 1998 and again in March 1999. All invertebrates collected were identified to family with the exception of oligochaetes, cladocerans, ostracods and copepods, which were identified to these coarser taxonomic levels. Sixty-two taxa were recorded from > 20 000 individuals. The greatest familial richness was displayed by the Insecta (33 families) followed by the mites (Acari) with 12 families. While natural water bodies held the greatest diversity, several mine pits were almost as rich in families. Classification analyses showed that natural sites tended to cluster together, but the groupings did not clearly exclude pit sites. Mining pits that supported higher diversity tended to be older and had lower salinity (< 2000 {mu}S/cm); however, salinity in all water bodies varied with rainfall conditions. We conclude that ponds formed in final voids at this mine have the potential to provide habitat for many invertebrate taxa typical of lentic inland water bodies in central Queensland.

  20. Symmetric Tensor Decomposition

    DEFF Research Database (Denmark)

    Brachat, Jerome; Comon, Pierre; Mourrain, Bernard

    2010-01-01

    We present an algorithm for decomposing a symmetric tensor, of dimension n and order d, as a sum of rank-1 symmetric tensors, extending the algorithm of Sylvester devised in 1886 for binary forms. We recall the correspondence between the decomposition of a homogeneous polynomial in n variables....... Exploiting this duality, we propose necessary and sufficient conditions for the existence of such a decomposition of a given rank, using the properties of Hankel (and quasi-Hankel) matrices, derived from multivariate polynomials and normal form computations. This leads to the resolution of systems...

  1. Decomposition methods in turbulence research

    Science.gov (United States)

    Uruba, Václav

    2012-04-01

    Nowadays we have the dynamical velocity vector field of turbulent flow at our disposal coming thanks advances of either mathematical simulation (DNS) or of experiment (time-resolved PIV). Unfortunately there is no standard method for analysis of such data describing complicated extended dynamical systems, which is characterized by excessive number of degrees of freedom. An overview of candidate methods convenient to spatiotemporal analysis for such systems is to be presented. Special attention will be paid to energetic methods including Proper Orthogonal Decomposition (POD) in regular and snapshot variants as well as the Bi-Orthogonal Decomposition (BOD) for joint space-time analysis. Then, stability analysis using Principal Oscillation Patterns (POPs) will be introduced. Finally, the Independent Component Analysis (ICA) method will be proposed for detection of coherent structures in turbulent flow-field defined by time-dependent velocity vector field. Principle and some practical aspects of the methods are to be shown. Special attention is to be paid to physical interpretation of outputs of the methods listed above.

  2. Decomposition methods in turbulence research

    Directory of Open Access Journals (Sweden)

    Uruba Václav

    2012-04-01

    Full Text Available Nowadays we have the dynamical velocity vector field of turbulent flow at our disposal coming thanks advances of either mathematical simulation (DNS or of experiment (time-resolved PIV. Unfortunately there is no standard method for analysis of such data describing complicated extended dynamical systems, which is characterized by excessive number of degrees of freedom. An overview of candidate methods convenient to spatiotemporal analysis for such systems is to be presented. Special attention will be paid to energetic methods including Proper Orthogonal Decomposition (POD in regular and snapshot variants as well as the Bi-Orthogonal Decomposition (BOD for joint space-time analysis. Then, stability analysis using Principal Oscillation Patterns (POPs will be introduced. Finally, the Independent Component Analysis (ICA method will be proposed for detection of coherent structures in turbulent flow-field defined by time-dependent velocity vector field. Principle and some practical aspects of the methods are to be shown. Special attention is to be paid to physical interpretation of outputs of the methods listed above.

  3. Production test IP-750 raw water as a reactor coolant. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Frymier, J.W.; Geier, R.G.

    1966-08-10

    Approximately ten years ago single-tube tests demonstrated the feasibility of using unfiltered river water as a reactor coolant from the standpoint of aluminum corrosion and film formation. However, some effluent activity penalty was indicated. Inasmuch as both current water plant operation and the characteristics of Columbia River water have changed, it was deemed appropriate to reinvestigate the use of partially treated water as a reactor coolant. This report summarizes the results of a half-reactor test carried out at F Reactor.

  4. 2012 Gordon Research Conference on Water and Aqueous Solutions, Final Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    Ben-Amotz, Dor [Purdue Univ., West Lafayette, IN (United States)

    2012-08-17

    Understanding the fundamental principles governing the structure and dynamics of water - and particularly how water mediates chemical interactions and processes - continues to pose formidable challenges and yield abundant surprises. The focus of this Gordon Research Conference is on identifying key questions, describing emerging understandings, and unveiling surprising discoveries related to water and aqueous solutions. The talks and posters at this meeting will describe studies of water and its interactions with objects such as interfaces, channels, electrons, oils, ions, and proteins; probed using optical, electrical, and particle experiments, and described using classical, quantum, and multi-scale theories.

  5. Kosambi and Proper Orthogonal Decomposition

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 16; Issue 6. Kosambi and the Proper Orthogonal Decomposition. Roddam Narasimha. General ... Keywords. Proper orthogonal decomposition; Karhunen–Loéve expansion; statistics in function space; characteristic eddies; special calculating machines.

  6. Health improvement of domestic hot tap water supply Gusev, Kaliningrad Region, Russia. Make-up water tank project. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Aagaard, Joergen

    1998-07-01

    This report describes the project `Health Improvement of Domestic Hot Tap Water Supply, Gusev, Kaliningrad, Russia`, which was carried out in the autumn of 1996 and financed by the Danish Environmental Protection Agency, the Danish Energy Agency and Gusev Municipality. The project proposal and application outlined the following objectives: Erection of system so that hot tap water, which is tapped directly from the district heating system, obtains an acceptable quality in health terms; Complete training and education, so that the plant can be operated and maintained by the power station`s staff and rehabilitation projects within supply of domestic water and district heating can be promoted to the greatest possible extent; Systems for heat treatment of make-up water were implemented in less than three months; The project was carried out in close Danish-Russian co-operation from the beginning of engineering to the commissioning and resulted in transfer and demonstration of know-how and technology; Information was recorded on the existing domestic water and heat supply systems as well as on the treatment of sewage, and recommendations for rehabilitation projects were made. Previously, when the temperature in the district heating system was relatively high, a heat treatment apparently took place in the district heating system. However, due to the current poor economic situation there are no means with which to buy the fuel quantities necessary to maintain the previously normal district heating temperature. In the new concept the cold make-up water is heated to >80 deg. C as required by the health authorities before it is led to the district heating return system and subsequently heated to the actual supply temperature of 50-60 deg. C. The energy consumption in the two concepts is approximately the same. A 1,000 m{sup 3} tank with heating coils was erected between the make-up water system and the district heating system. The tank should equalise the daily capacity

  7. Commercialization of air conditioning heat pump/water heater. Final technical report, Volume 2: Appendix A through E

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-01-30

    This is the final technical report on a commercialization project for an air conditioning heat pump water heater. The objective of the project was to produce a saleable system which would be economically competitive with natural gas and cost effective with regard to initial cost versus annual operating costs. The development and commercialization of the system is described. Compiled data included in numerous figures, tables and graphs.

  8. Health risk assessment of pentachlorophenol (pcp) in California drinking water. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Reed, N.R.; Reed, W.A.; Encomienda, I.; Beltran, L.; Araba-Owoyele, L.

    1990-03-08

    The purpose of the document is to review the toxicology of PCP and to estimate the exposure of California residents to PCP found in drinking water. The information provided will help the California Dept. of Health Services develop drinking water standards for PCP.

  9. Synthesis, Optical Characterization, and Thermal Decomposition of Complexes Based on Biuret Ligand

    Directory of Open Access Journals (Sweden)

    Mei-Ling Wang

    2016-01-01

    Full Text Available Four complexes were synthesized in methanol solution using nickel acetate or nickel chloride, manganese acetate, manganese chloride, and biuret as raw materials. The complexes were characterized by elemental analyses, UV, FTIR, Raman spectra, X-ray powder diffraction, and thermogravimetric analysis. The compositions of the complexes were [Ni(bi2(H2O2](Ac2·H2O (1, [Ni(bi2Cl2] (2, [Mn(bi2(Ac2]·1.5H2O (3, and [Mn(bi2Cl2] (4 (bi = NH2CONHCONH2, respectively. In the complexes, every metal ion was coordinated by oxygen atoms or chlorine ions and even both. The nickel and manganese ions were all hexacoordinated. The thermal decomposition processes of the complexes under air included the loss of water molecule, the pyrolysis of ligands, and the decomposition of inorganic salts, and the final residues were nickel oxide and manganese oxide, respectively.

  10. Final programmatic environmental impact statement for the uranium mill tailings remedial action ground water project. Volume I

    Energy Technology Data Exchange (ETDEWEB)

    None

    1996-10-01

    This programmatic environmental impact statement (PElS) was prepared for the Uranium Mill Tailings Remedial Action (UMTRA) Ground Water Project to comply with the National Environmental Policy Act (NEPA). This PElS provides an analysis of the potential impacts of the alternatives and ground water compliance strategies as well as potential cumulative impacts. On November 8, 1978, Congress enacted the Uranium Mill Tailings Radiation Control Act (UMTRCA) of 1978, Public Law, codified at 42 USC §7901 et seq. Congress found that uranium mill tailings " ... may pose a potential and significant radiation health hazard to the public, and that every reasonable effort should be made to provide for stabilization, disposal, and control in a safe, and environmentally sound manner of such tailings in order to prevent or minimize other environmental hazards from such tailings." Congress authorized the Secretary of Energy to designate inactive uranium processing sites for remedial action by the U.S. Department of Energy (DOE). Congress also directed the U.S. Environmental Protection Agency (EPA) to set the standards to be followed by the DOE for this process of stabilization, disposal, and control. On January 5, 1983, EPA published standards (40 CFR Part 192) for the disposal and cleanup of residual radioactive materials. On September 3, 1985, the U.S. Court of Appeals for the Tenth Circuit set aside and remanded to EPA the ground water provisions of the standards. The EPA proposed new standards to replace remanded sections and changed other sections of 40 CFR Part 192. These proposed standards were published in the Federal Register on September 24, 1987 (52 FR 36000). Section 108 of the UMTRCA requires that DOE comply with EPA's proposed standards in the absence of final standards. The Ground Water Project was planned under the proposed standards. On January 11, 1995, EPA published the final rule, with which the DOE must now comply. The PElS and the Ground Water Project are

  11. Patterns of fish assemblage structure and dynamics in waters of the Savannah River Plant. Comprehensive Cooling Water Study final report

    Energy Technology Data Exchange (ETDEWEB)

    Aho, J.M.; Anderson, C.S.; Floyd, K.B.; Negus, M.T.; Meador, M.R.

    1986-06-01

    Research conducted as part of the Comprehensive Cooling Water Study (CCWS) has elucidated many factors that are important to fish population and community dynamics in a variety of habitats on the Savannah River Plant (SRP). Information gained from these studies is useful in predicting fish responses to SRP operations. The overall objective of the CCWS was (1) to determine the environmental effects of SRP cooling water withdrawals and discharges and (2) to determine the significance of the cooling water impacts on the environment. The purpose of this study was to: (1) examine the effects of thermal plumes on anadromous and resident fishes, including overwintering effects, in the SRP swamp and associated tributary streams; (2) assess fish spawning and locate nursery grounds on the SRP; (3) examine the level of use of the SRP by spawning fish from the Savannah River, this objective was shared with the Savannah River Laboratory, E.I. du Pont de Nemours and Company; and (4) determine impacts of cooling-water discharges on fish population and community attributes. Five studies were designed to address the above topics. The specific objectives and a summary of the findings of each study are presented.

  12. Research and development of an air-cycle heat-pump water heater. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Dieckmann, J.T.; Erickson, A.J.; Harvey, A.C.; Toscano, W.M.

    1979-10-01

    A prototype reverse Brayton air cycle heat pump water heater has been designed and built for residential applications. The system consists of a compressor/expander, an air-water heat exchanger, an electric motor, a water circulation pump, a thermostat, and fluid management controls. The prototype development program consisted of a market analysis, design study, and development testing. A potential residential market for the new high-efficiency water heater of approximately 480,000 units/y was identified. The retail and installation cost of this water heater is estimated to be between $500 and $600 which is approximately $300 more than a conventional electric water heater. The average payback per unit is less than 3-1/2 y and the average recurring energy cost savings after the payback period is approximately $105/y at the average seasonal coefficient of performance (COP) of 1.7. As part of the design effort, a thermodynamic parametric analysis was performed on the water heater system. It was determined that to obtain a coefficient of performance of 1.7, the isentropic efficiency of both the compressor and the expander must be at least 85%. The selected mechanical configuration is described. The water heater has a diameter of 25 in. and a height of 73 in. The results of the development testing of the prototype water heater system showed: the electrical motor maximum efficiency of 78%; the compressor isentropic efficiency is 95 to 119% and the volumetric efficiency is approximately 85%; the expander isentropic efficiency is approximately 58% and the volumetric efficiency is 92%; a significant heat transfer loss of approximately 16% occurred in the expander; and the prototype heat pump system COP is 1.26 which is less than the design goal of at least 1.7. Future development work is recommended.

  13. Determination of decamethylcyclopentasiloxane in river water and final effluent by headspace gas chromatography/mass spectrometry.

    Science.gov (United States)

    Sparham, Chris; Van Egmond, Roger; O'Connor, Sean; Hastie, Colin; Whelan, Mick; Kanda, Rakesh; Franklin, Oliver

    2008-11-28

    A method is described for the analysis of decamethylcyclopentasiloxane (D(5)) in river water and treated waste water using headspace gas chromatography/mass spectrometry. Internal standard addition to samples and field blanks was carried out in the field to provide both a measure of recovery and to prevent any exposure of samples to laboratory air, which contained background levels of D(5). Measured levels of D(5) were typically in the range River Great Ouse (UK) with slightly higher levels in the River Nene (UK). The measured concentration of D(5) in treated waste water varied between 31 and 400ngL(-1), depending on the type of treatment process employed.

  14. Washoe County : Regional water supply and quality study : Phase II final report

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The major goal of this study was to help structure a solution to the fragmented responsibilities for conservation, resource management, water supply, wastewater,...

  15. Record of Decision for the Final Environmental Impact Statement : Water rights acquisition for Lahontan Valley Wetlands

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This Record of Decision (ROD) documents the decision and rationale for selecting a water rights acquisition strategy to sustain a long-term average of 25,000 acres...

  16. Final opportunity to rehabilitate an urban river as a water source for Mexico City.

    Directory of Open Access Journals (Sweden)

    Marisa Mazari-Hiriart

    Full Text Available The aim of this study was to evaluate the amount and quality of water in the Magdalena-Eslava river system and to propose alternatives for sustainable water use. The system is the last urban river in the vicinity of Mexico City that supplies surface water to the urban area. Historical flow data were analyzed (1973-2010, along with the physicochemical and bacteriological attributes, documenting the evolution of these variables over the course of five years (2008-2012 in both dry and rainy seasons. The analyses show that the flow regime has been significantly altered. The physicochemical variables show significant differences between the natural area, where the river originates, and the urban area, where the river receives untreated wastewater. Nutrient and conductivity concentrations in the river were equivalent to domestic wastewater. Fecal pollution indicators and various pathogens were present in elevated densities, demonstrating a threat to the population living near the river. Estimates of the value of the water lost as a result of mixing clean and contaminated water are presented. This urban river should be rehabilitated as a sustainability practice, and if possible, these efforts should be replicated in other areas. Because of the public health issues and in view of the population exposure where the river flows through the city, the river should be improved aesthetically and should be treated to allow its ecosystem services to recover. This river represents an iconic case for Mexico City because it connects the natural and urban areas in a socio-ecological system that can potentially provide clean water for human consumption. Contaminated water could be treated and reused for irrigation in one of the green areas of the city. Wastewater treatment plants and the operation of the existing purification plants are urgent priorities that could lead to better, more sustainable water use practices in Mexico City.

  17. Development and Validation of a Gas-Fired Residential Heat Pump Water Heater - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Michael Garrabrant; Roger Stout; Paul Glanville; Janice Fitzgerald; Chris Keinath

    2013-01-21

    For gas-fired residential water heating, the U.S. and Canada is predominantly supplied by minimum efficiency storage water heaters with Energy Factors (EF) in the range of 0.59 to 0.62. Higher efficiency and higher cost ($700 - $2,000) options serve about 15% of the market, but still have EFs below 1.0, ranging from 0.65 to 0.95. To develop a new class of water heating products that exceeds the traditional limit of thermal efficiency, the project team designed and demonstrated a packaged water heater driven by a gas-fired ammonia-water absorption heat pump. This gas-fired heat pump water heater can achieve EFs of 1.3 or higher, at a consumer cost of $2,000 or less. Led by Stone Mountain Technologies Inc. (SMTI), with support from A.O. Smith, the Gas Technology Institute (GTI), and Georgia Tech, the cross-functional team completed research and development tasks including cycle modeling, breadboard evaluation of two cycles and two heat exchanger classes, heat pump/storage tank integration, compact solution pump development, combustion system specification, and evaluation of packaged prototype GHPWHs. The heat pump system extracts low grade heat from the ambient air and produces high grade heat suitable for heating water in a storage tank for domestic use. Product features that include conventional installation practices, standard footprint and reasonable economic payback, position the technology to gain significant market penetration, resulting in a large reduction of energy use and greenhouse gas emissions from domestic hot water production.

  18. Solar domestic hot water system installed at Texas City, Texas. Final report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-12-01

    The Solar Energy System located at LaQuinta Motor Inn, Texas City, Texas was designed to supply 63% of the total hot water load. The Solar Energy System consists of a 2100 square foot Raypack Liquid Flat Plate Collector Subsystem and a 2500 gallon storage subsystem circulating hot water producing 3.67 x 10/sup 8/ Btu/y. Abstracts from the site files, specification references, drawings, installation, operation and maintenance instructions are included.

  19. Final Opportunity to Rehabilitate an Urban River as a Water Source for Mexico City

    Science.gov (United States)

    Mazari-Hiriart, Marisa; Pérez-Ortiz, Gustavo; Orta-Ledesma, María Teresa; Armas-Vargas, Felipe; Tapia, Marco A.; Solano-Ortiz, Rosa; Silva, Miguel A.; Yañez-Noguez, Isaura; López-Vidal, Yolanda; Díaz-Ávalos, Carlos

    2014-01-01

    The aim of this study was to evaluate the amount and quality of water in the Magdalena-Eslava river system and to propose alternatives for sustainable water use. The system is the last urban river in the vicinity of Mexico City that supplies surface water to the urban area. Historical flow data were analyzed (1973–2010), along with the physicochemical and bacteriological attributes, documenting the evolution of these variables over the course of five years (2008–2012) in both dry and rainy seasons. The analyses show that the flow regime has been significantly altered. The physicochemical variables show significant differences between the natural area, where the river originates, and the urban area, where the river receives untreated wastewater. Nutrient and conductivity concentrations in the river were equivalent to domestic wastewater. Fecal pollution indicators and various pathogens were present in elevated densities, demonstrating a threat to the population living near the river. Estimates of the value of the water lost as a result of mixing clean and contaminated water are presented. This urban river should be rehabilitated as a sustainability practice, and if possible, these efforts should be replicated in other areas. Because of the public health issues and in view of the population exposure where the river flows through the city, the river should be improved aesthetically and should be treated to allow its ecosystem services to recover. This river represents an iconic case for Mexico City because it connects the natural and urban areas in a socio-ecological system that can potentially provide clean water for human consumption. Contaminated water could be treated and reused for irrigation in one of the green areas of the city. Wastewater treatment plants and the operation of the existing purification plants are urgent priorities that could lead to better, more sustainable water use practices in Mexico City. PMID:25054805

  20. Magic Coset Decompositions

    CERN Document Server

    Cacciatori, Sergio L; Marrani, Alessio

    2013-01-01

    By exploiting a "mixed" non-symmetric Freudenthal-Rozenfeld-Tits magic square, two types of coset decompositions are analyzed for the non-compact special K\\"ahler symmetric rank-3 coset E7(-25)/[(E6(-78) x U(1))/Z_3], occurring in supergravity as the vector multiplets' scalar manifold in N=2, D=4 exceptional Maxwell-Einstein theory. The first decomposition exhibits maximal manifest covariance, whereas the second (triality-symmetric) one is of Iwasawa type, with maximal SO(8) covariance. Generalizations to conformal non-compact, real forms of non-degenerate, simple groups "of type E7" are presented for both classes of coset parametrizations, and relations to rank-3 simple Euclidean Jordan algebras and normed trialities over division algebras are also discussed.

  1. The decomposition of vegetation and soil in marginal peat-forming landscapes: climate simulations to quantify gaseous and dissolved carbon fluxes and the effects on peat accumulation and drinking water treatment

    Science.gov (United States)

    Ritson, J.; Bell, M.; Clark, J. M.; Graham, N.; Templeton, M.; Brazier, R.; Verhoef, A.; Freeman, C.

    2013-12-01

    Peatlands in the UK represent a large proportion of the soil carbon store, however there is concern that some systems may be switching from sinks to sources of carbon. The accumulation of organic material in peatlands results from the slow rates of decomposition typically occurring in these regions. Climate change may lead to faster decomposition which, if not matched by an equivalent increase in net primary productivity and litter fall, may tip the balance between source and sink. Recent trends have seen a greater flux of dissolved organic matter (DOM) from peatlands to surface waters and a change in DOM character, presenting challenges to water treatment, for example in terms of increased production of disinfectant by-products (DBPs). Peat systems border a large proportion of reservoirs in the UK so uncertainty regarding DOM quantity and quality is a concern for water utilities. This study considered five peatland vegetation types (Sphagnum spp., Calluna vulgaris, Molinea caerulea, peat soil and mixed litter) collected from the Exmoor National Park, UK where it is hypothesised that peat formation may be strongly affected by future changes to climate. A factorial experiment design to simulate climate was used, considering vegetation type, temperature and rainfall amount using a current baseline and predictions from the UKCP09 model. Gaseous fluxes of carbon were monitored over a two month period to quantify the effect on carbon mineralisation rates while 13C NMR analysis was employed to track which classes of compounds decayed preferentially. The DOM collected was characterised using UV and fluorescence techniques before being subject to standard drinking water treatment processes (coagulation/flocculation followed by chlorination). The effect of the experimental factors on DOM amenability to removal and propensity to form DBPs was then considered, with both trihalomethane (THM) and haloacetonitrile (HAN) DBP classes monitored. Initial results have shown a

  2. Feasibility study of underground energy storage using high-pressure, high-temperature water. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Dooley, J.L.; Frost, G.P.; Gore, L.A.; Hammond, R.P.; Rawson, D.L.; Ridgway, S.L.

    1977-01-01

    A technical, operational and economic feasibility study on the storage of energy as heated high pressure water in underground cavities that utilize the rock overburden for containment is presented. Handling peak load requirements of electric utility power networks is examined in some detail. The cavity is charged by heating water with surplus steaming capacity during periods of low power requirement. Later this hot water supplies steam to peaking turbines when high load demands must be met. This system can be applied to either new or existing power plants of nuclear or fossil fuel type. The round trip efficiency (into storage and back) is higher than any other system - over 90%. Capital costs are competitive and the environmental impact is quite benign. Detailed installation and design problems are studied and costs are estimated. The continental United States is examined for the most applicable geology. Formations favorable for these large cavities exist in widespread areas.

  3. Final LDRD report :ultraviolet water purification systems for rural environments and mobile applications.

    Energy Technology Data Exchange (ETDEWEB)

    Banas, Michael Anthony; Crawford, Mary Hagerott; Ruby, Douglas Scott; Ross, Michael P.; Nelson, Jeffrey Scott; Allerman, Andrew Alan; Boucher, Ray

    2005-11-01

    We present the results of a one year LDRD program that has focused on evaluating the use of newly developed deep ultraviolet LEDs in water purification. We describe our development efforts that have produced an LED-based water exposure set-up and enumerate the advances that have been made in deep UV LED performance throughout the project. The results of E. coli inactivation with 270-295 nm LEDs are presented along with an assessment of the potential for applying deep ultraviolet LED-based water purification to mobile point-of-use applications as well as to rural and international environments where the benefits of photovoltaic-powered systems can be realized.

  4. SEWAGE DECOMPOSITION IN AMBIENT WATER: INFLUENCE OF SOLARRADIATION AND BIOTIC INTERACTIONS ON MICROORGANISM COMMUNITIES AND BACTEROIDALES REAL-TIME QUANTITATIVE PCR MEASUREMENTS - poster

    Science.gov (United States)

    AIMS: Sewage and ambient water both consist of a highly complex array of bacteria and eukaryotic microbes. When these communities are mixed, solar radiation and biotic interactions (predation and competition) can influence pathogen decay based on experiments targeting indicator ...

  5. Sewage Decomposition in Ambient Water: Influence of Solarradiation and Biotic Interactions on Microorganism Communities and Bacteroidales Real-Time Quantitative PCR Measurements - poster/abstract

    Science.gov (United States)

    AIMS: Sewage and ambient water both consist of a highly complex array of bacteria and eukaryotic microbes. When these communities are mixed, solar radiation and biotic interactions (predation and competition) can influence pathogen decay based on experiments targeting indicator ...

  6. Solar heating and domestic hot water system installed at Kansas City, Fire Station, Kansas City, Missouri. Final report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-07-01

    This document is the final report of the solar energy heating and hot water system installed at the Kansas City Fire Station, Number 24, 2309 Hardesty Street, Kansas City, Missouri. The solar system was designed to provide 47 percent of the space heating, 8800 square feet area and 75 percent of the domestic hot water (DHW) load. The solar system consists of 2808 square feet of Solaron, model 2001, air, flat plate collector subsystem, a concrete box storage subsystem which contains 1428 cubic feet of 1/2 inch diameter pebbles weighing 71 1/2 tons, a DHW preheat tank, blowers, pumps, heat exchangers, air ducting, controls and associated plumbing. Two 120-gallon electric DHW heaters supply domestic hot water which is preheated by the solar system. Auxiliary space heating is provided by three electric heat pumps with electric resistance heaters and four 30-kilowatt electric unit heaters. There are six modes of system operation. This project is part of the Department of Energy PON-1 Solar Demonstration Program with DOE cost sharing $154,282 of the $174,372 solar system cost. The Final Design Review was held March 1977, the system became operational March 1979 and acceptance test was completed in September 1979.

  7. Final Technical Report: The Water-to-Wire (W2W) Project

    Energy Technology Data Exchange (ETDEWEB)

    Lissner, Daniel N. [Free Flow Power Corporation, Boston, MA (United States); Edward, Lovelace C. [Free Flow Power Corporation, Boston, MA (United States)

    2013-12-24

    The purpose of the Free Flow Power (FFP) Water-to-Wire Project (Project) was to evaluate and optimize the performance, environmental compatibility, and cost factors of FFP hydrokinetic turbines through design analyses and deployments in test flumes and riverine locations.

  8. Water quality criteria for colored smokes: Solvent Yellow 33, Final report. [Contains glossary

    Energy Technology Data Exchange (ETDEWEB)

    Davidson, K.A.; Hovatter, P.S.

    1987-11-01

    The available data on the environmental fate, aquatic toxicity, and mammalian toxicity of Solvent Yellow 33, a quinoline dye used in colored smoke grenades, were reviewed. The US Environmental Protection Agency (USEPA) guidelines were used in an attempt to generate water quality criteria for the protection of aquatic life and its use and of human health. 87 refs., 2 figs., 13 tabs.

  9. Real-time discriminatory sensors for water contamination events :LDRD 52595 final report.

    Energy Technology Data Exchange (ETDEWEB)

    Borek, Theodore Thaddeus III (; ); Carrejo-Simpkins, Kimberly; Wheeler, David Roger; Adkins, Douglas Ray; Robinson, Alex Lockwood; Irwin, Adriane Nadine; Lewis, Patrick Raymond; Goodin, Andrew M.; Shelmidine, Gregory J.; Dirk, Shawn M.; Chambers, William Clayton; Mowry, Curtis Dale (1722 Micro-Total-Analytical Systems); Showalter, Steven Kedrick

    2005-10-01

    The gas-phase {mu}ChemLab{trademark} developed by Sandia can detect volatile organics and semi-volatiles organics via gas phase sampling . The goal of this three year Laboratory Directed Research and Development (LDRD) project was to adapt the components and concepts used by the {mu}ChemLab{trademark} system towards the analysis of water-borne chemicals of current concern. In essence, interfacing the gas-phase {mu}ChemLab{trademark} with water to bring the significant prior investment of Sandia and the advantages of microfabrication and portable analysis to a whole new world of important analytes. These include both chemical weapons agents and their hydrolysis products and disinfection by-products such as Trihalomethanes (THMs) and haloacetic acids (HAAs). THMs and HAAs are currently regulated by EPA due to health issues, yet water utilities do not have rapid on-site methods of detection that would allow them to adjust their processes quickly; protecting consumers, meeting water quality standards, and obeying regulations more easily and with greater confidence. This report documents the results, unique hardware and devices, and methods designed during the project toward the goal stated above. It also presents and discusses the portable field system to measure THMs developed in the course of this project.

  10. SUPERCRITICAL WATER PARTIAL OXIDATION PHASE I - PILOT-SCALE TESTING / FEASIBILITY STUDIES FINAL REPORT

    Energy Technology Data Exchange (ETDEWEB)

    SPRITZER,M; HONG,G

    2005-01-01

    Under Cooperative Agreement No. DE-FC36-00GO10529 for the Department of Energy, General Atomics (GA) is developing Supercritical Water Partial Oxidation (SWPO) as a means of producing hydrogen from low-grade biomass and other waste feeds. The Phase I Pilot-scale Testing/Feasibility Studies have been successfully completed and the results of that effort are described in this report. The Key potential advantages of the SWPO process is the use of partial oxidation in-situ to rapidly heat the gasification medium, resulting in less char formation and improved hydrogen yield. Another major advantage is that the high-pressure, high-density aqueous environment is ideal for reaching and gasifying organics of all types. The high water content of the medium encourages formation of hydrogen and hydrogen-rich products and is especially compatible with high water content feeds such as biomass materials. The high water content of the medium is also effective for gasification of hydrogen-poor materials such as coal. A versatile pilot plant for exploring gasification in supercritical water has been established at GA's facilities in San Diego. The Phase I testing of the SWPO process with wood and ethanol mixtures demonstrated gasification efficiencies of about 90%, comparable to those found in prior laboratory-scale SCW gasification work carreid out at the University of Hawaii at Manoa (UHM) as well as other biomass gasification experience with conventional gasifiers. As in the prior work at UHM, a significant amount of the hydrogen found in the gas phase products is derived from the water/steam matrix. The studies at UHM utilized an indirectly heated gasifier with an acitvated carbon catalyst. In contrast, the GA studies utilized a directly heated gasifier without catalyst, plus a surrogate waste fuel. Attainment of comparable gasification efficiencies without catalysis is an important advancement for the GA process, and opens the way for efficient hydrogen production from low

  11. Treatment techniques for removing natural radionuclides from drinking water. Final report of the TENAWA project

    Energy Technology Data Exchange (ETDEWEB)

    Annanmaeki, M.; Turtiainen, T. [eds.

    2000-01-01

    TENAWA project (Treatment Techniques for Removing Natural Radionuclides from Drinking Water) was carried out on a cost-shared basic with the European Commission (CEC) under the supervision of Directorate-General XII, Radiation Protection Unit. TENAWA project was started because in several European countries ground water supplies may contain high amounts of natural radionuclides. During the project both laboratory and field research was performed in order to test the applicability of different equipment and techniques for removing natural radionuclides from drinking water. The measurable objectives of the project were: to give recommendations on the most suitable methods for removing radon ({sup 222}Rn), uranium ({sup 238,234}U), radium ({sup 226}, {sup 228}Ra), lead ({sup 210}Pb) and polonium ({sup 210}Po) from drinking water of different qualities (i.e. soft, hard, iron-, manganese- and humus-rich, acidic) to test commercially available equipment for its ability to remove radionuclides; to find new materials, absorbents and membranes effective in the removal of radionuclides and to issue guidelines for the treatment and disposal of radioactive wastes produced in water treatment. Radon could be removed efficiently (>95%) from domestic water supplies by both aeration and granular activated carbon (GAC) filtration. Defects in technical reliability or radon removal efficiency were observed in some aerators. The significant drawback of GAC filtration was the elevated gamma dose rates (up to 120 {mu}Sv/h) near the filter and the radioactivity of spent GAC. Aeration was found to be a suitable method for removing radon at waterworks, too. The removal efficiencies at waterworks where the aeration process was designed to remove radon or carbon dioxide were 67-99%. If the aeration process was properly designed, removal efficiencies higher than 95% could be attained. Uranium could best be removed (>95%) with strong basic anion exchange resins and radium by applying strong

  12. Green River Formation Water Flood Demonstration Project: Final report. [October 21, 1992-April, 30, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Deo, M.D. [Dept. of Chemical and Fuels Engineering, University of Utah, Salt Lake City (US); Dyer, J.E.; Lomax, J.D. [Inland Resources, Inc., Lomax Exploration Co., Salt Lake City, UT (US); Nielson, D.L.; Lutz, S.J. [Energy and Geoscience Institute at the University of Utah, Salt Lake City (US)

    1996-11-01

    The objectives were to understand the oil production mechanisms in the Monument Butte unit via reservoir characterization and reservoir simulations and to transfer the water flooding technology to similar units in the vicinity, particularly the Travis and the Boundary units. Comprehensive reservoir characterization and reservoir simulations of the Monument Butte, Travis and Boundary units were presented in the two published project yearly reports. The primary and the secondary production from the Monument Butte unit were typical of oil production from an undersaturated oil reservoir close to its bubble point. The water flood in the smaller Travis unit appeared affected by natural and possibly by large interconnecting hydraulic fractures. Water flooding the boundary unit was considered more complicated due to the presence of an oil water contact in one of the wells. The reservoir characterization activity in the project basically consisted of extraction and analysis of a full diameter c ore, Formation Micro Imaging logs from several wells and Magnetic Resonance Imaging logs from two wells. In addition, several side-wall cores were drilled and analyzed, oil samples from a number of wells were physically and chemically characterized (using gas chromatography), oil-water relative permeabilities were measured and pour points and cloud points of a few oil samples were determined. The reservoir modeling activity comprised of reservoir simulation of all the three units at different scales and near well-bore modeling of the wax precipitation effects. The reservoir characterization efforts identified new reservoirs in the Travis and the Boundary units. The reservoir simulation activities established the extent of pressurization of the sections of the reservoirs in the immediate vicinity of the Monument Butte unit. This resulted in a major expansion of the unit and the production from this expanded unit increased from about 300 barrels per day to about 2000 barrels per day.

  13. Final Report: Phase II Nevada Water Resources Data, Modeling, and Visualization (DMV) Center

    Energy Technology Data Exchange (ETDEWEB)

    Jackman, Thomas [Desert Research Institute; Minor, Timothy [Desert Research Institute; Pohll, Gregory [Desert Research Institute

    2013-07-22

    Water is unquestionably a critical resource throughout the United States. In the semi-arid west -- an area stressed by increase in human population and sprawl of the built environment -- water is the most important limiting resource. Crucially, science must understand factors that affect availability and distribution of water. To sustain growing consumptive demand, science needs to translate understanding into reliable and robust predictions of availability under weather conditions that could be average but might be extreme. These predictions are needed to support current and long-term planning. Similar to the role of weather forecast and climate prediction, water prediction over short and long temporal scales can contribute to resource strategy, governmental policy and municipal infrastructure decisions, which are arguably tied to the natural variability and unnatural change to climate. Change in seasonal and annual temperature, precipitation, snowmelt, and runoff affect the distribution of water over large temporal and spatial scales, which impact the risk of flooding and the groundwater recharge. Anthropogenic influences and impacts increase the complexity and urgency of the challenge. The goal of this project has been to develop a decision support framework of data acquisition, digital modeling, and 3D visualization. This integrated framework consists of tools for compiling, discovering and projecting our understanding of processes that control the availability and distribution of water. The framework is intended to support the analysis of the complex interactions between processes that affect water supply, from controlled availability to either scarcity or deluge. The developed framework enables DRI to promote excellence in water resource management, particularly within the Lake Tahoe basin. In principle, this framework could be replicated for other watersheds throughout the United States. Phase II of this project builds upon the research conducted during

  14. Water Treatment Using Advanced Ultraviolet Light Sources Final Report CRADA No. TC02089.0

    Energy Technology Data Exchange (ETDEWEB)

    Hoppes, W. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Oster, S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-08-15

    This was a collaborative effort between Lawrence Livermore National Security, LLC as manager and operator of Lawrence Livermore National Laboratory (LLNL) and Teknichal Services, LLC (TkS), to develop water treatment systems using advanced ultraviolet light sources. The Russian institutes involved with this project were The High Current Electronics Institute (HCEI) and Russian Institute of Technical Physics-Institute of Experimental Physics (VNIIEF). HCEI and VNIIEF developed and demonstrated the potential commercial viability of short-wavelength ultraviolet excimer lamps under a Thrust 1 Initiatives for Proliferation Prevention (IPP) Program. The goals of this collaboration were to demonstrate both the commercial viability of excilampbased water disinfection and achieve further substantial operational improvement in the lamps themselves; particularly in the area of energy efficiency.

  15. East Saint Louis and Vicinity, Illinois. Blue Waters Ditch Improvements. Final Environmental Statement.

    Science.gov (United States)

    1978-06-01

    2.2.3.2 Hunting 20 2.2.3.3 Endangered Species 21 2.2.4 PEST SPECIES 21 2.2.4.1 Insects 21 2.2.4.2 Arachnids 22 2.2.4.3 Rodents 22 2.3 SOCIO-CULTURA...and the presence of standing water. 2.2.4.2 Arachnids Two tick-vectored diseases, tularemia and Rocky Mountain spotted fever are known from this area

  16. Solar space and water heating system at Stanford University Central Food Services Building. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1980-05-01

    This active hydronic domestic hot water and space heating system was 840 ft/sup 2/ of single-glazed, liquid, flat plate collectors and 1550 gal heat storage tanks. The following are discussed: energy conservation, design philosophy, operation, acceptance testing, performance data, collector selection, bidding, costs, economics, problems, and recommendations. An operation and maintenance manual and as-built drawings are included in appendices. (MHR)

  17. Detection of Oil in Water Column, Final Report: Detection Prototype Tests

    Science.gov (United States)

    2014-07-01

    however, PSDs seemed to shift to larger droplets over time, which may be an indication of droplet coalescence over time and/or droplets scavenging... droplet size and density of the entrained oil. Both systems demonstrated the qualitative ability to detect and/or map oil suspended in the water...the oil plume, however, was not possible due to difficulties with correlating and validating the submerged plumes’ specific droplet size and

  18. Water quality criteria for colored smokes: 1,4-diamino-2,3-dihydroanthraquinone: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Davidson, K.A.; Hovatter, P.S.; Ross, R.H.

    1988-01-01

    The available data on the environmental fate, aquatic toxicity, and mammalian toxicity of 1,4-diamino-2,3-dihydroanthraquinone (DDA), and anthraquinone dye used in violet-colored smoke grenades, were reviewed. The US Environmental Protection Agency (USEPA) guidelines were used in an attempt to generate water quality criteria for the protection of human health and of aquatic life and its uses. DDA will readily oxidize to 1,4-diaminoanthraquinone (DAA) in air or during combustion of the smoke grenade. The dye is insoluble in water; however, no information is available concerning its transformation or transport in soil, water, and sediments. No data are available concerning the toxic effects of DDA in aquatic organisms; therefore, a Criterion maximum Concentration and a Criterion Continuous Concentration cannot be determined. Toxicity studies following the USEPA guidelines are recommended. DDA is a weak mutagen in the Salmonella Reversin Assay, but the combustion or oxidation product, DAA is a strong mutagen in the same test. Violet smoke is noncarcinogenic in the SENCAR Mouse Skin Tumor Bioassay. 63 refs., 1 fig., 3 tabs.

  19. Feasibility study: fuel cell cogeneration in a water pollution control facility. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1980-02-01

    A conceptual design study was conducted to investigate the technical and economic feasibility of a cogeneration fuel cell power plant operating in a large water pollution control facility. The fuel cell power plant would use methane-rich digester gas from the water pollution control facility as a fuel feedstock to provide electrical and thermal energy. Several design configurations were evaluated. These configurations were comprised of combinations of options for locating the fuel cell power plant at the site, electrically connecting it with the water pollution control facility, using the rejected power plant heat, supplying fuel to the power plant, and for ownership and operation. A configuration was selected which met institutional/regulatory constraints and provided a net cost savings to the industry and the electric utility. This volume of the report contains the appendices: (A) abbreviations and definitions, glossary; (B) 4.5 MWe utility demonstrator power plant study information; (C) rejected heat utilization; (D) availability; (E) conceptual design specifications; (F) details of the economic analysis; (G) detailed description of the selected configuration; and (H) fuel cell power plant penetration analysis. (WHK)

  20. Feasibility evaluation solar heated textile process water. Volume II. Appendices. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Hester, J. C.; Beard, J. N.; Robinson, G. F.; Harnett, R. M.

    1977-02-01

    The general objectives of this study are to determine the technical and economic feasibility of the use of solar energy for heating waters in the textile industry and to develop a plan for efforts beyond this feasibility study phase. Specific objectives include (1) determine the industry requirements for heated process water, (2) assess particular schemes and their economic impact, (3) study the total cost environment for solar water heating in this industry, and (4) recommend future experiments. This volume contains the appendices: (A) fiber distribution and end use data; (B) computer model description for textile plant energy balances; (C) computer model description to generate local solar potential; (D) computer model description for system synthesis and analysis; (E) computer model to determine pressure drop, flow distribution and plumbing components; (F) area requirement plots for various use rates, temperature levels, seasons, orientations and collector types for textile operations; (G) computer model description of economic variables for COSMO1 and COSMO2; (H) rate of return plots for various textile applications and energy cost scenerios; and (I) data base for efficiency curves for six collector types. (WHK)

  1. Feasibility study: fuel cell cogeneration in a water pollution control facility. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1980-02-01

    A conceptual design study was conducted to investigate the technical and economic feasibility of a cogeneration fuel cell power plant operating in a large water pollution control facility. In this particular application, the fuel cell power plant would use methane-rich digester gas from the water pollution control facility as a fuel feedstock to provide electrical and thermal energy. Several design configurations were evaluated. These configurations were comprised of combinations of options for locating the fuel cell power plant at the site, electrically connecting it with the water pollution control facility, using the rejected power plant heat, supplying fuel to the power plant, and for ownership and operation. A configuration was selected which met institutional/regulatory constraints and provided a net cost savings to the industry and the electric utility. The displacement of oil and coal resulting from the Bergen County Utilities Authority application was determined. A demonstration program based on the selected configuration was prepared to describe the scope of work, organization, schedules, and costs from preliminary design through actual tests and operation. The potential market for nationwide application of the concept was projected, along with the equivalent oil displacement resulting from estimated commercial application.

