WorldWideScience

Sample records for wastewater treatment reactors

  1. Novel Solar Photocatalytic Reactor for Wastewater Treatment

    Science.gov (United States)

    Sutisna; Rokhmat, M.; Wibowo, E.; Murniati, R.; Khairurrijal; Abdullah, M.

    2017-07-01

    A new solar photocatalytic reactor (photoreactor) using TiO2 nanoparticles coated onto plastic granules has been designed. Catalyst granules are placed into the cavity of a reactor panel made of glass. A pump is used to circulate wastewater in the photoreactor. Methylene blue (MB) dissolved in water was chosen as the wastewater model. The performance of the photoreactor was evaluated based on changes in MB concentration with respect to time. The photoreactor showed a good performance by degrading 10 L of MB solution up to 96.54% after 48 h of solar irradiation. The photoreactor was scaled up by enlarging the panel area to twice its original size. The increase in the surface area of the reactor panel and therefore of the mass of catalyst granules and reactor volume led to a three-fold increase of the photodegradation rate. In addition, the MB degradation kinetics were also studied. Data analysis confirmed the applicability of the pseudo-first-order Langmuir-Hinshelwood model. The proposed photoreactor has great potential for use in large-scale wastewater treatment.

  2. Biological Treatment of Dairy Wastewater by Sequencing Batch Reactor

    Directory of Open Access Journals (Sweden)

    A Mohseni-Bandpi, H Bazari

    2004-10-01

    Full Text Available A bench scale aerobic Sequencing Batch Reactor (SBR was investigated to treat the wastewater from an industrial milk factory. The reactor was constructed from plexi glass material and its volume was 22.5 L. The reactor was supplied with oxygen by fine bubble air diffuser. The reactor was fed with milk factory and synthetic wastewater under different operational conditions. The COD removal efficiency was achieved more than 90%, whereas COD concentration varied from 400 to 2500 mg/l. The optimum dissolved oxygen in the reactor was 2 to 3 mg/l and MLVSS was around 3000 mg/l. Easy operation, low cost and minimal sludge bulking condition make the SBR system an interesting option for the biological medium strength industrial wastewater treatment. The study demonstrated the capability of aerobic SBR for COD removal from dairy industrial wastewater.

  3. Wastewater treatment in a hybrid activated sludge baffled reactor

    Energy Technology Data Exchange (ETDEWEB)

    Tizghadam, Mostafa [Laboratoire des Sciences de l' Eau et de l' Environnement, Universite de Limoges, ENSIL, Parc ESTER, 16 Rue Atlantis, F-87068 Limoges Cedex (France); Dagot, Christophe [Laboratoire des Sciences de l' Eau et de l' Environnement, Universite de Limoges, ENSIL, Parc ESTER, 16 Rue Atlantis, F-87068 Limoges Cedex (France)], E-mail: dagot@ensil.unilim.fr; Baudu, Michel [Laboratoire des Sciences de l' Eau et de l' Environnement, Universite de Limoges, ENSIL, Parc ESTER, 16 Rue Atlantis, F-87068 Limoges Cedex (France)

    2008-06-15

    A novel hybrid activated sludge baffled reactor (HASBR), which contained both suspended and attached-growth biomass perfect mixing cells in series, was developed by installing standing and hanging baffles and introducing plastic brushes into a conventional activated sludge (CAS) reactor. It was used for the treatment of domestic wastewater. The effects on the operational performance of developing the suspended and attached-growth biomass and reactor configuration were investigated. The change of the flow regime from complete-mix to plug-flow, and the addition of plastic brushes as a support for biofilm, resulted in considerable improvements in the COD, nitrogen removal efficiency of domestic wastewater and sludge settling properties. In steady state, approximately 98 {+-} 2% of the total COD and 98 {+-} 2% of the ammonia of the influent were removed in the HASBR, when the influent wastewater concentration was 593 {+-} 11 mg COD/L and 43 {+-} 5 mg N/L, respectively, at a HRT of 10 h. These results were 93 {+-} 3 and 6 {+-} 3% for the CAS reactor, respectively. Approximately 90 {+-} 7% of the total COD was removed in the HASBR, when the influent wastewater concentration was 654 {+-} 16 mg COD/L at a 3 h HRT, and in the organic loading rate (OLR) of 5.36 kg COD m{sup -3} day{sup -1}. The result for the CAS reactor was 60 {+-} 3%. Existing CAS plants can be upgraded by changing the reactor configuration and introducing biofilm support media into the aeration tank.

  4. Development of Blumlein Line Generator and Reactor for Wastewater Treatment

    Directory of Open Access Journals (Sweden)

    Zainuddin Nawawi

    2013-11-01

    Full Text Available Nowadays the harm effects of wastewater from industrial sectors toward the environment become one of public major concern. There are several wastewater treatment methods and techniques which have been introduced such as by using biological, chemical, and physical process. However, it is found that there are some shortcomings in the current available methods and techniques. For instance, the application of chlorine can cause bacterial disinfection but produce secondary harmful carcinogenic disinfection.  And the application of ozone treatment –  which is one of the most reliable technique – requires improvement in term of ozone production and treatment system. In order to acquire a better understanding in wastewater treatment process, a study of wastewater treatment system and Hybrid Discharge reactor – to acquire gas-liquid phase corona like discharge – is carried out. In addition to the laboratory experiment, designing and development of the Blumlein pulse power circuit, and modification of reactor for wastewater treatment are accomplished as well.

  5. Dairy wastewater treatment in a moving bed biofilm reactor.

    Science.gov (United States)

    Andreottola, G; Foladori, P; Ragazzi, M; Villa, R

    2002-01-01

    Dairy raw wastewater is characterised by high concentrations and fluctuations of organic matter and nutrient loads related to the discontinuity in the cheese production cycle and machinery washing. The applicability of a Moving Bed Biofilm Reactor (MBBR) filled with FLOCOR-RMP plastic media to the treatment of dairy wastewater was evaluated in a pilot-plant. COD fractionation of influent wastewater, MBBR performance on COD and nutrient removal were investigated. A removal efficiency of total COD over 80% was obtained with an applied load up to 52.7 gCOD m-2 d-1 (corresponding to 5 kgCOD m-3d-1). The COD removal kinetics for the MBBR system was assessed. The order of the kinetics resulted very close to half-order in the case of a biofilm partially penetrated by the substrate. The nitrogen removal efficiency varied widely between 13.3 and 96.2% due to the bacterial synthesis requirement. The application of a MBBR system to dairy wastewater treatment may be appropriate when upgrading overloaded activated sludge plants or in order to minimise reactor volumes in a pre-treatment.

  6. Dynamic Simulation of Batch Photocatalytic Reactor (BPR) for Wastewater Treatment

    Science.gov (United States)

    Dutta, Suman

    2012-08-01

    Reactive dyes discharged from dyehouse causes a serious environmental problem. UV/TiO2 photocatalysis has been employed effectively for these organic dyes removal from dye-house effluent. This process produces less amount of non-toxic final product. In this paper a photocatalytic reactor has been designed for Reactive red 198 (RR198) removal from aqueous solution. The reactor is operating in batch mode. After each batch, TiO2 catalyst has been separated and recycled in the next batch. Mathematical model equation of this batch photocatalytic reactor (BPR) has been developed considering Langmuir-Hinshelwood kinetics. Simulation of BPR has been carried out using fourth order Runge-Kutta (RK) method and fifth order RK method (Butcher method). This simulation results can be used to develop an automatic photocatlytic reactor for industrial wastewater treatment. Catalyst activity decay and its effect on each batch have been incorporated in this model.

  7. Integrated application of upflow anaerobic sludge blanket reactor for the treatment of wastewaters.

    Science.gov (United States)

    Latif, Muhammad Asif; Ghufran, Rumana; Wahid, Zularisam Abdul; Ahmad, Anwar

    2011-10-15

    The UASB process among other treatment methods has been recognized as a core method of an advanced technology for environmental protection. This paper highlights the treatment of seven types of wastewaters i.e. palm oil mill effluent (POME), distillery wastewater, slaughterhouse wastewater, piggery wastewater, dairy wastewater, fishery wastewater and municipal wastewater (black and gray) by UASB process. The purpose of this study is to explore the pollution load of these wastewaters and their treatment potential use in upflow anaerobic sludge blanket process. The general characterization of wastewater, treatment in UASB reactor with operational parameters and reactor performance in terms of COD removal and biogas production are thoroughly discussed in the paper. The concrete data illustrates the reactor configuration, thus giving maximum awareness about upflow anaerobic sludge blanket reactor for further research. The future aspects for research needs are also outlined.

  8. Design of Upelow Anaerobic Sludge Blanket reactor for treatment of organic wastewaters.

    Science.gov (United States)

    Ghangrekar, M M; Kahalekar, U J; Takalkar, S V

    2003-04-01

    The Upflow Anaerobic Sludge Blanket (UASB) Reactor is widely applied anaerobic wastewater treatment method all over the world. Uniform distribution of wastewater at reactor bottom is necessary to establish proper contact between sludge and wastewater. In addition, proper functioning of Gas-Liquid-Solid (GLS) separator is crucial to ensure maximum sludge retention in the reactor and to achieve maximum COD removal rate in the reactor. Hence, proper design of reactor is necessary for appropriate functioning of various components for a given wastewater flow rate and COD concentration. The design procedure for UASB reactor taking due consideration to the GLS design and design of inlet arrangement is discussed in this paper for various wastewater strength and flow rates. A software is developed to make economical design of UASB reactor for different type of wastewater by adopting maximum loading conditions, based on literature recommendations, and at the same time to satisfy all design recommendation, as far as possible.

  9. Cosmetic wastewater treatment by upflow anaerobic sludge blanket reactor

    Energy Technology Data Exchange (ETDEWEB)

    Puyol, D.; Monsalvo, V.M.; Mohedano, A.F. [Seccion de Ingenieria Quimica, Facultad de Ciencias, Universidad Autonoma de Madrid, C/ Francisco Tomas y Valiente 7, 28049, Madrid (Spain); Sanz, J.L. [Departamento de Biologia Molecular, Facultad de Ciencias, Universidad Autonoma de Madrid, C/ Francisco Tomas y Valiente 7, 28049, Madrid (Spain); Rodriguez, J.J., E-mail: juanjo.rodriguez@uam.es [Seccion de Ingenieria Quimica, Facultad de Ciencias, Universidad Autonoma de Madrid, C/ Francisco Tomas y Valiente 7, 28049, Madrid (Spain)

    2011-01-30

    Anaerobic treatment of pre-settled cosmetic wastewater in batch and continuous experiments has been investigated. Biodegradability tests showed high COD and solid removal efficiencies (about 70%), being the hydrolysis of solids the limiting step of the process. Continuous treatment was carried out in an upflow anaerobic sludge blanket reactor. High COD and TSS removal efficiencies (up to 95% and 85%, respectively) were achieved over a wide range of organic load rate (from 1.8 to 9.2 g TCOD L{sup -1} day{sup -1}). Methanogenesis inhibition was observed in batch assays, which can be predicted by means of a Haldane-based inhibition model. Both COD and solid removal were modelled by Monod and pseudo-first order models, respectively.

  10. Start- up strategies of UASB reactor for treatment of pharmaceutical wastewater

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Two start-up strategies of upflow anaerobic sludge blanket (UASB) reactor for treatment of pharmaceutical wastewater were investigated. The results showed that both of them were workable. Compared with the strategy that started up the reactor directly using chloromycetin wastewater, the strategy that started up the reactor first using mixed wastewater and then using chloromycetin wastewater could save time by 23%. When the latter strategy was adopted the development of sludge activity fluctuated more largely and its final activity was lower, but the sludge grew faster in the course of start-up.

  11. Flow rate analysis of wastewater inside reactor tanks on tofu wastewater treatment plant

    Science.gov (United States)

    Mamat; Sintawardani, N.; Astuti, J. T.; Nilawati, D.; Wulan, D. R.; Muchlis; Sriwuryandari, L.; Sembiring, T.; Jern, N. W.

    2017-03-01

    The research aimed to analyse the flow rate of the wastewater inside reactor tanks which were placed a number of bamboo cutting. The resistance of wastewater flow inside reactor tanks might not be occurred and produce biogas fuel optimally. Wastewater from eleven tofu factories was treated by multi-stages anaerobic process to reduce its organic pollutant and produce biogas. Biogas plant has six reactor tanks of which its capacity for waste water and gas dome was 18 m3 and 4.5 m3, respectively. Wastewater was pumped from collecting ponds to reactors by either serial or parallel way. Maximum pump capacity, head, and electrical motor power was 5m3/h, 50m, and 0.75HP, consecutively. Maximum pressure of biogas inside the reactor tanks was 55 mbar higher than atmosphere pressure. A number of 1,400 pieces of cutting bamboo at 50-60 mm diameter and 100 mm length were used as bacteria growth media inside each reactor tank, covering around 14,287 m2 bamboo area, and cross section area of inner reactor was 4,9 m2. In each reactor, a 6 inches PVC pipe was installed vertically as channel. When channels inside reactor were opened, flow rate of wastewater was 6x10-1 L.sec-1. Contrary, when channels were closed on the upper part, wastewater flow inside the first reactor affected and increased gas dome. Initially, wastewater flowed into each reactor by a gravity mode with head difference between the second and third reactor was 15x10-2m. However, head loss at the second reactor was equal to the third reactor by 8,422 x 10-4m. As result, wastewater flow at the second and third reactors were stagnant. To overcome the problem pump in each reactor should be installed in serial mode. In order to reach the output from the first reactor and the others would be equal, and biogas space was not filled by wastewater, therefore biogas production will be optimum.

  12. Solar photochemical treatment of winery wastewater in a CPC reactor.

    Science.gov (United States)

    Lucas, Marco S; Mosteo, Rosa; Maldonado, Manuel I; Malato, Sixto; Peres, José A

    2009-12-09

    Degradation of simulated winery wastewater was studied in a pilot-scale compound parabolic collector (CPC) solar reactor. Total organic carbon (TOC) reduction by heterogeneous photocatalysis (TiO(2)) and homogeneous photocatalysis with photo-Fenton was observed. The influence of TiO(2) concentration (200 or 500 mg/L) and also of combining TiO(2) with H(2)O(2) or Na(2)S(2)O(8) on heterogeneous photocatalysis was evaluated. Heterogeneous photocatalysis with TiO(2), TiO(2)/H(2)O(2) and TiO(2)/S(2)O(8)(2-) is revealed to be inefficient in removing TOC, originating TOC degradation of 10%, 11% and 25%, respectively, at best. However, photo-Fenton experiments led to 46% TOC degradation in simulated wastewater prepared with diluted wine (WV) and 93% in wastewater prepared with diluted grape juice (WG), and if ethanol is previously eliminated from mixed wine and grape juice wastewater (WW) by air stripping, it removes 96% of TOC. Furthermore, toxicity decreases during the photo-Fenton reaction very significantly from 48% to 28%. At the same time, total polyphenols decrease 92%, improving wastewater biodegradability.

  13. Wastewater Treatment in a Hybrid Biological Reactor (HBR) :Nitrification Characteristics

    Institute of Scientific and Technical Information of China (English)

    JIAN-LONG WANG; LI-BO WU

    2004-01-01

    To investigate the nitrifying characteristics of both suspended- and attached- biomass in a hybrid bioreactor. Methods The hybrid biological reactor was developed by introducing porous ceramic particles into the reactor to provide the surface for biomass attachment. Microorganisms immobilized on the ceramics were observed using scanning electron microscopy (SEM). All chemical analyses were performed in accordance with standard methods. Results The suspended- and attached-biomass had approximately the same nitrification activity. The nitrifying kinetic was independent of the initial biomass concentration, and the attached-biomass had a stronger ability to resist the nitrification inhibitor. Conclusion The attached biomass is superior to suspended-biomass for nitrifying wastewater, especially that containing toxic organic compounds. The hybrid biological reactor consisting of suspended- and attached-biomass is advantageous in such cases.

  14. Pulsed reactor modelling for catalytic micropollutant treatment in wastewater

    OpenAIRE

    Juarros Bertolín, Helena Georgina

    2011-01-01

    This study stems from the problem of the presence of micropollutants (including phenolic compounds such as Bisphenol A, Nonylphenol and Triclosan) in urban and industrial wastewaters. Systems used in the wastewater treatment plants are inefficient in removing these micropollutants that are harmful for the environment. In an ongoing project, laccases, a group of enzymes, are used to efficiently catalyse the degradation of phenolic micropollutants. In this master thesis, it is proposed...

  15. Biological Treatment of Wastewater by Sequencing Batch Reactors

    Directory of Open Access Journals (Sweden)

    Tsvetko Prokopov

    2014-04-01

    Full Text Available In the present paper the operation of wastewater treatment plant (WWTP in the town of Hisarya which includes a biological stage with aeration basins of cyclic type (SBR-method was studied. The values of the standard indicators of input and output water from the wastewater treatment plant were evaluated. Moreover, the reached effects due to the biological treatment of the wastewater in terms of the COD (95.7%, BOD5 (96.6%, total nitrogen (81.3%, total phosphorus (53.7% and suspended solids (95.7% were established. It was concluded that the indexes of the treated water were significantly below the emission limits specified in the discharge permit

  16. Membrane bio-reactors for decentralized wastewater treatment and reuse.

    Science.gov (United States)

    Meuler, S; Paris, S; Hackner, T

    2008-01-01

    Decentralized wastewater treatment is the key to sustainable water management because it facilitates effluent (and nutrient) reuse for irrigation or as service water in households. Membrane bioreactors (MBR) can produce effluents of bathing water quality. Septic tanks can be retrofitted to MBR units. Package MBR plants for wastewater or grey water treatment are also available. Systems for decentralized treatment and reuse of domestic wastewater or grey water are also feasible for hotels, condominiums and apartment or office complexes. This paper presents the effluent qualities of different decentralized MBR applications. The high effluent quality allows infiltration even in sensitive areas or reuse for irrigation, toilet flushing and cleaning proposes in households. Due to the reusability of treated water and the possibility to design the systems for carbon reduction only, these systems can ideally and easily serve to close water and nutrient loops. IWA Publishing 2008.

  17. A test study on treatment of high-strength polyester wastewater with anaerobic reactor

    Institute of Scientific and Technical Information of China (English)

    韩洪军; 陈秀荣; 徐春艳

    2002-01-01

    The treatment of polyester wastewater using Up-flow activated sludge bed anaerobic filer ( UASB-AF), demonstrated that UASB-AF reactors has a high efficiency, its volume loading is 10 ~ 12 kgCOD/( m3 @d) ,HRT is 22 ~24 h, and the removal of COD is about 80%. The reactor has advantage of fast starting andenduring pulse loading.

  18. Treatment of dairy wastewater in UASB reactors inoculated with ...

    African Journals Online (AJOL)

    2005-10-04

    Oct 4, 2005 ... industry (COD 700 to 1 200 mg/ℓ; fats 75 to 150 mg/ℓ; pH 9.5 to 11) supplemented ... from an urban wastewater treatment plant previously adapted to ..... als without a corresponding biological degradation fast enough to avoid ...

  19. Treatment of slaughterhouse wastewater in anaerobic sequencing batch reactors

    Energy Technology Data Exchange (ETDEWEB)

    Masse, D. I.; Masse, L. [Agriculture and Agri-Food Canada, Lennoxville, PQ (Canada)

    2000-09-01

    Slaughterhouse waste water was treated in anaerobic sequencing batch reactors operated at 30 degrees C. Two of the batch reactors were seeded with anaerobic granular sludge from a milk processing plant reactor; two others received anaerobic non-granulated sludge from a municipal waste water treatment plant. Influent total chemical oxygen demand was reduced by 90 to 96 per cent at organic loading rates ranging from 2.07 kg to 4.93 kg per cubic meter. Reactors seeded with municipal sludge performed slightly better than those containing sludge from the milk processing plant. The difference was particularly noticeable during start-up, but the differences between the two sludges were reduced with time. The reactors produced a biogas containing 75 per cent methane. About 90.5 per cent of the chemical oxygen demand removed was methanized; volatile suspended solids accumulation was determined at 0.068 kg per kg of chemical oxygen demand removed. The high degree of methanization suggests that most of the soluble and suspended organic material in slaughterhouse waste water was degraded during the treatment in the anaerobic sequencing batch reactors. 30 refs., 1 tab., 6 figs.

  20. Nitrous Oxide Production in a Sequence Batch Reactor Wastewater Treatment System Using Synthetic Wastewater

    Institute of Scientific and Technical Information of China (English)

    MAO Jian; JIANG Xiao-Qin; YANG Lin-Zhang; ZHANG Jian; QIAO Qing-Yun; HE Chen-Da; YIN Shi-Xue

    2006-01-01

    The rate of nitrous oxide emission from a laboratory sequence batch reactor (SBR) wastewater treatment system using synthetic wastewater was measured under controlled conditions. The SBR was operated in the mode of 4 h for aeration, 3.5 h for stirring without aeration, 0.5 h for settling and drainage, and 4 h of idle. The sludge was acclimated by running the system to achieve a stable running state as indicated by rhythmic changes of total N, dissolved oxygen,chemical oxygen demand, NO2-, NO3-, NH4+, pH, and N2O. Under the present experimental conditions measured nitrous oxide emitted from the off-gas in the aerobic and anaerobic phases, respectively, accounted for 8.6%-16.1% and 0-0.05%of N removed, indicating that the aerobic phase was the main source of N2O emission from the system. N2O dissolved in discharged water was considerable in term of concentration. Thus, measures to be developed for the purpose of reducing N2O emission from the system should be effective in the aeration phase.

  1. Novel Technology for Phenol Wastewater Treatment Using Electrochemical Reactor

    Directory of Open Access Journals (Sweden)

    Yuncheng Xie

    2015-01-01

    Full Text Available There are various electrochemical approaches to save energy, mostly by means of equipment improvement coupled with other water treatment technologies. Replacement of DC power with pulse power, modified reactor coupled with photocatalysis can decrease cost. But more or less additional input is developed, or infrastructure has to be replaced. In this paper, an N-Step electrochemical reactor, based on stage reaction modeling, is put forward. On the basis of not changing equipment investment and by adjustment of the operating current density at different levels, power consumption decreases. This model develops a foundation of electrochemical water treatment technology for the engineering application.

  2. A novel approach for harnessing biofilm communities in moving bed biofilm reactors for industrial wastewater treatment

    OpenAIRE

    Joe A Lemire; Demeter, Marc A.; Iain George; Howard Ceri; Turner, Raymond J.

    2015-01-01

    Moving bed biofilm reactors (MBBRs) are an effective biotechnology for treating industrial wastewater. Biomass retention on moving bed biofilm reactor (MBBR) carriers (biofilm support materials), allows for the ease-of-operation and high treatment capacity of MBBR systems. Optimization of MBBR systems has largely focused on aspects of carrier design, while little attention has been paid to enhancing strategies for harnessing microbial biomass. Previously, our research group demonstrated that ...

  3. Kinetic study of treatment of wastewater contains food preservative agent by anaerobic baffled reactor : An overview

    Science.gov (United States)

    Sumantri, Indro; Purwanto, Budiyono

    2015-12-01

    The characteristic of wastewater of food industries with preservative substances is high content of organic substances, degradable and high total suspended solid. High organic content in this waste forced the treatment is biologically and pointed out to anaerobic treatment. Anaerobic showed the better performance of degradation than aerobic for high content organic and also for toxic materials. During that day the treatment of food wastewater is aerobically which is high consume of energy required and high volume of sludge produced. The advantage of anaerobic is save high energy, less product of sludge, less requirement of nutrients of microorganism and high efficiency reduction of organic load. The high efficiency of reduction will reduce the load of further treatment, so that, the threshold limit based on the regulation would be easy to achieve. Research of treatment of wastewater of food industries would be utilized by both big scale industries and small industries using addition of preservative substances. The type reactor of anaerobic process is anaerobic baffled reactor that will give better contact between wastewater and microorganism in the sludge. The variables conducted in this research are the baffled configuration, sludge height, preservative agent contents, hydralic retention time and influence of micro nutrients. The respons of this research are the COD effluent, remaining preservative agent, pH, formation of volatile fatty acid and total suspended solid. The result of this research is kinetic model of the anaerobic baffled reactor, reaction kinetic of preservative agent degradation and technology of treatment wastewater contains preservative agent. The benefit of this research is to solve the treatment of wastewater of food industries with preservative substance in order to achieve wastewater limit regulation and also to prevent the environmental deterioration.

  4. Kinetic study of treatment of wastewater contains food preservative agent by anaerobic baffled reactor : An overview

    Energy Technology Data Exchange (ETDEWEB)

    Sumantri, Indro; Purwanto,; Budiyono [Chemical Engineering Department, Faculty of Engineering, Diponegoro University Jl. Prof. H. Soedarto, SH, Kampus Baru Tembalang, Semarang (Indonesia)

    2015-12-29

    The characteristic of wastewater of food industries with preservative substances is high content of organic substances, degradable and high total suspended solid. High organic content in this waste forced the treatment is biologically and pointed out to anaerobic treatment. Anaerobic showed the better performance of degradation than aerobic for high content organic and also for toxic materials. During that day the treatment of food wastewater is aerobically which is high consume of energy required and high volume of sludge produced. The advantage of anaerobic is save high energy, less product of sludge, less requirement of nutrients of microorganism and high efficiency reduction of organic load. The high efficiency of reduction will reduce the load of further treatment, so that, the threshold limit based on the regulation would be easy to achieve. Research of treatment of wastewater of food industries would be utilized by both big scale industries and small industries using addition of preservative substances. The type reactor of anaerobic process is anaerobic baffled reactor that will give better contact between wastewater and microorganism in the sludge. The variables conducted in this research are the baffled configuration, sludge height, preservative agent contents, hydralic retention time and influence of micro nutrients. The respons of this research are the COD effluent, remaining preservative agent, pH, formation of volatile fatty acid and total suspended solid. The result of this research is kinetic model of the anaerobic baffled reactor, reaction kinetic of preservative agent degradation and technology of treatment wastewater contains preservative agent. The benefit of this research is to solve the treatment of wastewater of food industries with preservative substance in order to achieve wastewater limit regulation and also to prevent the environmental deterioration.

  5. Anaerobic treatment performance and microbial population of thermophilic upflow anaerobic filter reactor treating awamori distillery wastewater.

    Science.gov (United States)

    Tang, Yue-Qin; Fujimura, Yutaka; Shigematsu, Toru; Morimura, Shigeru; Kida, Kenji

    2007-10-01

    Distillery wastewater from awamori making was anaerobically treated for one year using thermophilic upflow anaerobic filter (UAF) reactors packed with pyridinium group-containing nonwoven fabric material. The microbial structure and spatial distribution of microorganisms on the support material were characterized using molecular biological methods. The reactor steadily achieved a high TOC loading rate of 18 g/l/d with approximately 80% TOC removal efficiency when non-diluted wastewater was fed. The maximum TOC loading rate increased to 36 g/l/d when treating thrice-diluted wastewater. However, the TOC removal efficiency and gas evolution rate decreased compared with that when non-diluted wastewater was used. Methanogens closely related to Methanosarcina thermophila and Methanoculleus bourgensis and bacteria in the phyla Firmicutes and Bacteroidetes were predominant methanogens and bacteria in the thermophilic UFA reactor, as indicated by 16S rRNA gene clone analysis. Fluorescence in situ hybridization (FISH) results showed that a large quantity of bacterial cells adhered throughout the whole support, and Methanosarcina-like methanogens existed mainly in the relative outside region while Methanoculleus cells were located in the relative inner part of the support. The support material used proved to be an excellent carrier for microorganisms, and a UAF reactor using this kind of support can be used for high-rate treatment of awamori/shochu distillery wastewater.

  6. A Photocatalytic Rotating Disc Reactor with TiO₂ Nanowire Arrays Deposited for Industrial Wastewater Treatment.

    Science.gov (United States)

    Li, Fang; Szeto, Wai; Huang, Haibao; Li, Jiantao; Leung, Dennis Y C

    2017-02-22

    A photocatalytic rotating disc reactor (PRD-reactor) with TiO₂ nanowire arrays deposited on a thin Ti plate is fabricated and tested for industrial wastewater treatment. Results indicate that the PRD-reactor shows excellent decolorization capability when tested with methyl orange (>97.5%). Advanced oxidation processes (AOP), including photocatalytic oxidation and photolytic reaction, occurred during the processing. Efficiency of the AOP increases with reduction in light absorption pathlength, which enhanced the photocatalytic reaction, as well as by increasing oxygen exposure of the wastewater thin film due to the rotating disc design. It is found that, with a small dosage of hydrogen peroxide, the mineralization efficiency of industrial biodegraded wastewater can be enhanced, with a superior mineralization of >75% total organic carbon (TOC) removal. This is due to the fact that the TiO₂ photocatalysis and hydrogen peroxide processes generate powerful oxidants (hydroxyl radicals) that can strongly improve photocatalytic oxidation efficiency. Application of this industrial wastewater treatment system is benefited from the TiO₂ nanowire arrays, which can be fabricated by a mild solvothermal method at 80 °C and under atmospheric pressure. Similar morphologies and microstructures are found for the TiO₂ nanowire arrays deposited on a large metal Ti disc, which makes the wastewater treatment process more practical and economical.

  7. Design development of an electrocoagulation reactor for molasses process wastewater treatment.

    Science.gov (United States)

    Gadd, A S; Ryan, D R; Kavanagh, J M; Barton, G W

    2010-01-01

    The impact of electrode corrosion behaviour, reactor geometry and current density on electrocoagulation efficiency were investigated for the treatment of molasses process wastewater. Two laboratory-scale vertical plate electrocoagulation reactors were used for this investigation: the first being a low aspect ratio bath reactor with a low specific electrode area, while the other was a high aspect ratio column reactor with a high specific electrode area. Anomalous anodic dissolution and cathodic corrosion of the aluminium electrodes both contributed significantly to overall metal consumption. Increasing specific electrode area and aspect ratio each led to improved treatment efficiency, whereas the impact of current density was more complicated involving the combined influences of several competing effects. The space-time yields of coagulant and bubbles (both functions of specific electrode area, current density and current efficiency) were found to influence mixing within the reactor and thus treatment efficiency.

  8. Biological treatment of shrimp aquaculture wastewater using a sequencing batch reactor.

    Science.gov (United States)

    Lyles, C; Boopathy, R; Fontenot, Q; Kilgen, M

    2008-12-01

    To improve the water quality in the shrimp aquaculture, a sequencing batch reactor (SBR) has been tested for the treatment of shrimp wastewater. A SBR is a variation of the activated sludge biological treatment process. This process uses multiple steps in the same tank to take the place of multiple tanks in a conventional treatment system. The SBR accomplishes equalization, aeration, and clarification in a timed sequence in a single reactor basin. This is achieved in a simple tank, through sequencing stages, which include fill, react, settle, decant, and idle. A laboratory scale SBR and a pilot scale SBR was successfully operated using shrimp aquaculture wastewater. The wastewater contained high concentration of carbon and nitrogen. By operating the reactor sequentially, viz, aerobic and anoxic modes, nitrification and denitrification were achieved as well as removal of carbon in a laboratory scale SBR. To be specific, the initial chemical oxygen demand (COD) concentration of 1,593 mg/l was reduced to 44 mg/l within 10 days of reactor operation. Ammonia in the sludge was nitrified within 3 days. The denitrification of nitrate was achieved by the anaerobic process and 99% removal of nitrate was observed. Based on the laboratory study, a pilot scale SBR was designed and operated to remove excess nitrogen in the shrimp wastewater. The results mimicked the laboratory scale SBR.

  9. Treatment of opium alkaloid containing wastewater in sequencing batch reactor (SBR)-Effect of gamma irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Bural, Cavit B.; Demirer, Goksel N. [Middle East Technical University, Department of Environmental Engineering, 06531 Ankara (Turkey); Kantoglu, Omer [Turkish Atomic Energy Authority, Saraykoy Nuclear Research and Training Center, 06982, Kazan, Ankara (Turkey); Dilek, Filiz B., E-mail: fdilek@metu.edu.t [Middle East Technical University, Department of Environmental Engineering, 06531 Ankara (Turkey)

    2010-04-15

    Aerobic biological treatment of opium alkaloid containing wastewater as well as the effect of gamma irradiation as pre-treatment was investigated. Biodegradability of raw wastewater was assessed in aerobic batch reactors and was found highly biodegradable (83-90% degradation). The effect of irradiation (40 and 140 kGy) on biodegradability was also evaluated in terms of BOD{sub 5}/COD values and results revealed that irradiation imparted no further enhancement in the biodegradability. Despite the highly biodegradable nature of wastewater, further experiments in sequencing batch reactors (SBR) revealed that the treatment operation was not possible due to sludge settleability problem observed beyond an influent COD value of 2000 mg dm{sup -3}. Possible reasons for this problem were investigated, and the high molecular weight, large size and aromatic structure of the organic pollutants present in wastewater was thought to contribute to poor settleability. Initial efforts to solve this problem by modifying the operational conditions, such as SRT reduction, failed. However, further operational modifications including addition of phosphate buffer cured the settleability problem and influent COD was increased up to 5000 mg dm{sup -3}. Significant COD removal efficiencies (>70%) were obtained in both SBRs fed with original and irradiated wastewaters (by 40 kGy). However, pre-irradiated wastewater provided complete thebain removal and a better settling sludge, which was thought due to degradation of complex structure by radiation application. Degradation of the structure was observed by GC/MS analyses and enhancement in filterability tests.

  10. ANAEROBIC-AEROBIC TREATMENT OF TEXTILE WASTEWATER IN A SEQUENCING BATCH REACTOR

    Directory of Open Access Journals (Sweden)

    IBTISSAM KANBOUCHI

    2014-04-01

    Full Text Available In this work, the treatment of synthetic textile wastewater using sequential batch reactor (SBR was studied. This in order to predict the effectiveness of biological treatment on wastewater containing dyes while minimizing the aeration cost. Laboratory tests were performed on synthetic wastewater containing filtered urban wastewater (source of bacteria and dyes solutions. This promotes the biomass development in the mixture, capable of degrading organic matter properly. The results indicate that the increasing of anaerobic phase (16 hours allows removal of 77 % and 80 % of COD and colour, respectively. The sludge age did not affect markedly dyes biodegradability. However, the biodegradability is strongly influenced by the dyes concentration. Indeed, for the lowest dyes contents, improved biodegradability was observed, while it decreases when the dyes concentration increases.

  11. Anaerobic sequencing batch reactor in pilot scale for treatment of tofu industry wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Rahayu, Suparni Setyowati, E-mail: suparnirahayu@yahoo.co.id [Doctoral Program in Environmental Science, University of Diponegoro, Semarang (Indonesia); Department of Mechanical Engineering, State Polytechnic of Semarang, Semarang Indonesia (Indonesia); Purwanto,, E-mail: p.purwanto@che.undip.ac.id; Budiyono, E-mail: budiyono@live.undip.ac.id [Doctoral Program in Environmental Science, University of Diponegoro, Semarang (Indonesia); Department of Chemical Engineering, Faculty of Engineering, Diponegoro University, Semarang Indonesia (Indonesia)

    2015-12-29

    The small industry of tofu production process releases the waste water without being processed first, and the wastewater is directly discharged into water. In this study, Anaerobic Sequencing Batch Reactor in Pilot Scale for Treatment of Tofu Industry was developed through an anaerobic process to produce biogas as one kind of environmentally friendly renewable energy which can be developed into the countryside. The purpose of this study was to examine the fundamental characteristics of organic matter elimination of industrial wastewater with small tofu effective method and utilize anaerobic active sludge with Anaerobic Sequencing Bath Reactor (ASBR) to get rural biogas as an energy source. The first factor is the amount of the active sludge concentration which functions as the decomposers of organic matter and controlling selectivity allowance to degrade organic matter. The second factor is that HRT is the average period required substrate to react with the bacteria in the Anaerobic Sequencing Bath Reactor (ASBR).The results of processing the waste of tofu production industry using ASBR reactor with active sludge additions as starter generates cumulative volume of 5814.4 mL at HRT 5 days so that in this study it is obtained the conversion 0.16 L of CH{sub 4}/g COD and produce biogas containing of CH{sub 4}: 81.23% and CO{sub 2}: 16.12%. The wastewater treatment of tofu production using ASBR reactor is able to produce renewable energy that has economic value as well as environmentally friendly by nature.

  12. Anaerobic sequencing batch reactor in pilot scale for treatment of tofu industry wastewater

    Science.gov (United States)

    Rahayu, Suparni Setyowati; Purwanto, Budiyono

    2015-12-01

    The small industry of tofu production process releases the waste water without being processed first, and the wastewater is directly discharged into water. In this study, Anaerobic Sequencing Batch Reactor in Pilot Scale for Treatment of Tofu Industry was developed through an anaerobic process to produce biogas as one kind of environmentally friendly renewable energy which can be developed into the countryside. The purpose of this study was to examine the fundamental characteristics of organic matter elimination of industrial wastewater with small tofu effective method and utilize anaerobic active sludge with Anaerobic Sequencing Bath Reactor (ASBR) to get rural biogas as an energy source. The first factor is the amount of the active sludge concentration which functions as the decomposers of organic matter and controlling selectivity allowance to degrade organic matter. The second factor is that HRT is the average period required substrate to react with the bacteria in the Anaerobic Sequencing Bath Reactor (ASBR).The results of processing the waste of tofu production industry using ASBR reactor with active sludge additions as starter generates cumulative volume of 5814.4 mL at HRT 5 days so that in this study it is obtained the conversion 0.16 L of CH4/g COD and produce biogas containing of CH4: 81.23% and CO2: 16.12%. The wastewater treatment of tofu production using ASBR reactor is able to produce renewable energy that has economic value as well as environmentally friendly by nature.

  13. Reaction Kinetics of Aniline Synthetic Wastewater Treatment by Moving Bed Biofilm Reactor

    Directory of Open Access Journals (Sweden)

    H Ganjidoust

    2009-07-01

    Full Text Available "n "nBackground and Objectives: Experiments were conducted to investigate the behavior of Moving Bed Biofilm Reactor (MBBR as a novel aerobic process for treatment of aniline synthetic wastewater as a hard biodegradable compound is commonly used in number of industrial processes. The objective of this paper is evaluation of MBBR in different conditions for treatment of aniline and determination of reaction kinetics."nMaterials and Methods: In the MBBRs, different carriers are used to maximize the active biofilm surface area in the reactors. In this study, the reactor was filled with Light Expanded Clay Aggregate (LECA as carriers. Evaluation of the reactor efficiency was done at different retention time of 8, 24, 48 and 72 hours with an influent COD from 100 to 3500 mg/L (filling ratio of 50%. After obtaining removal efficiencies, effluent concentration of aniline was measured by adsorption spectrum and maladaptive municipal wastewater treatment plant sludge in batch conditions for confidence of aniline biodegradation and its adsorption to the sludge mass. "nResults:The maximum obtained removal efficiencies were 91% (influent COD=2000 mg/L after 72 hours. Biodegradation of aniline in MBBR has been also approved by NMR spectrum tests. Finally experimental data has indicated that Grau second order model and Stover-Kincannon were the best models to describe substrate loading removal rate for aniline."nConclusion:biological treatment of aniline wastewater compared to other researchers methods.

  14. Effect of corrosion of steel elements on the treatment of dairy wastewater in a UASB reactor.

    Science.gov (United States)

    Jędrzejewska Cicińska, M; Krzemieniewski, M

    2010-05-01

    Experiments were performed in parallel using two laboratory upflow anaerobic sludge blanket (UASB) reactors. One of the two reactors was packed with spiral elements made of steel wire with 48% iron content in order to examine the influence of the steel elements on the chemical oxygen demand (COD) and efficiency of phosphorus removal from synthetically prepared dairy wastewater. A strong relationship was found between anaerobic corrosion and efficiency of phosphorus removal. Phosphorus removal in the reactor packed with steel elements was between 16.4% and 64.4% higher than without the steel elements present. The anaerobic corrosion process improved COD removal efficiency by 1.0-3.1%, which was statistically significant. When steel elements were present the methane content of the biogas was increased by 6.7%. Increasing the organic loading rate had a strong effect on the anaerobic efficiency of the dairy wastewater treatment.

  15. Anaerobic filter reactor performance for the treatment of complex dairy wastewater at industrial scale.

    Science.gov (United States)

    Omil, Francisco; Garrido, Juan M; Arrojo, Belén; Méndez, Ramón

    2003-10-01

    The wastewaters discharged by raw milk quality control laboratories are more complex than the ones commonly generated by dairy factories because of the presence of certain chemicals such as sodium azide or chloramphenicol, which are used for preserving milk before analysis. The treatment of these effluents has been carried out in a full-scale plant comprising a 12 m(3) anaerobic filter (AF) reactor and a 28 m(3) sequential batch reactor (SBR). After more than 2 years of operation, a successful anaerobic treatment of these effluents was achieved, without fat removal prior to the anaerobic reactor. The organic loading rates maintained in the AF reactor were 5-6 kg COD/m(3) d, with COD removal being higher than 90%. No biomass washout was observed, and most of the fat contained in the wastewaters was successfully degraded. The addition of alkalinity is crucial for the maintenance of a proper buffer medium to ensure pH stability. The effluent of the AF reactor was successfully treated in the SBR reactor, and a final effluent with a COD content below 200 mg/l and total nitrogen below 10mg N/l was obtained.

  16. Continuous treatment of coloured industry wastewater using immobilized Phanerochaete chrysosporium in a rotating biological contactor reactor.

    Science.gov (United States)

    Pakshirajan, Kannan; Kheria, Sumeet

    2012-06-30

    Coloured industry wastewaters often contain dyes and other toxic ingredients, and, therefore, pose serious threat to the receiving environment. Among the available methods the eco-friendly biological method has gained maximum attention due to its many advantages over the traditional methods. In the present study, continuous biological treatment of coloured wastewater from a textile dyeing industry was investigated using the white rot fungus Phanerochaete chrysosporium in a rotating biological contactor (RBC) reactor. The raw wastewater was diluted with an equal volume of either distilled water or media containing glucose at varying concentrations to study its effect on the decolourization process. Results revealed that the wastewater could be decolourized to an extent of more than 64% when diluted with media containing glucose; and, a maximum decolourization efficiency of 83% was obtained with 10 g/l glucose concentration. COD removal efficiencies were also found to be consistent with the decolourization efficiencies of the wastewaters. Further, the results were correlated with the enzyme activities of manganese peroxidase (MnP) and lignin peroxidase (LiP) by the fungus, which were found to play some significant role in decolourization of the wastewater. Results of replacing the costly carbon source glucose in the decolourization media with the more cheap molasses, however, revealed very high COD removal efficiency, but low decolourization efficiency of the industry wastewater.

  17. Ethanol production potential from fermented rice noodle wastewater treatment using entrapped yeast cell sequencing batch reactor

    Science.gov (United States)

    Siripattanakul-Ratpukdi, Sumana

    2012-03-01

    Fermented rice noodle production generates a large volume of starch-based wastewater. This study investigated the treatment of the fermented rice noodle wastewater using entrapped cell sequencing batch reactor (ECSBR) compared to traditional sequencing batch reactor (SBR). The yeast cells were applied because of their potential to convert reducing sugar in the wastewater to ethanol. In present study, preliminary treatment by acid hydrolysis was performed. A yeast culture, Saccharomyces cerevisiae, with calcium alginate cell entrapment was used. Optimum yeast cell loading in batch experiment and fermented rice noodle treatment performances using ECSBR and SBR systems were examined. In the first part, it was found that the cell loadings (0.6-2.7 × 108 cells/mL) did not play an important role in this study. Treatment reactions followed the second-order kinetics with the treatment efficiencies of 92-95%. In the second part, the result showed that ECSBR performed better than SBR in both treatment efficiency and system stability perspectives. ECSBR maintained glucose removal of 82.5 ± 10% for 5-cycle treatment while glucose removal by SBR declined from 96 to 40% within the 5-cycle treatment. Scanning electron microscopic images supported the treatment results. A number of yeast cells entrapped and attached onto the matrix grew in the entrapment matrix.

  18. Simultaneous biohydrogen production and wastewater treatment in biofilm configured anaerobic periodic discontinuous batch reactor using distillery wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Venkata Mohan, S.; Mohanakrishna, G.; Ramanaiah, S.V.; Sarma, P.N. [Bioengineering and Environmental Centre, Indian Institute of Chemical Technology, Hyderabad 500007 (India)

    2008-01-15

    Biohydrogen (H{sub 2}) production with simultaneous wastewater treatment was studied in anaerobic sequencing batch biofilm reactor (AnSBBR) using distillery wastewater as substrate at two operating pH values. Selectively enriched anaerobic mixed consortia sequentially pretreated with repeated heat-shock (100{sup o}C; 2 h) and acid (pH -3.0; 24 h) methods, was used as parent inoculum to startup the bioreactor. The reactor was operated at ambient temperature (28{+-}2 {sup circle} C) with detention time of 24 h in periodic discontinuous batch mode. Experimental data showed the feasibility of hydrogen production along with substrate degradation with distillery wastewater as substrate. The performance of the reactor was found to be dependent on the operating pH. Adopted acidophilic microenvironment (pH 6.0) favored H{sub 2} production (H{sub 2} production rate - 26 mmol H{sub 2}/day; specific H{sub 2} production - 6.98 mol H{sub 2}/kg COD{sub R}-day) over neutral microenvironment (H{sub 2} production rate - 7 mmol H{sub 2}/day; specific H{sub 2} production - 1.63 mol H{sub 2}/kg COD{sub R}-day). However, COD removal efficiency was found to be effective in operated neutral microenvironment (pH 7 - 69.68%; pH 6.0 - 56.25%). The described process documented the dual benefit of renewable energy generation in the form of H{sub 2} with simultaneous wastewater treatment utilizing it as substrate. (author)

  19. Anaerobic baffled reactor coupled with chemical precipitation for treatment and toxicity reduction of industrial wastewater.

    Science.gov (United States)

    Laohaprapanona, Sawanya; Marquesa, Marcia; Hogland, William

    2014-01-01

    This study describes the reduction of soluble chemical oxygen demand (CODs) and the removal of dissolved organic carbon (DOC), formaldehyde (FA) and nitrogen from highly polluted wastewater generated during cleaning procedures in wood floor manufacturing using a laboratory-scale biological anaerobic baffled reactor followed by chemical precipitation using MgCI2 .6H20 + Na2HPO4. By increasing the hydraulic retention time from 2.5 to 3.7 and 5 days, the reduction rates of FA, DOC and CODs of nearly 100%, 90% and 83%, respectively, were achieved. When the Mg:N:P molar ratio in the chemical treatment was changed from 1:1:1 to 1.3:1:1.3 at pH 8, the NH4+ removal rate increased from 80% to 98%. Biologically and chemically treated wastewater had no toxic effects on Vibrio fischeri and Artemia salina whereas chemically treated wastewater inhibited germination of Lactuca sativa owing to a high salt content. Regardless of the high conductivity of the treated wastewater, combined biological and chemical treatment was found to be effective for the removal of the organic load and nitrogen, and to be simple to operate and to maintain. A combined process such as that investigated could be useful for on-site treatment of low volumes of highly polluted wastewater generated by the wood floor and wood furniture industries, for which there is no suitable on-site treatment option available today.

  20. STARTUP OF UPELOW ANAEROBIC SLUDGE BLANKET REACTOR FOR INDUSTRIAL WASTEWATER TREATMENT

    Directory of Open Access Journals (Sweden)

    A.R. Mesdaghinia

    1994-06-01

    Full Text Available Up flow anaerobic sludge blanket (UASB reactors have been increasingly used for industrial wastewater treatment. Because of existing problems in startup step of these reactors, in this research the startup of a UASB in pilot scale and room temperature condition was studied. The total height of UASB reactor was 270 cm and effective height was 240 cm. Diameter of the reactor in lower part was 20 cm (reaction zone and 40 cm in upper part (solid-gas-liquid separator five sampling ports with interval of 32 cm were provided and the effective volume of the reactor was 100 liters. Septic tank digested sludge and cow manure were used for the seeding of UASB reactor. In the startup step of the reactor, volumetric loading was increased step by step. After 155 days granule formation was observed and after 215 days of the study the removal rate increased to 4.62 kg COD/m/ day. More than 98% of soluble COD removal was achieved in lower 160 cm of reactor.

  1. A built-in zero valent iron anaerobic reactor to enhance treatment of azo dye wastewater.

    Science.gov (United States)

    Zhang, Yaobin; Jing, Yanwen; Quan, Xie; Liu, Yiwen; Onu, Pascal

    2011-01-01

    Waste scrap iron was packed into an upflow anaerobic sludge blanket (UASB) reactor to form a zero valent iron (ZVI) - UASB reactor system for treatment of azo dye wastewater. The ZVI acted as a reductant to decrease ORP in the reactor by more than 40 mv and functioned as an acid buffer to increase the pH in the reactor from 5.44 to 6.29, both of which improved the performance of the anaerobic reactor. As a result, the removal of color and COD in this reactor was 91.7% and 53%, respectively, which was significantly higher than that of a reference UASB reactor without ZVI. The UV-visible spectrum demonstrated that absorption bands of the azo dye from the ZVI-UASB reactor were substantially reduced. The ZVI promoted methanogenesis, which was confirmed by an increase in CH(4) content in the biogas from 47.9% to 64.8%. The ZVI bed was protected well from rusting, which allowed it to function stably. The effluent could be further purified only by pH adjustment because the Fe(2+) released from ZVI served as a flocculent.

  2. Evaluation of an integrated continuous stirred microbial electrochemical reactor: Wastewater treatment, energy recovery and microbial community.

    Science.gov (United States)

    Wang, Haiman; Qu, Youpeng; Li, Da; Zhou, Xiangtong; Feng, Yujie

    2015-11-01

    A continuous stirred microbial electrochemical reactor (CSMER) was developed by integrating anaerobic digestion (AD) and microbial electrochemical system (MES). The system was capable of treating high strength artificial wastewater and simultaneously recovering electric and methane energy. Maximum power density of 583±9, 562±7, 533±10 and 572±6 mW m(-2) were obtained by each cell in a four-independent circuit mode operation at an OLR of 12 kg COD m(-3) d(-1). COD removal and energy recovery efficiency were 87.1% and 32.1%, which were 1.6 and 2.5 times higher than that of a continuous stirred tank reactor (CSTR). Larger amount of Deltaproteobacteria (5.3%) and hydrogenotrophic methanogens (47%) can account for the better performance of CSMER, since syntrophic associations among them provided more degradation pathways compared to the CSTR. Results demonstrate the CSMER holds great promise for efficient wastewater treatment and energy recovery.

  3. Rational Basis for Designing Horizontal-Flow Anaerobic Immobilized Sludge (HAIS Reactor for Wastewater Treatment

    Directory of Open Access Journals (Sweden)

    M. Zaiat

    1997-03-01

    Full Text Available The conception and development on a rational basis of a new configuration of anaerobic fixed-bed bioreactor for wastewater treatment, the horizontal-flow anaerobic immobilized sludge (HAIS reactor, is presented. Such a reactor containing immobilized sludge in polyurethane foam matrices was first assayed for treating paper industry wastewater. A very short start-up period was observed and the reactor achieved stable operation by the eighth day. Afterwards, fundamental aspects of the process were investigated in order to obtain a rational basis for HAIS reactor design. A sequence of experiments was carried out for evaluating the cell wash-out from polyurethane foam matrices, the liquid-phase mass transfer coefficient and the intrinsic kinetic parameters, besides the hydrodynamic flow pattern of the reactor. The knowledge of such fundamental phenomena is useful for improving the reactor’s design and operation. Besides, these fundamental studies are essential to provide parameters for simulation and optimization of processes that make use of immobilized biomass

  4. Anaerobic treatment of wastewater containing methanol in upflow anaerobic sludge bed (UASB) reactor

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The direct conversion of methanol into methane is the main process in anaerobic treatment of methanol containing wastewater.However,acetic acid can also be produced from methanol theoretically,which may probably result in an abrupt pH drop and deteriorate the anaerobic process.Therefore,it is interesting to know what would really happen in an anaerobic reactor treating methanol wastewater.In this study,an up-flow anaerobic sludge bed (UASB) reactor treating methanol wastewater was operated.The chemical oxygen demand (COD),acetic acid and pH of the effluent were monitored at different loadings and influent alkalinity.The results showed that the anaerobic reactor could be operated steadily at as low as 119 mg/L of influent alkalinity and high organic loading rate with no obvious pH drops.Volatile fatty acids accumulation was not observed even at strong shock loadings.The microorganisms in the sludge at the end of the test became homogeneous in morphology,which were mainly spherical or spheroidal in shape.

  5. A comparative study of sequencing batch reactor and moving-bed sequencing batch reactor for piggery wastewater treatment

    Directory of Open Access Journals (Sweden)

    Kwannate Sombatsompop

    2011-06-01

    Full Text Available This research aims to comparatively study the efficiency of piggery wastewater treatment by the moving-bed sequencing batch reactor (moving-bed SBR system with held medium, and the conventional sequencing batch reactor (SBR system, by varying the organic load from 0.59 to 2.36 kgCOD/m3.d. The COD treatment efficiency of the SBR and moving-bed SBR was higher than 60% at an organic load of 0.59 kgCOD/m3.d and higher than 80% at the organic loads of 1.18-2.36 kgCOD/m3.d. The BOD removal efficiency was greater than 90% at high organic loads of 1.18-2.36 kgCOD/m3.d. The moving-bed SBR gave TKN removal efficiency of 86-93%, whereas the SBR system exhibited the removal efficiency of 75-87% at all organic loads. The amount of effluent suspended solids for SBR systems exceeded the piggery wastewater limit of 200 mg/L at the organic load of 2.36 kgCOD/m3.d while that for the moving-bed SBR system did not. When the organic load was increased, the moving-bed SBR system yielded better treatment efficiency than that of the SBR system. The wastewater treated by the moving-bed SBR system met the criteria of wastewater standard for pig farms at all organic loads, while that treated by the SBR system was not satisfactory at a high organic load of 2.36 kgCOD/m3.d.

  6. Phenolic Wastewater Treatment using Activated Carbon in a Three Phase Fluidized-Bed Reactor

    Directory of Open Access Journals (Sweden)

    Pornsiri Tongprem

    2009-11-01

    Full Text Available Phenolic wastewater treatment was investigated using activated carbon in a lab scale three phase fluidized-bed reactor. The reactor with effective volume of 272 ml, 300 mm in height and 40 mm in diameter was made from transparent acrylic that allowed to observe the phenomena occurring inside. Phenol 10 mg/l and air were used as representative agents that were continuously fed to the reactor at a constant flow rate of 1 and 2 l/min with co-current and up-flow, respectively. Comparison of the phenolic adsorption under five different conditions: (a fresh Acs, (b 1st reused Acs, (c fresh Fe/Acs, (d 1st reused Fe/Acs, and (e 2nd reused Fe/Acs, have been carried out. The phenolic wastewater was re-circulated through the reactor and its concentration was measured with respect to time. The experimental adsorption results revealed that both fresh Acs and Fe/Acs gave the better results than reused Acs and reused Fe/Acs, respectively. The adsorption in all cases of Acs and Fe/Acs would follow Pseudo-second order kinetic.

  7. Modified kinetic-hydraulic UASB reactor model for treatment of wastewater containing biodegradable organic substrates.

    Science.gov (United States)

    El-Seddik, Mostafa M; Galal, Mona M; Radwan, A G; Abdel-Halim, Hisham S

    2016-01-01

    This paper addresses a modified kinetic-hydraulic model for up-flow anaerobic sludge blanket (UASB) reactor aimed to treat wastewater of biodegradable organic substrates as acetic acid based on Van der Meer model incorporated with biological granules inclusion. This dynamic model illustrates the biomass kinetic reaction rate for both direct and indirect growth of microorganisms coupled with the amount of biogas produced by methanogenic bacteria in bed and blanket zones of reactor. Moreover, the pH value required for substrate degradation at the peak specific growth rate of bacteria is discussed for Andrews' kinetics. The sensitivity analyses of biomass concentration with respect to fraction of volume of reactor occupied by granules and up-flow velocity are also demonstrated. Furthermore, the modified mass balance equations of reactor are applied during steady state using Newton Raphson technique to obtain a suitable degree of freedom for the modified model matching with the measured results of UASB Sanhour wastewater treatment plant in Fayoum, Egypt.

  8. A novel approach for harnessing biofilm communities in moving bed biofilm reactors for industrial wastewater treatment

    Directory of Open Access Journals (Sweden)

    Joe A. Lemire

    2015-10-01

    Full Text Available Moving bed biofilm reactors (MBBRs are an effective biotechnology for treating industrial wastewater. Biomass retention on moving bed biofilm reactor (MBBR carriers (biofilm support materials, allows for the ease-of-operation and high treatment capacity of MBBR systems. Optimization of MBBR systems has largely focused on aspects of carrier design, while little attention has been paid to enhancing strategies for harnessing microbial biomass. Previously, our research group demonstrated that mixed-species biofilms can be harvested from an industrial wastewater inoculum [oil sands process water (OSPW] using the Calgary Biofilm Device (CBD. Moreover, the resultant biofilm communities had the capacity to degrade organic toxins (naphthenic acids—NAs that are found in OSPW. Therefore, we hypothesized that harnessing microbial communities from industrial wastewater, as biofilms, on MBBR carriers may be an effective method to bioremediate industrial wastewater.Here, we detail our methodology adapting the workflow employed for using the CBD, to generate inoculant carriers to seed an MBBR.In this study, OSPW-derived biofilm communities were successfully grown, and their efficacy evaluated, on commercially available MBBR carriers affixed within a modified CBD system. The resultant biofilms demonstrated the capacity to transfer biomass to recipient carriers within a scaled MBBR. Moreover, MBBR systems inoculated in this manner were fully active 2 days post-inoculation, and readily degraded a select population of NAs. Together, these findings suggest that harnessing microbial communities on carriers affixed within a modified CBD system may represent a facile and rapid method for obtaining functional inoculants for use in wastewater MBBR treatment systems.

  9. Why use a thermophilic aerobic membrane reactor for the treatment of industrial wastewater/liquid waste?

    Science.gov (United States)

    Collivignarelli, Maria Cristina; Abbà, Alessandro; Bertanza, Giorgio

    2015-01-01

    This paper describes the advantages of thermophilic aerobic membrane reactor (TAMR) for the treatment of high strength wastewaters. The results were obtained from the monitoring of an industrial and a pilot scale plant. The average chemical oxygen demand (COD) removal yield was equal to 78% with an organic loading rate (OLR) up to 8-10 kgCOD m(-3) d(-1) despite significant scattering of the influent wastewater composition. Total phosphorus (TP) was removed with a rate of 90%, the most important removal mechanism being chemical precipitation (as hydroxyapatite, especially), which is improved by the continuous aeration that promotes phosphorus crystallization. Moreover, surfactants were removed with efficiency between 93% and 97%. Finally, the experimental work showed that thermophilic processes (TPPs) are complementary with respect to mesophilic treatments.

  10. Study of a sequencing batch reactor performance in soft drink wastewater treatment

    Directory of Open Access Journals (Sweden)

    Francisco Javier Cuba Terán

    2009-08-01

    Full Text Available A sequencing batch aerobic reactor in pilot scale was constructed and operated with intermittent aeration in Wastewater Treatment Lab of Faculdade de Ciências e Tecnologia de Unesp at Presidente Prudente city. Research was conducted in order to improve reactor’s performance in organic matter and nitrogen removal by means of the application of different aeration times. In 12 and 14 hours long batch tests, with 6 and 8 hours of aeration, more than 96% of organic matter was removed by the third hour in both cases, in the other hand, nitrification showed 50 and 55% of removal at the end of every cycle. Tough showing nitrate removal, denitrification requires more research to be done in order to obtain more accurate data related with best cycle time for both pollutants removal.Key-words: sequencing batchs, aerobic treatment, industrial wastewater.A sequencing batch aerobic reactor in pilot scale was constructed and operated with intermittent aeration in Wastewater Treatment Lab of Faculdade de Ciências e Tecnologia de Unesp at Presidente Prudente city. Research was conducted in order to improve reactor’s performance in organic matter and nitrogen removal by means of the application of different aeration times. In 12 and 14 hours long batch tests, with 6 and 8 hours of aeration, more than 96% of organic matter was removed by the third hour in both cases, in the other hand, nitrification showed 50 and 55% of removal at the end of every cycle. Tough showing nitrate removal, denitrification requires more research to be done in order to obtain more accurate data related with best cycle time for both pollutants removal.Key-words: sequencing batchs, aerobic treatment, industrial wastewater.

  11. Slaughterhouse wastewater treatment: evaluation of a new three-phase separation system in a UASB reactor.

    Science.gov (United States)

    Caixeta, Cláudia E T; Cammarota, Magali C; Xavier, Alcina M F

    2002-01-01

    The anaerobic treatment of the wastewater from the meat processing industry was studied using a 7.2 1 UASB reactor. The reactor was equipped with an unconventional configuration of the three-phase separation system. The effluent was characterized in terms of pH (6.3-6.6), chemical oxygen demand (COD) (2,000-6,000 mg l(-1)), biochemical oxygen demand BOD5 (1,300-2,300 mg 1(-1)), fats (40-600 mg l(-1)) and total suspended solids (TSS) (850-6,300 mg l(-1)) The reactor operated continuously throughout 80 days with hydraulic retention time of 14, 18 and 22 h. The wastewater from Rezende Industrial was collected after it had gone through pretreatment (screening, flotation and equalization). COD, BOD and TSS reductions and the biogas production rate were the parameters considered in analyzing the efficiency of the process. The average production of biogas was 111 day(-1) (STP) for the three experimental runs. COD removal varied from 77% to 91% while BOD removal was 95%. The removal of total suspended solids varied from 81% to 86%. This fact supports optimal efficiency of the proposed three-phase separation system as well as the possibility of applying it to the treatment of industrial effluents.

  12. Preliminary Studies on Oleochemical Wastewater Treatment using Submerged Bed Biofilm Reactor (SBBR)

    Science.gov (United States)

    Ismail, Z.; Mahmood, N. A. N.; Ghafar, U. S. A.; Umor, N. A.; Muhammad, S. A. F.

    2017-06-01

    Wastewater discharge from the industry into water sources is one of the main reason for water pollution. The oleochemicals industry effluent produces high content of chemical oxygen demand (COD) with value between 6000-20,000 ppm. Effective treatment is required before wastewater effluent is discharged to environment. The aim of the study is to develop submerged bed biofilm reactor (SBBR) with packing materials in the cosmoball® carrier. Water quality such as chemical oxygen demands (COD), turbidity and pH were analysed. The result shows that the initial COD of 6000 ppm was reduced below 200 ppm. The optimum conditions for SBBR were obtained when green sponges used as packing material in cosmoball® effluent flowrate set at 100 mL/min; 1:1 ratio of cosmoball® volume to reactor volume and 1:1 ratio of active sludge (mixed culture) volume to reactor volume. Turbidity and pH were recorded with 9.0 NTU and 7.0 respectively, which indicated that SBBR is feasible as an alternative for conventional biological treatment in oleochemical industry.

  13. Buoyant Filter Bio-Reactor (BFBR)--a novel anaerobic wastewater treatment unit.

    Science.gov (United States)

    Panicker, Soosan J; Philipose, M C; Haridas, Ajit

    2008-01-01

    The Buoyant Filter Bio-Reactor (BFBR) is a novel and very efficient method for the treatment of complex wastewater. Sewage is a complex wastewater containing insoluble COD contributed by fat and proteins. The fat and proteins present in the domestic sewage cause operational problems and underperformance in the Upflow Anaerobic Sludge Blanket Reactor, used now for treating sewage anaerobically. The biogas yield from the BFBR is 0.36 m3/kg COD reduced and the methane content was about 70-80%. Production of methane by anaerobic digestion of organic waste had the benefit of lower energy costs for treatment and is thus environmentally beneficial to the society by providing a clean fuel from renewable feed stocks. The BFBR achieved a COD removal efficiency of 80-90% for an organic loading rate of 4.5 kg/m3/d at a hydraulic retention time of 3.25 hours. The effluent COD was less than 100 mg/l, thus saving on secondary treatment cost. No pretreatment like sedimentation was required for the influent to the BFBR. The BFBR can produce low turbidity effluent as in the activated sludge process (ASP). The land area required for the BFBR treatment plant is less when compared to ASP plant. Hence the problem of scarcity of land for the treatment plant is reduced. The total expenditure for erecting the unit was less than 50% as that of conventional ASP for the same COD removal efficiency including land cost.

  14. Effect of redox conditions on pharmaceutical loss during biological wastewater treatment using sequencing batch reactors

    Energy Technology Data Exchange (ETDEWEB)

    Stadler, Lauren B., E-mail: lstadler@umich.edu [Department of Civil and Environmental Engineering, University of Michigan, 1351 Beal Avenue, EWRE, Ann Arbor, MI 48109 (United States); Su, Lijuan, E-mail: lijuansu@buffalo.edu [Department of Chemistry, University at Buffalo, State University of New York, Buffalo, NY 14260 (United States); Moline, Christopher J., E-mail: christopher.moline@hdrinc.com [Department of Civil and Environmental Engineering, University of Michigan, 1351 Beal Avenue, EWRE, Ann Arbor, MI 48109 (United States); Ernstoff, Alexi S., E-mail: alexer@dtu.dk [Department of Civil and Environmental Engineering, University of Michigan, 1351 Beal Avenue, EWRE, Ann Arbor, MI 48109 (United States); Aga, Diana S., E-mail: dianaaga@buffalo.edu [Department of Chemistry, University at Buffalo, State University of New York, Buffalo, NY 14260 (United States); Love, Nancy G., E-mail: nglove@umich.edu [Department of Civil and Environmental Engineering, University of Michigan, 1351 Beal Avenue, EWRE, Ann Arbor, MI 48109 (United States)

    2015-01-23

    Highlights: • Pharmaceutical fate was studied in SBRs operated at different redox conditions. • Stable carbon oxidation and nitrification occurred under microaerobic conditions. • Losses of atenolol and trimethoprim were highest under fully aerobic conditions. • Loss of sulfamethoxazole was highest under microaerobic conditions. • Deconjugation occurred during treatment to form sulfamethoxazole and desvenlafaxine. - Abstract: We lack a clear understanding of how wastewater treatment plant (WWTP) process parameters, such as redox environment, impact pharmaceutical fate. WWTPs increasingly install more advanced aeration control systems to save energy and achieve better nutrient removal performance. The impact of redox condition, and specifically the use of microaerobic (low dissolved oxygen) treatment, is poorly understood. In this study, the fate of a mixture of pharmaceuticals and several of their transformation products present in the primary effluent of a local WWTP was assessed in sequencing batch reactors operated under different redox conditions: fully aerobic, anoxic/aerobic, and microaerobic (DO concentration ≈0.3 mg/L). Among the pharmaceuticals that were tracked during this study (atenolol, trimethoprim, sulfamethoxazole, desvenlafaxine, venlafaxine, and phenytoin), overall loss varied between them and between redox environments. Losses of atenolol and trimethoprim were highest in the aerobic reactor; sulfamethoxazole loss was highest in the microaerobic reactors; and phenytoin was recalcitrant in all reactors. Transformation products of sulfamethoxazole and desvenlafaxine resulted in the reformation of their parent compounds during treatment. The results suggest that transformation products must be accounted for when assessing removal efficiencies and that redox environment influences the degree of pharmaceutical loss.

  15. Anaerobic treatment of wastewater with high suspended solids from a bulk drug industry using fixed film reactor (AFFR).

    Science.gov (United States)

    Gangagni Rao, A; Venkata Naidu, G; Krishna Prasad, K; Chandrasekhar Rao, N; Venkata Mohan, S; Jetty, Annapurna; Sarma, P N

    2005-01-01

    Studies were carried out on the treatment of wastewater from a bulk drug industry using an anaerobic fixed film reactor (AFFR) designed and fabricated in the laboratory. The chemical oxygen demand (COD) and total dissolved solids (TDS) of the wastewater were found to be very high with low biochemical oxygen demand (BOD) to COD ratio and high total suspended solid (TSS) concentration. Acclimatization of seed consortia and startup of the reactor was carried out by directly using the wastewater, which resulted in reducing the period of startup to 30 days. The reactor was studied at different organic loading rates (OLR) and it was found that the optimum OLR was 10 kg COD/m(3)/day. The wastewater under investigation, which had a considerable quantity of SS, was treated anaerobically without any pretreatment. COD and BOD of the reactor outlet wastewater were monitored and at steady state and optimum OLR 60-70% of COD and 80-90% of BOD were removed. The reactor was subjected to organic shock loads at two different OLR and the reaction could withstand the shocks and performance could be restored to normalcy at that OLR. The results obtained indicated that AFFR could be used efficiently for the treatment of wastewater from a bulk drug industry having high COD, TDS and TSS.

  16. Pilot scale thin film plate reactors for the photocatalytic treatment of sugar refinery wastewater.

    Science.gov (United States)

    Saran, S; Kamalraj, G; Arunkumar, P; Devipriya, S P

    2016-09-01

    Pilot scale thin film plate reactors (TFPR) were fabricated to study the solar photocatalytic treatment of wastewater obtained from the secondary treatment plant of a sugar refinery. Silver-impregnated titanium dioxide (TiO2) was prepared by a facile chemical reduction method, characterized, and immobilized onto the surface of ceramic tiles used in the pilot scale reactors. On 8 h of solar irradiation, percentage reduction of chemical oxygen demand (COD) of the wastewater by Ag/TiO2, pure TiO2, and control (without catalyst) TFPR was about 95, 86, and 22 % respectively. The effects of operational parameters such as, flow rate, pH, and addition of hydrogen peroxide (H2O2) were optimized as they influence the rate of COD reduction. Under 3 h of solar irradiation, 99 % COD reduction was observed at an optimum flow rate of 15 L h(-1), initial pH of 2, and addition of 5 mM of H2O2. The results show that Ag/TiO2 TFPR could be effectively used for the tertiary treatment of sugar refinery effluent using sunlight as the energy source. The treated water could be reused for industrial purposes, thus reducing the water footprint of the industry. Graphical Abstract Sugar refinery effluent treatment by solar photocatalytic TFPR.

  17. Treatment of olive mill wastewater by the combination of ultrafiltration and bipolar electrochemical reactor processes

    KAUST Repository

    Yahiaoui, O.

    2011-01-01

    The main purpose of this study was to investigate the removal of the chemical oxygen demand (COD) from olive mill wastewater (OMW) by the combination of ultrafiltration with electrocoagulation process. Ultrafiltration process equipped with CERAVER membrane was used as pre-treatment for electrochemical process. The obtained permeate from the ultrafiltration process allowed COD removal efficiency of about 96% from OMW. Obtained permeate with an average COD of about 1.1gdm-3 was treated by electrochemical reactor equipped with a reactor with bipolar iron plate electrodes. The effect of the experimental parameters such as current density, pH, surface electrode/reactor volume ratio and NaCl concentration on COD removal was assessed. The results showed that the optimum COD removal rate was obtained at a current density of 93.3Am-2 and pH ranging from 4.5 to 6.5. At the optimum operational parameters for the experiments, electrocoagulation process could reduce COD from 1.1gdm-3 to 78mgdm-3, allowing direct discharge of the treated OMW as that meets the Algerian wastewater discharge standards (<125mgdm-3). © 2010 Elsevier B.V.

  18. Anaerobic treatment of a chemical synthesis-based pharmaceutical wastewater in a hybrid upflow anaerobic sludge blanket reactor.

    Science.gov (United States)

    Oktem, Yalcin Askin; Ince, Orhan; Sallis, Paul; Donnelly, Tom; Ince, Bahar Kasapgil

    2008-03-01

    In this study, performance of a lab-scale hybrid up-flow anaerobic sludge blanket (UASB) reactor, treating a chemical synthesis-based pharmaceutical wastewater, was evaluated under different operating conditions. This study consisted of two experimental stages: first, acclimation to the pharmaceutical wastewater and second, determination of maximum loading capacity of the hybrid UASB reactor. Initially, the carbon source in the reactor feed came entirely from glucose, applied at an organic loading rate (OLR) 1 kg COD/m(3) d. The OLR was gradually step increased to 3 kg COD/m(3) d at which point the feed to the hybrid UASB reactor was progressively modified by introducing the pharmaceutical wastewater in blends with glucose, so that the wastewater contributed approximately 10%, 30%, 70%, and ultimately, 100% of the carbon (COD) to be treated. At the acclimation OLR of 3 kg COD/m(3) d the hydraulic retention time (HRT) was 2 days. During this period of feed modification, the COD removal efficiencies of the anaerobic reactor were 99%, 96%, 91% and 85%, and specific methanogenic activities (SMA) were measured as 240, 230, 205 and 231 ml CH(4)/g TVS d, respectively. Following the acclimation period, the hybrid UASB reactor was fed with 100% (w/v) pharmaceutical wastewater up to an OLR of 9 kg COD/m(3) d in order to determine the maximum loading capacity achievable before reactor failure. At this OLR, the COD removal efficiency was 28%, and the SMA was measured as 170 ml CH(4)/g TVS d. The hybrid UASB reactor was found to be far more effective at an OLR of 8 kg COD/m(3) d with a COD removal efficiency of 72%. At this point, SMA value was 200 ml CH(4)/g TVS d. It was concluded that the hybrid UASB reactor could be a suitable alternative for the treatment of chemical synthesis-based pharmaceutical wastewater.

