WorldWideScience

Sample records for wastewater treatment processes

  1. Treatment of Biodiesel Wastewater by Electrocoagulation Process

    Directory of Open Access Journals (Sweden)

    Anchalee Srirangsan

    2009-07-01

    Full Text Available The objective of this research was to determine the optimum conditions for biodiesel wastewater treatment using an electrocoagulation process. Wastewater samples were obtained from a small-scale, commercial biodiesel production plant that employs an alkali-catalyzed tranesterification process. The wastewater was characterized by the high contents of alkali and high oil content of 6,020 mg/L. Tested operational conditions included types of electrode, current density, retention time and initial pH. The tested electrode materials for electrocoagulation were aluminum (Al, iron (Fe and graphite (C. Five tested pairs of anode and cathode materials included Fe-Fe, Fe-C, Al-Al, Al-C, C-C. Results show that the optimum conditions were achieved by using the electrodes of Al-C, applying the current density of 8.32 mA/cm2 to the wastewater with an initial pH value of 6 for 25 min. The removal efficiency was found to be 97.8 % for grease & oil (G&O, 96.9 % for SS and 55.4 % for COD. Moreover, the small amount of produced sludge was readily to remove from the treated wastewater.

  2. Forward Osmosis in Wastewater Treatment Processes.

    Science.gov (United States)

    Korenak, Jasmina; Basu, Subhankar; Balakrishnan, Malini; Hélix-Nielsen, Claus; Petrinic, Irena

    2017-01-01

    In recent years, membrane technology has been widely used in wastewater treatment and water purification. Membrane technology is simple to operate and produces very high quality water for human consumption and industrial purposes. One of the promising technologies for water and wastewater treatment is the application of forward osmosis. Essentially, forward osmosis is a process in which water is driven through a semipermeable membrane from a feed solution to a draw solution due to the osmotic pressure gradient across the membrane. The immediate advantage over existing pressure driven membrane technologies is that the forward osmosis process per se eliminates the need for operation with high hydraulic pressure and forward osmosis has low fouling tendency. Hence, it provides an opportunity for saving energy and membrane replacement cost. However, there are many limitations that still need to be addressed. Here we briefly review some of the applications within water purification and new developments in forward osmosis membrane fabrication.

  3. Discussion on Wastewater Treatment Process of Coal Chemical Industry

    Science.gov (United States)

    Zhao, Dongyan; Lun, Weijie; Wei, Junjie

    2017-12-01

    Coal chemical wastewater has such characteristics as high concentration of oil, ammonia nitrogen and COD. In this paper, treatment process of coal chemical industry is described mainly, such as pretreatment process, biochemical treatment process and polishing process. Through the recovery of phenol and ammonia and the treatment of wastewater from abroad, the new technology of wastewater treatment in coal chemical industry was expounded. Finally, The development of coal chemical wastewater treatment technology is prospected, and the pretreatment technology is emphasized. According to the diversification and utilization of water, zero discharge of coal chemical wastewater will be fulfilled.

  4. Wastewater Treatment.

    Science.gov (United States)

    Zoltek, J., Jr.; Melear, E. L.

    1978-01-01

    Presents the 1978 literature review of wastewater treatment. This review covers: (1) process application; (2) coagulation and solids separation; (3) adsorption; (4) ion exchange; (5) membrane processes; and (6) oxidation processes. A list of 123 references is also presented. (HM)

  5. Nitrous oxide emissions from wastewater treatment processes

    Science.gov (United States)

    Law, Yingyu; Ye, Liu; Pan, Yuting; Yuan, Zhiguo

    2012-01-01

    Nitrous oxide (N2O) emissions from wastewater treatment plants vary substantially between plants, ranging from negligible to substantial (a few per cent of the total nitrogen load), probably because of different designs and operational conditions. In general, plants that achieve high levels of nitrogen removal emit less N2O, indicating that no compromise is required between high water quality and lower N2O emissions. N2O emissions primarily occur in aerated zones/compartments/periods owing to active stripping, and ammonia-oxidizing bacteria, rather than heterotrophic denitrifiers, are the main contributors. However, the detailed mechanisms remain to be fully elucidated, despite strong evidence suggesting that both nitrifier denitrification and the chemical breakdown of intermediates of hydroxylamine oxidation are probably involved. With increased understanding of the fundamental reactions responsible for N2O production in wastewater treatment systems and the conditions that stimulate their occurrence, reduction of N2O emissions from wastewater treatment systems through improved plant design and operation will be achieved in the near future. PMID:22451112

  6. Bacteriophages-potential for application in wastewater treatment processes

    International Nuclear Information System (INIS)

    Withey, S.; Cartmell, E.; Avery, L.M.; Stephenson, T.

    2005-01-01

    Bacteriophages are viruses that infect and lyse bacteria. Interest in the ability of phages to control bacterial populations has extended from medical applications into the fields of agriculture, aquaculture and the food industry. Here, the potential application of phage techniques in wastewater treatment systems to improve effluent and sludge emissions into the environment is discussed. Phage-mediated bacterial mortality has the potential to influence treatment performance by controlling the abundance of key functional groups. Phage treatments have the potential to control environmental wastewater process problems such as: foaming in activated sludge plants; sludge dewaterability and digestibility; pathogenic bacteria; and to reduce competition between nuisance bacteria and functionally important microbial populations. Successful application of phage therapy to wastewater treatment does though require a fuller understanding of wastewater microbial community dynamics and interactions. Strategies to counter host specificity and host cell resistance must also be developed, as should safety considerations regarding pathogen emergence through transduction

  7. Digital image processing and analysis for activated sludge wastewater treatment.

    Science.gov (United States)

    Khan, Muhammad Burhan; Lee, Xue Yong; Nisar, Humaira; Ng, Choon Aun; Yeap, Kim Ho; Malik, Aamir Saeed

    2015-01-01

    Activated sludge system is generally used in wastewater treatment plants for processing domestic influent. Conventionally the activated sludge wastewater treatment is monitored by measuring physico-chemical parameters like total suspended solids (TSSol), sludge volume index (SVI) and chemical oxygen demand (COD) etc. For the measurement, tests are conducted in the laboratory, which take many hours to give the final measurement. Digital image processing and analysis offers a better alternative not only to monitor and characterize the current state of activated sludge but also to predict the future state. The characterization by image processing and analysis is done by correlating the time evolution of parameters extracted by image analysis of floc and filaments with the physico-chemical parameters. This chapter briefly reviews the activated sludge wastewater treatment; and, procedures of image acquisition, preprocessing, segmentation and analysis in the specific context of activated sludge wastewater treatment. In the latter part additional procedures like z-stacking, image stitching are introduced for wastewater image preprocessing, which are not previously used in the context of activated sludge. Different preprocessing and segmentation techniques are proposed, along with the survey of imaging procedures reported in the literature. Finally the image analysis based morphological parameters and correlation of the parameters with regard to monitoring and prediction of activated sludge are discussed. Hence it is observed that image analysis can play a very useful role in the monitoring of activated sludge wastewater treatment plants.

  8. Wastewater treatment processes for the removal of emerging organic pollutants

    Directory of Open Access Journals (Sweden)

    Ainhoa Rubio Clemente

    2013-12-01

    Full Text Available Emerging organic pollutants form a very heterogeneous group of substances that have negative effects on aquatic organisms, so they should be removed from the environment. Unfortunately, conventional processes in wastewater treatment plants, especially biological ones, are inefficient in the degradation of these substances. It is therefore necessary to evaluate and optimize the effectiveness of the treatments, including advanced oxidation and membrane filtration processes. However, both techniques have drawbacks that may limit their stand-alone application, so it is proposed that the best solution may be to combine these technologies with biological processes to treat wastewater contaminated with emerging organic pollutants.

  9. Virus Reduction during Advanced Bardenpho and Conventional Wastewater Treatment Processes.

    Science.gov (United States)

    Schmitz, Bradley W; Kitajima, Masaaki; Campillo, Maria E; Gerba, Charles P; Pepper, Ian L

    2016-09-06

    The present study investigated wastewater treatment for the removal of 11 different virus types (pepper mild mottle virus; Aichi virus; genogroup I, II, and IV noroviruses; enterovirus; sapovirus; group-A rotavirus; adenovirus; and JC and BK polyomaviruses) by two wastewater treatment facilities utilizing advanced Bardenpho technology and compared the results with conventional treatment processes. To our knowledge, this is the first study comparing full-scale treatment processes that all received sewage influent from the same region. The incidence of viruses in wastewater was assessed with respect to absolute abundance, occurrence, and reduction in monthly samples collected throughout a 12 month period in southern Arizona. Samples were concentrated via an electronegative filter method and quantified using TaqMan-based quantitative polymerase chain reaction (qPCR). Results suggest that Plant D, utilizing an advanced Bardenpho process as secondary treatment, effectively reduced pathogenic viruses better than facilities using conventional processes. However, the absence of cell-culture assays did not allow an accurate assessment of infective viruses. On the basis of these data, the Aichi virus is suggested as a conservative viral marker for adequate wastewater treatment, as it most often showed the best correlation coefficients to viral pathogens, was always detected at higher concentrations, and may overestimate the potential virus risk.

  10. Combined photo-Fenton-SBR process for antibiotic wastewater treatment

    International Nuclear Information System (INIS)

    Elmolla, Emad S.; Chaudhuri, Malay

    2011-01-01

    Highlights: · The work focused on hazardous wastewater (antibiotic wastewater) treatment. · Complete degradation of the antibiotics achieved by the treatment process. · The SBR performance was found to be very sensitive to BOD 5 /COD ratio below 0.40. · Combined photo-Fenton-SBR process is a feasible treatment process for the antibiotic wastewater. - Abstract: The study examined combined photo-Fenton-SBR treatment of an antibiotic wastewater containing amoxicillin and cloxacillin. Optimum H 2 O 2 /COD and H 2 O 2 /Fe 2+ molar ratio of the photo-Fenton pretreatment were observed to be 2.5 and 20, respectively. Complete degradation of the antibiotics occurred in one min. The sequencing batch reactor (SBR) was operated at different hydraulic retention times (HRTs) with the wastewater treated under different photo-Fenton operating conditions (H 2 O 2 /COD and H 2 O 2 /Fe 2+ molar ratio). The SBR performance was found to be very sensitive to BOD 5 /COD ratio of the photo-Fenton treated wastewater. Statistical analysis of the results indicated that it was possible to reduce the Fe 2+ dose and increase the irradiation time of the photo-Fenton pretreatment. The best operating conditions of the combined photo-Fenton-SBR treatment were observed to be H 2 O 2 /COD molar ratio 2, H 2 O 2 /Fe 2+ molar ratio 150, irradiation time 90 min and HRT of 12 h. Under the best operating conditions, 89% removal of sCOD with complete nitrification was achieved and the SBR effluent met the discharge standards.

  11. Combined photo-Fenton-SBR process for antibiotic wastewater treatment

    Energy Technology Data Exchange (ETDEWEB)

    Elmolla, Emad S., E-mail: em_civil@yahoo.com [Department of Civil Engineering, Faculty of Engineering, Al-Azhar University, Cairo (Egypt); Chaudhuri, Malay [Department of Civil Engineering, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750 Tronoh, Perak (Malaysia)

    2011-09-15

    Highlights: {center_dot} The work focused on hazardous wastewater (antibiotic wastewater) treatment. {center_dot} Complete degradation of the antibiotics achieved by the treatment process. {center_dot} The SBR performance was found to be very sensitive to BOD{sub 5}/COD ratio below 0.40. {center_dot} Combined photo-Fenton-SBR process is a feasible treatment process for the antibiotic wastewater. - Abstract: The study examined combined photo-Fenton-SBR treatment of an antibiotic wastewater containing amoxicillin and cloxacillin. Optimum H{sub 2}O{sub 2}/COD and H{sub 2}O{sub 2}/Fe{sup 2+} molar ratio of the photo-Fenton pretreatment were observed to be 2.5 and 20, respectively. Complete degradation of the antibiotics occurred in one min. The sequencing batch reactor (SBR) was operated at different hydraulic retention times (HRTs) with the wastewater treated under different photo-Fenton operating conditions (H{sub 2}O{sub 2}/COD and H{sub 2}O{sub 2}/Fe{sup 2+} molar ratio). The SBR performance was found to be very sensitive to BOD{sub 5}/COD ratio of the photo-Fenton treated wastewater. Statistical analysis of the results indicated that it was possible to reduce the Fe{sup 2+} dose and increase the irradiation time of the photo-Fenton pretreatment. The best operating conditions of the combined photo-Fenton-SBR treatment were observed to be H{sub 2}O{sub 2}/COD molar ratio 2, H{sub 2}O{sub 2}/Fe{sup 2+} molar ratio 150, irradiation time 90 min and HRT of 12 h. Under the best operating conditions, 89% removal of sCOD with complete nitrification was achieved and the SBR effluent met the discharge standards.

  12. Using AHP for Selecting the Best Wastewater Treatment Process

    Directory of Open Access Journals (Sweden)

    AbdolReza Karimi

    2011-01-01

    Full Text Available In this paper, Analytical Hierarchy Process (AHP method that is based on expert knowledge is used for the selection of the optimal anaerobic wastewater treatment process in industrial estates. This method can be applied for complicated multi-criteria decision making to obtain reasonable results. The different anaerobic processes employed in Iranian industrial estates consist of UASB, UAFB, ABR, Contact process, and Anaerobic Lagoons. Based on the general conditions in wastewater treatment plants in industrial estates and on expert judgments and using technical, economic, environmental, and administrative criteria, the processes are weighted and the results obtained are assessed using the Expert Choice Software. Finally, the five processes investigated are ranked as 1 to 5 in a descending order of UAFB, ABR, UASB, Anaerobic Lagoon, and Contact Process. Sensitivity analysis showing the effects of input parameters on changes in the results was applied for technical, economic, environmental, and administrative criteria.

  13. Biochemical reaction engineering and process development in anaerobic wastewater treatment.

    Science.gov (United States)

    Aivasidis, Alexander; Diamantis, Vasileios

    2005-01-01

    Developments in production technology have frequently resulted in the concentrated local accumulation of highly organic-laden wastewaters. Anaerobic wastewater treatment, in industrial applications, constitutes an advanced method of synthesis by which inexpensive substrates are converted into valuable disproportionate products. A critical discussion of certain fundamental principles of biochemical reaction engineering relevant to the anaerobic mode of operation is made here, with special emphasis on the roles of thermodynamics, kinetics, mass and heat transfer, reactor design, biomass retention and recycling. The applications of the anaerobic processes are discussed, introducing the principles of an upflow anaerobic sludge bed reactor and a fixed-bed loop reactor. The merits of staging reactor systems are presented using selected examples based on two decades of research in the field of anaerobic fermentation and wastewater treatment at the Forschungszentrum Julich (Julich Research Center, Germany). Wastewater treatment is an industrial process associated with one of the largest levels of mass throughput known, and for this reason it provides a major impetus to further developments in bioprocess technology in general.

  14. Application of Ozone MBBR Process in Refinery Wastewater Treatment

    Science.gov (United States)

    Lin, Wang

    2018-01-01

    Moving Bed Biofilm Reactor (MBBR) is a kind of sewage treatment technology based on fluidized bed. At the same time, it can also be regarded as an efficient new reactor between active sludge method and the biological membrane method. The application of ozone MBBR process in refinery wastewater treatment is mainly studied. The key point is to design the ozone +MBBR combined process based on MBBR process. The ozone +MBBR process is used to analyze the treatment of concentrated water COD discharged from the refinery wastewater treatment plant. The experimental results show that the average removal rate of COD is 46.0%~67.3% in the treatment of reverse osmosis concentrated water by ozone MBBR process, and the effluent can meet the relevant standard requirements. Compared with the traditional process, the ozone MBBR process is more flexible. The investment of this process is mainly ozone generator, blower and so on. The prices of these items are relatively inexpensive, and these costs can be offset by the excess investment in traditional activated sludge processes. At the same time, ozone MBBR process has obvious advantages in water quality, stability and other aspects.

  15. Forward Osmosis in Wastewater Treatment Processes

    DEFF Research Database (Denmark)

    Korenak, Jasmina; Basu, Subhankar; Balakrishnan, Malini

    2017-01-01

    is the application of forward osmosis. Essentially, forward osmosis is a process in which water is driven through a semipermeable membrane from a feed solution to a draw solution due to the osmotic pressure gradient across the membrane. The immediate advantage over existing pressure driven membrane technologies...... is that the forward osmosis process per se eliminates the need for operation with high hydraulic pressure and forward osmosis has low fouling tendency. Hence, it provides an opportunity for saving energy and membrane replacement cost. However, there are many limitations that still need to be addressed. Here we...... briefly review some of the applications within water purification and new developments in forward osmosis membrane fabrication....

  16. Application of Electrocoagulation Process for Dairy Wastewater Treatment

    Directory of Open Access Journals (Sweden)

    Edris Bazrafshan

    2013-01-01

    Full Text Available Dairy industry wastewater is characterized by high biochemical oxygen demand (BOD5, chemical oxygen demand (COD, and other pollution load. The purpose of this study was to investigate the effects of the operating parameters such as applied voltage, number of electrodes, and reaction time on a real dairy wastewater in the electrocoagulation process. For this purpose, aluminum electrodes were used in the presence of potassium chloride as electrolytes. It has been shown that the removal efficiency of COD, BOD5, and TSS increased with increasing the applied voltage and the reaction time. The results indicate that electrocoagulation is efficient and able to achieve 98.84% COD removal, 97.95% BOD5 removal, 97.75% TSS removal, and >99.9% bacterial indicators at 60 V during 60 min. The experiments demonstrated the effectiveness of electrocoagulation techniques for the treatment of dairy wastewaters. Finally, the results demonstrated the technical feasibility of electrocoagulation process using aluminum electrodes as a reliable technique for removal of pollutants from dairy wastewaters.

  17. Wastewater treatment

    Directory of Open Access Journals (Sweden)

    Ranđel N. Kitanović

    2013-10-01

    Full Text Available Quality of life on Earth in the future will largely depend on the amount of safe water. As the most fundamental source of life, water is relentlessly consumed and polluted. To halt this trend, many countries are taking extensive measures and investing substantial resources in order to stop the contamination of water and return at least tolerably good water quality to nature. The goal of water purification is to obtain clean water with the sewage sludge as a by-product. Clean water is returned to nature, and further treatment of sludge may be subject to other procedures. The conclusion of this paper is simple. The procedure with purified water is easily achievable, purified water is discharged into rivers, lakes and seas, but the problem of further treatment of sludge remains. This paper presents the basic methods of wastewater treatment and procedures for processing the products from contaminated water. The paper can serve as a basis for further elaboration. Water Pollution In order to ensure normal life of living creatures, the water in which they live or the water they use must have a natural chemical composition and natural features. When, as a result of human activities, the chemical composition of water and the ratio of its chemical elements significantly change, we say that water is polluted. When the pollutants come from industrial plants, we are talking about industrial wastewater, and when they come from households and urban areas, we are talking about municipal wastewater. Both contain a huge amount of pollutants that eventually end up in rivers. Then, thousands of defenseless birds, fish and other animals suffer, and environmental consequences become immeasurable. In addition, the waste fed to the water often ends up in the bodies of marine animals, so they can return to us as food. Thermal water pollution also has multiple effects on the changes in the wildlife composition of aquatic ecosystems. Polluted water can be purified by

  18. Biological Treatment of tannery wastewater using activated sludge process

    International Nuclear Information System (INIS)

    Haydar, S.; Aziz, J.A.

    2007-01-01

    A study was conducted to evaluate the feasibility of Activated Sludge Process (ASP) for the treatment of tannery wastewater and to develop a simple design criteria under local conditions. A bench scale model comprising of an aeration tank and final clarifier was used for this purpose. The model was operated continuously for 267 days. Settled tannery wastewater was used as influent to the aeration tank. Five days Biochemical Oxygen Demand (BOD5) and Chemical Oxygen Demand (COD) of the influent and effluent were measured to find process efficiency at various mixed liquor volatile suspended solids (MLVSS) and hydraulic detention time. The results of the study demonstrated that an efficiency of above 90% and 80% for BOD5 and COD, respectively could be obtained if the ASP is operated at an MLVSS concentration of 3500 mg/L keeping an aeration time of 12 hours. (author)

  19. Process Design Manual: Wastewater Treatment Facilities for Sewered Small Communities.

    Science.gov (United States)

    Leffel, R. E.; And Others

    This manual attempts to describe new treatment methods, and discuss the application of new techniques for more effectively removing a broad spectrum of contaminants from wastewater. Topics covered include: fundamental design considerations, flow equalization, headworks components, clarification of raw wastewater, activated sludge, package plants,…

  20. Electrochemical Techniques in Textile Processes and Wastewater Treatment

    Directory of Open Access Journals (Sweden)

    Mireia Sala

    2012-01-01

    Full Text Available The textile industry uses the electrochemical techniques both in textile processes (such as manufacturing fibers, dyeing processes, and decolorizing fabrics and in wastewaters treatments (color removal. Electrochemical reduction reactions are mostly used in sulfur and vat dyeing, but in some cases, they are applied to effluents discoloration. However, the main applications of electrochemical treatments in the textile sector are based on oxidation reactions. Most of electrochemical oxidation processes involve indirect reactions which imply the generation of hypochlorite or hydroxyl radical in situ. These electrogenerated species are able to bleach indigo-dyed denim fabrics and to degrade dyes in wastewater in order to achieve the effluent color removal. The aim of this paper is to review the electrochemical techniques applied to textile industry. In particular, they are an efficient method to remove color of textile effluents. The reuse of the discolored effluent is possible, which implies an important saving of salt and water (i.e., by means of the “UVEC Cell”.

  1. Electron beam processing programme: Wastewater and sludge treatment in Brazil

    International Nuclear Information System (INIS)

    Sampa, M.H.O.; Rela, P.R.; Duarte, C.L.; Borrely, S.I.; Vieira, J.M.

    1998-01-01

    The Institute for Energetic and Nuclear Research, working on environmental applications, has an extensive research programme using high energy electron beam in treating industrial wastewater and sludge. The experiments are being conducted in a pilot plant using an industrial electron beam 1.5MeV, 25mA, where the streams are presented to the scanned electron beam in counter flow. This pilot plant is designed to process approximately 3.0m 3 /h with an average dose 5kGy and the absorbed dose measurement is performed continuously by calorimetric system in real time. Combined biological and radiation treatment of domestic sewage and sludge were carried out to investigate disinfestation and removal of organic matter. The experiments showed that total and fecal coliforms were decreased by about 5 logs cycles with a 3.0kGy radiation dose in raw sewage and biological effluents, respectively. Concerning the industrial wastewater in the first stage of the programme, the irradiation was conducted using batch systems with samples originating from a Governmental Wastewater Treatment Plant. The data showed a significant color reduction effect when delivered dose was increased, and the opposite was noted for turbidity and total suspended solids. Other experiments were focused to process real industrial effluents from one of the most important chemical and pharmaceutical industries in Brazil. A special transport truck was used to transfer the liquid waste from the Industry to the Electron Beam Pilot Plant. Large quantities of liquid waste were irradiated with and without air addition with the doses from 2kGy to 20kGy. Such experiences performed in association with the Industry demonstrated that this technology has a great potential to be transferred and to contribute with a permanent cleanup alternative for hazardous wastes

  2. Towards energy neutrality of wastewater treatment plants via deammonification process

    Science.gov (United States)

    Janiak, Kamil; Łojek, Andrzej; Muszyński-Huhajło, Mateusz

    2017-11-01

    Energy neutrality of wastewater treatment plants is possible with constant and consistent optimization and implementation of new technologies. In recent years new process called deammonification has been discovered and implemented in treatment of side streams rich in nitrogen. With its implementation on wastewater treatment plants it is possible to remove nearly all nitrogen from side stream (even 30% of overall nitrogen load) in less energy consuming way. Additionally, thanks to lower nitrogen load to main stream reactors it is possible to optimize them to further lower energy consumption. This article presents simulation studies of deammonification implementation and main stream reactor optimization in case of medium Polish WWTP (115 000 p.e.). With removal of 20% of nitrogen in side stream via deammonification and subsequent main line optimization it is possible to save 5000 euro/year by lowering sludge retention time, oxygen concentration in main stream reactors. When additional COD is precipitated in primary clarifiers with iron coagulants, 55 000 euro/year can be saved in case of energy costs which states for most of the energy costs. However, when coagulant and disposal costs are included savings are on the level of 25 000 euro/year.

  3. Towards energy neutrality of wastewater treatment plants via deammonification process

    Directory of Open Access Journals (Sweden)

    Janiak Kamil

    2017-01-01

    Full Text Available Energy neutrality of wastewater treatment plants is possible with constant and consistent optimization and implementation of new technologies. In recent years new process called deammonification has been discovered and implemented in treatment of side streams rich in nitrogen. With its implementation on wastewater treatment plants it is possible to remove nearly all nitrogen from side stream (even 30% of overall nitrogen load in less energy consuming way. Additionally, thanks to lower nitrogen load to main stream reactors it is possible to optimize them to further lower energy consumption. This article presents simulation studies of deammonification implementation and main stream reactor optimization in case of medium Polish WWTP (115 000 p.e.. With removal of 20% of nitrogen in side stream via deammonification and subsequent main line optimization it is possible to save 5000 euro/year by lowering sludge retention time, oxygen concentration in main stream reactors. When additional COD is precipitated in primary clarifiers with iron coagulants, 55 000 euro/year can be saved in case of energy costs which states for most of the energy costs. However, when coagulant and disposal costs are included savings are on the level of 25 000 euro/year.

  4. Treatment of real paracetamol wastewater by fenton process

    Directory of Open Access Journals (Sweden)

    Dalgic Gamze

    2017-01-01

    Full Text Available The study investigated the pretreatment of real paracetamol (PCT wastewater of a pharmaceutical industry by Fenton process. At the best experimental conditions (COD/H2O2 = 1/1, Fe+2/H2O2 = 1/70, settling method:centrifuging, pH 6 at settling step, 92.7, 92.7, 95.5, 99.1, 99.9 and 99.4% of chemical oxygen demand (COD, total organic carbon (TOC, 5-day biological oxygen demand (BOD5, PCT, para-amino phenol (PAP and aniline were removed, respectively. Changes in the concentrations of these parameters were also investigated for both oxidation and settling steps of Fenton process. It was found that COD and TOC were removed at the settling step (precipitation whereas PCT, PAP and aniline were removed at the oxidation step. Mass balance calculations were also studied to show the mass distributions of COD in different phases (gas + foam, effluent and sludge. Fenton process was found as an effective method for the pretreatment of real PCT wastewater for discharging in a determined collective treatment plant.

  5. Feasibility of electrochemical oxidation process for treatment of saline wastewater

    Directory of Open Access Journals (Sweden)

    Kavoos Dindarloo

    2015-09-01

    Full Text Available Background: High concentration of salt makes biological treatment impossible due to bacterial plasmolysis. The present research studies the process of electrochemical oxidation efficiency and optimal levels as important factors affecting pH, salt concentration, reaction time and applied voltage. Methods: The sample included graphite electrodes with specifications of 2.5 cm diameter and 15 cm height using a reactor with an optimum capacity of 1 L. Sixty samples were obtained with the aid of the experiments carried out in triplicates for each factor at 5 different levels. The entire experiments were performed based on standard methods for water and waste water treatments. Results: Analysis of variance carried out on effect of pH, salt concentration, reaction time and flow intensity in elimination of chemical oxygen demand (COD showed that they are significant factors affecting this process and reduce COD with a coefficient interval of 95% and test power of 80%. Scheffe test showed that at optimal level, a reaction time of 1 hour, 10 g/L concentration, pH = 9 and 15 V electrical potential difference were obtained. Conclusion: Waste waters containing salt may contribute to the electro-oxidation process due to its cations and anions. Therefore, the process of electrochemical oxidation with graphite electrodes could be a proper strategy for the treatment of saline wastewater where biological treatment is not possible.

  6. Nitrate control strategies in an activated sludge wastewater treatment process

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Wenhao; Tao, Erpan; Chen, Xiaoquan; Liu, Dawei [South China University of Technology, Guangzhou (China); Liu, Hongbin [Kyung Hee University, Yongin (Korea, Republic of)

    2014-03-15

    We studied nitrate control strategies in an activated sludge wastewater treatment process (WWTP) based on the activated sludge model. Two control strategies, back propagation for proportional-integral-derivative (BP-PID) and adaptive-network based fuzzy inference systems (ANFIS), are applied in the WWTP. The simulation results show that the simple local constant setpoint control has poor control effects on the nitrate concentration control. However, the ANFIS (4*1) controller, which considers not only the local constant setpoint control of the nitrate concentration, but also three important indices in the effluent--ammonia concentration, total suspended sludge concentration and total nitrogen concentration--demonstrates good control performance. The results also prove that ANFIS (4*1) controller has better control performance than that of the controllers PI, BP-PID and ANFIS (2*1), and that the ANFIS (4*1) controller is effective in improving the effluent quality and maintaining the stability of the effluent quality.

  7. Optimizing the selection of small-town wastewater treatment processes

    Science.gov (United States)

    Huang, Jianping; Zhang, Siqi

    2018-04-01

    Municipal wastewater treatment is energy-intensive. This high energy consumption causes high sewage treatment plant operating costs and increases the energy burden. To mitigate the adverse impacts of China’s development, sewage treatment plants should adopt effective energy-saving technologies. Artificial fortified natural water treatment and use of activated sludge and biofilm are all suitable technologies for small-town sewage treatment. This study features an analysis of the characteristics of small and medium-sized township sewage, an overview of current technologies, and a discussion of recent progress in sewage treatment. Based on this, an analysis of existing problems in municipal wastewater treatment is presented, and countermeasures to improve sewage treatment in small and medium-sized towns are proposed.

  8. Process waste treatment system upgrades: Clarifier startup at the nonradiological wastewater treatment plant

    International Nuclear Information System (INIS)

    Lucero, A.J.; McTaggart, D.R.; Van Essen, D.C.; Kent, T.E.; West, G.D.; Taylor, P.A.

    1998-07-01

    The Waste Management Operations Division at Oak Ridge National Laboratory recently modified the design of a reactor/clarifier at the Nonradiological Wastewater Treatment Plant, which is now referred to as the Process Waste Treatment Complex--Building 3608, to replace the sludge-blanket softener/clarifier at the Process Waste Treatment Plant, now referred to as the Process Waste Treatment Complex-Building 3544 (PWTC-3544). This work was conducted because periodic hydraulic overloads caused poor water-softening performance in the PWTC-3544 softener, which was detrimental to the performance and operating costs of downstream ion-exchange operations. Over a 2-month time frame, the modified reactor/clarifier was tested with nonradiological wastewater and then with radioactive wastewater to optimize softening performance. Based on performance to date, the new system has operated more effectively than the former one, with reduced employee radiological exposure, less downtime, lower costs, and improved effluent quality

  9. 40 CFR 63.138 - Process wastewater provisions-performance standards for treatment processes managing Group 1...

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 9 2010-07-01 2010-07-01 false Process wastewater provisions-performance standards for treatment processes managing Group 1 wastewater streams and/or residuals removed from Group 1 wastewater streams. 63.138 Section 63.138 Protection of Environment ENVIRONMENTAL...

  10. Tracking acidic pharmaceuticals, caffeine, and triclosan through the wastewater treatment process.

    Science.gov (United States)

    Thomas, Paul M; Foster, Gregory D

    2005-01-01

    Pharmaceuticals are a class of emerging contaminants whose fate in the wastewater treatment process has received increasing attention in past years. Acidic pharmaceuticals (ibuprofen, naproxen, mefenamic acid, ketoprofen, and diclofenac), caffeine, and the antibacterial triclosan were quantified at four different steps of wastewater treatment from three urban wastewater treatment plants. The compounds were extracted from wastewater samples on Waters Oasis hydrophilic-lipophilic balance solid-phase extraction columns, silylated, and analyzed by gas chromatography-mass spectrometry. For the chemicals studied, it was found that the majority of the influent load was removed during secondary treatment (51-99%), yielding expected surface water concentrations of 13 to 56 ng/L.

  11. Diversity of microbiota found in coffee processing wastewater treatment plant.

    Science.gov (United States)

    Pires, Josiane Ferreira; Cardoso, Larissa de Souza; Schwan, Rosane Freitas; Silva, Cristina Ferreira

    2017-11-13

    Cultivable microbiota presents in a coffee semi-dry processing wastewater treatment plant (WTP) was identified. Thirty-two operational taxonomic units (OTUs) were detected, these being 16 bacteria, 11 yeasts and 4 filamentous fungi. Bacteria dominated the microbial population (11.61 log CFU mL - 1 ), and presented the highest total diversity index when observed in the WTP aerobic stage (Shannon = 1.94 and Simpson = 0.81). The most frequent bacterial species were Enterobacter asburiae, Sphingobacterium griseoflavum, Chryseobacterium bovis, Serratia marcescens, Corynebacterium flavescens, Acetobacter orientalis and Acetobacter indonesiensis; these showed the largest total bacteria populations in the WTP, with approximately 10 log CFU mL - 1 . Yeasts were present at 7 log CFU mL - 1 of viable cells, with Hanseniaspora uvarum, Wickerhamomyces anomalus, Torulaspora delbrueckii, Saturnispora gosingensis, and Kazachstania gamospora being the prevalent species. Filamentous fungi were found at 6 log CFU mL - 1 , with Fusarium oxysporum the most populous species. The identified species have the potential to act as a biological treatment in the WTP, and the application of them for this purpose must be better studied.

  12. Degrading organic micropollutants: The next challenge in the evolution of biological wastewater treatment processes

    Directory of Open Access Journals (Sweden)

    Naresh eSinghal

    2016-05-01

    Full Text Available Global water scarcity is driving the need for identifying new water source. Wastewater could be a potential water resource if appropriate treatment technologies could be developed. One of the barriers to obtaining high quality water from wastewater arises from the presence of organic micropollutants, which are biologically active at trace levels. Removal of these compounds from wastewater by current physico-chemical technologies is prohibitively expensive. While biological treatment processes are comparatively cheap, current systems are not capable of degrading the wide range of organic micropollutants present in wastewater. As current wastewater treatment processes were developed for treating conventional pollutants present at mg/L levels, degrading the ng/L levels of micropollutants will require a different approach to system design and operation. In this paper we discuss strategies that could be employed to develop biological wastewater treatment systems capable of degrading organic micropollutants.

  13. Toxicological assessment of hospital wastewater in different treatment processes.

    Science.gov (United States)

    Hamjinda, Nutta Sangnarin; Chiemchaisri, Wilai; Watanabe, Toru; Honda, Ryo; Chiemchaisri, Chart

    2018-03-01

    This study surveyed the hospital wastewater characters focusing on antibiotic contamination in seven hospitals in Bangkok. It detected 19 antibiotics of which the high-frequent detection were quinolones such as ofloxacin + levofloxacin, norfloxacin, ciprofloxacin including sulfamethoxazole. Norfloxacin and ciprofloxacin appeared the highest concentrations of 12.11 and 9.60 μg/L, respectively. Most antibiotic concentrations in the wastewaters of the studied hospitals gave a good correlation (r 2  = 0.77-0.99) to the amount of usage. In this study, batch acute toxicity tests were performed to assess the toxicity of hospital wastewater on mixed liquor, freshwater algae (Chlorella vulgaris and Scenedesmus quadricauda), and microcrustacean (Moina macrocopa). The hospital wastewaters could inhibit the mixed liquor growth and gave similar toxic levels among test species: algae and microcrustacean (9.81-13.63 and 2.62-3.09 TU, respectively). The conventional activated sludge (CAS) and rotating biological contactor (RBC) could remove fluoroquinolones and tetracycline via biomass adsorption. After treatment, most of treatment could reduce the toxicity. Nevertheless, the effluent gave slight toxicity on some test species which might be caused from chlorination and a common toxicant (NH 3 -N).

  14. Engineering application of anaerobic ammonium oxidation process in wastewater treatment.

    Science.gov (United States)

    Mao, Nianjia; Ren, Hongqiang; Geng, Jinju; Ding, Lili; Xu, Ke

    2017-08-01

    Anaerobic ammonium oxidation (Anammox), a promising biological nitrogen removal process, has been verified as an efficient, sustainable and cost-effective alternative to conventional nitrification and denitrification processes. To date, more than 110 full-scale anammox plants have been installed and are in operation, treating industrial NH 4 + -rich wastewater worldwide, and anammox-based technologies are flourishing. This review the current state of the art for engineering applications of the anammox process, including various anammox-based technologies, reactor selection and attempts to apply it at different wastewater plants. Process control and implementation for stable performance are discussed as well as some remaining issues concerning engineering application are exposed, including the start-up period, process disturbances, greenhouse gas emissions and especially mainstream anammox applications. Finally, further development of the anammox engineering application is proposed in this review.

  15. Wastewater Treatment of Stone Cutting Industries by Coagulation Process

    Directory of Open Access Journals (Sweden)

    Mohammad Fahiminia

    2013-09-01

    Full Text Available Background & Aims of the Study: The wastewater created as a result of stone cutting industries enters some pools for re-consumption so that its suspended solids settle by gravity. By taking to account the high volume of water and sludge, treatment of wastewater and removal of sludge cause many problems for stone cutting units. The objective of this study was to determine the quality of wastewater and to investigate the effects of coagulants on suspended solids removal efficiency from wastewater of some stone cutting industries (Qom, Iran. Materials & Methods: In this experimental study, the effects of different doses of coagulants including Alum, poly aluminum chloride, Polymer, Ferric chloride (Fecl3 and Lime on Turbidity, “total suspended solids” (TSS and “total solids” (TS removal were investigated by Jar Test. Removal efficiency of different coagulates was estimated. Results: The results indicated that lime in dose 100 PPM is the best coagulant for turbidity removal and the highest efficiency for TS removal is related to using Alum in dose 100 PPM. Conclusions: Considering the findings of this study, it can be concluded that using coagulants causes reduction in settling time and speeds up the return of water to the consumption cycle of stone cutting factories, and also increases turbidity removal efficiency.

  16. External and internal sources which inhibit the nitrification process in wastewater treatment plants

    DEFF Research Database (Denmark)

    Sinkjær, O.; Bøgebjerg, P.; Grüttner, H.

    1996-01-01

    In connection with the upgrading of the two largest wastewater treatment plants in the Copenhagen area to nutrient removal special attention has been paid to the nitrification process regarding inhibition effects. Inhibitory substances in the wastewater could be identified by simple batch tests......, and the long-term effects on the nitrification process were tested in pilot plants or at full-scale. A distinction could be made between effects produced by wastewater from external sources in the catchment area and internally circulated flows in the wastewater treatment plant. Results from programmes...

  17. Process Design of Wastewater Treatment for the NREL Cellulosic Ethanol Model

    Energy Technology Data Exchange (ETDEWEB)

    Steinwinder, T.; Gill, E.; Gerhardt, M.

    2011-09-01

    This report describes a preliminary process design for treating the wastewater from NREL's cellulosic ethanol production process to quality levels required for recycle. In this report Brown and Caldwell report on three main tasks: 1) characterization of the effluent from NREL's ammonia-conditioned hydrolyzate fermentation process; 2) development of the wastewater treatment process design; and 3) development of a capital and operational cost estimate for the treatment concept option. This wastewater treatment design was incorporated into NREL's cellulosic ethanol process design update published in May 2011 (NREL/TP-5100-47764).

  18. A proposed strategy for upgrade of the ORNL Process Wastewater Treatment Plant

    International Nuclear Information System (INIS)

    Kent, T.E.; Robinson, S.M.; Scott, C.B.

    1990-01-01

    An approach to the upgrade of the radiological Process Wastewater Treatment Plant (PWTP) at Oak Ridge National Laboratory (ORNL) has been developed that, if adopted, will result in significant cost reductions and improved water quality. The strategy described in this report satisfies the short-term upgrade needs of the PWTP and ultimately results in replacement of existing PWTP softening/ion- exchange technology with a zeolite molecular sieve treatment system for removal of radioactive contaminants from process wastewater. Use of zeolites will improve wastewater quality while reducing operating and disposal costs. The zeolite system would be constructed adjacent to the site now occupied by the Non-Radiological Process Wastewater Treatment Plant (NRWTP), thereby consolidating all process wastewater treatment systems at one location. 4 refs., 4 figs

  19. A proposed strategy for upgrade of the ORNL process wastewater treatment plant

    International Nuclear Information System (INIS)

    Kent, T.E.; Robinson, S.M.; Scott, C.B.

    1990-01-01

    This paper reports on an approach to the upgrade of the radiological Process Wastewater Treatment Plant (PWTP) at Oak Ridge National Laboratory (ORNL), which has been developed and that, if adopted, will result in significant cost reductions and improved water quality. The strategy described in this report satisfies the short-term upgrade needs of the PWTP and ultimately results in replacement of existing PWTP softening/ion-exchange technology with a zeolite molecular sieve treatment system for removal of radioactive contaminants from process wastewater. Use of zeolites will improve wastewater quality while reducing operating and disposal costs. The zeolite system would be constructed adjacent to the site now occupied by the Non-Radiological Process Wastewater Treatment Plant (NRWTP), thereby consolidating all process wastewater treatment systems at one location

  20. A Modified Bio-Ecological Process for Rural Wastewater Treatment

    Directory of Open Access Journals (Sweden)

    Haq Nawaz Abbasi

    2017-01-01

    Full Text Available Limited water resources and ensuring access to clean water are critical environmental challenges, especially for the developing world. In particular, rural domestic wastewater has become a significant source for the pollution of freshwater bodies. A modified bio-ecological A2O-wetland system for rural wastewater treatment consisting of a biological unit (anaerobic baffled reactor, anoxic tank and oxic unit, A2O and an ecological unit (horizontal flow constructed wetland was developed, and key performance indicators were identified. The bio-ecological treatment system showed high removal efficiency for pollutants, successfully achieving 91%, 85%, 78%, and 92% removal efficiencies for chemical oxygen demand (COD, ammonium (NH4–N, total nitrogen (TN, and total phosphorus (TP, respectively. The concentrations of pollutants in the effluent from the system were lower than the Class 1 A regulated values of the Chinese National Standard GB18918-2002. The system offered high removal efficiency, simple operation, and low energy consumption. The A2O-wetland is a good alternative for rural wastewater treatment systems.

  1. Performance of IFAS wastewater treatment processes for biological phosphorus removal.

    Science.gov (United States)

    Sriwiriyarat, T; Randall, C W

    2005-10-01

    Integrated fixed film activated sludge (IFAS) is a promising process for the enhancement of nitrification and denitrification in conventional activated sludge systems that need to be upgraded for biological nutrient removal (BNR), particularly when they have space limitations or need modifications that will require large monetary expenses. Several studies have reported successful implementations of IFAS at temperate zone wastewater treatment facilities, typically by placement of fixed film media into aerobic zones. However, nearly all of the implementations have not included enhanced biological phosphorus removal (EBPR) in the upgraded systems. This is possibly because the treatment plants have been operated at low mixed liquor mean cell residence times (MCRTs), and EBPR would wash out of the systems at the low temperatures encountered, making it difficult to maintain EBPR. The primary objective of this study was to investigate the incorporation of EBPR into IFAS systems, and study the interactions between the fixed biomass and the mixed liquor suspended solids with respect to substrate competition and nutrient removal efficiencies. Three pilot-scale UCT/VIP configuration systems were used, one as a control and the other two with Bioweb media integrated into some of the anoxic and aerobic reactors. The systems were operated at different MCRTs, and influent COD/TP ratios, and with split influent flows. The experimental results confirmed that EBPR could be incorporated successfully into IFAS systems, but the redistribution of biomass resulting from the integration of fixed film media, and the competition of organic substrate between EBPR and denitrification would affect performances. Also, the integration of fixed film media into the anoxic reactors affected performances differently from media in aerobic reactors.

  2. Natural light-micro aerobic condition for PSB wastewater treatment: a flexible, simple, and effective resource recovery wastewater treatment process.

    Science.gov (United States)

    Lu, Haifeng; Han, Ting; Zhang, Guangming; Ma, Shanshan; Zhang, Yuanhui; Li, Baoming; Cao, Wei

    2018-01-01

    Photosynthetic bacteria (PSB) have two sets of metabolic pathways. They can degrade pollutants through light metabolic under light-anaerobic or oxygen metabolic pathways under dark-aerobic conditions. Both metabolisms function under natural light-microaerobic condition, which demands less energy input. This work investigated the characteristics of PSB wastewater treatment process under that condition. Results showed that PSB had very strong adaptability to chemical oxygen demand (COD) concentration; with F/M of 5.2-248.5 mg-COD/mg-biomass, the biomass increased three times and COD removal reached above 91.5%. PSB had both advantages of oxygen metabolism in COD removal and light metabolism in resource recovery under natural light-microaerobic condition. For pollutants' degradation, COD, total organic carbon, nitrogen, and phosphorus removal reached 96.2%, 91.0%, 70.5%, and 92.7%, respectively. For resource recovery, 74.2% of C in wastewater was transformed into biomass. Especially, coexistence of light and oxygen promote N recovery ratio to 70.9%, higher than with the other two conditions. Further, 93.7% of N-removed was synthesized into biomass. Finally, CO 2 emission reduced by 62.6% compared with the traditional process. PSB wastewater treatment under this condition is energy-saving, highly effective, and environment friendly, and can achieve pollution control and resource recovery.

  3. Design and operation of UASB—A/O process for treatment starch and VB12 wastewater

    Directory of Open Access Journals (Sweden)

    Yuanyuan CHEN

    2016-12-01

    Full Text Available Starch and VB12 wastewater with higher COD and ammonia nitrogen concentration, contains a large number of difficult biodegradable material, complex composition, is difficult to deal with. In recent years, with the increasingly stringent wastewater discharge standards, require the use of a stable and efficient wastewater treatment process for purification treatment of high concentration of ammonia nitrogen in wastewater and the refractory organic pollutants, to achieve discharge standards. Upflow Anaerobic Sludge Blanket (UASB—Anoxic/Oxic(A/O process was employed in a wastewater treatment of starch and Vitamin B12 wastewater, which was 5 000 m3/d with highly concentrated organic pollutants and ammonia. The efficiency and reliability of the process has been proven. The results of the system operation show that the concentration of the effluent COD, ammonia and total nitrogen (TN were at 78.4 mg/L, 18.7 mg/L and 41.1 mg/L, and the treatment efficiencies of COD, ammonia and TN reached over 99%, 92.1%, 82.7%, respectively, when the influent COD and TN concentration were in the ranges of 8 544~9 720 mg/L and 240~250 mg/L. The quality of the treated wastewater met the first-class discharge standards in Integrated Wastewater Discharge Standard(GB 8978—1996.

  4. Determination of the priority indexes for the oil refinery wastewater treatment process

    Science.gov (United States)

    Chesnokova, M. G.; Myshlyavtsev, A. V.; Kriga, A. S.; Shaporenko, A. P.; Markelov, V. V.

    2017-08-01

    The wastewater biological treatment intensity and effectiveness are influenced by many factors: temperature, pH, presence and concentration of toxic substances, the biomass concentration et al. Regulation of them allows controlling the biological treatment process. Using the Bayesian theorem the link between changes was determined and the wastewater indexes normative limits exceeding influence for activated sludge characteristics alteration probability was evaluated. The estimation of total, or aposterioric, priority index presence probability, which characterizes the wastewater treatment level, is an important way to use the Bayesian theorem in activated sludge swelling prediction at the oil refinery biological treatment unit.

  5. Radiation processing of wastewater

    International Nuclear Information System (INIS)

    2007-01-01

    Rapid population growth and increased agricultural and industrial development have led to the generation of large quantities of polluted industrial and municipal wastewaters. The recognition that these polluted waters may pose a serious threat to humans has led technologists to seek cost effective technologies for their treatment. A variety of methods based on biological. chemical. photochemical and electrochemical processes are being explored for decomposing the chemical and biological contaminants present in these wastewaters. Radiation technologists have been investigating the use of high energy radiation for their treatment. The primary advantage of radiation processing over alternatives is that the reactive species are generated in situ during the radiolysis process without the addition of any chemicals. Several pilot scale and a number of industrial scale wastewater treatment plants based on radiation technology are in operation or under construction. The results of practical applications have confirmed that radiation technology can be easily and effectively utilized for treating large quantities ol wastewater

  6. Application of Advanced Oxidation Processes to Wastewater Treatment

    OpenAIRE

    Lucas, Marco Paulo Gomes de Sousa

    2009-01-01

    Tese de Doutoramento em Química This research contributes to the study and development of advanced oxidation technologies applied to two different problematic wastewaters: textile and winery wastewaters. In this dissertation the factors that influence the oxidation of the model compound of textile wastewaters, the azo dye Reactive Black 5 (RB5), and of the winery wastewaters were investigated. The first part of the thesis experimental work is dedicated to the decolorization of RB5 solut...

  7. SEM analysis of particle size during conventional treatment of CMP process wastewater

    International Nuclear Information System (INIS)

    Roth, Gary A.; Neu-Baker, Nicole M.; Brenner, Sara A.

    2015-01-01

    Engineered nanomaterials (ENMs) are currently employed by many industries and have different physical and chemical properties from their bulk counterparts that may confer different toxicity. Nanoparticles used or generated in semiconductor manufacturing have the potential to enter the municipal waste stream via wastewater and their ultimate fate in the ecosystem is currently unknown. This study investigates the fate of ENMs used in chemical mechanical planarization (CMP), a polishing process repeatedly utilized in semiconductor manufacturing. Wastewater sampling was conducted throughout the wastewater treatment (WWT) process at the fabrication plant's on-site wastewater treatment facility. The goal of this study was to assess whether the WWT processes resulted in size-dependent filtration of particles in the nanoscale regime by analyzing samples using scanning electron microscopy (SEM). Statistical analysis demonstrated no significant differences in particle size between sampling points, indicating low or no selectivity of WWT methods for nanoparticles based on size. All nanoparticles appeared to be of similar morphology (near-spherical), with a high variability in particle size. EDX verified nanoparticles composition of silicon- and/or aluminum-oxide. Nanoparticle sizing data compared between sampling points, including the final sampling point before discharge from the facility, suggested that nanoparticles could be released to the municipal waste stream from industrial sources. - Highlights: • The discrete treatments of a semiconductor wastewater treatment system were examined. • A sampling scheme and method for analyzing nanoparticles in wastewater was devised. • The wastewater treatment process studied is not size-selective for nanoparticles

  8. SEM analysis of particle size during conventional treatment of CMP process wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Roth, Gary A.; Neu-Baker, Nicole M.; Brenner, Sara A., E-mail: sbrenner@sunycnse.com

    2015-03-01

    Engineered nanomaterials (ENMs) are currently employed by many industries and have different physical and chemical properties from their bulk counterparts that may confer different toxicity. Nanoparticles used or generated in semiconductor manufacturing have the potential to enter the municipal waste stream via wastewater and their ultimate fate in the ecosystem is currently unknown. This study investigates the fate of ENMs used in chemical mechanical planarization (CMP), a polishing process repeatedly utilized in semiconductor manufacturing. Wastewater sampling was conducted throughout the wastewater treatment (WWT) process at the fabrication plant's on-site wastewater treatment facility. The goal of this study was to assess whether the WWT processes resulted in size-dependent filtration of particles in the nanoscale regime by analyzing samples using scanning electron microscopy (SEM). Statistical analysis demonstrated no significant differences in particle size between sampling points, indicating low or no selectivity of WWT methods for nanoparticles based on size. All nanoparticles appeared to be of similar morphology (near-spherical), with a high variability in particle size. EDX verified nanoparticles composition of silicon- and/or aluminum-oxide. Nanoparticle sizing data compared between sampling points, including the final sampling point before discharge from the facility, suggested that nanoparticles could be released to the municipal waste stream from industrial sources. - Highlights: • The discrete treatments of a semiconductor wastewater treatment system were examined. • A sampling scheme and method for analyzing nanoparticles in wastewater was devised. • The wastewater treatment process studied is not size-selective for nanoparticles.

  9. Acute toxicity and chemical evaluation of coking wastewater under biological and advanced physicochemical treatment processes.

    Science.gov (United States)

    Dehua, Ma; Cong, Liu; Xiaobiao, Zhu; Rui, Liu; Lujun, Chen

    2016-09-01

    This study investigated the changes of toxic compounds in coking wastewater with biological treatment (anaerobic reactor, anoxic reactor and aerobic-membrane bioreactor, A1/A2/O-MBR) and advanced physicochemical treatment (Fenton oxidation and activated carbon adsorption) stages. As the biological treatment stages preceding, the inhibition effect of coking wastewater on the luminescence of Vibrio qinghaiensis sp. Nov. Q67 decreased. Toxic units (TU) of coking wastewater were removed by A1/A2/O-MBR treatment process, however approximately 30 % TU remained in the biologically treated effluent. There is a tendency that fewer and fewer residual organic compounds could exert equal acute toxicity during the biological treatment stages. Activated carbon adsorption further removed toxic pollutants of biologically treated effluent but the Fenton effluent increased acute toxicity. The composition of coking wastewater during the treatment was evaluated using the three-dimensional fluorescence spectra, gas chromatography-mass spectrometry (GC-MS). The organic compounds with high polarity were the main cause of acute toxicity in the coking wastewater. Aromatic protein-like matters in the coking wastewater with low biodegradability and high toxicity contributed mostly to the remaining acute toxicity of the biologically treated effluents. Chlorine generated from the oxidation process was responsible for the acute toxicity increase after Fenton oxidation. Therefore, the incorporation of appropriate advanced physicochemical treatment process, e.g., activated carbon adsorption, should be implemented following biological treatment processes to meet the stricter discharge standards and be safer to the environment.

  10. Utilization of Paper Sludge Wastes for Treatment of Wastewater from Food Processing Industries

    Directory of Open Access Journals (Sweden)

    Tohru Suzuki

    2012-12-01

    Full Text Available The food processing industries usually produced large amount of wastewater containing fine and small particles. It takes long time for complete settlement of the fine and small particles in the wastewater. The coagulation method appears to become one of the useful treatments. New inorganic coagulant named “Agoclean‒P” has been developed from paper sludge ash. The treatment by coagulation and flocculation were carried out for the wastewater from three different food processing industries namely soup, tofu, and natto. “Hi‒Biah‒System”, which is an in‒situ solidification system, was used for the continuous treatment of wastewater. The parameters for the water quality were pH, five‒day biochemical oxygen demand (BOD5, chemical oxygen demand (COD, total suspended solids (TSS, total nitrogen (TN and total phosphorus (TP. These parameters after the treatment became much lower values relative to those obtained before the treatment.

  11. Investigation of the use of aerobic granules for the treatment of sugar beet processing wastewater.

    Science.gov (United States)

    Kocaturk, Irem; Erguder, Tuba Hande

    2015-01-01

    The treatment of sugar beet processing wastewater in aerobic granular sequencing batch reactor (SBR) was examined in terms of chemical oxygen demand (COD) and nitrogen removal efficiency. The effect of sugar beet processing wastewater of high solid content, namely 2255 ± 250 mg/L total suspended solids (TSS), on granular sludge was also investigated. Aerobic granular SBR initially operated with the effluent of anaerobic digester treating sugar beet processing wastewater (Part I) achieved average removal efficiencies of 71 ± 30% total COD (tCOD), 90 ± 3% total ammonifiable nitrogen (TAN), 76 ± 24% soluble COD (sCOD) and 29 ± 4% of TSS. SBR was further operated with sugar beet processing wastewater (Part II), where the tCOD, TAN, sCOD and TSS removal efficiencies were 65 ± 5%, 61 ± 4%, 87 ± 1% and 58 ± 10%, respectively. This study indicated the applicability of aerobic granular SBRs for the treatment of both sugar beet processing wastewater and anaerobically digested processing wastewater. For higher solids removal, further treatment such as a sedimentation tank is required following the aerobic granular systems treating solid-rich wastewaters such as sugar beet processing wastewater. It was also revealed that the application of raw sugar beet processing wastewater slightly changed the aerobic granular sludge properties such as size, structure, colour, settleability and extracellular polymeric substance content, without any drastic and negative effect on treatment performance.

  12. Hydrogen production by supercritical water gasification of wastewater from food waste treatment processes

    Energy Technology Data Exchange (ETDEWEB)

    Lee, In-Gu [Korea Institute of Energy Research (Korea, Republic of)

    2010-07-01

    Korean food wastes have high moisture content (more than 85 wt%) and their major treatment processes such as drying or biological fermentations generate concentrated organic wastewater (CODs of about 100,000 mgO{sub 2}/L). For obtaining both wastewater treatment and hydrogen production from renewable resources, supercritical water gasification (SCWG) of the organic wastewater was carried out in this work. The effect of catalyst, reaction temperature, and reactor residence time on COD destruction and composition of gas products was examined. As a result, a SCWG of the wastewater over Ni- Y/activated charcoal at 700 C, 28 MPa yielded 99 % COD destruction and hydrogen-rich gas production (45 vol% H{sub 2}). A liquid-phase thermal pretreatment to destroy solid particles from the wastewater was proposed for more effective operation of the SCWG system. (orig.)

  13. Occurrence of organic microcontaminants in the wastewater treatment process. A mini review.

    Science.gov (United States)

    Ratola, Nuno; Cincinelli, Alessandra; Alves, Arminda; Katsoyiannis, Athanasios

    2012-11-15

    A wastewater treatment plant may receive various types of wastewater namely, urban, industrial, agricultural, washout from the streets, wet or/and dry atmospheric deposition. As such, scientists have detected in wastewaters all major categories of pollutants like persistent organic pollutants (POPs), polycyclic aromatic hydrocarbons (PAHs) and pesticides, but also substances that are widely used as pharmaceuticals and cosmetics, classified as "PPCPs" (pharmaceuticals and personal care products). Finally, the latest categories of compounds to be looked upon in these types of matrices are illicit drugs (drugs of abuse, like cocaine, etc.) and doping substances. This review article summarises major categories of organic microcontaminants that have been detected in wastewaters and studies their fate during the wastewater treatment process. Occurrence of these compounds in the influents and effluents are reported, as well as percents of removal, mass balances and phase distributions. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Effects of reactive filters based on modified zeolite in dairy industry wastewater treatment process

    OpenAIRE

    Kolaković, Srđan; Stefanović, Dragoslav; Milićević, Dragan; Trajković, Slaviša; Milenković, Slobodan; Kolaković, Slobodan S.; Anđelković, Ljiljana

    2013-01-01

    Application of adsorbents based on organo-zeolites has certain advantages over conventional methods applied in food industry wastewater treatment process. The case study presented in this paper examines the possibilities and effects of treatment of dairy industry wastewater by using adsorbents based on organo-zeolites. The obtained results indicate favorable filtration properties of organo-zeolite, their high level of adsorption of organic matter and nitrat...

  15. Effects of reactive filters based on modified zeolite in dairy industry wastewater treatment process

    Directory of Open Access Journals (Sweden)

    Kolaković Srđan

    2013-01-01

    Full Text Available Application of adsorbents based on organo-zeolites has certain advantages over conventional methods applied in food industry wastewater treatment process. The case study presented in this paper examines the possibilities and effects of treatment of dairy industry wastewater by using adsorbents based on organo-zeolites. The obtained results indicate favorable filtration properties of organo-zeolite, their high level of adsorption of organic matter and nitrate nitrogen in the analyzed wastewater. This paper concludes with recommendations of optimal technical and technological parameters for the application of these filters in practice.

  16. Non-thermal plasma treatment of Radix aconiti wastewater generated by traditional Chinese medicine processing.

    Science.gov (United States)

    Wen, Yiyong; Yi, Jianping; Zhao, Shen; Jiang, Song; Chi, Yuming; Liu, Kefu

    2016-06-01

    The wastewater effluent from Radix aconiti processing, an important step in the production processes of traditional Chinese medicine (TCM), is a type of toxic wastewater and difficult to treat. Plasma oxidation methods have emerged as feasible techniques for effective decomposition of toxic organic pollutants. This study examined the performance of a plasma reactor operated in a dielectric barrier discharge (DBD) to degrade the effluent from R. aconiti processing. The effects of treatment time, discharge voltage, initial pH value and the feeding gas for the reactor on the degradation of this TCM wastewater were investigated. A bacterium bioluminescence assay was adopted in this study to test the toxicity of the TCM wastewater after non-thermal plasma treatment. The degradation ratio of the main toxic component was 87.77% after 60min treatment with oxygen used as feed gas and it was 99.59% when the initial pH value was 8.0. High discharge voltage and alkaline solution environment were beneficial for improving the degradation ratio. The treatment process was found to be capable of reducing the toxicity of the wastewater to a low level or even render it non-toxic. These experimental results suggested that the DBD plasma method may be a competitive technology for primary decomposition of biologically undegradable toxic organic pollutants in TCM wastewater. Copyright © 2016. Published by Elsevier B.V.

  17. A Guide for Developing Standard Operating Job Procedures for the Primary Sedimentation Process Wastewater Treatment Facility. SOJP No. 4.

    Science.gov (United States)

    Charles County Community Coll., La Plata, MD.

    This guide describes standard operating job procedures for the primary sedimentation process of wastewater treatment plants. The primary sedimentation process involves removing settleable and suspended solids, in part, from wastewater by gravitational forces, and scum and other floatable solids from wastewater by mechanical means. Step-by-step…

  18. Effects of oxide nanomaterials used in flotation process in wastewater treatment.

    OpenAIRE

    CRISTINA COVALIU

    2017-01-01

    Important challenges in the global water situation, mainly resulting from worldwide population growth and climate change, require novel innovative water technologies in order to ensure a supply of drinking water and reduce global water pollution. For this purpose, highly advanced nanotechnology offers new opportunities in technological developments for advanced water and wastewater technology processes. This paper presents an important method used in the wastewater treatment and in the minera...

  19. Integrating the Anaerobic Process with Ultrafiltration in Meat Industry Wastewater Treatment

    Directory of Open Access Journals (Sweden)

    Kwarciak-Kozłowska Anna

    2014-12-01

    Full Text Available The aim of this paper was to study meat industry wastewater treatment efficiency during fermentation process in ASBR reactor and post-treatment in UF process. The anaerobic process obtained a considerable degree of the removal of organic pollutants from raw wastewater designated as COD (73.3%, BOD (71.4% and TOC (83.2%. The concentrations of COD and BOD were 435 and 443 mg/dm3, respectively. The value of TOC reached a level of 136 mg/dm3. Generated biogas in the methane fermentation process of wastewater from meat industry plants was characterized by high methane content (80.9% vol.. In the final part of the experiment, the UF process was used in order to post-treating effluent from ASBR reactor. During the UF process, COD, BOD and TOC parameters were removed at 67.2%, 68% and 70.4%, respectively.

  20. Variations in toxicity of semi-coking wastewater treatment processes and their toxicity prediction.

    Science.gov (United States)

    Ma, Xiaoyan; Wang, Xiaochang; Liu, Yongjun; Gao, Jian; Wang, Yongkun

    2017-04-01

    Chemical analyses and bioassays using Vibrio fischeri and Daphnia magna were conducted to evaluate comprehensively the variation of biotoxicity caused by contaminants in wastewater from a semi-coking wastewater treatment plant (WWTP). Pretreatment units (including an oil-water separator, a phenols extraction tower, an ammonia stripping tower, and a regulation tank) followed by treatment units (including anaerobic-oxic treatment units, coagulation-sedimentation treatment units, and an active carbon adsorption column) were employed in the semi-coking WWTP. Five benzenes, 11 phenols, and five polycyclic aromatic hydrocarbons (PAHs) were investigated as the dominant contaminants in semi-coking wastewater. Because of residual extractant, the phenols extraction process increased acute toxicity to V. fischeri and immobilization and lethal toxicity to D. magna. The acute toxicity of pretreated wastewater to V. fischeri was still higher than that of raw semi-coking wastewater, even though 90.0% of benzenes, 94.8% of phenols, and 81.0% of PAHs were removed. After wastewater pretreatment, phenols and PAHs were mainly removed by anaerobic-oxic and coagulation-sedimentation treatment processes respectively, and a subsequent active carbon adsorption process further reduced the concentrations of all target chemicals to below detection limits. An effective biotoxicity reduction was found during the coagulation-sedimentation and active carbon adsorption treatment processes. The concentration addition model can be applied for toxicity prediction of wastewater from the semi-coking WWTP. The deviation between the measured and predicted toxicity results may result from the effects of compounds not detectable by instrumental analyses, the synergistic effect of detected contaminants, or possible transformation products. Copyright © 2016. Published by Elsevier Inc.

  1. Electrochemical advanced oxidation and biological processes for wastewater treatment: a review of the combined approaches.

    Science.gov (United States)

    Ganzenko, Oleksandra; Huguenot, David; van Hullebusch, Eric D; Esposito, Giovanni; Oturan, Mehmet A

    2014-01-01

    As pollution becomes one of the biggest environmental challenges of the twenty-first century, pollution of water threatens the very existence of humanity, making immediate action a priority. The most persistent and hazardous pollutants come from industrial and agricultural activities; therefore, effective treatment of this wastewater prior to discharge into the natural environment is the solution. Advanced oxidation processes (AOPs) have caused increased interest due to their ability to degrade hazardous substances in contrast to other methods, which mainly only transfer pollution from wastewater to sludge, a membrane filter, or an adsorbent. Among a great variety of different AOPs, a group of electrochemical advanced oxidation processes (EAOPs), including electro-Fenton, is emerging as an environmental-friendly and effective treatment process for the destruction of persistent hazardous contaminants. The only concern that slows down a large-scale implementation is energy consumption and related investment and operational costs. A combination of EAOPs with biological treatment is an interesting solution. In such a synergetic way, removal efficiency is maximized, while minimizing operational costs. The goal of this review is to present cutting-edge research for treatment of three common and problematic pollutants and effluents: dyes and textile wastewater, olive processing wastewater, and pharmaceuticals and hospital wastewater. Each of these types is regarded in terms of recent scientific research on individual electrochemical, individual biological and a combined synergetic treatment.

  2. Anaerobic electrochemical membrane bioreactor and process for wastewater treatment

    KAUST Repository

    Amy, Gary

    2015-07-09

    An anaerobic electrochemical membrane bioreactor (AnEMBR) can include a vessel into which wastewater can be introduced, an anode electrode in the vessel suitable for supporting electrochemically active microorganisms (EAB, also can be referred to as anode reducing bacteria, exoelectrogens, or electricigens) that oxidize organic compounds in the wastewater, and a cathode membrane electrode in the vessel, which is configured to pass a treated liquid through the membrane while retaining the electrochemically active microorganisms and the hydrogenotrophic methanogens (for example, the key functional microbial communities, including EAB, methanogens and possible synergistic fermenters) in the vessel. The cathode membrane electrode can be suitable for catalyzing the hydrogen evolution reaction to generate hydro en.

  3. Biological treatment of nitrogen-rich refinery wastewater by partial nitritation (SHARON) process.

    Science.gov (United States)

    Milia, S; Cappai, G; Perra, M; Carucci, A

    2012-01-01

    Wastewater discharges containing high nitrogen levels can be toxic to aquatic life and cause eutrophication. In this study, the application of the SHARON (Single reactor for High activity Ammonium Removal Over Nitrite) process for the treatment of refinery wastewater (sour water) was evaluated, in view of its coupling with the ANAMMOX (ANaerobic AMMonium OXidation) process. A Continuous Flow Stirred Tank Reactor was initially fed with a synthetic medium, and the applied NH4-N concentration and wastewater/synthetic medium ratio were progressively increased up to 2000 mgN/L and 100%, respectively. Despite the high potential toxic effect of the real wastewater, overall SHARON performance did not decrease with the increasing real wastewater/synthetic medium ratio, and biomass showed progressive acclimation to the toxic compounds in the real wastewater, as demonstrated by toxicity assessments. NH4-N and dissolved organic carbon removal efficiency were around 50% and 65%, respectively. Moreover, the effluent was characterized by a NO2-N/NH4-N ratio of 0.9 +/- 0.01 and low nitrate concentration (<30 mgN/L), in line with the requirements for the subsequent treatment by the ANAMMOX process.

  4. Dairy wastewater treatment

    African Journals Online (AJOL)

    STORAGESEVER

    2009-08-04

    Aug 4, 2009 ... organic sources into methane via anaerobic process. Whey is considered as highly pollutant effluent with res- pect to COD level (60-80 g/l) (Mc-Hugh et al., 2006;. Gannoun et al., 2008). There are number of biological treatment processes to treat dairy wastewater such as activated sludge system, anaerobic ...

