WorldWideScience

Sample records for wastewater treatment facilities

  1. Wastewater Treatment Facilities

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — Individual permits for municipal, industrial, and semi-public wastewater treatment facilities in Iowa for the National Pollutant Discharge Elimination System (NPDES)...

  2. The Wastewater Treatment Test Facility at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Richardson, S.A.; Kent, T.E.; Taylor, P.A.

    1995-01-01

    The Wastewater Treatment Test Facility (WTTF) contains 0.5 L/min test systems which provide a wide range of physical and chemical separation unit operations. The facility is a modified 48 foot trailer which contains all the unit operations of the ORNL's Process Waste Treatment Plant and Nonradiological Wastewater Treatment Plant including chemical precipitation, clarification, filtration, ion-exchange, air stripping, activated carbon adsorption, and zeolite system. This facility has been used to assess treatability of potential new wastewaters containing mixed radioactive, hazardous organic, and heavy metal compounds. With the ability to simulate both present and future ORNL wastewater treatment systems, the WTTF has fast become a valuable tool in solving wastewater treatment problems at the Oak Ridge reservation

  3. Energy Efficiency Strategies for Municipal Wastewater Treatment Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Daw, J.; Hallett, K.; DeWolfe, J.; Venner, I.

    2012-01-01

    Water and wastewater systems are significant energy consumers with an estimated 3%-4% of total U.S. electricity consumption used for the movement and treatment of water and wastewater. Water-energy issues are of growing importance in the context of water shortages, higher energy and material costs, and a changing climate. In this economic environment, it is in the best interest for utilities to find efficiencies, both in water and energy use. Performing energy audits at water and wastewater treatment facilities is one way community energy managers can identify opportunities to save money, energy, and water. In this paper the importance of energy use in wastewater facilities is illustrated by a case study of a process energy audit performed for Crested Butte, Colorado's wastewater treatment plant. The energy audit identified opportunities for significant energy savings by looking at power intensive unit processes such as influent pumping, aeration, ultraviolet disinfection, and solids handling. This case study presents best practices that can be readily adopted by facility managers in their pursuit of energy and financial savings in water and wastewater treatment. This paper is intended to improve community energy managers understanding of the role that the water and wastewater sector plays in a community's total energy consumption. The energy efficiency strategies described provide information on energy savings opportunities, which can be used as a basis for discussing energy management goals with water and wastewater treatment facility managers.

  4. EPA Facility Registry Service (FRS): Wastewater Treatment Plants

    Data.gov (United States)

    U.S. Environmental Protection Agency — This GIS dataset contains data on wastewater treatment plants, based on EPA's Facility Registry Service (FRS), EPA's Integrated Compliance Information System (ICIS)...

  5. Radiation protection -Operation of chemical wastewater treatment facility

    International Nuclear Information System (INIS)

    Lee, M. J.; Lim, M. H.; Ahn, S. S.; Jeong, Y. S.

    1996-12-01

    The wastewater and sewage treatment facility have been operated. From the results of operation, it was confirmed that the quality of treated wastewater was 1/5 or 1/10 lower than that of regulation of law for environmental conservation. The quality of treated sewage has been maintained to 70% of regulation of law for environmental conservation. (author). 14 tabs., 8 figs

  6. Addressing social aspects associated with wastewater treatment facilities

    International Nuclear Information System (INIS)

    Padilla-Rivera, Alejandro; Morgan-Sagastume, Juan Manuel; Noyola, Adalberto; Güereca, Leonor Patricia

    2016-01-01

    In wastewater treatment facilities (WWTF), technical and financial aspects have been considered a priority, while other issues, such as social aspects, have not been evaluated seriously and there is not an accepted methodology for assessing it. In this work, a methodology focused on social concerns related to WWTF is presented. The methodology proposes the use of 25 indicators as a framework for measuring social performance to evaluate the progress in moving towards sustainability. The methodology was applied to test its applicability and effectiveness in two WWTF in Mexico (urban and rural). This evaluation helped define the key elements, stakeholders and barriers in the facilities. In this context, the urban facility showed a better overall performance, a result that may be explained mainly by the better socioeconomic context of the urban municipality. Finally, the evaluation of social aspects using the semi-qualitative approach proposed in this work allows for a comparison between different facilities and for the identification of strengths and weakness, and it provides an alternative tool for achieving and improving wastewater management. - Highlights: • The methodology proposes 25 indicators as a framework for measuring social performance in wastewater treatment facilities. • The evaluation helped to define the key elements, stakeholders and barriers in the wastewater treatment facilities. • The evaluation of social aspects allows the identification of strengths and weakness for improving wastewater management. • It provides a social profile of the facility that highlights the best and worst performances.

  7. Addressing social aspects associated with wastewater treatment facilities

    Energy Technology Data Exchange (ETDEWEB)

    Padilla-Rivera, Alejandro; Morgan-Sagastume, Juan Manuel; Noyola, Adalberto; Güereca, Leonor Patricia, E-mail: lguerecah@iingen.unam.mx

    2016-02-15

    In wastewater treatment facilities (WWTF), technical and financial aspects have been considered a priority, while other issues, such as social aspects, have not been evaluated seriously and there is not an accepted methodology for assessing it. In this work, a methodology focused on social concerns related to WWTF is presented. The methodology proposes the use of 25 indicators as a framework for measuring social performance to evaluate the progress in moving towards sustainability. The methodology was applied to test its applicability and effectiveness in two WWTF in Mexico (urban and rural). This evaluation helped define the key elements, stakeholders and barriers in the facilities. In this context, the urban facility showed a better overall performance, a result that may be explained mainly by the better socioeconomic context of the urban municipality. Finally, the evaluation of social aspects using the semi-qualitative approach proposed in this work allows for a comparison between different facilities and for the identification of strengths and weakness, and it provides an alternative tool for achieving and improving wastewater management. - Highlights: • The methodology proposes 25 indicators as a framework for measuring social performance in wastewater treatment facilities. • The evaluation helped to define the key elements, stakeholders and barriers in the wastewater treatment facilities. • The evaluation of social aspects allows the identification of strengths and weakness for improving wastewater management. • It provides a social profile of the facility that highlights the best and worst performances.

  8. Opportunities for Automated Demand Response in California Wastewater Treatment Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Aghajanzadeh, Arian [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Wray, Craig [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); McKane, Aimee [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2015-08-30

    Previous research over a period of six years has identified wastewater treatment facilities as good candidates for demand response (DR), automated demand response (Auto-­DR), and Energy Efficiency (EE) measures. This report summarizes that work, including the characteristics of wastewater treatment facilities, the nature of the wastewater stream, energy used and demand, as well as details of the wastewater treatment process. It also discusses control systems and automated demand response opportunities. Furthermore, this report summarizes the DR potential of three wastewater treatment facilities. In particular, Lawrence Berkeley National Laboratory (LBNL) has collected data at these facilities from control systems, submetered process equipment, utility electricity demand records, and governmental weather stations. The collected data were then used to generate a summary of wastewater power demand, factors affecting that demand, and demand response capabilities. These case studies show that facilities that have implemented energy efficiency measures and that have centralized control systems are well suited to shed or shift electrical loads in response to financial incentives, utility bill savings, and/or opportunities to enhance reliability of service. In summary, municipal wastewater treatment energy demand in California is large, and energy-­intensive equipment offers significant potential for automated demand response. In particular, large load reductions were achieved by targeting effluent pumps and centrifuges. One of the limiting factors to implementing demand response is the reaction of effluent turbidity to reduced aeration at an earlier stage of the process. Another limiting factor is that cogeneration capabilities of municipal facilities, including existing power purchase agreements and utility receptiveness to purchasing electricity from cogeneration facilities, limit a facility’s potential to participate in other DR activities.

  9. Wastewater treatment facilities: Energy efficient improvements and cogeneration

    International Nuclear Information System (INIS)

    Kunkle, R.; Gray, R.; Delzel, D.

    1992-10-01

    The Washington State Energy Office (WSEO) has worked with both the Bonneville Power Administration (BPA) and the US Department of Energy to provide technical and financial assistance to local governments. Based on a recent study conducted by Ecotope for WSEO, local governments spend an estimated $45 million on utility bills statewide. Water and wastewater facilities account for almost a third of this cost. As a result, WSEO decided to focus its efforts on the energy intensive water and wastewater sector. The ultimate goal of this project was to develop mechanisms to incorporate energy efficiency improvements into wastewater treatment facilities in retrofits and during upgrades, remodels, and new construction. Project activities included the following: The review of the existing regulatory environment for treatment system construction, A summary of financing options for efficiency improvements in treatment facilities, A literature review of energy efficiency opportunities in treatment plants, Survey and site visits to characterize existing facilities in Washington State, Estimates of the energy efficiency and cogeneration potential in the sector, and A case study to illustrate the implementation of an efficiency improvement in a treatment facility

  10. Operation, Maintenance and Management of Wastewater Treatment Facilities: A Bibliography of Technical Documents.

    Science.gov (United States)

    Himes, Dottie

    This is an annotated bibliography of wastewater treatment manuals. Fourteen manuals are abstracted including: (1) A Planned Maintenance Management System for Municipal Wastewater Treatment Plants; (2) Anaerobic Sludge Digestion, Operations Manual; (3) Emergency Planning for Municipal Wastewater Treatment Facilities; (4) Estimating Laboratory Needs…

  11. Financing CHP Projects at Wastewater Treatment Facilities with Clean Water State Revolving Funds

    Science.gov (United States)

    This factsheet provides information about CHP at wastewater treatment facilities, including applications, financial challenges, and financial opportunities, such as the Clean Water State Revolving Fund.

  12. NPDES Permit for Soap Creek Associates Wastewater Treatment Facility in Montana

    Science.gov (United States)

    Under National Pollutant Discharge Elimination System permit number MT-0023183, Soap Creek Associates, Inc. is authorized to discharge from its wastewater treatment facility located in West, Bighorn County, Montana, to Soap Creek.

  13. NPDES Permit for Town of Lodge Grass Wastewater Treatment Facility in Montana

    Science.gov (United States)

    Under National Pollutant Discharge Elimination System permit number MT0021890, the Town of Lodge Grass is authorized to discharge from from its wastewater treatment facility in Big Horn County to an unnamed slough to the Little Bighorn River.

  14. NPDES Permit for Dakota Magic Casino Wastewater Treatment Facility in North Dakota

    Science.gov (United States)

    Under NPDES permit ND-0030813, the Dakota Nation Gaming Enterprise is authorized to discharge from the wastewater treatment facility in Richland County, North Dakota, to a roadside ditch flowing to an unnamed tributary to the Bois de Sioux.

  15. NPDES Permit for Rosebud Casino and Hotel Wastewater Treatment Facility in South Dakota

    Science.gov (United States)

    Under NPDES permit SD-0034584, Rosebud Casino and Hotel, South Dakota, is authorized to discharge from its wastewater treatment facility in Todd County, South Dakota to an unnamed drainageway(s) tributary to Rock Creek.

  16. Village of Pender, Nebraska Wastewater Treatment Facility, Pender, Nebraska - Clean Water Act Public Notice

    Science.gov (United States)

    The EPA is providing notice of proposed Administrative Penalty Assessment against the Village of Pender, Nebraska Wastewater Treatment Facility (“Respondent”) for alleged violations of Sections 301 and/or 404 of the Clean Water Act

  17. Environmental Protection Agency (EPA) Facility Registry Service (FRS) Wastewater Treatment Plants

    Data.gov (United States)

    Department of Homeland Security — This GIS dataset contains data on wastewater treatment plants, based on EPA's Facility Registry Service (FRS) and NPDES, along with Clean Watersheds Needs Survey...

  18. Wastewater Treatment

    Science.gov (United States)

    ... day before releasing it back to the environment. Treatment plants reduce pollutants in wastewater to a level nature can handle. Wastewater is used water. It includes substances such as human waste, food ...

  19. Treatability studies of alternative wastewaters for Metal Finishing Effluent Treatment Facility

    International Nuclear Information System (INIS)

    Wittry, D.M.; Martin, H.L.

    1994-01-01

    The 300-M Area Liquid Effluent Treatment Facility (LETF) of the Savannah River Site (SRS) is an end-of-pipe industrial wastewater treatment facility that uses precipitation and filtration, which is the EPA Best Available Technology economically achievable for a Metal Finishing and Aluminum Form Industries. Upon the completion of stored waste treatment, the LETF will be shut down, because production of nuclear materials for reactors stopped at the end of the Cold War. The economic use of the LETF for the treatment of alternative wastewater streams is being evaluated through laboratory bench-scale treatability studies

  20. Wastewater Treatment Plants

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — The actual treatment areas for municipal, industrial, and semi-public wastewater treatment facilities in Iowa for the National Pollutant Discharge Elimination System...

  1. Wastewater treatment

    Directory of Open Access Journals (Sweden)

    Ranđel N. Kitanović

    2013-10-01

    mechanical, chemical and biological agents. Mechanical methods are based on the effect of physical forces. Chemical agents are based on chemical processes. Biological measures are based on natural laws and activities of living beings. Water saving and its rational use are some of the most effective ways of saving water from pollution. Water treatment Water treatment is done in two ways: by sedimentation and filtration. Dirt falling on the bottom is called deposition. The passage of clean water through the material is called filtering. Water containing dissolved substances is purified by distillation. To improve the taste of distilled water, aeration should be performed. The sun’s ultraviolet rays destroy biological pollutants. Mechanical, biological and chemical methods are used for water purification. Mechanical methods Mechanical methods are based on the removal of physical impurities from water and the action of natural forces. For this purpose we use: grids and sieves, sedimentation, flotation, filtration, centrifugation, sand sedimentation tanks, grease traps, primary sedimentation tanks and flow equalization tanks. Wastewater aeration equipment is also used within these facilities. Grids and Sieves Larger, insoluble and floating substances in wastewater are removed with grids and sieves. Sedimentation The application of grids and sieves as well as sand sedimentation tanks and grease traps can be viewed as a process of deposition using certain infrastructure facilities intended for this type of separation of impurities. Infrastructure facilities are sedimentation tanks. There are vertical, horizontal and radial flow sedimentation tanks. Flotation Particle resurfacing with bubbles of air is called flotation. The best effect is achieved by aeration of bubbles of smaller diameters in a larger area. Filtration Filtration is a process used in water conditioning to remove insoluble substances. During filtration, water passes through a layer of granular material placed on a

  2. PFP Wastewater Sampling Facility

    International Nuclear Information System (INIS)

    Hirzel, D.R.

    1995-01-01

    This test report documents the results obtained while conducting operational testing of the sampling equipment in the 225-WC building, the PFP Wastewater Sampling Facility. The Wastewater Sampling Facility houses equipment to sample and monitor the PFP's liquid effluents before discharging the stream to the 200 Area Treated Effluent Disposal Facility (TEDF). The majority of the streams are not radioactive and discharges from the PFP Heating, Ventilation, and Air Conditioning (HVAC). The streams that might be contaminated are processed through the Low Level Waste Treatment Facility (LLWTF) before discharging to TEDF. The sampling equipment consists of two flow-proportional composite samplers, an ultrasonic flowmeter, pH and conductivity monitors, chart recorder, and associated relays and current isolators to interconnect the equipment to allow proper operation. Data signals from the monitors are received in the 234-5Z Shift Office which contains a chart recorder and alarm annunciator panel. The data signals are also duplicated and sent to the TEDF control room through the Local Control Unit (LCU). Performing the OTP has verified the operability of the PFP wastewater sampling system. This Operability Test Report documents the acceptance of the sampling system for use

  3. Engineering report for interim solids removal modifications of the Steam Plant Wastewater Treatment Facility

    International Nuclear Information System (INIS)

    1995-04-01

    The Steam Plant Wastewater Treatment Facility (SPWTF) treats wastewater from the Y-12 Plant coal yard, steam plant, and water demineralizer facility. The facility is required to comply with National Pollutant Discharge Elimination System (NPDES) standards prior to discharge to East Fork Poplar Creek (EFPC). The existing facility was designed to meet Best Available Technology (BAT) standards and has been in operation since 1988. The SPWTF has had intermittent violations of the NPDES permit primarily due to difficulties in complying with the limit for total iron of 1.0 ppM. A FY-1997 Line Item project, SPWTF Upgrades, is planned to improve the capabilities of the SPWTF to eliminate non-compliances with the permit limits. The intent of the Interim Solids Removal Modification project is to improve the SPWTF effluent quality and to provide pilot treatment data to assist in the design and implementation of the SPWTF Upgrades Line Item Project

  4. Low-level wastewater treatment facility process control operational test report

    International Nuclear Information System (INIS)

    Bergquist, G.G.

    1996-01-01

    This test report documents the results obtained while conducting operational testing of a new TK 102 level controller and total outflow integrator added to the NHCON software that controls the Low-Level Wastewater Treatment Facility (LLWTF). The test was performed with WHC-SD-CP-OTP 154, PFP Low-Level Wastewater Treatment Facility Process Control Operational Test. A complete test copy is included in appendix A. The new TK 102 level controller provides a signal, hereafter referred to its cascade mode, to the treatment train flow controller which enables the water treatment process to run for long periods without continuous operator monitoring. The test successfully demonstrated the functionality of the new controller under standard and abnormal conditions expected from the LLWTF operation. In addition, a flow totalizer is now displayed on the LLWTF outlet MICON screen which tallies the process output in gallons. This feature substantially improves the ability to retrieve daily process volumes for maintaining accurate material balances

  5. An integrated prediction and optimization model of biogas production system at a wastewater treatment facility.

    Science.gov (United States)

    Akbaş, Halil; Bilgen, Bilge; Turhan, Aykut Melih

    2015-11-01

    This study proposes an integrated prediction and optimization model by using multi-layer perceptron neural network and particle swarm optimization techniques. Three different objective functions are formulated. The first one is the maximization of methane percentage with single output. The second one is the maximization of biogas production with single output. The last one is the maximization of biogas quality and biogas production with two outputs. Methane percentage, carbon dioxide percentage, and other contents' percentage are used as the biogas quality criteria. Based on the formulated models and data from a wastewater treatment facility, optimal values of input variables and their corresponding maximum output values are found out for each model. It is expected that the application of the integrated prediction and optimization models increases the biogas production and biogas quality, and contributes to the quantity of electricity production at the wastewater treatment facility. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. 2010 Annual Wastewater Reuse Report for the Idaho National Laboratory Site's Central Facilities Area Sewage Treatment Plant

    Energy Technology Data Exchange (ETDEWEB)

    Mike lewis

    2011-02-01

    This report describes conditions, as required by the state of Idaho Wastewater Reuse Permit (#LA-000141-03), for the wastewater land application site at Idaho National Laboratory Site’s Central Facilities Area Sewage Treatment Plant from November 1, 2009, through October 31, 2010. The report contains the following information: • Site description • Facility and system description • Permit required monitoring data and loading rates • Status of special compliance conditions • Discussion of the facility’s environmental impacts. During the 2010 permit year, approximately 2.2 million gallons of treated wastewater was land-applied to the irrigation area at Central Facilities Area Sewage Treatment plant.

  7. Notification: EPA Region 10 Management Controls Over Allowing Substantial Public Funds to Construct the Spokane County Wastewater Treatment Facility

    Science.gov (United States)

    January 20, 2012. This EPA's OIG is initiating a review from an OIG hotline complaint regarding whether federal funds were properly used to construct the new Spokane County wastewater treatment facility in accordance with 40 CFR 35, Subpart K.

  8. 2015 Annual Wastewater Reuse Report for the Idaho National Laboratory Site’s Central Facilities Area Sewage Treatment Plant

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, Michael George [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-02-01

    This report describes conditions, as required by the state of Idaho Wastewater Reuse Permit (#LA-000141-03), for the wastewater land application site at the Idaho National Laboratory Site’s Central Facilities Area Sewage Treatment Plant from November 1, 2014, through October 31, 2015.

  9. 2015 Annual Wastewater Reuse Report for the Idaho National Laboratory Site's Central Facilities Area Sewage Treatment Plant

    International Nuclear Information System (INIS)

    Lewis, Michael George

    2016-01-01

    This report describes conditions, as required by the state of Idaho Wastewater Reuse Permit (#LA-000141-03), for the wastewater land application site at the Idaho National Laboratory Site's Central Facilities Area Sewage Treatment Plant from November 1, 2014, through October 31, 2015.

  10. Opportunities for Energy Efficiency and Open Automated Demand Response in Wastewater Treatment Facilities in California -- Phase I Report

    Energy Technology Data Exchange (ETDEWEB)

    Lekov, Alex; Thompson, Lisa; McKane, Aimee; Song, Katherine; Piette, Mary Ann

    2009-04-01

    This report summarizes the Lawrence Berkeley National Laboratory?s research to date in characterizing energy efficiency and automated demand response opportunities for wastewater treatment facilities in California. The report describes the characteristics of wastewater treatment facilities, the nature of the wastewater stream, energy use and demand, as well as details of the wastewater treatment process. It also discusses control systems and energy efficiency and automated demand response opportunities. In addition, several energy efficiency and load management case studies are provided for wastewater treatment facilities.This study shows that wastewater treatment facilities can be excellent candidates for open automated demand response and that facilities which have implemented energy efficiency measures and have centralized control systems are well-suited to shift or shed electrical loads in response to financial incentives, utility bill savings, and/or opportunities to enhance reliability of service. Control technologies installed for energy efficiency and load management purposes can often be adapted for automated demand response at little additional cost. These improved controls may prepare facilities to be more receptive to open automated demand response due to both increased confidence in the opportunities for controlling energy cost/use and access to the real-time data.

  11. Research on common methods for evaluating the operation effect of integrated wastewater treatment facilities of iron and steel enterprises

    Science.gov (United States)

    Bingsheng, Xu

    2017-04-01

    Considering the large quantities of wastewater generated from iron and steel enterprises in China, this paper is aimed to research the common methods applied for evaluating the integrated wastewater treatment effect of iron and steel enterprises. Based on survey results on environmental protection performance, technological economy, resource & energy consumption, services and management, an indicator system for evaluating the operation effect of integrated wastewater treatment facilities is set up. By discussing the standards and industrial policies in and out of China, 27 key secondary indicators are further defined on the basis of investigation on main equipment and key processes for wastewater treatment, so as to determine the method for setting key quantitative and qualitative indicators for evaluation indicator system. It is also expected to satisfy the basic requirements of reasonable resource allocation, environmental protection and sustainable economic development, further improve the integrated wastewater treatment effect of iron and steel enterprises, and reduce the emission of hazardous substances and environmental impact.

  12. Optimal number of energy generators for biogas utilization in wastewater treatment facility

    International Nuclear Information System (INIS)

    Tsagarakis, Konstantinos P.

    2007-01-01

    A technoeconomic analysis has been undertaken considering the optimum number of energy producing generators using biogas coming from anaerobic digestion. Inputs for this analysis originate from available data on the first generator for energy production from biogas, installed in Greece at the wastewater treatment facility of Iraklio city. The data spans a period of 5.5 years of operation. It is concluded that the cost per kWh produced is 0.0876 Euro /kWh if one generator is used covering 15.9% of the facility's needs. If two generators are used, more biogas is utilized contributing 32.6% of the facility's needs at a marginal production cost of 0.0886 Euro /kWh. Similar estimations have been made for scenarios involving up to six generators. In contrast, the marginal cost of conventionally produced energy is 0.1383-0.2483 Euro /kWh

  13. Design of commercial dyeing wastewater treatment facility with e-beam (based on the results of pilot plant)

    International Nuclear Information System (INIS)

    Han, Bumsoo; Kim, Sung Myun; Kim, Jin-Kyu; Kim, Yuri; Yang, Mun Ho; Choi, J.S.; Ahn, S.J.; Pikaev, A.K.; Makarov, I.E.; Ponomarev, A.V.

    2001-01-01

    A pilot plant for a large-scale test of dyeing facility wastewater (flow rate of 1,000m 3 per day from 80,000m 3 /day of total wastewater) was constructed and operated with the electron accelerator of 1MeV, 40kW. The accelerator was installed in February 1998 and the Tower Style Biological treatment facility (TSB) was also installed in October 1998. The wastewater is injected under the e-beam irradiation area through the nozzle type injector to obtain the adequate penetration depth. The speed of injection could be varied upon the dose and dose rate. Performance statistics are given

  14. 2013 Annual Wastewater Reuse Report for the Idaho National Laboratory Site’s Central Facilities Area Sewage Treatment Plant

    Energy Technology Data Exchange (ETDEWEB)

    Mike Lewis

    2014-02-01

    This report describes conditions, as required by the state of Idaho Wastewater Reuse Permit (#LA-000141-03), for the wastewater land application site at the Idaho National Laboratory Site’s Central Facilities Area Sewage Treatment Plant from November 1, 2012, through October 31, 2013. The report contains, as applicable, the following information: • Site description • Facility and system description • Permit required monitoring data and loading rates • Status of compliance conditions and activities • Discussion of the facility’s environmental impacts. During the 2013 permit year, no wastewater was land-applied to the irrigation area of the Central Facilities Area Sewage Treatment Plant and therefore, no effluent flow volumes or samples were collected from wastewater sampling point WW-014102. However, soil samples were collected in October from soil monitoring unit SU-014101.

  15. Instability of biological nitrogen removal in a cokes wastewater treatment facility during summer

    International Nuclear Information System (INIS)

    Kim, Young Mo; Park, Donghee; Lee, Dae Sung; Park, Jong Moon

    2007-01-01

    Failure in nitrogen removal of cokes wastewater occurs occasionally during summer season (38 deg. C) due to the instability of nitrification process. The objective of this study was to examine why the nitrification process is unstable especially in summer. Various parameters such as pH, temperature, nutrients and pollutants were examined in batch experiments using activated sludge and wastewater obtained from a full-scale cokes wastewater treatment facility. Batch experiments showed that nitrification rate of the activated sludge was faster in summer (38 deg. C) than in spring or autumn (29 deg. C) and the toxic effects of cyanide, phenol and thiocyanate on nitrification were reduced with increasing temperature. Meanwhile, experiment using continuous reactor showed that the reduction rate in nitrification efficiency was higher at 38 deg. C than at 29 deg. C. In conclusion, the instability of full-scale nitrification process in summer might be mainly due to washing out of nitrifiers by fast growth of competitive microorganisms at higher temperature under increased concentrations of phenol and thiocyanate

  16. Environmental Assessment for the High Explosives Wastewater Treatment Facility, Los Alamos National Laboratory, Los Alamos, New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-08-03

    The Department of Energy (DOE) has identified a need to improve the management of wastewater resulting from high explosives (HE) research and development work at Los Alamos National Laboratory (LANL). LANL`s current methods off managing HE-contaminated wastewater cannot ensure that discharged HE wastewater would consistently meet the Environmental Protection Agency`s (EPA`s) standards for wastewater discharge. The DOE needs to enhance He wastewater management to e able to meet both present and future regulatory standards for wastewater discharge. The DOE also proposes to incorporate major pollution prevention and waste reduction features into LANL`s existing HE production facilities. Currently, wastewater from HE processing buildings at four Technical Areas (TAs) accumulates in sumps where particulate HE settles out and barium is precipitated. Wastewater is then released from the sumps to the environment at 15 permitted outfalls without treatment. The released water may contain suspended and dissolved contaminants, such as HE and solvents. This Environmental Assessment (EA) analyzes two alternatives, the Proposed Action and the Alternative Action, that would meet the purpose and need for agency action. Both alternatives would treat all HE process wastewater using sand filters to remove HE particulates and activated carbon to adsorb organic solvents and dissolved HE. Under either alternative, LANL would burn solvents and flash dried HE particulates and spent carbon following well-established procedures. Burning would produce secondary waste that would be stored, treated, and disposed of at TA-54, Area J. This report contains the Environmental Assessment, as well as the Finding of No Significant Impact and Floodplain Statement of Findings for the High Explosives Wastewater Treatment Facility.

  17. Environmental Assessment for the High Explosives Wastewater Treatment Facility, Los Alamos National Laboratory, Los Alamos, New Mexico

    International Nuclear Information System (INIS)

    1995-01-01

    The Department of Energy (DOE) has identified a need to improve the management of wastewater resulting from high explosives (HE) research and development work at Los Alamos National Laboratory (LANL). LANL's current methods off managing HE-contaminated wastewater cannot ensure that discharged HE wastewater would consistently meet the Environmental Protection Agency's (EPA's) standards for wastewater discharge. The DOE needs to enhance He wastewater management to e able to meet both present and future regulatory standards for wastewater discharge. The DOE also proposes to incorporate major pollution prevention and waste reduction features into LANL's existing HE production facilities. Currently, wastewater from HE processing buildings at four Technical Areas (TAs) accumulates in sumps where particulate HE settles out and barium is precipitated. Wastewater is then released from the sumps to the environment at 15 permitted outfalls without treatment. The released water may contain suspended and dissolved contaminants, such as HE and solvents. This Environmental Assessment (EA) analyzes two alternatives, the Proposed Action and the Alternative Action, that would meet the purpose and need for agency action. Both alternatives would treat all HE process wastewater using sand filters to remove HE particulates and activated carbon to adsorb organic solvents and dissolved HE. Under either alternative, LANL would burn solvents and flash dried HE particulates and spent carbon following well-established procedures. Burning would produce secondary waste that would be stored, treated, and disposed of at TA-54, Area J. This report contains the Environmental Assessment, as well as the Finding of No Significant Impact and Floodplain Statement of Findings for the High Explosives Wastewater Treatment Facility

  18. Detection, fate and inactivation of pathogenic norovirus employing settlement and UV treatment in wastewater treatment facilities

    International Nuclear Information System (INIS)

    Barrett, M.; Fitzhenry, K.; O'Flaherty, V.; Dore, W.; Keaveney, S.; Cormican, M.; Rowan, N.; Clifford, E.

    2016-01-01

    It is accepted that discharged wastewaters can be a significant source of pathogenic viruses in receiving water bodies contributing to pollution and may in turn enter the human food chain and pose a risk to human health, thus norovirus (NoV) is often a predominant cause of gastroenteritis globally. Working with NoV poses particular challenges as it cannot be readily identified and detection by molecular methods does not assess infectivity. It has been proposed that the infectivity of NoV may be modelled through the use of an alternative virus; F-specific RNA (FRNA) bacteriophages; GA genotype and other FRNA bacteriophages have been used as a surrogate in studies of NoV inactivation. This study investigated the efficiency of novel pulsed ultraviolet irradiation and low pressure ultraviolet irradiation as a potential pathogen inactivation system for NoV and FRNA bacteriophage (GA) in secondary treated wastewaters. The role of UV dose and the impact of suspended solids concentration on removal efficiency were also examined. The study also investigated the role of settlement processes in wastewater treatment plants in removing NoV. While NoV inactivation could not be determined it was found that at a maximum UV dose of 6.9 J/cm"2 (6900 mJ/cm"2) an average 2.4 log removal of FRNA bacteriophage (GA) was observed; indicating the potential need for high UV doses to remove NoV if FRNA bacteriophage prove a suitable indicator for NoV. The study found that increasing concentrations of suspended solids impacted on PUV efficiency however, it appears the extent of the impact may be site specific. Furthermore, the study found that settlement processes can play a significant role in the removal of FRNA bacteriophage, thus potentially NoV. - Highlights: • Effectiveness of low pressure UV and novel high-intensity pulsed UV disinfection in NoVs removal. • Reduction of FRNA bacteriophage was seen in clarified wastewater after settling. • Adsorption of viral particles to solids

  19. Detection, fate and inactivation of pathogenic norovirus employing settlement and UV treatment in wastewater treatment facilities

    Energy Technology Data Exchange (ETDEWEB)

    Barrett, M. [Microbial Ecology Laboratory, Microbiology, School of Natural sciences, National University of Ireland Galway (Ireland); Ryan Institute, National University of Ireland Galway (Ireland); College of Engineering and Informatics, National University of Ireland Galway (Ireland); Fitzhenry, K. [Ryan Institute, National University of Ireland Galway (Ireland); College of Engineering and Informatics, National University of Ireland Galway (Ireland); O' Flaherty, V. [Microbial Ecology Laboratory, Microbiology, School of Natural sciences, National University of Ireland Galway (Ireland); Ryan Institute, National University of Ireland Galway (Ireland); Dore, W.; Keaveney, S. [Marine Institute, Galway (Ireland); Cormican, M. [Ryan Institute, National University of Ireland Galway (Ireland); Centre for Health from Environment, Ryan Institute, National University of Ireland Galway (Ireland); Rowan, N. [Bioscience Research Institute, Athlone Institute of Technology (Ireland); Clifford, E., E-mail: eoghan.clifford@nuigalway.ie [Ryan Institute, National University of Ireland Galway (Ireland); College of Engineering and Informatics, National University of Ireland Galway (Ireland)

    2016-10-15

    It is accepted that discharged wastewaters can be a significant source of pathogenic viruses in receiving water bodies contributing to pollution and may in turn enter the human food chain and pose a risk to human health, thus norovirus (NoV) is often a predominant cause of gastroenteritis globally. Working with NoV poses particular challenges as it cannot be readily identified and detection by molecular methods does not assess infectivity. It has been proposed that the infectivity of NoV may be modelled through the use of an alternative virus; F-specific RNA (FRNA) bacteriophages; GA genotype and other FRNA bacteriophages have been used as a surrogate in studies of NoV inactivation. This study investigated the efficiency of novel pulsed ultraviolet irradiation and low pressure ultraviolet irradiation as a potential pathogen inactivation system for NoV and FRNA bacteriophage (GA) in secondary treated wastewaters. The role of UV dose and the impact of suspended solids concentration on removal efficiency were also examined. The study also investigated the role of settlement processes in wastewater treatment plants in removing NoV. While NoV inactivation could not be determined it was found that at a maximum UV dose of 6.9 J/cm{sup 2} (6900 mJ/cm{sup 2}) an average 2.4 log removal of FRNA bacteriophage (GA) was observed; indicating the potential need for high UV doses to remove NoV if FRNA bacteriophage prove a suitable indicator for NoV. The study found that increasing concentrations of suspended solids impacted on PUV efficiency however, it appears the extent of the impact may be site specific. Furthermore, the study found that settlement processes can play a significant role in the removal of FRNA bacteriophage, thus potentially NoV. - Highlights: • Effectiveness of low pressure UV and novel high-intensity pulsed UV disinfection in NoVs removal. • Reduction of FRNA bacteriophage was seen in clarified wastewater after settling. • Adsorption of viral particles

  20. A Manual of Simplified Laboratory Methods for Operators of Wastewater Treatment Facilities.

    Science.gov (United States)

    Westerhold, Arnold F., Ed.; Bennett, Ernest C., Ed.