  2. Risk assessment for produced water discharges to Louisiana open bays. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Meinhold, A.F.; DePhillips, M.P.; Holtzman, S.

    1996-03-22

    The US Department of Energy (USDOE) has a program of research in the environmental aspects of oil and gas extraction. This sampling project will characterize the environmental impacts associated with the discharge of naturally occurring radioactive materials (NORM), metals and organics in produced water. This report is part of a series of studies of the health and ecological risks from discharges of produced water to the Gulf of Mexico, supported by the USDOE. These assessments are being coordinated with the field study, using the collected data to perform human health and ecological risk assessments. These assessments will provide input to regulators in the development of guidelines and permits, and to industry in the development and use of appropriate discharge practices. The initial human health and ecological risk assessments consist of conservative screening analyses meant to identify potentially important contaminants, and to eliminate others from further consideration. More quantitative assessments were done for contaminants identified, in the screening analysis, as being of potential concern. Section 2 gives an overview of human health and ecological risk assessment to help put the analyses presented here in perspective. Section 3 provides the hazard assessment portion of the risk assessment, and identifies the important receptors and pathways of concern. Section 3 also outlines the approach taken to the risk assessments presented in the rest of the report. The remaining sections (4 through 9) present the human health and ecological risk assessments for discharges of produced water to open bays in Louisiana.

  3. Wood decomposition as influenced by invertebrates.

    Science.gov (United States)

    Ulyshen, Michael D

    2016-02-01

    The diversity and habitat requirements of invertebrates associated with dead wood have been the subjects of hundreds of studies in recent years but we still know very little about the ecological or economic importance of these organisms. The purpose of this review is to examine whether, how and to what extent invertebrates affect wood decomposition in terrestrial ecosystems. Three broad conclusions can be reached from the available literature. First, wood decomposition is largely driven by microbial activity but invertebrates also play a significant role in both temperate and tropical environments. Primary mechanisms include enzymatic digestion (involving both endogenous enzymes and those produced by endo- and ectosymbionts), substrate alteration (tunnelling and fragmentation), biotic interactions and nitrogen fertilization (i.e. promoting nitrogen fixation by endosymbiotic and free-living bacteria). Second, the effects of individual invertebrate taxa or functional groups can be accelerative or inhibitory but the cumulative effect of the entire community is generally to accelerate wood decomposition, at least during the early stages of the process (most studies are limited to the first 2-3 years). Although methodological differences and design limitations preclude meta-analysis, studies aimed at quantifying the contributions of invertebrates to wood decomposition commonly attribute 10-20% of wood loss to these organisms. Finally, some taxa appear to be particularly influential with respect to promoting wood decomposition. These include large wood-boring beetles (Coleoptera) and termites (Termitoidae), especially fungus-farming macrotermitines. The presence or absence of these species may be more consequential than species richness and the influence of invertebrates is likely to vary biogeographically. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.

  4. Thermal decomposition of illite

    Directory of Open Access Journals (Sweden)

    Araújo José Humberto de

    2004-01-01

    Full Text Available The effect of heat treatment on illite in air at temperatures ranging from 750 to 1150 °C was studied using the Mössbauer effect in 57Fe. The dependence of the Mössbauer parameters and relative percentage of the radiation absorption area was measured as a function of the firing temperature. The onset of thermal structural decomposition occurred at 800 °C. With rising temperature, the formation of hematite (Fe2O3 increased at the expense of the silicate mineral.

  5. Clustering via Kernel Decomposition

    DEFF Research Database (Denmark)

    Have, Anna Szynkowiak; Girolami, Mark A.; Larsen, Jan

    2006-01-01

    Methods for spectral clustering have been proposed recently which rely on the eigenvalue decomposition of an affinity matrix. In this work it is proposed that the affinity matrix is created based on the elements of a non-parametric density estimator. This matrix is then decomposed to obtain...... posterior probabilities of class membership using an appropriate form of nonnegative matrix factorization. The troublesome selection of hyperparameters such as kernel width and number of clusters can be obtained using standard cross-validation methods as is demonstrated on a number of diverse data sets....

  6. Mode decomposition evolution equations.

    Science.gov (United States)

    Wang, Yang; Wei, Guo-Wei; Yang, Siyang

    2012-03-01

    Partial differential equation (PDE) based methods have become some of the most powerful tools for exploring the fundamental problems in signal processing, image processing, computer vision, machine vision and artificial intelligence in the past two decades. The advantages of PDE based approaches are that they can be made fully automatic, robust for the analysis of images, videos and high dimensional data. A fundamental question is whether one can use PDEs to perform all the basic tasks in the image processing. If one can devise PDEs to perform full-scale mode decomposition for signals and images, the modes thus generated would be very useful for secondary processing to meet the needs in various types of signal and image processing. Despite of great progress in PDE based image analysis in the past two decades, the basic roles of PDEs in image/signal analysis are only limited to PDE based low-pass filters, and their applications to noise removal, edge detection, segmentation, etc. At present, it is not clear how to construct PDE based methods for full-scale mode decomposition. The above-mentioned limitation of most current PDE based image/signal processing methods is addressed in the proposed work, in which we introduce a family of mode decomposition evolution equations (MoDEEs) for a vast variety of applications. The MoDEEs are constructed as an extension of a PDE based high-pass filter (Europhys. Lett., 59(6): 814, 2002) by using arbitrarily high order PDE based low-pass filters introduced by Wei (IEEE Signal Process. Lett., 6(7): 165, 1999). The use of arbitrarily high order PDEs is essential to the frequency localization in the mode decomposition. Similar to the wavelet transform, the present MoDEEs have a controllable time-frequency localization and allow a perfect reconstruction of the original function. Therefore, the MoDEE operation is also called a PDE transform. However, modes generated from the present approach are in the spatial or time domain and can be

  7. Final Technical Report: Effects of Changing Water and Nitrogen Inputs on a Mojave Desert Ecosystem

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Stanley D. [University of Nevada, Las Vegas; Nowak, Robert S. [University of Nevada, Reno

    2007-11-30

    Questions addressed under this grant shared the common hypothesis that plant and ecosystem performance will positively respond to the augmentation of the most limiting resources to plant growth in the Mojave Desert, e.g., water and nitrogen. Specific hypothesis include (1) increased summer rainfall will significantly increase plant production thorugh an alleviation of moisture stress in the dry summer months, (2) N-deposition will increase plan production in this N-limited system, particularly in wet years or in concert with added summer rain, and (3) biological crust disturbance will gradually decrease bio-available N, with concomitant long-term reductions in photosynthesis and ANPP. Individual plan and ecosystem responses to global change may be regulated by biogeochemical processes and natural weather variability, and changes in plant and ecosystem processes may occur rapidly, may occur only after a time lag, or may not occur at all. During the first PER grant period, we observed changes in plant and ecosystem processes that would fall under each of these time-response intervals: plant and ecosystem processes responded rapidly to added summer rain, whereas most processes responded slowly or in a lag fashion to N-deposition and with no significant response to crust disturbance. Therefore, the primary objectives of this renewal grant were to: (1) continue ongoing measurements of soil and plant parameters that assess primary treatment responses; (2) address the potential heterogeneity of soil properties and (3) initiate a new suite of measurements that will provide data necessary for scaling/modeling of whole-plot to ecosystem-level responses. Our experimental approach included soil plan-water interactions using TDR, neutron probe, and miniaturized soil matric potential and moisture sensors, plant ecophysiological and productivity responses to water and nitrogen treatments and remote sensing methodologies deployed on a radio control platform.

  8. Final Report: Water-Based Neutron Detector Technology for Material Characterization Well Counters

    Energy Technology Data Exchange (ETDEWEB)

    Dazeley, Steven [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Asghari, Alexandra [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Bernstein, Adam [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Bowden, Nathaniel [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Mozin, Vladimir [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2014-01-09

    Coincidence counting of neutron pairs is an effective way to non-destructively determine the amount of fissile material within a sample of special nuclear material (SNM) [1]. Multiplicity counting is more versatile and precise, but also more demanding, requiring the detection of three or more neutrons per single fission event. Detecting a triple coincidence of neutrons depends on the 3rd power of the detection efficiency and so on. The detection efficiency quickly becomes the critical determining factor in evaluating the utility of a particular neutron multiplicity detection technique. The purpose of this feasibility study was to characterize the performance of an LLNLdesigned water Cherenkov based Multiplicity Well counter.

  9. Analysis of the impact of energy crops on water quality. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Hatfield, J.L.; Gale, W.J.

    1993-04-16

    This report consists of two separate papers. The first, ``The potential use of agricultural simulation models in predicting the fate of nitrogen and pesticides applied to switchgrass and poplars,`` describes three models (CREAMS, GLEAMS, and EPIC) for the evaluation of the relationships which determine water quality in the agroecosystem. Case studies are presented which demonstrate the utility of these models in evaluating the potential impact of alternative crop management practices. The second paper, ``Energy crops as part of a sustainable landscape,`` discusses concepts of landscape management and the linkage among agricultural practices and environmental quality.

  10. Final Report - Energy Reduction and Advanced Water Removal via Membrane Solvent Extraction Technology

    Energy Technology Data Exchange (ETDEWEB)

    Reed, John; Fanselow, Dan; Abbas, Charles; Sammons, Rhea; Kinchin, Christopher

    2014-08-06

    3M and Archer Daniels Midland (ADM) collaborated with the U.S. Department of Energy (DOE) to develop and demonstrate a novel membrane solvent extraction (MSE) process that can substantially reduce energy and water consumption in ethanol production, and accelerate the fermentation process. A cross-flow membrane module was developed, using porous membrane manufactured by 3M. A pilot process was developed that integrates fermentation, MSE and vacuum distillation. Extended experiments of 48-72 hours each were conducted to develop the process, verify its performance and begin establishing commercial viability.

  11. Water-molten uranium hazard analysis. Final report. LATA report No. 92

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, P.S.; Rigdon, L.D.; Donham, B.J.

    1979-08-21

    The hazard potential of cooling water leakage into the crucible of molten uranium in the MARS laser isotope separation experiment was investigated. A vapor-phase explosion is highly unlikely in any of the scenarios defined for MARS. For the operating basis accident, the gas pressure transient experienced by the vessel wall is 544 psia peak with a duration of 200 ..mu..s, and the peak hoop stress is about 20,000 psi in a 0.5-in. wall. Design and procedural recommendations are given for reducing the hazard. (DLC)

  12. SUPERCRITICAL WATER PARTIAL OXIDATION PHASE I - PILOT-SCALE TESTING/FEASIBILTY SUDIES FINAL REPORT

    Energy Technology Data Exchange (ETDEWEB)

    SPRITZER.M; HONG,G

    2005-01-01

    General Atomics (GA) is developing Supercritical Water Partial Oxidation (SWPO) as a means of producing hydrogen from low-grade biomass and other waste feeds. The Phase I Pilot-scale Testing/Feasibility Studies have been successfully completed and the results of that effort are described in this report. The key potential advantage of the SWPO process is the use of partial oxidation in-situ to rapidly heat the gasification medium, resulting in less char formation and improved hydrogen yield. Another major advantage is that the high-pressure, high-density aqueous environment is ideal for reacting and gasifying organics of all types. The high water content of the medium encourages formation of hydrogen and hydrogen-rich products and is especially compatible with high water content feeds such as biomass materials. The high water content of the medium is also effective for gasification of hydrogen-poor materials such as coal. A versatile pilot plant for exploring gasification in supercritical water has been established at GA's facilities in San Diego. The Phase I testing of the SWPO process with wood and ethanol mixtures demonstrated gasification efficiencies of about 90%, comparable to those found in prior laboratory-scale SCW gasification work carried out at the University of Hawaii at Manoa (UHM), as well as other biomass gasification experience with conventional gasifiers. As in the prior work at UHM, a significant amount of the hydrogen found in the gas phase products is derived from the water/steam matrix. The studies at UHM utilized an indirectly heated gasifier with an activated carbon catalyst. In contrast, the GA studies utilized a directly heated gasifier without catalyst, plus a surrogate waste fuel. Attainment of comparable gasification efficiencies without catalysis is an important advancement for the GA process, and opens the way for efficient hydrogen production from low-value, dirty feed materials. The Phase I results indicate that a practical

  13. Environmental impact of coal ash on tributary streams and nearshore water or Lake Erie. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Wood, K.G.

    1978-08-01

    The environmental impact of coal ash disposal at a landfill site in north-central Chautauqua County, New York was studied from June 1975 through July 1977. Water samples taken from wells, ponds, and streams at 67 sites were analyzed for specific conductance, pH, alkalinity, arsenic, calcium, cadmium, chloride, chromium, copper, iron, magnesium, manganese, potassium, selenium, sodium, sulfate and zinc. Evidence suggests that ponds at the landfill were high in Ca, Fe, Mg, Mn, and SO/sub 4/ compared to control pands. A stream adjacent to the site contained greater Mn (207 ug/1) and SO/sub 4/ (229 ppm) than control streams. Shallow alkaline test wells in the landfill had elevated As, Ca, and Se. Acid-neutral test wells had elevated As, Ca, Cr, Mg and Mn. Household wells in the vicinity of the landfill showed no evident contamination from the landfill. Average iron concentrations in the biota were tripled, and manganese concentrations doubled in biota affected by the coal ash dump. However, any effects of the disposal area on the distribution of the biota could not be separated from effects of varying environment factors such as water movements, substrate composition and food availability. No harmful effects could be demonstrated on the biota in the creek which flowed past the disposal area.

  14. Effects of Water Levels on Productivity of Canada Geese in the Northern Flathead Valley, Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Casey, Daniel

    1987-08-01

    The Fish and Wildlife Program of the Northwest Power Planning Council calls for wildlife mitigation at hydroelectric projects in the Columbia River System. Beginning April, 1984, the Bonneville Power Administration funded a study of the effects of the operation of Hungry Horse and Kerr Dams on the western Canada goose (Branta canadensis moffittii) inhabitating the Flathead Valley of northwest Montana. The study was conducted by personnel of the Montana Department of Fish, Wildlife and Parks (MDFWP), to: (1) identify the size and productivity of this population, (2) identify current habitat conditions and losses of nesting and brood-rearing areas, (3) describe the effects of water level fluctuations on nesting and brood-rearing, and (4) identify mitigation alternatives to offset these effects. Annual pair and nest surveys were used to document the location and fate of goose nests. The number of known nesting attempts varied from 44 in 1984 to 108 in 1985, to 136 in 1986 and 134 in 1987. Fifty-four percent of the annual meeting nesting effort took place on elevated sites which were secure from the flooding and dewatering effects of fluctuating water levels. An average of 15 nests were found on stumps in the remnant Flathead River delta, however, an area strongly influenced by the operation of Kerr Dam. Annual nest losses to flooding and predation attributable to fluctuations caused by the dam were recorded. 53 refs., 24 figs., 35 tabs.

  15. Solar heating, cooling, and hot water systems installed at Richland, Washington. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1979-06-01

    Project Sunburst is a demonstration system for solar space heating and cooling and solar hot water heating for a 14,400 square foot office building in Richland, Washington. The project is part of the US Department of Energy's solar demonstration program, and became operational in April 1978. The solar system uses 6,000 square feet of flat-plate liquid collectors in a closed loop to deliver solar energy through a liquid--liquid heat exchanger to the building heat-pump duct work or 9,000-gallon thermal energy storage tank. A 25-ton Arkla solar-driven absorption chiller provides the cooling, in conjunction with a 2,000 gallon chilled water storage tank and reflective ponds on three sides of the building to reject surplus heat. A near-by building is essentially identical except for having conventional heat-pump heating and cooling, and can serve as an experimental control. An on-going public relations program has been provided from the beginning of the program and has resulted in numerous visitors and tour groups.

  16. Combustion of ultrafine coal/water mixtures and their application in gas turbines: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Toqan, M.A.; Srinivasachar, S.; Staudt, J.; Varela, F.; Beer, J.M.

    1987-10-01

    The feasibility of using coal-water fuels (CWF) in gas turbine combustors has been demonstrated in recent pilot plant experiments. The demands of burning coal-water fuels with high flame stability, complete combustion, low NO/sub x/ emission and a resulting fly ash particle size that will not erode turbine blades represent a significant challenge to combustion scientists and engineers. The satisfactory solution of these problems requires that the variation of the structure of CWF flames, i.e., the fields of flow, temperature and chemical species concentration in the flame, with operating conditions is known. Detailed in-flame measurements are difficult at elevated pressures and it has been proposed to carry out such experiments at atmospheric pressure and interpret the data by means of models for gas turbine combustor conditions. The research was carried out in five sequential tasks: cold flow studies; studies of conventional fine-grind CWF; combustion studies with ultrafine CWF fuel; reduction of NO/sub x/ emission by staged combustion; and data interpretation-ignition and radiation aspects. 37 refs., 61 figs., 9 tabs.

  17. Final Report: Risk assessment for produced water discharges to Louisiana open bays

    Energy Technology Data Exchange (ETDEWEB)

    Meinhold, A.F.; DePhillips, M.P.; Holtzman, S.

    1996-03-01

    Potential human health and environmental impacts from discharges of produced water to the Gulf of Mexico are of concern to regulators at the State and Federal levels, the public, environmental interest groups and industry. Current and proposed regulations require a zero discharge limit for coastal facilities, based primarily on studies in low energy, poorly flushed environments. However, produced water discharges in coastal Louisiana include a number of open bay sites, where potential human health and environmental impacts are likely to be smaller than those demonstrated for low energy canal environments, but greater than the minimal impacts associated with offshore discharges. Additional data and assessments are needed to support risk managers at the State and Federal levels in the development of regulations that protect human health and the environment without unnecessary cost to the economic welfare of the region and the nation. This project supports the Natural Gas and Oil Initiative objectives to: (1) improve coordination on environmental research; (2) streamline State and Federal regulation; (3) enhance State, and Federal regulatory decision making capability; (4) enhance dialogue through industry/government/public partnerships; and (5) work with States and Native American Tribes.

  18. A decomposition approach for optimal management of groundwater resources and irrigated agriculture in arid coastal regions

    Science.gov (United States)

    Grundmann, Jens; Schütze, Niels; Heck, Vera

    2013-04-01

    For ensuring an optimal sustainable water resources management in arid coastal environments, we develop a new simulation based integrated water management system. It aims at achieving best possible solutions for groundwater withdrawals for agricultural and municipal water use including saline water management together with a substantial increase of the water use efficiency in irrigated agriculture. To achieve a robust and fast operation of the management system, it unites process modelling with artificial intelligence tools and evolutionary optimisation techniques for managing both, water quality and water quantity of a strongly coupled groundwater-agriculture system. However, such systems are characterized by a large number of decision variables if abstraction schemes, cropping patterns and cultivated acreages are optimised simultaneously for multiple years. Therefore, we apply the principle of decomposition to separate the original large optimisation problem into smaller, independent optimisation problems which finally allow for a faster and more reliable solution. At first, within an inner optimisation loop, cropping patterns and cultivated acreages are optimised to achieve a most profitable agricultural production for a given amount of water. Thereby, the behaviour of farms is described by crop-water-production functions which can be derived analytically. Secondly, within an outer optimisation loop, a simulation based optimisation is performed to find optimal groundwater abstraction pattern by coupling an evolutionary optimisation algorithm with an artificial neural network for modelling the aquifer response, inclusive the seawater interface. We demonstrate the decomposition approach by an exemplary application of the south Batinah region in the Sultanate of Oman which is affected by saltwater intrusion into a coastal aquifer system due to excessive groundwater withdrawal for irrigated agriculture. We show the effectiveness of our methodology for the evaluation

  19. Final Technical Report: Effects of Changing Water and Nitrogen Inputs on a Mojave Desert Ecosystem

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Stanley, D.; Nowak, Robert S.; Fenstermaker, Lynn, F.; Young, Michael,H.

    2007-11-30

    In order to anticipate the effects of global change on ecosystem function, it is essential that predictive relationships be established linking ecosystem function to global change scenarios. The Mojave Desert is of considerable interest with respect to global change. It contains the driest habitats in North America, and thus most closely approximates the world’s great arid deserts. In order to examine the effects of climate and land use changes, in 2001 we established a long-term manipulative global change experiment, called the Mojave Global Change Facility. Manipulations in this study include the potential effects of (1) increased summer rainfall (75 mm over three discrete 25 mm events), (2) increased nitrogen deposition (10 and 40 kg ha-1), and (3) the disturbance of biological N-fixing crusts . Questions addressed under this grant shared the common hypothesis that plant and ecosystem performance will positively respond to the augmentation of the most limiting resources to plant growth in the Mojave Desert, e.g., water and nitrogen. Specific hypotheses include (1) increased summer rainfall will significantly increase plant production through an alleviation of moisture stress in the dry summer months, (2) N-deposition will increase plant production in this N-limited system, particularly in wet years or in concert with added summer rain, and (3) biological crust disturbance will gradually decrease bio-available N, with concomitant long-term reductions in photosynthesis and ANPP. Individual plant and ecosystem responses to global change may be regulated by biogeochemical processes and natural weather variability, and changes in plant and ecosystem processes may occur rapidly, may occur only after a time lag, or may not occur at all. During the first PER grant period, we observed changes in plant and ecosystem processes that would fall under each of these time-response intervals: plant and ecosystem processes responded rapidly to added summer rain, whereas most

  20. Iterative Decomposition of Water and Fat with Echo Asymmetric and Least—Squares Estimation (IDEAL (Reeder et al. 2005 Automated Spine Survey Iterative Scan Technique (ASSIST (Weiss et al. 2006

    Directory of Open Access Journals (Sweden)

    Kenneth L. Weiss

    2008-01-01

    Full Text Available Background and Purpose: Multi-parametric MRI of the entire spine is technologist-dependent, time consuming, and often limited by inhomogeneous fat suppression. We tested a technique to provide rapid automated total spine MRI screening with improved tissue contrast through optimized fat-water separation.Methods: The entire spine was auto-imaged in two contiguous 35 cm field of view (FOV sagittal stations, utilizing out-of-phase fast gradient echo (FGRE and T1 and/or T2 weighted fast spin echo (FSE IDEAL (Iterative Decomposition of Water and Fat with Echo Asymmetric and Least-squares Estimation sequences. 18 subjects were studied, one twice at 3.0T (pre and post contrast and one at both 1.5 T and 3.0T for a total of 20 spine examinations (8 at 1.5 T and 12 at 3.0T. Images were independently evaluated by two neuroradiologists and run through Automated Spine Survey Iterative Scan Technique (ASSIST analysis software for automated vertebral numbering.Results: In all 20 total spine studies, neuroradiologist and computer ASSIST labeling were concordant. In all cases, IDEAL provided uniform fat and water separation throughout the entire 70 cm FOV imaged. Two subjects demonstrated breast metastases and one had a large presumptive schwannoma. 14 subjects demonstrated degenerative disc disease with associated Modic Type I or II changes at one or more levels. FGRE ASSIST afforded subminute submillimeter in-plane resolution of the entire spine with high contrast between discs and vertebrae at both 1.5 and 3.0T. Marrow signal abnormalities could be particularly well characterized with IDEAL derived images and parametric maps.Conclusion: IDEAL ASSIST is a promising MRI technique affording a rapid automated high resolution, high contrast survey of the entire spine with optimized tissue characterization.

  1. Biological processes in the water column of the South Atlantic Bight: Zooplankton responses. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Paffenhofer, G.A.

    1992-09-25

    This study sought to determine and understand the major processes governing the abundance, distribution, composition and eventual fate of zooplankton on the southeastern shelf of the US in relation to water circulation. Over much of the shelf circulation is dominated by the Gulf Stream and/or atmospheric forcing. Most of our studies concentrated on processes on the middle and outer shelf. On the latter, pronounced biological production occurs year-round at frequent intervals and is due to Gulf Stream eddies which move by at an average frequency of one every week. These eddies are rich in nutrients which, when upwelled into the euphoric zone, lead to pronounced primary production which then triggers zooplankton production.

  2. Cyclone reburn using coal-water fuel: Pilot-scale development and testing. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Eckhart, C.F.; DeVault, R.F.

    1991-10-01

    There is an ongoing effort to develop retrofit technologies capable of converting oil- and/or gas-fired boilers to coal combustion. The objective of this project is to demonstrate the technical feasibility of an improved portion of a previously developed retrofit system designed for the purpose of converting oil/gas boilers. This improvement would almost entirely eliminate the use of premium fuels, thereby significantly increasing the economical attractiveness of the system. Specifically, the goals in this program were to replace natural gas as a reburning fuel with coal-water fuel (CWF). The advantages of such a system include: (1) increased return on investment (ROI) for conversions; (2) nearly complete elimination of premium oil or gas fuel; (3) a more integrated approach to the conversion of oil- or gas-designed boilers to CWF.

  3. Final report for the Light Water Breeder Reactor proof-of-breeding analytical support project

    Energy Technology Data Exchange (ETDEWEB)

    Graczyk, D.G.; Hoh, J.C.; Martino, F.J.; Nelson, R.E.; Osudar, J.; Levitz, N.M.

    1987-05-01

    The technology of breeding /sup 233/U from /sup 232/Th in a light water reactor is being developed and evaluated by the Westinghouse Bettis Atomic Power Laboratory (BAPL) through operation and examination of the Shippingport Light Water Breeder Reactor (LWBR). Bettis is determining the end-of-life (EOL) inventory of fissile uranium in the LWBR core by nondestructive assay of a statistical sample comprising approximately 500 EOL fuel rods. This determination is being made with an irradiated-fuel assay gauge based on neutron interrogation and detection of delayed neutrons from each rod. The EOL fissile inventory will be compared with the beginning-of-life fissile loading of the LWBR to determine the extent of breeding. In support of the BAPL proof-of-breeding (POB) effort, Argonne National Laboratory (ANL) carried out destructive physical, chemical, and radiometric analyses on 17 EOL LWBR fuel rods that were previously assayed with the nondestructive gauge. The ANL work included measurements on the intact rods; shearing of the rods into pre-designated contiguous segments; separate dissolution of each of the more than 150 segments; and analysis of the dissolver solutions to determine each segment's uranium content, uranium isotopic composition, and loading of selected fission products. This report describes the facilities in which this work was carried out, details operations involved in processing each rod, and presents a comprehensive discussion of uncertainties associated with each result of the ANL measurements. Most operations were carried out remotely in shielded cells. Automated equipment and procedures, controlled by a computer system, provided error-free data acquisition and processing, as well as full replication of operations with each rod. Despite difficulties that arose during processing of a few rod segments, the ANL destructive-assay results satisfied the demanding needs of the parent LWBR-POB program.

  4. Water quality criteria for 2,4,6-trinitrotoluene (TNT): Final report

    Energy Technology Data Exchange (ETDEWEB)

    Ryon, M.G.

    1987-08-01

    Studies of the acute toxicity of TNT to aquatic organisms indicate that LC/sub 50/ values range from 5.2 to 27.0 mg/L for invertebrates in 48-hr static tests, and from 2.0 to 3.7 mg/L for fish in 96-hr flow-through tests. TNT is absorbed by both humans and test animals through the skin, by ingestion, and by inhalation. Following oral absorption, /sup 14/C-TNT is found at highest levels in the GI tract, liver, kidneys, and blood. The liver is the site for metabolic and detoxification activity. The primary effects of occupational exposure to TNT are jaundice with toxic hepatic and/or aplastic anemia that can be fetal. Significant effects on the hematological system occurred at mean exposure levels of 0.2 to 7.5 mg/m/sup 3/. Evaluations of oral TNT toxicity were reported for 90-day exposures of dogs, mice, and rats. The effects for all three species were similar and included depressed weight gain, mild to moderate anemia, enlarged livers and spleens, some testicular atrophy, and hemosiderosis of the spleen. Carcinogenicity data were limited to a 2-yr study of rats which indicated hyperplasia and carcinoma of the urinary bladder in females at the highest dose (50 mg/kg/day). Standards for TNT occupational exposures have been recommended by OSHA (TLV of 1.5 mg/m/sup 3/), US Army (0.5 mg/m/sup 3/), and ACGIH (TLV of 0.5 mg/m/sup 3/ and STEL of 0.3 mg/m/sup 3/). Drinking water limits of 0.03 to 0.05 mg/L were recommended by the US Army and Navy. Available data for calculating water quality criteria were insufficient to meet all the USEPA guideline requirements. However, a reasonable estimate of the criterion maximum concentration is 557 ..mu..g/L. 54 refs., 3 figs., 31 tabs.

  5. Perspectives on Pentaerythritol Tetranitrate (PETN) Decomposition

    Energy Technology Data Exchange (ETDEWEB)

    Chambers, D; Brackett, C; Sparkman, D O

    2002-07-01

    This report evaluates the large body of work involving the decomposition of PETN and identifies the major decomposition routes and byproducts. From these studies it becomes apparent that the PETN decomposition mechanisms and the resulting byproducts are primarily determined by the chemical environment. In the absence of water, PETN can decompose through the scission of the O-NO{sup 2} bond resulting in the formation of an alkoxy radical and NO{sub 2}. Because of the relatively high reactivity of both these initial byproducts, they are believed to drive a number of autocatalytic reactions eventually forming (NO{sub 2}OCH{sub 2}){sub 3}CCHO, (NO{sub 2}OCH{sub 2}){sub 2}C=CHONO{sub 2}, NO{sub 2}OCH=C=CHONO{sub 2}, (NO{sub 2}OCH{sub 2}){sub 3}C-NO{sub 2}, (NO{sub 2}OCH{sub 2}){sub 2}C(NO{sub 2}){sub 2}, NO{sub 2}OCH{sub 2}C(NO{sub 2}){sub 3}, and C(NO{sub 2}){sub 4} as well as polymer-like species such as di-PEHN and tri-PEON. Surprisingly, the products of many of these proposed autocatalytic reactions have never been analytically validated. Conversely, in the presence of water, PETN has been shown to decompose primarily to mono, di, and tri nitrates of pentaerythritol.

  6. Direct utilization of geothermal energy for space and water heating at Marlin, Texas. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Conover, M.F.; Green, T.F.; Keeney, R.C.; Ellis, P.F. II; Davis, R.J.; Wallace, R.C.; Blood, F.B.

    1983-05-01

    The Torbett-Hutchings-Smith Memorial Hospital geothermal heating project, which is one of nineteen direct-use geothermal projects funded principally by DOE, is documented. The five-year project encompassed a broad range of technical, institutional, and economic activities including: resource and environmental assessments; well drilling and completion; system design, construction, and monitoring; economic analyses; public awareness programs; materials testing; and environmental monitoring. Some of the project conclusions are that: (1) the 155/sup 0/F Central Texas geothermal resource can support additional geothermal development; (2) private-sector economic incentives currently exist, especially for profit-making organizations, to develop and use this geothermal resource; (3) potential uses for this geothermal resource include water and space heating, poultry dressing, natural cheese making, fruit and vegetable dehydrating, soft-drink bottling, synthetic-rubber manufacturing, and furniture manufacturing; (4) high maintenance costs arising from the geofluid's scaling and corrosion tendencies can be avoided through proper analysis and design; (5) a production system which uses a variable-frequency drive system to control production rate is an attractive means of conserving parasitic pumping power, controlling production rate to match heating demand, conserving the geothermal resource, and minimizing environmental impacts.

  7. Response of rupture discs to sodium-water reaction pulses. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Cagliostro, D.J.; Desmond, T.P.; Florence, A.L.

    1980-02-01

    A 1/7-scale model of a double rupture disc pressure relief device, designed for the intermediate heat transfer system of a liquid metal fast breeder reactor, was subjected to incident pressure pulses that simulated various sodium-water reaction pulses. General features of the pulses generated were an initial rise in pressure that lasted from 1 to 2 ms followed by a slow decrease in pressure that lasted for more than 50 ms. Pulses with nominal maximum pressures of 50, 100, 150, 200, 400, 600, and 800 psi were generated and transmitted along the pipe to load the rupture discs. The hydrostatic collapse pressure of the spherical cap of the rupture disc, determined by test in the same apparatus, was 250 psi. It is concluded that: (1) incident pressures must exceed half the static collapse pressure to cause rupture and so activate the relief system; and (2) incident pressures above the static collapse pressure result in reflected pressures that are less than the incident pressures.

  8. Supercritical water oxidation of colored smoke, dye, and pyrotechnic compositions. Final report: Pilot plant conceptual design

    Energy Technology Data Exchange (ETDEWEB)

    LaJeunesse, C.A.; Chan, Jennifer P.; Raber, T.N.; Macmillan, D.C.; Rice, S.F.; Tschritter, K.L.

    1993-11-01

    The existing demilitarization stockpile contains large quantities of colored smoke, spotting dye, and pyrotechnic munitions. For many years, these munitions have been stored in magazines at locations within the continental United States awaiting completion of the life-cycle. The open air burning of these munitions has been shown to produce toxic gases that are detrimental to human health and harmful to the environment. Prior efforts to incinerate these compositions have also produced toxic emissions and have been unsuccessful. Supercritical water oxidation (SCWO) is a rapidly developing hazardous waste treatment method that can be an alternative to incineration for many types of wastes. The primary advantage SCWO affords for the treatment of this selected set of obsolete munitions is that toxic gas and particulate emissions will not occur as part of the effluent stream. Sandia is currently designing a SCWO reactor for the US Army Armament Research, Development & Engineering Center (ARDEC) to destroy colored smoke, spotting dye, and pyrotechnic munitions. This report summarizes the design status of the ARDEC reactor. Process and equipment operation parameters, process flow equations or mass balances, and utility requirements for six wastes of interest are developed in this report. Two conceptual designs are also developed with all process and instrumentation detailed.

  9. Ocean thermal energy conversion cold water pipe preliminary design project. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1979-11-20

    As part of a DOE goal to develop one or more OTEC Modular Experiment Plants, TRW performed designs, analyses, and evaluations of cold water pipe (CWP) concepts for NOAA. After reviewing the results of the CWP concept selection phase NOAA/DOE selected three concepts for a baseline design: (1) a FRP CWP of sandwich wall construction suspended from the Applied Physics Laboratory/John Hopkins University (APL/JHU) barge at a site 200 miles east of the coast of Brazil using a horizontal deployment scheme (this is TRW's preferred approach); (2) an elastomer CWP suspended from the APL/JHU barge off the southeast coast of Puerto Rico using either a horizontal or vertical deployment scheme; and (3) a polyethylene CWP (single or multiple pipe) suspended from the Gibbs and Cox spar at the Puerto Rico site using a horizontal deployment scheme. TRW has developed a baseline design for each of these configurations. Detailed designs and analyses for the FRP, polyethylene, and elastomer concepts, respectively, are described. A discussion of fabrication plans and processes, schedules for mobilization of facilities and equipment, installation plans, and cost breakdown are given for each concept. (WHK)

  10. Environmentally-assisted cracking in austenitic light water reactor structural materials. Final report of the KORA-I project

    Energy Technology Data Exchange (ETDEWEB)

    Seifert, H.-P.; Ritter, S

    2009-03-15

    The following document is the final report of the KORA-I project, which was performed at the Paul Scherrer Institute (PSI) between 2006 and 2008 and was funded by the Swiss Nuclear Safety Inspectorate (ENSI). The three sub-projects of KORA-I covered the experimental characterisation of the effect of the reactor coolant environment on fatigue initiation and crack growth in austenitic stainless steels under boiling and pressurised water reactor conditions, the experimental evaluation of the potential and limits of the electrochemical noise measurement technique for the early detection of stress corrosion cracking initiation in austenitic stainless steels under boiling water reactor/normal water chemistry conditions, as well as the characterisation of the stress corrosion crack growth behaviour in the fusion line region of an Alloy 182-low-alloy reactor pressure vessel steel dissimilar metal weld. The main scientific results and major conclusions of the three sub-projects are discussed in three independent parts of this report. (author)

  11. Decomposition of dioxin analogues and ablation study for carbon nanotube

    Energy Technology Data Exchange (ETDEWEB)

    Yamauchi, Toshihiko [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2002-08-01

    Two application studies associated with the free electron laser are presented separately, which are the titles of 'Decomposition of Dioxin Analogues' and 'Ablation Study for Carbon Nanotube'. The decomposition of dioxin analogues by infrared (IR) laser irradiation includes the thermal destruction and multiple-photon dissociation. It is important for us to choose the highly absorbable laser wavelength for the decomposition. The thermal decomposition takes place by the irradiation of the low IR laser power. Considering the model of thermal decomposition, it is proposed that adjacent water molecules assist the decomposition of dioxin analogues in addition to the thermal decomposition by the direct laser absorption. The laser ablation study is performed for the aim of a carbon nanotube synthesis. The vapor by the ablation is weakly ionized in the power of several-hundred megawatts. The plasma internal energy is kept over an 8.5 times longer than the vacuum. The cluster was produced from the weakly ionized gas in the enclosed gas, which is composed of the rough particles in the low power laser more than the high power which is composed of the fine particles. (J.P.N.)

  12. Evaluation of the R2* value in invasive ductal carcinoma with respect to hypoxic-related prognostic factors using iterative decomposition of water and fat with echo asymmetry and least-squares emission (IDEAL)

    Energy Technology Data Exchange (ETDEWEB)

    Miyata, Mari; Aoki, Takatoshi; Kinoshita, Shunsuke; Fujii, Masami; Korogi, Yukunori [University of Occupational and Environmental Health, Department of Radiology, Kitakyushu (Japan); Shimajiri, Shohei [University of Occupational and Environmental Health, Department of Pathology and Cell Biology, Kitakyushu (Japan); Matsuyama, Atsuji [University of Occupational and Environmental Health, Department of Pathology and Oncology, Kitakyushu (Japan); Katsuki, Takefumi; Inoue, Yuzuru [University of Occupational and Environmental Health, First Department of Surgery, Kitakyushu (Japan); Nagata, Yoshika; Tashima, Yuko [University of Occupational and Environmental Health, Second department of Surgery, Kitakyushu (Japan)

    2017-10-15

    To correlate the R2* value obtained by iterative decomposition of water and fat with echo asymmetry and least-squares emission (IDEAL) with fibrotic focus (FF), microvessel density and hypoxic biomarker (HIF-1α) in breast carcinoma. Forty-two patients who were diagnosed with invasive ductal carcinoma (IDC) of the breast underwent breast MRI including IDEAL before surgery. The entire region of interest (ROI) was delineated on the R2* map, and average tumour R2* value was calculated for each ROI. Histological specimens were evaluated for the presence of FF, the microvessel density (the average microvessel density and the ratio of peripheral to central microvessel density), and the grading of HIF-1α. FF was identified in 47.6% (20/42) of IDCs. Average R2* value for IDC with FF (42.4±13.2 Hz) was significantly higher than that without FF (28.5±13.9 Hz) (P = 0.01). Spearman rank correlation suggested that the average R2* value correlated with the grade of HIF-1α and the ratio of peripheral to central microvessel density for IDCs (P < 0.001). Quantification of tumour R2* using IDEAL is associated with the presence of FF and the overexpression of HIF-1α, and may therefore be useful in predicting hypoxia of breast carcinoma. (orig.)

  13. Surface-directed spinodal decomposition

    Energy Technology Data Exchange (ETDEWEB)

    Puri, Sanjay [School of Physical Sciences, Jawaharlal Nehru University, New Delhi-110067 (India)

    2005-01-26

    We review analytical and numerical results for surface-directed spinodal decomposition (SDSD), namely, the interplay of wetting kinetics and phase separation in a binary (AB) mixture in contact with a surface S which prefers one of the components (say, A). Depending on the relative strengths of the A-B, A-S and B-S interactions, the surface is either partially wetted or completely wetted by A in equilibrium. We discuss the theoretical framework for modelling SDSD, and review results obtained from both microscopic and coarse-grained models. We clarify the differences between diffusion-driven SDSD in solids, and SDSD in fluids, where velocity fields play an important role. Furthermore, we discuss the dependence of wetting-layer kinetics on the composition of the mixture. Some results are also presented for phase separation in a confined geometry, e.g., thin films. Finally, we discuss the problem of surface-enrichment kinetics, namely, the kinetics of enrichment of an attracting surface when the bulk mixture is stable. These nonequilibrium processes have important applications in the preparation of nanomaterials and multi-layered structures. (topical review)

  14. Thermal decompositions of light lanthanide aconitates

    Energy Technology Data Exchange (ETDEWEB)

    Brzyska, W.; Ozga, W. (Uniwersytet Marii Curie-Sklodowskiej, Lublin (Poland))

    The conditions of thermal decomposition of Y, La, Ce(III), Pr, Nd, Sm, and Gd aconitates have been studied. On heating, the aconitate of Ce(III) loses crystallization water to yield anhydrous salt, which then is transformed to oxide CeO/sub 2/. The aconitates of Y, Pr, Nd, Sm, Eu and Gd decompose in three stages. First, aconitates undergo dehydration to form the anhydrous salts, which next decompose to Ln/sub 2/O/sub 2/CO/sub 3/. In the last stage the thermal decomposition of Ln/sub 2/O/sub 2/CO/sub 3/ is accompanied by endothermic effect. Dehydration of aconitate of La undergoes in two stages. The anhydrous complex decomposes to La/sub 2/O/sub 2/CO/sub 3/; this subsequently decomposes to La/sub 2/O/sub 3/.

  15. Erbium hydride decomposition kinetics.

    Energy Technology Data Exchange (ETDEWEB)

    Ferrizz, Robert Matthew

    2006-11-01

    Thermal desorption spectroscopy (TDS) is used to study the decomposition kinetics of erbium hydride thin films. The TDS results presented in this report are analyzed quantitatively using Redhead's method to yield kinetic parameters (E{sub A} {approx} 54.2 kcal/mol), which are then utilized to predict hydrogen outgassing in vacuum for a variety of thermal treatments. Interestingly, it was found that the activation energy for desorption can vary by more than 7 kcal/mol (0.30 eV) for seemingly similar samples. In addition, small amounts of less-stable hydrogen were observed for all erbium dihydride films. A detailed explanation of several approaches for analyzing thermal desorption spectra to obtain kinetic information is included as an appendix.