  19. Distribution and change of microbial activity in combined UASB and AFB reactors for wastewater treatment

    Energy Technology Data Exchange (ETDEWEB)

    Yu, J.; Chen, H.; Ji, M.; Yue, P.L. [Hong Kong Univ. of Science and Technology, Kowloon (Hong Kong). Dept. of Chemical Engineering

    2000-04-01

    A thermophilic upflow anaerobic sludge blanket (UASB) reactor was combined with a mesophilic aerobic fluidized bed (AFB) reactor for treatment of a medium strength wastewater with 2,700 mg COD l{sup -1}. The COD removal efficiency reached 75% with a removal rate of 0.2 g COD l{sup -1} h{sup -1} at an overall hydraulic retention time 14 hours. The distribution of microbial activity and its change with hydraulic retention time in the two reactors were investigated by measuring ATP concentration in the reactors and specific ATP content of the biomass. In the UASB reactor, the difference in specific ATP was significant between the sludge bed and blanket solution (0.02 mg ATP g VS{sup -1} versus 0.85 mg ATP g VS{sup -1}) even though the ATP concentrations in these two zones were similar. A great pH gradient up to 4 was developed along the UASB reactor. Since a high ATP or biological activity in the blanket solution could only be maintained in a narrow pH range from 6.5 to 7.5, the sludge granules showed a high pH tolerance and buffering capacity up to pH 11. The suspended biomass in AFB reactor had a higher specific ATP than the biomass fixed in polyurethane carriers (1.6 mg ATP g VS{sup -1} versus 1.1 mg ATP g VS{sup -1}), which implies a starvation status of the immobilized cells due to mass transfer limitation. The aerobes had to work under starvation conditions in this polishing reactor. The anaerobic biomass brought into AFB reactor contributed to an increase in suspended solids, but not the COD removal because of its fast deactivation under aerobic conditions. A second order kinetic model was proposed for ATP decline of the anaerobes. The results on distribution of microbial activity in the two reactors as well as its change with hydraulic retention time lead to further performance improvement of the combined anaerobic/aerobic reactor system. (orig.)

  20. Performance analysis of upflow anaerobic sludge blanket reactors in the treatment of swine wastewater

    Directory of Open Access Journals (Sweden)

    Luiz A. V. Sarmento

    2007-07-01

    Full Text Available The adoption of confined systems for swine production have been increased the use of water in these installations and, consequently, an each time greater production of wastewater. Diagnostics have been showed a high level of water pollution due the waste material release on lands without criterions and in waters without previous treatment. The utilization of anaerobic process to reduce the liquid residues pollutant power has been detaching because beyond reducing the environmental pollution they allow to recover the energetic potential as fertilizer and biogas. In this work the performance of two real scale upflow anaerobic sludge blanket reactors treating swine wastewater were evaluated through operational system analysis, physical-chemical parameters of pollution and biogas production measurement. The results permitted to verify upflow rate speeds above of the value for which these reactors were designed and hydraulic residence times under of the design value. These factors affected negatively the treatment and had reflected on the law removal of the physical-chemical parameters and biogas production. The maximum removal efficiencies reached for TSS, BOD and COD were 72,5%, 34,7% and 40,0%, respectively. The mean rate of biogas liberation was 0,011 m-³ m-².h-1.

  1. Design of an anaerobic hybrid reactor for industrial wastewater treatment; Diseno de reactores hibridos anaerobios para el tratamiento de aguas residuales industriales

    Energy Technology Data Exchange (ETDEWEB)

    Soroa del Campo, S.; Lopetegui Garnika, J.; Almandoz Peraita, A.; Garcia de las Heras, J. L.

    2005-07-01

    The application of the European legislation has promoted different strategies aimed at minimizing the biological sludge production during wastewater treatment. Anaerobic biological treatment is the clearest choice from a technical and economical point of view regarding industrial wastewater. In this context, a semi-industrial anaerobic hybrid reactor has been developed as an alternative technology to other anaerobic systems well-established in the market for the treatment of slaughterhouse wastewater. The The results have demonstrated that it is an effective, robust and easy to operate system. The sludge production has been reduced below 0.12 kg VS/kg COD removed, for COD removal efficiencies above 95%. (Author) 12 refs.

  2. Coagulant recovery from water treatment plant sludge and reuse in post-treatment of UASB reactor effluent treating municipal wastewater.

    Science.gov (United States)

    Nair, Abhilash T; Ahammed, M Mansoor

    2014-09-01

    In the present study, feasibility of recovering the coagulant from water treatment plant sludge with sulphuric acid and reusing it in post-treatment of upflow anaerobic sludge blanket (UASB) reactor effluent treating municipal wastewater were studied. The optimum conditions for coagulant recovery from water treatment plant sludge were investigated using response surface methodology (RSM). Sludge obtained from plants that use polyaluminium chloride (PACl) and alum coagulant was utilised for the study. Effect of three variables, pH, solid content and mixing time was studied using a Box-Behnken statistical experimental design. RSM model was developed based on the experimental aluminium recovery, and the response plots were developed. Results of the study showed significant effects of all the three variables and their interactions in the recovery process. The optimum aluminium recovery of 73.26 and 62.73 % from PACl sludge and alum sludge, respectively, was obtained at pH of 2.0, solid content of 0.5 % and mixing time of 30 min. The recovered coagulant solution had elevated concentrations of certain metals and chemical oxygen demand (COD) which raised concern about its reuse potential in water treatment. Hence, the coagulant recovered from PACl sludge was reused as coagulant for post-treatment of UASB reactor effluent treating municipal wastewater. The recovered coagulant gave 71 % COD, 80 % turbidity, 89 % phosphate, 77 % suspended solids and 99.5 % total coliform removal at 25 mg Al/L. Fresh PACl also gave similar performance but at higher dose of 40 mg Al/L. The results suggest that coagulant can be recovered from water treatment plant sludge and can be used to treat UASB reactor effluent treating municipal wastewater which can reduce the consumption of fresh coagulant in wastewater treatment.

  3. Treatment of phenolic wastewater using agricultural wastes as an adsorbent in a sequencing batch reactor.

    Science.gov (United States)

    Lee, K M; Lim, P E

    2003-01-01

    The objective of this study is to investigate the potential of the activated rice husk to be used as an alternative adsorbent to powdered activated carbon (PAC) in the simultaneous adsorption and biodegradation processes under sequencing batch reactor (SBR) operation to treat synthetic wastewater containing phenol, p-methylphenol, p-ethylphenol and p-isopropylphenol. The rice husk (PRH) was activated by pyrolysis at 600 degrees C for 5 hours in a nitrogen atmosphere. Using the Langmuir model, the limiting adsorption capacities of PRH for the phenols were found to vary from 0.015-0.05 of those of PAC. The SBR reactors with and without adsorbent addition were operated with fill, react, settle, draw and idle periods in the ratio of 4:6:1:0.76:0.25 for a cycle time of 12 hours. For phenolic wastewater containing, 1,200 mg/L phenol, 1,200 mg/L p-methylphenol, 800 mg/L p-ethylphenol and 660 mg/L p-isopropylphenol, it was found that the biodegradation process alone was unable to produce effluent of quality which would satisfy the discharge standards of COD < or = 100 mg/L and phenol concentration < or = 1 mg/L. The addition of PAC in the ratio of PAC/phenolic compound at 0.095 g/g for phenol, 0.119 g/g for p-methylpheol, 0.179 g/g for p-ethylphenol and 0.220 g/g for p-isopropylphenol, can improve the effluent quality to satisfy the discharge standards. Equivalent treatment performance was achieved with the use of PRH at dosages of 2-3 times higher than those of PAC for all the phenolic wastewater studied. The increased adsorption capacity of PRH shown in the treatment indicates bioregeneration of the adsorbed surface during the treatment process.

  4. Electrocoagulation using a rotated anode: A novel reactor design for textile wastewater treatment.

    Science.gov (United States)

    Naje, Ahmed Samir; Chelliapan, Shreeshivadasan; Zakaria, Zuriati; Abbas, Saad A

    2016-07-01

    This paper investigates the optimum operational conditions of a novel rotated bed electrocoagulation (EC) reactor for the treatment of textile wastewater. The effect of various operational parameters such as rotational speed, current density (CD), operational time (RT), pH, temperature, and inter-electrode distance (IED) on the pollutant removal efficiency were examined. In addition, the consumption of aluminum (Al) and electrical energy, as well as operating costs at optimum conditions were also calculated. The results indicated that the optimum conditions for the treatment of textile wastewater were achieved at CD = 4 mA/cm(2), RT = 10 min, rotational speed = 150 rpm, pH = 4.57, temperature = 25 °C, and IED = 1 cm. The electrode consumption, energy consumption, and operating costs were 0.038 kg/m(3), 4.66 kWh/m(3) and 0.44 US$/m(3), respectively. The removal efficiencies of chemical oxygen demand (COD), biological oxygen demand (BOD), total suspended solid (TSS), turbidity and color were 97.10%, 95.55%, 98%, 96% and 98.50%, respectively, at the first 10 min of reaction time, while the phenol compound of the wastewater was almost entirely removed (99.99%). The experimental results confirm that the new reactor design with rotated anode impellers and cathode rings provided high treatment efficiency at a reduced reaction time and with lower energy consumption.

  5. [Atrazine wastewater treatment in a SPG membrane-aerated genetically engineered microorganism biofilm reactor].

    Science.gov (United States)

    Liu, Chun; Gong, Peng-Fei; Xiao, Tai-Min; Zhang, Ming; Nian, Yong-Jia; Yang, Jing-Liang; Zhang, Jing

    2014-08-01

    Membrane-aerated biofilm reactor (MABR) represent a novel membrane-biological wastewater treatment technology. In addition, bioaugmented treatment using genetically engineered microorganism (GEM) biofilm in MABR is proposed to improve refractory pollutant removal. In the present study, a SPG membrane aerated-biofilm reactor (SPG-MABR) with GEM biofilm formed on the SPG membrane surface was applied to treat atrazine wastewater. The influences of air pressure, biofilm biomass and liquid velocity on the performance of the SPG-MABR were investigated. The variation of GEM biofilm during the SPG-MABR operation was observed. The results indicated that the increased air pressure could promote atrazine and COD removal as well as re-oxygenation by increasing oxygen permeability coefficient. A higher biofilm biomass could also enhance atrazine and COD removal, but simultaneously reduce the re-oxygenation rate because biofilm thickness and oxygen transfer resistance increased. When liquid velocity in the SPG-MABR was decreased under laminar flow condition, atrazine and COD removal was improved due to the facilitated contaminant diffusion from wastewater to biofilm. The atrazine removal efficiency reached to 98.6% in the SPG-MABR after 5d treatment at air pressure of 300 kPa, biofilm biomass of 25 g x m(-2) and liquid velocity of 0.05 m x s(-1). The microbial polymorphism of GEM biofilm was observed during the SPG-MABR operation. The surface of GEM biofilm was gradually covered by other microbial cells and the distribution of GEM cells reduced, but inside the GEM biofilm, the GEM cells were still dominant.

  6. Wastewater treatment with submerged fixed bed biofilm reactor systems--design rules, operating experiences and ongoing developments.

    Science.gov (United States)

    Schlegel, S; Koeser, H

    2007-01-01

    Wastewater treatment systems using bio-films that grow attached to a support media are an alternative to the widely used suspended growth activated sludge process. Different fixed growth biofilm reactors are commercially used for the treatment of municipal as well as industrial wastewater. In this paper a fairly new fixed growth biofilm system, the submerged fixed bed biofilm reactor (SFBBR), is discussed. SFBBRs are based on aerated submerged fixed open structured plastic media for the support of the biofilm. They are generally operated without sludge recirculation in order to avoid clogging of the support media and problems with the control of the biofilm. Reactor and process design considerations for these reactors are reviewed. Measures to ensure the development and maintenance of an active biofilm are examined. SFBBRs have been applied successfully to small wastewater treatment plants where complete nitrification but no high degree of denitrification is necessary. For the pre-treatment of industrial wastewater the use of SFBBRs is advantageous, especially in cases of wastewater with high organic loading or high content of compounds with low biodegradability. Performance data from exemplary commercial plants are given. Ongoing research and development efforts aim at achieving a high simultaneous total nitrogen (TN) removal of aerated SFBBRs and at improving the efficiency of TN removal in anoxic SFBBRs.

  7. Evaluation of reactor anaerobic sludge blanket in the treatment of wastewater slaughterhouse

    Directory of Open Access Journals (Sweden)

    Luciano dos Santos Rodrigues

    2014-10-01

    Full Text Available This study aimed to evaluate the efficiency of a full-scale treatment system effluent slaughterhouse. The full-scale Sewage Treatment Station was designed for a daily flow of 60 m³/d, corresponding to a slaughter of 60 cattle per day. The treatment system consists of a Parshall flume for flow measurement, followed by static sieve, gravimetric fat, sedimentation and anaerobic sludge blanket (UASB box and it was monitored weekly from January to August. The following parameters were analyzed: pH, alkalinity, biochemical oxygen demand (BOD, chemical oxygen demand (COD, total solids (TS, total suspended solids (TSS, ammonia nitrogen, and total nitrogen kjedhall. The average pH, COD and TSS in the UASB reactor effluent values were 6.96, 660 mg/L and 188 mg/L , respectively. The system proved to be efficient, with average removal of 96.40% to 89.92% for COD and TSS. The UASB reactor showed high performance in removing solids and organic load. Thus, this reactor becomes a viable alternative for treating wastewater slaughterhouse, offering good removal results and low cost of deployment.

  8. Effect of redox conditions on pharmaceutical loss during biological wastewater treatment using sequencing batch reactors

    DEFF Research Database (Denmark)

    Stadler, Lauren B.; Su, Lijuan; Moline, Christopher J.

    2015-01-01

    We lack a clear understanding of how wastewater treatment plant (WWTP) process parameters, such as redox environment, impact pharmaceutical fate. WWTPs increasingly install more advanced aeration control systems to save energy and achieve better nutrient removal performance. The impact of redox...... condition, and specifically the use of microaerobic (low dissolved oxygen) treatment, is poorly understood. In this study, the fate of a mixture of pharmaceuticals and several of their transformation products present in the primary effluent of a local WWTP was assessed in sequencing batch reactors operated...... of their parent compounds during treatment. The results suggest that transformation products must be accounted for when assessing removal efficiencies and that redox environment influences the degree of pharmaceutical loss....

  9. Treatment of wastewater containing o-phenylenediamine by ozone in a rotor-stator reactor.

    Science.gov (United States)

    Arowo, Moses; Li, Yingwen; Chu, Guangwen; Sun, Baochang; Chen, Jianfeng; Shao, Lei

    2016-01-01

    This work employed a novel rotor-stator reactor (RSR) to intensify the degradation process of o-phenylenediamine (o-PDA) by ozone. The effects of different operating parameters including initial pH, temperature, rotation speed, liquid volumetric flow rate and inlet ozone concentration on the removal efficiency of o-PDA were investigated in an attempt to establish the optimum conditions. The removal efficiency was evaluated in terms of degradation ratio and chemical oxygen demand (COD) reduction ratio of the o-PDA wastewater. Results indicate that the removal efficiency decreased with increasing liquid volumetric flow rate but increased with an increase in pH and inlet ozone concentration. Also, the removal efficiency increased up to a certain level with an increase in rotation speed and temperature. Additionally, a comparison experiment was carried out in a stirred tank reactor (STR), and the results show that the degradation and COD reduction ratios reached a maximum of 94.6% and 61.2% in the RSR as compared to 45.3% and 28.6% in the STR, respectively. This work demonstrates that ozone oxidation carried out in RSR may be a promising alternative for pre-treatment of o-PDA wastewater.

  10. Performance of a fixed-bed biofilm reactor with microbubble aeration in aerobic wastewater treatment.

    Science.gov (United States)

    Zhang, Lei; Liu, Junliang; Liu, Chun; Zhang, Jing; Yang, Jingliang

    2016-01-01

    Microbubble aeration is supposed to be highly efficient for oxygen supply in aerobic wastewater treatment. In the present study, the performance of a fixed-bed biofilm reactor microbubble-aerated using a Shirasu porous glass (SPG) membrane system was investigated when treating synthetic municipal wastewater. The biofilm formation on the carriers was enhanced with microbubble aeration due to the strong adhesion of microbubbles to the solid surface. The dissolved oxygen concentration, the removals of chemical oxygen demand (COD) and nitrogen, and the oxygen utilization efficiency were influenced by the organic loading rate at a certain oxygen supply capacity. The relatively optimal organic loading rate was determined as 0.82 kgCOD/(m(3)d) when the oxygen supply capacity was 0.93 kgO(2)/(m(3)d), where COD and ammonia removal efficiencies were 91.7% and 53.9%, respectively. The corresponding SPG membrane area-based COD removal capacity was 6.88 kgCOD/(m(2)d). The oxygen utilization efficiency of microbubble aeration was obviously higher compared to conventional bubble aeration. The simultaneous nitrification and denitrification occurred in the biofilm reactor and the total nitrogen removal efficiency of 50.4% was achieved under these conditions. In addition, the increase in air supply capacity of the SPG membrane system was suggested to improve its energy utilization efficiency.

  11. Aerobic treatment of kitchen wastewater using sequence batch reactor (SBR) and reuse for irrigation landscape purposes

    National Research Council Canada - National Science Library

    Sule Abubakar; Ab aziz Abdul Latiff; I. M. Lawal; A. H. Jagaba

    2016-01-01

    .... While treatment plant is expected to treat all wastewater received to a minimum environmental standard, not much effort are given for wastewater reuse in Malaysia due to the fact that Malaysia...

  12. Application of a moving bed biofilm reactor for tertiary ammonia treatment in high temperature industrial wastewater.

    Science.gov (United States)

    Shore, Jennifer L; M'Coy, William S; Gunsch, Claudia K; Deshusses, Marc A

    2012-05-01

    This study examines the use of a moving bed biofilm reactor (MBBR) as a tertiary treatment step for ammonia removal in high temperature (35-45°C) effluents, and quantifies different phenotypes of ammonia and nitrite oxidizing bacteria responsible for nitrification at elevated temperatures. Bench scale reactors operating at 35 and 40°C were able to successfully remove greater than 90% of the influent ammonia (up to 19 mg L(-1) NH(3)-N) in both the synthetic and industrial wastewater. No biotreatment was observed at 45°C, although effective nitrification was rapidly recovered when the temperature was lowered to 30°C. Using qPCR, Nitrosomonas oligotropha was found to be the dominant ammonia oxidizing bacterium in the biofilm for the first phases of reactor operation. In the later phases, Nitrosomonas nitrosa was observed and its increased presence may have been responsible for improved ammonia treatment efficiency. Accumulation of nitrite in some instances appeared to correlate with temporary low presence of Nitrospira spp.

  13. Appling hydrolysis acidification-anoxic–oxic process in the treatment of petrochemical wastewater: From bench scale reactor to full scale wastewater treatment plant

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Changyong [State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012 (China); Research Center of Water Pollution Control Technology, Chinese Research Academy of Environment Sciences, Beijing 100012 (China); Zhou, Yuexi, E-mail: zhouyuexi@263.net [State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012 (China); Research Center of Water Pollution Control Technology, Chinese Research Academy of Environment Sciences, Beijing 100012 (China); Sun, Qingliang [School of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029 (China); Fu, Liya [Research Center of Water Pollution Control Technology, Chinese Research Academy of Environment Sciences, Beijing 100012 (China); School of Environment, Tsinghua University, Beijing 100084 (China); Xi, Hongbo; Yu, Yin [State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012 (China); Research Center of Water Pollution Control Technology, Chinese Research Academy of Environment Sciences, Beijing 100012 (China); Yu, Ruozhen [State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012 (China)

    2016-05-15

    Highlights: • Hydrolysis acidification-anoxic–oxic process can be used to treat petrochemical wastewater. • The toxicity and treatability changed significantly after hydrolysis acidification. • The type and concentration of organics reduced greatly after treatment. • The effluent shows low acute toxicity by luminescent bacteria assay. • Advanced treatment is recommended for the effluent. - Abstract: A hydrolysis acidification (HA)-anoxic–oxic (A/O) process was adopted to treat a petrochemical wastewater. The operation optimization was carried out firstly by a bench scale experimental reactor. Then a full scale petrochemical wastewater treatment plant (PCWWTP, 6500 m{sup 3} h{sup −1}) was operated with the same parameters. The results showed that the BOD{sub 5}/COD of the wastewater increased from 0.30 to 0.43 by HA. The effluent COD was 54.4 mg L{sup −1} for bench scale reactor and 60.9 mg L{sup −1} for PCWWTP when the influent COD was about 480 mg L{sup −1} on optimized conditions. The organics measured by gas chromatography-mass spectrometry (GC–MS) reduced obviously and the total concentration of the 5 organics (1,3-dioxolane, 2-pentanone, ethylbenzene, 2-chloromethyl-1,3-dioxolane and indene) detected in the effluent was only 0.24 mg L{sup −1}. There was no obvious toxicity of the effluent. However, low acute toxicity of the effluent could be detected by the luminescent bacteria assay, indicating the advanced treatment is needed. The clone library profiling analysis showed that the dominant bacteria in the system were Acidobacteria, Proteobacteria and Bacteriodetes. HA-A/O process is suitable for the petrochemical wastewater treatment.

  14. Combined physico-chemical treatment of secondary settled municipal wastewater in a multifunctional reactor.

    Science.gov (United States)

    Santoro, O; Pastore, T; Santoro, D; Crapulli, F; Raisee, M; Moghaddami, M

    2013-01-01

    In this paper, the physico-chemical treatment of municipal wastewater for the simultaneous removal of pollutant indicators (chemical oxygen demand (COD) and total coliforms) and organic contaminants (total phenols) was investigated and assessed. A secondary settled effluent was subjected to coagulation, disinfection and absorption in a multifunctional reactor by dosing, simultaneously, aluminum polychloride (dose range: 0-150 μL/L), natural zeolites (dose range: 0-150 mg/L), sodium hypochlorite (dose range: 0-7.5 mg/L) and powder activated carbon (dose range: 0-30 mg/L). The treatment process was optimized using computational fluid dynamics (CFD) and response surface methodology. Specifically, a Latin square technique was employed to generate 16 combinations of treating agent types and concentrations which were pilot tested on an 8 m(3)/h multifunctional reactor fed by a secondary effluent with COD and total coliform concentrations ranging from ≈20 to 120 mg/L and from 10(5) to 10(6) CFU/100 mL, respectively. Results were promising, indicating that removal yields up to 71% in COD and 5.4 log in total coliforms were obtained using an optimal combination of aluminum polychloride (dose range ≈ 84-106 μL/L), powder activated carbon ≈ 5 mg/L, natural zeolite (dose range ≈ 34-70 mg/L) and sodium hypochlorite (dose range ≈ 3.4-5.6 mg/L), with all treating agents playing a statistically significant role in determining the overall treatment performance. Remarkably, the combined process was also able to remove ≈ 50% of total phenols, a micropollutant known to be recalcitrant to conventional wastewater treatments.

  15. Nitrifying-denitrifying filters and UV-C disinfection reactor: a combined system for wastewater treatment.

    Science.gov (United States)

    Ben Rajeb, Asma; Mehri, Inès; Nasr, Houda; Najjari, Afef; Saidi, Neila; Hassen, Abdennaceur

    2017-03-01

    Biological treatment systems use the natural processes of ubiquitous organisms to remove pollutants and improve the water quality before discharge to the environment. In this paper, the nitrification/denitrification reactor allowed a reduction in organic load, but offered a weak efficiency in nitrate reduction. However, the additions of the activated sludge in the reactor improve this efficiency. A decrease of [Formula: see text] values from 13.3 to 8 mg/l was noted. Nevertheless, sludge inoculation led to a net increase of the number of pathogenic bacteria. For this reason, a UV-C pilot reactor was installed at the exit of the biological nitrification-denitrification device. Thus, a fluence of 50 mJ.cm(-2) was sufficient to achieve values of 20 MPN/100 ml for fecal coliform and 6 MPN/100 ml for fecal streptococci, conforms to Tunisian Standards of Rejection. On the other hand, the DGGE approach has allowed a direct assessment of the bacterial community changes upon the treated wastewater.

  16. Influences of iron and calcium carbonate on wastewater treatment performances of algae based reactors.

    Science.gov (United States)

    Zhao, Zhimiao; Song, Xinshan; Wang, Wei; Xiao, Yanping; Gong, Zhijie; Wang, Yuhui; Zhao, Yufeng; Chen, Yu; Mei, Mengyuan

    2016-09-01

    The influences of iron and calcium carbonate (CaCO3) addition in wastewater treatments reactors performance were investigated. Adding different concentrations of Fe(3+) (5, 10, 30 and 50mmol/m(3)), iron and CaCO3 powder led to changes in algal characteristics and physico-chemical and microbiological properties. According to the investigation results, nutrient removal efficiency in algae based reactors was obviously increased by the addition of 10mmol/m(3) Fe(3+), iron (5mmol/m(3)) and CaCO3 powder (0.2gm(-3)) and the removal efficiencies of BOD5, TN, and TP in Stage 2 were respectively increased by 28%, 8.9%, and 22%. The improvements in physico-chemical performances were verified by microbial community tests (bacteria quantity, activity and community measured in most probable number, extracellular enzymes activity, and Biolog Eco Plates). Microbial variations indicated the coexistence of Fe ions and carbonate-bicarbonate, which triggered the synergistic effect of physico-chemical action and microbial factors in algae based reactors. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Application of a combined process of moving-bed biofilm reactor (MBBR) and chemical coagulation for dyeing wastewater treatment.

    Science.gov (United States)

    Shin, D H; Shin, W S; Kim, Y H; Han, Myung Ho; Choi, S J

    2006-01-01

    A combined process consisted of a Moving-Bed Biofilm Reactor (MBBR) and chemical coagulation was investigated for textile wastewater treatment. The pilot scale MBBR system is composed of three MBBRs (anaerobic, aerobic-1 and aerobic-2 in series), each reactor was filled with 20% (v/v) of polyurethane-activated carbon (PU-AC) carrier for biological treatment followed by chemical coagulation with FeCl2. ln the MBBR process, 85% of COD and 70% of color (influent COD = 807.5 mg/L and color = 3,400 PtCo unit) were removed using relatively low MLSS concentration and short hydraulic retention time (HRT = 44 hr). The biologically treated dyeing wastewater was subjected to chemical coagulation. After coagulation with FeCl2, 95% of COD and 97% of color were removed overall. The combined process of MBBR and chemical coagulation has promising potential for dyeing wastewater treatment.

  18. A new approach for development of kinetics of wastewater treatment in aerobic biofilm reactor

    Science.gov (United States)

    Goswami, S.; Sarkar, S.; Mazumder, D.

    2017-09-01

    Biofilm process is widely used for the treatment of a variety of wastewater especially containing slowly biodegradable substances. It provides resistance against toxic environment and is capable of retaining biomass under continuous operation. Development of kinetics is very much pertinent for rational design of a biofilm process for the treatment of wastewater with or without inhibitory substances. A simple approach for development of such kinetics for an aerobic biofilm reactor has been presented using a novel biofilm model. The said biofilm model is formulated from the correlations between substrate concentrations in the influent/effluent and at biofilm liquid interface along with substrate flux and biofilm thickness complying Monod's growth kinetics. The methodology for determining the kinetic coefficients for substrate removal and biomass growth has been demonstrated stepwise along with graphical representations. Kinetic coefficients like K, k, Y, b t, b s, and b d are determined either from the intercepts of X- and Y-axis or from the slope of the graphical plots.

  19. A new approach for development of kinetics of wastewater treatment in aerobic biofilm reactor

    Science.gov (United States)

    Goswami, S.; Sarkar, S.; Mazumder, D.

    2016-02-01

    Biofilm process is widely used for the treatment of a variety of wastewater especially containing slowly biodegradable substances. It provides resistance against toxic environment and is capable of retaining biomass under continuous operation. Development of kinetics is very much pertinent for rational design of a biofilm process for the treatment of wastewater with or without inhibitory substances. A simple approach for development of such kinetics for an aerobic biofilm reactor has been presented using a novel biofilm model. The said biofilm model is formulated from the correlations between substrate concentrations in the influent/effluent and at biofilm liquid interface along with substrate flux and biofilm thickness complying Monod's growth kinetics. The methodology for determining the kinetic coefficients for substrate removal and biomass growth has been demonstrated stepwise along with graphical representations. Kinetic coefficients like K, k, Y, b t, b s, and b d are determined either from the intercepts of X- and Y-axis or from the slope of the graphical plots.

  20. Combination of upflow anaerobic sludge blanket (UASB) reactor and partial nitritation/anammox moving bed biofilm reactor (MBBR) for municipal wastewater treatment.

    Science.gov (United States)

    Malovanyy, Andriy; Yang, Jingjing; Trela, Jozef; Plaza, Elzbieta

    2015-03-01

    In this study the combination of an upflow anaerobic sludge blanket (UASB) reactor and a deammonification moving bed biofilm reactor (MBBR) for mainstream wastewater treatment was tested. The competition between aerobic ammonium oxidizing bacteria (AOB) and nitrite oxidizing bacteria (NOB) was studied during a 5months period of transition from reject water to mainstream wastewater followed by a 16months period of mainstream wastewater treatment. The decrease of influent ammonium concentration led to a wash-out of suspended biomass which had a major contribution to nitrite production. Influence of a dissolved oxygen concentration and a transient anoxia mechanism of NOB suppression were studied. It was shown that anoxic phase duration has no effect on NOB metabolism recovery and oxygen diffusion rather than affinities of AOB and NOB to oxygen determine the rate of nitrogen conversion in a biofilm system. Anammox activity remained on the level comparable to reject water treatment systems.

  1. Novel Photocatalytic Membrane Reactor with TiO2 Nanotubes for Azo Dye Wastewater Treatment

    Directory of Open Access Journals (Sweden)

    Wang Ling

    2016-01-01

    Full Text Available Novel photocatalytic membrane reactor (PMR with TiO2 nanotubes (TNTs has been designed and applied in azo dye wastewater treatment. Prepared by hydrothermal method, the TNTs with length of 30–80 nm and diameter of 10 nm had good photocatalytic activity. The result showed that the optimal pH value was 4.5 and catalyst loading of this reaction system was 0.5g/L. The decolorization rate of X-3B with application of TNTs was up to 94.6% after 75min of irradiation. In the combined process, the PES ultrafiltration membrane was adopted to separate and recover the nano catalysts for reuse. The retention rate of TNTs in PMR system reached 100%. All these showed that TNTs photocatalysis integrated with ultrafiltration was capable of removing X-3B dye effectively and simultaneous separating TNTs photocatalysts successfully.

  2. A Photocatalytic Rotating Disc Reactor with TiO2 Nanowire Arrays Deposited for Industrial Wastewater Treatment

    Directory of Open Access Journals (Sweden)

    Fang Li

    2017-02-01

    Full Text Available A photocatalytic rotating disc reactor (PRD-reactor with TiO2 nanowire arrays deposited on a thin Ti plate is fabricated and tested for industrial wastewater treatment. Results indicate that the PRD-reactor shows excellent decolorization capability when tested with methyl orange (>97.5%. Advanced oxidation processes (AOP, including photocatalytic oxidation and photolytic reaction, occurred during the processing. Efficiency of the AOP increases with reduction in light absorption pathlength, which enhanced the photocatalytic reaction, as well as by increasing oxygen exposure of the wastewater thin film due to the rotating disc design. It is found that, with a small dosage of hydrogen peroxide, the mineralization efficiency of industrial biodegraded wastewater can be enhanced, with a superior mineralization of >75% total organic carbon (TOC removal. This is due to the fact that the TiO2 photocatalysis and hydrogen peroxide processes generate powerful oxidants (hydroxyl radicals that can strongly improve photocatalytic oxidation efficiency. Application of this industrial wastewater treatment system is benefited from the TiO2 nanowire arrays, which can be fabricated by a mild solvothermal method at 80 °C and under atmospheric pressure. Similar morphologies and microstructures are found for the TiO2 nanowire arrays deposited on a large metal Ti disc, which makes the wastewater treatment process more practical and economical.

  3. Treatment of opium alkaloid containing wastewater in sequencing batch reactor (SBR)—Effect of gamma irradiation

    Science.gov (United States)

    Bural, Cavit B.; Demirer, Goksel N.; Kantoglu, Omer; Dilek, Filiz B.

    2010-04-01

    Aerobic biological treatment of opium alkaloid containing wastewater as well as the effect of gamma irradiation as pre-treatment was investigated. Biodegradability of raw wastewater was assessed in aerobic batch reactors and was found highly biodegradable (83-90% degradation). The effect of irradiation (40 and 140 kGy) on biodegradability was also evaluated in terms of BOD 5/COD values and results revealed that irradiation imparted no further enhancement in the biodegradability. Despite the highly biodegradable nature of wastewater, further experiments in sequencing batch reactors (SBR) revealed that the treatment operation was not possible due to sludge settleability problem observed beyond an influent COD value of 2000 mg dm -3. Possible reasons for this problem were investigated, and the high molecular weight, large size and aromatic structure of the organic pollutants present in wastewater was thought to contribute to poor settleability. Initial efforts to solve this problem by modifying the operational conditions, such as SRT reduction, failed. However, further operational modifications including addition of phosphate buffer cured the settleability problem and influent COD was increased up to 5000 mg dm -3. Significant COD removal efficiencies (>70%) were obtained in both SBRs fed with original and irradiated wastewaters (by 40 kGy). However, pre-irradiated wastewater provided complete thebain removal and a better settling sludge, which was thought due to degradation of complex structure by radiation application. Degradation of the structure was observed by GC/MS analyses and enhancement in filterability tests.

  4. Treatment of a Slaughterhouse Wastewater using Sequencing Batch Reactors at a Shortened Operating Cycle

    Directory of Open Access Journals (Sweden)

    Suwadi Saikomon

    2017-01-01

    Full Text Available This laboratory-scale study employed sequencing batch reactor (SBR technology to investigate the effect of two operational parameters [i.e. solids retention time (SRT and anoxic time ratios] regarding the treatment of a slaughterhouse wastewater. Results indicated that organic matter removal, expressed as chemical oxygen demand (COD, was very high, consistently exceeding the 95 % level. In addition, the total nitrogen (TN removal ranged between 82 and 94 %, while total phosphorus (TP removal fluctuated between 88 and 94 %. In general, the reactors exhibited a high degree of operational stability during treatment. Although the investigated range of the two operational parameters appeared to have a minimal effect on the process performance (expressed as % carbon or nutrient removal, the corresponding COD and TN specific consumption rates were noticeably affected by the variation in the anoxic time ratios. Furthermore, the operating cycle length of 8 h employed in this study resulted in improved performance, in terms of nitrogen removal, compared to other studies conducted at longer operating cycles.

  5. Coupled anaerobic-aerobic treatment of whey wastewater in a sequencing batch reactor: proof of concept.

    Science.gov (United States)

    Frigon, J C; Bruneau, T; Moletta, R; Guiot, S R

    2007-01-01

    A proof of concept was performed in order to verify if the coupling of anaerobic and aerobic conditions inside the same digester could efficiently treat a reconstituted whey wastewater at 21 degrees C. The sequencing batch reactor (SBR) cycles combined initial anaerobic phase and final aerobic phase with reduced aeration. A series of 24 h cycles in 0.5 L digesters, with four different levels of oxygenation (none, 54, 108 and 182 mgO2 per gram of chemical oxygen demand (COD)), showed residual soluble chemical oxygen demand (sCOD) of 683 +/- 46, 720 +/- 33, 581 +/- 45, 1239 +/- 15 mg L(-1), respectively. Acetate and hydrogen specific activities were maintained for the anaerobic digester, but decreased by 10-25% for the acetate and by 20-50% for the hydrogen, in the coupled digesters. The experiment was repeated using 48 h cycles with limited aeration during 6 or 16 hours at 54 and 108 mgO2gCODinitial(-1), displaying residual sCOD of 177 +/- 43, 137 +/- 38, 104 +/- 22 and 112 +/- 9 mgL(-1) for the anaerobic and the coupled digesters, respectively. The coupled digesters recovered after a pH shock with residual sCOD as low as 132 mg L(-1) compared to 636 mg L(-1) for the anaerobic digester. With regard to the obtained results, the feasibility of the anaerobic-aerobic coupling in SBR digesters for the treatment of whey wastewater was demonstrated.

  6. Evaluation Of Communal Wastewater Treatment Plant Operating Anaerobic Baffled Reactor And Biofilter

    Directory of Open Access Journals (Sweden)

    Evy Hendriarianti

    2016-02-01

    Full Text Available Construction of communal Waste Water Treatment Plant, WWTP in city of Malang since 1998 but until recently had never done an evaluation the performance. Communal WWTP performance evaluation is needed to see how far the efficiency of processing result. Until now, Environmental Agency Malang City only measure effluent from WWTP Communal  to know the suitability  with domestic wastewater quality standards. Effluent quality data in 2014 showed value above the quality standard of domestic wastewater from East Java Governor Regulation No. 72 in 2013 for parameters BOD and COD. WWTP Communal USRI research objects are on a six (6 locations by involving the user community during the planning, construction, operation and maintenance. Technology choice of ABR followed by a biofilter reactor with the stone media proved capable of processing organic matter of BOD and COD with the removal levels respectively by 78% -99% and 71% -99%. As for the parameters of TSS, NO3 and PO4 have the ranges of removal respectively by 56% -100%, (43% - 72%, (2% - 13%. Ratio BOD and COD in influent are low and ranged from 0.22 to 0.41. From the evaluation shows that high organic matter concentrations in influent along with the HRT and operation time high will result in a higher removal level

  7. Microbiological and performance evaluation of sequencing batch reactor for textile wastewater treatment.

    Science.gov (United States)

    Ogleni, Nurtac; Arifoglu, Yasemin Damar; Ileri, Recep

    2012-04-01

    This study focused on laboratory-scaled and real-scaled treatment plant performances and microbiological investigations for the optimum treatment of textile industry wastewater performed with sequencing batch reactor (SBR). As a result of experimental studies of laboratory-scaled SBR treatment unit, optimum treatment efficiency was taken from 0.5 h filling to 1.5 h. reaction to 1.5 h. settlement to 0.5 h. discharge-idle periods. Average chemical oxygen demand (COD) removal efficiency of SBR of laboratory-scaled textile industry was 75%, whereas average turbidity and color removal (coloration number [RES, m(-1)] 586 nm) efficiencies were 90% and 75%, respectively. Optimum reaction and settlement periods were used in a real-scaled plant, and plant efficiency was examined for parameters such as COD, phenol, pH, mixed liquor suspended solids (MLSS) and sludge volume index (SVI). In this study, optimum reaction and settlement periods for treatment of textile industry wastewater were determined within a SBR in a laboratory-scaled plant. These reaction and settlement periods were verified with the measurement of COD, color, and turbidity parameters. Floc structure and protozoa-metazoa species of activated sludge in a SBR were also determined. Optimum reaction and settlement times were used in a real-scaled plant, and plant efficiency was examined for COD, Phenol, pH, MLSS, and SVI parameters. The corresponding values were found as appropriate, acceptable, and meaningful because of variance value of statistical analysis. Protozoa and metazoan in the activated sludge in the laboratory-scaled plant were investigated. Peranema sp., Epistylis sp., Didinium sp., Chilodonella sp., Opercularia sp., Vorticella sp. as protozoa species and Habrotrocha sp., Philodina sp. as metazoa species were determined.

  8. A novel fast mass transfer anaerobic inner loop fluidized bed biofilm reactor for PTA wastewater treatment.

    Science.gov (United States)

    Chen, Yingwen; Zhao, Jinlong; Li, Kai; Xie, Shitao

    In this paper, a fast mass transfer anaerobic inner loop fluidized bed biofilm reactor (ILFBBR) was developed to improve purified terephthalic acid (PTA) wastewater treatment. The emphasis of this study was on the start-up mode of the anaerobic ILFBBR, the hydraulic loadings and the operation stability. The biological morphology of the anaerobic biofilm in the reactors was also analyzed. The anaerobic column could operate successfully for 46 days due to the pre-aerating process. The anaerobic column had the capacity to resist shock loadings and maintained a high stable chemical oxygen demand (COD) and terephthalic acid removal rates at a hydraulic retention time of 5-10 h, even under conditions of organic volumetric loadings as high as 28.8 kg COD·m(-3).d(-1). The scanning electron microscope analysis of the anaerobic carrier demonstrated that clusters of prokaryotes grew inside of pores and that the filaments generated by pre-aeration contributed to the anaerobic biofilm formation and stability.

  9. Treatment of pesticide wastewater by moving-bed biofilm reactor combined with Fenton-coagulation pretreatment

    Energy Technology Data Exchange (ETDEWEB)

    Chen Sheng [School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090 (China)]. E-mail: hitchensheng@126.com; Sun Dezhi [School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090 (China); Chung, J.-S. [School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090 (China); Department of Chemical Engineering, Pohang University of Science and Technology, Pohang 790-784 (Korea, Republic of)

    2007-06-01

    In order to treat pesticide wastewater having high chemical oxygen demand (COD) value and poor biodegradability, Fenton-coagulation process was first used to reduce COD and improve biodegradability and then was followed by biological treatment. Optimal experimental conditions for the Fenton process were determined to be Fe{sup 2+} concentration of 40 mmol/L and H{sub 2}O{sub 2} dose of 97 mmol/L at initial pH 3. The interaction mechanism of organophosphorous pesticide and hydroxyl radicals was suggested to be the breakage of the P=S double bond and formation of sulfate ions and various organic intermediates, followed by formation of phosphate and consequent oxidation of intermediates. For the subsequent biological treatment, 3.2 g/L Ca(OH){sub 2} was added to adjust the pH and further coagulate the pollutants. The COD value could be evidently decreased from 33,700 to 9300 mg/L and the ratio of biological oxygen demand (BOD{sub 5}) to COD of the wastewater was enhanced to over 0.47 by Fenton oxidation and coagulation. The pre-treated wastewater was then subjected to biological oxidation by using moving-bed biofilm reactor (MBBR) inside which tube chip type bio-carriers were fluidized upon air bubbling. Higher than 85% of COD removal efficiency could be achieved when the bio-carrier volume fraction was kept more than 20% by feeding the pretreated wastewater containing 3000 mg/L of inlet COD at one day of hydraulic retention time (HRT), but a noticeable decrease in the COD removal efficiency when the carrier volume was decreased down to 10%, only 72% was observed. With the improvement of biodegradability by using Fenton pretreatment, also due to the high concentration of biomass and high biofilm activity using the fluidizing bio-carriers, high removal efficiency and stable operation could be achieved in the biological process even at a high COD loading of 37.5 gCOD/(m{sup 2} carrier day)

  10. Treatment of pesticide wastewater by moving-bed biofilm reactor combined with Fenton-coagulation pretreatment.

    Science.gov (United States)

    Chen, Sheng; Sun, Dezhi; Chung, Jong-Shik

    2007-06-01

    In order to treat pesticide wastewater having high chemical oxygen demand (COD) value and poor biodegradability, Fenton-coagulation process was first used to reduce COD and improve biodegradability and then was followed by biological treatment. Optimal experimental conditions for the Fenton process were determined to be Fe(2+) concentration of 40 mmol/L and H(2)O(2) dose of 97 mmol/L at initial pH 3. The interaction mechanism of organophosphorous pesticide and hydroxyl radicals was suggested to be the breakage of the P=S double bond and formation of sulfate ions and various organic intermediates, followed by formation of phosphate and consequent oxidation of intermediates. For the subsequent biological treatment, 3.2g/L Ca(OH)(2) was added to adjust the pH and further coagulate the pollutants. The COD value could be evidently decreased from 33,700 to 9300 mg/L and the ratio of biological oxygen demand (BOD(5)) to COD of the wastewater was enhanced to over 0.47 by Fenton oxidation and coagulation. The pre-treated wastewater was then subjected to biological oxidation by using moving-bed biofilm reactor (MBBR) inside which tube chip type bio-carriers were fluidized upon air bubbling. Higher than 85% of COD removal efficiency could be achieved when the bio-carrier volume fraction was kept more than 20% by feeding the pretreated wastewater containing 3000 mg/L of inlet COD at one day of hydraulic retention time (HRT), but a noticeable decrease in the COD removal efficiency when the carrier volume was decreased down to 10%, only 72% was observed. With the improvement of biodegradability by using Fenton pretreatment, also due to the high concentration of biomass and high biofilm activity using the fluidizing bio-carriers, high removal efficiency and stable operation could be achieved in the biological process even at a high COD loading of 37.5 gCOD/(m(2)carrierday).

  11. Wastewater Treatment.

    Science.gov (United States)

    Zoltek, J., Jr.; Melear, E. L.

    1978-01-01

    Presents the 1978 literature review of wastewater treatment. This review covers: (1) process application; (2) coagulation and solids separation; (3) adsorption; (4) ion exchange; (5) membrane processes; and (6) oxidation processes. A list of 123 references is also presented. (HM)

  12. Treatment of Copper Contaminated Municipal Wastewater by Using UASB Reactor and Sand-Chemically Carbonized Rubber Wood Sawdust Column.

    Science.gov (United States)

    Biswas, Swarup; Mishra, Umesh

    2016-01-01

    The performance of a laboratory scale upflow anaerobic sludge blanket (UASB) reactor and its posttreatment unit of sand-chemically carbonized rubber wood sawdust (CCRWSD) column system for the treatment of a metal contaminated municipal wastewater was investigated. Copper ion contaminated municipal wastewater was introduced to a laboratory scale UASB reactor and the effluent from UASB reactor was then followed by treatment with sand-CCRWSD column system. The laboratory scale UASB reactor and column system were observed for a period of 121 days. After the posttreatment column the average removal of monitoring parameters such as copper ion concentration (91.37%), biochemical oxygen demand (BODT) (93.98%), chemical oxygen demand (COD) (95.59%), total suspended solid (TSS) (95.98%), ammonia (80.68%), nitrite (79.71%), nitrate (71.16%), phosphorous (44.77%), total coliform (TC) (99.9%), and fecal coliform (FC) (99.9%) was measured. The characterization of the chemically carbonized rubber wood sawdust was done by scanning electron microscope (SEM), X-ray fluorescence spectrum (XRF), and Fourier transforms infrared spectroscopy (FTIR). Overall the system was found to be an efficient and economical process for the treatment of copper contaminated municipal wastewater.

  13. Treatment of a simulated textile wastewater in a sequencing batch reactor (SBR) with addition of a low-cost adsorbent.

    Science.gov (United States)

    Santos, Sílvia C R; Boaventura, Rui A R

    2015-06-30

    Color removal from textile wastewaters, at a low-cost and consistent technology, is even today a challenge. Simultaneous biological treatment and adsorption is a known alternative to the treatment of wastewaters containing biodegradable and non-biodegradable contaminants. The present work aims at evaluating the treatability of a simulated textile wastewater by simultaneously combining biological treatment and adsorption in a SBR (sequencing batch reactor), but using a low-cost adsorbent, instead of a commercial one. The selected adsorbent was a metal hydroxide sludge (WS) from an electroplating industry. Direct Blue 85 dye (DB) was used in the preparation of the synthetic wastewater. Firstly, adsorption kinetics and equilibrium were studied, in respect to many factors (temperature, pH, WS dosage and presence of salts and dyeing auxiliary chemicals in the aqueous media). At 25 °C and pH 4, 7 and 10, maximum DB adsorption capacities in aqueous solution were 600, 339 and 98.7 mg/g, respectively. These values are quite considerable, compared to other reported in literature, but proved to be significantly reduced by the presence of dyeing auxiliary chemicals in the wastewater. The simulated textile wastewater treatment in SBR led to BOD5 removals of 53-79%, but color removal was rather limited (10-18%). The performance was significantly enhanced by the addition of WS, with BOD5 removals above 91% and average color removals of 60-69%. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Study on the flow characteristics and the wastewater treatment performance in modified internal circulation reactor.

    Science.gov (United States)

    Wang, Jiade; Xu, Weijun; Yan, Jingjia; Yu, Jianming

    2014-12-01

    A modified internal circulation (MIC) reactor with an external circulation system was proposed and the performance of treating dyeing wastewater using both MIC and typical IC reactor were compared. Utilization of the external circulation system in the MIC reactor could dramatically improve the mixing intensity of the biomass with the wastewater and resulted in better performance. The COD removal efficiency, biogas production, volatile fatty acids and effluent color were approximately 87%, 98 L d−1, 180 mg L−1 and 100 times, respectively, in the MIC reactor with a hydraulic retention time of 5 h and organic loading rate of 15 kg COD m−3 d−1. The hydrodynamics of the MIC reactor under different flows rate of external circulation were also analyzed using computational fluid dynamics (CFD) method. The optimal flow rate of external circulation was 12 L min−1, which resulted in a corresponding up-flow velocity of 40 m h−1. The consistency of the result between experiment and simulation validated the scientificity of CFD technique applied to numerical simulation of the MIC reactor.

  15. A Friendly-Biological Reactor SIMulator (BioReSIM for studying biological processes in wastewater treatment processes

    Directory of Open Access Journals (Sweden)

    Raul Molina

    2014-12-01

    Full Text Available Biological processes for wastewater treatments are inherently dynamic systems because of the large variations in the influent wastewater flow rate, concentration composition and the adaptive behavior of the involved microorganisms. Moreover, the sludge retention time (SRT is a critical factor to understand the bioreactor performances when changes in the influent or in the operation conditions take place. Since SRT are usually in the range of 10-30 days, the performance of biological reactors needs a long time to be monitored in a regular laboratory demonstration, limiting the knowledge that can be obtained in the experimental lab practice. In order to overcome this lack, mathematical models and computer simulations are useful tools to describe biochemical processes and predict the overall performance of bioreactors under different working operation conditions and variations of the inlet wastewater composition. The mathematical solution of the model could be difficult as numerous biochemical processes can be considered. Additionally, biological reactors description (mass balance, etc. needs models represented by partial or/and ordinary differential equations associated to algebraic expressions, that require complex computational codes to obtain the numerical solutions. Different kind of software for mathematical modeling can be used, from large degree of freedom simulators capable of free models definition (as AQUASIM, to closed predefined model structure programs (as BIOWIN. The first ones usually require long learning curves, whereas the second ones could be excessively rigid for specific wastewater treatment systems. As alternative, we present Biological Reactor SIMulator (BioReSIM, a MATLAB code for the simulation of sequencing batch reactors (SBR and rotating biological contactors (RBC as biological systems of suspended and attached biomass for wastewater treatment, respectively. This BioReSIM allows the evaluation of simple and complex

  16. Development of downflow hanging sponge (DHS) reactor as post treatment of existing combined anaerobic tank treating natural rubber processing wastewater.

    Science.gov (United States)

    Watari, Takahiro; Cuong Mai, Trung; Tanikawa, Daisuke; Hirakata, Yuga; Hatamoto, Masashi; Syutsubo, Kazuaki; Fukuda, Masao; Nguyen, Ngoc Bich; Yamaguchi, Takashi

    2017-01-01

    Conventional aerated tank technology is widely applied for post treatment of natural rubber processing wastewater in Southeast Asia; however, a long hydraulic retention time (HRT) is required and the effluent standards are exceeded. In this study, a downflow hanging sponge (DHS) reactor was installed as post treatment of anaerobic tank effluent in a natural rubber factory in South Vietnam and the process performance was evaluated. The DHS reactor demonstrated removal efficiencies of 64.2 ± 7.5% and 55.3 ± 19.2% for total chemical oxygen demand (COD) and total nitrogen, respectively, with an organic loading rate of 0.97 ± 0.03 kg-COD m(-3) day(-1) and a nitrogen loading rate of 0.57 ± 0.21 kg-N m(-3) day(-1). 16S rRNA gene sequencing analysis of the sludge retained in the DHS also corresponded to the result of reactor performance, and both nitrifying and denitrifying bacteria were detected in the sponge carrier. In addition, anammox bacteria was found in the retained sludge. The DHS reactor reduced the HRT of 30 days to 4.8 h compared with the existing algal tank. This result indicates that the DHS reactor could be an appropriate post treatment for the existing anaerobic tank for natural rubber processing wastewater treatment.

  17. Performance evaluation of a continuous flow photocatalytic reactor for wastewater treatment.

    Science.gov (United States)

    Rezaei, Mohammad; Rashidi, Fariborz; Royaee, Sayed Javid; Jafarikojour, Morteza

    2014-11-01

    A novel photocatalytic reactor for wastewater treatment was designed and constructed. The main part of the reactor was an aluminum tube in which 12 stainless steel circular baffles and four quartz tube were placed inside of the reactor like shell and tube heat exchangers. Four UV-C lamps were housed within the space of the quartz tubes. Surface of the baffles was coated with TiO2. A simple method was employed for TiO2 immobilization, while the characterization of the supported photocatalyst was based on the results obtained through performing some common analytical methods such as X-ray diffraction (XRD), scanning electron microscope (SEM), and BET. Phenol was selected as a model pollutant. A solution of a known initial concentration (20, 60, and 100 ppmv) was introduced to the reactor. The reactor also has a recycle flow to make turbulent flow inside of the reactor. The selected recycle flow rate was 7 × 10(-5) m(3).s(-1), while the flow rate of feed was 2.53 × 10(-7), 7.56 × 10(-7), and 1.26 × 10(-6) m(3).s(-1), respectively. To evaluate performance of the reactor, response surface methodology was employed. A four-factor three-level Box-Behnken design was developed to evaluate the reactor performance for degradation of phenol. Effects of phenol inlet concentration (20-100 ppmv), pH (3-9), liquid flow rate (2.53 × 10(-7)-1.26 × 10(-6) m(3).s(-1)), and TiO2 loading (8.8-17.6 g.m(-2)) were analyzed with this method. The adjusted R (2) value (0.9936) was in close agreement with that of corresponding R (2) value (0.9961). The maximum predicted degradation of phenol was 75.50 % at the optimum processing conditions (initial phenol concentration of 20 ppmv, pH ∼ 6.41, and flow rate of 2.53 × 10(-7) m(3).s(-1) and catalyst loading of 17.6 g.m(-2)). Experimental degradation of phenol determined at the optimum conditions was 73.7 %. XRD patterns and SEM images at the optimum conditions revealed that crystal size is approximately 25

  18. Treatment of domestic wastewater in an up-flow anaerobic sludge blanket reactor followed by moving bed biofilm reactor

    NARCIS (Netherlands)

    Tawfik, A.; El-Gohary, F.; Temmink, B.G.

    2010-01-01

    The performance of a laboratory-scale sewage treatment system composed of an up-flow anaerobic sludge blanket (UASB) reactor and a moving bed biofilm reactor (MBBR) at a temperature of (22-35 A degrees C) was evaluated. The entire treatment system was operated at different hydraulic retention times

  19. Performance of down-flow hanging sponge (DHS) reactor coupled with up-flow anaerobic sludge blanket (UASB) reactor for treatment of onion dehydration wastewater.

    Science.gov (United States)

    El-Kamah, Hala; Mahmoud, Mohamed; Tawfik, Ahmed

    2011-07-01

    In this study, a promising system consisting of up-flow anaerobic sludge blanket (UASB) reactor followed by down-flow hanging sponge (DHS) reactor was investigated for onion dehydration wastewater treatment. Laboratory experiments were conducted at two different phases, i.e., phase (1) at overall hydraulic retention time (HRT) of 11h (UASB reactor: 6h and DHS reactor: 5h) and phase (2) at overall HRT of 9.4h (UASB reactor: 5.2h and DHS reactor: 4.2h). Long-term operation results of the proposed system showed that its overall TCOD, TBOD, TSS, TKN and NH(4)-N removal efficiencies were 92 ± 5, 95 ± 2, 95 ± 2, 72 ± 6 and 99 ± 1.3%, respectively (phase 1). Corresponding values for the 2nd phase were 85.4 ± 5, 86 ± 3, 87 ± 6, 65 ± 8 and 95 ± 2.8%. Based on the available results, the proposed system could be more viable option for treatment of wastewater generated from onion dehydration industry in regions with tropical or sub-tropical climates and with stringent discharge standards.

  20. Dynamical Analysis of a Continuous Stirred-Tank Reactor with the Formation of Biofilms for Wastewater Treatment

    Directory of Open Access Journals (Sweden)

    Karen López Buriticá

    2015-01-01

    Full Text Available This paper analyzes the dynamics of a system that models the formation of biofilms in a continuous stirred-tank reactor (CSTR when it is utilized for wastewater treatment. The growth rate of the microorganisms is modeled using two different kinetics, Monod and Haldane kinetics, with the goal of studying the influence of each in the system. The equilibrium points are identified through a stability analysis, and the bifurcations found are characterized.

  1. Treatment of oilfield wastewater in moving bed biofilm reactors using a novel suspended ceramic biocarrier

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Zhiyong, E-mail: bluemanner@163.com [State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249 (China); Lu, Mang [School of Materials Science and Engineering, Jingdezhen Ceramic Institute, Jingdezhen 333001, Jiangxi Province (China); Huang, Wenhui [School of Energy Resources, China University of Geosciences, Beijing 100083 (China); Xu, Xiaochun [School of Geosciences and Resources, China University of Geosciences, Beijing 100083 (China)

    2011-11-30

    Highlights: Black-Right-Pointing-Pointer We invented a novel suspended ceramic carrier. Black-Right-Pointing-Pointer The suspended ceramic carrier is modified with sepiolite. Black-Right-Pointing-Pointer The carriers were used in MBBR to remediate wastewater. - Abstract: In this study, a novel suspended ceramic carrier was prepared, which has high strength, optimum density (close to water), and high porosity. Two different carriers, unmodified and sepiolite-modified suspended ceramic carriers were used to feed two moving bed biofilm reactors (MBBRs) with a filling fraction of 50% to treat oilfield produced water. The hydraulic retention time (HRT) was varied from 36 to 10 h. The results, during a monitoring period of 190 days, showed that removal efficiency of chemical oxygen demand was the highest in reactor 3 filled with the sepiolite-modified carriers, followed by reactor 2 filled with the unmodified carriers, with the lowest in reactor 1 (activated sludge reactor), at an HRT of 10 h. Similar trends were found in the removal efficiencies of ammonia nitrogen and polycyclic aromatic hydrocarbons. Reactor 3 was more shock resistant than reactors 2 and 1. The results indicate that the suspended ceramic carrier is an excellent MBBR carrier.

  2. Treatment of slaughter house wastewater in a sequencing batch reactor: performance evaluation and biodegradation kinetics.

    Science.gov (United States)

    Kundu, Pradyut; Debsarkar, Anupam; Mukherjee, Somnath

    2013-01-01

    Slaughterhouse wastewater contains diluted blood, protein, fat, and suspended solids, as a result the organic and nutrient concentration in this wastewater is vary high and the residues are partially solubilized, leading to a highly contaminating effect in riverbeds and other water bodies if the same is let off untreated. The performance of a laboratory-scale Sequencing Batch Reactor (SBR) has been investigated in aerobic-anoxic sequential mode for simultaneous removal of organic carbon and nitrogen from slaughterhouse wastewater. The reactor was operated under three different variations of aerobic-anoxic sequence, namely, (4+4), (5+3), and (3+5) hr. of total react period with two different sets of influent soluble COD (SCOD) and ammonia nitrogen (NH4(+)-N) level 1000 ± 50 mg/L, and 90 ± 10 mg/L, 1000 ± 50 mg/L and 180 ± 10 mg/L, respectively. It was observed that from 86 to 95% of SCOD removal is accomplished at the end of 8.0 hr of total react period. In case of (4+4) aerobic-anoxic operating cycle, a reasonable degree of nitrification 90.12 and 74.75% corresponding to initial NH4(+)-N value of 96.58 and 176.85 mg/L, respectively, were achieved. The biokinetic coefficients (k, K(s), Y, k(d)) were also determined for performance evaluation of SBR for scaling full-scale reactor in future operation.

  3. Performance evaluation of sequencing batch reactor for beverage industrial wastewater treatment.

    Science.gov (United States)

    El-Kamah, Hala; Mahmoud, Mohamed

    2012-02-01

    Attempts were made in this study to examine the effectiveness of sequencing batch reactor (SBR) for the treatment of beverage industrial wastewater. The SBR was operated at three different organic loading rates (OLRs): 2, 1.7 and 1.1 kg COD/m3 d. Results of continuous long-term operation showed that by decreasing OLR from 2 to 1.7 kg COD/m3 day, the removal efficiency was increased from 95.5 to 99.3% for COD, from 95.3 to 98.1% for BOD and from 87 to 97.7% for TSS. While further decreasing of the OLR to 1.1 kg COD/m3 day, there is no significant adverse effect on organics removal. Also, residual total nitrogen (TN) concentration decreased by decreasing the OLR. However, increasing the OLRs exerted a slightly negative effect on the removal of total phosphorous. On the other hand, the experimental data indicated that the substrate utilization kinetic followed Monod's kinetics model approximately. The maximum specific substrate utilization rate (micro(max), half velocity coefficient (Ks), growth yield coefficient (Y) and decay coefficient (Kd) were 2.94 d(-1), 15.22 mg/L, 0.2384 g VSS/g COD and 0.2019 h(-1), respectively.

  4. Conversion of activated-sludge reactors to microbial fuel cells for wastewater treatment coupled to electricity generation.

    Science.gov (United States)

    Yoshizawa, Tomoya; Miyahara, Morio; Kouzuma, Atsushi; Watanabe, Kazuya

    2014-11-01

    Wastewater can be treated in microbial fuel cells (MFCs) with the aid of microbes that oxidize organic compounds using anodes as electron acceptors. Previous studies have suggested the utility of cassette-electrode (CE) MFCs for wastewater treatment, in which rice paddy-field soil was used as the inoculum. The present study attempted to convert an activated-sludge (AS) reactor to CE-MFC and use aerobic sludge in the tank as the source of microbes. We used laboratory-scale (1 L in capacity) reactors that were initially operated in an AS mode to treat synthetic wastewater, containing starch, yeast extract, peptone, plant oil, and detergents. After the organics removal became stable, the aeration was terminated, and CEs were inserted to initiate an MFC-mode operation. It was demonstrated that the MFC-mode operation treated the wastewater at similar efficiencies to those observed in the AS-mode operation with COD-removal efficiencies of 75-80%, maximum power densities of 150-200 mW m(-2) and Coulombic efficiencies of 20-30%. These values were similar to those of CE-MFC inoculated with the soil. Anode microbial communities were analyzed by pyrotag sequencing of 16S rRNA gene PCR amplicons. Comparative analyses revealed that anode communities enriched from the aerobic sludge were largely different from those from the soil, suggesting that similar reactor performances can be supported by different community structures. The study demonstrates that it is possible to construct wastewater-treatment MFCs by inserting CEs into water-treatment tanks.

  5. Simultaneous wastewater treatment and biogas production using integrated anaerobic baffled reactor granular activated carbon from baker's yeast wastewater.

    Science.gov (United States)

    Pirsaheb, Meghdad; Mohamadi, Samira; Rahmatabadi, Sama; Hossini, Hooshyar; Motteran, Fabrício

    2017-08-30

    In this study, simultaneous degradation of organic matter and color removal from food processing industries wastewater using an integrated anaerobic baffled reactor granular activated carbon (IABRGAC) was investigated. Theretofore, effective parameters such as hydraulic retention time (HRT) and granular activated carbon (GAC) filling ratio were studied. The bioreactor was operated at 3, 4 and 5 d of HRT and GAC filling ratio of 20%, 35% and 50%. To analyze and optimize the independent operating variables, response surface methodology was applied. Operating condition was optimized for HRT (4 d) and GAC filling ratio (50%). Better COD (94.6%) and BOD (93.7%) removal efficiency occurred with loading COD of 15,000 mg/L, with diminished wastewater color around 54% and turbidity to 54 NTU. In addition, methane production, methane yielding rate (Ym) and specific methanogenic activity (SMA) test in an integrated system were investigated. The system IABRGAC was able to generate a volumetric rate about 0.31 and 0.44 L/g CODremoved d at the experimental condition. The Ym was between 0.31 and 0.44 L/g CODremoved.d and SMA was between 0.13 and 0.38 g COD/g volatile suspended solid. Based on results it can be concluded that the IABRGAC to be a successful pretreatment for highstrength wastewater before discharging the final effluent to sewerage and aerobic treating processes.

  6. Contamination level of four priority phthalates in North Indian wastewater treatment plants and their fate in sequencing batch reactor systems.

    Science.gov (United States)

    Gani, Khalid Muzamil; Rajpal, Ankur; Kazmi, Absar Ahmad

    2016-03-01

    The contamination level of four phthalates in untreated and treated wastewater of fifteen wastewater treatment plants (WWTPs) and their fate in a full scale sequencing batch reactor (SBR) based WWTP was evaluated in this study. The four phthalates were diethyl phthalate (DEP), dibutyl phthalate (DBP), benzylbutyl phthalate (BBP) and diethylhexyl phthalate (DEHP). All compounds were present in untreated wastewater with DEHP being present in the highest mean concentration of 28.4 ± 5.3 μg L(-1). The concentration was in the range of 7.3 μg L(-1) (BBP) to 28.4 μg L(-1) (DEHP) in untreated wastewater and 1.3 μg L(-1) (DBP) to 2.6 μg L(-1) (DEHP) in treated wastewater. The nutrient removal process and advance tertiary treatment based WWTPs showed the highest phthalate removal efficiencies of 87% and 93%, respectively. The correlation between phthalate removal and conventional performance of WWTPs was positive. Fate analysis of these phthalates in a SBR based WWTP showed that total removal of the sum of phthalates in a primary settling tank and SBR was 84% out of which 55% is removed by biodegradation and 29% was removed by sorption to primary and secondary sludge. The percentage removal of four phthalates in primary settling tanks was 18%. Comparison of the diluted effluent DEHP concentration with its environmental quality standards showed that the dilution in an effluent receiving water body can reduce the DEHP emissions to acceptable values.

  7. Mixing characteristics and whey wastewater treatment of a novel moving anaerobic biofilm reactor.

    Science.gov (United States)

    Rodgers, Michael; Zhan, Xin-Min; Dolan, Brian

    2004-01-01

    A novel moving anaerobic biofilm reactor was used to treat whey wastewater. In this process, biofilm was grown on a plastic biofilm media module, which was vertically moved up and down in the bulk fluid. The objectives of the study were to investigate the mixing and performance characteristics of the new process in treating whey wastewater. The mixing efficiency was indicated by a dispersion number, D(L)/uL. D(L)/uL was up to 1.34, showing that the anaerobic reactor can be taken as a completely mixed reactor. At mesophilic conditions (35+/-2 degrees C), the admissible volumetric COD loading rate up to 11.6kg COD m(-3) day(-1) was achieved with the COD removal efficiency of 89% and the hydraulic retention time (HRT) of 1 day. When the HRT was 0.6 days, the volumetric COD loading rate was 15.2 kg COD m(-3) day(-1), but COD removal efficiency decreased to 81%. The percentage of methane (CH4) in the biogas was 63% on average and the yield of methane was 333.4 L CH4 kg(-1) COD removal at ambient conditions.

  8. Anaerobic tapered fluidized bed reactor for starch wastewater treatment and modeling using multilayer perceptron neural network

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Anaerobic treatability of synthetic sago wastewater was investigated in a laboratory anaerobic tapered fluidized bed reactor (ATFBR) with a mesoporous granular activated carbon (GAC) as a support material. The experimental protocol was defined to examine the effect of the maximum organic loading rate (OLR), hydraulic retention time (HRT), the efficiency of the reactor and to report on its steady-state performance. The reactor was subjected to a steady-state operation over a range of OLR up to 85.44 kg COD/(m3·d). The COD removal efficiency was found to be 92% in the reactor while the biogas produced in the digester reached 25.38 m3/(m3·d) of the reactor. With the increase of OLR from 83.7 kg COD/(m3·d), the COD removal efficiency decreases. Also an artificial neural network (ANN) model using multilayer perceptron (MLP) has been developed for a system of two input variable and five output dependent variables. For the training of the input-output data, the experimental values obtained have been used. The output parameters predicted have been found to be much closer to the corresponding experimental ones and the model was validated for 30% of the untrained data. The mean square error (MSE) was found to be only 0.0146.

  9. Treatment of Common Effluent Treatment Plant Wastewater in a Sequential Anoxic-Oxic Batch Reactor by Developed Bacterial Consortium VN11.

    Science.gov (United States)

    Chattaraj, Sananda; Purohit, Hemant J; Sharma, Abhinav; Jadeja, Niti B; Madamwar, Datta

    2016-06-01

    A laboratory-scale anoxic-oxic sequential reactor system was seeded with acclimatized mixed microbial consortium for the treatment of common effluent treatment plant (CETP) wastewater having 7000-7400 mg L(-1) of COD and 3000-3400 mg L(-1) of BOD. Initially, CETP wastewater was treated under anoxic reactor at 5000 mg L(-1) of MLSS concentrations, 5.26 ± 0.27 kg COD m(-3) day(-1) of organic loading rate (OLR) and 36 h of hydraulic retention time (HRT). Further, the effluent of anoxic reactor was treated in oxic reactor with an OLR of 6.6 ± 0.31 kg COD m(-3) day(-1) and 18 h HRT. Maximum color and COD removal were found to be 72 and 85 % at total HRT of 2.25 days under anoxic-oxic sequential reactor at 37 °C and pH 7.0. The UV-VIS, FTIR, NMR and GCMS studies showed that majority of peaks observed in untreated wastewater were either shifted or disappeared after sequential treatment. Phytotoxicity study with the seeds of Vigna radiata and Triticum aestivum showed more sensitivity toward the CETP wastewater, while the products obtained after sequential treatment does not have any inhibitory effects. The results demonstrated that the anoxic-oxic reactor fed with bacterial consortium VN11 could bring about efficient bioremediation of industrial wastewaters.

  10. A fluidized bed membrane bioelectrochemical reactor for energy-efficient wastewater treatment.

    Science.gov (United States)

    Li, Jian; Ge, Zheng; He, Zhen

    2014-09-01

    A fluidized bed membrane bioelectrochemical reactor (MBER) was investigated using fluidized granular activated carbon (GAC) as a mean of membrane fouling control. During the 150-day operation, the MBER generated electricity with contaminant removal from either synthetic solution or actual wastewater, as a standalone or a coupled system. It was found that fluidized GAC could significantly reduce transmembrane pressure (TMP), although its function as a part of the anode electrode was minor. When the MBER was linked to a regular microbial fuel cell (MFC) for treating a wastewater from a cheese factory, the MFC acted as a major process for energy recovery and contaminant removal, and the coupled system removed more than 90% of chemical oxygen demand and >80% of suspended solids. The analysis showed that the ratio of energy recovery and consumption was slightly larger than one, indicating that the coupled system could be theoretically energy neutral. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Integrating sequencing batch reactor with bio-electrochemical treatment for augmenting remediation efficiency of complex petrochemical wastewater.

    Science.gov (United States)

    Yeruva, Dileep Kumar; Jukuri, Srinivas; Velvizhi, G; Naresh Kumar, A; Swamy, Y V; Venkata Mohan, S

    2015-01-01

    The present study evaluates the sequential integration of two advanced biological treatment methods viz., sequencing batch reactor (SBR) and bioelectrochemical treatment systems (BET) for the treatment of real-field petrochemical wastewater (PCW). Initially two SBR reactors were operated in aerobic (SBR(Ae)) and anoxic (SBR(Ax)) microenvironments with an organic loading rate (OLR) of 9.68 kg COD/m(3)-day. Relatively, SBR(Ax) showed higher substrate degradation (3.34 kg COD/m(3)-day) compared to SBR(Ae) (2.9 kg COD/m(3)-day). To further improve treatment efficiency, the effluents from SBR process were fed to BET reactors. BET(Ax) depicted higher SDR (1.92 kg COD/m(3)-day) with simultaneous power generation (17.12 mW/m(2)) followed by BET(Ae) (1.80 kg COD/m(3)-day; 14.25 mW/m(2)). Integrating both the processes documented significant improvement in COD removal efficiency due to the flexibility of combining multiple microenvironments sequentially. Results were supported with GC-MS and FTIR, which confirmed the increment in biodegradability of wastewater. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Development of an enzyme membrane reactor for treatment of cyanide-containing wastewaters from the food industry

    Energy Technology Data Exchange (ETDEWEB)

    Basheer, S.; Kut, O.M.; Prenosil, J.E.; Bourne, J.R. (Swiss Federal Inst. of Tech., Zurich (Switzerland))

    1993-02-20

    Cyanidase, an immobilized enzyme preparation for hydrolyzing cyanide to ammonia and formate, was applied for the treatment of cyanide-containing waste-waters from the food industry. Apricot seed extract was chosen as a model effluent. The enzymatic hydrolysis of pure amygdalin, the main cyanogenic glycoside in the extract, and the degradation of the cyanide formed was investigated and compared with the behavior of the real extract in a batch slurry reactor. A diffusional-type, flat-membrane reactor with immobilized cyanidase was developed, where the enzyme is effectively protected from adverse effects of high molecular components contained in the extract. For monitoring continuous-membrane reactor operation, a new unsegmented ammonia measurement system was developed and applied. In continuous operation the cyanidase retained its original activity for more than 400 hours on stream.