  5. Evaluation of treatment efficiency of processes for petroleum refinery`s wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Kee, Kean Chin [National Univ. of Singapore, Kent Ridge (Singapore). Dept. of Civil Engineering

    1993-12-31

    Processes used in the treatment of a petroleum refinery wastewater included initial API oil separator to be followed by dissolved air flotation and extended aeration system. The use of extended aeration biological system proved to be an improvement but not a solution yet in such kind of treatment. 2 refs., 2 tabs.

  6. Treatment of winery wastewater by physicochemical, biological and advanced processes: a review.

    Science.gov (United States)

    Ioannou, L A; Li Puma, G; Fatta-Kassinos, D

    2015-04-09

    Winery wastewater is a major waste stream resulting from numerous cleaning operations that occur during the production stages of wine. The resulting effluent contains various organic and inorganic contaminants and its environmental impact is notable, mainly due to its high organic/inorganic load, the large volumes produced and its seasonal variability. Several processes for the treatment of winery wastewater are currently available, but the development of alternative treatment methods is necessary in order to (i) maximize the efficiency and flexibility of the treatment process to meet the discharge requirements for winery effluents, and (ii) decrease both the environmental footprint, as well as the investment/operational costs of the process. This review, presents the state-of-the-art of the processes currently applied and/or tested for the treatment of winery wastewater, which were divided into five categories: i.e., physicochemical, biological, membrane filtration and separation, advanced oxidation processes, and combined biological and advanced oxidation processes. The advantages and disadvantages, as well as the main parameters/factors affecting the efficiency of winery wastewater treatment are discussed. Both bench- and pilot/industrial-scale processes have been considered for this review. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Sulfate Reduction at pH 4.0 for Treatment of Process and Wastewaters

    NARCIS (Netherlands)

    Bijmans, M.F.M.; Vries, de E.; Yang, C.H.; Buisman, C.J.N.; Lens, P.N.L.; Dopson, M.

    2010-01-01

    Acidic industrial process and wastewaters often contain high sulfate and metal concentrations and their direct biological treatment is thus far not possible as biological processes at pH <5 have been neglected. Sulfate-reducing bacteria convert sulfate to sulfide that can subsequently be used to

  8. [Analysis of novel style biological fluidized bed A/O combined process in dyeing wastewater treatment].

    Science.gov (United States)

    Wei, Chao-Hai; Huang, Hui-Jing; Ren, Yuan; Wu, Chao-Fei; Wu, Hai-Zhen; Lu, Bin

    2011-04-01

    A novel biological fluidized bed was designed and developed to deal with high-concentration refractory organic industrial wastewater. From 12 successful projects, three cases of dyeing wastewater treatment projects with the scale of 1200, 2000 and 13000 m3/d respectively were selected to analyze the principle of treating refractory organic wastewater with fluidized bed technology and discuss the superiority of self-developed biological fluidized bed from the aspects of technical and economic feasibility. In the three cases, when the hydraulic retention time (HRT) of biological system were 23, 34 and 21. 8 h, and the volume loading of influents (COD) were 1.75, 4.75 and 2.97 kg/(m3 x d), the corresponding COD removal were 97.3%, 98.1% and 95.8%. Furthermore the operating costs of projects were 0.91, 1.17 and 0.88 yuan per ton of water respectively. The index of effluent all met the 1st grade of Guangdong Province wastewater discharge standard. Results showed that the biological fluidized bed had characteristics of shorter retention time, greater oxygen utilization rate, faster conversion rate of organic pollutants and less sludge production, which made it overcome the shortcomings of traditional methods in printing and dyeing wastewater treatment. Considering the development of technology and the combination of ecological security and recycling resources, a low-carbon wastewater treatment process was proposed.

  9. Sustainable treatment of rubber latex processing wastewater : the UASB-system combined with aerobic post-treatment

    NARCIS (Netherlands)

    Viet Nguyen Trung,

    1999-01-01

    The main objective of this PhD-thesis is to assess the applicability of UASB-process for treating RLP wastewater and the feasibility of some adequate post-treatment processes for the effluent of the anaerobic treatment process.

    The studies were carried out in The Netherlands during

  10. Purification and treatment of industrial wastewater by electron beam process: it's potential and effectiveness evaluation

    International Nuclear Information System (INIS)

    Zulkafli Ghazali; Khomsaton Abu Bakar; Ting Teo Ming; Siti Aiasah Hashim; Khairul Zaman Mohd Dahlan

    2002-01-01

    Demand for water has grown dramatically globally. We have seen how acute is the demand for treated water in Malaysia during dry spell of late. Between 1900 and 1995, water consumption increased by over six times, globally, more than double the rate of population growth. This rapid growth in water demand is due to the increasing reliance on irrigation to achieve food security, the growth of industries, and the increasing use for domestic purposes. Given the seriousness of the situation and future risk of crises, there is an urgent need to develop the water-efficient technologies including economical treatment methods of wastewater and polluted water. Electron beam treatment (E-Beam treatment) is a comparatively new method of wastewater purification. E-beam treatment is also an environment-friendly approach for the cleanup of contaminated groundwater and industrial wastewater. E-beam treatment treats multi-components waste streams and does not require any hazardous chemical additives nor does it create any secondary wastes. It uses fast formation of short-lived reactive particles, which are capable of efficient decomposition of pollutants inside wastewater. This paper highlights the practical treatment of wastewater using E-Beam method that gives essential conveniences and advantages of the followings: - strongest reducing and oxidizing agents; - universality and interchangeability of redox agents; - variety of paths for pollutant conversion; - process controllability; - wide choice of equipment and technological regimes; - compatibility with conventional methods. (Author)

  11. Nitrogen and Phosphorus Pollutants in Cosmetics Wastewater and Its Treatment Process of a Certain Brand

    Science.gov (United States)

    Ma, Guosheng; Chen, Juan

    2018-02-01

    Cosmetics wastewater is one of the sources of nitrogen and phosphorus pollutants that cause eutrophication of water bodies. This paper is to test the cosmetics wastewater in the production process with American Hach method, and the pH and other indicators would be detected during a whole production cycle. The results show that the pH value in wastewater is 8.6~8.7 (average 8.67), SS 880~1090 mg. L-1 (average 968.57), TN 65.2~100.4 mg.m-3 (average 80.50), TP 6.6~11.4 mg.m-3 (average 9.84), NH3-N 44.2~77.0 mg.m-3 (average 55.61), COD 4650~5900 mg.m-3 (average 5490). After pollutant treatment, the nitrogen and phosphorus pollutants in wastewater can reach the standard discharge.

  12. Wastewater treatment in the pulp-and-paper industry: A review of treatment processes and the associated greenhouse gas emission.

    Science.gov (United States)

    Ashrafi, Omid; Yerushalmi, Laleh; Haghighat, Fariborz

    2015-08-01

    Pulp-and-paper mills produce various types of contaminants and a significant amount of wastewater depending on the type of processes used in the plant. Since the generated wastewaters can be potentially polluting and very dangerous, they should be treated in wastewater treatment plants before being released to the environment. This paper reviews different wastewater treatment processes used in the pulp-and-paper industry and compares them with respect to their contaminant removal efficiencies and the extent of greenhouse gas (GHG) emission. It also evaluates the impact of operating parameters on the performance of different treatment processes. Two mathematical models were used to estimate GHG emission in common biological treatment processes used in the pulp-and-paper industry. Nutrient removal processes and sludge treatment are discussed and their associated GHG emissions are calculated. Although both aerobic and anaerobic biological processes are appropriate for wastewater treatment, their combination known as hybrid processes showed a better contaminant removal capacity at higher efficiencies under optimized operating conditions with reduced GHG emission and energy costs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Wastewater treatment models

    DEFF Research Database (Denmark)

    Gernaey, Krist; Sin, Gürkan

    2011-01-01

    The state-of-the-art level reached in modeling wastewater treatment plants (WWTPs) is reported. For suspended growth systems, WWTP models have evolved from simple description of biological removal of organic carbon and nitrogen in aeration tanks (ASM1 in 1987) to more advanced levels including...... of WWTP modeling by linking the wastewater treatment line with the sludge handling line in one modeling platform. Application of WWTP models is currently rather time consuming and thus expensive due to the high model complexity, and requires a great deal of process knowledge and modeling expertise...

  14. Wastewater Treatment Models

    DEFF Research Database (Denmark)

    Gernaey, Krist; Sin, Gürkan

    2008-01-01

    The state-of-the-art level reached in modeling wastewater treatment plants (WWTPs) is reported. For suspended growth systems, WWTP models have evolved from simple description of biological removal of organic carbon and nitrogen in aeration tanks (ASM1 in 1987) to more advanced levels including...... the practice of WWTP modeling by linking the wastewater treatment line with the sludge handling line in one modeling platform. Application of WWTP models is currently rather time consuming and thus expensive due to the high model complexity, and requires a great deal of process knowledge and modeling expertise...

  15. Improving the biological nitrogen removal process in pharmaceutical wastewater treatment plants: a case study.

    Science.gov (United States)

    Torrijos, M; Carrera, J; Lafuente, J

    2004-04-01

    The Biological Nitrogen Removal (BNR) process of some pharmaceutical wastewater treatment plants has important operational problems. This study shows that, in order to solve these problems, the design of industrial BNR processes should start by analysing three key parameters: the characteristics of the wastewater load, the determination of the maximum TKN removal rate and the detection of toxic or inhibitory compounds in the wastewater. A case study of this analysis in pharmaceutical wastewater is presented here. In this case, the conventional TKN analytical method does not make an accurate characterisation of the wastewater load because it measures a concentration of 100 mg TKN l(-1) whereas the real concentration, determined with a modified TKN analytical method, is 150-500 mg TKN l(-1). Also, the TKN removal of the treatment system is insufficient in some periods because it falls below legal requirements. This problem might be a consequence of the wrong characterisation of wastewater during the design process. The maximum TKN removal at 27 degrees C (24 mg N g VSS(-1) d(-1) or 197 mg N l(-1) d(-1)) was evaluated in a pilot-scale plant. This value is six times greater than the average NLR applied in the full-scale plant. Finally, some of the components of the wastewater, such as p-phenylenediamine, might have inhibitory or toxic effects on the biological process. P-phenylenediamine causes a large decrease in the nitrification rate. This effect was determined by respirometry. This methodology shows that the effect is mainly inhibitory with a contact time of 30 min and if the contact time is longer, 14 hours, a toxic effect is observed.

  16. Evaluation of Wastewater Treatment of Detergent Industry Using Coagulation Procession Pilot Scale

    Directory of Open Access Journals (Sweden)

    MR Shahmansouri

    2005-04-01

    Full Text Available Introduction: Surfactant or surface active agents are slightly soluble in water and cause foaming in waste treatment plants and also in the surface waters into which the waste effluent is discharged. During aeration of wastewater, these compounds collect on the surface of the water bubbles and create some problems in waste treatment. Methods: In this study, surfactant, turbidity and COD in the industrial wastewater of the company, Paksan was studied. Study was done at pH ranging between 2 and 13 in a pilot scale process. Results: The results showed that ferric chloride has higher efficiency in removal and it is possible to decrease the surfactant, turbidity and COD Conclusion: The efficiency of ferric chloride in coagulation process for removal of surfactant, turbidity and COD from industrial wastewater is better than ALUM, Lime and Ferric Sulfate,

  17. Process and technological options for odorous emissions control in wastewater treatment plants

    International Nuclear Information System (INIS)

    Cernuschi, S.; Torretta, V.

    1996-01-01

    The emissions of odorous substances together with noise and issues related to proper architectural design within the existing territorial context, have certainly to be considered one of the most significant environmental effects determined by wastewater treatment plants particularly in the most frequent case of their localization in dense urban areas. Following a brief introduction on the chemical properties of odorous compounds and the corresponding methods for representing their concentration levels in air, present work reports on the main qualitative and quantitative characteristics of odorous emissions originating from single unit operations of typical wastewater treatment plants and on the technological and process options available for their control

  18. Identification and Control of Nutrient Removing Processes in Wastewater Treatment Plants

    DEFF Research Database (Denmark)

    Nielsen, Marinus K.; Madsen, Henrik; Carstensen, Niels Jacob

    1994-01-01

    Today the use of on-line control for wastewater treatment plants is very low. A main reason is the lack of quality of the data, and the fact that more sophisticated control strategies must be based on a model of the dynamics of the biological processes. This paper discusses the historical reasons...... for the limited use of modern control strategies for wastewater treatment plants. Today, however, on-line nutrient sensors are more reliable. In the present context the use of on-line monitored values of ammonia, nitrate and phosphate from a full scale plant are used as the background for discussing...

  19. Advanced treatment of pharmaceutical wastewater by Fenton reagent oxidation process

    Directory of Open Access Journals (Sweden)

    Yanan YANG

    2015-12-01

    Full Text Available Avermectin-salinomycin waster is hard to be further biodegraded after treated by anaerobic-aerobiotic process, so Fenton oxidation process is studied for its advanced treatment. Influencing factors of pH, reaction time, H2O2 dosage and H2O2/Fe2+ on COD removal are investigated, respectively. When pH value is 3.0, the dosage of H2O2 is 1.5 mL/L, and the mole ratio of H2O2/Fe2+ is 5∶1, the effluent COD mass concentrations decreases from 224 to 64.3 mg/L, namely the COD removal efficiency reaches 71.3%.

  20. Fenton-biological treatment processes for the removal of some pharmaceuticals from industrial wastewater.

    Science.gov (United States)

    Badawy, Mohamed I; Wahaab, Rifaat A; El-Kalliny, A S

    2009-08-15

    A treatability study of pharmaceutical wastewater from El-Nasr Pharmaceutical and Chemical Company, South-East of Cairo, was carried out. The company discharges both industrial (6000 m(3)/d) and municipal wastewater (128 m(3)/d) into a nearby evaporation pond without any treatment. The generated raw wastewater is characterized by high values of COD (4100-13,023), TSS (20-330 mg/L), and oil grease (17.4-600 mg/L). In addition, the presence of refractory compounds decreases BOD/COD ratio (0.25-0.30). Analysis of raw wastewater confirmed that pre-treatment is required prior to discharge into public sewers to comply with the Egyptian Environmental laws and regulations. The obtained results indicated that the refractory compounds and their by-products cannot be readily removed by biological treatment and always remain in the treated effluent or adsorbed on the sludge flocs. The application of Fenton oxidation process as a pre-treatment improved the removal of pharmaceuticals from wastewater and appears to be an affective solution to achieve compliance with the law legislation with respect to discharge in a determined receptor medium.

  1. Effects of oxide nanomaterials used in flotation process in wastewater treatment.

    Directory of Open Access Journals (Sweden)

    CRISTINA COVALIU

    2017-05-01

    Full Text Available Important challenges in the global water situation, mainly resulting from worldwide population growth and climate change, require novel innovative water technologies in order to ensure a supply of drinking water and reduce global water pollution. For this purpose, highly advanced nanotechnology offers new opportunities in technological developments for advanced water and wastewater technology processes. This paper presents an important method used in the wastewater treatment and in the mineral separation, named the flotation. Also, this paper presents the factors that influence the froth flotation process, such as: nanoparticle hydrophobicity, nanoparticle diameter, particle softness etc.

  2. Treatment of reactive process wastewater with high-level ammonia by blow-off method

    International Nuclear Information System (INIS)

    Chen Xiaotong; Quan Ying; Wang Yang; Fu Genna; Liu Bing; Tang Yaping

    2012-01-01

    The ceramic UO 2 kernels for nuclear fuel elements of high temperature gas cooled reactors were prepared through sol-gel process with uranyl nitrate, which produces process wastewater containing high-level ammonia and uranium. The blow-off method on a bench scale was investigated to remove ammonia from reactive wastewater. Under the optimized operating conditions, the ammonia can be removed by more than 95%, with little reactive uranium distilled. The effects of pH, heating temperature and stripping time were studied. Static tests with ion-exchange resin indicate that ammonia removal treatment increases uranium accumulation in anion exchange resin. (authors)

  3. A model-based framework for incremental scale-up of wastewater treatment processes

    DEFF Research Database (Denmark)

    Mauricio Iglesias, Miguel; Sin, Gürkan

    Scale-up is traditionally done following specific ratios or rules of thumb which do not lead to optimal results. We present a generic framework to assist in scale-up of wastewater treatment processes based on multiscale modelling, multiobjective optimisation and a validation of the model at the new...

  4. Microbubble enhanced ozonation process for advanced treatment of wastewater produced in acrylic fiber manufacturing industry

    KAUST Repository

    Zheng, Tianlong

    2015-02-02

    This work investigated microbubble-ozonation for the treatment of a refractory wet-spun acrylic fiber wastewater in comparison to macrobubble-ozonation. CODcr, NH3-N, and UV254 of the wastewater were removed by 42%, 21%, and 42%, respectively in the microbubble-ozonation, being 25%, 9%, and 35% higher than the removal rates achieved by macrobubble-ozonation at the same ozone dose. The microbubbles (with average diameter of 45μm) had a high concentration of 3.9×105 counts/mL at a gas flow rate of 0.5L/min. The gas holdup, total ozone mass-transfer coefficient, and average ozone utilization efficiency in the microbubble-ozonation were 6.6, 2.2, and 1.5 times higher than those of the macrobubble-ozonation. Greater generation of hydroxyl radicals and a higher zeta potential of the bubbles were also observed in the microbubble ozonation process. The biodegradability of the wastewater was also significantly improved by microbubble-ozonation, which was ascribed to the enhanced degradation of alkanes, aromatic compounds, and the many other bio-refractory organic compounds in the wastewater. Microbubble-ozonation can thus be a more effective treatment process than traditional macrobubble-ozonation for refractory wastewater produced by the acrylic fiber manufacturing industry.

  5. Experimental Study of Advanced Treatment of Coking Wastewater Using MBR-RO Combined Process

    Science.gov (United States)

    Zhang, Lei; Hwang, Jiannyang; Leng, Ting; Xue, Gaifeng; Chang, Hongbing

    A membrane bioreactor-reverse osmosis (MBR-RO) combined process was used for advanced treatment of coking wastewater from secondary biological treatment. MBR and RO units' treatment efficiency for the pollution removal were conducted, and effects of raw water conductivity and trans-membrane pressure on water yield and desalination rate in RO unit were investigated in detail. The experimental results proved that MBR-RO combined process ran steadily with good treatment effect, which could obtain stable effluent water quality and met the requirement of "Design Criterion of the Industrial Circulating Cooling Water Treatment" (GB 50050-2007).

  6. Innovative wastewater treatment process with reduced energy consumption and regeneration of nutrients

    DEFF Research Database (Denmark)

    Schmidt, Jens Ejbye; Fitsios, E.; Angelidaki, Irini

    Treatment of municipal wastewater by anaerobic digestion was investigated. A new process is described here, where anaerobic digestion of municipal wastewater is the main step for removal of organic matter, resulting in much lower sludge production. Steps for removal nutrients are also included. T...... and no substrate limitation was observed for the used granules. Experiment with UASB reactors showed COD removal efficiencies between 49-82 for the toal COD and 25-99 for the soluble COD. No significant differences were observed between reactor performance at 22 and 37 degree C....

  7. Textile Wastewater Treatment by Electrocoagulation Process using Aluminum Electrodes

    Directory of Open Access Journals (Sweden)

    Edris Bazrafshan

    2014-03-01

    Full Text Available Background and purpose: Textile industries are among the most polluting industries regarding the volume and the complexity of treatment of its effluents discharge. This study investigated the efficiency of electrocoagulation process using aluminum electrodes in basic red 18 dye removal from aqueous solutions. Materials and Methods: This study was performed in a bipolar batch reactor with six aluminum electrodes connected in parallel. Several important parameters, such as initial pH of solution, initial dye concentration, applied voltage; conductivity and reaction time were studied in an attempt to achieve higher removal efficiency. Results: The electrochemical technique showed satisfactory dye removal efficiency and reliable performance in treating of basic red 18. The maximum efficiency of dye removal which was obtained in voltage of 50 V, reaction time of 60 min, initial concentration 50 mg/L, conductivity 3000 μS/cm and pH 7 was equal to 97.7%. Dye removal efficiency was increased accordance to increase of applied voltage and in contrast electrode and energy consumption was increased simultaneously. Conclusion: As a conclusion, the method was found to be highly efficient and relatively fast compared to conventional existing techniques for dye removal from aqueous solutions.

  8. Application of Statistical Model in Wastewater Treatment Process Modeling Using Data Analysis

    Directory of Open Access Journals (Sweden)

    Alireza Raygan Shirazinezhad

    2015-06-01

    Full Text Available Background: Wastewater treatment includes very complex and interrelated physical, chemical and biological processes which using data analysis techniques can be rigorously modeled by a non-complex mathematical calculation models. Materials and Methods: In this study, data on wastewater treatment processes from water and wastewater company of Kohgiluyeh and Boyer Ahmad were used. A total of 3306 data for COD, TSS, PH and turbidity were collected, then analyzed by SPSS-16 software (descriptive statistics and data analysis IBM SPSS Modeler 14.2, through 9 algorithm. Results: According to the results on logistic regression algorithms, neural networks, Bayesian networks, discriminant analysis, decision tree C5, tree C & R, CHAID, QUEST and SVM had accuracy precision of 90.16, 94.17, 81.37, 70.48, 97.89, 96.56, 96.46, 96.84 and 88.92, respectively. Discussion and conclusion: The C5 algorithm as the best and most applicable algorithms for modeling of wastewater treatment processes were chosen carefully with accuracy of 97.899 and the most influential variables in this model were PH, COD, TSS and turbidity.

  9. An Innovative Membrane Bioreactor Process For Achieving Sustainable Advanced Wastewater Treatment

    Science.gov (United States)

    Chemicals of concern (COCs), such as pharmaceutical chemicals, steroid hormones, and pesticides, have been found to be widely distributed in water and wastewater. Conventionally operated wastewater treatment plants do not provide an effective barrier against the release of these...

  10. Combination of Advanced Oxidation Processes and biological treatments for wastewater decontamination-A review

    International Nuclear Information System (INIS)

    Oller, I.; Malato, S.; Sanchez-Perez, J.A.

    2011-01-01

    Nowadays there is a continuously increasing worldwide concern for development of alternative water reuse technologies, mainly focused on agriculture and industry. In this context, Advanced Oxidation Processes (AOPs) are considered a highly competitive water treatment technology for the removal of those organic pollutants not treatable by conventional techniques due to their high chemical stability and/or low biodegradability. Although chemical oxidation for complete mineralization is usually expensive, its combination with a biological treatment is widely reported to reduce operating costs. This paper reviews recent research combining AOPs (as a pre-treatment or post-treatment stage) and bioremediation technologies for the decontamination of a wide range of synthetic and real industrial wastewater. Special emphasis is also placed on recent studies and large-scale combination schemes developed in Mediterranean countries for non-biodegradable wastewater treatment and reuse. The main conclusions arrived at from the overall assessment of the literature are that more work needs to be done on degradation kinetics and reactor modeling of the combined process, and also dynamics of the initial attack on primary contaminants and intermediate species generation. Furthermore, better economic models must be developed to estimate how the cost of this combined process varies with specific industrial wastewater characteristics, the overall decontamination efficiency and the relative cost of the AOP versus biological treatment.

  11. STEP wastewater treatment: a solar thermal electrochemical process for pollutant oxidation.

    Science.gov (United States)

    Wang, Baohui; Wu, Hongjun; Zhang, Guoxue; Licht, Stuart

    2012-10-01

    A solar thermal electrochemical production (STEP) pathway was established to utilize solar energy to drive useful chemical processes. In this paper, we use experimental chemistry for efficient STEP wastewater treatment, and suggest a theory based on the decreasing stability of organic pollutants (hydrocarbon oxidation potentials) with increasing temperature. Exemplified by the solar thermal electrochemical oxidation of phenol, the fundamental model and experimental system components of this process outline a general method for the oxidation of environmentally stable organic pollutants into carbon dioxide, which is easily removed. Using thermodynamic calculations we show a sharply decreasing phenol oxidation potential with increasing temperature. The experimental results demonstrate that this increased temperature can be supplied by solar thermal heating. In combination this drives electrochemical phenol removal with enhanced oxidation efficiency through (i) a thermodynamically driven decrease in the energy needed to fuel the process and (ii) improved kinetics to sustain high rates of phenol oxidation at low electrochemical overpotential. The STEP wastewater treatment process is synergistic in that it is performed with higher efficiency than either electrochemical or photovoltaic conversion process acting alone. STEP is a green, efficient, safe, and sustainable process for organic wastewater treatment driven solely by solar energy. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Identification of wastewater processes

    DEFF Research Database (Denmark)

    Carstensen, Niels Jacob

    The introduction of on-line sensors for monitoring of nutrient salts concentrations on wastewater treatment plants with nutrient removal, opens a wide new area of modelling wastewater processes. The subject of this thesis is the formulation of operational dynamic models based on time series...... of ammonia, nitrate, and phosphate concentrations, which are measured in the aeration tanks of the biological nutrient removal system. The alternatign operation modes of the BIO-DENITRO and BIO-DENIPHO processes are of particular interest. Time series models of the hydraulic and biological processes are very...... consistency with suggested kinetic parameter values of the literature. A large amount of information about the two plants and their performances is obtained from the models, of which the variations of the influent ammonia load, and the autotrophic and heterotrophic biomass activity have particular interest...

  13. A Guide for Developing Standard Operating Job Procedures for the Tertiary Multimedia Filtration Process Wastewater Treatment Facility. SOJP No. 7.

    Science.gov (United States)

    Petrasek, Al, Jr.

    This guide describes the standard operating job procedures for the tertiary multimedia filtration process of wastewater treatment plants. The major objective of the filtration process is the removal of suspended solids from the reclaimed wastewater. The guide gives step-by-step instructions for pre-start up, start-up, continuous operation, and…

  14. Microbial fuel cell treatment of fuel process wastewater

    Science.gov (United States)

    Borole, Abhijeet P; Tsouris, Constantino

    2013-12-03

    The present invention is directed to a method for cleansing fuel processing effluent containing carbonaceous compounds and inorganic salts, the method comprising contacting the fuel processing effluent with an anode of a microbial fuel ell, the anode containing microbes thereon which oxidatively degrade one or more of the carbonaceous compounds while producing electrical energy from the oxidative degradation, and directing the produced electrical energy to drive an electrosorption mechanism that operates to reduce the concentration of one or more inorganic salts in the fuel processing effluent, wherein the anode is in electrical communication with a cathode of the microbial fuel cell. The invention is also directed to an apparatus for practicing the method.

  15. Comparison of Fenton process and adsorption method for treatment of industrial container and drum cleaning industry wastewater.

    Science.gov (United States)

    Güneş, Elçin; Çifçi, Deniz İzlen; Çelik, Suna Özden

    2018-04-01

    The present study aims to explore the characterization of industrial container and drum cleaning (ICDC) industry wastewater and treatment alternatives of this wastewater using Fenton and adsorption processes. Wastewater derived from ICDC industry is usually treated by chemical coagulation and biological treatment in Turkey and then discharged in a centralized wastewater treatment facility. It is required that the wastewater COD is below 1500 mg/L to treat in a centralized wastewater treatment facility. The wastewater samples were characterized for parameters of pH, conductivity, COD, BOD 5 , TSS, NH 3 -N, TN, TOC, TP, Cd, Cr, Cu, Fe, Ni, Pb, Zn, and Hg. Initial COD values were in the range of 11,300-14,200 mg/L. The optimum conditions for Fenton treatment were 35-40 g/L for H 2 O 2 , 2-5 g/L for Fe 2+ , and 13-36 for H 2 O 2 /Fe 2+ molar ratio. The optimum conditions of PAC doses and contact times in adsorption studies were 20-30 g/L and 5-12 h, respectively. Removal efficiencies of characterized parameters for the three samples were compared for both Fenton and adsorption processes under optimum conditions. The results suggest that these wastewaters are suitable for discharge to a centralized wastewater treatment plant.

  16. Fate of artificial sweeteners through wastewater treatment plants and water treatment processes.

    Science.gov (United States)

    Li, Shaoli; Ren, Yuhang; Fu, Yingying; Gao, Xingsheng; Jiang, Cong; Wu, Gang; Ren, Hongqiang; Geng, Jinju

    2018-01-01

    Five full-scale wastewater treatment plants (WWTPs) in China using typical biodegradation processes (SBR, oxidation ditch, A2/O) were selected to assess the removal of four popular artificial sweeteners (ASs). All four ASs (acesulfame (ACE), sucralose (SUC), cyclamate (CYC) and saccharin (SAC)) were detected, ranging from 0.43 to 27.34μg/L in the influent. Higher concentrations of ASs were measured in winter. ACE could be partly removed by 7.11-50.76% through biodegradation and especially through the denitrifying process. The A2/O process was the most efficient at biodegrading ASs. Adsorption (by granular activated carbon (GAC) and magnetic resin) and ultraviolet radiation-based advanced oxidation processes (UV/AOPs) were evaluated to remove ASs in laboratory-scale tests. The amounts of resin adsorbed were 3.33-18.51 times more than those of GAC except for SUC. The adsorption ability of resin decreased in the order of SAC > ACE > CYC > SUC in accordance with the pKa. Degradation of ASs followed pseudo-first-order kinetics in UV/H2O2 and UV/PDS. When applied to the secondary effluent, ASs could be degraded from 30.87 to 99.93% using UV/PDS in 30 minutes and UV/PDS was more efficient and economic.

  17. Fate of artificial sweeteners through wastewater treatment plants and water treatment processes.

    Directory of Open Access Journals (Sweden)

    Shaoli Li

    Full Text Available Five full-scale wastewater treatment plants (WWTPs in China using typical biodegradation processes (SBR, oxidation ditch, A2/O were selected to assess the removal of four popular artificial sweeteners (ASs. All four ASs (acesulfame (ACE, sucralose (SUC, cyclamate (CYC and saccharin (SAC were detected, ranging from 0.43 to 27.34μg/L in the influent. Higher concentrations of ASs were measured in winter. ACE could be partly removed by 7.11-50.76% through biodegradation and especially through the denitrifying process. The A2/O process was the most efficient at biodegrading ASs. Adsorption (by granular activated carbon (GAC and magnetic resin and ultraviolet radiation-based advanced oxidation processes (UV/AOPs were evaluated to remove ASs in laboratory-scale tests. The amounts of resin adsorbed were 3.33-18.51 times more than those of GAC except for SUC. The adsorption ability of resin decreased in the order of SAC > ACE > CYC > SUC in accordance with the pKa. Degradation of ASs followed pseudo-first-order kinetics in UV/H2O2 and UV/PDS. When applied to the secondary effluent, ASs could be degraded from 30.87 to 99.93% using UV/PDS in 30 minutes and UV/PDS was more efficient and economic.

  18. Benchmarking Combined Biological Phosphorus and Nitrogen Removal Wastewater Treatment Processes

    DEFF Research Database (Denmark)

    Gernaey, Krist; Jørgensen, Sten Bay

    2004-01-01

    conditions respectively, the definition of performance indexes that include the phosphorus removal processes, and the selection of a suitable operating point for the plant. Two control loops were implemented: one for dissolved oxygen control using the oxygen transfer coefficient K(L)a as manipulated variable...

  19. Appling hydrolysis acidification-anoxic–oxic process in the treatment of petrochemical wastewater: From bench scale reactor to full scale wastewater treatment plant

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Changyong [State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012 (China); Research Center of Water Pollution Control Technology, Chinese Research Academy of Environment Sciences, Beijing 100012 (China); Zhou, Yuexi, E-mail: zhouyuexi@263.net [State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012 (China); Research Center of Water Pollution Control Technology, Chinese Research Academy of Environment Sciences, Beijing 100012 (China); Sun, Qingliang [School of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029 (China); Fu, Liya [Research Center of Water Pollution Control Technology, Chinese Research Academy of Environment Sciences, Beijing 100012 (China); School of Environment, Tsinghua University, Beijing 100084 (China); Xi, Hongbo; Yu, Yin [State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012 (China); Research Center of Water Pollution Control Technology, Chinese Research Academy of Environment Sciences, Beijing 100012 (China); Yu, Ruozhen [State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012 (China)

    2016-05-15

    Highlights: • Hydrolysis acidification-anoxic–oxic process can be used to treat petrochemical wastewater. • The toxicity and treatability changed significantly after hydrolysis acidification. • The type and concentration of organics reduced greatly after treatment. • The effluent shows low acute toxicity by luminescent bacteria assay. • Advanced treatment is recommended for the effluent. - Abstract: A hydrolysis acidification (HA)-anoxic–oxic (A/O) process was adopted to treat a petrochemical wastewater. The operation optimization was carried out firstly by a bench scale experimental reactor. Then a full scale petrochemical wastewater treatment plant (PCWWTP, 6500 m{sup 3} h{sup −1}) was operated with the same parameters. The results showed that the BOD{sub 5}/COD of the wastewater increased from 0.30 to 0.43 by HA. The effluent COD was 54.4 mg L{sup −1} for bench scale reactor and 60.9 mg L{sup −1} for PCWWTP when the influent COD was about 480 mg L{sup −1} on optimized conditions. The organics measured by gas chromatography-mass spectrometry (GC–MS) reduced obviously and the total concentration of the 5 organics (1,3-dioxolane, 2-pentanone, ethylbenzene, 2-chloromethyl-1,3-dioxolane and indene) detected in the effluent was only 0.24 mg L{sup −1}. There was no obvious toxicity of the effluent. However, low acute toxicity of the effluent could be detected by the luminescent bacteria assay, indicating the advanced treatment is needed. The clone library profiling analysis showed that the dominant bacteria in the system were Acidobacteria, Proteobacteria and Bacteriodetes. HA-A/O process is suitable for the petrochemical wastewater treatment.

  20. Appling hydrolysis acidification-anoxic–oxic process in the treatment of petrochemical wastewater: From bench scale reactor to full scale wastewater treatment plant

    International Nuclear Information System (INIS)

    Wu, Changyong; Zhou, Yuexi; Sun, Qingliang; Fu, Liya; Xi, Hongbo; Yu, Yin; Yu, Ruozhen

    2016-01-01

    Highlights: • Hydrolysis acidification-anoxic–oxic process can be used to treat petrochemical wastewater. • The toxicity and treatability changed significantly after hydrolysis acidification. • The type and concentration of organics reduced greatly after treatment. • The effluent shows low acute toxicity by luminescent bacteria assay. • Advanced treatment is recommended for the effluent. - Abstract: A hydrolysis acidification (HA)-anoxic–oxic (A/O) process was adopted to treat a petrochemical wastewater. The operation optimization was carried out firstly by a bench scale experimental reactor. Then a full scale petrochemical wastewater treatment plant (PCWWTP, 6500 m 3 h −1 ) was operated with the same parameters. The results showed that the BOD 5 /COD of the wastewater increased from 0.30 to 0.43 by HA. The effluent COD was 54.4 mg L −1 for bench scale reactor and 60.9 mg L −1 for PCWWTP when the influent COD was about 480 mg L −1 on optimized conditions. The organics measured by gas chromatography-mass spectrometry (GC–MS) reduced obviously and the total concentration of the 5 organics (1,3-dioxolane, 2-pentanone, ethylbenzene, 2-chloromethyl-1,3-dioxolane and indene) detected in the effluent was only 0.24 mg L −1 . There was no obvious toxicity of the effluent. However, low acute toxicity of the effluent could be detected by the luminescent bacteria assay, indicating the advanced treatment is needed. The clone library profiling analysis showed that the dominant bacteria in the system were Acidobacteria, Proteobacteria and Bacteriodetes. HA-A/O process is suitable for the petrochemical wastewater treatment.

  1. Fungal treatment: a prospective process for eco-friendly bioremediation of wastewater sludge

    International Nuclear Information System (INIS)

    Molla, A. H.; Fakhru'l-Razi, A.

    2009-01-01

    None of the conventional techniques is safe and environmental friendly for wastewaters/sludge disposal. A sustainable, safe and environmental friendly biological technique is a great apprehension to the relevant scientists. Since the fungal treatment was exercised to evaluate its potentially for sustainable bioseparation and bioremediation of wastewater. Bioseparation and bioremediation of wastewater sludge by fungal inoculation implied the decreasing of bio solids, total suspended solids (TSS), turbidity, chemical oxygen demand (COD) and specific resistance to filtration (SRF) of wastewater. (Author)

  2. Development of a BR-UASB-DHS system for natural rubber processing wastewater treatment.

    Science.gov (United States)

    Watari, Takahiro; Thanh, Nguyen Thi; Tsuruoka, Natsumi; Tanikawa, Daisuke; Kuroda, Kyohei; Huong, Nguyen Lan; Tan, Nguyen Minh; Hai, Huynh Trung; Hatamoto, Masashi; Syutsubo, Kazuaki; Fukuda, Masao; Yamaguchi, Takashi

    2015-11-21

    Natural rubber processing wastewater contains high concentrations of organic compounds, nitrogen, and other contaminants. In this study, a treatment system composed of a baffled reactor (BR), an upflow anaerobic sludge blanket (UASB) reactor, and a downflow hanging sponge (DHS) reactor was used to treat natural rubber processing wastewater in Vietnam. The BR showed good total suspended solids removal of 47.6%, as well as acidification of wastewater. The UASB reactor achieved a high chemical oxygen demand (COD) removal efficiency of 92.7% ± 2.3% and energy recovery in the form of methane with an organic loading rate of 12.2 ± 6.6 kg-COD·m -3 ·day -1 . The DHS reactor showed a high performance in residual organic matter removal from UASB effluent. In total, the system achieved high-level total COD removal of 98.6% ± 1.2% and total suspended solids removal of 98.0% ± 1.4%. Massive parallel 16S rRNA gene sequencing of the retained sludge in the UASB reactor showed the predominant microbial phyla to be Bacteroidetes, Firmicutes, Proteobacteria, WWE1, and Euryarchaeota. Uncultured bacteria belonging to the phylum Bacteroidetes and Phylum WWE1 were predominant in the UASB reactor. This microbial assemblage utilizes the organic compounds contained in natural rubber processing wastewater. In addition, the methane-producing archaea Methanosaeta sp. and Methanolinea sp. were detected.

  3. Advanced wastewater treatment system (SEADS)

    International Nuclear Information System (INIS)

    Dunn, J.

    2002-01-01

    'Full text:' This presentation will describe the nature, scope, and findings of a third-party evaluation of a wastewater treatment technology identified as the Advanced Wastewater Treatment System Inc.'s Superior Extended Aerobic Digester System (SEADS). SEADS is an advanced miniaturized wastewater treatment plant that can meet advanced wastewater treatment standards for effluent public reuse. SEADS goes beyond primary and secondary treatment operations to reduce nutrients such as nitrogen and phosphorus, which are typically found in excessive quantities in traditional wastewater treatment effluent. The objective of this evaluation will be to verify the performance and reliability of the SEADS to treat wastewater from a variety of sources, including domestic wastewater and commercial industrial wastewater. SEADS utilizes remote telemetry equipment to achieve added reliability and reduces monitoring costs as compared to many package wastewater treatment plants. The evaluation process will be overseen and coordinated by the Environmental Technology Evaluation Center (EvTEC), a program of the Civil Engineering Research Foundation (CERF), the research and technology transfer arm of the American Society of Civil Engineers (ASCE). EvTEC is a pilot program evaluating innovative environmental technologies under the US Environmental Protection Agency's (USEPA) Environmental Technology Verification (ETV) Program. Among other performance issues, the SEADS technology evaluation will address its ability to treat low flows-from remote individual and clustered housing applications, and individual commercial applications in lieu of a main station conventional wastewater treatment plant. The unneeded reliance on particular soil types for percolation and the improved effluent water quality over septic systems alone look to make these types of package treatment plants a viable option for rural communities, small farms, and other low-flow remote settings. Added benefits to be examined

  4. Process control, energy recovery and cost savings in acetic acid wastewater treatment

    Energy Technology Data Exchange (ETDEWEB)

    Vaiopoulou, E., E-mail: vaiop@env.duth.gr [Department of Environmental Engineering, Democritus University of Thrace, Vas. Sofias 12, 67 100 Xanthi (Greece); Melidis, P., E-mail: pmelidis@env.duth.gr [Department of Environmental Engineering, Democritus University of Thrace, Vas. Sofias 12, 67 100 Xanthi (Greece); Aivasidis, A., E-mail: aavazid@env.duth.gr [Department of Environmental Engineering, Democritus University of Thrace, Vas. Sofias 12, 67 100 Xanthi (Greece)

    2011-02-28

    An anaerobic fixed bed loop (AFBL) reactor was applied for treatment of acetic acid (HAc) wastewater. Two pH process control concepts were investigated; auxostatic and chemostatic control. In the auxostatic pH control, feed pump is interrupted when pH falls below a certain pH value in the bioreactor, which results in reactor operation at maximum load. Chemostatic control assures alkaline conditions by setting a certain pH value in the influent, preventing initial reactor acidification. The AFBL reactor treated HAc wastewater at low hydraulic residence time (HRT) (10-12 h), performed at high space time loads (40-45 kg COD/m{sup 3} d) and high space time yield (30-35 kg COD/m{sup 3} d) to achieve high COD (Chemical Oxygen Demand) removal (80%). Material and cost savings were accomplished by utilizing the microbial potential for wastewater neutralization during anaerobic treatment along with application of favourable pH-auxostatic control. NaOH requirement for neutralization was reduced by 75% and HRT was increased up to 20 h. Energy was recovered by applying costless CO{sub 2} contained in the biogas for neutralization of alkaline wastewater. Biogas was enriched in methane by 4 times. This actually brings in more energy profits, since biogas extra heating for CO{sub 2} content during biogas combustion is minimized and usage of other acidifying agents is omitted.

  5. Simulation and optimization of a coking wastewater biological treatment process by activated sludge models (ASM).

    Science.gov (United States)

    Wu, Xiaohui; Yang, Yang; Wu, Gaoming; Mao, Juan; Zhou, Tao

    2016-01-01

    Applications of activated sludge models (ASM) in simulating industrial biological wastewater treatment plants (WWTPs) are still difficult due to refractory and complex components in influents as well as diversity in activated sludges. In this study, an ASM3 modeling study was conducted to simulate and optimize a practical coking wastewater treatment plant (CWTP). First, respirometric characterizations of the coking wastewater and CWTP biomasses were conducted to determine the specific kinetic and stoichiometric model parameters for the consecutive aeration-anoxic-aeration (O-A/O) biological process. All ASM3 parameters have been further estimated and calibrated, through cross validation by the model dynamic simulation procedure. Consequently, an ASM3 model was successfully established to accurately simulate the CWTP performances in removing COD and NH4-N. An optimized CWTP operation condition could be proposed reducing the operation cost from 6.2 to 5.5 €/m(3) wastewater. This study is expected to provide a useful reference for mathematic simulations of practical industrial WWTPs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Treatment of hospital laundry wastewater by UV/H2O2 process.

    Science.gov (United States)

    Zotesso, Jaqueline Pirão; Cossich, Eneida Sala; Janeiro, Vanderly; Tavares, Célia Regina Granhen

    2017-03-01

    Hospitals consume a large volume of water to carry out their activities and, hence, generate a large volume of effluent that is commonly discharged into the local sewage system without any treatment. Among the various sectors of healthcare facilities, the laundry is responsible for the majority of water consumption and generates a highly complex effluent. Although several advanced oxidation processes (AOPs) are currently under investigation on the degradation of a variety of contaminants, few of them are based on real wastewater samples. In this paper, the UV/H 2 O 2 AOP was evaluated on the treatment of a hospital laundry wastewater, after the application of a physicochemical pretreatment composed of coagulation-flocculation and anthracite filtration. For the UV/H 2 O 2 process, a photoreactor equipped with a low-pressure UV-C lamp was used and the effects of initial pH and [H 2 O 2 ]/chemical oxygen demand (COD) ratio on COD removal were investigated through a randomized factorial block design that considered the batches of effluent as blocks. The results indicated that the initial pH had no significant effect on the COD removal, and the process was favored by the increase in [H 2 O 2 ]/COD ratio. Color and turbidity were satisfactorily reduced after the application of the physicochemical pretreatment, and COD was completely removed by the UV/H 2 O 2 process under suitable conditions. The results of this study show that the UV/H 2 O 2 AOP is a promising candidate for hospital laundry wastewater treatment and should be explored to enable wastewater reuse in the washing process.

  7. Treatment of Synthetic Wastewater Containing Reactive Blue 19 by Electrolysis Process

    Directory of Open Access Journals (Sweden)

    R.A. Fallahzadeh

    2014-05-01

    Full Text Available Background: Disposal of untreated wastewater in the textile industries to environmental according to toxic pollutants, organic matter and available colors in them for human and other creatures' health is harmful. On the other, wastewater treatment conventional methods of textile industry are often extensive and lack of the desired performance. In this research was investigated efficiency of electrolysis process by graphitic electrode for the removal of reactive blue 19 dye from synthetic wastewater. Materials and Methods: For performance of test has used from a reactor made of Plexiglas with 3 liter capacity which was equipped with two graphite electrodes. The effect of operational parameters such as voltage, initial dye concentration and total dissolved solids (TDS rate, was investigated. Dye concentration in samples was determined by spectrophotometer UV-Visible in 592 nm wavelength. Results: According to obtained results in optimum conditions (Voltage 24V, initial dye concentration 10 mg/L, TDS 3500 mg/L and time 2 min Removal efficiency was equal to 98.6%. The results were indicative decreasing of removal efficiency with increasing of dye concentration and decreasing of voltage. Conclusion: Electrolysis process using from graphite electrode is efficient method for removal of reactive blue 19 dye from textile industries dye wastewater.

  8. Treatment of olive mill wastewater by chemical processes: effect of acid cracking pretreatment.

    Science.gov (United States)

    Hande Gursoy-Haksevenler, B; Arslan-Alaton, Idil

    2014-01-01

    The effect of acid cracking (pH 2.0; T 70 °C) and filtration as a pretreatment step on the chemical treatability of olive mill wastewater (chemical oxygen demand (COD) 150,000 m/L; total organic carbon (TOC) 36,000 mg/L; oil-grease 8,200 mg/L; total phenols 3,800 mg/L) was investigated. FeCl3 coagulation, Ca(OH)2 precipitation, electrocoagulation using stainless steel electrodes and the Fenton's reagent were applied as chemical treatment methods. Removal performances were examined in terms of COD, TOC, oil-grease, total phenols, colour, suspended solids and acute toxicity with the photobacterium Vibrio fischeri. Significant oil-grease (95%) and suspended solids (96%) accompanied with 58% COD, 43% TOC, 39% total phenols and 80% colour removals were obtained by acid cracking-filtration pretreatment. Among the investigated chemical treatment processes, electrocoagulation and the Fenton's reagent were found more effective after pretreatment, especially in terms of total phenols removal. Total phenols removal increased from 39 to 72% when pretreatment was applied, while no significant additional (≈10-15%) COD and TOC removals were obtained when acid cracking was coupled with chemical treatment. The acute toxicity of the original olive mill wastewater sample increased considerably after pretreatment from 75 to 89% (measured for the 10-fold diluted wastewater sample). An operating cost analysis was also performed for the selected chemical treatment processes.

  9. Treatment and toxicity reduction of textile dyeing wastewater using the electrocoagulation-electroflotation process.

    Science.gov (United States)

    Kim, Han-Lae; Cho, Jong-Bok; Park, Yong-Jin; Cho, Il-Hyoung

    2016-07-02

    A pilot-scale study was conducted using the electrocoagulation-electroflotation (EC-EF) process to treat textile dyeing raw wastewater to evaluate treatment performance. The effects of some key factors, such as current density, hydraulic retention time (HRT), and removal of conductivity, total suspended solids (TSS), chemical oxygen demand (COD), and color were investigated. The operating variables were current density of 0-300 A m(-2), HRT of 0-30 min, and a coagulant (anionic polyacrylamide (A-PAM)) dosage of 0-30 mg L(-1). Daphnia magna was used to test acute toxicity in raw and treated wastewater. Under the operating conditions without added coagulant, maxima of 51%, 88%, 84%, and 99% of conductivity, TSS, COD, and color were removed, respectively, with a HRT of 30 min. The coagulant enhanced removal of all wastewater parameters. Removal maxima of 59%, 92%, 94%, and 98% for conductivity, TSS, COD, and color were observed, respectively, with an optimal dosage of 30 mg L(-1) and a shortened HRT of 20 min. The 48 h-LC50 D. magna test showed that the raw wastewater was highly toxic. However, the EC-EF process decreased toxicity of the treated samples significantly, and >70% toxicity reduction was achieved by the EC-EF process with the addition of 15-30 mg L(-1) coagulant, HRT of 20 min, and current density of 150-300 A m(-2). The pilot scale test (0.3 m(3 )h(-1)) shows that the EC-EF process with added coagulant effectively treated textile dyeing wastewater.

  10. Combination of electrochemical processes with membrane bioreactors for wastewater treatment and fouling control: A review

    Directory of Open Access Journals (Sweden)

    Benny Marie B. Ensano

    2016-08-01

    Full Text Available This paper provides a critical review about the integration of electrochemical processes into membrane bioreactors (MBR in order to understand the influence of these processes on wastewater treatment performance and membrane fouling control. The integration can be realized either in an internal or an external configuration. Electrically enhanced membrane bioreactors or electro membrane bioreactors (eMBRs combine biodegradation, electrochemical and membrane filtration processes into one system providing higher effluent quality as compared to conventional MBRs and activated sludge plants. Furthermore, electrochemical processes, such as electrocoagulation, electrophoresis and electroosmosis, help to mitigate deposition of foulants into the membrane and enhance sludge dewaterability by controlling the morphological properties and mobility of the colloidal particles and bulk liquid. Intermittent application of minute electric field has proven to reduce energy consumption and operational cost as well as minimize the negative effect of direct current field on microbial activity which are some of the main concerns in eMBR technology. The present review discusses important design considerations of eMBR, its advantages as well as its applications to different types of wastewater. It also presents several challenges that need to be addressed for future development of this hybrid technology which include treatment of high strength industrial wastewater and removal of emerging contaminants, optimization study, cost benefit analysis and the possible combination with microbial electrolysis cell for biohydrogen production.

  11. Algal-based immobilization process to treat the effluent from a secondary wastewater treatment plant (WWTP)

    International Nuclear Information System (INIS)

    He Shengbing; Xue Gang

    2010-01-01

    Algal-based immobilization process was applied to treat the effluent from a secondary wastewater treatment plant. Batch test proved that algae could attach onto fiber-bundle carrier in 7 days, and then the algal-based immobilization reactor could reduce TN (total nitrogen) and TP (total phosphorus) significantly within 48 h. Based on the above investigations, the hydraulic retention time (HRT) of the algal-based immobilization reactor in continuous operation mode was determined to be 2 days. During the 91 days of experiment on the treating secondary effluent of Guang-Rao wastewater treatment plant, it was found that the fiber-bundle carrier could collect the heterobacteria and nitrifying bacteria gradually, and thus improved the COD removal efficiency and nitrification performance step by step. Results of the continuous operation indicated that the final effluent could meet the Chinese National First A-level Sewage Discharge Standard when the algal-based immobilization reactor reached steady state.

  12. Applying fenton process in acrylic fiber wastewater treatment and practice teaching

    Science.gov (United States)

    Zhang, Chunhui; Jiang, Shan

    2018-02-01

    Acrylic fiber manufacturing wastewater, containing a wider range of pollutants, high concentration of refractory organics, poisonous and harmful matters, was significant to treat from the effluents of wastewater treatment plants (WWTPs). In this work, a Fenton reactor was employed for advanced treatment of the WWTP effluents. An orthogonal test and a parametric study were carried out to determine the effect of the main operating conditions and the Fenton process attain excellent performance on the degradation of pollutants under an optimal condition of ferrous dosage was 6.25 mM, hydrogen peroxide was 75 mM and initial pH value was 3.0 in 90 min reaction time. The removal efficiency of COD, TOC, NH4 +-N and TN reached from 45% to 69%. Lastly, as a teaching advice, the Fenton reactor was used in practicing teaching nicely.

  13. Long-Term Prediction of Biological Wastewater Treatment Process Behavior via Wiener-Laguerre Network Model

    Directory of Open Access Journals (Sweden)

    Yasaman Sanayei

    2014-01-01

    Full Text Available A Wiener-Laguerre model with artificial neural network (ANN as its nonlinear static part was employed to describe the dynamic behavior of a sequencing batch reactor (SBR used for the treatment of dye-containing wastewater. The model was developed based on the experimental data obtained from the treatment of an effluent containing a reactive textile azo dye, Cibacron yellow FN-2R, by Sphingomonas paucimobilis bacterium. The influent COD, MLVSS, and reaction time were selected as the process inputs and the effluent COD and BOD as the process outputs. The best possible result for the discrete pole parameter was α=0.44. In order to adjust the parameters of ANN, the Levenberg-Marquardt (LM algorithm was employed. The results predicted by the model were compared to the experimental data and showed a high correlation with R2>0.99 and a low mean absolute error (MAE. The results from this study reveal that the developed model is accurate and efficacious in predicting COD and BOD parameters of the dye-containing wastewater treated by SBR. The proposed modeling approach can be applied to other industrial wastewater treatment systems to predict effluent characteristics.

  14. Process auditing and performance improvement in a mixed wastewater-aqueous waste treatment plant.

    Science.gov (United States)

    Collivignarelli, Maria Cristina; Bertanza, Giorgio; Abbà, Alessandro; Damiani, Silvestro

    2018-02-01

    The wastewater treatment process is based on complex chemical, physical and biological mechanisms that are closely interconnected. The efficiency of the system (which depends on compliance with national regulations on wastewater quality) can be achieved through the use of tools such as monitoring, that is the detection of parameters that allow the continuous interpretation of the current situation, and experimental tests, which allow the measurement of real performance (of a sector, a single treatment or equipment) and comparison with the following ones. Experimental tests have a particular relevance in the case of municipal wastewater treatment plants fed with a strong industrial component and especially in the case of plants authorized to treat aqueous waste. In this paper a case study is presented where the application of management tools such as careful monitoring and experimental tests led to the technical and economic optimization of the plant: the main results obtained were the reduction of sludge production (from 4,000 t/year w.w. (wet weight) to about 2,200 t/year w.w.) and operating costs (e.g. from 600,000 €/year down to about 350,000 €/year for reagents), the increase of resource recovery and the improvement of the overall process performance.

  15. Evaluation of low cost cathode materials for treatment of industrial and food processing wastewater using microbial electrolysis cells

    KAUST Repository

    Tenca, Alberto

    2013-02-01

    Microbial electrolysis cells (MECs) can be used to treat wastewater and produce hydrogen gas, but low cost cathode catalysts are needed to make this approach economical. Molybdenum disulfide (MoS2) and stainless steel (SS) were evaluated as alternative cathode catalysts to platinum (Pt) in terms of treatment efficiency and energy recovery using actual wastewaters. Two different types of wastewaters were examined, a methanol-rich industrial (IN) wastewater and a food processing (FP) wastewater. The use of the MoS2 catalyst generally resulted in better performance than the SS cathodes for both wastewaters, although the use of the Pt catalyst provided the best performance in terms of biogas production, current density, and TCOD removal. Overall, the wastewater composition was more of a factor than catalyst type for accomplishing overall treatment. The IN wastewater had higher biogas production rates (0.8-1.8 m3/m3-d), and COD removal rates (1.8-2.8 kg-COD/m3-d) than the FP wastewater. The overall energy recoveries were positive for the IN wastewater (3.1-3.8 kWh/kg-COD removed), while the FP wastewater required a net energy input of -0.7 - 1.2 kWh/kg-COD using MoS 2 or Pt cathodes, and -3.1 kWh/kg-COD with SS. These results suggest that MoS2 is the most suitable alternative to Pt as a cathode catalyst for wastewater treatment using MECs, but that net energy recovery will be highly dependent on the specific wastewater. © 2012, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

  16. Biological treatment of fish processing wastewater: A case study from Sfax City (Southeastern Tunisia).

    Science.gov (United States)

    Jemli, Meryem; Karray, Fatma; Feki, Firas; Loukil, Slim; Mhiri, Najla; Aloui, Fathi; Sayadi, Sami

    2015-04-01

    The present work presents a study of the biological treatment of fish processing wastewater at salt concentration of 55 g/L. Wastewater was treated by both continuous stirred-tank reactor (CSTR) and membrane bioreactor (MBR) during 50 and 100 days, respectively. These biological processes involved salt-tolerant bacteria from natural hypersaline environments at different organic loading rates (OLRs). The phylogenetic analysis of the corresponding excised DGGE bands has demonstrated that the taxonomic affiliation of the most dominant species includes Halomonadaceae and Flavobacteriaceae families of the Proteobacteria (Gamma-proteobacteria class) and the Bacteroidetes phyla, respectively. The results of MBR were better than those of CSTR in the removal of total organic carbon with efficiencies from 97.9% to 98.6%. Nevertheless, salinity with increasing OLR aggravates fouling that requires more cleaning for a membrane in MBR while leads to deterioration of sludge settleability and effluent quality in CSTR. Copyright © 2015. Published by Elsevier B.V.

  17. Treatment of low-activity-level process wastewaters by continuous countercurrent ion exchange

    International Nuclear Information System (INIS)

    Hall, R.; Watson, J.S.; Robinson, S.M.

    1990-01-01

    A mobile pilot-scale continuous countercurrent ion-exchange (CCIX) system is being operated at the Oak Ridge National Laboratory (ORNL) for the treatment of wastewaters that contain predominantly calcium sodium, and magnesium bicarbonates and are slightly contaminated with 90 Sr and 137 Cs radioisotopes. A demonstration study is being conducted to evaluate the near-steady-state performance and feasibility of a pilot-scale CCIX column for the selective removal of strontium from wastewater. Test results show that the process removes strontium sufficiently from the wastewater to permit discharge while significantly reducing the volume of secondary waste generation. CCIX has the potential for effective use in several applications; however, it has not been frequently utilized by industries to date. The CCIX system could offer an economical alternative for decontamination of wastewaters containing trace amounts of contaminants prior to discharge into the environment. This paper discusses (a) application of the Thomas model for predicting breakthrough curves from ion exchange column tests, (b) methods for scaleup of experimental small-scale ion-exchange columns to industrial-scale columns, and (c) methods for predicting effluent compositions in a CCIX system. 20 refs., 6 figs., 2 tabs

  18. Novel insights into the coagulation process for pharmaceutical wastewater treatment with fluorescence EEMs-PARAFAC.

    Science.gov (United States)

    Gou, Xiying; Zhang, Panyue; Song, Yonghui; Qian, Feng; Yu, Huibing; Zeng, Guangming

    2017-12-01

    In this study, coagulation process was applied to treat the effluent of pharmaceutical wastewater using polymeric ferric sulfate as a coagulant. Three-dimensional excitation-emission matrix fluorescence spectroscopy coupled with parallel factor analysis (EEMs-PARAFAC) was applied to investigate the fluorescent characteristics of dissolved organic matter (DOM) from pharmaceutical wastewater and the reduction of contaminant and fluorescent variations in the coagulation process. It shows that coagulation was effective to remove contaminants in the effluent of pharmaceutical wastewater, and the optimum coagulate dosage was 0.5 g/L, where the removal efficiency of total organic matter (TOC), UV 254 , turbidity and NH 4 + -N were achieved 44.2%, 43.3%, 87.0% and 10.27%, respectively. Five fluorescence components were identified by EEMs-PARAFAC, including one fulvic-like component (C1), one xenobiotic-like component (C2), two humic-like components (C3 and C5) and one protein-like component (C4); DOM of pharmaceutical wastewater was dominated by C3, C4 and C2. Under the optimum coagulation condition, the decreasing order of removal efficiencies was C5 (49.92%), C3 (40.95%), C4 (10.58%), C2 (9.68%) and C1 (5.05%). Principal component analysis (PCA) showed C3, C5 had remarkable correlations with TOC and UV 254 , suggesting that C3 and C5 may be a good indicator for the reduction of TOC and UV 254 . PCA indicated that the EEM-PARAFAC could be successfully applied to the evaluation of the coagulation efficiency for pharmaceutical wastewater treatment.

  19. Framework for Construction of Multi-scale Models for Biological Wastewater Treatment Processes - Case Study: Autotrophic Nitrogen Conversion

    DEFF Research Database (Denmark)

    Vangsgaard, Anna Katrine; Mauricio Iglesias, Miguel; Gernaey, Krist

    2011-01-01

    In wastewater treatment technologies, employing biofilms or granular biomass, processes might occur at very different spatial and temporal scales. Model development for such systems is typically a tedious, complicated, and time consuming task, which involves selecting appropriate model equations...

  20. Alkydic resin wastewaters treatment by fenton and photo-Fenton processes

    International Nuclear Information System (INIS)

    Schwingel de Oliveira, Isadora; Viana, Lilian; Verona, Cenira; Fallavena, Vera Lucia Vargas; Azevedo, Carla Maria Nunes; Pires, Marcal

    2007-01-01

    Advanced oxidation processes are an emerging option to treatment of the painting industry effluents. The aim of this study was to compare the effectiveness of the Fenton and photo-Fenton processes in chemical oxygen demand (COD), total organic carbon (TOC) and phenolic compounds removal from wastewaters generated during alkydic resins manufacture. The optimized treatment conditions are the following: pH 3.0, 15.15 x 10 -3 mol L -1 FeSO 4 and 0.30 mol L -1 H 2 O 2 for a reaction time of 6 h. photo-Fenton experiments were carried out in the presence of sunlight or artificial radiation and complementary additions of H 2 O 2 were made for all experiments. The best results were obtained with photo-Fenton process assisted with solar radiation, with reductions of 99.5 and 99.1% of COD and TOC levels, respectively. Fenton and photo-Fenton (with artificial irradiation) processes presented lower but not insignificant removals, within 60-80% reduction for both COD and TOC. In addition, an excellent removal (95%) of total phenols was obtained using photo-Fenton process assisted with artificial irradiation. This study demonstrated that the use of photo-Fenton process on alkydic resins wastewater treatment is very promising especially when solar light is used

  1. Alkydic resin wastewaters treatment by fenton and photo-Fenton processes.

    Science.gov (United States)

    de Oliveira, Isadora Schwingel; Viana, Lilian; Verona, Cenira; Fallavena, Vera Lúcia Vargas; Azevedo, Carla Maria Nunes; Pires, Marçal

    2007-07-31

    Advanced oxidation processes are an emerging option to treatment of the painting industry effluents. The aim of this study was to compare the effectiveness of the Fenton and photo-Fenton processes in chemical oxygen demand (COD), total organic carbon (TOC) and phenolic compounds removal from wastewaters generated during alkydic resins manufacture. The optimized treatment conditions are the following: pH 3.0, 15.15x10(-3)molL(-1) FeSO(4) and 0.30molL(-1) H(2)O(2) for a reaction time of 6h. photo-Fenton experiments were carried out in the presence of sunlight or artificial radiation and complementary additions of H(2)O(2) were made for all experiments. The best results were obtained with photo-Fenton process assisted with solar radiation, with reductions of 99.5 and 99.1% of COD and TOC levels, respectively. Fenton and photo-Fenton (with artificial irradiation) processes presented lower but not insignificant removals, within 60-80% reduction for both COD and TOC. In addition, an excellent removal (95%) of total phenols was obtained using photo-Fenton process assisted with artificial irradiation. This study demonstrated that the use of photo-Fenton process on alkydic resins wastewater treatment is very promising especially when solar light is used.

  2. Alkydic resin wastewaters treatment by fenton and photo-Fenton processes

    Energy Technology Data Exchange (ETDEWEB)

    Schwingel de Oliveira, Isadora [Faculty of Chemistry, Pontifical Catholic University of Rio Grande do Sul, Av. Ipiranga 6681, 90619-900, Porto Alegre, RS (Brazil); Viana, Lilian [Faculty of Chemistry, Pontifical Catholic University of Rio Grande do Sul, Av. Ipiranga 6681, 90619-900, Porto Alegre, RS (Brazil); Verona, Cenira [Killing Tintas e Adesivos SA, Av. 1o Marco 3430, 90619-900-Novo Hamburg, oRS (Brazil); Fallavena, Vera Lucia Vargas [Faculty of Chemistry, Pontifical Catholic University of Rio Grande do Sul, Av. Ipiranga 6681, 90619-900, Porto Alegre, RS (Brazil); Azevedo, Carla Maria Nunes [Faculty of Chemistry, Pontifical Catholic University of Rio Grande do Sul, Av. Ipiranga 6681, 90619-900, Porto Alegre, RS (Brazil); Pires, Marcal [Faculty of Chemistry, Pontifical Catholic University of Rio Grande do Sul, Av. Ipiranga 6681, 90619-900, Porto Alegre, RS (Brazil)]. E-mail: mpires@pucrs.br

    2007-07-31

    Advanced oxidation processes are an emerging option to treatment of the painting industry effluents. The aim of this study was to compare the effectiveness of the Fenton and photo-Fenton processes in chemical oxygen demand (COD), total organic carbon (TOC) and phenolic compounds removal from wastewaters generated during alkydic resins manufacture. The optimized treatment conditions are the following: pH 3.0, 15.15 x 10{sup -3} mol L{sup -1} FeSO{sub 4} and 0.30 mol L{sup -1} H{sub 2}O{sub 2} for a reaction time of 6 h. photo-Fenton experiments were carried out in the presence of sunlight or artificial radiation and complementary additions of H{sub 2}O{sub 2} were made for all experiments. The best results were obtained with photo-Fenton process assisted with solar radiation, with reductions of 99.5 and 99.1% of COD and TOC levels, respectively. Fenton and photo-Fenton (with artificial irradiation) processes presented lower but not insignificant removals, within 60-80% reduction for both COD and TOC. In addition, an excellent removal (95%) of total phenols was obtained using photo-Fenton process assisted with artificial irradiation. This study demonstrated that the use of photo-Fenton process on alkydic resins wastewater treatment is very promising especially when solar light is used.

  3. Treatment of oilfield wastewater by combined process of micro-electrolysis, Fenton oxidation and coagulation.

    Science.gov (United States)

    Zhang, Zhenchao

    2017-12-01

    In this study, a combined process was developed that included micro-electrolysis, Fenton oxidation and coagulation to treat oilfield fracturing wastewater. Micro-electrolysis and Fenton oxidation were applied to reduce chemical oxygen demand (COD) organic load and to enhance organic components gradability, respectively. Orthogonal experiment were employed to investigate the influence factors of micro-electrolysis and Fenton oxidation on COD removal efficiency. For micro-electrolysis, the optimum conditions were: pH, 3; iron-carbon dosage, 50 mg/L; mass ratio of iron-carbon, 2:3; reaction time, 60 min. For Fenton oxidation, a total reaction time of 90 min, a H 2 O 2 dosage of 12 mg/L, with a H 2 O 2 /Fe 2+ mole ratio of 30, pH of 3 were selected to achieve optimum oxidation. The optimum conditions in coagulation process: pH, cationic polyacrylamide dosage, mixing speed and time is 4.3, 2 mg/L, 150 rpm and 30 s, respectively. In the continuous treatment process under optimized conditions, the COD of oily wastewater fell 56.95%, 46.23%, 30.67%, respectively, from last stage and the total COD removal efficiency reached 83.94% (from 4,314 to 693 mg/L). In the overall treatment process under optimized conditions, the COD of oily wastewater was reduced from 4,314 to 637 mg/L, and the COD removal efficiency reached 85.23%. The contribution of each stage is 68.45% (micro-electrolysis), 24.07% (Fenton oxidation), 7.48% (coagulation), respectively. Micro-electrolysis is the uppermost influencing process on COD removal. Compared with the COD removal efficiency of three processes on raw wastewater under optimized conditions: the COD removal efficiency of single micro-electrolysis, single Fenton oxidation, single coagulation is 58.34%, 44.88% and 39.72%, respectively. Experiments proved the effect of combined process is marvelous and the overall water quality of the final effluent could meet the class III national wastewater discharge standard of petrochemical industry of China

  4. Multivariable adaptive control and estimation of a nonlinear wastewater treatment process

    Energy Technology Data Exchange (ETDEWEB)

    Ben Youssef, C.; Dahhou, B. [Centre National de la Recherche Scientifique (CNRS), 31 - Toulouse (France)]|[Institut National des Sciences Appliquees (INSA), 31 - Toulouse (France)

    1995-12-31

    In this paper, an approach for estimating biological state and parameter variables and for controlling a non linear wastewater treatment process is developed. Combination of a nonlinear estimation procedure and a multivariable reference model control law provides favourable performances for tracking a given model-based reference model despite disturbances and system parameter uncertainties. Convergence of both estimation and control scheme are demonstrated via Lyapunov`s method. Simulation study with additive measurements noises and parameter jumps shows the efficiency and significant robustness of the control methodology developed for this non linear process. (author) 13 refs.