  16. Photocatalytic hydrogen production by water/methanol decomposition using Au/TiO{sub 2} prepared by deposition–precipitation with urea

    Energy Technology Data Exchange (ETDEWEB)

    Oros-Ruiz, Socorro, E-mail: coco.oros@yahoo.com [Centro de Ciencias Aplicadas y Desarrollo Tecnológico, Universidad Nacional Autónoma de México, A.P. 70-186, C.P. 04510 México D.F. (Mexico); Zanella, Rodolfo, E-mail: rodolfo.zanella@ccadet.unam.mx [Centro de Ciencias Aplicadas y Desarrollo Tecnológico, Universidad Nacional Autónoma de México, A.P. 70-186, C.P. 04510 México D.F. (Mexico); López, Rosendo; Hernández-Gordillo, Agileo; Gómez, Ricardo [Universidad Autónoma Metropolitana-Iztapalapa, Departamento de Química, ECOCATAL, Av. San Rafael Atlixco No. 186, C.P. 09340 México, D. F. (Mexico)

    2013-12-15

    Highlights: • Photocatalytic hydrogen production using Au/TiO{sub 2} prepared by deposition–precipitation with urea (DPU). • The gold NPs on the titania surface showed to have contributed to the high improvement in the activity of bare TiO{sub 2}. • DPU is an easy and feasible way to improve the photocatalytic properties of titania for photocatalytic water splitting. -- Abstract: Gold nanoparticles deposited on TiO{sub 2} Degussa P25, prepared by deposition–precipitation with urea, were studied in the photocatalytic hydrogen production. The effect of parameters such as mass of catalyst, gold loading, thermal treatment, and atmosphere of treatment was evaluated and optimized. The presence of metallic gold on the titania surface showed to have contributed to the high improvement in the activity of bare TiO{sub 2} for hydrogen generation under UV light (λ = 254 nm) using a lamp of low energy (2 W) consumption. The optimal gold loading for the photocatalysts was 0.5 wt.%, the mass of catalyst in the reactor was 0.5 g/L in a water/methanol 1:1 vol. solution, and the thermal treatment that produced the most active gold nanoparticles was found at 300 °C. The photocatalysts thermally treated under hydrogen at 300 °C produced 1492 μmol g{sup −1} h{sup −1} of hydrogen; the same catalyst activated in air produced 1866 μmol g{sup −1} h{sup −1} of hydrogen.

  17. Decomposition methods for unsupervised learning

    DEFF Research Database (Denmark)

    Mørup, Morten

    2008-01-01

    This thesis presents the application and development of decomposition methods for Unsupervised Learning. It covers topics from classical factor analysis based decomposition and its variants such as Independent Component Analysis, Non-negative Matrix Factorization and Sparse Coding...... methods and clustering problems is derived both in terms of classical point clustering but also in terms of community detection in complex networks. A guiding principle throughout this thesis is the principle of parsimony. Hence, the goal of Unsupervised Learning is here posed as striving for simplicity...... in the decompositions. Thus, it is demonstrated how a wide range of decomposition methods explicitly or implicitly strive to attain this goal. Applications of the derived decompositions are given ranging from multi-media analysis of image and sound data, analysis of biomedical data such as electroencephalography...

  18. Photocatalytical water decomposition on visible light-driven solid-solution compounds K{sub 4}Ce{sub 2}Ta{sub 10-x}Nb{sub x}O{sub 30} (x = 0-10)

    Energy Technology Data Exchange (ETDEWEB)

    Tian Mengkui, E-mail: tianmk@hotmail.com [School of Chemistry and Chemical Engineering, Guizhou University, Guiyang, Guizhou (China); Shangguan Wenfeng, E-mail: shanguan@sjtu.edu.cn [Centre for Combustion and Environmental Protection, Shanghai Jiao Tong University, Shanghai 200030 (China)

    2012-01-05

    Highlights: Black-Right-Pointing-Pointer Visible light driven solid-solution compounds K{sub 4}Ce{sub 2}Ta{sub 10-x}Nb{sub x}O{sub 30} (x = 0-10) were synthesized by solid state reaction. Black-Right-Pointing-Pointer These solid-solution compounds demonstrated water decomposition activities under visible light irradiation. Black-Right-Pointing-Pointer Their electronic structures were studied based on the first principle calculation. Black-Right-Pointing-Pointer The proposed band structure has good agreement with their absorption properties and photocatalytic activities. - Abstract: A series of single phase solid-solution K{sub 4}Ce{sub 2}Ta{sub 10-x}Nb{sub x}O{sub 30} (x = 0-10) photocatalysts were synthesized by conventional high temperature solid state reaction. Their UV-vis diffuse reflectance spectra showed their absorbance edges shifted to long wavelength zone consistently with the increase of the amount of Nb for substituting Ta in these compounds, and the onsets of absorbance edges ranging from about 540 nm to 690 nm, corresponding to bandgap energy of 1.8-2.3 eV. These series of photocatalysts possess appropriate band gap (ca. 1.8-2.3 eV) and chemical level to use solar energy to decompose water into H{sub 2}, and the photocatalytical activities under visible light ({lambda} > 420 nm) demonstrated that the activities decreased correspondingly with the increase of the amount of Nb in these compounds, which is regarded as the result of the differences of their band structures. Furthermore, the photocatalytical activities and the photophysical properties of these visible light-driven photocatalysts K{sub 4}Ce{sub 2}Ta{sub 10-x}Nb{sub x}O{sub 30} (x = 0-10) were bridged by the first principle calculation based on Density Functional Theory with General Gradient Approximation and Plane-wave Pseudopotential methods.

  19. Nonequilibrium adiabatic molecular dynamics simulations of methane clathrate hydrate decomposition.

    Science.gov (United States)

    Alavi, Saman; Ripmeester, J A

    2010-04-14

    Nonequilibrium, constant energy, constant volume (NVE) molecular dynamics simulations are used to study the decomposition of methane clathrate hydrate in contact with water. Under adiabatic conditions, the rate of methane clathrate decomposition is affected by heat and mass transfer arising from the breakup of the clathrate hydrate framework and release of the methane gas at the solid-liquid interface and diffusion of methane through water. We observe that temperature gradients are established between the clathrate and solution phases as a result of the endothermic clathrate decomposition process and this factor must be considered when modeling the decomposition process. Additionally we observe that clathrate decomposition does not occur gradually with breakup of individual cages, but rather in a concerted fashion with rows of structure I cages parallel to the interface decomposing simultaneously. Due to the concerted breakup of layers of the hydrate, large amounts of methane gas are released near the surface which can form bubbles that will greatly affect the rate of mass transfer near the surface of the clathrate phase. The effects of these phenomena on the rate of methane hydrate decomposition are determined and implications on hydrate dissociation in natural methane hydrate reservoirs are discussed.

  20. Wood Storks of the Savannah River Plant: Foraging and breeding ecology: Comprehensive cooling water study final report

    Energy Technology Data Exchange (ETDEWEB)

    Coulter, M.C.

    1986-06-01

    This report presents the results of studies from 1983 through 1985 that deal with the use of the Savannah River Swamp System (SRSS) by Wood Storks. We examine the locations on the SRSS where storks have been observed foraging on the SRSS, and the time of year when birds were seen in the swamp. We compare measurements of habitat characteristics, water quality, vegetation and prey density at foraging sites on the SRSS with similar measurements at other foraging sites in east-central Georgia. Finally, we examine food demand of storks breeding at the Birdsville colony as an indication of the time of year when the birds would be most in need of food.

  1. Photocatalytic hydrogen production by water/methanol decomposition using Au/TiO2 prepared by deposition-precipitation with urea.

    Science.gov (United States)

    Oros-Ruiz, Socorro; Zanella, Rodolfo; López, Rosendo; Hernández-Gordillo, Agileo; Gómez, Ricardo

    2013-12-15

    Gold nanoparticles deposited on TiO2 Degussa P25, prepared by deposition-precipitation with urea, were studied in the photocatalytic hydrogen production. The effect of parameters such as mass of catalyst, gold loading, thermal treatment, and atmosphere of treatment was evaluated and optimized. The presence of metallic gold on the titania surface showed to have contributed to the high improvement in the activity of bare TiO2 for hydrogen generation under UV light (λ=254 nm) using a lamp of low energy (2W) consumption. The optimal gold loading for the photocatalysts was 0.5 wt.%, the mass of catalyst in the reactor was 0.5 g/L in a water/methanol 1:1 vol. solution, and the thermal treatment that produced the most active gold nanoparticles was found at 300°C. The photocatalysts thermally treated under hydrogen at 300°C produced 1492 μmol g(-1)h(-1) of hydrogen; the same catalyst activated in air produced 1866 μmo lg(-1)h(-1) of hydrogen. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Energy and water saving measures at the Arloev sugar mill. Final report; Energi- och vattenbesparande aatgaerder vid Arloevs Sockerbruk. Slutrapport

    Energy Technology Data Exchange (ETDEWEB)

    Wamsler, M. [AAF-Processdesign AB, Malmoe (Sweden)

    2001-10-01

    The project comprised several, mutually dependent, sub-projects; mapping, investigation of ways to reduce water consumption, membrane tests aiming to find ways to recover sugar, and pinch analysis to evaluate the possibilities for improved process integration. This final report deals with the overall project results. Identified savings opportunities and savings potentials are presented. The presented measures represent an overall optimisation based on the results of all the project parts. Already during the project, measures have been implemented that are calculated to save 65 000 m{sup 3} water annually, corresponding to 10 % of the total water consumption. This saving is in level with the goals for the project. In the table below, these and additional measures are presented with a total savings potential at approximately 200 000 m{sup 3} /year water. The project will then achieve a saving of just below 35 % of present water consumption. Also in the membrane study the results surpassed the expectations. It was found that with nano filtering a sugar concentration of more than 10 %(W) could be reached in the retentate at a flux 50al/m{sup 2}h. The total sugar losses were less than 5 %, i.e. 95 % should be possible to recover. In total, a savings potential of more than 300 tonnes sugar per year is indicated. The Energy savings in the project are calculated to 7,4 GWh/year, of which 0,2 GWh/year by reduced water consumption, 0,6 GWh/year by water recovery, 1,4 GWh/year by membrane technology and 5,2aGWh/year as a result of process integration. This should be compared to the target 2,5 GWh/year. Hence, the results are almost three times the expected. The savings in monetary terms are estimated at just under SEK 5 million per year. The investment is roughly estimated at between SEK 5 and 6 million, of which SEK 4 million for the membrane equipment and SEK 0,5 million for a process water buffer tank. The remaining investment costs cover heat exchangers, control equipment

  3. Decomposition of acetaminophen in water by a gas phase dielectric barrier discharge plasma combined with TiO2-rGO nanocomposite: Mechanism and degradation pathway

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Guyu; Sun, Yabing, E-mail: sybnju@163.com; Zhang, Chunxiao; Yu, Zhongqing

    2017-02-05

    Highlights: • Graphene Oxide-based catalyst was first applied with dielectric barrier discharge plasma. • The TiO{sub 2}-rGO showed efficient synergistic effect with gas phase dielectric barrier discharge plasma. • The property changes of TiO{sub 2}-rGO nanocomposite after plasma treatment were characterized. • The mechanism and possible pathways of APAP degradation in plasma/TiO{sub 2}-rGO system were proposed. - Abstract: Acetaminophen (APAP) served as the model pollutant to evaluate the feasibility of pollutant removal by gas phase dielectric barrier discharge plasma combined with the titanium dioxide-reduced Graphene Oxide (TiO{sub 2}-rGO) nanocomposite. TiO{sub 2}-rGO nanocomposite was prepared using the modified hydrothermal method and characterized by TEM and XPS before and after plasma process. The results indicated that the APAP degradation efficiency was significantly improved to 92% after 18 min of discharge plasma treatment coupling 0.25 g L{sup −1} TiO{sub 2}-rGO 5% wt at 18 kV, compared with the plasma alone and plasma combined with P25 TiO{sub 2}. The degradation mechanism for APAP in this system was studied by investigating the effects of the operational variables (e.g. discharge voltage and pH value) and the amount of the generated active species; and the results showed that O{sub 3} and H{sub 2}O{sub 2} yields were influenced notably by adding TiO{sub 2}-rGO. Also, it was observed that, compared with unused TiO{sub 2}-rGO, the photocatalytic performance of used TiO{sub 2}-rGO declined after several recirculation times due to the further reduction of Graphene Oxide in plasma system. Finally, intermediate products were analyzed by UV–vis spectrometry and HPLC/MS, and possible transformation pathways were identified with the support of theoretically calculating the frontier electron density of APAP.

  4. Determination and evaluation of the microbial degradability of environmentally relevant concentrations of single organic substances in waters. Final report; Bestimmung und Beurteilung der mikrobiellen Abbaubarkeit von organischen Einzelstoffen bei umweltrelevanten Konzentrationen in Gewaessern. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Lindner, K. [Arbeitsgemeinschaft Rhein-Wasserwerke e.V. (ARW), Koeln (Germany); Knepper, T.P.; Mueller, J. [ESWE-Institut fuer Wasserforschung und Wassertechnologie GmbH, Wiesbaden (Germany); Karrenbrock, F.; Roerden, O.; Juchem, H. [GEW RheinEnergie AG, Koeln (Germany); Brauch, H.J.; Sacher, F. [DVGW-Technologiezentrum Wasser, Karlsruhe (Germany)

    2003-07-01

    Microbial decomposition processes of mixtures in the test filter, including the pharmaceuticals Diclofenac and Carbamazepin, were investigated, with no indication of interactions between substances except in case of the antibiotic Sulfamethoaxol, which slowed down microbial decomposition when added in a very high concentration of 100 mg/l. This concentration is far higher than the concentrations of pharmaceuticals commonly found even in sewage plant inflow, so this observation is not considered to be environmentally relevant. At the low concentrations of single substances used in this test, additions of nutrient salts or organic substances had no effects on microbial degradation in the test intervals of 25 days. In further experiments, threshold limit values of less than 0.1 - 2 {mu}g/l were established for microbial decomposition of non-persistent substances. If the added concentration in the test filter experiment was below the threshold limit value, no degradation was observed within the 25 days. This effect was marked especially with IPU and TPPO. The new experiments provided no proof of the assumed microbial decomposition by existing or added ng/l concentrations of analyte, which was described in the final report of the 2nd ARW/VCl research project for IPU. It appears that adaptation in case of real, low concentrations in surface water can therefore be excluded. (orig.) [German] Bei der Untersuchung mikrobieller Abbauvorgaenge von Gemischen im Testfilter, u.a. auch mit den Arzneimittelwirkstoffen Diclofenac und Carbamazepin, konnte fast ausnahmslos keine gegenseitige Beeinflussung des Abbauverhaltens festgestellt werden. Lediglich durch Zugabe des Antibiotikums Sulfamethoxazol wurde eine Verlangsamung des mikrobiellen Abbaus bei einer sehr hohen Konzentration von 100 mg/l beobachtet. Diese Konzentration liegt weit oberhalb der Gehalte, die ueblicherweise fuer Arzneimittelrueckstaende selbst in Klaeranlagenzulaeufen gefunden werden, und kann daher als nicht

  5. Optimization of the new photocatalytic flow reactor using TiO2 and the photocatalytic decomposition of 2-methyl-isoborneol and geosmin dissolved in tap water; TiO2 hikarishokubai juten hannoki no kogakuteki parameter no saitekika to josui yozon kabishu busshitsu no bunkai

    Energy Technology Data Exchange (ETDEWEB)

    Kitamura, M.; Fujita, Y. [Japan Storage Battery Co. Ltd., Kyoto (Japan)

    1997-06-26

    Engineering parameters of the photocatalytic reactors packed with TiO2 beads have been optimized, aimed at their commercial application to decomposition of harmful organic compounds dissolved in water. In order to investigate the effects of dissolved oxygen on decomposition of phenol, two types of batch runs were conducted in the open and closed systems, where the powdered photocatalyst and a given concentration of phenol contained in the reactor were irradiated with ultraviolet ray, to follow dissolved oxygen and phenol concentrations. It is found that the photocatalytic decomposition of phenol is represented by the stoichiometric oxidation with dissolved oxygen, with diffusion of dissolved oxygen as the rate-determining step. Use of silica sol, prepared from tetraethoxysilane, as the binder is an effective method for fast impregnating glass beads with TiO2, while keeping its catalytic functions intact. It is also found that the system is applicable to decomposition of 2-MIB which causes offensive odor associated with mold. 13 refs., 10 figs., 1 tab.

  6. Spectral Tensor-Train Decomposition

    DEFF Research Database (Denmark)

    Bigoni, Daniele; Engsig-Karup, Allan Peter; Marzouk, Youssef M.

    2016-01-01

    .e., the “cores”) comprising the functional TT decomposition. This result motivates an approximation scheme employing polynomial approximations of the cores. For functions with appropriate regularity, the resulting spectral tensor-train decomposition combines the favorable dimension-scaling of the TT......The accurate approximation of high-dimensional functions is an essential task in uncertainty quantification and many other fields. We propose a new function approximation scheme based on a spectral extension of the tensor-train (TT) decomposition. We first define a functional version of the TT...

  7. ADVANCED OXIDATION: OXALATE DECOMPOSITION TESTING WITH OZONE

    Energy Technology Data Exchange (ETDEWEB)

    Ketusky, E.; Subramanian, K.

    2012-02-29

    At the Savannah River Site (SRS), oxalic acid is currently considered the preferred agent for chemically cleaning the large underground Liquid Radioactive Waste Tanks. It is applied only in the final stages of emptying a tank when generally less than 5,000 kg of waste solids remain, and slurrying based removal methods are no-longer effective. The use of oxalic acid is preferred because of its combined dissolution and chelating properties, as well as the fact that corrosion to the carbon steel tank walls can be controlled. Although oxalic acid is the preferred agent, there are significant potential downstream impacts. Impacts include: (1) Degraded evaporator operation; (2) Resultant oxalate precipitates taking away critically needed operating volume; and (3) Eventual creation of significant volumes of additional feed to salt processing. As an alternative to dealing with the downstream impacts, oxalate decomposition using variations of ozone based Advanced Oxidation Process (AOP) were investigated. In general AOPs use ozone or peroxide and a catalyst to create hydroxyl radicals. Hydroxyl radicals have among the highest oxidation potentials, and are commonly used to decompose organics. Although oxalate is considered among the most difficult organic to decompose, the ability of hydroxyl radicals to decompose oxalate is considered to be well demonstrated. In addition, as AOPs are considered to be 'green' their use enables any net chemical additions to the waste to be minimized. In order to test the ability to decompose the oxalate and determine the decomposition rates, a test rig was designed, where 10 vol% ozone would be educted into a spent oxalic acid decomposition loop, with the loop maintained at 70 C and recirculated at 40L/min. Each of the spent oxalic acid streams would be created from three oxalic acid strikes of an F-area simulant (i.e., Purex = high Fe/Al concentration) and H-area simulant (i.e., H area modified Purex = high Al/Fe concentration

  8. The trait contribution to wood decomposition rates of 15 Neotropical tree species.

    Science.gov (United States)

    van Geffen, Koert G; Poorter, Lourens; Sass-Klaassen, Ute; van Logtestijn, Richard S P; Cornelissen, Johannes H C

    2010-12-01

    The decomposition of dead wood is a critical uncertainty in models of the global carbon cycle. Despite this, relatively few studies have focused on dead wood decomposition, with a strong bias to higher latitudes. Especially the effect of interspecific variation in species traits on differences in wood decomposition rates remains unknown. In order to fill these gaps, we applied a novel method to study long-term wood decomposition of 15 tree species in a Bolivian semi-evergreen tropical moist forest. We hypothesized that interspecific differences in species traits are important drivers of variation in wood decomposition rates. Wood decomposition rates (fractional mass loss) varied between 0.01 and 0.31 yr(-1). We measured 10 different chemical, anatomical, and morphological traits for all species. The species' average traits were useful predictors of wood decomposition rates, particularly the average diameter (dbh) of the tree species (R2 = 0.41). Lignin concentration further increased the proportion of explained inter-specific variation in wood decomposition (both negative relations, cumulative R2 = 0.55), although it did not significantly explain variation in wood decomposition rates if considered alone. When dbh values of the actual dead trees sampled for decomposition rate determination were used as a predictor variable, the final model (including dead tree dbh and lignin concentration) explained even more variation in wood decomposition rates (R2 = 0.71), underlining the importance of dbh in wood decomposition. Other traits, including wood density, wood anatomical traits, macronutrient concentrations, and the amount of phenolic extractives could not significantly explain the variation in wood decomposition rates. The surprising results of this multi-species study, in which for the first time a large set of traits is explicitly linked to wood decomposition rates, merits further testing in other forest ecosystems.

  9. Interactions among temperature, moisture, and oxygen concentrations in controlling decomposition rates in a boreal forest soil

    OpenAIRE

    Sierra, Carlos A.; Malghani, Saadatullah; Henry W Loescher

    2017-01-01

    Determining environmental controls on soil organic matter decomposition is of importance for developing models that predict the effects of environmental change on global soil carbon stocks. There is uncertainty about the environmental controls on decomposition rates at temperature and moisture extremes, particularly at high water content levels and high temperatures. It is uncertain whether observed declines in decomposition rates at high temperatures are due to declines ...

  10. Thermal decomposition of UO{sub 3}-2H{sub 2}0

    Energy Technology Data Exchange (ETDEWEB)

    Flament, T.A.

    1998-02-26

    The first part of the report summarizes the literature data regarding the uranium trioxide water system. In the second part, the experimental aspects are presented. An experimental program has been set up to determine the steps and species involved in decomposition of uranium oxide di-hydrate. Particular attention has been paid to determine both loss of free water (moisture in the fuel) and loss of chemically bound water (decomposition of hydrates). The influence of water pressure on decomposition has been taken into account.

  11. AUTONOMOUS GAUSSIAN DECOMPOSITION

    Energy Technology Data Exchange (ETDEWEB)

    Lindner, Robert R.; Vera-Ciro, Carlos; Murray, Claire E.; Stanimirović, Snežana; Babler, Brian [Department of Astronomy, University of Wisconsin, 475 North Charter Street, Madison, WI 53706 (United States); Heiles, Carl [Radio Astronomy Lab, UC Berkeley, 601 Campbell Hall, Berkeley, CA 94720 (United States); Hennebelle, Patrick [Laboratoire AIM, Paris-Saclay, CEA/IRFU/SAp-CNRS-Université Paris Diderot, F-91191 Gif-sur Yvette Cedex (France); Goss, W. M. [National Radio Astronomy Observatory, P.O. Box O, 1003 Lopezville, Socorro, NM 87801 (United States); Dickey, John, E-mail: rlindner@astro.wisc.edu [University of Tasmania, School of Maths and Physics, Private Bag 37, Hobart, TAS 7001 (Australia)

    2015-04-15

    We present a new algorithm, named Autonomous Gaussian Decomposition (AGD), for automatically decomposing spectra into Gaussian components. AGD uses derivative spectroscopy and machine learning to provide optimized guesses for the number of Gaussian components in the data, and also their locations, widths, and amplitudes. We test AGD and find that it produces results comparable to human-derived solutions on 21 cm absorption spectra from the 21 cm SPectral line Observations of Neutral Gas with the EVLA (21-SPONGE) survey. We use AGD with Monte Carlo methods to derive the H i line completeness as a function of peak optical depth and velocity width for the 21-SPONGE data, and also show that the results of AGD are stable against varying observational noise intensity. The autonomy and computational efficiency of the method over traditional manual Gaussian fits allow for truly unbiased comparisons between observations and simulations, and for the ability to scale up and interpret the very large data volumes from the upcoming Square Kilometer Array and pathfinder telescopes.

  12. Biogeochemistry of Decomposition and Detrital Processing

    Science.gov (United States)

    Sanderman, J.; Amundson, R.

    2003-12-01

    Decomposition is a key ecological process that roughly balances net primary production in terrestrial ecosystems and is an essential process in resupplying nutrients to the plant community. Decomposition consists of three concurrent processes: communition or fragmentation, leaching of water-soluble compounds, and microbial catabolism. Decomposition can also be viewed as a sequential process, what Eijsackers and Zehnder (1990) compare to a Russian matriochka doll. Soil macrofauna fragment and partially solubilize plant residues, facilitating establishment of a community of decomposer microorganisms. This decomposer community will gradually shift as the most easily degraded plant compounds are utilized and the more recalcitrant materials begin to accumulate. Given enough time and the proper environmental conditions, most naturally occurring compounds can completely be mineralized to inorganic forms. Simultaneously with mineralization, the process of humification acts to transform a fraction of the plant residues into stable soil organic matter (SOM) or humus. For reference, Schlesinger (1990) estimated that only ˜0.7% of detritus eventually becomes stabilized into humus.Decomposition plays a key role in the cycling of most plant macro- and micronutrients and in the formation of humus. Figure 1 places the roles of detrital processing and mineralization within the context of the biogeochemical cycling of essential plant nutrients. Chapin (1991) found that while the atmosphere supplied 4% and mineral weathering supplied no nitrogen and 95% of all the nitrogen and phosphorus uptake by tundra species in Barrow, Alaska. In a cool temperate forest, nutrient recycling accounted for 93%, 89%, 88%, and 65% of total sources for nitrogen, phosphorus, potassium, and calcium, respectively ( Chapin, 1991). (13K)Figure 1. A decomposition-centric biogeochemical model of nutrient cycling. Although there is significant external input (1) and output (2) from neighboring ecosystems

  13. Some nonlinear space decomposition algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Tai, Xue-Cheng; Espedal, M. [Univ. of Bergen (Norway)

    1996-12-31

    Convergence of a space decomposition method is proved for a general convex programming problem. The space decomposition refers to methods that decompose a space into sums of subspaces, which could be a domain decomposition or a multigrid method for partial differential equations. Two algorithms are proposed. Both can be used for linear as well as nonlinear elliptic problems and they reduce to the standard additive and multiplicative Schwarz methods for linear elliptic problems. Two {open_quotes}hybrid{close_quotes} algorithms are also presented. They converge faster than the additive one and have better parallelism than the multiplicative method. Numerical tests with a two level domain decomposition for linear, nonlinear and interface elliptic problems are presented for the proposed algorithms.

  14. NRSA enzyme decomposition model data

    Data.gov (United States)

    U.S. Environmental Protection Agency — Microbial enzyme activities measured at more than 2000 US streams and rivers. These enzyme data were then used to predict organic matter decomposition and microbial...

  15. Decomposition of Network Communication Games

    NARCIS (Netherlands)

    Dietzenbacher, Bas; Borm, Peter; Hendrickx, Ruud

    2015-01-01

    Using network control structures this paper introduces network communication games as a generalization of vertex games and edge games corresponding to communication situations and studies their decomposition into unanimity games. We obtain a relation between the dividends of the network

  16. Interactions among temperature, moisture, and oxygen concentrations in controlling decomposition rates in a boreal forest soil

    Science.gov (United States)

    Sierra, Carlos A.; Malghani, Saadatullah; Loescher, Henry W.

    2017-02-01

    Determining environmental controls on soil organic matter decomposition is of importance for developing models that predict the effects of environmental change on global soil carbon stocks. There is uncertainty about the environmental controls on decomposition rates at temperature and moisture extremes, particularly at high water content levels and high temperatures. It is uncertain whether observed declines in decomposition rates at high temperatures are due to declines in the heat capacity of extracellular enzymes as predicted by thermodynamic theory, or due to simultaneous declines in soil moisture. It is also uncertain whether oxygen limits decomposition rates at high water contents. Here we present the results of a full factorial experiment using organic soils from a boreal forest incubated at high temperatures (25 and 35 °C), a wide range of water-filled pore space (WFPS; 15, 30, 60, 90 %), and contrasting oxygen concentrations (1 and 20 %). We found support for the hypothesis that decomposition rates are high at high temperatures, provided that enough moisture and oxygen are available for decomposition. Furthermore, we found that decomposition rates are mostly limited by oxygen concentrations at high moisture levels; even at 90 % WFPS, decomposition proceeded at high rates in the presence of oxygen. Our results suggest an important degree of interaction among temperature, moisture, and oxygen in determining decomposition rates at the soil core scale.

  17. Decomposition Bounds for Marginal MAP

    OpenAIRE

    PING, WEI; Liu,Qiang; Ihler, Alexander

    2015-01-01

    Marginal MAP inference involves making MAP predictions in systems defined with latent variables or missing information. It is significantly more difficult than pure marginalization and MAP tasks, for which a large class of efficient and convergent variational algorithms, such as dual decomposition, exist. In this work, we generalize dual decomposition to a generic power sum inference task, which includes marginal MAP, along with pure marginalization and MAP, as special cases. Our method is ba...

  18. Facility Location Using Cross Decomposition

    OpenAIRE

    Jackson, Leroy A.

    1995-01-01

    The views expressed in this thesis are those of the author and do not reflect the official policy or position of the Department of Defense or the U.S. Government. Determining the best base stationing for military units can be modeled as a capacitated facility location problem with sole sourcing and multiple resource categories. Computational experience suggests that cross decomposition, a unification of Benders Decomposition and Lagrangean relaxation, is superior to other contempo...

  19. Thermal decomposition as route for silver nanoparticles

    Directory of Open Access Journals (Sweden)

    Navaladian S

    2006-01-01

    Full Text Available AbstractSingle crystalline silver nanoparticles have been synthesized by thermal decomposition of silver oxalate in water and in ethylene glycol. Polyvinyl alcohol (PVA was employed as a capping agent. The particles were spherical in shape with size below 10 nm. The chemical reduction of silver oxalate by PVA was also observed. Increase of the polymer concentration led to a decrease in the size of Ag particles. Ag nanoparticle was not formed in the absence of PVA. Antibacterial activity of the Ag colloid was studied by disc diffusion method.

  20. Diffuse Optical Imaging Using Decomposition Methods

    Directory of Open Access Journals (Sweden)

    Binlin Wu

    2012-01-01

    Full Text Available Diffuse optical imaging (DOI for detecting and locating targets in a highly scattering turbid medium is treated as a blind source separation (BSS problem. Three matrix decomposition methods, independent component analysis (ICA, principal component analysis (PCA, and nonnegative matrix factorization (NMF were used to study the DOI problem. The efficacy of resulting approaches was evaluated and compared using simulated and experimental data. Samples used in the experiments included Intralipid-10% or Intralipid-20% suspension in water as the medium with absorptive or scattering targets embedded.

  1. Termites promote resistance of decomposition to spatiotemporal variability in rainfall.

    Science.gov (United States)

    Veldhuis, Michiel P; Laso, Francisco J; Olff, Han; Berg, Matty P

    2017-02-01

    The ecological impact of rapid environmental change will depend on the resistance of key ecosystems processes, which may be promoted by species that exert strong control over local environmental conditions. Recent theoretical work suggests that macrodetritivores increase the resistance of African savanna ecosystems to changing climatic conditions, but experimental evidence is lacking. We examined the effect of large fungus-growing termites and other non-fungus-growing macrodetritivores on decomposition rates empirically with strong spatiotemporal variability in rainfall and temperature. Non-fungus-growing larger macrodetritivores (earthworms, woodlice, millipedes) promoted decomposition rates relative to microbes and small soil fauna (+34%) but both groups reduced their activities with decreasing rainfall. However, fungus-growing termites increased decomposition rates strongest (+123%) under the most water-limited conditions, making overall decomposition rates mostly independent from rainfall. We conclude that fungus-growing termites are of special importance in decoupling decomposition rates from spatiotemporal variability in rainfall due to the buffered environment they create within their extended phenotype (mounds), that allows decomposition to continue when abiotic conditions outside are less favorable. This points at a wider class of possibly important ecological processes, where soil-plant-animal interactions decouple ecosystem processes from large-scale climatic gradients. This may strongly alter predictions from current climate change models. © 2016 by the Ecological Society of America.

  2. Interactions between Fine Wood Decomposition and Flammability

    Directory of Open Access Journals (Sweden)

    Weiwei Zhao

    2014-04-01

    Full Text Available Fire is nearly ubiquitous in the terrestrial biosphere, with profound effects on earth surface carbon storage, climate, and forest functions. Fuel quality is an important parameter determining forest fire behavior, which differs among both tree species and organs. Fuel quality is not static: when dead plant material decomposes, its structural, chemical, and water dynamic properties change, with implications for fuel flammability. However, the interactions between decomposition and flammability are poorly understood. This study aimed to determine decomposition’s effects on fuel quality and how this directly and indirectly affects wood flammability. We did controlled experiments on water dynamics and fire using twigs of four temperate tree species. We found considerable direct and indirect effects of decomposition on twig flammability, particularly on ignitability and burning time, which are important variables for fire spread. More decomposed twigs ignite and burn faster at given water content. Moreover, decomposed twigs dry out faster than fresh twigs, which make them flammable sooner when drying out after rain. Decomposed fine woody litters may promote horizontal fire spread as ground fuels and act as a fuel ladder when staying attached to trees. Our results add an important, previously poorly studied dynamic to our understanding of forest fire spread.

  3. Mesoporous film of WO3-the "sunlight" assisted decomposition of surfactant in wastewater for voltammetric determination of Pb

    Science.gov (United States)

    Krasnodębska-Ostręga, Beata; Bielecka, Agnieszka; Biaduń, Ewa; Miecznikowski, Krzysztof

    2016-12-01

    In this paper we present the application of "sunlight" assisted digestion in the presence of WO3 to the decomposition of dissolved organic matter, using the anionic surfactant sodium dodecyl sulfate (SDS) and the nonionic surfactant (1,1,3,3-tetramethylbutyl)phenyl-polyethylene glycol (Triton™X-114) in natural water samples, prior to the determination of traces residues of lead by stripping voltammetry methods. The results of the study showed firstly that the preparation of reproducible WO3 layers characterized by high mechanical and chemical resistance was possible, and secondly that it was also possible to obtain a high efficiency of decomposition, equal in efficiency to that of the reference method, which was the hydrogen peroxide oxidation assisted by UV, with evaporation nearly to dryness. The developed procedure is suggested to be a no-reagents method for the decomposition of added SDS, leading to 100% recovery of added Pb (II). The anodic stripping voltammetric curves recorded in solution after 4 h irradiation with UV assisted by WO3 were repeatable and increased linearly with standard additions, but the data finally obtained were incorrect. The curves recorded in solution after "sunlight" assisted digestion in the presence of WO3 were repeatable, and increased linearly with an increasing of concentration of standard additions (100% recovery of Pb). In the case of a nonionic surfactant, the decomposition time is at least 6 h. The advantage of the proposed method is the fact that the digestion process does not need the addition of any chemicals for the complete decomposition of organic matter.

  4. Final safety evaluation report related to the certification of the Advanced Boiling Water Reactor design. Supplement 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-05-01

    This report supplements the final safety evaluation report (FSER) for the US Advanced Boiling Water Reactor (ABWR) standard design. The FSER was issued by the US Nuclear Regulatory Commission (NRC) staff as NUREG-1503 in July 1994 to document the NRC staff`s review of the US ABWR design. The US ABWR design was submitted by GE Nuclear Energy (GE) in accordance with the procedures of Subpart B to Part 52 of Title 10 of the Code of Federal Regulations. This supplement documents the NRC staff`s review of the changes to the US ABWR design documentation since the issuance of the FSER. GE made these changes primarily as a result of first-of-a-kind-engineering (FOAKE) and as a result of the design certification rulemaking for the ABWR design. On the basis of its evaluations, the NRC staff concludes that the confirmatory issues in NUREG-1503 are resolved, that the changes to the ABWR design documentation are acceptable, and that GE`s application for design certification meets the requirements of Subpart B to 10 CFR Part 52 that are applicable and technically relevant to the US ABWR design.

  5. Jellyfish (Cyanea nozakii) decomposition and its potential influence on marine environments studied via simulation experiments.

    Science.gov (United States)

    Qu, Chang-Feng; Song, Jin-Ming; Li, Ning; Li, Xue-Gang; Yuan, Hua-Mao; Duan, Li-Qin; Ma, Qing-Xia

    2015-08-15

    A growing body of evidence suggests that the jellyfish population in Chinese seas is increasing, and decomposition of jellyfish strongly influences the marine ecosystem. This study investigated the change in water quality during Cyanea nozakii decomposition using simulation experiments. The results demonstrated that the amount of dissolved nutrients released by jellyfish was greater than the amount of particulate nutrients. NH4(+) was predominant in the dissolved matter, whereas the particulate matter was dominated by organic nitrogen and inorganic phosphorus. The high N/P ratios demonstrated that jellyfish decomposition may result in high nitrogen loads. The inorganic nutrients released by C. nozakii decomposition were important for primary production. Jellyfish decomposition caused decreases in the pH and oxygen consumption associated with acidification and hypoxia or anoxia; however, sediments partially mitigated the changes in the pH and oxygen. These results imply that jellyfish decomposition can result in potentially detrimental effects on marine environments. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Illumination Decomposition for Photograph With Multiple Light Sources.

    Science.gov (United States)

    Zhang, Ling; Yan, Qingan; Liu, Zheng; Zou, Hua; Xiao, Chunxia

    2017-09-01

    Illumination decomposition for a single photograph is an important and challenging problem in image editing operation. In this paper, we present a novel coarse-to-fine strategy to perform illumination decomposition for photograph with multiple light sources. We first reconstruct the lighting environment of the image using the estimated geometry structure of the scene. With the position of lights, we detect the shadow regions as well as the highlights in the projected image for each light. Then, using the illumination cues from shadows, we estimate the coarse illumination decomposed image emitted by each light source. Finally, we present a light-aware illumination optimization model, which efficiently produces the finer illumination decomposition results, as well as recover the texture detail under the shadow. We validate our approach on a number of examples, and our method effectively decomposes the input image into multiple components corresponding to different light sources.

  7. Tensor decomposition of EEG signals: a brief review.

    Science.gov (United States)

    Cong, Fengyu; Lin, Qiu-Hua; Kuang, Li-Dan; Gong, Xiao-Feng; Astikainen, Piia; Ristaniemi, Tapani

    2015-06-15

    Electroencephalography (EEG) is one fundamental tool for functional brain imaging. EEG signals tend to be represented by a vector or a matrix to facilitate data processing and analysis with generally understood methodologies like time-series analysis, spectral analysis and matrix decomposition. Indeed, EEG signals are often naturally born with more than two modes of time and space, and they can be denoted by a multi-way array called as tensor. This review summarizes the current progress of tensor decomposition of EEG signals with three aspects. The first is about the existing modes and tensors of EEG signals. Second, two fundamental tensor decomposition models, canonical polyadic decomposition (CPD, it is also called parallel factor analysis-PARAFAC) and Tucker decomposition, are introduced and compared. Moreover, the applications of the two models for EEG signals are addressed. Particularly, the determination of the number of components for each mode is discussed. Finally, the N-way partial least square and higher-order partial least square are described for a potential trend to process and analyze brain signals of two modalities simultaneously. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  8. Solid waste and the water environment in the new European Union perspective. Process analysis related to storage and final disposal

    Energy Technology Data Exchange (ETDEWEB)

    Marques, Marcia [Royal Inst. of Tech., Stockholm (Sweden). Dept. of Chemical Engineering and Technology

    2000-11-01

    Processes that occur during storage and final disposal of solid waste were studied, with emphasis on physical and chemical aspects and their effects on the water environment, within the New European Union perspective for landfilling (Council Directive 1999/31/EC of 26 April 1999). In the new scenario, landfilling is largely restricted; waste treatments such as incineration, composting, recycling, storage and transportation of materials are intensified. Landfill sites are seen as industrial facilities rather than merely final disposal sites. Four main issues were investigated within this new scenario, in field- and full-scale, mostly at Spillepeng site, southern Sweden. (1) Adequacy of storage piles: Regarding the increasing demand for waste storage as fuel, the adequacy of storage in piles was investigated by monitoring industrial waste (IND) fuel compacted piles. Intense biodegradation activity, which raised the temperature into the optimum range for chemical oxidation reactions, was noticed during the first weeks. After about six months of storage, self-ignition occurred in one IND pile and one refuse derived fuel (RDF) pile. Heat, O{sub 2} and CO{sub 2} distribution at different depths of the monitored IND pile suggested that natural convection plays an important role in the degradation process by supplying oxygen and releasing heat. Storage techniques that achieve a higher degree of compaction, such as baling, are preferable to storage in piles. ( 2) Discharge from landfill for special waste: Regarding changes in the composition of the waste sent to landfills and the consequences for its hydrological performance in active and capped landfills, discharge from a full-scale landfill for special/hazardous waste (predominantly fly ash from municipal solid waste (MSW) incineration) was modelled using the U.S. EPA HELP model. Hydraulic properties of the special waste were compared with those from MSW. Lower practical field capacity and higher hydraulic conductivity at

  9. Thermal decompositions of heavy lanthanide aconitates

    Energy Technology Data Exchange (ETDEWEB)

    Brzyska, W.; Ozga, W. (Uniwersytet Marii Curie-Sklodowskiej, Lublin (Poland))

    The conditions of thermal decomposition of Tb(III), Dy, Ho, Er, Tm, Yb and Lu aconitates have been studied. On heating, the aconitates of heavy lanthanides lose crystallization water to yield anhydrous salts, which are then transformed into oxides. The aconitate of Tb(III) decomposes in two stages. First, the complex undergoes dehydration to form the anhydrous salt, which next decomposes directly to Tb/sub 4/O/sub 7/. The aconitates of Dy, Ho, Er, Tm, Yb and Lu decompose in three stages. On heating, the hydrated complexes lose crystallization water, yielding the anhydrous complexes; these subsequently decompose to Ln/sub 2/O/sub 3/ with intermediate formation of Ln/sub 2/O/sub 2/CO/sub 3/.

  10. Abstract decomposition theorem and applications

    CERN Document Server

    Grossberg, R; Grossberg, Rami; Lessmann, Olivier

    2005-01-01

    Let K be an Abstract Elementary Class. Under the asusmptions that K has a nicely behaved forking-like notion, regular types and existence of some prime models we establish a decomposition theorem for such classes. The decomposition implies a main gap result for the class K. The setting is general enough to cover \\aleph_0-stable first-order theories (proved by Shelah in 1982), Excellent Classes of atomic models of a first order tehory (proved Grossberg and Hart 1987) and the class of submodels of a large sequentially homogenuus \\aleph_0-stable model (which is new).

  11. Empirical Mode Decomposition and Hilbert Spectral Analysis

    Science.gov (United States)

    Huang, Norden E.

    1998-01-01

    The difficult facing data analysis is the lack of method to handle nonlinear and nonstationary time series. Traditional Fourier-based analyses simply could not be applied here. A new method for analyzing nonlinear and nonstationary data has been developed. The key part is the Empirical Mode Decomposition (EMD) method with which any complicated data set can be decomposed into a finite and often small number of Intrinsic Mode Functions (IMF) that serve as the basis of the representation of the data. This decomposition method is adaptive, and, therefore, highly efficient. The IMFs admit well-behaved Hilbert transforms, and yield instantaneous energy and frequency as functions of time that give sharp identifications of imbedded structures. The final presentation of the results is an energy-frequency-time distribution, designated as the Hilbert Spectrum. Among the main conceptual innovations is the introduction of the instantaneous frequencies for complicated data sets, which eliminate the need of spurious harmonics to represent nonlinear and nonstationary signals. Examples from the numerical results of the classical nonlinear equation systems and data representing natural phenomena are given to demonstrate the power of this new method. The classical nonlinear system data are especially interesting, for they serve to illustrate the roles played by the nonlinear and nonstationary effects in the energy-frequency-time distribution.