  13. Treatment of a simulated textile wastewater in a sequencing batch reactor (SBR) with addition of a low-cost adsorbent

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Sílvia C.R., E-mail: scrs@fe.up.pt; Boaventura, Rui A.R.

    2015-06-30

    Highlights: • Treating textile dyeing effluents by SBR coupled with waste sludge adsorption. • Metal hydroxide sludge: a good adsorbent for a direct textile dye. • Good adsorption capacities were found with the low-cost adsorbent. • Adsorbent performance considerably reduced by auxiliary products. • Color removal complies with discharge limits. - Abstract: Color removal from textile wastewaters, at a low-cost and consistent technology, is even today a challenge. Simultaneous biological treatment and adsorption is a known alternative to the treatment of wastewaters containing biodegradable and non-biodegradable contaminants. The present work aims at evaluating the treatability of a simulated textile wastewater by simultaneously combining biological treatment and adsorption in a SBR (sequencing batch reactor), but using a low-cost adsorbent, instead of a commercial one. The selected adsorbent was a metal hydroxide sludge (WS) from an electroplating industry. Direct Blue 85 dye (DB) was used in the preparation of the synthetic wastewater. Firstly, adsorption kinetics and equilibrium were studied, in respect to many factors (temperature, pH, WS dosage and presence of salts and dyeing auxiliary chemicals in the aqueous media). At 25 °C and pH 4, 7 and 10, maximum DB adsorption capacities in aqueous solution were 600, 339 and 98.7 mg/g, respectively. These values are quite considerable, compared to other reported in literature, but proved to be significantly reduced by the presence of dyeing auxiliary chemicals in the wastewater. The simulated textile wastewater treatment in SBR led to BOD{sub 5} removals of 53–79%, but color removal was rather limited (10–18%). The performance was significantly enhanced by the addition of WS, with BOD{sub 5} removals above 91% and average color removals of 60–69%.

  14. Reuse of drinking water treatment residuals in a continuous stirred tank reactor for phosphate removal from urban wastewater.

    Science.gov (United States)

    Bai, Leilei; Wang, Changhui; Pei, Yuansheng; Zhao, Jinbo

    2014-01-01

    This work proposed a new approach of reusing drinking water treatment residuals (WTR) in a continuous stirred tank reactor (CSTR) to remove phosphate (P) from urban wastewater. The results revealed that the P removal efficiency of the WTR was more than 94% for urban wastewater, in the condition of initial P concentration (P0) of 10 mg L⁻¹, hydraulic retention time (HRT) of 2 h and WTR dosage (M0) of 10 g L⁻¹. The P mass transfer from the bulk to the solid-liquid interface in the CSTR system increased at lower P0, higher M0 and longer HRT. The P adsorption capacity of WTR from urban wastewater was comparable to that of the 201 × 4 resin and unaffected by ions competition. Moreover, WTR had a limited effect on the metals' (Fe, Al, Zn, Cu, Mn and Ni) concentrations of the urban wastewater. Based on the principle of waste recycling, the reuse of WTR in CSTR is a promising alternative technology for P removal from urban wastewater.

  15. Biological treatment of phenolic wastewater in an anaerobic continuous stirred tank reactor

    Directory of Open Access Journals (Sweden)

    Firozjaee Taghizade Tahere

    2013-01-01

    Full Text Available In the present study, an anaerobic continuous stirred tank reactor (ACSTR with consortium of mixed culture was operated continuously for a period of 110 days. The experiments were performed with three different hydraulic retention times and by varying initial phenol concentrations between 100 to 1000 mg/L. A maximum phenol removal was observed at a hydraulic retention time (HRT of 4 days, with an organic loading rate (OLR of 170.86 mg/L.d. At this condition, phenol removal rate of 89% was achieved. In addition, the chemical oxygen demand (COD removal corresponds to phenol removal. Additional operating parameters such as pH, MLSS and biogas production rate of the effluents were also measured. The present study provides valuable information to design an anaerobic ACSTR reactor for the biodegradation of phenolic wastewater.

  16. Domestic wastewater anaerobic treatment I : Performance of one-step UASB and HUSB reactors; Tratamiento anaerobio de aguas residuales urbanas I : Aplicacion de reactores UASB y HUSB de etapa unica

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez Rodriguez, J. A.; Gomez Lopez, M.; Soto Castineira, M.

    2005-07-01

    Domestic wastewater treatment was carried out on a pilot scale anaerobic digester, with an active volume of 25.5 m''3. The digester operated at different conditions: (a) as an UASB reactor (up-flow anaerobic sludge blanket), with the aim of reaching a complete anaerobic treatment of domestic wastewater, and (b) as a HUSB (hydrolytic upflow sludge blanket) reactor, working in this case as a wastewater pre-treatment that removes suspended solid matter and increase the effluent biodegradability. The advantages of these treatment systems are its economic feasibility, no energy consumption and low excess sludge generation. (Author) 17 refs.

  17. A new low-cost biofilm carrier for the treatment of municipal wastewater in a moving bed reactor.

    Science.gov (United States)

    Orantes, J C; González-Martínez, S

    2003-01-01

    The Moving Bed Biofilm Reactor has proven to be an efficient system in wastewater treatment and has become a viable solution for small treatment plants. The main objective of this research was to analyse the performance of a moving bed reactor using low-cost local material when fed with municipal wastewater. A pilot reactor with a total volume of 900 litres was built and it was fed continuously with municipal wastewater. The operation of the system was adjusted to six different organic loading rates. The biofilm carrier was polyethylene tubing with internal diameter of 1.1 cm, cut into pieces of 1.2 cm. The tested material offered a specific surface area of 590 m2/m3. Air was provided with a fine-bubble diffuser. The main results show that the reactor performance was stable and predictable. The COD removal confidently behaves according to a general hyperbolic kinetic equation. The maximal total COD removal attained was 81%. Nitrification was observed only for organic loads with values under 5.7 gCOD/m2 x d. Good adherence of the microorganisms was observed for the applied organic loading rates. After several months of operation, the material showed no signs of abrasion or deformation. The sludge production behaved linearly with the organic load reaching 979 gTSS/d with the highest organic load of 35.7 gCOD/m2 x d. The amount of microorganisms attached to the carrier increased with the organic load tending to an asymptotical maximal value of 17.3 g/m2 (as dry solids). Mean cellular retention times from 2.0 to 23.1 days were determined.

  18. Central treatment of different emulsion wastewaters by an integrated process of physicochemically enhanced ultrafiltration and anaerobic-aerobic biofilm reactor.

    Science.gov (United States)

    Zhang, Weijun; Xiao, Ping; Wang, Dongsheng

    2014-05-01

    The feasibility of an integrated process of ultrafiltration (UF) enhanced by combined chemical emulsion breaking with vibratory shear and anaerobic/aerobic biofilm reactor for central treatment of different emulsion wastewaters was investigated. Firstly, it was found that calcium chloride exhibited better performance in oil removal than other inorganic salts. Chemical demulsification pretreatment could efficiently improve oil removal and membrane filtration in emulsion wastewater treatment by VSEP. According to aerobic batch bioassay, UF permeate exhibited good biodegradability and could be further treated with biological process. Additionally, pilot test indicated that anaerobic-aerobic biofilm exhibited an excellent ability against rise in organic loading and overall chemical oxygen demand (COD) removal efficiency of biological system was more than 93% of which 82% corresponded to the anaerobic process and 11% to the aerobic degradation. The final effluent of integrated process could meet the "water quality standards for discharge to municipal sewers" in China.

  19. Steady performance of a zero valent iron packed anaerobic reactor for azo dye wastewater treatment under variable influent quality

    Institute of Scientific and Technical Information of China (English)

    Yaobin Zhang; Yiwen Liu; Yanwen Jing; Zhiqiang Zhao; Xie Quan

    2012-01-01

    Zero valent iron (ZVI) is expected to help create an enhanced anaerobic environment that might improve the performance of anaerobic treatment.Based on this idea,a novel ZVI packed upflow anaerobic sludge blanket (ZVI-UASB) reactor was developed to treat azo dye wastewater with variable influent quality.The results showed that the reactor was less influenced by increases of Reactive Brilliant Red X-3B concentration from 50 to 1000 mg/L and chemical oxygen demand (COD) from 1000 to 7000 mg/L in the feed than a reference UASB reactor without the ZVI.The ZVI decreased oxidation-reduction potential in the reactor by about 80 mV.Iron ion dissolution from the ZVI could buffer acidity in the reactor,the amount of which was related to the COD concentration.Fluorescence in situ hybridization test showed the abundance of methanogens in the sludge of the ZVI-UASB reactor was significantly greater than that of the reference one.Denaturing gradient gel electrophoresis showed that the ZVI increased the diversity of microbial strains responsible for high efficiency.

  20. Steady performance of a zero valent iron packed anaerobic reactor for azo dye wastewater treatment under variable influent quality.

    Science.gov (United States)

    Zhang, Yaobin; Liu, Yiwen; Jing, Yanwen; Zhao, Zhiqiang; Quan, Xie

    2012-01-01

    Zero valent iron (ZVI) is expected to help create an enhanced anaerobic environment that might improve the performance of anaerobic treatment. Based on this idea, a novel ZVI packed upflow anaerobic sludge blanket (ZVI-UASB) reactor was developed to treat azo dye wastewater with variable influent quality. The results showed that the reactor was less influenced by increases of Reactive Brilliant Red X-3B concentration from 50 to 1000 mg/L and chemical oxygen demand (COD) from 1000 to 7000 mg/L in the feed than a reference UASB reactor without the ZVI. The ZVI decreased oxidation-reduction potential in the reactor by about 80 mV. Iron ion dissolution from the ZVI could buffer acidity in the reactor, the amount of which was related to the COD concentration. Fluorescence in situ hybridization test showed the abundance of methanogens in the sludge of the ZVI-UASB reactor was significantly greater than that of the reference one. Denaturing gradient gel electrophoresis showed that the ZVI increased the diversity of microbial strains responsible for high efficiency.

  1. Use of Sequencing Batch Reactors (SBRs in Treatment of Wood Fiber Wastewater

    Directory of Open Access Journals (Sweden)

    H Ganjidoust, B Ayati

    2004-10-01

    Full Text Available Wood fiber industries are producing large amounts of wastewater, which are discharged into the environment everyday. This type of wastewater with high pollution potential in suspended solids, COD and color, are required to be treated before entering to the receiving environment. North part of Iran is covered by huge land of forests. Several pulp and paper industries are located in the area. One of these industries is Iran Wood Fiber Company in which many researches have been done in both laboratory and pilot scale by the main author in recent years. One of the studies was to investigate the Sequencing Batch Reactors (SBRs efficiency for treating the wastewater. Considering parameters such as influent COD, detention time, nutrient concentration, and their effects on COD, turbidity and total solids removal efficiency of the system, four serial SBRs in laboratory scale were investigated. The results of the system with 10 hours detention time, 1000-2500 mg/L COD and 100:5.1:1 C/N/P had the best efficiency with 92, 84, 52 percent removal for COD, turbidity and total solids, respectively. Pilot scale plant studies using SBRs were also done in the company. The results indicated good removal efficiencies that also discussed in this paper.

  2. Aerobic treatment of kitchen wastewater using sequence batch reactor (SBR and reuse for irrigation landscape purposes.

    Directory of Open Access Journals (Sweden)

    Sule Abubakar

    2016-06-01

    Full Text Available The trend towards reuse of effluent for landscape irrigation from kitchen is driven by the need to maximise limited water resources and benefit from the plant nutrients available in the effluent. The significant impact upon the value of the wastewater for reuse is its chemical properties as well as biochemical oxygen demand and suspended solids. While treatment plant is expected to treat all wastewater received to a minimum environmental standard, not much effort are given for wastewater reuse in Malaysia due to the fact that Malaysia is not experiencing shortage in portable water yet but as population increases water availability will be more scares according to WHO prediction. The improvement in effluent quality will have significant beneficial effects upon land application and human health. This study investigate the performance of SBR on treating kitchen wastewater and the possible reuse for irrigation purposes with hydraulic retention time (HRT 5 hours varying the aeration time at 15 minute interval for 12 cycles. The operation volume of the rectors was 20 litres which comprises of 13 litres of kitchen wastewater and 7 litres of sludge in every cycle for treatment. Wastewater used was taken from University Tun Hussein Onn Malaysia (UTHM cafeteria and the sludge used is from a pond inside the campus. Laboratory analyses were carried out in influent and effluent in order to achieve maximum efficiency reduction in effluent. Parameters tested for both in influent and effluent are pH, DO, COD, BOD, PO4, NH4, NO3 and TSS. Total percentage removal obtained for COD, BOD, PO4, NH4 and NO3 are: 63, 67, 78, 85 and 86% respectively which are all in compliance with the standard A and B regulation for effluent discharge or reuse. The data were analysed using Microsoft excel.

  3. Wastewater treatment

    Directory of Open Access Journals (Sweden)

    Ranđel N. Kitanović

    2013-10-01

    Full Text Available Quality of life on Earth in the future will largely depend on the amount of safe water. As the most fundamental source of life, water is relentlessly consumed and polluted. To halt this trend, many countries are taking extensive measures and investing substantial resources in order to stop the contamination of water and return at least tolerably good water quality to nature. The goal of water purification is to obtain clean water with the sewage sludge as a by-product. Clean water is returned to nature, and further treatment of sludge may be subject to other procedures. The conclusion of this paper is simple. The procedure with purified water is easily achievable, purified water is discharged into rivers, lakes and seas, but the problem of further treatment of sludge remains. This paper presents the basic methods of wastewater treatment and procedures for processing the products from contaminated water. The paper can serve as a basis for further elaboration. Water Pollution In order to ensure normal life of living creatures, the water in which they live or the water they use must have a natural chemical composition and natural features. When, as a result of human activities, the chemical composition of water and the ratio of its chemical elements significantly change, we say that water is polluted. When the pollutants come from industrial plants, we are talking about industrial wastewater, and when they come from households and urban areas, we are talking about municipal wastewater. Both contain a huge amount of pollutants that eventually end up in rivers. Then, thousands of defenseless birds, fish and other animals suffer, and environmental consequences become immeasurable. In addition, the waste fed to the water often ends up in the bodies of marine animals, so they can return to us as food. Thermal water pollution also has multiple effects on the changes in the wildlife composition of aquatic ecosystems. Polluted water can be purified by

  4. Treatment of poultry slaughterhouse wastewater using a static granular bed reactor (SGBR) coupled with ultrafiltration (UF) membrane system.

    Science.gov (United States)

    Basitere, M; Rinquest, Z; Njoya, M; Sheldon, M S; Ntwampe, S K O

    2017-07-01

    The South African poultry industry has grown exponentially in recent years due to an increased demand for their products. As a result, poultry plants consume large volumes of high quality water to ensure that hygienically safe poultry products are produced. Furthermore, poultry industries generate high strength wastewater, which can be treated successfully at low cost using anaerobic digesters. In this study, the performance of a bench-scale mesophilic static granular bed reactor (SGBR) containing fully anaerobic granules coupled with an ultrafiltration (UF) membrane system, as a post-treatment system, was investigated. The poultry slaughterhouse wastewater was characterized by a chemical oxygen demand (COD) range between 1,223 and 9,695mg/L, average biological oxygen demand of 2,375mg/L and average fats, oil and grease (FOG) of 554mg/L. The SGBR anaerobic reactor was operated for 9 weeks at different hydraulic retention times (HRTs), i.e. 55 and 40 h, with an average organic loading rate (OLR) of 1.01 and 3.14g COD/L.day. The SGBR results showed an average COD, total suspended solids (TSS) and FOG removal of 93%, 95% and 90% respectively, for both OLR. The UF post-treatment results showed an average of COD, TSS and FOG removal of 64%, 88% and 48%, respectively. The overall COD, TSS and FOG removal of the system (SGBR and UF membrane) was 98%, 99.8%, and 92.4%, respectively. The results of the combined SGBR reactor coupled with the UF membrane showed a potential to ensure environmentally friendly treatment of poultry slaughterhouse wastewater.

  5. Application of acidogenic fixed-bed reactor prior to anaerobic membrane bioreactor for sustainable slaughterhouse wastewater treatment.

    Science.gov (United States)

    Saddoud, Ahlem; Sayadi, Sami

    2007-11-19

    High rate anaerobic treatment systems such as anaerobic membrane bioreactors (AMBR) are less popular for slaughterhouse wastewater due to the presence of high fat oil and suspended matters in the effluent. This affects the performance and efficiency of the treatment system. In this work, AMBR has been tried for slaughterhouse wastewater treatment. After the start up period, the reactor was operated with an average organic loading rate (OLR) of 4.37 kg TCODm(-3)d(-1) with gradual increase to an average of 13.27 kg TCODm(-3)d(-1). At stable conditions, the treatment efficiency was high with an average COD and BOD(5) reduction of 93.7 and 93.96%, respectively. However, a reduction in the AMBR performance was shown with the increase of the OLR to 16.32 kg TCODm(-3)d(-1). The removal efficiencies of SCOD and BOD(5) were drastically decreased to below 53.6 and 73.3%, respectively. The decrease of the AMBR performance was due to the accumulation of VFAs. Thus, a new integrated system composed of a FBR for the acidogenesis step followed by the AMBR for methanogenesis step was developed. At high ORL, the integrated system improved the performance of the anaerobic digestion and it successfully overcame the VFA accumulation problem in the AMBR. The anaerobic treatment led to a total removal of all tested pathogens. Thus, the microbiological quality of treated wastewater fits largely with WHO guidelines.

  6. Field study of moving bed biofilm reactor technology for post-treatment of wastewater lagoon effluent at 1 degree C.

    Science.gov (United States)

    Almomani, Fares A; Delatolla, Robert; Ormeci, Banu

    2014-08-01

    The goal of this study was to investigate the potential use ofmoving bed biofilm reactor (MBBR) systems as ammonia removal post-treatment units for wastewater (WW) treatment lagoons that demonstrate large temperature changes throughout their operational year (1 - 20 degrees C). The study was carried out over a six-month period using laboratory-scale MBBR reactors fed with incoming effluent from a full-scale lagoon. The study shows that significant average ammonia removal rates of 0.26 and 0.11 kgN/m . d were achieved at 20 degrees C and 1C. The increase in the ammonia removal rates with increasing temperature from 1 degrees C to 20 degrees C showed a strong correlation to an applied temperature correction coefficient model. No significant accumulation of effluent nitrite was observed at 1 degrees C or after being fed with synthetic wastewater (SWW); indicating that cold temperatures and transitions from real WW to SWW did not stress the nitrifiers. Furthermore, the study demonstrates that changes in temperature or changes from real WW to SWW do not affect the mass of biofilm attached per MBBR carrier. Hence, based on the results of this study, it is concluded that MBBR is a promising technology for post-treatment ammonia removal of WW lagoon effluent.

  7. Analysis of denitrifier community in a bioaugmented sequencing batch reactor for the treatment of coking wastewater containing pyridine and quinoline

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Yaohui; Xing, Rui; Wen, Donghui; Tang, Xiaoyan [Peking Univ., Beijing (CN). Key Lab. of Water and Sediment Sciences (Ministry of Education); Sun, Qinghua [Peking Univ., Beijing (CN). Key Lab. of Water and Sediment Sciences (Ministry of Education); Chinese Center for Disease Control and Prevention, Beijing (China). Inst. of Environmental Health and Related Product Safety

    2011-05-15

    The denitrifier community and associated nitrate and nitrite reduction in the bioaugmented and general sequencing batch reactors (SBRs) during the treatment of coking wastewater containing pyridine and quinoline were investigated. The efficiency and stability of nitrate and nitrite reduction in SBR was considerably improved after inoculation with four pyridine- or quinoline-degrading bacterial strains (including three denitrifying strains). Terminal restriction fragment length polymorphism (T-RFLP) based on the nosZ gene revealed that the structures of the denitrifier communities in bioaugmented and non-bioaugmented reactors were distinct and varied during the course of the experiment. Bioaugmentation protected indigenous denitrifiers from disruptions caused by pyridine and quinoline. Clone library analysis showed that one of the added denitrifiers comprised approximately 6% of the denitrifier population in the bioaugmented sludge. (orig.)

  8. Up-scaling aquaculture wastewater treatment by microalgal bacterial flocs: from lab reactors to an outdoor raceway pond.

    Science.gov (United States)

    Van Den Hende, Sofie; Beelen, Veerle; Bore, Gaëlle; Boon, Nico; Vervaeren, Han

    2014-05-01

    Sequencing batch reactors with microalgal bacterial flocs (MaB-floc SBRs) are a novel approach for photosynthetic aerated wastewater treatment based on bioflocculation. To assess their technical potential for aquaculture wastewater treatment in Northwest Europe, MaB-floc SBRs were up-scaled from indoor photobioreactors of 4 L over 40 and 400 L to a 12 m(3) outdoor raceway pond. Scale-up decreased the nutrient removal efficiencies with a factor 1-3 and the volumetric biomass productivities with a factor 10-13. Effluents met current discharge norms, except for nitrite and nitrate. Flue gas sparging was needed to decrease the effluent pH. Outdoor MaB-flocs showed enhanced settling properties and an increased ash and chlorophyll a content. Bioflocculation enabled successful harvesting by gravity settling and dewatering by filtering at 150-250 μm. Optimisation of nitrogen removal and biomass valorisation are future challenges towards industrial implementation of MaB-floc SBRs for aquaculture wastewater treatment.

  9. Simultaneous domestic wastewater and nitrate sewage treatment by DEnitrifying AMmonium OXidation (DEAMOX) in sequencing batch reactor.

    Science.gov (United States)

    Du, Rui; Cao, Shenbin; Li, Baikun; Wang, Shuying; Peng, Yongzhen

    2017-05-01

    A novel DEAMOX system was developed for nitrogen removal from domestic wastewater and nitrate (NO3(-)-N) sewage in sequencing batch reactor (SBR). High nitrite (NO2(-)-N) was produced from NO3(-)-N reduction in partial-denitrification process, which served as electron acceptor for anammox and was removed with ammonia (NH4(+)-N) in domestic wastewater simultaneously. A 500-days operation demonstrated that the efficient and stable nitrogen removal performance could be achieved by DEAMOX. The total nitrogen (TN) removal efficiency was as high as 95.8% with influent NH4(+)-N of 63.58 mg L(-1) and NO3(-)-N of 69.24 mg L(-1). The maximum NH4(+)-N removal efficiency reached up to 94.7%, corresponding to the NO3(-)-N removal efficiency of 97.8%. The biomass of partial-denitrification and anammox bacteria was observed to be wall-growth. The deteriorated nitrogen removal performance occurred due to excess denitrifying microbial growth in the outer layer of sludge consortium, which prevented the substrate transfer for anammox inside. However, an excellent nitrogen removal could be guaranteed by scrapping the superficial denitrifying biomass at regular intervals. Furthermore, the high-throughput sequencing analysis revealed that the Thauera genera (26.33%) was possibly responsible for the high NO2(-)-N accumulation in partial-denitrification and Candidatus Brocadia (1.7%) was the major anammox species.

  10. Pyrosequencing reveals microbial community profile in anaerobic bio-entrapped membrane reactor for pharmaceutical wastewater treatment.

    Science.gov (United States)

    Ng, Kok Kwang; Shi, Xueqing; Ong, Say Leong; Ng, How Yong

    2016-01-01

    In this study, pharmaceutical wastewater with high salinity and total chemical oxygen demand (TCOD) was treated by an anaerobic membrane bioreactor (AnMBR) and an anaerobic bio-entrapped membrane reactor (AnBEMR). The microbial populations and communities were analyzed using the 454 pyrosequencing method. The hydraulic retention time (HRT), membrane flux and mean cell residence time (MCRT) were controlled at 30.6h, 6L/m(2)h and 100d, respectively. The results showed that the AnBEMR achieved higher TCOD removal efficiency and greater biogas production compared to the AnMBR. Through DNA pyrosequencing analysis, both the anaerobic MBRs showed similar dominant groups of bacteria and archaea. However, phylum Elusimicrobia of bacteria was only detected in the AnBEMR; the higher abundance of dominant archaeal genus Methanimicrococcus found in the AnBEMR could play an important role in degradation of the major organic pollutant (i.e., trimethylamine) present in the pharmaceutical wastewater. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Wastewater Treatment

    Science.gov (United States)

    ... make water safe. Effects of wastewater pollutants If wastewater is not properly treated, then the environment and human health can be negatively impacted. These impacts can include harm to fish and wildlife ... in wastewater and the potentially harmful effects these substances can ...

  12. Investigation of Anaerobic Fluidized Bed Reactor Aerobic Mov-ing Bed Bio Reactor (AFBR/MMBR System for Treatment of Currant Wastewater

    Directory of Open Access Journals (Sweden)

    Jalil Jafari

    2013-08-01

    Full Text Available Background: Anaerobic treatment methods are more suitable for the treatment of concentrated wastewater streams, offer lower operating costs, the production of usable biogas product. The aim of this study was to investigate the performance of an Anaerobic Fluidized Bed Reactor (AFBR-Aerobic Moving Bed Bio Reactor (MBBR in series arrangement to treat Currant wastewater.Methods: The bed materials of AFBR were cylindrical particles made of PVC with a diameter of 2-2.3 mm, particle density of 1250 kg/m3.The volume of all bed materials was 1.7 liter which expanded to 2.46 liters in fluidized situation. In MBBR, support media was composed of 1.5 liters Bee-Cell 2000 having porosity of 87% and specific surface area of 650m2/m3.Results: When system operated at 35 ºC, chemical oxygen demand (COD removal efficiencies were achieved to 98% and 81.6% for organic loading rates (OLR of 9.4 and 24.2 g COD/l.d, and hydraulic retention times (HRT of 48 and 18 h, in average COD concentration feeding of 18.4 g/l, respectively.Conclusion: The contribution of AFBR in total COD removal efficiency at an organic loading rate (OLR of 9.4 g COD/l.d was 95%, and gradually decreased to 76.5% in OLR of 24.2 g COD/l.d. Also with increasing in organic loading rate the contribution of aerobic reactor in removing COD gradually decreased. In this system, the anaerobic reactor played the most important role in the removal of COD, and the aerobic MBBR was actually needed to polish the anaerobic treated wastewate

  13. Removal of pharmaceuticals from wastewater by electrochemical oxidation using cylindrical flow reactor and optimization of treatment conditions.

    Science.gov (United States)

    Babu, B Ramesh; Venkatesan, P; Kanimozhi, R; Basha, C Ahmed

    2009-08-01

    This paper examines the use of electrooxidation for treatment of wastewater obtained from a pharmaceutical industry. The wastewater primarily contained Gentamicin and Dexamethasone. With NaCl as supporting electrolyte, the effluent was treated in a cylindrical flow reactor in continuous (single pass) mode under various current densities (2-5 A/dm2) and flow rates (10-40 L/h). By cyclic voltammetric (CV) analysis, the optimum condition for maximum redox reaction was determined. The efficiency of chemical oxygen demand (COD) reduction and power consumption were studied for different operating conditions. From the results it was observed that maximum COD reduction of about 85.56% was obtained at a flow rate of 10 L/h with an applied current density of 4 A/dm2. FT-IR spectra studies showed that during electrooxidation, the intensities of characteristic functional groups such as N-H, O-H were reduced and some new peaks also started to appear. Probable theory, reaction mechanism and modeling were proposed for the oxidation of pharmaceutical effluent. The experimental results demonstrated that electrooxidation treatment was very effective and capable of elevating the quality of treated wastewater to the reuse standard prescribed for pharmaceutical industries.

  14. The membrane biofilm reactor (MBfR) for water and wastewater treatment: principles, applications, and recent developments.

    Science.gov (United States)

    Martin, Kelly J; Nerenberg, Robert

    2012-10-01

    The membrane biofilm reactor (MBfR), an emerging technology for water and wastewater treatment, is based on pressurized membranes that supply a gaseous substrate to a biofilm formed on the membrane's exterior. MBfR biofilms behave differently from conventional biofilms due to the counter-diffusion of substrates. MBfRs are uniquely suited for numerous treatment applications, including the removal of carbon and nitrogen when oxygen is supplied, and reduction of oxidized contaminants when hydrogen is supplied. Major benefits include high gas utilization efficiency, low energy consumption, and small reactor footprints. The first commercial MBfR was recently released, and its success may lead to the scale-up of other applications. MBfR development still faces challenges, including biofilm management, the design of scalable reactor configurations, and the identification of cost-effective membranes. If future research and development continue to address these issues, the MBfR may play a key role in the next generation of sustainable treatment systems. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Combined treatment of distillery slops and sugar mill wastewaters in UASB reactors; Tratamiento combinado de las vianzas de destileria y residuales azucareros en reactores UASB

    Energy Technology Data Exchange (ETDEWEB)

    Obaya Abreu, M. C.; Valdes Jimenez, E.; Valencia Rodriguez, R.; Leon Perez, O. L.; Morales Carmouse, M.; Perez Bonachea, O.; Diaz Llanes, S.; Valdivia Rojas, O.

    2004-07-01

    Wastewaters from the installations of molasses-making enterprise Heriberto Duquesne are very variables according their composition but can be treated in combination in a biogas plant annexed to the industrial complex. The auto regulation capacity of UASB reactors with high-quality anaerobic sludge make them capable to assimilate variable organic loads, as well as the introduction to the system of sugar mill wastewaters and their elimination at the end of the campaign, with no effect on its efficiency, at one-day retention time. To reduce sludge wash-out it becomes unavoidable a previous treatment of wastewater concerning to solid separation up to the established concentrations. Research carried out turned to be of paramount importance taking into account that two issues are solved at the same time, an environmental problem by the same time: an environmental problem by the treatment of all polluting waters in the complex. In addition, a significant water saving is achieved in correspondence with the new concepts in cleaner productions. (Author) 23 refs.

  16. Kraft pulp and paper mill wastewater treatment using fixed bed anaerobic reactors

    Energy Technology Data Exchange (ETDEWEB)

    Damianovic, M. H. R. Z; Ruas, D.; Pires, E. C.; Foresti, E.

    2009-07-01

    The effluents of pulp mills contain a myriad of toxic compounds, biodegradable organic matter and sulfur compounds. to decrease the amount of fresh water required for pulp and paper production closed circuits are in use, however, higher concentrations of slat, as oxidized sulfur compounds, are encountered in the wastewaters. energy costs and new environmental concerns are motivating the use of anaerobic pretreatment as a way to decrease energy expenditure in the treatment plant together with lower sludge production. In anaerobic environment, the organic matter removal can follow methanogenic or sulfidogenic paths and with the latter simultaneous reduction of the oxidized sulfur compounds also occurs. (Author)

  17. Treatment of domestic wastewater in an up-flow anaerobic sludge blanket reactor followed by moving bed biofilm reactor.

    Science.gov (United States)

    Tawfik, A; El-Gohary, F; Temmink, H

    2010-02-01

    The performance of a laboratory-scale sewage treatment system composed of an up-flow anaerobic sludge blanket (UASB) reactor and a moving bed biofilm reactor (MBBR) at a temperature of (22-35 degrees C) was evaluated. The entire treatment system was operated at different hydraulic retention times (HRT's) of 13.3, 10 and 5.0 h. An overall reduction of 80-86% for COD(total); 51-73% for COD(colloidal) and 20-55% for COD(soluble) was found at a total HRT of 5-10 h, respectively. By prolonging the HRT to 13.3 h, the removal efficiencies of COD(total), COD(colloidal) and COD(soluble) increased up to 92, 89 and 80%, respectively. However, the removal efficiency of COD(suspended) in the combined system remained unaffected when increasing the total HRT from 5 to 10 h and from 10 to 13.3 h. This indicates that, the removal of COD(suspended) was independent on the imposed HRT. Ammonia-nitrogen removal in MBBR treating UASB reactor effluent was significantly influenced by organic loading rate (OLR). 62% of ammonia was eliminated at OLR of 4.6 g COD m(-2) day(-1). The removal efficiency was decreased by a value of 34 and 43% at a higher OLR's of 7.4 and 17.8 g COD m(-2) day(-1), respectively. The mean overall residual counts of faecal coliform in the final effluent were 8.9 x 10(4) MPN per 100 ml at a HRT of 13.3 h, 4.9 x 10(5) MPN per 100 ml at a HRT of 10 h and 9.4 x 10(5) MPN per 100 ml at a HRT of 5.0 h, corresponding to overall log(10) reduction of 2.3, 1.4 and 0.7, respectively. The discharged sludge from UASB-MBBR exerts an excellent settling property. Moreover, the mean value of the net sludge yield was only 6% in UASB reactor and 7% in the MBBR of the total influent COD at a total HRT of 13.3 h. Accordingly, the use of the combined UASB-MBBR system for sewage treatment is recommended at a total HRT of 13.3 h.

  18. Treatment of wastewater dyeing agent by photocatalytic process in solar reactor

    Directory of Open Access Journals (Sweden)

    O. Zahraa

    2006-01-01

    Full Text Available The photocatalytic decolorization of industrial textile dyes has been studied. The treatment was carried out on a solar reactor consisting in a flat active plane, tilted so as to face the sun and to allow the trickling of the water to be treated. Alternatively the reactor could be irradiated by an artificial source. After checking the system using salicylic acid, a conventional model molecule, the photocatalytic decolorization of Orange II, Yellow Drimarene, and Black Drimarene dyes was investigated. Artificial and solar irradiation gave comparable results although the heating by the sun reduced the amount of adsorption. The kinetics agrees with the Langmuir-Hinshelwood model and a discrepancy between adsorption constants deduced from the kinetic and adsorption experiments was interpreted by considering various types of adsorption sites. Orange II and Drimarene dyes decolorization kinetics are opposite limiting cases of the above model, as being of order 0 and 1 with respect to the dye, respectively.

  19. Biologic treatment of wastewater from cassava flour production using vertical anaerobic baffled reactor (VABR

    Directory of Open Access Journals (Sweden)

    Gleyce T Correia

    2008-08-01

    Full Text Available The estimate cassava production in Brazil in 2007 was of 25 million tons (= 15% of the world production and most of it is used in the production of flour. During its processing, waste that can cause environmental inequality is generated, if discharged inappropriately. One of the liquid waste generated, manipueira, is characterized by its high level of organic matter. The anaerobic treatment that uses a vertical anaerobic baffled reactor (VABR inoculated with granulated sludge, is one of the ways of treating this effluent. The anaerobic biodigestion phases are separated in this kind of reactor, allowing greater stability and resistance to load shocks. The VABR was built with a width/height rate of 1:2. The pH, acidity, alkalinity, turbidity and COD removal were analyzed in 6 different regions of the reactor, which was operated with an increasing feeding from ? 2000 to ? 10000 mg COD L?¹ and HRT between 6.0 and 2.5 days. The VABR showed decreasing acidity and turbidity, an increase in alkalinity and pH, and 96% efficiency in COD removal with 3-day HRT and feeding of 3800 mg COD L?¹.

  20. Effects of anodic potential and chloride ion on overall reactivity in electrochemical reactors designed for solar-powered wastewater treatment.

    Science.gov (United States)

    Cho, Kangwoo; Qu, Yan; Kwon, Daejung; Zhang, Hao; Cid, Clément A; Aryanfar, Asghar; Hoffmann, Michael R

    2014-02-18

    We have investigated electrochemical treatment of real domestic wastewater coupled with simultaneous production of molecular H2 as useful byproduct. The electrolysis cells employ multilayer semiconductor anodes with electroactive bismuth-doped TiO2 functionalities and stainless steel cathodes. DC-powered laboratory-scale electrolysis experiments were performed under static anodic potentials (+2.2 or +3.0 V NHE) using domestic wastewater samples, with added chloride ion in variable concentrations. Greater than 95% reductions in chemical oxygen demand (COD) and ammonium ion were achieved within 6 h. In addition, we experimentally determined a decreasing overall reactivity of reactive chlorine species toward COD with an increasing chloride ion concentration under chlorine radicals (Cl·, Cl2(-)·) generation at +3.0 V NHE. The current efficiency for COD removal was 12% with the lowest specific energy consumption of 96 kWh kgCOD(-1) at the cell voltage of near 4 V in 50 mM chloride. The current efficiency and energy efficiency for H2 generation were calculated to range from 34 to 84% and 14 to 26%, respectively. The hydrogen comprised 35 to 60% by volume of evolved gases. The efficacy of our electrolysis cell was further demonstrated by a 20 L prototype reactor totally powered by a photovoltaic (PV) panel, which was shown to eliminate COD and total coliform bacteria in less than 4 h of treatment.

  1. Treatment of photographic processing wastewater by biological activated carbon fixed-bed reactor. Seibutsu kasseitan ni yoru shashin haieki no shori

    Energy Technology Data Exchange (ETDEWEB)

    Shirota, H.; Kishino, T. (Ube College, Yamaguchi (Japan)); Ukita, M.; Nakanishi, H. (Yamaguchi Univ., Yamaguchi (Japan). Faculty of Engineering)

    1991-10-10

    Since photographic processing wastewater includes very small quantity but high density of organic and inorganic chemicals, it is one of the difficult wastewaters for water treatment. Although ozone oxidation methods or chemical oxidation methods to reduce COD or BOD have been examined as treatment processes for photographic wastewater, their commercialization have not been progressed yet from the view of efficiency or of costs. In this paper, aerobic microbial film fixed-bed reactor, of which microbes carrier was granular activated carbon (GAC), was used to treat photographic processing wastewater, and its characteristics of biological treatments have been examined. As a result, by treatment experiments of photographic processing wastewater distinguished depending on their resources, it was clarified treatment characteristics were different depending on a sort of photographic wastewater, and that COD was increased by biological treatments. Moreover, based on experiments to be carried out by changing COD loads using mixed wastewater by each photographic processing wasterwater with generic propotion, it could be considered that loading quantity without pH adjustment was approximately 10g{center dot}Kg{sup {minus}1}GAC {center dot}d{sup {minus}1} of COD loading based on carrier weight. Further, there was closed relationship between COD load and COD removal speed. 10 refs., 7 figs., 6 tabs.

  2. The Performance of Advanced Sequencing Batch Reactor in Wastewater Treatment Plant to Remove Organic Materials and Linear Alkyl Benzene Sulfonates

    Directory of Open Access Journals (Sweden)

    Eslami

    2015-07-01

    Full Text Available Background Linear alkyl benzene sulfonates (LAS are the most important ionic detergents that produce negative ions in the environment. These compounds enter surface waters through domestic and industrial wastewaters and cause environmental hazards. Objectives The present study was aimed at assessing the performance of advanced sequencing batch reactor (SBR in wastewater treatment plant of Yazd, Iran, to remove organic materials and detergents. Materials and Methods The present research was a descriptive longitudinal study conducted on 96 input and output samples of SBR system over eight months from October 2012 to June 2013. The studied parameters were biochemical oxygen demand 5 (BOD5, chemical oxygen demand (COD, and detergents (LAS, which were assessed through standard methods. Finally, the study data were analyzed through analysis of variance (ANOVA using software package for statistical analysis (SPSS. Results The mean inputs of BOD5, COD, and LAS to the SBR system were 292.40 ± 45.28, 597.15 ± 97.30, and 3.29 ± 0.92 mg/L, and the mean outputs were 20.59 ± 3.54, 59.34 ± 9.47, and 0.606 ± 0.09 mg/L, respectively. The removal efficiency of BOD5, COD and LAS were respectively 92.95%, 90.06% and 81.6%. The results of ANOVA indicated that there was a significant relationship between the mean inputs and outputs of BOD5, COD, and the detergents (P ≤ 0.001. Conclusions With the proper operation of wastewater the treatment plant and increasing the retention time, the removal efficiency of the detergents increased. In addition, according to the environmental standards for BOD5, COD and the detergents, the results of the present study indicated that the outputs of these parameters from the SBR system were appropriate for agricultural irrigation.

  3. Upgrading of a wastewater treatment plant with a hybrid moving bed biofilm reactor (MBBR

    Directory of Open Access Journals (Sweden)

    Luigi Falletti

    2014-11-01

    Full Text Available The wastewater treatment plant of Porto Tolle (RO, Italy was originally projected for 2200 person equivalent (p.e. and it was made of a pumping station, an activated sludge oxidation tank (395 m3, a settler (315 m3, and two sludge drying beds. Other units were not yet in use in 2008: a fine screen, a sand and grit removal unit, a new settler (570 m3, a disinfection tank and a sludge thickener. Effective hydraulic load was 245% higher, organic load was 46% lower and nitrogen load was 39% higher than project values. Moreover, higher pollutant loads and more strict emission limits for nitrogen were expected. So the plant was upgraded: the old settler was divided into a sector of 180 m3 that was converted into a predenitrification tank, and a sector of 100 m3 that was converted into a hybrid MBBR tank filled with 50% AnoxKaldnesTM K3 carriers; the new settler was connected to the hybrid MBBR, and the other units were started. Biofilm growth was observed two months after plant restarting, its concentration reached 1.1 gTS/m2 (0.26 kgTS/m3, while activated sludge concentration was 2.0–2.8 kgTSS/m3 in all the period of study. The upgraded plant treats 1587 m3/d wastewater with 57 kgCOD/d, 23 kgBOD/d and 13.3 kgN/d, and has a significant residual capacity; the effluent respects all emission limits.

  4. dsrAB-based analysis of sulphate-reducing bacteria in moving bed biofilm reactor (MBBR) wastewater treatment plants.

    Science.gov (United States)

    Biswas, Kristi; Taylor, Michael W; Turner, Susan J

    2014-08-01

    Sulphate-reducing bacteria (SRB) are important members of the sulphur cycle in wastewater treatment plants (WWTPs). In this study, we investigate the diversity and activity of SRB within the developing and established biofilm of two moving bed biofilm reactor (MBBR) systems treating municipal wastewater in New Zealand. The larger of the two WWTPs (Moa Point) generates high levels of sulphide relative to the smaller Karori plant. Clone libraries of the dissimilatory (bi)sulphite reductase (dsrAB) genes and quantitative real-time PCR targeting dsrA transcripts were used to compare SRB communities between the two WWTPs. Desulfobulbus (35-53 % of total SRB sequences) and genera belonging to the family Desulfobacteraceae (27-41 %) dominated the SRB fraction of the developing biofilm on deployed plastic carriers at both sites, whereas Desulfovibrio and Desulfomicrobium were exclusively found at Moa Point. In contrast, the established biofilms from resident MBBR carriers were largely dominated by Desulfomonile tiedjei-like organisms (58-100 % of SRB sequences). The relative transcript abundance of dsrA genes (signifying active SRBs) increased with biofilm weight yet remained low overall, even in the mature biofilm stage. Our results indicate that although SRB are both present and active in the microbial community at both MBBR study sites, differences in the availability of sulphate may be contributing to the observed differences in sulphide production at these two plants.

  5. Fermentative hydrogen production from beet sugar factory wastewater treatment in a continuous stirred tank reactor using anaerobic mixed consortia

    Institute of Scientific and Technical Information of China (English)

    Gefu ZHU; Chaoxiang LIU; Jianzheng LI; Nanqi REN; Lin LIU; Xu HUANG

    2013-01-01

    A low pH, ethanol-type fermentation process was evaluated for wastewater treatment and bio-hydrogen production from acidic beet sugar factory wastewater in a continuous stirred tank reactor (CSTR) with an effective volume of 9.6 L by anaerobic mixed cultures in this present study. After inoculating with aerobic activated sludge and operating at organic loading rate (OLR) of 12 kgCOD·m-3·d-1, HRT of 8h, and temperature of 35℃ for 28 days, the CSTR achieved stable ethanol-type fermentation. When OLR was further increased to 18 kgCOD·m-3·d-1, on the 53rd day, ethanol-type fermentation dominant microflora was enhanced. The liquid fermentation products, including volatile fatty acids (VFAs) and ethanol, stabilized at 1493mg·L-1 in the bioreactor. Effluent pH, oxidation-reduction potential (ORP), and alkalinity ranged at 4.1-4.5, -250-(-290) mV, and 230-260mgCaCO3·L-1. The specific hydrogen production rate of anaerobic activated sludge was 0.1 L'gMLVSS-1· d-1 and the COD removal efficiency was 45%. The experimental results showed that the CSTR system had good operation stability and microbial activity, which led to high substrate conversion rate and hydrogen production ability.

  6. Development and performance evaluation of an algal biofilm reactor for treatment of multiple wastewaters and characterization of biomass for diverse applications.

    Science.gov (United States)

    Choudhary, Poonam; Prajapati, Sanjeev Kumar; Kumar, Pushpendar; Malik, Anushree; Pant, Kamal K

    2017-01-01

    A modified algal biofilm reactor (ABR) was developed and assessed for high biomass productivity and treatment potential using variable strength wastewaters with accumulation of specialized bio-products. The nonwoven spun bond fabric (70GSM) was selected as suitable biofilm support on the basis of attachment efficiency, durability and ease of harvesting. The biomass productivity achieved by ABR biofilms were 4gm(-2)d(-1), 3.64gm(-2)d(-1) and 3.10gm(-2)d(-1) when grown in livestock wastewater (LSW), domestic grey water (DGW) and anaerobically digested slurry (ADS), respectively. Detailed characterization of wastewater grown biomass showed specific distribution of biomolecules into high lipid (38%) containing biomass (DGW grown) and high protein (44%) biomass (LSW and ADS grown). The feasibility assessment of ABR in terms of net energy return (>1) favored its application in an integrated system for treatment and recycling of rural wastewaters with simultaneous production of biomethane, livestock feed supplement and bio fertilizers.

  7. Wastewater treatment pilot

    OpenAIRE

    2016-01-01

    The aim of this thesis was to investigate the functionality of the wastewater treatment pilot and produce a learning manual-handout, as well as to define the parameters of wastewater clarification by studying the nutrient removal and the effluent clarification level of the processed wastewater. As part of the Environmental Engineering studies, Tampere University of Applied Sciences has invested on a Wastewater Treatment Pilot. The pilot simulates the basic wastewater treatment practices u...

  8. Evaluation of a pilot aerobic reactor with polyetilenterephtalate (PET as support material for dairy wastewater treatment

    Directory of Open Access Journals (Sweden)

    Marcelo Muñoz

    2016-12-01

    Full Text Available A pilot aerobic horizontal plug flow reactor filled with pieces of PET (polyethylene terephthalate, from plastic bottles was installed for treatment of a synthetic substrate prepared from lactic whey with COD values of 800 to 2100 mg/L. A bacterial inoculum previously acclimated to the substrate was used. Organic material removal efficiencies of 62.2%, 85% y 94% were obtained with retention times of 5.14, 6.01 and 8.01 hours, and with volumetric organic loads (Lv of 7.68, 6.19 and 4.61 kg/day.m3, respectively. Also, the kinetic mass transfer constant (k was calculated and it presented a value of 0.02 m/day. On the other hand, an F/M ratio of 0.4 was determined, indicating that the process had a similar performance to an extended aeration system. Finally, the biomass generated inside the reactor was analyzed, obtaining a value of 11560 mg /L, which is a higher value than those of conventional systems.

  9. Treatment of fish processing wastewater in a one-step or two-step upflow anaerobic sludge blanket (UASB) reactor

    NARCIS (Netherlands)

    Paluenzuela-Rollon, A.; Zeeman, G.; Lubberding, H.J.; Lettinga, G.; Alaerts, G.J.

    2002-01-01

    The performance of one-step UASB reactors treating fish processing wastewater of different lipid levels was determined using artificially generated influent simulating that of the canning of sardines and tuna. The organic loading rates (OLR) and the hydraulic retention times (HRT) were 5-8 g COD.l(-

  10. Treatment of fish processing wastewater in a one-step or two-step upflow anaerobic sludge blanket (UASB) reactor

    NARCIS (Netherlands)

    Paluenzuela-Rollon, A.; Zeeman, G.; Lubberding, H.J.; Lettinga, G.; Alaerts, G.J.

    2002-01-01

    The performance of one-step UASB reactors treating fish processing wastewater of different lipid levels was determined using artificially generated influent simulating that of the canning of sardines and tuna. The organic loading rates (OLR) and the hydraulic retention times (HRT) were 5-8 g

  11. Treatment of agro based industrial wastewater in sequencing batch reactor: performance evaluation and growth kinetics of aerobic biomass.

    Science.gov (United States)

    Lim, J X; Vadivelu, V M

    2014-12-15

    A sequencing batch reactor (SBR) with a working volume of 8 L and an exchange ratio of 25% was used to enrich biomass for the treatment of the anaerobically treated low pH palm oil mill effluent (POME). The influent concentration was stepwise increased from 5000 ± 500 mg COD/L to 11,500 ± 500 mg COD/L. The performance of the reactor was monitored at different organic loading rates (OLRs). It was found that approximately 90% of the COD content of the POME wastewater was successfully removed regardless of the OLR applied to the SBR. Cycle studies of the SBR show that the oxygen uptake by the biomass while there is no COD reduction may be due to the oxidation of the storage product by the biomass. Further, the growth kinetic parameters of the biomass were determined in batch experiments using respirometer. The maximum specific growth rate (μmax) was estimated to be 1.143 day(-1) while the half saturation constant (Ks) with respect to COD was determined to be 0.429 g COD/L. The decay coefficient (bD) and biomass yield (Y) were found to be 0.131 day(-1) and 0.272 mg biomass/mg COD consumed, respectively.

  12. Treatment of oilfield wastewater in moving bed biofilm reactors using a novel suspended ceramic biocarrier.

    Science.gov (United States)

    Dong, Zhiyong; Lu, Mang; Huang, Wenhui; Xu, Xiaochun

    2011-11-30

    In this study, a novel suspended ceramic carrier was prepared, which has high strength, optimum density (close to water), and high porosity. Two different carriers, unmodified and sepiolite-modified suspended ceramic carriers were used to feed two moving bed biofilm reactors (MBBRs) with a filling fraction of 50% to treat oilfield produced water. The hydraulic retention time (HRT) was varied from 36 to 10h. The results, during a monitoring period of 190 days, showed that removal efficiency of chemical oxygen demand was the highest in reactor 3 filled with the sepiolite-modified carriers, followed by reactor 2 filled with the unmodified carriers, with the lowest in reactor 1 (activated sludge reactor), at an HRT of 10h. Similar trends were found in the removal efficiencies of ammonia nitrogen and polycyclic aromatic hydrocarbons. Reactor 3 was more shock resistant than reactors 2 and 1. The results indicate that the suspended ceramic carrier is an excellent MBBR carrier.

  13. Design and Characterization of a Novel Rotating Corrugated Drum Reactor for Wastewater Treatment

    Directory of Open Access Journals (Sweden)

    Sarah M. Meunier

    2010-01-01

    Full Text Available A novel photoreactor system consisting of a TiO2-coated corrugated drum and a UV light source is experimentally characterized for the treatment of phenol-polluted wastewaters. The design incorporates periodic illumination and increased agitation through the introduction of rotation. The effects ofrent degrees and flat fins to increase surface area, varying rotational speed, initial pollutant concentration, and illumination intensities were studied. The corrugated and finned drums did not exhibit a critical rotational speed, indicating that there is excellent mass transfer in the system. A Langmuir-Hinshelwood kinetic analysis was applied to the degradation, and an average adsorption coefficient of K=0.120 L/mg was observed. The overall reaction rate increased with increasing surface area from 0.046 mg/L/min for the annular drum to 0.16 mg/L/min for the 40-fin drum. The apparent photonic efficiency was found to increase with increasing surface area at a faster rate for the corrugations than for the fin additions. The energy efficiency (EE/O found for the drums varied from 380–550 kWh/m3, which is up to 490% more energy-efficient than the annular drum.

  14. Application of IC Anaerobic Reactor in Wastewater Treatment%内循环(IC)厌氧反应器在废水处理中的应用

    Institute of Scientific and Technical Information of China (English)

    钟启俊

    2014-01-01

    The paper introduces the basic principle of inner circulating (IC) anaerobic reactor, analyzes the technology characteristic of IC anaerobic reactor, namely IC anaerobic reactor is an anaerobic reactor with new type and high efifciency, and explains the application development and prospect of the IC anaerobic reactor in wastewater treatment.%介绍了内循环(IC)厌氧反应器的基本原理,分析了IC厌氧反应器的工艺特点,即IC厌氧反应器是新型高效厌氧生物反应器,扼述了IC厌氧反应器在废水处理中的应用进展及前景。

  15. Preparation of ceramic-corrosion-cell fillers and application for cyclohexanone industry wastewater treatment in electrobath reactor

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Suqing; Qi, Yuanfeng; Gao, Yue; Xu, Yunyun; Gao, Fan; Yu, Huan; Lu, Yue [Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, 250100 Jinan (China); Yue, Qinyan, E-mail: qyyue58@yahoo.com.cn [Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, 250100 Jinan (China); Li, Jinze [Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, 250100 Jinan (China)

    2011-11-30

    Highlights: Black-Right-Pointing-Pointer Dried sewage sludge and scrap iron used as raw materials for sintering ceramics. Black-Right-Pointing-Pointer The new media ceramics used as fillers in electrobath of micro-electrolysis. Black-Right-Pointing-Pointer Modified micro-electrolysis used in cyclohexanone industry wastewater treatment. Black-Right-Pointing-Pointer This modified micro-electrolysis could avoid failure of the electrobath reactor. - Abstract: As new media, ceramic-corrosion-cell fillers (Cathode Ceramic-corrosion-cell Fillers - CCF, and Anode Ceramic-corrosion-cell Fillers - ACF) employed in electrobath were investigated for cyclohexanone industry wastewater treatment. 60.0 wt% of dried sewage sludge and 40.0 wt% of clay, 40.0 wt% of scrap iron and 60.0 wt% of clay were utilized as raw materials for the preparation of raw CCF and ACF, respectively. The raw CCF and ACF were respectively sintered at 400 Degree-Sign C for 20 min in anoxic conditions. The physical properties (bulk density, grain density and water absorption), structural and morphological characters and toxic metal leaching contents were tested. The influences of pH, hydraulic retention time (HRT) and the media height on removal of COD{sub Cr} and cyclohexanone were studied. The results showed that the bulk density and grain density of CCF and ACF were 869.0 kg m{sup -3} and 936.3 kg m{sup -3}, 1245.0 kg m{sup -3} and 1420.0 kg m{sup -3}, respectively. The contents of toxic metal (Cu, Zn, Cd, Pb, Cr, Ba, Ni and As) were all below the detection limit. When pH of 3-4, HRT of 6 h and the media height of 60 cm were applied, about 90% of COD{sub cr} and cyclohexanone were removed.

  16. Degradation of polycyclic aromatic hydrocarbons in a coking wastewater treatment plant residual by an O3/ultraviolet fluidized bed reactor.

    Science.gov (United States)

    Lin, Chong; Zhang, Wanhui; Yuan, Mengyang; Feng, Chunhua; Ren, Yuan; Wei, Chaohai

    2014-09-01

    Coking wastewater treatment plant (CWWTP) represents a typical point source of polycyclic aromatic hydrocarbons (PAHs) to the water environment and threatens the safety of drinking water in downstream regions. To enhance the removal of residual PAHs from bio-treated coking wastewater, a pilot-scale O3/ultraviolet (UV) fluidized bed reactor (O3/UV FBR) was designed and different operating factors including UV irradiation intensity, pH, initial concentration, contact time, and hydraulic retention time (HRT) were investigated at an ozone level of 240 g h(-1) and 25 ± 3 °C. A health risk evaluation and cost analysis were also carried out under the continuous-flow mode. As far as we know, this is the first time an O3/UV FBR has been explored for PAHs treatment. The results indicated that between 41 and 75 % of 18 target PAHs were removed in O3/UV FBR due to synergistic effects of UV irradiation. Both increased reaction time and increased pH were beneficial for the removal of PAHs. The degradation of the target PAHs within 8 h can be well fitted by the pseudo-first-order kinetics (R (2) > 0.920). The reaction rate was also positively correlated with the initial concentrations of PAHs. The health risk assessment showed that the total amount of carcinogenic substance exposure to surface water was reduced by 0.432 g day(-1). The economic analysis showed that the O3/UV FBR was able to remove 18 target PAHs at a cost of US$0.34 m(-3). These results suggest that O3/UV FBR is efficient in removing residuals from CWWTP, thus reducing the accumulation of persistent pollutant released to surface water.

  17. Celebrating 40 years anaerobic sludge bed reactors for industrial wastewater treatment

    NARCIS (Netherlands)

    Van Lier, J.B.; Van der Zee, F.P.; Frijters, C.T.M.J.; Ersahin, M.E.

    2015-01-01

    In the last 40 years, anaerobic sludge bed reactor technology evolved from localized lab-scale trials to worldwide successful implementations at a variety of industries. High-rate sludge bed reactors are characterized by a very small foot print and high applicable volumetric loading rates. Best perf

  18. Determination of optimum conditions for dairy wastewater treatment in UAASB reactor for removal of nutrients.

    Science.gov (United States)

    Amini, Malihe; Younesi, Habibollah; Lorestani, Ali Akbar Zinatizadeh; Najafpour, Ghasem

    2013-10-01

    In this study, the granular sludge was generated for simultaneous nitrification, denitrification and phosphorus removal (SNDPR) and studied on a laboratory scale. Analyzing the nutrients removal percentages from wastewater were scrutinized by using an optimization of the variables, i.e., COD:N:P ratio, OLR, aeration time, MLSS, F:M and HRT. These 6 interrelated parameters were evaluated as the process response. Microscopic observations of the performance of the SNDPR process revealed that the granules included Bacillus sp. in the bacterial community. According to these results, the UAASB system produced an effluent that lends dairy wastewater suitable for land irrigation and that this an attractive process of using granular sludge is appropriate for achieving carbon, nitrogen and phosphorus removal from nutrient-rich wastewater by a biological method.

  19. Treatment of petroleum refinery wastewater containing heavily polluting substances in an aerobic submerged fixed-bed reactor.

    Science.gov (United States)

    Vendramel, S; Bassin, J P; Dezotti, M; Sant'Anna, G L

    2015-01-01

    Petroleum refineries produce large amount of wastewaters, which often contain a wide range of different compounds. Some of these constituents may be recalcitrant and therefore difficult to be treated biologically. This study evaluated the capability of an aerobic submerged fixed-bed reactor (ASFBR) containing a corrugated PVC support material for biofilm attachment to treat a complex and high-strength organic wastewater coming from a petroleum refinery. The reactor operation was divided into five experimental runs which lasted more than 250 days. During the reactor operation, the applied volumetric organic load was varied within the range of 0.5-2.4 kgCOD.m(-3).d(-1). Despite the inherent fluctuations on the characteristics of the complex wastewater and the slight decrease in the reactor performance when the influent organic load was increased, the ASFBR showed good stability and allowed to reach chemical oxygen demand, dissolved organic carbon and total suspended solids removals up to 91%, 90% and 92%, respectively. Appreciable ammonium removal was obtained (around 90%). Some challenging aspects of reactor operation such as biofilm quantification and important biofilm constituents (e.g. polysaccharides (PS) and proteins (PT)) were also addressed in this work. Average PS/volatile attached solids (VAS) and PT/VAS ratios were around 6% and 50%, respectively. The support material promoted biofilm attachment without appreciable loss of solids and allowed long-term operation without clogging. Microscopic observations of the microbial community revealed great diversity of higher organisms, such as protozoa and rotifers, suggesting that toxic compounds found in the wastewater were possibly removed in the biofilm.

  20. Development of a trickle bed reactor of electro-Fenton process for wastewater treatment

    Energy Technology Data Exchange (ETDEWEB)

    Lei, Yangming [Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 401122 (China); School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Liu, Hong, E-mail: liuhong@cigit.ac.cn [Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 401122 (China); Shen, Zhemin, E-mail: zmshen@sjtu.edu.cn [School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Wang, Wenhua [School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China)

    2013-10-15

    Highlights: • An electrochemical trickle bed reactor was composed of C-PTFE-coated graphite chips. • The trickle bed reactor had a high H{sub 2}O{sub 2} production rate in a dilute electrolyte. • An azo dye was effectively decomposed by the electro-Fenton process in the reactor. -- Abstract: To avoid electrolyte leakage and gas bubbles in the electro-Fenton (E-Fenton) reactors using a gas diffusion cathode, we developed a trickle bed cathode by coating a layer composed of carbon black and polytetrafluoroethylene (C-PTFE) onto graphite chips instead of carbon cloth. The trickle bed cathode was optimized by single-factor and orthogonal experiments, in which carbon black, PTFE, and a surfactant were considered as the determinant of the performance of graphite chips. In the reactor assembled by the trickle bed cathode, H{sub 2}O{sub 2} was generated with a current of 0.3 A and a current efficiency of 60%. This performance was attributed to the fine distribution of electrolyte and air, as well as the effective oxygen transfer from the gas phase to the electrolyte–cathode interface. In terms of H{sub 2}O{sub 2} generation and current efficiency, the developed trickle bed reactor had a performance comparable to that of the conventional E-Fenton reactor using a gas diffusion cathode. Further, 123 mg L{sup −1} of reactive brilliant red X-3B in aqueous solution was decomposed in the optimized trickle bed reactor as E-Fenton reactor. The decolorization ratio reached 97% within 20 min, and the mineralization reached 87% within 3 h.

  1. Advanced Treatment of Wastewater from UASB Reactor by Microfiltration Membrane Associated With Disinfection by Ultraviolet Radiation

    Directory of Open Access Journals (Sweden)

    André Aguiar Battistelli

    2016-03-01

    Full Text Available The low efficiency of UASB bioreactors, regarding the removal of nutrient, organic matter and pathogens, makes it necessary to carry out a post treatment, in order to improve the quality of the effluent. Accordingly, this research has examined the use of microfiltration associated to the disinfection by the ultraviolet radiation, as an option to this post treatment. For so, were collected samples of UASB reactors’ effluent, in order to carry out some tests on a pilot microfiltration system, using in one of the samples pre-coagulation with vegetable tannin. After, all the microfiltrated samples were inserted in a UV reactor, applying different radiation doses, ranging from 43.8 to 194.9 mWs.cm-2, to simulate the disinfection. The system used showed good results in terms of turbidity removal, apparent color, true color, phosphorus, nitrogen, total solids, total suspended solids and COD, reaching in the best operating condition, the following values: 1.90 uT, 15 uC, 10 uC, 0.94 mg/L, 17.64 mg/L, 123 mg/L, 0 mg/L and 10 mg/L, respectively, which represent the following removal percentages: 91.3%, 93.6%, 82.0%, 55.1%, 26.3%, 35% and 86.1%. The inactivation obtained for E. coli, total coliforms, colifagos and Clostridium perfrigens was satisfactory, achieving a higher inactivation than the detection limit of the method used, when submitted to the highests tested radiation doses. The average permeate flux ranged from 55.2 to 133.6 L.m-2.h-1.

  2. Development of a trickle bed reactor of electro-Fenton process for wastewater treatment.

    Science.gov (United States)

    Lei, Yangming; Liu, Hong; Shen, Zhemin; Wang, Wenhua

    2013-10-15

    To avoid electrolyte leakage and gas bubbles in the electro-Fenton (E-Fenton) reactors using a gas diffusion cathode, we developed a trickle bed cathode by coating a layer composed of carbon black and polytetrafluoroethylene (C-PTFE) onto graphite chips instead of carbon cloth. The trickle bed cathode was optimized by single-factor and orthogonal experiments, in which carbon black, PTFE, and a surfactant were considered as the determinant of the performance of graphite chips. In the reactor assembled by the trickle bed cathode, H2O2 was generated with a current of 0.3A and a current efficiency of 60%. This performance was attributed to the fine distribution of electrolyte and air, as well as the effective oxygen transfer from the gas phase to the electrolyte-cathode interface. In terms of H2O2 generation and current efficiency, the developed trickle bed reactor had a performance comparable to that of the conventional E-Fenton reactor using a gas diffusion cathode. Further, 123 mg L(-1) of reactive brilliant red X-3B in aqueous solution was decomposed in the optimized trickle bed reactor as E-Fenton reactor. The decolorization ratio reached 97% within 20 min, and the mineralization reached 87% within 3h.

  3. Can those organic micro-pollutants that are recalcitrant in activated sludge treatment be removed from wastewater by biofilm reactors (slow sand filters)?

    Energy Technology Data Exchange (ETDEWEB)

    Escolà Casas, Mònica; Bester, Kai, E-mail: kb@dmu.dk

    2015-02-15

    The degradation of seven compounds which are usually recalcitrant in classical activated sludge treatment (e.g., diclofenac, propranolol, iopromide, iohexol, iomeprol tebuconazole and propiconazole) was studied in a biofilm reactor (slow sand filtration). This reactor was used to treat real effluent-wastewater at different flow rates (hydraulic loadings) under aerobic conditions so removal and degradation kinetics of these recalcitrant compounds were calculated. With the hydraulic loading rate of 0.012 m{sup 3} m{sup 2} h{sup −1} the reactor removed 41, 94, 58, 57 and 85% of diclofenac, propranolol, iopromide, iohexol and iomeprol respectively. For these compounds the removal efficiency was dependent on hydraulic residence-times. Only 59 and 21% of the incoming tebuconazole and propiconazole respectively were removed but their removal did not depend on hydraulic residence time. Biofilm reactors are thus efficient in removing micro-pollutants and could be considered as an option for advanced treatment in small wastewater treatment plants. - Highlights: • A biofilm reactor (biofilter) can remove micro-pollutants from WWTP effluent. • Sorption could be excluded as the dominant removal mechanism. • Biodegradation was responsible for removing seven compounds. • The removal efficiency was usually proportional to the hydraulic residence-time. • Single first-order removal rates apply for most compounds.

  4. Biological wastewater treatment in brewhouses

    Directory of Open Access Journals (Sweden)

    Voronov Yuriy Viktorovich

    2014-03-01

    Full Text Available In the article the working principles of wastewater biological treatment for food companies is reviewed, including dairies and breweries, the waters of which are highly concentrated with dissolved organic contaminants and suspended solids. An example of successful implementation is anaerobic-aerobic treatment plants. Implementation of these treatment plants can achieve the required wastewater treatment at the lowest operational expenses and low volumes of secondary waste generated. Waste water from the food companies have high concentration of various organic contaminants (fats, proteins, starch, sugar, etc.. For such wastewater, high rates of suspended solids, grease and other contaminants are characteristic. Wastewater food industry requires effective purification flowsheets using biological treatment facilities. At the moment methods for the anaerobic-aerobic purification are applied. One of such methods is the treatment of wastewater at ASB-reactor (methane reactor and the further tertiary treatment on the OSB-reactor (aeration. Anaerobic process means water treatment processes in anoxic conditions. The anaerobic treatment of organic contamination is based on the process of methane fermentation - the process of converting substances to biogas. The role of biological effluent treatment is discussed with special attention given to combined anaerobic/aerobic treatment. Combining anaerobic pre-treatment with aerobic post-treatment integrates the advantages of both processes, amongst which there are reduced energy consumption (net energy production, reduced biological sludge production and limited space requirements. This combination allows for significant savings for operational costs as compared to complete aerobic treatment without compromising the required discharge standards. Anaerobic treatment is a proven and energy efficient method to treat industrial wastewater effluents. These days, more and more emphasis is laid on low energy use, a

  5. Modeling and monitoring cyclic and linear volatile methylsiloxanes in a wastewater treatment plant using constant water level sequencing batch reactors

    Energy Technology Data Exchange (ETDEWEB)

    Wang, De-Gao, E-mail: degaowang@dlmu.edu.cn; Du, Juan; Pei, Wei; Liu, Yongjun; Guo, Mingxing

    2015-04-15

    The fate of cyclic and linear volatile methylsiloxanes (VMSs) was evaluated in a wastewater treatment plant (WWTP) using constant water level sequencing batch reactors from Dalian, China. Influent, effluent, and sewage sludge samples were collected for seven consecutive days. The mean concentrations of cyclic VMSs (cVMSs) in influent and effluent samples are 1.05 μg L{sup −1} and 0.343 μg L{sup −1}; the total removal efficiency of VMSs is > 60%. Linear VMS (lVMS) concentration is under the quantification limitation in aquatic samples but is found in sludge samples with a value of 90 μg kg{sup −1}. High solid-water partition coefficients result in high VMS concentrations in sludge with the mean value of 5030 μg kg{sup −1}. No significant differences of the daily mass flows are found when comparing the concentration during the weekend and during working days. The estimated mass load of total cVMSs is 194 mg d{sup −1} 1000 inhabitants{sup −1} derived for the population. A mass balance model of the WWTP was developed and derived to simulate the fate of cVMSs. The removal by sorption on sludge increases, and the volatilization decreases with increasing hydrophobicity and decreasing volatility for cVMSs. Sensitivity analysis shows that the total suspended solid concentration in the effluent, mixed liquor suspended solid concentration, the sewage sludge flow rate, and the influent flow rate are the most influential parameters on the mass distribution of cVMSs in this WWTP. - Highlights: • A mass balance model for siloxanes was developed in sequencing batch reactor. • Total suspended solid in effluent has the most influence on removal efficiency. • Enhancement of suspended solid removal reduces the release to aquatic environment.

  6. Anaerobic Treatment of Agricultural Residues and Wastewater - Application of High-Rate Reactors

    OpenAIRE

    Parawira, Wilson

    2004-01-01

    The production of methane via anaerobic digestion of agricultural residues and industrial wastewater would benefit society by providing a clean fuel from renewable feedstocks. This would reduce the use of fossil-fuel-derived energy and reduce environmental impact, including global warming and pollution. Limitation of carbon dioxide and other emissions through emission regulations, carbon taxes, and subsidies on biomass energy is making anaerobic digestion a more attractive and competitive tec...

  7. Treatment of sauce wastewater by sequencing biological-chemical reactor (SBCR)

    Institute of Scientific and Technical Information of China (English)

    田禹; 郑蕾

    2003-01-01

    The concept of SBCR was put forward to treat sauce wastewater. Further study showed that addingappropriate amount of calcium chloride to SBR can improve the quality of effluent. The removal rate of COD andcolor was 84% and 80% , 36% , 96% higher than those of traditional SBR respectively. The results of continu-ous experiments and biophase observing showed that calcium chloride accumulation increased the sludge produc-tion slightly while the sludge dewatering characteristic was improved.

  8. Biological removal of antiandrogenic activity in gray wastewater and coking wastewater by membrane reactor process.

    Science.gov (United States)

    Ma, Dehua; Chen, Lujun; Liu, Cong; Bao, Chenjun; Liu, Rui

    2015-07-01

    A recombinant human androgen receptor yeast assay was applied to investigate the occurrence of antiandrogens as well as the mechanism for their removal during gray wastewater and coking wastewater treatment. The membrane reactor (MBR) system for gray wastewater treatment could remove 88.0% of antiandrogenic activity exerted by weakly polar extracts and 97.3% of that by moderately strong polar extracts, but only 32.5% of that contributed by strong polar extracts. Biodegradation by microorganisms in the MBR contributed to 95.9% of the total removal. After the treatment, the concentration of antiandrogenic activity in the effluent was still 1.05 μg flutamide equivalence (FEQ)/L, 36.2% of which was due to strong polar extracts. In the anaerobic reactor, anoxic reactor, and membrane reactor system for coking wastewater treatment, the antiandrogenic activity of raw coking wastewater was 78.6 mg FEQ/L, and the effluent of the treatment system had only 0.34 mg FEQ/L. The antiandrogenic activity mainly existed in the medium strong polar and strong polar extracts. Biodegradation by microorganisms contributed to at least 89.2% of the total antiandrogenic activity removal in the system. Biodegradation was the main removal mechanism of antiandrogenic activity in both the wastewater treatment systems. Copyright © 2015. Published by Elsevier B.V.

  9. Effects of Temperature and Hydraulic Residence Time (HRT) on Treatment of Dilute Wastewater in a Carrier Anaerobic Baffled Reactor

    Institute of Scientific and Technical Information of China (English)

    HUA-JUN FENG; LI-FANG HU; DAN SHAN; CHENG-RAN FANG; DONG-SHENG SHEN

    2008-01-01

    To examine the effect of hydraulic residence time (HRT) on the performance and stability,to treat dilute wastewater at different operational temperatures in a carrier anaerobic baffled reactor (CABR),and hence to gain a deeper insight into microbial responses to hydraulic shocks on the base of the relationships among macroscopic performance,catabolic intermediate,and microcosmic alternation.Methods COD,VFAs,and microbial activity were detected with constant feed strength (300 mg/L) at different HRTs (9-18 h) and temperatures (10℃-28℃) in a CABR.Results The removal efficiencies declined with the decreases of HRTs and temperatures.However,the COD removal load was still higher at short HRT than at long HRT.Devastating reactor performance happened at temperature of 10℃ and at HRT of 9 h.HRTs had effect on the VFAs in the reactor slightly both at high and low temperatures,but the reasons differed from each other.Microbial activity was sensitive to indicate changes of environmental and operational parameters in the reactor.Conclusion The CABR offers to certain extent an application to treat dilute wastewater under a hydraulic-shock at temperatures from 10℃ to 28℃.