    This manual is designed to provide the small wastewater treatment plant operator, as well as the new or inexperienced operator, with simplified methods for laboratory analysis of water and wastewater. It is emphasized that this manual is not a replacement for standard methods but a guide for plants with insufficient equipment to perform analyses…

  1. Composition and uses of anaerobic digestion derived biogas from wastewater treatment facilities in North America.

    Science.gov (United States)

    Lackey, Jillian C; Peppley, B; Champagne, P; Maier, A

    2015-08-01

    A study was conducted to determine the current knowledge of biogas production and its use at municipal wastewater treatment plants (WWTPs) across North America. Information was provided by municipal WWTPs across Canada and the US. It was determined that hydrogen sulfide (H2S) and silicon (Si) compounds had sufficient variability to be of concern. The only biogas production trend that could be identified was a possible seasonal relationship with sludge input and biogas production. Secondary analysis was performed to observe trends in biogas usage in urban areas larger than 150,000 in the US and 50,000 in Canada; 66% of facilities had anaerobic digestion systems and, of those, only 35% had an energy recovery system. Climatic, population, and socio-political influences on the trends were considered. The primary conclusion was that more data is required to perform significant analyses on biogas production and composition variation. © The Author(s) 2015.

  2. Assessment of wastewater treatment facility compliance with decreasing ammonia discharge limits using a regression tree model.

    Science.gov (United States)

    Suchetana, Bihu; Rajagopalan, Balaji; Silverstein, JoAnn

    2017-11-15

    A regression tree-based diagnostic approach is developed to evaluate factors affecting US wastewater treatment plant compliance with ammonia discharge permit limits using Discharge Monthly Report (DMR) data from a sample of 106 municipal treatment plants for the period of 2004-2008. Predictor variables used to fit the regression tree are selected using random forests, and consist of the previous month's effluent ammonia, influent flow rates and plant capacity utilization. The tree models are first used to evaluate compliance with existing ammonia discharge standards at each facility and then applied assuming more stringent discharge limits, under consideration in many states. The model predicts that the ability to meet both current and future limits depends primarily on the previous month's treatment performance. With more stringent discharge limits predicted ammonia concentration relative to the discharge limit, increases. In-sample validation shows that the regression trees can provide a median classification accuracy of >70%. The regression tree model is validated using ammonia discharge data from an operating wastewater treatment plant and is able to accurately predict the observed ammonia discharge category approximately 80% of the time, indicating that the regression tree model can be applied to predict compliance for individual treatment plants providing practical guidance for utilities and regulators with an interest in controlling ammonia discharges. The proposed methodology is also used to demonstrate how to delineate reliable sources of demand and supply in a point source-to-point source nutrient credit trading scheme, as well as how planners and decision makers can set reasonable discharge limits in future. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Integrated, long term, sustainable, cost effective biosolids management at a large Canadian wastewater treatment facility.

    Science.gov (United States)

    Leblanc, R J; Allain, C J; Laughton, P J; Henry, J G

    2004-01-01

    The Greater Moncton Sewerage Commission's 115,000 m3/d advanced, chemically assisted primary wastewater treatment facility located in New Brunswick, Canada, has developed an integrated, long term, sustainable, cost effective programme for the management and beneficial utilization of biosolids from lime stabilized raw sludge. The paper overviews biosolids production, lime stabilization, conveyance, and odour control followed by an indepth discussion of the wastewater sludge as a resource programme, namely: composting, mine site reclamation, landfill cover, land application for agricultural use, tree farming, sod farm base as a soil enrichment, topsoil manufacturing. The paper also addresses the issues of metals, pathogens, organic compounds, the quality control program along with the regulatory requirements. Biosolids capital and operating costs are presented. Research results on removal of metals from primary sludge using a unique biological process known as BIOSOL as developed by the University of Toronto, Canada to remove metals and destroy pathogens are presented. The paper also discusses an ongoing cooperative research project with the Université de Moncton where various mixtures of plant biosolids are composted with low quality soil. Integration, approach to sustainability and "cumulative effects" as part of the overall biosolids management strategy are also discussed.

  4. Integrated, long term, sustainable, cost effective biosolids management at a large Canadian wastewater treatment facility

    Energy Technology Data Exchange (ETDEWEB)

    LeBlance, R.J.; Allain, C.J.; Laughton, P.J.; Henry, J.G.

    2003-07-01

    The Greater Moncton Sewerage Commission's 115 000 m{sup 3}/d advanced, chemically assisted primary wastewater treatment facility located in New Brunswick, Canada, has developed an integrated, long term, sustainable, cost effective programme for the management and beneficial utilization of biosolids from lime stabilized raw sludge. The paper overviews biosolids production, lime stabilization, conveyance, and odour control followed by an indepth discussion of the wastewater sludge as a resource programme, namely: composting, mine site reclamation, landfill cover, land application for agricultural use, tree farming, sod farm base as a soil enrichment, topsoil manufacturing. The paper also addresses the issues of metals, pathogens, organic compounds, the quality control program along with the regulatory requirements. Biosolids capital and operating costs are presented. Research results on removal of metals from primary sludge using a unique biological process known as BIOSOL as developed by the University of Toronto, Canada to remove metals and destroy pathogens are presented. The paper also discusses an ongoing cooperative research project with the Universite de Moncton where various mixtures of plant biosolids are composted with low quality soil. Integration, approach to sustainability and ''cumulative effects'' as part of the overall biosolids management strategy is also discussed. (author)

  5. A Guide for Developing Standard Operating Job Procedures for the Screening & Grinding Process Wastewater Treatment Facility. SOJP No. 1.

    Science.gov (United States)

    Deal, Gerald A.; Montgomery, James A.

    This guide describes standard operating job procedures for the screening and grinding process of wastewater treatment facilities. The objective of this process is the removal of coarse materials from the raw waste stream for the protection of subsequent equipment and processes. The guide gives step-by-step instructions for safety inspection,…

  6. NPDES Permit for Mesa Verde National Park Wastewater Treatment Facility in Colorado

    Science.gov (United States)

    Under NPDES permit number CO-0034398, the United States Department of the Interior, National Park Service, Mesa Verde National Park is authorized to discharge from the Mesa Verde National Park wastewater treatment plant, in Montezuma County, Colo.

  7. Southeast Regional Wastewater Treatment Plant Facilities Improvements Project and Geysers Effluent Pipeline Project. Draft EIR/EIS: Executive summary

    International Nuclear Information System (INIS)

    1994-01-01

    The Southeast Regional Wastewater Treatment Plant (SERWTP) Facilities Improvement Plan and Geysers Effluent Pipeline and Effluent Injection Project are proposed as a plan to provide expanded wastewater treatment capabilities and to dispose of the effluent by injection in The Geysers geothermal field for purposes of power production. The project is located predominantly in the County of Lake, California, and also in part of Sonoma County. The plan includes various conventional facilities improvements in wastewater treatment to a secondary level of treatment at the SWERWTP. The plan includes facilities to convey the treated effluent in a 26-mile, 24-inch inside diameter pipeline to the Southeast Geysers. The wastewater from the SERWTP would be supplemented by raw lake water diverted from nearby Clear Lake. At The Geysers, the effluent would be directed into a system of distribution lines to wells. In the geothermal reservoir, the water will be converted to steam and collected in production wells that will direct the steam to six existing power plants. This document is a summary of a combined full Environmental Impact Report (EIR) and Environmental Impact Statement (EIS). The EIR/EIS describes the environmental impacts of the various components of the project. Mitigation measures are suggested for reducing impacts to a less than significant level

  8. Pharmaceutical Formulation Facilities as Sources of Opioids and Other Pharmaceuticals to Wastewater Treatment Plant Effluents

    Science.gov (United States)

    2010-01-01

    Facilities involved in the manufacture of pharmaceutical products are an under-investigated source of pharmaceuticals to the environment. Between 2004 and 2009, 35 to 38 effluent samples were collected from each of three wastewater treatment plants (WWTPs) in New York and analyzed for seven pharmaceuticals including opioids and muscle relaxants. Two WWTPs (NY2 and NY3) receive substantial flows (>20% of plant flow) from pharmaceutical formulation facilities (PFF) and one (NY1) receives no PFF flow. Samples of effluents from 23 WWTPs across the United States were analyzed once for these pharmaceuticals as part of a national survey. Maximum pharmaceutical effluent concentrations for the national survey and NY1 effluent samples were generally effluent had median concentrations ranging from 3.4 to >400 μg/L. Maximum concentrations of oxycodone (1700 μg/L) and metaxalone (3800 μg/L) in samples from NY3 effluent exceeded 1000 μg/L. Three pharmaceuticals (butalbital, carisoprodol, and oxycodone) in samples of NY2 effluent had median concentrations ranging from 2 to 11 μg/L. These findings suggest that current manufacturing practices at these PFFs can result in pharmaceuticals concentrations from 10 to 1000 times higher than those typically found in WWTP effluents. PMID:20521847

  9. Opportunities for Automated Demand Response in Wastewater Treatment Facilities in California - Southeast Water Pollution Control Plant Case Study

    Energy Technology Data Exchange (ETDEWEB)

    Olsen, Daniel [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Goli, Sasank [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Faulkner, David [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); McKane, Aimee [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2012-12-20

    This report details a study into the demand response potential of a large wastewater treatment facility in San Francisco. Previous research had identified wastewater treatment facilities as good candidates for demand response and automated demand response, and this study was conducted to investigate facility attributes that are conducive to demand response or which hinder its implementation. One years' worth of operational data were collected from the facility's control system, submetered process equipment, utility electricity demand records, and governmental weather stations. These data were analyzed to determine factors which affected facility power demand and demand response capabilities The average baseline demand at the Southeast facility was approximately 4 MW. During the rainy season (October-March) the facility treated 40% more wastewater than the dry season, but demand only increased by 4%. Submetering of the facility's lift pumps and centrifuges predicted load shifts capabilities of 154 kW and 86 kW, respectively, with large lift pump shifts in the rainy season. Analysis of demand data during maintenance events confirmed the magnitude of these possible load shifts, and indicated other areas of the facility with demand response potential. Load sheds were seen to be possible by shutting down a portion of the facility's aeration trains (average shed of 132 kW). Load shifts were seen to be possible by shifting operation of centrifuges, the gravity belt thickener, lift pumps, and external pump stations These load shifts were made possible by the storage capabilities of the facility and of the city's sewer system. Large load reductions (an average of 2,065 kW) were seen from operating the cogeneration unit, but normal practice is continuous operation, precluding its use for demand response. The study also identified potential demand response opportunities that warrant further study: modulating variable-demand aeration loads, shifting

  10. Ecological surveys of the proposed high explosives wastewater treatment facility region

    International Nuclear Information System (INIS)

    Haarmann, T.

    1995-07-01

    Los Alamos National Laboratory (LANL) proposes to improve its treatment of wastewater from high explosives (HE) research and development activities. The proposed project would focus on a concerted waste minimization effort to greatly reduce the amount of wastewater needing treatment. The result would be a 99% decrease in the HE wastewater volume, from the current level of 6,760,000 L/mo (1,786,000 gal./mo) to 41,200 L/mo (11,000 gal./mo). This reduction would entail closure of HE wastewater outfalls, affecting some wetland areas that depend on HE wastewater effluents. The outfalls also provide drinking water for many wildlife species. Terminating the flow of effluents at outfalls would represent an improvement in water quality in the LANL region but locally could have a negative effect on some wetlands and wildlife species. None of the affected species are protected by any state or federal endangered species laws. The purpose of this report is to briefly discuss the different biological studies that have been done in the region of the project area. This report is written to give biological information and baseline data and the biota of the project area

  11. Ecological surveys of the proposed high explosives wastewater treatment facility region

    Energy Technology Data Exchange (ETDEWEB)

    Haarmann, T.

    1995-07-01

    Los Alamos National Laboratory (LANL) proposes to improve its treatment of wastewater from high explosives (HE) research and development activities. The proposed project would focus on a concerted waste minimization effort to greatly reduce the amount of wastewater needing treatment. The result would be a 99% decrease in the HE wastewater volume, from the current level of 6,760,000 L/mo (1,786,000 gal./mo) to 41,200 L/mo (11,000 gal./mo). This reduction would entail closure of HE wastewater outfalls, affecting some wetland areas that depend on HE wastewater effluents. The outfalls also provide drinking water for many wildlife species. Terminating the flow of effluents at outfalls would represent an improvement in water quality in the LANL region but locally could have a negative effect on some wetlands and wildlife species. None of the affected species are protected by any state or federal endangered species laws. The purpose of this report is to briefly discuss the different biological studies that have been done in the region of the project area. This report is written to give biological information and baseline data and the biota of the project area.

  12. Integrative approach for wastewater treatment facilities with biomass transformation into energy

    Directory of Open Access Journals (Sweden)

    Anker Yaakov

    2017-01-01

    Full Text Available Current industrial environmental regulations favor processes with Integrative Pollution Prevention and Control (IPPC. While several systems are regarded by different international directives as IPPC Best Available Techniques or Technologies (BAT, none of these systems are capable handling various pollutants of both gaseous and aquatic effluents. Additional hinder to a BAT-IPPC complete procedure are hazardous or uneconomical byproducts of the IPPC processes and significant auxiliary costs for consumables and energy. The current research and subsequent projects are aimed to the development of a Biological Integrative Pollution Prevention and Control (Bio-IPPC system. Such system can be incorporated in various industrial processes, in a way that the byproduct is without hazardous potential and may be used as an economical raw material. The main initiative and heart of these systems is a micro-algae reactor, which is capable of treating various types of industrial pollutants both in the gaseous and aquatic phases. The algae nutrition is through thin-film circulation of the aquatic effluent and the reactor atmosphere is enriched by flue gases. The excessive algal biomass may be utilized for economic purposes starting with animal feedstock, through organic fertilizer and as industrial raw material for biofuels production or direct energy production. The first industrial project is a wastewater (WW polishing stage to an industry zone WW treatment facility, which ensures high level effluent purification and assimilation of greenhouse gases, which are released during the WW bioremediation process. The second industrial application aims to treat aquatic and gaseous effluents from coal propelled power plants. The raw algal material from both projects although very different, is used for the development of new efficient scheme for bioethanol production. In summary, the system presented is an actual Bio-IPPC that can interactively treat several industrial

  13. Southeast Regional Wastewater Treatment Plant Facilities Improvements Project and Geysers Effluent Pipeline Project. Draft EIR/EIS, Volume 1 of 2

    International Nuclear Information System (INIS)

    1994-01-01

    The primary focus of this environmental analysis is on improvements to the Southeast Regional Wastewater Treatment Plant (SRWTP) facilities and disposal to the Geysers for injection. This analysis will be incorporated with an earlier EIR which evaluated system improvements to the SRWTP and twelve disposal alternatives. In July 1993, the Lake County Sanitation District Board of Directors (LACOSAN) selected the Geysers Effluent Pipeline as the preferred alternative to be analyzed in this EIR/EIS. This environmental analysis will primarily focus on improvements to the SRWTP facilities and a 24 inch pipeline designed to carry up to 5,400 gallons per minute of secondarily treated wastewater. The wastewater will be transported from the Lake County Sanitation District's Southeast Regional Wastewater Treatment Plant, Middletown Wastewater Treatment Plant with additional make-up water from Clear Lake to the Southeast portion of the Geysers Geothermal Field in Lake and Sonoma Counties, California

  14. Zero-discharge wastewater treatment facility for a 900-MWe GCC power plant

    International Nuclear Information System (INIS)

    Rosain, R.M.; Dalan, J.A.

    1992-05-01

    Florida Power and Light desires to examine the prospect of achieving zero liquid discharge from the gasification area of their proposed 900-MW coal gasification-combined cycle (GCC) power plant expansion at the Martin station. This report provides information about the technologies available, cost, and process selection methods, and recommends a preferred system for achieving zero liquid discharge from the gasification block. The recommended system consists of primary clarification and vapor compression evaporation, followed by carbon adsorption post-treatment of the evaporator distillate. Dry solids are produced from the evaporator concentrate with a crystallizer/centrifuge combination. The system recovers 99 percent of the wastewater as pure distillate vater. The predicted capital cost for the 265-gpm system is $12.5 million; the predicted operating costs are $18.60/1000 gallons. Both costs are in 1990 dollars. Promising treatment technologies to examine for future designs are cooling tower treatment and freeze crystallization

  15. Woody biomass production in a spray irrigation wastewater treatment facility in North Carolina

    International Nuclear Information System (INIS)

    Frederick, D.; Lea, R.; Milosh, R.

    1993-01-01

    Application of municipal wastewater to deciduous tree plantations offers a viable opportunity to dispose of nutrients and pollutants, while protecting water quality. Production of woody biomass for energy or pulp mill furnish, using wastewater if feasible and markets exist in may parts of the world for this biomass. Plantations of sycamore (Platanus occidentalis L.), and sweetgum (Liquidambar styraciflua L.), have been established in Edenton, North Carolina for application of municipal wastewater. Research describing the dry weight biomass following the fifth year of seedling growth is presented along with future estimates for seedling and coppice yields. Ongoing and future work for estimating nutrient assimilation and wastewater renovation are described and discussed

  16. Wastewater Characteristics, Treatment and Disposal

    OpenAIRE

    Von Sperling, Marcos

    2007-01-01

    "Wastewater Characteristics, Treatment and Disposal is the first volume in the series Biological Wastewater Treatment, presenting an integrated view of water quality and wastewater treatment. The book covers the following topics: wastewater characteristics (flow and major constituents) impact of wastewater discharges to rivers and lakes overview of wastewater treatment systems complementary items in planning studies. This book, with its clear and practical approach, lays the foundations f...

  17. Dairy wastewater treatment

    African Journals Online (AJOL)

    STORAGESEVER

    2009-08-04

    Aug 4, 2009 ... treatment processes to treat dairy wastewater such as activated sludge system .... Gas chromatograph. (Perkin Elmer, Auto system XL), equipped with thermal conductivity ..... Enzymatic hydrolysis of molasses. Bioresour. Tech.

  18. Southeast Regional Wastewater Treatment Plant Facilities Improvements Project and Geysers Effluent Pipeline Project. Final EIR/EIS

    International Nuclear Information System (INIS)

    1994-01-01

    On May 26, 1994, the Lake County Sanitation District and the US Bureau of Land Management released for public review a Draft Environmental Impact Report/Environmental Impact Statement (EIR/EIS) on the proposed Southeast Regional Wastewater Treatment Plant Facilities Improvements Project and Geysers Effluent Pipeline Project. A minimum 45-day review and comment period began on that date and notices were published in the Federal Register. The public review and comment period closed on July 26, 1994. Public hearings on the Draft EIMIS were held in Lakeport, CA, on June 30 and July 14, 1994. The first part of this document contains copies of the written comments submitted on the Draft EIR/EIS. It also contains summary paraphrased comments of the public hearings. The second part of this document contains responses to the comments

  19. Southeast Regional Wastewater Treatment Plant Facilities Improvements Project and Geysers Effluent Pipeline Project. Draft EIR/EIS, Volume 2 of 2: Appendices

    International Nuclear Information System (INIS)

    1994-01-01

    The Southeast Regional Wastewater Treatment Plant (SERWTP) Facilities Improvement Plan and Geysers Effluent Pipeline and Effluent Injection Project are proposed as a plan to provide expanded wastewater treatment capabilities and to dispose of the effluent by injection in The Geysers geothermal field for purposes of power production. The project is located predominantly in the County of Lake, California, and also in part of Sonoma County. The plan includes various conventional facilities improvements in wastewater treatment to a secondary level of treatment at the SWERWTP. The plan includes facilities to convey the treated effluent in a 26-mile, 24-inch inside diameter pipeline to the Southeast Geysers. The wastewater from the SERWTP would be supplemented by raw lake water diverted from nearby Clear Lake. At The Geysers, the effluent would be directed into a system of distribution lines to wells. In the geothermal reservoir, the water will be converted to steam and collected in production wells that will direct the steam to six existing power plants. This document is a summary of a combined full Environmental Impact Report (EIR) and Environmental Impact Statement (EIS). The EIR/EIS describes the environmental impacts of the various components of the project. Mitigation measures are suggested for reducing impacts to a less than significant level. This report contains appendices A and B. Appendix A contains notices of preparation/notices of intent and EIR/EIS scoping comments. Appendix B contains GeothermEx, Inc., analysis of Geothermal Reservoir Effects and Induced Seismicity

  20. LCA of Wastewater Treatment

    DEFF Research Database (Denmark)

    Larsen, Henrik Fred

    2018-01-01

    of LCA studies addressing wastewater treatment have from the very first published cases, been on energy and resource consumption. In recent time, the use of characterisation has increased and besides global warming potential, especially eutrophication is in focus. Even the toxicity-related impact......The main purpose of wastewater treatment is to protect humans against waterborne diseases and to safeguard aquatic bio-resources like fish. The dominating environmental concerns within this domain are indeed still potential aquatic eutrophication/oxygen depletion due to nutrient/organic matter...

  1. Imprinted Polymers in Wastewater Treatment

    Energy Technology Data Exchange (ETDEWEB)

    Eastman, Christopher; Goodrich, Scott; Gartner, Isabelle; Mueller, Anja

    2004-03-31

    In wastewater treatment, a method that specifically recognizes a variety of impurities in a flexible manner would be useful for treatment facilities with varying needs. Current purification techniques (i.e. bacteria, oxidation, reduction, precipitation and filtration) are nonspecific and difficult to control in complex mixtures. Heavy metal removal is particularly important in improving the efficiency of wastewater treatment, as they inhibit or even destroy the bacteria used for filtration. Imprinting polymerization is a technique that allows for the efficient removal of specific compounds and has been used in purification of enantiomers. It has potential to be applied in wastewater systems with the impurities acting as the template for the imprinting polymerization. The polymer with the bound impurities intact can then be removed via precipitation. After removal of the impurity the polymer can be reused. Data for the imprinting polymerization of polyacrylates and polyacrylamides for several metal complexes will be presented. Imprinting polymerization in combination with emulsion polymerization to improve the removal of hydrophobic contaminants will be described. Removal efficiencies will be presented and compared with conventional wastewater treatment methods.

  2. Treatment of wastewater for removal of soluble uranium species at Cameco's Port Hope Conversion Facility

    International Nuclear Information System (INIS)

    Dumont, H.; Tairova, G.; Kwong, A.K.; Smith, B.D.

    2000-01-01

    Ion exchange (IX) resin processes have been used for many years in the uranium mining industry for the recovery of uranium from both acid and alkaline leach solutions. More recently, IX processes have been shown to be an effective approach to control the uranium levels in non-process waters, such as mine water, public drinking water supply and well water. Bench scale and mini-pilot plant tests were conducted at the Cameco's Port Hope Conversion Facility to demonstrate the economic and technical viability of an IX process as an uranium remediation treatment for trace amounts of uranium in non-process laundry water. In the mini-pilot plant study, waste laundry water containing between 10 mg U/L and 200 mg U/L was treated at a rate ranging from 120 L/h to 240 L/h, using a typical 'merry-go-round' fixed-bed ion exchange system with three ion exchange columns. Each column contained 14 L of strongly basic Purolite A300 resin type II. The results indicated that the breakthrough limit, set at 0.1 mg U/L was obtained after a minimum of 1,200 equivalent bed volumes, while saturation was obtained at 3,300 equivalent bed volumes. Recovery parameters are discussed along with feed and effluent stream quality and modifications to the upstream operation. (author)

  3. Basic Principles of Wastewater Treatment

    OpenAIRE

    Von Sperling, Marcos

    2007-01-01

    "Basic Principles of Wastewater Treatment is the second volume in the series Biological Wastewater Treatment, and focusses on the unit operations and processes associated with biological wastewater treatment. The major topics covered are: microbiology and ecology of wastewater treatment reaction kinetics and reactor hydraulics conversion of organic and inorganic matter sedimentation aeration The theory presented in this volume forms the basis upon which the other books...

  4. Microalgal biofilms for wastewater treatment

    NARCIS (Netherlands)

    Boelee, N.C.

    2013-01-01

    The objective of this thesis was to explore the possibilities of using microalgal biofilms for the treatment of municipal wastewater, with a focus on the post-treatment of municipal wastewater effluent. The potential of microalgal biofilms for wastewater treatment was first investigated using a

  5. Wastewater Treatment in Greenland

    DEFF Research Database (Denmark)

    Gunnarsdottir, Ragnhildur

    treatment in these regions. However, designing, constructing and operating wastewater collection systems in the Arctic is challenging because of e.g. permafrost conditions, hard rock surfaces, freezing, limited quantity of water and high costs of electricity, fuel and transportation, as well as a settlement...... or water saving toilets. This opens up for co-treatment of organic waste fractions. Freezing and thawing has also been recognised as being a cost-effective wastewater treatment method in cold regions. Thus it was chosen to concentrate on the effect of the mentioned processes, namely freezing, anaerobic...... spreading of nutrients, diseases and potential pollution issues. Due to the above mentioned challenges alternative treatment methods are needed, especially in small and remotely located communities. Decentralized solutions are well suited for Greenland. Ideal solutions should reduce the need for expensive...

  6. Constructed wetland with a polyculture of ornamental plants for wastewater treatment at a rural tourism facility

    DEFF Research Database (Denmark)

    Calheiros, Cristina S C; Bessa, Vânia S.; Mesquita, Raquel B R

    2015-01-01

    Sewage management in remote rural and mountain areas constitutes a challenge because of the lack of adequate infrastructure and economical capability. Tourism facilities, in particular, possess a special challenge because of huge variability in sewage production and composition as a consequence o...

  7. Brewer, Maine Wastewater Treatment Plant Recognized for Excellence

    Science.gov (United States)

    The Brewer Water Pollution Control Facility was recently honored with a 2015 Regional Wastewater Treatment Plant Excellence Award by the US Environmental Protection Agency's New England regional office.

  8. Effects of wastewater effluent discharge and treatment facility upgrades on environmental and biological conditions of Indian Creek, Johnson County, Kansas, June 2004 through June 2013

    Science.gov (United States)

    Graham, Jennifer L.; Stone, Mandy L.; Rasmussen, Teresa J.; Foster, Guy M.; Poulton, Barry C.; Paxson, Chelsea R.; Harris, Theodore D.

    2014-01-01

    Indian Creek is one of the most urban drainage basins in Johnson County, Kansas, and environmental and biological conditions of the creek are affected by contaminants from point and other urban sources. The Johnson County Douglas L. Smith Middle Basin (hereafter referred to as the “Middle Basin”) and Tomahawk Creek Wastewater Treatment Facilities (WWTFs) discharge to Indian Creek. In summer 2010, upgrades were completed to increase capacity and include biological nutrient removal at the Middle Basin facility. There have been no recent infrastructure changes at the Tomahawk Creek facility; however, during 2009, chemically enhanced primary treatment was added to the treatment process for better process settling before disinfection and discharge with the added effect of enhanced phosphorus removal. The U.S. Geological Survey, in cooperation with Johnson County Wastewater, assessed the effects of wastewater effluent on environmental and biological conditions of Indian Creek by comparing two upstream sites to four sites located downstream from the WWTFs using data collected during June 2004 through June 2013. Environmental conditions were evaluated using previously and newly collected discrete and continuous data and were compared with an assessment of biological community composition and ecosystem function along the upstream-downstream gradient. This study improves the understanding of the effects of wastewater effluent on stream-water and streambed sediment quality, biological community composition, and ecosystem function in urban areas. After the addition of biological nutrient removal to the Middle Basin WWTF in 2010, annual mean total nitrogen concentrations in effluent decreased by 46 percent, but still exceeded the National Pollutant Discharge Elimination System (NPDES) wastewater effluent permit concentration goal of 8.0 milligrams per liter (mg/L); however, the NPDES wastewater effluent permit total phosphorus concentration goal of 1.5 mg/L or less was

  9. Mass Balance. Operational Control Tests for Wastewater Treatment Facilities. Instructor's Manual [and] Student Workbook.

    Science.gov (United States)

    Carnegie, John W.

    This module describes the process used to determine solids mass and location throughout a waste water treatment plant, explains how these values are used to determine the solids mass balance around single treatment units and the entire system, and presents calculations of solids in pounds and sludge units. The instructor's manual contains a…

  10. Turbidity. Operational Control Tests for Wastewater Treatment Facilities. Instructor's Manual [and] Student Workbook.

    Science.gov (United States)

    Carnegie, John W.

    Designed for individuals who have completed National Pollutant Discharge Elimination System (NPDES) level 1 laboratory training skills, this module provides waste water treatment plant operators with the basic skills and information needed to: (1) standardize a nephelometric turbidimeter; (2) determine the turbidity of a sample; and (3) calculate…

  11. Centrifuge. Operational Control Tests for Wastewater Treatment Facilities. Instructor's Manual [and] Student Workbook.

    Science.gov (United States)

    Arasmith, E. E.

    Designed for individuals who have completed National Pollutant Discharge Elimination System (NPDES) level 1 laboratory training skills, this module provides waste water treatment plant operators with the basic information needed to: (1) successfully run a centrifuge test; (2) accurately read results obtained in test tubes; and (3) obtain…

  12. Capillary Suction Time. Operational Control Tests for Wastewater Treatment Facilities. Instructor's Manual [and] Student Workbook.

    Science.gov (United States)

    Wooley, John F.

    Capillary suction time is time required for the liquid phase of a treated sludge to travel through 1 centimeter of media (blotter or filter paper). Designed for individuals who have completed National Pollutant Discharge Elimination System (NPDES) level 1 laboratory training skills, this module provides waste water treatment plant operators with…

  13. Wastewater treatment by nanofiltration membranes

    Science.gov (United States)

    Mulyanti, R.; Susanto, H.

    2018-03-01

    Lower energy consumption compared to reverse osmosis (RO) and higher rejection compared to ultrafiltration make nanofiltration (NF) membrane get more and more attention for wastewater treatment. NF has become a promising technology not only for treating wastewater but also for reusing water from wastewater. This paper presents various application of NF for wastewater treatments. The factors affecting the performance of NF membranes including operating conditions, feed characteristics and membrane characteristics were discussed. In addition, fouling as a severe problem during NF application is also presented. Further, future prospects and challenges of NF for wastewater treatments are explained.

  14. Wastewater Outfalls

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — Outfalls which discharge wastewater from wastewater treatment facilities with individual NPDES permits. It does not include NPDES general permits.

  15. Planning of Eka Hospital Pekanbaru wastewater recycling facility

    Science.gov (United States)

    Jecky, A.; Andrio, D.; Sasmita, A.

    2018-04-01

    The Ministry of Public Works No. 06 2011 required the large scale of water to conserve the water resource, Eka Hospital Pekanbaru have to improve the sewage treatment plant through the wastewater recycling. The effluent from the plant can be used to landscape gardening and non-potable activities. The wastewater recycling design was done by analyzing the existing condition of thesewage treatment plant, determine the effluent quality standards for wastewater recycling, selected of alternative technology and processing, design the treatment unit and analyze the economic aspects. The design of recycling facility by using of combination cartridge filters processing, ultrafiltration membranes, and desinfection by chlorination. The wastewater recycling capacity approximately of 75 m3/day or 75% of the STP effluent. The estimated costs for installation of wastewater recycling and operation and maintenance per month are Rp 111,708,000 and Rp 2,498,000 respectively.

  16. Final Environmental Impact Statement (FEIS)/Final Environmental Impact Report (FEIR). Otis Air National Guard Base, Wastewater Treatment Facility

    Science.gov (United States)

    1990-06-01

    and G.E. Ness, 1982, Survival of Vibrio cholerae and Escherichia coli in Estuarine Water and Sediments, Applied and Environmental Microbiology, 43...and publications in areas of water and wastewater treatment. David Tomasko, Ph.D., 1985. University of New Mexico . Staff Hydrogeologist. Research...Reserve in California. We are working on EIS’s for the U.S. Air Force Base Closings in realignment in California, New Mexico and Washington, and a very

  17. Wastewater treatment models

    DEFF Research Database (Denmark)

    Gernaey, Krist; Sin, Gürkan

    2011-01-01

    description of biological phosphorus removal, physicalchemical processes, hydraulics and settling tanks. For attached growth systems, biofilm models have progressed from analytical steady-state models to more complex 2D/3D dynamic numerical models. Plant-wide modeling is set to advance further the practice......The state-of-the-art level reached in modeling wastewater treatment plants (WWTPs) is reported. For suspended growth systems, WWTP models have evolved from simple description of biological removal of organic carbon and nitrogen in aeration tanks (ASM1 in 1987) to more advanced levels including...