  5. Filtration process cost in submerged anaerobic membrane bioreactors (AnMBRs) for urban wastewater treatment

    OpenAIRE

    Pretel-Jolis, Ruth; Robles Martínez, Ángel; Ruano García, María Victoria; SECO TORRECILLAS, AURORA; FERRER, J.

    2016-01-01

    [EN] The objective of this study was to evaluate the effect of the main factors affecting the cost of the filtration process in submerged anaerobic membrane bioreactors (AnMBRs) for urban wastewater (UWW) treatment. Experimental data for CAPEX/OPEX calculations was obtained in an AnMBR system featuring industrial-scale hollow-fiber (HF) membranes. Results showed that operating at J(20) slightly higher than the critical flux results in minimum CAPEX/OPEX. The minimum filtration process cost ra...

  6. [Performance and Factors Analysis of Sludge Dewatering in Different Wastewater Treatment Processes].

    Science.gov (United States)

    Liu, Ji-bao; Li, Ya-ming; Lü, Jian; Wei, Yuan-song; Yang, Min; Yu, Da-wei

    2015-10-01

    Sludge dewatering is one of the keys for sludge disposal and treatment of municipal wastewater treatment plants. In this study, the sludge dewaterability, flocculant consumption and costs of sludge dewatering for different wastewater treatment processes including A2/O and A2/O-MBR processes were analyzed, as well as the factors of sludge dewatering were analyzed by redundancy analysis (RDA) method, based on the data of one municipal wastewater treatment plant of Beijing in 2013. Results showed that both sludge dewaterability and flocculant consumption presented the seasonal variation, which means sludge dewatering was harder and coupled with higher flocculant consumption in the winter. Although the lower moisture content of dewatered sludge was obtained in the A2/O-MBR process (81.92% ± 1.64% ) compared with that in the A2/O process (82.56% ± 1.35%), the consumptions of flocculant [ (8.70 ± 7.25) kg x t(-1) DS] and electric energy (331.82 kW x h x t(-1) DS) in the A2/O-MBR process were higher than those in the A2/O process [(7.42 ± 2.96) kg x t(-1) DS, 121.57 kW x h x t(-1) DS for flocculant consumption and electric energy respectively], resulting in higher operation costs (RMB 204.76 yuan x t(-1) DS of flocculant consumption and RMB 231.61 yuan x t(-1) DS of energy consumption for the A2/O-MBR, RMB 175.00 yuan x t(-1) DS of flocculant consumption and RMB 84.86 yuan x t(-1) DS of energy consumption for the A2/O, respectively). Results of RDA showed that the seasonal variation of sludge dewaterability mainly depended on the content of organic matter in sludge which was related to the seasonal factors such as temperature, and was also impacted by the operating parameters such as SRT in wastewater treatment.

  7. Wastewater Treatment Plants

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — The actual treatment areas for municipal, industrial, and semi-public wastewater treatment facilities in Iowa for the National Pollutant Discharge Elimination System...

  8. TENORM: Wastewater Treatment Residuals

    Science.gov (United States)

    Water and wastes which have been discharged into municipal sewers are treated at wastewater treatment plants. These may contain trace amounts of both man-made and naturally occurring radionuclides which can accumulate in the treatment plant and residuals.

  9. Occurrence of organic microcontaminants in the wastewater treatment process. A mini review

    OpenAIRE

    Ratola, N.; Cincinelli, A.; Alves, A.; Katsoyiannis, A.

    2012-01-01

    A wastewater treatment plant may receive various types of wastewater namely, urban, industrial, agricultural, washout from the streets, wet or/and dry atmospheric deposition. As such, scientists have detected in wastewaters all major categories of pollutants like persistent organic pollutants (POPs), polycyclic aromatic hydrocarbons (PAHs) and pesticides, but also substances that are widely used as pharmaceuticals and cosmetics, classified as "PPCPs" (pharmaceuticals and personal care product...

  10. A Friendly-Biological Reactor SIMulator (BioReSIM for studying biological processes in wastewater treatment processes

    Directory of Open Access Journals (Sweden)

    Raul Molina

    2014-12-01

    Full Text Available Biological processes for wastewater treatments are inherently dynamic systems because of the large variations in the influent wastewater flow rate, concentration composition and the adaptive behavior of the involved microorganisms. Moreover, the sludge retention time (SRT is a critical factor to understand the bioreactor performances when changes in the influent or in the operation conditions take place. Since SRT are usually in the range of 10-30 days, the performance of biological reactors needs a long time to be monitored in a regular laboratory demonstration, limiting the knowledge that can be obtained in the experimental lab practice. In order to overcome this lack, mathematical models and computer simulations are useful tools to describe biochemical processes and predict the overall performance of bioreactors under different working operation conditions and variations of the inlet wastewater composition. The mathematical solution of the model could be difficult as numerous biochemical processes can be considered. Additionally, biological reactors description (mass balance, etc. needs models represented by partial or/and ordinary differential equations associated to algebraic expressions, that require complex computational codes to obtain the numerical solutions. Different kind of software for mathematical modeling can be used, from large degree of freedom simulators capable of free models definition (as AQUASIM, to closed predefined model structure programs (as BIOWIN. The first ones usually require long learning curves, whereas the second ones could be excessively rigid for specific wastewater treatment systems. As alternative, we present Biological Reactor SIMulator (BioReSIM, a MATLAB code for the simulation of sequencing batch reactors (SBR and rotating biological contactors (RBC as biological systems of suspended and attached biomass for wastewater treatment, respectively. This BioReSIM allows the evaluation of simple and complex

  11. Seasonal bacterial community succession in four typical wastewater treatment plants: correlations between core microbes and process performance.

    Science.gov (United States)

    Zhang, Bo; Yu, Quanwei; Yan, Guoqi; Zhu, Hubo; Xu, Xiang Yang; Zhu, Liang

    2018-03-15

    To understand the seasonal variation of the activated sludge (AS) bacterial community and identify core microbes in different wastewater processing systems, seasonal AS samples were taken from every biological treatment unit within 4 full-scale wastewater treatment plants. These plants adopted A2/O, A/O and oxidation ditch processes and were active in the treatment of different types and sources of wastewater, some domestic and others industrial. The bacterial community composition was analyzed using high-throughput sequencing technology. The correlations among microbial community structure, dominant microbes and process performance were investigated. Seasonal variation had a stronger impact on the AS bacterial community than any variation within different wastewater treatment system. Facing seasonal variation, the bacterial community within the oxidation ditch process remained more stable those in either the A2/O or A/O processes. The core genera in domestic wastewater treatment systems were Nitrospira, Caldilineaceae, Pseudomonas and Lactococcus. The core genera in the textile dyeing and fine chemical industrial wastewater treatment systems were Nitrospira, Thauera and Thiobacillus.

  12. Fungal treatment of humic-rich industrial wastewater : application of white rot fungi in remediation of food-processing wastewater

    NARCIS (Netherlands)

    Zahmatkesh, M.; Spanjers, H.L.F.M.; van Lier, J.B.

    2017-01-01

    This paper presents the results of fungal treatment of a real industrial wastewater (WW), providing insight into the main mechanisms involved and clarifying some ambiguities and uncertainties in the previous reports. In this regard, the mycoremediation potentials of four strains of white rot

  13. Effects of soluble and particulate substrate on the carbon and energy footprint of wastewater treatment processes.

    Science.gov (United States)

    Gori, Riccardo; Jiang, Lu-Man; Sobhani, Reza; Rosso, Diego

    2011-11-15

    Most wastewater treatment plants monitor routinely carbonaceous and nitrogenous load parameters in influent and effluent streams, and often in the intermediate steps. COD fractionation discriminates the selective removal of VSS components in different operations, allowing accurate quantification of the energy requirements and mass flows for secondary treatment, sludge digestion, and sedimentation. We analysed the different effects of COD fractions on carbon and energy footprint in a wastewater treatment plant with activated sludge in nutrient removal mode and anaerobic digestion of the sludge with biogas energy recovery. After presenting a simple rational procedure for COD and solids fractions quantification, we use our carbon and energy footprint models to quantify the effects of varying fractions on carbon equivalent flows, process energy demand and recovery. A full-scale real process was modelled with this procedure and the results are reported in terms of energy and carbon footprint. For a given process, the increase of the ratio sCOD/COD increases the energy demand on the aeration reactors, the associated CO(2) direct emission from respiration, and the indirect emission for power generation. Even though it appears as if enhanced primary sedimentation is a carbon and energy footprint mitigation practice, care must be used since the nutrient removal process downstream may suffer from an excessive bCOD removal and an increased mean cell retention time for nutrient removal may be required. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Biotransformation of Domestic Wastewater Treatment Plant Sludge by Two-Stage Integrated Processes -Lsb & Ssb

    Directory of Open Access Journals (Sweden)

    Md. Zahangir Alam, A. H. Molla and A. Fakhru’l-Razi

    2012-10-01

    Full Text Available The study of biotransformation of domestic wastewater treatment plant (DWTP sludge was conducted in laboratory-scale by two-stage integrated process i.e. liquid state bioconversion (LSB and solid state bioconversion (SSB processes. The liquid wastewater sludge [4% w/w of total suspended solids (TSS] was treated by mixed filamentous fungi Penicillium corylophilum and Aspergillus niger, isolated, screened and mixed cultured in terms of their higher biodegradation potential to wastewater sludge. The biosolids was increased to about 10% w/w. Conversely, the soluble [i.e. Total dissolve solid (TDS] and insoluble substances (TSS in treated supernatant were decreased effectively in the LSB process. In the developed LSB process, 93.8 g kg-1of biosolids were enriched with fungal biomass protein and nutrients (NPK, and 98.8% of TSS, 98.2% of TDS, 97.3% of turbidity, 80.2% of soluble protein, 98.8% of reducing sugar and 92.7% of chemical oxygen demand (COD in treated sludge supernatant were removed after 8 days of treatment. Specific resistance to filtration (1.39x1012 m/kg was decreased tremendously by the microbial treatment of DWTP sludge after 6 days of fermentation. The treated biosolids in DWTP sludge was considered as pretreated resource materials for composting and converted into compost by SSB process. The SSB process was evaluated for composting by monitoring the microbial growth and its subsequent roles in biodegradation in composting bin (CB. The process was conducted using two mixed fungal cultures, Trichoderma harzianum with Phanerochaete chrysosporium 2094 and (T/P and T. harzianum and Mucor hiemalis (T/M; and two bulking materials, sawdust (SD and rice straw (RS. The most encouraging results of microbial growth and subsequent solid state bioconversion were exhibited in the RS than the SD. Significant decrease of the C/N ratio and germination index (GI were attained as well as the higher value of glucosamine was exhibited in compost; which

  15. Assessment of the removal of estrogenicity in biological nutrient removal wastewater treatment processes

    Energy Technology Data Exchange (ETDEWEB)

    Ogunlaja, O.O., E-mail: oogunlaj@uwaterloo.ca; Parker, W.J., E-mail: wjparker@uwaterloo.ca

    2015-05-01

    The removal of estrogenicity in a University of Cape Town-biological nutrient removal (UCT-BNR) wastewater treatment process was investigated using pilot and bench scale systems, batch experiments and mathematical modeling. In the pilot BNR process, 96 ± 5% of the estrogenicity exerted by the influent wastewater was removed by the treatment process. The degradation efficiencies in the anaerobic, anoxic and aerobic zones of the pilot BNR bioreactor were 11 ± 9%, 18 ± 2% and 93 ± 10%, respectively. In order to further understand the performance of the BNR process in the removal of estrogenicity from wastewater, a bench scale BNR process was operated with synthetic wastewater dosed with E1 and E2. The removal of estrogenicity in the bench scale system (95 ± 5%) was comparable to the pilot BNR process and the degradation efficiencies were estimated to be 8 ± 0.8%, 38 ± 4% and 85 ± 22% in the anaerobic, anoxic and aerobic zones, respectively. A biotransformation model developed to predict the fate of E1 and E2 in batch tests using the sludge from the BNR process was calibrated using the data from the experiments. The biotransformation rate constants for the transformation of E2 to E1 were estimated as 71 ± 1.5, 31 ± 3.3 and 1 ± 0.9 L g COD{sup −1} d{sup −1} for the aerobic, anoxic and anaerobic batch tests, respectively, while the corresponding biotransformation rate constants for the transformation of E1 were estimated to be 7.3 ± 1.0, 3 ± 2.0, and 0.85 ± 0.6 L·g COD{sup −1} d{sup −1}. A steady state mass balance model formulated to describe the interactions between E2 and E1 in BNR activated sludge reasonably described the fate of E1 and E2 in the BNR process. - Highlights: • Comparable estrogenicity removal was observed from two BNR processes. • Pseudo first order model described the transformation of E2 and E1 in BNR process. • Biotransformation of E1 in BNR activated sludge controls the degradation of E2.

  16. Assessment of the removal of estrogenicity in biological nutrient removal wastewater treatment processes

    International Nuclear Information System (INIS)

    Ogunlaja, O.O.; Parker, W.J.

    2015-01-01

    The removal of estrogenicity in a University of Cape Town-biological nutrient removal (UCT-BNR) wastewater treatment process was investigated using pilot and bench scale systems, batch experiments and mathematical modeling. In the pilot BNR process, 96 ± 5% of the estrogenicity exerted by the influent wastewater was removed by the treatment process. The degradation efficiencies in the anaerobic, anoxic and aerobic zones of the pilot BNR bioreactor were 11 ± 9%, 18 ± 2% and 93 ± 10%, respectively. In order to further understand the performance of the BNR process in the removal of estrogenicity from wastewater, a bench scale BNR process was operated with synthetic wastewater dosed with E1 and E2. The removal of estrogenicity in the bench scale system (95 ± 5%) was comparable to the pilot BNR process and the degradation efficiencies were estimated to be 8 ± 0.8%, 38 ± 4% and 85 ± 22% in the anaerobic, anoxic and aerobic zones, respectively. A biotransformation model developed to predict the fate of E1 and E2 in batch tests using the sludge from the BNR process was calibrated using the data from the experiments. The biotransformation rate constants for the transformation of E2 to E1 were estimated as 71 ± 1.5, 31 ± 3.3 and 1 ± 0.9 L g COD −1 d −1 for the aerobic, anoxic and anaerobic batch tests, respectively, while the corresponding biotransformation rate constants for the transformation of E1 were estimated to be 7.3 ± 1.0, 3 ± 2.0, and 0.85 ± 0.6 L·g COD −1 d −1 . A steady state mass balance model formulated to describe the interactions between E2 and E1 in BNR activated sludge reasonably described the fate of E1 and E2 in the BNR process. - Highlights: • Comparable estrogenicity removal was observed from two BNR processes. • Pseudo first order model described the transformation of E2 and E1 in BNR process. • Biotransformation of E1 in BNR activated sludge controls the degradation of E2

  17. Modeling electrodialysis and a photochemical process for their integration in saline wastewater treatment

    Directory of Open Access Journals (Sweden)

    F. J. Borges

    2010-09-01

    Full Text Available Oxidation processes can be used to treat industrial wastewater containing non-biodegradable organic compounds. However, the presence of dissolved salts may inhibit or retard the treatment process. In this study, wastewater desalination by electrodialysis (ED associated with an advanced oxidation process (photo-Fenton was applied to an aqueous NaCl solution containing phenol. The influence of process variables on the demineralization factor was investigated for ED in pilot scale and a correlation was obtained between the phenol, salt and water fluxes with the driving force. The oxidation process was investigated in a laboratory batch reactor and a model based on artificial neural networks was developed by fitting the experimental data describing the reaction rate as a function of the input variables. With the experimental parameters of both processes, a dynamic model was developed for ED and a continuous model, using a plug flow reactor approach, for the oxidation process. Finally, the hybrid model simulation could validate different scenarios of the integrated system and can be used for process optimization.

  18. Food-processes wastewaters treatment using food solid-waste materials as adsorbents or absorbents

    Science.gov (United States)

    Rapti, Ilaira; Georgopoulos, Stavros; Antonopoulou, Maria; Konstantinou, Ioannis; Papadaki, Maria

    2016-04-01

    The wastewaters generated by olive-mills during the production of olive oil, wastewaters from a dairy and a cow-farm unit and wastewaters from a small food factory have been treated by means of selected materials, either by-products of the same units, or other solid waste, as absorbents or adsorbents in order to identify the capacity of those materials to remove organic load and toxicity from the aforementioned wastewaters. The potential of both the materials used as absorbents as well as the treated wastewaters to be further used either as fertilizers or for agricultural irrigation purposes are examined. Dry olive leaves, sheep wool, rice husks, etc. were used either in a fixed-bed or in a stirred batch arrangemen,t employing different initial concentrations of the aforementioned wastewaters. The efficiency of removal was assessed using scpectrophotometric methods and allium test phytotoxicity measurements. In this presentation the response of each material employed is shown as a function of absorbent/adsorbent quantity and kind, treatment time and wastewater kind and initial organic load. Preliminary results on the potential uses of the adsorbents/absorbents and the treated wastewaters are also shown. Keywords: Olive-mill wastewaters, dairy farm wastewaters, olive leaves, zeolite, sheep wool

  19. Combined anaerobic–ozonation process for treatment of textile wastewater: Removal of acute toxicity and mutagenicity

    Energy Technology Data Exchange (ETDEWEB)

    Punzi, Marisa, E-mail: marisa.punzi@biotek.lu.se [Department of Biotechnology, Lund University, P.O. Box 124, SE-221 00 Lund (Sweden); Nilsson, Filip [Water and Environmental Engineering at the Department of Chemical Engineering, Lund University, P.O. Box 124, SE-221 00 Lund (Sweden); Anbalagan, Anbarasan [Department of Biotechnology, Lund University, P.O. Box 124, SE-221 00 Lund (Sweden); Svensson, Britt-Marie [School of Education and Environment, Kristianstad University, SE-291 88 Kristianstad (Sweden); Jönsson, Karin [Water and Environmental Engineering at the Department of Chemical Engineering, Lund University, P.O. Box 124, SE-221 00 Lund (Sweden); Mattiasson, Bo; Jonstrup, Maria [Department of Biotechnology, Lund University, P.O. Box 124, SE-221 00 Lund (Sweden)

    2015-07-15

    Highlights: • COD and UV absorbance were effectively reduced. • The treated effluents were non-toxic to Artemia salina and Vibrio fischeri. • The real textile wastewater was mutagenic. • Mutagenicity persisted after bio treatment and even more after a short ozonation. • Higher ozone doses completely remove mutagenicity. - Abstract: A novel set up composed of an anaerobic biofilm reactor followed by ozonation was used for treatment of artificial and real textile effluents containing azo dyes. The biological treatment efficiently removed chemical oxygen demand and color. Ozonation further reduced the organic content of the effluents and was very important for the degradation of aromatic compounds, as shown by the reduction of UV absorbance. The acute toxicity toward Vibrio fischeri and the shrimp Artemia salina increased after the biological treatment. No toxicity was detected after ozonation with the exception of the synthetic effluent containing the highest concentration, 1 g/l, of the azo dye Remazol Red. Both untreated and biologically treated textile effluents were found to have mutagenic effects. The mutagenicity increased even further after 1 min of ozonation. No mutagenicity was however detected in the effluents subjected to longer exposure to ozone. The results of this study suggest that the use of ozonation as short post-treatment after a biological process can be beneficial for the degradation of recalcitrant compounds and the removal of toxicity of textile wastewater. However, monitoring of toxicity and especially mutagenicity is crucial and should always be used to assess the success of a treatment strategy.

  20. Coagulation-Adsorption Hybrid Process for the Treatment of Dyes and Pigments Wastewater

    Directory of Open Access Journals (Sweden)

    Abdul Karim Shah

    2013-10-01

    Full Text Available The study aimed to improve the effectiveness of dyes and pigments wastewater treatment. Hybrid system of adsorption and coagulation was applied for the reduction of COD, color, turbidity and TSS. Activated carbon adsorbent was prepared from a waste of sugar industry boiler. It was processed through physicochemical treatment with sulfuric acid following grinding, sieving, washing and drying unit operations. Combined wastewater of dyes and pigments manufacturing plant was treated with a hybrid process of coagulation and adsorption. FeCl 3, FeSO 4and Alum coagulants were tested individually and found them less effective. It was revealed that FeCl 3 coagulation, adsorption and hybrid process reduced COD (41, 51 and 54%, Color (67, 70 and 89%, turbidity (69, 71 and 90% and TSS (82, 93 and 97% respectively. Combination of FeCl3 -SBFA (Sugarcane Bagasse Fly Ash proved 90% efficient in removal than coagulation as an individual process. 4g adsorbent dose was optimized for this hybrid process

  1. Treatment of Oily Wastewater Produced From Old Processing Plant of North Oil Company

    Directory of Open Access Journals (Sweden)

    Dr. Faris Hammoodi Al-Ani

    2012-03-01

    Full Text Available The main objectives of this research were to study and analyses oily wastewater characteristics originating from old-processing plant of North Oil Company and to find a suitable and simple method to treat the waste so it can be disposed off safely. The work consists of two stages; the first was the study of oily wastewater characteristics and its negative impacts. The results indicated that oil and grease were the most dominant pollutant with concentration range between 1069 – 3269.3 mg/l that must be removed; other pollutants were found to be within Iraqi and EPA standards. The next stage was the use of these characteristics to choose the proper technology to treat that wastewater. This stage was divided into two stages: the first stage was a jar tests to find the optimum doses of alum, lime and powdered activated carbon (PAC. The second stage was the treatment by a batch pilot plant constructed for this purpose employing the optimum doses as determined from the first stage to treat the waste using a flotation unit followed by a filtration-adsorption unit. The removal efficiencies of flotation unit for oil and grease, COD, and T.S.S found to be 0.9789, 0.974, and 0.9933, respectively, while the removal efficiency for T.D.S was very low 0.0293. From filtration – adsorption column the removal efficiencies of oil and grease, T.D.S, COD, and T.S.S were found to be 0.9486, 0.8908, 0.6870, and 0.7815, respectively. The overall removal efficiencies of pilot plant were 0.9986, 0.8939, 0.9921, and 0.9950, respectively. The results indicated that this type of treatment was the simplest and most effective method that can be used to treat produced oily wastewater before disposal

  2. Post-treatment of molasses wastewater by electrocoagulation and process optimization through response surface analysis.

    Science.gov (United States)

    Tsioptsias, C; Petridis, D; Athanasakis, N; Lemonidis, I; Deligiannis, A; Samaras, P

    2015-12-01

    Molasses wastewater is a high strength effluent of food industry such as distilleries, sugar and yeast production plants etc. It is characterized by a dark brown color and exhibits a high content in substances of recalcitrant nature such as melanoidins. In this study, electrocoagulation (EC) was studied as a post treatment step for biologically treated molasses wastewater with high nitrogen content obtained from a baker's yeast industry. Iron and copper electrodes were used in various forms; the influence and interaction of current density, molasses wastewater dilution, and reaction time, on COD, color, ammonium and nitrate removal rates and operating cost were studied and optimized through Box Behnken's response surface analysis. Reaction time varied from 0.5 to 4 h, current density varied from 5 to 40 mA/cm(2) and dilution from 0 to 90% (v/v expressed as water concentration). pH, conductivity and temperature measurements were also carried out during each experiment. From preliminary experiments, it was concluded that the application of aeration and sample dilution, considerably influenced the kinetics of the process. The obtained results showed that COD removal varied between 10 and 54%, corresponding to an operation cost ranging from 0.2 to 33 euro/kg COD removed. Significant removal rates were obtained for nitrogen as nitrate and ammonium (i.e. 70% ammonium removal). A linear relation of COD and ammonium to the design parameters was observed, while operation cost and nitrate removal responded in a curvilinear function. A low ratio of electrode surface to treated volume was used, associated to a low investment cost; in addition, iron wastes could be utilized as low cost electrodes i.e. iron fillings from lathes, aiming to a low operation cost due to electrodes replacement. In general, electrocoagulation proved to be an effective and low cost process for biologically treated molasses-wastewater treatment for additional removal of COD and nitrogen content and

  3. Advanced treatment of acrylic fiber manufacturing wastewater with a combined microbubble-ozonation/ultraviolet irradiation process

    KAUST Repository

    Zheng, Tianlong

    2015-01-01

    This work investigated the effectiveness of a combination of microbubble-ozonation and ultraviolet (UV) irradiation for the treatment of secondary wastewater effluent of a wet-spun acrylic fiber manufacturing plant. Under reactor condition (ozone dosage of 48 mg L-1, UV fluence rate of 90 mW cm-2, initial pH of 8.0, and reaction time of 120 min), the biodegradability (represented as BOD5/CODcr) of the wastewater improved from 0.18 to 0.47. This improvement in biodegradability is related to the degradation of alkanes, aromatic compounds, and other bio-refractory organic compounds. The combination of microbubble-ozonation and UV irradiation synergistically improved treatment efficiencies by 228%, 29%, and 142% for CODcr, UV254 removal and BOD5/CODcr respectively after 120 min reaction time, as compared with the sum efficiency of microbubble-ozonation alone and UV irradiation alone. Hydroxyl radical production in the microbubble-ozonation/UV process was about 1.8 times higher than the sum production in microbubble-ozonation alone and UV irradiation alone. The ozone decomposition rate in the combined process was about 4.1 times higher than that in microbubble-ozonation alone. The microbubble-ozonation/UV process could be a promising technique for the treatment of bio-refractory organics in the acrylic fiber manufacturing industry. © 2015 Royal Society of Chemistry.

  4. Control of the Coagulation Process in a Paper-mill Wastewater Treatment Process Using a Fuzzy Neural Network

    OpenAIRE

    Wan, J.-Q.; Huang, M.-Z.; Ma, Y.-W.; Guo, W. J.; Wang, Y.; Zhang, H.-P.

    2010-01-01

    In this paper, an integrated neural-fuzzy process controller was developed to study the coagulation of wastewater treatment in a paper mill. In order to improve the fuzzy neural network performance, the self-learning ability embedded in the fuzzy neural network model was emphasized for improving the rule extraction performance. It proves the fuzzy neural network more effective in modeling the coagulation performance than artificial neural networks (ANN). For comparing between the fuzzy neural...

  5. Treatment of Textile Wastewater Using a Combined Coagulation and DAF Processes, Iran, 2016

    Directory of Open Access Journals (Sweden)

    Shahin Ahmadi

    2017-07-01

    Full Text Available Background & Aims of the Study: There are three different types of fibers used in the manufacture of various textile products: cellulose fibers, protein fibers and synthetic fibers. Textile wastewater discharge into the environment leads to irreparable damages. The main purpose of this study was treatment of textile wastewater, using a combined coagulation and dissolved air flotation (DAF processes, Iran in 2016. Materials and Methods: This study was an empirical-lab study which the Jar tests and DAF were used in laboratory scale. After determination of the optimal condition of pH and the optimum of concentration of poly-aluminum chloride by Jar test, the effect of the effective parameters including the concentration of the coagulant (10, 20, 30, 40, 60 mg/L, coagulation time (5, 10, 15 and 20 min, flotation time (5, 10, 15 and 20 sec, saturation pressure ( 3, 3.5, 4 and 4,5 atm and turbidity ( 10, 20 , 30, 40, 60 NTU on the removal efficiency of COD, BOD5 and TSS by DAF were studied. Results: Results of this study showed that the DAF process can treatment COD, BOD5 and TSS up to85.7%, 80.68% and 95.6%, respectively. The appropriate condition was as follows: pH=6, initial concentration of aniline= 200 mg/L, flocculation time = 10 min, flotation time= 20 sec and the air pressure= 4 atm. Also, this study indicates that the DAF process to conclusion requires a lower dosage of poly-aluminum chloride. Conclusion: The coagulation and DAF processes can be effective to treat textile wastewater from industries.

  6. Treatment of slaughter wastewater by coagulation sedimentation-anaerobic biological filter and biological contact oxidation process

    Science.gov (United States)

    Sun, M.; Yu, P. F.; Fu, J. X.; Ji, X. Q.; Jiang, T.

    2017-08-01

    The optimal process parameters and conditions for the treatment of slaughterhouse wastewater by coagulation sedimentation-AF - biological contact oxidation process were studied to solve the problem of high concentration organic wastewater treatment in the production of small and medium sized slaughter plants. The suitable water temperature and the optimum reaction time are determined by the experiment of precipitation to study the effect of filtration rate and reflux ratio on COD and SS in anaerobic biological filter and the effect of biofilm thickness and gas water ratio on NH3-N and COD in biological contact oxidation tank, and results show that the optimum temperature is 16-24°C, reaction time is 20 min in coagulating sedimentation, the optimum filtration rate is 0.6 m/h, and the optimum reflux ratio is 300% in anaerobic biological filter reactor. The most suitable biological film thickness range of 1.8-2.2 mm and the most suitable gas water ratio is 12:1-14:1 in biological contact oxidation pool. In the coupling process of continuous operation for 80 days, the average effluent’s mass concentrations of COD, TP and TN were 15.57 mg/L, 40 mg/L and 0.63 mg/L, the average removal rates were 98.93%, 86.10%, 88.95%, respectively. The coupling process has stable operation effect and good effluent quality, and is suitable for the industrial application.

  7. Anaerobic wastewater treatment in the food processing industry: two case studies

    Energy Technology Data Exchange (ETDEWEB)

    Campos, J.R.; Foresti, E.; Camacho, R.D.P.

    1986-01-01

    This article relates two experiments with wastewater treatment in the food processing industry. One of them refers to the use of an anaerobic filter (meat processing industry) and the other to the use of an upflow anaerobic sludge blanket reactor-UASB (vegetable and fruit processing industry). In the first case, the study describes the performance of an anaerobic filter which has been working for 6 years and provides COD removal efficiency (including primary treatment) equal or better than 80% with an organic loading of 1.4 kg of COD/cubic m/day. The reactor has a bed of broken stones with size of 0.75 m having a medium hydraulic retention time of 13 hours. Discharges of accumulated sludge in a false bottom below the filter are made at intervals of 2 or 3 months. In the second case, the study describes the performance of an upflow anaerobic sludge blanket reactor (88 cubic m) during 255 days of operation including the adaptation phase or startup. This reactor receives wastewater from vegetable and fruit processing including tomato, corn, guava and peach. At the end of each operational phase studied, the COD removal efficiency was about 80%. In the last phase (7.5 hours hydraulic retention time), the organic loading was 1.4 kg of COD/cubic m/day and the hydraulic loading was 3.2 cubic m/cubic m/day. (Refs. 11).

  8. Online total organic carbon (TOC) monitoring for water and wastewater treatment plants processes and operations optimization

    Science.gov (United States)

    Assmann, Céline; Scott, Amanda; Biller, Dondra

    2017-08-01

    Organic measurements, such as biological oxygen demand (BOD) and chemical oxygen demand (COD) were developed decades ago in order to measure organics in water. Today, these time-consuming measurements are still used as parameters to check the water treatment quality; however, the time required to generate a result, ranging from hours to days, does not allow COD or BOD to be useful process control parameters - see (1) Standard Method 5210 B; 5-day BOD Test, 1997, and (2) ASTM D1252; COD Test, 2012. Online organic carbon monitoring allows for effective process control because results are generated every few minutes. Though it does not replace BOD or COD measurements still required for compliance reporting, it allows for smart, data-driven and rapid decision-making to improve process control and optimization or meet compliances. Thanks to the smart interpretation of generated data and the capability to now take real-time actions, municipal drinking water and wastewater treatment facility operators can positively impact their OPEX (operational expenditure) efficiencies and their capabilities to meet regulatory requirements. This paper describes how three municipal wastewater and drinking water plants gained process insights, and determined optimization opportunities thanks to the implementation of online total organic carbon (TOC) monitoring.

  9. Input-dependent life-cycle inventory model of industrial wastewater-treatment processes in the chemical sector.

    Science.gov (United States)

    Köhler, Annette; Hellweg, Stefanie; Recan, Ercan; Hungerbühler, Konrad

    2007-08-01

    Industrial wastewater-treatment systems need to ensure a high level of protection for the environment as a whole. Life-cycle assessment (LCA) comprehensively evaluates the environmental impacts of complex treatment systems, taking into account impacts from auxiliaries and energy consumption as well as emissions. However, the application of LCA is limited by a scarcity of wastewater-specific life-cycle inventory (LCI) data. This study presents a modular gate-to-gate inventory model for industrial wastewater purification in the chemical and related sectors. It enables the calculation of inventory parameters as a function of the wastewater composition and the technologies applied. Forthis purpose, data on energy and auxiliaries' consumption, wastewater composition, and process parameters was collected from chemical industry. On this basis, causal relationships between wastewater input, emissions, and technical inputs were identified. These causal relationships were translated into a generic inventory model. Generic and site-specific data ranges for LCI parameters are provided for the following processes: mechanical-biological treatment, high-pressure wet-air oxidation, nanofiltration, and extraction. The input- and technology-dependent process inventories help to bridge data gaps where primary data are not available. Thus, they substantially help to perform an environmental assessment of industrial wastewater purification in the chemical and associated industries, which may be used, for instance, for technology choices.

  10. Treatment of bromoamine acid wastewater using combined process of micro-electrolysis and biological aerobic filter.

    Science.gov (United States)

    Fan, Li; Ni, Jinren; Wu, Yanjun; Zhang, Yongyong

    2009-03-15

    The wastewater originated from the production of bromoamine acid was treated in a sequential system of micro-electrolysis (ME) and biological aerobic filter (BAF). Decolorization and COD(Cr) removal rate of the proposed system was investigated with full consideration of the influence of two major controlling factors such as organic loading rate (OLR) and hydraulic retention time (HRT). The removal rate of COD(Cr) was 81.2% and that of chrominance could be up to 96.6% at an OLR of 0.56 kg m(-3)d(-1) when the total HRT was 43.4h. Most of the chrominance was removed by the ME treatment, however, the BAF process was more effective for COD(Cr) removal. The GC-MS and HPLC-MS analysis of the contaminants revealed that 1-aminoanthraquinone, bromoamine acid and mono-sulfonated 1,2-dichlorobenzene were the main organic components in the wastewater. The reductive transformation of the anthraquinone derivatives in the ME reactor improved the biodegradability of the wastewater, and rendered the decolorization. After long-term of operation, it was observed that the predominant microorganisms immobilized on the BAF carriers were rod-shaped and globular. Four bacterial strains with apparent 16S rDNA fragments in the Denaturing Gradient Gel Electrophoresis (DGGE) profiles of BAF samples were identified as Variovorax sp., Sphingomonas sp., Mycobacterium sp., and Microbacterium sp.

  11. Treatment of bromoamine acid wastewater using combined process of micro-electrolysis and biological aerobic filter

    Energy Technology Data Exchange (ETDEWEB)

    Fan Li [Shenzhen Graduate School, Peking University, Key Laboratory for Environmental and Urban Sciences, Guang Dong 518055 (China); Department of Environmental Engineering, Peking University, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871 (China); Ni Jinren [Shenzhen Graduate School, Peking University, Key Laboratory for Environmental and Urban Sciences, Guang Dong 518055 (China); Department of Environmental Engineering, Peking University, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871 (China)], E-mail: nijinren@iee.pku.edu.cn; Wu Yanjun; Zhang Yongyong [Shenzhen Graduate School, Peking University, Key Laboratory for Environmental and Urban Sciences, Guang Dong 518055 (China); Department of Environmental Engineering, Peking University, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871 (China)

    2009-03-15

    The wastewater originated from the production of bromoamine acid was treated in a sequential system of micro-electrolysis (ME) and biological aerobic filter (BAF). Decolorization and COD{sub Cr} removal rate of the proposed system was investigated with full consideration of the influence of two major controlling factors such as organic loading rate (OLR) and hydraulic retention time (HRT). The removal rate of COD{sub Cr} was 81.2% and that of chrominance could be up to 96.6% at an OLR of 0.56 kg m{sup -3} d{sup -1} when the total HRT was 43.4 h. Most of the chrominance was removed by the ME treatment, however, the BAF process was more effective for COD{sub Cr} removal. The GC-MS and HPLC-MS analysis of the contaminants revealed that 1-aminoanthraquinone, bromoamine acid and mono-sulfonated 1,2-dichlorobenzene were the main organic components in the wastewater. The reductive transformation of the anthraquinone derivatives in the ME reactor improved the biodegradability of the wastewater, and rendered the decolorization. After long-term of operation, it was observed that the predominant microorganisms immobilized on the BAF carriers were rod-shaped and globular. Four bacterial strains with apparent 16S rDNA fragments in the Denaturing Gradient Gel Electrophoresis (DGGE) profiles of BAF samples were identified as Variovorax sp., Sphingomonas sp., Mycobacterium sp., and Microbacterium sp.

  12. Treatment of bromoamine acid wastewater using combined process of micro-electrolysis and biological aerobic filter

    International Nuclear Information System (INIS)

    Fan Li; Ni Jinren; Wu Yanjun; Zhang Yongyong

    2009-01-01

    The wastewater originated from the production of bromoamine acid was treated in a sequential system of micro-electrolysis (ME) and biological aerobic filter (BAF). Decolorization and COD Cr removal rate of the proposed system was investigated with full consideration of the influence of two major controlling factors such as organic loading rate (OLR) and hydraulic retention time (HRT). The removal rate of COD Cr was 81.2% and that of chrominance could be up to 96.6% at an OLR of 0.56 kg m -3 d -1 when the total HRT was 43.4 h. Most of the chrominance was removed by the ME treatment, however, the BAF process was more effective for COD Cr removal. The GC-MS and HPLC-MS analysis of the contaminants revealed that 1-aminoanthraquinone, bromoamine acid and mono-sulfonated 1,2-dichlorobenzene were the main organic components in the wastewater. The reductive transformation of the anthraquinone derivatives in the ME reactor improved the biodegradability of the wastewater, and rendered the decolorization. After long-term of operation, it was observed that the predominant microorganisms immobilized on the BAF carriers were rod-shaped and globular. Four bacterial strains with apparent 16S rDNA fragments in the Denaturing Gradient Gel Electrophoresis (DGGE) profiles of BAF samples were identified as Variovorax sp., Sphingomonas sp., Mycobacterium sp., and Microbacterium sp

  13. Treatment of soft drink process wastewater by ozonation, ozonation-H₂O₂ and ozonation-coagulation processes.

    Science.gov (United States)

    García-Morales, M A; Roa-Morales, G; Barrera-Díaz, C; Balderas-Hernández, P

    2012-01-01

    In this research, we studied the treatment of wastewater from the soft drink process using oxidation with ozone. A scheme composed of sequential ozonation-peroxide, ozonation-coagulation and coagulation-ozonation treatments to reduce the organic matter from the soft drink process was also used. The samples were taken from the conventional activated sludge treatment of the soft drink process, and the experiments using chemical oxidation with ozone were performed in a laboratory using a reactor through a porous plate glass diffuser with air as a feedstock for the generation of ozone. Once the sample was ozonated, the treatments were evaluated by considering the contact time, leading to greater efficiency in removing colour, turbidity and chemical oxygen demand (COD). The effect of ozonation and coagulant coupled with treatment efficiency was assessed under optimal conditions, and substantial colour and turbidity removal were found (90.52% and 93.33%, respectively). This was accompanied by a 16.78% reduction in COD (initial COD was 3410 mg/L). The absorbance spectra of the oxidised products were compared using UV-VIS spectroscopy to indicate the level of oxidation of the wastewater. We also determined the kinetics of decolouration and the removal of turbidity with the best treatment. The same treatment was applied to the sample taken from the final effluent of the activated sludge system, and a COD removal efficiency of 100% during the first minute of the reaction with ozone was achieved. As a general conclusion, we believe that the coagulant polyaluminum chloride - ozone (PAC- ozone) treatment of wastewater from the manufacturing of soft drinks is the most efficient for removing turbidity and colour and represents an advantageous option to remove these contaminants because their removal was performed in minutes compared to the duration of traditional physical, chemical and biological processes that require hours or days.

  14. Study on treatment of coking wastewater by biofilm reactors combined with zero-valent iron process

    International Nuclear Information System (INIS)

    Lai Peng; Zhao Huazhang; Zeng Ming; Ni Jinren

    2009-01-01

    Experiments were conducted to investigate the behavior of the integrated system with biofilm reactors and zero-valent iron (ZVI) process for coking wastewater treatment. Particular attention was paid to the performance of the integrated system for removal of organic and inorganic nitrogen compounds. Maximal removal efficiencies of chemical oxygen demand (COD), ammonia nitrogen (NH 3 -N) and total inorganic nitrogen (TIN) were up to 96.1, 99.2 and 92.3%, respectively. Moreover, it was found that some phenolic compounds were effectively removed. The refractory organic compounds were primarily removed in ZVI process of the integrated system. These compounds, with molecular weights either ranged 10,000-30,000 Da or 0-2000 Da, were mainly the humic acid (HA) and hydrophilic (HyI) compounds. Oxidation-reduction and coagulation were the main removal mechanisms in ZVI process, which could enhance the biodegradability of the system effluent. Furthermore, the integrated system showed a rapid recovery performance against the sudden loading shock and remained high efficiencies for pollutants removal. Overall, the integrated system was proved feasible for coking wastewater treatment in practical applications

  15. Orientation to Municipal Wastewater Treatment. Training Manual.

    Science.gov (United States)

    Office of Water Program Operations (EPA), Cincinnati, OH. National Training and Operational Technology Center.

    Introductory-level material on municipal wastewater treatment facilities and processes is presented. Course topics include sources and characteristics of municipal wastewaters; objectives of wastewater treatment; design, operation, and maintenance factors; performance testing; plant staffing; and laboratory considerations. Chapter topics include…

  16. Treatment of olive mill wastewater by the combination of ultrafiltration and bipolar electrochemical reactor processes

    KAUST Repository

    Yahiaoui, O.

    2011-01-01

    The main purpose of this study was to investigate the removal of the chemical oxygen demand (COD) from olive mill wastewater (OMW) by the combination of ultrafiltration with electrocoagulation process. Ultrafiltration process equipped with CERAVER membrane was used as pre-treatment for electrochemical process. The obtained permeate from the ultrafiltration process allowed COD removal efficiency of about 96% from OMW. Obtained permeate with an average COD of about 1.1gdm-3 was treated by electrochemical reactor equipped with a reactor with bipolar iron plate electrodes. The effect of the experimental parameters such as current density, pH, surface electrode/reactor volume ratio and NaCl concentration on COD removal was assessed. The results showed that the optimum COD removal rate was obtained at a current density of 93.3Am-2 and pH ranging from 4.5 to 6.5. At the optimum operational parameters for the experiments, electrocoagulation process could reduce COD from 1.1gdm-3 to 78mgdm-3, allowing direct discharge of the treated OMW as that meets the Algerian wastewater discharge standards (<125mgdm-3). © 2010 Elsevier B.V.

  17. Wastewater Treatment Facilities

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — Individual permits for municipal, industrial, and semi-public wastewater treatment facilities in Iowa for the National Pollutant Discharge Elimination System (NPDES)...

  18. Influence of bioselector processes on 17α-ethinylestradiol biodegradation in activated sludge wastewater treatment systems.

    Science.gov (United States)

    Ziels, Ryan M; Lust, Mariko J; Gough, Heidi L; Strand, Stuart E; Stensel, H David

    2014-06-03

    The removal of the potent endocrine-disrupting estrogen hormone, 17α-ethinylestradiol (EE2), in municipal wastewater treatment plant (WWTP) activated sludge (AS) processes can occur through biodegradation by heterotrophic bacteria growing on other organic wastewater substrates. Different kinetic and metabolic substrate utilization conditions created with AS bioselector processes can affect the heterotrophic population composition in AS. The primary goal of this research was to determine if these changes also affect specific EE2 biodegradation kinetics. A series of experiments were conducted with parallel bench-scale AS reactors treating municipal wastewater with estrogens at 100-300 ng/L concentrations to evaluate the effect of bioselector designs on pseudo first-order EE2 biodegradation kinetics normalized to mixed liquor volatile suspended solids (VSS). Kinetic rate coefficient (kb) values for EE2 biodegradation ranged from 5.0 to 18.9 L/g VSS/d at temperatures of 18 °C to 24 °C. EE2 kb values for aerobic biomass growth at low initial food to mass ratio feeding conditions (F/Mf) were 1.4 to 2.2 times greater than that from growth at high initial F/Mf. Anoxic/aerobic and anaerobic/aerobic metabolic bioselector reactors achieving biological nutrient removal had similar EE2 kb values, which were lower than that in aerobic AS reactors with biomass growth at low initial F/Mf. These results provide evidence that population selection with growth at low organic substrate concentrations can lead to improved EE2 biodegradation kinetics in AS treatment.

  19. Fenton's peroxidation and coagulation processes for the treatment of combined industrial and domestic wastewater.

    Science.gov (United States)

    Badawy, M I; Ali, M E M

    2006-08-25

    As a consequence of the population growth, major efforts have been made by the Egyptian government to construct new industrial areas. Tenth of Ramadan City is one of the most important industrial cities in Egypt. The wastewater generated from various industrial activities was highly contaminated with organic matters as indicated by COD (1750-3323 mg/L), TSS (900-3000 mg/L) and oil and grease (13.2-95.5 mg/L). All overall appraisals of the analytical data from the industrial wastewater indicate that pretreatment is required for all industrial sectors to achieve compliance with the Egyptian Environmental law which requires effective pretreatment of industrial wastewater prior to its discharge into public sewers. Treatability studies via conventional and Fenton processes have been investigated. The efficiency of conventional treatment methods led to 63% COD and 44% color removal by using FeCl(3) as coagulant. Various coagulant aids and powdered activated carbon (PAC) were added to 400mg/L FeCl(3) in order to enhance the removal of color. It was found that polyacrylamide polymer, bentonite and PAC increased the efficiency of the treatments where the color removal increased to 79%, by cationic polymer, 73% by anionic polymer, 84.5% by bentonite and 95% for 0.4 g/L PAC. Fenton process was investigated which under the operating conditions (pH 3.0+/-0.2, Fe(2+) dose=400 mg/L and H(2)O(2)=550 mg/L), color removal up to 100% and more than 90% of COD removal were achieved.

  20. Fungal treatment of humic-rich industrial wastewater: application of white rot fungi in remediation of food-processing wastewater.

    Science.gov (United States)

    Zahmatkesh, Mostafa; Spanjers, Henri; van Lier, Jules B

    2017-11-01

    This paper presents the results of fungal treatment of a real industrial wastewater (WW), providing insight into the main mechanisms involved and clarifying some ambiguities and uncertainties in the previous reports. In this regard, the mycoremediation potentials of four strains of white rot fungi (WRF): Phanerochaete chrysosporium, Trametes versicolor, Pleurotus ostreatus and Pleurotus pulmonarius were tested to remove humic acids (HA) from a real humic-rich industrial treated WW of a food-processing plant. The HA removal was assessed by color measurement and size-exclusion chromatography (SEC) analysis. T. versicolor showed the best decolorization efficiency of 90% and yielded more than 45% degradation of HA, which was the highest among the tested fungal strains. The nitrogen limitation was studied and results showed that it affected the fungal extracellular laccase and manganese peroxidase (MnP) activities. The results of the SEC analysis revealed that the mechanism of HA removal by WRF involves degradation of large HA molecules to smaller molecules, conversion of HA to fulvic acid-like molecules and also biosorption of HA by fungal mycelia. The effect of HS on the growth of WRF was investigated and results showed that the inhibition or stimulation of growth differs among the fungal strains.

  1. Biological sludge reduction during abattoir wastewater treatment process using a sequencing batch aerobic system.

    Science.gov (United States)

    Keskes, Sajiâa; Bouallagui, Hassib; Godon, Jean Jacques; Abid, Sami; Hamdi, Moktar

    2013-01-01

    Excess sludge disposal during biological treatment of wastewater is subject to numerous constraints, including social, health and regulatory factors. To reduce the amount of excess sludge, coupled processes involving different biological technologies are currently under taken. This work presents a laboratory scale sequencing batch aerobic system included an anaerobic zone for biomass synchronization (SBAAS: sequencing batch aerobic anaerobic system). This system was adopted to reduce sludge production during abattoir wastewater (AW) treatment. The average chemical oxygen demand (COD) removal efficiency of 89% was obtained at a hydraulic retention time (HRT) and a sludge retention time (SRT) of 2 days and 15-20 days, respectively. The comparison of SBAAS performances with a conventional sequencing batch activated sludge system (SBASS) found that the observed biomass production yield (Y(obs)) were in the ranges of 0.26 and 0.7 g suspended solids g(-1) COD removed, respectively. A significant reduction in the excess biomass production of 63% was observed by using the SBAAS. In fact, in the anaerobic zone microorganisms consume the intracellular stocks of energy by endogenous metabolism, which limits biosynthesis and accelerates sludge decay. The single strand conformation polymorphism (SSCP) method was used to study the dynamic and the diversity of bacterial communities. Results showed a significant change in the population structure by including the anaerobic stage in the process, and revealed clearly that the sludge production yield can be correlated with the bacterial communities present in the system.

  2. Process design of high-concentration benzimidazole wastewater treatment based on the molecular structure of contaminants.

    Science.gov (United States)

    Li, Chenru; Qian, Kun; Liu, Qinyao; Zhang, Qianyi; Yao, Chen; Song, Wei; Wang, Yihong

    2018-04-01

    Benzimidazole is an important intermediate in industry and it is usually difficult to be degraded by many treatment technologies. Looking for a highly effective, environment-friendly degradation process for benzimidazole wastewater is of great significance to reduce pollution. Based on the structure of contaminants, the micro-electrolysis (ME) coupled with the Fenton technique was chosen to degrade the industrial benzimidazole wastewater. Special feeding was applied to maintain the suitable hydrogen peroxide (H 2 O 2 ) concentration to produce the hydroxyl radicals (•OH) as much as possible and protect •OH from being quenched by excess H 2 O 2 according to the reaction mechanism. The results showed that this combined technique was highly efficient to decompose benzimidazole compounds. More chemical oxygen demand (COD) could be reduced when flow control was used, compared to the flow not being controlled. The COD removal rate could reach 85.2% at optimal parameters. Then the effluent of this process was combined with the existing biochemical system for further degradation. The studies of Ultraviolet Spectrophotometry, Fourier Transform Infrared Spectroscopy and Liquid Chromatography Mass Spectrometry showed that both 2-(a-Hydroxyethyl) benzimidazole and 2-Acetylbenzimidazole were decomposed to the isopropanolamine and aniline after the ME treatment; then the intermediates were oxidized into oxalic acid after the Fenton reaction.

  3. Removal of pharmaceuticals from wastewater by biological processes, hydrodynamic cavitation and UV treatment.

    Science.gov (United States)

    Zupanc, Mojca; Kosjek, Tina; Petkovšek, Martin; Dular, Matevž; Kompare, Boris; Širok, Brane; Blažeka, Željko; Heath, Ester

    2013-07-01

    To augment the removal of pharmaceuticals different conventional and alternative wastewater treatment processes and their combinations were investigated. We tested the efficiency of (1) two distinct laboratory scale biological processes: suspended activated sludge and attached-growth biomass, (2) a combined hydrodynamic cavitation-hydrogen peroxide process and (3) UV treatment. Five pharmaceuticals were chosen including ibuprofen, naproxen, ketoprofen, carbamazepine and diclofenac, and an active metabolite of the lipid regulating agent clofibric acid. Biological treatment efficiency was evaluated using lab-scale suspended activated sludge and moving bed biofilm flow-through reactors, which were operated under identical conditions in respect to hydraulic retention time, working volume, concentration of added pharmaceuticals and synthetic wastewater composition. The suspended activated sludge process showed poor and inconsistent removal of clofibric acid, carbamazepine and diclofenac, while ibuprofen, naproxen and ketoprofen yielded over 74% removal. Moving bed biofilm reactors were filled with two different types of carriers i.e. Kaldnes K1 and Mutag BioChip™ and resulted in higher removal efficiencies for ibuprofen and diclofenac. Augmentation and consistency in the removal of diclofenac were observed in reactors using Mutag BioChip™ carriers (85%±10%) compared to reactors using Kaldnes carriers and suspended activated sludge (74%±22% and 48%±19%, respectively). To enhance the removal of pharmaceuticals hydrodynamic cavitation with hydrogen peroxide process was evaluated and optimal conditions for removal were established regarding the duration of cavitation, amount of added hydrogen peroxide and initial pressure, all of which influence the efficiency of the process. Optimal parameters resulted in removal efficiencies between 3-70%. Coupling the attached-growth biomass biological treatment, hydrodynamic cavitation/hydrogen peroxide process and UV treatment

  4. Survival, reproduction, growth, and parasite resistance of aquatic organisms exposed on-site to wastewater treated by advanced treatment processes.

    Science.gov (United States)

    Schlüter-Vorberg, Lisa; Knopp, Gregor; Cornel, Peter; Ternes, Thomas; Coors, Anja

    2017-05-01

    Advanced wastewater treatment technologies are generally known to be an effective tool for reducing micropollutant discharge into the aquatic environment. Nevertheless, some processes such as ozonation result in stable transformation products with often unknown toxicity. In the present study, whole effluents originating from nine different steps of advanced treatment combinations were compared for their aquatic toxicity. Assessed endpoints were survival, growth and reproduction of Lumbriculus variegatus, Daphnia magna and Lemna minor chronically exposed in on-site flow-through tests based on standard guidelines. The treatment combinations were activated sludge treatment followed by ozonation with subsequent filtration by granular activated carbon or biofilters and membrane bioreactor treatment of raw wastewater followed by ozonation. Additionally, the impact of treated wastewater on the immune response of invertebrates was investigated by challenging D. magna with a bacterial endoparasite. Conventionally treated wastewater reduced reproduction of L. variegatus by up to 46%, but did not affect D. magna and L. minor with regard to survival, growth, reproduction and parasite resistance. Instead, parasite susceptibility was significantly reduced in D. magna exposed to conventionally treated as well as ozonated wastewater in comparison to D. magna exposed to the medium control. None of the three test organisms provided clear evidence that wastewater ozonation leads to increased aquatic toxicity. Rather than to the presence of toxic transformation products, the affected performance of L. variegatus could be linked to elevated concentrations of ammonium and nitrite that likely resulted from treatment failures. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Application of the PDCA Problem-Solving Method in treatment of wastewater from poultry processing

    Directory of Open Access Journals (Sweden)

    Yovanka Pérez Ginoris

    2011-12-01

    Full Text Available Amongst the technologies developed for the treatment of industrial waste-water, activated sludge systems deserve special mention. The aim of the present work was to explore the use of PDCA management methods for identifying problems in a system for the biological treatment of effluent from a poultry processing plant and to evaluate the priority solutions adopted or proposed for solving them. To accomplish this objective the following steps are required: analysis of inputs and outputs of the effluent treatment process; identification of operational problems in the system based on the use of performance measures; and identification of fundamental causes leading to problems. Four steps in the PDCA cycle were followed: planning, execution, verification, and corrective action. At the planning stage, the problem was identified by analysis of the historic Sludge Volume Index (SVI record, which gave values of about 500 mL/g in the first half of 2010. Analysis of the phenomenon was achieved by monitoring physical, chemical and biological parameters to give a picture of how the system for waste-water treatment actually worked. The survey of fundamental causes used procedures of brainstorming, Ishakawa diagrams, and prioritization. The results suggest that after partial implantation of the proposed action plan, the problem of sludge sedimentation shown by the SVI was much reduced, its value decreased from about 500 mL/g to about 250 mL/g in the second half of 2010. It is therefore concluded that the PDCA methodology is adequate for solving problems in effluent treatment plants.

  6. A Guide for Developing Standard Operating Job Procedures for the Screening & Grinding Process Wastewater Treatment Facility. SOJP No. 1.

    Science.gov (United States)

    Deal, Gerald A.; Montgomery, James A.

    This guide describes standard operating job procedures for the screening and grinding process of wastewater treatment facilities. The objective of this process is the removal of coarse materials from the raw waste stream for the protection of subsequent equipment and processes. The guide gives step-by-step instructions for safety inspection,…

  7. A Guide for Developing Standard Operating Job Procedures for the Sludge Thickening Process Wastewater Treatment Facility. SOJP No. 9.

    Science.gov (United States)

    Schwing, Carl M.

    This guide describes standard operating job procedures for the screening and grinding process of wastewater treatment facilities. The objective of this process is the removal of coarse materials from the raw waste stream for the protection of subsequent equipment and processes. The guide gives step-by-step instructions for safety inspection,…

  8. Treatment of biodiesel wastewater by adsorption with commercial chitosan flakes: parameter optimization and process kinetics.

    Science.gov (United States)

    Pitakpoolsil, Wipawan; Hunsom, Mali

    2014-01-15

    The possibility of using commercial chitosan flakes as an adsorbent for the removal of pollutants from biodiesel wastewater was evaluated. The effect of varying the adsorption time (0.5-5 h), initial wastewater pH (2-8), adsorbent dose (0.5-5.5 g/L) and mixing rate (120-350 rpm) on the efficiency of pollutant removal was explored by univariate analysis. Under the derived optimal conditions, greater than 59.3%, 87.9% and 66.2% of the biological oxygen demand (BOD), chemical oxygen demand (COD) and oil & grease, respectively, was removed by a single adsorption. Nevertheless, the remaining BOD, COD and oil & grease were still higher than the acceptable Thai government limits for discharge into the environment. When the treatment was repeated, a greater than 93.6%, 97.6% and 95.8% removal of the BOD, COD and oil & grease, respectively, was obtained. The reusability of commercial chitosan following NaOH washing (0.05-0.2 M) was not suitable, with less than 40% efficiency after just one recycling and declining rapidly thereafter. The adsorption kinetics of all pollutant types by the commercial chitosan flakes was controlled by a mixed process of diffusion and adsorption of the pollutants during the early treatment period (0-1.5 h) and then solely controlled by adsorption after 2 h. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Reductions of bacterial antibiotic resistance through five biological treatment processes treated municipal wastewater.

    Science.gov (United States)

    Yuan, Qing-Bin; Guo, Mei-Ting; Wei, Wu-Ji; Yang, Jian

    2016-10-01

    Wastewater treatment plants are hot spots for antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs). However, limited studies have been conducted to compare the reductions of ARB and ARGs by various biological treatment processes. The study explored the reductions of heterotrophic bacteria resistant to six groups of antibiotics (vancomycin, gentamicin, erythromycin, cephalexin, tetracycline, and sulfadiazine) and corresponding resistance genes (vanA, aacC1, ereA, ampC, tetA, and sulI) by five bench-scale biological reactors. Results demonstrated that membrane bioreactor (MBR) and sequencing batch reactor (SBR) significantly reduced ARB abundances in the ranges of 2.80∼3.54 log and 2.70∼3.13 log, respectively, followed by activated sludge (AS). Biological filter (BF) and anaerobic (upflow anaerobic sludge blanket, UASB) techniques led to relatively low reductions. In contrast, ARGs were not equally reduced as ARB. AS and SBR also showed significant potentials on ARGs reduction, whilst MBR and UASB could not reduce ARGs effectively. Redundancy analysis implied that the purification of wastewater quality parameters (COD, NH4 (+)-N, and turbidity) performed a positive correlation to ARB and ARGs reductions.

  10. Annealing optimization in the process of making membrane PSF19%DMFEVA2 for wastewater treatment of palm oil mill effluent

    Science.gov (United States)

    Said, A. A.; Mustafa

    2018-02-01

    A small proportion of the Palm Oil Mill Effluent (POME) treatment has used its wastewater to converted to methane gas which will then be converted again into electrical energy. However, for Palm Oil Mill whose has a value of Chemical Oxygen Demand in its wastewater is less than 60.000 mg / L this can’t so that the purpose wastewater treatment only to reach the standard that can be safe to dispose into the environment. Wastewater treatment systems that are general applied by Palm Oil Mill especially in North Sumatera are aerobic and anaerobic, this method takes a relatively long time due to very dependent on microbial activity. An alternative method for wastewater treatment offered is membrane technology because the process is much more effective, the time is relatively short, and expected to give more optimal result. The optimum membrane obtained is PSF19%DMFEVA2T75 membrane,while the parameter condition of the permeate analysis produced in the treatment of POME wastewater with membrane PSF19%DMFEVA2T75 obtained at pH = 7.0; TSS = 148 mg / L; BOD = 149 mg / L; And COD = 252 mg / L. The results obtained is accordance with the standard of the quality of POME.

  11. [Characteristic research of shortcut denitrification in synthetic ammonia industrial wastewater treatment process].

    Science.gov (United States)

    Li, Yan; Li, Ze-Bing; Ma, Jia-Xuan; Wang, Xiao-Yi; Zhao, Bai-Hang; Li, Jun

    2012-06-01

    Active sludge was from a pilot-scale synthetic ammonia industrial wastewater treatment plant with a strengthen anoxic-oxic (A/O) technology. The zero order kinetic model was suit for describing shortcut and complete denitrification process. Experimental results showed that shortcut denitrification could reduce 14.1% carbon source consumption and 55.7% denitrification time, respectively, comparing with complete denitrification. The maximum specific denitrification rate was 0.509 g x (g x d)(-1) with an initial NO2(-) -N concentration of 36.82 mg x L(-1) and pH 7.5. In the industrial practice, it must be avoided pH higher than 9.0 in anoxic zone for industrial treatment. Replication-selective denitrifying bacteria showed a strong adaptability to methanol and ethanol, but showed maladaptation to other small molecular and easily biodegradable organics, such as glucose and acetic acid.

  12. A Tire-Sulfur Hybrid Adsorption Denitrification (T-SHAD) process for decentralized wastewater treatment.

    Science.gov (United States)

    Krayzelova, Lucie; Lynn, Thomas J; Banihani, Qais; Bartacek, Jan; Jenicek, Pavel; Ergas, Sarina J

    2014-09-15

    Nitrogen discharges from decentralized wastewater treatment (DWT) systems contribute to surface and groundwater contamination. However, the high variability in loading rates, long idle periods and lack of regular maintenance presents a challenge for biological nitrogen removal in DWT. A Tire-Sulfur Hybrid Adsorption Denitrification (T-SHAD) process was developed that combines nitrate (NO3(-)) adsorption to scrap tire chips with sulfur-oxidizing denitrification. This allows the tire chips to adsorb NO3(-) when the influent loading exceeds the denitrification capacity of the biofilm and release it when NO3(-) loading rates are low (e.g. at night). Three waste products, scrap tire chips, elemental sulfur pellets and crushed oyster shells, were used as a medium in adsorption, leaching, microcosm and up-flow packed bed bioreactor studies of NO3(-) removal from synthetic nitrified DWT wastewater. Adsorption isotherms showed that scrap tire chips have an adsorption capacity of 0.66 g NO3(-)-N kg(-1) of scrap tires. Leaching and microcosm studies showed that scrap tires leach bioavailable organic carbon that can support mixotrophic metabolism, resulting in lower effluent SO4(2-) concentrations than sulfur oxidizing denitrification alone. In column studies, the T-SHAD process achieved high NO3(-)-N removal efficiencies under steady state (90%), variable flow (89%) and variable concentration (94%) conditions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Multistage A-O Activated Sludge Process for Paraformaldehyde Wastewater Treatment and Microbial Community Structure Analysis

    Directory of Open Access Journals (Sweden)

    Danyang Zheng

    2016-01-01

    Full Text Available In recent years, the effect of formaldehyde on microorganisms and body had become a global public health issue. The multistage combination of anaerobic and aerobic process was adopted to treat paraformaldehyde wastewater. Microbial community structure in different reaction stages was analyzed through high-throughput sequencing. Results showed that multistage A-O activated sludge process positively influenced polyformaldehyde wastewater. The removal rates of formaldehyde were basically stable at more than 99% and those of COD were about 89%. Analysis of the microbial diversity index indicated that the microbial diversity of the reactor was high, and the treatment effect was good. Moreover, microbial community had certain similarity in the same system. Microbial communities in different units also showed typical representative characteristics affected by working conditions and influent concentrations. Proteobacteria, Firmicutes, and Bacteroidetes were the dominant fungal genera in the phylum level of community composition. As to family and genus levels, Peptostreptococcaceae was distributed at various stages and the dominant in this system. This bacterium also played an important role in organic matter removal, particularly decomposition of the acidified middle metabolites. In addition, Rhodobacteraceae and Rhodocyclaceae were the formaldehyde-degrading bacteria found in the reactor.

  14. [Experimental study on the mechanism of oilfield wastewater treatment by using hydrolysis-acidification with aerobic biological processes].

    Science.gov (United States)

    Wen, Yue; Huang, Xiang-feng; Qiu, Zhan; Wang, Feng; Zhang, Fei-juan; Zhou, Qi

    2006-07-01

    Hydrolysis-acidification + aerobic biological processes were conducted experimentally to treat oilfield wastewater pretreated with physical and chemical treatment in Xinjiang oilfield. The results showed that when the COD concentration in influent was 190-220 mg x L(-1), that in effluent reduced to 65-75 mg x L(-1) under HRT of 10h in both hydrolysis-acidification process and aerobic biological process, reaching the strictest requirement of Effluent Standards for Wastewater from Petroleum Development Industry (GB3550-83). Using GC/MS technology, the relative content of various organic pollutants was analyzed to discover the transfer and degradation law in the oilfield wastewater in biological treatment process. The system of DNA extraction technique, PCR and DGGE reacting systems were practical to analyze the microbial community in the hydrolysis-acidification and aerobic biological processes. The predominant sequences of several 16S rDNA DGGE fragments were determined and confirmed in comparison in GeneBank (NCBI).

  15. Dynamical Modelling of a Wastewater Treatment Process of the Metallurgical Industry

    Directory of Open Access Journals (Sweden)

    David Warichet

    2007-03-01

    Full Text Available In this paper we consider the dynamical modelling and parameter identification of a biological wastewater treatment process from the galvanisation industry used to remove a mixture of organic matter and surface-active agents. In the present study we have considered mainly the measurements of dissolved oxygen and COD (Chemical Oxygen Demand collected on laboratory and pilot-scale processes. From the identification study, we can conclude that the degradation is characterized by two reactions: one part of the easily biodegradable effluent is degraded with fast kinetics while the remaining part of the effluent is degraded via a slower reaction. This has been modelled by considering two different classes of substrates that indeed correspond to real components of the mixture.

  16. Use of polymers and a surfactant in the treatment of Kraft process wastewater

    OpenAIRE

    Seyffert, Hans J.

    1988-01-01

    This study-investigated the use of cationic polymers, and a surfactant, EHDABr, in the color removal treatment of Kraft pulp and paper wastewater. Four polymers were evaluated for their color removal performance by jar test procedures. The polymers removed between 77 and 87% of the wastewater color. The affect of pH upon polymer performance varied with the polymer tested. Powdered activated carbon addition improved the performance of the polymers. The color removal abili...

  17. Comparative reduction of Giardia cysts, F+ coliphages, sulphite reducing clostridia and fecal coliforms by wastewater treatment processes.

    Science.gov (United States)

    Nasser, Abidelfatah M; Benisti, Neta-Lee; Ofer, Naomi; Hovers, Sivan; Nitzan, Yeshayahu

    2017-01-28

    Advanced wastewater treatment processes are applied to prevent the environmental dissemination of pathogenic microorganisms. Giardia lamblia causes a severe disease called giardiasis, and is highly prevalent in untreated wastewater worldwide. Monitoring the microbial quality of wastewater effluents is usually based on testing for the levels of indicator microorganisms in the effluents. This study was conducted to compare the suitability of fecal coliforms, F+ coliphages and sulfide reducing clostridia (SRC) as indicators for the reduction of Giardia cysts in two full-scale wastewater treatment plants. The treatment process consists of activated sludge, coagulation, high rate filtration and either chlorine or UV disinfection. The results of the study demonstrated that Giardia cysts are highly prevalent in raw wastewater at an average concentration of 3600 cysts/L. Fecal coliforms, F+ coliphages and SRC were also detected at high concentrations in raw wastewater. Giardia cysts were efficiently removed (3.6 log 10 ) by the treatment train. The greatest reduction was observed for fecal coliforms (9.6 log 10 ) whereas the least reduction was observed for F+ coliphages (2.1 log 10 ) following chlorine disinfection. Similar reduction was observed for SRC by filtration and disinfection by either UV (3.6 log 10 ) or chlorine (3.3 log 10 ). Since F+ coliphage and SRC were found to be more resistant than fecal coliforms for the tertiary treatment processes, they may prove to be more suitable as indicators for Giardia. The results of this study demonstrated that advanced wastewater treatment may prove efficient for the removal of Giardia cysts and may prevent its transmission when treated effluents are applied for crop irrigation or streams restoration.