  10. Quantification method of N2O emission from full-scale biological nutrient removal wastewater treatment plant by laboratory batch reactor analysis.

    Science.gov (United States)

    Lim, Yesul; Kim, Dong-Jin

    2014-08-01

    This study proposes a simplified method for the quantification of N2O emission from a biological nutrient removal wastewater treatment plant (WWTP). The method incorporates a laboratory-scale batch reactor which had almost the same operational (wastewater and sludge flow rates) condition of a unit operation/process of the WWTP. Cumulative N2O emissions from the batch reactor at the corresponding hydraulic retention times of the full-scale units (primary and secondary clarifiers, pre-anoxic, anaerobic, anoxic and aerobic basins) were used for the quantification of N2O emission. The analysis showed that the aerobic basin emitted 95% of the total emission and the emission factor (yield) reached 0.8% based on the influent nitrogen load. The method successfully estimated N2O emission from the WWTP and it has shown advantages in measurement time and cost over the direct field measurement (floating chamber) method. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Reduced membrane fouling in a novel bio-entrapped membrane reactor for treatment of food and beverage processing wastewater.

    Science.gov (United States)

    Ng, Kok-Kwang; Lin, Cheng-Fang; Panchangam, Sri Chandana; Andy Hong, Pui-Kwan; Yang, Ping-Yi

    2011-08-01

    A novel Bio-Entrapped Membrane Reactor (BEMR) packed with bio-ball carriers was constructed and investigated for organics removal and membrane fouling by soluble microbial products (SMP). An objective was to evaluate the stability of the filtration process in membrane bioreactors through backwashing and chemical cleaning. The novel BEMR was compared to a conventional membrane bioreactor (CMBR) on performance, with both treating identical wastewater from a food and beverage processing plant. The new reactor has a longer sludge retention time (SRT) and lower mixed liquor suspended solids (MLSS) content than does the conventional. Three different hydraulic retention times (HRTs) of 6, 9, and 12 h were studied. The results show faster rise of the transmembrane pressure (TMP) with decreasing hydraulic retention time (HRT) in both reactors, where most significant membrane fouling was associated with high SMP (consisting of carbohydrate and protein) contents that were prevalent at the shortest HRT of 6 h. Membrane fouling was improved in the new reactor, which led to a longer membrane service period with the new reactor. Rapid membrane fouling was attributed to increased production of biomass and SMP, as in the conventional reactor. SMP of 10-100 kDa from both MBRs were predominant with more than 70% of the SMP <100 kDa. Protein was the major component of SMP rather than carbohydrate in both reactors. The new reactor sustained operation at constant permeate flux that required seven times less frequent chemical cleaning than did the conventional reactor. The new BEMR offers effective organics removal while reducing membrane fouling. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. THE EFFECT OF INFLUENT CONCENTRATION AND HYDRAULIC LOADING RATE (HLR TO BOD AND COD REMOVAL ON ARTIFICIAL DOMESTIC WASTEWATER TREATMENT (GREY WATER USING UASB REACTOR

    Directory of Open Access Journals (Sweden)

    Syafrudin Syafrudin

    2014-05-01

    Full Text Available Upflow anaerobic sludge blanket (UASB reactor is one of anaerobic biological treatment was develop in late 1970’s. UASB reactor is suitable for the tropic areas because it has a high temperature about 20°-30°C. Domestic wastewater is divided into two types, namely black water and grey water. But in this case used domestic grey water. Grey water is household wastewater from showers, sinks and kitchen. Grey water has a total 75% of the domestic wastewater volume. The research was conducted in laboratory scale. This study performed a variation of Hydraulic Loading Rate (HLR and the influent concentration. There were 25 reactors include 5 variations of influent concentration and 5 Hydraulic Loading Rate’s (HLR variation. The research could asses BOD5 and COD removal with treatment in UASB. Efficiency of BOD5 removal by varying the influent concentration and HLR was about 38%-75% and COD was about 40%-77%. The lower concentration could be increase efficiency BOD5 and COD removal. Influent concentration optimum occurred when middle concentration was about 840 mg/L COD and HLR optimum was 0,05 m3/m2/hour.

  13. Microbial community structural analysis of an expanded granular sludge bed (EGSB) reactor for beet sugar industrial wastewater (BSIW) treatment.

    Science.gov (United States)

    Ambuchi, John Justo; Liu, Junfeng; Wang, Haiman; Shan, Lili; Zhou, Xiangtong; Mohammed, Mohammed O A; Feng, Yujie

    2016-05-01

    A looming global energy crisis has directly increased biomethanation processes using anaerobic digestion technology. However, much knowledge on the microbial community structure, their distribution within the digester and related functions remains extremely scanty and unavailable in some cases, yet very valuable in the improvement of the anaerobic bioprocesses. Using pyrosequencing technique based on Miseq PE 3000, microbial community population profiles were determined in an operated mesophilic expanded granular sludge bed (EGSB) reactor treating beet sugar industrial wastewater (BSIW) in the laboratory scale. Further, the distribution of the organisms in the lower, middle and upper sections within the reactor was examined. To our knowledge, this kind of analysis of the microbial community in a reactor treating BSIW is the first of its kind. A total of 44,204 non-chimeric reads with average length beyond 450 bp were yielded. Both bacterial and archaeal communities were identified with archaea predominance (60 %) observed in the middle section. Bayesian classifier yielded 164 families with only 0.73 % sequences which could not be classified to any taxa at family level. The overall phylum predominance in the reactor showed Firmicutes, Euryarchaeota, Chloroflexi, Proteobacteria and Bacteroidetes in the descending order. Our results clearly demonstrate a highly diverse microbial community population of an anaerobic reactor treating BSIW, with distinct distribution levels within the reactor.

  14. Rotating biological contactor reactor with biofilm promoting mats for treatment of benzene and xylene containing wastewater.

    Science.gov (United States)

    Sarayu, K; Sandhya, S

    2012-12-01

    A novel rotating biological contactor (RBC) bioreactor immobilized with microorganisms was designed to remove volatile organic compounds (VOC), such as benzene and xylene from emissions, and its performance was investigated. Gas-phase VOCs stripped by air injection were 98 % removed in the RBC when the superficial air flow rate was 375 ml/h (1,193 and 1,226 mg/l of benzene and xylene, respectively). The maximum removal rate was observed to be 1,007 and 1,872 mg/m(3)/day for benzene and xylene, respectively. The concentration profile of benzene and xylene along the RBC was dependent on the air flow rate and the degree of microbial adaptation. Air flow rate and residence time were found to be the most important operational parameters for the RBC reactor. By manipulating these operational parameters, the removal efficiency and capacity of the bioreactor could be enhanced. The kinetic constant K (s) demonstrated a linear relationship that indicated the maximum removal of benzene and xylene in RBC reactor. The phylogenic profile shows the presence of bacterium like Pseudomonas sp., Bacillus sp., and Enterococcus sp., which belonged to the phylum Firmicutes, and Proteobacteria that were responsible for the 98 % organic removal in the RBC.

  15. Carbonaceous materials in petrochemical wastewater before and after treatment in an aerated submerged fixed-bed biofilm reactor

    Directory of Open Access Journals (Sweden)

    Trojanowicz Karol

    2016-09-01

    Full Text Available Results of the studies for determining fractions of organic contaminants in a pretreated petrochemical wastewater flowing into a pilot Aerated Submerged Fixed-Bed Biofilm Reactor (ASFBBR are presented and discussed. The method of chemical oxygen demand (COD fractionation consisted of physical tests and biological assays. It was found that the main part of the total COD in the petrochemical, pretreated wastewater was soluble organic substance with average value of 57.6%. The fractions of particulate and colloidal organic matter were found to be 31.8% and 10.6%, respectively. About 40% of COD in the influent was determined as readily biodegradable COD. The inert fraction of the soluble organic matter in the petrochemical wastewater constituted about 60% of the influent colloidal and soluble COD. Determination of degree of hydrolysis (DH of the colloidal fraction of COD was also included in the paper. The estimated value of DH was about 62%. Values of the assayed COD fractions were compared with the same parameters obtained for municipal wastewater by other authors.

  16. Novel Gas-liquid Hybrid Discharge Reactor for 4-CP Containing Wastewater Treatment

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    In order to improve 4-CP degradation efficiency, a novel gas-liquid hybrid discharge (HD) reactor was developed. Removal of 4-CP with spark-spark discharge (SSD) was higher than that with spark-corona discharge (SCD). Amount of H2O2 and O3 produced with SSD were larger than that with SCD. ·OH formation was increased by the combination of H2O2 and O3.The contribution of ·OH (38 % formed by O3 conversion) oxidation on removal of 4-CP accounted for nearly 60 %. The other effects of ultraviolet radiation, intense shock waves and pyrolysis,played partial roles in about 40 % of removal rate.

  17. Treatment of Preserved Wastewater with UASB

    Directory of Open Access Journals (Sweden)

    Zhang Yongli

    2016-01-01

    Full Text Available The preserved wastewater was treated by the upflow anaerobic sludge blanket (UASB reactor, the effects of the anaerobic time on COD, turbidity, pH, conductivity, SS, absorbance, and decolorization rate of the preserved wastewater were investigated. The results showed that with the increase of the anaerobic time, the treatment effect of the UASB reactor on the preserved wastewater was improved. Under the optimum anaerobic time condition, the COD removal rate, turbidity removal rate, pH, conductivity, SS removal rate, absorbance, and decoloration rate of the wastewater were 49.6%, 38.5%, 5.68, 0.518×104, 24%, 0.598, and 32.4%, respectively. Therefore, the UASB reactor can be used as a pretreatment for the preserved wastewater, in order to reduce the difficulty of subsequent aerobic treatment.

  18. Artificial intelligence based model for optimization of COD removal efficiency of an up-flow anaerobic sludge blanket reactor in the saline wastewater treatment.

    Science.gov (United States)

    Picos-Benítez, Alain R; López-Hincapié, Juan D; Chávez-Ramírez, Abraham U; Rodríguez-García, Adrián

    2017-03-01

    The complex non-linear behavior presented in the biological treatment of wastewater requires an accurate model to predict the system performance. This study evaluates the effectiveness of an artificial intelligence (AI) model, based on the combination of artificial neural networks (ANNs) and genetic algorithms (GAs), to find the optimum performance of an up-flow anaerobic sludge blanket reactor (UASB) for saline wastewater treatment. Chemical oxygen demand (COD) removal was predicted using conductivity, organic loading rate (OLR) and temperature as input variables. The ANN model was built from experimental data and performance was assessed through the maximum mean absolute percentage error (= 9.226%) computed from the measured and model predicted values of the COD. Accordingly, the ANN model was used as a fitness function in a GA to find the best operational condition. In the worst case scenario (low energy requirements, high OLR usage and high salinity) this model guaranteed COD removal efficiency values above 70%. This result is consistent and was validated experimentally, confirming that this ANN-GA model can be used as a tool to achieve the best performance of a UASB reactor with the minimum requirement of energy for saline wastewater treatment.

  19. On-site treatment of high-strength alcohol distillery wastewater by a pilot-scale thermophilic multi-staged UASB (MS-UASB) reactor.

    Science.gov (United States)

    Yamada, M; Yamauchi, M; Suzuki, T; Ohashi, A; Harada, H

    2006-01-01

    A pilot-scale multi-staged UASB (MS-UASB) reactor with a working volume of 2.5 m3 was operated for thermophilic (55 degrees C) treatment of an alcohol distillery wastewater for a period of over 600 days. The reactor steadily achieved a super-high rate COD removal, that is, 60 kgCOD m(-3) d(-1) with over 80% COD removal. However, when higher organic loading rates were further imposed upon the reactor, that is, above 90 kgCOD m(-3) d(-1) for barely-based alcohol distillery wastewater (ADWW) and above 100 kgCOD m(-3) d(-1) for sweet potato-based ADWW, the reactor performance somewhat deteriorated to 60 and 70% COD removal, respectively. Methanogenic activity (MA) of the retained sludge in the thermophilic MS-UASB reactor was assessed along the time course of continuous run by serum-vial test using different substrates as a vial sole substrate. With the elapsed time of continuous run, hydrogen-utilizing MA, acetate-utilizing MA and propionate-fed MA increased at maximum of 13.2, 1.95 and 0.263 kgCOD kgVSS(-1) d(-1), respectively, indicating that propionate-fed MA attained only 1/50 of hydrogen-utilizing MA and 1/7 of acetate-utilizing MA. Since the ADWW applied herewith is a typical seasonal campaign wastewater, the influence of shut-down upon the decline in sludge MA was also investigated. Hydrogen-utilizing MA and acetate-utilizing MA decreased slightly by 3/4, during a month of non-feeding period, whereas propionate-fed MA were decreased significantly by 1/5. Relatively low values of propionate-fed MA and its vulnerability to adverse conditions suggests that the propionate degradation step is the most critical bottleneck of overall anaerobic degradation of organic matters under thermophilic condition.

  20. The innovative moving bed biofilm reactor/solids contact reaeration process for secondary treatment of municipal wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Rusten, B.; McCoy, M.; Proctor, R.; Siljudalen, J.G.

    1998-07-01

    The innovative moving bed biofilm reactor/solids contact reaeration (MBBR/SCR) process has been chosen for a new wastewater treatment plant serving a population of 200,000 at Moa Point, Wellington, New Zealand. Because the MBBR/SCR combination was new, a pilot-scale demonstration project was made part of the contract. Thorough pilot tests using a wide range of organic loads under both steady and transient-flow conditions demonstrated that the MBBR/SCR process produced the required effluent quality at loads higher than used in the original design. At 3 days mean cell residence time (MCRT) in the SCR stage, a final effluent with a 5-day biochemical oxygen demand (BOD{sub 5}) of less than 10 mg/L was achieved at an organic load on the MBBR of 15 g BOD{sub 5}/m{sup 2}{center_dot}d (5.0 kg BOD{sub 5}/m{sup 3}{center_dot}d). With the same MCRT, a final effluent of less than 15 mg BOD{sub 5}/L was achieved at an organic load on the MBBR of 20 g BOD{sub 5}/m{sup 2}{center_dot}d (6.7 kg BOD{sub 5}/m{sup 3}{center_dot}d). Dynamic loading tests demonstrated that a good-quality effluent was produced with a diurnal peak-hour load on the MBBR of more than 40 g BOD{sub 5}/m{sup 2}{center_dot}d (13.3 kg BOD{sub 5}/m{sup 3}{center_dot}d). The MBBR/SCR process was more compact and significantly cheaper than a conventional trickling filter/solids contact or activated-sludge process at the Moa Point site.

  1. Modeling and monitoring cyclic and linear volatile methylsiloxanes in a wastewater treatment plant using constant water level sequencing batch reactors.

    Science.gov (United States)

    Wang, De-Gao; Du, Juan; Pei, Wei; Liu, Yongjun; Guo, Mingxing

    2015-04-15

    The fate of cyclic and linear volatile methylsiloxanes (VMSs) was evaluated in a wastewater treatment plant (WWTP) using constant water level sequencing batch reactors from Dalian, China. Influent, effluent, and sewage sludge samples were collected for seven consecutive days. The mean concentrations of cyclic VMSs (cVMSs) in influent and effluent samples are 1.05 μg L(-1) and 0.343 μg L(-1); the total removal efficiency of VMSs is >60%. Linear VMS (lVMS) concentration is under the quantification limitation in aquatic samples but is found in sludge samples with a value of 90 μg kg(-1). High solid-water partition coefficients result in high VMS concentrations in sludge with the mean value of 5030 μg kg(-1). No significant differences of the daily mass flows are found when comparing the concentration during the weekend and during working days. The estimated mass load of total cVMSs is 194 mg d(-1)1000 inhabitants(-1) derived for the population. A mass balance model of the WWTP was developed and derived to simulate the fate of cVMSs. The removal by sorption on sludge increases, and the volatilization decreases with increasing hydrophobicity and decreasing volatility for cVMSs. Sensitivity analysis shows that the total suspended solid concentration in the effluent, mixed liquor suspended solid concentration, the sewage sludge flow rate, and the influent flow rate are the most influential parameters on the mass distribution of cVMSs in this WWTP.

  2. Bio-entrapped membrane reactor and salt marsh sediment membrane bioreactor for the treatment of pharmaceutical wastewater: treatment performance and microbial communities.

    Science.gov (United States)

    Ng, Kok Kwang; Shi, Xueqing; Yao, Yinuo; Ng, How Yong

    2014-11-01

    In this study, a bio-entrapped membrane reactor (BEMR) and a salt marsh sediment membrane bioreactor (SMSMBR) were evaluated to study the organic treatment performance of pharmaceutical wastewater. The influences of hydraulic retention time (HRT) and salinity were also studied. The conventional biomass in the BEMR cannot tolerate well of the hypersaline conditions, resulting in total chemical oxygen demand (TCOD) removal efficiency of 54.2-68.0%. On the other hand, microorganisms in the SMSMBR, which was seeded from coastal shore, strived and was able to degrade the complex organic in the presence of salt effectively, achieving 74.7-90.9% of TCOD removal efficiencies. Marine microorganisms able to degrade recalcitrant compounds and utilize hydrocarbon compounds were found in the SMSMBR, which resulted in higher organic removal efficiency than the BEMR. However, specific nitrifying activity decreased and inhibited due to the saline effect that led to poor ammonia nitrogen removal. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Hydrolytic anaerobic reactor and aerated constructed wetland systems for municipal wastewater treatment - HIGHWET project.

    Science.gov (United States)

    Pascual, A; de la Varga, D; Arias, C A; Van Oirschot, D; Kilian, R; Álvarez, J A; Soto, M

    2017-01-01

    The HIGHWET project combines the hydrolytic up-flow sludge bed (HUSB) anaerobic digester and constructed wetlands (CWs) with forced aeration for decreasing the footprint and improving effluent quality. The HIGHWET plant in A Coruña (NW of Spain) treating municipal wastewater consists of a HUSB and four parallel subsurface horizontal flow (HF) CWs. HF1, HF2 and HF3 units are fitted with forced aeration, while the control HF4 is not aerated. All the HF units are provided with effluent recirculation, but different heights of gravel bed (0.8 m in HF1 and HF2, and 0.5 m in HF3 and HF4) are implemented. Besides, a tobermorite-enriched material was added in the HF2 unit in order to improve phosphorus removal. The HUSB 76-89% of total suspended solids (TSS) and about 40% of chemical oxygen demand (COD) and biological oxygen demand (BOD). Aerated HF units reached above 96% of TSS, COD and BOD at a surface loading rate of 29-47 g BOD5/m(2)·d. An aeration regime ranging from 5 h on/3 h off to 3 h on/5 h off was found to be adequate to optimize nitrogen removal, which ranged from 53% to 81%. Average removal rates of 3.4 ± 0.4 g total nitrogen (TN)/m(2)·d and 12.8 ± 3.7 g TN/m(3)·d were found in the aerated units, being 5.5 and 4.1 times higher than those of the non-aerated system. The tobermorite-enriched HF2 unit showed a distinct higher phosphate (60-67%) and total phosphorus (54%) removal.

  4. Utilization of moving bed biofilm reactor for industrial wastewater treatment containing ethylene glycol: kinetic and performance study.

    Science.gov (United States)

    Hassani, Amir Hessam; Borghei, Seyed Mehdi; Samadyar, Hassan; Ghanbari, Bastam

    2014-01-01

    One of the requirements for environmental engineering, which is currently being considered, is the removal of ethylene glycol (EG) as a hazardous environmental pollutant from industrial wastewater. Therefore, in a recent study, a moving bed biofilm reactor (MBBR) was applied at pilot scale to treat industrial effluents containing different concentrations of EG (600, 800, 1200, and 1800 mg L-1 ). The removal efficiency and kinetic analysis of the system were examined at different hydraulic retention times of 6, 8, 10, and 12 h as well as influent chemical oxygen demand (COD) ranged between values of 1000 and 3000mg L-1. In minimum and maximum COD Loadings, the MBBR showed 95.1% and 60.7% removal efficiencies, while 95.9% and 66.2% EG removal efficiencies were achieved in the lowest and highest EG concentrations. The results of the reactor modelling suggested compliance of the well-known modified Stover-Kincannon model with the system.

  5. Treatment of a chocolate industry wastewater in a pilot-scale low-temperature UASB reactor operated at short hydraulic and sludge retention time.

    Science.gov (United States)

    Esparza-Soto, M; Arzate-Archundia, O; Solís-Morelos, C; Fall, C

    2013-01-01

    The aim of this work was to evaluate the performance of a 244-L pilot-scale upflow anaerobic sludge blanket (UASB) reactor during the treatment of chocolate-processing industry wastewater under low-temperature conditions (18 ± 0.6 °C) for approximately 250 d. The applied organic loading rate (OLR) was varied between 4 and 7 kg/m(3)/d by varying the influent soluble chemical oxygen demand (CODsol), while keeping the hydraulic retention time constant (6.4 ± 0.3 h). The CODsol removal efficiency was low (59-78%). The measured biogas production increased from 240 ± 54 to 431 ± 61 L/d during the experiments. A significant linear correlation between the measured biogas production and removed OLR indicated that 81.69 L of biogas were produced per kg/m(3) of CODsol removed. Low average reactor volatile suspended solids (VSS) (2,700-4,800 mg/L) and high effluent VSS (177-313 mg/L) were derived in a short sludge retention time (SRT) (4.9 d). The calculated SRT was shorter than those reported in the literature, but did not affect the reactor's performance. Average sludge yield was 0.20 kg-VSS/kg-CODsol. The low-temperature anaerobic treatment was a good option for the pre-treatment of chocolate-processing industry wastewater.

  6. Effect of temperature and salinity on the wastewater treatment performance of aerobic submerged fixed bed biofilm reactors.

    Science.gov (United States)

    Chapanova, G; Jank, M; Schlegel, S; Koeser, H

    2007-01-01

    The influence of temperature (5-35 C) and salinity (up to 20 g/l NaCl) on the wastewater purification process in completely mixed and aerated submerged fixed bed biofilm reactors (SFBBRs) was studied. C- and N-conversion in SFBBRs designed according to the DWA (German Association for Water, Wastewater and Waste) rules for carbon removal was investigated for several months on synthetic wastewater. The DOC degradation rate was even at, according to the DWA, high DOC/BOD loading rates not much affected by temperatures between 5-35 degrees C and salt contents up to 20 g/L NaCl. At these high DOC loadings an appreciable ammonium conversion could also be observed. The ammonium conversion proved to be sensitive to temperature and salinity. At 5 degrees C the ammonium removal rate decreased by a factor of five compared to 25-35 degrees C. Under many operation conditions investigated more than 50% of the converted ammonium was transformed into gaseous nitrogen. The addition of 20 g/L NaCl caused a strong inhibition of the ammonium removal rate over the whole temperature range investigated.

  7. Pilot-scale comparison of constructed wetlands operated under high hydraulicloading rates and attached biofilm reactors for domestic wastewater treatment

    DEFF Research Database (Denmark)

    Fountoulakis, M.S.; Terzakis, S.; Chatzinotas, A.

    2009-01-01

    Four different pilot-scale treatment units were constructed to compare the feasibility of treating domestic wastewater in the City of Heraklio, Crete, Greece: (a) a freewater surface (FWS) wetland system, (b) a horizontal subsurface flow (HSF) wetland system, (c) a rotating biological contactor...

  8. APPLICATION OF THE OXIDO-FLOCCULATION REACTOR TECHNIQUE FOR WASTEWATER TREATMENT%氧化絮凝复合床水处理技术的应用

    Institute of Scientific and Technical Information of China (English)

    刘怡; 熊亚; 朱锡海

    2001-01-01

    本文介绍了氧化絮凝复合床水处理技术的应用。由主电极和粒子电极构成的氧化絮凝复合床内,在一定的操作条件下便会产生一定数量的、具有极强氧化性能的羟基自由基和新生态的混凝剂,与废水中的污染物发生诸如催化氧化分解、混凝和吸附等作用,使之迅速被去除。作者对印染废水、染料废水和阴离子表面活性剂废水进行了处理实验,均取得满意的结果。%The oxido-flocculation reactor(OFR) technique for wastewater treatment was successfully developed. The OFR is filled with the high effective non-toxic special material, catalyst and other auxiliary ingredients between the main electrodes. Under physical-chemical optimal condition, organic contaminants in wastewater are rapidly removed by subjecting to oxidation-reduction, coagulation, adsorption, complexation, replacement and so on in the OFR. It is actually the oxidation of hydroxyl radical which can be produced rapidly from the first yielded H2O2 in the OFR. The treatment for various wastewater (dye-printing wastewater, dyes wastewater and wastewater containing anion surfactants) with the OFR were invstigated.

  9. Wastewater Treatment Plants

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — The actual treatment areas for municipal, industrial, and semi-public wastewater treatment facilities in Iowa for the National Pollutant Discharge Elimination System...

  10. Electrochemical treatment of industrial wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Rajkumar, D. [Centre for Environmental Studies, Anna University, Chennai 600 025 (India); Palanivelu, K. [Centre for Environmental Studies, Anna University, Chennai 600 025 (India)]. E-mail: kpvelu@hotmail.com

    2004-09-10

    This paper presents the results of the treatment of phenolic compounds containing wastewater generated from phenol-formaldehyde resin manufacturing, oil refinery and bulk drug manufacturing industries by electrochemical method. Experiments were conducted at a fixed current density of 5.4 A/dm{sup 2} using Ti/TiO{sub 2}-RuO{sub 2}-IrO{sub 2} electrode and an undivided reactor. During the various stages of electrolysis, parameters such as COD and TOC concentrations were determined in order to know the feasibility of electrochemical treatment. Adsorbable organic halogens (AOX) were detected at high concentrations during the electrolytic treatment of the effluents. However, it was observed that increasing the electrolysis time bring down the AOX concentration to lower levels. Energy consumption and current efficiency during the electrolysis were calculated and presented. The present study proves the effectiveness of electrochemical treatment for highly concentrated bio-refractory organic pollutants present in the industrial wastewater.

  11. Bioaugmentation of biological contact oxidation reactor (BCOR) with phenol-degrading bacteria for coal gasification wastewater (CGW) treatment.

    Science.gov (United States)

    Fang, Fang; Han, Hongjun; Zhao, Qian; Xu, Chunyan; Zhang, Linghan

    2013-12-01

    This study was conducted to evaluate the performance of the biological contact oxidation reactor (BCOR) treating coal gasification wastewater (CGW) after augmented with phenol degrading bacteria (PDB). The PDB were isolated with phenol, 4-methyl phenol, 3,5-dimethyl phenol and resorcinol as carbon resources. Much of the refractory phenolic compounds were converted into easily-biodegradable compounds in spite of low TOC removal. The bioaugmentation with PDB significantly enhanced the removal of COD, total phenols (TP) and NH3-N, with efficiencies from 58% to 78%, 66% to 80%, and 5% to 25%, respectively. In addition, the augmented BCOR exhibited strong recovery capability in TP and COD removal while recovery of NH3-N removal needed longer time. Microbial community analysis revealed that the PDB presented as dominant populations in the bacteria consortia, which in turn determined the overall performance of the system.

  12. Adsorption effect on the dynamic response of a biochemical reaction in a biofilm reactor for wastewater treatment

    Energy Technology Data Exchange (ETDEWEB)

    Tsuneda, S.; Inoue, Y.; Auresenia, J.; Hirata, A. [Department of Chemical Engineering, Waseda University, 3-4-1 Ohkubo, Shinjuku-ku, Tokyo 169-8555 (Japan)

    2003-09-01

    The dynamic behavior of a completely mixed, three-phase, fluidized bed biofilm reactor treating simulated domestic wastewater was studied with step changes in inlet concentration. It was found that the response curves showed second order characteristics, i.e., as the inlet concentration was increased, the outlet concentration also increased, reached a peak value and then decreased until it leveled to a new steady-state value corresponding to the new inlet concentration level. Nonlinear regression analysis was performed using Monod-type rate equations with and without an adsorption term. As a result, the theoretical curve of the kinetic model that incorporates the adsorption term has best fit to the actual response in most cases. Thus, it was concluded that the adsorption of a substrate onto the biofilm and carrier particles has a significant effect on the dynamic response in biofilm processes. (Abstract Copyright [2003], Wiley Periodicals, Inc.)

  13. Development of antibiotic resistance genes in microbial communities during long-term operation of anaerobic reactors in the treatment of pharmaceutical wastewater.

    Science.gov (United States)

    Aydin, Sevcan; Ince, Bahar; Ince, Orhan

    2015-10-15

    Biological treatment processes offer the ideal conditions in which a high diversity of microorganisms can grow and develop. The wastewater produced during these processes is contaminated with antibiotics and, as such, they provide the ideal setting for the acquisition and proliferation of antibiotic resistance genes (ARGs). This research investigated the occurrence and variation in the ARGs found during the one-year operation of the anaerobic sequencing batch reactors (SBRs) used to treat pharmaceutical wastewater that contained combinations of sulfamethoxazole-tetracycline-erythromycin (STE) and sulfamethoxazole-tetracycline (ST). The existence of eighteen ARGs encoding resistance to sulfamethoxazole (sul1, sul2, sul3), erythromycin (ermA, ermF, ermB, msrA, ereA), tetracycline (tetA, tetB, tetC, tetD, tetE, tetM, tetS, tetQ, tetW, tetX) and class Ι integron gene (intΙ 1) in the STE and ST reactors was investigated by quantitative real-time PCR. Due to the limited availability of primers to detect ARGs, Illumina sequencing was also performed on the sludge and effluent of the STE and ST reactors. Although there was good reactor performance in the SBRs, which corresponds to min 80% COD removal efficiency, tetA, tetB, sul1, sul2 and ermB genes were among those ARGs detected in the effluent from STE and ST reactors. A comparison of the ARGs acquired from the STE and ST reactors revealed that the effluent from the STE reactor had a higher number of ARGs than that from the ST reactor; this could be due to the synergistic effects of erythromycin. According to the expression of genes results, microorganisms achieve tetracycline and erythromycin resistance through a combination of three mechanisms: efflux pumping protein, modification of the antibiotic target and modifying enzymes. There was also a significant association between the presence of the class 1 integron and sulfamethoxazole resistance genes.

  14. Treatment of anaerobic digester effluents of nylon wastewater through chemical precipitation and a sequencing batch reactor process.

    Science.gov (United States)

    Huang, Haiming; Song, Qianwu; Wang, Wenjun; Wu, Shaowei; Dai, Jiankun

    2012-06-30

    Chemical precipitation, in combination with a sequencing batch reactor (SBR) process, was employed to remove pollutants from anaerobic digester effluents of nylon wastewater. The effects of the chemicals along with various Mg:N:P ratios on the chemical precipitation (struvite precipitation) were investigated. When brucite and H(3)PO(4) were applied at an Mg:N:P molar ratio of 3:1:1, an ammonia-removal rate of 81% was achieved, which was slightly more than that (80%) obtained with MgSO(4)·7H(2)O and Na(2)HPO(4)·12H(2)O at Mg:N:P molar ratios greater than the stoichiometric ratio. To further reduce the ammonia loads of the successive biotreatment, an overdose of phosphate with brucite and H(3)PO(4) was applied during chemical precipitation. The ammonia-removal rate at the Mg:N:P molar ratio of 3.5:1:1.05 reached 88%, with a residual PO(4)-P concentration of 16 mg/L. The economic analysis showed that the chemical cost of chemical precipitation could be reduced by about 41% when brucite and H(3)PO(4) were used instead of MgSO(4)·7H(2)O and Na(2)HPO(4)·12H(2)O. The subsequent biological process that used a sequencing batch reactor showed high removal rates of contaminants. The quality of the final effluent met the requisite effluent-discharging standards.

  15. Mainstream wastewater treatment in integrated fixed film activated sludge (IFAS) reactor by partial nitritation/anammox process.

    Science.gov (United States)

    Malovanyy, Andriy; Trela, Jozef; Plaza, Elzbieta

    2015-12-01

    In this study the system based on the combination of biofilm and activated sludge (IFAS - integrated fixed film activated sludge) was tested and compared with a system that relies only on biofilm (MBBR - moving bed biofilm reactor) for nitrogen removal from municipal wastewater by deammonification process. By introduction of suspended biomass into MBBR the nitrogen removal efficiency increased from 36 ± 3% to 70 ± 4% with simultaneous 3-fold increase of nitrogen removal rate. Results of batch tests and continuous reactor operation showed that organotrophic nitrate reduction to nitrite, followed by anammox reaction contributed to this high removal efficiency. After sCOD/NH4-N ratio decreased from 1.8 ± 0.2 to 1.3 ± 0.1 removal efficiency decreased to 52 ± 4%, while still maintaining 150% higher removal rate, comparing to MBBR. Activity tests revealed that affinity of NOB to oxygen is higher than affinity of AOB with half-saturation constants of 0.05 and 0.41 mg/L, respectively.

  16. Design of pilot-scale solar photocatalytic reactor for the generation of hydrogen from alkaline sulfide wastewater of sewage treatment plant.

    Science.gov (United States)

    Priya, R; Kanmani, S

    2013-01-01

    Experiments were conducted for photocatalytic generation of renewable fuel hydrogen from sulphide wastewater from the sewage treatment plant. In this study, pilot-scale solar photocatalytic reactor was designed for treating 1 m3 of sulphide wastewater and also for the simultaneous generation of hydrogen. Bench-scale studies were conducted both in the batch recycle and continuous modes under solar irradiation at similar experimental conditions. The maximum of 89.7% conversion was achieved in the continuous mode. The length of the pilot-scale solar photocatalytic reactor was arrived using the design parameters such as volumetric flow rate (Q) (11 x 10(-2) m3/s), inlet concentration of sulphide ion (C(in)) (28 mol/m3), conversion (89.7%) and average mass flow destruction rate (3.488 x 10(-6) mol/m2 s). The treatment cost of the process was estimated to be 6 US$/m3. This process would be suitable for India like sub-tropical country where sunlight is abundantly available throughout the year.

  17. Wastewater Treatment Facilities

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — Individual permits for municipal, industrial, and semi-public wastewater treatment facilities in Iowa for the National Pollutant Discharge Elimination System (NPDES)...

  18. Biodegradation of pharmaceuticals in hospital wastewater by staged Moving Bed Biofilm Reactors (MBBR)

    DEFF Research Database (Denmark)

    Escola Casas, Monica; Chhetri, Ravi Kumar; Ooi, Gordon Tze Hoong

    2015-01-01

    for hospital wastewater treatment. To investigate the potential of such a hybrid system for the removal of pharmaceuticals in hospital wastewater a pilot plant consisting of a series of one activated sludge reactor, two Hybas™ reactors and one moving bed biofilm reactor (MBBR) has been established and adapted......Hospital wastewater contributes a significant input of pharmaceuticals into municipal wastewater. The combination of suspended activated sludge and biofilm processes, as stand-alone or as hybrid process (hybrid biofilm and activated sludge system (Hybas™)) has been suggested as a possible solution...

  19. Determination of the external mass transfer coefficient and influence of mixing intensity in moving bed biofilm reactors for wastewater treatment.

    Science.gov (United States)

    Nogueira, Bruno L; Pérez, Julio; van Loosdrecht, Mark C M; Secchi, Argimiro R; Dezotti, Márcia; Biscaia, Evaristo C

    2015-09-01

    In moving bed biofilm reactors (MBBR), the removal of pollutants from wastewater is due to the substrate consumption by bacteria attached on suspended carriers. As a biofilm process, the substrates are transported from the bulk phase to the biofilm passing through a mass transfer resistance layer. This study proposes a methodology to determine the external mass transfer coefficient and identify the influence of the mixing intensity on the conversion process in-situ in MBBR systems. The method allows the determination of the external mass transfer coefficient in the reactor, which is a major advantage when compared to the previous methods that require mimicking hydrodynamics of the reactor in a flow chamber or in a separate vessel. The proposed methodology was evaluated in an aerobic lab-scale system operating with COD removal and nitrification. The impact of the mixing intensity on the conversion rates for ammonium and COD was tested individually. When comparing the effect of mixing intensity on the removal rates of COD and ammonium, a higher apparent external mass transfer resistance was found for ammonium. For the used aeration intensities, the external mass transfer coefficient for ammonium oxidation was ranging from 0.68 to 13.50 m d(-1) and for COD removal 2.9 to 22.4 m d(-1). The lower coefficient range for ammonium oxidation is likely related to the location of nitrifiers deeper in the biofilm. The measurement of external mass transfer rates in MBBR will help in better design and evaluation of MBBR system-based technologies.

  20. Wastewater Treatment in Greenland

    DEFF Research Database (Denmark)

    Gunnarsdottir, Ragnhildur

    The Arctic nature is vulnerable to environmental contaminants because of low biological diversity, lack of nutrients and extreme seasonal variations in light. In Greenland neither industrial nor domestic wastewater is treated before it is discharged to the recipients, which in most cases is the sea...... treatment in these regions. However, designing, constructing and operating wastewater collection systems in the Arctic is challenging because of e.g. permafrost conditions, hard rock surfaces, freezing, limited quantity of water and high costs of electricity, fuel and transportation, as well as a settlement...... collection systems, and be more economically and environmentally sustainable than traditional wastewater collection and treatment systems. Possible alternative wastewater treatment methods for Greenlandic communities are dry composting or anaerobic digestion of excreta, collected at household level using dry...

  1. Removal of Arsenic from Wastewaters by Airlift Electrocoagulation: Part 3: Copper Smelter Wastewater Treatment

    DEFF Research Database (Denmark)

    Hansen, H.K.; Ottosen, Lisbeth M.

    2010-01-01

    -arsenate precipitates. This work evaluates the feasibility of EC as a treatment process at various stages during conventional copper smelter wastewater treatment - with a focus on arsenic. The reactor used is a batch airlift electrocoagulator. The results showed that raw copper smelter wastewater was difficult to treat......The arsenic content in wastewater is of major concern for copper smelters. A typical complex wastewater treatment is needed with a combination of chemical and physical processes. Electrocoagulation (EC) has shown its potential for arsenic removal due to the formation of ferric hydroxide...... threshold value for wastewater discharge could rapidly be reached when the conventional method did not clean the wastewater sufficiently....

  2. Microbial Community Analysis of Anaerobic Reactors Treating Soft Drink Wastewater

    Science.gov (United States)

    Narihiro, Takashi; Kim, Na-Kyung; Mei, Ran; Nobu, Masaru K.; Liu, Wen-Tso

    2015-01-01

    The anaerobic packed-bed (AP) and hybrid packed-bed (HP) reactors containing methanogenic microbial consortia were applied to treat synthetic soft drink wastewater, which contains polyethylene glycol (PEG) and fructose as the primary constituents. The AP and HP reactors achieved high COD removal efficiency (>95%) after 80 and 33 days of the operation, respectively, and operated stably over 2 years. 16S rRNA gene pyrotag analyses on a total of 25 biofilm samples generated 98,057 reads, which were clustered into 2,882 operational taxonomic units (OTUs). Both AP and HP communities were predominated by Bacteroidetes, Chloroflexi, Firmicutes, and candidate phylum KSB3 that may degrade organic compound in wastewater treatment processes. Other OTUs related to uncharacterized Geobacter and Spirochaetes clades and candidate phylum GN04 were also detected at high abundance; however, their relationship to wastewater treatment has remained unclear. In particular, KSB3, GN04, Bacteroidetes, and Chloroflexi are consistently associated with the organic loading rate (OLR) increase to 1.5 g COD/L-d. Interestingly, KSB3 and GN04 dramatically decrease in both reactors after further OLR increase to 2.0 g COD/L-d. These results indicate that OLR strongly influences microbial community composition. This suggests that specific uncultivated taxa may take central roles in COD removal from soft drink wastewater depending on OLR. PMID:25748027

  3. Microbial community analysis of anaerobic reactors treating soft drink wastewater.

    Directory of Open Access Journals (Sweden)

    Takashi Narihiro

    Full Text Available The anaerobic packed-bed (AP and hybrid packed-bed (HP reactors containing methanogenic microbial consortia were applied to treat synthetic soft drink wastewater, which contains polyethylene glycol (PEG and fructose as the primary constituents. The AP and HP reactors achieved high COD removal efficiency (>95% after 80 and 33 days of the operation, respectively, and operated stably over 2 years. 16S rRNA gene pyrotag analyses on a total of 25 biofilm samples generated 98,057 reads, which were clustered into 2,882 operational taxonomic units (OTUs. Both AP and HP communities were predominated by Bacteroidetes, Chloroflexi, Firmicutes, and candidate phylum KSB3 that may degrade organic compound in wastewater treatment processes. Other OTUs related to uncharacterized Geobacter and Spirochaetes clades and candidate phylum GN04 were also detected at high abundance; however, their relationship to wastewater treatment has remained unclear. In particular, KSB3, GN04, Bacteroidetes, and Chloroflexi are consistently associated with the organic loading rate (OLR increase to 1.5 g COD/L-d. Interestingly, KSB3 and GN04 dramatically decrease in both reactors after further OLR increase to 2.0 g COD/L-d. These results indicate that OLR strongly influences microbial community composition. This suggests that specific uncultivated taxa may take central roles in COD removal from soft drink wastewater depending on OLR.

  4. Treatment of petroleum refinery wastewater using a sequential anaerobic-aerobic moving-bed biofilm reactor system based on suspended ceramsite.

    Science.gov (United States)

    Lu, Mang; Gu, Li-Peng; Xu, Wen-Hao

    2013-01-01

    In this study, a novel suspended ceramsite was prepared, which has high strength, optimum density (close to water), and high porosity. The ceramsite was used to feed a moving-bed biofilm reactor (MBBR) system with an anaerobic-aerobic (A/O) arrangement to treat petroleum refinery wastewater for simultaneous removal of chemical oxygen demand (COD) and ammonium. The hydraulic retention time (HRT) of the anaerobic-aerobic MBBR system was varied from 72 to 18 h. The anaerobic-aerobic system had a strong tolerance to shock loading. Compared with the professional emission standard of China, the effluent concentrations of COD and NH3-N in the system could satisfy grade I at HRTs of 72 and 36 h, and grade II at HRT of 18 h. The average sludge yield of the anaerobic reactor was estimated to be 0.0575 g suspended solid/g CODremoved. This work demonstrated that the anaerobic-aerobic MBBR system using the suspended ceramsite as bio-carrier could be applied to achieving high wastewater treatment efficiency.

  5. Evaluation of an up-flow anaerobic sludge bed (UASB) reactor containing diatomite and maifanite for the improved treatment of petroleum wastewater.

    Science.gov (United States)

    Chen, Chunmao; Liang, Jiahao; Yoza, Brandon A; Li, Qing X; Zhan, Yali; Wang, Qinghong

    2017-11-01

    Novel diatomite (R1) and maifanite (R2) were utilized as support materials in an up-flow anaerobic sludge bed (UASB) reactor for the treatment of recalcitrant petroleum wastewater. At high organic loadings (11kg-COD/m(3)·d), these materials were efficient at reducing COD (92.7% and 93.0%) in comparison with controls (R0) (88.4%). Higher percentages of large granular sludge (0.6mm or larger) were observed for R1 (30.3%) and R2 (24.6%) compared with controls (22.6%). The larger portion of granular sludge provided a favorable habitat that resulted in greater microorganism diversity. Increased filamentous bacterial communities are believed to have promoted granular sludge formation promoting a conductive environment for stimulation methanogenic Archaea. These communities had enhanced pH tolerance and produced more methane. This study illustrates a new potential use of diatomite and maifanite as support materials in UASB reactors for increased efficiency when treating refractory wastewaters. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Global parameter of ultrasound exploitation (GPUE) in the reactors for wastewater treatment by sono-Fenton oxidation.

    Science.gov (United States)

    Grčić, Ivana; Šipić, Ana; Koprivanac, Natalija; Vrsaljko, Domagoj

    2012-03-01

    Modeling of the sonochemical reactors presents a great challenge due to issues related to the experimental investigation and description of the primary effects of the ultrasound. The main idea proposed in this work was to establish an algorithm consisting of the viable laboratory analyses and basic elements of chemical reaction engineering. In this paper, a novel modeling approach is presented. Proposed approach is characterized by the following; ultrasound was investigated as an auxiliary source of energy and the kinetic constants determined for the basic oxidation reactions, i.e. Fenton type oxidation were treated as independent of the ultrasound. Sonochemical effectiveness factor is expressed as a global parameter of the ultrasound exploitation (GPUE) that was introduced in the kinetic model as the e(US) factor. Factor e(US) is modeled as a function of employed frequency, actual power of the transducer, portion of the cavitationally active zone, i.e. dimensionless active volume and the average temperature in the reactor. Lumped system has been assumed. In order to obtain all the necessary data, the experimental study included different sets of experiments. The kinetics of the sonochemical processes, e.g. US/Fe(2+)/H(2)O(2), US/Fe(2+)/S(2)O(8)(2-), US/Fe(2+)/HSO(5)(-) was investigated in the term of mineralization of model wastewaters containing different types of organic pollutants. The Weissler dosimetry and peroxodisulfate decomposition upon sonication, were used to facilitate the determination of e(US). They follow zero order kinetics, thus can be used as a model reaction to reflect all the primary effects of ultrasound and to establish the empirical correlation for e(US) calculation. Finally, GPUE has been introduced in the adequate kinetic models and the overall model was validated. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Modeling the performance of "up-flow anaerobic sludge blanket" reactor based wastewater treatment plant using linear and nonlinear approaches--a case study.

    Science.gov (United States)

    Singh, Kunwar P; Basant, Nikita; Malik, Amrita; Jain, Gunja

    2010-01-18

    The paper describes linear and nonlinear modeling of the wastewater data for the performance evaluation of an up-flow anaerobic sludge blanket (UASB) reactor based wastewater treatment plant (WWTP). Partial least squares regression (PLSR), multivariate polynomial regression (MPR) and artificial neural networks (ANNs) modeling methods were applied to predict the levels of biochemical oxygen demand (BOD) and chemical oxygen demand (COD) in the UASB reactor effluents using four input variables measured weekly in the influent wastewater during the peak (morning and evening) and non-peak (noon) hours over a period of 48 weeks. The performance of the models was assessed through the root mean squared error (RMSE), relative error of prediction in percentage (REP), the bias, the standard error of prediction (SEP), the coefficient of determination (R(2)), the Nash-Sutcliffe coefficient of efficiency (E(f)), and the accuracy factor (A(f)), computed from the measured and model predicted values of the dependent variables (BOD, COD) in the WWTP effluents. Goodness of the model fit to the data was also evaluated through the relationship between the residuals and the model predicted values of BOD and COD. Although, the model predicted values of BOD and COD by all the three modeling approaches (PLSR, MPR, ANN) were in good agreement with their respective measured values in the WWTP effluents, the nonlinear models (MPR, ANNs) performed relatively better than the linear ones. These models can be used as a tool for the performance evaluation of the WWTPs. Copyright 2009 Elsevier B.V. All rights reserved.

  8. 用于污水处理的柔性纤维膜反应器氧传递及动力学研究%Oxygen Transfer and Hydrodynamics in a Flexible Fibre Biofilm Reactor for Wastewater Treatment

    Institute of Scientific and Technical Information of China (English)

    陈育如; 虞启明; 徐红卫; 陈雁

    2009-01-01

    A flexible fibre biofilm reactor was developed for treatment of organic wastewaters. The hydrodynamic characteristics and mass transfer coefficients of oxygen were studied and compared with those of the conventional activated sludge processes. Tracer experiments were performed to obtain the residence time distributions of the reactors. The results indicated that both reactors could be treated as mixed flow reactors. The effects of flow rates of water and air on the overall mass transfer coefficient of oxygen were investigated, and the correlations between the mass transfer coefficient and the ratio of flow rates were obtained. Compared to the conventional activated sludge reactor, the mass transfer coefficients in the flexible fibre reactor were similar to but slightly lower, and less sensitive to the variation in the ratio of flow rates. It indicated that the fibre packing in the reactor hindered the oxygen transfer to some extent.

  9. Biomineralization of azo dye bearing wastewater in periodic discontinuous batch reactor: Effect of microaerophilic conditions on treatment efficiency.

    Science.gov (United States)

    Naresh Kumar, A; Nagendranatha Reddy, C; Venkata Mohan, S

    2015-01-01

    The present study illustrates the influence of microaerophilic condition on periodic discontinuous batch reactor (PDBR) operation in treating azo dye containing wastewater. The process performance was evaluated with the function of various dye load operations (50-750 mg/l) by keeping the organic load (1.6 kg COD/m(3)-day) constant. Initially, lower dye operation (50mg dye/l) resulted in higher dye [45 mg dye/l (90%)] and COD [SDR: 1.29 kg COD/m(3)-day (92%)] removal efficiencies. Higher dye load operation (750 mg dye/l) also showed non-inhibitory performance with respect to dye [600 mg dye/l (80%)] and COD [1.25 kg COD/m(3)-day (80%)] removal efficiencies. Increment in dye load showed increment in azo reductase and dehydrogenase activities (39.6 U; 4.96 μg/ml; 750 mg/l). UV-Vis spectroscopy (200-800 nm), FTIR and (1)H NMR studies revealed the disappearance of azo bond (-NN-). First derivative cyclic voltammogram supported the involvement of various membrane bound redox shuttlers, viz., cytochrome-C, cytochrome-bc1 and flavoproteins (FAD (H)).

  10. Wastewater treatment using integrated anaerobic baffled reactor and Bio-rack wetland planted with Phragmites sp. and Typha sp.

    Science.gov (United States)

    Jamshidi, Shervin; Akbarzadeh, Abbas; Woo, Kwang-Sung; Valipour, Alireza

    2014-01-01

    The purpose of this study is to examine the potential use of anaerobic baffled reactor (ABR) followed by Bio-rack wetland planted with Phragmites sp. and Typha sp. for treating domestic wastewater generated by small communities (751 mg COD/L, 500 SCOD mg/L, 348 mg BOD5/L). Two parallel laboratory-scale models showed that the process planted with Phragmites sp. and Typha sp. are capable of removing COD by 87% & 86%, SCOD by 90% & 88%, BOD5 by 93% & 92%, TSS by 88% & 86%, TN by 79% & 77%, PO4-P by 21% & 14% at an overall HRT of 21 (843 g COD/m(3)/day & 392 g BOD5/m(3)/day) and 27 (622 g COD/m(3)/day & 302 g BOD5/m(3)/day) hours, respectively. Microbial analysis indicated a high reduction in the MPN of total coliform and TVC as high as 99% at the outlet end of the processes. The vegetated system using Phragmites sp. showed significantly greater (p Phragmites sp. indicated a higher relative growth rate (3.92%) than Typha sp. (0.90%). Microorganisms immobilized on the surface of the Bio-rack media (mean TVC: 2.33 × 10(7) cfu/cm(2)) were isolated, identified and observed using scanning electron microscopy (SEM). This study illustrated that the present integrated processes could be an ideal approach for promoting a sustainable decentralization, however, Phragmites sp. would be more efficient rather than Typha sp.

  11. Nitrogen removal via the nitrite pathway during wastewater co-treatment with ammonia-rich landfill leachates in a sequencing batch reactor.

    Science.gov (United States)

    Fudala-Ksiazek, S; Luczkiewicz, A; Fitobor, K; Olanczuk-Neyman, K

    2014-06-01

    The biological treatment of ammonia-rich landfill leachates due to an inadequate C to N ratio requires expensive supplementation of carbon from an external carbon source. In an effort to reduce treatment costs, the objective of the study was to determine the feasibility of nitrogen removal via the nitrite pathway during landfill leachate co-treatment with municipal wastewater. Initially, the laboratory-scale sequencing batch reactor (SBR) was inoculated with nitrifying activated sludge and fed only raw municipal wastewater (RWW) during a start-up period of 9 weeks. Then, in the co-treatment period, consisting of the next 17 weeks, the system was fed a mixture of RWW and an increasing quantity of landfill leachates (from 1 to 10% by volume). The results indicate that landfill leachate addition of up to 10% (by volume) influenced the effluent quality, except for BOD5. During the experiment, a positive correlation (r(2) = 0.908) between ammonia load in the influent and nitrite in the effluent was observed, suggesting that the second step of nitrification was partially inhibited. The partial nitrification (PN) was also confirmed by fluorescence in situ hybridisation (FISH) analysis of nitrifying bacteria. Nitrogen removal via the nitrite pathway was observed when the oxygen concentration ranged from 0.5 to 1.5 mg O2/dm(3) and free ammonia (FA) ranged from 2.01 to 35.86 mg N-NH3/dm(3) in the aerobic phase. Increasing ammonia load in wastewater influent was also correlated with an increasing amount of total nitrogen (TN) in the effluent, which suggested insufficient amounts of assimilable organic carbon to complete denitrification. Because nitrogen removal via the nitrite pathway is beneficial for carbon-limited and highly ammonia-loaded mixtures, obtaining PN can lead to a reduction in the external carbon source needed to support denitrification.

  12. Presence and persistence of wastewater pathogen Escherichia coli O157:H7 in hydroponic reactors of treatment wetland species.

    Science.gov (United States)

    VanKempen-Fryling, R J; Stein, O R; Camper, A K

    2015-01-01

    Treatment wetlands (TWs) efficiently remove many pollutants including a several log order reduction of pathogens from influent to effluent; however, there is evidence to suggest that pathogen cells are sequestered in a subsurface wetland and may remain viable months after inoculation. Escherichia coli is a common pathogen in domestic and agricultural wastewater and the O157:H7 strain causes most environmental outbreaks in the United States. To assess attachment of E. coli to the TW rhizosphere, direct measurements of E. coli levels were taken. Experiments were performed in chemostats containing either Teflon nylon as an abiotic control or roots of Carex utriculata or Schoenoplectus acutus. Flow of simulated wastewater through the chemostat was set to maintain a 2 hour residence time. The influent was inoculated with E. coli O157:H7 containing DsRed fluorescent protein. Root samples were excised and analyzed via epifluorescent microscopy. E. coli O157:H7 was detected on the root surface at 2 hours after inoculation, and were visible as single cells. Microcolonies began forming at 24 hours post-inoculation and were detected for up to 1 week post-inoculation. Image analysis determined that the number of microcolonies with >100 cells increased 1 week post-inoculation, confirming that E. coli O157:H7 is capable of growth within biofilms surrounding wetland plant roots.

  13. Nitrification of industrial and domestic saline wastewaters in moving bed biofilm reactor and sequencing batch reactor.

    Science.gov (United States)

    Bassin, João P; Dezotti, Marcia; Sant'anna, Geraldo L

    2011-01-15

    Nitrification of saline wastewaters was investigated in bench-scale moving-bed biofilm reactors (MBBR). Wastewater from a chemical industry and domestic sewage, both treated by the activated sludge process, were fed to moving-bed reactors. The industrial wastewater contained 8000 mg Cl(-)/L and the salinity of the treated sewage was gradually increased until that level. Residual substances present in the treated industrial wastewater had a strong inhibitory effect on the nitrification process. Assays to determine inhibitory effects were performed with the industrial wastewater, which was submitted to ozonation and carbon adsorption pretreatments. The latter treatment was effective for dissolved organic carbon (DOC) removal and improved nitrification efficiency. Nitrification percentage of the treated domestic sewage was higher than 90% for all tested chloride concentrations up to 8000 mg/L. Results obtained in a sequencing batch reactor (SBR) were consistent with those attained in the MBBR systems, allowing tertiary nitrification and providing adequate conditions for adaptation of nitrifying microorganisms even under stressing and inhibitory conditions.

  14. Nitrification of industrial and domestic saline wastewaters in moving bed biofilm reactor and sequencing batch reactor

    Energy Technology Data Exchange (ETDEWEB)

    Bassin, Joao P. [Programa de Engenharia Quimica/COPPE, Universidade Federal do Rio de Janeiro, Centro de Tecnologia, Bloco G - sala 116, P.O. Box 68502, 21941-972 Rio de Janeiro, RJ (Brazil); Dezotti, Marcia, E-mail: mdezotti@peq.coppe.ufrj.br [Programa de Engenharia Quimica/COPPE, Universidade Federal do Rio de Janeiro, Centro de Tecnologia, Bloco G - sala 116, P.O. Box 68502, 21941-972 Rio de Janeiro, RJ (Brazil); Sant' Anna, Geraldo L. [Programa de Engenharia Quimica/COPPE, Universidade Federal do Rio de Janeiro, Centro de Tecnologia, Bloco G - sala 116, P.O. Box 68502, 21941-972 Rio de Janeiro, RJ (Brazil)

    2011-01-15

    Nitrification of saline wastewaters was investigated in bench-scale moving-bed biofilm reactors (MBBR). Wastewater from a chemical industry and domestic sewage, both treated by the activated sludge process, were fed to moving-bed reactors. The industrial wastewater contained 8000 mg Cl{sup -}/L and the salinity of the treated sewage was gradually increased until that level. Residual substances present in the treated industrial wastewater had a strong inhibitory effect on the nitrification process. Assays to determine inhibitory effects were performed with the industrial wastewater, which was submitted to ozonation and carbon adsorption pretreatments. The latter treatment was effective for dissolved organic carbon (DOC) removal and improved nitrification efficiency. Nitrification percentage of the treated domestic sewage was higher than 90% for all tested chloride concentrations up to 8000 mg/L. Results obtained in a sequencing batch reactor (SBR) were consistent with those attained in the MBBR systems, allowing tertiary nitrification and providing adequate conditions for adaptation of nitrifying microorganisms even under stressing and inhibitory conditions.

  15. Wastewater treatment models

    DEFF Research Database (Denmark)

    Gernaey, Krist; Sin, Gürkan

    2011-01-01

    The state-of-the-art level reached in modeling wastewater treatment plants (WWTPs) is reported. For suspended growth systems, WWTP models have evolved from simple description of biological removal of organic carbon and nitrogen in aeration tanks (ASM1 in 1987) to more advanced levels including...... of WWTP modeling by linking the wastewater treatment line with the sludge handling line in one modeling platform. Application of WWTP models is currently rather time consuming and thus expensive due to the high model complexity, and requires a great deal of process knowledge and modeling expertise...

  16. Wastewater Treatment Models

    DEFF Research Database (Denmark)

    Gernaey, Krist; Sin, Gürkan

    2008-01-01

    The state-of-the-art level reached in modeling wastewater treatment plants (WWTPs) is reported. For suspended growth systems, WWTP models have evolved from simple description of biological removal of organic carbon and nitrogen in aeration tanks (ASM1 in 1987) to more advanced levels including...... the practice of WWTP modeling by linking the wastewater treatment line with the sludge handling line in one modeling platform. Application of WWTP models is currently rather time consuming and thus expensive due to the high model complexity, and requires a great deal of process knowledge and modeling expertise...

  17. Impacts of COD and DCP loading rates on biological treatment of 2,4-dichlorophenol (DCP) containing wastewater in a perforated tubes biofilm reactor.

    Science.gov (United States)

    Eker, Serkan; Kargi, Fikret

    2006-08-01

    Biofilm processes offer considerable advantages for biological treatment of chlorophenol containing wastewaters since such industrial effluents are difficult to treat by conventional activated sludge processes. A rotating perforated tubes biofilm reactor (RTBR) was developed and used for treatment of 2,4-dichlorophenol (DCP) containing synthetic wastewater. Effects of COD and DCP loading rates on COD, DCP and toxicity removals were investigated. Percent COD removal decreased and effluent COD increased with increasing COD and DCP loading rates due to toxic effects of high DCP content in the feed. DCP and toxicity removals showed similar trends. As the DCP loading rate increased the effluent DCP content increased yielding high toxicity levels in the effluent. COD and DCP loading rates should be below 90gCODm(-2)d(-1) and 2.8gDCPm(-2)d(-1) in order to obtain more than 90% DCP and toxicity removals. However, DCP loading rates lower than 1gDCPm(-2)d(-1) are required to obtain more than 90% COD removal. Empirical equations were developed to estimate percent COD, DCP and toxicity removals as functions of COD and DCP loading rates. The coefficients of the empirical equations were determined by using the experimental data. Empirical model predictions for percent COD, DCP and toxicity removals were in good agreement with the experimental data.

  18. Improved Electrocoagulation Reactor for Rapid Removal of Phosphate from Wastewater

    KAUST Repository

    Tian, Yushi

    2016-11-01

    A new three-electrode electrocoagulation reactor was investigated to increase the rate of removal of phosphate from domestic wastewater. Initially, two electrodes (graphite plate and air cathode) were connected with 0.5 V of voltage applied for a short charging time (∼10 s). The direction of the electric field was then reversed, by switching the power supply lead from the anode to the cathode, and connecting the other lead to a sacrificial aluminum mesh anode for removal of phosphate by electrocoagulation. The performance of this process, called a reverse-electric field, air cathode electrocoagulation (REAEC) reactor, was tested using domestic wastewater as a function of charging time and electrocoagulation time. REAEC wastewater treatment removed up to 98% of phosphate in 15 min (inert electrode working time of 10 s, current density of 1 mA/cm2, and 15 min total electrocoagulation time), which was 6% higher than that of the control (no inert electrode). The energy demand varied from 0.05 kWh/m3 for 85% removal in 5 min, to 0.14 kwh/m3 for 98% removal in 15 min. These results indicate that the REAEC can reduce the energy demands and treatment times compared to conventional electrocoagulation processes for phosphate removal from wastewater.

  19. Microbial community structure and diversity in an integrated system of anaerobic-aerobic reactors and a constructed wetland for the treatment of tannery wastewater in Modjo, Ethiopia.

    Directory of Open Access Journals (Sweden)

    Adey Feleke Desta

    Full Text Available A culture-independent approach was used to elucidate the microbial diversity and structure in the anaerobic-aerobic reactors integrated with a constructed wetland for the treatment of tannery wastewater in Modjo town, Ethiopia. The system has been running with removal efficiencies ranging from 94%-96% for COD, 91%-100% for SO4(2- and S(2-, 92%-94% for BOD, 56%-82% for total Nitrogen and 2%-90% for NH3-N. 16S rRNA gene clone libraries were constructed and microbial community assemblies were determined by analysis of a total of 801 unique clone sequences from all the sites. Operational Taxonomic Unit (OTU--based analysis of the sequences revealed highly diverse communities in each of the reactors and the constructed wetland. A total of 32 phylotypes were identified with the dominant members affiliated to Clostridia (33%, Betaproteobacteria (10%, Bacteroidia (10%, Deltaproteobacteria (9% and Gammaproteobacteria (6%. Sequences affiliated to the class Clostridia were the most abundant across all sites. The 801 sequences were assigned to 255 OTUs, of which 3 OTUs were shared among the clone libraries from all sites. The shared OTUs comprised 80 sequences belonging to Clostridiales Family XIII Incertae Sedis, Bacteroidetes and unclassified bacterial group. Significantly different communities were harbored by the anaerobic, aerobic and rhizosphere sites of the constructed wetland. Numerous representative genera of the dominant bacterial classes obtained from the different sample sites of the integrated system have been implicated in the removal of various carbon- containing pollutants of natural and synthetic origins. To our knowledge, this is the first report of microbial community structure in tannery wastewater treatment plant from Ethiopia.

  20. Microalgae and wastewater treatment

    Science.gov (United States)

    Abdel-Raouf, N.; Al-Homaidan, A.A.; Ibraheem, I.B.M.

    2012-01-01

    Organic and inorganic substances which were released into the environment as a result of domestic, agricultural and industrial water activities lead to organic and inorganic pollution. The normal primary and secondary treatment processes of these wastewaters have been introduced in a growing number of places, in order to eliminate the easily settled materials and to oxidize the organic material present in wastewater. The final result is a clear, apparently clean effluent which is discharged into natural water bodies. This secondary effluent is, however, loaded with inorganic nitrogen and phosphorus and causes eutrophication and more long-term problems because of refractory organics and heavy metals that are discharged. Microalgae culture offers an interesting step for wastewater treatments, because they provide a tertiary biotreatment coupled with the production of potentially valuable biomass, which can be used for several purposes. Microalgae cultures offer an elegant solution to tertiary and quandary treatments due to the ability of microalgae to use inorganic nitrogen and phosphorus for their growth. And also, for their capacity to remove heavy metals, as well as some toxic organic compounds, therefore, it does not lead to secondary pollution. In the current review we will highlight on the role of micro-algae in the treatment of wastewater. PMID:24936135

  1. Microalgae and wastewater treatment.

    Science.gov (United States)

    Abdel-Raouf, N; Al-Homaidan, A A; Ibraheem, I B M

    2012-07-01

    Organic and inorganic substances which were released into the environment as a result of domestic, agricultural and industrial water activities lead to organic and inorganic pollution. The normal primary and secondary treatment processes of these wastewaters have been introduced in a growing number of places, in order to eliminate the easily settled materials and to oxidize the organic material present in wastewater. The final result is a clear, apparently clean effluent which is discharged into natural water bodies. This secondary effluent is, however, loaded with inorganic nitrogen and phosphorus and causes eutrophication and more long-term problems because of refractory organics and heavy metals that are discharged. Microalgae culture offers an interesting step for wastewater treatments, because they provide a tertiary biotreatment coupled with the production of potentially valuable biomass, which can be used for several purposes. Microalgae cultures offer an elegant solution to tertiary and quandary treatments due to the ability of microalgae to use inorganic nitrogen and phosphorus for their growth. And also, for their capacity to remove heavy metals, as well as some toxic organic compounds, therefore, it does not lead to secondary pollution. In the current review we will highlight on the role of micro-algae in the treatment of wastewater.

  2. Microalgal biofilms for wastewater treatment

    NARCIS (Netherlands)

    Boelee, N.C.

    2013-01-01

    The objective of this thesis was to explore the possibilities of using microalgal biofilms for the treatment of municipal wastewater, with a focus on the post-treatment of municipal wastewater effluent. The potential of microalgal biofilms for wastewater treatment was first investigated using a scen

  3. Microalgal biofilms for wastewater treatment

    NARCIS (Netherlands)

    Boelee, N.C.

    2013-01-01

    The objective of this thesis was to explore the possibilities of using microalgal biofilms for the treatment of municipal wastewater, with a focus on the post-treatment of municipal wastewater effluent. The potential of microalgal biofilms for wastewater treatment was first investigated using a scen

  4. 废水厌氧处理反应器功能拓展研究进展%Multifunctional role of anaerobic reactors in wastewater treatment

    Institute of Scientific and Technical Information of China (English)

    徐恒; 汪翠萍; 王凯军

    2014-01-01

    inorganic pollutants could be further enhanced by ex-situ/in-situ methods. Recent studies also showed that calcium removal for water softening and in-situ biogas upgrading could be achieved through anaerobic reactors. Nevertheless, the research work of the above-mentioned field has appeared to be relatively independent and scattered so far. First, in this paper, the state of the art of anaerobic wastewater treatment and the traditional role of anaerobic reactors are summarized. Then, the expanded roles of anaerobic reactors in desulfurization, denitrification, phosphorus removal, softening treatment, and in-situ biogas upgrading were elaborately reviewed in terms of their feasibility and process description. A major problem for the anaerobic treatment of sulfate-contaminated wastewater is the production of hydrogen sulfide (H2S), which greatly inhibits the methanogenesis process. The introduction of the biological sulfide oxidation step could not only reduce sulfide toxicity, but could also recover sulfur in the form of the insoluble elemental sulfur. As for denitrification, the integration of methanogenesis with the traditional denitrification process or even the novel anaerobic ammonium oxidation (ANAMMOX) process has been proven to be able to remove organic pollutants and ammonia simultaneously. Phosphorus removal by physico-chemical and/or biological methods was also demonstrated in the anaerobic reactors; however, the involved mechanism and phosphorus transformation pathway need to be further investigated. High-strength of calcium ions was shown to have adverse impacts on the capacity and stability of both anaerobic reactors and post-treatment facilities. The combination of the stripping or crystallization devices with anaerobic reactors was effective at inducing precipitation of calcium carbonate to alleviate the inhibition of calcium ions. Problems due to the precipitation and accumulation of calcium carbonate in the anaerobic granules (hereafter referred to as the

  5. Precipitation of Phosphate Minerals by Microorganisms Isolated from a Fixed-Biofilm Reactor Used for the Treatment of Domestic Wastewater

    Directory of Open Access Journals (Sweden)

    Almudena Rivadeneyra

    2014-04-01

    Full Text Available The ability of bacteria isolated from a fixed-film bioreactor to precipitate phosphate crystals for the treatment of domestic wastewater in both artificial and natural media was studied. When this was demonstrated in artificial solid media for crystal formation, precipitation took place rapidly, and crystal formation began 3 days after inoculation. The percentage of phosphate-forming bacteria was slightly higher than 75%. Twelve major colonies with phosphate precipitation capacity were the dominant heterotrophic platable bacteria growing aerobically in artificial media. According to their taxonomic affiliations (based on partial sequencing of the 16S rRNA, the 12 strains belonged to the following genera of Gram-negative bacteria: Rhodobacter, Pseudoxanthobacter, Escherichia, Alcaligenes, Roseobacter, Ochrobactrum, Agromyce, Sphingomonas and Paracoccus. The phylogenetic tree shows that most of the identified populations were evolutionarily related to the Alphaproteobacteria (91.66% of sequences. The minerals formed were studied by X-ray diffraction, scanning electron microscopy (SEM, and energy dispersive X-ray microanalysis (EDX. All of these strains formed phosphate crystals and precipitated struvite (MgNH4PO4·6H2O, bobierrite [Mg3(PO42·8H2O] and baricite [(MgFe3(PO42·8H2O]. The results obtained in this study show that struvite and spherulite crystals did not show any cell marks. Moreover, phosphate precipitation was observed in the bacterial mass but also near the colonies. Our results suggest that the microbial population contributed to phosphate precipitation by changing the media as a consequence of their metabolic activity. Moreover, the results of this research suggest that bacteria play an active role in the mineral precipitation of soluble phosphate from urban wastewater in submerged fixed-film bioreactors.

  6. Biological treatment of a synthetic dairy wastewater in a sequencing batch biofilm reactor: Statistical modeling using optimization using response surface methodology

    Directory of Open Access Journals (Sweden)

    Zinatizadeh A.A.L.

    2011-01-01

    Full Text Available In this study, the interactive effects of initial chemical oxygen demand (CODin, biomass concentration and aeration time on the performance of a lab-scale sequencing batch biofilm reactor (SBBR treating a synthetic dairy wastewater were investigated. The experiments were conducted based on a central composite design (CCD and analyzed using response surface methodology (RSM. The region of exploration for treatment of the synthetic dairy wastewater was taken as the area enclosed by the influent comical oxygen demand (CODin (1000, 3000 and 5000 mg/l, biomass concentration (3000, 5000 and 7000 mg VSS/l and aeration time (2, 8 and 18 h boundaries. Two dependent parameters were measured or calculated as response. These parameters were total COD removal efficiency and sludge volume index (SVI. The maximum COD removal efficiencies (99.5% were obtained at CODin, biomass concentration and aeration time of 5000 mg COD/l, 7000 mg VSS/l and 18 h, respectively. The present study provides valuable information about interrelations of quality and process parameters at different values of the operating variables.

  7. Biological treatment of thin-film transistor liquid crystal display (TFT-LCD) wastewater using aerobic and anoxic/oxic sequencing batch reactors.

    Science.gov (United States)

    Lei, Chin-Nan; Whang, Liang-Ming; Chen, Po-Chun

    2010-09-01

    The amount of pollutants produced during manufacturing processes of thin-film transistor liquid crystal display (TFT-LCD) substantially increases due to an increasing production of the opto-electronic industry in Taiwan. This study presents the treatment performance of one aerobic and one anoxic/oxic (A/O) sequencing batch reactors (SBRs) treating synthetic TFT-LCD wastewater containing dimethyl sulfoxide (DMSO), monoethanolamine (MEA), and tetra-methyl ammonium hydroxide (TMAH). The long-term monitoring results for the aerobic and A/O SBRs demonstrate that stable biodegradation of DMSO, MEA, and TMAH can be achieved without any considerably adverse impacts. The ammonium released during MEA and TMAH degradation can also be completely oxidized to nitrate through nitrification in both SBRs. Batch studies on biodegradation rates for DMSO, MEA, and TMAH under anaerobic, anoxic, and aerobic conditions indicate that effective MEA degradation can be easily achieved under all three conditions examined, while efficient DMSO and TMAH degradation can be attained only under anaerobic and aerobic conditions, respectively. The potential odor problem caused by the formation of malodorous dimethyl sulfide from DMSO degradation under anaerobic conditions, however, requires insightful consideration in treating DMSO-containing wastewater.