  18. Wastewater Treatment Models

    DEFF Research Database (Denmark)

    Gernaey, Krist; Sin, Gürkan

    2008-01-01

    description of biological phosphorus removal, physical–chemical processes, hydraulics, and settling tanks. For attached growth systems, biofilm models have progressed from analytical steady-state models to more complex 2-D/3-D dynamic numerical models. Plant-wide modeling is set to advance further......The state-of-the-art level reached in modeling wastewater treatment plants (WWTPs) is reported. For suspended growth systems, WWTP models have evolved from simple description of biological removal of organic carbon and nitrogen in aeration tanks (ASM1 in 1987) to more advanced levels including...

  19. Effects of wastewater effluent discharge and treatment facility upgrades on environmental and biological conditions of the upper Blue River, Johnson County, Kansas and Jackson County, Missouri, January 2003 through March 2009

    Science.gov (United States)

    Graham, Jennifer L.; Stone, Mandy L.; Rasmussen, Teresa J.; Poulton, Barry C.

    2010-01-01

    The Johnson County Blue River Main Wastewater Treatment Facility discharges into the upper Blue River near the border between Johnson County, Kansas and Jackson County, Missouri. During 2005 through 2007 the wastewater treatment facility underwent upgrades to increase capacity and include biological nutrient removal. The effects of wastewater effluent on environmental and biological conditions of the upper Blue River were assessed by comparing an upstream site to two sites located downstream from the wastewater treatment facility. Environmental conditions were evaluated using previously and newly collected discrete and continuous data, and were compared with an assessment of biological community composition and ecosystem function along the upstream-downstream gradient. This evaluation is useful for understanding the potential effects of wastewater effluent on water quality, biological community structure, and ecosystem function. In addition, this information can be used to help achieve National Pollution Discharge Elimination System (NPDES) wastewater effluent permit requirements after additional studies are conducted. The effects of wastewater effluent on the water-quality conditions of the upper Blue River were most evident during below-normal and normal streamflows (about 75 percent of the time), when wastewater effluent contributed more than 20 percent to total streamflow. The largest difference in water-quality conditions between the upstream and downstream sites was in nutrient concentrations. Total and inorganic nutrient concentrations at the downstream sites during below-normal and normal streamflows were 4 to 15 times larger than at the upstream site, even after upgrades to the wastewater treatment facility were completed. However, total nitrogen concentrations decreased in wastewater effluent and at the downstream site following wastewater treatment facility upgrades. Similar decreases in total phosphorus were not observed, likely because the biological

  20. Advanced wastewater treatment system (SEADS)

    International Nuclear Information System (INIS)

    Dunn, J.

    2002-01-01

    'Full text:' This presentation will describe the nature, scope, and findings of a third-party evaluation of a wastewater treatment technology identified as the Advanced Wastewater Treatment System Inc.'s Superior Extended Aerobic Digester System (SEADS). SEADS is an advanced miniaturized wastewater treatment plant that can meet advanced wastewater treatment standards for effluent public reuse. SEADS goes beyond primary and secondary treatment operations to reduce nutrients such as nitrogen and phosphorus, which are typically found in excessive quantities in traditional wastewater treatment effluent. The objective of this evaluation will be to verify the performance and reliability of the SEADS to treat wastewater from a variety of sources, including domestic wastewater and commercial industrial wastewater. SEADS utilizes remote telemetry equipment to achieve added reliability and reduces monitoring costs as compared to many package wastewater treatment plants. The evaluation process will be overseen and coordinated by the Environmental Technology Evaluation Center (EvTEC), a program of the Civil Engineering Research Foundation (CERF), the research and technology transfer arm of the American Society of Civil Engineers (ASCE). EvTEC is a pilot program evaluating innovative environmental technologies under the US Environmental Protection Agency's (USEPA) Environmental Technology Verification (ETV) Program. Among other performance issues, the SEADS technology evaluation will address its ability to treat low flows-from remote individual and clustered housing applications, and individual commercial applications in lieu of a main station conventional wastewater treatment plant. The unneeded reliance on particular soil types for percolation and the improved effluent water quality over septic systems alone look to make these types of package treatment plants a viable option for rural communities, small farms, and other low-flow remote settings. Added benefits to be examined

  1. Industrial wastewater treatment with electron beam

    Energy Technology Data Exchange (ETDEWEB)

    Han, Bumsoo; Ko, Jaein; Kim, Jinkyu; Kim, Yuri; Chung, Wooho [Central Research Institute of Samsung Heavy Industries Co., Taejon (Korea)

    2001-03-01

    Global withdrawals of water to satisfy human demands have grown dramatically in this century. Between 1900 and 1945, water consumption increased by over six times, more than double the rate of population growth. This rapid growth in water demand is due to the increasing reliance on irrigation to achieve food security, the growth of industrial uses, and the increasing use per capita for domestic purposes. Given the seriousness of the situation and future risk of crises, there is an urgent need to develop the water-efficient technologies including economical treatment methods of wastewater and polluted water. In the Central Research Institute of Samsung Heavy Industries (SHI), many industrial wastewater including leachate from landfill area, wastewater from papermill, dyeing complex, petrochemical processes, etc. are under investigation with electron beam irradiation. For the study of treating dyeing wastewater combined with conventional facilities, an electron beam pilot plant for treating 1,000m{sup 3}/day of wastewater from 80,000m{sup 3}/day of total dyeing wastewater has constructed and operated in Taegu Dyeing Industrial Complex. A commercial plant for re-circulation of wastewater from Papermill Company is also designed for S-paper Co. in Cheongwon City, and after the successful installation, up to 80% of wastewater could be re-used in paper producing process. (author)

  2. Industrial wastewater treatment with electron beam

    International Nuclear Information System (INIS)

    Han, Bumsoo; Ko, Jaein; Kim, Jinkyu; Kim, Yuri; Chung, Wooho

    2001-01-01

    Global withdrawals of water to satisfy human demands have grown dramatically in this century. Between 1900 and 1945, water consumption increased by over six times, more than double the rate of population growth. This rapid growth in water demand is due to the increasing reliance on irrigation to achieve food security, the growth of industrial uses, and the increasing use per capita for domestic purposes. Given the seriousness of the situation and future risk of crises, there is an urgent need to develop the water-efficient technologies including economical treatment methods of wastewater and polluted water. In the Central Research Institute of Samsung Heavy Industries (SHI), many industrial wastewater including leachate from landfill area, wastewater from papermill, dyeing complex, petrochemical processes, etc. are under investigation with electron beam irradiation. For the study of treating dyeing wastewater combined with conventional facilities, an electron beam pilot plant for treating 1,000m 3 /day of wastewater from 80,000m 3 /day of total dyeing wastewater has constructed and operated in Taegu Dyeing Industrial Complex. A commercial plant for re-circulation of wastewater from Papermill Company is also designed for S-paper Co. in Cheongwon City, and after the successful installation, up to 80% of wastewater could be re-used in paper producing process. (author)

  3. Wastewater treatment by flotation

    Directory of Open Access Journals (Sweden)

    F.P. Puget

    2000-12-01

    Full Text Available This work deals with the performance analysis of a separation set-up characterized by the ejector-hydrocyclone association, applied in the treatment of a synthetic dairy wastewater effluent. The results obtained were compared with the results from a flotation column (cylindrical body of a hydrocyclone operated both batch and continuously. As far as the experimental set-up studied in this work and the operating conditions imposed to the process, it is possible to reach a 25% decrease in the total effluent chemical oxygen demand (COD. This corresponds approximately to 60% of the COD of the material in suspension. The best results are obtained for ratios air flow rate-feed flow rate (Qair/Q L greater then 0.15 and for ratios underflow rate-overflow rate (Qu/Qo lower than 1.0.

  4. A Guide for Developing Standard Operating Job Procedures for the Tertiary Chemical Treatment - Lime Precipitation Process Wastewater Treatment Facility. SOJP No. 6.

    Science.gov (United States)

    Petrasek, Al, Jr.

    This guide describes the standard operating job procedures for the tertiary chemical treatment - lime precipitation process of wastewater treatment plants. Step-by-step instructions are given for pre-start up, start-up, continuous operation, and shut-down procedures. In addition, some theoretical material is presented along with some relevant…

  5. Removal Efficiency and Risk Assessment of Polycyclic Aromatic Hydrocarbons in a Typical Municipal Wastewater Treatment Facility in Guangzhou, China

    Directory of Open Access Journals (Sweden)

    Zhineng Liu

    2017-08-01

    Full Text Available The loading and removal efficiency of 16 US EPA polycyclic aromatic hydrocarbons (PAHs were examined in an inverted A2/O wastewater treatment plant (WWTP located in an urban area in China. The total PAH concentrations were 554.3 to 723.2 ng/L in the influent and 189.6 to 262.7 ng/L in the effluent. The removal efficiencies of ∑PAHs in the dissolved phase ranged from 63 to 69%, with the highest observed in naphthalene (80% removal. Concentration and distribution of PAHs revealed that the higher molecular weight PAHs became more concentrated with treatment in both the dissolved phase and the dewatered sludge. The sharpest reduction was observed during the pretreatment and the biological phase. Noncarcinogenic risk, carcinogenic risk, and total health risk of PAHs found in the effluent and sewage sludge were also assessed. The effluent BaP toxic equivalent quantities (TEQBaP were above, or far above, standards in countries. The potential toxicities of PAHs in sewage effluent were approximately 10 to 15 times higher than the acceptable risk level in China. The health risk associated with the sewage sludge also exceeded international recommended levels and was mainly contributed from seven carcinogenic PAHs. Given that WWTP effluent is a major PAH contributor to surface water bodies in China and better reduction efficiencies are achievable, the present study highlights the possibility of utilizing WWTPs for restoring water quality in riverine and coastal regions heavily impacted by PAHs contamination.

  6. Removal Efficiency and Risk Assessment of Polycyclic Aromatic Hydrocarbons in a Typical Municipal Wastewater Treatment Facility in Guangzhou, China.

    Science.gov (United States)

    Liu, Zhineng; Li, Qing; Wu, Qihang; Kuo, Dave T F; Chen, Shejun; Hu, Xiaodong; Deng, Mingjun; Zhang, Haozhi; Luo, Min

    2017-08-01

    The loading and removal efficiency of 16 US EPA polycyclic aromatic hydrocarbons (PAHs) were examined in an inverted A²/O wastewater treatment plant (WWTP) located in an urban area in China. The total PAH concentrations were 554.3 to 723.2 ng/L in the influent and 189.6 to 262.7 ng/L in the effluent. The removal efficiencies of ∑PAHs in the dissolved phase ranged from 63 to 69%, with the highest observed in naphthalene (80% removal). Concentration and distribution of PAHs revealed that the higher molecular weight PAHs became more concentrated with treatment in both the dissolved phase and the dewatered sludge. The sharpest reduction was observed during the pretreatment and the biological phase. Noncarcinogenic risk, carcinogenic risk, and total health risk of PAHs found in the effluent and sewage sludge were also assessed. The effluent BaP toxic equivalent quantities ( TEQ BaP ) were above, or far above, standards in countries. The potential toxicities of PAHs in sewage effluent were approximately 10 to 15 times higher than the acceptable risk level in China. The health risk associated with the sewage sludge also exceeded international recommended levels and was mainly contributed from seven carcinogenic PAHs. Given that WWTP effluent is a major PAH contributor to surface water bodies in China and better reduction efficiencies are achievable, the present study highlights the possibility of utilizing WWTPs for restoring water quality in riverine and coastal regions heavily impacted by PAHs contamination.

  7. Characterization and Quantitation of a Novel β-Lactamase Gene Found in a Wastewater Treatment Facility and the Surrounding Coastal Ecosystem▿

    Science.gov (United States)

    Uyaguari, Miguel I.; Fichot, Erin B.; Scott, Geoffrey I.; Norman, R. Sean

    2011-01-01

    Wastewater treatment plants (WWTPs) are engineered structures that collect, concentrate, and treat human waste, ultimately releasing treated wastewater into local environments. While WWTPs efficiently remove most biosolids, it has been shown that many antibiotics and antibiotic-resistant bacteria can survive the treatment process. To determine how WWTPs influence the concentration and dissemination of antibiotic-resistant genes into the environment, a functional metagenomic approach was used to identify a novel antibiotic resistance gene within a WWTP, and quantitative PCR (qPCR) was used to determine gene copy numbers within the facility and the local coastal ecosystem. From the WWTP metagenomic library, the fosmid insert contained in one highly resistant clone (MIC, ∼416 μg ml−1 ampicillin) was sequenced and annotated, revealing 33 putative genes, including a 927-bp gene that is 42% identical to a functionally characterized β-lactamase from Staphylococcus aureus PC1. Isolation and subcloning of this gene, referred to as blaM-1, conferred ampicillin resistance to its Escherichia coli host. When normalized to volume, qPCR showed increased concentrations of blaM-1 during initial treatment stages but 2-fold-decreased concentrations during the final treatment stage. The concentration ng−1 DNA increased throughout the WWTP process from influent to effluent, suggesting that blaM-1 makes up a significant proportion of the overall genetic material being released into the coastal ecosystem. Average discharge was estimated to be 3.9 × 1014 copies of the blaM-1 gene released daily into this coastal ecosystem. Furthermore, the gene was observed in all sampled coastal water and sediment samples surrounding the facility. Our results suggest that WWTPs may be a pathway for the dissemination of novel antibiotic resistance genes into the environment. PMID:21965412

  8. COMPARISON OF ESCHERICHIA COLI, TOTAL COLIFORM, AND FECAL COLIFORM POPULATIONS AS INDICATORS OF WASTEWATER TREATMENT EFFICIENCY

    Science.gov (United States)

    Escherichia coli, total coliform, and fecal coliform data were collected from two wastewater treatment facilities, a subsurface constructed wetlands, and the receiving stream. Results are presented from individual wastewater treatment process streams, final effluent and river sit...

  9. Ecotoxicity of Wastewater from Medical Facilities: A Review

    Directory of Open Access Journals (Sweden)

    Cidlinová A.

    2018-03-01

    Full Text Available Wastewater from medical facilities contains a wide range of chemicals (in particular pharmaceuticals, disinfectants, heavy metals, contrast media, and radionuclides and pathogens, therefore it constitutes a risk to the environment and human health. Many micropollutants are not efficiently eliminated during wastewater treatment and contaminate both surface water and groundwater. As we lack information about the long-term effects of low concentrations of micropollutants in the aquatic environment, it is not possible to rule out their adverse effects on aquatic organisms and human health. It is, therefore, necessary to focus on the evaluation of chronic toxicity in particular when assessing the environmental and health risks and to develop standards for the regulation of hazardous substances in wastewater from medical facilities on the basis of collected data. Wastewater from medical facilities is a complex mixture of many compounds that may have synergetic, antagonistic or additive effects on organisms. To evaluate the influence of a wide range of pollutants contained in the effluents from medical facilities on aquatic ecosystems, it is necessary to determine their ecotoxicity.

  10. Techniques of Wastewater Treatment

    Indian Academy of Sciences (India)

    organisms: These are small plants as well as animals and they are some of the most difficult ... It is measured by the oxygen consumption of a pre-inoculated sample at 20-250C in .... Organic wastewater components may be oxidised all the way to CO2.

  11. Dissolved organic nitrogen recalcitrance and bioavailable nitrogen quantification for effluents from advanced nitrogen removal wastewater treatment facilities.

    Science.gov (United States)

    Fan, Lu; Brett, Michael T; Jiang, Wenju; Li, Bo

    2017-10-01

    The objective of this study was to determine the composition of nitrogen (N) in the effluents of advanced N removal (ANR) wastewater treatment plants (WWTPs). This study also tested two different experimental protocols for determining dissolved N recalcitrance. An analysis of 15 effluent samples from five WWTPs, showed effluent concentrations and especially effluent composition varied greatly from one system to the other, with total nitrogen (TN) ranging between 1.05 and 8.10 mg L -1 . Nitrate (NO 3 - ) accounted for between 38 ± 32% of TN, and ammonium accounted for a further 29 ± 28%. All of these samples were dominated by dissolved inorganic nitrogen (DIN; NO 3 -  + NH 4 + ), and uptake experiments indicated the DIN fraction was as expected highly bioavailable. Dissolved organic N (DON) accounted for 20 ± 11% for the total dissolved N in these effluents, and uptake experiments indicated the bioavailability of this fraction varied between 27 ± 26% depending on the WWTP assessed. These results indicate near complete DIN removal should be the primary goal of ANR treatment systems. The comparison of bioavailable nitrogen (BAN) quantification protocols showed that the dissolved nitrogen uptake bioassay approach was clearly a more reliable way to determine BAN concentrations compared to the conventional cell yield protocol. Moreover, because the nitrogen uptake experiment was much more sensitive, this protocol made it easier to detect extrinsic factors (such as biological contamination or toxicity) that could affect the accuracy of these bioassays. Based on these results, we recommend the nitrogen uptake bioassay using filtered and autoclaved samples to quantify BAN concentrations. However, for effluent samples indicating toxicity, algal bioassays will not accurately quantify BAN. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Wastewater treatment and pollution control in Indonesia

    International Nuclear Information System (INIS)

    Danu, Sugiarto

    2006-01-01

    Present status of radiation facilities for Co-60 gamma ray irradiation and electron beam irradiation in Indonesia is first presented. Wastewater treatment is explained: kinds of waste, industrial, agricultural, municipal and nuclear. Each liquid wastewater containing various kinds of contaminants, radioactive or non-radioactive is differently treated by waste treatment industries. On-going project is use of electron beams in which combination with ozone to reduce chlorinated solvent, disinfected sludge from sewage treatment containing organic and inorganic components for soil fertilizer, and high color river water for water supplying. The cost factor and the effect of combined treatment are being examined. Other on-going projects are applications of electron beams for vulcanization of natural rubber latex and flue gas treatment by BATAN. (S. Ohno)

  13. Wastewater treatment plants as a source of microbial pathogens in ...

    African Journals Online (AJOL)

    Wastewater treatment facilities have become sin quo non in ensuring the discharges of high quality wastewater effluents into receiving water bodies and consequence, a healthier environment. Due to massive worldwide increases in human population, water has been predicted to become one of the scarcest resources in ...

  14. Dissolved organic nitrogen recalcitrance and bioavailable nitrogen quantification for effluents from advanced nitrogen removal wastewater treatment facilities

    International Nuclear Information System (INIS)

    Fan, Lu; Brett, Michael T.; Jiang, Wenju; Li, Bo

    2017-01-01

    The objective of this study was to determine the composition of nitrogen (N) in the effluents of advanced N removal (ANR) wastewater treatment plants (WWTPs). This study also tested two different experimental protocols for determining dissolved N recalcitrance. An analysis of 15 effluent samples from five WWTPs, showed effluent concentrations and especially effluent composition varied greatly from one system to the other, with total nitrogen (TN) ranging between 1.05 and 8.10 mg L −1 . Nitrate (NO 3 − ) accounted for between 38 ± 32% of TN, and ammonium accounted for a further 29 ± 28%. All of these samples were dominated by dissolved inorganic nitrogen (DIN; NO 3 −  + NH 4 + ), and uptake experiments indicated the DIN fraction was as expected highly bioavailable. Dissolved organic N (DON) accounted for 20 ± 11% for the total dissolved N in these effluents, and uptake experiments indicated the bioavailability of this fraction varied between 27 ± 26% depending on the WWTP assessed. These results indicate near complete DIN removal should be the primary goal of ANR treatment systems. The comparison of bioavailable nitrogen (BAN) quantification protocols showed that the dissolved nitrogen uptake bioassay approach was clearly a more reliable way to determine BAN concentrations compared to the conventional cell yield protocol. Moreover, because the nitrogen uptake experiment was much more sensitive, this protocol made it easier to detect extrinsic factors (such as biological contamination or toxicity) that could affect the accuracy of these bioassays. Based on these results, we recommend the nitrogen uptake bioassay using filtered and autoclaved samples to quantify BAN concentrations. However, for effluent samples indicating toxicity, algal bioassays will not accurately quantify BAN. - Highlights: • DIN was the dominated N pool for most of the tested effluent samples. • DON bioavailability considerably varied depending on the WWTP assessed.

  15. Treatment of Wastewater from Electroplating, Metal Finishing and Printed Circuit Board Manufacturing. Operation of Wastewater Treatment Plants Volume 4.

    Science.gov (United States)

    California State Univ., Sacramento. Dept. of Civil Engineering.

    One of four manuals dealing with the operation of wastewater plants, this document was designed to address the treatment of wastewater from electroplating, metal finishing, and printed circuit board manufacturing. It emphasizes how to operate and maintain facilities which neutralize acidic and basic waters; treat waters containing metals; destroy…

  16. Green Systems for Wastewater Treatment

    Science.gov (United States)

    Environmental Science and Technology, 1975

    1975-01-01

    Plants found in marshlands and wetlands in many parts of the world may play an increasing part in a very new, yet very old approach to treatment of water and wastewater--the application of biological methods. Biological water pollution control methods being utilized around the world are examined. (BT)

  17. Wastewater characterization of IPEN facilities - a preliminary study

    International Nuclear Information System (INIS)

    Monteiro, Lucilena R.; Goncalves, Cristina; Terazan, Wagner R.; Cotrim, Marycel E.B.; Pires, Maria Aparecida F.

    2011-01-01

    As part of IPEN's Environmental Monitoring Program, wastewater sample collection and analysis was implemented on a daily basis. CQMA- Centro de Quimica e Meio Ambiente was responsible for the determination of total, fixed and volatile solids, pH, metals (as Al, Sb, Ba, Cd, Pb, Co, Cu, Cr, Hg, Mo, Ni, Ag, Na, Zn, Ca, Mg, Be, Sn, Li, K, Sr, Ti and V), semimetals (As, B, Se and Si) and anions (such as chloride, nitrate, sulfate and fluoride). The results were compared to the legal values established by the Sao Paulo State regulation 8,468/76, which defines the maximum permitted values for most of the studied substances in wastewater, aiming its releasing in public wastewater treatment system. The evaluation of this parameters concentration on Ipen's effluent implies that 50% of the wastewater corresponds to organic matter due to the sanitary load and inorganic macro elements, mainly as sodium, potassium, calcium. The only parameter not found in accordance with Brazilian legislation was pH in four out of the one hundred and seven samples collected throughout 2009 (2.8% of the samples analyzed). This preliminary study showed the effluents generated at Ipen's facility is characterized by the presence of organic matter and macro elements, commonly found in sanitary wastewater and it is in compliance with Sao Paulo regulations. (author)

  18. Radiation treatment of polluted water and wastewater

    International Nuclear Information System (INIS)

    2008-09-01

    Strategies to tackle environmental pollution have been receiving increasing attention throughout the world in recent years. Radiation processing using electron beam accelerators and gamma irradiators has shown very promising results in this area. Radiation processing in wastewater treatment is an additive-free process that uses the short lived reactive species formed during the radiolysis of water for efficient decomposition of pollutants therein. The rapid growth of the global population, together with the increased development of agriculture and industry, have led to the generation of large quantities of polluted industrial and municipal wastewater. The recognition that these polluted waters may pose a serious threat to humans has led technologists to look for cost effective technologies for their treatment. A variety of methods based on biological, chemical, photochemical and electrochemical processes are being explored for decomposing the chemical and biological contaminants present in the wastewaters. Studies in recent years have demonstrated the effectiveness of ionizing radiation such as, gamma rays and electron beams or in combination with other treatments, in the decomposition of refractory organic compounds in aqueous solutions and in the effective removal or inactivation of various microorganisms and parasites. The application of electron beam processing for drinking water, wastewater and groundwater treatment offers the promise of a cost effective process. The installation of the first full scale electron beam plant in Daegu, Republic of Korea, to treat 10 000 m 3 day -1 textile wastewater has demonstrated that the process is a cost effective technology when compared to conventional treatment. The regular operation of this facility provides operational data on reliability and additional data for a detailed economic evaluation. The IAEA has been supporting activities in this area by organizing advisory group meetings, consultants meetings, symposia and

  19. Microbial Community Profiles in Wastewaters from Onsite Wastewater Treatment Systems Technology.

    Directory of Open Access Journals (Sweden)

    Łukasz Jałowiecki

    Full Text Available The aim of the study was to determine the potential of community-level physiological profiles (CLPPs methodology as an assay for characterization of the metabolic diversity of wastewater samples and to link the metabolic diversity patterns to efficiency of select onsite biological wastewater facilities. Metabolic fingerprints obtained from the selected samples were used to understand functional diversity implied by the carbon substrate shifts. Three different biological facilities of onsite wastewater treatment were evaluated: fixed bed reactor (technology A, trickling filter/biofilter system (technology B, and aerated filter system (the fluidized bed reactor, technology C. High similarities of the microbial community functional structures were found among the samples from the three onsite wastewater treatment plants (WWTPs, as shown by the diversity indices. Principal components analysis (PCA showed that the diversity and CLPPs of microbial communities depended on the working efficiency of the wastewater treatment technologies. This study provided an overall picture of microbial community functional structures of investigated samples in WWTPs and discerned the linkages between microbial communities and technologies of onsite WWTPs used. The results obtained confirmed that metabolic profiles could be used to monitor treatment processes as valuable biological indicators of onsite wastewater treatment technologies efficiency. This is the first step toward understanding relations of technology types with microbial community patterns in raw and treated wastewaters.

  20. Effluent from Wastewater Treatment Plants

    DEFF Research Database (Denmark)

    Kristensen, Jannie Munk; Nierychlo, Marta; Albertsen, Mads

    Incoming microorganisms to wastewater treatment plants (WWTPs) are usually considered to be removed in the treatment process. Analyses of the effluent generally show a very high degree of reduction of pathogens supporting this assumption. However, standard techniques for detecting bacteria......-independent 16SrRNA gene amplicon sequencing was applied for the identification and quantification of the microorganisms. In total 84 effluent samples from 14 full-scale Danish wastewater treatment plants were investigated over a period of 3 months. The microbial community composition was investigated by 16S r...... contain pathogenic species. One of these was Arcobacter (Campylobacteraceae) which was found in up to 16% relative abundance. This indicates that Arcobacter, and perhaps other pathogenic genera, are not being removed efficiently in full-scale plants and may pose a potential health safety problem. Further...

  1. Wastewater Treatment Methods

    Science.gov (United States)

    Smith, Dana; Williams, Fred; Moffatt, Scott

    Alcoa's Point Comfort, Texas industrial facility is a combination of a bauxite refining plant utilizing the Bayer process and an aluminum fluoride production plant. Due to the location's use of dry stack technology for bauxite residue disposal, the pond surface areas for evaporation are minimal compared to the rainfall catchment areas. This results in the periodic need to reduce accumulated volumes of storm water at the Residue Disposal Area (RDA).

  2. Artificial wetland for wastewater treatment

    International Nuclear Information System (INIS)

    Arias I, Carlos A; Brix, Hans

    2003-01-01

    The development of constructed wetland technology for wastewater treatment has gone a long way and from an experimental and unknown empirical method, which was capable of handling wastewater a sound technology was developed. Thanks to research, and the work of many public and private companies that have gather valuable operation information, constructed wetland technology has evolved to be a relievable, versatile and effective way to treat wastewater, run off, handle sludge and even improve environmental quality and provide recreation sites, while maintaining low operation and maintenance costs, and at the same time, producing water of quality that can meet stringent regulations, while being and environmental friendly solution to treat waste-waters. Constructed wetlands can be established in many different ways and its characteristics can differ greatly, according to the user needs, the geographic site and even the climatic conditions of the area. The following article deals with the general characteristics of the technology and the physical and chemical phenomena that govern the pollution reduction with in the different available systems

  3. Techniques of Wastewater Treatment

    Indian Academy of Sciences (India)

    of Chemical Engineering in UDCT and works ... tional methods of treatment. Currently the need is ... temperature causes the organic molecule to undergo oxidative degradation. ... When ultrasound is applied to effluent, water undergoes ther-.

  4. Hydrogeologic data and water-quality data from a thick unsaturated zone at a proposed wastewater-treatment facility site, Yucca Valley, San Bernardino County, California, 2008-11

    Science.gov (United States)

    O'Leary, David; Clark, Dennis A.; Izbicki, John A.

    2015-01-01

    The Hi-Desert Water District, in the community of Yucca Valley, California, is considering constructing a wastewater-treatment facility and using the reclaimed water to recharge the aquifer system through surface spreading. The Hi-Desert Water District is concerned with possible effects of this recharge on water quality in the underlying groundwater system; therefore, an unsaturated-zone monitoring site was constructed by the U.S. Geological Survey (USGS) to characterize the unsaturated zone, monitor a pilot-scale recharge test, and, ultimately, to monitor the flow of reclaimed water to the water table once the treatment facility is constructed.

  5. Organic contaminants in onsite wastewater treatment systems

    Science.gov (United States)

    Conn, K.E.; Siegrist, R.L.; Barber, L.B.; Brown, G.K.

    2007-01-01

    Wastewater from thirty onsite wastewater treatment systems was sampled during a reconnaissance field study to quantify bulk parameters and the occurrence of organic wastewater contaminants including endocrine disrupting compounds in treatment systems representing a variety of wastewater sources and treatment processes and their receiving environments. Bulk parameters ranged in concentrations representative of the wide variety of wastewater sources (residential vs. non-residential). Organic contaminants such as sterols, surfactant metabolites, antimicrobial agents, stimulants, metal-chelating agents, and other consumer product chemicals, measured by gas chromatography/mass spectrometry were detected frequently in onsite system wastewater. Wastewater composition was unique between source type likely due to differences in source water and chemical usage. Removal efficiencies varied by engineered treatment type and physicochemical properties of the contaminant, resulting in discharge to the soil treatment unit at ecotoxicologically-relevant concentrations. Organic wastewater contaminants were detected less frequently and at lower concentrations in onsite system receiving environments. Understanding the occurrence and fate of organic wastewater contaminants in onsite wastewater treatment systems will aid in minimizing risk to ecological and human health.

  6. Treatment of wastewaters from manufactured gas plants

    Energy Technology Data Exchange (ETDEWEB)

    Cocheci, V.; Bogatu, C.; Radovan, C. [Technical University of Timisoara, Timisoara (Romania)

    1995-12-31

    The treatment of wastewaters with high concentrations of organic compounds often represents a difficult problem. In some cases, for the destruction and removal of toxic compounds using processes like biological and chemical oxidation were proposed. Wastewaters from manufactured gas plants contain high concentrations of organic pollutants and ammonia. In this paper a technology for the treatment of these wastewaters is proposed. The experiments were realized with wastewaters from two Romanian manufactured gas plants. The process consists of the following steps: polycondensation-settling-stripping-biological treatment-electrocoagulation-electrochemical oxidation, or chemical oxidation. 6 refs., 4 tabs.

  7. Methods for storage and disposal of residues from wastewater treatment of former uranium mining and milling facilities in Germany

    Energy Technology Data Exchange (ETDEWEB)

    Larue, J; Weiss, D [Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) mbH, Berlin (Germany); Kiessig, G [WISMUTGmbH, Chemnitz (Germany)

    2002-02-01

    In connection with the flooding of uranium mines in Saxony and Thuringia, there are contaminated pit waters that must be purified before discharge into surface waters. The expected duration of the water purification process until concentrations of natural radionuclides, various heavy metals and arsenic are low enough to allow direct discharge into surface waters amounts to decades . To prevent or minimize the leaching of the contaminants from the sludge of the water treatment in the long term, the contaminants are either transformed into chemical compounds of low solubility or affixed within ion exchange resins. Due to the accumulation of those contaminants during the water processing procedure, the residua must be disposed of for reasons of radiation protection and waste management. A final storage of the residua in accord with nuclear regulatory stipulations is unnecessary because of the contamination levels and also because of the mining origin. The method of residua-storage chosen to be best suited to a particular site has to be based on costs-to-benefit analyses, giving due consideration to the different aspects e.g. radiation and environmental protection, long term safety, form of immobilization, site specific conditions. These methods will be described and illustrated using specific examples of applications. (author)

  8. Methods for storage and disposal of residues from wastewater treatment of former uranium mining and milling facilities in Germany

    International Nuclear Information System (INIS)

    Larue, J.; Weiss, D.; Kiessig, G.

    2002-01-01

    In connection with the flooding of uranium mines in Saxony and Thuringia, there are contaminated pit waters that must be purified before discharge into surface waters. The expected duration of the water purification process until concentrations of natural radionuclides, various heavy metals and arsenic are low enough to allow direct discharge into surface waters amounts to decades . To prevent or minimize the leaching of the contaminants from the sludge of the water treatment in the long term, the contaminants are either transformed into chemical compounds of low solubility or affixed within ion exchange resins. Due to the accumulation of those contaminants during the water processing procedure, the residua must be disposed of for reasons of radiation protection and waste management. A final storage of the residua in accord with nuclear regulatory stipulations is unnecessary because of the contamination levels and also because of the mining origin. The method of residua-storage chosen to be best suited to a particular site has to be based on costs-to-benefit analyses, giving due consideration to the different aspects e.g. radiation and environmental protection, long term safety, form of immobilization, site specific conditions. These methods will be described and illustrated using specific examples of applications. (author)

  9. Introduction to Chemistry for Water and Wastewater Treatment Plant Operators. Water and Wastewater Training Program.

    Science.gov (United States)

    South Dakota Dept. of Environmental Protection, Pierre.

    Presented are basic concepts of chemistry necessary for operators who manage drinking water treatment plants and wastewater facilities. It includes discussions of chemical terms and concepts, laboratory procedures for basic analyses of interest to operators, and discussions of appropriate chemical calculations. Exercises are included and answer…

  10. Treatment and recycling of textile wastewaters

    International Nuclear Information System (INIS)

    Ciardelli, G.; Brighetti, G.