  18. Wastewater treatment by flotation

    Directory of Open Access Journals (Sweden)

    F.P. Puget

    2000-12-01

    Full Text Available This work deals with the performance analysis of a separation set-up characterized by the ejector-hydrocyclone association, applied in the treatment of a synthetic dairy wastewater effluent. The results obtained were compared with the results from a flotation column (cylindrical body of a hydrocyclone operated both batch and continuously. As far as the experimental set-up studied in this work and the operating conditions imposed to the process, it is possible to reach a 25% decrease in the total effluent chemical oxygen demand (COD. This corresponds approximately to 60% of the COD of the material in suspension. The best results are obtained for ratios air flow rate-feed flow rate (Qair/Q L greater then 0.15 and for ratios underflow rate-overflow rate (Qu/Qo lower than 1.0.

  19. Removal of organic constituents in a coal gasification process wastewater by activated sludge treatment

    Energy Technology Data Exchange (ETDEWEB)

    Stamoudis, V. C.; Luthy, R. G.; Harrison, W.

    1979-06-01

    The wastewater sample was obtained from a pilot-scale HYGAS run. Wastewater was pretreated to reduce ammonia and alkalinity and was then processed in an activated sludge reactor at a hydraulic residence time of two days with a bacterial mean cell residence time of 15 days and a COD removal rate of 0.86 per day. Analysis indicates that activated sludge treatment removed the bulk of the extractable and chromatographable organic constituents. The influent acidic fraction, composed mainly of phenol and alkylated phenols, constituted 98.5% of the total organics identified; these were removed almost completely. Organics of the basic fraction, composed mainly of alkylated pyridines and anilines, were removed effectively, with the exception of certain alkylated pyridines. In the case of the organics in the neutral fraction, which constituted less than 0.75% of the total organics in the influent, certain heterocyclics and compounds containing heteroatoms were removed effectively. For aromatic hydrocarbons, the more aliphatic the substitution or alicyclic the content, the less the removal. Alicyclic hydrocarbons and alkylated benzenes generally were removed poorly or very poorly. 9 figures, 7 tables.

  20. A Guide for Developing Standard Operating Job Procedures for the Sludge Conditioning & Dewatering Process Wastewater Treatment Facility. SOJP No. 11.

    Science.gov (United States)

    Schwing, Carl M.

    This guide describes standard operating job procedures for the sludge conditioning and dewatering process of wastewater treatment facilities. In this process, sludge is treated with chemicals to make the sludge coagulate and give up its water more easily. The treated sludge is then dewatered using a vacuum filter. The guide gives step-by-step…

  1. A Guide for Developing Standard Operating Job Procedures for the Pump Station Process Wastewater Treatment Facility. SOJP No. 3.

    Science.gov (United States)

    Perley, Gordon F.

    This is a guide for standard operating job procedures for the pump station process of wastewater treatment plants. Step-by-step instructions are given for pre-start up inspection, start-up procedures, continuous routine operation procedures, and shut-down procedures. A general description of the equipment used in the process is given. Two…

  2. A Guide for Developing Standard Operating Job Procedures for the Digestion Process Wastewater Treatment Facility. SOJP No. 10.

    Science.gov (United States)

    Schwing, Carl M.

    This guide describes standard operating job procedures for the digestion process of wastewater treatment facilities. This process is for reducing the volume of sludge to be treated in subsequent units and to reduce the volatile content of sludge. The guide gives step-by-step instructions for pre-startup, startup, continuous operating, shutdown,…

  3. A Guide for Developing Standard Operating Job Procedures for the Grit Removal Process Wastewater Treatment Facility. SOJP No. 2.

    Science.gov (United States)

    Deal, Gerald A.; Montgomery, James A.

    This guide describes standard operating job procedures for the grit removal process of wastewater treatment plants. Step-by-step instructions are given for pre-start up inspection, start-up, continuous operation, and shut-down procedures. A description of the equipment used in the process is given. Some theoretical material is presented. (BB)

  4. Techniques of Wastewater Treatment

    Indian Academy of Sciences (India)

    need and importance of wastewater treatment and conven- tional methods of treatment. Currently the need is to develop low power consuming and yet effective techniques to handle complex wastes. As a result, new and ... ered as supplying energy to make an active oxidizable species of the pollutants. Generally speaking ...

  5. LCA of Wastewater Treatment

    DEFF Research Database (Denmark)

    Larsen, Henrik Fred

    2018-01-01

    emissions and potential health impacts due to spreading of pathogens. Anyway, the use of treatment for micro-pollutants is increasing and a paradigm shift is ongoing — wastewater is more and more considered as a resource of, e.g. energy, nutrients and even polymers, in the innovations going on. The focus...... of LCA studies addressing wastewater treatment have from the very first published cases, been on energy and resource consumption. In recent time, the use of characterisation has increased and besides global warming potential, especially eutrophication is in focus. Even the toxicity-related impact...... categories are nowadays included more often. Application of LCA for comparing avoided against induced impacts, and hereby identifying trade-offs when introducing new technology, is increasingly used. A typical functional unit is the treatment of one cubic metre of wastewater which should be well defined...

  6. Advanced treatment of oilfield production wastewater by an integration of coagulation/flotation, catalytic ozonation and biological processes.

    Science.gov (United States)

    Chen, Ke-Yong; Zhang, Xiao-Bing; Li, Jun

    2016-10-01

    In this study, advanced treatment of heavily polluted oilfield production wastewater (OPW) was investigated employing the combination of coagulation/dissolved air flotation, heterogeneous catalytic ozonation and sequencing batch reactor (SBR) processes. Two SBR reactors were separately set up before and after the ozonation unit. The results show that microbubble flotation was more efficient than macrobubble flotation in pollutant removal. Catalytic ozonation with the prepared Fe/activated carbon catalyst significantly enhanced pollutant removal in the second SBR by improving wastewater biodegradability and reducing wastewater microtoxicity. The treatment technique decreased oil, chemical oxygen demand and NH3-N by about 97%, 88% and 91%, respectively, allowing the discharge limits to be met. Therefore, the integrated process with efficient, economical and sustainable advantages was suitable for advanced treatment of real OPW.

  7. Process wastewater treatment with hydrogen-form CST and chabazite zeolite

    International Nuclear Information System (INIS)

    DePaoli, S.M.; Bostick, D.T.

    1998-05-01

    Ion-exchange materials have been investigated for the removal of radionuclides from near-neutral-pH wastewaters containing competing cations at concentrations greater than those of the targeted species. Natural chabazite zeolite was chosen as the baseline material for the removal of fission products, namely 90 Sr and 137 Cs, from wastewater and groundwater. The sorbent IONSIV reg-sign IE-911, a crystalline silicotitanate manufactured by UOP, was recently tested in this capacity and found to compare extremely well against the baseline material in removing 90 Sr and 137 Cs from process wastewater. This paper presents results of similar column tests performed using both materials, as well as results from batch experiments on actual wastewaters using IONSIV reg-sign IE-911

  8. Integrating Fenton's process and ion exchange for olive mill wastewater treatment and iron recovery.

    Science.gov (United States)

    Reis, Patrícia M; Martins, Pedro J M; Martins, Rui C; Gando-Ferreira, Licínio M; Quinta-Ferreira, Rosa M

    2018-02-01

    A novel integrated methodology involving Fenton's process followed by ion exchange (IE) was proposed for the treatment of olive mill wastewater. Fenton's process was optimized and it was able to remove up to 81% of chemical oxygen demand when pH 3.5, reaction time 1 h, [Fe 2+ ] = 50 mg L -1 and [Fe 2+ ]/[H 2 O 2 ] = 0.002 were applied. In spite of the potential of this treatment approach, final iron removal from the liquid typically entails pH increase and iron sludge production. The integration of an IE procedure using Lewatit TP 207 resin was found to be able to overcome this important environmental shortcoming. The resin showed higher affinity toward Fe 3+ than to Fe 2+ . However, the iron removal efficiency of an effluent coming from Fenton's was independent of the type of the initial iron used in the process. The presence of organic matter had no significant effect over the resin iron removal efficiency. Even if some efficiency decrease was observed when a high initial iron load was applied, the adsorbent mass quantity can be easily adapted to reach the desired iron removal. The use of IE is an interesting industrial approach able to surpass Fenton's peroxidation drawback and will surely boost its full-scale application in the treatment of bio-refractory effluents.

  9. Treatment of biomass gasification wastewater using a combined wet air oxidation/activated sludge process

    Energy Technology Data Exchange (ETDEWEB)

    English, C.J.; Petty, S.E.; Sklarew, D.S.

    1983-02-01

    A lab-scale treatability study for using thermal and biological oxidation to treat a biomass gasification wastewater (BGW) having a chemical oxygen demand (COD) of 46,000 mg/l is described. Wet air oxidation (WA0) at 300/sup 0/C and 13.8 MPa (2000 psi) was used to initially treat the BGW and resulted in a COD reduction of 74%. This was followed by conventional activated sludge treatment using operating conditions typical of municipal sewage treatment plants. This resulted in an additional 95% COD removal. Overall COD reduction for the combined process was 99%. A detailed chemical analysis of the raw BGW and thermal and biological effluents was performed using gas chromatography/mass spectrometry (GC/MS). These results showed a 97% decrease in total extractable organics with WA0 and a 99.6% decrease for combined WA0 and activated sludge treatment. Components of the treated waters tended to be fewer in number and more highly oxidized. An experiment was conducted to determine the amount of COD reduction caused by volatilization during biological treatment. Unfortunately, this did not yield conclusive results. Treatment of BGW using WA0 followed by activated sludge appears to be very effective and investigations at a larger scale are recommended.

  10. Occurrence of cyclophosphamide and ifosfamide in aqueous environment and their removal by biological and abiotic wastewater treatment processes.

    Science.gov (United States)

    Česen, Marjeta; Kosjek, Tina; Laimou-Geraniou, Maria; Kompare, Boris; Širok, Brane; Lambropolou, Dimitra; Heath, Ester

    2015-09-15

    Cytostatic drug residues in the aqueous environment are of concern due to their possible adverse effects on non-target organisms. Here we report the occurrence and removal efficiency of cyclophosphamide (CP) and ifosfamide (IF) by biological and abiotic treatments including advanced oxidation processes (AOPs). Cyclophosphamide was detected in hospital wastewaters (14-22,000 ng L(-1)), wastewater treatment plant influents (19-27 ng L(-1)) and effluent (17 ng L(-1)), whereas IF was detected only in hospital wastewaters (48-6800 ng L(-1)). The highest removal efficiency during biological treatment (attached growth biomass in a flow through bioreactor) was 59 ± 15% and 35 ± 9.3% for CP and IF, respectively. Also reported are the removal efficiencies of both compounds from wastewater using hydrodynamic cavitation (HC), ozonation (O3) and/or UV, either individually or in combination with hydrogen peroxide (H2O2). Hydrodynamic cavitation did not remove CP and IF to any significant degree. The highest removal efficiencies: 99 ± 0.71% for CP and 94 ± 2.4% for IF, were achieved using UV/O3/H2O2 at 5 g L(-1) for 120 min. When combined with biological treatment, removal efficiencies were >99% for both compounds. This is the first report of combined biological and AOP treatment of CP and IF from wastewater with a removal efficiency >99%. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Comparison of coagulation, ozone and ferrate treatment processes for color, COD and toxicity removal from complex textile wastewater.

    Science.gov (United States)

    Malik, Sameena N; Ghosh, Prakash C; Vaidya, Atul N; Waindeskar, Vishal; Das, Sera; Mudliar, Sandeep N

    2017-09-01

    In this study, the comparative performance of coagulation, ozone, coagulation + ozone + coagulation and potassium ferrate processes to remove chemical oxygen demand (COD), color, and toxicity from a highly polluted textile wastewater were evaluated. Experimental results showed that ferrate alone had no effect on COD, color and toxicity removal. Whereas, in combination with FeSO 4 , it has shown the highest removal efficiency of 96.5%, 83% and 75% for respective parameters at the optimal dose of 40 mgL -1 + 3 ml FeSO 4 (1 M) in comparison with other processes. A seed germination test using seeds of Spinach (Spinacia oleracea) also indicated that ferrate was more effective in removing toxicity from contaminated textile wastewater. Potassium ferrate also produces less sludge with maximum contaminant removal, thereby making the process more economically feasible. Fourier transform infrared spectroscopy (FTIR) analysis also shows the cleavage of the chromophore group and degradation of textile wastewater during chemical and oxidation treatment processes.

  12. A multilevel reuse system with source separation process for printing and dyeing wastewater treatment: A case study.

    Science.gov (United States)

    Wang, Rui; Jin, Xin; Wang, Ziyuan; Gu, Wantao; Wei, Zhechao; Huang, Yuanjie; Qiu, Zhuang; Jin, Pengkang

    2018-01-01

    This paper proposes a new system of multilevel reuse with source separation in printing and dyeing wastewater (PDWW) treatment in order to dramatically improve the water reuse rate to 35%. By analysing the characteristics of the sources and concentrations of pollutants produced in different printing and dyeing processes, special, highly, and less contaminated wastewaters (SCW, HCW, and LCW, respectively) were collected and treated separately. Specially, a large quantity of LCW was sequentially reused at multiple levels to meet the water quality requirements for different production processes. Based on this concept, a multilevel reuse system with a source separation process was established in a typical printing and dyeing enterprise. The water reuse rate increased dramatically to 62%, and the reclaimed water was reused in different printing and dyeing processes based on the water quality. This study provides promising leads in water management for wastewater reclamation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Modeling of Electrochemical Process for the Treatment of Wastewater Containing Organic Pollutants

    Science.gov (United States)

    Rodrigo, Manuel A.; Cañizares, Pablo; Lobato, Justo; Sáez, Cristina

    Electrocoagulation and electrooxidation are promising electrochemical technologies that can be used to remove organic pollutants contained in wastewaters. To make these technologies competitive with the conventional technologies that are in use today, a better understanding of the processes involved must be achieved. In this context, the development of mathematical models that are consistent with the processes occurring in a physical system is a relevant advance, because such models can help to understand what is happening in the treatment process. In turn, a more detailed knowledge of the physical system can be obtained, and tools for a proper design of the processes, or for the analysis of operating problems, are attained. The modeling of these technologies can be carried out using single-variable or multivariable models. Likewise, the position dependence of the model species can be described with different approaches. In this work, a review of the basics of the modeling of these processes and a description of several representative models for electrochemical oxidation and coagulation are carried out. Regarding electrooxidation, two models are described: one which summarizes the pollution of a wastewater in only one model species and that considers a macroscopic approach to formulate the mass balances and other that considers more detailed profile of concentration to describe the time course of pollutants and intermediates through a mixed maximum gradient/macroscopic approach. On the topic of electrochemical coagulation, two different approaches are also described in this work: one that considers the hydrodynamic conditions as the main factor responsible for the electrochemical coagulation processes and the other that considers the chemical interaction of the reagents and the pollutants as the more significant processes in the description of the electrochemical coagulation of organic compounds. In addition, in this work it is also described a multivariable model

  14. Sustainability of municipal wastewater treatment.

    NARCIS (Netherlands)

    Roeleveld, P.J.; Klapwijk, A.; Eggels, P.G.; Rulkens, W.H.; Starkenburg, van W.

    1997-01-01

    n this study the insustainability of the treatment of municipal wastewater is evaluated with the LCA-methodology. Life-Cycle Assessments (LCA) analyze and assess the environmental profile over the entire life cycle of a product or process. The LCA-methodology proved to be a proper instrument to

  15. Techniques of Wastewater Treatment

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 5; Issue 12. Techniques of Wastewater Treatment - Future Technologies. Amol A Kulkarni Mugdha ... Chemical Engineering Division, University Department of Chemical Technology, Nathalal Parik Marg, Matunga, Mumbai 400 019, India. Chemical ...

  16. Techniques of Wastewater Treatment

    Indian Academy of Sciences (India)

    By now the reader must have got an idea about the importance of wastewater treatment. Today, biological method (aerobic) is the most widely used method because of its simplicity and relatively low cost but is less successful when the effluent contains highly toxic organic pollutants. It occupies a large space and this could.

  17. Microalgal biofilms for wastewater treatment

    NARCIS (Netherlands)

    Boelee, N.C.

    2013-01-01

    The objective of this thesis was to explore the possibilities of using microalgal biofilms for the treatment of municipal wastewater, with a focus on the post-treatment of municipal wastewater effluent. The potential of microalgal biofilms for wastewater treatment was first investigated using a

  18. Thermodynamic modelling of a membrane distillation crystallisation process for the treatment of mining wastewater.

    Science.gov (United States)

    Nathoo, Jeeten; Randall, Dyllon Garth

    2016-01-01

    Membrane distillation (MD) could be applicable in zero liquid discharge applications. This is due to the fact that MD is applicable at high salinity ranges which are generally outside the scope of reverse osmosis (RO) applications, although this requires proper management of precipitating salts to avoid membrane fouling. One way of managing these salts is with MD crystallisation (MDC). This paper focuses on the applicability of MDC for the treatment of mining wastewater by thermodynamically modelling the aqueous chemistry of the process at different temperatures. The paper is based on the typical brine generated from an RO process in the South African coal mining industry and investigates the effect water recovery and operating temperature have on the salts that are predicted to crystallise out, the sequence in which they will crystallise out and purities as a function of the water recovery. The study confirmed the efficacy of using thermodynamic modelling as a tool for investigating and predicting the crystallisation aspects of the MDC process. The key finding from this work was that, for an MDC process, a purer product can be obtained at higher operating temperatures and recoveries because of the inverse solubility of calcium sulphate.

  19. Nitrogen Control Through Decentralized Wastewater Treatment: Process Performance and Alternative Management Strategies

    Science.gov (United States)

    Decentralized or onsite wastewater treatment (OWT) systems have long been implicated in being a major source of N inputs to surface and ground waters and numerous regulatory bodies have promulgated strict total N (TN) effluent standards in N-sensitive areas. These standards, howe...

  20. Recent advances in mathematical modeling of nitrous oxides emissions from wastewater treatment processes.

    Science.gov (United States)

    Ni, Bing-Jie; Yuan, Zhiguo

    2015-12-15

    Nitrous oxide (N2O) can be emitted from wastewater treatment contributing to its greenhouse gas footprint significantly. Mathematical modeling of N2O emissions is of great importance toward the understanding and reduction of the environmental impact of wastewater treatment systems. This article reviews the current status of the modeling of N2O emissions from wastewater treatment. The existing mathematical models describing all the known microbial pathways for N2O production are reviewed and discussed. These included N2O production by ammonia-oxidizing bacteria (AOB) through the hydroxylamine oxidation pathway and the AOB denitrification pathway, N2O production by heterotrophic denitrifiers through the denitrification pathway, and the integration of these pathways in single N2O models. The calibration and validation of these models using lab-scale and full-scale experimental data is also reviewed. We conclude that the mathematical modeling of N2O production, while is still being enhanced supported by new knowledge development, has reached a maturity that facilitates the estimation of site-specific N2O emissions and the development of mitigation strategies for a wastewater treatment plant taking into the specific design and operational conditions of the plant. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. A solidification/stabilization process for wastewater treatment sludge from a primary copper smelter

    Directory of Open Access Journals (Sweden)

    Ivšić-Bajčeta Dragana

    2013-01-01

    Full Text Available Wastewater treatment sludge from primary copper smelter is characterized as hazardous waste that requires treatment prior disposal due to significant amount of heavy metals and arsenic. The aim of the presented study was to investigate the feasibility and the effectiveness of solidification/stabilization process of the sludge using fly ash and lime as binders. The effectiveness of the process was evaluated by Unconfined Compressive Strength (UCS testing, leaching tests (EN 12457-4 and Toxicity Characteristic Leaching Procedure (TCLP and Acid Neutralization Capacity (ANC test. All samples reached target UCS of 0.35 MPa. Calcium to silicon concentration ratio (cCa/cSi, determined by X-Ray Fluorescence (XRF analysis, was identified as main factor governing strength development. Inductively coupled plasma-optical emission spectrometry (ICP-OES analyses of solutions after leaching tests showed excellent stabilization of Cu, Ni, Pb and Zn (above 99 % and arsenic (above 90 % in samples with high Ca(OH2 content. Results of ANC test indicated that buffering capacity of solidified material linearly depended on Ca concentration in FA and lime. Sample with 20 % of binder heaving 50 % of FA and 50 % of lime met all requirements to be safely disposed. [Projekat Ministarstva nauke Republike Srbije, br. 34033

  2. Comparison of biological and advanced treatment processes for ciprofloxacin removal in a raw hospital wastewater.

    Science.gov (United States)

    Guney, Gokce; Sponza, Delia Teresa

    2016-12-01

    The treatability of ciprofloxacin (CIP) antibiotic was investigated using a single aerobic, a single anaerobic, an anaerobic/aerobic sequential reactor system, a sonicator and a photocatalytic reactor with TiO2 nanoparticles in a raw hospital wastewater in Izmir, Turkey. The effects of increasing organic loading on the performance of all biological systems were investigated, while the effects of power and time on the yields of sonication and photocatalysis were determined. The maximum COD and CIP yields were 95% and 83% in anaerobic/aerobic sequential reactor system at an HRT of 10 days and at an OLR of 0.19 g COD/L × day after 50 days of incubation, respectively. The maximum CH4 gas production was 580 mL day(-1) at an HRT of 6.7 days. The maximum COD and CIP yields were 95% and 81% after 45 min sonication time at a power of 640 W and a frequency of 35 kHz while the maximum yield of COD and CIP were 98% and 88% after 45 min UV irradiation time with a UV power of 210 W using 0.5 g L(-1) TiO2. Among the aforementioned treatment processes, it was found that the highest treatment yields for COD (98%) and CIP (88%) pollutants were obtained with the photocatalytic process due to high OH((●)) radical productions.

  3. Management of biodiesel wastewater by the combined processes of chemical recovery and electrochemical treatment

    International Nuclear Information System (INIS)

    Jaruwat, Pattaraluk; Kongjao, Sangkorn; Hunsom, Mali

    2010-01-01

    A two stage management of raw biodiesel wastewater was carried out at a laboratory scale and ambient temperature. In the first step, biodiesel was chemically recovered from the wastewater using sulphuric acid as a proton donor with subsequent natural phase separation. Biodiesel was recovered from the raw biodiesel wastewater, in this case at 6-7% (w/w). In the second stage, the aqueous phase discharged from the first stage was supplemented with sodium chloride to 0.061 M and subject to electro-oxidation using a Ti/RuO 2 electrode. The combined treatment completely removed COD and oil and grease, and reduced BOD levels by more than 95%. The rate of removal of all three pollutants fitted a pseudo-first-order rate kinetics with oil and grease removal being approximately 8-16- and 2-7-fold faster than BOD and COD removal, respectively.

  4. UASB reactor startup for the treatment of municipal wastewater followed by advanced oxidation process

    Directory of Open Access Journals (Sweden)

    Z. A. Bhatti

    2014-09-01

    Full Text Available The present study was done to shorten the start-up time of up-flow anaerobic sludge blanket (UASB reactor. Two different nutrients were used during the UASB start-up period, which was designed to decrease the hydraulic retention time (HRT from 48 to 24 and 12 to 6 hrs at average temperatures of 25-34 ºC. In the first stage, start-up was with glucose for 14 days and then the reactor was also fed with macro- and micronutrients as a synthetic nutrient influent (SNI from 15 to 45 days as the second stage. For the control, a second reactor was kept on glucose feeding from day 1 to 45. The removal efficiencies of the chemical oxygen demand (COD were 80% and 98% on the 6th and 32nd day of the first and second stage, respectively. The maximum substrate removal rate of 0.08 mg COD mg-1 VSS d-1 was observed for glucose and synthetic nutrient influent (SNI on the 8th and 40th days, respectively. When the reactor reached the maximum COD removal efficiency it was then shifted to municipal wastewater (MWW mixed with industrial wastewater. The HRT was reduced gradually with a one week gap while treating MWW. For further cleaning, the UASB effluent was treated with 40% waste hydrogen peroxide. The whole integrated treatment process was successful to reduce the COD by 99%, total suspended solids (TSS by 73%, total nitrogen (TN by 84% and turbidity by 67%.

  5. Integrated Evaluation Concept to Assess the Efficacy of Advanced Wastewater Treatment Processes for the Elimination of Micropollutants and Pathogens.

    Science.gov (United States)

    Ternes, Thomas A; Prasse, Carsten; Eversloh, Christian Lütke; Knopp, Gregor; Cornel, Peter; Schulte-Oehlmann, Ulrike; Schwartz, Thomas; Alexander, Johannes; Seitz, Wolfram; Coors, Anja; Oehlmann, Jörg

    2017-01-03

    A multidisciplinary concept has been developed to compare advanced wastewater treatment processes for their efficacy of eliminating micropollutants and pathogens. The concept is based on (i) the removal/formation of selected indicator substances and their transformation products (TPs), (ii) the assessment of ecotoxicity via in vitro tests, and (iii) the removal of pathogens and antibiotic resistant bacteria. It includes substances passing biological wastewater treatment plants regulated or proposed to be regulated in the European Water Framework Directive, TPs formed in biological processes or during ozonation, agonistic/antagonistic endocrine activities, mutagenic/genotoxic activities, cytotoxic activities, further activities like neurotoxicity as well as antibiotics resistance genes, and taxonomic gene markers for pathogens. At a pilot plant, ozonation of conventionally treated wastewater resulted in the removal of micropollutants and pathogens and the reduction of estrogenic effects, whereas the in vitro mutagenicity increased. Subsequent post-treatment of the ozonated water by granular activated carbon (GAC) significantly reduced the mutagenic effects as well as the concentrations of remaining micropollutants, whereas this was not the case for biofiltration. The results demonstrate the suitability of the evaluation concept to assess processes of advanced wastewater treatment including ozonation and GAC by considering chemical, ecotoxicological, and microbiological parameters.

  6. Cosmetic wastewater treatment by the ZVI/H2O2 process.

    Science.gov (United States)

    Bogacki, Jan; Marcinowski, Piotr; Zapałowska, Ewa; Maksymiec, Justyna; Naumczyk, Jeremi

    2017-10-01

    The ZVI/H 2 O 2 process was applied for cosmetic wastewater treatment. Two commercial zero-valent iron (ZVI) types with different granulations were chosen: Hepure Ferrox PRB and Hepure Ferrox Target. In addition, the pH and stirring method influence on ZVI/H 2 O 2 process efficiency was studied. During the ZVI and ZVI/H 2 O 2 processes, linear Fe ions concentration increase was observed. The addition of H 2 O 2 significantly accelerated the iron dissolution process. The highest COD removal was obtained using finer ZVI (Hepure Ferrox Target) for doses of reagents ZVI/H 2 O 2 1500/1600 mg/L, in a H 2 O 2 /COD weight ratio 2:1, at pH 3.0 with stirring on a magnetic stirrer. After 120 min of the process, 84.0% COD removal (from 796 to 127 mg/L) was achieved. It was found that the efficiency of the process depends, as in the case of the Fenton process, on the ratio of the reagents (ZVI/H 2 O 2 ) and their dose in relation to the COD (H 2 O 2 /COD) but does not depend on the dose of the iron itself. Statistical analysis confirms that COD removal efficiency depends primarily on H 2 O 2 /COD ratio and ZVI granulation, but ZVI dose influence is not statistically significant. The head space, solid-phase microextraction, gas chromatography, mass spectrometry results confirm high efficiency of the ZVI/H 2 O 2 process.

  7. Estimation and filtering of nonlinear systems application to a waste-water treatment process

    Energy Technology Data Exchange (ETDEWEB)

    Ben Youssef, C.; Dahhou, B. [Centre National de la Recherche Scientifique (CNRS), 31 - Toulouse (France). Lab. d`Automatique et d`Analyse des Systemes]|[Institut National des Sciences Appliquees (INSA), 31 - Toulouse (France); Zeng, F.Y.; Rols, J.L. [Institut National des Sciences Appliquees (INSA), 31 - Toulouse (France)

    1994-04-01

    A fundamental task in design and control of biotechnological processes is system modelling. This task is made difficult by the scarceness of on-line direct sensors for some key variables and by the fact that identifiability of models including Michaelis-Menten type of nonlinearities is not straightforward. The use of adaptive estimation approaches constitutes an interesting alternative to circumvent these kind of problems. This paper discusses an identification technique derived to solve the problem of estimating simultaneously inaccessible state variables and time-varying parameters of a nonlinear wastewater treatment process. An extended linearization technique using Kronecker`s calculation provides the error model of the joint observer-estimator procedure which convergence is proved via Lyapunov`s method. Sufficient conditions for stability of this joint identification scheme are given and discussed according to the persistence excitation conditions of the signals. A simulation study with measurement noises and abrupt jumps of the process parameters shows the feasibility and significant robustness of the proposed adaptive estimation methodologies. (author). (author). 10 refs., 3 figs.

  8. Influence of chemical sprinkle on the processes in activated tank of wastewater treatment

    Directory of Open Access Journals (Sweden)

    Milan Búgel

    2012-12-01

    Full Text Available The research deals with processes occurring in the activation tank during the snow-melt inflow of chemical component of roadsalt. Chemical composition of the suspension in the activation tank is changing following the metabolism of organisms and chemicalcomposition of the influent wastewater. Sludge and wastewater in nitrification tail of the activation tank has higher conductivity, highercontents of chloride, higher sludge index and other characteristics are changing during snow – melt. The amount of the inflow road saltis a determining factor of lyses of microorganism cells.

  9. Advanced oxidation processes for wastewater treatment using a plasma/ozone combination system

    Science.gov (United States)

    Takeuchi, Nozomi; Kamiya, Yu; Saeki, Ryo; Tachibana, Kosuke; Yasuoka, Koichi

    2014-10-01

    Advanced oxidation process (AOP) using OH radicals is a promising method for the decomposition of persistent organic compounds in wastewater. Although many types of plasma reactors have been developed for the AOP, they are unsuitable for the complete decomposition of highly concentrated organic compounds. The reason for the incomplete decomposition is that OH radicals, particularly at a high density, recombine among themselves to form hydrogen peroxide. We have developed a combination plasma reactor in which ozone gas is fed, so that the generated hydrogen peroxide is re-converted to OH radicals. Pulsed plasmas generated within oxygen bubbles supply not only OH radicals but also hydrogen peroxide into wastewater. The total organic carbon (TOC) of the wastewater was more than 1 gTOC/L. The TOC values decreased linearly with time, and the persistent compounds which could not be decomposed by ozone were completely mineralized within 8 h of operation.

  10. Application of reverse osmosis in radioactive wastewater treatment

    International Nuclear Information System (INIS)

    Kong Jinsong; Guo Weiqun

    2012-01-01

    Considering the disadvantages of the conventional evaporation and ion exchange process for radioactive wastewater treatment, the reverse osmosis is used to treat the low level radioactive wastewater. The paper summarizes the research and application progress of the reverse osmosis in the radioactive wastewater treatment and indicates that the reverse osmosis in the radioactive wastewater treatment is very important. (authors)

  11. Mass and energy balances of sludge processing in reference and upgraded wastewater treatment plants.

    Science.gov (United States)

    Mininni, G; Laera, G; Bertanza, G; Canato, M; Sbrilli, A

    2015-05-01

    This paper describes the preliminary assessment of a platform of innovative upgrading solutions aimed at improving sludge management and resource recovery in wastewater treatment plants. The effectiveness of the upgrading solutions and the impacts of their integration in model reference plants have been evaluated by means of mass and energy balances on the whole treatment plant. Attention has been also paid to the fate of nitrogen and phosphorus in sludge processing and to their recycle back to the water line. Most of the upgrading options resulted in reduced production of dewatered sludge, which decreased from 45 to 56 g SS/(PE × day) in reference plants to 14-49 g SS/(PE × day) in the upgraded ones, with reduction up to 79% when wet oxidation was applied to the whole sludge production. The innovative upgrades generally entail an increased demand of electric energy from the grid, but energy recovery from biogas allowed to minimize the net energy consumption below 10 kWh/(PE × year) in the two most efficient solutions. In all other cases the net energy consumption was in the range of -11% and +28% of the reference scenarios.

  12. Pilot-scale treatment of olive oil mill wastewater by physicochemical and advanced oxidation processes.

    Science.gov (United States)

    Kiliç, M Yalili; Yonar, T; Kestioğlu, K

    2013-01-01

    The pilot-scale treatability of olive oil mill wastewater (OOMW) by physicochemical methods, ultrafiltration and advanced oxidation processes (AOPs) was investigated. Physicochemical methods (acid cracking, oil separation and coagulation-flocculation) showed high efficiency of chemical oxygen demand (COD) (85%), oil and grease (O&G) (> 97%), suspended solids (SS) (> 99%) and phenol (92%) removal from the OOMW. Ultrafiltration followed by physicochemical methods is effective in reducing the SS, O&G. The final permeate quality is found to be excellent with over 90% improvements in the COD and phenol parameters. AOPs (ozonation at a high pH, O3/UV, H2O2/UV, and O3/H2O2/UV) increased the removal efficiency and the O3/H2O2/UV combination among other AOPs studied in this paper was found to give the best results (> 99% removal for COD, > 99% removal for phenol and > 99% removal for total organic carbon). Pilot-scale treatment plant has been continuously operated on site for three years (3 months olive oil production campaign period of each year). The capital and operating costs of the applied treatment alternatives were also determined at the end of these seasons. The results obtained in this study have been patented for 7 years by the Turkish Patent Institute.

  13. Industrial wastewater treatment with a bioelectrochemical process: assessment of depuration efficiency and energy production.

    Science.gov (United States)

    Molognoni, Daniele; Chiarolla, Stefania; Cecconet, Daniele; Callegari, Arianna; Capodaglio, Andrea G

    2018-01-01

    Development of renewable energy sources, efficient industrial processes, energy/chemicals recovery from wastes are research issues that are quite contemporary. Bioelectrochemical processes represent an eco-innovative technology for energy and resources recovery from both domestic and industrial wastewaters. The current study was conducted to: (i) assess bioelectrochemical treatability of industrial (dairy) wastewater by microbial fuel cells (MFCs); (ii) determine the effects of the applied organic loading rate (OLR) on MFC performance; (iii) identify factors responsible for reactor energy recovery losses (i.e. overpotentials). For this purpose, an MFC was built and continuously operated for 72 days, during which the anodic chamber was fed with dairy wastewater and the cathodic chamber with an aerated mineral solution. The study demonstrated that industrial effluents from agrifood facilities can be treated by bioelectrochemical systems (BESs) with >85% (average) organic matter removal, recovering power at an observed maximum density of 27 W m -3 . Outcomes were better than in previous (shorter) analogous experiences, and demonstrate that this type of process could be successfully used for dairy wastewater with several advantages.

  14. Cost estimation and economical evaluation of three configurations of activated sludge process for a wastewater treatment plant (WWTP) using simulation

    Science.gov (United States)

    Jafarinejad, Shahryar

    2017-09-01

    The activated sludge (AS) process is a type of suspended growth biological wastewater treatment that is used for treating both municipal sewage and a variety of industrial wastewaters. Economical modeling and cost estimation of activated sludge processes are crucial for designing, construction, and forecasting future economical requirements of wastewater treatment plants (WWTPs). In this study, three configurations containing conventional activated sludge (CAS), extended aeration activated sludge (EAAS), and sequencing batch reactor (SBR) processes for a wastewater treatment plant in Tehran city were proposed and the total project construction, operation labor, maintenance, material, chemical, energy and amortization costs of these WWTPs were calculated and compared. Besides, effect of mixed liquor suspended solid (MLSS) amounts on costs of WWTPs was investigated. Results demonstrated that increase of MLSS decreases the total project construction, material and amortization costs of WWTPs containing EAAS and CAS. In addition, increase of this value increases the total operation, maintenance and energy costs, but does not affect chemical cost of WWTPs containing EAAS and CAS.

  15. Investigation of dissolved N2O production processes during wastewater treatment system in Ulaanbaatar

    Directory of Open Access Journals (Sweden)

    Tumendelger A

    2017-02-01

    Full Text Available Nitrous oxide (N2O is an increasing greenhouse gas in the troposphere and a potential destroyer of stratospheric ozone layer. Wastewater treatment plant (WWTP is one of the anthropogenic N2O sources because inorganic and organic nitrogen compounds are converted to nitrate (NO3-, in the case of standard system or N2 (in the case of advanced system by bacterial nitrification and denitrifcation processes in WWTP. These major processes can be distinguished by isotopocule analysis. In order to reveal production mechanisms of N2O in a standard wastewater treatment, we made water sampling at the central WWTP in Ulaanbaatar. The water samples collected from seven stations including biological reaction tanks were measured for concentration and isotopocule ratios of dissolved N2O and other inorganic nitrogen. Dissolved N2O concentration was extremely higher than that expected under atmospheric equilibrium (about 9 nmol/l at all stations, indicating that this system is a potential source of N2O. It showed a gradual increase with the progress of biological reaction and the highest concentration (335.7 nmol/l was observed at station N5-4 of the aeration tank when the DO was 5.7 mg/l. Nitrification by nitrifying bacteria could actively occur by the concentration of NH4+ decreased whereas NO2- and NO3- showed a temporal and monotonic increase, respectively, under high DO concentration. Although the reported values of site preference (SP of N2O, the difference in 15N/14N ratio between central (α and terminal (β nitrogen, produced via NO2- reduction (SP(ND, including both nitrifier and denitrifier denitrification, and NH2OH oxidation (SP(HO ranged from -10.7‰ to 0‰ and 31.4‰ to 36.3‰, respectively, the observed SP at aeration tank was close to SP(ND rather than SP(HO. It was ranged from 0.4‰ to 13.3‰ when N2O concentration was high, implying that the NO2- reduction made a greater contribution to N2O production. Slightly elevated SP (13.3‰ only at

  16. Study of the aerobic biological treatment of slaughterhouse wastewater by membrane process

    International Nuclear Information System (INIS)

    Ben yahmed, Nesrine

    2011-01-01

    The objective of this work is to study the performance of aerobic treatment of slaughterhouse wastewater by a side-stream membrane bioreactor (MBR) with semi-frontal filtration and to evaluate the sludge production generated by this system treatment. The MBR was fed with a flow rate of 5 L/d. The wastewater used in this study was collected from the WWTP Ellouhoum following pretreatment operations. They are characterized by an average total COD concentration of approximately 2 g/L. The mass load applied to the system was 0.18 g COD/gVSS.d. The results show that COD and total nitrogen removal efficiencies are respectively estimated at 90.66 pour cent and 92.86 pour cent. Treatment with MBR also allows a total elimination of TSS, fecal coliforms and pathogens. With a total biomass recycling, low sludge yield (Yobs) of 0.106 gTSS/g COD eliminated was obtained.

  17. Influence of physico-chemical treatment on the subsequent biological process treating paper industry wastewater.

    Science.gov (United States)

    el Khames Saad, Mouhamed; Moussaoui, Younes; Zaghbani, Asma; Mosrati, Imen; Elaloui, Elimame; Ben Salem, Ridha

    2012-01-01

    The present paper presents the main results of the biodegradation study of paper industry wastewater through physico-chemical treatment. Indeed, around 60% of chemical oxygen demand (COD) removal can be achieved by electroflocculation treatment. Furthermore, a removal efficiency of the COD of almost 91% has been obtained by biological treatment, with activated amount of sludge for 24 h of culture. Concerning the physico-chemical pre-treatment of the untreated, filtered and electroflocculated rejection effluents, it has been investigated through the degradation curve of COD studies.

  18. Effective Biological Nitrogen Removal Treatment Processes for Domestic Wastewaters with Low C/N Ratios: A Review

    DEFF Research Database (Denmark)

    Sun, Sheng-Peng; Pellicer i Nàcher, Carles; Merkey, Brian

    2010-01-01

    treatment processes including the modified anaerobic/anoxic/oxic (A(2)/O) process, the step-feed multistage anaerobic/ oxic (A/O) process, and new reactors like the membrane bioreactors (MBRs) and the membrane-aerated biofilm reactors (MABRs) can support the innovative biological nitrogen removal pathways...... effluent, the leachate of food waste, digested piggery manure, hydrolyzed molasses, biologically hydrolyzed or mechanically disintegrated sludge offer the same or better performance for nitrogen removal at reduced costs. Finally, we suggest that (1) these new processes and technologies are implemented...... at large scale for nitrogen removal from low C/N domestic wastewater, (2) further method logic are explored to introduce the Anammox pathway into domestic wastewater treatment, and (3) alternative carbon sources are explored and optimized for supporting the denitrification. With these efforts, cost...

  19. Central treatment of different emulsion wastewaters by an integrated process of physicochemically enhanced ultrafiltration and anaerobic-aerobic biofilm reactor.

    Science.gov (United States)

    Zhang, Weijun; Xiao, Ping; Wang, Dongsheng

    2014-05-01

    The feasibility of an integrated process of ultrafiltration (UF) enhanced by combined chemical emulsion breaking with vibratory shear and anaerobic/aerobic biofilm reactor for central treatment of different emulsion wastewaters was investigated. Firstly, it was found that calcium chloride exhibited better performance in oil removal than other inorganic salts. Chemical demulsification pretreatment could efficiently improve oil removal and membrane filtration in emulsion wastewater treatment by VSEP. According to aerobic batch bioassay, UF permeate exhibited good biodegradability and could be further treated with biological process. Additionally, pilot test indicated that anaerobic-aerobic biofilm exhibited an excellent ability against rise in organic loading and overall chemical oxygen demand (COD) removal efficiency of biological system was more than 93% of which 82% corresponded to the anaerobic process and 11% to the aerobic degradation. The final effluent of integrated process could meet the "water quality standards for discharge to municipal sewers" in China. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Separation, Characterization and Fouling Potential of Sludge Waters from Different Biological Wastewater Treatment Processes

    KAUST Repository

    Xue, Jinkai

    2011-07-01

    The major limitation, which hinders the wider application of membrane technology and increases the operating costs of membranes involved in wastewater treatment plants, is membrane fouling induced by organic matter. Extracellular polymeric products (EPS) and soluble microbial products (SMP) are the two most mentioned major foulants in publications, for which the debate on precise definitions seems to be endless. Therefore, a concept of sludge water, which conceptually covers both EPS and SMP, has been developed in this research. A standard procedure of sludge water separation, which is centrifugation at 4000g for 15 min followed by 1.2μm glass fiber filter filtration, was established based on separation experiments with membrane tank sludge from the KAUST MBR wastewater treatment plant. Afterwards, sludge waters from the KAUST MBR WWTP anoxic tank, aerobic tank and membrane tank as well as sludge waters from the Jeddah WWTP anoxic tank, aerobic tank and secondary effluent were produced through the previously developed standard procedure. The obtained sludge water samples were thereafter characterized with TOC/COD, LC-­‐OCD and F-­‐EEM, which showed that KAUST anoxic/ aerobic /membrane tank sludge waters had similar characteristics for all investigated parameters, yet the influent naturally had a higher DOC and biopolymer concentration. Moreover, lower TOC/COD, negligible biopolymers and low levels of humics were found in KAUST effluent. Compared with the KAUST MBR WWTP, the Jeddah WWTP’s sludge waters generally had higher DOC and biopolymer concentrations. To investigate sludge water fouling potential, the KAUST membrane tank sludge water as well as the Jeddah secondary effluent were filtrated through a membrane array consisting of an ultrafiltration (UF) Millipore RC10kDa at the first step followed by a nanofiltration (NF) KOCH Acid/Base stable NF200 at the second step. It was found that cake layer and standard blocking occurred simultaneously during both

  1. Advanced low carbon-to-nitrogen ratio wastewater treatment by electrochemical and biological coupling process.

    Science.gov (United States)

    Deng, Shihai; Li, Desheng; Yang, Xue; Zhu, Shanbin; Xing, Wei

    2016-03-01

    Nitrogen pollution in ground and surface water significantly affects the environment and its organisms, thereby leading to an increasingly serious environmental problem. Such pollution is difficult to degrade because of the lack of carbon sources. Therefore, an electrochemical and biological coupling process (EBCP) was developed with a composite catalytic biological carrier (CCBC) and applied in a pilot-scale cylindrical reactor to treat wastewater with a carbon-to-nitrogen (C/N) ratio of 2. The startup process, coupling principle, and dynamic feature of the EBCP were examined along with the effects of hydraulic retention time (HRT), dissolved oxygen (DO), and initial pH on nitrogen removal. A stable coupling system was obtained after 51 days when plenty of biofilms were cultivated on the CCBC without inoculation sludge. Autotrophic denitrification, with [Fe(2+)] and [H] produced by iron-carbon galvanic cells in CCBC as electron donors, was confirmed by equity calculation of CODCr and nitrogen removal. Nitrogen removal efficiency was significantly influenced by HRT, DO, and initial pH with optimal values of 3.5 h, 3.5 ± 0.1 mg L(-1), and 7.5 ± 0.1, respectively. The ammonia, nitrate, and total nitrogen (TN) removal efficiencies of 90.1 to 95.3 %, 90.5 to 99.0 %, and 90.3 to 96.5 % were maintained with corresponding initial concentrations of 40 ± 2 mg L(-1) (NH3-N load of 0.27 ± 0.01 kg NH3-N m(-3) d(-1)), 20 ± 1 mg L(-1), and 60 ± 2 mg L(-1) (TN load of 0.41 ± 0.02 kg TN m(-3) d(-1)). Based on the Eckenfelder model, the kinetics equation of the nitrogen transformation along the reactor was N e  = N 0 exp (-0.04368 h/L(1.8438)). Hence, EBCP is a viable method for advanced low C/N ratio wastewater treatment.

  2. Deactivation and treatment of mine wastewaters and of aqueous solutions discharged in uranium ore treatment and processing

    International Nuclear Information System (INIS)

    Jilek, R.; Prochazka, H.; Fuska, J.; Nemec, P.; Katzer, J.

    1974-01-01

    A description is presented of decontamination and purification of mine wastewaters and water solutions discharged from uranium ore treatment and processing and of the simultaneous removal and concentration of uranium-radium daughters, mainly of 226 Ra and 210 Pb. These elements are incorporated in the mycelium of microorganisms, such as those of the Fungi imperfecti class or are sorbed on the mycelium surface. The mycelia are then mechanically separated from the decontaminated solution, e.g., by filtration, centrifugation or sedimentation. The mycelium may be cultivated in the purified solutions to which nutrients are added, such as carbon, nitrogen and phosphorus in concentrations necessary for the growth of the microorganisms used. The mycelium may be added to the purified solution either in the native or in the dried state. (B.S.)

  3. A Guide for Developing Standard Operating Job Procedures for the Activated Sludge - Aeration & Sedimentation Process Wastewater Treatment Facility. SOJP No. 5.

    Science.gov (United States)

    Mason, George J.

    This guide for developing standard operating job procedures for wastewater treatment facilities is devoted to the activated sludge aeration and sedimentation process. This process is for conversion of nonsettleable and nonfloatable materials in wastewater to settleable, floculated biological groups and separation of the settleable solids from the…

  4. Wastewater Treatment in Greenland

    DEFF Research Database (Denmark)

    Gunnarsdottir, Ragnhildur

    . Wastewater contains a variety of substances, including anthropogenic pollutants, residues of pharmaceuticals and personal care products (PPCPs), pathogenic microorganisms and parasites as well as antibiotic resistant bacteria that can be harmful for the environment as well as human health. Due...... treatment in these regions. However, designing, constructing and operating wastewater collection systems in the Arctic is challenging because of e.g. permafrost conditions, hard rock surfaces, freezing, limited quantity of water and high costs of electricity, fuel and transportation, as well as a settlement...... pattern with limited accessibility, particularly in the rural parts of the Arctic. For those reasons bucket toilets are still used in parts of the towns and in almost all settlements in Greenland. This particular toilet solution has been considered a problem for many years with respect to uncontrolled...

  5. Integrated treatment of tapioca processing industrial wastewater based on environmental bio-technology

    NARCIS (Netherlands)

    Huynh Ngoc Phuong Mai,

    2006-01-01

    Tapioca processing wastewater containing high COD (9,630-13,760 mg/L), BOD (7,280-11,510 mg/L), SS (450-1,850 mg/L), total nitrogen (291-355 mg/L) total phosphorus (39-73 mg/L) and low pH (3.4-4.6) are one of the major causes of severe pollution to receiving source in South Vietnam. Based on the

  6. A Guide for Developing Standard Operating Job Procedures for the Tertiary Chemical Treatment - Lime Precipitation Process Wastewater Treatment Facility. SOJP No. 6.

    Science.gov (United States)

    Petrasek, Al, Jr.

    This guide describes the standard operating job procedures for the tertiary chemical treatment - lime precipitation process of wastewater treatment plants. Step-by-step instructions are given for pre-start up, start-up, continuous operation, and shut-down procedures. In addition, some theoretical material is presented along with some relevant…

  7. Increasing significance of advanced physical/chemical processes in the development and application of sustainable wastewater treatment systems

    NARCIS (Netherlands)

    Rulkens, W.H.

    2008-01-01

    The awareness of the problem of the scarcity of water of high quality has strongly changed the approach of wastewater treatment. Currently, there is an increasing need for the beneficial reuse of treated wastewater and to recover valuable products and energy from the wastewater. Because

  8. Pinpointing wastewater and process parameters controlling the AOB to NOB activity ratio in sewage treatment plants.

    Science.gov (United States)

    Seuntjens, Dries; Han, Mofei; Kerckhof, Frederiek-Maarten; Boon, Nico; Al-Omari, Ahmed; Takacs, Imre; Meerburg, Francis; De Mulder, Chaïm; Wett, Bernhard; Bott, Charles; Murthy, Sudhir; Carvajal Arroyo, Jose Maria; De Clippeleir, Haydée; Vlaeminck, Siegfried E

    2017-11-23

    Even though nitrification/denitrification is a robust technology to remove nitrogen from sewage, economic incentives drive its future replacement by shortcut nitrogen removal processes. The latter necessitates high potential activity ratios of ammonia oxidizing to nitrite oxidizing bacteria (rAOB/rNOB). The goal of this study was to identify which wastewater and process parameters can govern this in reality. Two sewage treatment plants (STP) were chosen based on their inverse rAOB/rNOB values (at 20 °C): 0.6 for Blue Plains (BP, Washington DC, US) and 1.6 for Nieuwveer (NV, Breda, NL). Disproportional and dissimilar relationships between AOB or NOB relative abundances and respective activities pointed towards differences in community and growth/activity limiting parameters. The AOB communities showed to be particularly different. Temperature had no discriminatory effect on the nitrifiers' activities, with similar Arrhenius temperature dependences (Θ AOB  = 1.10, Θ NOB  = 1.06-1.07). To uncouple the temperature effect from potential limitations like inorganic carbon, phosphorus and nitrogen, an add-on mechanistic methodology based on kinetic modelling was developed. Results suggest that BP's AOB activity was limited by the concentration of inorganic carbon (not by residual N and P), while NOB experienced less limitation from this. For NV, the sludge-specific nitrogen loading rate seemed to be the most prevalent factor limiting AOB and NOB activities. Altogether, this study shows that bottom-up mechanistic modelling can identify parameters that influence the nitrification performance. Increasing inorganic carbon in BP could invert its rAOB/rNOB value, facilitating its transition to shortcut nitrogen removal. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Oxidative treatment characteristics of biotreated textile-dyeing wastewater and chemical agents used in a textile-dyeing process by advanced oxidation process.

    Science.gov (United States)

    Lim, B R; Hu, H Y; Ahn, K H; Fujie, K

    2004-01-01

    The oxidative treatment characteristics of biotreated textile-dyeing wastewater and typical chemicals such as desizing, scouring, dispersing and swelling agents used in the textile-dyeing process by advanced oxidation process were experimentally studied. The refractory organic matters remained in the effluent of biological treatment process without degradation may be suitable for the improvement of biodegradability and mineralized to CO2 by combined ozonation with and without hydrogen peroxide. On the other hand, the refractory chemicals contained in the scouring agent A and swelling agent may not be mineralized and their biodegradability may not be improved by ozonation. However, the BOD/DOC ratio of scouring agent B increased from 0.3 to 0.45 after ozonation. Based on the results described above, advanced treatment process involving the ozonation without and with the addition of hydrogen peroxide, followed by biological treatment was proposed for the treatment of refractory wastewater discharged from the textile-dyeing process.

  10. Treatment of highly toxic cardboard plant wastewater by a combination of electrocoagulation and electrooxidation processes.

    Science.gov (United States)

    Gengec, Erhan

    2017-11-01

    The objective of this study was to investigate the removal efficiencies of the electrochemical treatment systems as an alternative for the treatment of cardboard plant wastewater (CPW). In accordance with this purpose, CPW was treated by electrocoagulation (EC) with Al electrodes and the effects of current density (CD), operating time (t), and initial pH (pH i ) were investigated. The results showed that EC at optimum treatment conditions (CD: 7.5mA/cm 2 , pH i : 7.0 and t: 60min) have limited removal efficiencies for total organic carbon (TOC; 17.1%) and chemical oxygen demand (COD, 14.2%), on the contrary of turbidity (98.7%). Due to the low TOC and COD removal efficiencies, a secondary treatment was needed and the electrocoagulated effluent was subjected to electrooxidation (EO) by using a boron doped diamond (BDD) electrode for investigating the effect of CD, t, pH i and electrolyte concentration (C e ). Higher TOC (83.7%) and COD (82.9%) removal efficiencies were obtained by EO under the optimum treatment conditions (CD: 100mA/cm 2 , pH i : 7.2, C e : 5.0g/L Na 2 SO 4 and t: 180min). In addition, a toxicity test was carried out to the raw and treated wastewater under the optimum operating conditions. This study demonstrated that the combination of EC and EO have a satisfactory potential for real industrial wastewater with a high organic content, suspended solids and toxicity. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Slaughterhouse wastewater characteristics, treatment, and management in the meat processing industry: A review on trends and advances.

    Science.gov (United States)

    Bustillo-Lecompte, Ciro Fernando; Mehrvar, Mehrab

    2015-09-15

    A thorough review of advancement in slaughterhouse wastewater (SWW) characteristics, treatment, and management in the meat processing industry is presented. This study also provides a general review of the environmental impacts, health effects, and regulatory frameworks relevant to the SWW management. A significant progress in high-rate anaerobic treatment, nutrient removal, advanced oxidation processes (AOPs), and the combination of biological treatment and AOPs for SWW treatment is highlighted. The treatment processes are described and few examples of their applications are given. Conversely, few advances are accounted in terms of waste minimization and water use reduction, reuse, and recycle in slaughterhouses, which may offer new alternatives for cost-effective waste management. An overview of the most frequently applied technologies and combined processes for organic and nutrient removal during the last decade is also summarized. Several types of individual and combined processes have been used for the SWW treatment. Nevertheless, the selection of a particular technology depends on the characteristics of the wastewater, the available technology, and the compliance with regulations. This review facilitates a better understanding of current difficulties that can be found during production and management of the SWW, including treatment and characteristics of the final effluent. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Phthalate esters in the environment: A critical review of their occurrence, biodegradation, and removal during wastewater treatment processes.

    Science.gov (United States)

    Gao, Da-Wen; Wen, Zhi-Dan

    2016-01-15

    Phthalate esters are one of the most frequently detected persistent organic pollutants in the environment. A better understanding of their occurrence and degradation in the environment and during wastewater treatment processes will facilitate the development of strategies to reduce these pollutants and to bioremediate contaminated freshwater and soil. Phthalate esters occur at measurable levels in different environments worldwide. For example, the concentrations of dimethyl phthalate (DMP) in atmospheric particulate matter, fresh water and sediments, soil, and landfills are N.D.-10.4 ng/m(3), N.D.-31.7 μg/L, N.D.-316 μg/kg dry weight, and N.D.-200 μg/kg dry weight, N.D.-43.27 μg/L, respectively. Bis(2-ethylhexyl) phthalate (DEHP) and di-n-butyl phthalate (DBP) are primary phthalate ester pollutants. Urbanization has increased the discharge of phthalate esters to atmospheric and aquatic environments, and the use of agricultural plastics has exacerbated soil contamination by phthalate esters in rural areas. Aerobic biodegradation is the primary manner of phthalate ester mineralization in the environment, and this process has been widely studied. Phthalate esters can be removed during wastewater treatment processes. The combination of different wastewater treatment technologies showed greater efficiency in the removal of phthalate esters than individual treatment steps, such as the combination of anaerobic wastewater treatment with a membrane bioreactor would increase the efficiency of phthalate ester removal from 65%-71% to 95%-97%. This review provides a useful framework to identify future research objectives to achieve the mineralization and elimination of phthalate esters in the environment. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Framework for Construction of Multi-scale Models for Biological Wastewater Treatment Processes - Case Study: Autotrophic Nitrogen Conversion

    OpenAIRE

    Vangsgaard, Anna Katrine; Mauricio Iglesias, Miguel; Gernaey, Krist; Smets, Barth F.; Sin, Gürkan

    2011-01-01

    In wastewater treatment technologies, employing biofilms or granular biomass, processes might occur at very different spatial and temporal scales. Model development for such systems is typically a tedious, complicated, and time consuming task, which involves selecting appropriate model equations for the different scales, making appropriate and simplifying assumptions, connecting them through a defined linking scheme, analyzing and solving the model equations numerically, and performing parame...

  14. The application of removal coefficients for viruses in different wastewater treatment processes calculated using stochastic modelling.

    Science.gov (United States)

    Dias, Edgard; Ebdon, James; Taylor, Huw

    2015-01-01

    This study proposes that calculating and interpreting removal coefficients (K20) for bacteriophages in activated sludge (AS) and trickling filter (TF) systems using stochastic modelling may provide important information that may be used to estimate the removal of phages in such systems using simplified models. In order to achieve this, 14 samples of settled wastewater and post-secondary sedimentation wastewater were collected every 2 weeks, over a 6-month period (May to November), from two AS and two TF systems situated in southern England. Initial results have demonstrated that the removal of somatic coliphages in both AS and TF systems is considerably higher than that of F-RNA coliphages, and that AS more effectively removes both phage groups than TF. The results have also demonstrated that K20 values for phages in AS are higher than in TF, which could be justified by the higher removal rates observed in AS and the models assumed for both systems. The research provides a suggested framework for calculating and predicting removal rates of pathogens and indicator organisms in wastewater treatment systems using simplified models in order to support integrated water and sanitation safety planning approaches to human health risk management.

  15. Fate of antibiotic resistant cultivable heterotrophic bacteria and antibiotic resistance genes in wastewater treatment processes.

    Science.gov (United States)

    Zhang, Songhe; Han, Bing; Gu, Ju; Wang, Chao; Wang, Peifang; Ma, Yanyan; Cao, Jiashun; He, Zhenli

    2015-09-01

    Antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) are emerging contaminants of environmental concern. Heterotrophic bacteria in activated sludge have an important role in wastewater treatment plants (WWTPs). However, the fate of cultivable heterotrophic ARB and ARGs in WWPTs process remains unclear. In the present study, we investigated the antibiotic-resistant phenotypes of cultivable heterotrophic bacteria from influent and effluent water of three WWTPs and analysed thirteen ARGs in ARB and in activated sludge from anoxic, anaerobic and aerobic compartments. From each influent or effluent sample of the three plants, 200 isolates were randomly tested for susceptibility to 12 antibiotics. In these samples, between 5% and 64% isolates showed resistance to >9 antibiotics and the proportion of >9-drug-resistant bacteria was lower in isolates from effluent than from influent. Eighteen genera were identified in 188 isolates from influent (n=94) and effluent (n=94) of one WWTP. Six genera (Aeromonas, Bacillus, Lysinibacillus, Microbacterium, Providencia, and Staphylococcus) were detected in both influent and effluent samples. Gram-negative and -positive isolates dominated in influent and effluent, respectively. The 13 tetracycline-, sulphonamide-, streptomycin- and β-lactam-resistance genes were detected at a higher frequency in ARB from influent than from effluent, except for sulA and CTX-M, while in general, the abundances of ARGs in activated sludge from two of the three plants were higher in aerobic compartments than in anoxic ones, indicating abundant ARGs exit in the excess sledges and/or in uncultivable bacteria. These findings may be useful for elucidating the effect of WWTP on ARB and ARGs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. A chemically enhanced biological process for lowering operative costs and solid residues of industrial recalcitrant wastewater treatment.

    Science.gov (United States)

    Di Iaconi, Claudio; Del Moro, Guido; De Sanctis, Marco; Rossetti, Simona

    2010-06-01

    An innovative process based on ozone-enhanced biological degradation, carried out in an aerobic granular biomass system (SBBGR--Sequencing Batch Biofilter Granular Reactor), was tested at pilot scale for tannery wastewater treatment chosen as representative of industrial recalcitrant wastewater. The results have shown that the process was able to meet the current discharge limits when the biologically treated wastewater was recirculated through an adjacent reactor where a specific ozone dose of 120 mg O3/L(influent) was used. The benefits produced by using ozone were appreciable even visually since the final effluent of the process looked like tap water. In comparison with the conventional treatment, the proposed process was able to reduce the sludge production by 25-30 times and to save 60% of operating costs. Molecular in situ detection methods were employed in combination with the traditional measurements (oxygen uptake rate, total protein content, extracellular polymeric substances and hydrophobicity) to evaluate microbial activity and composition, and the structure of the biomass. A stable presence of active bacterial populations was observed in the biomass with the simultaneous occurrence of distinctive functional microbial groups involved in carbon, nitrogen and sulphate removal under different reaction environments established within the large microbial aggregates. The structure and activity of the biomass were not affected by the use of ozone. 2010 Elsevier Ltd. All rights reserved.

  17. Trends in advanced wastewater treatment

    DEFF Research Database (Denmark)

    Henze, M.

    1997-01-01

    The paper examines the present trends within wastewater handling and treatment. The trend is towards the extremes, either local low-tech treatment or centralized advanced treatment plants. The composition of the wastewater will change and it will be regarded as a resource. There will be more...

  18. Removal of Arsenic from Wastewaters by Airlift Electrocoagulation: Part 3: Copper Smelter Wastewater Treatment

    DEFF Research Database (Denmark)

    Hansen, H.K.; Ottosen, Lisbeth M.

    2010-01-01

    The arsenic content in wastewater is of major concern for copper smelters. A typical complex wastewater treatment is needed with a combination of chemical and physical processes. Electrocoagulation (EC) has shown its potential for arsenic removal due to the formation of ferric hydroxide......-arsenate precipitates. This work evaluates the feasibility of EC as a treatment process at various stages during conventional copper smelter wastewater treatment - with a focus on arsenic. The reactor used is a batch airlift electrocoagulator. The results showed that raw copper smelter wastewater was difficult to treat...... threshold value for wastewater discharge could rapidly be reached when the conventional method did not clean the wastewater sufficiently....

  19. Molecular characterization of activated sludge from a seawater‐processing wastewater treatment plant

    Science.gov (United States)

    Sánchez, Olga; Garrido, Laura; Forn, Irene; Massana, Ramon; Maldonado, Manuel Ignacio; Mas, Jordi

    2011-01-01

    Summary The prokaryotic community composition of activated sludge from a seawater‐processing wastewater treatment plant (Almeria, Spain) was investigated by using the rRNA approach, combining different molecular techniques such as denaturing gradient gel electrophoresis (DGGE), clone libraries and in situ hybridization (FISH and CARD‐FISH). Most of the sequences retrieved in the DGGE and the clone libraries were similar to uncultured members of different phyla. The most abundant sequence recovered from Bacteria in the clone library corresponded to a bacterium from the Deinococcus–Thermus cluster (almost 77% of the clones), and the library included members from other groups such as the Alpha, Gamma and Delta subclasses of Proteobacteria, the Bacteroidetes and Firmicutes. Concerning the archaeal clone library, we basically found sequences related to different orders of methanogenic Archaea, in correspondence with the recovered DGGE bands. Enumeration of DAPI (4′,6‐diamidino‐2‐phenylindole) stained cells from two different activated sludge samples after a mechanical flocculation disruption revealed a mean cell count of 1.6 × 109 ml−1. Around 94% of DAPI counts (mean value from both samples) hybridized with a Bacteria specific probe. Alphaproteobacteria were the dominant bacterial group (36% of DAPI counts), while Beta‐, Delta‐ and Gammaproteobacteria, Bacteroidetes, Actinobacteria and Firmicutes contributed to lower proportions (between 0.5–5.7% of DAPI counts). Archaea accounted only for 6% of DAPI counts. In addition, specific primers for amplification of the amoA (ammonia monooxygenase) gene were used to detect the presence of Beta, Gamma and archaeal nitrifiers, yielding positive amplifications only for Betaproteobacteria. This, together with negative in situ hybridizations with probes for well‐known nitrifiying bacteria, suggests that nitrification is performed by still undetected microorganisms. In summary, the combination of the

  20. Advanced treatment of biologically pretreated coal gasification wastewater by a novel integration of heterogeneous Fenton oxidation and biological process.

    Science.gov (United States)

    Xu, Peng; Han, Hongjun; Zhuang, Haifeng; Hou, Baolin; Jia, Shengyong; Xu, Chunyan; Wang, Dexin

    2015-04-01

    Laboratorial scale experiments were conducted in order to investigate a novel system integrating heterogeneous Fenton oxidation (HFO) with anoxic moving bed biofilm reactor (ANMBBR) and biological aerated filter (BAF) process on advanced treatment of biologically pretreated coal gasification wastewater (CGW). The results indicated that HFO with the prepared catalyst (FeOx/SBAC, sewage sludge based activated carbon (SBAC) which loaded Fe oxides) played a key role in eliminating COD and COLOR as well as in improving the biodegradability of raw wastewater. The surface reaction and hydroxyl radicals (OH) oxidation were the mechanisms for FeOx/SBAC catalytic reaction. Compared with ANMBBR-BAF process, the integrated system was more effective in abating COD, BOD5, total phenols (TPs), total nitrogen (TN) and COLOR and could shorten the retention time. Therefore, the integrated system was a promising technology for engineering applications. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. RECENT ADVANCES IN LEATHER TANNERY WASTEWATER TREATMENT

    Directory of Open Access Journals (Sweden)

    LOFRANO Giusy

    2016-05-01

    Full Text Available The tannery industry is one of the most important economic sectors in many countries, representing an important economic field also in developing countries. Leather tannery industry is water intensive and originates highly polluted wastewater that contain various micropollutants raising environmental and health concerns. Tannery wastewater is difficult to treat biologically because of complex characteristics like high salinity e high content of xenobiotics compounds. After conventional treatment (i.e., chromium precipitation–primary sedimentation–biological oxidation–secondary sedimentation, effluents still do not meet the required limits, at least for some parameters such as BOD, COD, salinity, ammonia and surfactants. The leather industry is being pressured to search cleaner, economically as well as environmentally friendly wastewater treatment technologies alternative or integrative to the conventional treatment in order to face the challenge of sustainability. The most spread approach to manage tannery wastewater is the steam segregation before conveying wastewaters to in treatment plants that typically include pre-treatment, mechanical and physico-chemical treatment, biological treatment, and treatment of the generated sludge. Thus proper treatment technologies are needed to handle tannery wastewater to remove effectively the environmental benign pollutants. However among various processes applied or proposed the sustainable technologies are emerging concern. This paper, as the-state-of-the-art, attempts to revise the over world trends of treatment technologies and advances for pollution prevention from tannery chemicals and wastewater.

  2. Verification of an alternative sludge treatment process for pathogen reduction at two wastewater treatment plants in Victoria, Australia.

    Science.gov (United States)

    Irwin, R; Surapaneni, A; Smith, D; Schmidt, J; Rigby, H; Smith, S R

    2017-08-01

    At South East Water wastewater treatment plants (WwTPs) in Victoria, Australia, biosolids are stockpiled for three years in compliance with the State guidelines to achieve the highest pathogen reduction grade (T1), suitable for unrestricted use in agriculture and landscaping. However, extended stockpiling is costly, may increase odour nuisance and greenhouse gas emissions, and reduces the fertiliser value of the biosolids. A verification programme of sampling and analysis for enteric pathogens was conducted at two WwTPs where sludge is treated by aerobic and anaerobic digestion, air drying (in drying pans or solar drying sheds) and stockpiling, to enumerate and, if present, monitor the decay of a range of enteric pathogens and parasites. The sludge treatment processes at both WwTPs achieved T1 grade biosolids with respect to prescribed pathogenic bacterial numbers (3 log 10 enteric virus reduction after a storage period of one year. No Ascaris eggs were detected in the influent to the WwTPs, confirming previous studies that the presence of helminth infections in Victoria is extremely low and that Ascaris is not applicable as a control criterion for the microbiological quality of biosolids in the region.