  8. Advanced treatment of biologically pretreated coal gasification wastewater using a novel anoxic moving bed biofilm reactor (ANMBBR)-biological aerated filter (BAF) system.

    Science.gov (United States)

    Zhuang, Haifeng; Han, Hongjun; Jia, Shengyong; Zhao, Qian; Hou, Baolin

    2014-04-01

    A novel system integrating anoxic moving bed biofilm reactor (ANMBBR) and biological aerated filter (BAF) with short-cut biological nitrogen removal (SBNR) process was investigated as advanced treatment of real biologically pretreated coal gasification wastewater (CGW). The results showed the system had efficient capacity of degradation of pollutants especially nitrogen removal. The best performance was obtained at hydraulic residence times of 12h and nitrite recycling ratios of 200%. The removal efficiencies of COD, total organic carbon, NH4(+)-N, total phenols and total nitrogen (TN) were 74.6%, 70.0%, 85.0%, 92.7% and 72.3%, the corresponding effluent concentrations were 35.1, 18.0, 4.8, 2.2 and 13.6mg/L, respectively. Compared with traditional A(2)/O process, the system had high performance of NH4(+)-N and TN removal, especially under the high toxic loading. Moreover, ANMBBR played a key role in eliminating toxicity and degrading refractory compounds, which was beneficial to improve biodegradability of raw wastewater for SBNR process.

  9. Treatment of electroplating wastewater

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    To study the feasibility of treated water being used as rinsing water with CP/ED (chemical precipitation/electrodialysis) system, the relation between concentration of Cr (VI) and conductivity of water is investigated, the effect of electrodialysis (ED) for different wastewater is also studied. And several parameters of importance that are relevant to the process are identified. Analysis of ICP (Inductively coupled plasma) and IC (Ion chromatography) shows that the main reason of conductivity increase in CP treated water is the increase of Na+ and Cl- ions. The 93.8%-100% of ions from wastewater both in ED and CP/ED systems was removed successfully. The results of experiments indicate that the CP/ED system is a feasible method for electroplating wastewater treatment, the CP/ED system used as a way of wastwater is not only in favour of environment, but also economic beneficial to achieve.

  10. Treatemnt of Wastewater with Modified Sequencing Batch Biofilm Reactor Technology

    Institute of Scientific and Technical Information of China (English)

    胡龙兴; 刘宇陆

    2002-01-01

    This paper describes the removel of COD and nitrogen from wastewater with modified sequencing batch biofilm reactor,The strategy of simultaneous feeding and draining was explored.The results show that introduction of a new batch of wastewater and withdrawal of the purifeid water can be conducted simultaneously with the maximum volumetric exchange rate of about 70%,Application of this feeding and draining mode leads to the reduction of the cycle time,the increase of the utilization of the reactor volume and the simplification of the reactor structure.The treatment of a synthetic wastewater containing COD and nitrogen was investigated.The operation mode of F(D)-O(i.e.,simultaneous feeding and draining followed by the aerobic condition)was adopted.It was found that COD was degraded very fast in the initial reaction period of time,then reduced slowly and the ammonia nitrogen and nitrate nitrogen concentrations decreased and increased with time respectively,while the nitrite nitrogen level increased first and then reduced.The relationship between the COD or ammonia nitrogen loading and its removal rate was examined,and the removal of COD,ammonia nitrogen and total nitrogen could exceed 95%,90%and 80% respectively,The fact that nitrogen could e removed more completely under constant aeration(aerobic condition)of the SBBR operation mode is very interesting and could be explained in several respects.

  11. Influence of filling ratio and carrier type on organic matter removal in a moving bed biofilm reactor with pretreatment of electrocoagulation in wastewater treatment.

    Science.gov (United States)

    Lopez-Lopez, C; Martín-Pascual, J; González-Martínez, A; Calderón, K; González-López, J; Hontoria, E; Poyatos, J M

    2012-01-01

    At present, there is great concern about limited water resources and water quality, which require a more advanced technology. The Moving Bed Biofilm Reactor (MBBR) has been shown to be an efficient technology for removal of organic matter and nutrients in industrial and urban wastewater treatment. However, there are some pollutants which are more difficult to remove by biological processes, so this process can be improved with additional physical and chemical treatments such as electrocoagulation, which appears to be a promising technology in electrochemical treatments. In this research, urban wastewater was treated in an MBBR plant with an electrocoagulation pre-treatment. K1 from AnoxKaldnes and AQWISE ABC5 from Aqwise were the carriers studied under three different filling ratios (20, 35, and 50%). The experimental pilot plant had four bioreactors with 20 L of operation volume and a common feed tank with 100 L of operation volume. The movement of the carriers was generated by aeration and stirrer systems. Organic matter removal was studied by analysis of soluble chemical oxygen demand (sCOD). The maximum organic matter removal in this MBBR system was 65.8% ± 1.4% and 78.4% ± 0.1% for K1 and Aqwise ABC5 carriers, respectively. Moreover, the bacterial diversity of the biofilm was studied by temperature-gradient gel electrophoresis (TGGE) of PCR-amplified partial 16S rRNA genes. 20 prominent TGGE bands were successfully reamplified and sequenced, being the predominant population: β-Proteobacteria, α-Proteobacteria, and Actinobacteria.

  12. Energy potential and alternative usages of biogas and sludge from UASB reactors: case study of the Laboreaux wastewater treatment plant.

    Science.gov (United States)

    Rosa, A P; Conesa, J A; Fullana, A; Melo, G C B; Borges, J M; Chernicharo, C A L

    2016-01-01

    This work assessed the energy potential and alternative usages of biogas and sludge generated in upflow anaerobic sludge blanket reactors at the Laboreaux sewage treatment plant (STP), Brazil. Two scenarios were considered: (i) priority use of biogas for the thermal drying of dehydrated sludge and the use of the excess biogas for electricity generation in an ICE (internal combustion engine); and (ii) priority use of biogas for electricity generation and the use of the heat of the engine exhaust gases for the thermal drying of the sludge. Scenario 1 showed that the electricity generated is able to supply 22.2% of the STP power demand, but the thermal drying process enables a greater reduction or even elimination of the final volume of sludge to be disposed. In Scenario 2, the electricity generated is able to supply 57.6% of the STP power demand; however, the heat in the exhaust gases is not enough to dry the total amount of dehydrated sludge.

  13. Dyes wastewater treatment by reduction-oxidation process in an electrochemical reactor packed with natural manganese mineral

    Institute of Scientific and Technical Information of China (English)

    WANG Ai-min; QU Jiu-hui; LIU Hui-juan; LEI Peng-ju

    2006-01-01

    A novel technology which combined electrochemical process catalyzed by manganese mineral with electro-assisted coagulation process was proposed in this study. The mineralization of organic pollutant from simulated dye wastewater containing an azo dye Acid Red B(ARB) was experimentally investigated using this method. It was found that the manganese mineral could catalyze the electrochemical process dramatically. The TOC removal percentage of electrochemical treatment catalyzed by manganese mineral was 43.6% while the TOC removal percentage of the process using the manganese mineral alone and using the electrolysis alone were 9.3% and 20.8%, respectively. Moreover, it was found that combined electroxidation with electro-assisted coagulation process could more effectively eliminate ARB. After a period of 180 min electrooxidation and 300 min electroreduction, almost 66.9% of TOC was removed, and the dissolved Mn2+ could be effectivly removed. The effects of the order of oxidation and reduction, the proper ratio electrooxidation/reduction time, and current density on the removal efficiency were investigated in detail. In addition, a proposed mechanism of manganese-mineral-catalyzed electrooxidation-reduction process was discussed in this paper.

  14. Preparation of ceramic-corrosion-cell fillers and application for cyclohexanone industry wastewater treatment in electrobath reactor.

    Science.gov (United States)

    Wu, Suqing; Qi, Yuanfeng; Gao, Yue; Xu, Yunyun; Gao, Fan; Yu, Huan; Lu, Yue; Yue, Qinyan; Li, Jinze

    2011-11-30

    As new media, ceramic-corrosion-cell fillers (Cathode Ceramic-corrosion-cell Fillers - CCF, and Anode Ceramic-corrosion-cell Fillers - ACF) employed in electrobath were investigated for cyclohexanone industry wastewater treatment. 60.0 wt% of dried sewage sludge and 40.0 wt% of clay, 40.0 wt% of scrap iron and 60.0 wt% of clay were utilized as raw materials for the preparation of raw CCF and ACF, respectively. The raw CCF and ACF were respectively sintered at 400°C for 20 min in anoxic conditions. The physical properties (bulk density, grain density and water absorption), structural and morphological characters and toxic metal leaching contents were tested. The influences of pH, hydraulic retention time (HRT) and the media height on removal of COD(Cr) and cyclohexanone were studied. The results showed that the bulk density and grain density of CCF and ACF were 869.0 kg m(-3) and 936.3 kg m(-3), 1245.0 kg m(-3) and 1420.0 kg m(-3), respectively. The contents of toxic metal (Cu, Zn, Cd, Pb, Cr, Ba, Ni and As) were all below the detection limit. When pH of 3-4, HRT of 6h and the media height of 60 cm were applied, about 90% of COD(cr) and cyclohexanone were removed.

  15. Sequential dynamic artificial neural network modeling of a full-scale coking wastewater treatment plant with fluidized bed reactors.

    Science.gov (United States)

    Ou, Hua-Se; Wei, Chao-Hai; Wu, Hai-Zhen; Mo, Ce-Hui; He, Bao-Yan

    2015-10-01

    This study proposed a sequential modeling approach using an artificial neural network (ANN) to develop four independent models which were able to predict biotreatment effluent variables of a full-scale coking wastewater treatment plant (CWWTP). Suitable structure and transfer function of ANN were optimized by genetic algorithm. The sequential approach, which included two parts, an influent estimator and an effluent predictor, was used to develop dynamic models. The former parts of models estimated the variations of influent COD, volatile phenol, cyanide, and NH4 (+)-N. The later parts of models predicted effluent COD, volatile phenol, cyanide, and NH4 (+)-N using the estimated values and other parameters. The performance of these models was evaluated by statistical parameters (such as coefficient of determination (R (2) ), etc.). Obtained results indicated that the estimator developed dynamic models for influent COD (R (2)  = 0.871), volatile phenol (R (2)  = 0.904), cyanide (R (2)  = 0.846), and NH4 (+)-N (R (2)  = 0.777), while the predictor developed feasible models for effluent COD (R (2)  = 0.852) and cyanide (R (2)  = 0.844), with slightly worse models for effluent volatile phenol (R (2)  = 0.752) and NH4 (+)-N (R (2)  = 0.764). Thus, the proposed modeling processes can be used as a tool for the prediction of CWWTP performance.

  16. Role of Moving Bed Biofilm Reactor and Sequencing Batch Reactor in Biological Degradation of Formaldehyde Wastewater

    OpenAIRE

    2011-01-01

    Nowadays formaldehyde is used as raw material in many industries. It has also disinfection applications in some public places. Due to its toxicity for microorganisms, chemical or anaerobic biological methods are applied for treating wastewater containing formaldehyde.In this research, formaldehyde removal efficiencies of aerobic biological treatment systems including moving bed biofilm (MMBR) and sequencing batch reactors (SBR) were investigated. During all experiments, the efficiency of SBR ...

  17. Immobilized reactor for rapid destruction of recalcitrant organics and inorganics in tannery wastewater

    Institute of Scientific and Technical Information of China (English)

    A. Ganesh Kumar; G. Sekaran; S. Swarnalatha; B. Prasad Rao

    2005-01-01

    The wastewater discharged from tanneries lack biodegradability due to the presence of recalcitrant compounds at significant concentration. The focal theme of the present investigation was to use chemo-autotrophic activated carbon oxidation(CAACO) reactor, an immobilized cell reactor using chemoautotrophs for the treatment of tannery wastewater. The treatment scheme comprised of anaerobic treatment, sand filtration, and CAACO reactor, which remove COD, BOD, TOC, VFA and sulphides respectively by 86%, 95%, 81%,71% and 100%. Rice bran mesoporous activated carbon prepared indigenously and was used for immobilization of chemoautotrophs. The degradation of xenobiotic compounds by CAACO was confirmed through HPLC and FT-IR techniques.

  18. Biomass characteristics in three sequencing batch reactors treating a wastewater containing synthetic organic chemicals

    DEFF Research Database (Denmark)

    Hu, Z.Q.; Ferraina, R.A.; Ericson, J.F.

    2005-01-01

    The physical and biochemical characteristics of the biomass in three lab-scale sequencing batch reactors (SBR) treating a synthetic wastewater at a 20-day target solids retention time (SRT) were investigated. The synthetic wastewater feed contained biogenic compounds and 22 organic priming....../aerobic cycles might facilitate the formation of granular sludge with good settleability, and retain comparable removal of nitrogen and synthetic organic compounds. Hence, the practice of anoxic/aerobic cycling should be considered in wastewater treatment systems whenever possible....

  19. Biodegradation of pharmaceuticals from hospital wastewater in staged Moving Bed Biofilm Reactors (MBBR)

    DEFF Research Database (Denmark)

    Escola, Monica; Kumar Chhetri, Ravi; Ooi, Gordon

    2015-01-01

    Hospital wastewater may represent an important source of pharmaceuticals into wastewater treatment plants, which are usually inefficient for complete pharmaceuticals removal. Consequently, on-site treatment of hospital wastewater has been suggested. MBBRs (Moving Bed Biofilm Reactors) rely...... of pharmaceuticals from hospital wastewater. A pilot MBBR line consisting of three tanks in series containing AnoxKaldnes™ K5 carriers was installed to treat a fraction of the wastewater from the oncology department of Aarhus University Hospital. Two sampling campaigns were conducted to study the removal...... the wastewater treatment. In both experiments, the first tank was observed to conduct the main part of the pharmaceuticals removal, matching the general parameters data. Overall, the MBBR was shown to treat hospital wastewater efficiently. However, for removal of recalcitrant pharmaceuticals, a polishing...

  20. Wastewater treatment models

    DEFF Research Database (Denmark)

    Gernaey, Krist; Sin, Gürkan

    2011-01-01

    The state-of-the-art level reached in modeling wastewater treatment plants (WWTPs) is reported. For suspended growth systems, WWTP models have evolved from simple description of biological removal of organic carbon and nitrogen in aeration tanks (ASM1 in 1987) to more advanced levels including...... of WWTP modeling by linking the wastewater treatment line with the sludge handling line in one modeling platform. Application of WWTP models is currently rather time consuming and thus expensive due to the high model complexity, and requires a great deal of process knowledge and modeling expertise....... Efficient and good modeling practice therefore requires the use of a proper set of guidelines, thus grounding the modeling studies on a general and systematic framework. Last but not least, general limitations of WWTP models – more specifically activated sludge models – are introduced since these define...

  1. Wastewater Treatment Models

    DEFF Research Database (Denmark)

    Gernaey, Krist; Sin, Gürkan

    2008-01-01

    The state-of-the-art level reached in modeling wastewater treatment plants (WWTPs) is reported. For suspended growth systems, WWTP models have evolved from simple description of biological removal of organic carbon and nitrogen in aeration tanks (ASM1 in 1987) to more advanced levels including...... the practice of WWTP modeling by linking the wastewater treatment line with the sludge handling line in one modeling platform. Application of WWTP models is currently rather time consuming and thus expensive due to the high model complexity, and requires a great deal of process knowledge and modeling expertise....... Efficient and good modeling practice therefore requires the use of a proper set of guidelines, thus grounding the modeling studies on a general and systematic framework. Last but not least, general limitations of WWTP models – more specifically, activated sludge models – are introduced since these define...

  2. Wastewater treatment with algae

    Energy Technology Data Exchange (ETDEWEB)

    Wong Yukshan [Hong Kong Univ. of Science and Technology, Kowloon (China). Research Centre; Tam, N.F.Y. [eds.] [City Univ. of Hong Kong, Kowloon (China). Dept. of Biology and Chemistry

    1998-05-01

    Immobilized algal technology for wastewater treatment purposes. Removal of copper by free and immobilized microalga, Chlorella vulgaris. Biosorption of heavy metals by microalgae in batch and continuous systems. Microalgal removal of organic and inorganic metal species from aqueous solution. Bioaccumulation and biotransformation of arsenic, antimony and bismuth compounds by freshwater algae. Metal ion binding by biomass derived from nonliving algae, lichens, water hyacinth root and spagnum moss. Metal resistance and accumulation in cyanobacteria. (orig.)

  3. Coupling of acrylic dyeing wastewater treatment by heterogeneous Fenton oxidation in a continuous stirred tank reactor with biological degradation in a sequential batch reactor.

    Science.gov (United States)

    Esteves, Bruno M; Rodrigues, Carmen S D; Boaventura, Rui A R; Maldonado-Hódar, F J; Madeira, Luís M

    2016-01-15

    This work deals with the treatment of a recalcitrant effluent, from the dyeing stage of acrylic fibres, by combination of the heterogeneous Fenton's process in a continuous stirred tank reactor (CSTR) with biological degradation in a sequential batch reactor (SBR). Three different catalysts (a commercial Fe/ZSM-5 zeolite and two distinct Fe-containing activated carbons - ACs - prepared by wet impregnation of iron acetate and iron nitrate) were employed on the Fenton's process, and afterwards a parametric study was carried out to determine the effect of the main operating conditions, namely the hydrogen peroxide feed concentration, temperature and contact time. Under the best operating conditions found, using the activated carbon impregnated with iron nitrate, 62.7% of discolouration and 39.9% of total organic carbon (TOC) reduction were achieved, at steady-state. Furthermore, a considerable increase in the effluent's biodegradability was attained (BOD5:COD ratio increased from <0.001 to 0.27 and SOUR - specific oxygen uptake rate - from <0.2 to 11.1 mg O2/(gVSS·h)), alongside a major decrease in its toxicity (from 92.1 to 94.0% of Vibrio fischeri inhibition down to 6.9-9.9%). This allowed the application of the subsequent biological degradation stage. The combination of the two processes provided a treated effluent that clearly complies with the legislated discharge limits. It was also found that the iron leaching from the three catalysts tested was very small in all runs, a crucial factor for the stability and long-term use of such materials.

  4. Domestic wastewater treatment in developing countries

    Energy Technology Data Exchange (ETDEWEB)

    Mara, Duncan

    2004-09-15

    Details methods of domestic wastewater treatment that are especially suitable in developing countries. The emphasis is on low-cost, low-energy, low-maintenance, high-performance systems that contribute to environmental sustainability by producing effluents that can be safely and profitably used in agriculture for crop irrigation and/or in aquaculture for fish and aquatic vegetable pond fertilization. Modern design methodologies, with worked design examples, are described for waste stabilization ponds (WSPs), wastewater storage and treatment reservoirs, constructed wetlands, upflow anaerobic sludge blanket reactors, biofilters, aerated lagoons and oxidation ditches. (Author)

  5. Anammox moving bed biofilm reactor pilot at the 26th Ward wastewater treatment plants in Brooklyn, New York: start-up, biofilm population diversity and performance optimization.

    Science.gov (United States)

    Mehrdad, M; Park, H; Ramalingam, K; Fillos, J; Beckmann, K; Deur, A; Chandran, K

    2014-01-01

    New York City Environmental Protection in conjunction with City College of New York assessed the application of the anammox process in the reject water treatment using a moving bed biofilm reactor (MBBR) located at the 26th Ward wastewater treatment plant, in Brooklyn, NY. The single-stage nitritation/anammox MBBR was seeded with activated sludge and consequently was enriched with its own 'homegrown' anammox bacteria (AMX). Objectives of this study included collection of additional process kinetic and operating data and assessment of the effect of nitrogen loading rates on process performance. The initial target total inorganic nitrogen removal of 70% was limited by the low alkalinity concentration available in the influent reject water. Higher removals were achieved after supplementing the alkalinity by adding sodium hydroxide. Throughout startup and process optimization, quantitative real-time polymerase chain reaction (qPCR) analyses were used for monitoring the relevant species enriched in the biofilm and in the suspension. Maximum nitrogen removal rate was achieved by stimulating the growth of a thick biofilm on the carriers, and controlling the concentration of dissolved oxygen in the bulk flow and the nitrogen loading rates per surface area; all three appear to have contributed in suppressing nitrite-oxidizing bacteria activity while enriching AMX density within the biofilm.

  6. Comparison of CSTR and UASB reactor configuration for the treatment of sulfate rich wastewaters under acidifying conditions

    NARCIS (Netherlands)

    Lopes, S.I.C.; Dreissen, C.; Capela, M.I.; Lens, P.N.L.

    2008-01-01

    The effects of lowering the operational pH from 6 to 5 on mesophilic (30 degrees C) sulfate reduction during the acidification of sucrose at an organic loading rate of 5 gCOD(1(reactor)d)(-1) and at a COD/SO42- ratio of 4 were evaluated in a CSTR and in a UASB reactor. The HRT was 24 h and 10 h, res

  7. Tratamento de efluentes de refinaria de petróleo em reatores com Aspergillus niger Treatment of petroleum refinery wastewater by reactors inoculated with Aspergillus niger

    Directory of Open Access Journals (Sweden)

    Sandra Tédde Santaella

    2009-03-01

    Full Text Available Neste trabalho, avaliou-se o efeito do tempo de detenção hidráulica (TDH no desempenho de três reatores aeróbios inoculados com Aspergillus niger AN400, usados para tratamento de efluentes de refinarias de petróleo. Cada reator foi operado com um tempo de detenção hidráulica diferente: 4, 8 e 12 horas, durante 152 dias. Eles possuíam leito fixo de espuma de poliuretano e o escoamento era ascendente e contínuo. Determinaram-se: pH, fenóis, demanda química de oxigênio (DQO, amônia, nitrito e nitrato, no afluente e efluentes dos reatores. O TDH de oito horas foi o melhor para remoção de DQOsolúvel e não houve diferença entre os TDHs para remoção de fenóis totais. No período estável não houve remoção de nitrato; no entanto ocorreu remoção de nitrito de aproximadamente 99%. Além disto, houve produção de amônia devido à amonificação a partir do nitrito presente no meio.This paper evaluated the effect of hydraulic retention time (HRT on the performance of three upflow aerobic reactors, with polyurethane foam as support material, inoculated with Aspergillus niger AN400, used for the treatment of petroleum refinery wastewater. Each reactor was operated with a different HRT: 4, 8 and 12 hours, during 152 days. The performance was evaluated based on pH; phenols; COD, nitrate and nitrite. The results show that for the COD removal, it is more reasonable to operate the reactor with HRT of eight hours. However, there was no difference among results of phenol removal efficiency of the different HRTs. During steady state condition, nitrite was removed in approximately 99%, but there was no reduction on the nitrate concentration. Ammonia was produced in all reactors, probably due to ammonification of nitrite.

  8. Nitrogen and phosphorus treatment of marine wastewater by a laboratory-scale sequencing batch reactor with eco-friendly marine high-efficiency sediment.

    Science.gov (United States)

    Cho, Seonghyeon; Kim, Jinsoo; Kim, Sungchul; Lee, Sang-Seob

    2017-06-22

    We screened and identified a NH3-N-removing bacterial strain, Bacillus sp. KGN1, and a [Formula: see text] removing strain, Vibrio sp. KGP1, from 960 indigenous marine isolates from seawater and marine sediment from Tongyeong, South Korea. We developed eco-friendly high-efficiency marine sludge (eco-HEMS), and inoculated these marine bacterial strains into the marine sediment. A laboratory-scale sequencing batch reactor (SBR) system using the eco-HEMS for marine wastewater from land-based fish farms improved the treatment performance as indicated by 88.2% removal efficiency (RE) of total nitrogen (initial: 5.6 mg/L) and 90.6% RE of total phosphorus (initial: 1.2 mg/L) under the optimal operation conditions (food and microorganism (F/M) ratio, 0.35 g SCODCr/g mixed liquor volatile suspended solids (MLVSS)·d; dissolved oxygen (DO) 1.0 ± 0.2 mg/L; hydraulic retention time (HRT), 6.6 h; solids retention time (SRT), 12 d). The following kinetic parameters were obtained: cell yield (Y), 0.29 g MLVSS/g SCODCr; specific growth rate (µ), 0.06 d(-1); specific nitrification rate (SNR), 0.49 mg NH3-N/g MLVSS·h; specific denitrification rate (SDNR), 0.005 mg [Formula: see text]/g MLVSS·h; specific phosphorus uptake rate (SPUR), 0.12 mg [Formula: see text]/g MLVSS·h. The nitrogen- and phosphorus-removing bacterial strains comprised 18.4% of distribution rate in the microbial community of eco-HEMS under the optimal operation conditions. Therefore, eco-HEMS effectively removed nitrogen and phosphorus from highly saline marine wastewater from land-based fish farms with improving SNR, SDNR, and SPUR values in more diverse microbial communities. DO: dissolved oxygen; Eco-HEMS: eco-friendly high efficiency marine sludge; F/M: food and microorganism ratio; HRT: hydraulic retention time; ML(V)SS: mixed liquor (volatile) suspended solids; NCBI: National Center for Biotechnology Information; ND: not determined; qPCR: quantitative real-time polymerase chain

  9. Dissecting microbial community structure and methane-producing pathways of a full-scale anaerobic reactor digesting activated sludge from wastewater treatment by metagenomic sequencing

    National Research Council Canada - National Science Library

    Guo, Jianhua; Peng, Yongzhen; Ni, Bing-Jie; Han, Xiaoyu; Fan, Lu; Yuan, Zhiguo

    2015-01-01

    Anaerobic digestion has been widely applied to treat the waste activated sludge from biological wastewater treatment and produce methane for biofuel, which has been one of the most efficient solutions...

  10. Trends in advanced wastewater treatment

    DEFF Research Database (Denmark)

    Henze, M.

    1997-01-01

    The paper examines the present trends within wastewater handling and treatment. The trend is towards the extremes, either local low-tech treatment or centralized advanced treatment plants. The composition of the wastewater will change and it will be regarded as a resource. There will be more...

  11. Biometanation of Distillery Wastewater in an Anaerobic Baffled Reactor System

    Directory of Open Access Journals (Sweden)

    Lalov I. G.

    2007-12-01

    Full Text Available Anaerobic digestion is an established technology for distillery effluent treatment witch seems to be a promising alternative for Bulgarian industry. In this study the methanogenic activity of two different naturally formed microbial consortiums was compared. The better one was used to start continuous anaerobic digestion of high-strength distillery wastewater (COD 85 520 mgO2 . l-1 in laboratory scale anaerobic baffled reactor system. The average applied organic loading rate and hydraulic retention time were 4.28 kg COD m-3 . d-1 and 20 d respectively. A COD reduction of about 98 % and specific methane production of 0.39 m3 . kg-1 CODremoved were reached. Effects of different inhibitory factors such as low pH and presence of oxygen were investigated. In spite of unfavorable factors were applied simultaneously after an adaptation period the reactor showed stable response. The results obtained show the feasibility of this anaerobic process for distillery effluent treatment, representing a valid option to up-grade the existing wastewater treatment processes.

  12. Microbial diversity of a full-scale UASB reactor applied to poultry slaughterhouse wastewater treatment: integration of 16S rRNA gene amplicon and shotgun metagenomic sequencing.

    Science.gov (United States)

    Delforno, Tiago Palladino; Lacerda Júnior, Gileno Vieira; Noronha, Melline F; Sakamoto, Isabel K; Varesche, Maria Bernadete A; Oliveira, Valéria M

    2017-02-23

    The 16S rRNA gene amplicon and whole-genome shotgun metagenomic (WGSM) sequencing approaches were used to investigate wide-spectrum profiles of microbial composition and metabolic diversity from a full-scale UASB reactor applied to poultry slaughterhouse wastewater treatment. The data were generated by using MiSeq 2 × 250 bp and HiSeq 2 × 150 bp Illumina sequencing platforms for 16S amplicon and WGSM sequencing, respectively. Each approach revealed a distinct microbial community profile, with Pseudomonas and Psychrobacter as predominant genus for the WGSM dataset and Clostridium and Methanosaeta for the 16S rRNA gene amplicon dataset. The virome characterization revealed the presence of two viral families with Bacteria and Archaea as host, Myoviridae, and Siphoviridae. A wide functional diversity was found with predominance of genes involved in the metabolism of acetone, butanol, and ethanol synthesis; and one-carbon metabolism (e.g., methanogenesis). Genes related to the acetotrophic methanogenesis pathways were more abundant than methylotrophic and hydrogenotrophic, corroborating the taxonomic results that showed the prevalence of the acetotrophic genus Methanosaeta. Moreover, the dataset indicated a variety of metabolic genes involved in sulfur, nitrogen, iron, and phosphorus cycles, with many genera able to act in all cycles. BLAST analysis against Antibiotic Resistance Genes Database (ARDB) revealed that microbial community contained 43 different types of antibiotic resistance genes, some of them were associated with growth chicken promotion (e.g., bacitracin, tetracycline, and polymyxin).

  13. Constructed Wetlands for Wastewater Treatment

    OpenAIRE

    Jan Vymazal

    2010-01-01

    The first experiments using wetland macrophytes for wastewater treatment were carried out in Germany in the early 1950s. Since then, the constructed wetlands have evolved into a reliable wastewater treatment technology for various types of wastewater. The classification of constructed wetlands is based on: the vegetation type (emergent, submerged, floating leaved, free-floating); hydrology (free water surface and subsurface flow); and subsurface flow wetlands can be further classified accordi...

  14. Biogas production from UASB and polyurethane carrier reactors treating sisal processing wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Rubindamayugi, M.S.T.; Salakana, L.K.P. [Univ. of Dar es Salaam, Faculty of Science, Applied Microbiology Unit (Tanzania, United Republic of)

    1997-12-31

    The fundamental benefits which makes anaerobic digestion technology (ADT) attractive to the poor developing include the low cost and energy production potential of the technology. In this study the potential of using UASB reactor and Polyurethane Carrier Reactor (PCR) as pollution control and energy recovery systems from sisal wastewater were investigated in lab-scale reactors. The PCR demonstrated the shortest startup period, whereas the UASB reactor showed the highest COD removal efficiency 79%, biogas production rate (4.5 l biogas/l/day) and process stability than the PCR under similar HRT of 15 hours and OLR of 8.2 g COD/l/day. Both reactor systems became overloaded at HRT of 6 hours and OLR of 15.7 g COD/l/day, biogas production ceased and reactors acidified to pH levels which are inhibiting to methanogenesis. Based on the combined results on reactor performances, the UASB reactor is recommended as the best reactor for high biogas production and treatment efficiency. It was estimated that a large-scale UASB reactor can be designed under the same loading conditions to produce 2.8 m{sup 3} biogas form 1 m{sup 3} of wastewater of 5.16 kg COD/m{sup 3}. Wastewater from one decortication shift can produce 9,446 m{sup 3} og biogas. The energy equivalent of such fuel energy is indicated. (au)

  15. Physico-chemical wastewater treatment

    NARCIS (Netherlands)

    Mels, A.R.; Teerikangas, E.

    2002-01-01

    Wastewater reclamation strategies aimed at closing industrial water cycles and recovery of valuable components will in most cases require a combination of wastewater treatment unit operations. Biological unit operations are commonly applied as the core treatment. In addition, physico-chemical unit o

  16. Physico-chemical wastewater treatment

    NARCIS (Netherlands)

    Mels, A.R.; Teerikangas, E.

    2002-01-01

    Wastewater reclamation strategies aimed at closing industrial water cycles and recovery of valuable components will in most cases require a combination of wastewater treatment unit operations. Biological unit operations are commonly applied as the core treatment. In addition, physico-chemical unit o

  17. Physico-chemical wastewater treatment

    NARCIS (Netherlands)

    Mels, A.R.; Teerikangas, E.

    2002-01-01

    Wastewater reclamation strategies aimed at closing industrial water cycles and recovery of valuable components will in most cases require a combination of wastewater treatment unit operations. Biological unit operations are commonly applied as the core treatment. In addition, physico-chemical unit

  18. Sterilization of swine wastewater treated by anaerobic reactors using UV photo-reactors

    Directory of Open Access Journals (Sweden)

    Erlon Lopes Pereira

    2014-09-01

    Full Text Available The use of ultraviolet radiation is an established procedure with growing application forthe disinfection of contaminated wastewater. This study aimed to evaluate the efficiency of artificial UV radiation, as a post treatment of liquid from anaerobic reactors treating swine effluent. The UV reactors were employed to sterilize pathogenic microorganisms. To this end, two photo-reactors were constructed using PVC pipe with100 mm diameter and 1060 mmlength, whose ends were sealed with PVC caps. The photo-reactors were designed to act on the liquid surface, as the lamp does not get into contact with the liquid. To increase the efficiency of UV radiation, photo-reactors were coated with aluminum foil. The lamp used in the reactors was germicidal fluorescent, with band wavelength of 230 nm, power of 30 Watts and manufactured by Techlux. In this research, the HRT with the highest removal efficiency was 0.063 days (90.6 minutes, even treating an effluent with veryhigh turbidity due to dissolved solids. It was concluded that the sterilization method using UV has proved to be an effective and appropriate process, among many other procedures.

  19. IC反应器在抗生素废水处理中的调试运行研究%Commissioning and Operation of IC Reactor for Treatment of Antibiotic Wastewater

    Institute of Scientific and Technical Information of China (English)

    夏怡

    2011-01-01

    抗生素废水是一种难降解的高浓度有机废水,传统的厌氧工艺通常对其处理效率不高.将新型高效的厌氧反应器--IC反应器用于处理抗生素废水,并通过接种颗粒污泥、控制进水浓度和水量、调控pH值和温度等一系列措施后成功启动了该反应器.两年多的实际运行效果表明:采用IC反应器处理抗生素废水,不仅处理效率高而且运行稳定,对COD的平均去除率可达到78%,大大减轻了后续好氧和气浮工艺的处理负荷,确保了整个废水处理系统出水的达标排放.%Antibiotic wastewater is a refractory high-concentration organic wastewater, and its treatment efficiency with traditional anaerobic processes is not high. The IC reactor was used to treat this wastewater. It was successfully started up by taking measures including inoculating granular sludge, controlling the influent concentration, flow rate, pH and temperature. The operation results for more than two years show that IC reactor has high treatment efficiency and stable operation in treatment of antibiotic wastewater, and the removal rate of COD can reach 78%, thus reducing the treatment loads of subsequent aerobic and air floatation processes, and ensuring that the effluent from the whole wastewater treatment system meets the discharge standard.

  20. Winery Wastewater Treatment Applying Aerated Submerged

    Directory of Open Access Journals (Sweden)

    Alessandra Pellizzaro Bento

    2010-06-01

    Full Text Available The winery wastewater usually shows conditions of low pH, high organic loads and concentrations of carbon, nitrogen and phosphorus that are inappropriate for biologic treatment. The purpose of this research was to apply the technology of aerated submerged biofilter (ASB for the winery effluent treatment during the harvest (ASB 1 and non harvest (ASB 2 at lab scale. Therefore, two up flow biofilter built on glass (5 liters volume were installed. The nutrient balance of the winery wastewater was adjusted and the correction of the pH was done by oyster shell used as filter material. The efficiency removal (COD for the harvest reactor was 90% while for the non harvest was 82%. The oyster shells contributed to an increase on average of 180 mg/L of alkalinity to the BAS 1 and 318 mg/L for the BAS 2. As regards the metals, the average values in the treated effluent to meet iron and zinc is permitted by the environmental standards of Santa Catarina. Under the experimental conditions applied in this research, this kind of reactor has presented potential for the treatment of winery wastewater. However, operational improvements would be required in the reactors to adequate them to the specific management into the wineries.

  1. Sludge Reduction by Lumbriculus Variegatus in Ahvaz Wastewater Treatment Plant

    Directory of Open Access Journals (Sweden)

    Tim Hendrickx

    2012-08-01

    Full Text Available Sludge production is an avoidable problem arising from the treatment of wastewater. The sludge remained after municipal wastewater treatment contains considerable amounts of various contaminants and if is not properly handled and disposed, it may produce extensivehealth hazards. Application of aquatic worm is an approach to decrease the amount of biological waste sludge produced in wastewater treatment plants. In the present research reduction of the amount of waste sludge from Ahvaz wastewater treatment plant was studied with the aquatic worm Lumbriculus variegatus in a reactor concept. The sludge reduction in the reactor with worm was compared to sludge reduction in a blank reactor (without worm.The effects of changes in dissolved oxygen (DO concentration up to 3 mg/L (run 1 and up to 6 mg/L (run 2 were studied in the worm and blank reactors. No meaningful relationship was found between DO concentration and the rate of total suspended solids reduction. Theaverage sludge reductions were obtained as 33% (run 2 and 32% (run 1 in worm reactor,and 16% (run 1 and 12% (run 2 in the blank reactor. These results showed that the worm reactors may reduce the waste sludge between 2 and 2.75 times higher than in the blankconditions. The obtained results showed that the worm reactor has a high potential for use in large-scale sludge processing.

  2. Effect of organic loading rate on a wastewater treatment process combining moving bed biofilm and membrane reactors.

    Science.gov (United States)

    Melin, E; Leiknes, T; Helness, H; Rasmussen, V; Odegaard, H

    2005-01-01

    The effect of moving bed biofilm reactor (MBBR) loading rate on membrane fouling rate was studied in two parallel units combining MBBR and membrane reactor. Hollow fiber membranes with molecular weight cut-off of 30 kD were used. The HRTs of the MBBRs varied from 45 min to 4 h and the COD loading rates ranged from 4.1 to 26.6 g COD m(-2) d(-1). The trans-membrane pressure (TMP) was very sensitive to fluxes for the used membranes and the experiments were carried out at relatively low fluxes (3.3-5.6 l m(-2) h(-1)). Beside the test with the highest flux, there were no consistent differences in fouling rate between the low- and high-rate reactors. Also, the removal efficiencies were quite similar in both systems. The average COD removal efficiencies in the total process were 87% at 3-4 h HRT and 83% at 0.75-1 h HRT. At high loading rates, there was a shift in particle size distribution towards smaller particles in the MBBR effluents. However, 79-81% of the COD was in particles that were separated by membranes, explaining the relatively small differences in the removal efficiencies at different loading rates. The COD fractionation also indicated that the choice of membrane pore size within the range of 30 kD to 0.1 microm has very small effect on the COD removal in the MBBR/membrane process, especially with low-rate MBBRs.

  3. 用改进的序批式生物膜反应器技术处理废水%Treatment of Wastewater with Modified Sequencing Batch Biofilm Reactor Technology

    Institute of Scientific and Technical Information of China (English)

    胡龙兴; 刘宇陆

    2002-01-01

    This paper describes the removal of COD and nitrogen from wastewater with modified sequencing batch biofilm reactor. The strategy of simultaneous feeding and draining was explored. The results show that introduction of a new batch of wastewater and withdrawal of the purified water can be conducted simultaneously with the maximum volumetric exchange rate of about 70 %. Application of this feeding and draining mode leads to the reduction of the cycle time, the increase of the utilization of the reactor volume and the simplification of the reactor structure. The treatment of a synthetic wastewater containing COD and nitrogen was investigated. The operation mode of F(D)-O ( i. e. , simultaneous feeding and draining followed by the aerobic condition) was adopted. It was found that COD was degraded very fast in the initial reaction period of time, then reduced slowly and the ammonia nitrogen and nitrate nitrogen concentrations decreased and increased with time respectively, while the nitrite nitrogen level increased first and then reduced. The relationship between the COD or ammonia nitrogen loading and its removal rate was examined, and the removal of COD, ammonia nitrogen and total nitrogen could exceed 95%, 90% and 80% respectively. The fact that nitrogen could be removed more completely under constant aeration (aerobic condition) of the SBBR operation mode is very interesting and could be explained in several respects.

  4. Wastewater treatment by flotation

    Directory of Open Access Journals (Sweden)

    F.P. Puget

    2000-12-01

    Full Text Available This work deals with the performance analysis of a separation set-up characterized by the ejector-hydrocyclone association, applied in the treatment of a synthetic dairy wastewater effluent. The results obtained were compared with the results from a flotation column (cylindrical body of a hydrocyclone operated both batch and continuously. As far as the experimental set-up studied in this work and the operating conditions imposed to the process, it is possible to reach a 25% decrease in the total effluent chemical oxygen demand (COD. This corresponds approximately to 60% of the COD of the material in suspension. The best results are obtained for ratios air flow rate-feed flow rate (Qair/Q L greater then 0.15 and for ratios underflow rate-overflow rate (Qu/Qo lower than 1.0.

  5. Co-digestion of food and garden waste with mixed sludge from wastewater treatment in continuously stirred tank reactors

    DEFF Research Database (Denmark)

    Fitamo, Temesgen Mathewos; Boldrin, Alessio; Boe, Kanokwan

    2016-01-01

    Co-digestions of urban organic waste were conducted to investigate the effect of the mixing ratio between sludge, food waste, grass clippings and green waste at different hydraulic retention times (HRTs). Compared to the digestion of 100% sludge, the methane yield increased by 48% and 35%, when co......-digesting sludge with food waste, grass clippings and garden waste with a corresponding % VS of 10:67.5:15.75:6.75 (R1) and 10:45:31.5:13.5 (R2), respectively. The methane yield remained constant at around 425 and 385 NmL CH4/g VS in R1 and R2, respectively, when the reactors were operated at HRTs of 15, 20 and 30...

  6. Effect of alkalinity on nitrite accumulation in treatment of coal chemical industry wastewater using moving bed biofilm reactor.

    Science.gov (United States)

    Hou, Baolin; Han, Hongjun; Jia, Shengyong; Zhuang, Haifeng; Zhao, Qian; Xu, Peng

    2014-05-01

    Nitrogen removal via nitrite (the nitrite pathway) is more suitable for carbon-limited industrial wastewater. Partial nitrification to nitrite is the primary step to achieve nitrogen removal via nitrite. The effect of alkalinity on nitrite accumulation in a continuous process was investigated by progressively increasing the alkalinity dosage ratio (amount of alkalinity to ammonia ratio, mol/mol). There is a close relationship among alkalinity, pH and the state of matter present in aqueous solution. When alkalinity was insufficient (compared to the theoretical alkalinity amount), ammonia removal efficiency increased first and then decreased at each alkalinity dosage ratio, with an abrupt removal efficiency peak. Generally, ammonia removal efficiency rose with increasing alkalinity dosage ratio. Ammonia removal efficiency reached to 88% from 23% when alkalinity addition was sufficient. Nitrite accumulation could be achieved by inhibiting nitrite oxidizing bacteria (NOB) by free ammonia (FA) in the early period and free nitrous acid in the later period of nitrification when alkalinity was not adequate. Only FA worked to inhibit the activity of NOB when alkalinity addition was sufficient.

  7. Nutrient Removal in Wastewater Treatment

    Science.gov (United States)

    Shah, Kanti L.

    1973-01-01

    Discusses the sources and effects of nutrients in wastewater, and the methods of their removal in wastewater treatment. In order to conserve water resources and eliminate the cost of nutrient removal, treated effluent should be used wherever possible for irrigation, since it contains all the ingredients for proper plant growth. (JR)

  8. Performance of Aerobic Sequencing Batch reactor (SBR) for Formaldehyde Removal from Synthetic Wastewater

    OpenAIRE

    2013-01-01

    Background and objectives: Formaldehyde is one of the compounds widely used in various industries; hence, its discharge into the effluent is unavoidable. Exposure to formaldehyde has a significant health effects. To prevent these issues, treatment of wastewater containing formaldehyde is necessary. The purpose of this study was to determine the performance of aerobic sequencing batch reactor (SBR) in removing formaldehyde from wastewater. Methods: We used a SBR having a total volume of 6.1...

  9. Co-digestion of food and garden waste with mixed sludge from wastewater treatment in continuously stirred tank reactors.

    Science.gov (United States)

    Fitamo, T; Boldrin, A; Boe, K; Angelidaki, I; Scheutz, C

    2016-04-01

    Co-digestions of urban organic waste were conducted to investigate the effect of the mixing ratio between sludge, food waste, grass clippings and green waste at different hydraulic retention times (HRTs). Compared to the digestion of 100% sludge, the methane yield increased by 48% and 35%, when co-digesting sludge with food waste, grass clippings and garden waste with a corresponding %VS of 10:67.5:15.75:6.75 (R1) and 10:45:31.5:13.5 (R2), respectively. The methane yield remained constant at around 425 and 385 NmL CH4/g VS in R1 and R2, respectively, when the reactors were operated at HRTs of 15, 20 and 30 days. However, the methane yield dropped significantly to 356 (R1) and 315 (R2) NmL CH4/g VS when reducing the HRT to 10 days, indicating that the process was stressed. Since the methane production rate improved significantly with decreasing HRT, the trade-off between yield and productivity was obtained at 15 days HRT.

  10. Constructed Wetlands for Wastewater Treatment

    Directory of Open Access Journals (Sweden)

    Jan Vymazal

    2010-08-01

    Full Text Available The first experiments using wetland macrophytes for wastewater treatment were carried out in Germany in the early 1950s. Since then, the constructed wetlands have evolved into a reliable wastewater treatment technology for various types of wastewater. The classification of constructed wetlands is based on: the vegetation type (emergent, submerged, floating leaved, free-floating; hydrology (free water surface and subsurface flow; and subsurface flow wetlands can be further classified according to the flow direction (vertical or horizontal. In order to achieve better treatment performance, namely for nitrogen, various types of constructed wetlands could be combined into hybrid systems.

  11. Impact of aluminum chloride on process performance and microbial community structure of granular sludge in an upflow anaerobic sludge blanket reactor for natural rubber processing wastewater treatment.

    Science.gov (United States)

    Thanh, Nguyen Thi; Watari, Takahiro; Thao, Tran Phuong; Hatamoto, Masashi; Tanikawa, Daisuke; Syutsubo, Kazuaki; Fukuda, Masao; Tan, Nguyen Minh; Anh, To Kim; Yamaguchi, Takashi; Huong, Nguyen Lan

    In this study, granular sludge formation was carried out using an aluminum chloride supplement in an upflow anaerobic sludge blanket (UASB) reactor treating natural rubber processing wastewater. Results show that during the first 75 days after the start-up of the UASB reactor with an organic loading rate (OLR) of 2.65 kg-COD·m(-3)·day(-1), it performed stably with a removal of 90% of the total chemical oxygen demand (COD) and sludge still remained in small dispersed flocs. However, after aluminum chloride was added at a concentration of 300 mg·L(-1) and the OLR range was increased up to 5.32 kg-COD·m(-3)·day(-1), the total COD removal efficiency rose to 96.5 ± 2.6%, with a methane recovery rate of 84.9 ± 13.4%, and the flocs began to form granules. Massively parallel 16S rRNA gene sequencing of the sludge retained in the UASB reactor showed that total sequence reads of Methanosaeta sp. and Methanosarcina sp., reported to be the key organisms for granulation, increased after 311 days of operation. This indicates that the microbial community structure of the retained sludge in the UASB reactor at the end of the experiment gave a good account of itself in not only COD removal, but also granule formation.

  12. Innovative wastewater treatment using reversing anaerobic upflow system (RAUS)

    Energy Technology Data Exchange (ETDEWEB)

    Basu, S.K. [Univ. of Manitoba, Winnipeg, Manitoba (Canada). Environmental Engineering Div.

    1996-11-01

    Anaerobic processes are widely popular in the treatment of a variety of industrial wastewaters since the development of such high rate treatment processes like upflow anaerobic sludge blanket (UASB), anaerobic filter, and the fluidized-bed process. In order to devise a low cost/high technology system so that it would provide an economical solution to environmentally sound pollution control, the Reversing Anaerobic Upflow System (RAUS) was developed. The system consists of two anaerobic reactors connected to each other. At the beginning, one reactor is fed upwards with wastewater while the other acts as a settling tank. After a set interval of time, the flow is reversed such that the second reactor is fed with wastewater and the first one acts as the settler. This particular feeding pattern had shown improved settling characteristics and granulation of methanogenic biomass from research carried out at the Hannover University with different wastewaters. The biological reaction vessels to which wastewater is introduced intermittently functions basically as a sludge blanket type reactor although the costly integrated settling devices present in a typical UASB system are avoided. The RAUS combines three principle reactor configurations: (1) conventional with sludge recycling; (2) fill and draw or sequential batch, inflow maintained constant during feeding; (3) upflow anaerobic sludge blanket. A pilot scale RAUS was operated for 400 days using distillery wastewater consisting of molasses slop and bottle washing water mixed in the ratio 1:1. This paper discusses the results of pilot scale experiments.

  13. Upgrading of an activated sludge wastewater treatment plant by adding a moving bed biofilm reactor as pre-treatment and ozonation followed by biofiltration for enhanced COD reduction: design and operation experience.

    Science.gov (United States)

    Kaindl, Nikolaus

    2010-01-01

    A paper mill producing 500,000 ton of graphic paper annually has an on-site wastewater treatment plant that treats 7,240,000 m³ of wastewater per year, mechanically first, then biologically and at last by ozonation. Increased paper production capacity led to higher COD load in the mill effluent while production of higher proportions of brighter products gave worse biodegradability. Therefore the biological capacity of the WWTP needed to be increased and extra measures were necessary to enhance the efficiency of COD reduction. The full scale implementation of one MBBR with a volume of 1,230 m³ was accomplished in 2000 followed by another MBBR of 2,475 m³ in 2002. An ozonation step with a capacity of 75 kg O₃/h was added in 2004 to meet higher COD reduction demands during the production of brighter products and thus keeping the given outflow limits. Adding a moving bed biofilm reactor prior to the existing activated sludge step gives: (i) cost advantages when increasing biological capacity as higher COD volume loads of MBBRs allow smaller reactors than usual for activated sludge plants; (ii) a relief of strain from the activated sludge step by biological degradation in the MBBR; (iii) equalizing of peaks in the COD load and toxic effects before affecting the activated sludge step; (iv) a stable volume sludge index below 100 ml/g in combination with an optimization of the activated sludge step allows good sludge separation--an important condition for further treatment with ozone. Ozonation and subsequent bio-filtration pre-treated waste water provide: (i) reduction of hard COD unobtainable by conventional treatment; (ii) controllable COD reduction in a very wide range and therefore elimination of COD-peaks; (iii) reduction of treatment costs by combination of ozonation and subsequent bio-filtration; (iv) decrease of the color in the ozonated wastewater. The MBBR step proved very simple to operate as part of the biological treatment. Excellent control of the COD

  14. Microbial Community Profiles in Wastewaters from Onsite Wastewater Treatment Systems Technology.

    Directory of Open Access Journals (Sweden)

    Łukasz Jałowiecki

    Full Text Available The aim of the study was to determine the potential of community-level physiological profiles (CLPPs methodology as an assay for characterization of the metabolic diversity of wastewater samples and to link the metabolic diversity patterns to efficiency of select onsite biological wastewater facilities. Metabolic fingerprints obtained from the selected samples were used to understand functional diversity implied by the carbon substrate shifts. Three different biological facilities of onsite wastewater treatment were evaluated: fixed bed reactor (technology A, trickling filter/biofilter system (technology B, and aerated filter system (the fluidized bed reactor, technology C. High similarities of the microbial community functional structures were found among the samples from the three onsite wastewater treatment plants (WWTPs, as shown by the diversity indices. Principal components analysis (PCA showed that the diversity and CLPPs of microbial communities depended on the working efficiency of the wastewater treatment technologies. This study provided an overall picture of microbial community functional structures of investigated samples in WWTPs and discerned the linkages between microbial communities and technologies of onsite WWTPs used. The results obtained confirmed that metabolic profiles could be used to monitor treatment processes as valuable biological indicators of onsite wastewater treatment technologies efficiency. This is the first step toward understanding relations of technology types with microbial community patterns in raw and treated wastewaters.

  15. Microbial Community Profiles in Wastewaters from Onsite Wastewater Treatment Systems Technology

    Science.gov (United States)

    Jałowiecki, Łukasz; Chojniak, Joanna Małgorzata; Dorgeloh, Elmar; Hegedusova, Berta; Ejhed, Helene; Magnér, Jörgen; Płaza, Grażyna Anna

    2016-01-01

    The aim of the study was to determine the potential of community-level physiological profiles (CLPPs) methodology as an assay for characterization of the metabolic diversity of wastewater samples and to link the metabolic diversity patterns to efficiency of select onsite biological wastewater facilities. Metabolic fingerprints obtained from the selected samples were used to understand functional diversity implied by the carbon substrate shifts. Three different biological facilities of onsite wastewater treatment were evaluated: fixed bed reactor (technology A), trickling filter/biofilter system (technology B), and aerated filter system (the fluidized bed reactor, technology C). High similarities of the microbial community functional structures were found among the samples from the three onsite wastewater treatment plants (WWTPs), as shown by the diversity indices. Principal components analysis (PCA) showed that the diversity and CLPPs of microbial communities depended on the working efficiency of the wastewater treatment technologies. This study provided an overall picture of microbial community functional structures of investigated samples in WWTPs and discerned the linkages between microbial communities and technologies of onsite WWTPs used. The results obtained confirmed that metabolic profiles could be used to monitor treatment processes as valuable biological indicators of onsite wastewater treatment technologies efficiency. This is the first step toward understanding relations of technology types with microbial community patterns in raw and treated wastewaters. PMID:26807728

  16. Optimization of the moving-bed biofilm sequencing batch reactor (MBSBR) to control aeration time by kinetic computational modeling: Simulated sugar-industry wastewater treatment.

    Science.gov (United States)

    Faridnasr, Maryam; Ghanbari, Bastam; Sassani, Ardavan

    2016-05-01

    A novel approach was applied for optimization of a moving-bed biofilm sequencing batch reactor (MBSBR) to treat sugar-industry wastewater (BOD5=500-2500 and COD=750-3750 mg/L) at 2-4 h of cycle time (CT). Although the experimental data showed that MBSBR reached high BOD5 and COD removal performances, it failed to achieve the standard limits at the mentioned CTs. Thus, optimization of the reactor was rendered by kinetic computational modeling and using statistical error indicator normalized root mean square error (NRMSE). The results of NRMSE revealed that Stover-Kincannon (error=6.40%) and Grau (error=6.15%) models provide better fits to the experimental data and may be used for CT optimization in the reactor. The models predicted required CTs of 4.5, 6.5, 7 and 7.5 h for effluent standardization of 500, 1000, 1500 and 2500 mg/L influent BOD5 concentrations, respectively. Similar pattern of the experimental data also confirmed these findings.

  17. Treatment of low-strength wastewater using immobilized biomass in a sequencing batch external loop reactor: influence of the medium superficial velocity on the stability and performance

    Directory of Open Access Journals (Sweden)

    Camargo E.F.M.

    2002-01-01

    Full Text Available An anaerobic sequencing batch bioreactor with external circulation of the liquid phase wherein the biomass was immobilized on a polyurethane foam matrix was analyzed, focussing on the influence of the liquid superficial velocity on the reactor's stability and efficiency. Eight-hour cycles were carried out at 30ºC treating glucose-based synthetic wastewater around 500 mgDQO/L. The performance of the reactor was assessed without circulation and with circulating liquid superficial velocity between 0.034 and 0.188 cm/s. The reactor attained operating stability and a high organic matter removal was achieved when liquid was circulated. A first order model was used to evaluate the influence of the liquid superficial velocity (vS, resulting in an increase in the apparent first order parameter when vS increased from 0.034 to 0.094 cm/s. The parameter value remained unchangeable when 0.188 cm/s was applied, indicating that beyond this value no improvement on liquid mass transfer was observed. Moreover, the necessary time to reach the final removal efficiency decreased when liquid circulation was applied, indicating that a 3-hour cycle could be enough.

  18. Mathematical modeling of upflow anaerobic sludge blanket (UASB) reactor treating domestic wastewater.

    Science.gov (United States)

    Elmitwalli, Tarek

    2013-01-01

    Although the upflow anaerobic sludge blanket (UASB) reactor has been widely applied for domestic wastewater treatment in many developing countries, there is no sufficient mathematical model for proper design and operation of the reactor. An empirical model based on non-linear regression was developed to represent the physical and chemical removal of suspended solids (SS) in the reactor. Moreover, a simplified dynamic model based on ADM1 and the empirical model for SS removal was developed for anaerobic digestion of the entrapped SS and dissolved matter in the wastewater. The empirical model showed that effluent suspended chemical oxygen demand (COD(ss)) concentration is directly proportional to the influent COD(ss) concentration and inversely proportional to both the hydraulic retention time (HRT) of the reactor and wastewater temperature. For obtaining sufficient COD(ss) removal, the HRT of the UASB reactor must be higher than 4 h, and higher HRT than 12 h slightly improved COD(ss) removal. The dynamic model results showed that the required time for filling the reactor with sludge mainly depends on influent total chemical oxygen demand (COD(t)) concentration and HRT. The influent COD(t) concentration, HRT and temperature play a crucial role on the performance of the reactor. The results indicated that shorter HRT is needed for optimization of COD(t) removal, as compared with optimization of COD(t) conversion to methane. Based on the model results, the design HRT of the UASB reactor should be selected based on the optimization of wastewater conversion and minimization of biodegradable SS accumulation in the sludge bed, not only based on COD removal, to guarantee a stable reactor performance.

  19. Aerobic Granulation in Sequencing Batch Reactor (SBR Treating Saline Wastewater

    Directory of Open Access Journals (Sweden)

    Ensieh Taheri

    2012-04-01

    Full Text Available Normal 0 false false false EN-US X-NONE AR-SA MicrosoftInternetExplorer4 Background and Objectives: Aerobic sludge granulation is an advanced phenomenonin which its mechanisms have not been understood. Granulation can be a promising and novel biological wastewater treatment technology to eliminate organic and inorganic materials in future. High salinity is a parameter which leads to plasmolisatian and reduction of the cell activity. This could be a problem for biological treatment of the saline wastewater. Aerobic granule was formed and investigated during this study. Materials and Methods: This study is an intervention study on the treatment of wastewater with 500-10000 mg/L concentration of NaCl by sequencing batch reactor. Asynthesized wastewater including nutrient required for microorganism's growth was prepared. Input and output pH and EC were measured. Range of pH and DO varied between 7-8, and 2-5 mg/L, respectively. SEM technology was used to identify graduals properties.Results: In terms of color, granules divided into two groups of light brown and black. Granule ranged in 3-7mm with the sediment velocity of 0.9-1.35 m/s and density of 32-60 g/L.Properties of granules were varied. Filamentous bacteria and fungi were dominant in some granules. However non filamentous bacteria were dominant in others. EDX analysis indicated the presence of Ca and PO4.Conclusion: Granules with non filamentous bacterial were compact and settled faster. Presence of different concentrations of salinity leaded to plasmolysis of the bacterial cells and increased concentrations of EPS  in the system as a result  of which granulation accelerated. /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso

  20. COMPARING THE EFFICIENCY OF UAFF AND UASB WITH HYBRID REACTOR IN TREATING WOOD FIBER WASTEWATER

    Directory of Open Access Journals (Sweden)

    B. Ayati, H. Ganjidoust

    2006-01-01

    Full Text Available There are several kinds of anaerobic systems that are widely used for municipal and industrial wastewater treatment. Upflow Anaerobic Fixed Film (UAFF, Upflow Anaerobic Sludge Blanket (UASB and hybrid reactor (combination of UASB and UAFF are the mostly used in treating industrial wastewater. As several operational problems have normally been experienced in both UASB and UAFF systems such as long start-up periods and instability, a hybrid reactor has been conceptualized which addressed these problems but retained the positive aspects of these reactors, such as, high cell concentration, good mixing and tolerance to high loading rates. The wastewater has been obtained from Iran Wood Fiber Company which is located in Hassan Rood city, Gilan Province. After period of starting up the reactors and adaptation, the amount of influent COD was being increased stepwise. After the removal rate was reached to its maximum, the next period for increased load was started as after six months, the reactors could accept about 15 Kg/m3.d with high COD removal rate of about 58.5, 58.9 and 65 percent after 3 days detention time. After 5 and 6 months, maximum growth of granule and biofilm was observed. Diameter of 6 mm and mass to surface and COD removal of 0.25 g/cm2 were the highest measured parameters. The comparison of three studied systems showed that their efficiencies were close to each other. As the effective part of UAFF in hybrid reactor was only one third of the reactor, it acted as a separator of solidliquid-gas phases and UASB had the most effect on treatment. In each UAFF and UASB, all percent removal was resulted by each reactor. It can be concluded that hybrid reactor do have the advantages of both systems with at least half of the height of two reactors. Similar results could be obtained with each UAFF or UASB if higher height can be used.

  1. Experimentation on the anaerobic filter reactor for biogas production using rural domestic wastewater

    Science.gov (United States)

    Leju Celestino Ladu, John; Lü, Xi-wu; Zhong, Zhaoping

    2017-08-01

    The biogas production from anaerobic filter (AF) reactor was experimented in Taihu Lake Environmental Engineering Research Center of Southeast University, Wuxi, China. Two rounds of experimental operations were conducted in a laboratory scale at different Hydraulic retention time (HRT) and wastewater temperature. The biogas production rate during the experimentation was in the range of 4.63 to 11.78 L/d. In the first experimentation, the average gas production rate was 10.08 L/d, and in the second experimentation, the average gas production rate was 4.97 L/d. The experimentation observed the favorable Hydraulic Retention Time and wastewater temperature in AF was three days and 30.95°C which produced the gas concentration of 11.78 L/d. The HRT and wastewater temperature affected the efficiency of the AF process on the organic matter removal and nutrients removal as well. It can be deduced from the obtained results that HRT and wastewater temperature directly affects the efficiency of the AF reactor in biogas production. In conclusion, anaerobic filter treatment of organic matter substrates from the rural domestic wastewater increases the efficiency of the AF reactor on biogas production and gives a number of benefits for the management of organic wastes as well as reduction in water pollution. Hence, the operation of the AF reactor in rural domestic wastewater treatment can play an important element for corporate economy of the biogas plant, socio-economic aspects and in the development of effective and feasible concepts for wastewater management, especially for people in rural low-income areas.

  2. Treatment of Oil Wastewater and Electricity Generation by Integrating Constructed Wetland with Microbial Fuel Cell

    OpenAIRE

    Qiao Yang; Zhenxing Wu; Lifen Liu; Fengxiang Zhang; Shengna Liang

    2016-01-01

    Conventional oil sewage treatment methods can achieve satisfactory removal efficiency, but energy consumption problems during the process of oil sewage treatment are worth attention. The integration of a constructed wetland reactor and a microbial fuel cell reactor (CW-MFC) to treat oil-contaminated wastewater, compared with a microbial fuel cell reactor (MFC) alone and a constructed wetland reactor (CW) alone, was explored in this research. Performances of the three reactors including chemic...

  3. 挡板式水解酸化法处理印染废水的中试试验研究%Study on treatment of printing and dyeing wastewater by anaerobic baffled reactor in a pilot plant

    Institute of Scientific and Technical Information of China (English)

    贾洪斌; 王力民; 赵大传

    2001-01-01

    Treatment of printing and dyeing wastewater by anaerobic baffledreactor in a pilot plant has been studied. As the influent pH is 10.0, MLSS 20 g/L, and HRT 9~10 h, the removal rates of COD could reach average 36.8%, and the BOD/COD ratio of influent to effluent could increase from 0.285 to 0.447, and the biodegradability of wastewater is improved obviously. As a pretreatment method before aerobic biological treatment of printing and dyeing wastewater, anaerobic baffled reactor is feasible both technically and economically.%对印染废水进行了挡板式水解酸化中试试验。结果表明,调节原水pH值为10左右,污泥质量浓度为20g/L,水力停留时间为9~10h的条件下,处理后的废水COD去除率平均为38.6%,进出水的BOD/COD比值由0.285升高至0.447,废水可生化性得到明显改善。挡板式水解酸化法作为印染废水好氧生物处理的前处理在技术上和经济上都是可行的。

  4. Biohydrogen production from diary processing wastewater by anaerobic biofilm reactors

    Energy Technology Data Exchange (ETDEWEB)

    Rios-Gonzalez, L.J.; Moreno-Davila, I.M.; Rodriguez-Martinez, J.; Garza-Garcia, Y. [Universidad Autonoma de Coahuila, Saltillo, Coahuila (Mexico)]. E-mail: leopoldo.rios@mail.uadec.mx

    2009-09-15

    This article describes biological hydrogen production from diary wastewater via anaerobic fermentation using pretreated heat shock (100 degrees Celsius, 30 min.) and acid (pH 3.0, 24 h) treatment procedures to selectively enrich the hydrogen producing mixed consortia prior to inoculation to batch reactors. Bioreactor used for immobilization consortia was operated at mesophilic (room) temperature (20{+-}3 degrees Celsius), under acidophilic conditions (pH 4.0-4.5), HRT (2h), and a natural support for generate hydrogen producing mixed consortia biofilm: Opuntia imbricata. Reactor was initially operated with sorbitol (5g/L) for 60 days of operation. Batch tests were conducted using 20{+-}0.02g of natural support with biofilm. Batch experiments were conducted to investigate the effect of COD (2.9-21.1 g-COD/L), at initial pH of 7.0, 32{+-}1 degrees Celsius. Maximum hydrogen yield was obtained at 21.1 g-COD/L. Experiments of pH effect were conducted using the optimal substrate concentration (21.2 g-COD/L), at pH 4 to 7 and 11.32 (pH diary wastewater) ,and 32{+-}1 degrees Celsius. Experiments results indicate the optimum initial cultivation was pH 4.0, but we can consider also a stable hydrogen production at pH 11.32 (pH diary wastewater), so we can avoid to fit the pH, and use diary wastewater as it left the process of cheese manufacture. The operational pH of 4.0 is 1.5 units below that of previously reported hydrogen producing organisms. The influence of the effect of temperature were conducted using the optimal substrate concentration (21.2 g-COD/L), two pH levels: 4.0 and 11.32, and four different temperatures: 16{+-}3 degrees Celsius (room temperature), 3 C, 45{+-}1 degrees Celsius y 55{+-}1 degrees Celsius.Optimal temperature for hydrogen production from diary wastewater at pH 4.0 was 55{+-}1 degrees Celsius, and for pH 11.32 was 16{+-}3 degrees Celsius.Therefore, the results suggests biofilm reactors in a natural support like Opuntia imbricata have good potential

  5. Aerobic digestion of tannery wastewater in a sequential batch reactor by salt-tolerant bacterial strains

    Science.gov (United States)

    Durai, G.; Rajasimman, M.; Rajamohan, N.

    2011-09-01

    Among the industries generating hyper saline effluents, tanneries are prominent in India. Hyper saline wastewater is difficult to treat by conventional biological treatment methods. Salt-tolerant microbes can adapt to these conditions and degrade the organics in hyper saline wastewater. In this study, the performance of a bench scale aerobic sequencing batch reactor (SBR) was investigated to treat the tannery wastewater by the salt-tolerant bacterial strains namely Pseudomonas aeruginosa, Bacillus flexus, Exiguobacterium homiense and Styphylococcus aureus. The study was carried out under different operating conditions by changing the hydraulic retention time, organic loading rate and initial substrate concentration. From the results it was found that a maximum COD reduction of 90.4% and colour removal of 78.6% was attained. From this study it was found that the salt-tolerant microorganisms could improve the reduction efficiency of COD and colour of the tannery wastewater.

  6. Sustainability of municipal wastewater treatment.

    NARCIS (Netherlands)

    Roeleveld, P.J.; Klapwijk, A.; Eggels, P.G.; Rulkens, W.H.; Starkenburg, van W.

    1997-01-01

    n this study the insustainability of the treatment of municipal wastewater is evaluated with the LCA-methodology. Life-Cycle Assessments (LCA) analyze and assess the environmental profile over the entire life cycle of a product or process. The LCA-methodology proved to be a proper instrument to

  7. Wastewater Treatment I. Student's Guide.

    Science.gov (United States)

    California Water Pollution Control Association, Sacramento. Joint Education Committee.

    This student's guide is designed to provide students with the job skills necessary for the safe and effective operation and maintenance of wastewater treatment plants. It consists of three sections. Section 1 consists of an introductory note outlining course objectives and the format of the guide. A course outline constitutes the second section.…

  8. Anaerobic membrane bioreactors for wastewater treatment: feasibility and potential applications

    NARCIS (Netherlands)

    Jeison, D.A.

    2007-01-01

    Biomass retention is a necessary feature for the successful application of anaerobic digestion for wastewater treatment. Biofilms and granule formation are the traditional way to achieve such retention, enabling reactor operation at high biomass concentrations, and therefore at high organic loading

  9. Avaliação de desempenho de reator UASB no tratamento de águas residuárias de suinocultura Evaluation of performance of UASB reactor in swine wastewater treatment

    Directory of Open Access Journals (Sweden)

    Luciano S. Rodrigues

    2010-01-01

    Full Text Available Este trabalho apresenta o desenvolvimento e a avaliação de um sistema de tratamento de águas residuárias de suinocultura constituído de decantador e seguido de reator anaeróbio de manta de lodo (reator UASB, em escala real. O reator UASB foi construído de alvenaria e concreto armado. Coletaram-se amostras do esgoto bruto e do efluente do decantador e reator UASB, e se monitoraram os seguintes parâmetros: temperatura, pH, alcalinidade, ácidos voláteis totais (AVT, sólidos suspensos totais (SST, sólidos suspensos voláteis (SSV, demanda bioquímica de oxigênio (DBO e demanda química de oxigênio (DQO, de acordo com os métodos estabelecidos pelo Standard Methods (APHA, 1998. Os resultados médios de remoção total de DQO e de DBO foram de 93 e 92%, respectivamente. As concentrações médias de DQO, DBO e SST no efluente final foram de 0,8, 1,8 e 0,8 g L-1, respectivamente. A carga orgânica volumétrica (COV aplicada no reator UASB variou de 1,1 a 17,5 kg DQO m-3 d-1. O sistema decantador-reator UASB apresenta-se como alternativa promissora para o tratamento de águas residuárias de suinocultura.This research presents the development and evaluation of a system for treatment of swine wastewaters constituted by slat settler, followed by upflow anaerobic sludge blanket (UASB reactor, at full scale. The UASB reactor was completely made of masonry and reinforced concrete. The evaluation of the treatment system was carried out through samples collected in the influent and effluent from the settler and UASB reactor. The following parameters were analyzed: temperature, pH, alkalinity, total volatile acids (VFA, suspended solids (TSS, volatile suspended solids (VSS, biochemical oxygen demand (BOD, chemical oxygen demand (COD, according to the methods established by the Standard Methods (APHA, 1998. The mean results of COD and BOD removal were 93 and 92%, respectively. The mean concentrations of COD, BOD and TSS in the final effluent were

  10. COMBINING A SEQUENCING BATCH REACTOR WITH HETEROGENEOUS PHOTOCATALYSIS (TiO2/UV FOR TREATING A PENCIL MANUFACTURER'S WASTEWATER

    Directory of Open Access Journals (Sweden)

    R. N. Padovan

    2015-03-01

    Full Text Available Abstract A Sequencing Batch Reactor (SBR was combined with heterogeneous photocatalysis (TiO2/UV as a tertiary treatment for a pencil manufacturer's wastewater. The SBR removed almost all Chemical Oxygen Demand (COD from the wastewater, although color was barely removed. Photocatalysis was optimized using a factorial design. Final COD, Dissolved Organic Carbon (DOC, and color removals were 95%, 80%, and 93%, respectively. Treated wastewater showed no ecotoxicity towards Lactuca sativa. Color removal kinetics (photocatalysis followed a pseudo-first order model. The SBR + AOP (Advanced Oxidation Process, TiO2/UV combination was a feasibility choice for removing both COD and color from this wastewater.

  11. Effects of additional fermented food wastes on nitrogen removal enhancement and sludge characteristics in a sequential batch reactor for wastewater treatment.

    Science.gov (United States)

    Zhang, Yongmei; Wang, Xiaochang C; Cheng, Zhe; Li, Yuyou; Tang, Jialing

    2016-07-01

    In order to enhance nitrogen removal from domestic wastewater with a carbon/nitrogen (C/N) ratio as low as 2.2:1, external carbon source was prepared by short-term fermentation of food wastes and its effect was evaluated by experiments using sequencing batch reactors (SBRs). The addition of fermented food wastes, with carbohydrate (42.8 %) and organic acids (24.6 %) as the main organic carbon components, could enhance the total nitrogen (TN) removal by about 25 % in contrast to the 20 % brought about by the addition of sodium acetate when the C/N ratio was equally adjusted to 6.6:1. The fermented food waste addition resulted in more efficient denitrification in the first anoxic stage of the SBR operation cycle than sodium acetate. In order to characterize the metabolic potential of microorganisms by utilizing different carbon sources, Biolog-ECO tests were conducted with activated sludge samples from the SBRs. As a result, in comparison with sodium acetate, the sludge sample by fermented food waste addition showed a greater average well color development (AWCD590), better utilization level of common carbon sources, and higher microbial diversity indexes. As a multi-organic mixture, fermented food wastes seem to be superior over mono-organic chemicals as an external carbon source.