    1999-01-01

    The results of an experimental campaign involving the treatment of textile wastewaters for recycle by mean of an absorption resins pilot plant are briefly described. The case study concerned the treatment and reuse of yarns dyeing wastewaters. Results obtained indicate the possibility of an industrial scale implementation of the technique [it

  11. Nutrients requirements in biological industrial wastewater treatment ...

    African Journals Online (AJOL)

    In both these wastewaters nutrients were not added. A simple formula is introduced to calculate nutrient requirements based on removal efficiency and observed biomass yield coefficient. Key Words: Olive mill wastewater; anaerobic treatment; aerobic treatment; sequencing batch reactor; biomass yield; nutrient requirement.

  12. Integration of energy and environmental systems in wastewater treatment plants

    Energy Technology Data Exchange (ETDEWEB)

    Long, Suzanna [Department of Engineering Management and Systems Engineering, 600 W, 14th Street, 215 EMGT Building, Rolla, MO-65401, 573-341-7621 (United States); Cudney, Elizabeth [Department of Engineering Management and Systems Engineering, 600 W, 14th Street, 217 EMGT Building, Rolla, MO-65401, 573-341-7931 (United States)

    2012-07-01

    Most wastewater treatment facilities were built when energy costs were not a concern; however, increasing energy demand, changing climatic conditions, and constrained energy supplies have resulted in the need to apply more energy-conscious choices in the maintenance or upgrade of existing wastewater treatment facilities. This research develops an integrated energy and environmental management systems model that creates a holistic view of both approaches and maps linkages capable of meeting high-performing energy management while meeting environmental standards. The model has been validated through a case study on the Rolla, Missouri Southeast Wastewater Treatment Plant. Results from plant performance data provide guidance to improve operational techniques. The significant factors contributing to both energy and environmental systems are identified and balanced against considerations of cost.

  13. Application of electron beam to industrial wastewater treatment

    International Nuclear Information System (INIS)

    Han, B.; Kim, D.K.; Boo, J.Y.; Kim, J.K.; Kim, Y.; Chung, W.; Choi, J.S.; Kang, H.J.; Pikaev, A.K.

    2001-01-01

    Global withdrawals of water to satisfy human demands have grown dramatically in this century. Between 1900 and 1995, water consumption increased by over six times, more than double the rate of population growth. This rapid growth in water demand is due to the increasing reliance on irrigation to achieve food security, the growth of industrial uses, and the increasing use per capita for domestic purposes. Given the seriousness of the situation and future risk of crises, there is an urgent need to develop the water efficient technologies including economical treatment methods of wastewater and polluted water. In the Central Research Institute of Samsung Heavy Industries (SHI), many industrial wastewater including leachate from landfill area, wastewater from papermill, dyeing complex, petrochemical processes, etc. are under investigation with EB irradiation. For the study of treating dyeing wastewater combined with conventional facilities, an EB pilot plant for treating 1,000m 3 /day of wastewater from 60,000m 3 /day of total dyeing wastewater has been constructed and operated in Taegu Dyeing Industrial Complex. A commercial plant for re-circulation of wastewater from Papermill Company is also designed for S-paper Co. in Cheongwon City, and after the successful installation, up to 80% of wastewater could be re-used in paper producing process. (author)

  14. RECENT ADVANCES IN LEATHER TANNERY WASTEWATER TREATMENT

    Directory of Open Access Journals (Sweden)

    LOFRANO Giusy

    2016-05-01

    Full Text Available The tannery industry is one of the most important economic sectors in many countries, representing an important economic field also in developing countries. Leather tannery industry is water intensive and originates highly polluted wastewater that contain various micropollutants raising environmental and health concerns. Tannery wastewater is difficult to treat biologically because of complex characteristics like high salinity e high content of xenobiotics compounds. After conventional treatment (i.e., chromium precipitation–primary sedimentation–biological oxidation–secondary sedimentation, effluents still do not meet the required limits, at least for some parameters such as BOD, COD, salinity, ammonia and surfactants. The leather industry is being pressured to search cleaner, economically as well as environmentally friendly wastewater treatment technologies alternative or integrative to the conventional treatment in order to face the challenge of sustainability. The most spread approach to manage tannery wastewater is the steam segregation before conveying wastewaters to in treatment plants that typically include pre-treatment, mechanical and physico-chemical treatment, biological treatment, and treatment of the generated sludge. Thus proper treatment technologies are needed to handle tannery wastewater to remove effectively the environmental benign pollutants. However among various processes applied or proposed the sustainable technologies are emerging concern. This paper, as the-state-of-the-art, attempts to revise the over world trends of treatment technologies and advances for pollution prevention from tannery chemicals and wastewater.

  15. Electron beam treatment of industrial wastewater

    International Nuclear Information System (INIS)

    Han, Bumsoo; Kim, JinKyu; Kim, Yuri

    2004-01-01

    For industrial wastewater with low impurity levels such as contaminated ground water, cleaning water and etc., purification only with electron beam is possible, but it should be managed carefully with reducing required irradiation doses as low as possible. Also for industrial wastewater with high impurity levels such as dyeing wastewater, leachate and etc., purification only with electron beam requires high amount of doses and far beyond economies. Electron beam treatment combined with conventional purification methods such as coagulation, biological treatment, etc. is suitable for reduction of non-biodegradable impurities in wastewater and will extend the application area of electron beam. A pilot plant with electron beam for treating 1,000 m 3 /day of wastewater from dyeing industries has constructed and operated continuously since Oct 1998. Electron beam irradiation instead of chemical treatment shows much improvement in removing impurities and increases the efficiency of biological treatment. Actual plant is under consideration based upon the experimental results. (author)

  16. Current status of radiation treatment of water and wastewater

    International Nuclear Information System (INIS)

    Pikaev, A.K.

    1997-01-01

    This is a brief review of the current status of radiation treatment of surface water, groundwater, wastewaters, and sewage sludges. Sources of ionizing radiation, and combination radiation methods for purification are described in some detail. Special attention is paid to pilot and industrial facilities. (author)

  17. Guidelines to Career Development for Wastewater Treatment Plant Personnel.

    Science.gov (United States)

    Environmental Protection Agency, Washington, DC. Office of Education and Manpower Planning.

    The guidelines were written to promote job growth and improvement in the personnel who manage, operate, and maintain wastewater treatment plants. Trained operators and technicians are the key components in any water pollution control facility. The approach is to move from employment to training through specific modules for 21 standard job…

  18. Public and Private Management of Wastewater Treatment: A Comparative Study.

    Science.gov (United States)

    O'Toole, Laurence J., Jr.

    1991-01-01

    The costs and performance of contract management of municipal wastewater treatment facilities are considered, using information from a nationwide empirical examination of evidence from individual plants, municipalities, and regulatory agencies. The broad issues arising in the evaluation are outlined as the specifics are discussed. (SLD)

  19. Comparison of Methods to Identify Pathogens and Associated Virulence Functional Genes in Biosolids from Two Different Wastewater Treatment Facilities in Canada.

    Directory of Open Access Journals (Sweden)

    Etienne Yergeau

    Full Text Available The use of treated municipal wastewater residues (biosolids as fertilizers is an attractive, inexpensive option for growers and farmers. Various regulatory bodies typically employ indicator organisms (fecal coliforms, E. coli and Salmonella to assess the adequacy and efficiency of the wastewater treatment process in reducing pathogen loads in the final product. Molecular detection approaches can offer some advantages over culture-based methods as they can simultaneously detect a wider microbial species range, including non-cultivable microorganisms. However, they cannot directly assess the viability of the pathogens. Here, we used bacterial enumeration methods together with molecular methods including qPCR, 16S rRNA and cpn60 gene amplicon sequencing and shotgun metagenomic sequencing to compare pre- and post-treatment biosolids from two Canadian wastewater treatment plants (WWTPs. Our results show that an anaerobic digestion WWTP was unsuccessful at reducing the live indicator organism load (coliforms, generic E. coli and Salmonella below acceptable regulatory criteria, while biosolids from a dewatering/pelletization WWTP met these criteria. DNA from other pathogens was detected by the molecular methods, but these species were considered less abundant. Clostridium DNA increased significantly following anaerobic digestion treatments. In addition to pathogen DNA, genes related to virulence and antibiotic resistance were identified in treated biosolids. Shotgun metagenomics revealed the widest range of pathogen DNA and, among the approaches used here, was the only approach that could access functional gene information in treated biosolids. Overall, our results highlight the potential usefulness of amplicon sequencing and shotgun metagenomics as complementary screening methods that could be used in parallel with culture-based methods, although more detailed comparisons across a wider range of sites would be needed.

  20. Performance of wastewater treatment plants in Jordan and suitability ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-08-04

    Aug 4, 2008 ... and NH4; therefore it is classified as a strong waste. ... Key words: Wastewater, treatment plants, water reuse, wastewater characteristics, wastewater treatment,. Jordan. ..... MSc. thesis, university of Jordan. Bataineh F, Najjar ...

  1. Secondary wastewater treatment by microalgae isolated from ...

    African Journals Online (AJOL)

    Microalgae play a fundamental role in primary and secondary wastewater treatment. In this work the growth, photosynthetic activity and removal of phosphorus from wastewater effluents by indigenous blue-green algal species, Spirulina and Oscillatoria, isolated from Gaborone oxidation ponds was studied. Oscillatoria and ...

  2. Domestic wastewater treatment using electron accelerator

    International Nuclear Information System (INIS)

    Borrely, Sueli I.

    1995-01-01

    This work aims the application of an industrial electron beam accelerator to disinfect sludge and to remove organic matter existent in the influent and effluent from the Mairipora domestic wastewater treatment plant. The in vitro Co-60 radiosensitivity of the major representative Salmonella species in wastewater from Sao Paulo city was also studied. (author). 66 refs., 19 figs., 12 tabs

  3. Design Criteria for Process Wastewater Pretreatment Facilities

    Science.gov (United States)

    1988-05-01

    Stripping Column H13 ’Re Purpose: The purpose of this report, is to provide design criteria for pretreatment needs for ’ I. INTRODUCTION ’". discharge of...which a portion of the vessel is filled with packing. Packing materials vary from corrugated steel to bundles of fibers (Langdon et al., 1972) to beds...concentration(s) using Table 20. Wastewater treatability studies should be considered as a process-screening tool for all wastewater streams for

  4. Measures to reduce the impact of anti-icing agents on the environment and on the work of wastewater treatment facilities

    Directory of Open Access Journals (Sweden)

    Voronov Yuriy Viktorovich

    2014-09-01

    Full Text Available This article analyses the impact of the excess of chemical agents in the snow on the environment and on the working waste water treatment facilities. The article presents some suggestions for improvement of regulatory requirements concerning design engineering of snow melting facilities in the water disposal system. This suggestion was substantiated to assess snow as waste disposed from road surface, and to register snow mass delivered to snow melting facilities in equivalent units. It is assumed that snow melting stations are facilities designed for waste treatment, and this is why the project documentation for construction of these facilities has to undergo a state expertise for Environmental Impact Assessment. Completed studies provide estimates of the receipted snow, its pollution, etc. But at the same time these studies serve as the basis for approving the necessity of developing a unified system for monitoring the city's snow-melting plants to ensure the reliability.

  5. Treatment of wastewater from service areas at motorways

    Directory of Open Access Journals (Sweden)

    Makowska Małgorzata

    2016-12-01

    Full Text Available This paper deals with wastewater treatment systems placed in motorway service areas (MSAs. In the years 2008-2009 eight of such facilities installed on the stretch of the A2 motorway between Poznań and Nowy Tomyśl were examined and analyzed. The system consists of a septic tank, a submerged aerated biofilter and an outflow filter. The volume of traffic on the highway was analyzed, the amount of water use was measured and peak factors were calculated. On this basis it was concluded that the inflows to the wastewater treatment systems in many cases exceeded the nominal design values.

  6. Treatment of Preserved Wastewater with UASB

    Directory of Open Access Journals (Sweden)

    Zhang Yongli

    2016-01-01

    Full Text Available The preserved wastewater was treated by the upflow anaerobic sludge blanket (UASB reactor, the effects of the anaerobic time on COD, turbidity, pH, conductivity, SS, absorbance, and decolorization rate of the preserved wastewater were investigated. The results showed that with the increase of the anaerobic time, the treatment effect of the UASB reactor on the preserved wastewater was improved. Under the optimum anaerobic time condition, the COD removal rate, turbidity removal rate, pH, conductivity, SS removal rate, absorbance, and decoloration rate of the wastewater were 49.6%, 38.5%, 5.68, 0.518×104, 24%, 0.598, and 32.4%, respectively. Therefore, the UASB reactor can be used as a pretreatment for the preserved wastewater, in order to reduce the difficulty of subsequent aerobic treatment.

  7. Construction of Industrial Electron Beam Plant for Wastewater Treatment

    International Nuclear Information System (INIS)

    Han, B.; Kim, J.; Kim, Y.; Kim, S.; Lee, M.; Choi, J.; Ahn, S.; Makarov, I.E.; Ponomarev, A.V.

    2004-01-01

    A pilot plant for treating 1,000 m3/day of dyeing wastewater with e-beam has been constructed and operated since 1998 in Daegu, Korea together with the biological treatment facility. The wastewater from various stages of the existing purification process has been treated with electron beam in this plant, and it gave rise to elaborate the optimal technology of the electron beam treatment of wastewater with increased reliability at instant changes in the composition of wastewater. Installation of the e-beam pilot plant resulted in decolorizing and destructive oxidation of organic impurities in wastewater, appreciable to reduction of chemical reagent consumption, in reduction of the treatment time, and in increase in flow rate limit of existing facilities by 30-40%. Industrial plant for treating 10,000 m3/day, based upon the pilot experimental result, is under construction and will be finished by 2005. This project is supported by the International Atomic Energy Agency (IAEA) and Korean Government

  8. Electron Beam Treatment Plant for Textile Dyeing Wastewater

    International Nuclear Information System (INIS)

    Han, Bumsoo; Kim, Yuri; Choi, Jangseung; Ahn, Sangjun

    2006-01-01

    High positive effect of electron-beam treatment involved into the process of wastewater purification is now well established. The most effective for the purpose seem to be combine methods including both electron beam and any conventional treatment stages, i.e., under conditions when some synergistic effects can take place. Daegu Dyeing Industrial Complex (DDIC) includes about hundred factories occupying the area of 600,000m 2 with 13,000 employees in total. The production requires high consumption of water (90,000m 3 /day), steam, and electric power, being characterized by large amount of highly colored industrial wastewater. Because of increase in productivity and increased assortment of dyes and other chemicals, substantial necessity appears in re-equipment of purification facilities by application of efficient methods of wastewater treatment

  9. Decentralised wastewater treatment effluent fertigation: preliminary ...

    African Journals Online (AJOL)

    Decentralised wastewater treatment effluent fertigation: preliminary technical assessment. ... living in informal settlements with the effluent produced being used on agricultural land. ... Banana and taro required 3 514 mm of irrigation effluent.

  10. Selection of technologies for municipal wastewater treatment

    Directory of Open Access Journals (Sweden)

    Juan Pablo Rodríguez Miranda

    2015-11-01

    Full Text Available In water environmental planning in watersheds should contain aspects for the decontamination of receiving water body, therefore the selection of the treatment plants municipal wastewater in developing countries, you should consider aspects of the typical composition raw wastewater pollutant removal efficiency by technology, performance indicators for technology, environmental aspects of localization and spatial localization strategy. This methodology is built on the basis of technical, economic and environmental attributes, such as a tool for decision making future investments in treatment plants municipal wastewater with multidisciplinary elements.

  11. Electron beam treatment plant for textile dyeing wastewater

    International Nuclear Information System (INIS)

    Han, B.; Kim, J.; Kim, Y.; Choi, J.; Ahn, S.; Makarov, I.E.; Ponomarev, A.V.

    2006-01-01

    A pilot plant for treating 1,000 m 3 of textile dyeing wastewater per day with electron beam has constructed and operated continuously in Daegu, Korea since 1998. This plant is combined with biological treatment system and it shows the reduction of chemical reagent consumption, and also the reduction in retention time with the increase in removal efficiencies of COD Cr and BOD 5 up to 30∼40%. Increase in biodegradability after radiation treatment of aqueous-organic systems is due to radiolytical conversions of non-biodegradable compounds. On the basis of data obtained from pilot plant operation, construction of actual industrial scale plant has started in 2003, and will be finished by 2005. This plant is located on the area of existing wastewater treatment facility (Daegu Dyeing Industrial Complex) and to have treatment capacity 10,000 m 3 of wastewater per day using one 1 MeV, 400 kW accelerator, and combined with existing bio- treatment facility. The overall construction cost and the operation cost in the radiation processing, when compared to other conventional and advanced oxidation techniques, are more cost-effective and convenient for wastewater treatment. This project is supported by the International Atomic Energy Agency (IAEA) and Korean Government. (author)

  12. Synthesis of adsorbent from Tamarix hispida and modified by lanthanum metal for fluoride ions removal from wastewater: Adsorbent characteristics and real wastewater treatment data

    Directory of Open Access Journals (Sweden)

    Nasim Habibi

    2017-08-01

    Full Text Available This data article describes a facile method for production of an adsorbent from Tamarix hispida wasted wood and modified by lanthanum metal for fluoride ions removal from wastewater. The main characteristics of the adsorbent consist of BET surface area, functional groups, and elemental analysis is presented. The data for attenuating the pollutants from a real wastewater treatment which was provided from a glass factory is also represented. More than 90% of fluoride content of the real wastewater was treated by the adsorbent. Generally, these data would be informative for extend research aim to industrial wastewater treatment and those who work in the wastewater treatment plants.

  13. Treatment of wastewater with the constructed wetland

    International Nuclear Information System (INIS)

    Fernandez, R.; Olivares, S.

    2003-01-01

    Constructed wetland is an environmental sound, actual and economic solution for the treatment of wastewater. The use of these constructed wetlands increased in the last few years, principally in developed countries. However there is not much information about the performance of these biological systems in tropical and subtropical climates. In these review the state of art of these technology is given, and also the advantage of the use of the constructed wetland for the wastewater treatment in our country

  14. Analysis of energy consumption at the Rzeszów Wastewater Treatment Plant

    OpenAIRE

    Masłoń Adam

    2017-01-01

    Wastewater treatment plants can be classified as energy-intensive facilities, as they account for up to 35 percent of municipal energy consumption. Pumps and aeration systems consume a significant portion of energy within the wastewater plants in particular. The cost of energy consumption for wastewater treatment processes reaches up to 40% of the total operating cost. In case of the WWTPs with the activated sludge systems, about 50% of energy is used for aeration and mixing purposes. At WWTP...

  15. Quantitative PCR Detection and Characterisation of Human Adenovirus, Rotavirus and Hepatitis A Virus in Discharged Effluents of Two Wastewater Treatment Facilities in the Eastern Cape, South Africa.

    Science.gov (United States)

    Adefisoye, Martins Ajibade; Nwodo, Uchechukwu U; Green, Ezekiel; Okoh, Anthony Ifeanyin

    2016-12-01

    The occurrence of enteric viruses in reclaimed wastewater, their removal by efficient treatment processes and the public health hazards associated with their release into the environments are of great significance in environmental microbiology. In this study, TaqMan-based real-time polymerase chain reaction (qPCR) was used to assess the prevalence of human adenovirus (HAdV), rotavirus (RV) and hepatitis A virus (HAV) in the final effluents of two wastewater treatment plants in the Eastern Cape Province, South Africa, over a twelve-month sampling period. The correlation between the concentrations of viruses in the effluents samples and faecal coliform (FC) densities were assessed as to validate the use of FC as microbiological indicator in water quality assessment. HAdV was detected in 62.5 % (30/48) of the samples with concentrations ranging between 8.4 × 10 1 and 1.0 × 10 5 genome copies/L while HAV and RV were only detected at concentrations below the set detection limits. FCs densities ranged from 1 to 2.7 × 10 4 CFU/100 ml. Adenovirus species HAdV-B (serotype 2) and HAdV-F (serotype 41) were detected in 86.7 % (26/30) and 6.7 % (2/30) of the HAdV-positive samples, respectively. No consistent seasonal trend was observed in HAdV concentrations, however, increased concentrations of HAdV were generally observed in the winter months. Also, there was no correlation between the occurrence of HAdV and FC at both the treatment plants. The persistent occurrence of HAdV in the discharged treated effluents points to the potential public health risk through the release of HAdV into the receiving watersheds, and the possibility of their transmission to human population.

  16. Wastewater Facilities Operation and Management. Instructor Guide. Working for Clean Water: An Information Program for Advisory Groups.

    Science.gov (United States)

    Long, David A.

    Local communities must be willing to spend funds to assure the proper operation and management of wastewater treatment facilities. Designed for citizen advisory groups, the one-hour learning session described in this instructor's manual covers problem areas, federal requirements, and responsibilities for wastewater plant operations and management.…

  17. Application of reverse osmosis in radioactive wastewater treatment

    International Nuclear Information System (INIS)

    Kong Jinsong; Guo Weiqun

    2012-01-01

    Considering the disadvantages of the conventional evaporation and ion exchange process for radioactive wastewater treatment, the reverse osmosis is used to treat the low level radioactive wastewater. The paper summarizes the research and application progress of the reverse osmosis in the radioactive wastewater treatment and indicates that the reverse osmosis in the radioactive wastewater treatment is very important. (authors)

  18. Efficiency of electrical coagulation process using aluminum electrodes for municipal wastewater treatment: a case study at Karaj wastewater treatment plant

    Directory of Open Access Journals (Sweden)

    Samad Gholami Yengejeh

    2017-05-01

    Full Text Available Background: The reuse of treated municipal wastewater is an important source of water for different purposes. This study evaluated the efficiency of the electrocoagulation process in removing turbidity, total suspended solids (TSS, chemical oxygen demand (COD, nitrate, and phosphate from wastewater at the treatment facility in Karaj, Iran. Methods: This experimental study was performed at a pilot scale and in a batch system. A 4-liter tank made from safety glass with 4 plate electrodes made from aluminum was unipolarly connected to a direct current power supply with a parallel arrangement. Wastewater samples were taken from the influent at the Karaj wastewater treatment facility. Rates of turbidity, TSS, COD, nitrate, and phosphate removal under different conditions were determined. Results: The highest efficiency of COD, TSS, nitrate, turbidity, and phosphate elimination was achieved at a voltage of 30 volts and a reaction time of 30 minutes. The rates were 88.43%, 87.39%, 100%, 80.52%, and 82.69%, respectively. Conclusion: Based on the results of this study, electrocoagulation is an appropriate method for use in removing nitrate, phosphate, COD, turbidity, and TSS from wastewater.

  19. Tertiary Treatment Process of Preserved Wastewater

    Directory of Open Access Journals (Sweden)

    Wang Qingyu

    2016-01-01

    Full Text Available The effects of the composite coagulants on coagulation sedimentation for the preserved wastewater was investigated by changing the composite coagulant dosages, and the coagulant was composed of polymeric ferric sulfate (PFS, polyaluminium chloride (PAC, and polyaluminum ferric silicate (PAFSC, while the effect of the tertiary treatment process on the preserved wastewater was tested, which was exceeded the standard seriously. The results showed that 400 mg/L was the optimum composite coagulant dosage. The removal rates of salt and sugar were as high as 99.1% and 99.5% respectively, and the removal rates of CODCr and SS were 99.3% and 96.0%, respectively after the preserved wastewater was treated by the tertiary treatment technology, which both reached the primary standard of “The Integrated Wastewater Discharge Standard” (GB8978-1996.

  20. High power accelerators and wastewater treatment

    International Nuclear Information System (INIS)

    Han, B.; Kim, J.K.; Kim, Y.R.; Kim, S.M.; Makaov, I.E.; Ponomarev, A.V.

    2006-01-01

    The problems of environmental damage and degradation of natural resources are receiving increasing attention throughout the world. The increased population, higher living standards, increased urbanization and enhanced industrial activities of humankind are all leading to degradation of the environment. Increasing urbanization has been accompanied by significant water pollution. Given the seriousness of the situation and future risk of crises, there is an urgent need to develop the water-efficient technologies including economical treatment methods of wastewater and polluted water. Therefore, cost-effective treatment of the municipal and industrial wastewater containing refractory pollutant with electron beam is actively studied in EB TECH Co.. Electron beam treatment of wastewater is caused by the decomposition of pollutants as a result of their reactions with highly reactive species formed from water radiolysis (hydrated electron, OH free radical and H atom). However, to have advantages over existing processes, the electron beam process should have cost-effective and reliable in operation. Therefore high power accelerators (400kW∼1MW) are developed for environmental application and they show the decrease in the cost of construction and operation of electron beam plant. In other way to reduce the cost for wastewater treatment, radical reactions accompanied by the other processes are introduced, and the synergistic effect upon the use of combined methods such as electron beam treatment with ozonation, biological treatment and physico-chemical adsorption and others also show the improvement of the effect of electron beam treatment for the wastewater purification. (author)

  1. Removal of Arsenic from Wastewaters by Airlift Electrocoagulation: Part 3: Copper Smelter Wastewater Treatment

    DEFF Research Database (Denmark)

    Hansen, H.K.; Ottosen, Lisbeth M.

    2010-01-01

    The arsenic content in wastewater is of major concern for copper smelters. A typical complex wastewater treatment is needed with a combination of chemical and physical processes. Electrocoagulation (EC) has shown its potential for arsenic removal due to the formation of ferric hydroxide-arsenate ...... threshold value for wastewater discharge could rapidly be reached when the conventional method did not clean the wastewater sufficiently....

  2. Treatment of coffee wastewater by gamma radiation

    International Nuclear Information System (INIS)

    Aguilera, Y.; Consuegra, R.; Rapado, M.

    1998-01-01

    Radiation energy can be an important resource in the treatment of wastewaters from different industries both directly and in combination with other processes to improve economics. The aim of this study was to evaluate the effect of an ionizing radiation on coffee wastewater in order to decompose chemical organic refractory substances which cannot be degradated by biological treatment. One of the approaches employed in the survey was the chemical treatment followed by the irradiation of the samples since no nuclear changes of the coagulant solution or wastewater samples were expected. Irradiation is a high cost treatment although it has increased its applications nowadays. The method is safe, fast and effective and it does not generate any pollution

  3. A Course on Operational Considerations in Wastewater Treatment Plant Design. Instructor's Manual.

    Science.gov (United States)

    Cooper, John W.; And Others

    This manual contains 17 instructional units (sequenced to correspond to parallel chapters in a student's manual) focusing on upgrading the design of wastewater plant facilities and serving as a reference source for establishing criteria for upgrading wastewater treatment plants. The manual also furnishes information for modifying plant design to…

  4. Wastewater Industrial Contributors

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — Industrial contributors to municipal wastewater treatment facilities in Iowa for the National Pollutant Discharge Elimination System (NPDES) program.

  5. Kinetic coefficients for the biological treatment of tannery wastewater

    International Nuclear Information System (INIS)

    Haydar, S.

    2008-01-01

    Determination of kinetic coefficients for a particular wastewater is imperative for the rational design of biological treatment-facilities. The present study was undertaken with the objective of finding out kinetic coefficients for tannery wastewater. A bench-scale model of aerated lagoon, consisting of an aeration tank and final clarifier, was use to conduct the studies. The model was operated continuously for 96 days, by varying the detention times from 3 to 9 days. Influent for the aerated lagoon was settled tannery wastewater. Biochemical oxygen demand (BOD) of the influent and effluent and the mixed-liquor suspended solids (MLSS) of aeration tank were determined at various detention-times so as to generate data for kinetic coefficients. The kinetic coefficients k, Ks, Y and Ed were found to be 3.125 day/sup -1/, 488 mg/L, 0.64 and 0.035 day/sup -1/ respectively. Overall rate-constant of BOD, removal 'K' was also determined and was found to be 1.43 day/sup -1/. Kinetic coefficients were determined, at mean reactor-temperature of 30.2 degree C. These coefficients may be utilized for the design of biological-treatment facilities for tannery wastewater. (author)

  6. Development of chemical flocculant for wastewater treatment

    International Nuclear Information System (INIS)

    Park, Jang Jin; Shin, J. M.; Lee, H. H.; Kim, M. J.; Yang, M. S.; Park, H. S.

    2000-12-01

    Reagents 'KAERI-I and KAERI-II' which were developed as coagulants for industrial wastewater treatment in the study showed far superior performance to the existing inorganic coagulants such as Alum and Iron salt(FeSO4) when compared to their wastewater treatment performance in color and COD removal. Besides, it was not frozen at -25 deg C ∼ -30 deg C. When reagents 'KAERI-I and KAERI-II' were used as coagulant for wastewater treatment, the proper dosage was ranged from 0.1% to 0.5%(v/v) and proper pH range was 10.5 ∼ 11.5 in the area of alkaline pH.Reagents 'KAERI-I and KAERI-II' showed good performance with 95% or more removal of color-causing material and 60% or more removal of COD

  7. Development of chemical flocculant for wastewater treatment

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jang Jin; Shin, J. M.; Lee, H. H.; Kim, M. J.; Yang, M. S.; Park, H. S

    2000-12-01

    Reagents 'KAERI-I and KAERI-II' which were developed as coagulants for industrial wastewater treatment in the study showed far superior performance to the existing inorganic coagulants such as Alum and Iron salt(FeSO4) when compared to their wastewater treatment performance in color and COD removal. Besides, it was not frozen at -25 deg C {approx} -30 deg C. When reagents 'KAERI-I and KAERI-II' were used as coagulant for wastewater treatment, the proper dosage was ranged from 0.1% to 0.5%(v/v) and proper pH range was 10.5 {approx} 11.5 in the area of alkaline pH.Reagents 'KAERI-I and KAERI-II' showed good performance with 95% or more removal of color-causing material and 60% or more removal of COD.

  8. Frontiers International Conference on Wastewater Treatment

    CERN Document Server

    2017-01-01

    This book describes the latest research advances, innovations, and applications in the field of water management and environmental engineering as presented by leading researchers, engineers, life scientists and practitioners from around the world at the Frontiers International Conference on Wastewater Treatment (FICWTM), held in Palermo, Italy in May 2017. The topics covered are highly diverse and include the physical processes of mixing and dispersion, biological developments and mathematical modeling, such as computational fluid dynamics in wastewater, MBBR and hybrid systems, membrane bioreactors, anaerobic digestion, reduction of greenhouse gases from wastewater treatment plants, and energy optimization. The contributions amply demonstrate that the application of cost-effective technologies for waste treatment and control is urgently needed so as to implement appropriate regulatory measures that ensure pollution prevention and remediation, safeguard public health, and preserve the environment. The contrib...

  9. Technical analysis of advanced wastewater-treatment systems for coal-gasification plants

    Energy Technology Data Exchange (ETDEWEB)

    1981-03-31

    This analysis of advanced wastewater treatment systems for coal gasification plants highlights the three coal gasification demonstration plants proposed by the US Department of Energy: The Memphis Light, Gas and Water Division Industrial Fuel Gas Demonstration Plant, the Illinois Coal Gasification Group Pipeline Gas Demonstration Plant, and the CONOCO Pipeline Gas Demonstration Plant. Technical risks exist for coal gasification wastewater treatment systems, in general, and for the three DOE demonstration plants (as designed), in particular, because of key data gaps. The quantities and compositions of coal gasification wastewaters are not well known; the treatability of coal gasification wastewaters by various technologies has not been adequately studied; the dynamic interactions of sequential wastewater treatment processes and upstream wastewater sources has not been tested at demonstration scale. This report identifies key data gaps and recommends that demonstration-size and commercial-size plants be used for coal gasification wastewater treatment data base development. While certain advanced treatment technologies can benefit from additional bench-scale studies, bench-scale and pilot plant scale operations are not representative of commercial-size facility operation. It is recommended that coal gasification demonstration plants, and other commercial-size facilities that generate similar wastewaters, be used to test advanced wastewater treatment technologies during operation by using sidestreams or collected wastewater samples in addition to the plant's own primary treatment system. Advanced wastewater treatment processes are needed to degrade refractory organics and to concentrate and remove dissolved solids to allow for wastewater reuse. Further study of reverse osmosis, evaporation, electrodialysis, ozonation, activated carbon, and ultrafiltration should take place at bench-scale.

  10. Prevalence of Multiple Antibiotics Resistant (MAR) Pseudomonas Species in the Final Effluents of Three Municipal Wastewater Treatment Facilities in South Africa

    Science.gov (United States)

    Odjadjare, Emmanuel E.; Igbinosa, Etinosa O.; Mordi, Raphael; Igere, Bright; Igeleke, Clara L.; Okoh, Anthony I.