  3. Treatment of tannery wastewater for reuse by physico-chemical processes and a membrane bioreactor

    Directory of Open Access Journals (Sweden)

    J. Fettig

    2017-12-01

    Full Text Available Treatment of wastewater from a tannery in Greater Ho Chi Minh City (Vietnam was investigated on a pilot scale. After pre-treatment by the tannery that included batch-coagulation and sedimentation, the wastewater was treated by dissolved air flotation, a membrane bioreactor (MBR and granular activated carbon (GAC for polishing the MBR effluent. The average removal efficiency for organic substances in the MBR was 81% while total nitrogen could only be removed by 36%. The performance of the GAC column could be successfully predicted using adsorption parameters determined in laboratory experiments. A larger proportion of the organics in the MBR effluent was only weakly adsorbable, therefore the usable carbon capacity was limited as confirmed by the modelling approach. The results were used to outline the size of a technical plant with a volumetric loading rate of 3 kg COD/(m3*d for the MBR and a specific carbon demand of about 1.8 kg/m3.

  4. Polyhydroxyalkanoate (PHA) accumulation potential and PHA-accumulating microbial communities in various activated sludge processes of municipal wastewater treatment plants.

    Science.gov (United States)

    Sakai, K; Miyake, S; Iwama, K; Inoue, D; Soda, S; Ike, M

    2015-01-01

    To clarify the polyhydroxyalkanoate (PHA) accumulation potential and the PHA-accumulating microbial community structure in activated sludge in municipal wastewater treatment plants (WWTPs) and to identify their influential factors. Nine activated sludge samples were collected from municipal WWTPs employing various biological treatment processes. In acetate-fed 24-h batch experiments under aerobic and nitrogen- and phosphorus-limited conditions, polyhydroxybutyrate (PHB) content of activated sludge increased from 0-1·3 wt% to 7·9-24 wt%, with PHB yields of 0·22-0·50 C-mol 3-hydroxybutyrate (C-mol acetate)(-1). Microbial community analyses found that activated sludge samples that accumulated >20 wt% of PHB after 24-h PHA accumulation experiments had >5·0 × 10(8) copies g(-1)-mixed liquor-suspended solid of phaC genes. Results indicated that (i) activated sludge in municipal WWTPs can accumulate up to approx. 20 wt% of PHA without enrichment processes, (ii) PHA accumulation potential of activated sludge varied depending on the operational conditions (treatment processes) of WWTPs, and (iii) phaC gene number can provide a simple indication of PHA accumulation potential. This is the first study to compare the PHA accumulation potential and PHA-accumulating microbial communities in activated sludge of various treatment processes. Our findings may be useful for enhancing the resource recovery potential of wastewater treatment systems. © 2014 The Society for Applied Microbiology.

  5. Physico-chemical wastewater treatment

    NARCIS (Netherlands)

    Mels, A.R.; Teerikangas, E.

    2002-01-01

    Wastewater reclamation strategies aimed at closing industrial water cycles and recovery of valuable components will in most cases require a combination of wastewater treatment unit operations. Biological unit operations are commonly applied as the core treatment. In addition, physico-chemical unit

  6. Selection of the Best Wastewater Treatment Alternative for RIPI Based on Analytical Hierarchy Process (AHP and Expert Choice Software

    Directory of Open Access Journals (Sweden)

    faramarz Tarkian

    2014-05-01

    Full Text Available RIPI as one of the largest and most important research centers in Iran is located in zone 22 of Tehran municipality. According to the environmental priorities in the region taking all necessary measures to control pollution sources is necessary. In this paper, Analytical Hierarchy Process (AHP method is used for the selection of the best wastewater treatment method for RIPI. For this purpose four alternatives including SBR, Extended aeration activated sludge, Rotating MBR, Fix MBR were evaluated. These alternatives were weighted by four main criteria: Environment, Economic, Technical, Management and the defined sub-criteria ,then paired compared with respect to any form of wastewater treatment alternatives and ultimately the results was evaluated by Expert Choice software. The evaluation results indicate that Rotating MBR was the most suitable alternative of wastewater treatment method for RIPI. After the Rotating MBR, the Fix MBR, SBR and Extended activated sludge were considered suitable respectively. Degree of inconsistency is equal to 0.07, indicating that the number of paired comparisons is consistent.

  7. Treatment of complex heavy metal wastewater using a multi-staged ferrite process.

    Science.gov (United States)

    Tu, Yao-Jen; Chang, Chien-Kuei; You, Chen-Feng; Wang, Shan-Li

    2012-03-30

    Complete removal of heavy metal from complex heavy-metal wastewater (CHMW) requires advanced technology. This study investigated the feasibility of a multi-staged ferrite process (MSFP) for treating CHMW, containing Cd, Cu, Pb, Cr, Zn, Ag, Hg, Ni, Sn and Mn. Our experimental results showed that most of the supernatants after conventional single-step ferrite process could conform to the effluent standard of Environmental Protection Administration in Taiwan. However, the sludge could not satisfy the toxicity characteristic leaching procedure (TCLP) limits due to high Cd, Cu, and Pb concentrations. The performance of MSFP in removing heavy metals from wastewater was subsequently investigated and the parameters of three treating steps in MSFP were optimized under 70°C and 90°C at pH 9, and 80°C at pH 10. After the three-staged procedures, all heavy metals in supernatant and sludge could fulfill the contamination levels regulated by law. In addition, the sludge generated from the MSFP was examined by XRD and forms a stable spinel structure, which could be effectively separated by external magnetic field. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Fenton process combined with coagulation for the treatment of black liquor from bioethanol wastewater

    Science.gov (United States)

    Muryanto, Muryanto; Hanifah, Ummu; Amriani, Feni; Ibadurrahman, Ahmad Faiz; Sari, Ajeng Arum

    2017-11-01

    High amounts of black liquor are generated from bioethanol production by using oil palm empty fruit bunches. The black liquor is waste from alkaline pretreatment, it contains high amount of an alkaline solution (NaOH). The black liquor wastewater was highly contaminated with organic materials, and quite toxic for aquatic ecosystems if discharged directly into waters. This study aimed to determine ability of Fenton process combined with coagulation to treat black liquor. The addition 5% of polyaluminium chloride (PAC) could decolorized black liquor, degraded lignin, and produced sludge 70.64%, 68.28%, and 2.76 gram, respectively. Decolorization of black liquor was in line with degradation of black liquor because lignin is the main compound in black liquor. SEM images after addition of PAC of 5% indicated fragmentation of structure. Fenton reagent consist of 0.7 M FeSO4+ 3M H2O2 has able to decolorize black liquor, degrade lignin, and produce sludge 51.67% and 25.44%, and 0.44 gram, respectively. It was concluded that black liquor wastewater from bioethanol can be treated by using Fenton process combined with coagulation. However, these methods still need improvement to obtain the higher degradation rate, and coagulation sludge needs further consideration.

  9. Soft sensors with white- and black-box approaches for a wastewater treatment process

    Directory of Open Access Journals (Sweden)

    D. Zyngier

    2000-12-01

    Full Text Available The increasing degradation of water resources makes it necessary to monitor and control process variables that may disturb the environment, but which may be very difficult to measure directly, either because there are no physical sensors available, or because these are too expensive. In this work, two soft sensors are proposed for monitoring concentrations of nitrate (NO and ammonium (NH ions, and of carbonaceous matter (CM during nitrification of wastewater. One of them is based on reintegration of a process model to estimate NO and NH and on a feedforward neural network to estimate CM. The other estimator is based on Stacked Neural Networks (SNN, an approach that provides the predictor with robustness. After simulation, both soft sensors were implemented in an experimental unit using FIX MMI (Intellution, Inc automation software as an interface between the process and MATLAB 5.1 (The Mathworks Inc. software.

  10. Impacts of NF concentrate recirculation on membrane performance in an integrated MBR and NF membrane process for wastewater treatment

    NARCIS (Netherlands)

    Kappel, C.; Kemperman, A.J.B.; Temmink, B.G.; Zwijnenburg, A.; Rijnaarts, H.; Nijmeijer, K.

    2014-01-01

    As water shortages are increasing, the need for sustainable water treatment and the reuse of water is essential. Water reuse from wastewater can be accomplished in a membrane bioreactor (MBR) in the secondary activated sludge stage of a wastewater treatment plant. To remove viruses, dissolved

  11. An ecological vegetation-activated sludge process (V-ASP) for decentralized wastewater treatment: system development, treatment performance, and mathematical modeling.

    Science.gov (United States)

    Yuan, Jiajia; Dong, Wenyi; Sun, Feiyun; Li, Pu; Zhao, Ke

    2016-05-01

    An environment-friendly decentralized wastewater treatment process that is comprised of activated sludge process (ASP) and wetland vegetation, named as vegetation-activated sludge process (V-ASP), was developed for decentralized wastewater treatment. The long-term experimental results evidenced that the vegetation sequencing batch reactor (V-SBR) process had consistently stable higher removal efficiencies of organic substances and nutrients from domestic wastewater compared with traditional sequencing batch reactor (SBR). The vegetation allocated into V-SBR system could not only remove nutrients through its vegetation transpiration ratio but also provide great surface area for microorganism activity enhancement. This high vegetation transpiration ratio enhanced nutrients removal effectiveness from wastewater mainly by flux enhancement, oxygen and substrate transportation acceleration, and vegetation respiration stimulation. A mathematical model based on ASM2d was successfully established by involving the specific function of vegetation to simulate system performance. The simulation results on the influence of operational parameters on V-ASP treatment effectiveness demonstrated that V-SBR had a high resistance to seasonal temperature fluctuations and influent loading shocking.

  12. Energy and Environmental Efficiency for the N-Ammonia Removal Process in Wastewater Treatment Plants by Means of Reinforcement Learning

    Directory of Open Access Journals (Sweden)

    Félix Hernández-del-Olmo

    2016-09-01

    Full Text Available Currently, energy and environmental efficiency are critical aspects in wastewater treatment plants (WWTPs. In fact, WWTPs are significant energy consumers, especially in the active sludge process (ASP for the N-ammonia removal. In this paper, we face the challenge of simultaneously improving the economic and environmental performance by using a reinforcement learning approach. This approach improves the costs of the N-ammonia removal process in the extended WWTP Benchmark Simulation Model 1 (BSM1. It also performs better than a manual plant operator when disturbances affect the plant. Satisfactory experimental results show significant savings in a year of a working BSM1 plant.

  13. Deployable Wastewater Treatment Technology Evaluation

    National Research Council Canada - National Science Library

    Coppola, Edward

    2002-01-01

    .... The goal of AFRL/MLQD is for the deployable wastewater treatment system to be integrated into a waste treatment system that will treat both solid and aqueous waste. The US Army (TARDEC) and the Air Force (AAC/WMO...

  14. Nonlinear PI Control with Adaptive Interaction Algorithm for Multivariable Wastewater Treatment Process

    Directory of Open Access Journals (Sweden)

    S. I. Samsudin

    2014-01-01

    Full Text Available The wastewater treatment plant (WWTP is highly known with the nonlinearity of the control parameters, thus it is difficult to be controlled. In this paper, the enhancement of nonlinear PI controller (ENon-PI to compensate the nonlinearity of the activated sludge WWTP is proposed. The ENon-PI controller is designed by cascading a sector-bounded nonlinear gain to linear PI controller. The rate variation of the nonlinear gain kn is automatically updated based on adaptive interaction algorithm. Initiative to simplify the ENon-PI control structure by adapting kn has been proved by significant improvement under various dynamic influents. More than 30% of integral square error and 14% of integral absolute error are reduced compared to benchmark PI for DO control and nitrate in nitrogen removal control. Better average effluent qualities, less number of effluent violations, and lower aeration energy consumption resulted.

  15. Inhibition of the nitrification process in municipal wastewater treatment plants by industrial discharges

    DEFF Research Database (Denmark)

    Grüttner, Henrik; Winther-Nielsen, M.; Jorgensen, L.

    1994-01-01

    to nitrification was initiated. Since the number of substances potentially inhibitory to nitrification is very high, the investigations used direct testing of inhibitory effects on nitrification as a tool for the mapping operations. The overall purpose of the investigation was to determine the types of sources......More than three years of pilot-plant operation has documented that inhibition of nitrification was found to influence the dimensioning of the largest Danish wastewater treatment plant, which serves a major part of Copenhagen. Hence, a program for investigating the sources of substances inhibitory...... of inhibitory substances and to suggest a program for source control to be implemented by the individual municipalities in the catchment area. This paper describes the strategy for sampling and the results of the first two years of activity. Major conclusions have been that the most important sources...

  16. Using a life cycle assessment methodology for the analysis of two treatment systems of food-processing industry wastewaters

    DEFF Research Database (Denmark)

    Maya Altamira, Larisa; Schmidt, Jens Ejbye; Baun, Anders

    2007-01-01

    boundaries were limited from the influent entering the wastewater treatment plant until the disposal of the effluents generated, i.e. wastewater, sludge, and biogas (for Scenario 2). Main differences between Scenario 1 & Scenario 2 were: (i) Effluent quality was 65% better when pet food wastewater was fed......Feasibility evaluation of wastewater treatment plants’ designs & operation strategies is nowadays done in a plant-wide perspective. Environmental concerns regarding energy consumption and sludge disposal are the main drivers to consider pre/post-treatment units in these evaluations. Existing...... criteria involve sludge disposal strategies and electrical energy consumption. However, there is a need to develop a systematic methodology to quantify relevant environmental indicators; comprising information of the wastewater treatment system in a life cycle perspective. Also, to identify which...

  17. Integration of biofiltration and advanced oxidation processes for tertiary treatment of an oil refinery wastewater aiming at water reuse.

    Science.gov (United States)

    Nogueira, A A; Bassin, J P; Cerqueira, A C; Dezotti, M

    2016-05-01

    The combination of biological and chemical oxidation processes is an interesting approach to remove ready, poor, and non-biodegradable compounds from complex industrial wastewaters. In this study, biofiltration followed by H2O2/UV oxidation (or microfiltration) and final reverse osmosis (RO) step was employed for tertiary treatment of an oil refinery wastewater. Biofiltration alone allowed obtaining total organic carbon (TOC), chemical oxygen demand (COD), UV absorbance at 254 nm (UV254), ammonium, and turbidity removal of around 46, 46, 23, 50, and 61 %, respectively. After the combined biological-chemical oxidation treatment, TOC and UV254 removal amounted to 88 and 79 %, respectively. Whereas, the treatment performance achieved with different UV lamp powers (55 and 95 W) and therefore distinct irradiance levels (26.8 and 46.3 mW/cm(2), respectively) were very similar and TOC and UV254 removal rates were highly affected by the applied C/H2O2 ratio. Silt density index (SDI) was effectively reduced by H2O2/UV oxidation, favoring further RO application. C/H2O2 ratio of 1:4, 55 W UV lamp, and 20-min oxidation reaction corresponded to the experimental condition which provided the best cost/benefit ratio for TOC, UV254, and SDI reduction from the biofilter effluent. The array of treatment processes proposed in this study has shown to be adequate for tertiary treatment of the oil refinery wastewater, ensuring the mitigation of membrane fouling problems and producing a final effluent which is suitable for reuse applications.

  18. Treatment of Synthetic Textile Wastewater by Combination of Coagulation/Flocculation Process and Electron Beam Irradiation

    Directory of Open Access Journals (Sweden)

    Fateme Anvari

    2014-06-01

    Full Text Available Introduction: Textile wastewaters from dyeing and finishing processes are heavily polluted with dyes, textile auxiliaries and chemicals and have a broad range of pH, high COD concentration and suspended particles. In this study, the efficiency of color and turbidity removal from synthetic textile wastewater samples were investigated by combined process of coagulation/ flocculation and electron beam irradiation. Materials and Methods: The experiments have been done on model dye solution samples which prepared from ten dyes that are supplied from Yazd Baff textile factory. Aluminum sulphate was employed to determine the optimum conditions for removal of turbidity by jar-test experiments. Then samples were irradiated by 10 MeV electron beam of Rhodotron TT200 accelerator at different doses of 1, 3 and 6 kGy. Absorption spectra of the samples were measured using UV-Vis spectrophotometer (Perkin Elmer, Lambda 25. The pH and turbidity values of the solutions were measured by a Metrohm 827 model pH meter and 2100AN turbidimeter (Hach company. Results: According to results, the degree of decoloration and turbidity removal of synthetic dye solutions increased dramatically when the alum concentration increased and reached to 64% and 90% respectively at 112 ppm. After irradiation, it is observed that absorbance at 540 nm decreased rapidly by increasing of radiation dose, because of macromolecules degradation and then decreased slowly and degree of decoloration reached to 95%. The amount of pH was decreased by irradiation and then changed very slowly or remained constant with increasing irradiation dose. Conclusion: The above results indicate that combination of coagulation/ flocculation and irradiation of 10 MeV electron beam is so effective for turbidity removal and decoloration. Coagulation process eliminates suspended particles from disperse dyes effectively, while destruction of soluble dye molecules happen by irradiation that increase decoloration

  19. Advanced treatment of biologically pretreated coal gasification wastewater by a novel integration of heterogeneous catalytic ozonation and biological process.

    Science.gov (United States)

    Zhuang, Haifeng; Han, Hongjun; Jia, Shengyong; Hou, Baolin; Zhao, Qian

    2014-08-01

    Advanced treatment of biologically pretreated coal gasification wastewater (CGW) was investigated employing heterogeneous catalytic ozonation integrated with anoxic moving bed biofilm reactor (ANMBBR) and biological aerated filter (BAF) process. The results indicated that catalytic ozonation with the prepared catalyst (i.e. MnOx/SBAC, sewage sludge was converted into sludge based activated carbon (SBAC) which loaded manganese oxides) significantly enhanced performance of pollutants removal by generated hydroxyl radicals. The effluent of catalytic ozonation process was more biodegradable and less toxic than that in ozonation alone. Meanwhile, ANMBBR-BAF showed efficient capacity of pollutants removal in treatment of the effluent of catalytic ozonation at a shorter reaction time, allowing the discharge limits to be met. Therefore, the integrated process with efficient, economical and sustainable advantages was suitable for advanced treatment of real biologically pretreated CGW. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Wastewater Treatment I. Instructor's Manual.

    Science.gov (United States)

    California Water Pollution Control Association, Sacramento. Joint Education Committee.

    This instructor's manual provides an outline and guide for teaching Wastewater Treatment I. It consists of nine sections. An introductory note and a course outline comprise sections 1 and 2. Section 3 (the bulk of the guide) presents lesson outlines for teaching the ten chapters of the manual entitled "Operation of Wastewater Treatment…

  1. Pre-concentration of ammonium to enhance treatment of wastewater using the partial nitritation/anammox process.

    Science.gov (United States)

    Owusu-Agyeman, Isaac; Malovanyy, Andriy; Plaza, Elzbieta

    2015-01-01

    The anaerobic ammonium oxidation (anammox) process is one of the most cost-effective technologies for removing excessive nitrogen compounds from effluents of wastewater treatment plants. The study was conducted to assess the feasibility of using ion exchange (IE) and reverse osmosis (RO) methods to concentrate ammonium to support partial nitritation/anammox process, which so far has been used for treating only wastewater with high concentrations of ammonium. Upflow anaerobic sludge blanket (UASB) reactor effluents with 40.40, 37.90 and 21.80 mg NH4─N/L levels were concentrated with IE method to 367.20, 329.50 and 187.50 mg NH4─N/L, respectively, which were about nine times the initial concentrations. RO method was also used to concentrate 41.0 mg NH4─N/L of UASB effluent to 163 mg NH4─N/L at volume reduction factor 5. The rates of nitrogen removal from respective RO pretreated concentrates by partial nitritation/anammox technology were 0.60, 1.10 and 0.50 g N/m2 day. The rates were largely influenced by initial nitrogen concentration. However, rates of RO concentrates were 0.74, 0.92 and 0.81 g N/m2 day even at lower initial NH4─N concentration. It was found out from the study that higher salinity decreased the rate of nitrogen removal when using partial nitritation/anammox process. Dissolved oxygen concentration of ∼1 mg/L was optimal for the operation of the partial nitritation/anammox process when treating IE and RO concentrates. The result shows that IE and RO methods can precede a partial nitritation/anammox process to enhance the treatment of wastewater with low ammonium loads.

  2. Acid Fermentation Process Combined with Post Denitrification for the Treatment of Primary Sludge and Wastewater with High Strength Nitrate

    Directory of Open Access Journals (Sweden)

    Allen Kurniawan

    2016-03-01

    Full Text Available In this study, an anaerobic baffled reactor (ABR, combined with a post denitrification process, was applied to treat primary sludge from a municipal wastewater treatment plant and wastewater with a high concentration of nitrate. The production of volatile fatty acids (VFAs was maximized with a short hydraulic retention time in the acid fermentation of the ABR process, and then the produced VFAs were supplied as an external carbon source for the post denitrification process. The laboratory scale experiment was operated for 160 days to evaluate the VFAs’ production rate, sludge reduction in the ABR type-acid fermentation process, and the specific denitrification rate of the post denitrification process. As results, the overall removal rate of total chemical oxygen demand (TCOD, total suspended solids (TSS, and total nitrogen (TN were found to be 97%, 92%, 73%, respectively, when considering the influent into ABR type-acid fermentation and effluent from post denitrification. We observed the specific VFAs production rate of 0.074 gVFAs/gVSS/day for the ABR type-acid fermentation, and an average specific denitrification rate of 0.166 gNO3−-N/gVSS/day for the post denitrification. Consequently, we observed that a high production of VFAs from a primary sludge, using application of the ABR type acid fermentation process and the produced VFAs were then successfully utilized as an external carbon source for the post denitrification process, with a high removal rate of nitrogen.

  3. A novel anoxic-aerobic biofilter process using new composite packing material for the treatment of rural domestic wastewater.

    Science.gov (United States)

    Pan, L T; Han, Y

    2016-01-01

    A pilot scale experiment was conducted to evaluate the characteristics of contaminants removal in a continuously two-stage biological process composed of an anoxic biofilter (AF) and an biological aerated filter (BAF). This novel process was developed by introducing new composite packing material (MZF) into bioreactors to treat rural domestic wastewater. A comparative study conducted by the same process with ceramsite as packing material under the same conditions showed that a MZF system with a Fe proportion in the packing material performed better in chemical oxygen demand (COD) removal (average 91.5%), ammonia (NH4(+)-N) removal (average 98.3%), total nitrogen (TN) removal (average 64.8%) and total phosphorus (TP) removal (average 90%). After treatment of the MZF system, the concentrations of COD, NH4(+)-N, TN and TP in effluent were 20.3 mg/L, 0.5 mg/L, 11.5 mg/L and 0.3 mg/L, respectively. The simultaneously high efficiencies of nitrification, denitrification and phosphorus removal were achieved by the coupling effects of biological and chemical processes in the MZF system. The results of this study showed that the application of MZF might be a favorable choice as packing material in biofilters for treatment of rural domestic wastewater.

  4. Bio-electro-Fenton process driven by microbial fuel cell for wastewater treatment.

    Science.gov (United States)

    Feng, Chun-Hua; Li, Fang-Bai; Mai, Hong-Jian; Li, Xiang-Zhong

    2010-03-01

    In this study, we proposed a new concept of utilizing the biological electrons produced from a microbial fuel cell (MFC) to power an E-Fenton process to treat wastewater at neutral pH as a bioelectro-Fenton (Bio-E-Fenton) process. This process can be achieved in a dual-chamber MFC from which electrons were generated via the catalyzation of Shewanella decolorationis S12 in its anaerobic anode chamber and transferred to its aerated cathode chamber equipped with a carbon nanotube (CNT)/gamma-FeOOH composite cathode. In the cathode chamber, the Fenton's reagents including hydrogen peroxide (H(2)O(2)) and ferrous irons (Fe(2+)) were in situ generated. This Bio-E-Fenton process led to the complete decolorization and mineralization of Orange II at pH 7.0 with the apparent first-order rate constants, k(app) = 0.212 h(-1) and k(TOC) = 0.0827 h(-1), respectively, and simultaneously produced a maximum power output of 230 mW m(-2) (normalized to the cathode surface area). The apparent mineralization current efficiency was calculated to be as high as 89%. The cathode composition was an important factor in governing system performance. When the ratio of CNT to gamma-FeOOH in the composite cathode was 1:1, the system demonstrated the fastest rate of Orange II degradation, corresponding to the highest amount of H(2)O(2) formed.

  5. An integrated knowledge-based and optimization tool for the sustainable selection of wastewater treatment process concepts

    DEFF Research Database (Denmark)

    Castillo, A.; Cheali, Peam; Gómez, V.

    2016-01-01

    The increasing demand on wastewater treatment plants (WWTPs) has involved an interest in improving the alternative treatment selection process. In this study, an integrated framework including an intelligent knowledge-based system and superstructure-based optimization has been developed and applied...... to a real case study. Hence, a multi-criteria analysis together with mathematical models is applied to generate a ranked short-list of feasible treatments for three different scenarios. Finally, the uncertainty analysis performed allows for increasing the quality and robustness of the decisions considering...... variation in influent concentrations. For the case study application, the expert system identifies 5 potential process technologies and, using this input, the superstructure identifies membrane bioreactors as the optimal and robust solution under influent uncertainties and tighter effluent limits. A mutual...

  6. Treatment of food waste recycling wastewater using anaerobic ceramic membrane bioreactor for biogas production in mainstream treatment process of domestic wastewater.

    Science.gov (United States)

    Jeong, Yeongmi; Hermanowicz, Slawomir W; Park, Chanhyuk

    2017-10-15

    A bench-scale anaerobic membrane bioreactor (AnMBR) equipped with submerged flat-sheet ceramic membranes was operated at mesophilic conditions (30-35 °C) treating domestic wastewater (DWW) supplemented with food wasterecycling wastewater (FRW) to increase the organic loading rate (OLR) for better biogas production. Coupling ceramic membrane filtration with AnMBR treatment provides an alternative strategy for high organic wastewater treatment at short hydraulic retention times (HRTs) with the potential benefits of membrane fouling because they have a high hydrophilicity and more robust at extreme conditions. The anaerobic ceramic MBR (AnCMBR) treating mixture of actual FRW with DWW (with an influent chemical oxygen demand (COD) of 2,115 mg/L) was studied to evaluate the treatment performance in terms of organic matter removal and methane production. COD removal during actual FRW with DWW operation averaged 98.3 ± 1.0% corresponding to an average methane production of 0.21 ± 0.1 L CH 4 /g COD removed . Biogas sparging, relaxation and permeate back-flushing were concurrently employed to manage membrane fouling. A flux greater than 9.2 L m -2  h -1 (LMH) was maintained at 13 h HRT for approximately 200 days without chemical cleaning at an OLR of 2.95 kg COD m -3  d -1 . On day 100, polyvinyl alcohol (PVA)-gel beads were added into the AnCMBR to alleviate the membrane fouling, suggesting that their mechanical scouring effect contributed positively in reducing the fouling index (FI). Although these bio-carriers might accelerate the breaking up of bio-flocs, which released a higher amount of soluble microbial products (SMP), a 95.4% SMP rejection was achieved. Although the retention efficiency of dissolved organic carbons (DOC) was 91.4% across the ceramic membrane, a meaningful interpretation of organic carbon detection (OCD) fingerprints was conducted to better understand the ceramic membrane performance. Copyright © 2017 Elsevier Ltd. All rights

  7. Environmental sustainability of the solar photo-Fenton process for wastewater treatment and pharmaceuticals mineralization at semi-industrial scale.

    Science.gov (United States)

    Foteinis, Spyros; Monteagudo, Jose Maria; Durán, Antonio; Chatzisymeon, Efthalia

    2018-01-15

    The environmental sustainability of a semi-industrial solar photo-Fenton reactor, treating real effluents emanating from a pharmaceutical laboratory, is assessed herein. The life cycle assessment/analysis (LCA) methodology was employed and real life cycle inventory (LCI) data was collected from a ferrioxalate-assisted homogeneous solar photo-Fenton wastewater treatment plant (WWTP), at Ciudad Real, Spain. Electricity was provided by photovoltaic (PV) panels in tandem with a battery bank, making the plant autonomous from the local grid. The effective treatment of 1m 3 of secondary-treated pharmaceutical wastewater, containing antipyrine, was used as a functional unit. The main environmental hotspot was identified to be the chemical reagents used to enhance treatment efficiency, mainly hydrogen peroxide (H 2 O 2 ) and to a smaller degree oxalic acid. On the other hand, land use, PV panels, battery units, compound parabolic collectors (CPC), tanks, pipes and pumps, as materials, had a low contribution, ranging from as little as 0.06% up to about 2% on the total CO 2eq emissions. Overall, the solar photo-Fenton process was found to be a sustainable technology for treating wastewater containing micropollutants at semi-industrial level, since the total environmental footprint was found to be 2.71kgCO 2 m -3 or 272mPtm -3 , using IPCC 2013 and ReCiPe impact assessment methods, respectively. A sensitivity analysis revealed that if the excess of solar power is fed back into the grid then the total environmental footprint is reduced. Depending on the amount of solar power fed back into the grid the process could have a near zero total environmental footprint. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Industrial wastewater treatment with electron beam

    International Nuclear Information System (INIS)

    Han, Bumsoo; Ko, Jaein; Kim, Jinkyu; Kim, Yuri; Chung, Wooho

    2001-01-01

    Global withdrawals of water to satisfy human demands have grown dramatically in this century. Between 1900 and 1945, water consumption increased by over six times, more than double the rate of population growth. This rapid growth in water demand is due to the increasing reliance on irrigation to achieve food security, the growth of industrial uses, and the increasing use per capita for domestic purposes. Given the seriousness of the situation and future risk of crises, there is an urgent need to develop the water-efficient technologies including economical treatment methods of wastewater and polluted water. In the Central Research Institute of Samsung Heavy Industries (SHI), many industrial wastewater including leachate from landfill area, wastewater from papermill, dyeing complex, petrochemical processes, etc. are under investigation with electron beam irradiation. For the study of treating dyeing wastewater combined with conventional facilities, an electron beam pilot plant for treating 1,000m 3 /day of wastewater from 80,000m 3 /day of total dyeing wastewater has constructed and operated in Taegu Dyeing Industrial Complex. A commercial plant for re-circulation of wastewater from Papermill Company is also designed for S-paper Co. in Cheongwon City, and after the successful installation, up to 80% of wastewater could be re-used in paper producing process. (author)

  9. Low-temperature thermal pre-treatment of municipal wastewater sludge: Process optimization and effects on solubilization and anaerobic degradation.

    Science.gov (United States)

    Nazari, Laleh; Yuan, Zhongshun; Santoro, Domenico; Sarathy, Siva; Ho, Dang; Batstone, Damien; Xu, Chunbao Charles; Ray, Madhumita B

    2017-04-15

    The present study examines the relationship between the degree of solubilization and biodegradability of wastewater sludge in anaerobic digestion as a result of low-temperature thermal pre-treatment. The main effect of thermal pre-treatment is the disintegration of cell membranes and thus solubilization of organic compounds. There is an established correlation between chemical oxygen demand (COD) solubilization and temperature of thermal pre-treatment, but results of thermal pre-treatment in terms of biodegradability are not well understood. Aiming to determine the impact of low temperature treatments on biogas production, the thermal pre-treatment process was first optimized based on an experimental design study on waste activated sludge in batch mode. The optimum temperature, reaction time and pH of the process were determined to be 80 °C, 5 h and pH 10, respectively. All three factors had a strong individual effect (p effect for temp. pH 2 (p = 0.002). Thermal pre-treatments, carried out on seven different municipal wastewater sludges at the above optimum operating conditions, produced increased COD solubilization of 18.3 ± 7.5% and VSS reduction of 27.7 ± 12.3% compared to the untreated sludges. The solubilization of proteins was significantly higher than carbohydrates. Methane produced in biochemical methane potential (BMP) tests, indicated initial higher rates (p = 0.0013) for the thermally treated samples (k hyd up to 5 times higher), although the ultimate methane yields were not significantly affected by the treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Use of solar advanced oxidation processes for wastewater treatment: Follow-up on degradation products, acute toxicity, genotoxicity and estrogenicity.

    Science.gov (United States)

    Brienza, M; Mahdi Ahmed, M; Escande, A; Plantard, G; Scrano, L; Chiron, S; Bufo, S A; Goetz, V

    2016-04-01

    Wastewater tertiary treatment by advanced oxidation processes is thought to produce a treated effluent with lower toxicity than the initial influent. Here we performed tertiary treatment of a secondary effluent collected from a Waste Water Treatment Plant via homogeneous (solar/HSO5(-)/Fe(2+)) and heterogeneous (solar/TiO2) solar advanced oxidation aiming at the assessment of their effectiveness in terms of contaminants' and toxicity abatement in a plain solar reactor. A total of 53 organic contaminants were qualitatively identified by liquid chromatography coupled to high-resolution mass spectrometry after solid phase extraction. Solar advanced oxidation totally or partially removed the major part of contaminants detected within 4.5 h. Standard toxicity tests were performed using Vibrio fischeri, Daphnia magna, Pseudokirchneriella subcapitata and Brachionus calyciflorus organisms to evaluate acute and chronic toxicity in the secondary or tertiary effluents, and the EC50% was calculated. Estrogenic and genotoxic tests were carried out in an attempt to obtain an even sharper evaluation of potential hazardous effects due to micropollutants or their degradation by-products in wastewater. Genotoxic effects were not detected in effluent before or after treatment. However, we observed relevant estrogenic activity due to the high sensitivity of the HELN ERα cell line. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Marine carbohydrates of wastewater treatment.

    Science.gov (United States)

    Sudha, Prasad N; Gomathi, Thandapani; Vinodhini, P Angelin; Nasreen, K

    2014-01-01

    Our natural heritage (rivers, seas, and oceans) has been exploited, mistreated, and contaminated because of industrialization, globalization, population growth, urbanization with increased wealth, and more extravagant lifestyles. The scenario gets worse when the effluents or contaminants are discharged directly. So wastewater treatment is a very important and necessary in nowadays to purify wastewater before it enters a body of natural water, or it is applied to the land, or it is reused. Various methods are available for treating wastewater but with many disadvantages. Recently, numerous approaches have been studied for the development of cheaper and more effective technologies, both to decrease the amount of wastewater produced and to improve the quality of the treated effluent. Biosorption is an emerging technology, which uses natural materials as adsorbents for wastewater treatment. Low-cost adsorbents of polysaccharide-based materials obtained from marine, such as chitin, chitosan, alginate, agar, and carrageenan, are acting as rescue for wastewater treatment. This chapter reviews the treatment of wastewater up to the present time using marine polysaccharides and its derivatives. Special attention is paid to the advantages of the natural adsorbents, which are a wonderful gift for human survival. © 2014 Elsevier Inc. All rights reserved.

  12. Wastewater treatment with acoustic separator

    Science.gov (United States)

    Kambayashi, Takuya; Saeki, Tomonori; Buchanan, Ian

    2017-07-01

    Acoustic separation is a filter-free wastewater treatment method based on the forces generated in ultrasonic standing waves. In this report, a batch-system separator based on acoustic separation was demonstrated using a small-scale prototype acoustic separator to remove suspended solids from oil sand process-affected water (OSPW). By applying an acoustic separator to the batch use OSPW treatment, the required settling time, which was the time that the chemical oxygen demand (COD) decreased to the environmental criterion (<200 mg/L), could be shortened from 10 to 1 min. Moreover, for a 10 min settling time, the acoustic separator could reduce the FeCl3 dose as coagulant in OSPW treatment from 500 to 160 mg/L.

  13. Experimental analysis of a nitrogen removal process simulation of wastewater land treatment under three different wheat planting densities.

    Science.gov (United States)

    Wang, Hong-Qi; Chen, Jia-Jun; Tian, Kai-Ming; Lu, Yan

    2002-07-01

    Nitrogen contaminant transport, transformation and uptake simulation experiments were conducted in green house under three different planting density of winter wheat. They were Group A, planting density of 0.0208 plants/cm2, Group B, 0.1042 plants/cm2, and Group C, 0.1415 plants/cm2. The capacity and ratio of nitrogen removal were different on three kinds of conditions of wastewater land treatment. From analysis of wastewater treatment capacity, wastewater concentration and irrigation intensity for Group C were suitable and nitrogen quantity added was 2 times of that for Group B, 2.6 times for Group A while nitrogen residue was only 7.06%. Hence, wastewater irrigation and treatment design with purpose of waste water treatment should select the design with maximum capacity, optimal removal ratio and least residue in soil, which was closely related to crop planting density, crop growth status and also background nitrogen quantity in soil.

  14. Wet air oxidation of resorcinol as a model treatment for refractory organics in wastewaters from the wood processing industry.

    Science.gov (United States)

    Weber, Bernd; Chavez, Alma; Morales-Mejia, Julio; Eichenauer, Sabrina; Stadlbauer, Ernst A; Almanza, Rafael

    2015-09-15

    Wastewater treatment systems are important tools to enhance sustainability in terms of reducing environmental impact and complying with sanitary requirements. This work addresses the wet air oxidation (WAO) process for pre-treatment of phenolic wastewater effluents. The aim was to increase biodegradability prior to a subsequent anaerobic stage. In WAO laboratory experiments using a micro-autoclave, the model compound resorcinol was degraded under different oxygen availability regims within the temperature range 150 °C-270 °C. The activation energy was determined to be 51.5 kJ/mol. Analysis of the products revealed that after 3 h of reaction at 230 °C, 97.5% degradation of resorcinol was achieved. At 250 °C and the same reaction time complete removal of resorcinol was observed. In this case the total organic carbon content was reduced down to 29%, from 118.0 mg/L down to 34.4 mg/L. Under these process conditions, the pollutant was only partially mineralized and the ratio of the biological oxygen demand relative to the chemical oxygen demand, which is 0.07 for resorcinol, was increased to a value exceeding 0.5. The main by-product acetic acid, which is a preferred compound for methanogenic bacteria, was found to account for 33% of the total organic carbon. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Azo dyes wastewater treatment and simultaneous electricity generation in a novel process of electrolysis cell combined with microbial fuel cell.

    Science.gov (United States)

    Zou, Haiming; Wang, Yan

    2017-07-01

    A new process of electrolysis cell (EC) coupled with microbial fuel cell (MFC) was developed here and its feasibility in methyl red (MR) wastewater treatment and simultaneous electricity generation was assessed. Results indicate that an excellent MR removal and electricity production performance was achieved, where the decolorization and COD removal efficiencies were 100% and 89.3%, respectively and a 0.56V of cell voltage output was generated. Electrolysis voltage showed a positive influence on decolorization rate (DR) but also cause a rapid decrease in current efficiency (CE). Although a low COD removal rate of 38.5% was found in EC system, biodegradability of MR solution was significantly enhanced, where the averaged DR was 85.6%. Importantly, COD removal rate in EC-MFC integrated process had a 50.8% improvement compared with the single EC system. The results obtained here would be beneficial to provide a prospective alternative for azo dyes wastewater treatment and power production. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Removal of bacterial contaminants and antibiotic resistance genes by conventional wastewater treatment processes in Saudi Arabia: Is the treated wastewater safe to reuse for agricultural irrigation?

    KAUST Repository

    Aljassim, Nada I.

    2015-04-01

    This study aims to assess the removal efficiency of microbial contaminants in a local wastewater treatment plant over the duration of one year, and to assess the microbial risk associated with reusing treated wastewater in agricultural irrigation. The treatment process achieved 3.5 logs removal of heterotrophic bacteria and up to 3.5 logs removal of fecal coliforms. The final chlorinated effluent had 1.8×102 MPN/100mL of fecal coliforms and fulfils the required quality for restricted irrigation. 16S rRNA gene-based high-throughput sequencing showed that several genera associated with opportunistic pathogens (e.g. Acinetobacter, Aeromonas, Arcobacter, Legionella, Mycobacterium, Neisseria, Pseudomonas and Streptococcus) were detected at relative abundance ranging from 0.014 to 21 % of the total microbial community in the influent. Among them, Pseudomonas spp. had the highest approximated cell number in the influent but decreased to less than 30 cells/100mL in both types of effluent. A culture-based approach further revealed that Pseudomonas aeruginosa was mainly found in the influent and non-chlorinated effluent but was replaced by other Pseudomonas spp. in the chlorinated effluent. Aeromonas hydrophila could still be recovered in the chlorinated effluent. Quantitative microbial risk assessment (QMRA) determined that only chlorinated effluent should be permitted for use in agricultural irrigation as it achieved an acceptable annual microbial risk lower than 10-4 arising from both P. aeruginosa and A. hydrophila. However, the proportion of bacterial isolates resistant to 6 types of antibiotics increased from 3.8% in the influent to 6.9% in the chlorinated effluent. Examples of these antibiotic-resistant isolates in the chlorinated effluent include Enterococcus and Enterobacter spp. Besides the presence of antibiotic-resistant bacterial isolates, tetracycline resistance genes tetO, tetQ, tetW, tetH, tetZ were also present at an average 2.5×102, 1.6×102, 4.4×102, 1

  17. Sustainable agro-food industrial wastewater treatment using high rate anaerobic process

    OpenAIRE

    Rajagopal, Rajinikanth; Saady, Noori M. Cata; Torrijos, Michel; Thanikal, Joseph V.; Hung, Yung-Tse

    2013-01-01

    This review article compiles the various advances made since 2008 in sustainable high-rate anaerobic technologies with emphasis on their performance enhancement when treating agro-food industrial wastewater. The review explores the generation and characteristics of different agro-food industrial wastewaters; the need for and the performance of high rate anaerobic reactors, such as an upflow anaerobic fixed bed reactor, an upflow anaerobic sludge blanket (UASB) reactor, hybrid systems etc.; op...

  18. Recent Progress in TiO2-Mediated Solar Photocatalysis for Industrial Wastewater Treatment

    OpenAIRE

    Tong Zhang; Xiaoguang Wang; Xiwang Zhang

    2014-01-01

    The current paper reviews the application of TiO2-mediated solar photocatalysis for industrial wastewater treatment, starting with a brief introduction on the background of industrial wastewater and the development of wastewater treatment processes, especially advanced oxidation processes (AOPs). We, then, discuss the application of solar TiO2 photocatalysis in treating different kinds of industrial wastewater, such as paper mill wastewater, textile wastewater, and olive mill wastewater. In t...

  19. Analysis of Wastewater Treatment Efficiency in a Soft Drinks Industry

    Science.gov (United States)

    Boguniewicz-Zabłocka, Joanna; Capodaglio, Andrea G.; Vogel, Daniel

    2017-10-01

    During manufacturing processes, most industrial plants generate wastewater which could become harmful to the environment. Discharge of untreated or improperly treated industrial wastewaters into surface water could, in fact, lead to deterioration of the receiving water body's quality. This paper concerns wastewater treatment solutions used in the soft drink production industry: wastewater treatment plant effectiveness analysis was determined in terms of basic pollution indicators, such as BOD, COD, TSS and variable pH. Initially, the performance of mechanic-biological systems for the treatment of wastewater from a specific beverages production process was studied in different periods, due to wastewater flow fluctuation. The study then showed the positive effects on treatment of wastewater augmentation by methanol, nitrogen and phosphorus salts dosed into it during the treatment process. Results confirm that after implemented modification (methanol, nitrogen and phosphorus additions) pollution removal occurs mostly with higher efficiency.

  20. Analysis of Wastewater Treatment Efficiency in a Soft Drinks Industry

    Directory of Open Access Journals (Sweden)

    Boguniewicz-Zabłocka Joanna

    2017-01-01

    Full Text Available During manufacturing processes, most industrial plants generate wastewater which could become harmful to the environment. Discharge of untreated or improperly treated industrial wastewaters into surface water could, in fact, lead to deterioration of the receiving water body's quality. This paper concerns wastewater treatment solutions used in the soft drink production industry: wastewater treatment plant effectiveness analysis was determined in terms of basic pollution indicators, such as BOD, COD, TSS and variable pH. Initially, the performance of mechanic-biological systems for the treatment of wastewater from a specific beverages production process was studied in different periods, due to wastewater flow fluctuation. The study then showed the positive effects on treatment of wastewater augmentation by methanol, nitrogen and phosphorus salts dosed into it during the treatment process. Results confirm that after implemented modification (methanol, nitrogen and phosphorus additions pollution removal occurs mostly with higher efficiency.

  1. Treatment of coke-oven wastewater with the powdered activated carbon-contact stabilization activated sludge process. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Suidan, M.T.; Deady, M.A.; Gee, C.S.

    1983-11-01

    The objective of the study was to determine optimum parameters for the operation of an innovative process train used in the treatment of coke-over wastewater. The treatment process train consisted of a contact-stabilization activated sludge system with powdered activated carbon (PAC) addition, followed by activated sludge nitrification, followed by denitrification in an anoxic filter. The control and operating parameters evaluated during the study were: (a) the average mixed-liquor PAC concentration maintained in the contact-stabilization system, (b) the solids retention time practiced in the contact-stabilization system, and (c) the hydraulic detention time maintained in the contact aeration tank. Three identical treatement process trains were constructed and employed in this study. The coke-oven wastewater used for this investigation was fed to the treatment units at 30% strength. The first part of the study was devoted to determining the interactions between the mixed liquor PAC concentration and the solids retention time in the contact-stabilization tanks. Results showed that optimum overall system performance is attainable when the highest sludge age (30 day) and highest mixed liquor PAC concentration were practiced. During the second phase of the study, all three systems were operated at a 30 day solids retention time while different detention times of 1, 2/3 and 1/3 day were evaluated in the contact tank. PAC addition rates were maintained at the former levels and, consequently, reduced contact times entailed higher mixed liquor carbon concentrations. Once again, the system receiving the highest PAC addition rate of PAC exhibited the best overall performance. This system exhibited no deterioration in process performance as a result of decreased contact detention time. 72 references, 41 figures, 24 tables.

  2. Solutions to microplastic pollution - removal of microplastics from wastewater effluent with advanced wastewater treatment technologies

    OpenAIRE

    Talvitie Julia; Mikola Anna; Koistinen Arto; Setälä Outi

    2017-01-01

    Conventional wastewater treatment with primary and secondary treatment processes efficiently remove microplastics (MPs) from the wastewater. Despite the efficient removal, final effluents can act as entrance route of MPs, given the large volumes constantly discharged into the aquatic environments. This study investigated the removal of MPs from effluent in four different municipal wastewater treatment plants utilizing different advanced final-stage treatment technologies. The study included m...

  3. Pre-Treatment of Antibiotic Formulation Wastewater by O3, O3/H2O2, and O3/UV Processes

    OpenAIRE

    O, Pre-Treatment of Antibiotic Formulation

    2004-01-01

    The treatment of synthetically prepared antibiotic formulation wastewater with O3, O3/H2O2, and O3/UV processes was examined. The efficiencies of the treatment processes were compared by means of COD, absorbance removals, and biodegradability enhancement. The efficiencies of O3/pH = 7, O3/ pH = 12, and O3/H2O2 (50 mM) processes were almost identical in terms of COD and UV254 removals. The BOD5/COD ratio of formulation wastewater increased from 0.02 to 0.38 and 0.5 at the end of 1 hr...

  4. Depth treatment of coal-chemical engineering wastewater by a cost-effective sequential heterogeneous Fenton and biodegradation process.

    Science.gov (United States)

    Fang, Yili; Yin, Weizhao; Jiang, Yanbin; Ge, Hengjun; Li, Ping; Wu, Jinhua

    2018-02-27

    In this study, a sequential Fe 0 /H 2 O 2 reaction and biological process was employed as a low-cost depth treatment method to remove recalcitrant compounds from coal-chemical engineering wastewater after regular biological treatment. First of all, a chemical oxygen demand (COD) and color removal efficiency of 66 and 63% was achieved at initial pH of 6.8, 25 mmol L -1 of H 2 O 2 , and 2 g L -1 of Fe 0 in the Fe 0 /H 2 O 2 reaction. According to the gas chromatography-mass spectrometer (GC-MS) and gas chromatography-flame ionization detector (GC-FID) analysis, the recalcitrant compounds were effectively decomposed into short-chain organic acids such as acetic, propionic, and butyric acids. Although these acids were resistant to the Fe 0 /H 2 O 2 reaction, they were effectively eliminated in the sequential air lift reactor (ALR) at a hydraulic retention time (HRT) of 2 h, resulting in a further decrease of COD and color from 120 to 51 mg L -1 and from 70 to 38 times, respectively. A low operational cost of 0.35 $ m -3 was achieved because pH adjustment and iron-containing sludge disposal could be avoided since a total COD and color removal efficiency of 85 and 79% could be achieved at an original pH of 6.8 by the above sequential process with a ferric ion concentration below 0.8 mg L -1 after the Fe 0 /H 2 O 2 reaction. It indicated that the above sequential process is a promising and cost-effective method for the depth treatment of coal-chemical engineering wastewaters to satisfy discharge requirements.

  5. Sustainable Agro-Food Industrial Wastewater Treatment Using High Rate Anaerobic Process

    Directory of Open Access Journals (Sweden)

    Yung-Tse Hung

    2013-03-01

    Full Text Available This review article compiles the various advances made since 2008 in sustainable high-rate anaerobic technologies with emphasis on their performance enhancement when treating agro-food industrial wastewater. The review explores the generation and characteristics of different agro-food industrial wastewaters; the need for and the performance of high rate anaerobic reactors, such as an upflow anaerobic fixed bed reactor, an upflow anaerobic sludge blanket (UASB reactor, hybrid systems etc.; operational challenges, mass transfer considerations, energy production estimation, toxicity, modeling, technology assessment and recommendations for successful operation

  6. Modeling Jambo wastewater treatment system to predict water re ...

    African Journals Online (AJOL)

    In this study, Jambo tannery which is located in Busia District, (Uganda) with a daily processing capacity of 6.6 tonnes of hides and skin utilises 20 m3 of water to produce 17 m3 of wastewater/day. The generated wastewater is treated on site in the wastewater treatment plant whose performance was assessed. The main ...

  7. Centrifugation as a pre-treatment in olive mill wastewater processing (abstract)

    Science.gov (United States)

    Olive mill wastewater (OMWW), generated during production of olive oil, is an untapped source of nutritious compounds. Thus, processors want to separate OMWW into a high-value, concentrated product stream and near-pure water. However, the amount and characteristics of the produced OMWW depend on t...

  8. Wastewater treatment of pulp and paper industry: a review.

    Science.gov (United States)

    Kansal, Ankur; Siddiqui, Nihalanwar; Gautam, Ashutosh

    2011-04-01

    Pulp and paper industries generate varieties of complex organic and inorganic pollutants depending upon the type of the pulping process. A state-of-art of treatment processes and efficiencies of various wastewater treatment is presented and critically reviewed in this paper. Process description, source of wastewater and their treatment is discussed in detail. Main emphasis is given to aerobic and anaerobic wastewater treatment. In pulp and paper mill wastewater treatment aerobic treatment includes activated sludge process, aerated lagoons and aerobic biological reactors. UASB, fluidized bed, anaerobic lagoon and anaerobic contact reactors are the main technologies for anaerobic wastewater treatment. It is found that the combination of anaerobic and aerobic treatment processes is much efficient in the removal of soluble biodegradable organic pollutants. Color can be removed effectively by fungal treatment, coagulation, chemical oxidation, and ozonation. Chlorinated phenolic compounds and adsorable organic halides (AOX) can be efficiently reduced by adsorption, ozonation and membrane filtration techniques.

  9. An innovative process for treatment of municipal wastewater with superior charcteristics compared to traditional techologies

    DEFF Research Database (Denmark)

    Schmidt, Jens Ejbye; Fitsios, E.; Angelidaki, Irini

    2002-01-01

    An innovative treatment process for municipal sewage, which results in low sludge production, low energy consumption, high COD removal and high energy and nutrients recovery, is described. The organic matter will primarly be removed through anaerobic degradation using high-flow reactors. For nitr...

  10. Optimization of paper mill industry wastewater treatment by electrocoagulation and electro-Fenton processes using response surface methodology.

    Science.gov (United States)

    Guvenc, Senem Yazici; Erkan, Hanife Sari; Varank, Gamze; Bilgili, Mehmet Sinan; Engin, Guleda Onkal

    2017-10-01

    This study deals with chemical oxygen demand (COD), phenol and Ca +2 removal from paper mill industry wastewater by electrocoagulation (EC) and electro-Fenton (EF) processes. A response surface methodology (RSM) approach was employed to evaluate the effects and interactions of the process variables and to optimize the performance of both processes. Significant quadratic polynomial models were obtained (R 2 = 0.959, R 2 = 0.993 and R 2 = 0.969 for COD, phenol and Ca +2 removal, respectively, for EC and R 2 = 0.936, R 2 = 0.934 and R 2 = 0.890 for COD, phenol and Ca +2 removal, respectively). Numerical optimization based on desirability function was employed; in a 27.55 min trial, 34.7% of COD removal was achieved at pH 9 and current density 96 mA/cm 2 for EC, whereas in a 30 min trial, 74.31% of COD removal was achieved at pH 2 and current density 96 mA/cm 2 and H 2 O 2 /COD molar ratio 2.0 for EF. The operating costs were calculated to be 6.44 €/m 3 for EC and 7.02 €/m 3 for EF depending on energy and electrode consumption at optimum conditions. The results indicate that the RSM is suitable for the design and optimization of both of the processes. However, EF process was a more effective technology for paper mill industry wastewater treatment as compared with EC.

  11. WASTEWATER

    African Journals Online (AJOL)

    ABSTRACT. The chemical degradation oflignin-rich kraft pulp wastewater was carried out by ozonation process followed by biological treatment using activated sludge. The effects of pH on the degradation of lignin and the production of organic acids were examined experimentally in the ozonolysis of wastewater.

  12. Treatment of coffee wastewater by gamma radiation

    International Nuclear Information System (INIS)

    Aguilera, Y.; Consuegra, R.; Rapado, M.

    1998-01-01

    Radiation energy can be an important resource in the treatment of wastewaters from different industries both directly and in combination with other processes to improve economics. The aim of this study was to evaluate the effect of an ionizing radiation on coffee wastewater in order to decompose chemical organic refractory substances which cannot be degradated by biological treatment. One of the approaches employed in the survey was the chemical treatment followed by the irradiation of the samples since no nuclear changes of the coagulant solution or wastewater samples were expected. Irradiation is a high cost treatment although it has increased its applications nowadays. The method is safe, fast and effective and it does not generate any pollution

  13. Evaluation of removal efficiency for acute toxicity and genotoxicity on zebrafish in anoxic-oxic process from selected municipal wastewater treatment plants.

    Science.gov (United States)

    Zhang, Jing; Zhang, Yaobin; Liu, Wei; Quan, Xie; Chen, Shuo; Zhao, Huimin; Jin, Yihe; Zhang, Wenjuan

    2013-03-01

    The anoxic-oxic (A/O) process has been extensively applied for simultaneous removal of organic contaminants and nitrogen in wastewater treatment. However, very little is known about its ability to remove toxic materials. Municipal wastewater contains various kinds of pollutants, some of which have recalcitrant genotoxicity and may cause potential threat to environment, and even can lead to extinction of many species. In this study, we have selected three municipal wastewater treatment plants (WWTPs) employing anoxic-oxic (A/O) process to evaluate their ability to remove acute toxicity and genotoxicity of wastewater. Mortality rate of zebrafish (Danio rerio) was used to evaluate acute toxicity, while micronucleus (MN) and comet assays were used to detect genotoxicity. Results showed that in this process the acute toxicity was completely removed as the treatment proceeded along with decrease in chemical oxygen demand (COD) (wastewater is required after the A/O process to remove the genotoxicity and minimize the ecotoxicological risk. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Application of Emergy Analysis to the Sustainability Evaluation of Municipal Wastewater Treatment Plants

    OpenAIRE

    Shuai Shao; Hailin Mu; Fenglin Yang; Yun Zhang; Jinhua Li

    2016-01-01

    Municipal wastewater treatment plants consume much energy and manpower, are expensive to run, and generate sludge and treated wastewater whilst removing pollutants through specific treatment regimes. The sustainable development of the wastewater treatment industry is therefore challenging, and a comprehensive evaluation method is needed for assessing the sustainability of different wastewater treatment processes, for identifying the improvement potential of treatment plants, and for directing...

  15. Evaluation of process conditions triggering emissions of green-house gases from a biological wastewater treatment system

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez-Caballero, A.; Aymerich, I. [Catalan Institute for Water Research (ICRA), Emili Grahit Street, 101, H_2O Building, Scientific and Technological Park of the University of Girona, 17003 Girona (Spain); Poch, M. [Laboratory of Chemical and Environmental Engineering (LEQUIA-UdG), Institute of the Environment, University of Girona, Campus Montilivi s/n, E-17071 Girona (Spain); Pijuan, M., E-mail: mpijuan@icra.cat [Catalan Institute for Water Research (ICRA), Emili Grahit Street, 101, H_2O Building, Scientific and Technological Park of the University of Girona, 17003 Girona (Spain)

    2014-09-15

    In this study, methane (CH{sub 4}) and nitrous oxide (N{sub 2}O) emission dynamics of a plug–flow bioreactor located in a municipal full-scale wastewater treatment plant were monitored during a period of 10 weeks. In general, CH{sub 4} and N{sub 2}O gas emissions from the bioreactor accounted for 0.016% of the influent chemical oxygen demand (COD) and 0.116% of the influent total Kjeldahl nitrogen (TKN) respectively. In order to identify the emission patterns in the different zones, the bioreactor was divided in six different sampling sites and the gas collection hood was placed for a period of 2–3 days in each of these sites. This sampling strategy also allowed the identification of different process perturbations leading to CH{sub 4} or N{sub 2}O peak emissions. CH{sub 4} emissions mainly occurred in the first aerated site, and were mostly related with the influent and reject wastewater flows entering the bioreactor. On the other hand, N{sub 2}O emissions were given along all the aerated parts of the bioreactor and were strongly dependant on the occurrence of process disturbances such as periods of no aeration or nitrification instability. Dissolved CH{sub 4} and N{sub 2}O concentrations were monitored in the bioreactor and in other parts of the plant, as a contribution for the better understanding of the transport of these greenhouse gases across the different stages of the treatment system. - Highlights: • Monitoring of CH{sub 4} and N{sub 2}O emissions from a full-scale activated sludge bioreactor • Process perturbations leading to CH{sub 4} and N{sub 2}O peak emissions were identified. • Peak emissions increased severely the overall emission account of the bioreactor. • CH{sub 4} emissions were related with the inflow of influent and reject wastewater. • N{sub 2}O was generated as consequence of nitrification imbalances.

  16. Advanced treatment of effluents from an industrial park wastewater treatment plant by ferrous ion activated persulfate oxidation process.

    Science.gov (United States)

    Zhu, Songmei; Zhou, Zhen; Jiang, Haitao; Ye, Jianfeng; Ren, Jiamin; Gu, Lingyun; Wang, Luochun

    The advanced oxidation technology, ferrous ion (Fe(II)) activated persulfate (PS) producing sulfate radicals, was used for the advanced treatment of effluent from an integrated wastewater treatment plant in a papermaking industrial park. Separate and interactive effects of PS dosage, Fe(II)/PS ratio and initial pH on chemical oxygen demand (COD) removal were analyzed by the response surface methodology (RSM). The results showed that Fe(II)-PS system was effective in COD removal from the secondary effluent. PS dosage was the most dominant factor with positive influence on COD removal, followed by initial pH value. The optimum conditions with COD removal of 54.4% were obtained at PS/COD of 2.2, initial pH of 6.47 and Fe(II)/PS of 1.89. UV-visible spectrum analysis showed that after RSM optimization, Fe(II)-PS system effectively degraded large organic molecules into small ones, and decreased humification degree of the effluent. Three-dimensional fluorescence analysis demonstrated that aromatic protein and fulvic substances were fully decomposed by the Fe(II)-PS treatment.

  17. Process Design and Application of Aerobic Hybrid Bioreactor in the Treatment of Municipal Wastewater

    OpenAIRE

    Sushovan Sarkar; Debabrata Mazumder

    2015-01-01

    Hybrid bioreactor having both suspended-growth and attached-growth bacteria is found a novel and excellent bioreactor system for treating the municipal wastewater containing inhibitory substrates too. In this reactor a fraction of substrate is used by suspended biomass and the remaining by attached biomass resulting in the competition between the two growths for the substrate. The combination of suspended and attached growth provides the system with enhanced biomass conce...

  18. Investigation on thiosulfate-involved organics and nitrogen removal by a sulfur cycle-based biological wastewater treatment process.

    Science.gov (United States)

    Qian, Jin; Lu, Hui; Cui, Yanxiang; Wei, Li; Liu, Rulong; Chen, Guang-Hao

    2015-02-01

    Thiosulfate, as an intermediate of biological sulfate/sulfite reduction, can significantly improve nitrogen removal potential in a biological sulfur cycle-based process, namely the Sulfate reduction-Autotrophic denitrification-Nitrification Integrated (SANI(®)) process. However, the related thiosulfate bio-activities coupled with organics and nitrogen removal in wastewater treatment lacked detailed examinations and reports. In this study, S2O3(2-) transformation during biological SO4(2-)/SO3(2-) co-reduction coupled with organics removal as well as S2O3(2-) oxidation coupled with chemolithotrophic denitrification were extensively evaluated under different experimental conditions. Thiosulfate is produced from the co-reduction of sulfate and sulfite through biological pathway at an optimum pH of 7.5 for organics removal. And the produced S2O3(2-) may disproportionate to sulfide and sulfate during both biological S2O3(2-) reduction and oxidation most possibly carried out by Desulfovibrio-like species. Dosing the same amount of nitrate, pH was found to be the more direct factor influencing the denitritation activity than free nitrous acid (FNA) and the optimal pH for denitratation (7.0) and denitritation (8.0) activities were different. Spiking organics significantly improved both denitratation and denitritation activities while minimizing sulfide inhibition of NO3(-) reduction during thiosulfate-based denitrification. These findings in this study can improve the understanding of mechanisms of thiosulfate on organics and nitrogen removal in biological sulfur cycle-based wastewater treatment. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Coal conversion wastewater treatment technology

    Energy Technology Data Exchange (ETDEWEB)

    Kindzierski, W.B.; Hrudey, S.E.; Fedorak, P.M. (University of Alberta, Edmonton, AB (Canada))

    1988-12-01

    Phenolic compounds are one of the major components of coal conversion wastewaters, and their deleterious impact on the environment, particularly in natural water systems, is well documented. Phenols, at higher concentrations, have been shown to inhibit the activity of anaerobic bacteria used to degrade organic compounds. This study examines combined treatment requirements for an authentic, high strength phenolic coal conversion wastewater using both batch and semi- continuous anaerobic methanogenic bioassays. Solvent extraction pretreatment and in situ addition of activated carbon during anaerobic treatment were also examined, and proved effective in removing phenol. 61 refs., 34 tabs., 30 figs., 7 append.

  20. Characterization of refractory matters in dyeing wastewater during a full-scale Fenton process following pure-oxygen activated sludge treatment.

    Science.gov (United States)

    Bae, Wookeun; Won, Hosik; Hwang, Byungho; de Toledo, Renata Alves; Chung, Jinwook; Kwon, Kiwook; Shim, Hojae

    2015-04-28

    Refractory pollutants in raw and treated dyeing wastewaters were characterized using fractional molecular weight cut-off, Ultraviolet-vis spectrophotometry, and high-performance liquid chromatography-electrospray ionization-mass spectrometry (HPLC-ESI/MS). Significant organics and color compounds remained after biological (pure-oxygen activated sludge) and chemical (Fenton) treatments at a dyeing wastewater treatment plant (flow rate ∼100,000m(3)/d). HPLC-ESI/MS analysis revealed that some organic compounds disappeared after the biological treatment but reappeared after the chemical oxidation process, and some of that were originally absent in the raw dyeing wastewater was formed after the biological or chemical treatment. It appeared that the Fenton process merely impaired the color-imparting bonds in the dye materials instead of completely degrading them. Nevertheless, this process did significantly reduce the soluble chemical oxygen demand (SCOD, 66%) and color (73%) remaining after initial biological treatment which reduced SCOD by 53% and color by 13% in raw wastewater. Biological treatment decreased the degradable compounds substantially, in such a way that the following Fenton process could effectively remove recalcitrant compounds, making the overall hybrid system more economical. In addition, ferric ion inherent to the Fenton reaction effectively coagulated particulate matters not removed via biological and chemical oxidation. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Winery wastewater treatment by heterogeneous Photo-Fenton process and activated sludges; Depuracion de efluentes vinicolas ediante tratamientos Foto-Fenton en fase heterogenea y lodos activos

    Energy Technology Data Exchange (ETDEWEB)

    Mosteo, R.; Lalinde, N.; Ormad, Maria O. M.; Ovelleiro, J. L.

    2007-07-01

    The system composed by heterogeneous Photon-Fenton assisted by solar light and biological treatment based on activated sludge process treats adequately real winery wastewaters. the previous stage based on heterogeneous Photo-Fenton process produces a partial degradation of winery wastewaters and achieves a yield of degradation of organic matter (measured as TOC) close to 50%. The activated sludge process in simple stage doesn't present any operation problems (bulking phenomenon) and achieves a yield of degradation of organic matter of 90%. (Author) 16 refs.

  2. An efficient process for wastewater treatment to mitigate free nitrous acid generation and its inhibition on biological phosphorus removal

    Science.gov (United States)

    Zhao, Jianwei; Wang, Dongbo; Li, Xiaoming; Yang, Qi; Chen, Hongbo; Zhong, Yu; An, Hongxue; Zeng, Guangming

    2015-02-01

    Free nitrous acid (FNA), which is the protonated form of nitrite and inevitably produced during biological nitrogen removal, has been demonstrated to strongly inhibit the activity of polyphosphate accumulating organisms (PAOs). Herein we reported an efficient process for wastewater treatment, i.e., the oxic/anoxic/oxic/extended-idle process to mitigate the generation of FNA and its inhibition on PAOs. The results showed that this new process enriched more PAOs which thereby achieved higher phosphorus removal efficiency than the conventional four-step (i.e., anaerobic/oxic/anoxic/oxic) biological nutrient removal process (41 +/- 7% versus 30 +/- 5% in abundance of PAOs and 97 +/- 0.73% versus 82 +/- 1.2% in efficiency of phosphorus removal). It was found that this new process increased pH value but decreased nitrite accumulation, resulting in the decreased FNA generation. Further experiments showed that the new process could alleviate the inhibition of FNA on the metabolisms of PAOs even under the same FNA concentration.

  3. Wastewater Treatment: The Natural Way

    Science.gov (United States)

    1988-01-01

    Wolverton Environmental Services, Inc. is widely acclaimed for innovative work in natural water purification which involves use of aquatic plants to remove pollutants from wastewater at a relatively low-cost. Haughton, Louisiana, visited Wolverton's artificial marsh test site and decided to use this method of wastewater treatment. They built an 11 acre sewage lagoon with a 70 by 900 foot artificial marsh called a vascular aquatic plant microbial filter cell. In the cell, microorganisms and rooted aquatic plants combine to absorb and digest wastewater pollutants, thereby converting sewage to relatively clean water. Raw waste water, after a period in the sewage lagoon, flows over a rock bed populated by microbes that digest nutrients and minerals from the sewage thus partially cleaning it. Additional treatment is provided by the aquatic plants growing in the rock bed, which absorb more of the pollutants and help deodorize the sewage.

  4. ENERGY SLUDGE PROCESSING IN A SEPARATE WASTEWATER TREATMENT PLANT DIGESTER POMORZANY IN SZCZECIN

    Directory of Open Access Journals (Sweden)

    Anna Iżewska

    2016-06-01

    Full Text Available Pomorzany Sewage Treatment Plant in Szczecin ensures the required parameters of treated sewage. However, due to higher efficiency of sewage treatment, more sludge is produced after the treatment process. In the examined sludge treatment plant, primary sludge is gravitationally thickened to the content of about 5% of dry matter, and the excessive is thickened in mechanical compactors up to 6% of dry matter. Settlements preliminary and excessive after compaction is discharged to the sludge tank where a pump is forced into two closed digesters. Each digester has the capacity of 5069 m3. At a temperature of about 37 °C a mesophilic digestion is performed. Biogas, that is produced in the chamber, is stored in two-coat tanks with the capacity of 1500 m3 each and after desulphurization with the biosulfex method (which results with obtaining elemental sulphur it is used as fuel in cogeneration units. The aim of this study was to determine amount of energy given by sewage sludge in the form of heat during the process of methane digestion (primary and excessive. These amounts were determined on the basis of chemical energy balance of sewage carried into and out of Separate Sludge Digesters and produced biogas within 24h. The study determined that the percentage value of average chemical energy amount turned into heat and discharged with produced methane in relation to chemical energy of sewage carried into the first digester in Pomorzany Treatment Plant in Szczecin was in the range of 47.86 ± 9.73% for a confidence level of 0.95. On average 80.86 ± 33.65% was emitted with methane and 19.14 ± 33.65% of energy was changed into heat.