  12. Solar heating, cooling and domestic hot water system installed at Columbia Gas System Service Corp. , Columbus, Ohio. Final report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-11-01

    The Solar Energy System located at the Columbia Gas Corporation, Columbus, Ohio, has 2978 ft/sup 2/ of Honeywell single axis tracking, concentrating collectors and provides solar energy for space heating, space cooling and domestic hot water. A 1,200,000 Btu/h Bryan water-tube gas boiler provides hot water for space heating. Space cooling is provided by a 100 ton Arkla hot water fired absorption chiller. Domestic hot water heating is provided by a 50 gallon natural gas domestic storage water heater. Extracts are included from the site files, specification references, drawings, installation, operation and maintenance instructions.

  13. Decomposition of organic waste products under aerobic and anaerobic conditions

    Energy Technology Data Exchange (ETDEWEB)

    Gale, P.M.

    1988-01-01

    The objectives of this research were to determine the kinetics of C and N mineralization under aerobic and anaerobic conditions. These parameters were then used to verify the simulation model, DECOMPOSITION, for the anaerobic system. Incubation experiments were conducted to compare the aerobic and anaerobic decomposition of alfalfa (Medicago sativa L.), a substrate with a low C:N ratio. Under anaerobic conditions the net mineralization of N occurred more rapidly than that under aerobic conditions. However, the rate of C mineralization as measured by CO{sub 2} evolution was much lower. For the anaerobic decomposition of alfalfa, C mineralization was best described as the sum of the CO{sub 2} and CH{sub 4} evolved plus the water soluble organic C formed. The kinetics of C mineralization, as determined by this approach, were used to successfully predict the rate and amount of N mineralization from alfalfa undergoing anaerobic decomposition. The decomposition of paper mill sludge, a high C:N ratio substrate, was also evaluated.

  14. Domain of composition and finite volume schemes on non-matching grids; Decomposition de domaine et schemas volumes finis sur maillages non-conformes

    Energy Technology Data Exchange (ETDEWEB)

    Saas, L.

    2004-05-01

    This Thesis deals with sedimentary basin modeling whose goal is the prediction through geological times of the localizations and appraisal of hydrocarbons quantities present in the ground. Due to the natural and evolutionary decomposition of the sedimentary basin in blocks and stratigraphic layers, domain decomposition methods are requested to simulate flows of waters and of hydrocarbons in the ground. Conservations laws are used to model the flows in the ground and form coupled partial differential equations which must be discretized by finite volume method. In this report we carry out a study on finite volume methods on non-matching grids solved by domain decomposition methods. We describe a family of finite volume schemes on non-matching grids and we prove that the associated global discretized problem is well posed. Then we give an error estimate. We give two examples of finite volume schemes on non matching grids and the corresponding theoretical results (Constant scheme and Linear scheme). Then we present the resolution of the global discretized problem by a domain decomposition method using arbitrary interface conditions (for example Robin conditions). Finally we give numerical results which validate the theoretical results and study the use of finite volume methods on non-matching grids for basin modeling. (author)

  15. 75 FR 17917 - Clean Water Act Section 303(d): Final Agency Action on Seven Total Maximum Daily Loads (TMDLs) in...

    Science.gov (United States)

    2010-04-08

    ... viewed at http://www.epa.gov/region6/water/npdes/tmdl/index.htm . The administrative record file may be..., Water Quality Protection Division, U.S. EPA Region 6, 1445 Ross Avenue, Dallas, TX 75202-2733, (214) 665... comments, as well as the TMDLs may be found at http://www.epa.gov/region6/water/npdes/tmdl/index.htm...

  16. 77 FR 21557 - Clean Water Act: Final Agency Action on 32 Total Maximum Daily Loads (TMDLs) in Louisiana

    Science.gov (United States)

    2012-04-10

    .../region6/water/npdes/tmdl/index.htm . The administrative record file may be examined by calling or writing... INFORMATION CONTACT: Diane Smith, Environmental Protection Specialist, Water Quality Protection Division, U.S.......... Dissolved (Estuarine) Oxygen. EPA requested the public provide to EPA any significant water quality related...

  17. 76 FR 18548 - Clean Water Act Section 303(d): Final Agency Action on Three Total Maximum Daily Loads (TMDLs) in...

    Science.gov (United States)

    2011-04-04

    ... viewed at http://www.epa.gov/region6/water/npdes/tmdl/index.htm . The administrative record file may be..., Water Quality Protection Division, U.S. EPA Region 6, 1445 Ross Avenue, Dallas, TX 75202-2733, (214) 665... Lake......... Fecal Coliform. EPA requested the public provide to EPA any significant water quality...

  18. 76 FR 52947 - Clean Water Act Section 303(d): Final Agency Action on 16 Total Maximum Daily Loads (TMDLs) in...

    Science.gov (United States)

    2011-08-24

    .../region6/water/npdes/tmdl/index.htm . ADDRESSES: The administrative record files for these 16 TMDLs may be obtained by writing or calling Ms. Diane Smith, Environmental Protection Specialist, Water Quality...://www.epa.gov/region6/water/npdes/tmdl/index.htm . Dated: August 16, 2011 William K. Honker, Acting...

  19. 76 FR 3126 - Final Determination of the Assistant Administrator for Water Pursuant to Section 404(c) of the...

    Science.gov (United States)

    2011-01-19

    ... wildlife, but also provide ecosystem functions for downstream waters, serve as refugia for aquatic life and potential sources for recolonizing nearby waters, and ultimately serve to maintain the aquatic ecosystem... Camp Creek and its tributaries, EPA is not withdrawing specification of those waters, in part because...

  20. Thermal decomposition of natural dolomite

    Indian Academy of Sciences (India)

    Keywords. TGA–DTA; FTIR; X-ray diffraction; dolomite. Abstract. Thermal decomposition behaviour of dolomite sample has been studied by thermogravimetric (TG) measurements. Differential thermal analysis (DTA) curve of dolomite shows two peaks at 777.8°C and 834°C. The two endothermic peaks observed in dolomite ...

  1. Probability inequalities for decomposition integrals

    Czech Academy of Sciences Publication Activity Database

    Agahi, H.; Mesiar, Radko

    2017-01-01

    Roč. 315, č. 1 (2017), s. 240-248 ISSN 0377-0427 Institutional support: RVO:67985556 Keywords : Decomposition integral * Superdecomposition integral * Probability inequalities Subject RIV: BA - General Mathematics Impact factor: 1.357, year: 2016 http:// library .utia.cas.cz/separaty/2017/E/mesiar-0470959.pdf

  2. Thermal decomposition of ammonium hexachloroosmate

    DEFF Research Database (Denmark)

    Asanova, T I; Kantor, Innokenty; Asanov, I. P.

    2016-01-01

    polymeric structure. Being revealed for the first time the intermediate was subjected to determine the local atomic structure around osmium. The thermal decomposition of hexachloroosmate is much more complex and occurs within a minimum two-step process, which has never been observed before....

  3. Wavefront reconstruction by modal decomposition

    CSIR Research Space (South Africa)

    Schulze, C

    2012-08-01

    Full Text Available We propose a new method to determine the wavefront of a laser beam based on modal decomposition by computer-generated holograms. The hologram is encoded with a transmission function suitable for measuring the amplitudes and phases of the modes...

  4. Torsion and Open Book Decompositions

    OpenAIRE

    Etnyre, John B.; Vela-Vick, David Shea

    2009-01-01

    We show that if (B,\\pi) is an open book decomposition of a contact 3-manifold (Y,\\xi), then the complement of the binding B has no Giroux torsion. We also prove the sutured Heegaard-Floer c-bar invariant of the binding of an open book is non-zero.

  5. Modular Decomposition of Boolean Functions

    NARCIS (Netherlands)

    J.C. Bioch (Cor)

    2002-01-01

    textabstractModular decomposition is a thoroughly investigated topic in many areas such as switching theory, reliability theory, game theory and graph theory. Most appli- cations can be formulated in the framework of Boolean functions. In this paper we give a uni_ed treatment of modular

  6. Thermal decomposition of natural dolomite

    Indian Academy of Sciences (India)

    TECS

    the effects of experimental variables i.e. sample weight, particle size, purge gas velocity and crystalline structure, ... effect of chlorine ions on the decomposition kinetics of dolomite at various temperatures studied by ... to 1000°C at a heating rate of 10 K/min, (ii) N2-gas dyna- mic atmosphere (90 cm. 3 min. –1. ), (iii) alumina ...

  7. Decomposition of network communication games

    NARCIS (Netherlands)

    Dietzenbacher, Bas; Borm, Peter; Hendrickx, Ruud

    Using network control structures, this paper introduces a general class of network communication games and studies their decomposition into unanimity games. We obtain a relation between the dividends in any network communication game and its underlying transferable utility game, which depends on the

  8. Generalized Benders’ Decomposition for topology optimization problems

    DEFF Research Database (Denmark)

    Munoz Queupumil, Eduardo Javier; Stolpe, Mathias

    2011-01-01

    This article considers the non-linear mixed 0–1 optimization problems that appear in topology optimization of load carrying structures. The main objective is to present a Generalized Benders’ Decomposition (GBD) method for solving single and multiple load minimum compliance (maximum stiffness......) problems with discrete design variables to global optimality. We present the theoretical aspects of the method, including a proof of finite convergence and conditions for obtaining global optimal solutions. The method is also linked to, and compared with, an Outer-Approximation approach and a mixed 0......–1 semi definite programming formulation of the considered problem. Several ways to accelerate the method are suggested and an implementation is described. Finally, a set of truss topology optimization problems are numerically solved to global optimality....

  9. Numerical Investigation of AdBlue Droplet Evaporation and Thermal Decomposition in the Context of NOx-SCR Using a Multi-Component Evaporation Model

    Directory of Open Access Journals (Sweden)

    Kaushal Nishad

    2018-01-01

    Full Text Available To cope with the progressive tightening of the emission regulations, gasoline and diesel engines will continuously require highly improved exhaust after-treatment systems. In the case of diesel engines, the selective catalytic reduction (SCR appears as one of the widely adopted technologies to reduce NOx (nitrogen oxides emissions. Thereby, with the help of available heat from exhaust gas, the injected urea–water solution (UWS turns inside the exhaust port immediately into gaseous ammonia (NH3 by evaporation of mixture and thermal decomposition of urea. The reaction and conversion efficiency mostly depend upon the evaporation and subsequent mixing of the NH3 into the exhaust gas, which in turn depends upon the engine loading conditions. Up to now, the aggregation of urea after evaporation of water and during the thermal decomposition of urea is not clearly understood. Hence, various scenarios for the urea depletion in the gaseous phase that can be envisaged have to be appraised under SCR operating conditions relying on an appropriate evaporation description. The objective of the present paper is therefore fourfold. First, a reliable multi-component evaporation model that includes a proper binary diffusion coefficient is developed for the first time in the Euler–Lagrangian CFD (computational fluid dynamics framework to account properly for the distinct evaporation regimes of adBlue droplets under various operating conditions. Second, this model is extended for thermal decomposition of urea in the gaseous phase, where, depending on how the heat of thermal decomposition of urea is provided, different scenarios are considered. Third, since the evaporation model at and around the droplet surface is based on a gas film approach, how the material properties are evaluated in the film influences the process results is reported, also for the first time. Finally, the impact of various ambient temperatures on the adBlue droplet depletion characteristics

  10. OECM MCCI Small-Scale Water Ingression and Crust Strength Tests (SSWICS) SSWICS-2 final data report, Rev. 0 February 12, 2003.

    Energy Technology Data Exchange (ETDEWEB)

    Lomperski, S.; Farmer, M. T.; Kilsdonk, D.; Aeschlimann, B. (Nuclear Engineering Division)

    2011-05-23

    , fully oxidized PWR corium melt containing 8 wt% siliceous concrete decomposition products. The melt was quenched at nominally atmospheric pressure. The report includes a description of the test apparatus, the instrumentation used, plots of the recorded data, and data reduction to obtain an estimate of the corrected heat flux from the corium to the overlying water pool. A section of the report is devoted to calculations of the conduction-limited heat flux that accounts for heat losses to the crucible holding the corium. The remainder of the report describes post test examinations of the crust, which includes permeability and mechanical strength measurements, and chemical analysis.

  11. OECD MMCI Small-Scale Water Ingression and Crust Strength tests (SSWICS) SSWICS-1 final data report, Rev. 1 February 10, 2003.; Report, Rev. 1

    Energy Technology Data Exchange (ETDEWEB)

    Lomperski, S.; Farmer, M. T.; Kilsdonk, D.; Aeschlimann, B. (Nuclear Engineering Division)

    2011-05-23

    , fully oxidized PWR corium melt containing 8 wt% limestone/common sand concrete decomposition products. The melt was quenched at nominally atmospheric pressure. The report includes a description of the test apparatus, the instrumentation used, plots of the recorded data, and data reduction to obtain an estimate of the corrected heat flux from the corium to the overlying water pool. A section of the report is devoted to calculations of the conduction-limited heat flux that accounts for heat losses to the crucible holding the corium. The remainder of the report describes post test examinations of the crust, which includes permeability and mechanical strength measurements, and chemical analysis.

  12. Decomposition Mechanism and Decomposition Promoting Factors of Waste Hard Metal for Zinc Decomposition Process (ZDP)

    Energy Technology Data Exchange (ETDEWEB)

    Pee, J H; Kim, Y J; Kim, J Y; Cho, W S; Kim, K J [Whiteware Ceramic Center, KICET (Korea, Republic of); Seong, N E, E-mail: pee@kicet.re.kr [Recytech Korea Co., Ltd. (Korea, Republic of)

    2011-10-29

    Decomposition promoting factors and decomposition mechanism in the zinc decomposition process of waste hard metals which are composed mostly of tungsten carbide and cobalt were evaluated. Zinc volatility amount was suppressed and zinc steam pressure was produced in the reaction graphite crucible inside an electric furnace for ZDP. Reaction was done for 2 hrs at 650 deg. C, which 100% decomposed the waste hard metals that were over 30 mm thick. As for the separation-decomposition of waste hard metals, zinc melted alloy formed a liquid composed of a mixture of {gamma}-{beta}1 phase from the cobalt binder layer (reaction interface). The volume of reacted zone was expanded and the waste hard metal layer was decomposed-separated horizontally from the hard metal. Zinc used in the ZDP process was almost completely removed-collected by decantation and volatilization-collection process at 1000 deg. C. The small amount of zinc remaining in the tungsten carbide-cobalt powder which was completely decomposed was fully removed by using phosphate solution which had a slow cobalt dissolution speed.

  13. Municipal water-based heat pump heating and/or cooling systems: Findings and recommendations. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Bloomquist, R.G. [Washington, State Univ., Pullman, WA (United States); Wegman, S. [South Dakota Utilities Commission (United States)

    1998-04-01

    The purpose of the present work was to determine if existing heat pump systems based on municipal water systems meet existing water quality standards, to analyze water that has passed through a heat pump or heat exchanger to determine if corrosion products can be detected, to determine residual chlorine levels in municipal waters on the inlet as well as the outlet side of such installations, to analyses for bacterial contaminants and/or regrowth due to the presence of a heat pump or heat exchanger, to develop and suggest criteria for system design and construction, to provide recommendations and specifications for material and fluid selection, and to develop model rules and regulations for the installation, operation, and monitoring of new and existing systems. In addition, the Washington State University (WSU) has evaluated availability of computer models that would allow for water system mapping, water quality modeling and system operation.

  14. Decomposition characteristics of three different kinds of aquatic macrophytes and their potential application as carbon resource in constructed wetland.

    Science.gov (United States)

    Wu, Suqing; He, Shengbing; Zhou, Weili; Gu, Jianya; Huang, Jungchen; Gao, Lei; Zhang, Xu

    2017-12-01

    Decomposition of aquatic macrophytes usually generates significant influence on aquatic environment. Study on the aquatic macrophytes decomposition may help reusing the aquatic macrophytes litters, as well as controlling the water pollution caused by the decomposition process. This study verified that the decomposition processes of three different kinds of aquatic macrophytes (water hyacinth, hydrilla and cattail) could exert significant influences on water quality of the receiving water, including the change extent of pH, dissolved oxygen (DO), the contents of carbon, nitrogen and phosphorus, etc. The influence of decomposition on water quality and the concentrations of the released chemical materials both followed the order of water hyacinth > hydrilla > cattail. Greater influence was obtained with higher dosage of plant litter addition. The influence also varied with sediment addition. Moreover, nitrogen released from the decomposition of water hyacinth and hydrilla were mainly NH3-N and organic nitrogen while those from cattail litter included organic nitrogen and NO3(-)-N. After the decomposition, the average carbon to nitrogen ratio (C/N) in the receiving water was about 2.6 (water hyacinth), 5.3 (hydrilla) and 20.3 (cattail). Therefore, cattail litter might be a potential plant carbon source for denitrification in ecological system of a constructed wetland. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Thermal decomposition and non-isothermal decomposition kinetics of carbamazepine

    Science.gov (United States)

    Qi, Zhen-li; Zhang, Duan-feng; Chen, Fei-xiong; Miao, Jun-yan; Ren, Bao-zeng

    2014-12-01

    The thermal stability and kinetics of isothermal decomposition of carbamazepine were studied under isothermal conditions by thermogravimetry (TGA) and differential scanning calorimetry (DSC) at three heating rates. Particularly, transformation of crystal forms occurs at 153.75°C. The activation energy of this thermal decomposition process was calculated from the analysis of TG curves by Flynn-Wall-Ozawa, Doyle, distributed activation energy model, Šatava-Šesták and Kissinger methods. There were two different stages of thermal decomposition process. For the first stage, E and log A [s-1] were determined to be 42.51 kJ mol-1 and 3.45, respectively. In the second stage, E and log A [s-1] were 47.75 kJ mol-1 and 3.80. The mechanism of thermal decomposition was Avrami-Erofeev (the reaction order, n = 1/3), with integral form G(α) = [-ln(1 - α)]1/3 (α = ˜0.1-0.8) in the first stage and Avrami-Erofeev (the reaction order, n = 1) with integral form G(α) = -ln(1 - α) (α = ˜0.9-0.99) in the second stage. Moreover, Δ H ≠, Δ S ≠, Δ G ≠ values were 37.84 kJ mol-1, -192.41 J mol-1 K-1, 146.32 kJ mol-1 and 42.68 kJ mol-1, -186.41 J mol-1 K-1, 156.26 kJ mol-1 for the first and second stage, respectively.

  16. Demonstration of an advanced solar garden with a water ceiling. Final technical report, July 1, 1979-June 30, 1980

    Energy Technology Data Exchange (ETDEWEB)

    Maes, R.; Riseng, C.; Thomas, G.; Mandeville, M.

    1980-09-01

    A history of the solar garden with the addition of the transparent water ceiling is presented, and a statement of the overall goals of the program is given. The objectives of the water ceiling grant are detailed. The rationale of the transparent water ceiling is developed and its implementation in the solar garden is described. The experimental procedures for evaluating the water ceiling as an integral part of an ongoing garden agricultural experiment are discussed and the results presented. The water ceiling has proven useful in providing extra thermal capacity to the solar garden. It provides heat at night after the water has been warmed during the day and retards overheating in the daytime by absorbing infrared energy into the water. In growing non-flowering plants, such as lettuce and Chinese cabbage, the water ceiling showed no noticeable degradation in yield or maturation rate. In flowering plants, such as tomatoes, the reduced light levels delayed yields by a couple of weeks but the total yield was only slightly diminished. In geographic areas where there is less cloud cover than in Michigan the water ceiling could be much more effective.

  17. A theoretical study of the decomposition mechanisms in substituted o-nitrotoluenes.

    Science.gov (United States)

    Fayet, Guillaume; Joubert, Laurent; Rotureau, Patricia; Adamo, Carlo

    2009-12-03

    The pathways corresponding to the most energetically favorable decomposition reactions that can be envisaged for o-nitrotoluene (and 20 of its derivatives) have been studied, using density functional theory, in order to evaluate the influence of substituents' nature (nitro, methyl, amino, carboxylic acid, and hydroxyl) and position. The first mechanism consists of the direct dissociation (homolysis) of the carbon nitrogen bond (CH(3)C(6)H(4)NO(2) = CH(3)C(6)H(4) + NO(2)) whereas the second one is a more complex process initiated by C-H alpha attack and leading to the formation of anthranil and water (C(6)H(4)C(H)ON + H(2)O). For each compound, the initial step of this last channel is the rate limiting one, the Gibbs activation energy of all systems being very close, that is all in the 40-44 kcal/mol range. More important variations have been observed for the C-NO(2) homolysis Gibbs activation energies (46-60 kcal/mol). These variations have been related to electron donor-acceptor properties of substituents by considering significant correlations (R(2) > 0.9) with the Hammett parameters (sigma). Nevertheless, though the influence of substituents on the direct breaking of the C-NO(2) bond was important, the C-H alpha attack remained finally the major decomposition channel for the studied compounds. Our study underlines the complexity of the decomposition process in nitroaromatic compounds and casts some doubts on the characterization of the energetic properties of such molecules only on the basis of C-NO(2) homolysis.

  18. Demonstration of domestic hot water with combination of wood stove hot water (winter) and homemade solar collector (summer). Final project report

    Energy Technology Data Exchange (ETDEWEB)

    Nichols, N.S. II

    1981-09-03

    The purpose of this project was to demonstrate that adequate hot water can be provided for a family of four in northeastern Pennsylvania, by using a combination of wood stove hot water in the winter and solar collector hot water during the non-heating months. This demonstration would be to encourage other people in the area to investigate using similar energy-saving systems, by providing an observable operating installation, and by increasing their confidence in using simple alternate-energy sources.

  19. Final programmatic environmental impact statement for the Uranium Mill Tailings Remedial Action Ground Water Project. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    None

    1996-04-01

    The first step in the UMTRA Ground Water Project is the preparation of this programmatic environmental impact statement (PEIS). This document analyzes the potential impacts of four alternatives for conducting the Ground Water Project. One of these alternatives is the proposed action. These alternatives do not address site-specific ground water compliance strategies because the PEIS is a planning document only. It assesses the potential programmatic impacts of conducting the Ground Water Project, provides a method for determining the site-specific ground water compliance strategies, and provides data and information that can be used to prepare site-specific environmental impacts analyses more efficiently. This PEIS differs substantially from a site-specific environmental impact statement because multiple ground water compliance strategies, each with its own set of potential impacts, could be used to implement all the alternatives except the no action alternative. In a traditional environmental impact statement, an impacts analysis leads directly to the defined alternatives. The impacts analysis for implementing alternatives in this PEIS first involves evaluating a ground water compliance strategy or strategies, the use of which will result in site-specific impacts. This PEIS impacts analysis assesses only the potential impacts of the various ground water compliance strategies, then relates them to the alternatives to provide a comparison of impacts.

  20. Arsenic Removal from Drinking Water by Adsorptive Media USEPA Demonstration Project at Bow, NH Final performance Evaluation Report

    Science.gov (United States)

    This report documents the activities performed during and the results obtained from the U.S. Environmental Protection Agency (EPA) arsenic removal treatment technology demonstration project at the White Rock Water Company (WRWC) public water system, a small residential drinking w...

  1. Decomposition of time-resolved tomographic PIV

    Energy Technology Data Exchange (ETDEWEB)

    Schmid, Peter J. [Ecole Polytechnique, Laboratoire d' Hydrodynamique (LadHyX), Palaiseau (France); Violato, Daniele; Scarano, Fulvio [Delft University of Technology, Department of Aerospace Engineering, Delft (Netherlands)

    2012-06-15

    An experimental study has been conducted on a transitional water jet at a Reynolds number of Re = 5,000. Flow fields have been obtained by means of time-resolved tomographic particle image velocimetry capturing all relevant spatial and temporal scales. The measured three-dimensional flow fields have then been postprocessed by the dynamic mode decomposition which identifies coherent structures that contribute significantly to the dynamics of the jet. Both temporal and spatial analyses have been performed. Where the jet exhibits a primary axisymmetric instability followed by a pairing of the vortex rings, dominant dynamic modes have been extracted together with their amplitude distribution. These modes represent a basis for the low-dimensional description of the dominant flow features. (orig.)

  2. An Investigation of Final Gas Tightness after Supplementation of MCT Water during the Yeosu Underground Oil Storage Caverns-II

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyung Su; Koh, Young Kwon; Bae, Dae Seok; Kim, Geon Young; Ryu, Ji Hoon; Park, Kyung Woo; Ji, Sung Hoon

    2009-08-15

    This report has following contents: -Estimation of vertical hydrological gradient and the leakage in the case of EL. 10 m of injection water pressure and EL. 0 m of MCT supplement water pressure -Carrying out the construction of version 3 model based on the results of measurement of leakage after G/T The results derived from this project are following contents: -Distibution of groundwater head -Estimated leakage during operation -Amount of injection water in the water curtain system and MCT -Leakage of cavern -Efficiency of G/T It is estimated that the gas tightness can be secured as 1.5 - 2.6 range of vertical hydro-gradient under the normal water curtain system and the expected amount of leakage may be about 750 m3/d which is the averaged values of estimated lekage under 2.0 bar and atmospheric pressure

  3. Presence of pathogenic amoebae in power plant cooling waters. Final report, October 15, 1977-September 30, 1979. [Naegleria fowleri

    Energy Technology Data Exchange (ETDEWEB)

    Tyndall, R.L.; Willaert, E.; Stevens, A.R.

    1981-03-01

    Cooling-water-associated algae and sediments from five northern and five southern or western electric power plants were tested for the presence of pathogenic amoebae. In addition, water algae and sediments from five northern and five southern/western sites not associated with power plants were tested. There was a significant correlation at northern power plants between the presence of thermophilic, pathogenic amoebae in cooling waters and thermal additions. Presence of the pathogenic did not correlate with salinity, pH, conductivity, or a variety of various chemical components of the cooling waters. Selected pathogenic isolates were tested serologically and were classified as Naegleria fowleri. Although thermal additions were shown to be contributing factor in predisposing cooling waters to the growth of pathogenic amoebae, the data suggest the involvement of other currently undefined parameters associated with the presence of the pathogenic amoebae. 35 refs., 21 tabs.

  4. Solar heating and hot water system installed at Shoney's Restaurant, North Little Rock, Arkansas. Final report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-08-01

    The solar heating system is designed to supply a major portion of the space and water heating requirements for a newly built Shoney's Big Boy Restaurant which was installed with completion occurring in December 1979. The restaurant has a floor space of approximately 4,650 square feet and requires approximately 1500 gallons of hot water daily. The solar energy system consists of 1,428 square feet of Chamberlain flat plate liquid collector subsystem, and a 1500 gallon storage subsystem circulating hot water producing 321 x 10/sup 6/ Btu/yr (specified) building heating and hot water heating. Designer - Energy Solutions, Incorporated. Contractor - Stephens Brothers, Incorporated. This report includes extracts from site files, specification references for solar modifications to existing building heating and hot water systems, drawings installation, operation and maintenance instructions.

  5. Tensor decomposition-based sparsity divergence index for hyperspectral anomaly detection.

    Science.gov (United States)

    Zhang, Lili; Zhao, Chunhui

    2017-09-01

    Recently, some methods exploiting both the spatial and spectral features have drawn increasing attention in hyperspectral anomaly detection (AD) and they perform well. In addition, a tensor decomposition-based (TenB) algorithm treating the hyperspectral dataset as a three-order tensor (two modes for space and one mode for spectra) has been proposed to further improve the performance for AD. In this paper, a method using the sparsity divergence index (SDI) based on tensor decomposition (SDI-TD) is proposed. First, three modes of the hyperspectral dataset are obtained by tensor decomposition. Then, low-rank and sparse matrix decomposition is employed separately along the three modes and three sparse matrices are acquired. Finally, SDIs based on the three sparse matrices along the three modes are obtained, and the final result is generated by using the joint SDI. Experiments tested on the real and synthetic hyperspectral dataset reveal that the proposed SDI-TD performs better than the comparison algorithms.

  6. Variance decomposition in stochastic simulators

    KAUST Repository

    Le Maître, O. P.

    2015-06-28

    This work aims at the development of a mathematical and computational approach that enables quantification of the inherent sources of stochasticity and of the corresponding sensitivities in stochastic simulations of chemical reaction networks. The approach is based on reformulating the system dynamics as being generated by independent standardized Poisson processes. This reformulation affords a straightforward identification of individual realizations for the stochastic dynamics of each reaction channel, and consequently a quantitative characterization of the inherent sources of stochasticity in the system. By relying on the Sobol-Hoeffding decomposition, the reformulation enables us to perform an orthogonal decomposition of the solution variance. Thus, by judiciously exploiting the inherent stochasticity of the system, one is able to quantify the variance-based sensitivities associated with individual reaction channels, as well as the importance of channel interactions. Implementation of the algorithms is illustrated in light of simulations of simplified systems, including the birth-death, Schlögl, and Michaelis-Menten models.

  7. Thermodynamic anomaly in magnesium hydroxide decomposition

    Energy Technology Data Exchange (ETDEWEB)

    Reis, T.A.

    1983-08-01

    The Origin of the discrepancy in the equilibrium water vapor pressure measurements for the reaction Mg(OH)/sub 2/(s) = MgO(s) + H/sub 2/O(g) when determined by Knudsen effusion and static manometry at the same temperature was investigated. For this reaction undergoing continuous thermal decomposition in Knudsen cells, Kay and Gregory observed that by extrapolating the steady-state apparent equilibrium vapor pressure measurements to zero-orifice, the vapor pressure was approx. 10/sup -4/ of that previously established by Giauque and Archibald as the true thermodynamic equilibrium vapor pressure using statistical mechanical entropy calculations for the entropy of water vapor. This large difference in vapor pressures suggests the possibility of the formation in a Knudsen cell of a higher energy MgO that is thermodynamically metastable by about 48 kJ / mole. It has been shown here that experimental results are qualitatively independent of the type of Mg(OH)/sub 2/ used as a starting material, which confirms the inferences of Kay and Gregory. Thus, most forms of Mg(OH)/sub 2/ are considered to be the stable thermodynamic equilibrium form. X-ray diffraction results show that during the course of the reaction only the equilibrium NaCl-type MgO is formed, and no different phases result from samples prepared in Knudsen cells. Surface area data indicate that the MgO molar surface area remains constant throughout the course of the reaction at low decomposition temperatures, and no significant annealing occurs at less than 400/sup 0/C. Scanning electron microscope photographs show no change in particle size or particle surface morphology. Solution calorimetric measurements indicate no inherent hgher energy content in the MgO from the solid produced in Knudsen cells. The Knudsen cell vapor pressure discrepancy may reflect the formation of a transient metastable MgO or Mg(OH)/sub 2/-MgO solid solution during continuous thermal decomposition in Knudsen cells.

  8. A 5 year longitudinal study of water quality for final rinsing in the single chamber washer-disinfector with a reverse osmosis plant.

    Science.gov (United States)

    Uetera, Yushi; Kishii, Kozue; Yasuhara, Hiroshi; Kumada, Naohito; Moriya, Kyoji; Saito, Ryoichi; Okazaki, Mitsuhiro; Misawa, Yoshiki; Kawamura, Kunio

    2013-01-01

    This report deals with the construction and management of the reverse osmosis (RO) water system for final rinsing of surgical instruments in the washer-disinfector. Numerous operational challenges were encountered in our RO water system and these were analyzed utilizing the Ishikawa Fishbone diagram. The aim was to find potential problems and promote preventive system management for RO water. It was found that the measures that existed were inappropriate for preventing contamination in the heat-labile RO water system. The storage tank was found to be significantly contaminated and had to be replaced with a new one equipped with a sampling port and water drainage system. Additional filters and an UV treatment lamp were installed. The whole system disinfection started 1.5 years later using a peracetic acid-based compound after confirming the material compatibility. Operator errors were found when a new water engineer took over the duty from his predecessor. It was also found that there were some deficiencies in the standard operating procedures (SOPs), and that on-the-job training was not enough. The water engineer failed to disinfect the sampling port and water drainage system. The RO membrane had been used for 4 years, even though the SOP standard specified changing it as every 3 years. Various bacteria, such as Rothia mucilaginosa, were cultured from the RO water sampled from the equipment. Because Rothia mucilaginosa is a resident in the oral cavity and upper respiratory tract, it is believed that the bacteria were introduced into the system by the maintenance personnel or working environment. Therefore, the presence of R. mucilaginosa implied the failure of sanitary maintenance procedures. This study suggests that water systems should be designed based on the plans for profound system maintenance. It also suggests that SOP and on-the job training are essential to avoid any operator errors. These results must be carefully considered when either constructing new

  9. Decomposition of Fuzzy Soft Sets with Finite Value Spaces

    Science.gov (United States)

    Jun, Young Bae

    2014-01-01

    The notion of fuzzy soft sets is a hybrid soft computing model that integrates both gradualness and parameterization methods in harmony to deal with uncertainty. The decomposition of fuzzy soft sets is of great importance in both theory and practical applications with regard to decision making under uncertainty. This study aims to explore decomposition of fuzzy soft sets with finite value spaces. Scalar uni-product and int-product operations of fuzzy soft sets are introduced and some related properties are investigated. Using t-level soft sets, we define level equivalent relations and show that the quotient structure of the unit interval induced by level equivalent relations is isomorphic to the lattice consisting of all t-level soft sets of a given fuzzy soft set. We also introduce the concepts of crucial threshold values and complete threshold sets. Finally, some decomposition theorems for fuzzy soft sets with finite value spaces are established, illustrated by an example concerning the classification and rating of multimedia cell phones. The obtained results extend some classical decomposition theorems of fuzzy sets, since every fuzzy set can be viewed as a fuzzy soft set with a single parameter. PMID:24558342

  10. Rheology of coal-water slurries prepared by the high-pressure roll mill grinding of coal. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Fuerstenau, D.W.; De, A.

    1996-08-01

    The preparation of coal water slurries to replace fuel oil for direct combustion has become an important field in modem coal technology. The U.S. Department of Energy has planned or has underway several demonstration projects to burn coal-water slurries to replace fuel oil is attractive not only because there is an assured domestic supply of coal, but also on various technoeconomic grounds. Coal-water slurries combine the handling flexibility of fuel oil in power plants and various other industrial applications. This report discusses the rheology of coal-water slurries and the correlation to the coal preparation by grinding with a choke-fed high pressure roll mill. Performance of the roll mills and energy consumption are described.

  11. Application of solar energy to the supply of hot water for textile dyeing. Final report, CDRL/PA 10

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-09-01

    The design plan for a solar process hot water system for a textile dye beck at Riegel Textile Corporation's LaFrance, South Carolina, facilities is presented. The solar system consists of 396 GE model TC 100 evacuated tube collector modules arranged in a ground mounted array with a total collector area of 6680 square feet. The system includes an 8000-gallon hot water storage tank. Systems analyses, specification sheets, performance data, and an economic evaluation of the proposed system are presented. (WHK)

  12. Water

    Science.gov (United States)

    ... www.girlshealth.gov/ Home Nutrition Nutrition basics Water Water Did you know that water makes up more ... to drink more water Other drinks How much water do you need? top Water is very important, ...

  13. Effects of water management practices on residue decomposition and degradation of Cry1Ac protein from crop-wild Bt rice hybrids and parental lines during winter fallow season.

    Science.gov (United States)

    Xiao, Manqiu; Dong, Shanshan; Li, Zhaolei; Tang, Xu; Chen, Yi; Yang, Shengmao; Wu, Chunyan; Ouyang, Dongxin; Fang, Changming; Song, Zhiping

    2015-12-01

    Rice is the staple diet of over half of the world's population and Bacillus thuringiensis (Bt) rice expressing insecticidal Cry proteins is ready for deployment. An assessment of the potential impact of Bt rice on the soil ecosystem under varied field management practices is urgently required. We used litter bags to assess the residue (leaves, stems and roots) decomposition dynamics of two transgenic rice lines (Kefeng6 and Kefeng8) containing stacked genes from Bt and sck (a modified CpTI gene encoding a cowpea trypsin inhibitor) (Bt/CpTI), a non-transgenic rice near-isoline (Minghui86), wild rice (Oryza rufipogon) and crop-wild Bt rice hybrid under contrasting conditions (drainage or continuous flooding) in the field. No significant difference was detected in the remaining mass, total C and total N among cultivars under aerobic conditions, whereas significant differences in the remaining mass and total C were detected between Kefeng6 and Kefeng8 and Minghui86 under the flooded condition. A higher decomposition rate constant (km) was measured under the flooded condition compared with the aerobic condition for leaf residues, whereas the reverse was observed for root residues. The enzyme-linked immunosorbent assay (ELISA), which was used to monitor the changes in the Cry1Ac protein in Bt rice residues, indicated that (1) the degradation of the Cry1Ac protein under both conditions best fit first-order kinetics, and the predicted DT50 (50% degradation time) of the Cry1Ac protein ranged from 3.6 to 32.5 days; (2) the Cry1Ac protein in the residue degraded relatively faster under aerobic conditions; and (3) by the end of the study (~154 days), the protein was present at a low concentration in the remaining residues under both conditions. The degradation rate constant was negatively correlated with the initial carbon content and positively correlated with the initial Cry1Ac protein concentration, but it was only correlated with the mass decomposition rate constants under

  14. Thermal Plasma Decomposition Of Nickel And Cobalt Compounds

    Directory of Open Access Journals (Sweden)

    Woch M.

    2015-06-01

    Full Text Available The paper presents the study on manufacturing of nickel and cobalt powders by thermal plasma decomposition of the carbonates of these metals. It was shown the dependence of process parameters and grain size of initial powder on the composition of final product which was ether metal powder, collected in the container as well as the nanopowder with crystallite size of 70 - 90 nm, collected on the inner wall of the reaction chamber. The occurrence of metal oxides in the final products was confirmed and discussed.

  15. Thermic decomposition of biphenyl; Decomposition thermique du biphenyle

    Energy Technology Data Exchange (ETDEWEB)

    Lutz, M. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1966-03-01

    Liquid and vapour phase pyrolysis of very pure biphenyl obtained by methods described in the text was carried out at 400 C in sealed ampoules, the fraction transformed being always less than 0.1 per cent. The main products were hydrogen, benzene, terphenyls, and a deposit of polyphenyls strongly adhering to the walls. Small quantities of the lower aliphatic hydrocarbons were also found. The variation of the yields of these products with a) the pyrolysis time, b) the state (gas or liquid) of the biphenyl, and c) the pressure of the vapour was measured. Varying the area and nature of the walls showed that in the absence of a liquid phase, the pyrolytic decomposition takes place in the adsorbed layer, and that metallic walls promote the reaction more actively than do those of glass (pyrex or silica). A mechanism is proposed to explain the results pertaining to this decomposition in the adsorbed phase. The adsorption seems to obey a Langmuir isotherm, and the chemical act which determines the overall rate of decomposition is unimolecular. (author) [French] Du biphenyle tres pur, dont la purification est decrite, est pyrolyse a 400 C en phase vapeur et en phase liquide dans des ampoules scellees sous vide, a des taux de decomposition n'ayant jamais depasse 0,1 pour cent. Les produits provenant de la pyrolyse sont essentiellement: l' hydrogene, le benzene, les therphenyles, et un depot de polyphenyles adherant fortement aux parois. En plus il se forme de faibles quantites d'hydrocarbures aliphatiques gazeux. On indique la variation des rendements des differents produits avec la duree de pyrolyse, l'etat gazeux ou liquide du biphenyle, et la pression de la vapeur. Variant la superficie et la nature des parois, on montre qu'en absence de liquide la pyrolyse se fait en phase adsorbee. La pyrolyse est plus active au contact de parois metalliques que de celles de verres (pyrex ou silice). A partir des resultats experimentaux un mecanisme de

  16. Microbial plant litter decomposition in aquatic and terrestrial boreal systems along a natural fertility gradient

    Science.gov (United States)

    Soares, A. Margarida P. M.; Kritzberg, Emma S.; Rousk, Johannes

    2017-04-01

    Plant litter decomposition is a global ecosystem process, with a crucial role in carbon and nutrient cycling. The majority of litter processing occurs in terrestrial systems, but an important fraction also takes place in inland waters. Among environmental factors, pH impacts the litter decomposition through its selective influence on microbial decomposers. Fungal communities are less affected by pH than bacteria, possibly owing to a wider pH tolerance by this group. On the other hand, bacterial pH optima are constrained to a narrower range of pH values. The microbial decomposition of litter is universally nutrient limited; but few comparisons exist between terrestrial and aquatic systems. We investigated the microbial colonisation and decomposition of plant litter along a fertility gradient, which varied in both pH and N availability in both soil and adjacent water. To do this we installed litterbags with birch (Betula pendula) in streams and corresponding soils in adjacent riparian areas in a boreal system, in Krycklan, Sweden. During the four months covering the ice-free growth season we monitored the successional dynamics of fungal (acetate incorporation into ergosterol) and bacterial growth (thymidine incorporation), microbial respiration in leaf litter, and quantitative and qualitative changes in litter over time. We observed that bacterial growth rates were initially higher in litter decomposing in streams than those in soils, but differences between terrestrial and aquatic bacterial production converged towards the end of the experiment. In litter bags installed in soils, bacterial growth was lower at sites with more acidic pH and lower N availability, while aquatic bacteria were relatively unaffected by the fertility level. Fungal growth rates were two-fold higher for litter decomposing in streams than in soils. In aquatic systems, fungal growth was initially lower in low fertility sites, but differences gradually disappeared over the time course. Fungal

  17. Decreases in Soil Moisture and Organic Matter Quality Suppress Microbial Decomposition Following a Boreal Forest Fire

    Energy Technology Data Exchange (ETDEWEB)

    Holden, Sandra R.; Berhe, Asmeret A.; Treseder, Kathleen K.