    2012-01-01

    The final effluents of three (Alice, Dimbaza, and East London) wastewater treatment plants (WWTPs) were evaluated to determine their physicochemical quality and prevalence of multiple antibiotics resistant (MAR) Pseudomonas species, between August 2007 and July 2008. The annual mean total Pseudomonas count (TPC) was 1.20 × 104 (cfu/100 mL), 1.08 × 104 (cfu/100 mL), and 2.66 × 104 (cfu/100 mL), for the Alice, Dimbaza, and East London WWTPs respectively. The effluents were generally compliant with recommended limits for pH, temperature, TDS, DO, nitrite and nitrate; but fell short of target standards for turbidity, COD, and phosphate. The tested isolates were highly sensitive to gentamicin (100%), ofloxacin (100%), clindamycin (90%), erythromycin (90%) and nitrofurantoin (80%); whereas high resistance was observed against the penicillins (90–100%), rifampin (90%), sulphamethoxazole (90%) and the cephems (70%). MAR index ranged between 0.26 and 0.58. The study demonstrated that MAR Pseudomonas species were quite prevalent in the final effluents of WWTPs in South Africa; and this can lead to serious health risk for communities that depend on the effluent-receiving waters for sundry purposes. PMID:22829792

  11. Forward Osmosis in Wastewater Treatment Processes

    DEFF Research Database (Denmark)

    Korenak, Jasmina; Basu, Subhankar; Balakrishnan, Malini

    2017-01-01

    In recent years, membrane technology has been widely used in wastewater treatment and water purification. Membrane technology is simple to operate and produces very high quality water for human consumption and industrial purposes. One of the promising technologies for water and wastewater treatment...... is the application of forward osmosis. Essentially, forward osmosis is a process in which water is driven through a semipermeable membrane from a feed solution to a draw solution due to the osmotic pressure gradient across the membrane. The immediate advantage over existing pressure driven membrane technologies...... briefly review some of the applications within water purification and new developments in forward osmosis membrane fabrication....

  12. Electrocatalysis in wastewater treatment: recent mechanism advances

    Directory of Open Access Journals (Sweden)

    Carlos A. Martínez-Huitle

    2011-01-01

    Full Text Available Over 50 years, several scientists and industries have developed new alternatives for wastewater treatment and remediation. Recently, electrochemical technology has been largely developed mainly because of its versatility and environmental compatibility. Scientific contributions about role of the electrode material have allowed determining that the influence of material in the selectivity is an important parameter. However, to interpret this behavior, comprehensive physical chemistry models for organics destruction, related to electrochemical phenomena and material surfaces, were proposed in the last decades. So, this paper presents a critical and comprehensive review about the principles and recent mechanism advances in electrocatalysis for wastewater treatment.

  13. Application of radiation for wastewater treatment

    International Nuclear Information System (INIS)

    Han Bumsoo; Kim Jinkyu; Kim Yuri

    2006-01-01

    Electron beam processing of wastewater is non-chemical, and uses fast formation of short-lived reactive radicals that can interact with a wide range of pollutants. Such reactive radicals are strong oxidizing or reducing agents that can transform the pollutants in the liquids wastes. The first studies on the radiation treatment of wastes were carried out in the 1950s principally for disinfection. In the 1960s, these studies were extended to the purification of water and wastewater. After some laboratory research on industrial wastewaters and polluted groundwater in 1970s and 1980s, several pilot plants were built for extended research in the 1990s. The first full-scale application was reported for the purification of wastewater at the Voronezh synthetic rubber plant in Russia. Two accelerators (50 kW each) were used to convert the non-biodegradable emulsifier, 'nekal', present in the wastewater to a biodegradable form . The installation treats up to 2000 m3 of effluent per day. A pilot plant of 1000 m 3 /d for treating textile-dyeing wastewater has been constructed in Daegu, Korea with 1 MeV, 40 kW electron accelerator. High-energy irradiation produces instantaneous radiolytical transformations by energy transfer from accelerated electrons to orbital electrons of water molecules. Absorbed energy disturbs the electron system of the molecule and results in breakage of inter-atomic bonds. Hydrated electron eaq, H atom, . OH and HO 2 . radicals and hydrogen peroxide H 2 O 2 and H 2 are the most important products of the primary interactions (radiolysis products). Generally, radiation processing of wastewater has maximum efficiency at pollutant concentration less than 10 -3 mol/L (∼100 ppm). The treatment of such wastewater is simple, requires low dose (about 1 kGy or less) and gives almost complete elimination of odor, color, taste and turbidity. The radiation processing of polluted water containing specific contaminants may require creation of special conditions to

  14. Construction and Operation Costs of Wastewater Treatment and Implications for the Paper Industry in China.

    Science.gov (United States)

    Niu, Kunyu; Wu, Jian; Yu, Fang; Guo, Jingli

    2016-11-15

    This paper aims to develop a construction and operation cost model of wastewater treatment for the paper industry in China and explores the main factors that determine these costs. Previous models mainly involved factors relating to the treatment scale and efficiency of treatment facilities for deriving the cost function. We considered the factors more comprehensively by adding a regional variable to represent the economic development level, a corporate ownership factor to represent the plant characteristics, a subsector variable to capture pollutant characteristics, and a detailed-classification technology variable. We applied a unique data set from a national pollution source census for the model simulation. The major findings include the following: (1) Wastewater treatment costs in the paper industry are determined by scale, technology, degree of treatment, ownership, and regional factors; (2) Wastewater treatment costs show a large decreasing scale effect; (3) The current level of pollutant discharge fees is far lower than the marginal treatment costs for meeting the wastewater discharge standard. Key implications are as follows: (1) Cost characteristics and impact factors should be fully recognized when planning or making policies relating to wastewater treatment projects or technology development; (2) There is potential to reduce treatment costs by centralizing wastewater treatment via industrial parks; (3) Wastewater discharge fee rates should be increased; (4) Energy efficient technology should become the future focus of wastewater treatment.

  15. Wastewater Treatment for Pollution Control | Nzabuheraheza ...

    African Journals Online (AJOL)

    Performance of a Dynamic Roughing Filter (DRF) coupled with a Horizontal Subsurface Flow Constructed Wetland (HSSFCW) in the treatment of a wastewater was studied in tropical conditions. The results show that in HSSFCW planted with Cyperus papyrus and Phragmites mauritianus in series, the removal rates of TDS, ...

  16. Developing Anammox for mainstream municipal wastewater treatment

    NARCIS (Netherlands)

    Lotti, T.

    2016-01-01

    Conventional wastewater treatment plants (WWTPs), like activated sludge systems, are energy demanding requiring a large electrical energy supply (e.g. 25 kWh PE-1 year-1) which, especially during peak-load periods, may account for an important quote of the grid installed power of the surrounding

  17. Wastewater treatment modelling: dealing with uncertainties

    DEFF Research Database (Denmark)

    Belia, E.; Amerlinck, Y.; Benedetti, L.

    2009-01-01

    This paper serves as a problem statement of the issues surrounding uncertainty in wastewater treatment modelling. The paper proposes a structure for identifying the sources of uncertainty introduced during each step of an engineering project concerned with model-based design or optimisation...

  18. Advanced oxidation technologies : photocatalytic treatment of wastewater

    NARCIS (Netherlands)

    Chen, J.

    1997-01-01

    7.1. Summary and conclusions

    The last two decennia have shown a growing interest in the photocatalytic treatment of wastewater, and more and more research has been carried out into the various aspects of photocatalysis, varying from highly fundamental aspects to practical application.

  19. The anaerobic treatment of sulfate containing wastewater

    NARCIS (Netherlands)

    Visser, A.

    1995-01-01


    In the anaerobic treatment of sulfate containing wastewater sulfate reducing bacteria (SRB) will compete with methanogenic- (MB) and acetogenic bacteria (AB) for the available substrates such as hydrogen, acetate, propionate and butyrate. The outcome of this competition will

  20. Advances in HTGR Wastewater Treatment System Design

    International Nuclear Information System (INIS)

    Li Junfeng; Qiu Yu; Wang Jianlong; Jia Fei

    2014-01-01

    The source terms of radioactive wastewater from HTR-PM were introduced. Concentration process should be used to reduce volume. A radioactive wastewater treatment system was designed by using Disc tubular reverse osmosis (DTRO) membrane system. The pretreatment system was simplify by using a cartridge filter. A three-stage membrane system was built. The operated characters to treat low and intermediate radioactive waste water were studied. A concentration rates of 25-50 is reached. The decontamination factor of the membrane system can reach 30-100. (author)

  1. Catalytic Wastewater Treatment Using Pillared Clays

    Science.gov (United States)

    Perathoner, Siglinda; Centi, Gabriele

    After introduction on the use of solid catalysts in wastewater treatment technologies, particularly advanced oxidation processes (AOPs), this review discussed the use of pillared clay (PILC) materials in three applications: (i) wet air catalytic oxidation (WACO), (ii) wet hydrogen peroxide catalytic oxidation (WHPCO) on Cu-PILC and Fe-PILC, and (iii) behavior of Ti-PILC and Fe-PILC in the photocatalytic or photo-Fenton conversion of pollutants. Literature data are critically analyzed to evidence the main direction to further investigate, in particularly with reference to the possible practical application of these technologies to treat industrial, municipal, or agro-food production wastewater.

  2. Treatment of Biodiesel Wastewater by Electrocoagulation Process

    Directory of Open Access Journals (Sweden)

    Anchalee Srirangsan

    2009-07-01

    Full Text Available The objective of this research was to determine the optimum conditions for biodiesel wastewater treatment using an electrocoagulation process. Wastewater samples were obtained from a small-scale, commercial biodiesel production plant that employs an alkali-catalyzed tranesterification process. The wastewater was characterized by the high contents of alkali and high oil content of 6,020 mg/L. Tested operational conditions included types of electrode, current density, retention time and initial pH. The tested electrode materials for electrocoagulation were aluminum (Al, iron (Fe and graphite (C. Five tested pairs of anode and cathode materials included Fe-Fe, Fe-C, Al-Al, Al-C, C-C. Results show that the optimum conditions were achieved by using the electrodes of Al-C, applying the current density of 8.32 mA/cm2 to the wastewater with an initial pH value of 6 for 25 min. The removal efficiency was found to be 97.8 % for grease & oil (G&O, 96.9 % for SS and 55.4 % for COD. Moreover, the small amount of produced sludge was readily to remove from the treated wastewater.

  3. Energy Data Management Manual for the Wastewater Treatment Sector

    Energy Technology Data Exchange (ETDEWEB)

    Lemar, Paul [Resource Dynamics Corporation, McLean, VA (United States); De Fontaine, Andre [Dept. of Energy (DOE), Washington DC (United States)

    2017-12-01

    Energy efficiency has become a higher priority within the wastewater treatment sector, with facility operators and state and local governments ramping up efforts to reduce energy costs and improve environmental performance. Across the country, municipal wastewater treatment plants are estimated to consume more than 30 terawatt hours per year of electricity, which equates to about $2 billion in annual electric costs. Electricity alone can constitute 25% to 40% of a wastewater treatment plant’s annual operating budget and make up a significant portion of a given municipality’s total energy bill. These energy needs are expected to grow over time, driven by population growth and increasingly stringent water quality requirements. The purpose of this document is to describe the benefits of energy data management, explain how it can help drive savings when linked to a strong energy management program, and provide clear, step-by-step guidance to wastewater treatment plants on how to appropriately track energy performance. It covers the basics of energy data management and related concepts and describes different options for key steps, recognizing that a single approach may not work for all agencies. Wherever possible, the document calls out simpler, less time-intensive approaches to help smaller plants with more limited resources measure and track energy performance. Reviews of key, publicly available energy-tracking tools are provided to help organizations select a tool that makes the most sense for them. Finally, this document describes additional steps wastewater treatment plant operators can take to build on their energy data management systems and further accelerate energy savings.

  4. Ecological risks of home and personal care products in the riverine environment of a rural region in south China without domestic wastewater treatment facilities

    NARCIS (Netherlands)

    Zhang, N.; Liu, Y.; Brink, van den P.J.; Price, O.R.; Ying, G.G.

    2015-01-01

    Home and personal care products (HPCPs) including biocides, benzotriazoles (BTs) and ultraviolet (UV) filters are widely used in our daily life. After use, they are discharged with domestic wastewater into the receiving environment. This study investigated the occurrence of 29 representative HPCPs,

  5. Carbon and energy footprint analysis of tannery wastewater treatment: A Global overview

    Directory of Open Access Journals (Sweden)

    Francesca Giaccherini

    2017-06-01

    Full Text Available In this study the carbon footprint and power demand of tannery wastewater treatment processes for the largest bovine leather producing regions were quantified and analysed. Moreover, we present a case in which we benchmarked the carbon footprint and energy demand analysis of tannery wastewater treatment to municipal wastewater treatment. We quantified the greenhouse gas direct and indirect emissions from tannery wastewater treatment facilities. Our results show that the total CO2-equivalent emission for tannery wastewater treatment is 1.49 103 tCO2,eq d−1. Moreover, the energy intensity of tannery wastewater treatment processes are evaluated at 3.9 kWh kg−1bCOD,removed, compared to 1.4 kWh kg−1bCOD,removed of municipal wastewater treatment processes. Based on this work in the field of tannery wastewater treatment, an effort to innovate suitable treatment trains and technologies has the strong potential to reduce the carbon footprint.

  6. Evaluation of advanced wastewater treatment systems for water reuse in the era of advanced wastewater treatment

    Science.gov (United States)

    Kon, Hisao; Watanabe, Masahiro

    This study focuses on effluent COD concentration from wastewater treatment in regards to the reduction of pathogenic bacteria and trace substances in public waters. The main types of secondary wastewater treatment were conventional activated sludge processes. Recently, however, advance wastewater treatment processes have been developed aimed at the removal of nitrogen and phosphorus, and the effluent quality of these processes was analyzed in this study. Treatment processes for water reclamation that make effluent to meet the target water quality for reuse purposes were selected and also optimum design parameters for these processes were proposed. It was found that the treatment cost to water reclamation was greatly affected by the effluent COD of the secondary treatment. It is important to maintain low COD concentration in the secondary treated effluent. Therefore, it is considered that adequate cost benefits would be obtained by achieving target COD quality through shifting from a conventional activated sludge process to an advanced treatment process.

  7. Towards energy positive wastewater treatment plants.

    Science.gov (United States)

    Gikas, Petros

    2017-12-01

    Energy requirement for wastewater treatment is of major concern, lately. This is not only due to the increasing cost of electrical energy, but also due to the effects to the carbon footprint of the treatment process. Conventional activated sludge process for municipal wastewater treatment may consume up to 60% of the total plant power requirements for the aeration of the biological tank. One way to deal with high energy demand is by eliminating aeration needs, as possible. The proposed process is based on enhanced primary solids removal, based on advanced microsieving and filtration processes, by using a proprietary rotating fabric belt MicroScreen (pore size: 100-300 μm) followed by a proprietary Continuous Backwash Upflow Media Filter or cloth media filter. About 80-90% reduction in TSS and 60-70% reduction in BOD5 has been achieved by treating raw municipal wastewater with the above process. Then the partially treated wastewater is fed to a combination low height trickling filters, combined with encapsulated denitrification, for the removal of the remaining BOD and nitrogen. The biosolids produced by the microsieve and the filtration backwash concentrate are fed to an auger press and are dewatered to about 55% solids. The biosolids are then partially thermally dried (to about 80% solids) and conveyed to a gasifier, for the co-production of thermal (which is partly used for biosolids drying) and electrical energy, through syngas combustion in a co-generation engine. Alternatively, biosolids may undergo anaerobic digestion for the production of biogas and then electric energy. The energy requirements for complete wastewater treatment, per volume of inlet raw wastewater, have been calculated to 0.057 kWh/m 3 , (or 0.087 kWh/m 3 , if UV disinfection has been selected), which is about 85% below the electric energy needs of conventional activated sludge process. The potential for net electric energy production through gasification/co-generation, per volume of

  8. MEMBRANE BIOREACTOR FOR TREATMENT OF RECALCITRANT WASTEWATERS

    Directory of Open Access Journals (Sweden)

    Suprihatin Suprihatin

    2012-02-01

    Full Text Available The low biodegradable wastewaters remain a challenge in wastewater treatment technology. The performance of membrane bioreactor systems with submerged hollow fiber micro- and ultrafiltration membrane modules were examined for purifying recalcitrant wastewaters of leachate of a municipal solid waste open dumping site and effluent of pulp and paper mill. The use of MF and UF membrane bioreactor systems showed an efficient treatment for both types wastewaters with COD reduction of 80-90%. The membrane process achieved the desirable effects of maintaining reasonably high biomass concentration and long sludge retention time, while producing a colloid or particle free effluent. For pulp and paper mill effluent a specific sludge production of 0.11 kg MLSS/kg COD removed was achieved. A permeate flux of about 5 L/m²h could be achieved with the submerged microfiltration membrane. Experiments using ultrafiltration membrane produced relatively low permeate fluxes of 2 L/m²h. By applying periodical backwash, the flux could be improved significantly. It was indicated that the particle or colloid deposition on membrane surface was suppressed by backwash, but reformation of deposit was not effectively be prevented by shear-rate effect of aeration. Particle and colloid started to accumulate soon after backwash. Construction of membrane module and operation mode played a critical role in achieving the effectiveness of aeration in minimizing deposit formation on the membrane surface.

  9. Treatment of wastewater by lemna minor

    International Nuclear Information System (INIS)

    Iram, S.; Zahra, A.

    2012-01-01

    The aim of the present study was to study the performance of bio-treatment ponds after one year of functioning at National Agricultural Research Center, Islamabad, Pakistan. The physical parameters (colour, pH, EC, TDS, turbidity) and chemical parameters (Zn, Cu, Cd, Ni, Mn, Fe and Pb) are with in the limits which are not sub-lethal for fish rearing. Lemna accumulates higher concentration of heavy metals as compared to wastewater and best for phyto remediation purpose. The treated wastewater is currently used for rearing of fish and irrigation of crops and plants. The plants around the bio-treatment ponds are healthy, green and showing enough production. The present investigation indicates that in future it would be possible to construct bio-treatment ponds in polluted areas of Pakistan. (author)

  10. Biological treatment of winery wastewater: an overview.

    Science.gov (United States)

    Andreottola, G; Foladori, P; Ziglio, G

    2009-01-01

    The treatment of winery wastewater can realised using several biological processes based both on aerobic or anaerobic systems using suspended biomass or biofilms. Several systems are currently offered by technology providers and current research envisages the availability of new promising technologies for winery wastewater treatment. The present paper intends to present a brief state of the art of the existing status and advances in biological treatment of winery wastewater in the last decade, considering both lab, pilot and full-scale studies. Advantages, drawbacks, applied organic loads, removal efficiency and emerging aspects of the main biological treatments were considered and compared. Nevertheless in most treatments the COD removal efficiency was around 90-95% (remaining COD is due to the un-biodegradable soluble fraction), the applied organic loads are very different depending on the applied technology, varying for an order of magnitude. Applied organic loads are higher in biofilm systems than in suspended biomass while anaerobic biofilm processes have the smaller footprint but in general a higher level of complexity.

  11. Operability test procedure for PFP wastewater sampling facility

    International Nuclear Information System (INIS)

    Hirzel, D.R.

    1995-01-01

    Document provides instructions for performing the Operability Test of the 225-WC Wastewater Sampling Station which monitors the discharge to the Treated Effluent Disposal Facility from the Plutonium Finishing Plant. This Operability Test Procedure (OTP) has been prepared to verify correct configuration and performance of the PFP Wastewater sampling system installed in Building 225-WC located outside the perimeter fence southeast of the Plutonium Finishing Plant (PFP). The objective of this test is to ensure the equipment in the sampling facility operates in a safe and reliable manner. The sampler consists of two Manning Model S-5000 units which are rate controlled by the Milltronics Ultrasonic flowmeter at manhole No.C4 and from a pH measuring system with the sensor in the stream adjacent to the sample point. The intent of the dual sampling system is to utilize one unit to sample continuously at a rate proportional to the wastewater flow rate so that the aggregate tests are related to the overall flow and thereby eliminate isolated analyses. The second unit will only operate during a high or low pH excursion of the stream (hence the need for a pH control). The major items in this OTP include testing of the Manning Sampler System and associated equipment including the pH measuring and control system, the conductivity monitor, and the flow meter

  12. Sediment microbial fuel cells for wastewater treatment: challenges and opportunities

    OpenAIRE

    Xu, Bojun; Ge, Zheng; He, Zhen

    2015-01-01

    Sediment microbial fuel cells (SMFCs) have been intensively investigated for the harvest of energy from natural sediment, but studies of their application for wastewater treatment mainly occurred in the past 2-3 years. SMFCs with simple structures can generate electrical energy while decontaminating wastewater. Most SMFCs used for wastewater treatment contain plants to mimic constructed wetlands. Both synthetic and real wastewaters have been used as substrates in SMFCs that achieved satisfact...

  13. Wastewater sludge treatment at selected wastewater treatment plants of the region Banska Bystrica

    International Nuclear Information System (INIS)

    Samesova, D.; Mitterpach, J.; Martinkova, A.

    2014-01-01

    The management of sewage sludges in water treatment plants of Banska Bystrica region. The paper deals with the problems of sewage sludge in wastewater treatment plants, its origin and possibilities how to use it in accordance with the current legislation of the Slovak Republic. We described radioactive pollution of sewage sludges. The paper consists of review of sludge production and its usage in the Slovak Republic and in selected states of the European Union. The paper deals with the sludge treatment in selected wastewater treatment plants in Banska Bystrica region in the context of biogas production and its usage by the help of the electricity and heat production. (authors)

  14. Treatment of kitchen wastewater using Eichhornia crassipes

    Science.gov (United States)

    Parwin, Rijwana; Karar Paul, Kakoli

    2018-03-01

    The efficiency of Eichhornia crassipes for treatment of raw kitchen wastewater was studied in the present research work. An artificial wetland of 30 liter capacity was created for phytoremediation of kitchen wastewater using Eichhornia crassipes. Kitchen wastewater samples were collected from hostel of an educational institute in India. Samples were characterized based on physical and chemical parameters such as pH, turbidity, total hardness, nitrate-nitrogen, ammonium-nitrogen, sulphate, dissolved oxygen, total organic carbon and total dissolved solid. The physico-chemical parameter of kitchen wastewater samples were analysed for durations of 0 (initial day), 4 and 8 days. After 8 days of retention period, it was observed that pH value increases from 6.25 to 6.63. However, percentage reduction for turbidity, total hardness, nitrate-nitrogen, ammonium-nitrogen, sulphate, dissolved oxygen, total organic carbon and total dissolved solid were found to be 74.71%, 50%, 78.75%, 60.28%, 25.31%, 33.33%, 15.38% and 69.97%, respectively. Hence water hyacinth (Eichhornia crassipes) is found efficient and easy to handle and it can be used for low cost phytoremediation technique.

  15. Removal of odor originating from kitchen wastewater treatment facilities by activated carbon impregnated iodic acid; Chubo haisui shori shisetsu kara hasseisuru akushu no yososan tenchaku kasseitan ni yoru jokyo

    Energy Technology Data Exchange (ETDEWEB)

    Yano, H.; Hashimoto, S.; Yonemura, S. [Shimizu Corp., Tokyo (Japan); Shoda, M. [Research Laboratory of Resources Utilization, Yokohama (Japan)

    1997-07-10

    Activated carbon impregnated iodic acid (deodorant D) was developed as a new deodorant. Deodorization performance of deodorant D as well as three kinds of commercial activated carbons (deodorant A, B and C) was tested for odors originating from the kitchen wastewater treatment facilities of one commercial building. The odor exhausted from this facility was medium concentration between 422 and 31,620. The main odorous compounds were hydrogen sulfide (0.076 to 15.7 ppm) and methyl mercaptan (not detected to 0.081 ppm). The hydrogen sulfide contribution to the odor concentration was about 90%. The main apparatuses from which the odors were originating were the raw water tank and the pressurized flotation tank. The total odor emission rate was between 10{sup 4.9} and 10{sup 5.7} Nm{sup 3}/min. For the performance test for deodorants, fixed bed adsorption experimental equipment was used, and the breakthrough time of odor concentration and hydrogen sulfide were used as indexes. Correlation between the contact time and the breakthrough time was observed for all of the deodorants. For a contact time of 0.5 sec, the breakthrough times for odor concentration were D>C>B>A, and the breakthrough times for hydrogen sulfide were D>C>B>A. Effectiveness of activated carbon impregnated iodic acid was recognized. 11 refs., 7 figs., 7 tabs.

  16. Forward Osmosis in Wastewater Treatment Processes.

    Science.gov (United States)

    Korenak, Jasmina; Basu, Subhankar; Balakrishnan, Malini; Hélix-Nielsen, Claus; Petrinic, Irena

    2017-01-01

    In recent years, membrane technology has been widely used in wastewater treatment and water purification. Membrane technology is simple to operate and produces very high quality water for human consumption and industrial purposes. One of the promising technologies for water and wastewater treatment is the application of forward osmosis. Essentially, forward osmosis is a process in which water is driven through a semipermeable membrane from a feed solution to a draw solution due to the osmotic pressure gradient across the membrane. The immediate advantage over existing pressure driven membrane technologies is that the forward osmosis process per se eliminates the need for operation with high hydraulic pressure and forward osmosis has low fouling tendency. Hence, it provides an opportunity for saving energy and membrane replacement cost. However, there are many limitations that still need to be addressed. Here we briefly review some of the applications within water purification and new developments in forward osmosis membrane fabrication.

  17. Low-Carbon Watershed Management: Potential of Greenhouse Gas Reductions from Wastewater Treatment in Rural Vietnam

    Science.gov (United States)

    Mohan, Geetha; Jian, Pu; Takemoto, Kazuhiko; Fukushi, Kensuke

    2016-01-01

    Currently in many cities and rural areas of Vietnam, wastewater is discharged to the environment without any treatment, which emits considerable amount of greenhouse gas (GHG), particularly methane. In this study, four GHG emission scenarios were examined, as well as the baseline scenario, in order to verify the potential of GHG reduction from domestic wastewater with adequate treatment facilities. The ArcGIS and ArcHydro tools were employed to visualize and analyze GHG emissions resulting from discharge of untreated wastewater, in rural areas of Vu Gia Thu Bon river basin, Vietnam. By applying the current IPCC guidelines for GHG emissions, we found that a reduction of GHG emissions can be achieved through treatment of domestic wastewater in the studied area. Compared with baseline scenario, a maximum 16% of total GHG emissions can be reduced, in which 30% of households existing latrines are substituted by Japanese Johkasou technology and other 20% of domestic wastewater is treated by conventional activated sludge. PMID:27699202

  18. Case studies in residual use and energy conservation at wastewater treatment plants

    Energy Technology Data Exchange (ETDEWEB)

    Stewart, D. [Science Applications International Corp., Los Altos, CA (United States)

    1995-06-01

    The US Environmental Protection Agency (EPA) and the National Renewable Energy Laboratory (NREL) for the US Department of Energy (DOE) funded a study to document energy conservation activities and their effects on operation costs, regulatory compliance, and process optimization at several wastewater treatment plants (WWTPS). The purpose of this report is to review the efforts of wastewater treatment Facilities that use residuals as fuels. Case histories are presented for facilities that have taken measures to reduce energy consumption during wastewater treatment. Most of the WWTPs discussed in this report have retrofitted existing facilities to achieve energy conservation. The case studies of energy conservation measures found no effects on the facilities` ability to comply with NPDES permits. Indeed, energy conservation activities enhance environmental compliance in several ways.

  19. Advanced oxidation technologies : photocatalytic treatment of wastewater

    OpenAIRE

    Chen, J.

    1997-01-01

    7.1. Summary and conclusions

    The last two decennia have shown a growing interest in the photocatalytic treatment of wastewater, and more and more research has been carried out into the various aspects of photocatalysis, varying from highly fundamental aspects to practical application. However, despite all this research, there is still much to investigate. Suggested photocatalytic mechanisms, such as those for oxidation by hydroxyl radicals and for oxidation at the surface of photocata...

  20. Nitrous oxide emissions from wastewater treatment processes

    Science.gov (United States)

    Law, Yingyu; Ye, Liu; Pan, Yuting; Yuan, Zhiguo

    2012-01-01

    Nitrous oxide (N2O) emissions from wastewater treatment plants vary substantially between plants, ranging from negligible to substantial (a few per cent of the total nitrogen load), probably because of different designs and operational conditions. In general, plants that achieve high levels of nitrogen removal emit less N2O, indicating that no compromise is required between high water quality and lower N2O emissions. N2O emissions primarily occur in aerated zones/compartments/periods owing to active stripping, and ammonia-oxidizing bacteria, rather than heterotrophic denitrifiers, are the main contributors. However, the detailed mechanisms remain to be fully elucidated, despite strong evidence suggesting that both nitrifier denitrification and the chemical breakdown of intermediates of hydroxylamine oxidation are probably involved. With increased understanding of the fundamental reactions responsible for N2O production in wastewater treatment systems and the conditions that stimulate their occurrence, reduction of N2O emissions from wastewater treatment systems through improved plant design and operation will be achieved in the near future. PMID:22451112

  1. Electrochemical treatment of olive oil mill wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Longhi, P.; Fiori, G [Milan Univ., Milan (Italy). Dept. of Physical Chemistry and Electrochemistry; Vodopivec, B. [Milan Univ. Bicocca, Milan (Italy). Dept. of Biotechnologies and Biosciences

    2001-04-01

    The possibility of oxidizing at a PbO{sub 2} anode the phenols and polyphenols, present in the olive oil mill wastewater, has been studied as a pre-treatment for the submission of such wastewater to the traditional biological treatments. The results obtained operating at current densities ranging 500 to 2000 A/m{sup 2} show that it is possible to reduce the concentration of the phenolic components, which interfere with the biological treatments, down to low values without decreasing too much the total organic content of the wastewater. [Italian] E' stata studiata la possibilita' di ossidare anodicamente i componenti fenolici delle acque reflue di frantoio, quale pretrattamento delle stesse prima del loro invio ai processi di trattamento biologico. I risultati ottenuti impiegando PbO{sub 2} quale materiale anodico e operando con densita' di corrente comprese tra 500 e 2000 A/m{sup 2} mostrano come sia possibile eliminare, o almeno diminuire sino a concentrazioni accettabili, dalle acque di frantoio i fenoli e i polifenoli, che interferiscono con i normali trattamenti biologici, senza diminuire eccessivamente il carico organico totale.

  2. Characterization of livestock wastewater at various stages of wastewater treatment plant

    International Nuclear Information System (INIS)

    Ting Teo Ming; Kim, Tak Hyun; Lee, Myun Joo

    2007-01-01

    A characterization study has been conducted at Gongju Livestock Wastewater Treatment Plant, Gongju, South Korea. It is owned and operated by the government with treatment capacity of 250 tons per day. Livestock wastewater was collected from individual farmer and treated at the treatment plant. The centralized livestock wastewater treatment plant has various treatment processes namely pre-treatment, anaerobic digestion, nitrification, de-nitrification , chemical treatment, sand filtration and ozonization. The livestock wastewater was characterized by high COD, SS, T-N and T-P with concentration of 20600 mg/l, 6933 mg/l, 2820 mg/l and 700 mg/ l, respectively. After the wastewater has undergone various treatment processes it was discharged to waterways with concentration of COD, SS, T-N and T-P at 105 mg/l, 73 mg/l, 2.1 mg/l and 9 mg/l, respectively. This is part of the study to investigate the potential of irradiation to be applied at the centralized livestock wastewater treatment plant. Although livestock wastewater can be potentially applied to crop as source of nutrients it also affect the water quality due to runoff and leaching. When the wastewater applied at the rates in excess of crop uptake rates, the excess wastewater could potentially enter surface and groundwater and polluted them. (author)

  3. Treatment of acid mine wastewaters

    International Nuclear Information System (INIS)

    Hayward, D.; Barnard, R.

    1993-01-01

    Acid mine drainage often results from the oxidation sulfide minerals to form sulfuric acid. As a consequence, high concentrations of metals in the both the suspended and dissolved state result from the low pH water. This paper discusses several of the more common treatment methods for acid mine drainage including the use of chemical precipitation agents, pH correction agents, filtration methods, and biodegradation methods. Advanced treatment technologies are also briefly described and include microfiltration, reverse osmosis, ion exchange, and electrodialysis

  4. Analysis of Wastewater Treatment Efficiency in a Soft Drinks Industry

    Science.gov (United States)

    Boguniewicz-Zabłocka, Joanna; Capodaglio, Andrea G.; Vogel, Daniel

    2017-10-01

    During manufacturing processes, most industrial plants generate wastewater which could become harmful to the environment. Discharge of untreated or improperly treated industrial wastewaters into surface water could, in fact, lead to deterioration of the receiving water body's quality. This paper concerns wastewater treatment solutions used in the soft drink production industry: wastewater treatment plant effectiveness analysis was determined in terms of basic pollution indicators, such as BOD, COD, TSS and variable pH. Initially, the performance of mechanic-biological systems for the treatment of wastewater from a specific beverages production process was studied in different periods, due to wastewater flow fluctuation. The study then showed the positive effects on treatment of wastewater augmentation by methanol, nitrogen and phosphorus salts dosed into it during the treatment process. Results confirm that after implemented modification (methanol, nitrogen and phosphorus additions) pollution removal occurs mostly with higher efficiency.

  5. SEM analysis of particle size during conventional treatment of CMP process wastewater

    International Nuclear Information System (INIS)

    Roth, Gary A.; Neu-Baker, Nicole M.; Brenner, Sara A.