  5. Frontiers International Conference on Wastewater Treatment

    CERN Document Server

    2017-01-01

    This book describes the latest research advances, innovations, and applications in the field of water management and environmental engineering as presented by leading researchers, engineers, life scientists and practitioners from around the world at the Frontiers International Conference on Wastewater Treatment (FICWTM), held in Palermo, Italy in May 2017. The topics covered are highly diverse and include the physical processes of mixing and dispersion, biological developments and mathematical modeling, such as computational fluid dynamics in wastewater, MBBR and hybrid systems, membrane bioreactors, anaerobic digestion, reduction of greenhouse gases from wastewater treatment plants, and energy optimization. The contributions amply demonstrate that the application of cost-effective technologies for waste treatment and control is urgently needed so as to implement appropriate regulatory measures that ensure pollution prevention and remediation, safeguard public health, and preserve the environment. The contrib...

  6. Characterization of livestock wastewater at various stages of wastewater treatment plant

    International Nuclear Information System (INIS)

    Ting Teo Ming; Kim, Tak Hyun; Lee, Myun Joo

    2007-01-01

    A characterization study has been conducted at Gongju Livestock Wastewater Treatment Plant, Gongju, South Korea. It is owned and operated by the government with treatment capacity of 250 tons per day. Livestock wastewater was collected from individual farmer and treated at the treatment plant. The centralized livestock wastewater treatment plant has various treatment processes namely pre-treatment, anaerobic digestion, nitrification, de-nitrification , chemical treatment, sand filtration and ozonization. The livestock wastewater was characterized by high COD, SS, T-N and T-P with concentration of 20600 mg/l, 6933 mg/l, 2820 mg/l and 700 mg/ l, respectively. After the wastewater has undergone various treatment processes it was discharged to waterways with concentration of COD, SS, T-N and T-P at 105 mg/l, 73 mg/l, 2.1 mg/l and 9 mg/l, respectively. This is part of the study to investigate the potential of irradiation to be applied at the centralized livestock wastewater treatment plant. Although livestock wastewater can be potentially applied to crop as source of nutrients it also affect the water quality due to runoff and leaching. When the wastewater applied at the rates in excess of crop uptake rates, the excess wastewater could potentially enter surface and groundwater and polluted them. (author)

  7. Antibiotics with anaerobic ammonium oxidation in urban wastewater treatment

    Science.gov (United States)

    Zhou, Ruipeng; Yang, Yuanming

    2017-05-01

    Biofilter process is based on biological oxidation process on the introduction of fast water filter design ideas generated by an integrated filtration, adsorption and biological role of aerobic wastewater treatment process various purification processes. By engineering example, we show that the process is an ideal sewage and industrial wastewater treatment process of low concentration. Anaerobic ammonia oxidation process because of its advantage of the high efficiency and low consumption, wastewater biological denitrification field has broad application prospects. The process in practical wastewater treatment at home and abroad has become a hot spot. In this paper, anammox bacteria habitats and species diversity, and anaerobic ammonium oxidation process in the form of diversity, and one and split the process operating conditions are compared, focusing on a review of the anammox process technology various types of wastewater laboratory research and engineering applications, including general water quality and pressure filtrate sludge digestion, landfill leachate, aquaculture wastewater, monosodium glutamate wastewater, wastewater, sewage, fecal sewage, waste water salinity wastewater characteristics, research progress and application of the obstacles. Finally, we summarize the anaerobic ammonium oxidation process potential problems during the processing of the actual waste water, and proposed future research focus on in-depth study of water quality anammox obstacle factor and its regulatory policy, and vigorously develop on this basis, and combined process optimization.

  8. Membrane Processes Based on Complexation Reactions of Pollutants as Sustainable Wastewater Treatments

    Directory of Open Access Journals (Sweden)

    Teresa Poerio

    2009-11-01

    Full Text Available Water is today considered to be a vital and limited resource due to industrial development and population growth. Developing appropriate water treatment techniques, to ensure a sustainable management, represents a key point in the worldwide strategies. By removing both organic and inorganic species using techniques based on coupling membrane processes and appropriate complexing agents to bind pollutants are very important alternatives to classical separation processes in water treatment. Supported Liquid Membrane (SLM and Complexation Ultrafiltration (CP-UF based processes meet the sustainability criteria because they require low amounts of energy compared to pressure driven membrane processes, low amounts of complexing agents and they allow recovery of water and some pollutants (e.g., metals. A more interesting process, on the application point of view, is the Stagnant Sandwich Liquid Membrane (SSwLM, introduced as SLM implementation. It has been studied in the separation of the drug gemfibrozil (GEM and of copper(II as organic and inorganic pollutants in water. Obtained results showed in both cases the higher efficiency of SSwLM with respect to the SLM system configuration. Indeed higher stability (335.5 vs. 23.5 hours for GEM; 182.7 vs. 49.2 for copper(II and higher fluxes (0.662 vs. 0.302 mmol·h-1·m-2 for GEM; 43.3 vs. 31.0 for copper(II were obtained by using the SSwLM. Concerning the CP-UF process, its feasibility was studied in the separation of metals from waters (e.g., from soil washing, giving particular attention to process sustainability such as water and polymer recycle, free metal and water recovery. The selectivity of the CP-UF process was also validated in the separate removal of copper(II and nickel(II both contained in synthetic and real aqueous effluents. Thus, complexation reactions involved in the SSwLM and the CP-UF processes play a key role to meet the sustainability criteria.

  9. A Review on Advanced Treatment of Pharmaceutical Wastewater

    Science.gov (United States)

    Guo, Y.; Qi, P. S.; Liu, Y. Z.

    2017-05-01

    The composition of pharmaceutical wastewater is complex, which is high concentration of organic matter, microbial toxicity, high salt, and difficult to biodegrade. After secondary treatment, there are still trace amounts of suspended solids and dissolved organic matter. To improve the quality of pharmaceutical wastewater effluent, advanced treatment is essential. In this paper, the classification of the pharmaceutical technology was introduced, and the characteristics of pharmaceutical wastewater effluent quality were summarized. The methods of advanced treatment of pharmaceutical wastewater were reviewed afterwards, which included coagulation and sedimentation, flotation, activated carbon adsorption, membrane separation, advanced oxidation processes, membrane separation and biological treatment. Meanwhile, the characteristics of each process were described.

  10. Electron beam processing of wastewater in Malaysia

    International Nuclear Information System (INIS)

    Zulkafli Ghazali; Khairul Zaman Dahlan; Ting Teo Ming; Khomsaton A. Bakar

    2006-01-01

    Electron beam processing technology started in Malaysia in 1991 when two accelerators were installed through JICA cooperation to perform medical product sterilization project. Since then several private companies have installed electron accelerators to develop in removing volatile organic materials and to demonstrate flue gas treatment. In this country report, effort on electron beam processing of wastewater or contaminated groundwater is presented: After de-coloration tests using gamma rays as function of radiation doses, electron beam treatment of textile industry wastewater as function of beam energy and current intensity as well as with combined treatment such as aeration or biological treatment to examine the effectiveness in color and BOD or COD change has been carried out and the main results are reported. Furthermore, the present technique was examined to apply in river water treatment for use as drinking water. Techno-economic feasibility study for recycling of industrial waste water using electron beam technology is now underway. (S. Ohno)

  11. Radiation treatment of polluted water and wastewater

    International Nuclear Information System (INIS)

    2008-09-01

    Strategies to tackle environmental pollution have been receiving increasing attention throughout the world in recent years. Radiation processing using electron beam accelerators and gamma irradiators has shown very promising results in this area. Radiation processing in wastewater treatment is an additive-free process that uses the short lived reactive species formed during the radiolysis of water for efficient decomposition of pollutants therein. The rapid growth of the global population, together with the increased development of agriculture and industry, have led to the generation of large quantities of polluted industrial and municipal wastewater. The recognition that these polluted waters may pose a serious threat to humans has led technologists to look for cost effective technologies for their treatment. A variety of methods based on biological, chemical, photochemical and electrochemical processes are being explored for decomposing the chemical and biological contaminants present in the wastewaters. Studies in recent years have demonstrated the effectiveness of ionizing radiation such as, gamma rays and electron beams or in combination with other treatments, in the decomposition of refractory organic compounds in aqueous solutions and in the effective removal or inactivation of various microorganisms and parasites. The application of electron beam processing for drinking water, wastewater and groundwater treatment offers the promise of a cost effective process. The installation of the first full scale electron beam plant in Daegu, Republic of Korea, to treat 10 000 m 3 day -1 textile wastewater has demonstrated that the process is a cost effective technology when compared to conventional treatment. The regular operation of this facility provides operational data on reliability and additional data for a detailed economic evaluation. The IAEA has been supporting activities in this area by organizing advisory group meetings, consultants meetings, symposia and

  12. Imprinted Polymers in Wastewater Treatment

    Energy Technology Data Exchange (ETDEWEB)

    Eastman, Christopher; Goodrich, Scott; Gartner, Isabelle; Mueller, Anja

    2004-03-31

    In wastewater treatment, a method that specifically recognizes a variety of impurities in a flexible manner would be useful for treatment facilities with varying needs. Current purification techniques (i.e. bacteria, oxidation, reduction, precipitation and filtration) are nonspecific and difficult to control in complex mixtures. Heavy metal removal is particularly important in improving the efficiency of wastewater treatment, as they inhibit or even destroy the bacteria used for filtration. Imprinting polymerization is a technique that allows for the efficient removal of specific compounds and has been used in purification of enantiomers. It has potential to be applied in wastewater systems with the impurities acting as the template for the imprinting polymerization. The polymer with the bound impurities intact can then be removed via precipitation. After removal of the impurity the polymer can be reused. Data for the imprinting polymerization of polyacrylates and polyacrylamides for several metal complexes will be presented. Imprinting polymerization in combination with emulsion polymerization to improve the removal of hydrophobic contaminants will be described. Removal efficiencies will be presented and compared with conventional wastewater treatment methods.

  13. Wastewater Treatment I. Student's Guide.

    Science.gov (United States)

    California Water Pollution Control Association, Sacramento. Joint Education Committee.

    This student's guide is designed to provide students with the job skills necessary for the safe and effective operation and maintenance of wastewater treatment plants. It consists of three sections. Section 1 consists of an introductory note outlining course objectives and the format of the guide. A course outline constitutes the second section.…

  14. Biological wastewater treatment; Tratamiento biologico de aguas residuales

    Energy Technology Data Exchange (ETDEWEB)

    Arnaiz, C.; Isac, L.; Lebrato, J. [Universidad de Sevilla (Spain)

    2000-07-01

    Over the last years, many physical, chemical and biological processes for wastewater treatment have been developed. Biological wastewater treatment is the most widely used because of the less economic cost of investment and management. According to the type of wastewater contaminant, biological treatment can be classified in carbon, nitrogen and phosphorus removal. In this work, biodiversity and microbial interactions of carbonaceous compounds biodegradation are described. (Author) 13 refs.

  15. The effect of tannic compounds on anaerobic wastewater treatment

    NARCIS (Netherlands)

    Field, J.A.

    1989-01-01

    Anaerobic wastewater treatment is an alternative to the conventional aerobic treatment processes for the removal of easily biodegradable organic matter in medium to high strength industrial wastestreams. Anaerobic treatment has several advantages, however one important disadvantage is the

  16. Transformation of Four Silver/Silver Chloride Nanoparticles during Anaerobic Treatment of Wastewater and Post-processing of Sewage Sludge

    Science.gov (United States)

    The increasing use of silver (Ag) nanoparticles [containing either elemental Ag (Ag-NPs) or AgCl (AgCl-NPs)] in commercial products such as textiles will most likely result in these materials reaching wastewater treatment plants. Previous studies indicate that a conversion of Ag-...

  17. Effect of Cambi Thermal Hydrolysis Process-Anaerobic digestion treatment on concentrations on phthalate plasticisers in wastewater sludge

    Science.gov (United States)

    The impact of the recently implemented Cambi Thermal Hydrolysis Process™-Anaerobic Digestion (TH-AD) solids treatment method on concentrations of 4 phthalate plasticisers in wastewater sludge samples was explored in this study. Samples were analysed for diisononyl phthalate (DiNP), diisodecyl phthal...

  18. Nitrogen removal on recycling water process of wastewater treatment plant effluent using subsurface horizontal wetland with continuous feed

    Science.gov (United States)

    Tazkiaturrizki, T.; Soewondo, P.; Handajani, M.

    2018-01-01

    Recycling water is a generic term for water reclamation and reuse to solve the scarcity of water. Constructed wetlands have been recognized as providing many benefits for wastewater treatment including water supply and control by recycling water. This research aims to find the best condition to significantly remove nitrogen using constructed wetland for recycling water of Bojongsoang Waste Water Treatment Plan (WWTP) effluent. Using media of soil, sand, gravel, and vegetation (Typha latifolia and Scirpus grossus) with an aeration system, BOD and COD parameters have been remarkably reduced. On the contrary, the removal efficiency for nitrogen is only between 50-60%. Modifications were then conducted by three step of treatment, i.e., Step I is to remove BOD/COD using Typha latifolia with an aeration system, Step II is todecrease nitrogen using Scirpus grossus with/without aeration, and Step III isto complete the nitrogen removal with denitrification process by Glycine max without aeration. Results of the research show that the nitrogen removal has been successfully increased to a high efficiency between 80-99%. The combination of aeration system and vegetation greatly affects the nitrogen removal. The vegetation acts as the organic nitrogen consumer (plant uptake) for amino acids, nitrate, and ammonium as nutrition, as well as theoxygen supplier to the roots so that aerobic microsites are formed for ammonification microorganisms.

  19. Combined UV-C/H2O2-VUV processes for the treatment of an actual slaughterhouse wastewater.

    Science.gov (United States)

    Naderi, Kambiz Vaezzadeh; Bustillo-Lecompte, Ciro Fernando; Mehrvar, Mehrab; Abdekhodaie, Mohammad Jafar

    2017-05-04

    In this study, a three-factor, three-level Box-Behnken design with response surface methodology were used to maximize the TOC removal and minimize the H 2 O 2 residual in the effluent of the combined UV-C/H 2 O 2 -VUV system for the treatment of an actual slaughterhouse wastewater (SWW) collected from one of the meat processing plants in Ontario, Canada. The irradiation time and the initial concentrations of total organic carbon (TOC o ) and hydrogen peroxide (H 2 O 2o ) were the three predictors, as independent variables, studied in the design of experiments. The multiple response approach was used to obtain desirability response surfaces at the optimum factor settings. Subsequently, the optimum conditions to achieve the maximum percentage TOC removal of 46.19% and minimum H 2 O 2 residual of 1.05% were TOC o of 213 mg L -1 , H 2 O 2o of 450 mg L -1 , and irradiation time of 9 min. The attained optimal operating conditions were validated with a complementary test. Consequently, the TOC removal of 45.68% and H 2 O 2 residual of 1.03% were achieved experimentally, confirming the statistical model reliability. Three individual processes, VUV alone, VUV/H 2 O 2 , and UV-C/H 2 O 2 , were also evaluated to compare their performance for the treatment of the actual SWW using the optimum parameters obtained in combined UV-C/H 2 O 2 -VUV processes. Results confirmed that an adequate combination of the UV-C/H 2 O 2 -VUV processes is essential for an optimized TOC removal and H 2 O 2 residual. Finally, respirometry analyses were also performed to evaluate the biodegradability of the SWW and the BOD removal efficiency of the combined UV-C/H 2 O 2 -VUV processes.

  20. Characterization and modeling of nutrient-deficient tomato-processing wastewater treatment using an anaerobic/aerobic system.

    Science.gov (United States)

    Xu, Zhongda; Nakhla, George; Patel, Jignesh

    2006-11-01

    Tomato-processing wastewaters are typical of slowly biodegradable high strength wastewaters generated from the food canning industry. Three different samples of influent and three samples of anaerobic effluents corresponding to the three influents collected from an on-site pilot-scale anaerobic/aerobic system were characterized using respirometric methods. Respirometric studies demonstrated that the pretreatment in the anaerobic reactor of the pilot-scale system increased the readily biodegradable fraction from an average of 40% of the SCOD in the influent to 50% of the SCOD in the anaerobic effluent, improved kinetics from an average micro(max) of 1.5d(-1) in the influent to 3.5d(-1) in the anaerobic effluent, and eliminated nutrient deficiency. Furthermore, the system was calibrated and simulated by application of wastewater characterization and biokinetic data derived form respirometric tests of influent and anaerobic effluent in Activated Sludge Model no.1 (ASM1).

  1. Treatment of fish processing wastewater in a one-step or two-step upflow anaerobic sludge blanket (UASB) reactor

    NARCIS (Netherlands)

    Paluenzuela-Rollon, A.; Zeeman, G.; Lubberding, H.J.; Lettinga, G.; Alaerts, G.J.

    2002-01-01

    The performance of one-step UASB reactors treating fish processing wastewater of different lipid levels was determined using artificially generated influent simulating that of the canning of sardines and tuna. The organic loading rates (OLR) and the hydraulic retention times (HRT) were 5-8 g

  2. Advances in HTGR Wastewater Treatment System Design

    International Nuclear Information System (INIS)

    Li Junfeng; Qiu Yu; Wang Jianlong; Jia Fei

    2014-01-01

    The source terms of radioactive wastewater from HTR-PM were introduced. Concentration process should be used to reduce volume. A radioactive wastewater treatment system was designed by using Disc tubular reverse osmosis (DTRO) membrane system. The pretreatment system was simplify by using a cartridge filter. A three-stage membrane system was built. The operated characters to treat low and intermediate radioactive waste water were studied. A concentration rates of 25-50 is reached. The decontamination factor of the membrane system can reach 30-100. (author)

  3. Catalytic Wastewater Treatment Using Pillared Clays

    Science.gov (United States)

    Perathoner, Siglinda; Centi, Gabriele

    After introduction on the use of solid catalysts in wastewater treatment technologies, particularly advanced oxidation processes (AOPs), this review discussed the use of pillared clay (PILC) materials in three applications: (i) wet air catalytic oxidation (WACO), (ii) wet hydrogen peroxide catalytic oxidation (WHPCO) on Cu-PILC and Fe-PILC, and (iii) behavior of Ti-PILC and Fe-PILC in the photocatalytic or photo-Fenton conversion of pollutants. Literature data are critically analyzed to evidence the main direction to further investigate, in particularly with reference to the possible practical application of these technologies to treat industrial, municipal, or agro-food production wastewater.

  4. About the use and treatment of reclaimed wastewater

    International Nuclear Information System (INIS)

    Marin Galvin, R.

    2009-01-01

    Demand of water in our actual society is increasing each day. Taking into account the irregular climatic situation experienced in a lot of zones of Spain, it is necessary to use all the available resources. Among the conventional resources of sweet waters (surface and underground), we must pay attention to the desalted waters and to the reclaimed wastewater. In this way, the practical use of reclaimed wastewater must be supported in three basic items: normative about reusing of reclaimed wastewater, that of treated wastewater and effluents discarded to natural environment and finally, treatment processes to reclaim wastewater. (Author) 11 refs

  5. Towards energy positive wastewater treatment plants.

    Science.gov (United States)

    Gikas, Petros

    2017-12-01

    Energy requirement for wastewater treatment is of major concern, lately. This is not only due to the increasing cost of electrical energy, but also due to the effects to the carbon footprint of the treatment process. Conventional activated sludge process for municipal wastewater treatment may consume up to 60% of the total plant power requirements for the aeration of the biological tank. One way to deal with high energy demand is by eliminating aeration needs, as possible. The proposed process is based on enhanced primary solids removal, based on advanced microsieving and filtration processes, by using a proprietary rotating fabric belt MicroScreen (pore size: 100-300 μm) followed by a proprietary Continuous Backwash Upflow Media Filter or cloth media filter. About 80-90% reduction in TSS and 60-70% reduction in BOD5 has been achieved by treating raw municipal wastewater with the above process. Then the partially treated wastewater is fed to a combination low height trickling filters, combined with encapsulated denitrification, for the removal of the remaining BOD and nitrogen. The biosolids produced by the microsieve and the filtration backwash concentrate are fed to an auger press and are dewatered to about 55% solids. The biosolids are then partially thermally dried (to about 80% solids) and conveyed to a gasifier, for the co-production of thermal (which is partly used for biosolids drying) and electrical energy, through syngas combustion in a co-generation engine. Alternatively, biosolids may undergo anaerobic digestion for the production of biogas and then electric energy. The energy requirements for complete wastewater treatment, per volume of inlet raw wastewater, have been calculated to 0.057 kWh/m 3 , (or 0.087 kWh/m 3 , if UV disinfection has been selected), which is about 85% below the electric energy needs of conventional activated sludge process. The potential for net electric energy production through gasification/co-generation, per volume of

  6. Wastewater treatment as an energy production plant

    Science.gov (United States)

    Samela, Daniel A.

    The objective of this research was to investigate the potential for net energy production at a Wastewater Treatment Plant (WWTP). Historically, wastewater treatment plants have been designed with the emphasis on process reliability and redundancy; efficient utilization of energy has not received equal consideration. With growing demands for energy and increased budgetary pressures in funding wastewater treatment plant costs, methods of reducing energy consumption and operating costs were explored in a new and novel direction pointed towards energy production rather than energy consumption. To estimate the potential for net energy production, a quantitative analysis was performed using a mathematical model which integrates the various unit operations to evaluate the overall plant energy balance. Secondary treatment performance analysis is included to ensure that the energy evaluation is consistent with plant treatment needs. Secondary treatment performance was conducted for activated sludge, trickling filters and RBCs. The equations for the mathematical model were developed independently for each unit operation by writing mass balance equations around the process units. The process units evaluated included those for preliminary treatment, primary treatment, secondary treatment, disinfection, and sludge treatment. Based on an analysis of both energy reduction and energy recovery methods, it was shown that net energy production at a secondary WWTP is possible utilizing technologies available today. Such technologies include those utilized for plant operations, as well as for energy recovery. The operation of fuel cells using digester gas represents one of the most significant new opportunities for energy recovery at wastewater facilities. The analysis predicts that a trickling filter WWTP utilizing commercial phosphoric acid fuel cells to recover energy from digester gas can provide for facility energy needs and have both electrical and thermal energy available for

  7. Techniques of Wastewater Treatment

    Indian Academy of Sciences (India)

    emerging effluent treatment methods. What is an Effluent? Liquid, solid and gaseous waste materials are often generated during the manufacturing of almost all the chemical and other industrial products. .... mass during the effluent treatment to oxidise the biologically oxidizable pollutants and for their own sustenance.

  8. The impact of advanced wastewater treatment technologies and wastewater strength on the energy consumption of large wastewater treatment plants

    Science.gov (United States)

    Newell, Timothy

    Wastewater treatment is an energy intensive process often requiring the use of advanced treatment technologies. Stricter effluent standards have resulted in an increase in the number of wastewater treatment plants (WWTPs) with advanced treatment over time. Accordingly, associated energy consumption has also increased. Concerns about lowering operating costs for WWTPs and reducing associated greenhouse gas generation present an incentive to investigate energy use in WWTPs. This research investigated the impact of wastewater strength and the introduction of advanced treatment technologies, to replace traditional technologies on energy use to treat wastewater in WWTPs. Major unit processes were designed for a 100 MGD plant and variables controlling energy were identified and used to compute energy consumption. Except for primary clarification and plate and frame press dewatering, energy consumption computed using fundamental equations are within values in the literature. Results show that energy consumption for dissolved air flotation thickeners, centrifuges, gravity thickeners, and aeration basins are heavily influence by wastewater strength. Secondary treatment and tertiary treatment require a significant amount of energy. Secondary treatment requires 104 times the energy of preliminary treatment, 17 times the energy of solids processing, and 2.5 times the energy of tertiary treatment. Secondary treatment requires 41 times the energy of preliminary treatment, and 7 times the energy of solids processing. The results of this research provide a means of estimating energy consumption in the design and operation phase of a WWTP. By using the fundamental equations and methodology presented, alternative technologies can be compared or targeted for future energy savings implementation. Limitations of the methodology include design assumptions having to be made carefully, as well as assumptions of motor and equipment efficiencies.

  9. Artificial wetland for wastewater treatment

    International Nuclear Information System (INIS)

    Arias I, Carlos A; Brix, Hans

    2003-01-01

    The development of constructed wetland technology for wastewater treatment has gone a long way and from an experimental and unknown empirical method, which was capable of handling wastewater a sound technology was developed. Thanks to research, and the work of many public and private companies that have gather valuable operation information, constructed wetland technology has evolved to be a relievable, versatile and effective way to treat wastewater, run off, handle sludge and even improve environmental quality and provide recreation sites, while maintaining low operation and maintenance costs, and at the same time, producing water of quality that can meet stringent regulations, while being and environmental friendly solution to treat waste-waters. Constructed wetlands can be established in many different ways and its characteristics can differ greatly, according to the user needs, the geographic site and even the climatic conditions of the area. The following article deals with the general characteristics of the technology and the physical and chemical phenomena that govern the pollution reduction with in the different available systems

  10. Chromium toxicity to nitrifying bacteria: implications to wastewater treatment

    Science.gov (United States)

    Chromium, a heavy metal that enters wastewater treatment plants (WWTPs) through industrial discharges, can be toxic to microorganisms carrying out important processes within biological wastewater treatment systems. The effect of Cr(III) and Cr(VI) on ammonia dependent specific ox...

  11. Magnetic biochar catalyst derived from biological sludge and ferric sludge using hydrothermal carbonization: Preparation, characterization and its circulation in Fenton process for dyeing wastewater treatment.

    Science.gov (United States)

    Zhang, He; Xue, Gang; Chen, Hong; Li, Xiang

    2018-01-01

    To solve sludge disposal and management problems during dyeing wastewater treatment, the produced excess biological sludge and ferric sludge were fabricated into a magnetic biochar composite (MBC) under the optimal hydrothermal carbonization (HTC) conditions. With ferric sludge mixing, the generated MBC contained paramagnetic Fe 3 O 4 , showed a smaller diameter of approximately 200 nm, a smaller pore size, a larger specific surface area and a higher carbonization degree than BC prepared using a single biological sludge process under the same HTC conditions. Additionally, biochar and Fe 3 O 4 in the MBC were found to be tightly combined through chemical bonding, imparting MBC with its own property of magnetic recycling. The stable high Methylene Blue (MB) degradation performance in a Fenton reaction after recycling designated it as a good catalyst. The MB degradation pathway was proposed based on GC-MS results. When the MBC was used to treat actual dyeing wastewater through a Fenton process, the chemical oxygen demand (COD) and total organic carbon (TOC) removal efficiencies reached 47 ± 3.3% and 49 ± 2.7%, respectively. Therefore, MBC could be recycled as a catalyst in dyeing wastewater treatment. And a methodology is described that minimizes the produced sludge and enables sludge internal recycling in a dyeing wastewater treatment plant. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. A process for polyhydroxyalkanoate (PHA) production from municipal wastewater treatment with biological carbon and nitrogen removal demonstrated at pilot-scale.

    Science.gov (United States)

    Bengtsson, Simon; Karlsson, Anton; Alexandersson, Tomas; Quadri, Luca; Hjort, Markus; Johansson, Peter; Morgan-Sagastume, Fernando; Anterrieu, Simon; Arcos-Hernandez, Monica; Karabegovic, Lamija; Magnusson, Per; Werker, Alan

    2017-03-25

    A process was developed for biological treatment of municipal wastewater for carbon and nitrogen removal while producing added-value polyhydroxyalkanoates (PHAs). The process comprised steps for pre-denitrification, nitrification and post-denitrification and included integrated fixed-film activated sludge (IFAS) with biofilm carrier media to support nitrification. In a pilot-scale demonstration (500-800L), wastewater treatment performance, in line with European standards, were achieved for total chemical oxygen demand (83% removal) and total nitrogen (80% removal) while producing a biomass that was able to accumulate up to 49% PHA of volatile suspended solids with acetic acid or fermented organic residues as substrates. Robust performance in wastewater treatment and enrichment of PHA-producing biomass was demonstrated under realistic conditions including influent variability during 225days of operation. The IFAS system was found to be advantageous since maintaining nitrification on the biofilm allowed for a relatively low (2days) solids retention time (SRT) for the suspended biomass in the bulk phase. Lower SRT has advantages in higher biomass yield and higher active fraction in the biomass which leads to higher PHA productivity and content. The outcomes show that production of added-value biopolymers may be readily integrated with carbon and nitrogen removal from municipal wastewater. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Investigation of biological and fouling characteristics of submerged membrane bioreactor process for wastewater treatment by model sensitivity analysis.

    Science.gov (United States)

    Cho, J W; Ahn, K H; Lee, Y H; Lim, B R; Kim, J Y

    2004-01-01

    In this study, a mathematical model for the submerged membrane bioreactor (SMBR) was developed. The activated sludge model No. 1 (ASM1) was modified to be suitable for describing the characteristics of the SMBR, and the resistance-in-series model was integrated into the ASM1 to describe membrane fouling. Using the newly developed model, the biological and fouling characteristics of the submerged membrane bioreactor process for wastewater treatment was investigated by sensitivity analysis. The sensitivity of effluent COD and nitrogen, TSS in the reactor and membrane flux with respect to each parameter (K(h), mu(H), K(S), K(NHH), K(NOH), b(H), Y(H), mu(A), K(NHA), b(A), Y(A), K(m) and alpha) was investigated by model simulation. As a result, the most important factors affecting membrane fouling were hydrolysis rate constant (K(h)) and cross-flow effect coefficient (K(m)). Heterotrophic yield coefficient (Y(H)) had a great influence on effluent quality. Effluent quality was also somewhat sensitive to K(h). Peculiar operating conditions of the SMBR such as long solids retention time (SRT), absolute retention of solids by membrane and high biomass concentration in bioreactor could explain these model simulation results. The model developed in this study would be very helpful to optimize operating conditions as well as design parameters for a SMBR system.

  14. Development of catalytic microreactors by plasma processes: application to wastewater treatment

    NARCIS (Netherlands)

    Da Silva, B.T.

    2015-01-01

    A key aspect in overcoming the energy and environmental challenges is to improve the efficiency of existing and new processes. Nowadays, almost all major chemicals are produced by catalytic processes. However, a better understanding of the reaction pathways and kinetics is needed. In the field of

  15. Fate of triclocarban, triclosan and methyltriclosan during wastewater and biosolids treatment processes

    Science.gov (United States)

    Triclocarban (TCC) and Triclosan (TCS) are two antibacterial chemicals present in household and personal care products. Methyltriclosan is a biodegradation product of TCS formed under aerobic conditions. TCC and TCS are discharged to Waste Water Treatment Plants (WWTP) where they are removed from ...

  16. Wastewater Treatment Methods

    Science.gov (United States)

    Smith, Dana; Williams, Fred; Moffatt, Scott

    Alcoa's Point Comfort, Texas industrial facility is a combination of a bauxite refining plant utilizing the Bayer process and an aluminum fluoride production plant. Due to the location's use of dry stack technology for bauxite residue disposal, the pond surface areas for evaporation are minimal compared to the rainfall catchment areas. This results in the periodic need to reduce accumulated volumes of storm water at the Residue Disposal Area (RDA).

  17. Modelling of the dispersed air flotation process applied to dairy wastewater treatment

    Directory of Open Access Journals (Sweden)

    F. P. Puget

    2004-06-01

    Full Text Available The aim of this work was to develop a mathematical model for a continuously operating flotation tank to provide the scale-up and optimization of the separation system. The fluid dynamic of the tank was assumed to be a perfect mixture and the flotation kinetics to be a first-order reaction, as suggested by the batch operation. The experiments were carried out in a continuously operating 60 L tank, used in the treatment of a synthetic dairy waste at its isoelectric point. A mathematical model that describes the behavior of a continuously operating flotation tank used in the treatment of a synthetic dairy waste at its isoelectric point is not only proposed, but also validated with experimental data.

  18. Treatment of wastewater dyeing agent by photocatalytic process in solar reactor

    OpenAIRE

    Zahraa, O.; Maire, S.; Evenou, F.; Hachem, C.; Pons, M. N.; Alinsafi, A.; Bouchy, M.

    2006-01-01

    The photocatalytic decolorization of industrial textile dyes has been studied. The treatment was carried out on a solar reactor consisting in a flat active plane, tilted so as to face the sun and to allow the trickling of the water to be treated. Alternatively the reactor could be irradiated by an artificial source. After checking the system using salicylic acid, a conventional model molecule, the photocatalytic decolorization of Orange II, Yellow Drimarene, and Black Drimarene dyes was inves...

  19. Biological treatment of winery wastewater: an overview.

    Science.gov (United States)

    Andreottola, G; Foladori, P; Ziglio, G

    2009-01-01

    The treatment of winery wastewater can realised using several biological processes based both on aerobic or anaerobic systems using suspended biomass or biofilms. Several systems are currently offered by technology providers and current research envisages the availability of new promising technologies for winery wastewater treatment. The present paper intends to present a brief state of the art of the existing status and advances in biological treatment of winery wastewater in the last decade, considering both lab, pilot and full-scale studies. Advantages, drawbacks, applied organic loads, removal efficiency and emerging aspects of the main biological treatments were considered and compared. Nevertheless in most treatments the COD removal efficiency was around 90-95% (remaining COD is due to the un-biodegradable soluble fraction), the applied organic loads are very different depending on the applied technology, varying for an order of magnitude. Applied organic loads are higher in biofilm systems than in suspended biomass while anaerobic biofilm processes have the smaller footprint but in general a higher level of complexity.

  20. A natural driven membrane process for brackish and wastewater treatment: photovoltaic powered ED and FO hybrid system.

    Science.gov (United States)

    Zhang, Yang; Pinoy, Luc; Meesschaert, Boudewijn; Van der Bruggen, Bart

    2013-09-17

    In isolated locations, remote areas, or islands, potable water is precious because of the lack of drinking water treatment facilities and energy supply. Thus, a robust and reliable water treatment system based on natural energy is needed to reuse wastewater or to desalinate groundwater/seawater for provision of drinking water. In this work, a hybrid membrane system combining electrodialysis (ED) and forward osmosis (FO), driven by renewable energy (solar energy), denoted as EDFORD (ED-FO Renewable energy Desalination), is proposed to produce high-quality water (potable) from secondary wastewater effluent or brackish water. In this hybrid membrane system, feedwater (secondary wastewater effluent or synthetic brackish water) was drawn to the FO draw solution while the organic and inorganic substances (ions, compounds, colloids and particles) were rejected. The diluted draw solution was then pumped to the solar energy driven ED. In the ED unit, the diluted draw solution was desalted and high-quality water was produced; the concentrate was recycled to the FO unit and reused as the draw solution. Results show that the water produced from this system contains a low concentration of total organic carbon (TOC), carbonate, and cations derived from the feedwater; had a low conductivity; and meets potable water standards. The water production cost considering the investment for membranes and solar panel is 3.32 to 4.92 EUR m(-3) (for 300 days of production per year) for a small size potable water production system.

  1. Design and Application of Electrochemical Processes for Decolorization Treatment of Nylanthrene Red dye Bearing Wastewaters

    Directory of Open Access Journals (Sweden)

    D. Marmanis

    2016-04-01

    Full Text Available The purpose of this paper is the investigation of the capability of electrochemical methods, such as electrocoagulation, electrooxidation and electro-Fenton for decolorization and degradation of synthetic aqueous solutions and actual dye house effluents containing nylanthrene red reactive dye. All electrochemical experiments with the synthetic dye solutions were conducted in electrochemical cell of volume 500 ml containing 200 mL of dye solution at concentration 50 mg/L and interelectrode distance of 1 cm. The three different electrochemical processes were analyzed, and their removal efficiencies were measured and evaluated. In addition, a flow diagram is designed for a continuously operated electrochemical process for remediation of synthetic and actual dye house effluents laden with nylanthrene dye. In the electrocoagulation process with aluminum electrodes, the colored aqueous dye solution was treated at the applied current densities of 5, 10 and 15 mA/cm2 and was quantitatively decolorized in 11, 9 and less than 6 minutes of electroprocessing time respectively. The electrooxidation process conducted with Ti/Pt and boron doped diamond (BDD electrodes, at the applied current density of 10 mA/cm2 led to the quantitative decolorization and destruction of the dye in 25 and 15 min respectively. In the electro-Fenton process with iron electrodes, supply of added hydrogen peroxide and applied current density of 10 mA/cm2, complete decolorization and degradation of the nylanthrene red dye occurred in 6 min. The actual polyamide textile dyeing effluent of same volume 200 mL with initial turbidity of 114 NTU and COD of 1755 mg/L was treated by electrocoagulation at the same applied current density of 10 mA/cm2. The turbidity was quantitatively eliminated in only 10 min, while COD was reduced by 74.5 % in 40 minutes of electrolysis time.

  2. Coagulation-flocculation sequential with Fenton or Photo-Fenton processes as an alternative for the industrial textile wastewater treatment.

    Science.gov (United States)

    GilPavas, Edison; Dobrosz-Gómez, Izabela; Gómez-García, Miguel Ángel

    2017-04-15

    In this study, the industrial textile wastewater was treated using a chemical-based technique (coagulation-flocculation, C-F) sequential with an advanced oxidation process (AOP: Fenton or Photo-Fenton). During the C-F, Al 2 (SO 4 ) 3 was used as coagulant and its optimal dose was determined using the jar test. The following operational conditions of C-F, maximizing the organic matter removal, were determined: 700 mg/L of Al 2 (SO 4 ) 3  at pH = 9.96. Thus, the C-F allowed to remove 98% of turbidity, 48% of Chemical Oxygen Demand (COD), and let to increase in the BOD 5 /COD ratio from 0.137 to 0.212. Subsequently, the C-F effluent was treated using each of AOPs. Their performances were optimized by the Response Surface Methodology (RSM) coupled with a Box-Behnken experimental design (BBD). The following optimal conditions of both Fenton (Fe 2+ /H 2 O 2 ) and Photo-Fenton (Fe 2+ /H 2 O 2 /UV) processes were found: Fe 2+ concentration = 1 mM, H 2 O 2 dose = 2 mL/L (19.6 mM), and pH = 3. The combination of C-F pre-treatment with the Fenton reagent, at optimized conditions, let to remove 74% of COD during 90 min of the process. The C-F sequential with Photo-Fenton process let to reach 87% of COD removal, in the same time. Moreover, the BOD 5 /COD ratio increased from 0.212 to 0.68 and from 0.212 to 0.74 using Fenton and Photo-Fenton processes, respectively. Thus, the enhancement of biodegradability with the physico-chemical treatment was proved. The depletion of H 2 O 2 was monitored during kinetic study. Strategies for improving the reaction efficiency, based on the H 2 O 2 evolution, were also tested. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Use of Pillared Clay-Based Catalysts for Wastewater Treatment Through Fenton-Like Processes

    Science.gov (United States)

    Herney-Ramírez, J.; Madeira, Luis M.

    Clays, both natural and physical-chemically modified, are attractive materials for the preparation of supported catalysts. In this chapter, a review is made regarding the use of pillared interlayered clays (PILCs) in heterogeneous Fenton-like advanced oxidation processes. Their applications in pollutants degradation is summarized, with particular emphasis on the effect of the main operating conditions (e.g., initial H2O2 or parent compound concentration, catalyst load, pH, or temperature) on oxidation efficiency. Special attention is also given to the type of catalyst or precursor used, to the importance and advantages of the heterogeneous versus homogeneous process, and to significant aspects like catalyst stability. Among the technological issues that are of concern, the importance of using continuous flow reactors (e.g., fixed-bed) is discussed. Finally, some mechanistic studies are reviewed as well as modeling works, based on phenomenological or semi-empiric models (e.g., using statistic tools like design of experiments).

  4. Recent Overview of Solar Photocatalysis and Solar Photo-Fenton Processes for Wastewater Treatment

    Directory of Open Access Journals (Sweden)

    A. G. Gutierrez-Mata

    2017-01-01

    Full Text Available This literature research, although not exhaustive, gives perspective to solar-driven photocatalysis, such as solar photo-Fenton and TiO2 solar photocatalysis, reported in the literature for the degradation of aqueous organic pollutants. Parameters that influence the degradation and mineralization of organics like catalyst preparation, type and load of catalyst, catalyst phase, pH, applied potential, and type of organic pollutant are addressed. Such parameters may also affect the photoactivity of the catalysts used in the studied solar processes. Solar irradiation is a renewable, abundant, and pollution-free energy source for low-cost commercial applications. Therefore, these solar processes represent an environmentally friendly alternative mainly because the use of electricity can be decreased/avoided.

  5. Mathematical models for biomass in membrane-BNR process for wastewater treatment.

    Science.gov (United States)

    Lee, J Y; Kwon, K H; Kim, S W; Min, K S; Yun, Z

    2010-01-01

    The equation of biomass is related to the mass-balance equation of substrate. This equation of substrate is expressed according to a model using the Monod equation, which indicates some limits for calculating the amounts of VSS in the MBR process. Some degradation of biomass which is caused by long SRT might result in the generation of substrate based on COD. Research was conducted by lab-scale tests with two membrane-BNR (Biological Nutrients Removal) processes. These were composed of multi-reactors as anaerobic, anoxic, aerobic tank and oxygen exhauster. The aerobic tank was also divided into 3 reactors, which were oxic for nitrification, oxic-media containing fluidized sponge typed media for simultaneous nitrification and denitrification, and oxic-membrane for submerged membrane. This membrane-BNR process could remove most of the organics, suspended solids and nutrient substances like nitrogen thus satisfying the reuse guidelines issued by the Korean Ministry of Environment. The value measured of VSS (X(v)) through the experiment with SRT of 35 days was similar to the biomass using the conventional equation while the one with SRT of 60 days was close to the concentration of VSS calculated by a revised equation which considered the biomass degraded with long SRT.

  6. New process for alleviation of membrane fouling of modified hybrid MBR system for advanced domestic wastewater treatment.

    Science.gov (United States)

    Shuo, Liu; Baozhen, Wang; Hongjun, Han; Yanping, Liu

    2008-01-01

    A pilot-scale hybrid membrane bioreactor using a submerged flat panel membrane was designed and applied for advanced treatment of domestic wastewater. The new process adapted to the hybrid membrane bioreactor exhibits substantial decrease in membrane fouling and much easier cleaning. In this study, the new process configurations including the addition of anoxic/anaerobic zones, the package of synthetic fibrous fabric carrier for biofilm attached growth, activated sludge recycling and modified dosage of polished diatomite with high activity and multi-functions were investigated to select the optimal operational parameters for the hybrid membrane bioreactor system. The carrier package in the aerobic zone contributed 3.65 g/L (maximum) of fixed biomass to the system, thus reducing the suspended biomass, and has decreased the membrane cleaning cycle remarkably. The operation performance at the sludge recycle rate 0, 100%, 200% and 300% showed that, the trans-membrane pressure of flat panel membrane declined sharply with the increase of sludge recycling rate within a certain range, and 200% was decided to be optimal for in the membrane bioreactor system. EPS concentration in each sludge recycling rate was 135 mg/L, 92 mg/L, 68 mg/L and 55 mg/L respectively. The addition of anoxic and anaerobic zones degraded some large molecular organic compounds, which facilitated the biodegradation and removal of organic substances in aerobic zone. The modified dosage of polished diatomite has played a major important role for both preventing of membrane from fouling and its much easier cleaning when it formed. Copyright (c) IWA Publishing 2008.

  7. Treatment of wastewater dyeing agent by photocatalytic process in solar reactor

    Directory of Open Access Journals (Sweden)

    O. Zahraa

    2006-01-01

    Full Text Available The photocatalytic decolorization of industrial textile dyes has been studied. The treatment was carried out on a solar reactor consisting in a flat active plane, tilted so as to face the sun and to allow the trickling of the water to be treated. Alternatively the reactor could be irradiated by an artificial source. After checking the system using salicylic acid, a conventional model molecule, the photocatalytic decolorization of Orange II, Yellow Drimarene, and Black Drimarene dyes was investigated. Artificial and solar irradiation gave comparable results although the heating by the sun reduced the amount of adsorption. The kinetics agrees with the Langmuir-Hinshelwood model and a discrepancy between adsorption constants deduced from the kinetic and adsorption experiments was interpreted by considering various types of adsorption sites. Orange II and Drimarene dyes decolorization kinetics are opposite limiting cases of the above model, as being of order 0 and 1 with respect to the dye, respectively.

  8. MEMBRANE BIOREACTOR FOR TREATMENT OF RECALCITRANT WASTEWATERS

    Directory of Open Access Journals (Sweden)

    Suprihatin Suprihatin

    2012-02-01

    Full Text Available The low biodegradable wastewaters remain a challenge in wastewater treatment technology. The performance of membrane bioreactor systems with submerged hollow fiber micro- and ultrafiltration membrane modules were examined for purifying recalcitrant wastewaters of leachate of a municipal solid waste open dumping site and effluent of pulp and paper mill. The use of MF and UF membrane bioreactor systems showed an efficient treatment for both types wastewaters with COD reduction of 80-90%. The membrane process achieved the desirable effects of maintaining reasonably high biomass concentration and long sludge retention time, while producing a colloid or particle free effluent. For pulp and paper mill effluent a specific sludge production of 0.11 kg MLSS/kg COD removed was achieved. A permeate flux of about 5 L/m²h could be achieved with the submerged microfiltration membrane. Experiments using ultrafiltration membrane produced relatively low permeate fluxes of 2 L/m²h. By applying periodical backwash, the flux could be improved significantly. It was indicated that the particle or colloid deposition on membrane surface was suppressed by backwash, but reformation of deposit was not effectively be prevented by shear-rate effect of aeration. Particle and colloid started to accumulate soon after backwash. Construction of membrane module and operation mode played a critical role in achieving the effectiveness of aeration in minimizing deposit formation on the membrane surface.

  9. Microbial Communities in Danish Wastewater Treatment Plants with Nutrient Removal

    DEFF Research Database (Denmark)

    Mielczarek, Artur Tomasz

    Activated sludge treatment plants are the most used wastewater treatment systems worldwide for biological nutrient removal from wastewater. Nevertheless, the treatment systems have been for many years operated as so called “black-box”, where specific process parameters were adjusted without...... was devoted into detailed analysis of almost fifty full-scale treatment plants (Microbial Database over Danish Wastewater Treatment Plants.) in order to learn more about the activated sludge communities and the rules that govern their presence and growth. This is one of the first such comprehensive long......-term investigations of the microbial community in full-scale wastewater treatment plants, where conventional identification, molecular identification by quantitative Fluorescent In Situ Hybridization and extensive process information related to treatment plant design and process performance have been compiled...

  10. Modelling of Activated Sludge Wastewater Treatment

    Directory of Open Access Journals (Sweden)

    Kurtanjeka, Ž.

    2008-02-01

    Full Text Available Activated sludge wastewater treatment is a highly complex physical, chemical and biological process, and variations in wastewater flow rate and its composition, combined with time-varying reactions in a mixed culture of microorganisms, make this process non-linear and unsteady. The efficiency of the process is established by measuring the quantities that indicate quality of the treated wastewater, but they can only be determined at the end of the process, which is when the water has already been processed and is at the outlet of the plant and released into the environment.If the water quality is not acceptable, it is already too late for its improvement, which indicates the need for a feed forward process control based on a mathematical model. Since there is no possibility of retracing the process steps back, all the mistakes in the control of the process could induce an ecological disaster of a smaller or bigger extent. Therefore, models that describe this process well may be used as a basis for monitoring and optimal control of the process development. This work analyzes the process of biological treatment of wastewater in the Velika Gorica plant. Two empirical models for the description of the process were established, multiple linear regression model (MLR with 16 predictor variables and piecewise linear regression model (PLR with 17 predictor variables. These models were developed with the aim to predict COD value of the effluent wastewater at the outlet, after treatment. The development of the models is based on the statistical analysis of experimental data, which are used to determine the relations among individual variables. In this work are applied linear models based on multiple linear regression (MLR and partial least squares (PLR methods. The used data were obtained by everyday measurements of the quantities that indicate the quality of the input and output water, working conditions of the plant and the quality of the activated sludge

  11. Optimization of Wastewater Treatment Process in Industry “A Case Study of Hattar Industrial Estate Haripur”

    Directory of Open Access Journals (Sweden)

    Rahib Hussain

    2014-06-01

    Full Text Available This study was conducted with the objectives to analyze Ghee Mill effluents, search out low cost wastewater treatment and make the water suitable for irrigation. For this purpose Ghee Mill effluents were analyzed for 19 physico-chemical parameters twice, before and after treatment and were compared with Pakistan National Environmental Quality Standards (Pak-NEQS. The analytical results revealed that Total Suspended Solids (TSS, Chemical Oxygen Demand (COD and oil & grease were high. For identification of suitable treatment method, two different techniques were tested, coagulation and adsorption. The optimum dose of 35mg/L to 66 mg/L was identified as appropriate to remove suspended solids. For adsorption a column containing 0.2 mg/L was identified as suitable dose for removal of color and COD. The analytical results after treatments were complying with Pak-NEQS. Therefore, coagulation in combination with adsorption is herein recommended for treatment of Ghee Mill effluents.

  12. Pilot scale hybrid processes for olive mill wastewater treatment, energy production and water reuse: comparison between fungal and electro-coagulation pre-treatments

    International Nuclear Information System (INIS)

    Sayadi, S.

    2009-01-01

    Olive oil mill wastewaters (OMW) cause disposal problems because they contain powerful pollutants such as phenolic compounds. Complete biodegradation or removal of these compounds is hardly achieved by a single treatment method. In this work, we investigated 2 integrated technologies for the treatment of the recalcitrant contaminants of OMW, allowing water recovery and reuse for agricultural purposes. (Author)

  13. Occurrence and removal of six pharmaceuticals and personal care products in a wastewater treatment plant employing anaerobic/anoxic/aerobic and UV processes in Shanghai, China.

    Science.gov (United States)

    Wang, Dan; Sui, Qian; Lu, Shu-Guang; Zhao, Wen-Tao; Qiu, Zhao-Fu; Miao, Zhou-Wei; Yu, Gang

    2014-03-01

    The occurrence and removal of six pharmaceuticals and personal care products (PPCPs) including caffeine (CF), N, N-diethyl-meta-toluamide (DEET), carbamazepine, metoprolol, trimethoprim (TMP), and sulpiride in a municipal wastewater treatment plant (WWTP) in Shanghai, China were studied in January 2013; besides, grab samples of the influent were also taken every 6 h, to investigate the daily fluctuation of the wastewater influent. The results showed the concentrations of the investigated PPCPs ranged from 17 to 11,400 ng/L in the WWTP. A low variability of the PPCP concentrations in the wastewater influent throughout the day was observed, with the relative standard deviations less than 25 % for most samples. However, for TMP and CF, the slight daily fluctuation still reflected their consumption patterns. All the target compounds except CF and DEET, exhibited poor removal efficiencies (<40 %) by biological treatment process, probably due to the low temperature in the bioreactor, which was unfavorable for activated sludge. While for the two biodegradable PPCPs, CF, and DEET, the anaerobic and oxic tank made contributions to their removal while the anoxic tank had a negative effect to their elimination. The tertiary UV treatment removed the investigated PPCPs by 5-38 %, representing a crucial polishing step to compensate for the poor removal by the biologic treatment process in winter.

  14. The effect of treatment parameters and detergent additions on the softening of radioactively contaminated process wastewater at the Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Roe, M.M.

    1993-01-01

    At Oak Ridge National Laboratory, radioactively contaminated process wastewater is sequentially treated by precipitation is critical to the effective performance of the ion exchange process; magnesium and calcium inhibit the ability of the ion exchange resin to adequately remove strontium. A series of laboratory jar tests performed on the wastewater indicate that parameters such as ferric sulfate concentrations, sodium carbonate addition, reaction time, and pH adjustment, have a noticable impact upon the softening reaction. Tests also showed that a detergent used for equipment equipment decontamination at the treatment plant had a detrimental effect on the softening process. Alternative detergents tested were shown to have differing effects on the softening reaction. The results of the experimental program conducted to measure the relative importance of the softening variables will be presented in conjuction with the elevation of the effect various detergents have on softener performance

  15. Using natural zeolites to improve anaerobic abattoir wastewater treatment

    Energy Technology Data Exchange (ETDEWEB)

    Diaz-Jimenez, L.; Herrera-Ramirez, E.; Carlos Hernandez, S

    2009-07-01

    Slaughterhouse wastewater have high concentrations of soluble and insoluble organics which represents environmental troubles, E. G. de oxygenation of rivers, underground water contamination. Anaerobic digestion is an efficient process for wastewater treatment. Performance are increased using microorganisms supported on porous solids. (Author)

  16. Influence of co-substrate on textile wastewater treatment and microbial community changes in the anaerobic biological sulfate reduction process

    Energy Technology Data Exchange (ETDEWEB)

    Rasool, Kashif; Mahmoud, Khaled A. [Qatar Environment and Energy Research Institute, Hamad Bin Khalifa University, Qatar Foundation, PO BOX 5825, Doha (Qatar); Lee, Dae Sung, E-mail: daesung@knu.ac.kr [Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 702-701 (Korea, Republic of)

    2015-12-15

    Highlights: • Textile wastewater treatment performance was investigated with different co-substrates. • Dye biodegradation and biotransformation enhanced with lactate as co-substrate. • Sulfate removal significantly decreased under limited co-substrate concentration. • Changes in microbial community structure were studied using bar-coded pyrosequencing. • Lactate as co-substrate showed the highest relative abundance of sulfate reducing bacteria. - Abstract: This study investigated the anaerobic treatment of sulfate-rich synthetic textile wastewater in three sulfidogenic sequential batch reactors (SBRs). The experimental protocol was designed to examine the effect of three different co-substrates (lactate, glucose, and ethanol) and their concentrations on wastewater treatment performance. Sulfate reduction and dye degradation were improved when lactate and ethanol were used as electron donors, as compared with glucose. Moreover, under co-substrate limited concentrations, color, sulfate, and chemical oxygen demand (COD) removal efficiencies were declined. By reducing co-substrate COD gradually from 3000 to 500 mg/L, color removal efficiencies were decreased from 98.23% to 78.46%, 63.37%, and 69.10%, whereas, sulfate removal efficiencies were decreased from 98.42%, 82.35%, and 87.0%, to 30.27%, 21.50%, and 10.13%, for lactate, glucose, and ethanol fed reactors, respectively. Fourier transform infrared spectroscopy (FTIR) and total aromatic amine analysis revealed lactate to be a potential co-substrate for further biodegradation of intermediate metabolites formed after dye degradation. Pyrosequencing analysis showed that microbial community structure was significantly affected by the co-substrate. The reactor with lactate as co-substrate showed the highest relative abundance of sulfate reducing bacteria (SRBs), followed by ethanol, whereas the glucose-fed reactor showed the lowest relative abundance of SRB.

  17. The application of ionising radiation in industrial wastewater treatment technology

    International Nuclear Information System (INIS)

    Kos, L.; Perkowski, J.; Ledakowicz, S.

    2003-01-01

    An attempt was made to apply radiation techniques in the treatment of industrial wastewater from a dairy, brewery and sugar factory. For degradation of pollutants present in the wastewater, the following methods were used: irradiation, irradiation combined with aeration, ozonation, and combined irradiation and ozonation. For all three types of wastewater, the best method among these listed above appeared to be the method of irradiation combined with ozonation. Most degradable was the wastewater produced in sugar factories, and the least biodegradable appeared to be dairy wastewater. Depending on the dose of ozone and radiation, a maximum 60% reduction of COD was obtained. No effect of the wastewater aeration on its degradation by radiation was found. Changes in the content of mineral compounds were observed in none of the cases. The process of biological treatment of wastewater was carried out in a low-loaded, wetted bed. Pretreatment of the wastewater had no significant effect on the improvement of the biological step operation. Some effect was observed only in the case of the wastewater coming from a sugar factory. For medium concentrated wastewater from food industry, it is not economically justified to apply the pretreatment with the use of ionising radiation. (orig.)

  18. Simulation of wastewater treatment plant within integrated urban wastewater models.

    Science.gov (United States)

    Heusch, S; Kamradt, B; Ostrowski, M

    2010-01-01

    In the federal state of Hesse in Germany the application of an integrated software modelling framework is becoming part of the planning process to attain legal approval for the operation of combined sewer systems. The software allows for parallel simulation of flow and water quality routing in the sewer system and in receiving rivers. It combines existing pollution load model approaches with a simplified version of the River Water Quality Model No. 1 (RWQM1). Comprehensive simulation of the wastewater treatment plant (WWTP) is not considered yet. The paper analyses alternatives for the implementation of a WWTP module to model activated sludge plants. For both primary and secondary clarifiers as well as for the activated sludge process concepts for the integration into the existing software framework were developed. The activated sludge concept which uses a linearized version of the well known ASM1 model is presented in detail.

  19. COMPARISON OF ESCHERICHIA COLI, TOTAL COLIFORM, AND FECAL COLIFORM POPULATIONS AS INDICATORS OF WASTEWATER TREATMENT EFFICIENCY

    Science.gov (United States)

    Escherichia coli, total coliform, and fecal coliform data were collected from two wastewater treatment facilities, a subsurface constructed wetlands, and the receiving stream. Results are presented from individual wastewater treatment process streams, final effluent and river sit...

  20. A comprehensive review on utilization of wastewater from coffee processing.

    Science.gov (United States)

    Rattan, Supriya; Parande, A K; Nagaraju, V D; Ghiwari, Girish K

    2015-05-01

    The coffee processing industry is one of the major agro-based industries contributing significantly in international and national growth. Coffee fruits are processed by two methods, wet and dry process. In wet processing, coffee fruits generate enormous quantities of high strength wastewater requiring systematic treatment prior to disposal. Different method approach is used to treat the wastewater. Many researchers have attempted to assess the efficiency of batch aeration as posttreatment of coffee processing wastewater from an upflow anaerobic hybrid reactor (UAHR)-continuous and intermittent aeration system. However, wet coffee processing requires a high degree of processing know-how and produces large amounts of effluents which have the potential to damage the environment. Characteristics of wastewater from coffee processing has a biological oxygen demand (BOD) of up to 20,000 mg/l and a chemical oxygen demand (COD) of up to 50,000 mg/l as well as the acidity of pH below 4. In this review paper, various methods are discussed to treat coffee processing wastewaters; the constitution of wastewater is presented and the technical solutions for wastewater treatment are discussed.

  1. Energy Efficiency Strategies for Municipal Wastewater Treatment Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Daw, J.; Hallett, K.; DeWolfe, J.; Venner, I.

    2012-01-01

    Water and wastewater systems are significant energy consumers with an estimated 3%-4% of total U.S. electricity consumption used for the movement and treatment of water and wastewater. Water-energy issues are of growing importance in the context of water shortages, higher energy and material costs, and a changing climate. In this economic environment, it is in the best interest for utilities to find efficiencies, both in water and energy use. Performing energy audits at water and wastewater treatment facilities is one way community energy managers can identify opportunities to save money, energy, and water. In this paper the importance of energy use in wastewater facilities is illustrated by a case study of a process energy audit performed for Crested Butte, Colorado's wastewater treatment plant. The energy audit identified opportunities for significant energy savings by looking at power intensive unit processes such as influent pumping, aeration, ultraviolet disinfection, and solids handling. This case study presents best practices that can be readily adopted by facility managers in their pursuit of energy and financial savings in water and wastewater treatment. This paper is intended to improve community energy managers understanding of the role that the water and wastewater sector plays in a community's total energy consumption. The energy efficiency strategies described provide information on energy savings opportunities, which can be used as a basis for discussing energy management goals with water and wastewater treatment facility managers.

  2. Treatment of wastewater having estrogen activity by ionizing radiation

    International Nuclear Information System (INIS)

    Kimura, Atsushi; Taguchi, Mitsumasa; Ohtani, Yoshimi; Shimada, Yoshitaka; Hiratsuka, Hiroshi; Kojima, Takuji

    2007-01-01

    Decomposition of endocrine disrupting chemicals (EDCs) in wastewater was investigated by use of 60 Co γ-ray. Estrogen activities of wastewaters were estimated by the yeast two-hybrid assay based on human or medaka estrogen receptors. The dose required for the elimination of estrogen activity of wastewater below 1 ng dm -3 was about 200 Gy (J kg -1 ). The elimination dose of the estrogen activity depended on the amounts of total organic carbons in wastewater. The economic cost of the treatment process of EDCs using electron beam was estimated at 17 yen m -3

  3. A plant wide aqueous phase chemistry model describing pH variations and ion speciation/pairing in wastewater treatment process models

    DEFF Research Database (Denmark)

    Flores-Alsina, X.; Mbamba, C. Kazadi; Solon, K.

    /pairing is presented and interfaced with industry standard models. The module involves extensive consideration of non-ideality by including ion activities instead of molar concentrations and complex ion pairing. The general equilibria are formulated as a set of Differential Algebraic Equations (DAEs) instead......There is a growing interest within the Wastewater Treatment Plant (WWTP) modelling community to correctly describe physico-chemical processes after many years of mainly focusing on biokinetics (Batstone et al., 2012). Indeed, future modelling needs, such as a plant-wide phosphorus (P) description...... cationic/anionic loads. In this way, the general applicability/flexibility of the proposed approach is demonstrated by implementing the aqueous phase chemistry module in some of the most frequently used WWTP process simulation models. Finally, it is shown how traditional wastewater modelling studies can...

  4. A plant-wide aqueous phase chemistry module describing pH variations and ion speciation/pairing in wastewater treatment process models

    DEFF Research Database (Denmark)

    Flores Alsina, Xavier; Kazadi Mbamba, Christian; Solon, Kimberly

    2015-01-01

    standard models. The module accounts for extensive consideration of non-ideality, including ion activities instead of molar concentrations and complex ion pairing. The general equilibria are formulated as a set of Differential Algebraic Equations (DAEs) instead of Ordinary Differential Equations (ODEs......There is a growing interest within the Wastewater Treatment Plant (WWTP) modelling community to correctly describe physico-chemical processes after many years of mainly focusing on biokinetics. Indeed, future modelling needs, such as a plant-wide phosphorus (P) description, require a major...... at different cationic/anionic loads. In this way, the general applicability/flexibility of the proposed approach is demonstrated, by implementing the aqueous phase chemistry module in some of the most frequently used WWTP process simulation models. Finally, it is shown how traditional wastewater modelling...

  5. Textile wastewater reuse after additional treatment by Fenton's reagent.

    Science.gov (United States)

    Ribeiro, Marília Cleto Meirelles; Starling, Maria Clara V M; Leão, Mônica Maria Diniz; de Amorim, Camila Costa

    2017-03-01

    This study verifies textile wastewater reuse treated by the conventional activated sludge process and subjected to further treatment by advanced oxidation processes. Three alternative processes are discussed: Fenton, photo-Fenton, and UV/H 2 O 2 . Evaluation of treatments effects was based on factorial experiment design in which the response variables were the maximum removal of COD and the minimum concentration of residual H 2 O 2 in treated wastewater. Results indicated Fenton's reagent, COD/[H 2 O 2 ]/[Fe 2+ ] mass ratio of 1:2:2, as the best alternative. The selected technique was applied to real wastewater collected from a conventional treatment plant of a textile mill. The quality of the wastewater before and after the additional treatment was monitored in terms of 16 physicochemical parameters defined as suitable for the characterization of waters subjected to industrial textile use. The degradation of the wastewater was also evaluated by determining the distribution of its molecular weight along with the organic matter fractionation by ultrafiltration, measured in terms of COD. Finally, a sample of the wastewater after additional treatment was tested for reuse at pilot scale in order to evaluate the impact on the quality of dyed fabrics. Results show partial compliance of treated wastewater with the physicochemical quality guidelines for reuse. Removal and conversion of high and medium molecular weight substances into low molecular weight substances was observed, as well as the degradation of most of the organic matter originally present in the wastewater. Reuse tests indicated positive results, confirming the applicability of wastewater reuse after the suggested additional treatment. Graphical abstract Textile wastewater samples after additional treatment by Fenton's reagent, photo-Fenton and H 2 O 2 /UV tested in different conditions.

  6. The use of mathematical models in teaching wastewater treatment engineering

    DEFF Research Database (Denmark)

    Morgenroth, Eberhard Friedrich; Arvin, Erik; Vanrolleghem, P.

    2002-01-01

    Mathematical modeling of wastewater treatment processes has become increasingly popular in recent years. To prepare students for their future careers, environmental engineering education should provide students with sufficient background and experiences to understand and apply mathematical models...

  7. Advanced oxidation processes: a review of fundamentals and applications in the treatment of urban and industrial wastewaters

    Directory of Open Access Journals (Sweden)

    Karla Santos de Araújo1;

    2016-04-01

    Full Text Available Contamination of water by toxic and/or recalcitrant species has great environmental impacts. In this context, Advanced Oxidation Processes (AOPs - technologies that principally use the hydroxyl radical (HO● for oxidation - have emerged as promising alternatives in treating urban and industrial wastewaters. This study reviewed the literature on POAs and presented data regarding the efficiency of these processes in pollutant degradation, comparing the theoretical reasoning and its industrial applications. The fundamentals and major applications of AOPs (chemical, photochemical, electrochemical, sonochemical and ozone-based processes, as well as their advantages and disadvantages, are described in this review. AOPs have been considered an effective alternative from a technical, economic and environmental viewpoint for the degradation of pollutants in effluents and industrial wastewater, despite having limitations such as high cost of available energy sources, development of new low-cost catalytic materials and construction of full-scale reactors. It is greatly important to the industrial application of AOPs to optimize the effectiveness of these factors.

  8. Enhanced anaerobic biological treatment of phenolic wastewaters

    Energy Technology Data Exchange (ETDEWEB)

    Kindzierski, W.B.

    1989-01-01

    The combined treatment requirements for a high strength phenolic wastewater were examined in batch and semicontinuous anaerobic methanogenic bioassays. Solvent extraction pretreatment and in-situ addition of activated carbon during anaerobic treatment were effective in removing phenol from a coal liquefaction wastewater from the H-coal process. The selective pH adjustment of high strength phenolic wastewater followed by diisopropyl ether extraction reduced the phenolic concentration to non-inhibitory levels, and removed non-phenolic inhibitory compounds. The weakly acid nature of phenol and substituted phenols allows for their selective removal by solvent extraction. Anaerobic bacteria were able to degrade phenol in the solvent extracted wastwater, however, the bacteria exhibited instability under semicontinuous feeding conditions. The addition of activated carbon to the stressed phenol-degrading cultures improved their ability to remove phenol from solution. Further investigation into the role activated carbon performed during anaerobic phenol treatment demonstrated its importance as a biological support, in addition to providing adsorptive capacity for organic (including inhibitory) compounds. The similar study of other support materials (ion exchange resins) which did not possess an adsorptive capacity for organic compounds supported these findings. Excellent agreement was demonstrated among physical evaluation methods, performance bioassays, radiolabelled cell adsorption studies, and scanning electron microscopy observations in judging the value of the materials as biological supports.

  9. REUSE IN EXHAUST DYEING PROCESSES OF TEXTILE WASTEWATERS

    OpenAIRE

    P. Monllor; J.F. Sanz; R. Vicente; M. Bonet

    2013-01-01

    Textile dyeing and wet finishing wastewaters are considered a major concern because of the necessity of removing colour and pollutants before their discharge into the environment. Their chemical composition is diverse depending mainly on fashion, material and process. After the homogenization of all the wastewaters coming from the different textile processes, the generally used multi-stage technology for their treatment and purification combines physico-chemical and biological processes. Howe...

  10. Nitrous oxide emission during wastewater treatment

    NARCIS (Netherlands)

    Kampschreur, M.J.; Temmink, B.G.; Kleerebezem, R.; Jetten, M.S.M.; Loosdrecht, M.C.M.

    2009-01-01

    Nitrous oxide (N2O), a potent greenhouse gas, can be emitted during wastewater treatment, significantly contributing to the greenhouse gas footprint. Measurements at lab-scale and full-scale wastewater treatment plants (WWTPs) have demonstrated that N2O can be emitted in substantial amounts during

  11. The feasibility of using combined TiO2 photocatalysis oxidation and MBBR process for advanced treatment of biologically pretreated coal gasification wastewater.