  12. Assessment of a microalgae pond for post-treatment of the effluent from an anaerobic fixed bed reactor treating distillery wastewater.

    Science.gov (United States)

    Travieso, L; Benítez, F; Sánchez, E; Borja, R; León, M; Raposo, F; Rincón, B

    2008-09-01

    An evaluation of the performance of a laboratory-scale microalgae pond treating effluent from an anaerobic fixed bed reactor digesting distillery wastewater was carried out. The microalgae pond operated with an effluent recycling (R) of 10:1 with respect to the influent and at surface organic loading rates of 418 kg COD ha(-1) day(-1) and 92 kg BOD5 ha(-1) day(-1). During the experiment total chemical oxygen demand (COD), biochemical oxygen demand (BOD5), total solids (TS), total suspended solids (TSS), volatile suspended solids (VSS), total nitrogen, ammonia, total phosphorus, orthophosphate, total chlorophyll (CT) and chlorophyll a (Ca) concentrations were monitored. Overall COD and BOD5 removal efficiencies of 98.2% and 98.8% were obtained. The global solids removal efficiencies were of 93.2%, 92.6% and 97.6% for TS, TSS and VSS, respectively. The removal efficiencies obtained for organic nitrogen and ammonia were 90.2% and 84.1%, respectively. Finally, the removals for total phosphorus and orthophosphate were 85.5% and 87.3%, respectively. It was demonstrated that microalgae grew in this waste by determination of the total chlorophyll and chlorophyll a in the effluent.

  13. Sludge Bed Granules’ Growth in the HUASB Reactor Treating High Strength Industrial Wastewater

    Directory of Open Access Journals (Sweden)

    Sinan Abood Habeeb

    2014-12-01

    Full Text Available The development of anaerobic sludge granules in a hybrid up-flow anaerobic sludge bed (HUASB reactor in terms of granular size and solids content was observed. After appropriate pre-treatment of the palm oil mill effluent (POME, it was continuously fed to the HUASB reactor under room temperature condition (27°C.  Particle size analysis and solids content examination were conducted for 196 days. A volatile solid ratio was ranging from 0.36 to 0.51 which was quite low, and granules particle size of less than 1 mm diameter was reported during the operating period. Results obtained in this study indicated that sludge bed development based on the sludge particle size distribution and the volatile solid ratio, was quite slow due to the bulk solids that entering the reactor resulting in certain inhibition of the anaerobes’ activity. It has been concluded that anaerobic wastewater treatment process in anaerobic reactors such as the HUASB reactor, can be significantly affected by the organic loading rate, hydraulic retention time applied to the reactor and the wastewater characteristics.

  14. Pilot-scale comparison of constructed wetlands operated under high hydraulic loading rates and attached biofilm reactors for domestic wastewater treatment.

    Science.gov (United States)

    Fountoulakis, M S; Terzakis, S; Chatzinotas, A; Brix, H; Kalogerakis, N; Manios, T

    2009-04-01

    Four different pilot-scale treatment units were constructed to compare the feasibility of treating domestic wastewater in the City of Heraklio, Crete, Greece: (a) a free water surface (FWS) wetland system, (b) a horizontal subsurface flow (HSF) wetland system, (c) a rotating biological contactor (RBC), and (d) a packed bed filter (PBF). All units operated in parallel at various hydraulic loading rates (HLR) ranging from 50% to 175% of designed operating HLR. The study was conducted during an 8 month period and showed that COD removal efficiency of HSF was comparable (>75%) to that of RBC and PBF, whereas that of the FWS system was only 57%. Average nutrient removal efficiencies for FWS, HSF, RBC and PBF were 6%, 21%, 40% and 43%, respectively for total nitrogen and 21%, 39%, 41% and 42%, respectively for total phosphorus. Removals of total coliforms were lowest in FWS and PBF (1.3 log units) and higher in HSF and RBC (2.3 to 2.6 log units). HSF showed slightly lower but comparable effluent quality to that of RBC and PBF systems, but the construction cost and energy requirements for this system are significantly lower. Overall the final decision for the best non-conventional wastewater treatment system depends on the construction and operation cost, the area demand and the required quality of effluent.

  15. Treatment of a simulated textile wastewater containing the Reactive Orange 16 azo dye by a combination of ozonation and moving-bed biofilm reactor: evaluating the performance, toxicity, and oxidation by-products.

    Science.gov (United States)

    Castro, Francine D; Bassin, João Paulo; Dezotti, Márcia

    2017-03-01

    In this study, an aqueous solution containing the azo dye Reactive Orange 16 (RO16) was subjected to two sequential treatment processes, namely: ozonation and biological treatment in a moving-bed biofilm reactor (MBBR). The most appropriate ozonation pretreatment conditions for the biological process and the toxicity of the by-products resulting from RO16 ozone oxidation were evaluated. The results showed that more than 97 % of color removal from the dye solutions with RO16 concentrations ranging from 25 to 100 mg/L was observed in 5 min of ozone exposure. However, the maximum total organic carbon removal achieved by ozonation was only 48 %, indicating partial mineralization of the dye. Eleven intermediate organic compounds resulting from ozone treatment of RO16 solution were identified by LC/MS analyses at different contact times. The toxicity of the dye-containing solution decreased after 2 min of ozonation, but increased at longer contact times. The results further demonstrated that the ozonolysis products did not affect the performance of the subsequent MBBR, which achieved an average chemical oxygen demand (COD) and ammonium removal of 93 ± 1 and 97 ± 2 %, respectively. A second MBBR system fed with non-ozonated dye-containing wastewater was run in parallel for comparison purposes. This reactor also showed an appreciable COD (90 ± 1 %) and ammonium removal (97 ± 2 %), but was not effective in removing color, which remained practically invariable over the system. The use of short ozonation times (5 min) and a compact MBBR has shown to be effective for the treatment of the simulated textile wastewater containing the RO16 azo dye.

  16. Kinetics of biodegradation of phenolic wastewater in a biofilm reactor.

    Science.gov (United States)

    Lin, Yen-Hui; Hsien, Tzu-Yang

    2009-01-01

    This work presents a mathematical model to describe the biodegradation of phenolic wastewater in a fixed-biofilm process. The model incorporates diffusive mass transport and Haldane kinetics mechanisms. The model was solved using a combination of the orthogonal collocation method and Gear's method. A laboratory-scale column reactor was employed to verify the model. Batch kinetic tests were conducted independently to determine biokinetic parameters for the model simulation with the initial biofilm thickness assumed. The model simulated the phenol effluent concentration results well. Removal efficiency for phenol was approximately 94-96.5% for different hydraulic retention times at a steady-state condition. Model simulations results are in agreement with experimental results. The approaches of model and experiments presented in this paper could be used to design a pilot-scale or full-scale fixed-biofilm reactor system for the biodegradation of phenolic wastewater from petrochemical and oil refining plants.

  17. Biochemical reaction engineering and process development in anaerobic wastewater treatment.

    Science.gov (United States)

    Aivasidis, Alexander; Diamantis, Vasileios

    2005-01-01

    Developments in production technology have frequently resulted in the concentrated local accumulation of highly organic-laden wastewaters. Anaerobic wastewater treatment, in industrial applications, constitutes an advanced method of synthesis by which inexpensive substrates are converted into valuable disproportionate products. A critical discussion of certain fundamental principles of biochemical reaction engineering relevant to the anaerobic mode of operation is made here, with special emphasis on the roles of thermodynamics, kinetics, mass and heat transfer, reactor design, biomass retention and recycling. The applications of the anaerobic processes are discussed, introducing the principles of an upflow anaerobic sludge bed reactor and a fixed-bed loop reactor. The merits of staging reactor systems are presented using selected examples based on two decades of research in the field of anaerobic fermentation and wastewater treatment at the Forschungszentrum Julich (Julich Research Center, Germany). Wastewater treatment is an industrial process associated with one of the largest levels of mass throughput known, and for this reason it provides a major impetus to further developments in bioprocess technology in general.

  18. Treatment of organic wastewater in anaerobic fixed bed reactor with porous mineral carriers%多孔矿物载体厌氧固定床处理有机废水研究

    Institute of Scientific and Technical Information of China (English)

    朱峰; 潘涌璋; 洪利明; 师波

    2011-01-01

    通过天然浮石和塑料多孔空心球而制成复合式多孔矿物载体应用于厌氧固定床反应器中,研究反应器挂膜性能,以及处理生活污水、啤酒废水效果,应用扫描电镜观察生物膜微生物相的形态结构.结果表明,反应器挂膜69 d后COD去除率稳定在70%以上,初次启动成功;处理生活污水中平均COD去除率为61.72%;处理啤酒废水中COD去除率高于88%,生物膜中微生物优势种群为杆菌和球菌.%A compound porous mineral carrier made from natural pumice and plastic porous hollow ball was applied in the anaerobic fixed bed reactor to study the performance of biofilm culturing, treat the domestic wastewater and beer-brewing wastewater, and observe the morphology and dominant species of microorganism in biofilm with scanning electron microscope (SEM). The research showed that the system started successfully. The removal rate of COD was stabilized above 70% after 69 days in the course of biofilm culturing. The average removal rate of COD for the treatment of domestic wastewater and beer-brewing wastewater was 61.72% and above 88% ,respectively. SEM pictures indicated that the dominant species in biofilm were bacillus and cocci.

  19. Successful treatment of high azo dye concentration wastewater using combined anaerobic/aerobic granular activated carbon-sequencing batch biofilm reactor (GAC-SBBR): simultaneous adsorption and biodegradation processes.

    Science.gov (United States)

    Hosseini Koupaie, E; Alavi Moghaddam, M R; Hashemi, S H

    2013-01-01

    The application of a granular activated carbon-sequencing batch biofilm reactor (GAC-SBBR) for treatment of wastewater containing 1,000 mg/L Acid Red 18 (AR18) was investigated in this research. The treatment system consisted of a sequencing batch reactor equipped with moving GAC as biofilm support. Each treatment cycle consisted of two successive anaerobic (14 h) and aerobic (8 h) reaction phases. Removal of more than 91% chemical oxygen demand (COD) and 97% AR18 was achieved in this study. Investigation of dye decolorization kinetics showed that the dye removal was stimulated by the adsorption capacity of the GAC at the beginning of the anaerobic phase and then progressed following a first-order reaction. Based on COD analysis results, at least 77.8% of the dye total metabolites were mineralized during the applied treatment system. High-performance liquid chromatography analysis revealed that more than 97% of 1-naphthyalamine-4-sulfonate as one of the main sulfonated aromatic constituents of AR18 was removed during the aerobic reaction phase. According to the scanning electron microscopic analysis, the microbial biofilms grew in most cavities and pores of the GAC, but not on the external surfaces of the GAC.

  20. Orientation to Municipal Wastewater Treatment. Training Manual.

    Science.gov (United States)

    Office of Water Program Operations (EPA), Cincinnati, OH. National Training and Operational Technology Center.

    Introductory-level material on municipal wastewater treatment facilities and processes is presented. Course topics include sources and characteristics of municipal wastewaters; objectives of wastewater treatment; design, operation, and maintenance factors; performance testing; plant staffing; and laboratory considerations. Chapter topics include…

  1. Health Effects Associated with Wastewater Treatment, Reuse, and Disposal.

    Science.gov (United States)

    Qu, Xiaoyan; Zhao, Yuanyuan; Yu, Ruoren; Li, Yuan; Falzone, Charles; Smith, Gregory; Ikehata, Keisuke

    2016-10-01

    A review of the literature published in 2015 on topics relating to public and environmental health risks associated with wastewater treatment, reuse, and disposal is presented. This review is divided into the following sections: wastewater management, microbial hazards, chemical hazards, wastewater treatment, wastewater reuse, agricultural reuse in different regions, greywater reuse, wastewater disposal, hospital wastewater, industrial wastewater, and sludge and biosolids.

  2. Predication of Fhhh potential in PTA wastewater treatment

    Institute of Scientific and Technical Information of China (English)

    CHENG Shu-pei; SHI Lei; ZHANG Xu-xiang; YAN Jun; DING Zhong-hai; HAO Chun-bo

    2004-01-01

    Ebis is the intelligent environmental biotechnological informatics software developed for judging the effectiveness of the microorganism strain in the industrial wastewater treatment system(IWTS) at the optimal status. The parameter, as the objective function for the judgment, is the minimum reactor volume ( Vmin ) calculated by Ebis for microorganism required in wastewater treatment. The rationality and the universality of Ebis were demonstrated in the domestic sewage treatment system(DSTS) with the data published in USA and China at first, then Fhhh strain's potential for treating the purified terephthalic acid(PTA) was proved. It suggests that Ebis would be useful and universal for predicating the technique effectiveness in both DSTS and IWTS.

  3. Pretreatment of coking wastewater using anaerobic sequencing batch reactor (ASBR)

    Institute of Scientific and Technical Information of China (English)

    LI Bing; SUN Ying-lan; LI Yu-ying

    2005-01-01

    A laboratory-scale anaerobic sequencing batch reactor (ASBR) was used to pretreat coking wastewater. Inoculated anaerobic granular biomass was acclimated for 225 d to the coking wastewater, and then the biochemical methane potential (BMP)of the coking wastewater in the acclimated granular biomass was measured. At the same time, some fundamental technological factors, such as the filling time and the reacting time ratio (tf/tr), the mixing intensity and the intermittent mixing mode, that affect anaerobic pretreatment of coking wastewater with ASBR, were evaluated through orthogonal tests. The COD removal efficiency reached 38%~50% in the stable operation period with the organic loading rate of 0.37~0.54 kg COD/(m3.d) at the optimum conditions of tf/tr, the mixing intensity and the intermittent mixing mode. In addition, the biodegradability of coking wastewater distinctly increased after the pretreatment using ASBR. At the end of the experiment, the microorganism forms on the granulated sludge in the ASBR were observed using SEM (scanning electron microscope) and fluoroscope. The results showed that the dominant microorganism on the granular sludge was Methanosaeta instead of Methanosarcina dominated on the inoculated sludge.

  4. Carbon Footprint Analyses of Mainstream Wastewater Treatment Technologies under Different Sludge Treatment Scenarios in China

    OpenAIRE

    Chunyan Chai; Dawei Zhang; Yanling Yu; Yujie Feng; Man Sing Wong

    2015-01-01

    With rapid urbanization and infrastructure investment, wastewater treatment plants (WWTPs) in Chinese cities are putting increased pressure on energy consumption and exacerbating greenhouse gas (GHG) emissions. A carbon footprint is provided as a tool to quantify the life cycle GHG emissions and identify opportunities to reduce climate change impacts. This study examined three mainstream wastewater treatment technologies: Anaerobic–Anoxic–Oxic (A–A–O), Sequencing Batch Reactor (SBR) and Oxy...

  5. Treatment of Papermaking Wastewater Using a Membrane Bio-Reactor%膜生物反应器处理造纸废水试验研究

    Institute of Scientific and Technical Information of China (English)

    唐吴晓; 李卫星; 邢卫红

    2016-01-01

    随着造纸行业的发展,新鲜水需求量和污水排放量剧增的问题日益突显。研究以膜生物反应器(membrane bio-reactor,MBR)处理造纸废水工艺,考察了膜孔径对过滤性能的影响并且对运行参数进行了优化,分析了膜的过滤行为和膜污染现象。结果选定膜孔径为300 nm,运行参数中优化的曝气量为1800 L⋅(m2⋅h)−1,膜通量为19 L⋅(m2⋅h)−1,悬浮固体颗粒浓度为6 g⋅L−1。在此条件下运行105 d,膜性能稳定,气温的升高延长了MBR的运行周期,各项出水指标均优于原工艺二沉池水。化学需氧量、浊度、氨氮(NH 3-N)、总磷、色度和总有机碳的平均去除率分别为92%、99%、93%、73%、98%和88%。膜污染分析显示,造纸废水引起的主要污染为有机污染,但钙元素含量达9%,无机污染不可忽略。当跨膜压差升至40 KPa时,采用质量分数为0.5%的次氯酸钠(NaClO)和0.3%的柠檬酸,分别浸泡2 h,膜通量恢复率达到92%。%With the development of papermaking industry, the demand for fresh water and discharge of wastewater become a severe problem. In this work, a membrane bio-reactor (MBR) was employed to treat papermaking wastewater, and the effects of membrane pore size and operation parameters on the performance of MBR were investigated. In addition, membrane filtration behavior and fouling phenomena were analyzed. The optimized membrane pore size is found as 300 nm with aeration rate of 1800 L⋅(m2⋅h)−1, membrane flux of 19 L⋅(m2⋅h)−1 and mixed liquid suspended solids (MLSS) of 6 g⋅L−1. During a long-term run of 105 days, membrane performance keeps stable and the increase of atmosphere temperature prolongs the operation cycle. Meanwhile, the effluent quality is superior to that of traditional processes. The average removal rate of COD, turbidity, NH3-N, TP, chromaticity and TOC are 92%, 99%, 93%, 73%,98% and 88%, respectively. The analysis results show

  6. Thermophilic anaerobic digestion of Lurgi coal gasification wastewater in a UASB reactor.

    Science.gov (United States)

    Wang, Wei; Ma, Wencheng; Han, Hongjun; Li, Huiqiang; Yuan, Min

    2011-02-01

    Lurgi coal gasification wastewater (LCGW) is a refractory wastewater, whose anaerobic treatment has been a severe problem due to its toxicity and poor biodegradability. Using a mesophilic (35±2°C) reactor as a control, thermophilic anaerobic digestion (55±2°C) of LCGW was investigated in a UASB reactor. After 120 days of operation, the removal of COD and total phenols by the thermophilic reactor could reach 50-55% and 50-60% respectively, at an organic loading rate of 2.5 kg COD/(m(3) d) and HRT of 24 h; the corresponding efficiencies were both only 20-30% in the mesophilic reactor. After thermophilic digestion, the wastewater concentrations of the aerobic effluent COD could reach below 200 mg/L compared with around 294 mg/L if mesophilic digestion was done and around 375 mg/L if sole aerobic pretreatment was done. The results suggested that thermophilic anaerobic digestion improved significantly both anaerobic and aerobic biodegradation of LCGW.

  7. Yannawa wastewater treatment plant (Bangkok, Thailand): design, construction and operation.

    Science.gov (United States)

    Kirkwood, S

    2004-01-01

    Yannawa Wastewater Treatment plant (Phase 1) serves a population equivalent of 500,000 and is located on a restricted site within the city of Bangkok, Thailand. Secondary treatment is based on the CASS sequencing batch reactor (SBR) process and the plant is one of the largest multi-storey SBRs in the world. The limitation of available site area, the ground conditions and the characteristics of the wastewater to be treated set a series of challenges for the designers, contractors and commissioning and operational staff. This paper briefly describes the collection system, the process selection and the treatment streams of the wastewater treatment plant. The SBR secondary treatment plant is described in more detail. The problems that arose during commissioning and operation and the solutions made possible by the use of an SBR type of process are discussed. Details of plant performance during performance testing and during the first three years of plant operation are provided.

  8. Biological treatment and nanofiltration of denim textile wastewater for reuse

    Energy Technology Data Exchange (ETDEWEB)

    Sahinkaya, Erkan; Uzal, Nigmet; Yetis, Ulku [Middle East Technical University, Department of Environmental Engineering, 06531 Ankara (Turkey); Dilek, Filiz B. [Middle East Technical University, Department of Environmental Engineering, 06531 Ankara (Turkey)], E-mail: fdilek@metu.edu.tr

    2008-05-30

    This study aims at coupling of activated sludge treatment with nanofiltration to improve denim textile wastewater quality to reuse criteria. In the activated sludge reactor, the COD removal efficiency was quite high as it was 91 {+-} 2% and 84 {+-} 4% on the basis of total and soluble feed COD, respectively. The color removal efficiency was 75 {+-} 10%, and around 50-70% of removed color was adsorbed on biomass or precipitated within the reactor. The high conductivity of the wastewater, as high as 8 mS/cm, did not adversely affect system performance. Although biological treatment is quite efficient, the wastewater does not meet the reuse criteria. Hence, further treatment to improve treated water quality was investigated using nanofiltration. Dead-end microfiltration (MF) with 5 {mu}m pore size was applied to remove coarse particles before nanofiltration. The color rejection of nanofiltration was almost complete and permeate color was always lower than 10 Pt-Co. Similarly, quite high rejections were observed for COD (80-100%). Permeate conductivity was between 1.98 and 2.67 mS/cm (65% conductivity rejection). Wastewater fluxes were between 31 and 37 L/m{sup 2}/h at 5.07 bars corresponding to around 45% flux declines compared to clean water fluxes. In conclusion, for denim textile wastewaters nanofiltration after biological treatment can be applied to meet reuse criteria.

  9. Alternative Treatment Technologies for Low-Cost Industrial and Municipal Wastewater Management

    OpenAIRE

    Hodges, Alan J.

    2017-01-01

    Roughly the same volume of water that rushes over the Niagara Falls is produced as wastewater in North America. This wastewater is treated through a variety of means to ensure that it can be safely returned to the natural ecosystem. This thesis examines two novel means for this treatment, one biological and one physical-chemical in nature, namely, Rotating Algae Biofilm Reactor treatment and expanded shale augmented coagulation-flocculation. Rotating algae biofilm reactors (RABRs) support ...

  10. Algae Removal by Electro-coagulation Process, Application for Treatment of the Effluent from an Industrial Wastewater Treatment Plant

    National Research Council Canada - National Science Library

    GH Azarian; AR Mesdaghinia; F Vaezi; R Nabizadeh; D Nematollahi

    2007-01-01

    .... In this study, an electro-coagulation reactor was examined to re­move algae from the final effluent of the wastewater treatment plant belong to Bu-Ali Industrial Estates (Hamadan City).  Methods...

  11. 流化床三维电极电催化氧化深度处理焦化废水%Advanced treatment of coking wastewater using three-dimensional fluid bed electrode reactor

    Institute of Scientific and Technical Information of China (English)

    张垒; 段爱民; 王丽娜; 付本全; 刘霞; 吴高明

    2012-01-01

    研究了以焦粒为粒子电极的流化床三维电极反应器对二级生化处理后的焦化废水进行深度处理.结果表明:采用以焦粒为粒子电极的流化床三维电极反应器能有效降解废水中的有机物,COD去除率依赖于粒子投加量、电流密度、电导率、pH值、曝气量等操作参数的影响.在电导率(以S计)为7.1m·cm-1,曝气量为160 L·h-1,电流密度(以A计)为48 m·cm-2,pH值为5.0,投加量30 g·L-1时,电解30 min,COD的去除率超过60%,表明流化床三维电极反应器在焦化废水深度处理中有很好工程应用前景.%Advanced treatment of secondary bio-treatment coking wastewater by three-dimensional fluid electrode using coking particles was studied. The experimental results showed that the refractory organics in coking wastewater can be effectively removed by this process, and COD removal rate was affected by the operating parameters, such as coking doze quantity, current density, supporting electrolyte, initial pH, aeration amount. For electrolyses under the conditions of supporting electrolyte: 7.1 mScm-1, aeration amount: 160 L-h-1, current density: 48 mAcm-2, initial pH: 5.0, and coking doze quantity: 30 g-L-1, the electrochemical reactor could have a COD removal rate of more than 60%, which revealed great potential of three-dimensional fluid bed electrode reactor in engineering application as an advanced treatment of coking wastewater.

  12. Evaluation of a coagulation/flocculation-lamellar clarifier and filtration-UV-chlorination reactor for removing emerging contaminants at full-scale wastewater treatment plants in Spain.

    Science.gov (United States)

    Matamoros, Víctor; Salvadó, Victòria

    2013-03-15

    The presence and elimination of 25 emerging contaminants in two full-scale Spanish wastewater treatment plants was studied. The tertiary treatment systems consisted of coagulation, flocculation lamellar settlement and filtration (pulsed-bed sand filters) units, and disinfection was carried out by medium pressure UV light lamps and chlorination. Diclofenac and carbamazepine were found to be the emerging contaminants with the highest concentrations in secondary effluents. Photodegradable emerging contaminants (e.g. ketoprofen, triclosan and diclofenac) were removed by filtration-UV light radiation-chlorination whereas most hydrophobic compounds (e.g. galaxolide and tonalide) were eliminated by coagulation-flocculation followed by lamellar clarification, a unit in which a seasonal trend was observed. Overall mass removal efficiency was about 60%. 1-(8-Chlorocarbazolyl) acetic acid, an intermediate product of the photodegradation of diclofenac, was detected after filtration-UV-chlorination, but not after coagulation-flocculation and lamellar clarification. This study demonstrated potential for general applicability of two established tertiary treatment systems to eliminate emerging contaminants.

  13. 三维电极法电解处理靛红模拟染料废水%Electrolytic Treatment of Isatin in Simulated Wastewater Using a Three-dimensional Electrode Reactor

    Institute of Scientific and Technical Information of China (English)

    杨淑贤; 蔡婷婷; 庄建梅; 申大忠

    2012-01-01

      A model dye wastewater of Isatin was treated by a three-dimensional electrode reactor equipped with granular activated carbon as particle electrode and stainless steel electrodes as the anode and cathode. Under the influence of an electric field with an appropriate voltage, activated carbon particles can be polarized to form charged microelectrodes. In comparison to the two-dimensional electrode reactor, the three-dimensional method offers the advantages of higher area-volume-ratio, shorter transfer distance between the reactant and the elec⁃trode. Hence, the current efficiency for electrolytic treatment of wastewater is improved. In this paper, the influ⁃ence of the way to prepare particle electrode, current density, concentration of Fe2+ and salt on the color remov⁃al efficiency was investigated.%  在不锈钢电解电极之间充填由纱网包裹的柱状活性炭,在电场作用下,活性炭表面因静电感应带电,形成一系列粒子电极构成三维电极电解槽,将其用于电化学氧化含靛红的模拟染料废水,与二维电极电解槽相比,三维电极电解槽的面体比大大增加,粒子间距减小,物质传质效率大为改善,因此电流效率明显提高。同时试验了粒子电极填充方式、电流密度、Fe2+离子浓度、盐浓度对氧化脱色效率的影响。

  14. A review of investigations on wastewater treatment with MSOBR (membrane supported and oxygenated biofilm reactors); Una revision de las investigaciones sobre el tratamiento de aguas residuales con RBSOM (reactores de biopelicula que emplean membranas con material soporte y medio de oxigenacion)

    Energy Technology Data Exchange (ETDEWEB)

    Esteban Garcia, A. L.; Tejero Monzon, I.

    2007-07-01

    MSOBR (membrane supported and oxygenated biofilm reactors) are biological reactors for wastewater treatment in which biofilm support and oxygenation functions are carried out by gas permeable membranes. In these conditions, with oxygen and substratum (carbonaceous, nitroge neous) diffusing into the biofilm from opposite sides, different environments are developed inside the biofilm, allowing simultaneous nitrification, denitrification and carbon removal. Other added advantages, such us the possibility of a high oxygen transfer efficiency or those derived from the absence of bubbles in aeration (minimizing foaming and VOC emissions), have lead numerous research groups to work in the development of different MSOBR systems, with promising results that make possible to consider their practical applicability in the near future. (Author) 69 refs.

  15. Treatment of coking wastewater by using manganese and magnesium ores.

    Science.gov (United States)

    Chen, Tianhu; Huang, Xiaoming; Pan, Min; Jin, Song; Peng, Suchuan; Fallgren, Paul H

    2009-09-15

    This study investigated a wastewater treatment technique based on natural minerals. A two-step process using manganese (Mn) and magnesium (Mg) containing ores were tested to remove typical contaminants from coking wastewater. Under acidic conditions, a reactor packed with Mn ore demonstrated strong oxidizing capability and destroyed volatile phenols, chemical oxygen demand (COD)(,) and sulfide from the coking wastewater. The effluent was further treated by using Mg ore to remove ammonium-nitrogen and phosphate in the form of magnesium ammonium phosphate (struvite) precipitates. When pH of the wastewater was adjusted to 1.2, the removal efficiencies for COD, volatile phenol and sulfide reached 70%, 99% and 100%, respectively. During the second step of precipitation, up to 94% of ammonium was removed from the aqueous phase, and precipitated in the form of struvite with phosphorus. The struvite crystals showed a needle-like structure. X-ray diffraction and transmission electron microscopy were used to characterize the crystallized products.

  16. Kinetic study for aerobic treatment of phenolic wastewater

    Directory of Open Access Journals (Sweden)

    Athar Hussain

    2015-09-01

    Full Text Available Conventional physico-chemical treatment of industrial wastewater containing compounds such as phenol encounters difficulties due to low substrate level, additional use of chemicals, and generation of hazardous by products along with increased process cost. Biological treatment appears to be a solution for treatment of such industrial wastewater. In the present study an aerobic sequential batch reactor (SBR has been used for treatment of synthetic wastewater containing phenol. The effects of increasing phenol concentrations on the sludge characteristic have been also investigated. It was observed that, activity of activated sludge for acclimatization of phenol decreases at concentrations above 2000 mg L−1. It may be attributed to toxicity of phenol to active biomass at higher concentrations. Kinetics of phenol degradation has also been studied using Haldane model.

  17. Olive mill wastewater treatment: an experimental study.

    Science.gov (United States)

    Bettazzi, E; Morelli, M; Caffaz, S; Caretti, C; Azzari, E; Lubello, C

    2006-01-01

    Olive oil production, one of the main agro-industries in Mediterranean countries, generates significant amounts of olive mill wastewaters (OMWs), which represent a serious environmental problem, because of their high organic load, the acidic pH and the presence of recalcitrant and toxic substances such as phenolic and lipidic compounds (up to several grams per litre). In Italy, traditional disposal on the soil is the most common way to discharge OMWs. This work is aimed at investigating the efficiency and feasibility of AOPs and biological processes for OMW treatment. Trials have been carried out on wastewaters taken from one of the largest three-phase mills of Italy, located in Quarrata (Tuscany), as well as on synthetic solutions. Ozone and Fenton's reagents applied both on OMWs and on phenolic synthetic solutions guaranteed polyphenol removal efficiency up to 95%. Aerobic biological treatment was performed in a batch reactor filled with raw OMWs (pH = 4.5, T = 30 degrees C) without biomass inoculum. A biomass rich of fungi, developed after about 30 days, was able to biodegrade phenolic compounds reaching a removal efficiency of 70%. Pretreatment of OMWs by means of oxidation increased their biological treatability.

  18. Hydrodynamics research of wastewater treatment bioreactors

    Institute of Scientific and Technical Information of China (English)

    REN Nan-qi; ZHANG Bing; ZHOU Xue-fei

    2009-01-01

    To optimize the design and improve the performance of wastewater treatment bioreactors, the review concerning the hydrodynamics explored by theoretical equations, process experiments, modeling of the hydrody-namics and flow field measurement is presented. Results of different kinds of experiments show that the hydro-dynamic characteristics can affect sludge characteristics, mass transfer and reactor performance significantly. A-long with the development of theoretical equations, turbulence models including large eddy simulation models and Reynolds-averaged Navier-Stokes (RANS) models are widely used at present. Standard and modified k-ε models are the most widely used eddy viscosity turbulence models for simulating flows in bioreactors. Numericalsimulation of hydrodynamics is proved to be efficient for optimizing design and operation. The development of measurement techniques with high accuracy and low intrusion enables the flow filed in the bioreactors to be transparent. Integration of both numerical simulation and experimental measurement can describe the hydrody-namics very well.

  19. Organic contaminants in onsite wastewater treatment systems

    Science.gov (United States)

    Conn, K.E.; Siegrist, R.L.; Barber, L.B.; Brown, G.K.

    2007-01-01

    Wastewater from thirty onsite wastewater treatment systems was sampled during a reconnaissance field study to quantify bulk parameters and the occurrence of organic wastewater contaminants including endocrine disrupting compounds in treatment systems representing a variety of wastewater sources and treatment processes and their receiving environments. Bulk parameters ranged in concentrations representative of the wide variety of wastewater sources (residential vs. non-residential). Organic contaminants such as sterols, surfactant metabolites, antimicrobial agents, stimulants, metal-chelating agents, and other consumer product chemicals, measured by gas chromatography/mass spectrometry were detected frequently in onsite system wastewater. Wastewater composition was unique between source type likely due to differences in source water and chemical usage. Removal efficiencies varied by engineered treatment type and physicochemical properties of the contaminant, resulting in discharge to the soil treatment unit at ecotoxicologically-relevant concentrations. Organic wastewater contaminants were detected less frequently and at lower concentrations in onsite system receiving environments. Understanding the occurrence and fate of organic wastewater contaminants in onsite wastewater treatment systems will aid in minimizing risk to ecological and human health.

  20. Electrochemical wastewater treatment directly powered by photovoltaic panels: electrooxidation of a dye-containing wastewater.

    Science.gov (United States)

    Valero, David; Ortiz, Juan M; Expósito, Eduardo; Montiel, Vicente; Aldaz, Antonio

    2010-07-01

    Electrochemical technologies have proved to be useful for the treatment of wastewater, but to enhance their green characteristics it seems interesting to use a green electric energy such as that provided by photovoltaic (PV) cells, which are actually under active research to decrease the economic cost of solar kW. The aim of this work is to demonstrate the feasibility and utility of using an electrooxidation system directly powered by a photovoltaic array for the treatment of a wastewater. The experimental system used was an industrial electrochemical filter press reactor and a 40-module PV array. The influence on the degradation of a dye-containing solution (Remazol RB 133) of different experimental parameters such as the PV array and electrochemical reactor configurations has been studied. It has been demonstrated that the electrical configuration of the PV array has a strong influence on the optimal use of the electric energy generated. The optimum PV array configuration changes with the intensity of the solar irradiation, the conductivity of the solution, and the concentration of pollutant in the wastewater. A useful and effective methodology to adjust the EO-PV system operation conditions to the wastewater treatment is proposed.

  1. Start up of an anaerobic inverse turbulent bed reactor fed with wine distillery wastewater using pre-colonised bioparticles.

    Science.gov (United States)

    Amaiz, C; Elmaleh, S; Lebrato, J; Moletta, R

    2005-01-01

    The long start-up period of fluidized bed biofilm reactors is a serious obstacle for their wide installation in the anaerobic treatment of industrial wastewater. This paper presents the results of an anaerobic inverse turbulent bioreactor treating distillery wastewater during 117 days of operation at a laboratory scale. The pre-colonized bioparticles for this work were obtained from a similar reactor processing the same wastewater and which had a start-up period of 3 months. The system attained carbon removal efficiency rates between 70 and 92%, at an organic loading rate of 30.6 kg m(-3) d(-1) (chemical oxygen demand) with a hydraulic retention time of 11.1 h. The results obtained showed that the start-up period of this kind of reactors can be reduced by 3 using pre-colonized bioparticles.

  2. Reliability analysis of wastewater treatment plants.

    Science.gov (United States)

    Oliveira, Sílvia C; Von Sperling, Marcos

    2008-02-01

    This article presents a reliability analysis of 166 full-scale wastewater treatment plants operating in Brazil. Six different processes have been investigated, comprising septic tank+anaerobic filter, facultative pond, anaerobic pond+facultative pond, activated sludge, upflow anaerobic sludge blanket (UASB) reactors alone and UASB reactors followed by post-treatment. A methodology developed by Niku et al. [1979. Performance of activated sludge process and reliability-based design. J. Water Pollut. Control Assoc., 51(12), 2841-2857] is used for determining the coefficients of reliability (COR), in terms of the compliance of effluent biochemical oxygen demand (BOD), chemical oxygen demand (COD), total suspended solids (TSS), total nitrogen (TN), total phosphorus (TP) and fecal or thermotolerant coliforms (FC) with discharge standards. The design concentrations necessary to meet the prevailing discharge standards and the expected compliance percentages have been calculated from the COR obtained. The results showed that few plants, under the observed operating conditions, would be able to present reliable performances considering the compliance with the analyzed standards. The article also discusses the importance of understanding the lognormal behavior of the data in setting up discharge standards, in interpreting monitoring results and compliance with the legislation.

  3. Physicochemical and Microbial Caracteristics Performency in Wastewater Treated Under Aerobic Reactor

    Directory of Open Access Journals (Sweden)

    Asma B. Rajeb

    2011-01-01

    Full Text Available Problem statement: The current work study the efficiency of biological wastewater treatment by an aerobic reactor which could be used in small agglomerations. RBC reduced physicochemical and microbiological load of wastewater but values remain above Tunisian standard. Approach: Experiments were conducted on a sand filled PVC column fed with wastewater treated by Rotating Biological Contactor (RBC at a pulsed rhythm of 8 sequences per day. For performances study process, physicochemical and bacterial analyses effluent at inlet and outlet of column were realized. Results: The results showed that through filter mass (D10 = 0.55 mm, D60 = 1.3 mm and coefficient uniformity = 2.36 96% of suspended solids, 99% of NH4 +-N (during first phase, 92% of COD, 91% of BOD5 and 46% of phosphorus are retained by surface filtration. The microbial abatement results is E. coli. The microbial water quality is slightly higher than Tunisian standards. The removal of microbial indicators in the considered reactor depends on the depth of the filter and negatively correlated with NO3 --N (r = -0.99, with E. coli at 3rd OPD. Conclusion/Recommendation: Results confirmed that the reactor tested is performed as an advanced treatment system for DBO, COD, SS, NH4 +-N and NO3 --N. Despite that 96% of SS efficiency reduction, clogging is not achieved quickly that due to biofilm detachment phenomena. The removal of microbial indicators in the considered reactor depends on the depth of the filter and negatively correlated with NO3 --N. Disinfection performances for the considered reactor reduce microbial load, however chlore, ozone or UV disinfection should be considered.

  4. Reduction in toxicity of coking wastewater to aquatic organisms by vertical tubular biological reactor.

    Science.gov (United States)

    Zhou, Siyun; Watanabe, Haruna; Wei, Chang; Wang, Dongzhou; Zhou, Jiti; Tatarazako, Norihisa; Masunaga, Shigeki; Zhang, Ying

    2015-05-01

    We conducted a battery of toxicity tests using photo bacterium, algae, crustacean and fish to evaluate acute toxicity profile of coking wastewater, and to evaluate the performance of a novel wastewater treatment process, vertical tubular biological reactor (VTBR), in the removal of toxicity and certain chemical pollutants. A laboratory scale VTBR system was set up to treat industrial coking wastewater, and investigated both chemicals removal efficiency and acute bio-toxicity to aquatic organisms. The results showed that chemical oxygen demand (COD) and phenol reductions by VTBR were approximately 93% and 100%, respectively. VTBR also reduced the acute toxicity of coking wastewater significantly: Toxicity Unit (TU) decreased from 21.2 to 0.4 for Photobacterium phosphoreum, from 9.5 to 0.6 for Isochrysis galbana, from 31.9 to 1.3 for Daphnia magna, and from 30.0 to nearly 0 for Danio rerio. VTBR is an efficient treatment method for the removal of chemical pollutants and acute bio-toxicity from coking wastewater. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. 电解氧化-AF-MBBR处理维生素C生产废水%Advanced treatment of vitamin C wastewater by electrolytic oxidation and AF-MBBR integrated reactor

    Institute of Scientific and Technical Information of China (English)

    王钊; 胡小兵; 许柯; 任洪强; 郑巧庚

    2011-01-01

    Advanced treatment of the effluent from anaerobic-aerobic biological treatment of vitamin C wastewater with electrolytic oxidation coupled with AF-MBBR integrated reactor was studied. Electrolytic oxidation was effective for decolorization, and the optimal operation conditions were as following: pH of 4, current density of 50 mA/cm2, electrolysis time of 15 min, and the distance of electrodes of 25 mm. Under these conditions, the TOC and chroma of effluents were 97.6~123.2mg/L and 135-155 times respectively. The ratio of BOD5/COD increased from less than 0.1 to about 0.24. Upon pretreatment, the effluent was further treated through AF-MBBR integrated reactor. The TOC, chroma and NH4+-N decreased to 57.18mg/L, 60 times and 2.55mg/L respectively, which primarily discharge met the standards (GB 21903-2008) for fermentation pharmaceutical industry, verifying the feasibility of the combined treatment process for advanced treatment of vitamin C wastewater. The optimum HRT of the integrated reactor was 10h. The addition of 100 mg/L glucose substantially enhanced denitrification and more than 78.1% of TN was removed. It showed that glucose could be used as the appropriate carbon resource for denitrification for advanced treatment of vitamin C wastewater. In addition, ultraviolet and infrared analysis showed that the chromophore was mainly from the carbonyl groups, which could be broken by the electrolytic oxidation and the AF-MBBR biological treatment.%采用电解氧化和厌氧生物滤池-好氧移动床生物膜(AF-MBBR)一体化反应器组合工艺对维生素C生产企业的二级生化出水进行深度处理.结果表明,电解氧化预处理具有较好的脱色效果,优化的运行条件为:pH值为4、电流密度50mA/cm2、极板间距25mm、电解时间15min.此时出水TOC降为97.6~ 123.2mg/L、色度降为135~155倍、BOD√COD从不足0.1提高到0.24左右.出水进入AF-MBBR一体化反应器处理,出水平均TOC、色度和氨氮可分别降至57

  6. A Technology of Wastewater Sludge Treatment

    Science.gov (United States)

    Gizatulin, R. A.; Senkus, V. V.; Valueva, A. V.; Baldanova, A. S.; Borovikov, I. F.

    2016-04-01

    At many communities, industrial and agricultural enterprises, treatment and recycling of wastewater sludge is an urgent task as the sludge is poured and stored in sludge banks for many years and thus worsens the ecology and living conditions of the region. The article suggests a new technology of wastewater sludge treatment using water-soluble binder and heat treatment in microwave ovens.

  7. High rate treatment of terephthalic acid production wastewater in a two-stage anaerobic bioreactor

    NARCIS (Netherlands)

    Kleerebezem, R.; Beckers, J.; Pol, L.W.H.; Lettinga, G.

    2005-01-01

    The feasibility was studied of anaerobic treatment of wastewater generated during purified terephthalic acid (PTA) production in two-stage upflow anaerobic sludge blanket (UASB) reactor system. The artificial influent of the system contained the main organic substrates of PTA-wastewater: acetate, be

  8. Evaluation of Heavy Metal Removal from Wastewater in a Modified Packed Bed Biofilm Reactor.

    Directory of Open Access Journals (Sweden)

    Shohreh Azizi

    Full Text Available For the effective application of a modified packed bed biofilm reactor (PBBR in wastewater industrial practice, it is essential to distinguish the tolerance of the system for heavy metals removal. The industrial contamination of wastewater from various sources (e.g. Zn, Cu, Cd and Ni was studied to assess the impacts on a PBBR. This biological system was examined by evaluating the tolerance of different strengths of composite heavy metals at the optimum hydraulic retention time (HRT of 2 hours. The heavy metal content of the wastewater outlet stream was then compared to the source material. Different biomass concentrations in the reactor were assessed. The results show that the system can efficiently treat 20 (mg/l concentrations of combined heavy metals at an optimum HRT condition (2 hours, while above this strength there should be a substantially negative impact on treatment efficiency. Average organic reduction, in terms of the chemical oxygen demand (COD of the system, is reduced above the tolerance limits for heavy metals as mentioned above. The PBBR biological system, in the presence of high surface area carrier media and a high microbial population to the tune of 10 000 (mg/l, is capable of removing the industrial contamination in wastewater.

  9. Evaluation of Heavy Metal Removal from Wastewater in a Modified Packed Bed Biofilm Reactor.

    Science.gov (United States)

    Azizi, Shohreh; Kamika, Ilunga; Tekere, Memory

    2016-01-01

    For the effective application of a modified packed bed biofilm reactor (PBBR) in wastewater industrial practice, it is essential to distinguish the tolerance of the system for heavy metals removal. The industrial contamination of wastewater from various sources (e.g. Zn, Cu, Cd and Ni) was studied to assess the impacts on a PBBR. This biological system was examined by evaluating the tolerance of different strengths of composite heavy metals at the optimum hydraulic retention time (HRT) of 2 hours. The heavy metal content of the wastewater outlet stream was then compared to the source material. Different biomass concentrations in the reactor were assessed. The results show that the system can efficiently treat 20 (mg/l) concentrations of combined heavy metals at an optimum HRT condition (2 hours), while above this strength there should be a substantially negative impact on treatment efficiency. Average organic reduction, in terms of the chemical oxygen demand (COD) of the system, is reduced above the tolerance limits for heavy metals as mentioned above. The PBBR biological system, in the presence of high surface area carrier media and a high microbial population to the tune of 10 000 (mg/l), is capable of removing the industrial contamination in wastewater.

  10. Methane emission during municipal wastewater treatment.

    Science.gov (United States)

    Daelman, Matthijs R J; van Voorthuizen, Ellen M; van Dongen, Udo G J M; Volcke, Eveline I P; van Loosdrecht, Mark C M

    2012-07-01

    Municipal wastewater treatment plants emit methane. Since methane is a potent greenhouse gas that contributes to climate change, the abatement of the emission is necessary to achieve a more sustainable urban water management. This requires thorough knowledge of the amount of methane that is emitted from a plant, but also of the possible sources and sinks of methane on the plant. In this study, the methane emission from a full-scale municipal wastewater facility with sludge digestion was evaluated during one year. At this plant the contribution of methane emissions to the greenhouse gas footprint were slightly higher than the CO₂ emissions related to direct and indirect fossil fuel consumption for energy requirements. By setting up mass balances over the different unit processes, it could be established that three quarters of the total methane emission originated from the anaerobic digestion of primary and secondary sludge. This amount exceeded the carbon dioxide emission that was avoided by utilizing the biogas. About 80% of the methane entering the activated sludge reactor was biologically oxidized. This knowledge led to the identification of possible measures for the abatement of the methane emission.

  11. Dielectric Barrier Discharge Plasma-Induced Photocatalysis and Ozonation for the Treatment of Wastewater

    Science.gov (United States)

    Mok, Young Sun; Jo, Jin-Oh; Lee, Heon-Ju

    2008-02-01

    The physicochemical processes of dielectric barrier discharge (DBD) such as in-situ formation of chemically active species and emission of ultraviolet (UV)/visible light were utilized for the treatment of a simulated wastewater formed with Acid Red 4 as the model organic contaminant. The chemically active species (mostly ozone) produced in the DBD reactor were well distributed in the wastewater using a porous gas diffuser, thereby increasing the gas-liquid contact area. For the purpose of making the best use of the light emission, a titanium oxide-based photocatalyst was incorporated in the wastewater treating system. The experimental parameters chosen were the voltage applied to the DBD reactor, the initial pH of the wastewater, and the concentration of hydrogen peroxide added to the wastewater. The results have clearly shown that the present system capable of degrading organic contaminants in two ways (photocatalysis and ozonation) may be a promising wastewater treatment technology.

  12. Dielectric Barrier Discharge Plasma-Induced Photocatalysis and Ozonation for the Treatment of Wastewater

    Institute of Scientific and Technical Information of China (English)

    MOK Young Sun; JO Jin-Oh; LEE Heon-Ju

    2008-01-01

    The physicochemical processes of dielectric barrier discharge (DBD) such as in-situ formation of chemically active species and emission of ultraviolet (UV)/visible light were utilized for the treatment of a simulated wastewater formed with Acid Red 4 as the model organic contaminant. The chemically active species (mostly ozone) produced in the DBD reactor were well distributed in the wastewater using a porous gas diffuser, thereby increasing the gas-liquid contact area. For the purpose of making the best use of the light emission, a titanium oxide-based photocatalyst was incorporated in the wastewater treating system. The experimental parameters chosen were the voltage applied to the DBD reactor, the initial pH of the wastewater, and the concentration of hydrogen peroxide added to the wastewater. The results have clearly shown that the present system capable of degrading organic contaminants in two ways (photocatalysis and ozonation) may be a promising wastewater treatment technology.

  13. SBR法处理油页岩废水试验研究%Study on the treatment of oil shale wastewater by sequencing batch reactor activated sludge process (SBR)

    Institute of Scientific and Technical Information of China (English)

    樊亚楠; 张兰英; 王显胜; 马然; 张婧赢

    2012-01-01

    对油页岩废水水质进行分析,采用SBR工艺进行处理,以废水COD和总石油烃为控制指标,结合污泥脱氢酶的活性,探索SBR工艺运行的最佳条件;并利用修正的Monod公式,对SBR池中生化动力学进行研究,确定了其动力学参数,反应级数及反应速率常数.结果表明,在温度为24~28℃,pH值为6.58 ~ 7.24,DO为3.36~4.36mg/L,水力停留时间为36 h条件下,处理效果较佳.在进水水量为15L,COD为491.008 mg/L,总石油烃为33.25 mg/L时,废水COD去除率可达70%,总石油烃去除率可达90%.%Since the wastewater generated by oil shale mining is the factor limiting the wide use of oil shale, the research on oil shale wastewater is one of the focuses in the home and abroad. In the present research, water quality of oil shale wastewater was analyzed. It could be found that the wastewater was with characteristics of great odor, deep color and consisted of complex components. To note, the organic compounds contained in the wastewater were mostly hydrocarbons . Furthermore, Sequencing Batch Reactor Activated Sludge Pro-cess(SBR) was used to treat the oil shale wastewater and the optimum treatment condition was explored at different temperature, pH, DO, and hydraulic retention time (HRT), with the control index of COD and TPH, combined with the sludge dehydrogenase activity. The results show that within temperature of 24 - 28 ℃, pH of 6.58 - 7.24, DO of 3.36 - 4.36 mg/L, HRT of 36 h, the elimination effect of COD and TPH are promising. For the conditions of influent volume of 15 L, COD of 491.008 mg/L, and total petroleum hydrocarbons of 33.25 mg/L, the COD removal rate can be up to 70% and the total petroleum hydrocarbon removal rate can be up to 90 % . Besides, the influent and effluent were measured by GC - MS. Through the result of analysis, the content and type of organic matters in wastewater were found to significantly reduce. Furthermore, with modified Mon-od equation, the

  14. Assessment of the Possibility of Improvement of Dairy Wastewater Treatment System Operation

    OpenAIRE

    Hercog, Jernej

    2009-01-01

    The thesis deals with the issue of dairy wastewater from the viewpoint of successful elimination of organic and inorganic components in physical and biological treatment processes in pre-treatment systems. Theoretically, the thesis covers the definitions and explanations of biological wastewater treatment, and deals with treatment processes in the sequencing batch reactor as well as the tertiary treatment level for the removal of nitrogen and phosphorus compounds. Furthermore, the thesis cove...

  15. Wastewater treatment with acoustic separator

    Science.gov (United States)

    Kambayashi, Takuya; Saeki, Tomonori; Buchanan, Ian

    2017-07-01

    Acoustic separation is a filter-free wastewater treatment method based on the forces generated in ultrasonic standing waves. In this report, a batch-system separator based on acoustic separation was demonstrated using a small-scale prototype acoustic separator to remove suspended solids from oil sand process-affected water (OSPW). By applying an acoustic separator to the batch use OSPW treatment, the required settling time, which was the time that the chemical oxygen demand (COD) decreased to the environmental criterion (<200 mg/L), could be shortened from 10 to 1 min. Moreover, for a 10 min settling time, the acoustic separator could reduce the FeCl3 dose as coagulant in OSPW treatment from 500 to 160 mg/L.

  16. Role of Moving Bed Biofilm Reactor and Sequencing Batch Reactor in Biological Degradation of Formaldehyde Wastewater

    Directory of Open Access Journals (Sweden)

    B. Ayati

    2011-10-01

    Full Text Available Nowadays formaldehyde is used as raw material in many industries. It has also disinfection applications in some public places. Due to its toxicity for microorganisms, chemical or anaerobic biological methods are applied for treating wastewater containing formaldehyde.In this research, formaldehyde removal efficiencies of aerobic biological treatment systems including moving bed biofilm (MMBR and sequencing batch reactors (SBR were investigated. During all experiments, the efficiency of SBR was more than MBBR, but the difference was not significant statistically. According to the results, the best efficiencies were obtained for influent formaldehyde COD of 200 mg/L in MBBR and SBR which were 93% and 99.4%, respectively. The systems were also capable to treat higher formaldehyde concentrations (up to 2500 mg/L with lower removal efficiency. The reaction kinetics followed the Stover-Kincannon second order model. The gram-positive and gram-negative bacillus and coccus as well as the gram-positive binary bacillus were found to be the most dominant species. The results of 13C-NMR analysis have shown that formaldehyde and urea were converted into N-{[(aminocarbonyl amino] methyl}urea and the residual formaldehyde was polymerized at room temperature.

  17. Removal of pharmaceuticals in conventionally treated wastewater by a polishing Moving Bed Biofilm Reactor (MBBR) with intermittent feeding

    DEFF Research Database (Denmark)

    Tang, Kai; Ooi, Gordon Tze Hoong; Litty, Klaus

    2017-01-01

    Previous studies have demonstrated that aerobic moving bed biofilm reactors (MBBRs) remove pharmaceuticals better than activated sludge. Thus we used a MBBR system to polish the effluent of an activated sludge wastewater treatment plant. To overcome that effluent contain insufficient organic matter...... to sustain enough biomass, the biofilm was intermittently fed with raw wastewater. The capacity of pharmaceutical degradation was investigated by spiking pharmaceuticals. Actual removal during treatment was assessed by sampling the inlets and outlets of reactors. The removal of the majority...... to the intermittently feeding, degradation of diclofenac occurred with a half-life of only 2.1 hours and was thus much faster than any hitherto described wastewater bioreactor treatment....

  18. Floating treatment wetlands for domestic wastewater treatment.

    Science.gov (United States)

    Faulwetter, J L; Burr, M D; Cunningham, A B; Stewart, F M; Camper, A K; Stein, O R

    2011-01-01

    Floating islands are a form of treatment wetland characterized by a mat of synthetic matrix at the water surface into which macrophytes can be planted and through which water passes. We evaluated two matrix materials for treating domestic wastewater, recycled plastic and recycled carpet fibers, for chemical oxygen demand (COD) and nitrogen removal. These materials were compared to pea gravel or open water (control). Experiments were conducted in laboratory scale columns fed with synthetic wastewater containing COD, organic and inorganic nitrogen, and mineral salts. Columns were unplanted, naturally inoculated, and operated in batch mode with continuous recirculation and aeration. COD was efficiently removed in all systems examined (>90% removal). Ammonia was efficiently removed by nitrification. Removal of total dissolved N was ∼50% by day 28, by which time most remaining nitrogen was present as NO(3)-N. Complete removal of NO(3)-N by denitrification was accomplished by dosing columns with molasses. Microbial communities of interest were visualized with denaturing gradient gel electrophoresis (DGGE) by targeting specific functional genes. Shifts in the denitrifying community were observed post-molasses addition, when nitrate levels decreased. The conditioning time for reliable nitrification was determined to be approximately three months. These results suggest that floating treatment wetlands are a viable alternative for domestic wastewater treatment.

  19. The anaerobic baffled reactor (ABR) treating communal wastewater under mesophilic conditions: a review.

    Science.gov (United States)

    Reynaud, N; Buckley, C A

    2016-01-01

    A review concerning the anaerobic baffled reactor (ABR) treating communal wastewater under mesophilic conditions is presented. Existing studies indicate strong resilience of the reactor towards loading variations and shock-loads. The compartmentalisation of the ABR is a strongly stabilising factor with feed fluctuations being evened out across reactor chambers. Significant chemical oxygen demand (COD) reduction occurs almost exclusively in the first three chambers. The hydraulic rather than the organic loading rate is treatment limiting. Laboratory-scale studies show high treatment efficiencies of above 80% COD removal. It was found that most laboratory-scale studies do not factor in important aspects of field operation, such as diurnal fluctuations of feed characteristics, adequate start-up periods and periods of constant loading and optimised chamber outlet design, and never studied the effect of loading on sludge digestion. Performance data on full-scale ABR implementations, however, are extremely scarce, and existing studies are without exception affected by site-specific treatment-limiting factors hindering the extrapolation of generally valid conclusions. In view of a large-scale roll-out, communal ABRs are not sufficiently understood. Current challenges concerning the optimisation of reactor design require numerous well-monitored long-term full-scale reactor investigations. Existing ABR investigations yield encouraging results, supporting that the ABR may be one of the solutions answering the global call for low-maintenance, robust treatment systems.

  20. A bacterial community analysis using reverse transcription (RT) PCR which detects the bacteria with high activity in a wastewater treatment reactor

    Science.gov (United States)

    This research used reverse transcription polymerase chain reaction (RT-PCR) method to help detect active bacteria in a single-tank deammonification reactor combining partial nitritation and anammox. The single-tank aerobic deammonification reactor effectively removed the ammonia in anaerobically di...

  1. Removal of Organic Load in Communal Wastewater by using the Six Stage Anaerobic Baffle Reactor (ABR

    Directory of Open Access Journals (Sweden)

    Trilita Minarni Nur

    2016-01-01

    Full Text Available The reduction of water quality in the urban drainage is a crucial problem to overcome because it can affect the health of community. This fact encouraged the researcher to conduct the research in efforts to increase the water quality in the drainage. One of the solutions to increase the water quality in the drainage is that the domestic wastewater must be treated at first before it is flown through the drainage. Furthermore, the wastewater treatment was conducted by employing the communal wastewater processor. The research was aimed at knowing the capability of Anaerobic Baffle Reactor with the six-stage design in communal wastewater processor in efforts to decrease the organic load. This research was conducted in a laboratory scale. Meanwhile, the sort of waste used was taken from the domestic wastewater of settlement by varying its discharge and waste concentration flowing into the waste processor. Finally, the research result showed that the reduction of organic load of COD was reaching up to 92%, N was 85% and Phosphate was 50%.

  2. Nitrous oxide emission during wastewater treatment

    NARCIS (Netherlands)

    Kampschreur, M.J.; Temmink, B.G.; Kleerebezem, R.; Jetten, M.S.M.; Loosdrecht, M.C.M.

    2009-01-01

    Nitrous oxide (N2O), a potent greenhouse gas, can be emitted during wastewater treatment, significantly contributing to the greenhouse gas footprint. Measurements at lab-scale and full-scale wastewater treatment plants (WWTPs) have demonstrated that N2O can be emitted in substantial amounts during n

  3. Developments in Biological Treatment of Industrial Wastewaters

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The characteristics and biological treatment technologies of several kinds of industrial wastewater are summarised. Biological treatment of industrial wastewater is a well-established system with applications going back for over a century. However, developments are still taking place but at the design stage, more emphasis will be placed on small "footprint" systems, odour control and minimization of excess sludge production.

  4. Nitrous oxide emission during wastewater treatment

    NARCIS (Netherlands)

    Kampschreur, M.J.; Temmink, B.G.; Kleerebezem, R.; Jetten, M.S.M.; Loosdrecht, M.C.M.

    2009-01-01

    Nitrous oxide (N2O), a potent greenhouse gas, can be emitted during wastewater treatment, significantly contributing to the greenhouse gas footprint. Measurements at lab-scale and full-scale wastewater treatment plants (WWTPs) have demonstrated that N2O can be emitted in substantial amounts during n

  5. Wastewater treatment in a submerged anaerobic membrane bioreactor.

    Science.gov (United States)

    Casu, Stefania; Crispino, Nedda A; Farina, Roberto; Mattioli, Davide; Ferraris, Marco; Spagni, Alessandro

    2012-01-01

    Although most membrane bioreactors are used under aerobic conditions, over the last few years there has been increased interest in their application for anaerobic processes. This paper presents the results obtained when a bench-scale submerged anaerobic membrane bioreactor was used for the treatment of wastewaters generated in the agro-food industry. The reactor was fed with synthetic wastewater consisting of cheese whey and sucrose, and volumetric organic loading rates (OLRs) ranging from 1.5 to 13 kgCOD/(m(3)*d) were applied. Under the operating conditions studied, the maximum applicable OLR was between 6 and 10 gCOD/(g*L), which fell within the ranges of the high-rate anaerobic wastewater treatment systems, while high concentrations of volatile fatty acids were produced at higher OLR rates. With an OLR of 1.5-10 gCOD/(g*L), the reactor showed 94% COD removal, whereas this value dropped to 33% with the highest applied OLR of 13 gCOD/(g*L). The study therefore confirms that membrane bioreactors can be used for anaerobic wastewater treatment.

  6. Phthalates, Nonylphenols and LAS in Roskilde Wastewater Treatment Plant

    DEFF Research Database (Denmark)

    Fauser, P.; Sørensen, P. B.; Carlsen, L.

    The steady-state compartment description of the biological reactors and settlers in wastewater treatment plants that is used in SimpleTreat has been evaluated with respect to an alternately operated WWTP situated in Roskilde, Denmark. The effect of substituting a complex discontinuous operation......, involving alternating degradation and flow conditions between two reactors, with one single biological reactor with continuos flow (SimpleTreat) has been investigated by setting-up two models representing the respective operation schemes. An experimental series was performed where inlet, outlet, primary...... concludes that it is possible to substitute a complex alternating operation with a system containing one single biological reactor, corresponding to SimpleTreat, when a suggested empirical aggregate 1st order degradation rate is employed...

  7. Upgrading of sewage treatment plant by sustainable and cost-effective separate treatment of industrial wastewater.

    Science.gov (United States)

    Abma, W R; Driessen, W; Haarhuis, R; van Loosdrecht, M C M

    2010-01-01

    The Olburgen sewage treatment plant has been upgraded to improve the effluent quality by implementing a separate and dedicated treatment for industrial (potato) wastewater and reject water. The separate industrial treatment has been realized within a beneficial public-private partnership. The separate treatment of the concentrated flows of industrial wastewater and sludge treatment effluent proved to be more cost-efficient and area and energy efficient than a combined traditional treatment process. The industrial wastewater was first treated in a UASB reactor for biogas production. The UASB reactor effluent was combined with the reject water and treated in a struvite reactor (Phospaq process) followed by a one stage granular sludge nitritation/anammox process. For the first time both reactors where demonstrated on full scale and have been operated stable over a period of 3 years. The recovered struvite has been tested as a suitable substitute for commercial fertilizers. Prolonged exposure of granular anammox biomass to nitrite levels up to 30 mg/l did not result in inhibition of the anammox bacteria in this reactor configuration. The chosen option required a 17 times smaller reactorvolume (20,000 m(3) less volume) and saves electric power by approximately 1.5 GWh per year.

  8. Comparison of Scale in a Photosynthetic Reactor System for Algal Remediation of Wastewater.

    Science.gov (United States)

    Sniffen, Kaitlyn D; Sales, Christopher M; Olson, Mira S

    2017-03-06

    An experimental methodology is presented to compare the performance of two different sized reactors designed for wastewater treatment. In this study, ammonia removal, nitrogen removal and algal growth are compared over an 8-week period in paired sets of small (100 L) and large (1,000 L) reactors designed for algal remediation of landfill wastewater. Contents of the small and large scale reactors were mixed before the beginning of each weekly testing interval to maintain equivalent initial conditions across the two scales. System characteristics, including surface area to volume ratio, retention time, biomass density, and wastewater feed concentrations, can be adjusted to better equalize conditions occurring at both scales. During the short 8-week representative time period, starting ammonia and total nitrogen concentrations ranged from 3.1-14 mg NH3-N/L, and 8.1-20.1 mg N/L, respectively. The performance of the treatment system was evaluated based on its ability to remove ammonia and total nitrogen and to produce algal biomass. Mean ± standard deviation of ammonia removal, total nitrogen removal and biomass growth rates were 0.95±0.3 mg NH3-N/L/day, 0.89±0.3 mg N/L/day, and 0.02±0.03 g biomass/L/day, respectively. All vessels showed a positive relationship between the initial ammonia concentration and ammonia removal rate (R(2)=0.76). Comparison of process efficiencies and production values measured in reactors of different scale may be useful in determining if lab-scale experimental data is appropriate for prediction of commercial-scale production values.

  9. Thermo-Oxidization of Municipal Wastewater Treatment Plant Sludge for Production of Class A Biosolids

    Science.gov (United States)

    Bench-scale reactors were used to test a novel thermo-oxidation process on municipal wastewater treatment plant (WWTP) waste activated sludge (WAS) using hydrogen peroxide (H2O2) to achieve a Class A sludge product appropriate for land application. Reactor ...

  10. Modelling of Activated Sludge Wastewater Treatment

    OpenAIRE

    Kurtanjeka, Ž.; Deverić Meštrović, B.; Ležajić, Z.; Bevetek, A.; Čurlin; M.

    2008-01-01

    Activated sludge wastewater treatment is a highly complex physical, chemical and biological process, and variations in wastewater flow rate and its composition, combined with time-varying reactions in a mixed culture of microorganisms, make this process non-linear and unsteady. The efficiency of the process is established by measuring the quantities that indicate quality of the treated wastewater, but they can only be determined at the end of the process, which is when the water has already b...

  11. Characterization of the biomass of a hybrid anaerobic reactor (HAR with two types of support material during the treatment of the coffee wastewater

    Directory of Open Access Journals (Sweden)

    Vivian Galdino da Silva

    2013-06-01

    Full Text Available This study investigated the microbiology of a hybrid anaerobic reactor (HAR in the removal of pollutant loads. This reactor had the same physical structure of an UASB reactor, however with minifilters inside containing two types of support material: expanded clay and gravel. Two hydraulic retention times (HRT of 24h and 18h were evaluated at steady-state conditions, resulting in organic loading rates (OLR of 0.032 and 0.018 kgDBO5m-3d-1 and biological organic loading rates (BOLR of 0,0015 and 0.001 kgDBO5kgSVT- 1d¹, respectively. The decrease in concentration of organic matter in the influent resulted an endogenous state of the biomass in the reactor. The expanded clay was the best support material for biofilm attachment.

  12. Integrated airlift bioreactor system for on-site small wastewater treatment.

    Science.gov (United States)

    Chen, S L; Li, F; Qiao, Y; Yang, H G; Ding, F X

    2005-01-01

    An integrated airlift bioreactor system was developed, which mainly consists of a multi-stage loop reactor and a gas-liquid-solid separation baffle and possesses dual functions as bioreactor and settler. This integrated system was used for on-site treatment of industrial glycol wastewater in lab-scale. The strategy of gradually increasing practical wastewater concentration while maintaining the co-substrate glucose wastewater concentration helped to accelerate the microbial acclimation process. Investigation of microbial acclimation, operation parameters evaluation and microbial observation has demonstrated the economical and technical feasibility of this integrated airlift bioreactor system for on-site small industrial wastewater treatment.

  13. Start-up and Acclimation of Anaerobic Baffled Reactor for Treatment of Diseased Animal Wastewater%ABR处理疫病动物废水的启动驯化研究

    Institute of Scientific and Technical Information of China (English)

    卢韬; 李平; 吴锦华; 王向德

    2013-01-01

    采用厌氧折流板反应器(ABR)处理疫病动物废水,对其启动驯化过程进行了研究.结果表明,在逐级提高进水浓度的条件下,历经58 d成功启动反应器,当进水COD平均为8 120mg/L时,出水COD平均为491 mg/L,对COD的去除率可达94%,总产气量达到21.15 L/d,平均产气率为0.55 m3/kgCOD,疫病动物废水在ABR中可以得到高效降解.在启动过程中,随着进水浓度的提升,挥发性脂肪酸(VFA)在第1格室中不断积累,但同时废水在厌氧生物降解过程中可以产生大量碱度,保证了反应器内的中性环境条件,反应器未发生酸败现象.启动成功后,反应器各格室内的活性污泥主要以颗粒形态存在,且颗粒粒径沿水流方向逐渐减小,呈现明显的分级现象.%The start-up and acclimation of anaerobic baffled reactor (ABR) for treatment of diseased animal wastewater were investigated. The results showed that the reactor started up successfully after 58 d by gradually increasing influent concentration. When the mean influent COD was 8 120 mg/L, the mean effluent COD was 491 mg/L, and 94% COD removal rate was achieved. Besides, total biogas production and mean biogas production rate were 21. 15 L/d and 0. 55 mVkgCOD, respectively. VFA accumulation mainly occurred in compartment 1 because of the increasing COD in the influent. Since a-bundant alkalinity was generated in the anaerobic process, reactor acidification was avoided. After the successful start-up, the activated sludge in each compartment was mainly granular sludge. The particle size of the granular sludge decreased along the flow direction, which presented an obvious classification phenomenon in the reactor.

  14. COMBINED ANAEROBIC-AEROBIC SYSTEM FOR TREATMENT OF TEXTILE WASTEWATER

    Directory of Open Access Journals (Sweden)

    MAHDI AHMED

    2007-04-01

    Full Text Available Textile manufacturing consumes a considerable amount of water in its manufacturing processes. The water is primarily utilized in the dyeing and finishing operations of the textile establishments. Considering both the volume generated and the effluent composition, the textile industry wastewater is rated as the most polluting among all industrial sectors. In this study a combined anaerobic-aerobic reactor was operated continuously for treatment of textile wastewater. Cosmo balls were used to function as growth media for microorganisms in anaerobic reactor. Effect of pH, dissolved oxygen, and organic changes in nitrification and denatrification process were investigated. The results indicated that over 84.62% ammonia nitrogen and about 98.9% volatile suspended solid (VSS removal efficiency could be obtained. Dissolved oxygen (DO, pH were shown to have only slight influences on the nitrification process; and for each 10% removal of nitrogen, only 3% of pH changes were achieved.

  15. 接种污泥对UASB处理1,4-丁二醇生产废水的影响%Effect of Inoculated Sludge on Treatment of Wastewater from 1,4-butanediol Production in UASB Reactor

    Institute of Scientific and Technical Information of China (English)

    郑陈华; 魏宏斌; 邹平; 陈良才; 操起顺

    2013-01-01

    Three upflow anaerobic sludge bed ( UASB) reactors inoculated with granular sludge, flocculent sludge and a combination of both types of sludge were used for treatment of wastewater from 1 ,4-butanediol production. The influence of inoculated sludge on the treatment efficiency was investigated. The results showed that the reactor inoculated with granular sludge achieved the highest treatment efficiency. The inoculation of granular sludge could improve the maximum COD volume loading rate, anti-load capacity and biogas production as well as reduce inhibition of high VFA to microbial activity. The maximum COD volume loading rates of three reactors were 4. 70 kg/( m3·d) , 3. 25 kg/( m3·d) and 4.50 kg/(m3·d) respectively when the COD removal rate was more than 70%.%采用UASB反应器处理1,4-丁二醇生产废水时,分别接种颗粒污泥、絮状污泥及两者的混合污泥,研究不同接种污泥对处理效果的影响.结果表明,接种颗粒污泥的反应器处理效果最好,但接种混合污泥时亦能取得较好的驯化及处理效果;接种颗粒污泥可以提高系统的最大COD容积负荷、抗污染负荷冲击能力及产气量,同时可降低挥发性脂肪酸的积累对微生物活性的抑制;在保持COD去除率>70%的条件下,3组反应器的最大COD容积负荷分别为4.70、3.25和4.50 kg/(m3·d).

  16. Sequential anaerobic-adsorption treatment of chemical industry wastewater.

    Science.gov (United States)

    Daga, Kailash; Pallavi, V; Patel, Dharmendra

    2011-10-01

    Treatment technologies needed to reduce the pollutant load of chemical industry effluent have been found to involve exorbitantly high costs. The present investigation aimed to treat the wastewater from chemical industry by cost effective sequential anaerobic-adsorption treatment. Wastewaters from chemical industry that are rich in biodegradable organics are tested for anaerobic treatability. The efficiency of anaerobic reactor is relatively lower 79.3%, and therefore post treatment of effluent was done by adsorption using Poly vinyl alcohol coated Datura stramonium (PVAC-DS) as an adsorbent. An overall COD removal of 93.8 % was achieved after sequential Anaerobic-Adsorption treatment, which lead to a better final effluent and a more economical treatment system.

  17. Performance of wastewater treatment plants in Jordan and suitability ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-08-04

    Aug 4, 2008 ... African Journal of Biotechnology Vol. 7 (15), pp. ... Key words: Wastewater, treatment plants, water reuse, wastewater characteristics, wastewater treatment,. Jordan. ... separate), industrial waste entering the sewer, type of.

  18. MANUAL - CONSTRUCTED WETLANDS TREATMENT OF MUNICIPAL WASTEWATERS

    Science.gov (United States)

    Constructed wetlands are man-made wastewater treatment systems. They usually have one or more cells less than 1 meter deep and are planted with aquatic greenery. Water outlet structures control the flow of wastewater through the system to keep detention times and water levels at ...