    2015-01-01

    Engineered nanomaterials (ENMs) are currently employed by many industries and have different physical and chemical properties from their bulk counterparts that may confer different toxicity. Nanoparticles used or generated in semiconductor manufacturing have the potential to enter the municipal waste stream via wastewater and their ultimate fate in the ecosystem is currently unknown. This study investigates the fate of ENMs used in chemical mechanical planarization (CMP), a polishing process repeatedly utilized in semiconductor manufacturing. Wastewater sampling was conducted throughout the wastewater treatment (WWT) process at the fabrication plant's on-site wastewater treatment facility. The goal of this study was to assess whether the WWT processes resulted in size-dependent filtration of particles in the nanoscale regime by analyzing samples using scanning electron microscopy (SEM). Statistical analysis demonstrated no significant differences in particle size between sampling points, indicating low or no selectivity of WWT methods for nanoparticles based on size. All nanoparticles appeared to be of similar morphology (near-spherical), with a high variability in particle size. EDX verified nanoparticles composition of silicon- and/or aluminum-oxide. Nanoparticle sizing data compared between sampling points, including the final sampling point before discharge from the facility, suggested that nanoparticles could be released to the municipal waste stream from industrial sources. - Highlights: • The discrete treatments of a semiconductor wastewater treatment system were examined. • A sampling scheme and method for analyzing nanoparticles in wastewater was devised. • The wastewater treatment process studied is not size-selective for nanoparticles

  6. Influence of a non-hospital medical care facility on antimicrobial resistance in wastewater.

    Directory of Open Access Journals (Sweden)

    Mathias Bäumlisberger

    Full Text Available The global widespread use of antimicrobials and accompanying increase in resistant bacterial strains is of major public health concern. Wastewater systems and wastewater treatment plants are considered a niche for antibiotic resistance genes (ARGs, with diverse microbial communities facilitating ARG transfer via mobile genetic element (MGE. In contrast to hospital sewage, wastewater from other health care facilities is still poorly investigated. At the instance of a nursing home located in south-west Germany, in the present study, shotgun metagenomics was used to investigate the impact on wastewater of samples collected up- and down-stream in different seasons. Microbial composition, ARGs and MGEs were analyzed using different annotation approaches with various databases, including Antibiotic Resistance Ontologies (ARO, integrons and plasmids. Our analysis identified seasonal differences in microbial communities and abundance of ARG and MGE between samples from different seasons. However, no obvious differences were detected between up- and downstream samples. The results suggest that, in contrast to hospitals, sewage from the nursing home does not have a major impact on ARG or MGE in wastewater, presumably due to much less intense antimicrobial usage. Possible limitations of metagenomic studies using high-throughput sequencing for detection of genes that seemingly confer antibiotic resistance are discussed.

  7. Electron beam treatment of wastewater

    International Nuclear Information System (INIS)

    Arai, H.; Hosono, M.; Shimizu, K.; Sugiyama, M.

    1991-01-01

    Supernatant comes from dewaterization of sewage sludge, and contains biologically nondegradable organics so that it is hard to be treated by conventional activated sludge. By electron beam (EB) irradiation, any kinds of organics in water can be oxidized to biodegradable organic acids. We studied the treatment of supernatant by application of this effect. The direct irradiation of the original supernatant was found not to be so effective to decrease COD. In order to increase the irradiation effect, supernatant was pretreated biologically to decrease the biodegradable organics in it. The chemical oxygen demand (COD) and biochemical oxygen demand (BOD) were decreased from 800 and 910 mg/L to 78 and 5 mg/L by this pretreatment, respectively. This pretreated supernatant was irradiated by EB of 2 MeV using a batch type reactor. The COD was gradually decreased with dose. In contrast, BOD was increased markedly, indicating increase in biodegradability. The irradiated sample water was treated biologically again. After the final biological treatment, COD was decreased below 30 mg/L in the case of 10 - 12 kGy irradiation. Finally, the initial COD of 800 mg/L was decreased below 30 mg/L by the combination of EB irradiation and biological treatment. The cost of irradiation for this process was evaluated preliminarily. (author)

  8. Performance of wastewater treatment plants in Jordan and suitability ...

    African Journals Online (AJOL)

    There is an increasing trend to require more efficient use of water resources, both in urban and rural environments. In Jordan, the increase in water demand, in addition to water shortage has led to growing interest in wastewater reuse. In this work, characteristics of wastewater for four wastewater treatment plants were ...

  9. TREATMENT SYSTEM FOR WASTEWATER AT VILLA CLARA WATER MANAGEMENT COMPANY

    Directory of Open Access Journals (Sweden)

    Floramis Pérez Martín

    2016-04-01

    Full Text Available The aim of this paper is to assess the current operating and safety conditions of biological treatment systems for wastewater in the centers of swinish and poultry breeding at Villa Clara Water Management Company, with the purpose of setting a group of organizational, technical and human measures that contributes to prevent contamination and minimize biological risks. In this way it can be guaranteed the protection to the workers, the facilities, community and the environment, to have a sure occupational atmosphere in the organization. As a result of the evaluation the factors that affect the operation of the biodigestion system and the security of the process are defined.

  10. Characteristics and Biodegradability of Wastewater Organic Matter in Municipal Wastewater Treatment Plants Collecting Domestic Wastewater and Industrial Discharge

    OpenAIRE

    Yun-Young Choi; Seung-Ryong Baek; Jae-In Kim; Jeong-Woo Choi; Jin Hur; Tae-U Lee; Cheol-Joon Park; Byung Joon Lee

    2017-01-01

    Municipal wastewater treatment plants (WWTPs) in Korea collect and treat not only domestic wastewater, but also discharge from industrial complexes. However, some industrial discharges contain a large amount of non-biodegradable organic matter, which cannot be treated properly in a conventional biological WWTP. This study aimed to investigate the characteristics and biodegradability of the wastewater organic matter contained in the industrial discharges and to examine the fate of the industri...

  11. MBR technology: a promising approach for the (pre-)treatment of hospital wastewater.

    Science.gov (United States)

    Beier, S; Cramer, C; Mauer, C; Köster, S; Schröder, H Fr; Pinnekamp, J

    2012-01-01

    Membrane bioreactor (MBR) technology is a very reliable and extensively tested solution for biological wastewater treatment. Nowadays, separate treatment of highly polluted wastewater streams especially from hospitals and other health care facilities is currently under investigation worldwide. In this context, the MBR technology will play a decisive role because an effluent widely cleaned up from solids and nutrients is absolutely mandatory for a subsequent further elimination of organic trace pollutants. Taking hospital wastewater as an example, the aim of this study was to investigate to what extent MBR technology is an adequate 'pre-treatment' solution for further elimination of trace pollutants. Therefore, we investigated - within a 2-year period - the performance of a full-scale hospital wastewater treatment plant (WWTP) equipped with a MBR by referring to conventional chemical and microbiological standard parameters. Furthermore, we measured the energy consumption and tested different operating conditions. According to our findings the MBR treatment of the hospital wastewater was highly efficient in terms of the removal of solids and nutrients. Finally, we did not observe any major adverse effects on the operation and performance of the MBR system which potentially could derive from the composition of the hospital wastewater. In total, the present study proved that MBR technology is a very efficient and reliable treatment approach for the treatment of highly polluted wastewater from hospitals and can be recommended as a suitable pre-treatment solution for further trace pollutant removal.

  12. Investigation of Irrigation Reuse Potential of Wastewater Treatment Effluent from Hamedan Atieh-Sazan General Hospital

    Directory of Open Access Journals (Sweden)

    Mohammad Binavapour

    2007-12-01

    Full Text Available Hospital wastewater is a type of municipal wastewater which may contain pathogenic agents and different microorganisms. If properly treated, the effluent from hospital wastewater treatment facilities can be used for irrigation purposes. To investigate this, the effluent from Hamedan Atieh-Sazan General Hospital was studied. The existing treatment facility uses an extended aeration system with an average wastewater flow rate of approximately 150 m3/day. In addition to evaluating the performance of the wastewater facility at Atieh-Sazan General Hospital, quality parameters of the raw wastewater and the effluent were measured. The mean values obtained for pH, BOD, COD, MPN for total Coliform/100ml, and Nematode/lit in raw wastewater were about 7.1, 238 mg/l, 352 mg/l, 5.5´106, and 2340, respectively. The mean values obtained for pH, BOD, COD, Na%, MPN for total Coliform/100 ml, and Nematode/lit in the effluent were 7.1, 35 mg/L, 77 mg/L, 61, 1561, and 575, respectively. Based on these results, the efficiency of the existing system in removing BOD, COD, and MPN/100 ml were %85.3, %78.3, and %99.97, respectively. With respect to water quality standards available, the quality of the effluent was considered to be suitable for irrigation except for its Na%, MPN for total Coliform, and Nematodes values.

  13. Radiotracer Applications in Wastewater Treatment Plants

    International Nuclear Information System (INIS)

    2011-01-01

    Wastewater containing pollutants resulting from municipal and industrial activities are normally collected in wastewater treatment plants (WWTPs) for processing before discharge to the environment. The WWTPs are the last barrier against contamination of downstream surface waters such as rivers, lakes and sea. Treated wastewater is reused for irrigation, particularly in arid and semi-arid countries. Therefore, it is very important to maintain optimal operating conditions of WWTPs to eliminate or reduce environmental pollution. Wastewater treatment plants are complicated systems, where the processes of mixing, separation, aeration, biological and chemical reactions occur. A WWTP is basically a multiphase system, and the efficiency of an installation strongly depends on liquid, solid and gas phase flow structures and their residence time distributions (RTDs). However, the fluid dynamic properties of such systems are not yet completely understood, rendering difficult the theoretical prediction of important process parameters such as flow rates, phase distributions, mixing and sediment characteristics. Tracer techniques are very useful tools to investigate the efficiency of purification in WWTPs, aiding both their design and performance optimization. There are many kinds of tracers. Radioactive tracers are the most sensitive and are largely used for on-line diagnosis of various operations in WWTPs. The success of radiotracer applications rests upon their extremely high detection sensitivity, and the strong resistance against severe process conditions. During the last few decades, many radiotracer studies have been conducted worldwide for investigation of various installations for wastewater treatment, such as mixer, aeration tank, clarifiers, digester, filter, wetland and oxidation units. Various radiotracer methods and techniques have been developed by individual tracer groups. However, the information necessary for the preservation of knowledge and transfer of

  14. Novel Solar Photocatalytic Reactor for Wastewater Treatment

    Science.gov (United States)

    Sutisna; Rokhmat, M.; Wibowo, E.; Murniati, R.; Khairurrijal; Abdullah, M.

    2017-07-01

    A new solar photocatalytic reactor (photoreactor) using TiO2 nanoparticles coated onto plastic granules has been designed. Catalyst granules are placed into the cavity of a reactor panel made of glass. A pump is used to circulate wastewater in the photoreactor. Methylene blue (MB) dissolved in water was chosen as the wastewater model. The performance of the photoreactor was evaluated based on changes in MB concentration with respect to time. The photoreactor showed a good performance by degrading 10 L of MB solution up to 96.54% after 48 h of solar irradiation. The photoreactor was scaled up by enlarging the panel area to twice its original size. The increase in the surface area of the reactor panel and therefore of the mass of catalyst granules and reactor volume led to a three-fold increase of the photodegradation rate. In addition, the MB degradation kinetics were also studied. Data analysis confirmed the applicability of the pseudo-first-order Langmuir-Hinshelwood model. The proposed photoreactor has great potential for use in large-scale wastewater treatment.

  15. Nanoparticles in Constanta-North Wastewater Treatment Plant

    Science.gov (United States)

    Panaitescu, I. M.; Panaitescu, Fanel-Viorel L.; Panaitescu, Ileana-Irina F. V.

    2015-02-01

    In this paper we describe the route of the nanoparticles in the WWTP and demonstrate how to use the simulation flow sensitivity analysis within STOATTM program to evaluate the effect of variation of the constant, "k" in the equation v= kCh settling on fixed concentration of nanoparticles in sewage water from a primary tank of physical-biological stage. Wastewater treatment facilities are designed to remove conventional pollutants from sanitary waste. Major processes of treatment includes: a) physical treatment-remove suspended large solids by settling or sedimentation and eliminate floating greases; b) biological treatment-degradation or consumption of the dissolved organic matter using the means of cultivated in activated sludge or the trickling filters; c) chemical treatment-remove other matters by the means of chemical addition or destroying pathogenic organisms through disinfection; d) advanced treatment- removing specific constituents using processes such as activated carbon, membrane separation, or ion exchange. Particular treatment processes are: a) sedimentation; b) coagulation and flocculation; c) activated sludge; d) sand filters; e) membrane separation; f) disinfection. Methods are: 1) using the STOATTM program with input and output data for primary tank and parameters of wastewater. 2) generating a data file for influent using a sinusoidal model and we accepted defaults STOATTM data. 3) After this, getting spreadsheet data for various characteristics of wastewater for 48 hours:flow, temperature, pH, volatile fatty acids, soluble BOD, COD inert soluble particulate BOD, COD inert particles, volatile solids, volatile solids, ammonia, nitrate and soluble organic nitrogen. Findings and Results:1.Graphics after 48 hour;. 2.Graphics for parameters - flow,temperature, pH/units hours; 3.Graphics of nanoparticles; 4. Graphics of others volatile and non-volatile solids; 5. Timeseries data and summary statistics. Biodegradation of nanoparticles is the breakdown of

  16. Biological wastewater treatment; Tratamiento biologico de aguas residuales

    Energy Technology Data Exchange (ETDEWEB)

    Arnaiz, C.; Isac, L.; Lebrato, J. [Universidad de Sevilla (Spain)

    2000-07-01

    Over the last years, many physical, chemical and biological processes for wastewater treatment have been developed. Biological wastewater treatment is the most widely used because of the less economic cost of investment and management. According to the type of wastewater contaminant, biological treatment can be classified in carbon, nitrogen and phosphorus removal. In this work, biodiversity and microbial interactions of carbonaceous compounds biodegradation are described. (Author) 13 refs.

  17. Decentralized approaches to wastewater treatment and management: applicability in developing countries.

    Science.gov (United States)

    Massoud, May A; Tarhini, Akram; Nasr, Joumana A

    2009-01-01

    Providing reliable and affordable wastewater treatment in rural areas is a challenge in many parts of the world, particularly in developing countries. The problems and limitations of the centralized approaches for wastewater treatment are progressively surfacing. Centralized wastewater collection and treatment systems are costly to build and operate, especially in areas with low population densities and dispersed households. Developing countries lack both the funding to construct centralized facilities and the technical expertise to manage and operate them. Alternatively, the decentralized approach for wastewater treatment which employs a combination of onsite and/or cluster systems is gaining more attention. Such an approach allows for flexibility in management, and simple as well as complex technologies are available. The decentralized system is not only a long-term solution for small communities but is more reliable and cost effective. This paper presents a review of the various decentralized approaches to wastewater treatment and management. A discussion as to their applicability in developing countries, primarily in rural areas, and challenges faced is emphasized all through the paper. While there are many impediments and challenges towards wastewater management in developing countries, these can be overcome by suitable planning and policy implementation. Understanding the receiving environment is crucial for technology selection and should be accomplished by conducting a comprehensive site evaluation process. Centralized management of the decentralized wastewater treatment systems is essential to ensure they are inspected and maintained regularly. Management strategies should be site specific accounting for social, cultural, environmental and economic conditions in the target area.

  18. Sekhukhune District Municipality workshop proceedings: Wastewater treatment: Towards improved water quality to promote social and economic development

    CSIR Research Space (South Africa)

    Ntombela, C

    2013-09-01

    Full Text Available The aim of the workshop was to reinforce, at the strategic decision-making level within the municipality, the significance of properly managed wastewater treatment facilities towards improved water quality....

  19. Sustainability assessment of advanced wastewater treatment technologies

    DEFF Research Database (Denmark)

    Høibye, Linda; Clauson-Kaas, Jes; Wenzel, Henrik

    2007-01-01

    , which includes technical, economic and environmental aspects. The technical and economic assessment is performed on 5 advanced treatment technologies: sand filtration, ozone treatment, UV exclusively for disinfection of pathogenic microorganisms, Membrane Bioreactor (MBR), and UV in combination......As a consequence of the EU Water Framwork Directive, more focus is now on discharges of hazardous substances from wastewater treatment plants and sewers. Thus, many municipalities in Denmark may have to adopt to future advenced treatment technologies. This paper describes a holistic assessment...... with advanced oxidation. The technical assessment is based on 12 hazardous substances comprising heavy metals, organic pollutants, endocrine disruptors as well as pathogenic microorganisms. The environmental assessment is performed by life cycle assessment (LCA) comprising 9 of the specific hazardous substances...

  20. Sustainability assessment of advanced wastewater treatment technologies

    DEFF Research Database (Denmark)

    Høibye, Linda; Clauson-Kaas, Jes; Wenzel, Henrik

    2008-01-01

    , which includes technical, economical and environmental aspects. The technical and economical assessment is performed on 5 advanced treatment technologies: sand filtration, ozone treatment, UV exclusively for disinfection of pathogenic microorganisms, membrane bioreactor (MBR) and UV in combination......As a consequence of the EU Water Framework Directive more focus is now on discharges of hazardous substances from wastewater treatment plants and sewers. Thus, many municipalities in Denmark may have to adopt to future advanced treatment technologies. This paper describes a holistic assessment...... with advanced oxidation. The technical assessment is based on 12 hazardous substances comprising heavy metals, organic pollutants, endocrine disruptors as well as pathogenic microorganisms. The environmental assessment is performed by life cycle assessment (LCA) comprising 9 of the specific hazardous substances...

  1. Modification of Wastewater Treatment Technology at Cottonseed Oil Plant

    Directory of Open Access Journals (Sweden)

    Alshabab Mary Shick

    2016-01-01

    Full Text Available Wastewaters from cottonseed oil producing plant in Syria were studied in laboratory experiments. Aim of the study was to suggest modification of wastewater treatment technology in order to increase its efficiency. Concentration of pollutants in wastewaters was controlled by measurement of COD. According to the results of experiments it was suggested to decrease significantly (8-20 times dosages of reagents (acidifier, coagulant, flocculant in several actual stages of treatment (acidification, separation, coagulation and sedimentation and add stage of dispersed air flotation before coagulation treatment. The modified wastewater treatment technology would reduce COD to the values allowed for irrigation waters by Syrian National Standard.

  2. Treatment of variable and intermittently flowing wastewaters.

    Science.gov (United States)

    Kocasoy, Günay

    1993-11-01

    The biological treatment of wastewaters originating from hotels and residential areas of seasonal use, flowing intermittently, is difficult due to the fact that bacteria cannot survive during periods of no-flow. An investigation has been conducted in order to develop a system which will be able to overcome the difficulties encountered. After a long investigation the following system has given satisfactory results. The wastewater was taken initially into an aeration tank operating as a sequential batch reactor. Waste was taken after the sedimentation phase of the reactor into a coagulation-flocculation tank where it was treated by chemical means, and then settled in order to separate the floes. When the population of bacteria in the aeration tank reached the required level, the physico-chemical treatment was terminated and the tank used for chemical treatment has been started to be used as an equalization tank while the aeration and sedimentation tanks have been used as an activated sludge unit. This system has been proved to be a satisfactory method for the above mentioned wastes.

  3. About the use and treatment of reclaimed wastewater

    International Nuclear Information System (INIS)

    Marin Galvin, R.

    2009-01-01

    Demand of water in our actual society is increasing each day. Taking into account the irregular climatic situation experienced in a lot of zones of Spain, it is necessary to use all the available resources. Among the conventional resources of sweet waters (surface and underground), we must pay attention to the desalted waters and to the reclaimed wastewater. In this way, the practical use of reclaimed wastewater must be supported in three basic items: normative about reusing of reclaimed wastewater, that of treated wastewater and effluents discarded to natural environment and finally, treatment processes to reclaim wastewater. (Author) 11 refs

  4. Air Emission Reduction Benefits of Biogas Electricity Generation at Municipal Wastewater Treatment Plants.

    Science.gov (United States)

    Gingerich, Daniel B; Mauter, Meagan S

    2018-02-06

    Conventional processes for municipal wastewater treatment facilities are energy and materially intensive. This work quantifies the air emission implications of energy consumption, chemical use, and direct pollutant release at municipal wastewater treatment facilities across the U.S. and assesses the potential to avoid these damages by generating electricity and heat from the combustion of biogas produced during anaerobic sludge digestion. We find that embedded and on-site air emissions from municipal wastewater treatment imposed human health, environmental, and climate (HEC) damages on the order of $1.63 billion USD in 2012, with 85% of these damages attributed to the estimated consumption of 19 500 GWh of electricity by treatment processes annually, or 0.53% of the US electricity demand. An additional 11.8 million tons of biogenic CO 2 are directly emitted by wastewater treatment and sludge digestion processes currently installed at plants. Retrofitting existing wastewater treatment facilities with anaerobic sludge digestion for biogas production and biogas-fueled heat and electricity generation has the potential to reduce HEC damages by up to 24.9% relative to baseline emissions. Retrofitting only large plants (>5 MGD), where biogas generation is more likely to be economically viable, would generate HEC benefits of $254 annually. These findings reinforce the importance of accounting for use-phase embedded air emissions and spatially resolved marginal damage estimates when designing sustainable infrastructure systems.

  5. Comparison of Fenton process and adsorption method for treatment of industrial container and drum cleaning industry wastewater.

    Science.gov (United States)

    Güneş, Elçin; Çifçi, Deniz İzlen; Çelik, Suna Özden

    2018-04-01

    The present study aims to explore the characterization of industrial container and drum cleaning (ICDC) industry wastewater and treatment alternatives of this wastewater using Fenton and adsorption processes. Wastewater derived from ICDC industry is usually treated by chemical coagulation and biological treatment in Turkey and then discharged in a centralized wastewater treatment facility. It is required that the wastewater COD is below 1500 mg/L to treat in a centralized wastewater treatment facility. The wastewater samples were characterized for parameters of pH, conductivity, COD, BOD 5 , TSS, NH 3 -N, TN, TOC, TP, Cd, Cr, Cu, Fe, Ni, Pb, Zn, and Hg. Initial COD values were in the range of 11,300-14,200 mg/L. The optimum conditions for Fenton treatment were 35-40 g/L for H 2 O 2 , 2-5 g/L for Fe 2+ , and 13-36 for H 2 O 2 /Fe 2+ molar ratio. The optimum conditions of PAC doses and contact times in adsorption studies were 20-30 g/L and 5-12 h, respectively. Removal efficiencies of characterized parameters for the three samples were compared for both Fenton and adsorption processes under optimum conditions. The results suggest that these wastewaters are suitable for discharge to a centralized wastewater treatment plant.

  6. A summary of studies on mine wastewater treatment

    International Nuclear Information System (INIS)

    Ma Yao; Hu Baoqun; Sun Zhanxue

    2006-01-01

    The composition of mine wastewater is complicated and is harmful to the environment. The mine wastewater treatment methods include mainly neutralization, constructed wetland and microorganism methods. The three methods are summarized, with focus on the microorganism method. The mechanisms, characteristics and influencing factors of the sulfate reducing bacteria and the iron oxidizing bacteria are described in detail. The treatment methods of uranium mine wastewater are presented. (authors)

  7. Electron beam wastewater treatment in Brazil

    International Nuclear Information System (INIS)

    Sampa, M.H.O.; Rela, P.R.; Duarte, C.L.; Borrely, S.I.; Oikawa, H.; Somessari, E.S.R.; Silveira, C.G.; Costa, F.E.

    2001-01-01

    Experiments were performed at laboratory scale and at pilot plant scale to study the efficiency on using EB to remove and degrade toxic and refractory pollutants mainly from industrial origins. An upflow stream hydraulic system that governs the efficiency of the EB energy transferred to the stream was developed. Two different sources of samples were used to treat industrial effluents from a pharmaceutical chemical industry located in Sao Paulo and from a Governmental Wastewater Treatment Plant (WWTP) in Sao Paulo State, which receives the major quantity of industrial wastewater. Using samples from this WWTP, studies to combine EB irradiation process with conventional treatment were carried out with experimentation doses of 5 kGy, 10 kGy and 20 kGy and the irradiation effects were evaluated in the following parameters: COD, BOD, solids, TOC, THMs. PCE, TCE, BTX and concentration of organic acids by-products. Toxicity studies were also carried out for different sites and industrial activities showing significant removal of acute toxicity by increasing values of the EC-50 for most of the experiments. The economic aspects of this technology were evaluated and the estimated processing costs for some values of delivered doses and operation are reported here. (author)

  8. Pharmaceutical wastewater treatment: a physicochemical study

    International Nuclear Information System (INIS)

    Saleem, M.

    2007-01-01

    A physicochemical study for the treatment of pharmaceutical wastewater was performed. Objective of the laboratory investigation was to study the removal of color, Total Dissolved Solids (TDS), Biochemical Oxygen Demand (BOD), Chemical Oxygen Demand (COD), turbidity and phenol and bring them up to the allowable limits for reuse purposes. Efficiency of coagulation, flocculation, sedimentation, sand filtration followed by activated carbon adsorption was determined. It was found that tested coagulants (alum, ferric chloride, and ferrous sulphate) are not much effective and required high dosage for the removal; of TSS, BOD, COD and turbidity. Alum was found to be more effective among tested coagulants and reduce TSS, BOD, COD and turbidity 79.6%, 34.8, 48.6% and 69.2% respectively. Sand filtration further reduced the studied parameters 97.7%, 95.7%, 93.9% and 76.9% respectively. As the concentration of phenol in the studied pharmaceutical wastewater was 100 mg/l, granular activated carbon was used to remove phenol up to the allowable limit for reuse purpose. Activated carbon adsorption further reduces phenol, TDS, TSS, BOD, and COD up to 99.9%, 99.1%, 21.4%, 81.3% and 71.1% respectively. High removal of color observed after activated carbon adsorption. It was concluded that the suggested treatment scheme is suitable to bring the effluent quality up to the water quality standards. (author)

  9. The effect of tannic compounds on anaerobic wastewater treatment

    NARCIS (Netherlands)

    Field, J.A.

    1989-01-01

    Anaerobic wastewater treatment is an alternative to the conventional aerobic treatment processes for the removal of easily biodegradable organic matter in medium to high strength industrial wastestreams. Anaerobic treatment has several advantages, however one important disadvantage is the

  10. Decision making tools for selecting sustainable wastewater treatment technologies in Thailand

    Science.gov (United States)

    Wongburi, Praewa; Park, Jae K.

    2018-05-01

    Wastewater consists of valuable resources that could be recovered or reused. Still it is under threat because of ineffective wastewater management and systems. In Thailand, less than 25% of wastewater generated may be treated while then rest is inadequately treated and sent back directly into waterbodies or the environment. Furthermore, the technologies that have been applied may be inefficient and unsustainable. Efficiency, sustainability, and simplicity are important concepts when designing an appropriate wastewater treatment system in developing countries. The objectives of this study were to review and evaluate wastewater treatment technologies and propose a method to improve or select an appropriate technology. An expert system in Excel® program was developed to determine the best solution. Sensitivity analysis was applied to compare and assess uncertainty factors. Due to the different conditions of each area, the key factor of interest was varied. Furthermore, Robust Decision Making tool was applied to determine the best way to improve existing wastewater treatment facility and to choose the most appropriate wastewater treatment technology.

  11. Technical and Economic Comparison of Conventional Wastewater Treatment Systems in the Sugar Industries in Iran

    Directory of Open Access Journals (Sweden)

    Mehdi Ahmadi

    2005-03-01

    Full Text Available Iran’s location in an arid and water scarce area characterized by qualititative and quantitative degradation in its water resources makes strict planning imperative for reduced water consumption and wastewater treatment and reuse, especially in the industry sector. The technical and economic evaluation of various industrial treatment processes is a key factor in the success of such schemes in the face of the effects of climate variety, high wastewater treatment costs, and environmental factors on selecting a most suitable alternative for industrial wastewater treatment. The situation is even more critical in the case of the sugar industry as the largest pollutant source and especially because more than 90% of its facilities are located on plains with a negative water balance. Reviewing wastewater problems associated with the Iranian sugar facilities, this paper will attempt to perform an economic assessment and a comparison of conventional anaerobic-aerobic processes under various conditions in order to identify the best aleternative and to determine the most important environmental and cost factors affecting the selection of a desirable alternative. For this purpose, six combined treatment systems are selected and their construction and operation costs and detailed uniform annual cost sensitivity analysis based on the most important parameters are presented. Finally, two different combined wastewater treatment systems of UASB + facultative lagoons and UASB + trickling filters will be introduced as the best treatment processes for Iranian conditions.

  12. Treatability studies in support of the nonradiological wastewater treatment project

    Energy Technology Data Exchange (ETDEWEB)

    Begovich, J.M.; Brown, C.H. Jr.; Villiers-Fisher, J.F.; Fowler, V.L.

    1986-07-01

    The Nonradiological Wastewater Treatment Project (NRWTP) will treat nonradiological wastewaters generated at the Oak Ridge National Laboratory (ORNL) to pollutant levels acceptable under restrictions imposed by the effluent limits of best available technology (BAT) regulations of the US Environmental Protection Agency (EPA), according to the goals established by the Clean Water Act. A three-phase treatability study was conducted to resolve many of the uncertainties facing the NRWTP. The first phase consisted of batch simulation of the proposed NRWTP flowsheet in the laboratory. The Phase I results revealed no major problems with the proposed flowsheet. Phase II consisted of more-detailed parametric studies of the flowsheet processes at a bench-scale level in the laboratory. The Phase II results were used to guide the planning and design of the Phase III study, which consisted of flowsheet simulation on a continuous basis using a mini-pilot plant (MPP) facility. This facility is contained within two connected semitrailer vans and an analytical trailer.

  13. Chromium toxicity to nitrifying bacteria: implications to wastewater treatment

    Science.gov (United States)

    Chromium, a heavy metal that enters wastewater treatment plants (WWTPs) through industrial discharges, can be toxic to microorganisms carrying out important processes within biological wastewater treatment systems. The effect of Cr(III) and Cr(VI) on ammonia dependent specific ox...

  14. Nutrients valorisation via Duckweed-based wastewater treatment and aquaculture

    NARCIS (Netherlands)

    Mohamed El-Shafai, S.A.A.

    2004-01-01

    Development of a sustainable wastewater treatment scheme to recycle sewage nutrients and water in tilapia aquaculture was the main objective of this PhD research. Use of an Integrated UASB-duckweed ponds system for domestic wastewater treatment linked to tilapia aquaculture was investigated.

  15. Design Seminar for Land Treatment of Municipal Wastewater Effluents.

    Science.gov (United States)

    Demirjian, Y. A.

    This document reports the development and operation of a country-wide wastewater treatment program. The program was designed to treat liquid wastewater by biological treatment in aerated lagoons, store it, and then spray irrigate on crop farmland during the growing season. The text discusses the physical design of the system, agricultural aspects,…

  16. Electrochemical catalytic treatment of phenol wastewater

    International Nuclear Information System (INIS)

    Ma Hongzhu; Zhang Xinhai; Ma Qingliang; Wang Bo

    2009-01-01

    The slurry bed catalytic treatment of contaminated water appears to be a promising alternative for the oxidation of aqueous organic pollutants. In this paper, the electrochemical oxidation of phenol in synthetic wastewater catalyzed by ferric sulfate and potassium permanganate adsorbed onto active bentonite in slurry bed electrolytic reactor with graphite electrode has been investigated. In order to determine the optimum operating condition, the orthogonal experiments were devised and the results revealed that the system of ferric sulfate, potassium permanganate and active bentonite showed a high catalytic efficiency on the process of electrochemical oxidation phenol in initial pH 5. When the initial concentration of phenol was 0.52 g/L (the initial COD 1214 mg/L), up to 99% chemical oxygen demand (COD) removal was obtained in 40 min. According to the experimental results, a possible mechanism of catalytic degradation of phenol was proposed. Environmental estimation was also done and the results showed that the treated wastewater have little impact on plant growth and could totally be applied to irrigation.

  17. Ozone treatment of textile wastewaters for reuse.

    Science.gov (United States)

    Ciardelli, G; Capannelli, G; Bottino, A

    2001-01-01

    Treatment of textile wastewaters by means of an ozonation pilot plant are described. Wastewaters used were produced by a dyeing and finishing factory and were first treated in an active sludge plant and filtrated through sand. In the appropriate conditions very high colour removal (95-99%) was achieved and the effluent could be reused in production processes requiring water of high quality as dyeing yarns or light colorations. Even if the chemical oxygen demand of treated waters was still in a range (75-120 mg/l, a decrease of up to 60%) that was usually considered to be too high for recycling purposes, recycling experiments were successful. The economical viability of the techniques implementation was also demonstrated and the industrial plant is currently under realisation under an EU financed project. The paper considers also the possible improvement of ozone diffusion by means of membrane contactors realised in a second pilot plant, in order to further reduce operating costs of the technique. With respect to traditional systems, the gas/liquid contact surface is much higher being that of the membrane. Ozone at the interface is therefore immediately solubilized and potentially consumed with no additional resistance to the mass transfer.

  18. Anaerobic treatment of textile dyeing wastewater.

    Science.gov (United States)

    Stern, S R; Szpyrkowicz, L; Rodighiero, I

    2003-01-01

    Aerobic treatment commonly applied to textile wastewater results in good or even excellent removal of organic load. This is not, however, accompanied by an equally good removal of colour. Traditional or advanced chemical methods of decolourisation are costly and not always reliable in justifying an interest in microbial decolourisation. Among several processes anaerobic methods seem most promising. In this paper, the results of a study conducted in two pilot-scale plants comprising anaerobic fixed bed biofilters of 15 L and 5 m3 operating as continuous reactors are presented, along with evaluation of the microbial kinetics. As is shown the process proved efficient in a long-term study with no stability problems of the biofilters. The six-month performance of the pilot plant confirmed also that the pre-treated wastewater could be applied in the operation of dyeing. For the majority of the colours applied in the factory no problems were encountered when the dyeing baths were prepared by substituting 90% of fresh water to the effluent treated by a sequence of activated sludge processes: anaerobic-aerobic.