    Science.gov (United States)

    Xu, Peng; Han, Hongjun; Hou, Baolin; Zhuang, Haifeng; Jia, Shengyong; Wang, Dexin; Li, Kun; Zhao, Qian

    2015-01-01

    The study examined the feasibility of using combined heterogeneous photocatalysis oxidation (HPO) and moving bed biofilm reactor (MBBR) process for advanced treatment of biologically pretreated coal gasification wastewater (CGW). The results indicated that the TOC removal efficiency was significantly improved in HPO. Gas chromatography-mass spectrometry (GC-MS) analysis indicated that the HPO could be employed to eliminate bio-refractory and toxic compounds. Meanwhile, the BOD5/COD of the raw wastewater was increased from 0.08 to 0.49. Furthermore, in the integration of TiO2 photocatalysis oxidation and MBBR process, the effluent of COD, BOD5, TOC, NH4(+)-N and TN were 22.1 mg/L, 1.1 mg/L, 11.8 mg/L, 4.1mg/L and 13.7 mg/L, respectively, which all met class-I criteria of the Integrated Wastewater Discharge Standard (GB18918-2002, China). The total operating cost was 2.8CNY/t. Therefore, there is great potential for the combined system in engineering applications as a final treatment for biologically pretreated CGW. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Application of a sponge media (BioCube) process for upgrading and expansion of existing caprolactam wastewater treatment plant for nitrogen removal.

    Science.gov (United States)

    Chae, K J; Yim, S K; Choi, K H

    2004-01-01

    For the upgrade and expansion of an existing caprolactam wastewater treatment plant, a freely floating sponge media (BioCube) process was selected based on extensive pilot-plant tests, due to extreme space constraints. In order to protect nitrifier inhibition caused by high strength organics in caprolactam wastewater, the pilot plant consisted of an organics removal reactor, which functioned as a pretreatment for nitrification, and followed the nitrogen removal reactor. The suspended MLSS was 1,800-4,000 and the media attached MLSS was maintained at 22,000-26,000 mg/L. The final effluent COD was noticeably low, around 20.4-37 mg/L, even with fairly large fluctuations in the feed levels, between 1,400-6,770 mg/L. The removal of total nitrogen with the system, when denitrification was close to completion, was approximately 97.6%. For the entire run, complete nitrification of 99.6% was achieved, which might have been due to well-acclimatized nitrifiers attached in the BioCube media. Specifically, after adaptation, the nitrification continuously increased in the organics removal reactor, even under high residual organics conditions. From the numerous experimental results, the BioCube process seemed to be an effective method for the upgrading and expansion of the existing wastewater treatment plant, with minimum reactor enlargement.

  13. Treatment of Tehran refinery wastewater using rotating biological contactor

    Energy Technology Data Exchange (ETDEWEB)

    Ghazi, Masoud; Mirsajadi, Hassan; Ganjidoust, Hossien [Tarbeyat Modarres Univ., Teheran (Iran, Islamic Republic of). Environmental Engineering Dept.

    1993-12-31

    Tehran Refinery is a large plant which produces several petroleum products. The wastewaters are generated from several different refinery processes and units. Because of the wastewaters uniqueness they need to be treated in each specific plant. Currently, an activated sludge system is the main biological wastewater treatment process in Tehran refinery plant. A study was initiated in order to find a more suitable and reliable process which can produce a better treated effluent which might, in case the process be successful, be reused for irrigation lands. 5 refs., 5 figs.

  14. Treatment of textile wastewater with membrane bioreactor: A critical review.

    Science.gov (United States)

    Jegatheesan, Veeriah; Pramanik, Biplob Kumar; Chen, Jingyu; Navaratna, Dimuth; Chang, Chia-Yuan; Shu, Li

    2016-03-01

    Membrane bioreactor (MBR) technology has been used widely for various industrial wastewater treatments due to its distinct advantages over conventional bioreactors. Treatment of textile wastewater using MBR has been investigated as a simple, reliable and cost-effective process with a significant removal of contaminants. However, a major drawback in the operation of MBR is membrane fouling, which leads to the decline in permeate flux and therefore requires membrane cleaning. This eventually decreases the lifespan of the membrane. In this paper, the application of aerobic and anaerobic MBR for textile wastewater treatment as well as fouling and control of fouling in MBR processes have been reviewed. It has been found that long sludge retention time increases the degradation of pollutants by allowing slow growing microorganisms to establish but also contributes to membrane fouling. Further research aspects of MBR for textile wastewater treatment are also considered for sustainable operations of the process. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Microbial Community Profiles in Wastewaters from Onsite Wastewater Treatment Systems Technology

    Science.gov (United States)

    Jałowiecki, Łukasz; Chojniak, Joanna Małgorzata; Dorgeloh, Elmar; Hegedusova, Berta; Ejhed, Helene; Magnér, Jörgen; Płaza, Grażyna Anna

    2016-01-01

    The aim of the study was to determine the potential of community-level physiological profiles (CLPPs) methodology as an assay for characterization of the metabolic diversity of wastewater samples and to link the metabolic diversity patterns to efficiency of select onsite biological wastewater facilities. Metabolic fingerprints obtained from the selected samples were used to understand functional diversity implied by the carbon substrate shifts. Three different biological facilities of onsite wastewater treatment were evaluated: fixed bed reactor (technology A), trickling filter/biofilter system (technology B), and aerated filter system (the fluidized bed reactor, technology C). High similarities of the microbial community functional structures were found among the samples from the three onsite wastewater treatment plants (WWTPs), as shown by the diversity indices. Principal components analysis (PCA) showed that the diversity and CLPPs of microbial communities depended on the working efficiency of the wastewater treatment technologies. This study provided an overall picture of microbial community functional structures of investigated samples in WWTPs and discerned the linkages between microbial communities and technologies of onsite WWTPs used. The results obtained confirmed that metabolic profiles could be used to monitor treatment processes as valuable biological indicators of onsite wastewater treatment technologies efficiency. This is the first step toward understanding relations of technology types with microbial community patterns in raw and treated wastewaters. PMID:26807728

  16. Parameter optimization of ferro-sonication pre-treatment process for degradation of bisphenol A and biodegradation from wastewater sludge using response surface model.

    Science.gov (United States)

    Mohapatra, D P; Brar, S K; Tyagi, R D; Surampalli, R Y

    2011-05-15

    In this study, the application of response surface model in predicting and optimizing the ferro-sonication pre-treatment for degradation of bisphenol A (BPA), an endocrine disrupter compound from wastewater sludge (WWS) was investigated. The ferro-sonication pre-treatment process was carried out according to central composite design (CCD) with four independent variables such as wastewater sludge solids concentration, pH, ultrasonication time and FeSO(4) concentration. The effect of ferro-sonication pre-treatment was assessed in terms of increase in sludge solids (suspended solids (SS) and volatile solids (VS)) and organic matter (chemical oxygen demand (COD) and soluble organic carbon (SOC)) solubilization and simultaneous BPA degradation from WWS. It was observed that among all the variables studied, ultrasonication time had more significantly affected the efficiency of the ferro-sonication pre-treatment process followed by FeSO(4) and solids concentration. Through this optimization process, it was found that maximum BPA degradation of 88% could be obtained with 163 min ultrasonication time, 2.71 mg/L FeSO(4) concentration, pH 2.81 with 22 g/L SS. Further, the effect of ferro-sonication pre-treatment on biodegradation of WWS was also studied. It was observed that ultrasonication time had significant effect and the higher biodegradation (32.48%) was observed at 180 min ultrasonication time. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Radiotracer Applications in Wastewater Treatment Plants

    International Nuclear Information System (INIS)

    2011-01-01

    Wastewater containing pollutants resulting from municipal and industrial activities are normally collected in wastewater treatment plants (WWTPs) for processing before discharge to the environment. The WWTPs are the last barrier against contamination of downstream surface waters such as rivers, lakes and sea. Treated wastewater is reused for irrigation, particularly in arid and semi-arid countries. Therefore, it is very important to maintain optimal operating conditions of WWTPs to eliminate or reduce environmental pollution. Wastewater treatment plants are complicated systems, where the processes of mixing, separation, aeration, biological and chemical reactions occur. A WWTP is basically a multiphase system, and the efficiency of an installation strongly depends on liquid, solid and gas phase flow structures and their residence time distributions (RTDs). However, the fluid dynamic properties of such systems are not yet completely understood, rendering difficult the theoretical prediction of important process parameters such as flow rates, phase distributions, mixing and sediment characteristics. Tracer techniques are very useful tools to investigate the efficiency of purification in WWTPs, aiding both their design and performance optimization. There are many kinds of tracers. Radioactive tracers are the most sensitive and are largely used for on-line diagnosis of various operations in WWTPs. The success of radiotracer applications rests upon their extremely high detection sensitivity, and the strong resistance against severe process conditions. During the last few decades, many radiotracer studies have been conducted worldwide for investigation of various installations for wastewater treatment, such as mixer, aeration tank, clarifiers, digester, filter, wetland and oxidation units. Various radiotracer methods and techniques have been developed by individual tracer groups. However, the information necessary for the preservation of knowledge and transfer of

  18. Treatment Of Wastewater For Reuse With Mobile Electron Beam Plant

    International Nuclear Information System (INIS)

    Han, B.; Kim, J.K.; Kim, Y.R.; Zommer, N.

    2012-01-01

    The use of alternative disinfectants to chlorine for the wastewater treatment has received increasing attention in recent years to treat either liquid or solids streams within wastewater treatment plants for pathogens and trace organics (TOrCs). Although several technologies have come to the forefront as an alternative to chlorine (e.g., ultraviolet [UV] and hydrogen peroxide), the majority of these technologies are chemically based, with the exception of UV. An attractive physical disinfection approach is by electron beam (EB) irradiation. EB treatment of wastewater leads to their purification from various pollutants. It is caused by the decomposition of pollutants as a result of their reactions with highly reactive species formed from water radiolysis: hydrated electron, OH free radical and H atom [Pikaev (1986)]. Sometimes methods such as EB with biological treatment, adsorption and others improve the effect of EB treatment of the wastewater purification. In the process of EB treatment of wastewater there are utilized chemical transformations of pollutants induced by ionizing radiation. At sufficiently high absorbed doses these transformations can result in complete decomposition (removal) of the substance. Under real conditions, i.e., at rather high content of pollutants in a wastewater and economically acceptable doses, partial decomposition of pollutant takes place as well as transformations of pollutant molecules that result in improving subsequent purification stages, efficiency of the process being notably influenced by irradiation conditions and wastewater composition [Woods and Pikaev (1994)]. (author)

  19. Chemical Compounds Recovery in Carboxymethyl Cellulose Wastewater Treatment

    Directory of Open Access Journals (Sweden)

    P.-H. Rao

    2015-05-01

    Full Text Available Carboxymethyl cellulose (CMC is a kind of cellulose ether widely used in industrial production. CMC wastewater usually have high chemical oxygen demand (COD and salinity (>10 %, which result from organic and inorganic by-products during CMC production. It is significant that the wastewater is pretreated to decrease salinity and recover valuable organics before biochemical methods are employed. In this paper, distillation-extraction method was used to pretreat CMC wastewater and recover valuable chemical compounds from wastewater (Fig. 1. Initial pH of CMC wastewater was adjusted to different values (6.5, 8.5, 9.5, 10.5, 12.0 before distillation to study the effect of pH on by-products in wastewater. By-products obtained from CMC wastewater were extracted and characterized by NMR, XRD and TGA. Distillate obtained from distillation of wastewater was treated using biological method, i.e., upflow anaerobic sludge blanket (UASB-contact oxidation process. Domestic sewage and flushing water from manufacturing shop was added into distillate to decrease initial COD and increase nutrients such as N, P, K. Experimental results showed that by-products extracted from CMC wastewater mainly include ethoxyacetic acid and NaCl, which were confirmed by NMR and XRD (Fig. 2. TGA results of by-products indicated that the content of NaCl in inorganic by-products reached 96 %. Increasing initial pH value of CMC wastewater might significantly raise the purity of ethoxyacetic acid in organic by-products. UASB-contact oxidation process showed a good resistance to shock loading. Results of 45-day continuous operation revealed that CODCr of final effluent might be controlled below 500 mg l−1 and meet Shanghai Industrial Wastewater Discharge Standard (CODCr −1, which indicated that the treatment process in this study was appropriate to treat distillate of wastewater from CMC production industry.

  20. The effect of treatment parameters and detergent additions on the softening of radioactively contaminated process wastewater at the Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Roe, M.M.; Kent, T.E.

    1993-01-01

    Oak Ridge National Laboratory (ORNL) is a research facility owned by the Department of Energy and operated by Martin Marietta Energy Systems. At ORNL, research is performed in a wide range of areas including nuclear energy research, environmental sciences, materials research, health and safety research, and production of radioisotopes. These activities generate 70 million gallons per year of process wastewater which is basically tap water and ground water containing trace amounts of radioactive compounds. This water is treated for removal of contaminants at the Process Waste Treatment Plant (PWTP) before discharge to the environment

  1. Carbon footprint of aerobic biological treatment of winery wastewater.

    Science.gov (United States)

    Rosso, D; Bolzonella, D

    2009-01-01

    The carbon associated with wastewater and its treatment accounts for approximately 6% of the global carbon balance. Within the wastewater treatment industry, winery wastewater has a minor contribution, although it can have a major impact on wine-producing regions. Typically, winery wastewater is treated by biological processes, such as the activated sludge process. Biomass produced during treatment is usually disposed of directly, i.e. without digestion or other anaerobic processes. We applied our previously published model for carbon-footprint calculation to the areas worldwide producing yearly more than 10(6) m(3) of wine (i.e., France, Italy, Spain, California, Argentina, Australia, China, and South Africa). Datasets on wine production from the Food and Agriculture Organisation were processed and wastewater flow rates calculated with assumptions based on our previous experience. Results show that the wine production, hence the calculated wastewater flow, is reported as fairly constant in the period 2005-2007. Nevertheless, treatment process efficiency and energy-conservation may play a significant role on the overall carbon-footprint. We performed a sensitivity analysis on the efficiency of the aeration process (alphaSOTE per unit depth, or alphaSOTE/Z) in the biological treatment operations and showed significant margin for improvement. Our results show that the carbon-footprint reduction via aeration efficiency improvement is in the range of 8.1 to 12.3%.

  2. Electron beam treatment of industrial wastewater

    International Nuclear Information System (INIS)

    Han, Bumsoo; Kim, JinKyu; Kim, Yuri

    2004-01-01

    For industrial wastewater with low impurity levels such as contaminated ground water, cleaning water and etc., purification only with electron beam is possible, but it should be managed carefully with reducing required irradiation doses as low as possible. Also for industrial wastewater with high impurity levels such as dyeing wastewater, leachate and etc., purification only with electron beam requires high amount of doses and far beyond economies. Electron beam treatment combined with conventional purification methods such as coagulation, biological treatment, etc. is suitable for reduction of non-biodegradable impurities in wastewater and will extend the application area of electron beam. A pilot plant with electron beam for treating 1,000 m 3 /day of wastewater from dyeing industries has constructed and operated continuously since Oct 1998. Electron beam irradiation instead of chemical treatment shows much improvement in removing impurities and increases the efficiency of biological treatment. Actual plant is under consideration based upon the experimental results. (author)

  3. Water footprint assessment for wastewater treatment: method, indicator, and application.

    Science.gov (United States)

    Shao, Ling; Chen, G Q

    2013-07-16

    The water footprint in terms of the sum of both direct and indirect water cost of wastewater treatment is for the first time accounted in this work. On the basis of the hybrid method as a combination of process analysis and input-output analysis, a detailed water footprint accounting procedure is provided to cover the supply chain of a wastewater treatment plant. A set of indices intending to reveal the efficiency as well as renewability of wastewater treatment systems are devised as parallels of corresponding indicators in net energy analysis for energy supply systems. A case study is carried out for the Beijing Space City wastewater treatment plant as a landmark project. The high WROI (water return on investment) and low WIWP (water investment in water purified) indicate a high efficiency and renewability of the case system, illustrating the fundamental function of wastewater treatment for water reuse. The increasing of the wastewater and sludge treatment rates are revealed in an urgent need to reduce the water footprint of China and to improve the performance of wastewater treatment.

  4. HIGH-RATE ANAEROBIC TREATMENT OF ALCOHOLIC WASTEWATERS

    Directory of Open Access Journals (Sweden)

    Florencio L.

    1997-01-01

    Full Text Available Modern high-rate anaerobic wastewater treatment processes are rapidly becoming popular for industrial wastewater treatment. However, until recently stable process conditions could not be guaranteed for alcoholic wastewaters containing higher concentrations of methanol. Although methanol can be directly converted into methane by methanogens, under specific conditions it can also be converted into acetate and butyrate by acetogens. The accumulation of volatile fatty acids can lead to reactor instability in a weakly buffered reactor. Since this process was insufficiently understood, the application of high-rate anaerobic reactors was highly questionable. This research investigated the environmental factors that are of importance in the predominance of methylotrophic methanogens over acetogens in a natural mixed culture during anaerobic wastewater treatment in upflow anaerobic sludge bed reactors. Technological and microbiological aspects were investigated. Additionally, the route by which methanol is converted into methane is also presented

  5. Decolorization and COD reduction of UASB pretreated poultry manure wastewater by electrocoagulation process: A post-treatment study

    Energy Technology Data Exchange (ETDEWEB)

    Yetilmezsoy, Kaan [Department of Environmental Engineering, Yildiz Technical University, 34349 Yildiz, Besiktas, Istanbul (Turkey)], E-mail: yetilmez@yildiz.edu.tr; Ilhan, Fatih; Sapci-Zengin, Zehra; Sakar, Suleyman; Gonullu, M. Talha [Department of Environmental Engineering, Yildiz Technical University, 34349 Yildiz, Besiktas, Istanbul (Turkey)

    2009-02-15

    The performance of electrocoagulation (EC) technique for decolorization and chemical oxygen demand (COD) reduction of anaerobically pretreated poultry manure wastewater was investigated in a laboratory batch study. Two identical 15.7-L up-flow anaerobic sludge blanket (UASB) reactors were first run under various organic and hydraulic loading conditions for 216 days. Effects of operating parameters such as type of sacrificial electrode material, time of electrolysis, current density, initial pH, and electrolyte concentration were further studied to optimize conditions for the post-treatment of UASB pretreated poultry manure wastewater. Preliminary tests conducted with two types of sacrificial electrodes (Al and Fe) resulted that Al electrodes were found to be more effective for both COD and color removals than Fe electrodes. The subsequent EC tests performed with Al electrodes showed that optimal operating conditions were determined to be an initial pH of 5.0, a current density of 15 mA/cm{sup 2}, and an electrolysis time of 20 min. The results indicated that under the optimal conditions, about 90% of COD and 92% of residual color could be effectively removed from the UASB effluent with the further contribution of the EC technology used as a post-treatment unit. In this study, the possible acute toxicity of the EC effluent was also evaluated by a static bioassay test procedure using guppy fish (Lebistes reticulatus). Findings of this study clearly indicated that incorporation of a toxicological test into conventional physicochemical analyses provided a better evaluation of final discharge characteristics.

  6. Decolorization and COD reduction of UASB pretreated poultry manure wastewater by electrocoagulation process: A post-treatment study

    International Nuclear Information System (INIS)

    Yetilmezsoy, Kaan; Ilhan, Fatih; Sapci-Zengin, Zehra; Sakar, Suleyman; Gonullu, M. Talha

    2009-01-01

    The performance of electrocoagulation (EC) technique for decolorization and chemical oxygen demand (COD) reduction of anaerobically pretreated poultry manure wastewater was investigated in a laboratory batch study. Two identical 15.7-L up-flow anaerobic sludge blanket (UASB) reactors were first run under various organic and hydraulic loading conditions for 216 days. Effects of operating parameters such as type of sacrificial electrode material, time of electrolysis, current density, initial pH, and electrolyte concentration were further studied to optimize conditions for the post-treatment of UASB pretreated poultry manure wastewater. Preliminary tests conducted with two types of sacrificial electrodes (Al and Fe) resulted that Al electrodes were found to be more effective for both COD and color removals than Fe electrodes. The subsequent EC tests performed with Al electrodes showed that optimal operating conditions were determined to be an initial pH of 5.0, a current density of 15 mA/cm 2 , and an electrolysis time of 20 min. The results indicated that under the optimal conditions, about 90% of COD and 92% of residual color could be effectively removed from the UASB effluent with the further contribution of the EC technology used as a post-treatment unit. In this study, the possible acute toxicity of the EC effluent was also evaluated by a static bioassay test procedure using guppy fish (Lebistes reticulatus). Findings of this study clearly indicated that incorporation of a toxicological test into conventional physicochemical analyses provided a better evaluation of final discharge characteristics

  7. Environmental exergy analysis of wastewater treatment plants

    Energy Technology Data Exchange (ETDEWEB)

    Mora Bejarano, C.H.; Oliveira Junior, S. de [Universidade de Sao Paulo (USP), SP (Brazil). Dept. de Engenharia Mecanica]. E-mail: carlos.bejarano@poli.usp.br; silvio.oliveira@poli.usp.br

    2006-12-15

    This work evaluates the environmental impact of Wastewater Treatment Plants (WTP) based on data generated by the exergy analysis, calculating and applying environmental impact indexes for two WTP located in the Metropolitan Area of Sao Paulo. The environmental impact of the waste water treatment plants was done by means of evaluating two environmental impact exergy based indexes: the environmental exergy efficiency and the total pollution rate (Rpol,t). The environmental exergy efficiency is defined as the ratio of the exergy of the useful effect of the WTP to the total exergy consumed by human and natural resources, including all the exergy inputs. That relation is an indication of the theoretical potential of future improvements of the process. Besides the environmental exergy efficiency, it is also used the total pollution rate, based on the definition done by Makarytchev (1997), as the ratio of the destroyed exergy associated to the process wastes to the exergy of the useful effect of the process. The analysis of the results shows that this method can be used to quantify and also optimise the environmental performance of Wastewater Treatment Plants. (author)

  8. Wastewater management in Khartoum Region Soba wastewater treatment plant (stabilization ponds)

    International Nuclear Information System (INIS)

    Maki, A. M. E.

    2010-03-01

    Soba wastewater treatment plant will be replaced shortly by new plant based on activate sludge. This study was carried in order to evaluate: the design, physical, chemical and biological characteristics and the capacity of the plant. Outlet Effluents quality was compared with Sudan wastewater treatment standards. Samples analyses were carried by UNESCO CHAIR 2006 (Khartoum State). It was found that the result is not as: The designed and standard level especially for BOD, COD, TBC and TC. It was also found that BOD and COD of the effluents were not complying with adopted standards for treated wastewater to be discharged to the environment. The study reached the conclusions that plant is overloaded and the characteristics of the wastewater received is not as the design which affects the efficiency of the treatment process. (Author)

  9. The use of mathematical models in teaching wastewater treatment engineering

    DEFF Research Database (Denmark)

    Morgenroth, Eberhard Friedrich; Arvin, Erik; Vanrolleghem, P.

    2002-01-01

    Mathematical modeling of wastewater treatment processes has become increasingly popular in recent years. To prepare students for their future careers, environmental engineering education should provide students with sufficient background and experiences to understand and apply mathematical models...... efficiently and responsibly. Approaches for introducing mathematical modeling into courses on wastewater treatment engineering are discussed depending on the learning objectives, level of the course and the time available....

  10. Secondary wastewater treatment by microalgae isolated from ...

    African Journals Online (AJOL)

    Microalgae play a fundamental role in primary and secondary wastewater treatment. In this work the growth, photosynthetic activity and removal of phosphorus from wastewater effluents by indigenous blue-green algal species, Spirulina and Oscillatoria, isolated from Gaborone oxidation ponds was studied. Oscillatoria and ...

  11. Technical note Biological treatment of industrial wastewater ...

    African Journals Online (AJOL)

    The biological treatment of wastewater from an aminoplastic resin-producing industry was studied in a pre-denitrification system. This study reports results on the removal of organic matter and nitrogen compounds from wastewater which contained high levels of formaldehyde and formic acid. The formaldehyde ...

  12. Study on decolorization of dyeing wastewater by electrochemical treatment

    Science.gov (United States)

    Chen, Jianjun; Xiaohui, Wang; Hao, Wu; Qi, Jiang

    2018-02-01

    In view of the decolorization of dyeing wastewater, three different kinds of simulated dyeing wastewater were treated by electrochemical method. The effects of current density, initial pH, electrolyte concentration and initial concentration of dye on the treatment effect were investigated, and the decolorization mechanism and color reversion were studied. The experimental results show that the decolorization rate of the three kinds of dyeing wastewater is more than 90% after 60min treatment. And the decolorization process is mainly chromogenic groups gradually destroyed, the dye molecules are gradually degraded. Moreover, in the natural conditions, aeration conditions, heating conditions, almost no phenomenon of color reversion occured.

  13. Elimination of Bisphenol A from Wastewater through Membrane Filtration Processes

    Directory of Open Access Journals (Sweden)

    Mariusz Dudziak

    2018-01-01

    Full Text Available New priorities for the environment have resulted in a reassessment of modern technology for treatment of urban wastewater. Urban wastewater treatment mainly involves the elimination or reduction of anthropogenic organic micropollutants in the aquatic environment. In this paper, the effectiveness of bisphenol A elimination from waste-water, after biological treatment, through a complex ultrafiltration/reverse osmosis purification process was evaluated. The effectveness of the wastewater treatment process in the tested system was also evaluated with a number of other physical and chemical analyses for pH, turbidity, colour, absorbance, TOC, phenol index, conductivity and the concentration of selected heavy metals. Within this study, the change in the hydraulic performance of the membranes was also investigated. The effectiveness of the reduction of bisphenol A concentrations during the process of ultrafiltration was small, due to the significant difference between the size of the pores of the membrane and the size of eliminated micropollutants. In the process of reverse osmosis, the wastewater treatment system reported that the concentration of bisphenol A was reduced by 68%. In the tested treatment system, the ultrafiltration/reverse osmosis completely removed colour, lead and chromium. Other contaminants were eliminated by more than 31%. In both membrane processes, there was evidence that the membrane pores were blocked, but this occurred to a greater extent during the process of reverse osmosis.

  14. The removal of formaldehyde from concentrated synthetic wastewater using O3/MgO/H2O2 process integrated with the biological treatment

    International Nuclear Information System (INIS)

    Moussavi, Gholamreza; Yazdanbakhsh, Ahmadreza; Heidarizad, Mahdi

    2009-01-01

    The catalytic advanced oxidation process (CAOP) of O 3 /MgO/H 2 O 2 was integrated with a sequencing batch reactor (SBR) system to completely treat concentrated formaldehyde wastewater, demonstrating that this combination is an effective method for treating such wastewaters. The influence of several operational variables - including pH, MgO powder dosage, and the concentrations of H 2 O 2 and O 3 - was investigated for the O 3 /MgO/H 2 O 2 degradation of a 7000 mg/L formaldehyde wastewater. The optimum conditions were found to be a pH of 8, 5 g/L dose of MgO powder, 0.09 mole/L concentration of H 2 O 2 , and 0.153 g/L min dose of O 3 . The formaldehyde and COD concentrations were reduced 79% and 65.6%, respectively, in the CAOP for 120 min of reaction time under the optimum condition stated above. The remaining concentrations of formaldehyde and COD were 1500 mg/L and 3200 mg/L, respectively, in the effluent. The degradation of formaldehyde in CAOP was determined to be a first-order reaction with a constant of 0.015/min, and radical oxidation was the predominant degradation mechanism. This effluent was post-treated in SBR system for a total cycle time of 24 h. The SBR completely removed the formaldehyde and removed 98% of the COD, reducing the COD concentration to lower than 60 mg/L. Therefore, the integrated O 3 /MgO/H 2 O 2 and SBR process is demonstrated as a promising technology for the complete treatment of wastewater with high concentrations of toxic and inhibitory compounds such as formaldehyde.

  15. Coupling coagulation, flocculation and decantation with photo-Fenton process for treatment of industrial wastewater containing fipronil: Biodegradability and toxicity assessment.

    Science.gov (United States)

    da Costa Filho, Batuira Martins; da Silva, Valdislaine Maria; Silva, Jader de Oliveira; da Hora Machado, Antonio Eduardo; Trovó, Alam Gustavo

    2016-06-01

    This work reports the treatment of wastewater containing the insecticide fipronil, integrating coagulation, flocculation and decantation in the photo-Fenton process. Under the best concentration of the coagulant - Fe(3+) (56 mg L(-1)), the suspended solids and total fipronil concentrations decreased respectively from 7000 and 20.9 mg L(-1) to 590 and 2.2 mg L(-1), but without reduction in dissolved organic carbon - DOC (1760 mg C L(-1)) and acute toxicity to Artemia salina (100%). Subsequently, the photo-Fenton process was applied as alternative of pre- or complete treatment, taking into account toxicity and biodegradability (given by biochemical oxygen demand after five days - BOD5/chemical oxygen demand - COD ratio) assessment. The best DOC and COD removal were reached with 60 and 6723 mg L(-1) of Fe(2+) and H2O2, respectively. Under these conditions, after 60 min of irradiation, 57% of DOC and 74% of COD were removed, with a decrease in acute toxicity to A. salina from 100% to 13% and an increase in the BOD5/COD ratio from 0.052 to 1.0. With these parameters, the integration of coagulation/flocculation/decantation and photo-Fenton processes may be an alternative to the pre- or complete treatment of wastewater containing fipronil. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Evaluation of the process performance of a down-flow hanging sponge reactor for direct treatment of domestic wastewater in Bangkok, Thailand.

    Science.gov (United States)

    Miyaoka, Yuma; Yoochatchaval, Wilasinee; Sumino, Haruhiko; Banjongproo, Pathan; Yamaguchi, Takashi; Onodera, Takashi; Okadera, Tomohiro; Syutsubo, Kazuaki

    2017-08-24

    This study assesses the performance of an aerobic trickling filter, down-flow hanging sponge (DHS) reactor, as a decentralized domestic wastewater treatment technology. Also, the characteristic eukaryotic community structure in DHS reactor was investigated. Long-term operation of a DHS reactor for direct treatment of domestic wastewater (COD = 150-170 mg/L and BOD = 60-90 mg/L) was performed under the average ambient temperature ranged from 28°C to 31°C in Bangkok, Thailand. Throughout the evaluation period of 550 days, the DHS reactor at a hydraulic retention time of 3 h showed better performance than the existing oxidation ditch process in the removal of organic carbon (COD removal rate = 80-83% and BOD removal rate = 91%), nitrogen compounds (total nitrogen removal rate = 45-51% and NH 4 + -N removal rate = 95-98%), and low excess sludge production (0.04 gTS/gCOD removed). The clone library based on the 18S ribosomal ribonucleic acid gene sequence revealed that phylogenetic diversity of 18S rRNA gene in the DHS reactor was higher than that of the present oxidation ditch process. Furthermore, the DHS reactor also demonstrated sufficient COD and NH 4 + -N removal efficiency under flow rate fluctuation conditions that simulates a small-scale treatment facility. The results show that a DHS reactor could be applied as a decentralized domestic wastewater treatment technology in tropical regions such as Bangkok, Thailand.

  17. RARE EARTH ELEMENT IMPACTS ON BIOLOGICAL WASTEWATER TREATMENT

    Energy Technology Data Exchange (ETDEWEB)

    Fujita, Y.; Barnes, J.; Fox, S.

    2016-09-01

    Increasing demand for rare earth elements (REE) is expected to lead to new development and expansion in industries processing and or recycling REE. For some industrial operators, sending aqueous waste streams to a municipal wastewater treatment plant, or publicly owned treatment works (POTW), may be a cost effective disposal option. However, wastewaters that adversely affect the performance of biological wastewater treatment at the POTW will not be accepted. The objective of our research is to assess the effects of wastewaters that might be generated by new rare earth element (REE) beneficiation or recycling processes on biological wastewater treatment systems. We have been investigating the impact of yttrium and europium on the biological activity of activated sludge collected from an operating municipal wastewater treatment plant. We have also examined the effect of an organic complexant that is commonly used in REE extraction and separations; similar compounds may be a component of newly developed REE recycling processes. Our preliminary results indicate that in the presence of Eu, respiration rates for the activated sludge decrease relative to the no-Eu controls, at Eu concentrations ranging from <10 to 660 µM. Yttrium appears to inhibit respiration as well, although negative impacts have been observed only at the highest Y amendment level tested (660 µM). The organic complexant appears to have a negative impact on activated sludge activity as well, although results are variable. Ultimately the intent of this research is to help REE industries to develop environmentally friendly and economically sustainable beneficiation and recycling processes.

  18. An experimental investigation of wastewater treatment using electron beam irradiation

    Science.gov (United States)

    Emami-Meibodi, M.; Parsaeian, M. R.; Amraei, R.; Banaei, M.; Anvari, F.; Tahami, S. M. R.; Vakhshoor, B.; Mehdizadeh, A.; Fallah Nejad, N.; Shirmardi, S. P.; Mostafavi, S. J.; Mousavi, S. M. J.

    2016-08-01

    Electron beam (EB) is used for disinfection and treatment of different types of sewage and industrial wastewater. However, high capital investment required and the abundant energy consumed by this process raise doubts about its cost-effectiveness. In this paper, different wastewaters, including two textile sewages and one municipal wastewater are experimentally studied under different irradiation strategies (i.e. batch, 60 l/min and 1000 m3/day) in order to establish the reliability and the optimum conditions for the treatment process. According to the results, EB improves the efficiency of traditional wastewater treatment methods, but, for textile samples, coagulation before EB irradiation is recommended. The cost estimation of EB treatment compared to conventional methods shows that EB has been more expensive than chlorination and less expensive than activated sludge. Therefore, EB irradiation is advisable if and only if conventional methods of textile wastewater treatment are insufficient or chlorination of municipal wastewater is not allowed for health reasons. Nevertheless, among the advanced oxidation processes (AOP), EB irradiation process may be the most suitable one in industrial scale operations.

  19. Wastewater Treatment After Improved Scourings of Raw Wool

    Directory of Open Access Journals (Sweden)

    Pernar, E.

    2007-11-01

    Full Text Available Textile industry processes need high amounts of water for wet treatment of textiles. Therefore, high amounts of wastewater also appear containing different inorganic and organic substances depending on the used materials and processes. Raw wool is contaminated with wool wax, suint, skin flakes, dirt, sand, vegetable matter, urine and various microorganisms. The methods for raw wool scouring and cleaning today often in use are: scouring in the suint, scouring with soaps or tenside in alkaline, extraction by organic solvents and freezing. The different methods for wastewater purification after scouring in use are: settling/floculation, biological treatment, adsorptionand catalytic oxidation. In this work, wastewater treatments after improved raw wool scouring with enzymes and EDTA have been investigated. Isothermal adsorption on zeolite A, active carbon and a natural and H+ type of bentonite for removal of the obtained wastewater impurities was used. The results were determined by means of different physical-chemical test methods.

  20. Treatment of textile wastewater using a natural flocculant.

    Science.gov (United States)

    Aboulhassan, M A; Souabi, S; Yaacoubi, A; Baudu, M

    2005-06-01

    The physicochemical treatment of wastewater is of substantial interest, especially when conventional treatments by biological processes are not amenable. Among the current chemical processes used for industrial wastewater treatment, coagulation-flocculation has received a large attention for high pollutant removal efficiency. This paper summarizes the results of a textile wastewater treatment process aimed at the destruction of colour by coagulation-flocculation process and using an organic natural flocculant: tannic substances. Jar-test experiments were carried out in order to determine the optimum conditions for the removal of organic matter and color. Treatment with studied flocculent (Polysep3000) proved to be effective in a wide pH range (pH 90%) and corresponding low volume of settled sludge.

  1. Treatment of Preserved Wastewater with UASB

    Directory of Open Access Journals (Sweden)

    Zhang Yongli

    2016-01-01

    Full Text Available The preserved wastewater was treated by the upflow anaerobic sludge blanket (UASB reactor, the effects of the anaerobic time on COD, turbidity, pH, conductivity, SS, absorbance, and decolorization rate of the preserved wastewater were investigated. The results showed that with the increase of the anaerobic time, the treatment effect of the UASB reactor on the preserved wastewater was improved. Under the optimum anaerobic time condition, the COD removal rate, turbidity removal rate, pH, conductivity, SS removal rate, absorbance, and decoloration rate of the wastewater were 49.6%, 38.5%, 5.68, 0.518×104, 24%, 0.598, and 32.4%, respectively. Therefore, the UASB reactor can be used as a pretreatment for the preserved wastewater, in order to reduce the difficulty of subsequent aerobic treatment.

  2. Biological treatment of potato processing wastewater for red pigment production by immobilized cells of UV-irradiated monascus sp. in repeated batch

    International Nuclear Information System (INIS)

    Khalaf, S.A.

    2004-01-01

    Potato processing wastewater (PPW) was collected and analyzed for biological oxygen demand (BOD), chemical oxygen demand (COD), total suspended solids (TSS), total nitrogen and starch content. A fungal strain isolated from PPW identified as Monascus sp. PPW was evaluated for its ability to grow and produce red pigment, biomass and reduce the starch content of the ,PPW. Active UV-irradiated isolate of the above strain was obtained by exposing the parent strain to UV-radiation and coded Monascus. sp. PPW-UV7 and used as immobilized cell system for PPW treatment process in repeated batch fermentation. The immobilized cells (in sponge cubes) were able to reduce COD by about 85.7 %, with biomass production of 9.22 gl+ l and over productivity of red pigment of 2.6 gl+ 1 after 8 days fermentation (2 batches). The immobilized cells showed stability and viability for 8 batches (32 days) during the process treatment

  3. Positive examples of wastewater treatment effectiveness in ‘Natron-Hayat’ Maglaj factory

    OpenAIRE

    Bušatlić Ilhan; Botonjić Šefkija; Halilović Azra; Bušatlić Nadira; Karić Amna

    2017-01-01

    In the paper are described the basic characteristics of wastewaters in the cellulose and paper factory ‘Natron-Hayat’ Maglaj. Particular emphasis is placed on the description of the technological process of wastewater treatment at the ‘Natron-Hayat’ Maglaj factory which is represented in the paper by a technological scheme and represents one of the more complex systems for wastewater treatment. In the experimental part, the results of the efficiency of the wastewater treatment system at the ‘...

  4. Treatment of biomass gasification wastewaters using reverse osmosis

    Energy Technology Data Exchange (ETDEWEB)

    Petty, S.E.; Eliason, S.D.; Laegreid, M.M.

    1981-09-01

    Reverse osmosis (RO) was evaluated as a treatment technology for the removal of organics from biomass gasification wastewaters (BGW) generated from an experimental biomass gasifier at Texas Tech University. Wastewaters were characteristically high in chemical oxygen demand (COD) with initial values ranging from 32,000 to 68,000 mg/1. Since RO is normally considered a complementary treatment technology, wastewaters were pretreated by biological or wet air oxidation (WAO) processes. One set of experiments were run using untreated wastewaters to compare membrane performance with those experiments using pretreated wastewaters. Experiments were run for 8 to 10 hrs using UOP's TFC-85 membrane operating at 700 psig and 18 to 20/sup 0/C. This membrane is similar to the NS-100, a membrane known for being effective in the separation of organics from solution. Separation of organics from solution was determined by COD removal. Removal percentages for biologically pretreated wastewaters averaged 98% except for one group of runs averaging 69% removal. This exception was probably due to the presence of milk solids in the feed. Use of RO on WAO pretreated wastewaters and unpretreated feeds resulted in 90% COD removal. Membrane degradation was observed when using full-strength and WAO pretreated feeds, but not when using feeds that had undergone biological pretreatment. Color removal was computed for the majority of experiments completed. Overall, 99 to 100% of the total color was removed from BGW feeds, values which coincide with those reported in the literature for other wastewaters.

  5. Performance Evaluation of Anaerobic-Aerobic Treatment for the Wastewater of Potato Processing Industry: A Case Study of a Local Chips Factory

    International Nuclear Information System (INIS)

    Haydar, S.; Nadeem, O.

    2014-01-01

    A study was conducted to assess the performance of anaerobic-aerobic treatment system of a local potato processing industry. The wastewater treatment plant (WWTP) consisted of primary treatment, upflow anaerobic sludge blanket (UASB), activated sludge process (ASP) and secondary clarifier. The study analyzed the physical, chemical and biochemical parameters of the influent (raw sewage) as well as the effluent from each component of the plant. Grab wastewater samples were collected on weekly basis and analyzed for the pH, settleable solids (SS), total suspended solids (TSS), total dissolved solids (TDS), biochemical oxygen demand (BOD), and chemical oxygen demand (COD). Study revealed that mean influent wastewater concentrations of TSS, TDS, SS, BOD and COD were 840 mg/L, 2,396 mg/L and 18.7 mL/L, 2,186 mg/L and 3,679 mg/L, respectively. The mean percentage removal efficiency in UASB for TSS, BOD and COD was found to be 56%, 61 % and 51%, respectively. The mean percentage removal efficiency in activated sludge system for TSS, BOD and COD was found to be 70%, 57% and 48%, respectively. The mean percentage removal efficiency of combined anaerobic-aerobic system for TSS, BOD and COD was found to be 93%, 90% and 80%, respectively. The mean effluent concentrations of TSS, BOD and COD were 52 mg/L, 197 mg/L and 784 mg/L, respectively. The effluent from WWTP satisfied NEQS for TSS (200 mg/L) while NEQS for BOD (80 mg/L) and COD (150 mg/L) were not satisfied. Some operational problems, responsible for inadequate efficiencies of the plant components, were identified and solutions were suggested for these problems. (author)

  6. Solutions to microplastic pollution - Removal of microplastics from wastewater effluent with advanced wastewater treatment technologies.

    Science.gov (United States)

    Talvitie, Julia; Mikola, Anna; Koistinen, Arto; Setälä, Outi

    2017-10-15

    Conventional wastewater treatment with primary and secondary treatment processes efficiently remove microplastics (MPs) from the wastewater. Despite the efficient removal, final effluents can act as entrance route of MPs, given the large volumes constantly discharged into the aquatic environments. This study investigated the removal of MPs from effluent in four different municipal wastewater treatment plants utilizing different advanced final-stage treatment technologies. The study included membrane bioreactor treating primary effluent and different tertiary treatment technologies (discfilter, rapid sand filtration and dissolved air flotation) treating secondary effluent. The MBR removed 99.9% of MPs during the treatment (from 6.9 to 0.005 MP L -1 ), rapid sand filter 97% (from 0.7 to 0.02 MP L -1 ), dissolved air flotation 95% (from 2.0 to 0.1 MP L -1 ) and discfilter 40-98.5% (from 0.5 - 2.0 to 0.03-0.3 MP L -1 ) of the MPs during the treatment. Our study shows that with advanced final-stage wastewater treatment technologies WWTPs can substantially reduce the MP pollution discharged from wastewater treatment plants into the aquatic environments. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Use of electrochemical oxidation process as post-treatment for the effluents of a UASB reactor treating cellulose pulp mill wastewater.

    Science.gov (United States)

    Buzzini, A P; Miwa, D W; Motheo, A J; Pires, E C

    2006-01-01

    The main purpose of this study was to evaluate the performance of the electrochemical oxidation process as a post-treatment for the effluents of a bench-scale UASB reactor treating simulated wastewater from an unbleached pulp plant. The oxidation process was performed using a single compartment cell with two plates as electrodes. The anode was made of Ti/Ru0.3Ti0.7O2 and the cathode of stainless steel. The following variables were evaluated: current density (75, 150 and 225 mA cm(-2)) and recirculation flow rate in the electrochemical cell (0.22, 0.45 and 0.90 L h(-1)). The increase in current density from 75 to 225 mA cm(-2) did not increased the color removal efficiency for the tested flow rates, 0.22, 0.45 and 0.90 L h(-1), however the energy consumption increased significantly. The results indicated the technical feasibility of the electrochemical treatment as post-treatment for UASB reactors treating wastewaters from pulp and paper plants.

  8. Production of polyhydroxyalkanoates (PHA) using sludge from different wastewater treatment processes and the potential for medical and pharmaceutical applications.

    Science.gov (United States)

    Lam, Wai; Wang, Yujie; Chan, Pui Ling; Chan, Shun Wan; Tsang, Yiu Fai; Chua, Hong; Yu, Peter Hoi Fu

    2017-07-01

    In this study, seven strains of bacteria with polyhydroxyalkanoates (PHA)-producing ability (i.e. Bacillus cereus, Pseudomonas putida, Bacillus pumilus, Pseudomona huttiensis, Yersinia frederiksenii, Aeromonas ichthiosmia, and Sphingopyxis terrae) were isolated from various waste treatment plants in Hong Kong. Simultaneous wastewater treatment and PHA accumulation were successfully achieved in the bioreactors using isolated bacteria from different sludges. At the organic loading less than 13,000 ppm, more than 95% of chemical oxygen demand (COD) was removed by the isolated strains before the decrease of PHA accumulation. In addition, more than 95% of nitrogen removal was achieved by all isolated strains. In the bioreactors inoculated with single strains, the highest yields of poly(3-hydroxybutyrate) (PHB) and poly(3-hydroxyvalerate) (PHV) were obtained in A. ichthiosmia (84 mg PHB/g) and B. cereus (69 mg/g), respectively. For the mixed culture, the highest yields of PHB and PHV were increased by 55% and 45% in the system inoculated with B. pumilus and A. ichthiosmia. The biologically synthesized PHA also showed the potential applications in drug delivery and tissue engineering. PHA-nanoparticles loaded with pyrene were successfully prepared by recombinant Escherichia coli. The results of in vitro drug release and biocompatibility tests revealed that nanoparticles could be used as safer dray carriers with high loading capacity and efficiency. After 20 days, the cells successfully grew on 90% of the PHA-aortic valve.

  9. Application of electron beam to industrial wastewater treatment

    International Nuclear Information System (INIS)

    Han, B.; Kim, D.K.; Boo, J.Y.; Kim, J.K.; Kim, Y.; Chung, W.; Choi, J.S.; Kang, H.J.; Pikaev, A.K.

    2001-01-01

    Global withdrawals of water to satisfy human demands have grown dramatically in this century. Between 1900 and 1995, water consumption increased by over six times, more than double the rate of population growth. This rapid growth in water demand is due to the increasing reliance on irrigation to achieve food security, the growth of industrial uses, and the increasing use per capita for domestic purposes. Given the seriousness of the situation and future risk of crises, there is an urgent need to develop the water efficient technologies including economical treatment methods of wastewater and polluted water. In the Central Research Institute of Samsung Heavy Industries (SHI), many industrial wastewater including leachate from landfill area, wastewater from papermill, dyeing complex, petrochemical processes, etc. are under investigation with EB irradiation. For the study of treating dyeing wastewater combined with conventional facilities, an EB pilot plant for treating 1,000m 3 /day of wastewater from 60,000m 3 /day of total dyeing wastewater has been constructed and operated in Taegu Dyeing Industrial Complex. A commercial plant for re-circulation of wastewater from Papermill Company is also designed for S-paper Co. in Cheongwon City, and after the successful installation, up to 80% of wastewater could be re-used in paper producing process. (author)

  10. Micro-electrolysis technology for industrial wastewater treatment.

    Science.gov (United States)

    Jin, Yi-Zhong; Zhang, Yue-Feng; Li, Wei

    2003-05-01

    Experiments were conducted to study the role of micro-electrolysis in removing chromaticity and COD and improving the biodegradability of wastewater from pharmaceutical, dye-printing and papermaking plants. Results showed that the use of micro-electrolysis technology could remove more than 90% of chromaticity and more than 50% of COD and greatly improved the biodegradability of pharmaceutical wastewater. Lower initial pH could be advantageous to the removal of chromaticity. A retention time of 30 minutes was recommended for the process design of micro-electrolysis. For the use of micro-electrolysis in treatment of dye-printing wastewater, the removal rates of both chromaticity and COD were increased from neutral condition to acid condition for disperse blue wastewater; more than 90% of chromaticity and more than 50% of COD could be removed in neutral condition for vital red wastewater.

  11. Treatment of heavy-metal wastewater by vacuum membrane distillation: effect of wastewater properties

    Science.gov (United States)

    Ji, Zhongguang

    2018-01-01

    Heavy metal wastewater is a common byproduct in heavy metal industries. Membrane distillation is considered as promising technology to treat such wastewater. The treatment of heavy metal wastewater by vacuum membrane distillation (VMD) was conducted in this work. The effects of pH, calcium and EDTA on VMD performance were investigated. VMD process showed a good acid resistance as the solution pH above 0. When the solution pH was 0, the permeate conductivity was below 40μS·cm-1. Calcium and EDTA were found to have influence on VMD performance to some extent. VMD process was proved to be suitable for heavy metal wastewater as long as the impurity content was in control of a certain degree.

  12. BIOFILTERS IN WASTEWATER TREATMENT AFTER RECYCLED PLASTIC MATERIALS

    Directory of Open Access Journals (Sweden)

    Irena Kania-Surowiec

    2014-10-01

    Full Text Available In this paper the possibility of using biological deposits in wastewater treatment of recycled plastics were presented. There are many aspects of this issue that should be considered to be able to use information technology solutions in the industry. This includes, inter alia, specify the types of laboratory tests based on the analysis of changes in the fluid during the wastewater treatment process, knowledge and selection factors for proper growth of biofilm in the deposit and to develop the right concept and a prototype for a particular processing plant, plastic processing plant. It is possible to determine the parameters that will increase the efficiency of sewage treatment while minimizing the financial effort on the part of the Company. Selection methods of wastewater treatment is also associated with the environmental strategy of the country at the enterprise level specified in the Environmental Policy. This is an additional argument for the use of biological methods in the treatment of industrial waste water.

  13. Gravity separation for oil wastewater treatment

    OpenAIRE

    Golomeova, Mirjana; Zendelska, Afrodita; Krstev, Boris; Krstev, Aleksandar

    2010-01-01

    In this paper, the applications of gravity separation for oil wastewater treatment are presented. Described is operation on conventional gravity separation and parallel plate separation. Key words: gravity separation, oil, conventional gravity separation, parallel plate separation.

  14. Water/Wastewater Treatment Plant Operator Qualifications.

    Science.gov (United States)

    Water and Sewage Works, 1979

    1979-01-01

    This article summarizes in tabular form the U.S. and Canadian programs for classification of water and wastewater treatment plant personnel. Included are main characteristics of the programs, educational and experience requirements, and indications of requirement substitutions. (CS)

  15. Selection of technologies for municipal wastewater treatment

    Directory of Open Access Journals (Sweden)

    Juan Pablo Rodríguez Miranda

    2015-11-01

    Full Text Available In water environmental planning in watersheds should contain aspects for the decontamination of receiving water body, therefore the selection of the treatment plants municipal wastewater in developing countries, you should consider aspects of the typical composition raw wastewater pollutant removal efficiency by technology, performance indicators for technology, environmental aspects of localization and spatial localization strategy. This methodology is built on the basis of technical, economic and environmental attributes, such as a tool for decision making future investments in treatment plants municipal wastewater with multidisciplinary elements.

  16. Electron beam wastewater treatment in Brazil

    International Nuclear Information System (INIS)

    Sampa, M.H.O.; Rela, P.R.; Duarte, C.L.; Borrely, S.I.; Oikawa, H.; Somessari, E.S.R.; Silveira, C.G.; Costa, F.E.

    2001-01-01

    Experiments were performed at laboratory scale and at pilot plant scale to study the efficiency on using EB to remove and degrade toxic and refractory pollutants mainly from industrial origins. An upflow stream hydraulic system that governs the efficiency of the EB energy transferred to the stream was developed. Two different sources of samples were used to treat industrial effluents from a pharmaceutical chemical industry located in Sao Paulo and from a Governmental Wastewater Treatment Plant (WWTP) in Sao Paulo State, which receives the major quantity of industrial wastewater. Using samples from this WWTP, studies to combine EB irradiation process with conventional treatment were carried out with experimentation doses of 5 kGy, 10 kGy and 20 kGy and the irradiation effects were evaluated in the following parameters: COD, BOD, solids, TOC, THMs. PCE, TCE, BTX and concentration of organic acids by-products. Toxicity studies were also carried out for different sites and industrial activities showing significant removal of acute toxicity by increasing values of the EC-50 for most of the experiments. The economic aspects of this technology were evaluated and the estimated processing costs for some values of delivered doses and operation are reported here. (author)

  17. Micropollutant degradation, bacterial inactivation and regrowth risk in wastewater effluents: Influence of the secondary (pre)treatment on the efficiency of Advanced Oxidation Processes.

    Science.gov (United States)

    Giannakis, Stefanos; Voumard, Margaux; Grandjean, Dominique; Magnet, Anoys; De Alencastro, Luiz Felippe; Pulgarin, César

    2016-10-01

    In this work, disinfection by 5 Advanced Oxidation Processes was preceded by 3 different secondary treatment systems present in the wastewater treatment plant of Vidy, Lausanne (Switzerland). 5 AOPs after two biological treatment methods (conventional activated sludge and moving bed bioreactor) and a physiochemical process (coagulation-flocculation) were tested in laboratory scale. The dependence among AOPs efficiency and secondary (pre)treatment was estimated by following the bacterial concentration i) before secondary treatment, ii) after the different secondary treatment methods and iii) after the various AOPs. Disinfection and post-treatment bacterial regrowth were the evaluation indicators. The order of efficiency was Moving Bed Bioreactor > Activated Sludge > Coagulation-Flocculation > Primary Treatment. As far as the different AOPs are concerned, the disinfection kinetics were: UVC/H2O2 > UVC and solar photo-Fenton > Fenton or solar light. The contextualization and parallel study of microorganisms with the micropollutants of the effluents revealed that higher exposure times were necessary for complete degradation compared to microorganisms for the UV-based processes and inversed for the Fenton-related ones. Nevertheless, in the Fenton-related systems, the nominal 80% removal of micropollutants deriving from the Swiss legislation, often took place before the elimination of bacterial regrowth risk. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Production of bio-electricity during wastewater treatment using a ...

    African Journals Online (AJOL)

    Production of bio-electricity during wastewater treatment using a single chamber microbial fuel cell. ... water treatment with production of sustainable energy. The power ... it is possible to generate electricity using bacteria while accomplishing waste water treatment in process based on microbial fuel cell technologies.

  19. Treatment of wastewater with the constructed wetland

    International Nuclear Information System (INIS)

    Fernandez, R.; Olivares, S.

    2003-01-01

    Constructed wetland is an environmental sound, actual and economic solution for the treatment of wastewater. The use of these constructed wetlands increased in the last few years, principally in developed countries. However there is not much information about the performance of these biological systems in tropical and subtropical climates. In these review the state of art of these technology is given, and also the advantage of the use of the constructed wetland for the wastewater treatment in our country

  20. Evaluation of the dynamics of microalgae population structure and process performance during piggery wastewater treatment in algal-bacterial photobioreactors.

    Science.gov (United States)

    García, Dimas; Posadas, Esther; Blanco, Saúl; Acién, Gabriel; García-Encina, Pedro; Bolado, Silvia; Muñoz, Raúl

    2018-01-01

    The dynamics of microalgae population during piggery wastewater (PWW) treatment in four open photobioreactors operated at 27days of hydraulic retention time, and inoculated with Chlorella sp. (R1), Acutodesmus obliquus (R2), Oscillatoria sp. (R3) and in the absence of inoculum (R4), were evaluated for 6months. In addition, the algal-bacterial biomass concentration, removal of organic matter, nutrients and heavy metals were also assessed. The results revealed a high diversity and rapid variations in the structure of microalgae populations, Chlorella sp. being dominant in R4 throughout most of the operational period. Steady state average biomass concentration ranged from 2445-2610mg/L in R1-R3 to 3265mg/L in R4. No significant differences were recorded in the removal efficiencies (REs) of total organic carbon (86-87%), inorganic carbon (62-71%), total nitrogen (82-85%) and total phosphorous (90-92%). Finally, Zn-REs accounted for 26% in R3, 37% in R2, and 49% in R1 and R4. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Small hazardous waste generators in developing countries: use of stabilization/solidification process as an economic tool for metal wastewater treatment and appropriate sludge disposal.

    Science.gov (United States)

    Silva, Marcos A R; Mater, Luciana; Souza-Sierra, Maria M; Corrêa, Albertina X R; Sperb, Rafael; Radetski, Claudemir M

    2007-08-25

    The aim of this study was to propose a profitable destination for an industrial sludge that can cover the wastewater treatment costs of small waste generators. Optimized stabilization/solidification technology was used to treat hazardous waste from an electroplating industry that is currently released untreated to the environment. The stabilized/solidified (S/S) waste product was used as a raw material to build concrete blocks, to be sold as pavement blocks or used in roadbeds and/or parking lots. The quality of the blocks containing a mixture of cement, lime, clay and waste was evaluated by means of leaching and solubility tests according to the current Brazilian waste regulations. Results showed very low metal leachability and solubility of the block constituents, indicating a low environmental impact. Concerning economic benefits from the S/S process and reuse of the resultant product, the cost of untreated heavy metal-containing sludge disposal to landfill is usually on the order of US$ 150-200 per tonne of waste, while 1tonne of concrete roadbed blocks (with 25% of S/S waste constitution) has a value of around US$ 100. The results of this work showed that the cement, clay and lime-based process of stabilization/solidification of hazardous waste sludge is sufficiently effective and economically viable to stimulate the treatment of wastewater from small industrial waste generators.

  2. Roong Aroon Wastewater Treatment Project

    OpenAIRE

    Tongthai Taotong; Kittinan Thanissaranon; Tanasit Tuangcharoentip; Montien Athiworakul

    2015-01-01

    We are the water treatment project team from Roong Aroon High School in Bangkok, Thailand. Our team consists of four grade 12 science major students, and every one of us has been studying and working on developing our school’s water treatment system. This article explains how the “Problem Based Learning” (PBL) process proceeds throughout our project.

  3. Anaerobic treatment of textile dyeing wastewater.

    Science.gov (United States)

    Stern, S R; Szpyrkowicz, L; Rodighiero, I

    2003-01-01

    Aerobic treatment commonly applied to textile wastewater results in good or even excellent removal of organic load. This is not, however, accompanied by an equally good removal of colour. Traditional or advanced chemical methods of decolourisation are costly and not always reliable in justifying an interest in microbial decolourisation. Among several processes anaerobic methods seem most promising. In this paper, the results of a study conducted in two pilot-scale plants comprising anaerobic fixed bed biofilters of 15 L and 5 m3 operating as continuous reactors are presented, along with evaluation of the microbial kinetics. As is shown the process proved efficient in a long-term study with no stability problems of the biofilters. The six-month performance of the pilot plant confirmed also that the pre-treated wastewater could be applied in the operation of dyeing. For the majority of the colours applied in the factory no problems were encountered when the dyeing baths were prepared by substituting 90% of fresh water to the effluent treated by a sequence of activated sludge processes: anaerobic-aerobic.

  4. Treatment of an actual slaughterhouse wastewater by integration of biological and advanced oxidation processes: Modeling, optimization, and cost-effectiveness analysis.

    Science.gov (United States)

    Bustillo-Lecompte, Ciro Fernando; Mehrvar, Mehrab

    2016-11-01

    Biological and advanced oxidation processes are combined to treat an actual slaughterhouse wastewater (SWW) by a sequence of an anaerobic baffled reactor, an aerobic activated sludge reactor, and a UV/H2O2 photoreactor with recycle in continuous mode at laboratory scale. In the first part of this study, quadratic modeling along with response surface methodology are used for the statistical analysis and optimization of the combined process. The effects of the influent total organic carbon (TOC) concentration, the flow rate, the pH, the inlet H2O2 concentration, and their interaction on the overall treatment efficiency, CH4 yield, and H2O2 residual in the effluent of the photoreactor are investigated. The models are validated at different operating conditions using experimental data. Maximum TOC and total nitrogen (TN) removals of 91.29 and 86.05%, respectively, maximum CH4 yield of 55.72%, and minimum H2O2 residual of 1.45% in the photoreactor effluent were found at optimal operating conditions. In the second part of this study, continuous distribution kinetics is applied to establish a mathematical model for the degradation of SWW as a function of time. The agreement between model predictions and experimental values indicates that the proposed model could describe the performance of the combined anaerobic-aerobic-UV/H2O2 processes for the treatment of SWW. In the final part of the study, the optimized combined anaerobic-aerobic-UV/H2O2 processes with recycle were evaluated using a cost-effectiveness analysis to minimize the retention time, the electrical energy consumption, and the overall incurred treatment costs required for the efficient treatment of slaughterhouse wastewater effluents. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Efficiency of Moringa oleifera Seeds for Treatment of Laundry Wastewater

    Directory of Open Access Journals (Sweden)

    Al-Gheethi AA

    2017-01-01

    Full Text Available Laundry wastewater has simple characteristics in which the detergents compounds are the main constitutes. But these compounds have adverse effects on the aquatic organisms in the natural water bodies which received these wastes without treatment. Few studies were conducted on these wastes because it represent a small part of the total wastewater generated from different human activities. Moreover, the coagulation process for laundry wastewater might be effective to remove of detergents compounds. Therefore, in the present study, the efficiency of coagulation process by using chemical (ferrous sulphate and natural coagulants (Moringa oleifera seeds were investigated. The raw laundry wastewater samples were collected from laundromat located at Taman Universiti, Parit Raja. The characteristics of these wastes were determined and then the wastewater was subjected for the treatment process consisted of three units including aeration, coagulation and sedimentation process. The chemical and natural coagulants were used with four dosage (30, 60, 90 and 120 mg L−1 and the coagulation process was carried out at room temperature (25±2ºC for one hour. The results revealed that the laundry wastewater have high concentrations of turbidity (57.8-68.1 NTU and Chemical Oxygen Demand (COD (423-450 mg L−1 with pH value between 7.96 and 8.37. M. oleifera seeds exhibited high efficiency for removal of turbidity (83.63% with 120 mg L−1 of dosage, while 30 mg L−1 of FeSO4 was the best for removal of COD (54.18%. However, both parameters still more than Standard B for wastewater disposal suggesting the need to increase the period of coagulation process with M. oleifera seeds or to subject of the treated effluents for a secondary coagulation process with natural coagulant products to improve the characteristics of laundry wastewater without a secondary products as that generated with the chemical coagulants.

  6. High-strength wastewater treatment in a pure oxygen thermophilic process: 11-year operation and monitoring of different plant configurations.

    Science.gov (United States)

    Collivignarelli, M C; Bertanza, G; Sordi, M; Pedrazzani, R

    2015-01-01

    This research was carried out on a full-scale pure oxygen thermophilic plant, operated and monitored throughout a period of 11 years. The plant treats 60,000 t y⁻¹ (year 2013) of high-strength industrial wastewaters deriving mainly from pharmaceuticals and detergents production and landfill leachate. Three different plant configurations were consecutively adopted: (1) biological reactor + final clarifier and sludge recirculation (2002-2005); (2) biological reactor + ultrafiltration: membrane biological reactor (MBR) (2006); and (3) MBR + nanofiltration (since 2007). Progressive plant upgrading yielded a performance improvement chemical oxygen demand (COD) removal efficiency was enhanced by 17% and 12% after the first and second plant modification, respectively. Moreover, COD abatement efficiency exhibited a greater stability, notwithstanding high variability of the influent load. In addition, the following relevant outcomes appeared from the plant monitoring (present configuration): up to 96% removal of nitrate and nitrite, due to denitrification; low-specific biomass production (0.092 kgVSS kgCODremoved⁻¹), and biological treatability of residual COD under mesophilic conditions (BOD5/COD ratio = 0.25-0.50), thus showing the complementarity of the two biological processes.

  7. Agronomic performance of tifton 85 (cynodon spp grass cultivated in constructed wetlands used in milk processing wastewater treatment

    Directory of Open Access Journals (Sweden)

    Odilon Gomes Pereira

    2008-04-01

    Full Text Available The present work was carried out in order to study the performance of the tifton 85 (Cynodon spp grass cultivated in wetlands (SACs and submitted to different organic load application rates (TCOs of milk processing wastewater (ARL, in the climatic conditions of Viçosa - MG. The experimental structure was constituted by five SACs with horizontal subsuperficial flow, using tanks of 0.40 x 0.75 x 3.00 m (depth, width and length filled with 0.33 m depth of fine stones. The ARL was applied in average flow of 60 L.day-1, hydraulic time residence of 4.8 days and TCOs of 66, 130, 190, 320 and 570 kg.ha-1.day-1 of DBO. The tifton 85 grass adapted well to SACs, presenting good rooting, high yield and capacity of nutrients (N, P and K and sodium removal of the ARL, whose values were, respectively, between 216 - 544, 24 - 61, 115 - 204 and 4.3 – 10.9 kg.ha-1.

  8. Comparison of two PAC/UF processes for the removal of micropollutants from wastewater treatment plant effluent: process performance and removal efficiency.

    Science.gov (United States)

    Löwenberg, Jonas; Zenker, Armin; Baggenstos, Martin; Koch, Gerhard; Kazner, Christian; Wintgens, Thomas

    2014-06-01

    Two hybrid membrane processes combining powdered activated carbon (PAC) adsorption with ultrafiltration (UF) were investigated regarding operational performance and efficiency to remove organic micropollutants from municipal wastewater treatment plant effluent. A pressurized PAC/UF (pPAC/UF) and a submerged PAC/UF (sPAK/UF) system were operated continuously over a period of six months. Both UF membrane systems showed good compatibility with the application of PAC showing no abrasion or other negative impacts. The pPAC/UF system reached permeability values up to 290 L/(m² h bar) at high fluxes of 80 L/(m² h) compared to the sPAC/UF with a permeability of up to 200 L/(m² h bar) at fluxes of up to 23 L/(m² h). Surface analysis of both membranes with scanning electron microscopy revealed no membrane deterioration after the six-month period of operation. On the surface of the pressurized membrane the formation of a PAC layer was observed, which may have contributed to the high permeability by forming a protective coating. Five micropollutants, i.e. sulfamethoxazole, carbamazepine, mecoprop, diclofenac and benzotriazole in ambient effluent concentrations were investigated. Both PAC/UF systems removed 60-95% of the selected micropollutants at a dosage of 20 mg PAC/L and 4 mg Fe(3+)/L. However, extreme peak loads of sulfamethoxazole with concentrations of up to 30 μg/L caused a considerable performance decrease for more than a week. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Review of Organic Wastewater Compound Concentrations and Removal in Onsite Wastewater Treatment Systems.

    Science.gov (United States)

    Schaider, Laurel A; Rodgers, Kathryn M; Rudel, Ruthann A

    2017-07-05

    Onsite wastewater treatment systems, such as septic systems, serve 20% of U.S. households and are common in areas not served by wastewater treatment plants (WWTPs) globally. They can be sources of nutrients and pathogen pollution and have been linked to health effects in communities where they contaminate drinking water. However, few studies have evaluated their ability to remove organic wastewater compounds (OWCs) such as pharmaceuticals, hormones, and detergents. We synthesized results from 20 studies of 45 OWCs in conventional drainfield-based and alternative onsite wastewater treatment systems to characterize concentrations and removal. For comparison, we synthesized 31 studies of these same OWCs in activated sludge WWTPs. OWC concentrations and removal in drainfields varied widely and depended on wastewater sources and compound-specific removal processes, primarily sorption and biotransformation. Compared to drainfields, alternative systems had similar median and higher maximum concentrations, reflecting a wider range of system designs and redox conditions. OWC concentrations and removal in drainfields were generally similar to those in conventional WWTPs. Persistent OWCs in groundwater and surface water can indicate the overall extent of septic system impact, while the presence of well-removed OWCs, such as caffeine and acetaminophen, may indicate discharges of poorly treated wastewater from failing or outdated septic systems.

  10. Forward osmosis for application in wastewater treatment: a review.

    Science.gov (United States)

    Lutchmiah, Kerusha; Verliefde, A R D; Roest, K; Rietveld, L C; Cornelissen, E R

    2014-07-01

    Research in the field of Forward Osmosis (FO) membrane technology has grown significantly over the last 10 years, but its application in the scope of wastewater treatment has been slower. Drinking water is becoming an increasingly marginal resource. Substituting drinking water for alternate water sources, specifically for use in industrial processes, may alleviate the global water stress. FO has the potential to sustainably treat wastewater sources and produce high quality water. FO relies on the osmotic pressure difference across the membrane to extract clean water from the feed, however the FO step is still mostly perceived as a "pre-treatment" process. To prompt FO-wastewater feasibility, the focus lies with new membrane developments, draw solutions to enhance wastewater treatment and energy recovery, and operating conditions. Optimisation of these parameters are essential to mitigate fouling, decrease concentration polarisation and increase FO performance; issues all closely related to one another. This review attempts to define the steps still required for FO to reach full-scale potential in wastewater treatment and water reclamation by discussing current novelties, bottlenecks and future perspectives of FO technology in the wastewater sector. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. A review on the electrochemical treatment of the salty organic wastewater

    Science.gov (United States)

    Du, Xianjun

    2015-07-01

    Electrochemical technologies have proved to be useful for the treatment of wastewater, and recent years, there are growing interests in electrochemical treatment of the salty organic wastewater. The aim of this paper is to mainly present the source of the salty organic wastewater, the mechanism of direct and indirect oxidation process, and the research advances of electrochemical technologies in the salty organic wastewater by literature reports review.