    2015-08-01

    Climate warming is projected to increase the frequency and severity of wildfires in boreal forests, and increased wildfire activity may alter the large soil carbon (C) stocks in boreal forests. Changes in boreal soil C stocks that result from increased wildfire activity will be regulated in part by the response of microbial decomposition to fire, but post-fire changes in microbial decomposition are poorly understood. Here, we investigate the response of microbial decomposition to a boreal forest fire in interior Alaska and test the mechanisms that control post-fire changes in microbial decomposition. We used a reciprocal transplant between a recently burned boreal forest stand and a late successional boreal forest stand to test how post-fire changes in abiotic conditions, soil organic matter (SOM) composition, and soil microbial communities influence microbial decomposition. We found that SOM decomposing at the burned site lost 30.9% less mass over two years than SOM decomposing at the unburned site, indicating that post-fire changes in abiotic conditions suppress microbial decomposition. Our results suggest that moisture availability is one abiotic factor that constrains microbial decomposition in recently burned forests. In addition, we observed that burned SOM decomposed more slowly than unburned SOM, but the exact nature of SOM changes in the recently burned stand are unclear. Finally, we found no evidence that post-fire changes in soil microbial community composition significantly affect decomposition. Taken together, our study has demonstrated that boreal forest fires can suppress microbial decomposition due to post-fire changes in abiotic factors and the composition of SOM. Models that predict the consequences of increased wildfires for C storage in boreal forests may increase their predictive power by incorporating the observed negative response of microbial decomposition to boreal wildfires.

  18. Effect of the percentage of SF sub 6 (100%-10%-5%) on the decomposition of SF sub 6 -N sub 2 mixtures under negative dc coronas in the presence of water vapour or oxygen

    CERN Document Server

    Díaz, J; Casanovas, J

    2003-01-01

    Low SF sub 6 content SF sub 6 -N sub 2 mixtures have recently been proposed as a replacement for pure SF sub 6 in the insulation of gas insulated lines (GIL). Among the areas of investigation of such gas mixtures, their electrical decomposition under corona discharges must be studied considering the possible occurrence of such stress in GIL. This paper presents data concerning the decomposition of high-pressure SF sub 6 -N sub 2 (5 : 95) mixtures (400 kPa) submitted to negative dc coronas in the absence or presence of 0.3% H sub 2 O or 0.3% O sub 2. The chemical stability of these mixtures is compared with that of SF sub 6 -N sub 2 (10 : 90) mixtures or undiluted SF sub 6 investigated in the same conditions in a previous paper. The corona discharges were generated with a point-to-plane set-up and the gaseous by-products were assayed by gas chromatography at the end of each run carried out over a range of transported charge covering 0-13 C. The following by-products were detected and assayed: SOF sub 4 , SO su...

  19. Evaluation of the freeze-thaw/evaporation process for the treatment of produced waters. Final report, August 1992--August 1996

    Energy Technology Data Exchange (ETDEWEB)

    Boysen, J.E.; Walker, K.L.; Mefford, J.L.; Kirsch, J.R. [Resource Technology Corp., Laramie, WY (United States); Harju, J.A. [North Dakota Univ., Grand Forks, ND (United States). Energy and Environmental Research Center

    1996-06-01

    The use of freeze-crystallization is becoming increasingly acknowledged as a low-cost, energy-efficient method for purifying contaminated water. The natural freezing process can be coupled with natural evaporative processes to treat oil and gas produced waters year round in regions where subfreezing temperatures seasonally occur. The climates typical of Colorado`s San Juan Basin and eastern slope, as well as the oil and gas producing regions of Wyoming, are well suited for application of these processes in combination. Specifically, the objectives of this research are related to the development of a commercially-economic FTE (freeze-thaw/evaporation) process for the treatment and purification of water produced in conjunction with oil and natural gas. The research required for development of this process consists of three tasks: (1) a literature survey and process modeling and economic analysis; (2) laboratory-scale process evaluation; and (3) field demonstration of the process. Results of research conducted for the completion of these three tasks indicate that produced water treatment and disposal costs for commercial application of the process, would be in the range of $0.20 to $0.30/bbl in the Rocky Mountain region. FTE field demonstration results from northwestern New Mexico during the winter of 1995--96 indicate significant and simultaneous removal of salts, metals, and organics from produced water. Despite the unusually warm winter, process yields demonstrate disposal volume reductions on the order of 80% and confirm the potential for economic production of water suitable for various beneficial uses. The total dissolved solids concentrations of the FTE demonstration streams were 11,600 mg/L (feed), 56,900 mg/L (brine), and 940 mg/L (ice melt).

  20. A MEMS methanol reformer heated by decomposition of hydrogen peroxide.

    Science.gov (United States)

    Kim, Taegyu; Hwang, Jin Soo; Kwon, Sejin

    2007-07-01

    This paper presents the design, fabrication and evaluation of a micro methanol reformer complete with a heat source. The micro system consists of the steam reforming reactor of methanol, the catalytic decomposition reactor of hydrogen peroxide, and a heat exchanger between the two reactors. In the present study, catalytic decomposition of hydrogen peroxide is used as a process to supply heat to the reforming reactor. The decomposition process of hydrogen peroxide produces water vapor and oxygen as a product that can be used efficiently to operate the reformer/PEMFC system. Cu/ZnO was selected as a catalyst for methanol steam reforming and Pt for the decomposition of hydrogen peroxide. Incipient wetness method was used to load catalysts on a porous support. Catalyst loaded supports were inserted in the cavity made on the glass wafer. The performance of the methanol steam reforming system was measured at various test conditions and the optimum operation condition was sought. At the optimum condition, the hydrogen selectivity was 86.4% and the thermal efficiency was 44.8%. The product gas included 74.1% H(2), 24.5% CO(2) and 1.4% CO and the total volume production rate was 23.5 ml min(-1). This amount of hydrogen can produce 1.5 W of power on a typical PEMFC.

  1. Computer program documentation for the enhanced stream-water quality model QUAL2E. Final report, August 1984-June 1985

    Energy Technology Data Exchange (ETDEWEB)

    Brown, L.C.; Barnwell, T.O.

    1985-08-01

    Presented in the manual are recent modifications and improvements to the widely used stream water quality model QUAL-II. Called QUAL2E, the enhanced model incorporates improvements in eight areas: (1) algal, nitrogen, phosphorus, and dissolved oxygen interactions; (2) algal growth rate; (3) temperature; (4) dissolved oxygen; (5) arbitrary non-conservative constituents; (6) hydraulics; (7) downstream boundary concentrations; and (8) input/output modifications. QUAL2E, which can be operated either as a steady-state or as a dynamic model, is intended for use as a water-quality planning tool.

  2. [Fundamental studies in oxidation-reduction in relation to water photolysis]. Final report, February 15, 1990--July 31, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Hurst, J.K.

    1994-07-01

    Broad objectives are to improve the conceptual view of ways in which membranes and interfaces can be used to control chemical reactivity. Focus was on three elementary processes central to developing membrane-based integrated chemical systems for water photolysis or related photoconversion/photostorage processes. It was sought to identify the influence of interfaces on charge separation/recombination reactions, pathways for transmembrane charge separation across hydrocarbon bilayer membranes, and mechanisms of water oxidation catalyzed by transition metal coordination complexes. The supramolecular assemblies studied comprise primarily small unilamellar vesicles doped with amphiphilic viologens (N,N`dialkyl-4,4`-bipyridinium ions) which can function as transmembrane charge relays.

  3. Evaluation and demonstration of decentralized space and water heating versus centralized services for new and rehabilitated multifamily buildings. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Belkus, P. [Foster-Miller, Inc., Waltham, MA (US); Tuluca, A. [Steven Winter Associates, Inc., Norwalk, CT (US)

    1993-06-01

    The general objective of this research was aimed at developing sufficient technical and economic know-how to convince the building and design communities of the appropriateness and energy advantages of decentralized space and water heating for multifamily buildings. Two main goals were established to guide this research. First, the research sought to determine the cost-benefit advantages of decentralized space and water heating versus centralized systems for multifamily applications based on innovative gas piping and appliance technologies. The second goal was to ensure that this information is made available to the design community.

  4. Kinetic model for predicting the concentrations of active halogens species in chlorinated saline cooling waters. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Haag, W.R.; Lietzke, M.H.

    1981-08-01

    A kinetic model has been developed for describing the speciation of chlorine-produced oxidants in seawater as a function of time. The model is applicable under a broad variety of conditions, including all pH range, salinities, temperatures, ammonia concentrations, organic amine concentrations, and chlorine doses likely to be encountered during power plant cooling water chlorination. However, the effects of sunlight are not considered. The model can also be applied to freshwater and recirculating water systems with cooling towers. The results of the model agree with expectation, however, complete verification is not feasible at the present because analytical methods for some of the predicted species are lacking.

  5. Evaluation of Management of Water Releases for Painted Rocks Reservoir, Bitterroot River, Montana, 1983-1986, Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Spoon, Ronald L. (Montana Department of Fish, Wildlife and Parks, Missoula, MT)

    1987-06-01

    This study was initiated in July, 1983 to develop a water management plan for the release of water purchased from Painted Rocks Reservoir. Releases were designed to provide optimum benefits to the Bitterroot River fishery. Fisheries, habitat, and stream flow information was gathered to evaluate the effectiveness of these supplemental releases in improving trout populations in the Bitterroot River. The study was part of the Northwest Power Planning Council's Fish and Wildlife Program and was funded by the Bonneville Power Administration. This report presents data collected from 1983 through 1986.

  6. Radiation decomposition of alcohols and chloro phenols in micellar systems; Descomposicion por irradiacion de alcoholes y clorofenoles en sistemas micelares

    Energy Technology Data Exchange (ETDEWEB)

    Moreno A, J

    1998-12-31

    The effect of surfactants on the radiation decomposition yield of alcohols and chloro phenols has been studied with gamma doses of 2, 3, and 5 KGy. These compounds were used as typical pollutants in waste water, and the effect of the water solubility, chemical structure, and the nature of the surfactant, anionic or cationic, was studied. The results show that anionic surfactant like sodium dodecylsulfate (SDS), improve the radiation decomposition yield of ortho-chloro phenol, while cationic surfactant like cetyl trimethylammonium chloride (CTAC), improve the radiation decomposition yield of butyl alcohol. A similar behavior is expected for those alcohols with water solubility close to the studied ones. Surfactant concentrations below critical micellar concentration (CMC), inhibited radiation decomposition for both types of alcohols. However radiation decomposition yield increased when surfactant concentrations were bigger than the CMC. Aromatic alcohols decomposition was more marked than for linear alcohols decomposition. On a mixture of alcohols and chloro phenols in aqueous solution the radiation decomposition yield decreased with increasing surfactant concentration. Nevertheless, there were competitive reactions between the alcohols, surfactants dimers, hydroxyl radical and other reactive species formed on water radiolysis, producing a catalytic positive effect in the decomposition of alcohols. Chemical structure and the number of carbons were not important factors in the radiation decomposition. When an alcohol like ortho-chloro phenol contained an additional chlorine atom, the decomposition of this compound was almost constant. In conclusion the micellar effect depend on both, the nature of the surfactant (anionic or cationic) and the chemical structure of the alcohols. The results of this study are useful for wastewater treatment plants based on the oxidant effect of the hydroxyl radical, like in advanced oxidation processes, or in combined treatment such as

  7. Disposal/recovery options for brine waters from oil and gas production in New York State. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Matsumoto, M.R.; Atkinson, J.F.; Bunn, M.D.; Hodge, D.S.

    1996-03-01

    Produced water from oil and gas operations, or brine as it is typically referred, may be characterized as being highly saline, with total dissolved solids greater than 100 g/L. If these bribes are disposed improperly there may be severe adverse environmental effects. Thus, it is important that brine be disposed using environmentally sound methods. Unfortunately, costs for the disposal of brine water are a significant burden to oil and gas producers in New York State. These costs and the relatively low market price of oil and natural gas have contributed to the decline in gas and oil production in New York State during the past 10 years. The objectives of this study were to evaluate new and existing options for brine disposal in New York State, examine the technical and economic merits of these options, and assess environmental impacts associated with each option. Two new disposal options investigated for New York State oil and gas producers included construction of a regional brine treatment facility to treat brine prior to discharge into a receiving water and a salt production facility that utilizes produced water as a feed stock. Both options are technically feasible; however, their economic viability depends on facility size and volume of brine treated.

  8. Recovery, a mathematical model to predict the temporal response of surface water to contaminated sediments. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Boyer, J.M.; Chapra, S.C.; Ruiz, C.E.; Dortch, M.S.

    1994-11-01

    RECOVERY is a PC-based screening-level model to assess the impact of contaminated bottom sediments on surface waters. The analysis is limited to organic contaminants with the assumption that the water column is well mixed. The contaminant is assumed to follow linear, reversible, equilibrium sorption and first-order decay kinetics. The physical representation of a system by RECOVERY consists of a well-mixed water column (i.e., zero- dimensional) underlain by a vertically stratified sediment column (i.e., one-dimensional). The sediment is well mixed horizontally, but segmented vertically into a well-mixed surface (active) layer and deep sediment. The deep sediment is segmented into contaminated and clean sediment regions. Pathways incorporated in the RECOVERY model, in addition to sorption and decay, are volatilization, burial, resuspension, settling, advection, and pore-water diffusion. RECOVERY is designed for interactive implementation via a personal computer. The program allows the user to rapidly generate and analyze recovery scenarios for contaminated sediments. The software includes graphical displays and is self-documented. A description of the model, a confumation application, and a user`s guide are included in this report.

  9. Ichthyoplankton entrainment study at the SRS Savannah River water intakes for Westinghouse Savannah River Company. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Paller, M. [Westinghouse Savannah River Co., Aiken, SC (United States)

    1992-03-26

    Cooling water for L and K Reactors and makeup water for Par Pond is pumped from the Savannah River at the 1G, 3G, and 5G pump houses. Ichthyoplankton (drifting fish larvae and eggs) from the river are entrained into the reactor cooling systems with the river water and passed through the reactor`s heat exchangers where temperatures may reach 70{degrees}C during full power operation. Ichthyoplankton mortality under such conditions is assumed to be 100 percent. The number of ichthyoplankton entrained into the cooling system depends on a variety of variables, including time of year, density and distribution of ichthyoplankton in the river, discharge levels in the river, and the volume of water withdrawn by the pumps. Entrainment at the 1 G pump house, which is immediately downstream from the confluence of Upper Three Runs Creek and the Savannah River, is also influenced by discharge rates and ichthyoplankton densities in Upper Three Runs Creek. Because of the anticipated restart of several SRS reactors and the growing concern surrounding striped bass and American shad stocks in the Savannah River, the Department of Energy requested that the Environmental Sciences Section (ESS) of the Savannah River Laboratory sample ichthyoplankton at the SRS Savannah River intakes. Dams & Moore, Inc., under a contract with Westinghouse Savannah River Company performed the sampling and data analysis for the ESS.

  10. Comparison of water and infrared blanching methods for processing performance and final product quality of French fries

    Science.gov (United States)

    The main objective of this work was to compare infrared blanching (IRB) with water blanching (WB) as a pretreatment method for producing lower calorie French fries. It was observed that complete inactivation of polyphenol oxidase enzyme for 9.43 mm potato strips could be achieved in 200 s and 16 min...

  11. Simultaneous boiling and spreading of liquefied petroleum gas on water. Final report, December 12, 1978-March 31, 1981

    Energy Technology Data Exchange (ETDEWEB)

    Chang, H.R.; Reid, R.C.

    1981-04-01

    An experimental and theoretical investigation was carried out to study the boiling and spreading of liquid nitrogen, liquid methane and liquefied petroleum gas (LPG) on water in a one-dimensional configuration. Primary emphasis was placed on the LPG studies. Experimental work involved the design and construction of a spill/spread/boil apparatus which permitted the measurement of spreading and local boil-off rates. With the equations of continuity and momentum transfer, a mathematical model was developed to describe the boiling-spreading phenomena of cryogens spilled on water. The model accounted for a decrease in the density of the cryogenic liquid due to bubble formation. The boiling and spreading rates of LPG were found to be the same as those of pure propane. An LPG spill was characterized by the very rapid and violent boiling initially and highly irregular ice formation on the water surface. The measured local boil-off rates of LPG agreed reasonably well with theoretical predictions from a moving boundary heat transfer model. The spreading velocity of an LPG spill was found to be constant and determined by the size of the distributor opening. The maximum spreading distance was found to be unaffected by the spilling rate. These observations can be explained by assuming that the ice formation on the water surface controls the spreading of LPG spills. While the mathematical model did not predict the spreading front adequately, it predicted the maximum spreading distance reasonably well.

  12. ARSENIC REMOVAL FROM DRINKING WATER BY ADSORPTIVE MEDIA. USEPA DEMONSTRATION PROJECT AT VALLEY VISTA, AZ FINAL PERFORMANCE EVALUATION REPORT

    Science.gov (United States)

    This report documents the activities performed during and the results obtained from the arsenic removal treatment technology demonstration project at an Arizona Water Company (AWC) facility in Sedona, AZ, commonly referred to as Valley Vista. The objectives of the project were t...

  13. Arsenic Removal from Drinking Water by Adsorptive Media USEPA Demonstration Project at Rimrock AZ Final Performance Evaluation Report

    Science.gov (United States)

    This report documents the activities performed during and the results obtained from the arsenic removal treatment technology demonstration project at the Arizona Water Company (AWC) facility in Rimrock, AZ. The objectives of the project were to evaluate: 1) the effectiveness of ...

  14. 75 FR 7590 - North Carolina Waters Along the Entire Length of New Hanover County; Final No Discharge Zone...

    Science.gov (United States)

    2010-02-22

    ... petitioned the Region 4 Regional Administrator to determine that adequate and reasonably available pumpout... prohibition shall apply until the Administrator determines that adequate facilities for the safe and sanitary... are nearly 1,800 more pleasure boats in the area waters today than just two years ago, with the...

  15. An Investigation of Final Gas Tightness after Supplementation of MCT Water during the Yeosu Underground Oil Storage Caverns-I

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyung Su; Kim, Geon Young; Koh, Young Kwon; Bae, Dae Seok; Park, Kyung Woo; Ji, Sung Hoon; Ryu, Ji Hun

    2009-08-15

    This report has following contents: {center_dot}Estimation of vertical hydrological gradient and the leakage in the case of EL. 10 m of injection water pressure and EL. 0 m of MCT supplement water pressure {center_dot}Undertaking the groundwater flow modeling of Case 1 and Case 2, which are based on the results of MCT supplement test The results of this project have following contents: {center_dot}Case 1 : EL. 10 m of injection water head and , EL. -5 m of MCT supplement water head {center_dot}Case 2 : the same condition as case 1 except EL. 0 m of MCT supplement water head {center_dot}Calculation of water head distribution, vertical hydro-gradient and amount of leakage - (Case 1-1 and Case 2-1) atmospheric pressure of storage cavern - (Case 1-2 and Case 2-2) 2.0 kg/cm2.Abs of storage cavern - (Case 1-3 and Case 2-3) 0.5 kg/cm2.Abs of storage cavern {center_dot}Groundwater head change is not sensitive - Distribution of vertical hydro-gradient - Case 1-1 and Case 2-1: 1.5 {approx} 2.8 - Case 1-2 and Case 2-2: 1.4 {approx} 2.6 - Case 1-3 and Case 2-3: 1.7 {approx} 3.0 {center_dot}Estimated water leakage during the operation - Case 1-1 and Case 2-1: 932 {approx} 943 m3/d - Case 1-2 and Case 2-2: 812 {approx} 819 m3/d - Case 1-3 and Case 2-3: 1,022 {approx}1,030 m3/d {center_dot}It is estimated that the gas tightness can be secured as 1.4 {approx} 2.6 range of vertical hydro-gradient and the expected amount of leakage may be 850 {approx} 950 m3/d (average)

  16. High Efficiency Water Heating Technology Development Final Report, Part II: CO2 and Absorption-Based Residential Heat Pump Water Heater Development

    Energy Technology Data Exchange (ETDEWEB)

    Gluesenkamp, Kyle R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Abdelaziz, Omar [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Patel, Viral K. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Mandel, Bracha T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); de Almeida, Valmor F. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-05-01

    The two objectives of this project were to 1.demonstrate an affordable path to an ENERGY STAR qualified electric heat pump water heater (HPWH) based on low-global warming potential (GWP) CO2 refrigerant, and 2.demonstrate an affordable path to a gas-fired absorption-based heat pump water heater with a gas energy factor (EF) greater than 1.0. The first objective has been met, and the project has identified a promising low-cost option capable of meeting the second objective. This report documents the process followed and results obtained in addressing these objectives.

  17. Decomposition of Diethylstilboestrol in Soil

    DEFF Research Database (Denmark)

    Gregers-Hansen, Birte

    1964-01-01

    The rate of decomposition of DES-monoethyl-1-C14 in soil was followed by measurement of C14O2 released. From 1.6 to 16% of the added C14 was recovered as C14O2 during 3 months. After six months as much as 12 to 28 per cent was released as C14O2.Determination of C14 in the soil samples after...... not inhibit the CO2 production from the soil.Experiments with γ-sterilized soil indicated that enzymes present in the soil are able to attack DES....

  18. Azimuthal decomposition with digital holograms

    CSIR Research Space (South Africa)

    Litvin, IA

    2012-05-01

    Full Text Available stream_source_info Litvin_2012.pdf.txt stream_content_type text/plain stream_size 26000 Content-Encoding ISO-8859-1 stream_name Litvin_2012.pdf.txt Content-Type text/plain; charset=ISO-8859-1 Azimuthal decomposition... outside the annular ring and 1 inside the ring was programmed using complex amplitude modulation for amplitude only effects on a phase-only device. The hologram takes the form of a high frequency grating that oscillates between phase values of 0...

  19. High Efficiency Water Heating Technology Development Final Report. Part I, Lab/Field Performance Evaluation and Accelerated Life Testing of a Hybrid Electric Heat Pump Water Heater (HPWH)

    Energy Technology Data Exchange (ETDEWEB)

    Baxter, Van D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Murphy, Richard W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Rice, C. Keith [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Linkous, Randall Lee [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-04-01

    DOE has supported efforts for many years with the objective of getting a water heater that uses heat pump technology (aka a heat pump water heater or HPWH) successfully on the residential equipment market. The most recent previous effort (1999-2002) produced a product that performed very well in ORNL-led accelerated durability and field tests. The commercial partner for this effort, Enviromaster International (EMI), introduced the product to the market under the trade name Watter$aver in 2002 but ceased production in 2005 due to low sales. A combination of high sales price and lack of any significant infrastructure for service after the sale were the principal reasons for the failure of this effort. What was needed for market success was a commercial partner with the manufacturing and market distribution capability necessary to allow economies of scale to lead to a viable unit price together with a strong customer service infrastructure. General Electric certainly meets these requirements, and knowing of ORNL s expertise in this area, approached ORNL with the proposal to partner in a CRADA to produce a high efficiency electric water heater. A CRADA with GE was initiated early in Fiscal Year, 2008. GE initially named its product the Hybrid Electric Water Heater (HEWH).

  20. Solving network design problems via decomposition, aggregation and approximation

    CERN Document Server

    Bärmann, Andreas

    2016-01-01

    Andreas Bärmann develops novel approaches for the solution of network design problems as they arise in various contexts of applied optimization. At the example of an optimal expansion of the German railway network until 2030, the author derives a tailor-made decomposition technique for multi-period network design problems. Next, he develops a general framework for the solution of network design problems via aggregation of the underlying graph structure. This approach is shown to save much computation time as compared to standard techniques. Finally, the author devises a modelling framework for the approximation of the robust counterpart under ellipsoidal uncertainty, an often-studied case in the literature. Each of these three approaches opens up a fascinating branch of research which promises a better theoretical understanding of the problem and an increasing range of solvable application settings at the same time. Contents Decomposition for Multi-Period Network Design Solving Network Design Problems via Ag...

  1. Some Results on the Wavelet Packet Decomposition of Nonstationary Processes

    Directory of Open Access Journals (Sweden)

    Sami Touati

    2002-11-01

    Full Text Available Wavelet/wavelet packet decomposition has become a very useful tool in describing nonstationary processes. Important examples of nonstationary processes encountered in practice are cyclostationary processes or almost-cyclostationary processes. In this paper, we study the statistical properties of the wavelet packet decomposition of a large class of nonstationary processes, including in particular cyclostationary and almost-cyclostationary processes. We first investigate in a general framework, the existence and some properties of the cumulants of wavelet packet coefficients. We then study more precisely the almost-cyclostationary case, and determine the asymptotic distributions of wavelet packet coefficients. Finally, we particularize some of our results in the cyclostationary case before providing some illustrative simulations.

  2. Simultaneously Exploiting Two Formulations: an Exact Benders Decomposition Approach

    DEFF Research Database (Denmark)

    Lusby, Richard Martin; Gamst, Mette; Spoorendonk, Simon

    . Furthermore, it proves the correctness of the procedure and considers how to include interesting extensions such as cutting planes and advanced branching strategies. Finally, we test and compare the performance of the proposed approach on publicly available instances of the Bin Packing problem. Compared......When modelling a given problem using linear programming techniques several possibilities often exist, and each results in a different mathematical formulation of the problem. Usually, advantages and disadvantages can be identified in any single formulation. In this paper we consider mixed integer...... linear programs and propose an approach based on Benders decomposition to exploit the advantages of two different formulations when solving a problem. We propose to apply Benders decomposition to a combined formulation,comprised of two separate formulations, augmented with linking constraints to ensure...

  3. Decomposition of Fuzzy Soft Sets with Finite Value Spaces

    Directory of Open Access Journals (Sweden)

    Feng Feng

    2014-01-01

    uni-product and int-product operations of fuzzy soft sets are introduced and some related properties are investigated. Using t-level soft sets, we define level equivalent relations and show that the quotient structure of the unit interval induced by level equivalent relations is isomorphic to the lattice consisting of all t-level soft sets of a given fuzzy soft set. We also introduce the concepts of crucial threshold values and complete threshold sets. Finally, some decomposition theorems for fuzzy soft sets with finite value spaces are established, illustrated by an example concerning the classification and rating of multimedia cell phones. The obtained results extend some classical decomposition theorems of fuzzy sets, since every fuzzy set can be viewed as a fuzzy soft set with a single parameter.

  4. Effects of anthropogenic heavy metal contamination on litter decomposition in streams - A meta-analysis.

    Science.gov (United States)

    Ferreira, Verónica; Koricheva, Julia; Duarte, Sofia; Niyogi, Dev K; Guérold, François

    2016-03-01

    Many streams worldwide are affected by heavy metal contamination, mostly due to past and present mining activities. Here we present a meta-analysis of 38 studies (reporting 133 cases) published between 1978 and 2014 that reported the effects of heavy metal contamination on the decomposition of terrestrial litter in running waters. Overall, heavy metal contamination significantly inhibited litter decomposition. The effect was stronger for laboratory than for field studies, likely due to better control of confounding variables in the former, antagonistic interactions between metals and other environmental variables in the latter or differences in metal identity and concentration between studies. For laboratory studies, only copper + zinc mixtures significantly inhibited litter decomposition, while no significant effects were found for silver, aluminum, cadmium or zinc considered individually. For field studies, coal and metal mine drainage strongly inhibited litter decomposition, while drainage from motorways had no significant effects. The effect of coal mine drainage did not depend on drainage pH. Coal mine drainage negatively affected leaf litter decomposition independently of leaf litter identity; no significant effect was found for wood decomposition, but sample size was low. Considering metal mine drainage, arsenic mines had a stronger negative effect on leaf litter decomposition than gold or pyrite mines. Metal mine drainage significantly inhibited leaf litter decomposition driven by both microbes and invertebrates, independently of leaf litter identity; no significant effect was found for microbially driven decomposition, but sample size was low. Overall, mine drainage negatively affects leaf litter decomposition, likely through negative effects on invertebrates. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Litter decomposition patterns in a semiarid Mediterranean ecosystem

    Science.gov (United States)

    María, Almagro; Jorge, López; María, Martínez-Mena

    2010-05-01

    Accumulation of soil carbon is mainly controlled by the balance between litter production and litter decomposition. While aboveground litter decomposition in mesic systems is thought to be controlled by climate, litter quality, and soil faunal interactions (Aerts, 1997), it is becoming increasingly evident that factors other than water availability, including photodegradation, physical fragmentation of litter, and soil movement may play central roles in determining rates of carbon and nutrient turnover in arid and semiarid ecosystems (Whitford et al., 2002; Austin and Vivanco, 2006; Throop and Archer, 2007). Decomposition and its controls were studied using the litter-bag method by exposing two different litter types (Pinus halepensis Mill. and Rosmarinus officinalis Linn.) for a 20 month period in two Mediterranean ecosystems of the eastern Iberian Peninsula: 1) a ~ 150-yr-old forest stand, and 2) an abandoned agricultural field. Both sites are covered by a typical Mediterranean shrubland (Rosmarinus officinalis, Quercus coccifera, and Juniperus oxycedrus) with scattered Aleppo pines (Pinus halepensis). A single exponential decay model (Olson, 1963) fit the data well (R2 values ranging from 0.46 to 0.82). Litter types differed in their decomposition dynamics despite of similar initial content of C and N, and C:N ratios. Rosemary litter decomposed more rapidly than Aleppo pine litter across sites (R2 = 0.742; F= 132.18; Pofficinalis litter decay rates were 1.2 fold-higher in forest than in abandoned field site. Soil temperature or water availability could not explain the differences in decomposition rates between sites throughout the study period. Instead, there was a strong relationship across collection dates between decay rates and litterbag ash content, a conservative indicator of soil accumulation (Throop and Archer, 2007). Moreover, ash content was strongly correlated with the total duration of rainfall events across collection dates for both pine (R2= 0

  6. Parallel QR Decomposition for Electromagnetic Scattering Problems

    National Research Council Canada - National Science Library

    Boleng, Jeff

    1997-01-01

    This report introduces a new parallel QR decomposition algorithm. Test results are presented for several problem sizes, numbers of processors, and data from the electromagnetic scattering problem domain...

  7. Highly Scalable Matching Pursuit Signal Decomposition Algorithm

    Data.gov (United States)

    National Aeronautics and Space Administration — In this research, we propose a variant of the classical Matching Pursuit Decomposition (MPD) algorithm with significantly improved scalability and computational...

  8. Thermal-decomposition studies of HMX

    Energy Technology Data Exchange (ETDEWEB)

    Kolb, J.R.; Garza, R.G.

    1981-10-20

    We have investigated the rates of decomposition as functions of time and temperature on a combined thermogravimetric analyzer-residual gas analyzer (TGA-RGA). This technique also allows us to identify decomposition products generated as the original HMX begins to decompose. The temperature range studied was 50 to 200/sup 0/C. The decomposition process and the nature of decomposition products as functions of HMX polymorphs and conformations of the organic ring systems and possible reactive intermediates are discussed. 7 figures, 3 tables.

  9. Economic analysis of wind-powered refrigeration cooling/water-heating systems in food processing. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Garling, W.S.; Harper, M.R.; Merchant-Geuder, L.; Welch, M.

    1980-03-01

    Potential applications of wind energy include not only large central turbines that can be utilized by utilities, but also dispersed systems for farms and other applications. The US Departments of Energy (DOE) and Agriculture (USDA) currently are establishing the feasibility of wind energy use in applications where the energy can be used as available, or stored in a simple form. These applications include production of hot water for rural sanitation, heating and cooling of rural structures and products, drying agricultural products, and irrigation. This study, funded by USDA, analyzed the economic feasibility of wind power in refrigeration cooling and water heating systems in food processing plants. Types of plants included were meat and poultry, dairy, fruit and vegetable, and aquaculture.

  10. Columbia River System Operation Review : Final Environmental Impact Statement, Appendix F: Irrigation, Municipal and Industrial/Water Supply.

    Energy Technology Data Exchange (ETDEWEB)

    Columbia River System Operations Review (U.S.); United States. Bonneville Power Administration; United States. Army. Corps of Engineers. North Pacific Division; United States. Bureau of Reclamation. Pacific Northwest Region.

    1995-11-01

    Since the 1930`s, the Columbia River has been harnessed for the benefit of the Northwest and the nation. Federal agencies have built 30 major dams on the river and its tributaries. Dozens of non-Federal projects have been developed as well. The dams provide flood control, irrigation, navigation, hydro-electric power generation, recreation, fish and wildlife, and streamflows for wildlife, anadromous fish, resident fish, and water quality. This is Appendix F of the Environmental Impact Statement for the Columbia River System, focusing on irrigation issues and concerns arrising from the Irrigation and Mitigation of impacts (M&I) working Group of the SOR process. Major subheadings include the following: Scope and process of irrigation/M&I studies; Irrigation/M&I in the Columbia Basin Today including overview, irrigated acreage and water rights, Irrigation and M&I issues basin-wide and at specific locations; and the analysis of impacts and alternative for the Environmental Impact Statement.

  11. A Broad Spectrum Catalytic System for Removal of Toxic Organics from Water by Deep Oxidation - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Sen, Ayusman

    2000-12-01

    A most pressing need for the DOE environmental management program is the removal of toxic organic compounds present in groundwater and soil at specific DOE sites. While several remediation procedures have been proposed, they suffer from one or more drawbacks. The objective of the present research was to develop new catalytic procedures for the removal of toxic organic compounds from the environment through their deep oxidation to harmless products. In water, metallic palladium was found to catalyze the deep oxidation of a wide variety of toxic organic compounds by dioxygen at 80-90 C in the presence of carbon monoxide or dihydrogen. Several classes of organic compounds were examined: benzene, phenol and substituted phenols, nitro and halo organics, organophosphorus, and organosulfur compounds. In every case, deep oxidation to carbon monoxide, carbon dioxide, and water occurred in high yields, resulting in up to several hundred turnovers over a 24 hour period. For substrates susceptible to hydrogenation, the conversions were generally high with dihydrogen than with carbon monoxide. It is clear from the results obtained that we have discovered an exceptionally versatile catalytic system for the deep oxidation of toxic organic compounds in water. This system possesses several attractive features not found simultaneously in other reported systems. These are (a) the ability to directly utilize dioxygen as the oxidant, (b) the ability to carry out the deep oxidation of a particularly wide range of functional organics, and (c) the ease of recovery of the catalyst by simple filtration.

  12. Symmetric Decomposition of Asymmetric Games.

    Science.gov (United States)

    Tuyls, Karl; Pérolat, Julien; Lanctot, Marc; Ostrovski, Georg; Savani, Rahul; Leibo, Joel Z; Ord, Toby; Graepel, Thore; Legg, Shane

    2018-01-17

    We introduce new theoretical insights into two-population asymmetric games allowing for an elegant symmetric decomposition into two single population symmetric games. Specifically, we show how an asymmetric bimatrix game (A,B) can be decomposed into its symmetric counterparts by envisioning and investigating the payoff tables (A and B) that constitute the asymmetric game, as two independent, single population, symmetric games. We reveal several surprising formal relationships between an asymmetric two-population game and its symmetric single population counterparts, which facilitate a convenient analysis of the original asymmetric game due to the dimensionality reduction of the decomposition. The main finding reveals that if (x,y) is a Nash equilibrium of an asymmetric game (A,B), this implies that y is a Nash equilibrium of the symmetric counterpart game determined by payoff table A, and x is a Nash equilibrium of the symmetric counterpart game determined by payoff table B. Also the reverse holds and combinations of Nash equilibria of the counterpart games form Nash equilibria of the asymmetric game. We illustrate how these formal relationships aid in identifying and analysing the Nash structure of asymmetric games, by examining the evolutionary dynamics of the simpler counterpart games in several canonical examples.

  13. Differential Decomposition of Bacterial and Viral Fecal ...

    Science.gov (United States)

    Understanding the decomposition of microorganisms associated with different human fecal pollution types is necessary for proper implementation of many water qualitymanagement practices, as well as predicting associated public health risks. Here, thedecomposition of select cultivated and molecular indicators of fecal pollution originating from fresh human feces, septage, and primary effluent sewage in a subtropical marine environment was assessed over a six day period with an emphasis on the influence of ambient sunlight and indigenous microbiota. Ambient water mixed with each fecal pollution type was placed in dialysis bags and incubated in situ in a submersible aquatic mesocosm. Genetic and cultivated fecal indicators including fecal indicator bacteria (enterococci, E. coli, and Bacteroidales), coliphage (somatic and F+), Bacteroides fragilis phage (GB-124), and human-associated geneticindicators (HF183/BacR287 and HumM2) were measured in each sample. Simple linearregression assessing treatment trends in each pollution type over time showed significant decay (p ≤ 0.05) in most treatments for feces and sewage (27/28 and 32/40, respectively), compared to septage (6/26). A two-way analysis of variance of log10 reduction values for sewage and feces experiments indicated that treatments differentially impact survival of cultivated bacteria, cultivated phage, and genetic indicators. Findings suggest that sunlight is critical for phage decay, and indigenous microbio

  14. 8. Innovative Technologies: Two-Phase Heat Transfer in Water-Based Nanofluids for Nuclear Applications Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Buongiorno, Jacopo; Hu, Lin-wen

    2009-07-31

    Nanofluids are colloidal dispersions of nanoparticles in water. Many studies have reported very significant enhancement (up to 200%) of the Critical Heat Flux (CHF) in pool boiling of nanofluids (You et al. 2003, Vassallo et al. 2004, Bang and Chang 2005, Kim et al. 2006, Kim et al. 2007). These observations have generated considerable interest in nanofluids as potential coolants for more compact and efficient thermal management systems. Potential Light Water Reactor applications include the primary coolant, safety systems and severe accident management strategies, as reported in other papers (Buongiorno et al. 2008 and 2009). However, the situation of interest in reactor applications is often flow boiling, for which no nanofluid data have been reported so far. In this project we investigated the potential of nanofluids to enhance CHF in flow boiling. Subcooled flow boiling heat transfer and CHF experiments were performed with low concentrations of alumina, zinc oxide, and diamond nanoparticles in water (≤ 0.1 % by volume) at atmospheric pressure. It was found that for comparable test conditions the values of the nanofluid and water heat transfer coefficient (HTC) are similar (within ±20%). The HTC increased with mass flux and heat flux for water and nanofluids alike, as expected in flow boiling. The CHF tests were conducted at 0.1 MPa and at three different mass fluxes (1500, 2000, 2500 kg/m2s) under subcooled conditions. The maximum CHF enhancement was 53%, 53% and 38% for alumina, zinc oxide and diamond, respectively, always obtained at the highest mass flux. A post-mortem analysis of the boiling surface reveals that its morphology is altered by deposition of the particles during nanofluids boiling. A confocal-microscopy-based examination of the test section revealed that nanoparticles deposition not only changes the number of micro-cavities on the surface, but also the surface wettability. A simple model was used to estimate the ensuing nucleation site

  15. Fate of mercury in tree litter during decomposition

    Directory of Open Access Journals (Sweden)

    A. K. Pokharel

    2011-09-01

    Full Text Available We performed a controlled laboratory litter incubation study to assess changes in dry mass, carbon (C mass and concentration, mercury (Hg mass and concentration, and stoichiometric relations between elements during decomposition. Twenty-five surface litter samples each, collected from four forest stands, were placed in incubation jars open to the atmosphere, and were harvested sequentially at 0, 3, 6, 12, and 18 months. Using a mass balance approach, we observed significant mass losses of Hg during decomposition (5 to 23 % of initial mass after 18 months, which we attribute to gaseous losses of Hg to the atmosphere through a gas-permeable filter covering incubation jars. Percentage mass losses of Hg generally were less than observed dry mass and C mass losses (48 to 63 % Hg loss per unit dry mass loss, although one litter type showed similar losses. A field control study using the same litter types exposed at the original collection locations for one year showed that field litter samples were enriched in Hg concentrations by 8 to 64 % compared to samples incubated for the same time period in the laboratory, indicating strong additional sorption of Hg in the field likely from atmospheric deposition. Solubility of Hg, assessed by exposure of litter to water upon harvest, was very low (<0.22 ng Hg g−1 dry mass and decreased with increasing stage of decomposition for all litter types. Our results indicate potentially large gaseous emissions, or re-emissions, of Hg originally associated with plant litter upon decomposition. Results also suggest that Hg accumulation in litter and surface layers in the field is driven mainly by additional sorption of Hg, with minor contributions from "internal" accumulation due to preferential loss of C over Hg. Litter types showed highly species-specific differences in Hg levels during decomposition suggesting that emissions, retention, and sorption of Hg are dependent on litter type.

  16. Interacting effects of insects and flooding on wood decomposition.

    Directory of Open Access Journals (Sweden)

    Michael D Ulyshen

    Full Text Available Saproxylic arthropods are thought to play an important role in wood decomposition but very few efforts have been made to quantify their contributions to the process and the factors controlling their activities are not well understood. In the current study, mesh exclusion bags were used to quantify how arthropods affect loblolly pine (Pinus taeda L. decomposition rates in both seasonally flooded and unflooded forests over a 31-month period in the southeastern United States. Wood specific gravity (based on initial wood volume was significantly lower in bolts placed in unflooded forests and for those unprotected from insects. Approximately 20.5% and 13.7% of specific gravity loss after 31 months was attributable to insect activity in flooded and unflooded forests, respectively. Importantly, minimal between-treatment differences in water content and the results from a novel test carried out separately suggest the mesh bags had no significant impact on wood mass loss beyond the exclusion of insects. Subterranean termites (Isoptera: Rhinotermitidae: Reticulitermes spp. were 5-6 times more active below-ground in unflooded forests compared to flooded forests based on wooden monitoring stakes. They were also slightly more active above-ground in unflooded forests but these differences were not statistically significant. Similarly, seasonal flooding had no detectable effect on above-ground beetle (Coleoptera richness or abundance. Although seasonal flooding strongly reduced Reticulitermes activity below-ground, it can be concluded from an insignificant interaction between forest type and exclusion treatment that reduced above-ground decomposition rates in seasonally flooded forests were due largely to suppressed microbial activity at those locations. The findings from this study indicate that southeastern U.S. arthropod communities accelerate above-ground wood decomposition significantly and to a similar extent in both flooded and unflooded forests

  17. Resolving Some Paradoxes in the Thermal Decomposition Mechanism of Acetaldehyde

    Energy Technology Data Exchange (ETDEWEB)

    Sivaramakrishnan, Raghu; Michael, Joe V.; Harding, Lawrence B.; Klippenstein, Stephen J.