  19. Successional development of biofilms in moving bed biofilm reactor (MBBR) systems treating municipal wastewater.

    Science.gov (United States)

    Biswas, Kristi; Taylor, Michael W; Turner, Susan J

    2014-02-01

    Biofilm-based technologies, such as moving bed biofilm reactor (MBBR) systems, are widely used to treat wastewater. Biofilm development is important for MBBR systems as much of the microbial biomass is retained within reactors as biofilm on suspended carriers. Little is known about this process of biofilm development and the microorganisms upon which MBBRs rely. We documented successional changes in microbial communities as biofilms established in two full-scale MBBR systems treating municipal wastewater over two seasons. 16S rRNA gene-targeted pyrosequencing and clone libraries were used to describe microbial communities. These data indicate a successional process that commences with the establishment of an aerobic community dominated by Gammaproteobacteria (up to 52 % of sequences). Over time, this community shifts towards dominance by putatively anaerobic organisms including Deltaproteobacteria and Clostridiales. Significant differences were observed between the two wastewater treatment plants (WWTPs), mostly due to a large number of sequences (up to 55 %) representing Epsilonproteobacteria (mostly Arcobacter) at one site. Archaea in young biofilms included several lineages of Euryarchaeota and Crenarchaeota. In contrast, the mature biofilm consisted entirely of Methanosarcinaceae (Euryarchaeota). This study provides new insights into the community structure of developing biofilms at full-scale WWTPs and provides the basis for optimizing MBBR start-up and operational parameters.

  20. 一体化膜生物膜反应器处理农村生活污水试验研究%Treatment of Rural Domestic Wastewater Using an Integrated Membrane Biofilm Reactor

    Institute of Scientific and Technical Information of China (English)

    杨小俊; 贾海涛; 蔡亚君; 蔡映杰

    2011-01-01

    An integrated membrane biofilm reactor was applied to intermittently treat rural domestic wastewater. The results suggested that the method that adopted the millipore filtration had strong impact resistance on load copacities, and could be highly automated operation;under the conditions of anaerobic treatment for 1.5 h. aeration and discharge treatment for 4 h. DO in reactor 3~4 mg/L and fill ratio 0.33. the average values of CODcr. NH3-N. TN. TP and turbidity in effluent were 38.00 mg/L, 2.82 mg/L, 10.50 mg/L, 0.39 mg/L and 1.55 NTU, respectively; and the average removal rates were 79.1%,83.5%,58.0%,81.3% and 98.6%, respectively. The reactor formed lots of microbial populations in high trophic level. the food chain was long and overlapped that presented a network structure, it guaranteed the stable treatmeat effects and strong impact resistance on load capacities.%针对一种一体化膜生物膜反应器,进行了以间歇方式运行处理农村生活污水的试验研究.结果表明,采用微滤膜出水,该处理方式抗冲击负荷能力强,且可实现自动化运行;当厌氧反应时长1.5 h、好氧曝气及出水时间共4 h、好氧阶段溶解氧3~4mg/L、充水比0.33时,反应器中CODcr、氨氮、总氮、总磷、浊度的出水平均值分别为38.00 mg/L、2.82 mg/L、10.50 mg/L、0.39 mg/L和1.55NTU,平均去除率分别为79.1%、83.5%、58.0%、81.3%和98.6%;反应器中形成大量高端营养级水平微生物种群,食物链长且相互交叉,呈明显的网状结构(食物网),能保证系统稳定的污水处理效果及较强的抗冲击负荷能力.

  1. Comparison between treatment of kitchen-sink wastewater and a mixture of kitchen-sink and washing-machine wastewaters.

    Science.gov (United States)

    Huelgas, A; Nakajima, M; Nagata, H; Funamizu, N

    2009-01-01

    In this paper, a submerged membrane bioreactor was used to treat 'higher-load' grey water: (a) kitchen-sink wastewater only, and (b) a mixture of kitchen-sink wastewater and washing-machine wastewater. For each type of wastewater, three systems operated at different hydraulic retention times (HRTs) were investigated. In the mixture of kitchen-sink wastewater and washing-machine wastewater, the reactor with a short HRT of four hours was stopped due to foaming. It has been observed that for both types of wastewater, an HRT of eight hours or longer can be used for the treatment. However, it has been observed that a higher COD in the permeate of the mixture can be obtained compared with that of the kitchen-sink wastewater only. This indicated that washing-machine wastewater has some component that is not easily biodegradable. The total linear akylbenzene sulfonate (LAS) removal was > 99% even at a concentration of 10-23 mg 1(-1).

  2. Effect of organic load on decolourization of textile wastewater containing acid dyes in upflow anaerobic sludge blanket reactor

    Energy Technology Data Exchange (ETDEWEB)

    Wijetunga, Somasiri, E-mail: swije2001@yahoo.com [Laboratory of Environmental Biotechnology, School of Biotechnology, Southern Yangtze University, 170 Huihe Road, Wuxi 214036 (China); Li Xiufen [Laboratory of Environmental Biotechnology, School of Biotechnology, Southern Yangtze University, 170 Huihe Road, Wuxi 214036 (China); Jian Chen, E-mail: jchen@sytu.edu.cn [Laboratory of Environmental Biotechnology, School of Biotechnology, Southern Yangtze University, 170 Huihe Road, Wuxi 214036 (China)

    2010-05-15

    Textile wastewater (TW) is one of the most hazardous wastewater for the environment when discharged without proper treatment. Biological treatment technologies have shown encouraging results over the treatment of recalcitrant compounds containing wastewaters. Upflow anaerobic sludge blanket reactor (UASB) was evaluated in terms of colour and the reduction of chemical oxygen demand (COD) with different organic loads using TW containing dyes belonging to different chemical groups. The study was performed using six different dye concentrations (10 mg/L, 25 mg/L, 50 mg/L, 100 mg/L, 150 mg/L, 300 mg/L) with three COD levels ({approx}1000 mg/L, {approx}2000 mg/L, {approx}3000 mg/L). Decolourization, COD removal and reactor stability were monitored. Over 85% of colour removal was observed with all dye concentrations with three organic loads. Acid Red 131 and Acid Yellow 79 were decolourized through biodegradation while Acid Blue 204 was decolourized due to adsorption onto anaerobic granules. COD removal was high in all dye concentrations, regardless of co-substrate levels. The reactor did not show any instability during the study. The activity of granules was not affected by the dyes. Methanothrix like bacteria were the dominant group in granules before introducing TW, however, they were reduced and cocci-shape microorganism increased after the treatment of textile wastewater.

  3. Wastewater treatment by oxidation with ozone.

    OpenAIRE

    Edna de Almeida; Márcia Regina Assalin; Maria Aparecida Rosa; Nelson Durán

    2004-01-01

    A large variety of organic and inorganic compounds may be found in wastewater which can contribute to environmental contamination. Oxidation processes with ozone (O3; O3/UV; O3/H2O2; O3/TiO2; O3/Mn+2) and the use of ozone in the pre- or post-treatment of wastewater combined with biological processes has been extensively studied for the treatment of effluents. The aim of this work was to evaluate the potential of the ozonation process in the treatment of several industrial wastewaters, namely ...

  4. Efficient anaerobic treatment of synthetic textile wastewater in a UASB reactor with granular sludge enriched with humic acids supported on alumina nanoparticles.

    Science.gov (United States)

    Cervantes, Francisco J; Gómez, Rafael; Alvarez, Luis H; Martinez, Claudia M; Hernandez-Montoya, Virginia

    2015-07-01

    A novel technique to co-immobilize humus-reducing microorganisms and humic substances (HS), supported on γ-Al2O3 nanoparticles (NP), by a granulation process in an upflow anaerobic sludge bed (UASB) reactor is reported in the present work. Larger granules (predominantly between 1 and 1.7 mm) were produced using NP coated with HS compared to those obtained with uncoated NP (mostly between 0.25 and 0.5 mm). The HS-enriched granular biomass was then tested for its capacity to achieve the reductive decolorization of the recalcitrant azo dye, reactive red 2 (RR2), in the same UASB reactor operated with a hydraulic residence time of 12 h and with glucose as electron donor. HS-enriched granules achieved higher decolorization and COD removal efficiencies, as compared to the control reactor operated in the absence of HS, in long term operation and applying high concentrations of RR2 (40-400 mg/L). This co-immobilizing technique could be attractive for its application in UASB reactors for the reductive biotransformation of several contaminants, such as nitroaromatics, poly-halogenated compounds, metalloids, among others.

  5. Paper 1: Wastewater characterisation

    African Journals Online (AJOL)

    drinie

    the suitability of the prefermented wastewater for downstream biological nutrient removal processes. The raw ... in the secondary treatment processes (BNRAS reactor), without ..... Wastewater and Activated Sludge from European Municipal.

  6. Municipal-wastewater treatment using upflow-anaerobic filters.

    Science.gov (United States)

    Manariotis, loannis D; Grigoropoulos, Sotirios G

    2006-03-01

    Three 12.5-L upflow-anaerobic filters (AF), with ceramic-saddle, plastic-ring, and crushed-stone packing, were used to evaluate the sustained treatment of municipal wastewater. The reactors were initially fed dogfood-fortified wastewater and then raw municipal wastewater, and operated at 25.4 degrees C (32 months) and 15.5 degrees C (2 months). During 23 months, the AF units treated municipal wastewater (mean chemical oxygen demand [COD] 442 mg/L and total suspended solids [TSS] 247 mg/L), the hydraulic retention time (HRT) ranged from 3.1 to 0.30 d (empty bed), and the organic loading rate ranged from 0.115 to 1.82 kg COD/m3d. At the higher temperature and an HRT (void volume) of 1.0 d, COD and TSS removals ranged from 74 to 79% and 95 to 96%, respectively; however, efficiencies declined substantially at HRT values less than 0.4 d. Reactor performance, under the same hydraulic and organic loadings, deteriorated with time and was adversely affected by lower temperature.

  7. The developments of anaerobic baffled reactor for wastewater ...

    African Journals Online (AJOL)

    STORAGESEVER

    2010-03-15

    Mar 15, 2010 ... 0.34. Bodkhe (2009). Complex wastewater ..... hydrolysis of complex wastewater into soluble substrates; .... Kinetic analysis of palm oil mill wastewater ... Abdullah LG, Idris A, Ahmadun FR, Baharin BS, Emby F, Megat MNMJ,.

  8. Combined photo-Fenton-SBR process for antibiotic wastewater treatment

    Energy Technology Data Exchange (ETDEWEB)

    Elmolla, Emad S., E-mail: em_civil@yahoo.com [Department of Civil Engineering, Faculty of Engineering, Al-Azhar University, Cairo (Egypt); Chaudhuri, Malay [Department of Civil Engineering, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750 Tronoh, Perak (Malaysia)

    2011-09-15

    Highlights: {center_dot} The work focused on hazardous wastewater (antibiotic wastewater) treatment. {center_dot} Complete degradation of the antibiotics achieved by the treatment process. {center_dot} The SBR performance was found to be very sensitive to BOD{sub 5}/COD ratio below 0.40. {center_dot} Combined photo-Fenton-SBR process is a feasible treatment process for the antibiotic wastewater. - Abstract: The study examined combined photo-Fenton-SBR treatment of an antibiotic wastewater containing amoxicillin and cloxacillin. Optimum H{sub 2}O{sub 2}/COD and H{sub 2}O{sub 2}/Fe{sup 2+} molar ratio of the photo-Fenton pretreatment were observed to be 2.5 and 20, respectively. Complete degradation of the antibiotics occurred in one min. The sequencing batch reactor (SBR) was operated at different hydraulic retention times (HRTs) with the wastewater treated under different photo-Fenton operating conditions (H{sub 2}O{sub 2}/COD and H{sub 2}O{sub 2}/Fe{sup 2+} molar ratio). The SBR performance was found to be very sensitive to BOD{sub 5}/COD ratio of the photo-Fenton treated wastewater. Statistical analysis of the results indicated that it was possible to reduce the Fe{sup 2+} dose and increase the irradiation time of the photo-Fenton pretreatment. The best operating conditions of the combined photo-Fenton-SBR treatment were observed to be H{sub 2}O{sub 2}/COD molar ratio 2, H{sub 2}O{sub 2}/Fe{sup 2+} molar ratio 150, irradiation time 90 min and HRT of 12 h. Under the best operating conditions, 89% removal of sCOD with complete nitrification was achieved and the SBR effluent met the discharge standards.

  9. Comparative study on membrane fouling between membrane-coupled moving bed biofilm reactor and conventional membrane bioreactor for municipal wastewater treatment.

    Science.gov (United States)

    Yang, W; Syed, W; Zhou, H

    2014-01-01

    This study compared the performance between membrane-coupled moving bed biofilm reactor (M-MBBR) and a conventional membrane bioreactor (MBR) in parallel. Extensive tests were conducted in three pilot-scale experimental units over 6 months. Emphasis was placed on the factors that would affect the performance of membrane filtration. The results showed that the concentrations of soluble microbial product (SMP), colloidal total organic carbon and transparent exopolymer particles in the M-MBBR systems were not significantly different from those in the control MBR system. However, the fouling rates were much higher in the M-MBBR systems as compared to the conventional MBR systems. This indicates membrane fouling potential was related not only to the concentration of SMP, but also to their sources and characteristics. The addition of polyaluminum chloride could reduce the fouling rate of the moving bed biofilm reactor unit by 56.4-84.5% at various membrane fluxes.

  10. Water/Wastewater Treatment Plant Operator Qualifications.

    Science.gov (United States)

    Water and Sewage Works, 1979

    1979-01-01

    This article summarizes in tabular form the U.S. and Canadian programs for classification of water and wastewater treatment plant personnel. Included are main characteristics of the programs, educational and experience requirements, and indications of requirement substitutions. (CS)

  11. Gravity separation for oil wastewater treatment

    OpenAIRE

    Golomeova, Mirjana; Zendelska, Afrodita; Krstev, Boris; Krstev, Aleksandar

    2010-01-01

    In this paper, the applications of gravity separation for oil wastewater treatment are presented. Described is operation on conventional gravity separation and parallel plate separation. Key words: gravity separation, oil, conventional gravity separation, parallel plate separation.

  12. Gravity separation for oil wastewater treatment

    OpenAIRE

    Golomeova, Mirjana; Zendelska, Afrodita; Krstev, Boris; Krstev, Aleksandar

    2010-01-01

    In this paper, the applications of gravity separation for oil wastewater treatment are presented. Described is operation on conventional gravity separation and parallel plate separation. Key words: gravity separation, oil, conventional gravity separation, parallel plate separation.

  13. Selection of technologies for municipal wastewater treatment

    Directory of Open Access Journals (Sweden)

    Juan Pablo Rodríguez Miranda

    2015-11-01

    Full Text Available In water environmental planning in watersheds should contain aspects for the decontamination of receiving water body, therefore the selection of the treatment plants municipal wastewater in developing countries, you should consider aspects of the typical composition raw wastewater pollutant removal efficiency by technology, performance indicators for technology, environmental aspects of localization and spatial localization strategy. This methodology is built on the basis of technical, economic and environmental attributes, such as a tool for decision making future investments in treatment plants municipal wastewater with multidisciplinary elements.

  14. USBF-system of biological wastewater treatment; Elsistema USBF en la depuracion biologica de aguas residuales

    Energy Technology Data Exchange (ETDEWEB)

    Ampudia Gutierrez, J.

    2003-07-01

    An advanced system of biological wastewater treatment, has been developed by the company Depuralia. This system brings up a technological innovation, which has been awarded with several international awards. The wastewater treatment, occurs in an activated sludge reactor of extended aeration with a very low mass loading, with a nitrification-denitrification process, and water separation-clarification by upflow sludge blanket-filtration. The arrangement of a compact biological reactor enables complex wastewater treatment. High efficiency of the separation through sludge filtration provides functionality of the equipment with high concentration of activated sludge, with less implementation surface and volume. The elements of the biological reactor are described, the advantages are enumerated, and the results obtained in several accomplishments are shown; in the industrial as well as in the urban water treatment plants. (Author) 9 refs.

  15. 基于含油废水处理的电催化膜反应器优化设计及性能研究%Optimization of an electro-catalytic membrane reactor for oily wastewater treatment

    Institute of Scientific and Technical Information of China (English)

    张秀伟; 王虹; 杨阳; 李建新; 王同华

    2012-01-01

    以负载纳米TiO2的电催化膜为阳极,辅助电极为阴极,构成电催化膜反应器用于含油废水处理.考察了电极间距、电解质浓度、电流密度、空时速率、pH和温度对电催化膜反应器降解效果即含油废水化学需氧量(COD)去除率的影响.根据单因素实验分析结果,采用响应面法对电极间距、电解质浓度、pH和温度四个参数进行优化,得出最佳参数为:电极间距43.1mm,电解质浓度14.3 g/L,pH=6.3,温度32.5℃.在电流密度0.312mA/cm2,空时速率15.8 h-1的条件下,电催化膜反应器处理200mg/L含油废水COD去除率为97.54%,能耗为0.75 kWh/m3.%A electro-catalytic membrane was used as an anode, and stainless steel tube as a cathode, and both electro-catalytic membrane and stainless steel tube were connected by a DC regulated power supply to constitute an electro-catalytic membrane reactor (ECMR), which was employed to treat the oily water. This research investigated the influence of the rector' s parameters such as electrode spacing, the concentration of electrolyte, current density, liquid hourly space velocity, solution pH and temperature on the removal rate of oily wastewater chemical oxygen demand (COD). The electrode spacing, the concentration of electrolyte, the solution pH and temperature were investigated through response surface method according to the single factor analysis of experimental results. Results showed the optimum conditions for the membrane reactor were the electrode spacing of 43. 1 mm, the concentration of electrolyte of 14. 3 g/L, pH of 6. 3 and temperature of 32. 5 ℃. It was also found that the COD removal rate for the ECMR to treat 200 mg/L oily wastewater was 97. 54% at current density of 0. 312 mA/cm2 and liquid hourly space velocity of 15. 8 h-1. It was close to the predicted removal rate of 98. 75%. From the model the energy consumption was 0. 75 kWh / m3 and 3. 30 kWh/kg(COD) during the treatment of 200 mg/L oily wastewater.

  16. Biological flocculation treatment on distillery wastewater and recirculation of wastewater.

    Science.gov (United States)

    Zhang, Wen; Xiong, Rongchun; Wei, Gang

    2009-12-30

    In the present study, a wastewater treatment system for the ethanol fermentation industry was developed by recycling distillery wastewater. The waste was able to be recycled for the next fermentation after being treated with bio-flocculation process. The bio-flocculation process contains three steps: screening, treatment with polyaspartic acid and filtration. When the filtrate from this process was recycled, the average ethanol production yield was very close to that in the conventional process using tap water. In contrast, the recycle of wastewater without flocculation and with chemical flocculation showed negative effects on ethanol yield as recycling was repeated. This new process was confirmed to have stable operation over ten recycles. Hazardous materials influencing distillery wastewater recycles on fermentation were also considered. It was found that the content of suspended solids (SS), volatile acid and Fe ions inhibited fermentation and resulted in a decreased ethanol yield. Bio-flocculation was shown to be an effective way to diminish the content of inhibitory compounds drastically when the waste was recirculated.

  17. Fluid dynamic analysis of a continuous stirred tank reactor for technical optimization of wastewater digestion.

    Science.gov (United States)

    Hurtado, F J; Kaiser, A S; Zamora, B

    2015-03-15

    Continuous stirred tank reactors (CSTR) are widely used in wastewater treatment plants to reduce the organic matter and microorganism present in sludge by anaerobic digestion. The present study carries out a numerical analysis of the fluid dynamic behaviour of a CSTR in order to optimize the process energetically. The characterization of the sludge flow inside the digester tank, the residence time distribution and the active volume of the reactor under different criteria are determined. The effects of design and power of the mixing system on the active volume of the CSTR are analyzed. The numerical model is solved under non-steady conditions by examining the evolution of the flow during the stop and restart of the mixing system. An intermittent regime of the mixing system, which kept the active volume between 94% and 99%, is achieved. The results obtained can lead to the eventual energy optimization of the mixing system of the CSTR.

  18. Degradation of Phenolic Compounds in Coal Gasification Wastewater by Biofilm Reactor with Isolated Klebsiella sp

    Institute of Scientific and Technical Information of China (English)

    Fang Fang; HongJun Han; ChunYan Xu; Qian Zhao; LingHan Zhang

    2014-01-01

    This study was conducted to evaluate the degradation of phenolic compounds by one strain isolated from coal gasification wastewater ( CGW ) . 16S rRNA gene sequences homology and phylogenetic analysis showed that the isolate is belonged to the genus Klebsiella sp. The effect of different phenolic compounds on the isolate was investigated by determining OD600 and phenoloxidase activity, of which the results showed that the isolate can utilize phenol, 4-methyl phenol, 3, 5-dimethyl phenol and resorcinol as carbon resources. The biofilm reactor ( formed by the isolate) can resist the influent concentration of phenolic compounds as high as 750 mg/L when fed with synthetic CGW and incubated at optimum conditions. The capacity of improving the biodegradability of CGW through degrading phenolic compounds was testified with fed the biofilm reactor with real CGW. Thus, it might be an effective strain for bioaugmentation of CGW treatment.

  19. Comparative study of phenol and cyanide containing wastewater in CSTR and SBR activated sludge reactors.

    Science.gov (United States)

    Papadimitriou, C A; Samaras, P; Sakellaropoulos, G P

    2009-01-01

    The objectives of this work were the examination of the performance of two bench scale activated sludge systems, a conventional Continuous Stirring Tank Reactor (CSTR) and a Sequential Batch Reactor (SBR), for the treatment of wastewaters containing phenol and cyanides and the assessment of the toxicity reduction potential by bioassays. The operation of the reactors was monitored by physicochemical analyses, while detoxification potential of the systems was monitored by two bioassays, the marine photobacterium Vibrio fischeri and the ciliate protozoan Tetrahymena thermophila. The reactors influent was highly toxic to both organisms, while activated sludge treatment resulted in the reduction of toxicity of the influent. An increased toxicity removal was observed in the SBR; however CSTR system presented a lower ability for toxicity reduction of influent. The performance of both systems was enhanced by the addition of powdered activated carbon in the aeration tank; activated carbon upgraded the performance of the systems due to the simultaneous biological removal of pollutants and to carbon adsorption process; almost negligible values of phenol and cyanides were measured in the effluents, while further toxicity reduction was observed in both systems.

  20. Simulation study supporting wastewater treatment plant upgrading.

    Science.gov (United States)

    Hvala, N; Vrecko, D; Burica, O; Strazar, M; Levstek, M

    2002-01-01

    The paper presents a study where upgrading of an existing wastewater treatment plant was supported by simulation. The aim of the work was to decide between two technologies to improve nitrogen removal: a conventional activated sludge process (ASP) and a moving bed biofilm reactor (MBBR). To perform simulations, the mathematical models of both processes were designed. The models were calibrated based on data from ASP and MBBR pilot plants operating in parallel on the existing plant. Only two kinetic parameters needed to be adjusted to represent the real plant behaviour. Steady-state analyses have shown a similar efficiency of both processes in relation to carbon removal, but improved performance of MBBR in relation to nitrogen removal. Better performance of MBBR can be expected especially at low temperatures. Simulations have not confirmed the expected less volume required for the MBBR process. Finally, the MBBR was chosen for plant upgrading. The developed process model will be further used to evaluate the final plant configuration and to optimise the plant operating parameters.

  1. Two-step treatment of harmful industrial wastewater: an analysis of microbial reactor with integrated membrane retention for benzene and toluene removal

    Directory of Open Access Journals (Sweden)

    Trusek-Holownia Anna

    2015-12-01

    Full Text Available Standards for highly toxic and carcinogenic pollutants impose strict guidelines, requiring values close to zero, regarding the degradation of such pollutants in industrial streams. In many cases, classic bioremoval processes fail. Therefore, we proposed a stream leaving the microbial membrane bioreactor (MBR that is directed to an additional membrane separation mode (NF/RO. Under certain conditions, the integrated process not only benefits the environment but may also increase the profitability of the bioreactor operation. An appropriate model was developed and tested in which the bioremoval of benzene and toluene by Pseudomonas fluorescens was used as an example. This paper presents equations for selecting the operation parameters of the integrated system to achieve the expected degree of industrial wastewater purification.

  2. Treatment of azo dye-containing wastewater by a Fenton-like process in a continuous packed-bed reactor filled with activated carbon

    Energy Technology Data Exchange (ETDEWEB)

    Mesquita, Isabel; Matos, Luis C. [Chemical Engineering Department, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto (Portugal); Duarte, Filipa [Chemical Engineering Department, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto (Portugal); LEPAE - Laboratory for Process, Environmental and Energy Engineering, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Porto (Portugal); Maldonado-Hodar, F.J. [Department of Inorganic Chemistry, Faculty of Sciences, University of Granada, Av. Fuentenueva, 18071 Granada (Spain); Mendes, Adelio [Chemical Engineering Department, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto (Portugal); LEPAE - Laboratory for Process, Environmental and Energy Engineering, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Porto (Portugal); Madeira, Luis M., E-mail: mmadeira@fe.up.pt [Chemical Engineering Department, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto (Portugal); LEPAE - Laboratory for Process, Environmental and Energy Engineering, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Porto (Portugal)

    2012-10-30

    Highlights: Black-Right-Pointing-Pointer Oxidation with the Fenton's reagent was carried out in a packed-bed reactor. Black-Right-Pointing-Pointer The packed-bed was filled with iron-impregnated activated carbon. Black-Right-Pointing-Pointer The increment of temperature increases the Chicago Sky Blue removal and mineralization. Black-Right-Pointing-Pointer The values of iron leaching were below 0.4 ppm in the outlet effluent. Black-Right-Pointing-Pointer It was possible to reach a dye conversion of 88% in steady-state. - Abstract: In this work, oxidation with a Fenton-like process of a dye solution was carried out in a packed-bed reactor. Activated carbon Norit RX 3 Extra was impregnated with ferrous sulfate and used as catalyst (7 wt.% of iron). The effect of the main operating conditions in the Chicago Sky Blue (CSB) degradation was analyzed. It was found that the increase in temperature leads to a higher removal of the dye and an increased mineralization. However, it also increases the iron leaching, but the values observed were below 0.4 ppm (thus, far below European Union limits). It was possible to reach, at steady-state, a dye conversion of 88%, with a total organic carbon (TOC) removal of ca. 47%, being the reactor operated at 50 Degree-Sign C, pH 3, W{sub cat}/Q = 4.1 g min mL{sup -1} (W{sub cat} is the mass of catalyst and Q the total feed flow rate) and a H{sub 2}O{sub 2} feed concentration of 2.25 mM (for a CSB feed concentration of 0.012 mM). The same performance was reached in three consecutive cycles.

  3. Intermittent Aeration in Biological Treatment of Wastewater

    Directory of Open Access Journals (Sweden)

    H. Doan

    2009-01-01

    Full Text Available Problem statement: E-coating process is widely used to provide a protective coating layer on metal parts in the automotive and metal finishing industry. The wastewater from the coating process contains organic compounds that are used in the cleaning, pretreatment and coating steps. Organic pollutants can be removed biologically. In the aerobic biological treatment, water aeration accounts for a significant portion of the total operating cost of the treatment process. Intermittent aeration is thus of benefit since it would reduce the energy consumption in the wastewater treatment. In the present study, wastewater from an electro-coating process was treated biologically using a packed column as an aerator where the wastewater was aerated by a countercurrent air flow. The objective was to obtain an optimum aeration cycle. Approach: Intermittent aeration time was varied at different preset cycles. An operational optimum of the aeration time (or air-water contacting time in the column was determined from the BOD5 removal after a certain treatment period. For continuous aeration of the wastewater, the air-liquid contacting time in the column was 52 min for 24 h of treatment. A unit energy consumption for pumping liquid and air, which was defined as the energy consumption per percent BOD5 removed, was used as a criterion to determine the optimum contacting time. Results: Optimum air-liquid contacting times were found to be about 38, 26 and 22 min for the treatment times of 24, 48 and 72 h, consecutively. This indicates that 27-58% saving on the unit energy consumption can be achieved using intermittent aeration of the wastewater. On the basis of the overall BOD5 removal, 17% and 23% savings in energy were observed with the intermittent aeration as compared to the continuous aeration of the wastewater for 48 and 72 h. Conclusion: The results obtained indicate that an appropriate intermittent aeration cycle can bring about a substantial energy saving

  4. A full-scale UASB reactor for treatment of pig and cattle slaughterhouse wastewater with a high oil and grease content

    Directory of Open Access Journals (Sweden)

    L. A. S. Miranda

    2005-12-01

    Full Text Available This paper discusses the performance of an 800m³ full-scale UASB reactor in treating meat-packing plant and slaughterhouse effluents containing high concentrations of oil and grease (O&G (413-645 mg/L, resulting in a COD/O&G ratio of 26-32%. Those macromolecules were considered responsible for the unbalance of the system resulting in a total washout of the biomass. The removal of O&G from the influent using a physicochemical system (coagulation-flocculation improved the physical characteristics of the anaerobic sludge, controlling the biomass washout. Reactor performance was significantly improved when the COD/O&G ratio influent was maintained in the 10%. The COD and O&G removal rates obtained after implantation of the physicochemical system were 70-92% and 27-58%, respectively. The specific methanogenic activity (SMA of the biomass shows towards a tendency stabilisation and adaptation to the substrate influent. Pretreatment of the influent allowed the maximum organic load to be increased (1.46 to 2.43 Kg COD/m³.d and improved the quality of the effluent.

  5. Coke dust enhances coke plant wastewater treatment.

    Science.gov (United States)

    Burmistrz, Piotr; Rozwadowski, Andrzej; Burmistrz, Michał; Karcz, Aleksander

    2014-12-01

    Coke plant wastewater contain many toxic pollutants. Despite physico-chemical and biological treatment this specific type of wastewater has a significant impact on environment and human health. This article presents results of research on industrial adsorptive coke plant wastewater treatment. As a sorbent the coke dust, dozen times less expensive than pulverized activated carbon, was used. Treatment was conducted in three scenarios: adsorptive after full treatment with coke dust at 15 g L(-1), biological treatment enhanced with coke dust at 0.3-0.5 g L(-1) and addition of coke dust at 0.3 g L(-1) prior to the biological treatment. The enhanced biological treatment proved the most effective. It allowed additional removal of 147-178 mg COD kg(-1) of coke dust. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Treatment of Fischer-Tropsch wastewater by expanded granular sludge bed(EGSB) reactor%EGSB反应器处理煤制油费托合成废水的研究

    Institute of Scientific and Technical Information of China (English)

    伍金伟; 汪诚文; 于海

    2015-01-01

    开展了膨胀颗粒污泥床(EGSB)反应器处理煤制油费托合成废水的试验研究.启动过程先以费托合成废水稀释水样作为反应器进水,并逐步降低稀释比,直至以费托合成原水作为进水.试验结果表明,反应体系pH和容积负荷对EGSB反应器启动的影响较大,启动过程中应控制反应器内pH为7.0~8.5,容积负荷在29 kg/(m3·d)以内.%The expanded granular sludge bed(EGSB) reactor has been used for treating Fischer-Tropsch(F-T) waste-water.In the start-up process,the F-T wastewater diluted water samples should firstly be used as the influent of the reactor,and the dilution ratio should be lowered gradually,till F-T wastewater is used as influent.The experimental results show that the pH and volume load of the reactor system have rather serious in fluences on the start-up of EGSB reactor.In the start-up process,the pH in the reactor should be controlled as 7.0-8.5,and the volume load should be controlled as lower than 29 kg/(m3·d).

  7. Tratamento de águas residuárias de suinocultura em reatores anaeróbios de fluxo ascendente com manta de lodo (uasb em dois estágios seguidos de reator operado em batelada sequencial (RBS Swine wastewater treatment in upflow anaerobic sludge blanket reactor (uasb in two-stages followed by sequencing batch reactor (SBR

    Directory of Open Access Journals (Sweden)

    Roberto A. de Oliveira

    2011-02-01

    Full Text Available Neste trabalho, avaliou-se o desempenho de dois reatores anaeróbios de fluxo ascendente com manta de lodo (UASB, em série, seguidos de um reator operado em batelada sequencial (RBS com etapa aeróbia, no tratamento de águas residuárias de suinocultura. O sistema de tratamento anaeróbio em dois estágios foi alimentado com águas residuárias de suinocultura com concentrações médias de sólidos suspensos totais (SST, de 4.427 a 16.425 mg L-1 . As cargas orgânicas volumétricas (COV aplicadas no reator UASB do primeiro estágio variaram de 14,8 a 24,4 g DQO (L d-1. Os tempos de detenção hidráulica (TDH foram de 28 e 11 h e de 14 e 6 h no primeiro e segundo reatores UASB, respectivamente. O RBS foi operado com 1 e 2 ciclos diários de alimentação e com concentrações de SST do afluente, de 1.348 a 2.036 mg L-1 . As maiores eficiências de remoção de DQOtotal ocorreram com os maiores TDH, com valores médios de 78 a 88% nos reatores UASB, em dois estágios. Com o tratamento do efluente dos reatores UASB no RBS, as eficiências médias de remoção aumentaram para 93 a 97%, 92 a 98%, 57 a 78%, 71 a 88% e 68 a 85% para a DQO total, SST, P-total, nitrogênio total Kjeldahl (NTK e nitrogênio total (NT, respectivamente. Para os coliformes termotolerantes, as remoções foram de 93,80 a 99,99%.This work aimed to evaluate the performance of two aerobic-anaerobic combination system of upflow anaerobic sludge blanket digestion reactor (UASB in line followed by an aerobic sequencing bath reactor (SBR, used in swine wastewater treatment. The UASB system was fed with swine wastewater containing from 4427 to 16425 mg L-1 of total suspended solids (TSS. The treatment system was evaluated using organic loading (OLR of 14,8 to 24,4 g total COD (L d-1 in the first UASB reactor. The hydraulic detention times (HDT were of 28 and 11 h, and 14 and 6 h, in the first and second UASB reactor, respectively. The SBR was operated with one and two cycles

  8. The sequencing batch reactor as an excellent configuration to treat wastewater from the petrochemical industry.

    Science.gov (United States)

    Caluwé, Michel; Daens, Dominique; Blust, Ronny; Geuens, Luc; Dries, Jan

    2017-02-01

    In the present study, the influence of a changing feeding pattern from continuous to pulse feeding on the characteristics of activated sludge was investigated with a wastewater from the petrochemical industry from the harbour of Antwerp. Continuous seed sludge, adapted to the industrial wastewater, was used to start up three laboratory-scale sequencing batch reactors. After an adaptation period from the shift to pulse feeding, the effect of an increasing organic loading rate (OLR) and volume exchange ratio (VER) were investigated one after another. Remarkable changes of the specific oxygen uptake rate (sOUR), microscopic structure, sludge volume index (SVI), SVI30/SVI5 ratio, and settling rate were observed during adaptation. sOUR increased two to five times and treatment time decreased 43.9% in 15 days. Stabilization of the SVI occurred after a period of 20 days and improved significantly from 300 mL·g(-1) to 80 mL·g(-1). Triplication of the OLR and VER had no negative influence on sludge settling and effluent quality. Adaptation time of the microorganisms to a new feeding pattern, OLR and VER was relatively short and sludge characteristics related to aerobic granular sludge were obtained. This study indicates significant potential of the batch activated sludge system for the treatment of this industrial petrochemical wastewater.

  9. Reduction in toxicity of wastewater from three wastewater treatment plants to alga (Scenedesmus obliquus) in northeast China.

    Science.gov (United States)

    Zhang, Ying; Sun, Qing; Zhou, Jiti; Masunaga, Shigeki; Ma, Fang

    2015-09-01

    The toxicity of municipal wastewater to the receiving water bodies is still unknown, due to the lack of regulated toxicity based index for wastewater discharge in China. Our study aims at gaining insight into the acute toxic effects of local municipal wastewater on alga, Scenedesmus obliquus. Four endpoints, i.e. cell density, chlorophyll-A concentration, superoxide dismutase (SOD) activity and cell membrane integrity, of alga were analyzed to characterize the acute toxicity effects of wastewater from municipal wastewater treatment plants (WWTPs) with different treatment techniques: sequencing batch reactor (SBR), Linpor and conventional activated sludge. Influent and effluent from each treatment stage in these three WWTPs were sampled and evaluated for their acute toxicity. Our results showed that all three techniques can completely affect the algal chlorophyll-A synthesis stimulation effects of influent; the algal cell growth stimulation effect was only completely removed by the secondary treatment process in conventional activated sludge technique; toxic effects on cell membrane integrity of two influents from WWTPs with SBR and conventional activated sludge techniques were completely removed; the acute toxicity on SOD activity was partially reduced in SBR and conventional activated sludge techniques while not significantly reduced by Linpor system. As to the disinfection unit, NaClO disinfection enhanced wastewater toxicity dramatically while UV radiation had no remarkable influence on wastewater toxicity. Our results illustrated that SOD activity and chlorophyll-A synthesis were relatively sensitive to municipal wastewater toxicity. Our results would aid to understand the acute toxicity of municipal wastewater, as well as the toxicity removal by currently utilized treatment techniques in China.

  10. Tertiary Treatment Process of Preserved Wastewater

    Directory of Open Access Journals (Sweden)

    Wang Qingyu

    2016-01-01

    Full Text Available The effects of the composite coagulants on coagulation sedimentation for the preserved wastewater was investigated by changing the composite coagulant dosages, and the coagulant was composed of polymeric ferric sulfate (PFS, polyaluminium chloride (PAC, and polyaluminum ferric silicate (PAFSC, while the effect of the tertiary treatment process on the preserved wastewater was tested, which was exceeded the standard seriously. The results showed that 400 mg/L was the optimum composite coagulant dosage. The removal rates of salt and sugar were as high as 99.1% and 99.5% respectively, and the removal rates of CODCr and SS were 99.3% and 96.0%, respectively after the preserved wastewater was treated by the tertiary treatment technology, which both reached the primary standard of “The Integrated Wastewater Discharge Standard” (GB8978-1996.

  11. Study on the Treatment of High Ammonia Nitrogen Wastewater with Inner Circulation Impinging Stream Biofilm Reactor%内循环撞击流生物膜反应器处理高氨氮废水试验研究

    Institute of Scientific and Technical Information of China (English)

    李国朝; 杨涛; 陈捷; 张新华

    2011-01-01

    [目的]研究内循环撞击流生物膜反应器处理高浓度氧氯废水的性能.[方法]采用内循环撞击流生物膜反应器,以玉米芯为生物栽体处理模拟高氨氮废水,探讨了C/N比、溶解氧(DO)对COD和NH4+-N去除效果的影响.[结果]在进水NH4+-N 200 mg/L、DO 2mg/L、C/N比分别为1.0和1.5时,对COD的去除效果没有明显影响,均高达92%以上;C/N为1.5时,COD和NH4+-N平均去除率最高,分别达92.7%和41.2%;在C/N为2.0时,去除率显著降低,COD和NH4+-N平均去除率分别降至20%和10%左右;在C/N为1.5、NH4+-N 200 mg/L时,DO对COD的去除影响不大,但对NH4+-N的去除影响较大,DO浓度从4 mg/L降到1 mg/L时,NH4+-N去除率从46.4%降至17.1%.[结论]该研究为高氨氮废水处理提供了理论依据.%[ Objective ] The treatment effect of inner circulation impinging stream biofilm reactor ( ICISBR ) on high ammonia nitrogen ( NH4+ -N) wastewater was studied. [ Method] By means ICISBR, high ammonia nitrogen wastewater was treated by using corncob as biological carrier, and the influence of C/N ratio and dissolved oxygen (DO) on chemical oxygen demand (COD) and removal effect of NH4+-N were discussed in our paper. [ Result ] With NH4+ -N of 200 mg/L, DO of 2 mg/L and C/N ratio of 1.0 or 1.5, the removal effect of COD was mot affected obviously and reached above 92%; the average removal rate of COD and NH4+ -N were highest (92.7% and 41.2% ) when C/N was 1.5; the average removal rate of COD and NH4+ -N decreased obviously to 20% and 10% with the C/N of 2.0; when C/N was 1.5 and NH4+ -N reached 200 mg/L, there was no great influence of DO on the removal of COD with great influence on the removal of NH4+ -N, namely the removal rate of NH4+ -N decreased to 17.1% from 46.4% with the reduction of DO concentration from 4 to 1 mg/L. [Conclusion] Our study could provide theoretical basis for the treatment of high ammonia nitrogen wastewater.

  12. Application of Emergy Analysis to the Sustainability Evaluation of Municipal Wastewater Treatment Plants

    Directory of Open Access Journals (Sweden)

    Shuai Shao

    2016-12-01

    Full Text Available Municipal wastewater treatment plants consume much energy and manpower, are expensive to run, and generate sludge and treated wastewater whilst removing pollutants through specific treatment regimes. The sustainable development of the wastewater treatment industry is therefore challenging, and a comprehensive evaluation method is needed for assessing the sustainability of different wastewater treatment processes, for identifying the improvement potential of treatment plants, and for directing policymakers, management measures and development strategies. This study established improved evaluation indicators based on Emergy Analysis that place total wastewater, resources, energy, economic input and emission of pollutants on the same scale compared to the traditional indicators. The sustainability of four wastewater treatment plants and their associated Anaerobic-Anoxic-Oxic (A2O, Constant Waterlevel Sequencing Batch Reactor (CWSBR, Cyclic Activated Sludge Technology (CAST and Biological Aerated Filter (BAF treatment processes were assessed in a city in northeast China. Results show that the CWSBR process was the most sustainable wastewater treatment process according to its largest calculated value of Improved Emergy Sustainable Index (2.53 × 100, followed by BAF (1.60 × 100, A2O (9.78 × 10−1 and CAST (5.77 × 10−1. Emergy Analysis provided improved indicators that are suitable for comparing different wastewater treatment processes.

  13. RESEARCHES RELATED TO THE BIOLOGICAL STAGE FROM WASTEWATER TREATMENT PLANTS

    Directory of Open Access Journals (Sweden)

    I.C MOGA

    2013-03-01

    Full Text Available In the present study a model for the oxygen concentration profiles in a mobile bed biofilm reactor (MBBR is proposed. By using a material with a large specific surface area (m2/m3 high biological activity can be maintained using a relatively small reactor volume. Small parts made of special materials with density close to the water density, are immersed in the bioreactors. The biofilm carriers are kept in suspension and even mixed with the help of air bubbles generated by the aeration system. Water oxygenation is a mass transfer process of oxygen from gas/air to the liquid mass. It can be used in wastewater treatment in order to remove the organic matter, in the biological stage. The functioning of aerobic processes depends on the availability of sufficient quantities of oxygen. In wastewater treatment plants, submerged bubbles aeration is most frequently accomplished by dispersing air bubbles in the liquid. The main purpose of this study is to determine the concentration of dissolved oxygen using mathematical modeling and numerical simulations. The aim of the study is to find the optimum dimension and position of the aeration pipes for maintaining the oxygen concentration in the limits indicated in the literature. Experimental determinations (measurements of the DO concentration have also been realized. The oxygen profile concentration, in a MBBR reactor, was determined.

  14. Oxidation pond for municipal wastewater treatment

    Science.gov (United States)

    Butler, Erick; Hung, Yung-Tse; Suleiman Al Ahmad, Mohammed; Yeh, Ruth Yu-Li; Liu, Robert Lian-Huey; Fu, Yen-Pei

    2017-03-01

    This literature review examines process, design, and cost issues related to using oxidation ponds for wastewater treatment. Many of the topics have applications at either full scale or in isolation for laboratory analysis. Oxidation ponds have many advantages. The oxidation pond treatment process is natural, because it uses microorganisms such as bacteria and algae. This makes the method of treatment cost-effective in terms of its construction, maintenance, and energy requirements. Oxidation ponds are also productive, because it generates effluent that can be used for other applications. Finally, oxidation ponds can be considered a sustainable method for treatment of wastewater.

  15. Low technology systems for wastewater treatment: perspectives.

    Science.gov (United States)

    Brissaud, F

    2007-01-01

    Low technology systems for the treatment of wastewater are sometimes presented as remnants of the past, nowadays supposedly only meant to serve developing countries and remote rural areas. However, considering their advantages and disadvantages together with enhanced treatment requirements and recent research and technological developments, the future of these systems still appears promising. Successful applications of low technology systems require that more care is taken of their design and operation than often observed. Correlatively, more efforts should be made to decipher the treatment mechanisms and determine the related reaction parameters, so as to provide more deterministic approaches of the natural wastewater treatment systems and better predict their performance.

  16. Highly Efficient Photocatalysts and Continuous-Flow Photocatalytic Reactors for Degradation of Organic Pollutants in Wastewater.

    Science.gov (United States)

    Chang, Sujie; Yang, Xiaoqiu; Sang, Yuanhua; Liu, Hong

    2016-09-06

    One of the most important applications for photocatalysis is engineered water treatment that photodegrades organic pollutants in wastewater at low cost. To overcome the low efficiency of batch degradation methods, continuous-flow photocatalytic reactors have been proposed and have become the most promising method for mass water treatment. However, most commercial semiconductor photocatalysts are granular nanoparticles with low activity and a narrow active light wavelength band; this creates difficulties for direct use in continuous-flow photocatalytic reactors. Therefore, a high-performance photodegradation photocatalyst with proper morphology or structure is key for continuous photocatalytic degradation. Moreover, a well-designed photocatalytic device is another important component for continuous-flow photocatalysis and determines the efficiency of photocatalysis in practical water treatment. This review describes the basic design principles and synthesis of photocatalysts with excellent performance and special morphologies suitable for a filtering photocatalysis process. Certain promising continuous photodegradation reactors are also categorized and summarized. Additionally, selected scientific and technical problems that must be urgently solved are suggested. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Kinetic parameters of biomass growth in a UASB reactor treating wastewater from coffee wet processing (WCWP

    Directory of Open Access Journals (Sweden)

    Claudio Milton Montenegro Campos

    2014-10-01

    Full Text Available This study evaluated the treatment of wastewater from coffee wet processing (WCWP in an anaerobic treatment system at a laboratory scale. The system included an acidification/equalization tank (AET, a heat exchanger, an Upflow Anaerobic Sludge Blanket Reactor (UASB, a gas equalization device and a gas meter. The minimum and maximum flow rates and volumetric organic loadings rate (VOLR were 0.004 to 0.037 m 3 d -1 and 0.14 to 20.29 kgCOD m -3 d -1 , respectively. The kinetic parameters measured during the anaerobic biodegradation of the WCWP, with a minimal concentration of phenolic compounds of 50 mg L - ¹, were: Y = 0.37 mgTVS (mgCODremoved -1 , Kd = 0.0075 d-1 , Ks = 1.504mg L -1 , μmax = 0.2 d -1 . The profile of sludge in the reactor showed total solids (TS values from 22,296 to 55,895 mg L -1 and TVS 11,853 to 41,509 mg L -1 , demonstrating a gradual increase of biomass in the reactor during the treatment, even in the presence of phenolic compounds in the concentration already mentioned.

  18. Development of a BR-UASB-DHS system for natural rubber processing wastewater treatment.

    Science.gov (United States)

    Watari, Takahiro; Thanh, Nguyen Thi; Tsuruoka, Natsumi; Tanikawa, Daisuke; Kuroda, Kyohei; Huong, Nguyen Lan; Tan, Nguyen Minh; Hai, Huynh Trung; Hatamoto, Masashi; Syutsubo, Kazuaki; Fukuda, Masao; Yamaguchi, Takashi

    2015-11-21

    Natural rubber processing wastewater contains high concentrations of organic compounds, nitrogen, and other contaminants. In this study, a treatment system composed of a baffled reactor (BR), an upflow anaerobic sludge blanket (UASB) reactor, and a downflow hanging sponge (DHS) reactor was used to treat natural rubber processing wastewater in Vietnam. The BR showed good total suspended solids removal of 47.6%, as well as acidification of wastewater. The UASB reactor achieved a high chemical oxygen demand (COD) removal efficiency of 92.7% ± 2.3% and energy recovery in the form of methane with an organic loading rate of 12.2 ± 6.6 kg-COD·m(-3)·day(-1). The DHS reactor showed a high performance in residual organic matter removal from UASB effluent. In total, the system achieved high-level total COD removal of 98.6% ± 1.2% and total suspended solids removal of 98.0% ± 1.4%. Massive parallel 16S rRNA gene sequencing of the retained sludge in the UASB reactor showed the predominant microbial phyla to be Bacteroidetes, Firmicutes, Proteobacteria, WWE1, and Euryarchaeota. Uncultured bacteria belonging to the phylum Bacteroidetes and Phylum WWE1 were predominant in the UASB reactor. This microbial assemblage utilizes the organic compounds contained in natural rubber processing wastewater. In addition, the methane-producing archaea Methanosaeta sp. and Methanolinea sp. were detected.

  19. 信息动态%Research Progress on Electrochemical Oxidation Treatment in Refractory Wastewater

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    This paper describes the research progress of electrochemical oxidation treatment in refractory wastewater at home and abroad, discusses the mechanism of electrochemical oxidation including anodic oxidation technique and cathodic reduction technique in detail, introduces the main influential factors on the degradation efficiency of electrochemical oxidation such as electrode materials, electrochemical reactor, the pH value of the solution, solvent and other factors. The research of electrochemical oxidation mechanism for organic pollutants, the development of electrode materials, the research and development of high efficiency electrolysis reactor,the research on application of specific electrochemical oxidation systems are aspects of the prospect of electrochemical oxidation treatment in refractory wastewater.

  20. Two-step nitrification in a pure moving bed biofilm reactor-membrane bioreactor for wastewater treatment: nitrifying and denitrifying microbial populations and kinetic modeling.

    Science.gov (United States)

    Leyva-Díaz, J C; González-Martínez, A; Muñío, M M; Poyatos, J M

    2015-12-01

    The moving bed biofilm reactor-membrane bioreactor (MBBR-MBR) is a novel solution to conventional activated sludge processes and membrane bioreactors. In this study, a pure MBBR-MBR was studied. The pure MBBR-MBR mainly had attached biomass. The bioreactor operated with a hydraulic retention time (HRT) of 9.5 h. The kinetic parameters for heterotrophic and autotrophic biomasses, mainly nitrite-oxidizing bacteria (NOB), were evaluated. The analysis of the bacterial community structure of the ammonium-oxidizing bacteria (AOB), NOB, and denitrifying bacteria (DeNB) from the pure MBBR-MBR was carried out by means of pyrosequencing to detect and quantify the contribution of the nitrifying and denitrifying bacteria in the total bacterial community. The relative abundance of AOB, NOB, and DeNB were 5, 1, and 3%, respectively, in the mixed liquor suspended solids (MLSS), and these percentages were 18, 5, and 2%, respectively, in the biofilm density (BD) attached to carriers. The pure MBBR-MBR had a high efficiency of total nitrogen (TN) removal of 71.81±16.04%, which could reside in the different bacterial assemblages in the fixed biofilm on the carriers. In this regard, the kinetic parameters for autotrophic biomass had values of YA=2.3465 mg O2 mg N(-1), μm, A=0.7169 h(-1), and KNH=2.0748 mg NL(-1).

  1. Food industrial wastewater reuse by membrane bio-reactor

    Directory of Open Access Journals (Sweden)

    Patthanant Natpinit

    2007-11-01

    Full Text Available The objective of this investigation was to study the possibility and performance of treating food industrial wastewater by Membrane BioReactor (MBR. In addition, the effluent of MBR was treated by Reverse Osmosis system (RO to reuse in boiler or cooling tower. The membranes of hollow fiber type were filled in the aerobic tank with aerobe bacteria. The total area of membrane 6 units was 630 m2 so the flux of the operation was 0.25 m/d or 150 m3/d. The spiral wound RO was operated at 100 m3/d of influent and received 72 m3/d of permeate. The sludge volume (MLSS of MBR was maintained at 8,000-10,000 mg/l. The average COD and SS of MBR influent were 600 mg/l and 300 mg/l respectively. After treating by MBR, COD and SS of effluent were maintained at less than 100 mg/l and less than 10 mg/l respectively. In the same way, COD and SS of RO permeate were less than 10 mg/l and less than 5 mg/l respectively.

  2. Biohydrogen production from cassava wastewater in an anaerobic fluidized bed reactor

    Directory of Open Access Journals (Sweden)

    N. C. S. Amorim

    2014-09-01

    Full Text Available The effect of hydraulic retention time (HRT and organic loading rate (OLR on biological hydrogen production was assessed using an anaerobic fluidized bed reactor fed with cassava wastewater. The HRT of this reactor ranged from 8 to 1 h (28 to 161 kg COD/m³-d. The inoculum was obtained from a facultative pond sludge derived from swine wastewater treatment. The effluent pH was approximately 5.00, while the influent chemical oxygen demand (COD measured 4000 mg COD/L. The hydrogen yield production increased from 0.13 to 1.91 mol H2/mol glucose as the HRT decreased from 8 to 2 h. The hydrogen production rate significantly increased from 0.20 to 2.04 L/h/L when the HRT decreased from 8 to 1 h. The main soluble metabolites were ethanol (1.87-100%, acetic acid (0.00-84.80%, butyric acid (0.00-66.78% and propionic acid (0.00-50.14%. Overall, we conclude that the best hydrogen yield production was obtained at an HRT of 2 h.

  3. The effect of ozone on tannery wastewater biological treatment at demonstrative scale.

    Science.gov (United States)

    Di Iaconi, Claudio; Ramadori, Roberto; Lopez, Antonio

    2009-12-01

    This paper reports the results obtained during an investigation aimed at transferring to the demonstrative scale an aerobic granular biomass system (SBBGR--Sequencing Batch Biofilter Granular Reactor) integrated with ozonation for the efficient treatment of tannery wastewater. The results show that the integrated process was able to achieve high removal efficiencies for COD, TSS, TKN, surfactants and colour with residual concentrations much lower than the current discharge limits. Furthermore, the process was characterised by a very low sludge production (i.e., 0.1 kg dry sludge/m(3) of treated wastewater) with interesting repercussions on treatment costs (about 1 euro per m(3) of wastewater).

  4. Winery and distillery wastewater treatment by anaerobic digestion.

    Science.gov (United States)

    Moletta, R

    2005-01-01

    Anaerobic digestion is widely used for wastewater treatment, especially in the food industries. Generally after the anaerobic treatment there is an aerobic post-treatment in order to return the treated water to nature. Several technologies are applied for winery wastewater treatment. They are using free cells or flocs (anaerobic contact digesters, anaerobic sequencing batch reactors and anaerobic lagoons), anaerobic granules (Upflow Anaerobic Sludge Blanket--UASB), or biofilms on fixed support (anaerobic filter) or on mobile support as with the fluidised bed. Some technologies include two strategies, e.g. a sludge bed with anaerobic filter as in the hybrid digester. With winery wastewaters (as for vinasses from distilleries) the removal yield for anaerobic digestion is very high, up to 90-95% COD removal. The organic loads are between 5 and 15 kgCOD/m3 of digester/day. The biogas production is between 400 and 600 L per kg COD removed with 60 to 70% methane content. For anaerobic and aerobic post-treatment of vinasses in the Cognac region, REVICO company has 99.7% COD removal and the cost is 0.52 Euro/m3 of vinasses.

  5. Development and testing of bioelectrochemical reactors converting wastewater organics into hydrogen peroxide.

    Science.gov (United States)

    Modin, Oskar; Fukushi, Kensuke

    2012-01-01

    In a bioelectrochemical system, the energy content in dissolved organic matter can be used to power the production of hydrogen peroxide (H(2)O(2)), which is a potentially useful chemical at wastewater treatment plants. H(2)O(2) can be produced by the cathodic reduction of oxygen. We investigated four types of gas-diffusion electrodes (GDEs) for this purpose. A GDE made of carbon nanoparticles bound with 30% polytetrafluoroethylene (PTFE) (wt./wt.C) to a carbon fiber paper performed best and catalyzed H(2)O(2) production from oxygen in air with a coulombic efficiency of 95.1%. We coupled the GDE to biological anodes in two bioelectrochemical reactors. When the anodes were fed with synthetic wastewater containing acetate they generated a current of up to ∼0.4 mA/mL total anode compartment volume. H(2)O(2) concentrations of ∼0.2 and ∼0.5% could be produced in 5 mL catholyte in 9 and 21 h, respectively. When the anodes were fed with real wastewater, the generated current was ∼0.1 mA/mL and only 84 mg/L of H(2)O(2) was produced.

  6. Optimization of C/N Ratio and Inducers for Wastewater Paper Industry Treatment Using Trametes versicolor Immobilized in Bubble Column Reactor

    Directory of Open Access Journals (Sweden)

    Aura M. Pedroza-Rodríguez

    2013-01-01

    Full Text Available C/N ratio and MnSO4 and CuSO4 concentrations were optimized for decolorization and chemical oxygen demand (COD removal of bleached Kraft pulp mill effluent by Trametes versicolor immobilized in polyurethane foam. Statistical differences (P<0.0001 at high C/N ratios (169, 2 mM CuSO4, and 0.071 mM MnSO4 were determined. Decolorization of 60.5%, COD removal of 55%, laccase (LAC 60 U/L, and manganese peroxidase (MnP 8.4 U/L were obtained. Maximum of decolorization (82%, COD removal (83%, LAC (443.5 U/L, and MnP (18 U/L activities at C/N ratio of 405 (6.75 mM CuSO4 and 0.22 mM MnSO4 was achieved in step 7 at 4 d. Positive correlation between the decolorization, COD removal, and enzymatic activity was found (P<0.0001. T. versicolor bioremediation capacity was evaluated in bubble column reactor during 8 d. Effluent was adjusted according to optimized parameters and treated at 25°C and air flow of 800 mL/min. Heterotrophic bacteria growth was not inhibited by fungus. After 4 d, 82% of COD reduction and 80% decolorization were recorded. Additionally, enzymatic activity of LAC (345 U/L and MnP (78 U/L was observed. The COD reduction and decolorization correlated positively (P<0.0001 with enzymatic activity. Chlorophenol removal was 98% of pentachlorophenol (PCP, 92% of 2,4,5-trichlorophenol (2,4,5-TCP, 90% of 3,4-dichlorophenol (3,4-DCP, and 99% of 4-chlorophenols (4CP.

  7. Aquatic Plants and Wastewater Treatment (an Overview)

    Science.gov (United States)

    Wolverton, B. C.

    1986-01-01

    The technology for using water hyacinth to upgrade domestic sewage effluent from lagoons and other wastewater treatment facilities to secondary and advanced secondary standards has been sufficiently developed to be used where the climate is warm year round. The technology of using emergent plants such as bulrush combined with duckweed is also sufficiently developed to make this a viable wastewater treatment alternative. This system is suited for both temperate and semi-tropical areas found throughout most of the U.S. The newest technology in artificial marsh wastewater treatment involves the use of emergent plant roots in conjunction with high surface area rock filters. Smaller land areas are required for these systems because of the increased concentration of microorganisms associated with the rock and plant root surfaces. Approximately 75 percent less land area is required for the plant-rock system than is required for a strict artificial wetland to achieve the same level of treatment.

  8. Combined sulphur cycle based system of hydrogen production and biological treatment of wastewater.

    Science.gov (United States)

    Hua, Li Wei; Lei, Lei; Ningbo, Yang; Wei, Yan

    2009-11-01

    The experiment was conducted to investigate continuous hydrogen production with lower cost and sulphate-rich wastewater treatment. In this paper, both anaerobic bio-treatment of sulphate-rich wastewater and hydrogen production were applied to construct a laboratory-scale combined sulphur cycle based system. The system consisted of two reactors, which were a photocatalytic reactor and an anaerobic bioreactor, respectively. In the anaerobic bioreactor, sulphate-reducing bacteria (SRB) converted SO4(2-) to S(2-). The produced S(2-) yielded by SRB was further used as a sacrificial reagent to produce H2 in the photocatalytic reactor. Then, S(2-) was changed into SO4(2-), which returned to the anaerobic bioreactor for treatment again. The present study highlighted an advantage compared with the conventional method, in that no extra S(2-) was added to the photocatalytic reactor, which reduced the total cost and realized continuous hydrogen production. The average COD removal efficiency was 79.6%.

  9. Pilot-scale study of biomass reduction in wastewater treatment.

    Science.gov (United States)

    Wang, Qunhui; Ai, Hengyu; Li, Xuesong; Liu, Haitao; Xie, Weimin

    2007-05-01

    Pilot-scale experiments were continuously carried out for more than 9 months to study the excess biomass reduction effect using a biophase-separation bioreactor, which was designed based on food-chain theory. By separating the biophase in the wastewater treatment system, bacteria, protozoa, and metazoa could be separated from each other and dominated in different microbial communities. After degrading organic matter, bacteria were consumed by protozoa or metazoa in the following process in such a reactor. Thus, both chemical oxygen demand (COD) and biomass were reduced. During the process of treating restaurant wastewater, the excess biomass yield in this biophase-separation technique varied from 0.13 to 0.22 kg/kg COD removed, 50% lower than that from the reference system. Apart from low biomass production, this biophase-separation technique can simultaneously achieve a high COD removal efficiency and improve settleability of biosolids at a hydraulic retention time of 6 to 13 hours.

  10. Acute toxicity and chemical evaluation of coking wastewater under biological and advanced physicochemical treatment processes.

    Science.gov (United States)

    Dehua, Ma; Cong, Liu; Xiaobiao, Zhu; Rui, Liu; Lujun, Chen

    2016-09-01

    This study investigated the changes of toxic compounds in coking wastewater with biological treatment (anaerobic reactor, anoxic reactor and aerobic-membrane bioreactor, A1/A2/O-MBR) and advanced physicochemical treatment (Fenton oxidation and activated carbon adsorption) stages. As the biological treatment stages preceding, the inhibition effect of coking wastewater on the luminescence of Vibrio qinghaiensis sp. Nov. Q67 decreased. Toxic units (TU) of coking wastewater were removed by A1/A2/O-MBR treatment process, however approximately 30 % TU remained in the biologically treated effluent. There is a tendency that fewer and fewer residual organic compounds could exert equal acute toxicity during the biological treatment stages. Activated carbon adsorption further removed toxic pollutants of biologically treated effluent but the Fenton effluent increased acute toxicity. The composition of coking wastewater during the treatment was evaluated using the three-dimensional fluorescence spectra, gas chromatography-mass spectrometry (GC-MS). The organic compounds with high polarity were the main cause of acute toxicity in the coking wastewater. Aromatic protein-like matters in the coking wastewater with low biodegradability and high toxicity contributed mostly to the remaining acute toxicity of the biologically treated effluents. Chlorine generated from the oxidation process was responsible for the acute toxicity increase after Fenton oxidation. Therefore, the incorporation of appropriate advanced physicochemical treatment process, e.g., activated carbon adsorption, should be implemented following biological treatment processes to meet the stricter discharge standards and be safer to the environment.

  11. A simplified analysis of granule behavior in ASBR and UASB reactors treating low-strength synthetic wastewater

    Directory of Open Access Journals (Sweden)

    R. G. Veronez

    2005-09-01

    Full Text Available This work presents an analysis of the changes observed in granule characteristics of sludge in the treatment of synthetic wastewater at a concentration of about 500 mgCOD/L in batch, fed-batch (ASBR and continuous (UASB bench-scale reactors under similar experimental conditions. Physical and microbiological properties of the granules were characterized as average particle size and sedimentation time and by optical and epifluorescence microscopy. Several samples were analyzed in order to identify the morphologies. Granules from sequencing batch and fed-batch reactors, either with or without mechanical mixing, did not undergo any physical or microbiological changes. However, during the experiment granules from the UASB reactor agglomerated due to the formation and accumulation of a viscous material, probably of microbial origin, when operated at low superficial velocities (0.072, 0.10 and 0.19 m/h. When the superficial velocity was increased to 8.0-10.0 m/h by means of liquid-phase recirculation, the granules from the UASB reactor underwent flocculation and the microbiological characteristics changed in such a way that the equilibrium of microbial diversity in the inoculum was not maintained. As a result, the only reactor that maintained efficiency and good solids retention during the assays was the ASBR, showing that there is a correlation between maintenance of microbial diversity and operating mode in the case of anaerobic treatment of low-strength wastewaters.

  12. Anaerobe Tolerance to Oxygen and the Potentials of Anaerobic and Aerobic Cocultures for Wastewater Treatment

    Directory of Open Access Journals (Sweden)

    M.T. Kato

    1997-12-01

    Full Text Available The anaerobic treatment processes are considered to be well-established methods for the elimination of easily biodegradable organic matter from wastewaters. Some difficulties concerning certain wastewaters are related to the possible presence of dissolved oxygen. The common belief is that anaerobes are oxygen intolerant. Therefore, the common practice is to use sequencing anaerobic and aerobic steps in separate tanks. Enhanced treatment by polishing off the residual biodegradable oxygen demand from effluents of anaerobic reactors, or the biodegradation of recalcitrant wastewater pollutants, usually requires sequenced anaerobic and aerobic bacteria activities. However, the combined activity of both bacteria can also be obtained in a single reactor. Previous experiments with either pure or mixed cultures showed that anaerobes can tolerate oxygen to a certain extent. The oxygen toxicity to methanogens in anaerobic sludges was quantified in batch experiments, as well as in anaerobic reactors. The results showed that methanogens have a high tolerance to oxygen. In practice, it was confirmed that dissolved oxygen does not constitute any detrimental effect on reactor treatment performance. This means that the coexistence of anaerobic and aerobic bacteria in one single reactor is feasible and increases the potentials of new applications in wastewater treatment

  13. Effects of hydraulic retention time and nitrobenzene concentration on the performance of sequential upflow anaerobic filter and air lift reactors in treating nitrobenzene-containing wastewater

    DEFF Research Database (Denmark)

    Wu, Jinhua; Chen, Guocai; Gu, Jingjing;

    2014-01-01

    Sequential upflow anaerobic filter (UAF)/air lift (ALR) reactors were employed to investigate the effects of hydraulic retention time (HRT) and nitrobenzene (NB) concentration on treatment of NB-containing wastewater. The results showed that NB was effectively reduced to aniline (AN) with glucose...... and the influent NB concentration increased from 400 to 800 mg l super(-1), respectively. The results showed that sequential UAF/ALR system can be operated at low HRTs and high NB concentrations without significantly affecting the removal efficiency of NB in the reactor system. The UAF/ALR system can provide...... an effective yet low cost method for treatment of NB-containing industrial wastewater....

  14. Innovations in wastewater treatment: the moving bed biofilm process.

    Science.gov (United States)

    Odegaard, Hallvard

    2006-01-01

    This paper describes the moving bed biofilm reactor (MBBR) and presents applications of wastewater treatment processes in which this reactor is used. The MBBR processes have been extensively used for BOD/COD-removal, as well as for nitrification and denitrification in municipal and industrial wastewater treatment. This paper focuses on the municipal applications. The most frequent process combinations are presented and discussed. Basic design data obtained through research, as well as data from practical operation of various plants, are presented. It is demonstrated that the MBBR may be used in an extremely compact high-rate process (treatment. Most European plants require P-removal and performance data from plants combining MBBR and chemical precipitation is presented. Likewise, data from plants in Italy and Switzerland that are implementing nitrification in addition to secondary treatment are presented. The results from three Norwegian plants that are using the so-called combined denitrification MBBR process are discussed. Nitrification rates as high as 1.2 g NH4-N/m2 d at complete nitrification were demonstrated in practical operation at low temperatures (11 degrees C), while denitrification rates were as high as 3.5g NO3-Nequiv./m2.d. Depending on the extent of pretreatment, the total HRT of the MBBR for N-removal will be in the range of 3 to 5 h.

  15. Biohydrogen production and wastewater treatment from organic wastewater by anaerobic fermentation with UASB

    Science.gov (United States)

    Wang, Lu; Li, Yong-feng; Wang, Yi-xuan; Yang, Chuan-ping

    2010-11-01

    In order to discuss the ability of H2-production and wastewater treatment, an up-flow anaerobic sludge bed (UASB) using a synthesized substrate with brown sugar wastewater was conducted to investigate the hydrogen yield, hydrogen producing rate, fermentation type of biohydrogen production, and the chemical oxygen demand (COD) removal rate, respectively. The results show that when the biomass of inoculants was 22.5 g SSṡL-1 and the influent concentration, hydraulic retention time (HRT) and initial pH were within the ranges of 4000˜6000 mg CODṡL-1, 8 h and 5-5.5, respectively, and the biohydrogen producing reactor could work effectively. The maximum hydrogen production rate is 5.98 Lṡd-1. Simultaneously, the concentration of ethanol and acetic acid is around 80% of the aqueous terminal production in the system, which presents the typical ethanol type fermentation. pH is at the range of 4˜4.5 during the whole performing process, however, the removal rate of COD is just about 20%. Therefore, it's still needs further research to successfully achieve the biohydrogen production and wastewater treatment, simultaneously.

  16. 移动床生物膜反应器处理极低C/N废水试验研究%Experimental studies of extremely low C/N wastewater treatment with moving bed biofilm reactor

    Institute of Scientific and Technical Information of China (English)

    陈建磊; 戴海平

    2011-01-01

    在常温下采用移动床生物膜反应器处理低C/N比废水.结果显示:在填料填充比为40%、进水氨氮质量浓度为25 mg/L条件下,出水氨氮质量浓度基本稳定在4 mg/L左右,氨氮去除率在80%以上,硝化效果突出;进水C/N不足1时,TN及COD去除率分别能达到55%、60%以上,说明移动床生物膜反应器用于处理极低C/N废水具有良好效果.%The extremely low C/N wastewater is treated with moving bed biofilm reactor at the normal temperature. The results show that: With the 40% filling proportion of the packing and about 25 mg/L ammonia nitrogen of the influent, the ammonia nitrogen of the effluent water is stably 4 mg/L, and the removal efficiency of the ammonia nitrogen is above 80%, the nitrification effect is prominent; while the C/N of influent is below 1 the removal rate of TN and COD can reach over 55%, and 60% respectively. These facts show that the moving bed biofilm reactor plays a good role in dealing with the extremely low C/N wastewater.

  17. Biogas generation in anaerobic wastewater treatment under tetracycline antibiotic pressure

    Science.gov (United States)

    Lu, Meiqing; Niu, Xiaojun; Liu, Wei; Zhang, Jun; Wang, Jie; Yang, Jia; Wang, Wenqi; Yang, Zhiquan

    2016-06-01

    The effect of tetracycline (TC) antibiotic on biogas generation in anaerobic wastewater treatment was studied. A lab-scale Anaerobic Baffled Reactor (ABR) with three compartments was used. The reactor was operated with synthetic wastewater in the absence of TC and in the presence of 250 μg/L TC for 90 days, respectively. The removal rate of TC, volatile fatty acids (VFAs), biogas compositions (hydrogen (H2), methane (CH4), carbon dioxide (CO2)), and total biogas production in each compartment were monitored in the two operational conditions. Results showed that the removal rate of TC was 14.97–67.97% in the reactor. The presence of TC had a large negative effect on CH4 and CO2 generation, but appeared to have a positive effect on H2 production and VFAs accumulation. This response indicated that the methanogenesis process was sensitive to TC presence, but the acidogenesis process was insensitive. This suggested that the presence of TC had less influence on the degradation of organic matter but had a strong influence on biogas generation. Additionally, the decrease of CH4 and CO2 generation and the increase of H2 and VFAs accumulation suggest a promising strategy to help alleviate global warming and improve resource recovery in an environmentally friendly approach.

  18. Microalgal growth in municipal wastewater treated in an anaerobic moving bed biofilm reactor.

    Science.gov (United States)

    Hultberg, Malin; Olsson, Lars-Erik; Birgersson, Göran; Gustafsson, Susanne; Sievertsson, Bertil

    2016-05-01

    Nutrient removal from the effluent of an anaerobic moving bed biofilm reactor (AnMBBR) treated with microalgae was evaluated. Algal treatment was highly efficient in removal of nutrients and discharge limits were met after 3days. Extending the cultivation time from 3 to 5days resulted in a large increase in biomass, from 233.3±49.3 to 530.0±72.1mgL(-1), despite nutrients in the water being exhausted after 3days (ammonium 0.04mgL(-1), orthophosphate <0.05mgL(-1)). Biomass productivity, lipid content and quality did not differ in microalgal biomass produced in wastewater sampled before the AnMBBR. The longer cultivation time resulted in a slight increase in total lipid concentration and a significant decrease in linolenic acid concentration in all treatments. Differences were observed in chemical oxygen demand, which decreased after algal treatment in wastewater sampled before the AnMBBR whereas it increased after algal treatment in the effluent from the AnMBBR.

  19. Treatment of coking wastewater by using manganese and magnesium ores

    Energy Technology Data Exchange (ETDEWEB)

    Chen Tianhu; Huang Xiaoming; Pan Min [School of Resources and Environmental Engineering, Hefei University of Technology, Hefei City 230009 (China); Jin Song, E-mail: sjin@uwyo.edu [MWH Americas, 3665 JFK Parkway, Suite 206, Fort Collins, CO 80525 (United States); Department Civil and Architectural Engineering, University of Wyoming, Laramie, WY 82071 (United States); Peng Suchuan [School of Resources and Environmental Engineering, Hefei University of Technology, Hefei City 230009 (China); Fallgren, Paul H. [Western Research Institute, 365 North 9th Street, Laramie, WY 82072 (United States)

    2009-09-15

    This study investigated a wastewater treatment technique based on natural minerals. A two-step process using manganese (Mn) and magnesium (Mg) containing ores were tested to remove typical contaminants from coking wastewater. Under acidic conditions, a reactor packed with Mn ore demonstrated strong oxidizing capability and destroyed volatile phenols, chemical oxygen demand (COD){sub ,} and sulfide from the coking wastewater. The effluent was further treated by using Mg ore to remove ammonium-nitrogen and phosphate in the form of magnesium ammonium phosphate (struvite) precipitates. When pH of the wastewater was adjusted to 1.2, the removal efficiencies for COD, volatile phenol and sulfide reached 70%, 99% and 100%, respectively. During the second step of precipitation, up to 94% of ammonium was removed from the aqueous phase, and precipitated in the form of struvite with phosphorus. The struvite crystals showed a needle-like structure. X-ray diffraction and transmission electron microscopy were used to characterize the crystallized products.