  12. Reduced membrane fouling in a novel bio-entrapped membrane reactor for treatment of food and beverage processing wastewater.

    Science.gov (United States)

    Ng, Kok-Kwang; Lin, Cheng-Fang; Panchangam, Sri Chandana; Andy Hong, Pui-Kwan; Yang, Ping-Yi

    2011-08-01

    A novel Bio-Entrapped Membrane Reactor (BEMR) packed with bio-ball carriers was constructed and investigated for organics removal and membrane fouling by soluble microbial products (SMP). An objective was to evaluate the stability of the filtration process in membrane bioreactors through backwashing and chemical cleaning. The novel BEMR was compared to a conventional membrane bioreactor (CMBR) on performance, with both treating identical wastewater from a food and beverage processing plant. The new reactor has a longer sludge retention time (SRT) and lower mixed liquor suspended solids (MLSS) content than does the conventional. Three different hydraulic retention times (HRTs) of 6, 9, and 12 h were studied. The results show faster rise of the transmembrane pressure (TMP) with decreasing hydraulic retention time (HRT) in both reactors, where most significant membrane fouling was associated with high SMP (consisting of carbohydrate and protein) contents that were prevalent at the shortest HRT of 6 h. Membrane fouling was improved in the new reactor, which led to a longer membrane service period with the new reactor. Rapid membrane fouling was attributed to increased production of biomass and SMP, as in the conventional reactor. SMP of 10-100 kDa from both MBRs were predominant with more than 70% of the SMP <100 kDa. Protein was the major component of SMP rather than carbohydrate in both reactors. The new reactor sustained operation at constant permeate flux that required seven times less frequent chemical cleaning than did the conventional reactor. The new BEMR offers effective organics removal while reducing membrane fouling. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Sustainable operation of a biological wastewater treatment plant

    Science.gov (United States)

    Trikoilidou, E.; Samiotis, G.; Bellos, D.; Amanatidou, E.

    2016-11-01

    The sustainable operation of a biological wastewater treatment plant is significantly linked to its removal efficiency, cost of sludge management, energy consumption and monitoring cost. The biological treatment offers high organic removal efficiency, it also entails significant sludge production, which contains active (live) and inactive (dead) microorganisms and must be treated prior to final disposal, in order to prevent adverse impact on public health and environment. The efficiency of the activated sludge treatment process is correlated to an efficient solid-liquid separation, which is strongly depended on the biomass settling properties. The most commonly encountered settling problems in a wastewater treatment plant, which are usually associated with operating conditions and specific microorganisms growth, are sludge bulking, floating sludge, pin point flocs and straggler flocs. Sustainable management of sludge and less energy consumption are the two principal aspects that determine the operational cost of wastewater treatment plants. Sludge treatment and management accumulate more than 50% of the operating cost. Aerobic wastewater treatment plants have high energy requirements for covering the needs of aeration and recirculations. In order to ensure wastewater treatment plants’ effective operation, a large number of physicochemical parameters have to be monitored, thus further increasing the operational cost. As the operational parameters are linked to microbial population, a practical way of wastewater treatment plants’ controlling is the microscopic examination of sludge, which is proved to be an important tool for evaluating plants’ performance and assessing possible problems and symptoms. This study presents a biological wastewater treatment plant with almost zero biomass production, less energy consumption and a practical way for operation control through microbial manipulation and microscopic examination.

  14. CO₂-neutral wastewater treatment plants or robust, climate-friendly wastewater management? A systems perspective.

    Science.gov (United States)

    Larsen, Tove A

    2015-12-15

    CO2-neutral wastewater treatment plants can be obtained by improving the recovery of internal wastewater energy resources (COD, nutrients, energy) and reducing energy demand as well as direct emissions of the greenhouse gases N2O and CH4. Climate-friendly wastewater management also includes the management of the heat resource, which is most efficiently recovered at the household level, and robust wastewater management must be able to cope with a possible resulting temperature decrease. At the treatment plant there is a substantial energy optimization potential, both from improving electromechanical devices and sludge treatment as well as through the implementation of more energy-efficient processes like the mainstream anammox process or nutrient recovery from urine. Whether CO2 neutrality can be achieved depends not only on the actual net electricity production, but also on the type of electricity replaced: the cleaner the marginal electricity the more difficult to compensate for the direct emissions, which can be substantial, depending on the stability of the biological processes. It is possible to combine heat recovery at the household scale and nutrient recovery from urine, which both have a large potential to improve the climate friendliness of wastewater management. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Separation of Process Wastewater with Extractive Heterogeneous-Azeotropic Distillation

    Directory of Open Access Journals (Sweden)

    Tóth András József

    2016-10-01

    Full Text Available The application of vapour-liquid equilibria-based separation alternatives can be extraordinarily complicated for the treatment of process wastewaters containing heterogeneous-azeotropic. Despite dissimilar successfully tested methods for separation, there is possibility to get better distillation method by enabling the separation of more and more specific process wastewater. Extractive heterogeneous-azeotropic distillation (EHAD is a new advance in treatment of fine chemical wastewater showing special features to cope with the treatment of highly non-ideal mixtures. This method combines the worth of heterogeneous-azeotropic and extractive distillations in one apparatus without addition of any extra materials. The study of the separations of ternary component process wastewater from the fine chemical industry shows both in the modelled and experimental results that EHAD can be successfully applied. The measured and modelled compositions at extreme purities, that is, close to 0% or 100%, can be different because of the inaccuracies of the modelling. This highlights the paramount importance of the experiments if special extra-fine chemicals with almost no impurities, e.g. of pharmacopoeial quality are to be produced by special distillation technique. This study expands the application of EHAD technique, this new field is the separation of process wastewaters.

  16. Development of Blumlein Line Generator and Reactor for Wastewater Treatment

    Directory of Open Access Journals (Sweden)

    Zainuddin Nawawi

    2013-11-01

    Full Text Available Nowadays the harm effects of wastewater from industrial sectors toward the environment become one of public major concern. There are several wastewater treatment methods and techniques which have been introduced such as by using biological, chemical, and physical process. However, it is found that there are some shortcomings in the current available methods and techniques. For instance, the application of chlorine can cause bacterial disinfection but produce secondary harmful carcinogenic disinfection.  And the application of ozone treatment –  which is one of the most reliable technique – requires improvement in term of ozone production and treatment system. In order to acquire a better understanding in wastewater treatment process, a study of wastewater treatment system and Hybrid Discharge reactor – to acquire gas-liquid phase corona like discharge – is carried out. In addition to the laboratory experiment, designing and development of the Blumlein pulse power circuit, and modification of reactor for wastewater treatment are accomplished as well.

  17. Adaptive model based control for wastewater treatment plants

    NARCIS (Netherlands)

    de Niet, Arie; van de Vrugt, Noëlle Maria; Korving, Hans; Boucherie, Richardus J.; Savic, D.A.; Kapelan, Z.; Butler, D.

    2011-01-01

    In biological wastewater treatment, nitrogen and phosphorous are removed by activated sludge. The process requires oxygen input via aeration of the activated sludge tank. Aeration is responsible for about 60% of the energy consumption of a treatment plant. Hence optimization of aeration can

  18. Opportunities for Automated Demand Response in California Wastewater Treatment Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Aghajanzadeh, Arian [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Wray, Craig [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); McKane, Aimee [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2015-08-30

    Previous research over a period of six years has identified wastewater treatment facilities as good candidates for demand response (DR), automated demand response (Auto-­DR), and Energy Efficiency (EE) measures. This report summarizes that work, including the characteristics of wastewater treatment facilities, the nature of the wastewater stream, energy used and demand, as well as details of the wastewater treatment process. It also discusses control systems and automated demand response opportunities. Furthermore, this report summarizes the DR potential of three wastewater treatment facilities. In particular, Lawrence Berkeley National Laboratory (LBNL) has collected data at these facilities from control systems, submetered process equipment, utility electricity demand records, and governmental weather stations. The collected data were then used to generate a summary of wastewater power demand, factors affecting that demand, and demand response capabilities. These case studies show that facilities that have implemented energy efficiency measures and that have centralized control systems are well suited to shed or shift electrical loads in response to financial incentives, utility bill savings, and/or opportunities to enhance reliability of service. In summary, municipal wastewater treatment energy demand in California is large, and energy-­intensive equipment offers significant potential for automated demand response. In particular, large load reductions were achieved by targeting effluent pumps and centrifuges. One of the limiting factors to implementing demand response is the reaction of effluent turbidity to reduced aeration at an earlier stage of the process. Another limiting factor is that cogeneration capabilities of municipal facilities, including existing power purchase agreements and utility receptiveness to purchasing electricity from cogeneration facilities, limit a facility’s potential to participate in other DR activities.

  19. Methane emission during municipal wastewater treatment.

    Science.gov (United States)

    Daelman, Matthijs R J; van Voorthuizen, Ellen M; van Dongen, Udo G J M; Volcke, Eveline I P; van Loosdrecht, Mark C M

    2012-07-01

    Municipal wastewater treatment plants emit methane. Since methane is a potent greenhouse gas that contributes to climate change, the abatement of the emission is necessary to achieve a more sustainable urban water management. This requires thorough knowledge of the amount of methane that is emitted from a plant, but also of the possible sources and sinks of methane on the plant. In this study, the methane emission from a full-scale municipal wastewater facility with sludge digestion was evaluated during one year. At this plant the contribution of methane emissions to the greenhouse gas footprint were slightly higher than the CO₂ emissions related to direct and indirect fossil fuel consumption for energy requirements. By setting up mass balances over the different unit processes, it could be established that three quarters of the total methane emission originated from the anaerobic digestion of primary and secondary sludge. This amount exceeded the carbon dioxide emission that was avoided by utilizing the biogas. About 80% of the methane entering the activated sludge reactor was biologically oxidized. This knowledge led to the identification of possible measures for the abatement of the methane emission. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Electrochemical catalytic treatment of phenol wastewater

    International Nuclear Information System (INIS)

    Ma Hongzhu; Zhang Xinhai; Ma Qingliang; Wang Bo

    2009-01-01

    The slurry bed catalytic treatment of contaminated water appears to be a promising alternative for the oxidation of aqueous organic pollutants. In this paper, the electrochemical oxidation of phenol in synthetic wastewater catalyzed by ferric sulfate and potassium permanganate adsorbed onto active bentonite in slurry bed electrolytic reactor with graphite electrode has been investigated. In order to determine the optimum operating condition, the orthogonal experiments were devised and the results revealed that the system of ferric sulfate, potassium permanganate and active bentonite showed a high catalytic efficiency on the process of electrochemical oxidation phenol in initial pH 5. When the initial concentration of phenol was 0.52 g/L (the initial COD 1214 mg/L), up to 99% chemical oxygen demand (COD) removal was obtained in 40 min. According to the experimental results, a possible mechanism of catalytic degradation of phenol was proposed. Environmental estimation was also done and the results showed that the treated wastewater have little impact on plant growth and could totally be applied to irrigation.

  1. Constructed wetlands for wastewater treatment in cold climate - A review.

    Science.gov (United States)

    Wang, Mo; Zhang, Dong Qing; Dong, Jian Wen; Tan, Soon Keat

    2017-07-01

    Constructed wetlands (CWs) have been successfully used for treating various wastewaters for decades and have been identified as a sustainable wastewater management option worldwide. However, the application of CW for wastewater treatment in frigid climate presents special challenges. Wetland treatment of wastewater relies largely on biological processes, and reliable treatment is often a function of climate conditions. To date, the rate of adoption of wetland technology for wastewater treatment in cold regions has been slow and there are relatively few published reports on CW applications in cold climate. This paper therefore highlights the practice and applications of treatment wetlands in cold climate. A comprehensive review of the effectiveness of contaminant removal in different wetland systems including: (1) free water surface (FWS) CWs; (2) subsurface flow (SSF) CWs; and (3) hybrid wetland systems, is presented. The emphasis of this review is also placed on the influence of cold weather conditions on the removal efficacies of different contaminants. The strategies of wetland design and operation for performance intensification, such as the presence of plant, operational mode, effluent recirculation, artificial aeration and in-series design, which are crucial to achieve the sustainable treatment performance in cold climate, are also discussed. This study is conducive to further research for the understanding of CW design and treatment performance in cold climate. Copyright © 2017. Published by Elsevier B.V.

  2. Thermophilic biological nitrogen removal in industrial wastewater treatment.

    Science.gov (United States)

    Lopez-Vazquez, C M; Kubare, M; Saroj, D P; Chikamba, C; Schwarz, J; Daims, H; Brdjanovic, D

    2014-01-01

    Nitrification is an integral part of biological nitrogen removal processes and usually the limiting step in wastewater treatment systems. Since nitrification is often considered not feasible at temperatures higher than 40 °C, warm industrial effluents (with operating temperatures higher than 40 °C) need to be cooled down prior to biological treatment, which increases the energy and operating costs of the plants for cooling purposes. This study describes the occurrence of thermophilic biological nitrogen removal activity (nitritation, nitratation, and denitrification) at a temperature as high as 50 °C in an activated sludge wastewater treatment plant treating wastewater from an oil refinery. Using a modified two-step nitrification-two-step denitrification mathematical model extended with the incorporation of double Arrhenius equations, the nitrification (nitrititation and nitratation) and denitrification activities were described including the cease in biomass activity at 55 °C. Fluorescence in situ hybridization (FISH) analyses revealed that Nitrosomonas halotolerant and obligatehalophilic and Nitrosomonas oligotropha (known ammonia-oxidizing organisms) and Nitrospira sublineage II (nitrite-oxidizing organism (NOB)) were observed using the FISH probes applied in this study. In particular, this is the first time that Nitrospira sublineage II, a moderatedly thermophilic NOB, is observed in an engineered full-scale (industrial) wastewater treatment system at temperatures as high as 50 °C. These observations suggest that thermophilic biological nitrogen removal can be attained in wastewater treatment systems, which may further contribute to the optimization of the biological nitrogen removal processes in wastewater treatment systems that treat warm wastewater streams.

  3. Treatment of coal gasification wastewaters: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Donaldson, T.L.; Lee, D.D.; Singh, S.P.N.

    1987-03-01

    A bench-scale fluidized-bed bioreactor was operated for over 4 months to characterize the biooxidation of major organic pollutants in coal gasification wastewater obtained from the Morgantown Energy Technology Center. Monohydric phenol was degraded first, followed by more complex phenolics, including polycyclic aromatic hydrocarbons (PAHs). Organic components were assayed by methylene chloride extraction followed by gas chromatography. Genetic capability for degradation of naphthalene by the biofilm was identified by gene probe analysis. Further studies were conducted to determine if the existing biofilm could be enhanced for naphthalene degradation by supplemental inoculation with a microbial culture having good naphthalene-degrading capabilities. The biofilm response was monitored using gene probe techniques. An assessment of wastewater treatment technologies for coal conversion wastewaters was initiated. A bibliography was compiled, arrangements were initiated to collaborate with other investigators doing wastewater treatability studies, and a site visit was made to the Great Plains plant. 201 refs., 3 figs., 5 tabs.

  4. Municipal Wastewater Processes. Instructor Guide. Working for Clean Water: An Information Program for Advisory Groups.

    Science.gov (United States)

    Stoltzfus, Lorna

    Described is a one-hour overview of the unit processes which comprise a municipal wastewater treatment system. Topics covered in this instructor's guide include types of pollutants encountered, treatment methods, and procedures by which wastewater treatment processes are selected. A slide-tape program is available to supplement this component of…

  5. Aquatic Plants and Wastewater Treatment (an Overview)

    Science.gov (United States)

    Wolverton, B. C.

    1986-01-01

    The technology for using water hyacinth to upgrade domestic sewage effluent from lagoons and other wastewater treatment facilities to secondary and advanced secondary standards has been sufficiently developed to be used where the climate is warm year round. The technology of using emergent plants such as bulrush combined with duckweed is also sufficiently developed to make this a viable wastewater treatment alternative. This system is suited for both temperate and semi-tropical areas found throughout most of the U.S. The newest technology in artificial marsh wastewater treatment involves the use of emergent plant roots in conjunction with high surface area rock filters. Smaller land areas are required for these systems because of the increased concentration of microorganisms associated with the rock and plant root surfaces. Approximately 75 percent less land area is required for the plant-rock system than is required for a strict artificial wetland to achieve the same level of treatment.

  6. Occurrence of bisphenol A in wastewater and wastewater sludge of CUQ treatment plant

    Directory of Open Access Journals (Sweden)

    Dipti Prakash Mohapatra

    2011-09-01

    Full Text Available The identification and quantification of bisphenol A (BPA in wastewater (WW and wastewater sludge (WWS is of major interest to assess the endocrine activity of treated effluent discharged into the environment. BPA is manufactured in high quantities fro its use in adhesives, powder paints, thermal paper and paper coatings among others. Due to the daily use of these products, high concentration of BPA was observed in WW and WWS. BPA was measured in samples from Urban Community of Quebec wastewater treatment plant located in Quebec (Canada using LC-MS/MS method. The results showed that BPA was present in significant quantities (0.07 μg L–1 to 1.68 μg L–1 in wastewater and 0.104 μg g–1 to 0.312 μg g–1 in wastewater sludge in the wastewater treatment plant (WWTP. The treatment plant is efficient (76 % in removal of pollutant from process stream, however, environmentally significant concentrations of 0.41 μg L–1 were still present in the treated effluent. Rheological study established the partitioning of BPA within the treatment plant. This serves as the base to judge the portion of the process stream requiring more treatment for degradation of BPA and also in selection of different treatment methods. Higher BPA concentration was observed in primary and secondary sludge solids (0.36 and 0.24 μg g–1, respectively as compared to their liquid counterpart (0.27 and 0.15 μg L–1, respectively separated by centrifugation. Thus, BPA was present in significant concentrations in the WWTP and mostly partitioned in the solid fraction of sludge (Partition coefficient (Kd for primary, secondary and mixed sludge was 0.013, 0.015 and 0.012, respectively.

  7. Methodology for Plantwide Design and Optimization of Wastewater Treatment Plants

    DEFF Research Database (Denmark)

    Maria Dragan, Johanna; Zubov, Alexandr; Sin, Gürkan

    2017-01-01

    Design of Wastewater Treatment Plants (WWTPs) is a complex engineering task which requires integration of knowledge and experience from environmental biotechnology, process engineering, process synthesis and design as well as mathematical programming. A methodology has been formulated and applied...... for the systematic analysis and development of plantwide design of WWTPs using mathematical optimization and statistical methods such as sensitivity and uncertainty analyses....

  8. Operation of Wastewater Treatment Plants, Manual of Practice No. 11.

    Science.gov (United States)

    Albertson, Orrie E.; And Others

    This book is intended to be a reference or textbook on the operation of wastewater treatment plants. The book contains thirty-one chapters and three appendices and includes the description, requirements, and latest techniques of conventional unit process operation, as well as the symptoms and corrective measures regarding process problems. Process…

  9. Treatment of wastewater containing azo dye reactive brilliant red X-3B using sequential ozonation and upflow biological aerated filter process.

    Science.gov (United States)

    Lu, Xujie; Yang, Bo; Chen, Jihua; Sun, Rui

    2009-01-15

    In this work, the treatment of wastewater containing azo dye reactive brilliant red X-3B using sequential ozonation and upflow biological aerated filter process has been studied. Decolorization was almost complete after 120min with an ozone concentration of 34.08mg/L, the biological oxygen demand for 5 days (BOD5)/chemical oxygen demand (COD) ratio increased from 0.102 to 0.406, which was more effective for the subsequent upflow biological aerated filter (UBAF) to reduce COD concentration. Under the conditions of gas/liquid=3, hydraulic load=4.8m3/m3.d, T=20-25 degrees C, the mass ratio of ozone to dye=4.5, pH 11, the COD and color of the effluent were less than 40mg/L and 20 Pt-Co units, respectively, and the average decolorization and COD removal efficiency were 97% and 90%, respectively. The experimental results showed that the combination of ozone oxidation and upflow biological aerated filter was a promising technique to treat wastewater containing azo dye.

  10. Reverse electrodialysis performed at pilot plant scale: Evaluation of redox processes and simultaneous generation of electric energy and treatment of wastewater.

    Science.gov (United States)

    D'Angelo, Adriana; Tedesco, Michele; Cipollina, Andrea; Galia, Alessandro; Micale, Giorgio; Scialdone, Onofrio

    2017-11-15

    This paper describes the experimental campaign carried out with a reverse electrodialysis (RED) demonstration plant (Marsala, Italy) with the main aims of: (i) evaluating the effect of various operating parameters, including the redox processes, on the system performances; (ii) using the plant for the simultaneous generation of electric energy and treatment of wastewater. The prototype (44 × 44 cm 2 , 500 cell pairs) was tested using both real (brackish water and brine) and artificial solutions. Tests with two different electrode rinse solutions (with or without iron redox couples) were performed. In agreement with the data obtained in the laboratory, the presence of iron ions contributes positively to the power production. The effect of flow rates in the electrode and saline compartments, as well as aging of the electrode rinse solution was also investigated. The possibility to remove an organic pollutant (the azoic dye Acid Orange 7) from the electrode solution was tested, obtaining a very fast and total removal of the pollutant. This experimental campaign represents the first demonstration in a real environment of the abilities of a RED plant to treat wastewater, thus giving useful indications for the spreading of RED technology in the near future. Copyright © 2017. Published by Elsevier Ltd.

  11. Recent Progress in TiO2-Mediated Solar Photocatalysis for Industrial Wastewater Treatment

    Directory of Open Access Journals (Sweden)

    Tong Zhang

    2014-01-01

    Full Text Available The current paper reviews the application of TiO2-mediated solar photocatalysis for industrial wastewater treatment, starting with a brief introduction on the background of industrial wastewater and the development of wastewater treatment processes, especially advanced oxidation processes (AOPs. We, then, discuss the application of solar TiO2 photocatalysis in treating different kinds of industrial wastewater, such as paper mill wastewater, textile wastewater, and olive mill wastewater. In the end, we compare solar TiO2 photocatalysis with other AOPs in terms of effectiveness, energy, and chemical consumption. Personal perspectives are also given, which may provide new insights to the future development of TiO2 photocatalysis for industrial wastewater.

  12. Treatment of coking wastewater by using manganese and magnesium ores.

    Science.gov (United States)

    Chen, Tianhu; Huang, Xiaoming; Pan, Min; Jin, Song; Peng, Suchuan; Fallgren, Paul H

    2009-09-15

    This study investigated a wastewater treatment technique based on natural minerals. A two-step process using manganese (Mn) and magnesium (Mg) containing ores were tested to remove typical contaminants from coking wastewater. Under acidic conditions, a reactor packed with Mn ore demonstrated strong oxidizing capability and destroyed volatile phenols, chemical oxygen demand (COD)(,) and sulfide from the coking wastewater. The effluent was further treated by using Mg ore to remove ammonium-nitrogen and phosphate in the form of magnesium ammonium phosphate (struvite) precipitates. When pH of the wastewater was adjusted to 1.2, the removal efficiencies for COD, volatile phenol and sulfide reached 70%, 99% and 100%, respectively. During the second step of precipitation, up to 94% of ammonium was removed from the aqueous phase, and precipitated in the form of struvite with phosphorus. The struvite crystals showed a needle-like structure. X-ray diffraction and transmission electron microscopy were used to characterize the crystallized products.

  13. Emergency Planning for Municipal Wastewater Treatment Facilities.

    Science.gov (United States)

    Lemon, R. A.; And Others

    This manual for the development of emergency operating plans for municipal wastewater treatment systems was compiled using information provided by over two hundred municipal treatment systems. It covers emergencies caused by natural disasters, civil disorders and strikes, faulty maintenance, negligent operation, and accidents. The effects of such…

  14. Development of chemical flocculant for wastewater treatment

    International Nuclear Information System (INIS)

    Park, Jang Jin; Shin, J. M.; Lee, H. H.; Kim, M. J.; Yang, M. S.; Park, H. S.

    2000-12-01

    Reagents 'KAERI-I and KAERI-II' which were developed as coagulants for industrial wastewater treatment in the study showed far superior performance to the existing inorganic coagulants such as Alum and Iron salt(FeSO4) when compared to their wastewater treatment performance in color and COD removal. Besides, it was not frozen at -25 deg C ∼ -30 deg C. When reagents 'KAERI-I and KAERI-II' were used as coagulant for wastewater treatment, the proper dosage was ranged from 0.1% to 0.5%(v/v) and proper pH range was 10.5 ∼ 11.5 in the area of alkaline pH.Reagents 'KAERI-I and KAERI-II' showed good performance with 95% or more removal of color-causing material and 60% or more removal of COD

  15. Review on Physicochemical, Chemical, and Biological Processes for Pharmaceutical Wastewater

    Science.gov (United States)

    Li, Zhenchen; Yang, Ping

    2018-02-01

    Due to the needs of human life and health, pharmaceutical industry has made great progress in recent years, but it has also brought about severe environmental problems. The presence of pharmaceuticals in natural waters which might pose potential harm to the ecosystems and humans raised increasing concern worldwide. Pharmaceuticals cannot be effectively removed by conventional wastewater treatment plants (WWTPs) owing to the complex composition, high concentration of organic contaminants, high salinity and biological toxicity of pharmaceutical wastewater. Therefore, the development of efficient methods is needed to improve the removal effect of pharmaceuticals. This review provides an overview on three types of treatment technologies including physicochemical, chemical and biological processes and their advantages and disadvantages respectively. In addition, the future perspectives of pharmaceutical wastewater treatment are given.

  16. Interior microelectrolysis oxidation of polyester wastewater and its treatment technology.

    Science.gov (United States)

    Yang, Xiaoyi

    2009-09-30

    This paper has investigated the effects of interior microelectrolysis pretreatment on polyester wastewater treatment and analyzed its mechanism on COD and surfactant removal. The efficiency of interior microelectrolysis is mainly influenced by solution pH, aeration and reaction time. Contaminants can be removed not only by redox reaction and flocculation in the result of ferrous and ferric hydroxides but also by electrophoresis under electric fields created by electron flow. pH confirms the chemical states of surfactants, Fe(II)/Fe(III) ratio and the redox potential, and thus influences the effects of electrophoresis, flocculation and redox action on contaminant removal. Anaerobic and aerobic batch tests were performed to study the degradation of polyester wastewater. The results imply that interior microelectrolysis and anaerobic pretreatment are lacking of effectiveness if applied individually in treating polyester wastewater in spite of their individual advantages. The interior microelectrolysis-anaerobic-aerobic process was investigated to treat polyester wastewater with comparison with interior microelectrolysis-aerobic process and anaerobic-aerobic process. High COD removal efficiencies have been gotten by the combination of interior microelectrolysis with anaerobic technology and aerobic technology. The results also imply that only biological treatment was less effective in polyester wastewater treatment.

  17. Interior microelectrolysis oxidation of polyester wastewater and its treatment technology

    Energy Technology Data Exchange (ETDEWEB)

    Yang Xiaoyi, E-mail: yangxiaoyi@buaa.edu.cn [Department of Thermal Energy Engineering, BeiHang University, Beijing 100191 (China)

    2009-09-30

    This paper has investigated the effects of interior microelectrolysis pretreatment on polyester wastewater treatment and analyzed its mechanism on COD and surfactant removal. The efficiency of interior microelectrolysis is mainly influenced by solution pH, aeration and reaction time. Contaminants can be removed not only by redox reaction and flocculation in the result of ferrous and ferric hydroxides but also by electrophoresis under electric fields created by electron flow. pH confirms the chemical states of surfactants, Fe(II)/Fe(III) ratio and the redox potential, and thus influences the effects of electrophoresis, flocculation and redox action on contaminant removal. Anaerobic and aerobic batch tests were performed to study the degradation of polyester wastewater. The results imply that interior microelectrolysis and anaerobic pretreatment are lacking of effectiveness if applied individually in treating polyester wastewater in spite of their individual advantages. The interior microelectrolysis-anaerobic-aerobic process was investigated to treat polyester wastewater with comparison with interior microelectrolysis-aerobic process and anaerobic-aerobic process. High COD removal efficiencies have been gotten by the combination of interior microelectrolysis with anaerobic technology and aerobic technology. The results also imply that only biological treatment was less effective in polyester wastewater treatment.

  18. Interior microelectrolysis oxidation of polyester wastewater and its treatment technology

    International Nuclear Information System (INIS)

    Yang Xiaoyi

    2009-01-01

    This paper has investigated the effects of interior microelectrolysis pretreatment on polyester wastewater treatment and analyzed its mechanism on COD and surfactant removal. The efficiency of interior microelectrolysis is mainly influenced by solution pH, aeration and reaction time. Contaminants can be removed not only by redox reaction and flocculation in the result of ferrous and ferric hydroxides but also by electrophoresis under electric fields created by electron flow. pH confirms the chemical states of surfactants, Fe(II)/Fe(III) ratio and the redox potential, and thus influences the effects of electrophoresis, flocculation and redox action on contaminant removal. Anaerobic and aerobic batch tests were performed to study the degradation of polyester wastewater. The results imply that interior microelectrolysis and anaerobic pretreatment are lacking of effectiveness if applied individually in treating polyester wastewater in spite of their individual advantages. The interior microelectrolysis-anaerobic-aerobic process was investigated to treat polyester wastewater with comparison with interior microelectrolysis-aerobic process and anaerobic-aerobic process. High COD removal efficiencies have been gotten by the combination of interior microelectrolysis with anaerobic technology and aerobic technology. The results also imply that only biological treatment was less effective in polyester wastewater treatment.

  19. Wastewater treatment modelling: dealing with uncertainties

    DEFF Research Database (Denmark)

    Belia, E.; Amerlinck, Y.; Benedetti, L.

    2009-01-01

    This paper serves as a problem statement of the issues surrounding uncertainty in wastewater treatment modelling. The paper proposes a structure for identifying the sources of uncertainty introduced during each step of an engineering project concerned with model-based design or optimisation...... of a wastewater treatment system. It briefly references the methods currently used to evaluate prediction accuracy and uncertainty and discusses the relevance of uncertainty evaluations in model applications. The paper aims to raise awareness and initiate a comprehensive discussion among professionals on model...

  20. A compact process for the treatment of olive mill wastewater by combining wet hydrogen peroxide catalytic oxidation and biological techniques

    International Nuclear Information System (INIS)

    Azabou, Samia; Najjar, Wahiba; Bouaziz, Mohamed; Ghorbel, Abdelhamid; Sayadi, Sami

    2010-01-01

    A system based on combined actions of catalytic wet oxidation and microbial technologies for the treatment of highly polluted OMW containing polyphenols was studied. The wet hydrogen peroxide catalytic oxidation (WHPCO) process has been investigated in the semi-batch mode at atmospheric pressure, using aluminium-iron-pillared inter layer clay ((Al-Fe)PILC), under two different catalytic processes: ((Al-Fe)PILC/H 2 O 2 /ultraviolet radiations) at 25 deg. C and ((Al-Fe)PILC/H 2 O 2 ) at 50 deg. C. The results show that raw OMW was resistant to the photocatalytic process. However ((Al-Fe)PILC/H 2 O 2 ), system operating at 50 deg. C reduced considerably the COD, colour and total phenolic contents, and thus decreased the inhibition of the marine photobacteria Vibrio fischeri luminescence by 70%. This study also examined the feasibility of coupling WHPCO and anaerobic digestion treatment. Biomethanisation experiments performed with raw OMW or pre-treated OMW proved that pre-treatments with ((Al-Fe)PILC/H 2 O 2 ) system, for more than 2 h, resulted in higher methane production. Both untreated OMW as well as 2-h pre-treated OMW revealed as toxic to anaerobic bacteria.

  1. A compact process for the treatment of olive mill wastewater by combining wet hydrogen peroxide catalytic oxidation and biological techniques

    Energy Technology Data Exchange (ETDEWEB)

    Azabou, Samia [Laboratoire des BioProcedes, Centre de Biotechnologie de Sfax, BP 1177, 3018 Sfax (Tunisia); Najjar, Wahiba [Laboratoire de Chimie des Materiaux et Catalyse, Faculte des Sciences de Tunis, Campus Universitaire, 2092 Tunis (Tunisia); Bouaziz, Mohamed [Laboratoire des BioProcedes, Centre de Biotechnologie de Sfax, BP 1177, 3018 Sfax (Tunisia); Ghorbel, Abdelhamid [Laboratoire de Chimie des Materiaux et Catalyse, Faculte des Sciences de Tunis, Campus Universitaire, 2092 Tunis (Tunisia); Sayadi, Sami, E-mail: sami.sayadi@cbs.rnrt.tn [Laboratoire des BioProcedes, Centre de Biotechnologie de Sfax, BP 1177, 3018 Sfax (Tunisia)

    2010-11-15

    A system based on combined actions of catalytic wet oxidation and microbial technologies for the treatment of highly polluted OMW containing polyphenols was studied. The wet hydrogen peroxide catalytic oxidation (WHPCO) process has been investigated in the semi-batch mode at atmospheric pressure, using aluminium-iron-pillared inter layer clay ((Al-Fe)PILC), under two different catalytic processes: ((Al-Fe)PILC/H{sub 2}O{sub 2}/ultraviolet radiations) at 25 deg. C and ((Al-Fe)PILC/H{sub 2}O{sub 2}) at 50 deg. C. The results show that raw OMW was resistant to the photocatalytic process. However ((Al-Fe)PILC/H{sub 2}O{sub 2}), system operating at 50 deg. C reduced considerably the COD, colour and total phenolic contents, and thus decreased the inhibition of the marine photobacteria Vibrio fischeri luminescence by 70%. This study also examined the feasibility of coupling WHPCO and anaerobic digestion treatment. Biomethanisation experiments performed with raw OMW or pre-treated OMW proved that pre-treatments with ((Al-Fe)PILC/H{sub 2}O{sub 2}) system, for more than 2 h, resulted in higher methane production. Both untreated OMW as well as 2-h pre-treated OMW revealed as toxic to anaerobic bacteria.

  2. Electron Beam Treatment Plant for Textile Dyeing Wastewater

    International Nuclear Information System (INIS)

    Han, Bumsoo; Kim, Yuri; Choi, Jangseung; Ahn, Sangjun

    2006-01-01

    High positive effect of electron-beam treatment involved into the process of wastewater purification is now well established. The most effective for the purpose seem to be combine methods including both electron beam and any conventional treatment stages, i.e., under conditions when some synergistic effects can take place. Daegu Dyeing Industrial Complex (DDIC) includes about hundred factories occupying the area of 600,000m 2 with 13,000 employees in total. The production requires high consumption of water (90,000m 3 /day), steam, and electric power, being characterized by large amount of highly colored industrial wastewater. Because of increase in productivity and increased assortment of dyes and other chemicals, substantial necessity appears in re-equipment of purification facilities by application of efficient methods of wastewater treatment

  3. Effectiveness of a hybrid process combining electro-coagulation and electro-oxidation for the treatment of domestic wastewaters using response surface methodology.

    Science.gov (United States)

    Daghrir, Rimeh; Drogui, Patrick; Zaviska, François

    2013-01-01

    The performance of a two-stage process combining electro-coagulation (EC) and electro-oxidation (EO) was studied for the treatment of domestic wastewater (DWW) loaded with organic matter. The process was firstly evaluated in terms of its capability of simultaneously producing an oxidant and a coagulant agents using aluminum (Al) (or iron (Fe)) as bipolar and sacrificial electrodes, whereas graphite (Gr) electrodes were used as monopolar electrodes. Relatively high concentrations of chlorine (9.6 mg/min A) and Al (20-40 mg Al/L) or Fe (40-60 mg Fe/L) were produced. Subsequently, the factorial and central composite design methodologies were successively employed to define the optimal operating conditions for total chemical oxygen demand (COD) removal from DWW. Current intensity and treatment time were found to be very meaningful for chemical oxygen demand removal. The effect of these two main factors was around 90% on the investigated response, whereas the type of sacrificial electrode and the other interaction effects represent only 10%. The treatment using aluminum electrode and a current intensity imposed of 0.7 A during 39 min was found to be the optimal conditions in terms of cost/effectiveness. Under these conditions, 78% of COD removal can be obtained for a total cost of 0.78 US $/m(3).

  4. Disinfection process of municipal wastewater through ultraviolet radiation: Application in the wastewater treatment plant of Jerez de la Frontera; Desinfeccion de aguas residuales urbanas mediante radiacion ultravioleta: Aplicacion enla EDAR de Jerez de la Frontera

    Energy Technology Data Exchange (ETDEWEB)

    Salcedo Davila, I.; Andrades Balao, J. A.; Quiroga Alonso, J. M.

    2002-07-01

    This paper reports the results obtained of the disinfection through ultraviolet radiation of the treated municipal wastewater in the plant of Jerez de la Frontera for possible municipal and tourist/recreational reuse. The results obtained show that 1.265 J/m''2 of UV doses cause nearly a 99, 9% decrease of the studied microorganisms (total coliform, fecal coliform and fecal strepto cocos) in more than 77% of the carried out studies. The disinfection unitary cost, at industrial scale, was 0.03 E/m''3 waste-water, which means the UV radiation treatment is very competitive against others disinfection systems. (Author) 10 refs.

  5. Electron beam treatment of wastewater

    International Nuclear Information System (INIS)

    Arai, H.; Hosono, M.; Shimizu, K.; Sugiyama, M.

    1991-01-01

    Supernatant comes from dewaterization of sewage sludge, and contains biologically nondegradable organics so that it is hard to be treated by conventional activated sludge. By electron beam (EB) irradiation, any kinds of organics in water can be oxidized to biodegradable organic acids. We studied the treatment of supernatant by application of this effect. The direct irradiation of the original supernatant was found not to be so effective to decrease COD. In order to increase the irradiation effect, supernatant was pretreated biologically to decrease the biodegradable organics in it. The chemical oxygen demand (COD) and biochemical oxygen demand (BOD) were decreased from 800 and 910 mg/L to 78 and 5 mg/L by this pretreatment, respectively. This pretreated supernatant was irradiated by EB of 2 MeV using a batch type reactor. The COD was gradually decreased with dose. In contrast, BOD was increased markedly, indicating increase in biodegradability. The irradiated sample water was treated biologically again. After the final biological treatment, COD was decreased below 30 mg/L in the case of 10 - 12 kGy irradiation. Finally, the initial COD of 800 mg/L was decreased below 30 mg/L by the combination of EB irradiation and biological treatment. The cost of irradiation for this process was evaluated preliminarily. (author)

  6. Treatment of olive oil mill wastewater by single electrocoagulation with different electrodes and sequential electrocoagulation/electrochemical Fenton-based processes.

    Science.gov (United States)

    Flores, Nelly; Brillas, Enric; Centellas, Francesc; Rodríguez, Rosa María; Cabot, Pere Lluís; Garrido, José Antonio; Sirés, Ignasi

    2018-04-05

    The treatment of olive oil mill wastewater (OOMW) by novel sequential processes involving electrocoagulation (EC) followed by electro-Fenton (EF) or photoelectro-Fenton (PEF) under UVA irradiation has been studied using a boron-doped diamond anode and an air-diffusion cathode for H 2 O 2 electrogeneration. Their performance was monitored from the removal of total organic carbon (TOC), chemical oxygen demand, turbidity, total solids and total nitrogen, as well as from the energy consumption. Preliminary EC assays were performed with one pair of electrodes made of Al, Fe, AISI 304 or AISI 316L. The Fe/Fe cell showed the best performance, yielding 40% TOC decay in 20 min. Subsequent EF or PEF at natural pH 7.2 performed similarly, whereas PEF became superior at pH 3.0 due to the action of UVA photons. Comparison between EC/PEF and single EF or PEF at pH 3.0 and 25 mA cm -2 with 0.50 mM Fe 2+ revealed the positive outcome of the sequential process, attaining 97.1% TOC abatement after 600 min. GC-MS analysis of the raw wastewater allowed identifying 18 cyclic and 27 aliphatic compounds, most of which could not be removed by EC. The final solutions in EC/EF and EC/PEF contained a large plethora of persistent long-chain aliphatic acids and alkanes. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Tertiary activated carbon treatment of paper and board industry wastewater

    NARCIS (Netherlands)

    Temmink, B.G.; Grolle, K.C.F.

    2005-01-01

    The feasibility of activated carbon post-treatment of (biologically treated) wastewater from the paper and board industry was investigated, the goal being to remove refractory organic pollutants and produce water that can be re-used in the production process. Because closing water-circuits in the

  8. Surface adsorption technique for the treatment of textile wastewaters ...

    African Journals Online (AJOL)

    Reductions in color and pH variation of the effluent were monitored through absorbance and pH measurements throughout the process. Concentration levels of Ni2+ in the wastewater ranged ... for treated samples to be employed for domestic purposes. Key Words: Effluents Treatment, Nickel, Chromium, Surface adsorption ...

  9. Wastewater Treatment for Pollution Control | Nzabuheraheza ...

    African Journals Online (AJOL)

    Performance of a Dynamic Roughing Filter (DRF) coupled with a Horizontal Subsurface Flow Constructed Wetland (HSSFCW) in the treatment of a wastewater was studied in tropical conditions. The results show that in HSSFCW planted with Cyperus papyrus and Phragmites mauritianus in series, the removal rates of TDS, ...

  10. The anaerobic treatment of sulfate containing wastewater

    NARCIS (Netherlands)

    Visser, A.

    1995-01-01


    In the anaerobic treatment of sulfate containing wastewater sulfate reducing bacteria (SRB) will compete with methanogenic- (MB) and acetogenic bacteria (AB) for the available substrates such as hydrogen, acetate, propionate and butyrate. The outcome of this competition will

  11. Developing Anammox for mainstream municipal wastewater treatment

    NARCIS (Netherlands)

    Lotti, T.

    2016-01-01

    Conventional wastewater treatment plants (WWTPs), like activated sludge systems, are energy demanding requiring a large electrical energy supply (e.g. 25 kWh PE-1 year-1) which, especially during peak-load periods, may account for an important quote of the grid installed power of the surrounding

  12. Decentralised wastewater treatment effluent fertigation: preliminary ...

    African Journals Online (AJOL)

    The Decentralised Wastewater Treatment System (DEWATS) can provide a potential sanitation solution to residents living in informal settlements with the effluent produced being used on agricultural land. This paper reports on a first step to assess the technical viability of this concept. To do so a pilot DEWATS plant was ...

  13. Constructed wetlands: A future alternative wastewater treatment ...

    African Journals Online (AJOL)

    Wastewater treatment will always pose problems if there are no new alternative technologies in place to replace the currently available technologies. More recently, it has been estimated that developing countries will run out of water by 2050. This is a course for concern not only to the communities but also a challenge to ...

  14. Advanced oxidation technologies : photocatalytic treatment of wastewater

    NARCIS (Netherlands)

    Chen, J.

    1997-01-01

    7.1. Summary and conclusions

    The last two decennia have shown a growing interest in the photocatalytic treatment of wastewater, and more and more research has been carried out into the various aspects of photocatalysis, varying from highly fundamental aspects to practical application.

  15. Denitrifying bioreactor clogging potential during wastewater treatment

    Science.gov (United States)

    Chemoheterotrophic denitrification technologies using woodchips as a solid carbon source (i.e., woodchip bioreactors) have been widely trialed for treatment of diffuse-source agricultural nitrogen pollution. There is growing interest in the use of this simple, relatively low-cost biological wastewat...

  16. Developing Anammox for mainstream municipal wastewater treatment

    OpenAIRE

    Lotti, T.

    2016-01-01

    Conventional wastewater treatment plants (WWTPs), like activated sludge systems, are energy demanding requiring a large electrical energy supply (e.g. 25 kWh PE-1 year-1) which, especially during peak-load periods, may account for an important quote of the grid installed power of the surrounding area. Only across the EU, there are 16000 WWTPs that consume around 10000 GWh year-1 of electricity. Furthermore, the volume of wastewater treated in WWTPs in the EU is increasing with a rate of aroun...

  17. Wastewater treatment and pollution control in Indonesia

    International Nuclear Information System (INIS)

    Danu, Sugiarto

    2006-01-01

    Present status of radiation facilities for Co-60 gamma ray irradiation and electron beam irradiation in Indonesia is first presented. Wastewater treatment is explained: kinds of waste, industrial, agricultural, municipal and nuclear. Each liquid wastewater containing various kinds of contaminants, radioactive or non-radioactive is differently treated by waste treatment industries. On-going project is use of electron beams in which combination with ozone to reduce chlorinated solvent, disinfected sludge from sewage treatment containing organic and inorganic components for soil fertilizer, and high color river water for water supplying. The cost factor and the effect of combined treatment are being examined. Other on-going projects are applications of electron beams for vulcanization of natural rubber latex and flue gas treatment by BATAN. (S. Ohno)

  18. Coagulation-flocculation as pre-treatment for micro-scale Fe/Cu/O3process (CF-mFe/Cu/O3) treatment of the coating wastewater from automobile manufacturing.

    Science.gov (United States)

    Xiong, Zhaokun; Cao, Jinyan; Yang, Dan; Lai, Bo; Yang, Ping

    2017-01-01

    A coagulation-flocculation as pre-treatment combined with mFe/Cu/O 3 (CF-mFe/Cu/O 3 ) process was developed to degrade the pollutants in automobile coating wastewater (ACW). In coagulation-flocculation (CF) process, high turbidity removal efficiency (97.1%) and low COD removal efficiency (10.5%) were obtained under the optimal conditions using Al 2 (SO 4 ) 3 ·18H 2 O and CaO. The effluent of CF process (ECF) was further disposed by mFe/Cu/O 3 process, and its key operating parameters were optimized by batch experiments. Optimally, COD removal efficiency of ECF obtained by the mFe/Cu/O 3 process (i.e., 87.6% after 30 min treatment) was much higher than those of mFe/Cu alone (8.3%), ozone alone (46.6%), and mFe/Cu/air (6.1%), which confirms the superiority of the mFe/Cu/O 3 process. In addition, the analysis results of UV-vis, excitation-emission matrix (EEM) fluorescence spectra and GC/MS further confirm that the phenol pollutants of ECF had been effectively decomposed or transformed after CF-mFe/Cu/O 3 process treatment. Meanwhile, B/C ratio of ACW increased from 0.19 to 0.56, which suggests the biodegradability was improved significantly. Finally, the operating cost of CF-mFe/Cu/O 3 process was about 1.83 USD t -1 for ACW treatment. Therefore, the combined process is a promising treatment technology for the coating wastewater from automobile manufacturing. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Wastewater treatments by membrane bioreactors (MBR); Bioreactores de membrana (MBR) para la depuracion de aguas residuales

    Energy Technology Data Exchange (ETDEWEB)

    Guardino Ferre, R.

    2001-07-01

    Wastewater treatments by membrane bioreactors (MBR), are a good alternative of treatment to the conventional processes when wish to obtain very high quality of the treated water or to try high load contaminants in low flow. Simultaneously, the article explains the significant reduction of the wastewater treatment plant space, eliminating the secondary septic tank. (Author) 7 refs.

  20. Construction of Industrial Electron Beam Plant for Wastewater Treatment

    International Nuclear Information System (INIS)

    Han, B.; Kim, J.; Kim, Y.; Kim, S.; Lee, M.; Choi, J.; Ahn, S.; Makarov, I.E.; Ponomarev, A.V.

    2004-01-01

    A pilot plant for treating 1,000 m3/day of dyeing wastewater with e-beam has been constructed and operated since 1998 in Daegu, Korea together with the biological treatment facility. The wastewater from various stages of the existing purification process has been treated with electron beam in this plant, and it gave rise to elaborate the optimal technology of the electron beam treatment of wastewater with increased reliability at instant changes in the composition of wastewater. Installation of the e-beam pilot plant resulted in decolorizing and destructive oxidation of organic impurities in wastewater, appreciable to reduction of chemical reagent consumption, in reduction of the treatment time, and in increase in flow rate limit of existing facilities by 30-40%. Industrial plant for treating 10,000 m3/day, based upon the pilot experimental result, is under construction and will be finished by 2005. This project is supported by the International Atomic Energy Agency (IAEA) and Korean Government

  1. Treatment of Wastewater Containing Organic Pollutants by Ionizing Radiation

    International Nuclear Information System (INIS)

    Kimura, A.; Taguchi, M.; Maruyama, A.

    2012-01-01

    We have investigated the treatment of endocrine disrupting chemicals (EDCs) and halogented organic compounds (HOCs) in wastewater by ionizing radiation in the CRP. Three samples of the actual wastewater having estrogen activity were analyzed by the yeast two-hybrid assay, enzyme linked immunosorbent assay (ELISA) and total organic carbon (TOC) analysis. Treatment of the wastewater is required to decrease the estrogen activity to less than 1 ng / L; the lower limit concentration of appearance of endocrine disrupting property. Medaka estrogen activity (mEA) initially increased and then decreased by β-ray irradiation, indicating that decomposition products in the real wastewaters also have the estrogen activity. The doses required to decrease in mEA of samples 1 to 3 below 1 ng / L, D 1ng , were estimated to be 100, 200 and 150 Gy (J kg -1 ), respectively. Since the D 1ng of 17 β-stradiol (E2) at 500 ng/L (1.8 nmol/L) in pure water was estimated to be 5 Gy as mentioned in the previous CRP, the elimination of estrogen activity of real wastewater is considered to be interfered by organic impurities. The economic cost of the treatment process of EDCs using electron beam was estimated at 17 yen m -3 . (author)

  2. Optimizing potassium ferrate for textile wastewater treatment by RSM

    Directory of Open Access Journals (Sweden)

    Maryam Moradnia

    2016-08-01

    Full Text Available Background: Application of potassium ferrate is a chemical oxidation approach used for water and wastewater treatment. The aim of this study is to apply central composite design (CCD and response surface methodology (RSM to optimize potassium ferrate consumption in the treatment of wastewater from carpet industries. Methods: Samples in this experimental study were collected from wastewater, originating from a carpet factory. Wastewater sampling was carried out monthly for a period of two seasons. Ferrate oxidation experiments were conducted by means of a conventional jar-test apparatus. The time and speed for mixing were set with an automatic controller. Parameters of study were measured based on given methodologies in Standard method for examining water and wastewater. CCD and RSM were applied to optimize the operating variables including potassium ferrate dosage and pH. Results: Results showed that potassium ferrate concentration (A, pH (B, their interactions (AB and quadratic effects (A2 and B2 were significant in the removal of COD, turbidity, color and TSS from carpet industries effluents. At an optimum point (COD: 160 mg/L of potassium ferrate and pH 4, turbidity: 165 mg/L of potassium ferrate and pH 4, color and TSS: pH 4.5 and 150 mg/L of potassium ferrate removal efficiencies for COD, turbidity, color and TSS were 86, 86, 87 and 89%, respectively. Conclusion: Potassium ferrate has a significant impact on pollutants decomposition and the removal of color from wastewater produced in carpet industries. This process can be employed for the pretreatment or post treatment of wastewaters containing refractory organic pollutants. CCD and RSM are suitable tools for experimental design.

  3. Effect of time on dyeing wastewater treatment

    Science.gov (United States)

    Ye, Tingjin; Chen, Xin; Xu, Zizhen; Chen, Xiaogang; Shi, Liang; He, Lingfeng; Zhang, Yongli

    2018-03-01

    The preparation of carboxymethylchitosan wrapping fly-ash adsorbent using high temperature activated fly ash and sodium carboxymethyl chitosan (CWF), as with the iron-carbon micro-electrolysis process simulation and actual printing and dyeing wastewater. The effects of mixing time and static time on decolorization ratio, COD removing rate and turbidness removing rate were investigated. The experimental results show that the wastewater stirring times on the decolorization rate and COD removal rate and turbidity removal rate influence, with increasing of the stirring time, three showed a downward trend, and reached the peak at 10 min time; wastewater time on the decolorization ratio and COD removing efficiency and turbidness removing rate influence, along with standing time increase, three who declined and reached the maximum in 30min time.

  4. Wastewater Treatment with Ammonia Recovery System

    OpenAIRE

    M. Örvös; T. Balázs; K. F. Both

    2008-01-01

    From environmental aspect purification of ammonia containing wastewater is expected. High efficiency ammonia desorption can be done from the water by air on proper temperature. After the desorption process, ammonia can be recovered and used in another technology. The calculation method described below give some methods to find either the minimum column height or ammonia rich solution of the effluent.

  5. Treatment of radioactive wastewater using direct contact membrane distillation.

    Science.gov (United States)

    Liu, Haiyang; Wang, Jianlong

    2013-10-15

    Direct contact membrane distillation (DCMD) was used to treat low level radioactive wastewater (LLRW). The dusty gas model (DGM) was used to analyze the mass transfer mechanism and calculate the permeate flux. The operating parameters such as feed temperature, feed velocity and feed concentration were studied. The experimental results showed that DCMD process can separate almost all Cs(+), Sr(2+) and Co(2+) from wastewater. The permeate flux decreased linearly when NaNO3 concentration increased from 1.0 to 200 g/L. The permeate flux remained about 60% of its initial flux even when NaNO3 concentration in feed solution was as high as 200 g/L. The dusty gas model can be successfully applied to estimate the mass transfer, and the experimental permeate flux values fitted well with that calculated by DGM. DCMD is a promising separation process for low level radioactive wastewater treatment. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Electron beam treatment plant for textile dyeing wastewater

    International Nuclear Information System (INIS)

    Han, B.; Kim, J.; Kim, Y.; Choi, J.; Ahn, S.; Makarov, I.E.; Ponomarev, A.V.

    2006-01-01

    A pilot plant for treating 1,000 m 3 of textile dyeing wastewater per day with electron beam has constructed and operated continuously in Daegu, Korea since 1998. This plant is combined with biological treatment system and it shows the reduction of chemical reagent consumption, and also the reduction in retention time with the increase in removal efficiencies of COD Cr and BOD 5 up to 30∼40%. Increase in biodegradability after radiation treatment of aqueous-organic systems is due to radiolytical conversions of non-biodegradable compounds. On the basis of data obtained from pilot plant operation, construction of actual industrial scale plant has started in 2003, and will be finished by 2005. This plant is located on the area of existing wastewater treatment facility (Daegu Dyeing Industrial Complex) and to have treatment capacity 10,000 m 3 of wastewater per day using one 1 MeV, 400 kW accelerator, and combined with existing bio- treatment facility. The overall construction cost and the operation cost in the radiation processing, when compared to other conventional and advanced oxidation techniques, are more cost-effective and convenient for wastewater treatment. This project is supported by the International Atomic Energy Agency (IAEA) and Korean Government. (author)

  7. Coagulation and Adsorption Treatment of Printing Ink Wastewater

    Directory of Open Access Journals (Sweden)

    Maja Klančnik

    2015-03-01

    Full Text Available The intention of the study was to improve the efficiency of total organic carbon (TOC and colour removal from the wastewater samples polluted with flexographic printing ink following coagulation treatments with further adsorption onto activated carbons and ground orange peel. The treatment efficiencies were compared to those of further flocculation treatments and of coagulation and adsorption processes individually. Coagulation was a relatively effective single-treatment method, removing 99.7% of the colour and 86.9% of the organic substances (TOC from the printing ink wastewater samples. Further flocculation did not further eliminate organic pollutants, whereas subsequent adsorption with 7 g/l of granular activated carbon further reduced organic substances by 35.1%, and adsorption with 7 g/l of powdered activated carbon further reduced organic substances by 59.3%. Orange peel was an inappropriate adsorbent for wastewater samples with low amounts of pollution, such as water that had been treated by coagulation. However, in highly polluted printing ink wastewater samples, the adsorption treatment with ground orange peel achieved efficiencies comparable to those of the granular activated carbon treatments.

  8. Electrochemical and/or microbiological treatment of pyrolysis wastewater.

    Science.gov (United States)

    Silva, José R O; Santos, Dara S; Santos, Ubiratan R; Eguiluz, Katlin I B; Salazar-Banda, Giancarlo R; Schneider, Jaderson K; Krause, Laiza C; López, Jorge A; Hernández-Macedo, Maria L

    2017-10-01

    Electrochemical oxidation may be used as treatment to decompose partially or completely organic pollutants (wastewater) from industrial processes such as pyrolysis. Pyrolysis is a thermochemical process used to obtain bio-oil from biomasses, generating a liquid waste rich in organic compounds including aldehydes and phenols, which can be submitted to biological and electrochemical treatments in order to minimize its environmental impact. Thus, electrochemical systems employing dimensionally stable anodes (DSAs) have been proposed to enable biodegradation processes in subsurface environments. In order to investigate the organic compound degradation from residual coconut pyrolysis wastewater, ternary DSAs containing ruthenium, iridium and cerium synthetized by the 'ionic liquid method' at different calcination temperatures (500, 550, 600 and 700 °C) for the pretreatment of these compounds, were developed in order to allow posterior degradation by Pseudomonas sp., Bacillus sp. or Acinetobacter sp. bacteria. The electrode synthesized applying 500 °C displayed the highest voltammetric charge and was used in the pretreatment of pyrolysis effluent prior to microbial treatment. Regarding biological treatment, the Pseudomonas sp. exhibited high furfural degradation in wastewater samples electrochemically pretreated at 2.0 V. On the other hand, the use of Acinetobacter efficiently degraded phenolic compounds such as phenol, 4-methylphenol, 2,5-methylphenol, 4-ethylphenol and 3,5-methylphenol in both wastewater samples, with and without electrochemical pretreatment. Overall, the results indicate that the combination of both processes used in this study is relevant for the treatment of pyrolysis wastewater. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Application of Emergy Analysis to the Sustainability Evaluation of Municipal Wastewater Treatment Plants

    Directory of Open Access Journals (Sweden)

    Shuai Shao

    2016-12-01

    Full Text Available Municipal wastewater treatment plants consume much energy and manpower, are expensive to run, and generate sludge and treated wastewater whilst removing pollutants through specific treatment regimes. The sustainable development of the wastewater treatment industry is therefore challenging, and a comprehensive evaluation method is needed for assessing the sustainability of different wastewater treatment processes, for identifying the improvement potential of treatment plants, and for directing policymakers, management measures and development strategies. This study established improved evaluation indicators based on Emergy Analysis that place total wastewater, resources, energy, economic input and emission of pollutants on the same scale compared to the traditional indicators. The sustainability of four wastewater treatment plants and their associated Anaerobic-Anoxic-Oxic (A2O, Constant Waterlevel Sequencing Batch Reactor (CWSBR, Cyclic Activated Sludge Technology (CAST and Biological Aerated Filter (BAF treatment processes were assessed in a city in northeast China. Results show that the CWSBR process was the most sustainable wastewater treatment process according to its largest calculated value of Improved Emergy Sustainable Index (2.53 × 100, followed by BAF (1.60 × 100, A2O (9.78 × 10−1 and CAST (5.77 × 10−1. Emergy Analysis provided improved indicators that are suitable for comparing different wastewater treatment processes.

  10. Application of the SCADA system in wastewater treatment plants.

    Science.gov (United States)

    Dieu, B

    2001-01-01

    The implementation of the SCADA system has a positive impact on the operations, maintenance, process improvement and savings for the City of Houston's Wastewater Operations branch. This paper will discuss the system's evolvement, the external/internal architecture, and the human-machine-interface graphical design. Finally, it will demonstrate the system's successes in monitoring the City's sewage and sludge collection/distribution systems, wet-weather facilities and wastewater treatment plants, complying with the USEPA requirements on the discharge, and effectively reducing the operations and maintenance costs.

  11. Disinfection of wastewater from a Riyadh Wastewater Treatment Plant with ionizing radiation

    International Nuclear Information System (INIS)

    Basfar, A.A.; Abdel Rehim, F.

    2002-01-01

    The goal of this research was to establish the applicability of the electron beam treatment process for treating wastewater intended for reuse. The objective of this study was to determine the effectiveness of gamma irradiation in the disinfection of wastewater, and the improvement of the water quality by determining the changes in organic matter as indicated by the measurement of biochemical oxygen demand (BOD), chemical oxygen demand (COD) and total organic carbon (TOC). Samples of effluent, before and after chlorination, and sludge were obtained from a Riyadh Wastewater Treatment Plant. The studies were conducted using a laboratory scale 60 Co gamma source. The improvement in quality of the irradiated samples was demonstrated by the reduction in bacteria, and the reduction in the BOD, COD and TOC. Radiation of the wastewater provided adequate disinfection while at the same time increasing the water quality. This treatment could lead to additional opportunities for the reuse of this valuable resource. Limited studies, conducted on the anaerobically digested secondary biosolids, showed an improvement in bacterial content and no change in COD

  12. Treatment efficiency and economic feasibility of biological oxidation, membrane filtration and separation processes, and advanced oxidation for the purification and valorization of olive mill wastewater.

    Science.gov (United States)

    Ioannou-Ttofa, L; Michael-Kordatou, I; Fattas, S C; Eusebio, A; Ribeiro, B; Rusan, M; Amer, A R B; Zuraiqi, S; Waismand, M; Linder, C; Wiesman, Z; Gilron, J; Fatta-Kassinos, D

    2017-05-01

    Olive mill wastewater (OMW) is a major waste stream resulting from numerous operations that occur during the production stages of olive oil. The resulting effluent contains various organic and inorganic contaminants and its environmental impact can be notable. The present work aims at investigating the efficiency of (i) jet-loop reactor with ultrafiltration (UF) membrane system (Jacto.MBR), (ii) solar photo-Fenton oxidation after coagulation/flocculation pre-treatment and (iii) integrated membrane filtration processes (i.e. UF/nanofiltration (NF)) used for the treatment of OMW. According to the results, the efficiency of the biological treatment was high, equal to 90% COD and 80% total phenolic compounds (TPh) removal. A COD removal higher than 94% was achieved by applying the solar photo-Fenton oxidation process as post-treatment of coagulation/flocculation of OMW, while the phenolic fraction was completely eliminated. The combined UF/NF process resulted in very high conductivity and COD removal, up to 90% and 95%, respectively, while TPh were concentrated in the NF concentrate stream (i.e. 93% concentration). Quite important is the fact that the NF concentrate, a valuable and polyphenol rich stream, can be further valorized in various industries (e.g. food, pharmaceutical, etc.). The above treatment processes were found also to be able to reduce the initial OMW phytotoxicity at greenhouse experiments; with the effluent stream of solar photo-Fenton process to be the least phytotoxic compared to the other treated effluents. A SWOT (Strength, Weakness, Opportunities, Threats) analysis was performed, in order to determine both the strengths of each technology, as well as the possible obstacles that need to overcome for achieving the desired levels of treatment. Finally, an economic evaluation of the tested technologies was performed in an effort to measure the applicability and viability of these systems at real scale; highlighting that the cost cannot be regarded as

  13. Performance of Wastewater Treatment Plants in Gaza Strip Potential use of Wastewater and Sludge in Agriculture

    Energy Technology Data Exchange (ETDEWEB)

    Shomar, B.H.; Mueller, G.; Yahya, A.

    2003-07-01

    Twelve elements (Ag, Al, As, Cd, Ca, Cr, Cu, Fe, Mn, Ni, Pb, and Zn) were analyzed in 120 composite samples of influent and effluent wastewater; the results revealed that domestic wastewater influent contains considerable amounts of heavy metals and the partially functional treatment plants of Gaza are able to remove 40-70% of most metals during the treatment process. Heavy metals in 31 industrial wastewater effluents are within the ranges of international standards. All industries of Gaza are light, despite that they have no treatment facilities, their effluents are being discharged to municipal sewerage system and the existing treatment plants are capable to absorb the industrial effluents with no significant impact on treatment bioprocesses. Thirty parameters were determined in 35 sludge samples; P, AOX, C, S, CaCO{sub 3}, Mg, Ca, Na, K, Li, Cu, Zn, Ni, Pb, Mn, Fe, Cr, Co, Cd, As, Hg, Ti, Se, Br, Rb, Th, Sr, Y, U, and Zr. Although there are no treatment facilities for sludge within the treatment plants, the results indicated that sludge in general is clean of heavy metals. Zinc and AOX only showed anomalous concentrations; more than 85% of sludge samples showed that averages of zinc and AOX are 2000 mg/kg and 550 mg Cl/kg, respectively, which exceed the standards of all industrial countries for sludge to be used in land application. (author)

  14. Wastewater treatment and reclamation: a review of pulp and paper industry practices and opportunities

    OpenAIRE

    Hubbe, Martin A.; Metts, Jeremy R.; Hermosilla, Daphne; Angeles Blanco, M.; Yerushalmi, Laleh; Haghighat, Fariborz; Lindholm-Lehto, Petra; Khodaparast, Zahra; Kamali, Mohammadreza; Elliott, Allan

    2016-01-01

    The pulp and paper (P&P) industry worldwide has achieved substantial progress in treating both process water and wastewater, thus limiting the discharge of pollutants to receiving waters. This review covers a variety of wastewater treatment methods, which provide P&P companies with cost-effective ways to limit the release of biological or chemical oxygen demand, toxicity, solids, color, and other indicators of pollutant load. Conventional wastewater treatment systems, often comprising primary...

  15. A simple anaerobic system for onsite treatment of domestic wastewater

    African Journals Online (AJOL)

    user

    UASB), carbon footprint. INTRODUCTION. Domestic wastewater refers to the wastewater from toilet, bathroom and kitchen of household. Anaerobic treatment of organic material proceeds in the absence of oxygen and the presence of anaerobic ...

  16. Thermophilic biological nitrogen removal in industrial wastewater treatment.

    OpenAIRE

    Lopez-Vazquez, CM; Kubare, M; Saroj, DP; Chikamba, C; Schwarz, J; Daims, H; Brdjanovic, D

    2013-01-01

    Nitrification is an integral part of biological nitrogen removal processes and usually the limiting step in wastewater treatment systems. Since nitrification is often considered not feasible at temperatures higher than 40 °C, warm industrial effluents (with operating temperatures higher than 40 °C) need to be cooled down prior to biological treatment, which increases the energy and operating costs of the plants for cooling purposes. This study describes the occurrence of thermophilic biologic...

  17. Mass Balance of Fipronil and Total Toxicity of Fipronil-Related Compounds in Process Streams during Conventional Wastewater and Wetland Treatment

    Science.gov (United States)

    2015-01-01

    Attenuation of the pesticide fipronil and its major degradates was determined during conventional wastewater treatment and wetland treatment. Analysis of flow-weighted composite samples by liquid and gas chromatography–tandem mass spectrometry showed fipronil occurrence at 12–31 ng/L in raw sewage, primary effluent, secondary effluent, chlorinated effluent, and wetland effluent. Mean daily loads of total fipronil related compounds in raw sewage and in plant effluent after chlorination were statistically indistinguishable (p = 0.29; n = 10), whereas fipronil itself was partially removed (25 ± 3%; p = 0.00025; n = 10); the associated loss in toxicity was balanced by the formation of toxic fipronil degradates, showing conventional treatment to be unfit for reducing overall toxicity. In contrast to these findings at the municipal wastewater treatment, both parental fipronil and the sum of fipronil-related compounds were removed in the wetland with efficiencies of 44 ± 4% and 47 ± 13%, respectively. Total fipronil concentrations in plant effluent (28 ± 6 ng/L as fipronil) were within an order of magnitude of half-maximal effective concentrations (EC50) of nontarget invertebrates. This is the first systematic assessment of the fate of fipronil and its major degradates during full-scale conventional wastewater and constructed wetland treatment. PMID:26710933

  18. Improving sewage wastewater characteristics using radiation treatment

    International Nuclear Information System (INIS)

    El-Motaium, R.A.; Sabry, A.; El-Ammari, M.F.

    2005-01-01

    Raw and treated sewage wastewater, collected from El-Gabal El-Asfar wastewater treatment plant (WWTP), irradiated and non-irradiated, were tested in order to determine the lethal radiation dose for total coliform and the effect of radiation on biological oxygen demand (BOD) and chemical oxygen demand (COD). Various gamma radiation and electron beam doses (0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0 KGy) were used in this study. A negative relationship between the radiation dose and the total coliform population was recorded. The increase in the radiation dose was accompanied by a decrease in total coliform count. The lethal doses of gamma radiation