    2015-07-16

    The mechanism for the thermal decomposition of acetaldehyde has been revisited with an analysis of literature kinetics experiments using theoretical kinetics. The present modeling study was motivated by recent observations, with very sensitive diagnostics, of some unexpected products in high temperature micro-tubular reactor experiments on the thermal decomposition of CH3CHO and its deuterated analogs, CH3CDO, CD3CHO, and CD3CDO. The observations of these products prompted the authors of these studies to suggest that the enol tautomer, CH2CHOH (vinyl alcohol), is a primary intermediate in the thermal decomposition of acetaldehyde. The present modeling efforts on acetaldehyde decomposition incorporate a master equation re-analysis of the CH3CHO potential energy surface (PES). The lowest energy process on this PES is an isomerization of CH3CHO to CH2CHOH. However, the subsequent product channels for CH2CHOH are substantially higher in energy, and the only unimolecular process that can be thermally accessed is a re-isomerization to CH3CHO. The incorporation of these new theoretical kinetics predictions into models for selected literature experiments on CH3CHO thermal decomposition confirms our earlier experiment and theory based conclusions that the dominant decomposition process in CH3CHO at high temperatures is C-C bond fission with a minor contribution (~10-20%) from the roaming mechanism to form CH4 and CO. The present modeling efforts also incorporate a master-equation analysis of the H + CH2CHOH potential energy surface. This bimolecular reaction is the primary mechanism for removal of CH2CHOH, which can accumulate to minor amounts at high temperatures, T > 1000 K, in most lab-scale experiments that use large initial concentrations of CH3CHO. Our modeling efforts indicate that the observation of ketene, water and acetylene in the recent micro-tubular experiments are primarily due to bimolecular reactions of CH3CHO and CH2CHOH with H-atoms, and have no bearing on

  18. Effect of different solutes, natural organic matter, and particulate Fe(III) on ferrate(VI) decomposition in aqueous solutions.

    Science.gov (United States)

    Jiang, Yanjun; Goodwill, Joseph E; Tobiason, John E; Reckhow, David A

    2015-03-03

    This study investigated the impacts of buffer ions, natural organic matter (NOM), and particulate Fe(III) on ferrate(VI) decomposition and characterized Fe(VI) decomposition kinetics and exposure in various waters. Homogeneous and heterogeneous Fe(VI) decomposition can be described as a second- and first-order reaction with respect to Fe(VI), respectively. Fe(VI) decay was catalyzed by Fe(VI) decomposition products. Solutes capable of forming complexes with iron hydroxides retarded Fe(VI) decay. Fractionation of the resulting solutions from Fe(VI) self-decay and ferric chloride addition in borate- and phosphate-buffered waters showed that phosphate could sequester Fe(III). The nature of the iron precipitate from Fe(VI) decomposition was different from that of freshly precipitated ferric hydroxide from ferric chloride solutions. The stabilizing effects of different solutes on Fe(VI) are in the following order: phosphate > bicarbonate > borate. The constituents of colored and alkaline waters (NOM and bicarbonate) inhibited the catalytic effects of Fe(VI) decomposition products and stabilized Fe(VI) in natural waters. Because of the stabilizing effects of solutes, moderate doses of Fe(VI) added to natural waters at pH 7.5 resulted in exposures that have been shown to be effective for inactivation of target pathogens. Preformed ferric hydroxide was less effective than freshly dosed ferric chloride in accelerating Fe(VI) decomposition.

  19. Effects of pulsed and oscillatory flow on water vapor removal from a laboratory soil column. Final report, November 1993

    Energy Technology Data Exchange (ETDEWEB)

    Morrow, Katherine Elizabeth [New Mexico State Univ., Las Cruces, NM (United States)

    1993-05-01

    Subsurface contamination by volatile organic contaminants (VOC`s) in the vadose zone and groundwater is primarily due to leaking underground storage tanks and industrial spills. Soil vapor extraction is a technique that is being used successfully to remove VOC`s from the subsurface. A flow of air is established through the soil to remove the vapor phase component of the contaminant. Soil vapor extraction will initially remove high levels of contaminant that is already present in the macropores. The concentration will start to decline as the removal from the soil matrix becomes limited by diffusion of contaminant from regions away from the air flow paths. This study examines potential methods of overcoming the diffusion limitation by adding an oscillatory component to the steady air flow and by pulsed flow, which involves turning air flow on and off at predetermined intervals. The study considered only the removal of water from the soil to try to establish general vapor behavior in the soil under the imposed conditions. Based on a statistical analysis, both the oscillatory and pulsed flow showed an improved water removal rate over the steady state flow. The effect of oscillatory flow was only examined at higher frequencies. The literature indicates that oscillations at lower frequencies may be more effective. Pulsed flow showed the most efficient removal of water compared to steady state conditions. The pulsed flow was most efficient because rather than reducing the diffusion limitation, the system would shut down and wait for diffusion to occur. This optimizes energy consumption, but does not reduce treatment time. The oscillatory flow actually reduced the diffusion limitation within the column which could result in a shorter treatment time.

  20. Theoretical study of the decomposition pathways and products of C5- perfluorinated ketone (C5 PFK

    Directory of Open Access Journals (Sweden)

    Yuwei Fu

    2016-08-01

    give the formation of IV a, IV b and products of CF3 + CF-CF3 in pathway IV. Although IV a is dominant to a lesser extent due to its relative high energy barrier, its complicated decomposition pathway V was also studied and CF3, C = CF2 as well as C-CF3 species were found as the ultimate products. To complete the decomposition of C5 PFK, pathway V I of Ic decomposition was fully explored and the final products were obtained. Therefore, the integrate decomposition scheme of C5 PFK was proposed, which contains six pathways and forty-eight species (including all the reactants, products and transition states. This work is hopeful to lay a theoretical basis for the insulating properties of C5 PFK.

  1. Final safety evaluation report related to the certification of the advanced boiling water reactor design. Volume 1: Main report

    Energy Technology Data Exchange (ETDEWEB)

    1994-07-01

    This safety evaluation report (SER) documents the technical review of the US Advanced Boiling Water Reactor (ABWR) standard design by the US Nuclear Regulatory Commission (NRC) staff. The application for the ABWR design was initially submitted by the General Electric Company, now GE Nuclear Energy (GE), in accordance with the procedures of Appendix O of Part 50 of Title 10 of the Code of Federal Regulations (10 CFR Part 50). Later GE requested that its application be considered as an application for design approval and subsequent design certification pursuant to 10 CFR {section} 52.45. The ABWR is a single-cycle, forced-circulation, boiling water reactor (BWR) with a rated power of 3,926 megawatts thermal (MWt) and a design power of 4,005 MWt. To the extent feasible and appropriate, the staff relied on earlier reviews for those ABWR design features that are substantially the same as those previously considered. Unique features of the ABWR design include internal recirculation pumps, fine-motion control rod drives, microprocessor-based digital logic and control systems, and digital safety systems. On the basis of its evaluation and independent analyses, the NRC staff concludes that, subject to satisfactory resolution of the confirmatory items identified in Section 1.8 of this SER, GE`s application for design certification meets the requirements of Subpart B of 10 CFR Part 52 that are applicable and technically relevant to the US ABWR standard design.

  2. Final safety evaluation report related to the certification of the advanced boiling water reactor design. Volume 2: Appendices

    Energy Technology Data Exchange (ETDEWEB)

    1994-07-01

    This safety evaluation report (SER) documents the technical review of the US Advanced Boiling Water Reactor (ABWR) standard design by the US Nuclear Regulatory Commission (NRC) staff. The application for the ABWR design was initially submitted by the General Electric Company, now GE Nuclear Energy (GE), in accordance with the procedures of Appendix O of Part 50 of Title 10 of the code of Federal Regulations (10 CFR Part 50). Later GE requested that its application be considered as an application for design approval and subsequent design certification pursuant to 10 CFR {section} 52.45. The ABWR is a single-cycle, forced-circulation, boiling water reactor (BWR) with a rated power of 3,926 megawatts thermal (MWt) and a design power of 4,005 MWt. To the extent feasible and appropriate, the staff relied on earlier reviews for those ABWR design features that are substantially the same as those previously considered. Unique features of the ABWR design include internal recirculation pumps, fine-motion control rod drives, microprocessor-based digital logic and control systems, and digital safety systems. On the basis of its evaluation and independent analyses, the NRC staff concludes that, subject to satisfactory resolution of the confirmatory items identified in Section 1.8 of this SER, GE`s application for design certification meets the requirements of Subpart B of 10 CFR Part 52 that are applicable and technically relevant to the US ABWR standard design.

  3. Evaluation of Very Low Pressure Sprinkler Irrigation and Reservoir Tillage for Efficient Use of Water and Energy : Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Kincaid, Dennis C.

    1987-03-01

    Two types of very low pressure devices were tested, spray nozzles and furrow drops (bubblers). For minimizing spray loss and maintaining uniformity, optimum conditions for spray heads are elevation about 6 feet, spacing 8 to 9 feet and pressure 15 to 20 psi. Use of furrow bubblers is not recommended for most regional conditions. Reservoir tillage with very low pressure systems reduces runoff on sloping fields while maintaining or slightly increasing yield. The total amount of water applied is slightly less because of reduction in spray loss. Effectiveness of reservoir tillage depends on the reservoir storing water until it infiltrates. Failure of the reservoirs during the season may result in increased runoff and erosion. Pressure regulators tested are adequate for their intended use. The uniformity of application using low pressure components was comparable to that of high pressure systems. Energy saving scan result from both low operating pressure and better application efficiency, but the relative importance of these two factors depends on individual circumstances. Payback times for some example systems are four years or less.

  4. In-situ parameter estimation for solar domestic hot water heating systems components. Final report, June 1995--May 1996

    Energy Technology Data Exchange (ETDEWEB)

    Smith, T.R.

    1997-03-01

    Three different solar domestic hot water systems are being tested at the Colorado State University Solar Energy Applications Laboratory; an unpressurized drain-back system with a load side heat exchanger, an integral collector storage system, and an ultra low flow natural convection heat exchanger system. The systems are fully instrumented to yield data appropriate for in-depth analyses of performance. The level of detail allows the observation of the performance of the total system and the performance of the individual components. This report evaluates the systems based on in-situ experimental data and compares the performances with simulated performances. The verification of the simulations aids in the rating procedure. The whole system performance measurements are also used to analyze the performance of individual components of a solar hot water system and to develop improved component models. The data are analyzed extensively and the parameters needed to characterize the systems fully are developed. Also resulting from this indepth analysis are suggested design improvements wither to the systems or the system components.

  5. Performance and economic evaluation of the seahorse natural gas hot water heater conversion at Fort Stewart. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Winiarski, D.W.

    1995-12-01

    The Federal government is the largest single energy consumer in the United States with consumption of nearly 1.5 quads/year of energy (10{sup 15} quad = 1015 Btu) and cost valued at nearly $10 billion annually. The US Department of Energy`s (DOE) Federal Energy Management Program (FEMP) supports efforts to reduce energy use and associated expenses in the Federal sector. One such effort, the New Technology Demonstration Program (NTDP) seeks to evaluate new energy -- saving US technologies and secure their more timely adoption by the US government. Pacific Northwest Laboratory (PNL) is one of four DOE laboratories that participate in the New Technologies Demonstration Program, providing technical expertise and equipment to evaluate new, energy-saving technologies being studied under that program. This report provides the results of a field evaluation that PNL conducted for DOE/FEMP with funding support from the US Department of Defense (DoD) Strategic Environmental Research and Development Program (SERDP) to examine the performance of 4 candidate energy-saving technology-a water heater conversion system to convert electrically powered water heaters to natural gas fuel. The unit was installed at a single residence at Fort Stewart, a US Army base in Georgia, and the performance was monitored under the NTDP. Participating in this effort under a Cooperative Research and Development Agreement (CRADA) were Gas Fired Products, developers of the technology; the Public Service Company of North Carolina; Atlanta Gas Light Company; the Army Corps of Engineers; Fort Stewart; and Pacific Northwest Laboratory.

  6. Decomposition kinetics of plutonium hydride

    Energy Technology Data Exchange (ETDEWEB)

    Haschke, J.M.; Stakebake, J.L.

    1979-01-01

    Kinetic data for decomposition of PuH/sub 1/ /sub 95/ provides insight into a possible mechanism for the hydriding and dehydriding reactions of plutonium. The fact that the rate of the hydriding reaction, K/sub H/, is proportional to P/sup 1/2/ and the rate of the dehydriding process, K/sub D/, is inversely proportional to P/sup 1/2/ suggests that the forward and reverse reactions proceed by opposite paths of the same mechanism. The P/sup 1/2/ dependence of hydrogen solubility in metals is characteristic of the dissociative absorption of hydrogen; i.e., the reactive species is atomic hydrogen. It is reasonable to assume that the rates of the forward and reverse reactions are controlled by the surface concentration of atomic hydrogen, (H/sub s/), that K/sub H/ = c'(H/sub s/), and that K/sub D/ = c/(H/sub s/), where c' and c are proportionality constants. For this surface model, the pressure dependence of K/sub D/ is related to (H/sub s/) by the reaction (H/sub s/) reversible 1/2H/sub 2/(g) and by its equilibrium constant K/sub e/ = (H/sub 2/)/sup 1/2//(H/sub s/). In the pressure range of ideal gas behavior, (H/sub s/) = K/sub e//sup -1/(RT)/sup -1/2/ and the decomposition rate is given by K/sub D/ = cK/sub e/(RT)/sup -1/2/P/sup 1/2/. For an analogous treatment of the hydriding process with this model, it can be readily shown that K/sub H/ = c'K/sub e//sup -1/(RT)/sup -1/2/P/sup 1/2/. The inverse pressure dependence and direct temperature dependence of the decomposition rate are correctly predicted by this mechanism which is most consistent with the observed behavior of the Pu--H system.

  7. Pulse frequency and soil-litter mixing alter the control of cumulative precipitation over litter decomposition.

    Science.gov (United States)

    Joly, François-Xavier; Kurupas, Kelsey L; Throop, Heather L

    2017-09-01

    Macroclimate has traditionally been considered the predominant driver of litter decomposition. However, in drylands, cumulative monthly or annual precipitation typically fails to predict decomposition. In these systems, the windows of opportunity for decomposer activity may rather depend on the precipitation frequency and local factors affecting litter desiccation, such as soil-litter mixing. We used a full-factorial microcosm experiment to disentangle the relative importance of cumulative precipitation, pulse frequency, and soil-litter mixing on litter decomposition. Decomposition, measured as litter carbon loss, saturated with increasing cumulative precipitation when pulses were large and infrequent, suggesting that litter moisture no longer increased and/or microbial activity was no longer limited by water availability above a certain pulse size. More frequent precipitation pulses led to increased decomposition at high levels of cumulative precipitation. Soil-litter mixing consistently increased decomposition, with greatest relative increase (+194%) under the driest conditions. Collectively, our results highlight the need to consider precipitation at finer temporal scale and incorporate soil-litter mixing as key driver of decomposition in drylands. © 2017 by the Ecological Society of America.

  8. Nutrient-enhanced decomposition of plant biomass in a freshwater wetland

    Science.gov (United States)

    Bodker, James E.; Turner, Robert Eugene; Tweel, Andrew; Schulz, Christopher; Swarzenski, Christopher M.

    2015-01-01

    We studied soil decomposition in a Panicum hemitomon (Schultes)-dominated freshwater marsh located in southeastern Louisiana that was unambiguously changed by secondarily-treated municipal wastewater effluent. We used four approaches to evaluate how belowground biomass decomposition rates vary under different nutrient regimes in this marsh. The results of laboratory experiments demonstrated how nutrient enrichment enhanced the loss of soil or plant organic matter by 50%, and increased gas production. An experiment demonstrated that nitrogen, not phosphorus, limited decomposition. Cellulose decomposition at the field site was higher in the flowfield of the introduced secondarily treated sewage water, and the quality of the substrate (% N or % P) was directly related to the decomposition rates. We therefore rejected the null hypothesis that nutrient enrichment had no effect on the decomposition rates of these organic soils. In response to nutrient enrichment, plants respond through biomechanical or structural adaptations that alter the labile characteristics of plant tissue. These adaptations eventually change litter type and quality (where the marsh survives) as the % N content of plant tissue rises and is followed by even higher decomposition rates of the litter produced, creating a positive feedback loop. Marsh fragmentation will increase as a result. The assumptions and conditions underlying the use of unconstrained wastewater flow within natural wetlands, rather than controlled treatment within the confines of constructed wetlands, are revealed in the loss of previously sequestered carbon, habitat, public use, and other societal benefits.

  9. Detritus quality controls macrophyte decomposition under different nutrient concentrations in a eutrophic shallow lake, North China.

    Directory of Open Access Journals (Sweden)

    Xia Li

    Full Text Available Macrophyte decomposition is important for carbon and nutrient cycling in lake ecosystems. Currently, little is known about how this process responds to detritus quality and water nutrient conditions in eutrophic shallow lakes in which incomplete decomposition of detritus accelerates the lake terrestrialization process. In this study, we investigated the effects of detritus quality and water nutrient concentrations on macrophyte decomposition in Lake Baiyangdian, China, by analyzing the decomposition of three major aquatic plants at three sites with different pollution intensities (low, medium, and high pollution sites. Detritus quality refers to detritus nutrient contents as well as C:N, C:P, and N:P mass ratios in this study. Effects of detritus mixtures were tested by combining pairs of representative macrophytes at ratios of 75:25, 50:50 and 25:75 (mass basis. The results indicate that the influence of species types on decomposition was stronger than that of site conditions. Correlation analysis showed that mass losses at the end of the experimental period were significantly controlled by initial detritus chemistry, especially by the initial phosphorus (P content, carbon to nitrogen (C:N, and carbon to phosphorus (C:P mass ratios in the detritus. The decomposition processes were also influenced by water chemistry. The NO(3-N and NH(4-N concentrations in the lake water retarded detritus mass loss at the low and high pollution sites, respectively. Net P mineralization in detritus was observed at all sites and detritus P release at the high pollution site was slower than at the other two sites. Nonadditive effects of mixtures tended to be species specific due to the different nutrient contents in each species. Results suggest that the nonadditive effects varied significantly among different sites, indicating that interactions between the detritus quality in species mixtures and site water chemistry may be another driver controlling decomposition

  10. Detritus quality controls macrophyte decomposition under different nutrient concentrations in a eutrophic shallow lake, North China.

    Science.gov (United States)

    Li, Xia; Cui, Baoshan; Yang, Qichun; Tian, Hanqin; Lan, Yan; Wang, Tingting; Han, Zhen

    2012-01-01

    Macrophyte decomposition is important for carbon and nutrient cycling in lake ecosystems. Currently, little is known about how this process responds to detritus quality and water nutrient conditions in eutrophic shallow lakes in which incomplete decomposition of detritus accelerates the lake terrestrialization process. In this study, we investigated the effects of detritus quality and water nutrient concentrations on macrophyte decomposition in Lake Baiyangdian, China, by analyzing the decomposition of three major aquatic plants at three sites with different pollution intensities (low, medium, and high pollution sites). Detritus quality refers to detritus nutrient contents as well as C:N, C:P, and N:P mass ratios in this study. Effects of detritus mixtures were tested by combining pairs of representative macrophytes at ratios of 75:25, 50:50 and 25:75 (mass basis). The results indicate that the influence of species types on decomposition was stronger than that of site conditions. Correlation analysis showed that mass losses at the end of the experimental period were significantly controlled by initial detritus chemistry, especially by the initial phosphorus (P) content, carbon to nitrogen (C:N), and carbon to phosphorus (C:P) mass ratios in the detritus. The decomposition processes were also influenced by water chemistry. The NO(3)-N and NH(4)-N concentrations in the lake water retarded detritus mass loss at the low and high pollution sites, respectively. Net P mineralization in detritus was observed at all sites and detritus P release at the high pollution site was slower than at the other two sites. Nonadditive effects of mixtures tended to be species specific due to the different nutrient contents in each species. Results suggest that the nonadditive effects varied significantly among different sites, indicating that interactions between the detritus quality in species mixtures and site water chemistry may be another driver controlling decomposition in eutrophic

  11. Target Decomposition Techniques & Role of Classification Methods for Landcover Classification

    Science.gov (United States)

    Singh, Dharmendra; Mittal, Gunjan

    Target decomposition techniques aims at analyzing the received scattering matrix from polari-metric data to extract information about the scattering processes. Incoherent techniques have been modeled in recent years for providing more general approach for decomposition of natural targets. Therefore, there is a need to study and critically analyze the developing models for their suitability in classification of land covers. Moreover, the classification methods used for the segmentation of various landcovers from the decomposition techniques need to be examined as the appropriate selection of these methods affect the performance of the decomposition tech-niques for landcover classification. Therefore in the present paper, it is attempted to check the performance of various model based and an eigen vector based decomposition techniques for decomposition of Polarimetric PALSAR (Phased array type L band SAR) data. Few generic supervised classifiers were used for classification of decomposed images into three broad classes of water, urban and agriculture lands. For the purpose, algorithms had been applied twice on pre-processed PALSAR raw data once on spatial averaged (mean filtering on 33 window) data and the other on data, multilooked in azimuth direction by six looks and then filtered using Wishart Gamma MAP on 55 window. Classification of the decomposed images from each of the methods had been done using four supervised classifiers (parallelepiped, minimum distance, Mahalanobis and maximum likelihood). Ground truth data generated with the help of ground survey points, topographic sheet and google earth was used for the computation of classification accuracy. Parallelepiped classifier gave better classification accuracy of water class for all the models excluding H/A/Alpha. Minimum distance classifier gave better classification results for urban class. Maximum likelihood classifier performed well as compared to other classifiers for classification of vegetation class

  12. Interior tomography with continuous singular value decomposition.

    Science.gov (United States)

    Jin, Xin; Katsevich, Alexander; Yu, Hengyong; Wang, Ge; Li, Liang; Chen, Zhiqiang

    2012-11-01

    The long-standing interior problem has important mathematical and practical implications. The recently developed interior tomography methods have produced encouraging results. A particular scenario for theoretically exact interior reconstruction from truncated projections is that there is a known sub-region in the ROI. In this paper, we improve a novel continuous singular value decomposition (SVD) method for interior reconstruction assuming a known sub-region. First, two sets of orthogonal eigen-functions are calculated for the Hilbert and image spaces respectively. Then, after the interior Hilbert data are calculated from projection data through the ROI, they are projected onto the eigen-functions in the Hilbert space, and an interior image is recovered by a linear combination of the eigen-functions with the resulting coefficients. Finally, the interior image is compensated for the ambiguity due to the null space utilizing the prior sub-region knowledge. Experiments with simulated and real data demonstrate the advantages of our approach relative to the POCS type interior reconstructions.

  13. Organocatalytic decomposition of polyethylene terephthalate using triazabicyclodecene

    Science.gov (United States)

    Lecuyer, Julien Matsumoto

    This study focuses on the organocatalytic decomposition of polyethylene terephthalate (PET) using 1,5,7-triazabicyclo[4.4.0]dec-5-ene (TBD) to form a diverse library of aromatic amides. The reaction scheme was specifically designed to use low reaction temperatures (>150°C) and avoid using solvents during the reaction to provide a more environmentally friendly process. Of all the amines tested, PET aminolysis with aliphatic and aromatic amines demonstrated the best performance with yields higher than 72%. PET aminolysis with click functionalized and non-symmetric reagents facilitated attack on certain sites on the basis of reactivity. Finally, the performance of the PET degradation reactions with secondary amine and tertiary amine functionalized reagents yielded mixed results due to complications with isolating the product from the crude solution. Four of the PET-based monomers were also selected as modifiers for epoxy hardening to demonstrate the ability to convert waste into monomers for high-value applications. The glass transition temperatures, obtained using differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA) of the epoxy composite samples treated with the PET-based monomers, were generally higher in comparison to the samples cured with the basic diamines due to the hydrogen bonding and added rigidity from the aromatic amide group. Developing these monomers provides a green and commercially viable alternative to eradicating a waste product that is becoming an environmental concern.

  14. Early Decomposition of Retained Heavy Silicone Oil Droplets

    Directory of Open Access Journals (Sweden)

    Touka Banaee

    2012-01-01

    Full Text Available Purpose: To report a case of early decomposition of retained heavy silicone oil droplets. Case Report: The single highly myopic eye of a 16-year-old boy with history of scleral buckling and buckle revision developed redetachment due to inferior retinal dialysis. The patient underwent pars plana vitrectomy and injection of heavy silicone oil. Early emulsification of the silicone oil was observed following surgery, which was removed 4 weeks later in another operation. Retained heavy silicone droplets lost their heavier- than-water specific gravity within 2 months together with extensive iris depigmentation, and release of pigment granules into the anterior chamber and vitreous cavity. Conclusion: This case report demonstrates that heavy silicone oil droplets can undergo in vivo chemical decomposition with possible toxic effects on ocular tissues.

  15. Application Of Adomian's Decomposition Method In Solving ...

    African Journals Online (AJOL)

    It is shown in literature that Adomian's decomposition method gives better results than any other computational techniques. We use this method to tackle simple heat equation and compare the result with the closed form solution of the giving problem. Keywords: Adomian decomposition method; accuracy; nonlinear equation ...

  16. Modular polynomial arithmetic in partial fraction decomposition

    Science.gov (United States)

    Abdali, S. K.; Caviness, B. F.; Pridor, A.

    1977-01-01

    Algorithms for general partial fraction decomposition are obtained by using modular polynomial arithmetic. An algorithm is presented to compute inverses modulo a power of a polynomial in terms of inverses modulo that polynomial. This algorithm is used to make an improvement in the Kung-Tong partial fraction decomposition algorithm.

  17. Spinodal decomposition in fine grained materials

    Indian Academy of Sciences (India)

    Unknown

    A-rich grain boundary layer followed by a B-rich layer; the grain interior exhibits a spinodally decomposed microstructure, evolving slowly. Further, grain growth is suppressed completely during the decomposition process. Keywords. Spinodal decomposition; grain boundary effects; phase field models. 1. Introduction.

  18. An Introduction to Clique Minimal Separator Decomposition

    Directory of Open Access Journals (Sweden)

    Anne Berry

    2010-05-01

    Full Text Available This paper is a review which presents and explains the decomposition of graphs by clique minimal separators. The pace is leisurely, we give many examples and figures. Easy algorithms are provided to implement this decomposition. The historical and theoretical background is given, as well as sketches of proofs of the structural results involved.

  19. Some Aspects of Thermochemical Decomposition of Peat

    Directory of Open Access Journals (Sweden)

    Y. A. Losiuk

    2008-01-01

    Full Text Available The paper considers peculiar features of thermochemical decomposition of peat as a result of quick pyrolysis. Evaluation of energy and economic expediency of the preliminary peat decomposition process for obtaining liquid and gaseous products has been made in the paper. The paper reveals prospects pertaining to application of the given technology while generating electric power and heat.

  20. Moisture controls decomposition rate in thawing tundra

    Science.gov (United States)

    C.E. Hicks-Pries; E.A.G. Schuur; S.M. Natali; J.G. Vogel

    2013-01-01

    Permafrost thaw can affect decomposition rates by changing environmental conditions and litter quality. As permafrost thaws, soils warm and thermokarst (ground subsidence) features form, causing some areas to become wetter while other areas become drier. We used a common substrate to measure how permafrost thaw affects decomposition rates in the surface soil in a...

  1. Spinodal decomposition in fine grained materials

    Indian Academy of Sciences (India)

    We have used a phase field model to study spinodal decomposition in polycrystalline materials in which the grain size is of the same order of magnitude as the characteristic decomposition wavelength ( λ S D ). In the spirit of phase field models, each grain () in our model has an order parameter ( η i ) associated with it; ...

  2. Climate history shapes contemporary leaf litter decomposition

    Science.gov (United States)

    Michael S. Strickland; Ashley D. Keiser; Mark A. Bradford

    2015-01-01

    Litter decomposition is mediated by multiple variables, of which climate is expected to be a dominant factor at global scales. However, like other organisms, traits of decomposers and their communities are shaped not just by the contemporary climate but also their climate history. Whether or not this affects decomposition rates is underexplored. Here we source...

  3. Light-induced decomposition of indocyanine green.

    Science.gov (United States)

    Engel, Eva; Schraml, Rüdiger; Maisch, Tim; Kobuch, Karin; König, Burkhard; Szeimies, Rolf-Markus; Hillenkamp, Jost; Bäumler, Wolfgang; Vasold, Rudolf

    2008-05-01

    To investigate the light-induced decomposition of indocyanine green (ICG) and to test the cytotoxicity of light-induced ICG decomposition products. ICG in solution was irradiated with laser light, solar light, or surgical endolight. The light-induced decomposition of ICG was analyzed by high-performance liquid chromatography (HPLC) and mass spectrometry. Porcine retinal pigment epithelial (RPE) cells were incubated with the light-induced decomposition products of ICG, and cell viability was measured by trypan blue exclusion assay. Independent of the light source used, singlet oxygen (photodynamic type 2 reaction) is generated by ICG leading to dioxetanes by [2+2]-cycloaddition of singlet oxygen. These dioxetanes thermally decompose into several carbonyl compounds. The decomposition products were identified by mass spectrometry. The decomposition of ICG was inhibited by adding sodium azide, a quencher of singlet oxygen. Incubation with ICG decomposition products significantly reduced the viability of RPE cells in contrast to control cells. ICG is decomposed by light within a self-sensitized photo oxidation. The decomposition products reduce the viability of RPE cells in vitro. The toxic effects of decomposed ICG should be further investigated under in vivo conditions.

  4. Modeling and measurement of boiling point elevation during water vaporization from aqueous urea for SCR applications

    Energy Technology Data Exchange (ETDEWEB)

    Dan, Ho Jin; Lee, Joon Sik [Seoul National University, Seoul (Korea, Republic of)

    2016-03-15

    Understanding of water vaporization is the first step to anticipate the conversion process of urea into ammonia in the exhaust stream. As aqueous urea is a mixture and the urea in the mixture acts as a non-volatile solute, its colligative properties should be considered during water vaporization. The elevation of boiling point for urea water solution is measured with respect to urea mole fraction. With the boiling-point elevation relation, a model for water vaporization is proposed underlining the correction of the heat of vaporization of water in the urea water mixture due to the enthalpy of urea dissolution in water. The model is verified by the experiments of water vaporization as well. Finally, the water vaporization model is applied to the water vaporization of aqueous urea droplets. It is shown that urea decomposition can begin before water evaporation finishes due to the boiling-point elevation.

  5. Feasibility of geothermal space/water heating for Mammoth Lakes Village, California. Final report, September 1976--September 1977

    Energy Technology Data Exchange (ETDEWEB)

    Sims, A.V.; Racine, W.C.

    1977-12-01

    Results of a study to determine the technical, economic, and environmental feasibility of geothermal district heating for Mammoth Lakes Village, California are reported. The geothermal district heating system selected is technically feasible and will use existing technology in its design and operation. District heating can provide space and water heating energy for typical customers at lower cost than alternative sources of energy. If the district heating system is investor owned, lower costs are realized after five to six years of operation, and if owned by a nonprofit organization, after zero to three years. District heating offers lower costs than alternatives much sooner in time if co-generation and/or DOE participation in system construction are included in the analysis. During a preliminary environmental assessment, no potential adverse environmental impacts could be identified of sufficient consequence to preclude the construction and operation of the proposed district heating system. A follow-on program aimed at implementing district heating in Mammoth is outlined.

  6. The effect of intake of water on the final values of body composition parameters in active athletes using two different bioimpedance analyzers

    Directory of Open Access Journals (Sweden)

    Petr Kutáč

    2014-06-01

    Full Text Available Background:The method of bioelectrical impedance (BIA is frequently used to estimate body composition in sports. The total body water (TBW is the basic variable that BIA measures. That implies the degree of sensitivity of BIA to the hydration of the organism, which is also demonstrated by the principles of measurement that primarily relate to the hydration of the organism. It is difficult to provide standard hydration of the organism of subjects prior to measurements when taking the measurements in the field. Objective:The objective of the study is to assess the changes in the final values of the selected body composition parameters in soccer players caused by intake of water, using two devices commonly used in the field. Methods:The research was performed in a group of 33 soccer players (mean age 20.30 ± 1.18 years. The measurements were taken using Tanita BC 418 MA (frequency 50 kHz and Nutriguard-M (frequency 100 kHz. To evaluate the effect of water intake, we took two measurements before and after the intake of 500 ml of water. The parameters measured by Tanita BC 418 MA were body weight (BW, total body water (TBW, body fat (BF, fat free mass (FFM. Nutriguard-M was used to measure total body water (TBW, intra and extracellular water (ICW and ECW, body fat (BF, fat free mass (FFM, intra and extracellular mass (BCM and ECM. The differences in the means (M1 and M2 of the monitored parameters were evaluated using the Paired Samples t-test. In statistically significant differences in the mean, the practical significance was also verified using the effect of size (Cohen's d. Results:The Tanita device showed statistically significant differences after the intake of 500 ml in parameters BW (+0.42 kg, BF (+0.39 kg, +0.53% and TBW (-0.38%. As for the Nutriguard device, statistically significant differences were found in parameters TBW (+0.77 kg, ICW (+0.83 kg, FFM (+1.05 kg, BCM (+0.79 kg and ECM/BCM (-0.01. Conclusion

  7. Multilinear operators for higher-order decompositions.

    Energy Technology Data Exchange (ETDEWEB)

    Kolda, Tamara Gibson

    2006-04-01

    We propose two new multilinear operators for expressing the matrix compositions that are needed in the Tucker and PARAFAC (CANDECOMP) decompositions. The first operator, which we call the Tucker operator, is shorthand for performing an n-mode matrix multiplication for every mode of a given tensor and can be employed to concisely express the Tucker decomposition. The second operator, which we call the Kruskal operator, is shorthand for the sum of the outer-products of the columns of N matrices and allows a divorce from a matricized representation and a very concise expression of the PARAFAC decomposition. We explore the properties of the Tucker and Kruskal operators independently of the related decompositions. Additionally, we provide a review of the matrix and tensor operations that are frequently used in the context of tensor decompositions.

  8. Thermochemical water-splitting cycle, bench-scale investigations, and process engineering. Final report, February 1977-December 31, 1981

    Energy Technology Data Exchange (ETDEWEB)

    Norman, J.H.; Besenbruch, G.E.; Brown, L.C.; O' Keefe, D.R.; Allen, C.L.

    1982-05-01

    The sulfur-iodine water-splitting cycle is characterized by the following three reactions: 2H/sub 2/O + SO/sub 2/ + I/sub 2/ ..-->.. H/sub 2/SO/sub 4/ + 2HI; H/sub 2/SO/sub 4/ ..-->.. H/sub 2/O + SO/sub 2/ + 1/2 O/sub 2/; and 2HI ..-->.. H/sub 2/ + I/sub 2/. This cycle was developed at General Atomic after several critical features in the above reactions were discovered. These involved phase separations, catalytic reactions, etc. Estimates of the energy efficiency of this economically reasonable advanced state-of-the-art processing unit produced sufficiently high values (to approx.47%) to warrant cycle development effort. The DOE contract was largely directed toward the engineering development of this cycle, including a small demonstration unit (CLCD), a bench-scale unit, engineering design, and costing. The work has resulted in a design that is projected to produce H/sub 2/ at prices not yet generally competitive with fossil-fuel-produced H/sub 2/ but are projected to be favorably competitive with respect to H/sub 2/ from fossil fuels in the future.

  9. Development of a pulsed coal combustor fired with CWM (coal-water mixture): Phase 3, Final report

    Energy Technology Data Exchange (ETDEWEB)

    Mansour, M.N.; Durai-Swamy, K.

    1986-11-01

    This report presents the results of an R and D program aimed at developing a new burner technology for coal-water mixture (CWM) fuels to enable the substitution of these new fuels in utility and industrial boilers and process heaters currently firing oil and gas. The application of pulse combustion to CWM fuels is chosen to alleviate many of the physical plant and environmental constraints presently associated with the direct use of these fuels in equipment designed for oil and gas firing. Pulse combustion has been shown to be capable of high-intensity burning of coal for acceptably complete combustion within relatively small equipment volumes. It also has the inherent capability to agglomerate ash particles, thus rendering ash more easily separable from the combustion gas prior to its entrance into the convective section of the boiler or heater, thereby reducing ash buildup and pluggage. Pulse combustion is also well-suited to staged combustion for NO/sub x/ control and has excellent potential for enhanced in-furnace SO/sub 2/ removal due to the enhanced levels of mass transfer brought about by the vigorous flow oscillations. The primary objective of the Phase 2 work was to develop a detailed program for laboratory development and evaluation of the pulse CWM combustor and system design concepts. 112 refs., 40 figs., 94 tabs.

  10. Impact of Water Use by Utility-Scale Solar on Groundwater Resources of the Chuckwalla Basin, CA: Final Modeling Report

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Chaopeng [Pennsylvania State Univ., University Park, PA (United States). Civil and Environmental Engineering; Fang, Kuai [US Forest Services, Mt. Baker-Snoqualmie, WA (United States); Ludwig, Noel [S Forest Services, Mt. Baker-Snoqualmie, WA (United States); Godfrey, Peter [Bureau of Land Management, WY (United States). Wyoming State Office; Doughty, Christine A. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Earth and Environmental Sciences

    2017-06-01

    The DOE and BLM identified 285,000 acres of desert land in the Chuckwalla valley in the western U.S., for solar energy development. In addition to several approved solar projects, a pumped storage project was recently proposed to pump nearly 8000 acre-ft-yr of groundwater to store and stabilize solar energy output. This study aims at providing estimates of the amount of naturally-occurring recharge, and to estimate the impact of the pumping on the water table. To better provide the locations and intensity of natural recharge, this study employs an integrated, physically-based hydrologic model, PAWS+CLM, to calculate recharge. Then, the simulated recharge is used in a parameter estimation package to calibrate spatially-distributed K field. This design is to incorporate all available observational data, including soil moisture monitoring stations, groundwater head, and estimates of groundwater conductivity, to constrain the modeling. To address the uncertainty of the soil parameters, an ensemble of simulations are conducted, and the resulting recharges are either rejected or accepted based on calibrated groundwater head and local variation of the K field. The results indicate that the natural total inflow to the study domain is between 7107 and 12,772 afy. During the initial-fill phase of pumped storage project, the total outflow exceeds the upper bound estimate of the inflow. If the initial-fill is annualized to 20 years, the average pumping is more than the lower bound of inflows. The results indicate after adding the pumped storage project, the system will nearing, if not exceeding, its maximum renewable pumping capacity. The accepted recharges lead to a drawdown range of 24 to 45 ft for an assumed specific yield of 0.05. However, the drawdown is sensitive to this parameter, whereas there is insufficient data to adequately constrain this parameter.

  11. Let's Break it Down: A Study of Organic Decomposition Rates in Clay Soil

    Science.gov (United States)

    Weiss, E.

    2016-12-01

    In this experiment I will be testing if temperature affects the organic decomposition rates in clay soil. I will need to be able to clean and weigh each filter paper without disrupting my data damaging or brushing off additional paper material. From there I need to be able to analyze and interpret my data to factor anything else that may affect the decomposition rates in the soil. Soil decomposers include bacteria and fungi. They obtain energy from plant and animal detritus through aerobic decomposition, which is similar to how humans break down sugar. The formula is: C6H12O6 + O2 → CO2 + H2O + energy. Besides oxygen and sugar the organisms need nutrients such as water and sustainable temperatures. Decomposition is important to us because it helps regulate soil structure, moisture, temperature, and provides nutrients to soil organisms. This matters on a global scale since decomposers release a large amount of carbon when breaking down matter, which contributes to greenhouse gasses such as carbon dioxide and methane. These greenhouse gasses affect the earth's climate. People who care about decomposition are farmers and those in agriculture, as well as environmental scientists. Even national parks might care because decomposition may affect park safety, how the park looks, and the amount of plants and wildlife. Things that can affect decomposition are the decomposers in the soil, temperature, and water or moisture. My secondary research also showed that PH and chemical composition of the soil affect the rate of decomposition.Cold or freezing temperatures can help preserve organic material in soil because it freezes the soil and moisture, making it too dense for the organic decomposers to break down the organic matter. Soil also can be preserved by drying out and being stored at 4º Celsius (or 39º Fahrenheit) for 28 days. However, soil can degrade slowly in these conditions because it is not frozen and can be oxidized.

  12. Gear fault diagnosis under variable conditions with intrinsic time-scale decomposition-singular value decomposition and support vector machine

    Energy Technology Data Exchange (ETDEWEB)

    Xing, Zhanqiang; Qu, Jianfeng; Chai, Yi; Tang, Qiu; Zhou, Yuming [Chongqing University, Chongqing (China)

    2017-02-15

    The gear vibration signal is nonlinear and non-stationary, gear fault diagnosis under variable conditions has always been unsatisfactory. To solve this problem, an intelligent fault diagnosis method based on Intrinsic time-scale decomposition (ITD)-Singular value decomposition (SVD) and Support vector machine (SVM) is proposed in this paper. The ITD method is adopted to decompose the vibration signal of gearbox into several Proper rotation components (PRCs). Subsequently, the singular value decomposition is proposed to obtain the singular value vectors of the proper rotation components and improve the robustness of feature extraction under variable conditions. Finally, the Support vector machine is applied to classify the fault type of gear. According to the experimental results, the performance of ITD-SVD exceeds those of the time-frequency analysis methods with EMD and WPT combined with SVD for feature extraction, and the classifier of SVM outperforms those for K-nearest neighbors (K-NN) and Back propagation (BP). Moreover, the proposed approach can accurately diagnose and identify different fault types of gear under variable conditions.

  13. Ethanol synthesis and water gas shift over bifunctional sulfide catalysts. Final technical progress report, September 12, 1991--December 11, 1994

    Energy Technology Data Exchange (ETDEWEB)

    Klier, K.; Herman, R.G.; Deemer, M.; Richards-Babb, M.; Carr, T.

    1995-07-01

    The objective of this research was to investigate sulfur-resistant catalysts for the conversion of synthesis gas having H{sub 2}/CO {le} 1 into C{sub 1}--C{sub 4} alcohols, especially ethanol, by a highly selective and efficient pathway, while also promoting the water gas shift reaction (WGSR). The catalysts chosen are bifunctional, base-hydrogenation, sulfur-tolerant transition metal sulfides with heavy alkali, e.g. Cs{sup +}, promoter dispersed on their surfaces. The modes of activation of H{sub 2} and CO on MoS{sub 2} and alkali-doped MoS{sub 2} were considered, and computational analyses of the thermodynamic stability of transition metal sulfides and of the electronic structure of these sulfide catalysts were carried out. In the preparation of the cesium-promoted MoS{sub 2} catalysts, a variety of preparation methods using CsOOCH were examined. In all cases, doping with CsOOCH led to a lost of surface area. The undoped molybdenum disulfide catalyst only produced hydrocarbons. Cs-doped MoS{sub 2} catalysts all produced linear alcohols, along with smaller amounts of hydrocarbons. With a 20 wt% CsOOCH/MoS{sub 2} catalyst, temperature, pressure, and flow rate dependences of the synthesis reactions were investigated in the presence and absence of H{sub 2}S in the H{sub 2}/CO = 1/1 synthesis gas during short term testing experiments. It was shown that with a carefully prepared 10 wt% CsOOCH/MoS{sub 2} catalyst, reproducible and high alcohol synthesis activity could be obtained. For example, at 295 C with H{sub 2}/CO = 1 synthesis gas at 8.3 MPa and with GHSV = 7,760 l/kg cat/hr, the total alcohol space time yield was ca 300 g/kg cat/hr (accompanied with a hydrocarbon space time yield of ca 60 g/kg cat/hr). Over a testing period of ca 130 hr, no net deactivation of the catalyst was observed. 90 refs., 82 figs., 14 tabs.