  19. Electrochemical catalytic treatment of phenol wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Ma Hongzhu, E-mail: hzmachem@snnu.edu.cn [Institute of Energy Chemistry, School of Chemistry and Materials Science, Shaanxi Normal University, Xi' an 710062 (China); Zhang Xinhai [Institute of Energy Chemistry, School of Chemistry and Materials Science, Shaanxi Normal University, Xi' an 710062 (China); Ma Qingliang [Department of Applied Physics, College of Sciences, Taiyuan University of Technology, 030024 Taiyuan (China); Wang Bo [Institute of Energy Chemistry, School of Chemistry and Materials Science, Shaanxi Normal University, Xi' an 710062 (China)

    2009-06-15

    The slurry bed catalytic treatment of contaminated water appears to be a promising alternative for the oxidation of aqueous organic pollutants. In this paper, the electrochemical oxidation of phenol in synthetic wastewater catalyzed by ferric sulfate and potassium permanganate adsorbed onto active bentonite in slurry bed electrolytic reactor with graphite electrode has been investigated. In order to determine the optimum operating condition, the orthogonal experiments were devised and the results revealed that the system of ferric sulfate, potassium permanganate and active bentonite showed a high catalytic efficiency on the process of electrochemical oxidation phenol in initial pH 5. When the initial concentration of phenol was 0.52 g/L (the initial COD 1214 mg/L), up to 99% chemical oxygen demand (COD) removal was obtained in 40 min. According to the experimental results, a possible mechanism of catalytic degradation of phenol was proposed. Environmental estimation was also done and the results showed that the treated wastewater have little impact on plant growth and could totally be applied to irrigation.

  20. Final environmental impact statement supplement for wastewater management systems, North Jefferson County, Kentucky wastewater facilities

    International Nuclear Information System (INIS)

    1992-12-01

    The Final Environmental Impact Statement Supplement (FEISS) serves to update the wastewater treatment alternatives presented in the original EIS (The North County Area Environmental Impact Statement, Jefferson County, KY, July 1984), determine the best alternative, and compare that alternative to the Louisville and Jefferson County Metropolitan Sewer District's North County Action Plan (NCAP). The NCAP was determined to have the greatest cost effectiveness, lowest environmental impact, and best implementability and reliability and so is the preferred alternative in the FEISS. Significant environmental impacts of the alternative are described and mitigative measures discussed

  1. The application of ionising radiation in industrial wastewater treatment technology

    Energy Technology Data Exchange (ETDEWEB)

    Kos, L. [Inst. of Knitting Technology and Techniques, Lodz (Poland); Perkowski, J. [Inst. of Applied Radiation Chemistry, Technical Univ. of Lodz, Lodz (Poland); Ledakowicz, S. [Dept. of Bioprocess Engineering, Technical Univ. of Lodz, Lodz (Poland)

    2003-07-01

    An attempt was made to apply radiation techniques in the treatment of industrial wastewater from a dairy, brewery and sugar factory. For degradation of pollutants present in the wastewater, the following methods were used: irradiation, irradiation combined with aeration, ozonation, and combined irradiation and ozonation. For all three types of wastewater, the best method among these listed above appeared to be the method of irradiation combined with ozonation. Most degradable was the wastewater produced in sugar factories, and the least biodegradable appeared to be dairy wastewater. Depending on the dose of ozone and radiation, a maximum 60% reduction of COD was obtained. No effect of the wastewater aeration on its degradation by radiation was found. Changes in the content of mineral compounds were observed in none of the cases. The process of biological treatment of wastewater was carried out in a low-loaded, wetted bed. Pretreatment of the wastewater had no significant effect on the improvement of the biological step operation. Some effect was observed only in the case of the wastewater coming from a sugar factory. For medium concentrated wastewater from food industry, it is not economically justified to apply the pretreatment with the use of ionising radiation. (orig.)

  2. Protecting Lake Ontario - Treating Wastewater from the Remediated Low-Level Radioactive Waste Management Facility - 13227

    Energy Technology Data Exchange (ETDEWEB)

    Freihammer, Till; Chaput, Barb [AECOM, 99 Commerce Drive, Winnipeg, Manitoba, R3P 0Y7 (Canada); Vandergaast, Gary [Atomic Energy of Canada Limited, Port Hope, Ontario (Canada); Arey, Jimi [Public Works and Government Services Canada, Ontario (Canada)

    2013-07-01

    The Port Granby Project is part of the larger Port Hope Area Initiative, a community-based program for the development and implementation of a safe, local, long-term management solution for historic low level radioactive waste (LLRW) and marginally contaminated soils (MCS). The Port Granby Project involves the relocation and remediation of up to 0.45 million cubic metres of such waste from the current Port Granby Waste Management Facility located in the Municipality of Clarington, Ontario, adjacent to the shoreline of Lake Ontario. The waste material will be transferred to a new suitably engineered Long-Term Waste Management Facility (LTWMF) to be located inland approximately 700 m from the existing site. The development of the LTWMF will include construction and commissioning of a new Wastewater Treatment Plant (WWTP) designed to treat wastewater consisting of contaminated surface run off and leachate generated during the site remediation process at the Port Granby Waste Management Facility as well as long-term leachate generated at the new LTWMF. Numerous factors will influence the variable wastewater flow rates and influent loads to the new WWTP during remediation. The treatment processes will be comprised of equalization to minimize impacts from hydraulic peaks, fine screening, membrane bioreactor technology, and reverse osmosis. The residuals treatment will comprise of lime precipitation, thickening, dewatering, evaporation and drying. The distribution of the concentration of uranium and radium - 226 over the various process streams in the WWTP was estimated. This information was used to assess potential worker exposure to radioactivity in the various process areas. A mass balance approach was used to assess the distribution of uranium and radium - 226, by applying individual contaminant removal rates for each process element of the WTP, based on pilot scale results and experience-based assumptions. The mass balance calculations were repeated for various flow

  3. Protecting Lake Ontario - Treating Wastewater from the Remediated Low-Level Radioactive Waste Management Facility - 13227

    International Nuclear Information System (INIS)

    Freihammer, Till; Chaput, Barb; Vandergaast, Gary; Arey, Jimi

    2013-01-01

    The Port Granby Project is part of the larger Port Hope Area Initiative, a community-based program for the development and implementation of a safe, local, long-term management solution for historic low level radioactive waste (LLRW) and marginally contaminated soils (MCS). The Port Granby Project involves the relocation and remediation of up to 0.45 million cubic metres of such waste from the current Port Granby Waste Management Facility located in the Municipality of Clarington, Ontario, adjacent to the shoreline of Lake Ontario. The waste material will be transferred to a new suitably engineered Long-Term Waste Management Facility (LTWMF) to be located inland approximately 700 m from the existing site. The development of the LTWMF will include construction and commissioning of a new Wastewater Treatment Plant (WWTP) designed to treat wastewater consisting of contaminated surface run off and leachate generated during the site remediation process at the Port Granby Waste Management Facility as well as long-term leachate generated at the new LTWMF. Numerous factors will influence the variable wastewater flow rates and influent loads to the new WWTP during remediation. The treatment processes will be comprised of equalization to minimize impacts from hydraulic peaks, fine screening, membrane bioreactor technology, and reverse osmosis. The residuals treatment will comprise of lime precipitation, thickening, dewatering, evaporation and drying. The distribution of the concentration of uranium and radium - 226 over the various process streams in the WWTP was estimated. This information was used to assess potential worker exposure to radioactivity in the various process areas. A mass balance approach was used to assess the distribution of uranium and radium - 226, by applying individual contaminant removal rates for each process element of the WTP, based on pilot scale results and experience-based assumptions. The mass balance calculations were repeated for various flow

  4. Efficiency of Moringa oleifera Seeds for Treatment of Laundry Wastewater

    OpenAIRE

    Al-Gheethi AA; Mohamed RMSR; Wurochekke AA; Nurulainee NR; Mas Rahayu J; Amir Hashim MK

    2017-01-01

    Laundry wastewater has simple characteristics in which the detergents compounds are the main constitutes. But these compounds have adverse effects on the aquatic organisms in the natural water bodies which received these wastes without treatment. Few studies were conducted on these wastes because it represent a small part of the total wastewater generated from different human activities. Moreover, the coagulation process for laundry wastewater might be effective to remove of detergents compou...

  5. Beyond the conventional life cycle inventory in wastewater treatment plants

    Energy Technology Data Exchange (ETDEWEB)

    Lorenzo-Toja, Yago, E-mail: yago.lorenzo@usc.es [Department of Chemical Engineering, Institute of Technology, University of Santiago de Compostela, 15782 Santiago de Compostela, Galicia (Spain); Alfonsín, Carolina [Department of Chemical Engineering, Institute of Technology, University of Santiago de Compostela, 15782 Santiago de Compostela, Galicia (Spain); Amores, María José; Aldea, Xavier; Marin, Desirée [Cetaqua, Water Technology Centre, 08940 Cornellà de Llobregat, Barcelona (Spain); Moreira, María Teresa; Feijoo, Gumersindo [Department of Chemical Engineering, Institute of Technology, University of Santiago de Compostela, 15782 Santiago de Compostela, Galicia (Spain)

    2016-05-15

    The conventional approach for the environmental assessment of wastewater treatment plants (WWTPs) is typically based on the removal efficiency of organic load and nutrients as well as the quantification of energy and chemicals consumption. Current wastewater treatment research entails the monitoring of direct emissions of greenhouse gases (GHG) and emerging pollutants such as pharmaceutical and personal care products (PPCPs), which have been rarely considered in the environmental assessment of a wastewater treatment facility by life cycle assessment (LCA) methodology. As a result of that, the real environmental impacts of a WWTP may be underestimated. In this study, two WWTPs located in different climatic regions (Atlantic and Mediterranean) of Spain were evaluated in extensive sampling campaigns that included not only conventional water quality parameters but also direct GHG emissions and PPCPs in water and sludge lines. Regarding the GHG monitoring campaign, on-site measurements of methane (CH{sub 4}) and nitrous oxide (N{sub 2}O) were performed and emission factors were calculated for both WWTPs. GHG direct emissions accounted for 62% of the total global warming potential (GWP), much more relevant than indirect CO{sub 2} emissions associated with electricity use. Regarding PPCPs, 19 compounds were measured in the main streams: influent, effluent and sludge, to perform the evaluation of the toxicity impact categories. Although the presence of heavy metals in the effluent and the sludge as well as the toxicity linked to the electricity production may shade the toxicity impacts linked to PPCPs in some impact categories, the latter showed a notable influence on freshwater ecotoxicity potential (FETP). For this impact category, the removal of PPCPs within the wastewater treatment was remarkably important and arose as an environmental benefit in comparison with the non-treatment scenario. - Highlights: • The influence of LCI quality on the environmental assessment

  6. Agricultural use of municipal wastewater treatment plant ...

    Science.gov (United States)

    Agricultural use of municipal wastewater treatment plant sewage sludge as a source of per- and polyfluoroalkyl substance (PFAS) contamination in the environment The National Exposure Research Laboratory (NERL) Human Exposure and Atmospheric Sciences Division (HEASD) conducts research in support of EPA mission to protect human health and the environment. HEASD research program supports Goal 1 (Clean Air) and Goal 4 (Healthy People) of EPA strategic plan. More specifically, our division conducts research to characterize the movement of pollutants from the source to contact with humans. Our multidisciplinary research program produces Methods, Measurements, and Models to identify relationships between and characterize processes that link source emissions, environmental concentrations, human exposures, and target-tissue dose. The impact of these tools is improved regulatory programs and policies for EPA.

  7. Treatment of Laboratory Wastewater by Sequence Batch reactor technology

    International Nuclear Information System (INIS)

    Imtiaz, N.; Butt, M.; Khan, R.A.; Saeed, M.T.; Irfan, M.

    2012-01-01

    These studies were conducted on the characterization and treatment of sewage mixed with waste -water of research and testing laboratory (PCSIR Laboratories Lahore). In this study all the parameters COD, BOD and TSS etc of influent (untreated waste-water) and effluent (treated waste-water) were characterized using the standard methods of examination for water and waste-water. All the results of the analyzed waste-water parameters were above the National Environmental Quality Standards (NEQS) set at National level. Treatment of waste-water was carried out by conventional sequencing batch reactor technique (SBR) using aeration and settling technique in the same treatment reactor at laboratory scale. The results of COD after treatment were reduced from (90-95 %), BOD (95-97 %) and TSS (96-99 %) and the reclaimed effluent quality was suitable for gardening purposes. (author)

  8. Anaerobic bacteria in wastewater treatment plant.

    Science.gov (United States)

    Cyprowski, Marcin; Stobnicka-Kupiec, Agata; Ławniczek-Wałczyk, Anna; Bakal-Kijek, Aleksandra; Gołofit-Szymczak, Małgorzata; Górny, Rafał L

    2018-03-28

    The objective of this study was to assess exposure to anaerobic bacteria released into air from sewage and sludge at workplaces from a wastewater treatment plant (WWTP). Samples of both sewage and sludge were collected at six sampling points and bioaerosol samples were additionally collected (with the use of a 6-stage Andersen impactor) at ten workplaces covering different stages of the technological process. Qualitative identification of all isolated strains was performed using the biochemical API 20A test. Additionally, the determination of Clostridium pathogens was carried out using 16S rRNA gene sequence analysis. The average concentration of anaerobic bacteria in the sewage samples was 5.49 × 10 4 CFU/mL (GSD = 85.4) and in sludge-1.42 × 10 6 CFU/g (GSD = 5.1). In turn, the average airborne bacterial concentration was at the level of 50 CFU/m 3 (GSD = 5.83) and the highest bacterial contamination (4.06 × 10 3  CFU/m 3 ) was found in winter at the bar screens. In total, 16 bacterial species were determined, from which the predominant strains belonged to Actinomyces, Bifidobacterium, Clostridium, Propionibacterium and Peptostreptococcus genera. The analysis revealed that mechanical treatment processes were responsible for a substantial emission of anaerobic bacteria into the air. In both the sewage and air samples, Clostridium perfringens pathogen was identified. Anaerobic bacteria were widely present both in the sewage and in the air at workplaces from the WWTP, especially when the technological process was performed in closed spaces. Anaerobic bacteria formed small aggregates with both wastewater droplets and dust particles of sewage sludge origin and as such may be responsible for adverse health outcomes in exposed workers.

  9. Facile synthesis of α-Fe{sub 2}O{sub 3}@ porous hollow yeast-based carbonaceous microspheres for fluorescent whitening agent-VBL wastewater treatment

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Pei; Tong, Zhiqing [College of Environmental Science and Engineering, Chang' an University, Xi' an 710054 (China); Bai, Bo, E-mail: baibochina@163.com [Key Laboratory of Tibetan Medicine Research, Northwest Plateau Institute of Biology, Chinese Academy of Sciences, Xining 810001 (China)

    2016-03-15

    Porous hollow carbonaceous microspheres (PHCMs) fabricated from yeast cells by hydrothermal treatment have stimulated interest because of their outstanding chemical and physical properties. Herein, the functionalizations of PHCMs by further coating of α-Fe{sub 2}O{sub 3} nanoparticles onto the surface were carried out. The structure of resulted α-Fe{sub 2}O{sub 3}@PHCMs products were characterized by field emission scanning electron microscopy (FE-SEM), energy dispersive spectrometry (EDS), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), and BET specific surface area measurements (BET), respectively. Its promising application was evaluated by the Fenton-like degradation of fluorescent whitening agent-VBL from aqueous solutions. - Graphical abstract: In this work, novel α-Fe{sub 2}O{sub 3}@porous hollow carbonaceous microspheres (α-Fe{sub 2}O{sub 3}@PHCMs) were synthesized through a combination of hydrothermal method and calcinations route and achieved excellent removal efficiency for fluorescent whitening Agent-VBL. - Highlights: • The hybrid α-Fe{sub 2}O{sub 3}@ porous hollow microspheres (PHCMs) were firstly fabricated. • The formation mechanism of α-Fe{sub 2}O{sub 3}@PHCMs microspheres was proposed and verified. • Dithizone played a key role in the synthesis of α-Fe{sub 2}O{sub 3}@PHCMs composites. • A favorable removal for the fluorescent whitening agent-VBL were achieved.

  10. Treatment of dairy wastewater in UASB reactors inoculated with ...

    African Journals Online (AJOL)

    Treatment of dairy wastewater in UASB reactors inoculated with flocculent biomass. ... AFRICAN JOURNALS ONLINE (AJOL) · Journals · Advanced Search · USING ... of using flocculent sludge in UASB reactors applied to the treatment of dairy ...

  11. Analysis of energy consumption at the Rzeszów Wastewater Treatment Plant

    Directory of Open Access Journals (Sweden)

    Masłoń Adam

    2017-01-01

    Full Text Available Wastewater treatment plants can be classified as energy-intensive facilities, as they account for up to 35 percent of municipal energy consumption. Pumps and aeration systems consume a significant portion of energy within the wastewater plants in particular. The cost of energy consumption for wastewater treatment processes reaches up to 40% of the total operating cost. In case of the WWTPs with the activated sludge systems, about 50% of energy is used for aeration and mixing purposes. At WWTPs, energy consumption is often correlated with the magnitude and type of pollutant load, which can influence the treatment methods and technologies used in the WWTP. In many cases wastewater treatment plants are operated without optimized measures for process optimization. A detailed study of the energy consumption should be executed in order to determine the optimization potential. This paper presents the energy consumption in municipal wastewater treatment plant in Rzeszów (Poland. In the year 2016, parameters of raw and treated wastewater were tested. The data related to energy consumption in plants allowed us to determine the energy intensity coefficients. Total consumption was measured. Indicators of energy consumption per cubic meter and removed load were calculated.

  12. A Course on Operational Considerations in Wastewater Treatment Plant Design. Student Manual.

    Science.gov (United States)

    Stottler, Stag and Associates, San Antonio, TX.

    This manual was designed to furnish information for upgrading the design of wastewater treatment plant facilities and to serve as a resource for establishing criteria for upgrading these plants. The manual also furnishes information for modifying plant design to compensate for current organic and hydraulic overloads and/or to meet more stringent…

  13. Configuration of biological wastewater treatment line and influent composition as the main factors driving bacterial community structure of activated sludge

    OpenAIRE

    Jaranowska, Paulina; Cydzik-Kwiatkowska, Agnieszka; Zieli?ska, Magdalena

    2013-01-01

    The structure of microbial consortia in wastewater treatment facilities is a resultant of environmental conditions created by the operational parameters of the purification process. In the research, activated sludge from nine Polish wastewater treatment plants (WWTPs) was investigated at a molecular level to determine the impact of the complexity of biological treatment line and the influent composition on the species structure and the diversity of bacterial consortia. The community fingerpri...

  14. Textile wastewater reuse after additional treatment by Fenton's reagent.

    Science.gov (United States)

    Ribeiro, Marília Cleto Meirelles; Starling, Maria Clara V M; Leão, Mônica Maria Diniz; de Amorim, Camila Costa

    2017-03-01

    This study verifies textile wastewater reuse treated by the conventional activated sludge process and subjected to further treatment by advanced oxidation processes. Three alternative processes are discussed: Fenton, photo-Fenton, and UV/H 2 O 2 . Evaluation of treatments effects was based on factorial experiment design in which the response variables were the maximum removal of COD and the minimum concentration of residual H 2 O 2 in treated wastewater. Results indicated Fenton's reagent, COD/[H 2 O 2 ]/[Fe 2+ ] mass ratio of 1:2:2, as the best alternative. The selected technique was applied to real wastewater collected from a conventional treatment plant of a textile mill. The quality of the wastewater before and after the additional treatment was monitored in terms of 16 physicochemical parameters defined as suitable for the characterization of waters subjected to industrial textile use. The degradation of the wastewater was also evaluated by determining the distribution of its molecular weight along with the organic matter fractionation by ultrafiltration, measured in terms of COD. Finally, a sample of the wastewater after additional treatment was tested for reuse at pilot scale in order to evaluate the impact on the quality of dyed fabrics. Results show partial compliance of treated wastewater with the physicochemical quality guidelines for reuse. Removal and conversion of high and medium molecular weight substances into low molecular weight substances was observed, as well as the degradation of most of the organic matter originally present in the wastewater. Reuse tests indicated positive results, confirming the applicability of wastewater reuse after the suggested additional treatment. Graphical abstract Textile wastewater samples after additional treatment by Fenton's reagent, photo-Fenton and H 2 O 2 /UV tested in different conditions.

  15. Applications of nanotechnology in wastewater treatment--a review.

    Science.gov (United States)

    Bora, Tanujjal; Dutta, Joydeep

    2014-01-01

    Water on Earth is a precious and finite resource, which is endlessly recycled in the water cycle. Water, whose physical, chemical, or biological properties have been altered due to the addition of contaminants such as organic/inorganic materials, pathogens, heavy metals or other toxins making it unsafe for the ecosystem, can be termed as wastewater. Various schemes have been adopted by industries across the world to treat wastewater prior to its release to the ecosystem, and several new concepts and technologies are fast replacing the traditional methods. This article briefly reviews the recent advances and application of nanotechnology for wastewater treatment. Nanomaterials typically have high reactivity and a high degree of functionalization, large specific surface area, size-dependent properties etc., which makes them suitable for applications in wastewater treatment and for water purification. In this article, the application of various nanomaterials such as metal nanoparticles, metal oxides, carbon compounds, zeolite, filtration membranes, etc., in the field of wastewater treatment is discussed.

  16. Using natural zeolites to improve anaerobic abattoir wastewater treatment

    International Nuclear Information System (INIS)

    Diaz-Jimenez, L.; Herrera-Ramirez, E.; Carlos Hernandez, S

    2009-01-01

    Slaughterhouse wastewater have high concentrations of soluble and insoluble organics which represents environmental troubles, E. G. de oxygenation of rivers, underground water contamination. Anaerobic digestion is an efficient process for wastewater treatment. Performance are increased using microorganisms supported on porous solids. (Author)

  17. Using natural zeolites to improve anaerobic abattoir wastewater treatment

    Energy Technology Data Exchange (ETDEWEB)

    Diaz-Jimenez, L.; Herrera-Ramirez, E.; Carlos Hernandez, S

    2009-07-01

    Slaughterhouse wastewater have high concentrations of soluble and insoluble organics which represents environmental troubles, E. G. de oxygenation of rivers, underground water contamination. Anaerobic digestion is an efficient process for wastewater treatment. Performance are increased using microorganisms supported on porous solids. (Author)

  18. Constructed wetlands for saline wastewater treatment: A review

    Science.gov (United States)

    Saline wastewater originating from sources such as agriculture, aquaculture, and many industrial sectors usually contains high levels of salts and other contaminants, which can adversely affect both aquatic and terrestrial ecosystems. Therefore, the treatment of saline wastewater (removal of both sa...

  19. STUDY ON WASTEWATER TREATMENT SYSTEMS IN HOSPITALS OF IRAN

    Directory of Open Access Journals (Sweden)

    M. Majlesi Nasr, A. R. Yazdanbakhsh

    2008-07-01

    Full Text Available Nowadays, water resources shortage is one of the most important issues for environmental engineers and managers as well as its conservation due to population growth and ever-increasing water demands. Besides, hospital wastewater has the same quality as municipal wastewater, but may also potentially contain various hazardous components. In this paper, physical and chemical specifications of produced wastewater in hospitals of Iran were investigated experiments. Results were compared with the effluent parameters of wastewater standards of Iranian Department of the Environment. 70 governmental hospitals from different provinces of Iran were selected by purposive (non-random sampling method. For data analysis, SPSS and EXCEL softwares were applied. The findings of the study showed that 52% of the surveyed hospitals were not equipped and 48% were equipped with wastewater treatment systems. The mean of Biochemical Oxygen Demand, Chemical Oxygen Demand and Total Suspended Solids of the effluent of wastewater treatment systems were reported as 113, 188 and 99 mg/L respectively. Comparison of the indicators between effluents of wastewater treatment systems and the standards of Departments of the Environment, showed the inefficiency in these systems and it was concluded that despite the recent improvements in hospital wastewater treatment systems, they should be upgraded based on the remarks in this paper.

  20. Benchmarking of Control Strategies for Wastewater Treatment Plants

    DEFF Research Database (Denmark)

    Wastewater treatment plants are large non-linear systems subject to large perturbations in wastewater flow rate, load and composition. Nevertheless these plants have to be operated continuously, meeting stricter and stricter regulations. Many control strategies have been proposed in the literature...

  1. Decision support for redesigning wastewater treatment technologies.

    Science.gov (United States)

    McConville, Jennifer R; Künzle, Rahel; Messmer, Ulrike; Udert, Kai M; Larsen, Tove A

    2014-10-21

    This paper offers a methodology for structuring the design space for innovative process engineering technology development. The methodology is exemplified in the evaluation of a wide variety of treatment technologies for source-separated domestic wastewater within the scope of the Reinvent the Toilet Challenge. It offers a methodology for narrowing down the decision-making field based on a strict interpretation of treatment objectives for undiluted urine and dry feces and macroenvironmental factors (STEEPLED analysis) which influence decision criteria. Such an evaluation identifies promising paths for technology development such as focusing on space-saving processes or the need for more innovation in low-cost, energy-efficient urine treatment methods. Critical macroenvironmental factors, such as housing density, transportation infrastructure, and climate conditions were found to affect technology decisions regarding reactor volume, weight of outputs, energy consumption, atmospheric emissions, investment cost, and net revenue. The analysis also identified a number of qualitative factors that should be carefully weighed when pursuing technology development; such as availability of O&M resources, health and safety goals, and other ethical issues. Use of this methodology allows for coevolution of innovative technology within context constraints; however, for full-scale technology choices in the field, only very mature technologies can be evaluated.

  2. Oil refinery wastewater treatment using physicochemical, Fenton and Photo-Fenton oxidation processes.

    Science.gov (United States)

    Tony, Maha A; Purcell, Patrick J; Zhao, Yaqian

    2012-01-01

    The objective of this study was to investigate the application of advanced oxidation processes (AOPs) to the treatment of wastewaters contaminated with hydrocarbon oil. Three different oil-contaminated wastewaters were examined and compared: (i) a 'real' hydrocarbon wastewater collected from an oil refinery (Conoco-Phillips Whitegate refinery, County Cork, Ireland); (ii) a 'real' hydrocarbon wastewater collected from a car-wash facility located at a petroleum filling station; and (iii) a 'synthetic' hydrocarbon wastewater generated by emulsifying diesel oil and water. The AOPs investigated were Fe(2+)/H(2)O(2) (Fenton's reagent), Fe(2+)/H(2)O(2)/UV (Photo-Fenton's reagent) which may be used as an alternative to, or in conjunction with, conventional treatment techniques. Laboratory-scale batch and continuous-flow experiments were undertaken. The photo-Fenton parametric concentrations to maximize COD removal were optimized: pH = 3, H(2)O(2) = 400 mg/L, and Fe(2+) = 40 mg/L. In the case of the oil-refinery wastewater, photo-Fenton treatment achieved approximately 50% COD removal and, when preceded by physicochemical treatment, the percentage removal increased to approximately 75%.

  3. Wastewater management in Khartoum Region Soba wastewater treatment plant (stabilization ponds)

    International Nuclear Information System (INIS)

    Maki, A. M. E.

    2010-03-01

    Soba wastewater treatment plant will be replaced shortly by new plant based on activate sludge. This study was carried in order to evaluate: the design, physical, chemical and biological characteristics and the capacity of the plant. Outlet Effluents quality was compared with Sudan wastewater treatment standards. Samples analyses were carried by UNESCO CHAIR 2006 (Khartoum State). It was found that the result is not as: The designed and standard level especially for BOD, COD, TBC and TC. It was also found that BOD and COD of the effluents were not complying with adopted standards for treated wastewater to be discharged to the environment. The study reached the conclusions that plant is overloaded and the characteristics of the wastewater received is not as the design which affects the efficiency of the treatment process. (Author)

  4. Survey of onsite wastewater treatment systems in Kristiansand municipality Norway : pollutants removal performance and solutions : performance analysis based on Web-GIS model

    OpenAIRE

    Abbas, Muhammad

    2017-01-01

    In Norway, 16% of the population lives in rural areas where centralized infrastructure for wastewater treatment is neither cost effective and nor sustainable due to topography and long distance to connect a treatment facility. There are 330,000 small decentralized wastewater treatment plants in Norway and out of those 1,500 plants are located in Kristiansand municipality. Eutrophication and fecal contamination in the recipients are the major cause of concern to wastewater disposal from such o...

  5. The effect of public or private structures in wastewater treatment on the conditions for the design, construction and operation of wastewater treatment plants.

    Science.gov (United States)

    Grünebaum, T; Bode, H

    2004-01-01

    Organised in public or private structures, wastewater services have to cope with different framework conditions as regards planning, construction, financing and operation. This leads quite often to different modes of management. In recent years there has been a push for privatisation on the water sector in general, the reasons for which are manifold, ranging from access to external know-how and capital to synergistic effects through integration of wastewater treatment into other tasks of similar or equal nature. Discussed are various models of public/private partnership (PPP) in wastewater treatment, encompassing for example the delegation of partial tasks or even the proportional or entire transfer of ownership of treatment facilities to private third parties. Decisive for high performance and efficiency is not the legal or organisational form, but rather the clear and unmistakable definition of tasks which are to be assigned to the different parties, customers and all other partners involved, as well as of clear-cut interfaces. On account of the (of course legitimate) profit-oriented perspective of the private sector, some decision-making processes in relation to project implementation (design and construction) and to operational aspects will differ from those typically found on the public sector. This does apply to decisions on investments, financing and on technical solutions too. On the other hand, core competencies in wastewater treatment should not be outsourced, but remain the public bodies' responsibility, even with 'far-reaching' privatisation models. Such core competencies are all efforts geared to sustainable wastewater treatment as life-supporting provision for the future or as contribution to the protection of health and the environment and to the development of infrastructure. Major areas of wastewater treatment and other related tasks are reviewed. The paper concludes with a list of questions on the issue of outsourcing.

  6. Treatment Of Wastewater For Reuse With Mobile Electron Beam Plant

    International Nuclear Information System (INIS)

    Han, B.; Kim, J.K.; Kim, Y.R.; Zommer, N.

    2012-01-01

    The use of alternative disinfectants to chlorine for the wastewater treatment has received increasing attention in recent years to treat either liquid or solids streams within wastewater treatment plants for pathogens and trace organics (TOrCs). Although several technologies have come to the forefront as an alternative to chlorine (e.g., ultraviolet [UV] and hydrogen peroxide), the majority of these technologies are chemically based, with the exception of UV. An attractive physical disinfection approach is by electron beam (EB) irradiation. EB treatment of wastewater leads to their purification from various pollutants. It is caused by the decomposition of pollutants as a result of their reactions with highly reactive species formed from water radiolysis: hydrated electron, OH free radical and H atom [Pikaev (1986)]. Sometimes methods such as EB with biological treatment, adsorption and others improve the effect of EB treatment of the wastewater purification. In the process of EB treatment of wastewater there are utilized chemical transformations of pollutants induced by ionizing radiation. At sufficiently high absorbed doses these transformations can result in complete decomposition (removal) of the substance. Under real conditions, i.e., at rather high content of pollutants in a wastewater and economically acceptable doses, partial decomposition of pollutant takes place as well as transformations of pollutant molecules that result in improving subsequent purification stages, efficiency of the process being notably influenced by irradiation conditions and wastewater composition [Woods and Pikaev (1994)]. (author)

  7. Treatment Of Wastewater For Reuse With Mobile Electron Beam Plant

    Energy Technology Data Exchange (ETDEWEB)

    Han, B.; Kim, J. K.; Kim, Y. R. [EB TECH Co., Ltd., Daejeon (Korea, Republic of); Zommer, N. [Pele Inc., Milpitas Californaa (United States)

    2012-07-01

    The use of alternative disinfectants to chlorine for the wastewater treatment has received increasing attention in recent years to treat either liquid or solids streams within wastewater treatment plants for pathogens and trace organics (TOrCs). Although several technologies have come to the forefront as an alternative to chlorine (e.g., ultraviolet [UV] and hydrogen peroxide), the majority of these technologies are chemically based, with the exception of UV. An attractive physical disinfection approach is by electron beam (EB) irradiation. EB treatment of wastewater leads to their purification from various pollutants. It is caused by the decomposition of pollutants as a result of their reactions with highly reactive species formed from water radiolysis: hydrated electron, OH free radical and H atom [Pikaev (1986)]. Sometimes methods such as EB with biological treatment, adsorption and others improve the effect of EB treatment of the wastewater purification. In the process of EB treatment of wastewater there are utilized chemical transformations of pollutants induced by ionizing radiation. At sufficiently high absorbed doses these transformations can result in complete decomposition (removal) of the substance. Under real conditions, i.e., at rather high content of pollutants in a wastewater and economically acceptable doses, partial decomposition of pollutant takes place as well as transformations of pollutant molecules that result in improving subsequent purification stages, efficiency of the process being notably influenced by irradiation conditions and wastewater composition [Woods and Pikaev (1994)]. (author)

  8. Optimization model for the design of distributed wastewater treatment networks

    Directory of Open Access Journals (Sweden)

    Ibrić Nidret

    2012-01-01

    Full Text Available In this paper we address the synthesis problem of distributed wastewater networks using mathematical programming approach based on the superstructure optimization. We present a generalized superstructure and optimization model for the design of the distributed wastewater treatment networks. The superstructure includes splitters, treatment units, mixers, with all feasible interconnections including water recirculation. Based on the superstructure the optimization model is presented. The optimization model is given as a nonlinear programming (NLP problem where the objective function can be defined to minimize the total amount of wastewater treated in treatment operations or to minimize the total treatment costs. The NLP model is extended to a mixed integer nonlinear programming (MINLP problem where binary variables are used for the selection of the wastewater treatment technologies. The bounds for all flowrates and concentrations in the wastewater network are specified as general equations. The proposed models are solved using the global optimization solvers (BARON and LINDOGlobal. The application of the proposed models is illustrated on the two wastewater network problems of different complexity. First one is formulated as the NLP and the second one as the MINLP. For the second one the parametric and structural optimization is performed at the same time where optimal flowrates, concentrations as well as optimal technologies for the wastewater treatment are selected. Using the proposed model both problems are solved to global optimality.