  20. A quantitative method to evaluate microbial electrolysis cell effectiveness for energy recovery and wastewater treatment

    KAUST Repository

    Ivanov, Ivan

    2013-10-01

    Microbial electrolysis cells (MECs) are potential candidates for sustainable wastewater treatment as they allow for recovery of the energy input by producing valuable chemicals such as hydrogen gas. Evaluating the effectiveness of MEC treatment for different wastewaters requires new approaches to quantify performance, and the establishment of specific procedures and parameters to characterize the outcome of fed-batch treatability tests. It is shown here that Coulombic efficiency can be used to directly calculate energy consumption relative to wastewater treatment in terms of COD removal, and that the average current, not maximum current, is a better metric to evaluate the rate of the bioelectrochemical reactions. The utility of these methods was demonstrated using simulated current profiles and actual wastewater tests. Industrial and domestic wastewaters were evaluated using small volume MECs, and different inoculation strategies. The energy needed for treatment was 2.17kWhkgCOD-1 for industrial wastewater and 2.59kWhkgCOD-1 for domestic wastewater. When these wastewaters were combined in equal amounts, the energy required was reduced to 0.63kWhkgCOD-1. Acclimation of the MEC to domestic wastewater, prior to tests with industrial wastewaters, was the easiest and most direct method to optimize MEC performance for industrial wastewater treatment. A pre-acclimated MEC accomplished the same removal (1847 ± 53 mg L-1) as reactor acclimated to only the industrial wastewater (1839 ± 57 mg L-1), but treatment was achieved in significantly less time (70 h versus 238 h). © 2013, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

  1. Development of chemical flocculant for wastewater treatment

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jang Jin; Shin, J. M.; Lee, H. H.; Kim, M. J.; Yang, M. S.; Park, H. S

    2000-12-01

    Reagents 'KAERI-I and KAERI-II' which were developed as coagulants for industrial wastewater treatment in the study showed far superior performance to the existing inorganic coagulants such as Alum and Iron salt(FeSO4) when compared to their wastewater treatment performance in color and COD removal. Besides, it was not frozen at -25 deg C {approx} -30 deg C. When reagents 'KAERI-I and KAERI-II' were used as coagulant for wastewater treatment, the proper dosage was ranged from 0.1% to 0.5%(v/v) and proper pH range was 10.5 {approx} 11.5 in the area of alkaline pH.Reagents 'KAERI-I and KAERI-II' showed good performance with 95% or more removal of color-causing material and 60% or more removal of COD.

  2. Frontiers International Conference on Wastewater Treatment

    CERN Document Server

    2017-01-01

    This book describes the latest research advances, innovations, and applications in the field of water management and environmental engineering as presented by leading researchers, engineers, life scientists and practitioners from around the world at the Frontiers International Conference on Wastewater Treatment (FICWTM), held in Palermo, Italy in May 2017. The topics covered are highly diverse and include the physical processes of mixing and dispersion, biological developments and mathematical modeling, such as computational fluid dynamics in wastewater, MBBR and hybrid systems, membrane bioreactors, anaerobic digestion, reduction of greenhouse gases from wastewater treatment plants, and energy optimization. The contributions amply demonstrate that the application of cost-effective technologies for waste treatment and control is urgently needed so as to implement appropriate regulatory measures that ensure pollution prevention and remediation, safeguard public health, and preserve the environment. The contrib...

  3. Treatment of medium and low concentration wastewater by forced circulation anaerobic reactor%强制循环厌氧反应器处理中低浓度废水

    Institute of Scientific and Technical Information of China (English)

    方炯; 杨文斌; 林冲; 马长城; 杜冬云

    2012-01-01

    To solve the problem that internal circulation anaerobic reactor couldn't operate regularly when it was used to treat wastewater with low strength of organic wastewater due to little gas production and the small a- mount of circulation, a new concept and design method of forced circulation reactor were presented. It was used to treat a printing and dyeing wastewater with low strength and slight alkaline. The parameters, such as activated time, optimal HRT and circulation amount, were studied when the mud with high sulfur and low flocculent was inoculate mud. The results show that the optimal external circulating flow was 1 m3/h, the best HRT was 7 h. Under the optimal conditions the T-COD and S-COD removal rates of FCR were 53.6% and 58% ,respectively.%为解决内循环厌氧反应器在对低浓度有机废水处理时,因产气量不足、内循环量小而不能正常运行的问题,提出了强制循环反应器的概念,给出了设计方法。以低浓度、碱性印染工业废水为研究对象,进行了强制循环厌氧反应器的启动与运行的研究,得出了该反应器的最佳HRT和最佳外加循环量。结果表明:在高硫、低性状絮状厌氧泥为接种泥情况下,最佳外循环流量1 m3/h,最佳HRT为7 h时,FCR出水的T-COD和S-COD去除率分别为53.6%和58%。

  4. LAW CAPACITY WASTEWATER TREATMENT PLANTS

    Directory of Open Access Journals (Sweden)

    Nicoleta Luminiţa Jurj

    2012-01-01

    Full Text Available The question of small water users having no centralized wastewater collecting, cleaning and discharging system is of maximal actuality in Romania. Therefor economically efficient solutions are looked for. For disperse mountain villages, farms, or detached households traditional systems, with high maintenance expences because of long networks for small flows, can be economicaly not advantageos. Very small capacity treatement plants are a solution for such cases. The aim of the experimental part of the present work is to simulate situations, damages which can occur during running of a low capacity wastewater treatement plant. Low capacity hosehold wastewater treatement plants are economic alternatives which remove the disadvantages of emptyable basins namely the high costs, the frequvent empying operations, with unpleasant smelling, continous danger of groundwater infection, need for massive and expensive concrete buildings. The proposed plants are based on a classical treatement technology and need emptying of the exess mud only once or twice a year. In opposition with the case of classical plants, the mixture extracted from the proposed low cost systems does not smell and has a relatively low content of solid matter.

  5. Denitrifying bioreactor clogging potential during wastewater treatment.

    Science.gov (United States)

    Christianson, Laura E; Lepine, Christine; Sharrer, Kata L; Summerfelt, Steven T

    2016-11-15

    Chemoheterotrophic denitrification technologies using woodchips as a solid carbon source (i.e., woodchip bioreactors) have been widely trialed for treatment of diffuse-source agricultural nitrogen pollution. There is growing interest in the use of this simple, relatively low-cost biological wastewater treatment option in waters with relatively higher total suspended solids (TSS) and chemical oxygen demand (COD) such as aquaculture wastewater. This work: (1) evaluated hydraulic retention time (HRT) impacts on COD/TSS removal, and (2) assessed the potential for woodchip clogging under this wastewater chemistry. Four pilot-scale woodchip denitrification bioreactors operated for 267 d showed excellent TSS removal (>90%) which occurred primarily near the inlet, and that COD removal was maximized at lower HRTs (e.g., 56% removal efficiency and 25 g of COD removed per m(3) of bioreactor per d at a 24 h HRT). However, influent wastewater took progressively longer to move into the woodchips likely due to a combination of (1) woodchip settling, (2) clogging due to removed wastewater solids and/or accumulated bacterial growth, and (3) the pulsed flow system pushing the chips away from the inlet. The bioreactor that received the highest loading rate experienced the most altered hydraulics. Statistically significant increases in woodchip P content over time in woodchip bags placed near the bioreactor outlets (0.03 vs 0.10%P2O5) and along the bioreactor floor (0.04 vs. 0.12%P2O5) confirmed wastewater solids were being removed and may pose a concern for subsequent nutrient mineralization and release. Nevertheless, the excellent nitrate-nitrogen and TSS removal along with notable COD removal indicated woodchip bioreactors are a viable water treatment technology for these types of wastewaters given they are used downstream of a filtration device. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  6. Hydrogen production by supercritical water gasification of wastewater from food waste treatment processes

    Energy Technology Data Exchange (ETDEWEB)

    Lee, In-Gu [Korea Institute of Energy Research (Korea, Republic of)

    2010-07-01

    Korean food wastes have high moisture content (more than 85 wt%) and their major treatment processes such as drying or biological fermentations generate concentrated organic wastewater (CODs of about 100,000 mgO{sub 2}/L). For obtaining both wastewater treatment and hydrogen production from renewable resources, supercritical water gasification (SCWG) of the organic wastewater was carried out in this work. The effect of catalyst, reaction temperature, and reactor residence time on COD destruction and composition of gas products was examined. As a result, a SCWG of the wastewater over Ni- Y/activated charcoal at 700 C, 28 MPa yielded 99 % COD destruction and hydrogen-rich gas production (45 vol% H{sub 2}). A liquid-phase thermal pretreatment to destroy solid particles from the wastewater was proposed for more effective operation of the SCWG system. (orig.)

  7. Decoloration of textile wastewater by means of a fluidized-bed loop reactor and immobilized anaerobic bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Georgiou, D. [Department of Environmental Engineering, Demokritos University of Thrace, 67100 Xanthi (Greece)]. E-mail: dgeorgio@env.duth.gr; Aivasidis, A. [Department of Environmental Engineering, Demokritos University of Thrace, 67100 Xanthi (Greece)

    2006-07-31

    Textile wastewater was treated by means of a fluidized-bed loop reactor and immobilized anaerobic bacteria. The main target of this treatment was decoloration of the wastewater and transformation of the non-biodegradable azo-reactive dyes to the degradable, under aerobic biological conditions, aromatic amines. Special porous beads (Siran'' (registered)) were utilized as the microbial carriers. Acetic acid solution, enriched with nutrients and trace elements, served both as a pH-regulator and as an external substrate for the growth of methanogenic bacteria. The above technique was firstly applied on synthetic wastewater (an aqueous solution of a mixture of different azo-reactive dyes). Hydraulic residence time was gradually decreased from 24 to 6 h over a period of 3 months. Full decoloration of the wastewater could be achieved even at such a low hydraulic residence time (6 h), while methane-rich biogas was also produced. The same technique was then applied on real textile wastewater with excellent results (full decoloration at a hydraulic residence time of 6 h). Furthermore, the effluent proved to be highly biodegradable by aerobic microbes (activated-sludge). Thus, the above-described anaerobic/aerobic biological technique seems to be a very attractive method for treating textile wastewater since it is cost-effective and environment-friendly.

  8. Forward Osmosis in Wastewater Treatment Processes

    DEFF Research Database (Denmark)

    Korenak, Jasmina; Basu, Subhankar; Balakrishnan, Malini

    2017-01-01

    In recent years, membrane technology has been widely used in wastewater treatment and water purification. Membrane technology is simple to operate and produces very high quality water for human consumption and industrial purposes. One of the promising technologies for water and wastewater treatment...... briefly review some of the applications within water purification and new developments in forward osmosis membrane fabrication....... is the application of forward osmosis. Essentially, forward osmosis is a process in which water is driven through a semipermeable membrane from a feed solution to a draw solution due to the osmotic pressure gradient across the membrane. The immediate advantage over existing pressure driven membrane technologies...

  9. Wastewater treatment modelling: dealing with uncertainties

    DEFF Research Database (Denmark)

    Belia, E.; Amerlinck, Y.; Benedetti, L.;

    2009-01-01

    This paper serves as a problem statement of the issues surrounding uncertainty in wastewater treatment modelling. The paper proposes a structure for identifying the sources of uncertainty introduced during each step of an engineering project concerned with model-based design or optimisation...... of a wastewater treatment system. It briefly references the methods currently used to evaluate prediction accuracy and uncertainty and discusses the relevance of uncertainty evaluations in model applications. The paper aims to raise awareness and initiate a comprehensive discussion among professionals on model...

  10. Identifying the microbial communities and operational conditions for optimized wastewater treatment in microbial fuel cells.

    Science.gov (United States)

    Ishii, Shun'ichi; Suzuki, Shino; Norden-Krichmar, Trina M; Wu, Angela; Yamanaka, Yuko; Nealson, Kenneth H; Bretschger, Orianna

    2013-12-01

    Microbial fuel cells (MFCs) are devices that exploit microorganisms as "biocatalysts" to recover energy from organic matter in the form of electricity. MFCs have been explored as possible energy neutral wastewater treatment systems; however, fundamental knowledge is still required about how MFC-associated microbial communities are affected by different operational conditions and can be optimized for accelerated wastewater treatment rates. In this study, we explored how electricity-generating microbial biofilms were established at MFC anodes and responded to three different operational conditions during wastewater treatment: 1) MFC operation using a 750 Ω external resistor (0.3 mA current production); 2) set-potential (SP) operation with the anode electrode potentiostatically controlled to +100 mV vs SHE (4.0 mA current production); and 3) open circuit (OC) operation (zero current generation). For all reactors, primary clarifier effluent collected from a municipal wastewater plant was used as the sole carbon and microbial source. Batch operation demonstrated nearly complete organic matter consumption after a residence time of 8-12 days for the MFC condition, 4-6 days for the SP condition, and 15-20 days for the OC condition. These results indicate that higher current generation accelerates organic matter degradation during MFC wastewater treatment. The microbial community analysis was conducted for the three reactors using 16S rRNA gene sequencing. Although the inoculated wastewater was dominated by members of Epsilonproteobacteria, Gammaproteobacteria, and Bacteroidetes species, the electricity-generating biofilms in MFC and SP reactors were dominated by Deltaproteobacteria and Bacteroidetes. Within Deltaproteobacteria, phylotypes classified to family Desulfobulbaceae and Geobacteraceae increased significantly under the SP condition with higher current generation; however those phylotypes were not found in the OC reactor. These analyses suggest that species

  11. Performance analysis of a continuous serpentine flow reactor for electrochemical oxidation of synthetic and real textile wastewater: Energy consumption, mass transfer coefficient and economic analysis.

    Science.gov (United States)

    Pillai, Indu M Sasidharan; Gupta, Ashok K

    2017-05-15

    A continuous flow electrochemical reactor was developed, and its application was tested for the treatment of textile wastewater. A parallel plate configuration with serpentine flow was chosen for the continuous flow reactor. Uniparameter optimization was carried out for electrochemical oxidation of synthetic and real textile wastewater (collected from the inlet of the effluent treatment plant). Chemical Oxygen Demand (COD) removal efficiency of 90% was achieved for synthetic textile wastewater (initial COD - 780 mg L(-1)) at a flow rate of 500 mL h(-1) (retention time of 6 h) and a current density of 1.15 mA cm(-2) and the energy consumption for the degradation was 9.2 kWh (kg COD)(-1). The complete degradation of real textile wastewater (initial COD of 368 mg L(-1)) was obtained at a current density of 1.15 mA cm(-2), NaCl concentration of 1 g L(-1) and retention time of 6 h. Energy consumption and mass transfer coefficient of the reactions were calculated. The continuous flow reactor performed better than batch reactor with reference to energy consumption and economy. The overall treatment cost for complete COD removal of real textile wastewater was 5.83 USD m(-3).

  12. Membrane distillation combined with an anaerobic moving bed biofilm reactor for treating municipal wastewater.

    Science.gov (United States)

    Kim, Hyun-Chul; Shin, Jaewon; Won, Seyeon; Lee, Jung-Yeol; Maeng, Sung Kyu; Song, Kyung Guen

    2015-03-15

    A fermentative strategy with an anaerobic moving bed biofilm reactor (AMBBR) was used for the treatment of domestic wastewater. The feasibility of using a membrane separation technique for post-treatment of anaerobic bio-effluent was evaluated with emphasis on employing a membrane distillation (MD). Three different hydrophobic 0.2 μm membranes made of polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), and polypropylene (PP) were examined in this study. The initial permeate flux of the membranes ranged from 2.5 to 6.3 L m(-2) h(-1) when treating AMBBR effluent at a temperature difference between the feed and permeate streams of 20 °C, with the permeate flux increasing in the order PP distillation, while a flux decline in MD with either the PVDF or PP membrane was not found under the identical distillation conditions. During long-term distillation with the PVDF membrane, total phosphorus was completely rejected and >98% rejection of dissolved organic carbon was also achieved. The characterization of wastewater effluent organic matter (EfOM) using an innovative suite of analytical tools verified that almost all of the EfOM was rejected via the PVDF MD treatment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Anaerobic biofilm reactors for dark fermentative hydrogen production from wastewater: A review.

    Science.gov (United States)

    Barca, Cristian; Soric, Audrey; Ranava, David; Giudici-Orticoni, Marie-Thérèse; Ferrasse, Jean-Henry

    2015-06-01

    Dark fermentation is a bioprocess driven by anaerobic bacteria that can produce hydrogen (H2) from organic waste and wastewater. This review analyses a relevant number of recent studies that have investigated dark fermentative H2 production from wastewater using two different types of anaerobic biofilm reactors: anaerobic packed bed reactor (APBR) and anaerobic fluidized bed reactor (AFBR). The effect of various parameters, including temperature, pH, carrier material, inoculum pretreatment, hydraulic retention time, substrate type and concentration, on reactor performances was investigated by a critical discussion of the results published in the literature. Also, this review presents an in-depth study on the influence of the main operating parameters on the metabolic pathways. The aim of this review is to provide to researchers and practitioners in the field of H2 production key elements for the best operation of the reactors. Finally, some perspectives and technical challenges to improve H2 production were proposed.

  14. A Modified Bio-Ecological Process for Rural Wastewater Treatment

    Directory of Open Access Journals (Sweden)

    Haq Nawaz Abbasi

    2017-01-01

    Full Text Available Limited water resources and ensuring access to clean water are critical environmental challenges, especially for the developing world. In particular, rural domestic wastewater has become a significant source for the pollution of freshwater bodies. A modified bio-ecological A2O-wetland system for rural wastewater treatment consisting of a biological unit (anaerobic baffled reactor, anoxic tank and oxic unit, A2O and an ecological unit (horizontal flow constructed wetland was developed, and key performance indicators were identified. The bio-ecological treatment system showed high removal efficiency for pollutants, successfully achieving 91%, 85%, 78%, and 92% removal efficiencies for chemical oxygen demand (COD, ammonium (NH4–N, total nitrogen (TN, and total phosphorus (TP, respectively. The concentrations of pollutants in the effluent from the system were lower than the Class 1 A regulated values of the Chinese National Standard GB18918-2002. The system offered high removal efficiency, simple operation, and low energy consumption. The A2O-wetland is a good alternative for rural wastewater treatment systems.

  15. Degradation of phenol wastewater by a new electromagnetic induction photo-catalytic reactor

    Science.gov (United States)

    Yuan, X. C.; Meng, Q. H.; Sun, J. Y.; Yan, Y.; Li, L.; Li, G. C.; Li, D.

    2016-08-01

    A new inductive photo-catalytic reactor was obtained by the alternative magnetic field and optical coupling, which was driven by AC supply. In the cylinder reactor, UV-LED lights with the wavelength of 375-380nm were evenly distributed, and the phenol solution was used as simulated wastewater. The effects of initial phenol concentration, pH, TiO2, H2O2, alternative magnetic frequency, current, and reaction time on the phenol degradation were investigated under an imposed alternative magnetic field. The optimized conditions and results were as follows: phenol concentrations of 15mg/L, pH of 7, H2O2 of 15μL, TiO2 of 0.18g and alternative magnetic frequency of 12 KHz and current of 2A. With these conditions, the phenol degradation ratio reached 47.1% in 1 h reaction time. The new reactor is very promising for the effective treatment of refractory organic pollutants.

  16. On the Effectiveness of Wastewater Cylindrical Reactors: an Analysis Through Steiner Symmetrization

    Science.gov (United States)

    Díaz, J. I.; Gómez-Castro, D.

    2016-03-01

    The mathematical analysis of the shape of chemical reactors is studied in this paper through the research of the optimization of its effectiveness η such as introduced by R. Aris around 1960. Although our main motivation is the consideration of reactors specially designed for the treatment of wastewaters our results are relevant also in more general frameworks. We simplify the modeling by assuming a single chemical reaction with a monotone kinetics leading to a parabolic equation with a non-necessarily differentiable function. In fact we consider here the case of a single, non-reversible catalysis reaction of chemical order q, 00). We assume the chemical reactor of cylindrical shape Ω =G× (0,H) with G and open regular set of {R}2 not necessarily symmetric. We show that among all the sections G with prescribed area the ball is the set of lowest effectiveness η (t,G). The proof uses the notions of Steiner rearrangement. Finally, we show that if the height H is small enough then the effectiveness can be made as close to 1 as desired.

  17. Performance of wastewater treatment plants in Jordan and suitability ...

    African Journals Online (AJOL)

    Performance of wastewater treatment plants in Jordan and suitability for reuse. ... for restricted use. Before reuse, effluent wastewater needs advanced treatment to prevent its impact on human health and the environment. ... Article Metrics.

  18. A simple anaerobic system for onsite treatment of domestic wastewater

    African Journals Online (AJOL)

    user

    The use of anaerobic process for domestic wastewater treatment would achieve lower carbon footprint ... However, its application is still limited to industrial wastewater treatment. ...... Department of Biotechnology, Lund University, Sweden.

  19. Water quality modelling and optimisation of wastewater treatment ...

    African Journals Online (AJOL)

    Among these activities, wastewater treatment plays a crucial role. In this work, a Streeter-Phelps dissolved oxygen model (DO) is implemented in a ... The Olifants River catchment modelled in this study features 9 wastewater treatment plants.

  20. Bioaugmentative Approaches for Dairy Wastewater Treatment

    Directory of Open Access Journals (Sweden)

    Irina Schneider

    2010-01-01

    Full Text Available Problem statement: The achievement of a good ecological status of water receivers after discharge of waste or partially treated water from dairy industry requires harmonic interaction between water treatment technology and self-purification processes. Approach: The present research included two modules. First: an anaerobic treatment process for dairy wastewater in broadly spread sequencing batch bioreactor with fixed biomass was studied. As a source of active biological system specially treated and acclimated activated sludge from Sofia Wastewater Treatment Plant was used. The acclimation and immobilization of initially inoculated biomass, the addition of microbiological preparations and its modification for increase of the biodegradation activity to target pollutants were studied as opportunities for the stimulation of water treatment process in bioreactors and water receiver. Second: self-purification processes in а water receiver for partially treated dairy wastewater were investigated. The functional role and restructuring of the microbial communities in the water, sediment water and sediments were studied. Results: The results showed that the most important approaches for achieving high effectiveness of wastewater treatment process were both the acclimation and immobilization of biomass. In that aspect the data for the water receiver confirmed this conclusion. These two processes increased biodegradation effectiveness of the target pollutant (protein with 67%. Conclusion: The effect of the added preparations was smaller (protein biodegradation was increased to 9% for the different biological systems. It was thoroughly related to low improvement of the rate of metabolism and functioning of the biological system mainly on an enzyme level.

  1. Efficiency of domestic wastewater treatment plant for agricultural reuse

    OpenAIRE

    2015-01-01

    The increasing demand for water has made the treatment and reuse of wastewater a topic of global importance. This work aims to monitor and evaluate the efficiency of a wastewater treatment plant’s (WWTP) physical and biological treatment of wastewater by measuring the reduction of organic matter content of the effluent during the treatment and the disposal of nutrients in the treated residue. The WWTP has been designed to treat 2500 liters of wastewater per day in four compartments: a septic ...

  2. Enhancing Biological Wastewater Treatment with Chitosan

    Institute of Scientific and Technical Information of China (English)

    陈亮; 陈东辉; 朱珺

    2003-01-01

    Chitin and chitosan have been applied to biological wastewater treatment.From a number of parallel comparison experiments,it can be concluded that the application of chitin and chitosan can both enhance the biological treatment,besides which chitosan is more efficient than chitin.The study on the enhancement mechanism reveals the difference between the two additives:chitosan improves the sludge structure and settlibility,while chitin acts as a kind of carrier for microorganism in the biological treatment system.

  3. TRATAMIENTO DE AGUAS RESIDUALES MEDIANTE REACTORES ANAERÓBICOS DE PLACAS VERTICALES PARALELAS EN ACRÍLICO TRATAMENTO DE ÁGUAS RESIDUÁRIAS POR REATORES ANAERÓBIOS DE PLACAS VERTICAIS PARALELAS EM ACRÍLICO WASTEWATER TREATMENT BY ANAEROBIC REACTORS OF VERTICAL PARALLEL PLATES IN ACRYLIC

    Directory of Open Access Journals (Sweden)

    Guillermo Chaux F

    2011-12-01

    % o tempo de detenção de 24 horas. A facilidade na operação do reactor torna viável como tratamento biológico anaeróbio de águas residuárias previamente decantadas.Some anaerobic filters with bed stone built in the department of Cauca (Colombia, are presenting problems of obstruction. If the stone is replaced by vertical parallel plates, it eliminates the problem of obstruction. This paper presents the development and results of a study performed in laboratory scale that evaluated the potential of anaerobic reactors of vertical parallel plates in acrylic to remove pollutants (organic matter and suspended solids.The anaerobic reactor of parallel plates in acrylic served as secondary treatment; was fed with wastewater effluent of an Imhoff Tank with average concentrations of 156 ± 14 mg/L B0D5, 438 ± 32 mg/L of COD and 98 ± 22 mg/L of total suspended solids. The reductions of COD and BOD in the reactor are over 50% and the reduction of suspended solids exceeded 60% for time of detention for 24 hours. The ease in operating the reactor makes it viable as anaerobic biological treatment of wastewater previously decanted.

  4. High organic loading treatment for industrial molasses wastewater and microbial community shifts corresponding to system development.

    Science.gov (United States)

    Kuroda, Kyohei; Chosei, Tomoaki; Nakahara, Nozomi; Hatamoto, Masashi; Wakabayashi, Takashi; Kawai, Toshikazu; Araki, Nobuo; Syutsubo, Kazuaki; Yamaguchi, Takashi

    2015-11-01

    Molasses wastewater contains high levels of organic compounds, cations, and anions, causing operational problems for anaerobic biological treatment. To establish a high organic loading treatment system for industrial molasses wastewater, this study designed a combined system comprising an acidification tank, a thermophilic multi-stage (MS)-upflow anaerobic sludge blanket (UASB) reactor, mesophilic UASB reactor, and down-flow hanging sponge reactor. The average total chemical oxygen demand (COD) and biochemical oxygen demand removal rates were 85%±3% and 95%±2%, respectively, at an organic loading rate of 42kgCODcrm(-3)d(-1) in the MS-UASB reactor. By installation of the acidification tank, the MS-UASB reactor achieved low H2-partial pressure. The abundance of syntrophs such as fatty acid-degrading bacteria increased in the MS-UASB and 2nd-UASB reactors. Thus, the acidification tank contributed to maintaining a favorable environment for syntrophic associations. This study provides new information regarding microbial community composition in a molasses wastewater treatment system. Copyright © 2015. Published by Elsevier Ltd.

  5. High rate anaerobic thermophilic technologies for distillery wastewater treatment.

    Science.gov (United States)

    Pérez-García, M; Romero-García, L I; Rodríguez-Cano, R; Sales-Márquez, D

    2005-01-01

    In this paper, performance of two high rate technologies, upflow anaerobic fixed-film reactor and fluidized bed laboratory-scale, treating distillery wastewater (wine vinasses) at anaerobic thermophilic conditions have been compared. The results obtained show that the stationary packed bed, with a corrugated plastic support, operated under stable conditions at organic loading rates (OLR0) around 20 kgCOD/m3/d, gives maximal total CODr of 76% at OLR0 of 6.29 kgCOD/m3/d; the fluidized bed reactor, operated on open pore sintered-glass media, gives total CODr of 96% at OLR0 of 5.88 kgCOD/m3/d. The anaerobic fluidized bed technology is more effective than the upflow anaerobic fixed-film technology due, fundamentally, to this technology favouring the transport of microbial cells from the bulk to the surface and enhancing the contact between the microorganism-substrate phases, In this sense, the stationary packed bed technology is adequate for the treatment of easily biodegradable wastewater, or for the cases where elevated percentages of CODr removal are not required, while the fluidized bed technology is especially suitable for treatment of hazardous wastes with recalcitrant compositions.

  6. Using a life cycle assessment methodology for the analysis of two treatment systems of food-processing industry wastewaters

    DEFF Research Database (Denmark)

    Maya Altamira, Larisa; Schmidt, Jens Ejbye; Baun, Anders

    2007-01-01

    sludge (Scenario 1), and anaerobic removal of organic matter by a continuous stirred tank reactor (Scenario 2). Both technologies were applied to wastewater coming from a fish meals industry and a pet food industry discharging about 250 to 260 thousand cubic meters of wastewater per year. The methodology...... comprises three major steps: (i) Data gathering regarding wastewater characteristics and discharge, (ii) Simulation of the wastewater treatment plant’s operation by dedicated process engineering models in Matlab/Simulink, (iii) Classification and calculation of life cycle inventory data: removal...... boundaries were limited from the influent entering the wastewater treatment plant until the disposal of the effluents generated, i.e. wastewater, sludge, and biogas (for Scenario 2). Main differences between Scenario 1 & Scenario 2 were: (i) Effluent quality was 65% better when pet food wastewater was fed...

  7. Advanced oxidation technologies : photocatalytic treatment of wastewater

    NARCIS (Netherlands)

    Chen, J.

    1997-01-01

    7.1. Summary and conclusions

    The last two decennia have shown a growing interest in the photocatalytic treatment of wastewater, and more and more research has been carried out into the various aspects of photocatalysis, varying from highly fundamental aspects to practical application.

  8. WASTEWATER TREATMENT USING MACROALGAE KELP SP.

    Directory of Open Access Journals (Sweden)

    Suzana Elena BIRIS-DORHOI

    2016-11-01

    Full Text Available In the present study was used the alga Kelp sp. in wastewater collected from a household, in order to experiment its treatment capacities. Every measurement in this study was made using Spectoquant NOVA 60. The results show an decrease in the main parameters when low quantities of algae were used, but an increase when larger quantities were used.

  9. Developing Anammox for mainstream municipal wastewater treatment

    NARCIS (Netherlands)

    Lotti, T.

    2016-01-01

    Conventional wastewater treatment plants (WWTPs), like activated sludge systems, are energy demanding requiring a large electrical energy supply (e.g. 25 kWh PE-1 year-1) which, especially during peak-load periods, may account for an important quote of the grid installed power of the surrounding are

  10. Developing Anammox for mainstream municipal wastewater treatment

    NARCIS (Netherlands)

    Lotti, T.

    2016-01-01

    Conventional wastewater treatment plants (WWTPs), like activated sludge systems, are energy demanding requiring a large electrical energy supply (e.g. 25 kWh PE-1 year-1) which, especially during peak-load periods, may account for an important quote of the grid installed power of the surrounding

  11. Denitrifying bioreactor clogging potential during wastewater treatment

    Science.gov (United States)

    Chemoheterotrophic denitrification technologies using woodchips as a solid carbon source (i.e., woodchip bioreactors) have been widely trialed for treatment of diffuse-source agricultural nitrogen pollution. There is growing interest in the use of this simple, relatively low-cost biological wastewat...

  12. Advanced oxidation technologies : photocatalytic treatment of wastewater

    NARCIS (Netherlands)

    Chen, J.

    1997-01-01

    7.1. Summary and conclusions

    The last two decennia have shown a growing interest in the photocatalytic treatment of wastewater, and more and more research has been carried out into the various aspects of photocatalysis, varying from highly fundamental aspects to practical application. Howeve

  13. Biological nutrient removal from meat processing wastewater using a sequencing batch reactor.

    Science.gov (United States)

    Thayalakumaran, N; Bhamidimarri, R; Bickers, P O

    2003-01-01

    Meat processing effluents are rich in nutrients (nitrogen: 75-200 mg L(-1) and phosphorus: 20-40 mg L(-1)) and COD (800-2,000 mg L(-1)) after primary treatment. A laboratory scale sequencing batch reactor (SBR) was operated for the treatment of a beef processing effluent from slaughtering and boning operations. An effective SBR cycle was found for removal of COD, nitrogen and phosphorus at 22 degrees C. The solid retention time was 15 days while the hydraulic retention time (HRT) was 2.5 days. The total nitrogen in the wastewater was reduced to less than 10 mg L(-1), while the total phosphorus decreased to less than 1.0 mg L(-1). The residual effluent soluble COD was found to be non-biodegradable as reflected by no further soluble COD removal following prolonged aeration. Removal of biodegradable soluble COD, ammonia nitrogen and soluble phosphate phosphorus of greater than 99% was achieved in the SBR. Good prediction of ammonia and nitrate nitrogen removal was obtained using IWA Activated Sludge Model. The operating cycle is shown to be appropriate to achieve simultaneous removal of COD and nutrients from the meat processing wastewater. Alkalinity and pH have an inverse relationship during the initial anaerobic and aerobic stages due to production and stripping of CO2. Use of a low level of DO in the final aerobic stage ensured complete ammonia removal and enhanced denitrification.

  14. Developing Anammox for mainstream municipal wastewater treatment

    OpenAIRE

    Lotti, T

    2016-01-01

    Conventional wastewater treatment plants (WWTPs), like activated sludge systems, are energy demanding requiring a large electrical energy supply (e.g. 25 kWh PE-1 year-1) which, especially during peak-load periods, may account for an important quote of the grid installed power of the surrounding area. Only across the EU, there are 16000 WWTPs that consume around 10000 GWh year-1 of electricity. Furthermore, the volume of wastewater treated in WWTPs in the EU is increasing with a rate of aroun...

  15. Microbial ecology of denitrification in biological wastewater treatment.

    Science.gov (United States)

    Lu, Huijie; Chandran, Kartik; Stensel, David

    2014-11-01

    Globally, denitrification is commonly employed in biological nitrogen removal processes to enhance water quality. However, substantial knowledge gaps remain concerning the overall community structure, population dynamics and metabolism of different organic carbon sources. This systematic review provides a summary of current findings pertaining to the microbial ecology of denitrification in biological wastewater treatment processes. DNA fingerprinting-based analysis has revealed a high level of microbial diversity in denitrification reactors and highlighted the impacts of carbon sources in determining overall denitrifying community composition. Stable isotope probing, fluorescence in situ hybridization, microarrays and meta-omics further link community structure with function by identifying the functional populations and their gene regulatory patterns at the transcriptional and translational levels. This review stresses the need to integrate microbial ecology information into conventional denitrification design and operation at full-scale. Some emerging questions, from physiological mechanisms to practical solutions, for example, eliminating nitrous oxide emissions and supplementing more sustainable carbon sources than methanol, are also discussed. A combination of high-throughput approaches is next in line for thorough assessment of wastewater denitrifying community structure and function. Though denitrification is used as an example here, this synergy between microbial ecology and process engineering is applicable to other biological wastewater treatment processes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Genome-based microbial ecology of anammox granules in a full-scale wastewater treatment system

    NARCIS (Netherlands)

    Speth, D.; Zandt, M.H. In 't; Guerrero-Cruz, S.; Dutilh, B.E.; Jetten, M.S.M

    2016-01-01

    Partial-nitritation anammox (PNA) is a novel wastewater treatment procedure for energy-efficient ammonium removal. Here we use genome-resolved metagenomics to build a genome-based ecological model of the microbial community in a full-scale PNA reactor. Sludge from the bioreactor examined here is use

  17. Genome-based microbial ecology of anammox granules in a full-scale wastewater treatment system

    NARCIS (Netherlands)

    Speth, D.; Zandt, M.H. In 't; Guerrero-Cruz, S.; Dutilh, B.E.; Jetten, M.S.M

    2016-01-01

    Partial-nitritation anammox (PNA) is a novel wastewater treatment procedure for energy-efficient ammonium removal. Here we use genome-resolved metagenomics to build a genome-based ecological model of the microbial community in a full-scale PNA reactor. Sludge from the bioreactor examined here is

  18. Analyzing the biomass filter behavior in an anaerobic wastewater treatment plants

    Energy Technology Data Exchange (ETDEWEB)

    Carlos-Hernandez, S.

    2009-07-01

    Nowadays, waste emissions in air, water and soil must be reduced in order to reach the more and more strict environmental rules. In the case of wastewater, there exists a big interest to improve treatment plants performances. The paper deals with the analysis, via the phase portraits method, of a biomass filter behavior in a completely stirred tank reactor deals with the analysis. (Author)

  19. Experimental study on the treatment of wastewater from food waste by a new type of internal circulation reactor%新型IC反应器处理餐厨垃圾废水的实验研究

    Institute of Scientific and Technical Information of China (English)

    王罕; 蒋文化; 顾礼炜; 马三剑

    2014-01-01

    采用内循环厌氧反应器(IC)处理餐厨垃圾废水。结果表明:采用快速提升负荷至5 kg/(m3·d)并稳定运行19 d这一启动方式有利于提高污泥的活性。负荷提升中后期,出水pH高于进水pH。IC处理餐厨垃圾废水的最大容积负荷为25.2 kg/(m3·d),此时COD去除率下降到86%。稳定运行期,当进水COD达到22.4 mg/L,出水COD稳定在1650~1950 mg/L,COD去除率高达91.8%。%The new type of internal circulation (IC ) reactor has been used for treating the wastewater from food waste water. The results show that in the start-up period,the start-up form of raising the load rapidly to 5 kg/(m3·d) and running the system steadily for 19 d,is good for improving the sludge activity. In the mid late period of load lifting,the pH of effluent is higher than that of influent. The maximum volume load of food-waste wastewater treated by IC reactor is 25.2 kg/(m3·d). At this time,the COD removing rate declines to 86%. In the steadily running period,when COD concentration of influent reaches 22.4 mg/L,the COD concentration of effluent stabilizes between 1 650-1 950 mg/L,and the COD removing rate reaches 91.8%.

  20. MBBR evaluation for oil refinery wastewater treatment, with post-ozonation and BAC, for wastewater reuse.

    Science.gov (United States)

    Schneider, E E; Cerqueira, A C F P; Dezotti, M

    2011-01-01

    This work evaluated the performance of a Moving Bed Biofilm Reactor (MBBR) in the treatment of an oil refinery wastewater. Also, it investigated the possibility of reuse of the MBBR effluent, after ozonation in series with a biological activated carbon (BAC) column. The best performance of the MBBR was achieved with a hydraulic retention time (HRT) of 6 hours, employing a bed to bioreactor volume ratio (V(B)/V(R)) of 0.6. COD and N-NH₄(+) MBBR effluent concentrations ranged from 40 to 75 mg L⁻¹ (removal efficiency of 69-89%) and 2 to 6 mg L⁻¹ (removal efficiency of 45-86%), respectively. Ozonation carried out for 15 min with an ozone concentration of 5 mg L⁻¹ was able to improve the treated wastewater biodegradability. The treatment performance of the BAC columns was practically the same for ozonated and non ozonated MBBR effluents. The dissolved organic carbon (DOC) content of the columns of the activated carbon columns (CAG) was in the range of 2.1-3.8 mg L⁻¹, and the corresponding DOC removal efficiencies were comprised between 52 and 75%. The effluent obtained at the end of the proposed treatment presented a quality, which meet the requirements for water reuse in the oil refinery.

  1. Development and application of some renovated technologies for municipal wastewater treatment in China

    Institute of Scientific and Technical Information of China (English)

    QIAN Yi; WEN Xianghua; HUANG Xia

    2007-01-01

    China has been experiencing fast economic development in recent decades at the cost of serious environmental deterioration.Wastewater discharge,especially municipal wastewater discharge,and non-point pollution sources are becoming the major water pollution source and research focus.Great efforts have been made on water pollution control and a number of renovated technologies and processes for municipal wastewater treatment and reclamation as well as non-point pollution control have been developed and applied in China.This paper discusses the development and application of the appropriate technologies,including natural treatment systems,anaerobic biological treatment,biofilm reactors and wastewater reclamation technologies,for water pollution control in the country.

  2. Effect of fermented wastewaters from butter production on phosphates removal in a sequencing batch reactor.

    Science.gov (United States)

    Janczukowicz, Wojciech; Rodziewicz, Joanna; Thornton, Arthur; Czaplicka, Kamila

    2012-09-01

    This study determined the potential for fermented wastewaters from butter production plant to act as a carbon source to facilitate phosphates removal. Synthetic dairy wastewaters were treated using SBR, with doses of fermented wastewaters. An increase in the fermented wastewater doses were found to improve the effluent quality in respect of phosphates and nitrates. The lowest concentrations of phosphate and nitrates, respectively 0.10 ± 0.04 mg PO(4)-PL(-1) and 1.03 ± 0.22 mg NO(3)-NL(-1), were noted in the effluent from the reactor fed with fermented wastewaters in a dose of 0.25 L d(-1) per 0.45 L d(-1) of wastewaters fed to the reactor. In the case of the two highest doses, an increase in effluent COD was stated. The higher effectiveness resulted from the fact that the introduction of fermented wastewaters caused an increase in the easily-available carbon compounds content and the predominance of acetic acid amongst VFAs available to dephosphatating and denitrifying bacteria.

  3. Design-Expert software design and optimization of the treatment of acrylic fiber wastewater with the charcoal cycle micro-electrolysis reactor%炭循环微电解反应器处理腈纶废水的Design-Expert设计优化

    Institute of Scientific and Technical Information of China (English)

    李洵; 张万友; 苗宇; 张海丰

    2011-01-01

    利用Design-Expert 7.1试验设计系统对炭循环微电解反应器处理腈纶废水的试验进行了试验设计和试验结果分析;通过试验设计分析得出了腈纶废水COD去除率与试验影响因素之间的定量关系模型,并得到了腈纶废水COD去除率的残差分布以及在不同影响因索变量之间的COD去除率等值线和三维关系.优化结果表明:利用Design-Expert 7.1对炭循环微电解反应器处理腈纶废水试验条件进行优化,得到了最佳COD去除率的操作条件.%Experimental design and result analysis of acrylic fiber wastewater treatment with the charcoal micro-electrolysis reactor have been carried out by using Design-Expert 7.1 software. The quantitative relationship model between the COD of acrylic fiber wastewater and influencing factors is obtained, based on the experimental design and analysis. The residual distribution of this wastewater COD removal rate,as well as the COD removal rate isoline and dimension relationship between different influencing factor variables,is also obtained. The optimized results show that the best operation conditions for COD removal rate of acrylic fiber wastewater with charcoal cycle micro-electrolysis reactor are obtained by using Design-Expert 7.1.

  4. Sustainability assessment of advanced wastewater treatment technologies

    DEFF Research Database (Denmark)

    Høibye, Linda; Clauson-Kaas, Jes; Wenzel, Henrik

    2007-01-01

    As a consequence of the EU Water Framwork Directive, more focus is now on discharges of hazardous substances from wastewater treatment plants and sewers. Thus, many municipalities in Denmark may have to adopt to future advenced treatment technologies. This paper describes a holistic assessment...... of sustainability, sand filtration is the most advantageous method based on the technical and environmental assessment due to the low energy consumption and high efficiency with regard to the removal of heavy metals....

  5. Bioaugmentative Approaches for Dairy Wastewater Treatment

    OpenAIRE

    Irina Schneider; Yana Topalova

    2010-01-01

    Problem statement: The achievement of a good ecological status of water receivers after discharge of waste or partially treated water from dairy industry requires harmonic interaction between water treatment technology and self-purification processes. Approach: The present research included two modules. First: an anaerobic treatment process for dairy wastewater in broadly spread sequencing batch bioreactor with fixed biomass was studied. As a source of active biological sy...

  6. Performance evaluation of an Anaerobic Migrating Blanket Reactor in the biodegradation of perchloroethylene from industrial wastewaters

    Directory of Open Access Journals (Sweden)

    Mohammad Mehdi Amin

    2012-01-01

    Full Text Available Aims: The aim of this study is to determine the PCE biodegradation potential in an Anaerobic Migrating Blanket Reactor (AMBR that has not been used so far for the bioremediation of this compound, in high concentration, and to evaluate the system performance. Materials and Methods: This study was an Experimental - Interventional study that was done from April 2010 to March 2011, in the Isfahan University of Medical Sciences. The AMBR was used in a type of laboratory scale, with a volume of 10 L, which was divided into four compartments, for the biological degradation of PCE in a synthetic substrate. The startup was done using anaerobic digested sewage sludge. The performance of the reactor was evaluated during four periods, with a PCE loading rate of 3.75 until 75 mg PCE/L.d. The hydraulic retention time (HRT was 32 hours. Results: Optimum chemical oxygen demand (COD removal efficiency was obtained, 98%, with an organic loading rate (OLR equal to 3.1 g COD/L.d. For PCE removal, the optimum efficiency was observed to be 99.8%, with a PCE loading rate equal to 37.5 mg PCE/L.d. The average COD and PCE removal rates for the whole activity period of the reactor were 91.4 and 99.5%, respectively; 1.1 ± 0.7% from the influent PCE was adsorbed on the biomass and 20% was found in the headspace. Conclusions: The AMBR reactor, which provides full-scale studies and uses real industrial wastewater polluted with PCE, is a simple, efficient, and reliable method for the treatment of PCE.

  7. Prevalence and fate of Giardia cysts in wastewater treatment plants.

    Science.gov (United States)

    Nasser, A M; Vaizel-Ohayon, D; Aharoni, A; Revhun, M

    2012-09-01

    The present study was conducted to review factors affecting the prevalence and concentration of Giardia in raw wastewater. The removal and inactivation efficiency of Giardia by wastewater treatment technologies was also reviewed. Data published for the prevalence of Giardia in wastewater and the removal by wastewater treatment plants was reviewed. Giardia cysts are highly prevalent in wastewater in various parts of the world, which may reflect the infection rate in the population. In 23 of 30 (76.6%) studies, all of the tested raw wastewater samples were positive for Giardia cysts at concentrations ranging from 0.23 to 100 000 cysts l(-1). The concentration of Giardia in raw wastewater was not affected by the geographical region or the socio-economic status of the community. Discharge of raw wastewater or the application of raw wastewater for irrigation may result in Giardia transmission. Activated sludge treatment resulted in a one to two orders of magnitude reduction in Giardia, whereas a stabilization pond with a high retention time removed up to 100% of the cysts from wastewater. High-rate sand filtration, ultrafiltration and UV disinfection were reported as the most efficient wastewater treatment methods for removal and disinfection of Giardia cysts. Wastewater treatment may not totally prevent the environmental transmission of Giardia cysts. The reviewed data show that a combination of wastewater treatment methods may results in efficient removal of Giardia cysts and prevent their environmental transmission.

  8. Towards energy positive wastewater treatment plants.

    Science.gov (United States)

    Gikas, Petros

    2017-12-01

    Energy requirement for wastewater treatment is of major concern, lately. This is not only due to the increasing cost of electrical energy, but also due to the effects to the carbon footprint of the treatment process. Conventional activated sludge process for municipal wastewater treatment may consume up to 60% of the total plant power requirements for the aeration of the biological tank. One way to deal with high energy demand is by eliminating aeration needs, as possible. The proposed process is based on enhanced primary solids removal, based on advanced microsieving and filtration processes, by using a proprietary rotating fabric belt MicroScreen (pore size: 100-300 μm) followed by a proprietary Continuous Backwash Upflow Media Filter or cloth media filter. About 80-90% reduction in TSS and 60-70% reduction in BOD5 has been achieved by treating raw municipal wastewater with the above process. Then the partially treated wastewater is fed to a combination low height trickling filters, combined with encapsulated denitrification, for the removal of the remaining BOD and nitrogen. The biosolids produced by the microsieve and the filtration backwash concentrate are fed to an auger press and are dewatered to about 55% solids. The biosolids are then partially thermally dried (to about 80% solids) and conveyed to a gasifier, for the co-production of thermal (which is partly used for biosolids drying) and electrical energy, through syngas combustion in a co-generation engine. Alternatively, biosolids may undergo anaerobic digestion for the production of biogas and then electric energy. The energy requirements for complete wastewater treatment, per volume of inlet raw wastewater, have been calculated to 0.057 kWh/m(3), (or 0.087 kWh/m(3), if UV disinfection has been selected), which is about 85% below the electric energy needs of conventional activated sludge process. The potential for net electric energy production through gasification/co-generation, per volume of

  9. MEMBRANE BIOREACTOR FOR TREATMENT OF RECALCITRANT WASTEWATERS

    Directory of Open Access Journals (Sweden)

    Suprihatin Suprihatin

    2012-02-01

    Full Text Available The low biodegradable wastewaters remain a challenge in wastewater treatment technology. The performance of membrane bioreactor systems with submerged hollow fiber micro- and ultrafiltration membrane modules were examined for purifying recalcitrant wastewaters of leachate of a municipal solid waste open dumping site and effluent of pulp and paper mill. The use of MF and UF membrane bioreactor systems showed an efficient treatment for both types wastewaters with COD reduction of 80-90%. The membrane process achieved the desirable effects of maintaining reasonably high biomass concentration and long sludge retention time, while producing a colloid or particle free effluent. For pulp and paper mill effluent a specific sludge production of 0.11 kg MLSS/kg COD removed was achieved. A permeate flux of about 5 L/m²h could be achieved with the submerged microfiltration membrane. Experiments using ultrafiltration membrane produced relatively low permeate fluxes of 2 L/m²h. By applying periodical backwash, the flux could be improved significantly. It was indicated that the particle or colloid deposition on membrane surface was suppressed by backwash, but reformation of deposit was not effectively be prevented by shear-rate effect of aeration. Particle and colloid started to accumulate soon after backwash. Construction of membrane module and operation mode played a critical role in achieving the effectiveness of aeration in minimizing deposit formation on the membrane surface.

  10. Biological treatment of pharmaceutical wastewater from the antibiotics industry.

    Science.gov (United States)

    Lefebvre, O; Shi, X; Wu, C H; Ng, H Y

    2014-01-01

    Pharmaceutical wastewater generated by an antibiotics (penicillin) company was treated by aerobic membrane bioreactors (MBRs) and sequencing batch reactors (SBRs). At a low organic loading rate of 0.22 kg-COD m(-3)d(-1), both types of reactors were capable of treating the wastewater such that the treated effluent met the discharge regulation except for the total dissolved solids. However, when the loading rate was increased to 2.92 kg-COD m(-3)d(-1), foaming issues resulted in unstable performance. Overall, the MBRs achieved better solid removal but the SBRs performed better in regards to the degradation of aromatic compounds, as determined by UV absorbance (UVA). Finally, ozonation was applied on two different streams and showed promise on the strong stream - that corresponds to the formulation effluent and contains most of the biorefractory compounds. Ozonation successfully reduced the UVA, lowered the pH and increased the biochemical oxygen demand : chemical oxygen demand (BOD5 : COD) ratio of the strong stream. However, it was less efficient on the effluent having undergone pre-treatment by a biofilter due to a lack of selectivity towards refractory compounds.

  11. Utilization of Waste Materials for Microbial Carrier in Wastewater Treatment

    Directory of Open Access Journals (Sweden)

    H. T. Le

    2016-01-01

    Full Text Available This research focused on the ammonium-nitrogen (NH4-N removal from the domestic wastewater using the attached growth reactors. Two types of waste material of corncob (biodegradable material and concrete (nonbiodegradable material were used as the carrier for microorganisms’ attachment. During operation, both reactors achieved absolutely high performance of ammonium removal (up to 99% and total nitrogen removal (up to 95%. The significant advantage of corncob carrier was that the corncob was able to be a source of carbon for biological denitrification, leading to no external carbon requirement for operating the system. However, the corncob caused an increasing turbidity of the effluent. On the other hand, the concrete carrier required the minimal external carbon of 3.5 C/N ratio to reach the good performance. Moreover, a longer period for microorganisms’ adaptation was found in the concrete carrier rather than the corncob carrier. Further, the same physiological and biochemical characteristics of active bacteria were found at the two carriers, which were negative gram, cocci shape, and smooth and white-turbid colony. Due to the effluent quality, the concrete was more appropriate carrier than the corncob for wastewater treatment.

  12. Simulation of wastewater treatment plant within integrated urban wastewater models.

    Science.gov (United States)

    Heusch, S; Kamradt, B; Ostrowski, M

    2010-01-01

    In the federal state of Hesse in Germany the application of an integrated software modelling framework is becoming part of the planning process to attain legal approval for the operation of combined sewer systems. The software allows for parallel simulation of flow and water quality routing in the sewer system and in receiving rivers. It combines existing pollution load model approaches with a simplified version of the River Water Quality Model No. 1 (RWQM1). Comprehensive simulation of the wastewater treatment plant (WWTP) is not considered yet. The paper analyses alternatives for the implementation of a WWTP module to model activated sludge plants. For both primary and secondary clarifiers as well as for the activated sludge process concepts for the integration into the existing software framework were developed. The activated sludge concept which uses a linearized version of the well known ASM1 model is presented in detail.

  13. Supercritical gasification for the treatment of o-cresol wastewater

    Institute of Scientific and Technical Information of China (English)

    WEI Chao-hai; HU Cheng-sheng; WU Chao-fei; YAN Bo

    2006-01-01

    The supercritical water gasification of phenolic wastewater without oxidant was performed to degrade pollutants and produce hydrogen-enriched gases. The simulated o-cresol wastewater was gasified at 440-650℃ and 27.6 MPa in a continuous Inconel 625 reactor with the residence time of 0.42-1.25 min. The influence of the reaction temperature, residence time, pressure,catalyst, oxidant and the pollutant concentration on the gasification efficiency was investigated. Higher temperature and longer residence time enhanced the o-cresol gasification. The TOC removal rate and hydrogen gasification rate were 90.6% and 194.6%,respectively, at the temperature of 650℃ and the residence time of 0.83 min. The product gas was mainly composed of H2, CO2, CH4 and CO, among which the total molar percentage of H2 and CH4 was higher than 50%. The gasification efficiency decreased with the pollutant concentration increasing. Both the catalyst and oxidant could accelerate the hydrocarbon gasification at a lower reaction temperature, in which the catalyst promoted H2 production and the oxidant enhanced CO2 generation. The intermediates of liquid effluents were analyzed and phenol was found to be the main composition. The results indicate that the supercritical gasification is a promising way for the treatment of hazardous organic wastewater.

  14. The efficacy of ozone as a pre- and post-treatment option for UASB-treated food processing wastewaters.

    Science.gov (United States)

    Sigge, G O; Britz, T J; Fourie, P C; Barnardt, C A

    2005-01-01

    The efficiency of ozone as a pre- and post-treatment to UASB treatment was investigated, followed by a study into UASB reactor performance with ozonated wastewater as substrate. Combinations of pre- and/or post-ozonation with UASB treatment gave better results than ozonation or UASB alone and COD reductions of 53.0-98.9% were achieved for treatment of canning and winery wastewaters. A UASB reactor was fed with pre-ozonated cannery wastewater for over 70 d. COD removal improved from between 58.8 and 64.4% to between 85.3 and 91.8% after pre-ozonated substrate feed commenced. Subsequent increases in organic loading rate (OLR) from 2.4 to 3.4 kgCOD m(-3) x d(-1) did not affect reactor performance. By including a final post-ozonation treatment to this UASB effluent a total COD reduction of 99.2% was achieved.

  15. 新型高效反应器组合系统处理奶牛养殖场废水试验研究%The Dairy Farm Wastewater Treatment with New Efficient Reactor System

    Institute of Scientific and Technical Information of China (English)

    王艳芹; 刘兆辉; 边文范; 袁长波; 姚利; 张昌爱; 李国生

    2011-01-01

    With the rapid development of current dairy cow cultivation,a large number of manure were produced, which had caused environmental pollution. A new efficient reactor system had been used for treating dairy farm wastewater. The system was mainly formed of two anaerobic bio-nest reaetors. One was bio-nest reactor; the other was sand-type reactor. Anaerobic bio-nest reactor was a kind of new efficient anaerobic reactor by biological nest material as a carrier. The biological nest material is a number of long spiral band structure cut by the black PVC pipe, width of 1.5 cm, thickness of 0.15~0.21 mm, surface area of 2 800~3 000 m2·m-3, conducive to the adsorption and growth of bacteria. At the same time, due to the little difference of the proportion of the material with water, the material would automatically float with the water in the anaerobic reactor, which increased the contact with the wastewater and elevate efficiency. Sand-type was a kind of new slurry handling equipment by substrate and microbial synergy through physical, chemical and biological role, with different particle size yellow sand as a substrate handling slurry, hydraulic loading 0.04 m2·m-2·d-1. Test results indicated that:The HRT of the system was 15 h; the removal rates of COD, BOD, NH3-N and TSS were 97.6%, 98.2%, 81.3% and 98.1% respectively. The final discharge concentrations were 89.0, 27.1,15.7 and 6.49 mg·L-1 respectively, which satisfy the second level of National Discharge Standard. The system was suitable for promotion and use in the dairy farms.%选择一种新型高效反应器系统对奶牛养殖场废水进行处理试验研究,这种反应器系统主要包括两级组合生物巢厌氧反应器和砂式沼液处理池.试验结果表明,该系统处理奶牛养殖废水速度快,两级组合生物巢厌氧反应器水力停留时间(HRT)仅为15h,处理效率高,砂式沼液处理池结构简单,对生物巢厌氧反应器出水处理效果好.该新型高效反

  16. Energy positive domestic wastewater treatment: the roles of anaerobic and phototrophic technologies

    KAUST Repository

    Shoener, B. D.

    2014-01-01

    The negative energy balance of wastewater treatment could be reversed if anaerobic technologies were implemented for organic carbon oxidation and phototrophic technologies were utilized for nutrient recovery. To characterize the potential for energy positive wastewater treatment by anaerobic and phototrophic biotechnologies we performed a comprehensive literature review and analysis, focusing on energy production (as kJ per capita per day and as kJ m-3 of wastewater treated), energy consumption, and treatment efficacy. Anaerobic technologies included in this review were the anaerobic baffled reactor (ABR), anaerobic membrane bioreactor (AnMBR), anaerobic fluidized bed reactor (AFB), upflow anaerobic sludge blanket (UASB), anaerobic sequencing batch reactor (ASBR), microbial electrolysis cell (MEC), and microbial fuel cell (MFC). Phototrophic technologies included were the high rate algal pond (HRAP), photobioreactor (PBR), stirred tank reactor, waste stabilization pond (WSP), and algal turf scrubber (ATS). Average energy recovery efficiencies for anaerobic technologies ranged from 1.6% (MFC) to 47.5% (ABR). When including typical percent chemical oxygen demand (COD) removals by each technology, this range would equate to roughly 40-1200 kJ per capita per day or 110-3300 kJ m-3 of treated wastewater. The average bioenergy feedstock production by phototrophic technologies ranged from 1200-4700 kJ per capita per day or 3400-13000 kJ m-3 (exceeding anaerobic technologies and, at times, the energetic content of the influent organic carbon), with usable energy production dependent upon downstream conversion to fuels. Energy consumption analysis showed that energy positive anaerobic wastewater treatment by emerging technologies would require significant reductions of parasitic losses from mechanical mixing and gas sparging. Technology targets and critical barriers for energy-producing technologies are identified, and the role of integrated anaerobic and phototrophic

  17. Optimization of up-flow anaerobic sludge blanket reactor for ...

    African Journals Online (AJOL)

    aghomotsegin

    2013-06-05

    Jun 5, 2013 ... petroleum refinery wastewater (Rastegar et al., 2011), poultry wastewater ... production of methane by methanogenic bacteria. Compared with ..... treatment of a recalcitrant distillery wastewater by thermophilic UASB reactor.

  18. Performance of up flow anaerobic sludge fixed film bioreactor for the treatment of high organic load and biogas production of cheese whey wastewater

    OpenAIRE

    Tehrani Nazila Samimi; Najafpour Ghasem D.; Rahimnejad Mostafa; Attar Hossein

    2015-01-01

    Among various wastewater treatment technologies, biological wastewater treatment appears to be the most promising method. A pilot scale of hybrid anaerobic bioreactor was fabricated and used for the whey wastewater treatment. The top and bottom of the hybrid bioreactor known as up flow anaerobic sludge fixed film (UASFF); was a combination of up flow anaerobic sludge blanket (UASB) and up flow anaerobic fixed film reactor (UAFF), respectively. The effects o...

  19. Removal of steroid estrogens from municipal wastewater in a pilot scale expanded granular sludge blanket reactor and anaerobic membrane bioreactor

    Science.gov (United States)

    Ito, Ayumi; Mensah, Lawson; Cartmell, Elise; Lester, John N.

    2016-01-01

    Anaerobic treatment of municipal wastewater offers the prospect of a new paradigm by reducing aeration costs and minimizing sludge production. It has been successfully applied in warm climates, but does not always achieve the desired outcomes in temperate climates at the biochemical oxygen demand (BOD) values of municipal crude wastewater. Recently the concept of ‘fortification' has been proposed to increase organic strength and has been demonstrated at the laboratory and pilot scale treating municipal wastewater at temperatures of 10–17°C. The process treats a proportion of the flow anaerobically by combining it with primary sludge from the residual flow and then polishing it to a high effluent standard aerobically. Energy consumption is reduced as is sludge production. However, no new treatment process is viable if it only addresses the problems of traditional pollutants (suspended solids – SS, BOD, nitrogen – N and phosphorus – P); it must also treat hazardous substances. This study compared three potential municipal anaerobic treatment regimes, crude wastewater in an expanded granular sludge blanket (EGSB) reactor, fortified crude wastewater in an EGSB and crude wastewater in an anaerobic membrane bioreactor. The benefits of fortification were demonstrated for the removal of SS, BOD, N and P. These three systems were further challenged with the removal of steroid estrogens at environmental concentrations from natural indigenous sources. All three systems removed these compounds to a significant degree, confirming that estrogen removal is not restricted to highly aerobic autotrophs, or aerobic heterotrophs, but is also a faculty of anaerobic bacteria. PMID:26212345

  20. Cascade degradation of organic matters in brewery wastewater using a continuous stirred microbial electrochemical reactor and analysis of microbial communities

    Science.gov (United States)

    Wang, Haiman; Qu, Youpeng; Li, Da; Ambuchi, John J.; He, Weihua; Zhou, Xiangtong; Liu, Jia; Feng, Yujie

    2016-01-01

    A continuous stirred microbial electrochemical reactor (CSMER), comprising of a complete mixing zone (CMZ) and microbial electrochemical zone (MEZ), was used for brewery wastewater treatment. The system realized 75.4 ± 5.7% of TCOD and 64.9 ± 4.9% of TSS when fed with brewery wastewater concomitantly achieving an average maximum power density of 304 ± 31 m W m−2. Cascade utilization of organic matters made the CSMER remove a wider range of substrates compared with a continuous stirred tank reactor (CSTR), in which process 79.1 ± 5.6% of soluble protein and 86.6 ± 2.2% of soluble carbohydrates were degraded by anaerobic digestion in the CMZ and short-chain volatile fatty acids were further decomposed and generated current in the MEZ. Co-existence of fermentative bacteria (Clostridium and Bacteroides, 19.7% and 5.0%), acetogenic bacteria (Syntrophobacter, 20.8%), methanogenic archaea (Methanosaeta and Methanobacterium, 40.3% and 38.4%) and exoelectrogens (Geobacter, 12.4%) as well as a clear spatial distribution and syntrophic interaction among them contributed to the cascade degradation process in CSMER. The CSMER shows great promise for practical wastewater treatment application due to high pre-hydrolysis and acidification rate, high energy recovery and low capital cost. PMID:27270788

  1. Cascade degradation of organic matters in brewery wastewater using a continuous stirred microbial electrochemical reactor and analysis of microbial communities.

    Science.gov (United States)

    Wang, Haiman; Qu, Youpeng; Li, Da; Ambuchi, John J; He, Weihua; Zhou, Xiangtong; Liu, Jia; Feng, Yujie

    2016-06-07

    A continuous stirred microbial electrochemical reactor (CSMER), comprising of a complete mixing zone (CMZ) and microbial electrochemical zone (MEZ), was used for brewery wastewater treatment. The system realized 75.4 ± 5.7% of TCOD and 64.9 ± 4.9% of TSS when fed with brewery wastewater concomitantly achieving an average maximum power density of 304 ± 31 m W m(-2). Cascade utilization of organic matters made the CSMER remove a wider range of substrates compared with a continuous stirred tank reactor (CSTR), in which process 79.1 ± 5.6% of soluble protein and 86.6 ± 2.2% of soluble carbohydrates were degraded by anaerobic digestion in the CMZ and short-chain volatile fatty acids were further decomposed and generated current in the MEZ. Co-existence of fermentative bacteria (Clostridium and Bacteroides, 19.7% and 5.0%), acetogenic bacteria (Syntrophobacter, 20.8%), methanogenic archaea (Methanosaeta and Methanobacterium, 40.3% and 38.4%) and exoelectrogens (Geobacter, 12.4%) as well as a clear spatial distribution and syntrophic interaction among them contributed to the cascade degradation process in CSMER. The CSMER shows great promise for practical wastewater treatment application due to high pre-hydrolysis and acidification rate, high energy recovery and low capital cost.

  2. Fluidized-Bed Bioreactor Applications for Biological Wastewater Treatment: A Review of Research and Developments

    Directory of Open Access Journals (Sweden)

    Michael J. Nelson

    2017-06-01

    Full Text Available Wastewater treatment is a process that is vital to protecting both the environment and human health. At present, the most cost-effective way of treating wastewater is with biological treatment processes such as the activated sludge process, despite their long operating times. However, population increases have created a demand for more efficient means of wastewater treatment. Fluidization has been demonstrated to increase the efficiency of many processes in chemical and biochemical engineering, but it has not been widely used in large-scale wastewater treatment. At the University of Western Ontario, the circulating fluidized-bed bioreactor (CFBBR was developed for treating wastewater. In this process, carrier particles develop a biofilm composed of bacteria and other microbes. The excellent mixing and mass transfer characteristics inherent to fluidization make this process very effective at treating both municipal and industrial wastewater. Studies of lab- and pilot-scale systems showed that the CFBBR can remove over 90% of the influent organic matter and 80% of the nitrogen, and produces less than one-third as much biological sludge as the activated sludge process. Due to its high efficiency, the CFBBR can also be used to treat wastewaters with high organic solid concentrations, which are more difficult to treat with conventional methods because they require longer residence times; the CFBBR can also be used to reduce the system size and footprint. In addition, it is much better at handling and recovering from dynamic loadings (i.e., varying influent volume and concentrations than current systems. Overall, the CFBBR has been shown to be a very effective means of treating wastewater, and to be capable of treating larger volumes of wastewater using a smaller reactor volume and a shorter residence time. In addition, its compact design holds potential for more geographically localized and isolated wastewater treatment systems.

  3. Treatment of Distillery Wastewater by Anaerobic Methods

    Directory of Open Access Journals (Sweden)

    Vandana Patyal

    2015-12-01

    Full Text Available One of the major environmental problems faced by the world is management of wastes. Industrial processes create a wide range of wastewater pollutants; which are not only difficult but costly to treat. Characteristics of wastewater and level of pollutants vary significantly from industry to industry. To control this problem today emphasis is laid on waste minimization and revenue generation through by-product and energy recovery. Pollution prevention focuses on preventing the harmful effect of generated wastewater on the environment, while waste minimization refers to reducing the volume or toxicity of hazardous wastes by water recycling and reuse, process modifications and by by-product recovery. Production of ethyl alcohol in distilleries based on cane sugar molasses constitutes a major industry in Asia and South America. The world’s total production of alcohol from cane molasses is more than13 million m3 /annum. The aqueous distillery effluent stream known as spent wash is a dark brown highly organic effluent and is approximately 12-15 times by volume of the product alcohol. This highly aqueous, organic soluble containing residue is considered a troublesome and potentially polluting waste due to its extremely high BOD and COD values. Because of the high concentration of organic load, distillery spent wash is a potential source of renewable energy. The paper reviews the possibility of anaerobic treatment of the distillery wastewater.

  4. Cheese whey wastewater: characterization and treatment.

    Science.gov (United States)

    Carvalho, Fátima; Prazeres, Ana R; Rivas, Javier

    2013-02-15

    Cheese whey wastewater (CWW) is a strong organic and saline effluent whose characterization and treatment have not been sufficiently addressed. CWW composition is highly variable due to raw milk used, the fraction of non valorized cheese whey and the amount of cleaning water used. Cheese whey wastewater generation is roughly four times the volume of processed milk. This research tries to conduct an exhaustive compilation of CWW characterization and a comparative study between the different features of CWW, cheese whey (CW), second cheese whey (SCW) and dairy industry effluents. Different CWW existing treatments have also been critically analyzed. The advantages and drawbacks in aerobic/anaerobic processes have been evaluated. The benefits of physicochemical pre-stages (i.e. precipitation, coagulation-flocculation) in biological aerobic systems are assessed. Pre-treatments based on coagulation or basic precipitation might allow the application of aerobic biodegradation treatments with no dilution requirements. Chemical precipitation with lime or NaOH produces a clean wastewater and a sludge rich in organic matter, N and P. Their use in agriculture may lead to the implementation of Zero discharge systems.

  5. Feasibility assessment of electrocoagulation towards a new sustainable wastewater treatment.

    Science.gov (United States)

    Rodriguez, Jackson; Stopić, Srećko; Krause, Gregor; Friedrich, Bernd

    2007-11-01

    Electrocoagulation (EC) may be a potential answer to environmental problems dealing with water reuse and rational waste management. The aim of this research was to assess the feasibility of EC-process for industrial contaminated effluents from copper production, taking into consideration technical and economical factors. EC-technology claims to offer efficient removal rates for most types of wastewater impurities at low power consumption and without adding any precipitating agents. Real wastewater from Saraka stream with high concentrations of heavy metals was provided by RTB-BOR, a Serbian copper mining and smelting complex. Runs were performed on a 10 l EC-reactor using aluminum plates as sacrificial electrodes and powered by a 40 A supply unit. Results concerning key factors like pH, conductivity and power consumption were measured in real time. Analysis of dissolved metal concentrations before and after treatment were carried out via ICP-OES and confirmed by an independent test via AAS. Several aspects were taken into account, including current density, conductivity, interfacial resistivity and reactor settings throughout the runs, in order to analyze all possible factors playing a role in neutralization and metal removal in real industrial wastewater. Electrode configurations and their effects on energy demand were discussed and exemplified based on fundamentals of colloidal and physical chemistry. Based on experimental data and since no precipitating agents were applied, the EC-process proved to be not only feasible and environmentally-friendly, but also a cost-effective technology The EC-technology provides strategic guidelines for further research and development of sustainable water management processes. However, additional test series concerning continuous operation must be still performed in order to get this concept ready for future large-scale applications.

  6. Wastewater treatment using hybrid treatment schemes based on cavitation and Fenton chemistry: a review.

    Science.gov (United States)

    Bagal, Manisha V; Gogate, Parag R

    2014-01-01

    Advanced oxidation processes such as cavitation and Fenton chemistry have shown considerable promise for wastewater treatment applications due to the ease of operation and simple reactor design. In this review, hybrid methods based on cavitation coupled with Fenton process for the treatment of wastewater have been discussed. The basics of individual processes (Acoustic cavitation, Hydrodynamic cavitation, Fenton chemistry) have been discussed initially highlighting the need for combined processes. The different types of reactors used for the combined processes have been discussed with some recommendations for large scale operation. The effects of important operating parameters such as solution temperature, initial pH, initial pollutant concentration and Fenton's reagent dosage have been discussed with guidelines for selection of optimum parameters. The optimization of power density is necessary for ultrasonic processes (US) and combined processes (US/Fenton) whereas the inlet pressure needs to be optimized in the case of Hydrodynamic cavitation (HC) based processes. An overview of different pollutants degraded under optimized conditions using HC/Fenton and US/Fenton process with comparison with individual processes have been presented. It has been observed that the main mechanism for the synergy of the combined process depends on the generation of additional hydroxyl radicals and its proper utilization for the degradation of the pollutant, which is strongly dependent on the loading of hydrogen peroxide. Overall, efficient wastewater treatment with high degree of energy efficiency can be achieved using combined process operating under optimized conditions, as compared to the individual process.

  7. Hybrid Moving Bed Biofilm Reactor for the biodegradation of benzotriazoles and hydroxy-benzothiazole in wastewater

    DEFF Research Database (Denmark)

    Mazioti, Aikaterini A.; Stasinakis, Athanasios S.; Psoma, Aikaterini K.;

    2017-01-01

    A laboratory scale Hybrid Moving Bed Biofilm Reactor (HMBBR) was used to study the removal of five benzotriazoles and one benzothiazole from municipal wastewater. The HMBBR system consisted of two serially connected fully aerated bioreactors that contained activated sludge (AS) and K3-biocarriers...

  8. Preliminary Study: Treatment of Food Indu