  14. Final report on CCQM-K70: Determination of Hg in natural water at a concentration level required by the European environmental quality standard (EQS)

    Science.gov (United States)

    Schiel, Detlef; Rienitz, Olaf

    2011-01-01

    This comparison 'Hg in natural water' was a follow-up to the pilot studies CCQM-P100.1 and CCQM-P100.2. The aim of this comparison was to demonstrate the capability of national metrology institutes to measure the Hg mass concentration in a natural water sample at the very low concentration level of γ(Hg) ≈ 70 ng/L as required by the EQS. In this way it served to help implement the European Water Framework Directive (WFD). This comparison was an activity of the Inorganic Analysis Working Group (IAWG) of CCQM and was piloted by Physikalisch-Technische Bundesanstalt (PTB, Braunschweig, Germany) with the help of the co-organizers Bundesanstalt für Materialforschung und -prüfung (BAM, Berlin, Germany), Laboratoire National de Métrologie et d'Essais (LNE, Paris, France), and the Joint Research Centre-Institute for Reference Materials and Measurements (EC-JRC-IRMM, Geel, Belgium). The following laboratories participated in this key comparison (in alphabetical order): BAM (Germany) EC-JRC-IRMM (European Union) KRISS (Republic of Korea) LGC (United Kingdom) LNE (France) NIST (United States of America) NMIA (Australia) NRC (Canada) PTB (Germany) SP (Sweden) The majority of participants applied isotope dilution mass spectrometry (IDMS) using sector field or quadrupole inductively coupled plasma MS (ICP-MS) in combination with cold vapour (CV) generation as the analytical technique. NRC reported a combined result of ID-CV-ICP-MS and CV atomic absorption spectrometry (CV-AAS). SP applied a standard addition method on a sector field ICP-MS, while BAM made use of an external 5-point calibration on a CV atomic fluorescence spectrometer (AFS). The key comparison reference value (KCRV) was agreed upon during the IAWG meeting in April 2010 at BIPM as the sum of the added Hg content calculated from the gravimetric sample preparation and the Hg matrix content of the water used for sample preparation (determined and validated on two independent pathways). Accordingly the degrees

  15. The potential use of nanosilver-decorated titanium dioxide nanofibers for toxin decomposition with antimicrobial and self-cleaning properties

    Science.gov (United States)

    Srisitthiratkul, Chutima; Pongsorrarith, Voraluck; Intasanta, Narupol

    2011-08-01

    While chemical and biological attacks pose risk to human health, clean air is of scientific, environmental and physiological concerns. In the present contribution, the potential use of nanosilver-decorated titanium dioxide (TiO 2) nanofibers for toxin decomposition with antimicrobial activity and self-cleaning properties was investigated. Titanium dioxide nanofibers were prepared through sol-gel reaction followed by an electrospinning process. Following the Japan Industrial Standard (JIS) protocol, decompositions of nitrogen oxide (NOx) and volatile organic compound (VOC) by the TiO 2 nanofibers suggested that these materials were capable of air treatment. To further enhance their anti-microbial activity, silver nanoparticles were decorated onto the TiO 2 nanofibers' surfaces via photoreduction of silver ion in the presence of the nanofibers suspension. Furthermore, tests of photocatalytic activity of the samples were performed by photodegrading methylene blue in water. The nanofibrous membranes prepared from these nanofibers showed superhydrophilicity under UV. Finally, the possibility of using these hybrid nanofibers in environmental and hygienic nanofiltration was proposed, where the self-cleaning characteristics was expected to be valuable in maintenance processes.

  16. Water

    Science.gov (United States)

    ... environment and your health: Green living Sun Water Health effects of water pollution How to protect yourself from water pollution Air Chemicals Noise Quizzes Links to more information girlshealth glossary girlshealth. ...

  17. Evaluation of microporous carbon filters as catalysts for ozone decomposition

    Energy Technology Data Exchange (ETDEWEB)

    Whinnery, L.; Coutts, D.; Shen, C.; Adams, R. [Sandia National Labs., Livermore, CA (United States); Quintana, C.; Showalter, S. [Sandia National Labs., Albuquerque, NM (United States)

    1994-12-31

    Ozone is produced in small quantities in photocopiers and laser printers in the workplace and large quantities in industrial waste water treatment facilities. Carbon filters are commonly used to decompose this unwanted ozone. The three most important factors in producing a filter for this purpose are flow properties, efficiency, and cost. Most ozone decomposition applications require very low back-pressure at modest flow rates. The tradeoff between the number of pores and the size of the pores will be discussed. Typical unfiltered emissions in the workplace are approximately 1 ppm. The maximum permissible exposure limit, PEL, for worker exposure to ozone is 0.1 ppm over 8 hours. Several methods have been examined to increase the efficiency of ozone decomposition. Carbon surfaces were modified with catalysts, the surface activated, and the surface area was increased, in attempts to decompose ozone more effectively. Methods to reduce both the processing and raw material costs were investigated. Several sources of microporous carbon were investigated as ozone decomposition catalysts. Cheaper processing routes including macropore templating, faster drying and extracting methods were also studied.

  18. Geometric decompositions of collective motion

    Science.gov (United States)

    Mischiati, Matteo; Krishnaprasad, P. S.

    2017-04-01

    Collective motion in nature is a captivating phenomenon. Revealing the underlying mechanisms, which are of biological and theoretical interest, will require empirical data, modelling and analysis techniques. Here, we contribute a geometric viewpoint, yielding a novel method of analysing movement. Snapshots of collective motion are portrayed as tangent vectors on configuration space, with length determined by the total kinetic energy. Using the geometry of fibre bundles and connections, this portrait is split into orthogonal components each tangential to a lower dimensional manifold derived from configuration space. The resulting decomposition, when interleaved with classical shape space construction, is categorized into a family of kinematic modes-including rigid translations, rigid rotations, inertia tensor transformations, expansions and compressions. Snapshots of empirical data from natural collectives can be allocated to these modes and weighted by fractions of total kinetic energy. Such quantitative measures can provide insight into the variation of the driving goals of a collective, as illustrated by applying these methods to a publicly available dataset of pigeon flocking. The geometric framework may also be profitably employed in the control of artificial systems of interacting agents such as robots.

  19. Plant decomposition in wetlands: effects of hydrologic variation in a re-created everglades.

    Science.gov (United States)

    Serna, Alexandra; Richards, Jennifer H; Scinto, Leonard J

    2013-01-01

    The effects of water depth and flow on marsh plant litter decomposition and soil chemistry were measured in the Loxahatchee Impoundment Landscape Assessment (LILA) facility (Boynton Beach, FL), where macrocosms mimic Everglades ridge-and-slough landscape features. Experiments were conducted in two macrocosms that differed in flow but had ridge, shallow slough, and deep slough habitats that differed in water depth. Decomposition of three common Everglades species, Crantz, Torr., and Aiton, were measured using litter bags incubated in the macrocosms under both wet and dry conditions. Litter decomposition was similar among flow treatments and habitats but differed by species and between wet and dry conditions. Decomposition rates from fastest to slowest were > > litter had more total P than the other two species, confirming the importance of P availability in controlling decomposition in the Everglades. Planted species had no effect on soil nutrient content during the ~4 yr of plant growth. Average water velocities of ~0.5 cm s attained in the flow treatment had no effect on decomposition or soil chemistry. The plant species used in this study are major contributors to Everglades' organic soils, so their decomposition rates can be used to parameterize models for how restoration manipulations will affect soil-building processes and to predict the temporal sequence of landscape responses to these manipulations. The results suggest that longer periods and flows greater than studied here may be necessary to see restoration effects on soil building processes. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  20. A global experiment suggests climate warming will not accelerate litter decomposition in streams but might reduce carbon sequestration.

    Science.gov (United States)

    Boyero, Luz; Pearson, Richard G; Gessner, Mark O; Barmuta, Leon A; Ferreira, Verónica; Graça, Manuel A S; Dudgeon, David; Boulton, Andrew J; Callisto, Marcos; Chauvet, Eric; Helson, Julie E; Bruder, Andreas; Albariño, Ricardo J; Yule, Catherine M; Arunachalam, Muthukumarasamy; Davies, Judy N; Figueroa, Ricardo; Flecker, Alexander S; Ramírez, Alonso; Death, Russell G; Iwata, Tomoya; Mathooko, Jude M; Mathuriau, Catherine; Gonçalves, José F; Moretti, Marcelo S; Jinggut, Tajang; Lamothe, Sylvain; M'Erimba, Charles; Ratnarajah, Lavenia; Schindler, Markus H; Castela, José; Buria, Leonardo M; Cornejo, Aydeé; Villanueva, Verónica D; West, Derek C

    2011-03-01

    The decomposition of plant litter is one of the most important ecosystem processes in the biosphere and is particularly sensitive to climate warming. Aquatic ecosystems are well suited to studying warming effects on decomposition because the otherwise confounding influence of moisture is constant. By using a latitudinal temperature gradient in an unprecedented global experiment in streams, we found that climate warming will likely hasten microbial litter decomposition and produce an equivalent decline in detritivore-mediated decomposition rates. As a result, overall decomposition rates should remain unchanged. Nevertheless, the process would be profoundly altered, because the shift in importance from detritivores to microbes in warm climates would likely increase CO(2) production and decrease the generation and sequestration of recalcitrant organic particles. In view of recent estimates showing that inland waters are a significant component of the global carbon cycle, this implies consequences for global biogeochemistry and a possible positive climate feedback. © 2011 Blackwell Publishing Ltd/CNRS.

  1. Energy decomposition analysis of intermolecular interactions using a block-localized wave function approach

    Science.gov (United States)

    Mo, Yirong; Gao, Jiali; Peyerimhoff, Sigrid D.

    2000-04-01

    An energy decomposition scheme based on the block-localized wave function (BLW) method is proposed. The key of this scheme is the definition and the full optimization of the diabatic state wave function, where the charge transfer among interacting molecules is deactivated. The present energy decomposition (ED), BLW-ED, method is similar to the Morokuma decomposition scheme in definition of the energy terms, but differs in implementation and the computational algorithm. In addition, in the BLW-ED approach, the basis set superposition error is fully taken into account. The application of this scheme to the water dimer and the lithium cation-water clusters reveals that there is minimal charge transfer effect in hydrogen-bonded complexes. At the HF/aug-cc-PVTZ level, the electrostatic, polarization, and charge-transfer effects contribute 65%, 24%, and 11%, respectively, to the total bonding energy (-3.84 kcal/mol) in the water dimer. On the other hand, charge transfer effects are shown to be significant in Lewis acid-base complexes such as H3NSO3 and H3NBH3. In this work, the effect of basis sets used on the energy decomposition analysis is addressed and the results manifest that the present energy decomposition scheme is stable with a modest size of basis functions.

  2. Mesoporous film of WO{sub 3}–the “sunlight” assisted decomposition of surfactant in wastewater for voltammetric determination of Pb

    Energy Technology Data Exchange (ETDEWEB)

    Krasnodębska-Ostręga, Beata, E-mail: bekras@chem.uw.edu.pl; Bielecka, Agnieszka; Biaduń, Ewa; Miecznikowski, Krzysztof, E-mail: kmiecz@chem.uw.edu.pl

    2016-12-01

    Highlights: • The “sun light” decomposed of surfactants: Sodium dodecyl sulfate and Triton™X-114 in the presence of WO{sub 3}. • Mesoporous WO{sub 3} films use for the degradation of surfactant without any reagents. • The developed procedure is suggested to be a no-reagents method of decomposition of added SDS leads to 100% recovery of added Pb (II). - Abstract: In this paper we present the application of “sunlight” assisted digestion in the presence of WO{sub 3} to the decomposition of dissolved organic matter, using the anionic surfactant sodium dodecyl sulfate (SDS) and the nonionic surfactant (1,1,3,3-tetramethylbutyl)phenyl-polyethylene glycol (Triton™X-114) in natural water samples, prior to the determination of traces residues of lead by stripping voltammetry methods. The results of the study showed firstly that the preparation of reproducible WO{sub 3} layers characterized by high mechanical and chemical resistance was possible, and secondly that it was also possible to obtain a high efficiency of decomposition, equal in efficiency to that of the reference method, which was the hydrogen peroxide oxidation assisted by UV, with evaporation nearly to dryness. The developed procedure is suggested to be a no-reagents method for the decomposition of added SDS, leading to 100% recovery of added Pb (II). The anodic stripping voltammetric curves recorded in solution after 4 h irradiation with UV assisted by WO{sub 3} were repeatable and increased linearly with standard additions, but the data finally obtained were incorrect. The curves recorded in solution after “sunlight” assisted digestion in the presence of WO{sub 3} were repeatable, and increased linearly with an increasing of concentration of standard additions (100% recovery of Pb). In the case of a nonionic surfactant, the decomposition time is at least 6 h. The advantage of the proposed method is the fact that the digestion process does not need the addition of any chemicals for the

  3. Final Report IEA HPP Annex 28. Test procedure and seasonal performance calculation for residential heat pumps with combined space and domestic hot water heating

    Energy Technology Data Exchange (ETDEWEB)

    Wemhoener, C.; Afjei, T.

    2007-07-01

    This final report for the Swiss Federal Office of Energy (SFOE) - an executive summary - takes a look at testing procedures for compact heat pump units which combine the functions of space heating, domestic hot water preparation and - optionally - ventilation. The procedures were developed within the framework of Annex 28 of the International Energy Agency's IEA Heat Pump Programme entitled 'Test procedure and seasonal performance calculation for residential heat pumps with combined space and domestic hot water heating'. Work done at the Institute of Energy in Buildings at the University of Applied Sciences Northwestern Switzerland is described. The results of a state-of-the-art survey are discussed and the resulting conclusions are presented. Further, testing procedures and calculation methods developed for the measurement of the seasonal performance factor of heat pumps are presented. Validation of these procedures is discussed and initial implementations based on the results obtained are presented. This work should lead later on to standardized procedures recognized by the standardization bodies.

  4. Use of heat from tunnel water from the low-level Gotthard and Loetschberg tunnels - Final report phase I - Basic heat potential; Waermenutzung Tunnelwasser. Basistunnel Loetschberg und Gotthard

    Energy Technology Data Exchange (ETDEWEB)

    Oppermann, G.; Dups, Ch.

    2002-07-01

    This final report for the Swiss Federal Office of Energy (SFOE) presents the results of investigations made into the possible use of the drainage water collected in the low-level tunnels under the Swiss Alps for heating purposes. The report presents the findings of the first phase of the project concerning basic data on the amount of heat available, possible areas for its use and details concerning the integration in the general planning of the building and operation of the tunnels. Details of the thermal potential, based on prognoses for drainage water quantities made by the tunnel builders are presented. Possible uses of the heat, such as for the heating of residential buildings in towns near the ends of the tunnels are discussed and reference is made to further reports on concrete projects in Frutigen and Bodio. The authors emphasise the importance of the careful co-ordination with AlpTransit, the builders of the tunnel, and of planning the use of the heat in good time.

  5. 324 Building B-Cell Pressurized Water Reactor Spent Fuel Packaging & Shipment RL Readiness Assessment Final Report [SEC 1 Thru 3

    Energy Technology Data Exchange (ETDEWEB)

    HUMPHREYS, D C

    2002-08-01

    A parallel readiness assessment (RA) was conducted by independent Fluor Hanford (FH) and U. S. Department of Energy, Richland Operations Office (RL) team to verify that an adequate state of readiness had been achieved for activities associated with the packaging and shipping of pressurized water reactor fuel assemblies from B-Cell in the 324 Building to the interim storage area at the Canister Storage Building in the 200 Area. The RL review was conducted in parallel with the FH review in accordance with the Joint RL/FH Implementation Plan (Appendix B). The RL RA Team members were assigned a FH RA Team counterpart for the review. With this one-on-one approach, the RL RA Team was able to assess the FH Team's performance, competence, and adherence to the implementation plan and evaluate the level of facility readiness. The RL RA Team agrees with the FH determination that startup of the 324 Building B-Cell pressurized water reactor spent nuclear fuel packaging and shipping operations can safely proceed, pending completion of the identified pre-start items in the FH final report (see Appendix A), completion of the manageable list of open items included in the facility's declaration of readiness, and execution of the startup plan to operations.

  6. Sensitivity of soil organic matter decomposition to simultaneous changes in temperature and moisture

    Science.gov (United States)

    Sierra, Carlos; Trumbore, Susan; Davidson, Eric; Vicca, Sara; Janssens, Ivan

    2014-05-01

    Soil organic matter decomposition depends on multiple factors that are being altered simultaneously as a result of global environmental change. For this reason it is important to study the overall sensitivity of soil organic matter decomposition with respect to multiple and interacting drivers. Here we present an analysis of the potential response of decomposition rates to simultaneous changes in temperature and moisture. To address this problem, we first present a theoretical framework to study the sensitivity of soil organic matter decomposition when multiple driving factors change simultaneously. We then apply this framework to models and data at different levels of abstraction: 1) to a mechanistic model that addresses the limitation of enzyme activity by simultaneous effects of temperature and soil water content, the latter controlling substrate supply and oxygen concentration for microbial activity; 2) to different mathematical functions used to represent temperature and moisture effects on decomposition in biogeochemical models. To contrast model predictions at these two levels of organization, we compiled different datasets of observed responses in field and laboratory studies. Then we applied our conceptual framework to: 3) observations of soil respiration at the ecosystem level; 4) laboratory experiments looking at the response of heterotrophic respiration to independent changes in moisture and temperature; and 5) ecosystem-level experiments manipulating soil temperature and water content simultaneously. The combined theoretical and empirical evidence reviewed suggests: first, large uncertainties still remain regarding the combined controls of temperature and moisture on decomposition rates, particularly at high temperatures and the extremes of the soil moisture range; second, the highest sensitivities of decomposition rates are likely in systems where temperature and moisture are high such as tropical peatlands, and at temperatures near the freezing point

  7. Further remarks on convergence of decomposition method.

    Science.gov (United States)

    Cherruault, Y; Adomian, G; Abbaoui, K; Rach, R

    1995-01-01

    The decomposition method solves a wide class of nonlinear functional equations. This method uses a series solution with rapid convergence. This paper is intended as a useful review and clarification of related issues.

  8. A Decomposition Theorem for Finite Automata.

    Science.gov (United States)

    Santa Coloma, Teresa L.; Tucci, Ralph P.

    1990-01-01

    Described is automata theory which is a branch of theoretical computer science. A decomposition theorem is presented that is easier than the Krohn-Rhodes theorem. Included are the definitions, the theorem, and a proof. (KR)

  9. Decomposition Analysis of Forest Ecosystem Services Values

    National Research Council Canada - National Science Library

    Hidemichi Fujii; Masayuki Sato; Shunsuke Managi

    2017-01-01

    .... We applied two approaches: a contingent valuation method for estimating the forest ecosystem service value per area and a decomposition analysis for identifying the main driving factors of changes in the value of forest ecosystem services...

  10. The decomposition of estuarine macrophytes under different ...

    African Journals Online (AJOL)

    2013-04-29

    Apr 29, 2013 ... knowledge of the decomposition rates of algal species in order to validate their role in the ... sure in the Great Brak Estuary, numerous filamentous green algae ... structure and functioning of the estuary and as such need to.

  11. Development Of Polarimetric Decomposition Techniques For Indian Forest Resource Assessment Using Radar Imaging Satellite (Risat-1) Images

    Science.gov (United States)

    Sridhar, J.

    2015-12-01

    The focus of this work is to examine polarimetric decomposition techniques primarily focussed on Pauli decomposition and Sphere Di-Plane Helix (SDH) decomposition for forest resource assessment. The data processing methods adopted are Pre-processing (Geometric correction and Radiometric calibration), Speckle Reduction, Image Decomposition and Image Classification. Initially to classify forest regions, unsupervised classification was applied to determine different unknown classes. It was observed K-means clustering method gave better results in comparison with ISO Data method.Using the algorithm developed for Radar Tools, the code for decomposition and classification techniques were applied in Interactive Data Language (IDL) and was applied to RISAT-1 image of Mysore-Mandya region of Karnataka, India. This region is chosen for studying forest vegetation and consists of agricultural lands, water and hilly regions. Polarimetric SAR data possess a high potential for classification of earth surface.After applying the decomposition techniques, classification was done by selecting region of interests andpost-classification the over-all accuracy was observed to be higher in the SDH decomposed image, as it operates on individual pixels on a coherent basis and utilises the complete intrinsic coherent nature of polarimetric SAR data. Thereby, making SDH decomposition particularly suited for analysis of high-resolution SAR data. The Pauli Decomposition represents all the polarimetric information in a single SAR image however interpretation of the resulting image is difficult. The SDH decomposition technique seems to produce better results and interpretation as compared to Pauli Decomposition however more quantification and further analysis are being done in this area of research. The comparison of Polarimetric decomposition techniques and evolutionary classification techniques will be the scope of this work.

  12. Ramanujan subspace pursuit for signal periodic decomposition

    Science.gov (United States)

    Deng, Shi-Wen; Han, Ji-Qing

    2017-06-01

    The period estimation and periodic decomposition of a signal represent long-standing problems in the field of signal processing and biomolecular sequence analysis. To address such problems, we introduce the Ramanujan subspace pursuit (RSP) based on the Ramanujan subspace. As a greedy iterative algorithm, the RSP can uniquely decompose any signal into a sum of exactly periodic components by selecting and removing the most dominant periodic component from the residual signal in each iteration. In the RSP, a novel periodicity metric is derived based on the energy of the exactly periodic component obtained by orthogonally projecting the residual signal into the Ramanujan subspace. The metric is then used to select the most dominant periodic component in each iteration. To reduce the computational cost of the RSP, we also propose the fast RSP (FRSP) based on the relationship between the periodic subspace and the Ramanujan subspace and based on the maximum likelihood estimation of the energy of the periodic component in the periodic subspace. The fast RSP has a lower computational cost and can decompose a signal of length N into a sum of K exactly periodic components in O (KNlogN) . In short, the main contributions of this paper are threefold: First, we present the RSP algorithm for decomposing a signal into its periodic components and theoretically prove the convergence of the algorithm based on the Ramanujan subspaces. Second, we present the FRSP algorithm, which is used to reduce the computational cost. Finally, we derive a periodic metric to measure the periodicity of the hidden periodic components of a signal. In addition, our results show that the RSP outperforms current algorithms for period estimation.

  13. Multipartite graph decomposition: cycles and closed trails

    Directory of Open Access Journals (Sweden)

    Elizabeth J. Billington

    2004-11-01

    Full Text Available This paper surveys results on cycle decompositions of complete multipartite graphs (where the parts are not all of size 1, so the graph is not K_n , in the case that the cycle lengths are “small”. Cycles up to length n are considered, when the complete multipartite graph has n parts, but not hamilton cycles. Properties which the decompositions may have, such as being gregarious, are also mentioned.

  14. Ultrasound assisted extraction and decomposition of Cl-containing herbicide involved in model soil.

    Science.gov (United States)

    Ueno, Shin-ichi; Fujita, Takafumi; Kuchar, Dalibor; Kubota, Mitsuhiro; Matsuda, Hitoki

    2009-01-01

    This work focused on ultrasound assisted extraction and decomposition of MCPA [(4-chloro-2-methylphenoxy) acetic acid] from model soil under argon atmosphere. In the experiments, 10 g model soil containing 1.75 x 10(-5) mol MCPA mixed with 90 g of de-aired water was used. For a comparison, the experiments were also carried out using MCPA aqueous solution of which the concentration was adjusted to 1.75 x 10(-4) mol/l. The results showed that complete MCPA decomposition was achieved after 120 min in the case of MCPA aqueous solution. Meanwhile, in the case of model soil, the MCPA decomposition ratio of 0.9 was obtained after 600 min. This result was attributed to combined effect of MCPA adsorption on kaolin and to attenuation of ultrasound by solid particles of kaolin. To evaluate ultrasound attenuation in the presence of solid particles, experiments with slurry consisting of alumina particles and MCPA solution were carried out at alumina particles concentration range of 0.1-100g/l. The results showed that the MCPA initial decomposition rate significantly decreased with an increase in alumina particles concentration. Thus, it was concluded that the solid particles reduced the MCPA decomposition ratio by reducing the formation of reactive species such as hydroxyl radicals which are know to be necessary for MCPA decomposition.

  15. Microbiological decomposition of bagasse after radiation pasteurization

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Hitoshi; Ishigaki, Isao

    1987-11-01

    Microbiological decomposition of bagasse was studied for upgrading to animal feeds after radiation pasteurization. Solid-state culture media of bagasse were prepared with addition of some amount of inorganic salts for nitrogen source, and after irradiation, fungi were infected for cultivation. In this study, many kind of cellulosic fungi such as Pleurotus ostreatus, P. flavellatus, Verticillium sp., Coprinus cinereus, Lentinus edodes, Aspergillus niger, Trichoderma koningi, T. viride were used for comparison of decomposition of crude fibers. In alkali nontreated bagasse, P. ostreatus, P. flavellatus, C. cinereus and Verticillium sp. could decompose crude fibers from 25 to 34 % after one month of cultivation, whereas other fungi such as A. niger, T. koningi, T. viride, L. edodes decomposed below 10 %. On the contrary, alkali treatment enhanced the decomposition of crude fiber by A. niger, T. koningi and T. viride to be 29 to 47 % as well as Pleurotus species or C. cinereus. Other species of mushrooms such as L. edodes had a little ability of decomposition even after alkali treatment. Radiation treatment with 10 kGy could not enhance the decomposition of bagasse compared with steam treatment, whereas higher doses of radiation treatment enhanced a little of decomposition of crude fibers by microorganisms.

  16. Vibration fatigue using modal decomposition

    Science.gov (United States)

    Mršnik, Matjaž; Slavič, Janko; Boltežar, Miha

    2018-01-01

    Vibration-fatigue analysis deals with the material fatigue of flexible structures operating close to natural frequencies. Based on the uniaxial stress response, calculated in the frequency domain, the high-cycle fatigue model using the S-N curve material data and the Palmgren-Miner hypothesis of damage accumulation is applied. The multiaxial criterion is used to obtain the equivalent uniaxial stress response followed by the spectral moment approach to the cycle-amplitude probability density estimation. The vibration-fatigue analysis relates the fatigue analysis in the frequency domain to the structural dynamics. However, once the stress response within a node is obtained, the physical model of the structure dictating that response is discarded and does not propagate through the fatigue-analysis procedure. The structural model can be used to evaluate how specific dynamic properties (e.g., damping, modal shapes) affect the damage intensity. A new approach based on modal decomposition is presented in this research that directly links the fatigue-damage intensity with the dynamic properties of the system. It thus offers a valuable insight into how different modes of vibration contribute to the total damage to the material. A numerical study was performed showing good agreement between results obtained using the newly presented approach with those obtained using the classical method, especially with regards to the distribution of damage intensity and critical point location. The presented approach also offers orders of magnitude faster calculation in comparison with the conventional procedure. Furthermore, it can be applied in a straightforward way to strain experimental modal analysis results, taking advantage of experimentally measured strains.

  17. Differences in the sensitivity of fungi and bacteria to season and invertebrates affect leaf litter decomposition in a Mediterranean stream.

    Science.gov (United States)

    Mora-Gómez, Juanita; Elosegi, Arturo; Duarte, Sofia; Cássio, Fernanda; Pascoal, Cláudia; Romaní, Anna M

    2016-08-01

    Microorganisms are key drivers of leaf litter decomposition; however, the mechanisms underlying the dynamics of different microbial groups are poorly understood. We investigated the effects of seasonal variation and invertebrates on fungal and bacterial dynamics, and on leaf litter decomposition. We followed the decomposition of Populus nigra litter in a Mediterranean stream through an annual cycle, using fine and coarse mesh bags. Irrespective of the season, microbial decomposition followed two stages. Initially, bacterial contribution to total microbial biomass was higher compared to later stages, and it was related to disaccharide and lignin degradation; in a later stage, bacteria were less important and were associated with hemicellulose and cellulose degradation, while fungi were related to lignin decomposition. The relevance of microbial groups in decomposition differed among seasons: fungi were more important in spring, whereas in summer, water quality changes seemed to favour bacteria and slowed down lignin and hemicellulose degradation. Invertebrates influenced litter-associated microbial assemblages (especially bacteria), stimulated enzyme efficiencies and reduced fungal biomass. We conclude that bacterial and fungal assemblages play distinctive roles in microbial decomposition and differ in their sensitivity to environmental changes, ultimately affecting litter decomposition, which might be particularly relevant in highly seasonal ecosystems, such as intermittent streams. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  18. Soil plus root respiration and microbial biomass following water, nitrogen, and phosphorus application at a high arctic semi desert

    DEFF Research Database (Denmark)

    Illeris, Lotte; Michelsen, Anders; Jonasson, Sven Evert

    2003-01-01

    CO2 emmision, Decomposition, Microbial biomass carbon, Soil organic matter, Tundra, Water and nutrient limitation......CO2 emmision, Decomposition, Microbial biomass carbon, Soil organic matter, Tundra, Water and nutrient limitation...

  19. Water

    Science.gov (United States)

    Leopold, Luna Bergere; Baldwin, Helene L.

    1962-01-01

    What do you use water for?If someone asked you this question you would probably think right away of water for drinking. Then you would think of water for bathing, brushing teeth, flushing the toilet. Your list would get longer as you thought of water for cooking, washing the dishes, running the garbage grinder. Water for lawn watering, for play pools, for swimming pools, for washing the car and the dog. Water for washing machines and for air conditioning. You can hardly do without water for fun and pleasure—water for swimming, boating, fishing, water-skiing, and skin diving. In school or the public library, you need water to wash your hands, or to have a drink. If your home or school bursts into flames, quantities of water are needed to put it out.In fact, life to Americans is unthinkable without large supplies of fresh, clean water. If you give the matter a little thought, you will realize that people in many countries, even in our own, may suffer from disease and dirt simply because their homes are not equipped with running water. Imagine your own town if for some reason - an explosion, perhaps - water service were cut off for a week or several weeks. You would have to drive or walk to a neighboring town and bring water back in pails. Certainly if people had to carry water themselves they might not be inclined to bathe very often; washing clothes would be a real chore.Nothing can live without water. The earth is covered by water over three-fourths of its surface - water as a liquid in rivers, lakes and oceans, and water as ice and snow on the tops of high mountains and in the polar regions. Only one-quarter of our bodies is bone and muscle; the other three-fourths is made of water. We need water to live, and so do plants and animals. People and animals can live a long time without food, but without water they die in a few days. Without water, everything would die, and the world would turn into a huge desert.

  20. Scientific-technical cooperation with Russia. Transient analyses for alternative types of water-cooled reactors. Final report; WTZ mit Russland. Transientenanalysen fuer wassergekuehlte Kernreaktoren. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Rohde, Ulrich [Forschungszentrum Dresden-Rossendorf (Germany). Inst. fuer Sicherheitsforschung; Kozmenkov, Yaroslav [Forschungszentrum Dresden-Rossendorf (Germany). Inst. fuer Sicherheitsforschung; Institute of Physics and Power Engineering, Obninsk (Russian Federation); Pivovarov, Valeri; Matveev, Yurij [Institute of Physics and Power Engineering, Obninsk (Russian Federation)

    2010-12-15

    The recently developed multi-group version DYN3D-MG of the reactor dynamics code DYN3D has been qualified for applications to water-cooled reactor concepts different from industrial PWR and BWR. An extended DYN3D version was applied to the graphite-moderated pressure tube reactor EGP-6 (NPP Bilibino) and conceptual design studies of an advanced Boiling Water Reactor with reduced moderation (RMWR) as well as the RUTA-70 reactor for low temperature heat supply. Concerning the RUTA reactor, safe heat removal by natural circulation of the coolant at low pressure has to be shown. For the corresponding validation of thermo-hydraulic system codes like ATHLET and RELAP5, experiments on flashing-induced natural circulation instabilities performed at the CIRCUS test facility at the TU Delft were simulated using the RELAP5 code. For the application to alternative water-cooled reactors, DYN3D model extensions and modifications were implemented, in particular adaptations of heat conduction and heat transfer models. Performing code-to-code comparisons with the Russian fine-mesh neutron diffusion code ACADEM contributed to the verification of DYN3D-MG. Validation has been performed by calculating reactor dynamics experiments at the NPP Bilibino. For the reactors EGP-6, RMWR and RUTA, analyses of various protected and unprotected control rod withdrawal and ejection transients were performed. The beyond design basis accident (BDBA) scenario ''Coast-down of all main coolant pumps at nominal power without scram'' for the RUTA reactor was analyzed using the code complexes DYN3D/ATHLET and DYN3D/RELAP5. It was shown, that the reactor passes over to a save asymptotic state at reduced power with coolant natural circulation. Analyzing the BDBA ''Unprotected withdrawal of a control rod group'' for the RMWR, the safety against Departure from Nucleate Boiling (DNB) could not be shown with the necessary confidence. Finally, conclusions have been drawn

  1. Water

    Science.gov (United States)

    ... the tap as described). 3. In all situations, drink or cook only with water that comes out of the tap cold. Water that comes out of the tap warm or hot can contain much higher levels of lead. Boiling ...

  2. Solar photo-ozonation: A novel treatment method for the degradation of water pollutants

    Energy Technology Data Exchange (ETDEWEB)

    Chávez, Ana M.; Rey, Ana; Beltrán, Fernando J.; Álvarez, Pedro M., E-mail: pmalvare@unex.es

    2016-11-05

    Highlights: • Aqueous ozone decomposition is accelerated by solar radiation. • Hydrogen peroxide is identifies as a main intermediate of decomposition of aqueous ozone under solar irradiation. • Solar photo-ozonation leads to higher Rct ratios than single ozonation. • Solar photo-ozonation is a promising AOP for the degradation of water pollutants. - Abstract: The decomposition of aqueous ozone by UV–vis radiation has been investigated with focus on the impact of ozone photolysis on the degradation of water pollutants during solar ozonation processes. The apparent first-order rate constants of the decomposition of ozone (k{sub obs}) have been determined at various pHs in the 4–9 range using radiation of different wavelengths in the UV–vis range. It was found that UVA–visible radiation (λ > 320 nm) highly enhanced ozone decomposition, especially at pH 4, for which k{sub obs} was three-folded with respect to the process in the absence of radiation. Hydrogen peroxide was identified as a main intermediate of ozone photo-decomposition at pH 4. Experiments of degradation of oxalic acid by ozone showed that solar irradiation brings about an increase in the hydroxyl radical to ozone exposures ratio (R{sub ct}). Finally, photo-ozonation (λ > 300 nm) was shown advantageous over single ozonation in the mineralization of a selection of emerging contaminants (metoprolol, ibuprofen, N,N-diethyl-meta-toluamide and clofibric acid) in both ultrapure water and a synthetic secondary effluent. Thus, TOC removal in 2-h treatments increased from 10 to 25% in the absence of radiation to about 50% in the presence of radiation.

  3. Pressure drop, heat transfer, critical heat flux, and flow stability of two-phase flow boiling of water and ethylene glycol/water mixtures - final report for project "Efficent cooling in engines with nucleate boiling."

    Energy Technology Data Exchange (ETDEWEB)

    Yu, W.; France, D. M.; Routbort, J. L. (Energy Systems)

    2011-01-19

    Because of its order-of-magnitude higher heat transfer rates, there is interest in using controllable two-phase nucleate boiling instead of conventional single-phase forced convection in vehicular cooling systems to remove ever increasing heat loads and to eliminate potential hot spots in engines. However, the fundamental understanding of flow boiling mechanisms of a 50/50 ethylene glycol/water mixture under engineering application conditions is still limited. In addition, it is impractical to precisely maintain the volume concentration ratio of the ethylene glycol/water mixture coolant at 50/50. Therefore, any investigation into engine coolant characteristics should include a range of volume concentration ratios around the nominal 50/50 mark. In this study, the forced convective boiling heat transfer of distilled water and ethylene glycol/water mixtures with volume concentration ratios of 40/60, 50/50, and 60/40 in a 2.98-mm-inner-diameter circular tube has been investigated in both the horizontal flow and the vertical flow. The two-phase pressure drop, the forced convective boiling heat transfer coefficient, and the critical heat flux of the test fluids were determined experimentally over a range of the mass flux, the vapor mass quality, and the inlet subcooling through a new boiling data reduction procedure that allowed the analytical calculation of the fluid boiling temperatures along the experimental test section by applying the ideal mixture assumption and the equilibrium assumption along with Raoult's law. Based on the experimental data, predictive methods for the two-phase pressure drop, the forced convective boiling heat transfer coefficient, and the critical heat flux under engine application conditions were developed. The results summarized in this final project report provide the necessary information for designing and implementing nucleate-boiling vehicular cooling systems.

  4. Effects of Increased Summer Precipitation and Nitrogen Addition on Root Decomposition in a Temperate Desert

    Science.gov (United States)

    Zhao, Hongmei; Huang, Gang; Li, Yan; Ma, Jian; Sheng, Jiandong; Jia, Hongtao; Li, Congjuan

    2015-01-01

    Background Climate change scenarios that include precipitation shifts and nitrogen (N) deposition are impacting carbon (C) budgets in arid ecosystems. Roots constitute an important part of the C cycle, but it is still unclear which factors control root mass loss and nutrient release in arid lands. Methodology/Principal Findings Litterbags were used to investigate the decomposition rate and nutrient dynamics in root litter with water and N-addition treatments in the Gurbantunggut Desert in China. Water and N addition had no significant effect on root mass loss and the N and phosphorus content of litter residue. The loss of root litter and nutrient releases were strongly controlled by the initial lignin content and the lignin:N ratio, as evidenced by the negative correlations between decomposition rate and litter lignin content and the lignin:N ratio. Fine roots of Seriphidium santolinum (with higher initial lignin content) had a slower decomposition rate in comparison to coarse roots. Conclusion/Significance Results from this study indicate that small and temporary changes in rainfall and N deposition do not affect root decomposition patterns in the Gurbantunggut Desert. Root decomposition rates were significantly different between species, and also between fine and coarse roots, and were determined by carbon components, especially lignin content, suggesting that root litter quality may be the primary driver of belowground carbon turnover. PMID:26544050

  5. Implementation of material decomposition using an EMCCD and CMOS-based micro-CT system

    Science.gov (United States)

    Podgorsak, Alexander R.; Nagesh, S. V. Setlur; Bednarek, Daniel R.; Rudin, Stephen; Ionita, Ciprian N.

    2017-03-01

    This project assessed the effectiveness of using two different detectors to obtain dual-energy (DE) micro-CT data for the carrying out of material decomposition. A micro-CT coupled to either a complementary metal-oxide semiconductor (CMOS) or an electron multiplying CCD (EMCCD) detector was used to acquire image data of a 3D-printed phantom with channels filled with different materials. At any instance, materials such as iohexol contrast agent, water, and platinum were selected to make up the scanned object. DE micro-CT data was acquired, and slices of the scanned object were differentiated by material makeup. The success of the decomposition was assessed quantitatively through the computation of percentage normalized root-mean-square error (%NRMSE). Our results indicate a successful decomposition of iohexol for both detectors (%NRMSE values of 1.8 for EMCCD, 2.4 for CMOS), as well as platinum (%NRMSE value of 4.7). The CMOS detector performed material decomposition on air and water on average with 7 times more %NRMSE, possibly due to the decreased sensitivity of the CMOS system. Material decomposition showed the potential to differentiate between materials such as the iohexol and platinum, perhaps opening the door for its use in the neurovascular anatomical region. Work supported by Toshiba America Medical Systems, and partially supported by NIH grant 2R01EB002873.

  6. Decomposition of toluene in a steady-state atmospheric-pressure glow discharge

    Science.gov (United States)

    Trushkin, A. N.; Grushin, M. E.; Kochetov, I. V.; Trushkin, N. I.; Akishev, Yu. S.

    2013-02-01

    Results are presented from experimental studies of decomposition of toluene (C6H5CH3) in a polluted air flow by means of a steady-state atmospheric pressure glow discharge at different water vapor contents in the working gas. The experimental results on the degree of C6H5CH3 removal are compared with the results of computer simulations conducted in the framework of the developed kinetic model of plasma chemical decomposition of toluene in the N2: O2: H2O gas mixture. A substantial influence of the gas flow humidity on toluene decomposition in the atmospheric pressure glow discharge is demonstrated. The main mechanisms of the influence of humidity on C6H5CH3 decomposition are determined. The existence of two stages in the process of toluene removal, which differ in their duration and the intensity of plasma chemical decomposition of C6H5CH3 is established. Based on the results of computer simulations, the composition of the products of plasma chemical reactions at the output of the reactor is analyzed as a function of the specific energy deposition and gas flow humidity. The existence of a catalytic cycle in which hydroxyl radical OH acts a catalyst and which substantially accelerates the recombination of oxygen atoms and suppression of ozone generation when the plasma-forming gas contains water vapor is established.

  7. Decomposition of hydroxylamine by hemoglobin.

    Science.gov (United States)

    Bazylinski, D A; Arkowitz, R A; Hollocher, T C

    1987-12-01

    The reaction between hydroxylamine (NH2OH) and human hemoglobin (Hb) at pH 6-8 and the reaction between NH2OH and methemoglobin (Hb+) chiefly at pH 7 were studied under anaerobic conditions at 25 degrees C. In presence of cyanide, which was used to trap Hb+, Hb was oxidized by NH2OH to methemoglobin cyanide with production of about 0.5 mol NH+4/mol of heme oxidized at pH 7. The conversion of Hb to Hb+ was first order in [Hb] (or nearly so) but the pseudo-first-order rate constant was not strictly proportional to [NH2OH]. Thus, the apparent second-order rate constant at pH 7 decreased from about 30 M-1 X s-1 to a limiting value of 11.3 M-1 X s-1 with increasing [NH2OH]. The rate of Hb oxidation was not much affected by cyanide, whereas there was no reaction between NH2OH and carbonmonoxyhemoglobin (HbCO). The pseudo-first-order rate constant for Hb oxidation at 500 microM NH2OH increased from about 0.008 s-1 at pH 6 to 0.02 s-1 at pH 8. The oxidation of Hb by NH2OH terminated prematurely at 75-90% completion at pH 7 and at 30-35% completion at pH 8. Data on the premature termination of reaction fit the titration curve for a group with pK = 7.5-7.7. NH2OH was decomposed by Hb+ to N2, NH+4, and a small amount of N2O in what appears to be a dismutation reaction. Nitrite and hydrazine were not detected, and N2 and NH+4 were produced in nearly equimolar amounts. The dismutation reaction was first order in [Hb+] and [NH2OH] only at low concentrations of reactants and was cleanly inhibited by cyanide. The spectrum of Hb+ remained unchanged during the reaction, except for the gradual formation of some choleglobin-like (green) pigment, whereas in the presence of CO, HbCO was formed. Kinetics are consistent with the view advanced previously by J. S. Colter and J. H. Quastel [1950) Arch. Biochem. 27, 368-389) that the decomposition of NH2OH proceeds by a mechanism involving a Hb/Hb+ cycle (reactions [1] and [2]) in which Hb is oxidized to Hb+ by NH2OH.

  8. Local Fractional Adomian Decomposition and Function Decomposition Methods for Laplace Equation within Local Fractional Operators

    Directory of Open Access Journals (Sweden)

    Sheng-Ping Yan

    2014-01-01

    Full Text Available We perform a comparison between the local fractional Adomian decomposition and local fractional function decomposition methods applied to the Laplace equation. The operators are taken in the local sense. The results illustrate the significant features of the two methods which are both very effective and straightforward for solving the differential equations with local fractional derivative.

  9. A Generic Decomposition Formula for Pricing Vanilla Options under Stochastic Volatility Models

    Directory of Open Access Journals (Sweden)

    Raúl Merino

    2015-01-01

    Full Text Available We obtain a decomposition of the call option price for a very general stochastic volatility diffusion model, extending a previous decomposition formula for the Heston model. We realize that a new term arises when the stock price does not follow an exponential model. The techniques used for this purpose are nonanticipative. In particular, we also see that equivalent results can be obtained by using Functional Itô Calculus. Using the same generalizing ideas, we also extend to nonexponential models the alternative call option price decomposition formula written in terms of the Malliavin derivative of the volatility process. Finally, we give a general expression for the derivative of the implied volatility under both the anticipative and the nonanticipative cases.

  10. Digital Image Stabilization Method Based on Variational Mode Decomposition and Relative Entropy

    Directory of Open Access Journals (Sweden)

    Duo Hao

    2017-11-01

    Full Text Available Cameras mounted on vehicles frequently suffer from image shake due to the vehicles’ motions. To remove jitter motions and preserve intentional motions, a hybrid digital image stabilization method is proposed that uses variational mode decomposition (VMD and relative entropy (RE. In this paper, the global motion vector (GMV is initially decomposed into several narrow-banded modes by VMD. REs, which exhibit the difference of probability distribution between two modes, are then calculated to identify the intentional and jitter motion modes. Finally, the summation of the jitter motion modes constitutes jitter motions, whereas the subtraction of the resulting sum from the GMV represents the intentional motions. The proposed stabilization method is compared with several known methods, namely, medium filter (MF, Kalman filter (KF, wavelet decomposition (MD method, empirical mode decomposition (EMD-based method, and enhanced EMD-based method, to evaluate stabilization performance. Experimental results show that the proposed method outperforms the other stabilization methods.

  11. Immobilization and mineralization of N and P by heterotrophic microbes during leaf decomposition

    Science.gov (United States)

    Beth Cheever; Erika Kratzer; Jackson Webster

    2012-01-01

    According to theory, the rate and stoichiometry of microbial mineralization depend, in part, on nutrient availability. For microbes associated with leaves in streams, nutrients are available from both the water column and the leaf. Therefore, microbial nutrient cycling may change with nutrient availability and during leaf decomposition. We explored spatial and temporal...

  12. Effects of calcium magnesium acetate on the combustion of coal-water slurries. Final project report, 1 September 1989--28 February 1993

    Energy Technology Data Exchange (ETDEWEB)

    Levendis, Y.A.; Wise, D.; Metghalchi, H.; Cumper, J.; Atal, A.; Estrada, K.R.; Murphy, B.; Steciak, J.; Hottel, H.C.; Simons, G.

    1993-07-01

    To conduct studies on the combustion of coal water fuels (CWFs) an appropriate facility was designed and constructed. The main components were (1) a high-temperature isothermal laminar flow furnace that facilitates observation of combustion events in its interior. The design of this system and its characterization are described in Chapter 1. (2) Apparatus for slurry droplet/agglomerate particle generation and introduction in the furnace. These devices are described in Chapters 1 and 3 and other attached publications. (3) An electronic optical pyrometer whose design, construction theory of operation, calibration and performance are presented in Chapter 2. (4) A multitude of other accessories, such as particle fluidization devices, a suction thermometer, a velocimeter, high speed photographic equipment, calibration devices for the pyrometer, etc., are described throughout this report. Results on the combustion of CWF droplets and CWF agglomerates made from micronized coal are described in Chapter 3. In the same chapter the combustion of CWF containing dissolved calcium magnesium acetate (CMA) axe described. The combustion behavior of pre-dried CWF agglomerates of pulverized grain coal is contrasted to that of agglomerates of micronized coal in Chapter 4. In the same chapter the combustion of agglomerates of carbon black and diesel soot is discussed as well. The effect of CMA on the combustion of the above materials is also discussed. Finally, the sulfur capture capability of CMA impregnated micronized and pulverized bituminous coals is examined in Chapter 5.

  13. Enhancing decomposition rate of perfluorooctanoic acid by carbonate radical assisted sonochemical treatment.

    Science.gov (United States)

    Phan Thi, Lan-Anh; Do, Huu-Tuan; Lo, Shang-Lien

    2014-09-01

    Perfluorooctanoic acid (PFOA) is a recalcitrant organic pollutant in wastewater because of its wide range of applications. Technologies for PFOA treatment have recently been developed. In this study, PFOA decomposition by sonochemical treatment was investigated to determine the effects of NaHCO3 concentrations, N2 saturation, and pH on decomposition rates and defluorination efficiencies. The results showed that PFOA decomposition by ultrasound treatment only (150 W, 40 kHz), with or without saturated N2, was decomposition and defluorination efficiencies of PFOA, however, greatly increased with the addition of carbonate radical reagents. PFOA was completely decomposed after 4h of sonochemical treatment with a carbonate radical oxidant and saturated N2. Without saturated N2, PFOA was also decomposed to a high (98.81%) degree. The highest PFOA decomposition and defluorination efficiencies occurred in N2 saturated solution containing an initial NaHCO3 concentration of 30 mM. Sonodecomposition of PFOA with CO3(-) radical was most favorable in a slightly alkaline environment (pH=8.65). There isn't any shorter-chain perfluorinated carboxylic acids detected except fluorine ions in final reaction solution. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Combination model of empirical mode decomposition and SVM for river flow forecasting

    Science.gov (United States)

    Ismail, Shuhaida; Shabri, Ani

    2017-04-01

    A reliable prediction of river flow is always important for sound planning and smooth operation of the water resource system. In this study, a combination models based on Empirical Mode Decomposition (EMD) and Support Vector Machine (SVM) model referred as EMD-SVM is proposed for estimating future value of monthly river flow data. The proposed EMD-SVM has three important stages. The first stage, the data were decomposed into several numbers of Intrinsic Mode Functions (IMF) and a residual using EMD technique. In the second stage, the meaningful signals are identified using a statistical measure and the new dataset are obtained in this stage. The final stage applied SVM as forecasting tool to perform the river flow forecasting. To assess the effectiveness of EMD-SVM model, Selangor and Bernam Rivers were used as case studies. The experiment results stated that the proposed EMD-SVM have outperformed other model based on Mean Absolute Error (MAE), Root Mean Square Error (RMSE), and Correlation Coefficient (r). This indicating that EMD-SVM is a useful tool to predict complex time series with non-stationary and nonlinearity issues as well as a promising new method for river flow forecasting.

  15. Microbial Decomposition of Cellulose in Acidifying Lakes of South-Central Ontario

    OpenAIRE

    Hoeniger, Judith F. M.

    1985-01-01

    The rate of cellulose breakdown and density of bacterial populations were measured in the epilimnetic sediments and water columns of lakes in central Ontario that differ in pH, alkalinity, and nutrient status and are particularly sensitive to acidic inputs from atmospheric decomposition. There was no significant difference in decomposition rate in either oxic or anoxic sediment when mean epilimnetic pHs were in the range 5.5 to 6.9. The importance of these findings for the breakdown of autoch...

  16. Fast approximate convex decomposition using relative concavity

    KAUST Repository

    Ghosh, Mukulika

    2013-02-01

    Approximate convex decomposition (ACD) is a technique that partitions an input object into approximately convex components. Decomposition into approximately convex pieces is both more efficient to compute than exact convex decomposition and can also generate a more manageable number of components. It can be used as a basis of divide-and-conquer algorithms for applications such as collision detection, skeleton extraction and mesh generation. In this paper, we propose a new method called Fast Approximate Convex Decomposition (FACD) that improves the quality of the decomposition and reduces the cost of computing it for both 2D and 3D models. In particular, we propose a new strategy for evaluating potential cuts that aims to reduce the relative concavity, rather than absolute concavity. As shown in our results, this leads to more natural and smaller decompositions that include components for small but important features such as toes or fingers while not decomposing larger components, such as the torso, that may have concavities due to surface texture. Second, instead of decomposing a component into two pieces at each step, as in the original ACD, we propose a new strategy that uses a dynamic programming approach to select a set of n c non-crossing (independent) cuts that can be simultaneously applied to decompose the component into n c+1 components. This reduces the depth of recursion and, together with a more efficient method for computing the concavity measure, leads to significant gains in efficiency. We provide comparative results for 2D and 3D models illustrating the improvements obtained by FACD over ACD and we compare with the segmentation methods in the Princeton Shape Benchmark by Chen et al. (2009) [31]. © 2012 Elsevier Ltd. All rights reserved.

  17. Two Notes on Discrimination and Decomposition

    DEFF Research Database (Denmark)

    Nielsen, Helena Skyt

    1998-01-01

    1. It turns out that the Oaxaca-Blinder wage decomposition is inadequate when it comes to calculation of separate contributions for indicator variables. The contributions are not robust against a change of reference group. I extend the Oaxaca-Blinder decomposition to handle this problem. 2. The p....... The paper suggests how to use the logit model to decompose the gender difference in the probability of an occurrence. The technique is illustrated by an analysis of discrimination in child labor in rural Zambia....

  18. Vector domain decomposition schemes for parabolic equations

    Science.gov (United States)

    Vabishchevich, P. N.

    2017-09-01

    A new class of domain decomposition schemes for finding approximate solutions of timedependent problems for partial differential equations is proposed and studied. A boundary value problem for a second-order parabolic equation is used as a model problem. The general approach to the construction of domain decomposition schemes is based on partition of unity. Specifically, a vector problem is set up for solving problems in individual subdomains. Stability conditions for vector regionally additive schemes of first- and second-order accuracy are obtained.

  19. Claw-decompositions and Tutte-orientations

    DEFF Research Database (Denmark)

    Barat, Janos; Thomassen, Carsten

    2006-01-01

    We conjecture that, for each tree T there exists a natural number k(T) such that the following holds: If G is a k(T)-edge-connected graph such that \\E(T)\\ divides \\EG)\\, then the edges of G can be divided into parts, each of which is isomorphic to T. We prove that for T=K-1,K-3 (the claw), this h......]-edge-connected graph with n vertices has an edge-decomposition into claws provided its number of edges is divisible by 3. We also prove that every triangulation of a surface has an edge-decomposition into claws. (C) 2006 Wiley Periodicals, Inc....

  20. Surface Modes of Coherent Spinodal Decomposition

    Science.gov (United States)

    Tang, Ming; Karma, Alain

    2012-06-01

    We use linear stability theory and numerical simulations to show that spontaneous phase separation in elastically coherent solids is fundamentally altered by the presence of free surfaces. Because of misfit stress relaxation near surfaces, phase separation is mediated by unique surface modes of spinodal decomposition that have faster kinetics than bulk modes and are unstable even when spinodal decomposition is suppressed in the bulk. Consequently, in the presence of free surfaces, the limit of metastability of supersaturated solid solutions of crystalline materials is shifted from the coherent to chemical spinodal.

  1. Multiresolution signal decomposition transforms, subbands, and wavelets

    CERN Document Server

    Akansu, Ali N; Haddad, Paul R

    2001-01-01

    The uniqueness of this book is that it covers such important aspects of modern signal processing as block transforms from subband filter banks and wavelet transforms from a common unifying standpoint, thus demonstrating the commonality among these decomposition techniques. In addition, it covers such ""hot"" areas as signal compression and coding, including particular decomposition techniques and tables listing coefficients of subband and wavelet filters and other important properties.The field of this book (Electrical Engineering/Computer Science) is currently booming, which is, of course

  2. Decomposition of aquatic plants in lakes

    Energy Technology Data Exchange (ETDEWEB)

    Godshalk, G.L.

    1977-01-01

    This study was carried out to systematically determine the effects of temperature and oxygen concentration, two environmental parameters crucial to lake metabolism in general, on decomposition of five species of aquatic vascular plants of three growth forms in a Michigan lake. Samples of dried plant material were decomposed in flasks in the laboratory under three different oxygen regimes, aerobic-to-anaerobic, strict anaerobic, and aerated, each at 10/sup 0/C and 25/sup 0/C. In addition, in situ decomposition of the same species was monitored using the litter bag technique under four conditions.

  3. Understanding litter decomposition in semiarid ecosystems: linking leaf traits, UV exposure and rainfall variability.

    Directory of Open Access Journals (Sweden)

    Aurora eGaxiola

    2015-03-01

    Full Text Available Differences in litter quality, microbial activity or abiotic conditions cannot fully account for the variability in decomposition rates observed in semiarid ecosystems. Here we tested the role of variation in litter quality, water supply, and UV radiation as drivers of litter decomposition in arid lands. And show that carry-over effects of litter photodegradation during dry periods can regulate decomposition during subsequent wet periods. We present data from a two-phase experiment, where we first exposed litter from a drought-deciduous and an evergreen shrub to natural UV levels during five, rainless summer-months and, subsequently, in the laboratory, we assessed the carry-over effects of photodegradation on biomass loss under different irrigation treatments representing the observed range of local rainfall variation among years (15 to 240 mm. Photodegradation of litter in the field produced average carbon losses of 12%, but deciduous Proustia pungens lost >25%, while evergreen Porlieria chilensis less than 5%. Natural exposure to UV significantly reduced carbon-to-nitrogen and lignin:N ratios in Proustia litter but not in Porlieria. During the subsequent wet phase, remaining litter biomass was lower in Proustia than in Porlieria. Indeed UV exposure increased litter decomposition of Proustia under low and medium rainfall treatments, whereas no carry-over effects were detected under high rainfall treatment. Consequently, for decidous Proustia carry-over effects of UV exposure were negligible under high irrigation. Litter decomposition of the evergreen Porlieria depended solely on levels of rainfall that promote microbial decomposers. Our two-phase experiment revealed that both the carry-over effects of photodegradation and litter quality, modulated by inter-annual variability in rainfall, can explain the marked differences in decomposition rates and the frequent decoupling between rainfall and litter decomposition observed in semiarid ecosystems.

  4. Critical Rate of Thermal Decomposition of Pure and Impregnated Lignocellulosic Materials

    Science.gov (United States)

    Chrebet, Tomáš; Balog, Karol

    2010-01-01

    Contribution deals with monitoring the impact of airflow velocity around the sample, the oven temperature during thermal decomposition and nature of the sample for the minimum mass flux rate needed to initiate flame combustion. We used the samples of lignocellulosic materials, particularly spruce wood, pure cellulose, flax, cellulose impregnated by 5%, 10%, 15% water solution of KHCO3 and by 5%, 10%, 15% water solution of (NH4)2HPO4.

  5. Decomposition of acetone by hydrogen peroxide/ozone process in a rotating packed contactor.

    Science.gov (United States)

    Ku, Young; Huang, Yun-Jen; Chen, Hua-Wei; Hou, Wei-Ming

    2011-07-01

    The direct use of ozone (O3) in water and wastewater treatment processes is found to be inefficient, incomplete, and limited by the ozone transfer between the gas-liquid interface because of its low solubility and instability in aqueous solutions. Therefore, rotating packed contactors were introduced to improve the transfer of ozone from the gaseous phase to the solution phase, and the effect of several reaction parameters were investigated on the temporal variations of acetone concentration in aqueous solution. The decomposition rate constant of acetone was enhanced by increasing the rotor speed from 450 to 1800 rpm. Increasing the hydrogen peroxide (H2O2)/O3 molar ratios accelerated the decomposition rate until a certain optimum H2O2/O3 molar ratio was reached; further addition of H2O2 inhibited the decomposition of acetone, possibly because excessive amounts of H2O2 added might serve as a scavenger to deplete hydroxyl free radicals.

  6. Do climate and soil influence phenotypic variability in leaf litter, microbial decomposition and shredder consumption?

    Science.gov (United States)

    Graça, M A S; Poquet, J M

    2014-03-01

    We tested the hypothesis that water stress and soil nutrient availability drive leaf-litter quality for decomposers and detritivores by relating chemical and physical leaf-litter properties and decomposability of Alnus glutinosa and Quercus robur, sampled together with edaphic parameters, across wide European climatic gradients. By regressing principal components analysis of leaf traits [N, P, condensed tannins, lignin, specific leaf area (SLA)] against environmental and soil parameters, we found that: (1) In Q. robur the condensed tannin and lignin contents increased and SLA decreased with precipitation, annual range of temperature, and soil N content, whereas leaf P increased with soil P and temperature; (2) In A. glutinosa leaves N, P, and SLA decreased and condensed tannins increased with temperature, annual range of temperature, and decreasing soil P. On the other hand, leaf P and condensed tannins increased and SLA decreased with minimum annual precipitation and towards sites with low temperature. We selected contrasting leaves in terms of quality to test decomposition and invertebrate consumption. There were intraspecific differences in microbial decomposition rates (field, Q. robur) and consumption by shredders (laboratory, A. glutinosa). We conclude that decomposition rates across ecosystems could be partially governed by climate and soil properties, affecting litter quality and therefore decomposers and detritivores. Under scenarios of global warming and increased nutrients, these results suggest we can expect species-specific changes in leaf-litter properties most likely resulting in slow decomposition with increased variance in temperatures and accelerated decomposition with P increase.

  7. Decomposition of gas-phase diphenylether at 473 K by electron beam generated plasma

    CERN Document Server

    Kim, H H; Kojima, T

    2003-01-01

    Decomposition of gas-phase diphenylether (DPE) in the order of several parts per million by volume (ppmv) was studied as a model compound of dioxin using a flow-type electron-beam reactor at an elevated temperature of 473 K. The ground state oxygen ( sup 3 P) atoms played an important role in the decomposition of DPE resulting in the formation of 1,4-hydroquinone (HQ) as a major ring retaining product. The high yield of hydroquinone indicated that the breakage of ether bond (C-O) is important in the initial step of DPE decomposition. Ring cleavage products were CO and CO sub 2 , and NO sub 2 was also produced from background N sub 2 -O sub 2. The sum of the yields of HQ, CO sub 2 and CO accounts for over 90% of the removed DPE. Hydroxyl radicals (OH) were less important in the dilute DPE decomposition at a high water content, and were mostly consumed by recombination reactions to form hydrogen peroxide. The smaller the initial DPE concentrations, the higher the decomposition efficiency and the lower the yield...

  8. Iterative dual energy material decomposition from spatial mismatched raw data sets.

    Science.gov (United States)

    Zhao, Xing; Hu, Jing-Jing; Zhao, Yun-Song; Zhang, Hui-Tao; Zhang, Peng

    2014-01-01

    Today's clinical dual energy computed tomography (DECT) scanners generally measure different rays for different energy spectra and acquire spatial mismatched raw data sets. The deficits in clinical DECT technologies suggest that mainly image based material decomposition methods are in use nowadays. However, the image based material decomposition is an approximate technique, and beam hardening artifacts remain in decomposition results. A recently developed image based iterative method for material decomposition from inconsistent rays (MDIR) can achieve much better image quality than the conventional image based methods. Inspired by the MDIR method, this paper proposes an iterative method to indirectly perform raw data based DECT even with completely mismatched raw data sets. The iterative process is initialized by density images that were obtained from an image based material decomposition. Then the density images are iteratively corrected by comparing the estimated polychromatic projections and the measured polychromatic projections. Only three iterations of the method are sufficient to greatly improve the qualitative and quantitative information in material density images. Compared with the MDIR method, the proposed method needs not to perform additional water precorrection. The advantages of the method are verified with numerical experiments from inconsistent noise free and noisy raw data.

  9. Effects of 2 fungicide formulations on microbial and macroinvertebrate leaf decomposition under laboratory conditions

    Science.gov (United States)

    Elskus, Adria; Smalling, Kelly L.; Hladik, Michelle; Kuivila, Kathryn

    2016-01-01

    Aquatic fungi contribute significantly to the decomposition of leaves in streams, a key ecosystem service. However, little is known about the effects of fungicides on aquatic fungi and macroinvertebrates involved with leaf decomposition. Red maple (Acer rubrum) leaves were conditioned in a stream to acquire microbes (bacteria and fungi), or leached in tap water (unconditioned) to simulate potential reduction of microbial biomass by fungicides. Conditioned leaves were exposed to fungicide formulations QUILT (azoxystrobin + propiconazole) or PRISTINE (boscalid + pyraclostrobin), in the presence and absence of the leaf shredder, Hyalella azteca (amphipods; 7-d old at start of exposures) for 14 d at 23 °C. QUILT formulation (~ 0.3 μg/L, 1.8 μg/L, 8 μg/L) tended to increase leaf decomposition by amphipods (not significant) without a concomitant increase in amphipod biomass, indicating potential increased consumption of leaves with reduced nutritional value. PRISTINE formulation (~ 33 μg/L) significantly reduced amphipod growth and biomass (p<0.05), effects similar to those observed with unconditioned controls. The significant suppressive effects of PRISTINE on amphipod growth, and the trend towards increased leaf decomposition with increasing QUILT concentration, indicate the potential for altered leaf decay in streams exposed to fungicides. Further work is needed to evaluate fungicide effects on leaf decomposition under conditions relevant to stream ecosystems, including temperature shifts and pulsed exposures to pesticide mixtures.

  10. Molecular mechanism of metal-independent decomposition of lipid hydroperoxide 13-HPODE by halogenated quinoid carcinogens.

    Science.gov (United States)

    Qin, Hao; Huang, Chun-Hua; Mao, Li; Xia, Hai-Ying; Kalyanaraman, Balaraman; Shao, Jie; Shan, Guo-Qiang; Zhu, Ben-Zhan

    2013-10-01

    Halogenated quinones are a class of carcinogenic intermediates and newly identified chlorination disinfection by-products in drinking water. 13-Hydroperoxy-9,11-octadecadienoic acid (13-HPODE) is the most extensively studied endogenous lipid hydroperoxide. Although it is well known that the decomposition of 13-HPODE can be catalyzed by transition metal ions, it is not clear whether halogenated quinones could enhance its decomposition independent of metal ions and, if so, what the unique characteristics and similarities are. Here we show that 2,5-dichloro-1,4-benzoquinone (DCBQ) could markedly enhance the decomposition of 13-HPODE and formation of reactive lipid alkyl radicals such as pentyl and 7-carboxyheptyl radicals, and the genotoxic 4-hydroxy-2-nonenal (HNE), through the complementary application of ESR spin trapping, HPLC-MS, and GC-MS methods. Interestingly, two chloroquinone-lipid alkoxyl conjugates were also detected and identified from the reaction between DCBQ and 13-HPODE. Analogous results were observed with other halogenated quinones. This represents the first report that halogenated quinoid carcinogens can enhance the decomposition of the endogenous lipid hydroperoxide 13-HPODE and formation of reactive lipid alkyl radicals and genotoxic HNE via a novel metal-independent nucleophilic substitution coupled with homolytic decomposition mechanism, which may partly explain their potential genotoxicity and carcinogenicity. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. Nonlinear QR code based optical image encryption using spiral phase transform, equal modulus decomposition and singular value decomposition

    Science.gov (United States)

    Kumar, Ravi; Bhaduri, Basanta; Nishchal, Naveen K.

    2018-01-01

    In this study, we propose a quick response (QR) code based nonlinear optical image encryption technique using spiral phase transform (SPT), equal modulus decomposition (EMD) and singular value decomposition (SVD). First, the primary image is converted into a QR code and then multiplied with a spiral phase mask (SPM). Next, the product is spiral phase transformed with particular spiral phase function, and further, the EMD is performed on the output of SPT, which results into two complex images, Z 1 and Z 2. Among these, Z 1 is further Fresnel propagated with distance d, and Z 2 is reserved as a decryption key. Afterwards, SVD is performed on Fresnel propagated output to get three decomposed matrices i.e. one diagonal matrix and two unitary matrices. The two unitary matrices are modulated with two different SPMs and then, the inverse SVD is performed using the diagonal matrix and modulated unitary matrices to get the final encrypted image. Numerical simulation results confirm the validity and effectiveness of the proposed technique. The proposed technique is robust against noise attack, specific attack, and brutal force attack. Simulation results are presented in support of the proposed idea.

  12. Water

    CSIR Research Space (South Africa)

    Van Wyk, Llewellyn V

    2010-08-01

    Full Text Available , and of the remaining 2,5 percent, some 70 percent is frozen in the polar caps and around 30 percent is present as soil moisture or in underground aquifers. Less than 1 percent is thus accessible for direct use by humans, animals and plants. Consequently... be serviced with harvested water and/or grey water. Conserve and reuse cooling tower water by using efficient systems and strategies. Avoid ?once-through systems? commonly used for evaporation coolers, ice makers, hydraulic equipment, and air compressors...

  13. [Release and supplement of carbon, nitrogen and phosphorus from jellyfish (Nemopilema nomurai) decomposition in seawater].

    Science.gov (United States)

    Qu, Chang-feng; Song, Jin-ming; Li, Ning; Li, Xue-gang; Yuan, Hua-mao; Duan, Li-qin

    2016-01-01

    Abstract: Jellyfish bloom has been increasing in Chinese seas and decomposition after jellyfish bloom has great influences on marine ecological environment. We conducted the incubation of Nemopilema nomurai decomposing to evaluate its effect on carbon, nitrogen and phosphorus recycling of water column by simulated experiments. The results showed that the processes of jellyfish decomposing represented a fast release of biogenic elements, and the release of carbon, nitrogen and phosphorus reached the maximum at the beginning of jellyfish decomposing. The release of biogenic elements from jellyfish decomposition was dominated by dissolved matter, which had a much higher level than particulate matter. The highest net release rates of dissolved organic carbon and particulate organic carbon reached (103.77 ± 12.60) and (1.52 ± 0.37) mg · kg⁻¹ · h⁻¹, respectively. The dissolved nitrogen was dominated by NH₄⁺-N during the whole incubation time, accounting for 69.6%-91.6% of total dissolved nitrogen, whereas the dissolved phosphorus was dominated by dissolved organic phosphorus during the initial stage of decomposition, being 63.9%-86.7% of total dissolved phosphorus and dominated by PO₄³⁻-P during the late stage of decomposition, being 50.4%-60.2%. On the contrary, the particulate nitrogen was mainly in particulate organic nitrogen, accounting for (88.6 ± 6.9) % of total particulate nitrogen, whereas the particulate phosphorus was mainly in particulate. inorganic phosphorus, accounting for (73.9 ±10.5) % of total particulate phosphorus. In addition, jellyfish decomposition decreased the C/N and increased the N/P of water column. These indicated that jellyfish decomposition could result in relative high carbon and nitrogen loads.

  14. Exploring climatic controls on blanket bog litter decomposition across an altitudinal gradient

    Science.gov (United States)

    Bell, Michael; Ritson, Jonathan P.; Clark, Joanna M.; Verhoef, Anne; Brazier, Richard E.

    2016-04-01

    The hydrological and ecological functioning of blanket bogs is strongly coupled, involving multiple ecohydrological feedbacks which can affect carbon cycling. Cool and wet conditions inhibit decomposition, and favour the growth of Sphagnum mosses which produce highly recalcitrant litter. A small but persistent imbalance between production and decomposition has led to blanket bogs in the UK accumulating large amounts of carbon. Additionally, healthy bogs provide a suite of other ecosystems services including water regulation and drinking water provision. However, there is concern that climate change could increase rates of litter decomposition and disrupt this carbon sink. Furthermore, it has been argued that the response of these ecosystems in the warmer south west and west of the UK may provide an early analogue for later changes in the more extensive northern peatlands. In order to investigate the effects of climate change on blanket bog litter decomposition, we set-up a litter bag experiment across an altitudinal gradient spanning 200 m of elevation (including a transition from moorland to healthy blanket bog) on Dartmoor, an area of hitherto unstudied, climatically marginal blanket bog in the south west of the UK. At seven sites, water table depth and soil and surface temperature were recorded continuously. Litter bags filled with the litter of three vegetation species dominant on Dartmoor were incubated just below the bog surface and retrieved over a period of 12 months. We found significant differences in the rate of decomposition between species. At all sites, decomposition progressed in the order Calluna vulgaris (dwarf shrub) > Molinia caerulea (graminoid) > Sphagnum (bryophyte). However, while soil temperature did decrease along the altitudinal gradient, being warmer in the lower altitudes, a hypothesised accompanying decrease in decomposition rates did not occur. This could be explained by greater N deposition at the higher elevation sites (estimated

  15. Distributed Model Predictive Control via Dual Decomposition

    DEFF Research Database (Denmark)

    Biegel, Benjamin; Stoustrup, Jakob; Andersen, Palle

    2014-01-01

    This chapter presents dual decomposition as a means to coordinate a number of subsystems coupled by state and input constraints. Each subsystem is equipped with a local model predictive controller while a centralized entity manages the subsystems via prices associated with the coupling constraints...

  16. Domain decomposition methods for hyperbolic problems

    Indian Academy of Sciences (India)

    problems using domain decomposition but this technique faces difficulties if the system becomes characteristic at the inter-element boundaries. By making the inter-element boundaries move faster than the fastest wave speed associated with the hyperbolic system we are able to overcome this problem. Keywords. Domain ...

  17. Lignin Derivatives Formation In Catalysed Thermal Decomposition ...

    African Journals Online (AJOL)

    denise

    in the heat of gasification and mass fraction of non-combustible volatiles in solid. NaOH-catalysed thermal decomposition of pure and fire-retardant- cellulose. Kuroda and co-workers14 studied the Curie-point pyrolysis of Japanese softwood species of the red pine, cedar and cypress in the presence of inorganic substances ...

  18. Domain decomposition methods for hyperbolic problems

    Indian Academy of Sciences (India)

    In this paper a method is developed for solving hyperbolic initial boundary value problems in one space dimension using domain decomposition, which can be extended to problems in several space dimensions. We minimize a functional which is the sum of squares of the 2 norms of the residuals and a term which is the ...

  19. The decomposition of estuarine macrophytes under different ...

    African Journals Online (AJOL)

    The estuary is subject to a variety of anthropogenic impacts (e.g. freshwater abstraction and sewage discharge) that increases its susceptibility to prolonged periods of mouth closure, eutrophication, and ultimately the formation of macroalgal blooms. The aim of this study was to determine the decomposition characteristics of ...

  20. Direct observation of nanowire growth and decomposition

    DEFF Research Database (Denmark)

    Rackauskas, Simas; Shandakov, Sergey D; Jiang, Hua

    2017-01-01

    knowledge, so far this has been only postulated, but never observed at the atomic level. By means of in situ environmental transmission electron microscopy we monitored and examined the atomic layer transformation at the conditions of the crystal growth and its decomposition using CuO nanowires selected...

  1. Preparation, Structure Characterization and Thermal Decomposition ...

    African Journals Online (AJOL)

    NJD

    thermal decomposition process of [Dy(m-MBA)3phen]2·H2O has been followed by thermal analysis. KEYWORDS ... X-ray diffraction, elemental analysis, UV and IR spectroscopy, .... diffractometer with graphite-monochromated Mo Kα radiation.

  2. Organic matter decomposition in simulated aquaculture ponds

    NARCIS (Netherlands)

    Torres Beristain, B.

    2005-01-01

    Different kinds of organic and inorganic compounds (e.g. formulated food, manures, fertilizers) are added to aquaculture ponds to increase fish production. However, a large part of these inputs are not utilized by the fish and are decomposed inside the pond. The microbiological decomposition of the

  3. Decomposition and nutrient release patterns of Pueraria ...

    African Journals Online (AJOL)

    Decomposition and nutrient release patterns of Pueraria phaseoloides, Flemingia macrophylla and Chromolaena odorata leaf residues in tropical land use ... The slowest releases, irrespective of type of leaf residue, were in Ca and Mg. The study concluded that among the planted fallows, Pueraria phaseoloides had the ...

  4. Methodologies in forensic and decomposition microbiology

    Science.gov (United States)

    Culturable microorganisms represent only 0.1-1% of the total microbial diversity of the biosphere. This has severely restricted the ability of scientists to study the microbial biodiversity associated with the decomposition of ephemeral resources in the past. Innovations in technology are bringing...

  5. Thermal decomposition of barium valerate in argon

    DEFF Research Database (Denmark)

    Torres, P.; Norby, Poul; Grivel, Jean-Claude

    2015-01-01

    The thermal decomposition of barium valerate (Ba(C4H9CO2)(2)/Ba-pentanoate) was studied in argon by means of thermogravimetry, differential thermal analysis, IR-spectroscopy, X-ray diffraction and hot-stage optical microscopy. Melting takes place in two different steps, at 200 degrees C and 280...

  6. Compactly supported frames for decomposition spaces

    DEFF Research Database (Denmark)

    Nielsen, Morten; Rasmussen, Kenneth Niemann

    2012-01-01

    In this article we study a construction of compactly supported frame expansions for decomposition spaces of Triebel-Lizorkin type and for the associated modulation spaces. This is done by showing that finite linear combinations of shifts and dilates of a single function with sufficient decay in b...

  7. The Algorithmic Complexity of Modular Decomposition

    NARCIS (Netherlands)

    J.C. Bioch (Cor)

    2001-01-01

    textabstractModular decomposition is a thoroughly investigated topic in many areas such as switching theory, reliability theory, game theory and graph theory. We propose an O(mn)-algorithm for the recognition of a modular set of a monotone Boolean function f with m prime implicants and n variables.

  8. Snapshot wavefield decomposition for heterogeneous velocity media

    NARCIS (Netherlands)

    Holicki, M.E.; Wapenaar, C.P.A.

    2017-01-01

    We propose a novel directional decomposition operator for wavefield snapshots in heterogeneous-velocity media. The proposed operator demonstrates the link between the amplitude of pressure and particlevelocity plane waves in the wavenumber domain. The proposed operator requires two spatial Fourier

  9. Thermal decomposition of lead titanyl oxalate tetrahydrate

    NARCIS (Netherlands)

    van de Velde, G.M.H.; Oranje, P.J.D.

    1976-01-01

    The thermal behaviour of PbTiO(C2O4)2·4H2O (PTO) has been investigated, employing TG, quantitative DTA, infrared spectroscopy and (high temperature) X-ray powder diffraction. The decomposition involves four main steps. The first is the dehydration of the tetrahydrate (30–180°C), followed by a small

  10. Decomposition of variance for spatial Cox processes

    DEFF Research Database (Denmark)

    Jalilian, Abdollah; Guan, Yongtao; Waagepetersen, Rasmus

    2013-01-01

    Spatial Cox point processes is a natural framework for quantifying the various sources of variation governing the spatial distribution of rain forest trees. We introduce a general criterion for variance decomposition for spatial Cox processes and apply it to specific Cox process models with addit...

  11. TP89 - SIRZ Decomposition Spectral Estimation

    Energy Technology Data Exchange (ETDEWEB)

    Seetho, Isacc M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Azevedo, Steve [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Smith, Jerel [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Brown, William D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Martz, Jr., Harry E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-12-08

    The primary objective of this test plan is to provide X-ray CT measurements of known materials for the purposes of generating and testing MicroCT and EDS spectral estimates. These estimates are to be used in subsequent Ze/RhoE decomposition analyses of acquired data.

  12. Reference model decomposition in direct adaptive control

    NARCIS (Netherlands)

    Butler, H.; Honderd, G.; van Amerongen, J.

    1991-01-01

    This paper introduces the method of reference model decomposition as a way to improve the robustness of model reference adaptive control systems (MRACs) with respect to unmodelled dynamics with a known structure. Such unmodelled dynamics occur when some of the nominal plant dynamics are purposely

  13. Influence of Family Structure on Variance Decomposition

    DEFF Research Database (Denmark)

    Edwards, Stefan McKinnon; Sarup, Pernille Merete; Sørensen, Peter

    Partitioning genetic variance by sets of randomly sampled genes for complex traits in D. melanogaster and B. taurus, has revealed that population structure can affect variance decomposition. In fruit flies, we found that a high likelihood ratio is correlated with a high proportion of explained...

  14. Factors affecting decomposition and Diptera colonization.

    Science.gov (United States)

    Campobasso, C P; Di Vella, G; Introna, F

    2001-08-15

    Understanding the process of corpse decomposition is basic to establishing the postmortem interval (PMI) in any death investigation even using insect evidence. The sequence of postmortem changes in soft tissues usually gives an idea of how long an individual has been dead. However, modification of the decomposition process can considerably alter the estimate of the time of death. A body after death is sometimes subject to depredation by various types of animals among which insects can have a predominant role in the breakdown of the corpse thus, accelerating the decomposition rate. The interference of the insect community in the decomposition process has been investigated by several experimental studies using animal models and very few contributions directly on cadavers. Several of the most frequent factors affecting PMI estimates such as temperature, burial depth and access of the body to insects are fully reviewed. On account of their activity and world wide distribution, Diptera are the insects of greatest forensic interest. The knowledge of factors inhibiting or favouring colonization and Diptera development is a necessary pre-requisite for estimating the PMI using entomological data.

  15. Vaye-Planaz drinking-water hydro-power installation; Petite centrale hydro-electrique de Vaye-Planaz sur le reseau d'eau potable de la commune de Grone. Etude de faisabilite. Rapport final

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-02-15

    This final report for the Swiss Federal Office of Energy (SFOE) presents the concept for a hydro-power installation that uses an existing drinking-water supply system. The report takes a look at the present situation which features ground-water sources, a transport pipeline and two reservoirs. The concept for the use of the available water pressure due to height-difference to drive a turbine and so generate electricity is described. Variants considered are reviewed. Investment and operating costs are examined as are the electricity production and the cost of the power generated. Finally, investments and other financial aspects are looked at and the further course of action is discussed.

  16. Railway Wheel Flat Detection Based on Improved Empirical Mode Decomposition

    Directory of Open Access Journals (Sweden)

    Yifan Li

    2016-01-01

    Full Text Available This study explores the capacity of the improved empirical mode decomposition (EMD in railway wheel flat detection. Aiming at the mode mixing problem of EMD, an EMD energy conservation theory and an intrinsic mode function (IMF superposition theory are presented and derived, respectively. Based on the above two theories, an improved EMD method is further proposed. The advantage of the improved EMD is evaluated by a simulated vibration signal. Then this method is applied to study the axle box vibration response caused by wheel flats, considering the influence of both track irregularity and vehicle running speed on diagnosis results. Finally, the effectiveness of the proposed method is verified by a test rig experiment. Research results demonstrate that the improved EMD can inhibit mode mixing phenomenon and extract the wheel fault characteristic effectively.

  17. Modeling Electromechanical Overcurrent Relays Using Singular Value Decomposition

    Directory of Open Access Journals (Sweden)

    Feng-Jih Wu

    2012-01-01

    Full Text Available This paper presents a practical and effective novel approach to curve fit electromechanical (EM overcurrent (OC relay characteristics. Based on singular value decomposition (SVD, the curves are fitted with equation in state space under modal coordinates. The relationships between transfer function and Markov parameters are adopted in this research to represent the characteristic curves of EM OC relays. This study applies the proposed method to two EM OC relays: the GE IAC51 relay with moderately inverse-time characteristic and the ABB CO-8 relay with inverse-time characteristic. The maximum absolute values of errors of hundreds of sample points taken from four time dial settings (TDS for each relay between the actual characteristic curves and the corresponding values from the curve-fitting equations are within the range of 10 milliseconds. Finally, this study compares the SVD with the adaptive network and fuzzy inference system (ANFIS to demonstrate its accuracy and identification robustness.

  18. Accelerated decomposition techniques for large discounted Markov decision processes

    Science.gov (United States)

    Larach, Abdelhadi; Chafik, S.; Daoui, C.

    2017-03-01

    Many hierarchical techniques to solve large Markov decision processes (MDPs) are based on the partition of the state space into strongly connected components (SCCs) that can be classified into some levels. In each level, smaller problems named restricted MDPs are solved, and then these partial solutions are combined to obtain the global solution. In this paper, we first propose a novel algorithm, which is a variant of Tarjan's algorithm that simultaneously finds the SCCs and their belonging levels. Second, a new definition of the restricted MDPs is presented to ameliorate some hierarchical solutions in discounted MDPs using value iteration (VI) algorithm based on a list of state-action successors. Finally, a robotic motion-planning example and the experiment results are presented to illustrate the benefit of the proposed decomposition algorithms.

  19. Water

    Directory of Open Access Journals (Sweden)

    E. Sanmuga Priya

    2017-05-01

    Full Text Available Phytoremediation through aquatic macrophytes treatment system (AMATS for the removal of pollutants and contaminants from various natural sources is a well established environmental protection technique. Water hyacinth (Eichhornia crassipes, a worst invasive aquatic weed has been utilised for various research activities over the last few decades. The biosorption capacity of the water hyacinth in minimising various contaminants present in the industrial wastewater is well studied. The present review quotes the literatures related to the biosorption capacity of the water hyacinth in reducing the concentration of dyestuffs, heavy metals and minimising certain other physiochemical parameters like TSS (total suspended solids, TDS (total dissolved solids, COD (chemical oxygen demand and BOD (biological oxygen demand in textile wastewater. Sorption kinetics through various models, factors influencing the biosorption capacity, and role of physical and chemical modifications in the water hyacinth are also discussed.

  20. The Slice Algorithm For Irreducible Decomposition of Monomial Ideals

    DEFF Research Database (Denmark)

    Roune, Bjarke Hammersholt

    2009-01-01

    Irreducible decomposition of monomial ideals has an increasing number of applications from biology to pure math. This paper presents the Slice Algorithm for computing irreducible decompositions, Alexander duals and socles of monomial ideals. The paper includes experiments showing good performance...