  9. Application of waterworks sludge in wastewater treatment plants

    DEFF Research Database (Denmark)

    Sharma, Anitha Kumari; Thornberg, D.; Andersen, Henrik Rasmus

    2013-01-01

    The potential for reuse of iron-rich sludge from waterworks as a replacement for commercial iron salts in wastewater treatment was investigated using acidic and anaerobic dissolution. The acidic dissolution of waterworks sludge both in sulphuric acid and acidic products such as flue gas washing...... for removal of phosphate in the wastewater treatment was limited, because the dissolved iron in the digester liquid was limited by siderite (FeCO3) precipitation. It is concluded that both acidic and anaerobic dissolution of iron-rich waterworks sludge can be achieved at the wastewater treatment plant...

  10. Solutions to microplastic pollution - Removal of microplastics from wastewater effluent with advanced wastewater treatment technologies.

    Science.gov (United States)

    Talvitie, Julia; Mikola, Anna; Koistinen, Arto; Setälä, Outi

    2017-10-15

    Conventional wastewater treatment with primary and secondary treatment processes efficiently remove microplastics (MPs) from the wastewater. Despite the efficient removal, final effluents can act as entrance route of MPs, given the large volumes constantly discharged into the aquatic environments. This study investigated the removal of MPs from effluent in four different municipal wastewater treatment plants utilizing different advanced final-stage treatment technologies. The study included membrane bioreactor treating primary effluent and different tertiary treatment technologies (discfilter, rapid sand filtration and dissolved air flotation) treating secondary effluent. The MBR removed 99.9% of MPs during the treatment (from 6.9 to 0.005 MP L -1 ), rapid sand filter 97% (from 0.7 to 0.02 MP L -1 ), dissolved air flotation 95% (from 2.0 to 0.1 MP L -1 ) and discfilter 40-98.5% (from 0.5 - 2.0 to 0.03-0.3 MP L -1 ) of the MPs during the treatment. Our study shows that with advanced final-stage wastewater treatment technologies WWTPs can substantially reduce the MP pollution discharged from wastewater treatment plants into the aquatic environments. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. COMPARATIVE STUDY OF TERTIARY WASTEWATER TREATMENT BY COMPUTER SIMULATION

    OpenAIRE

    Stefania Iordache; Nicolae Petrescu; Cornel Ianache

    2010-01-01

    The aim of this work is to asses conditions for implementation of a Biological Nutrient Removal (BNR) process in theWastewater Treatment Plant (WWTP) of Moreni city (Romania). In order to meet the more increased environmentalregulations, the wastewater treatment plant that was studied, must update the actual treatment process and have tomodernize it. A comparative study was undertaken of the quality of effluents that could be obtained by implementationof biological nutrient removal process li...

  12. Subsurface flow constructed wetlands for the treatment of wastewater from different sources. Design and operation

    OpenAIRE

    Torrens Armengol, Antonina

    2016-01-01

    The aim of the thesis is to examine the viability of the subsurface constructed wetlands for the treatment of wastewater derived from three different sources (treatment ponds, pig farms and car wash facilities), and to evaluate the influence of design (size, type and depth of media, presence of Phragmites australis) and operational parameters (hydraulic load, dosing and feeding modes) on treatment efficiency and hydraulic behavior. Several studies were done in the framework of different ...

  13. Chemical Compounds Recovery in Carboxymethyl Cellulose Wastewater Treatment

    Directory of Open Access Journals (Sweden)

    P.-H. Rao

    2015-05-01

    Full Text Available Carboxymethyl cellulose (CMC is a kind of cellulose ether widely used in industrial production. CMC wastewater usually have high chemical oxygen demand (COD and salinity (>10 %, which result from organic and inorganic by-products during CMC production. It is significant that the wastewater is pretreated to decrease salinity and recover valuable organics before biochemical methods are employed. In this paper, distillation-extraction method was used to pretreat CMC wastewater and recover valuable chemical compounds from wastewater (Fig. 1. Initial pH of CMC wastewater was adjusted to different values (6.5, 8.5, 9.5, 10.5, 12.0 before distillation to study the effect of pH on by-products in wastewater. By-products obtained from CMC wastewater were extracted and characterized by NMR, XRD and TGA. Distillate obtained from distillation of wastewater was treated using biological method, i.e., upflow anaerobic sludge blanket (UASB-contact oxidation process. Domestic sewage and flushing water from manufacturing shop was added into distillate to decrease initial COD and increase nutrients such as N, P, K. Experimental results showed that by-products extracted from CMC wastewater mainly include ethoxyacetic acid and NaCl, which were confirmed by NMR and XRD (Fig. 2. TGA results of by-products indicated that the content of NaCl in inorganic by-products reached 96 %. Increasing initial pH value of CMC wastewater might significantly raise the purity of ethoxyacetic acid in organic by-products. UASB-contact oxidation process showed a good resistance to shock loading. Results of 45-day continuous operation revealed that CODCr of final effluent might be controlled below 500 mg l−1 and meet Shanghai Industrial Wastewater Discharge Standard (CODCr −1, which indicated that the treatment process in this study was appropriate to treat distillate of wastewater from CMC production industry.

  14. Freshwater Treatment and Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Freshwater Treatment and Test Facility, located at SANGB, has direct year-round access to water from Lake St. Clair and has a State of Michigan approved National...

  15. The radioactive organic wastewater treatment of INER

    International Nuclear Information System (INIS)

    Shen Chinchang; Chen Chaorui; Chung Jenchren

    2014-01-01

    The treatment strategy of radioactive organic wastewater was to separate it at first, then to treat it step by step by the characteristics of liquid layer. The waste liquid has separated into three layers, the organic layer, aqueous layer and the bottom gel mastic by natural sedimentation. The organic layer has occupied 23% of the total volume, the intermediate aqueous layer occupied 75% of the total volume, the bottom mastic was about 2% of the total. The aqueous layer of organic waste was with Total Organic Carbon (TOC) 20,000ppm. The combustion test shows good treatment performance and all samples can be decomposed completely by incineration. The experiment of incineration has passed the test more than 200 batches and 3000L low-level radioactive organic aqueous solution. The process goes smoothly and gas emission values far below the regulatory limit. Each kilogram of polymer absorber can absorb 45 kg aqueous solution to form a solid combustible material and can be decomposed by incineration. Organic waste solvents were diesel miscible and similar calorific value and small viscosity. It can be used as an incinerator auxiliary fuel of radioactive incinerator. The method testing has begun in this year. It has expected to save diesel fuel consumption of incineration, and well solved such kind waste liquid. (author)

  16. Validation and implementation of model based control strategies at an industrial wastewater treatment plant.

    Science.gov (United States)

    Demey, D; Vanderhaegen, B; Vanhooren, H; Liessens, J; Van Eyck, L; Hopkins, L; Vanrolleghem, P A

    2001-01-01

    In this paper, the practical implementation and validation of advanced control strategies, designed using model based techniques, at an industrial wastewater treatment plant is demonstrated. The plant under study is treating the wastewater of a large pharmaceutical production facility. The process characteristics of the wastewater treatment were quantified by means of tracer tests, intensive measurement campaigns and the use of on-line sensors. In parallel, a dynamical model of the complete wastewater plant was developed according to the specific kinetic characteristics of the sludge and the highly varying composition of the industrial wastewater. Based on real-time data and dynamic models, control strategies for the equalisation system, the polymer dosing and phosphorus addition were established. The control strategies are being integrated in the existing SCADA system combining traditional PLC technology with robust PC based control calculations. The use of intelligent control in wastewater treatment offers a wide spectrum of possibilities to upgrade existing plants, to increase the capacity of the plant and to eliminate peaks. This can result in a more stable and secure overall performance and, finally, in cost savings. The use of on-line sensors has a potential not only for monitoring concentrations, but also for manipulating flows and concentrations. This way the performance of the plant can be secured.

  17. F/H Effluent Treatment Facility filtration upgrade alternative evaluations overview

    Energy Technology Data Exchange (ETDEWEB)

    Miles, W.C. Jr.; Poirier, M.R.; Brown, D.F.

    1992-01-01

    The F/H Effluent Treatment Facility (ETF) at the Savannah River Site (SRS) was designed to treat process wastewater from the 200-F/H Production Facilities (routine wastewater) as well as intermittent flows from the F/H Retention Basins and F/H Cooling Water Basins (nonroutine wastewater). Since start-up of the ETF at SRS in 1988, the treatment process has experienced difficulties processing routine and nonroutine wastewater. Studies have identified high bacteria and bacterial decomposition products in the wastewater as the cause for excessive fouling of the filtration system. In order to meet Waste Management requirements for the treatment of processed wastewater, an upgrade of the ETF filtration system is being developed. This upgrade must be able to process the nonroutine wastewater at design capacity. As a result, a study of alternative filter technologies was conducted utilizing simulated wastewater. The simulated wastewater tests have been completed. Three filter technologies, centrifugal polymeric ultrafilters, tubular polymeric ultrafilters, and backwashable cartridge filters have been selected for further evaluation utilizing actual ETF wastewater.

  18. F/H Effluent Treatment Facility filtration upgrade alternative evaluations overview

    Energy Technology Data Exchange (ETDEWEB)

    Miles, W.C. Jr.; Poirier, M.R.; Brown, D.F.

    1992-07-01

    The F/H Effluent Treatment Facility (ETF) at the Savannah River Site (SRS) was designed to treat process wastewater from the 200-F/H Production Facilities (routine wastewater) as well as intermittent flows from the F/H Retention Basins and F/H Cooling Water Basins (nonroutine wastewater). Since start-up of the ETF at SRS in 1988, the treatment process has experienced difficulties processing routine and nonroutine wastewater. Studies have identified high bacteria and bacterial decomposition products in the wastewater as the cause for excessive fouling of the filtration system. In order to meet Waste Management requirements for the treatment of processed wastewater, an upgrade of the ETF filtration system is being developed. This upgrade must be able to process the nonroutine wastewater at design capacity. As a result, a study of alternative filter technologies was conducted utilizing simulated wastewater. The simulated wastewater tests have been completed. Three filter technologies, centrifugal polymeric ultrafilters, tubular polymeric ultrafilters, and backwashable cartridge filters have been selected for further evaluation utilizing actual ETF wastewater.

  19. F/H effluent treatment facility filtration upgrade alternative evaluations overview

    International Nuclear Information System (INIS)

    Miles, W.C. Jr.; Poirier, M.R.; Brown, D.F.

    1992-01-01

    The F/H Effluent Treatment Facility (ETF) at the Savannah River Site (SRS) was designed to treat process wastewater from the 200-F/H Production Facilities (routine wastewater) as well as intermittent flows from the F/H Retention Basins and F/H Cooling Water Basins (nonroutine wastewater). Since start-up of the ETF at SRS in 1988, the treatment process has experienced difficulties processing routine and nonroutine wastewater. Studies have identified high bacteria and bacterial decomposition products in the wastewater as the cause for excessive fouling of the filtration system. In order to meet Waste Management requirements for the treatment of processed wastewater, an upgrade of the ETF filtration system is being developed. This upgrade must be able to process the nonroutine wastewater at design capacity. As a result, a study of alternative filter technologies was conducted utilizing simulated wastewater. The simulated wastewater tests have been completed. Three filter technologies, centrifugal polymeric ultrafilters, tubular polymeric ultrafilters, and backwashable cartridge filters have been selected for further evaluation utilizing actual ETF wastewater. (author)

  20. Characteristics and Biodegradability of Wastewater Organic Matter in Municipal Wastewater Treatment Plants Collecting Domestic Wastewater and Industrial Discharge

    Directory of Open Access Journals (Sweden)

    Yun-Young Choi

    2017-06-01

    Full Text Available Municipal wastewater treatment plants (WWTPs in Korea collect and treat not only domestic wastewater, but also discharge from industrial complexes. However, some industrial discharges contain a large amount of non-biodegradable organic matter, which cannot be treated properly in a conventional biological WWTP. This study aimed to investigate the characteristics and biodegradability of the wastewater organic matter contained in the industrial discharges and to examine the fate of the industrial discharges in a biological WWTP. In contrast to most previous studies targeting a specific group of organic compounds or traditional water quality indices, such as biological oxygen demand (BOD and chemical oxygen demand (COD, this study was purposed to quantify and characterize the biodegradable and nonbiodegradable fractions of the wastewater organic matter. Chemical oxygen demand (COD fractionation tests and fluorescence spectroscopy revealed that the industrial discharge from dyeing or pulp mill factories contained more non-biodegradable soluble organic matter than did the domestic wastewater. Statistical analysis on the WWTPs’ monitoring data indicated that the industrial discharge containing non-biodegradable soluble organic matter was not treated effectively in a biological WWTP, but was escaping from the system. Thus, industrial discharge that contained non-biodegradable soluble organic matter was a major factor in the decrease in biodegradability of the discharge, affecting the ultimate fate of wastewater organic matter in a biological WWTP. Further application of COD fractionation and fluorescence spectroscopy to wastewaters, with various industrial discharges, will help scientists and engineers to better design and operate a biological WWTP, by understanding the fate of wastewater organic matter.

  1. Simulation of Industrial Wastewater Treatment from the Suspended Impurities into the Flooded Waste Mining Workings

    Science.gov (United States)

    Bondareva, L.; Zakharov, Yu; Goudov, A.

    2017-04-01

    The paper is dedicated to the mathematical model of slurry wastewater treatment and disposal in a flooded mine working. The goal of the research is to develop and analyze the mathematical model of suspended impurities flow and distribution. Impurity sedimentation model is under consideration. Due to the sediment compaction problem solution domain can be modified. The model allows making a forecast whether volley emission is possible. Numerical simulation results for “Kolchuginskaya” coal mine presented. Impurity concentration diagrams in outflow corresponding to the real full-scale data obtained. Safely operation time mine workings like a wastewater treatment facility are estimated. The carried out calculations demonstrate that the method of industrial wastewater treatment in flooded waste mine workings can be put into practice but it is very important to observe all the processes going on to avoid volley emission of accumulated impurities.

  2. Treatment of wastewater from rubber industry in Malaysia ...

    African Journals Online (AJOL)

    Treatment of wastewater from rubber industry in Malaysia. ... Discharge of untreated rubber effluent to waterways resulted in water pollution that affected the human health. ... Key words: Rubber industry, effluent, waste management, Malaysia.

  3. Bacteriophages-potential for application in wastewater treatment processes

    International Nuclear Information System (INIS)

    Withey, S.; Cartmell, E.; Avery, L.M.; Stephenson, T.

    2005-01-01

    Bacteriophages are viruses that infect and lyse bacteria. Interest in the ability of phages to control bacterial populations has extended from medical applications into the fields of agriculture, aquaculture and the food industry. Here, the potential application of phage techniques in wastewater treatment systems to improve effluent and sludge emissions into the environment is discussed. Phage-mediated bacterial mortality has the potential to influence treatment performance by controlling the abundance of key functional groups. Phage treatments have the potential to control environmental wastewater process problems such as: foaming in activated sludge plants; sludge dewaterability and digestibility; pathogenic bacteria; and to reduce competition between nuisance bacteria and functionally important microbial populations. Successful application of phage therapy to wastewater treatment does though require a fuller understanding of wastewater microbial community dynamics and interactions. Strategies to counter host specificity and host cell resistance must also be developed, as should safety considerations regarding pathogen emergence through transduction

  4. Modeling Jambo wastewater treatment system to predict water re ...

    African Journals Online (AJOL)

    user

    C++ programme to implement Brown's model for determining water quality usage ... predicting the re-use options of the wastewater treatment system was a ... skins from rural slaughter slabs/butchers, slaughter .... City (Karnataka State, India).

  5. Treatment of textile wastewater with membrane bioreactor: A critical review.

    Science.gov (United States)

    Jegatheesan, Veeriah; Pramanik, Biplob Kumar; Chen, Jingyu; Navaratna, Dimuth; Chang, Chia-Yuan; Shu, Li

    2016-03-01

    Membrane bioreactor (MBR) technology has been used widely for various industrial wastewater treatments due to its distinct advantages over conventional bioreactors. Treatment of textile wastewater using MBR has been investigated as a simple, reliable and cost-effective process with a significant removal of contaminants. However, a major drawback in the operation of MBR is membrane fouling, which leads to the decline in permeate flux and therefore requires membrane cleaning. This eventually decreases the lifespan of the membrane. In this paper, the application of aerobic and anaerobic MBR for textile wastewater treatment as well as fouling and control of fouling in MBR processes have been reviewed. It has been found that long sludge retention time increases the degradation of pollutants by allowing slow growing microorganisms to establish but also contributes to membrane fouling. Further research aspects of MBR for textile wastewater treatment are also considered for sustainable operations of the process. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Performance of wastewater treatment plants in Jordan and suitability ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-08-04

    Aug 4, 2008 ... while the available sources of water are limited and de-. *Corresponding author. ... 186223 m3/d inflow to Asamra wastewater treatment plant. (ASTP) (Bataineh et al., ..... MSc. thesis, university of Jordan. Bataineh F, Najjar M, ...

  7. Wastewater Treatment Plants, North America, 2010, Dun and Bradstreet

    Data.gov (United States)

    U.S. Environmental Protection Agency — D&B 20101220 Wastewater Treatment Plants Points for the United States, including Puerto Rico and the US Virgin Islands, Canada, and Mexico, Released Quarterly...

  8. Assessment of wastewater treatment plant effluent effects on fish reproduction

    Science.gov (United States)

    Wastewater treatment plant (WWTP) effluents are known contributors of chemical mixtures into the environment. Of particular concern are endocrine-disrupting compounds that can affect hypothalamic-pituitary-gonadal axis function in exposed organisms. The present study examined t...

  9. Public health aspects of waste-water treatment

    International Nuclear Information System (INIS)

    Lund, E.

    1975-01-01

    Among the bacteria, viruses and parasites which may be found in waste-water and polluted waters, those that are pathogenic to man are briefly described. The efficiency of different conventional waste-water treatments in removing the pathogens is reviewed, as well as additional factors of importance for the presence of micro-organisms in recipient waters. It is concluded that at present for treated waters no conventional treatment results in an effluent free from pathogens if they are present in the original waste-water. This is also true for sludges apart from pasteurization. The importance to public health of the presence of pathogens in recipient waters is briefly discussed. (author)

  10. Off Grid Photovoltaic Wastewater Treatment and Management Lagoons

    Science.gov (United States)

    LaPlace, Lucas A.; Moody, Bridget D.

    2015-01-01

    The SSC wastewater treatment system is comprised of key components that require a constant source of electrical power or diesel fuel to effectively treat the wastewater. In alignment with the President's new Executive Order 13653, Planning for Federal Sustainability in the Next Decade, this project aims to transform the wastewater treatment system into a zero emissions operation by incorporating the advantages of an off grid, photovoltaic system. Feasibility of implementation will be based on an analytical evaluation of electrical data, fuel consumption, and site observations.

  11. [Ecological security of wastewater treatment processes: a review].

    Science.gov (United States)

    Yang, Sai; Hua, Tao

    2013-05-01

    Though the regular indicators of wastewater after treatment can meet the discharge requirements and reuse standards, it doesn't mean the effluent is harmless. From the sustainable point of view, to ensure the ecological and human security, comprehensive toxicity should be considered when discharge standards are set up. In order to improve the ecological security of wastewater treatment processes, toxicity reduction should be considered when selecting and optimizing the treatment processes. This paper reviewed the researches on the ecological security of wastewater treatment processes, with the focus on the purposes of various treatment processes, including the processes for special wastewater treatment, wastewater reuse, and for the safety of receiving waters. Conventional biological treatment combined with advanced oxidation technologies can enhance the toxicity reduction on the base of pollutants removal, which is worthy of further study. For the process aimed at wastewater reuse, the integration of different process units can complement the advantages of both conventional pollutants removal and toxicity reduction. For the process aimed at ecological security of receiving waters, the emphasis should be put on the toxicity reduction optimization of process parameters and process unit selection. Some suggestions for the problems in the current research and future research directions were put forward.

  12. The use of mathematical models in teaching wastewater treatment engineering

    DEFF Research Database (Denmark)

    Morgenroth, Eberhard Friedrich; Arvin, Erik; Vanrolleghem, P.

    2002-01-01

    Mathematical modeling of wastewater treatment processes has become increasingly popular in recent years. To prepare students for their future careers, environmental engineering education should provide students with sufficient background and experiences to understand and apply mathematical models...... efficiently and responsibly. Approaches for introducing mathematical modeling into courses on wastewater treatment engineering are discussed depending on the learning objectives, level of the course and the time available....

  13. Challege and Opportunities of Membrane Bioelctrochemical Reactors for Wastewater Treatment

    OpenAIRE

    Li, Jian

    2016-01-01

    Microbial fuel cells (MFCs) are potentially advantageous as an energy-efficient approach for wastewater treatment. Integrating membrane filtration with MFCs could be a viable option for advanced wastewater treatment with a low energy input. Such an integration is termed as membrane bioelectrochemical reactors (MBERs). Comparing to the conventional membrane bioreactors or anaerobic membrane bioreactors, MBER could be a competitive technology, due to the its advantages on energy consumption and...

  14. BIOFILTERS IN WASTEWATER TREATMENT AFTER RECYCLED PLASTIC MATERIALS

    OpenAIRE

    Irena Kania-Surowiec

    2014-01-01

    In this paper the possibility of using biological deposits in wastewater treatment of recycled plastics were presented. There are many aspects of this issue that should be considered to be able to use information technology solutions in the industry. This includes, inter alia, specify the types of laboratory tests based on the analysis of changes in the fluid during the wastewater treatment process, knowledge and selection factors for proper growth of biofilm in the deposit and to develop the...

  15. Bacterial communities in full-scale wastewater treatment systems

    OpenAIRE

    Cydzik-Kwiatkowska, Agnieszka; Zieli?ska, Magdalena

    2016-01-01

    Bacterial metabolism determines the effectiveness of biological treatment of wastewater. Therefore, it is important to define the relations between the species structure and the performance of full-scale installations. Although there is much laboratory data on microbial consortia, our understanding of dependencies between the microbial structure and operational parameters of full-scale wastewater treatment plants (WWTP) is limited. This mini-review presents the types of microbial consortia in...

  16. Pharmaceutical Compounds in Wastewater: Wetland Treatment as a Potential Solution

    OpenAIRE

    White, John R.; Belmont, Marco A.; Metcalfe, Chris D.

    2006-01-01

    Pharmaceutical compounds are being released into the aquatic environment through wastewater discharge around the globe. While there is limited removal of these compounds within wastewater treatment plants, wetland treatment might prove to be an effective means to reduce the discharge of the compounds into the environment. Wetlands can promote removal of these pharmaceutical compounds through a number of mechanisms including photolysis, plant uptake, microbial degradation, and sorption to the ...

  17. Micro-electrolysis technology for industrial wastewater treatment.

    Science.gov (United States)

    Jin, Yi-Zhong; Zhang, Yue-Feng; Li, Wei

    2003-05-01

    Experiments were conducted to study the role of micro-electrolysis in removing chromaticity and COD and improving the biodegradability of wastewater from pharmaceutical, dye-printing and papermaking plants. Results showed that the use of micro-electrolysis technology could remove more than 90% of chromaticity and more than 50% of COD and greatly improved the biodegradability of pharmaceutical wastewater. Lower initial pH could be advantageous to the removal of chromaticity. A retention time of 30 minutes was recommended for the process design of micro-electrolysis. For the use of micro-electrolysis in treatment of dye-printing wastewater, the removal rates of both chromaticity and COD were increased from neutral condition to acid condition for disperse blue wastewater; more than 90% of chromaticity and more than 50% of COD could be removed in neutral condition for vital red wastewater.

  18. Reduction of Cryptosporidium, Giardia, and Fecal Indicators by Bardenpho Wastewater Treatment.

    Science.gov (United States)

    Schmitz, Bradley W; Moriyama, Hitoha; Haramoto, Eiji; Kitajima, Masaaki; Sherchan, Samendra; Gerba, Charles P; Pepper, Ian L

    2018-06-19

    Increased demand for water reuse and reclamation accentuates the importance for optimal wastewater treatment to limit protozoa in effluents. Two wastewater treatment plants utilizing advanced Bardenpho were investigated over a 12-month period to determine the incidence and reduction of Cryptosporidium, Giardia, Cyclospora, and fecal indicators. Results were compared to facilities that previously operated in the same geographical area. Protozoa (oo)cysts were concentrated using an electronegative filter and subsequently detected by fluorescent microscopy and/or PCR methods. Cryptosporidium and Giardia were frequently detected in raw sewage, but Cyclospora was not detected in any wastewater samples. Facilities with Bardenpho treatment exhibited higher removals of (oo)cysts than facilities utilizing activated sludge or trickling filters. This was likely due to Bardenpho systems having increased solid wasting rates; however, this mechanism cannot be confirmed as sludge samples were not analyzed. Use of dissolved-air-flotation instead of sedimentation tanks did not result in more efficient removal of (oo)cysts. Concentrations of protozoa were compared with each other, Escherichia coli, somatic coliphage, and viruses (pepper mild mottle virus, Aichi virus 1, adenovirus, and polyomaviruses JC and BK). Although significant correlations were rare, somatic coliphage showed the highest potential as an indicator for the abundance of protozoa in wastewaters.

  19. Physicochemical treatments of anionic surfactants wastewater: Effect on aerobic biodegradability.

    Science.gov (United States)

    Aloui, Fathi; Kchaou, Sonia; Sayadi, Sami

    2009-05-15

    The effect of different physicochemical treatments on the aerobic biodegradability of an industrial wastewater resulting from a cosmetic industry has been investigated. This industrial wastewater contains 11423 and 3148mgL(-1) of chemical oxygen demand (COD) and anionic surfactants, respectively. The concentration of COD and anionic surfactants were followed throughout the diverse physicochemical treatments and biodegradation experiments. Different pretreatments of this industrial wastewater using chemical flocculation process with lime and aluminium sulphate (alum), and also advanced oxidation process (electro-coagulation (Fe and Al) and electro-Fenton) led to important COD and anionic surfactants removals. The best results were obtained using electro-Fenton process, exceeding 98 and 80% of anionic surfactants and COD removals, respectively. The biological treatment by an isolated strain Citrobacter braakii of the surfactant wastewater, as well as the pretreated wastewater by the various physicochemical processes used in this study showed that the best results were obtained with electro-Fenton pretreated wastewater. The characterization of the treated surfactant wastewater by the integrated process (electro-coagulation or electro-Fenton)-biological showed that it respects Tunisian discharge standards.

  20. Dynamics of Nutrients Transport in Onsite Wastewater Treatment Systems

    Science.gov (United States)

    Toor, G.; De, M.

    2013-05-01

    Domestic wastewater is abundant in nutrients¬ that originate from various activities in the households. In developed countries, wastewater is largely managed by (1) centralized treatment where wastewater from large population is collected, treated, and discharged and (2) onsite treatment where wastewater is collected from an individual house, treated, and dispersed onsite; this system is commonly known as septic system or onsite wastewater treatment system (OWTS) and consist of a septic tank (collects wastewater) and drain-field (disperses wastewater in soil). In areas with porous sandy soils, the transport of nutrients from drain-field to shallow groundwater is accelerated. To overcome this limitation, elevated disposal fields (commonly called mounds) on top of the natural soil are constructed to provide unsaturated conditions for wastewater treatment. Our objective was to study the dynamics of nitrogen (N) and phosphorus (P) transport in the vadose zone and groundwater in traditional and advanced OWTS. Soil water samples were collected from the vadose zone by using suction cup lysimeters and groundwater samples were collected by using piezometers. Collected samples (wastewater, soil-water, groundwater) were analyzed for various water quality parameters. The pH (4.39-4.78) and EC (0.28-0.34 dS/m) of groundwater was much lower than both wastewater and soil-water. In contrast to >50 mg/L of ammonium-N in wastewater, concentrations in all lysimeters (0.02-0.81 mg/L) and piezometers (0.01-0.82 mg/L) were 99% disappeared (primarily nitrified) in the vadose zone (20 mg/L in the vadose zones of traditional systems (drip dispersal and gravel trench). Concentrations of chloride showed a distinct pattern of nitrate-N breakthrough in vadose zone and groundwater; the groundwater nitrate-N was elevated upto 19.2 mg/L after wastewater delivery in tradional systems. Total P in the wastewater was ~10 mg/L, but low in all lysimeters (0.046-1.72 mg/L) and piezometers (0.01-0.78 mg

  1. A study on the treatment process of industrial wastewater related to heavy metal wastewater

    International Nuclear Information System (INIS)

    Park, J. J.; Shin, J. M.; Kim, J. H.; Yang, M. S.; Kim, M. J.; Son, J. S.; Park, H. S.

    1999-08-01

    The supernatant from metal wastewater by using magnesium hydroxide and dolomite was used to treat dyeing wastewater. In the case of magnesium hydroxide. In the case of magnesium hydroxide, the optimum dosage was 10 % (v/v) for supernatant A and 3 % (v/v) for separation B. Color turbidity and COD removal was 99 to 100 % , 85 to 97 % and 43 to 53 %, respectively. In the case of dolomite, the optimum dosage was 30 % (v/v) for supernatant A and 3% for supernatant B. Color, turbidity and COD removal was 96 to 99 %, 62 to 91 % and 52 to 53 %, respectively. In dyeing wastewater treatment by using supernatant from metal wastewater, the cost of chemicals was reduced by about 80 %

  2. Textile wastewater treatment: aerobic granular sludge vs activated sludge systems.

    Science.gov (United States)

    Lotito, Adriana Maria; De Sanctis, Marco; Di Iaconi, Claudio; Bergna, Giovanni

    2014-05-01

    Textile effluents are characterised by high content of recalcitrant compounds and are often discharged (together with municipal wastewater to increase their treatability) into centralized wastewater treatment plants with a complex treatment scheme. This paper reports the results achieved adopting a granular sludge system (sequencing batch biofilter granular reactor - SBBGR) to treat mixed municipal-textile wastewater. Thanks to high average removals in SBBGR (82.1% chemical oxygen demand, 94.7% total suspended solids, 87.5% total Kjeldahl nitrogen, 77.1% surfactants), the Italian limits for discharge into a water receiver can be complied with the biological stage alone. The comparison with the performance of the centralized plant treating the same wastewater has showed that SBBGR system is able to produce an effluent of comparable quality with a simpler treatment scheme, a much lower hydraulic residence time (11 h against 30 h) and a lower sludge production. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. HIGH-RATE ANAEROBIC TREATMENT OF ALCOHOLIC WASTEWATERS

    Directory of Open Access Journals (Sweden)

    Florencio L.

    1997-01-01

    Full Text Available Modern high-rate anaerobic wastewater treatment processes are rapidly becoming popular for industrial wastewater treatment. However, until recently stable process conditions could not be guaranteed for alcoholic wastewaters containing higher concentrations of methanol. Although methanol can be directly converted into methane by methanogens, under specific conditions it can also be converted into acetate and butyrate by acetogens. The accumulation of volatile fatty acids can lead to reactor instability in a weakly buffered reactor. Since this process was insufficiently understood, the application of high-rate anaerobic reactors was highly questionable. This research investigated the environmental factors that are of importance in the predominance of methylotrophic methanogens over acetogens in a natural mixed culture during anaerobic wastewater treatment in upflow anaerobic sludge bed reactors. Technological and microbiological aspects were investigated. Additionally, the route by which methanol is converted into methane is also presented

  4. Radionuclide content of wastewater and solid waste from a low-level effluent treatment plant

    International Nuclear Information System (INIS)

    Muhamat Omar; Zalina Laili; Nik Marzukee Nik Ibrahim; Mat Bakar Mahusin

    2010-01-01

    A study on radioactivity levels of wastewater and solid waste from a Low-level Effluent Treatment Plant has been carried out. The measurement of radionuclide concentration was carried out using gamma spectrometry. Natural and anthropogenic radionuclides were detected in solid radioactive waste recovered from the treatment plant. The presence of radionuclides in waste water varies depending on activities carried out in laboratories and facilities connected to the plant. (author)

  5. RARE EARTH ELEMENT IMPACTS ON BIOLOGICAL WASTEWATER TREATMENT

    Energy Technology Data Exchange (ETDEWEB)

    Fujita, Y.; Barnes, J.; Fox, S.

    2016-09-01

    Increasing demand for rare earth elements (REE) is expected to lead to new development and expansion in industries processing and or recycling REE. For some industrial operators, sending aqueous waste streams to a municipal wastewater treatment plant, or publicly owned treatment works (POTW), may be a cost effective disposal option. However, wastewaters that adversely affect the performance of biological wastewater treatment at the POTW will not be accepted. The objective of our research is to assess the effects of wastewaters that might be generated by new rare earth element (REE) beneficiation or recycling processes on biological wastewater treatment systems. We have been investigating the impact of yttrium and europium on the biological activity of activated sludge collected from an operating municipal wastewater treatment plant. We have also examined the effect of an organic complexant that is commonly used in REE extraction and separations; similar compounds may be a component of newly developed REE recycling processes. Our preliminary results indicate that in the presence of Eu, respiration rates for the activated sludge decrease relative to the no-Eu controls, at Eu concentrations ranging from <10 to 660 µM. Yttrium appears to inhibit respiration as well, although negative impacts have been observed only at the highest Y amendment level tested (660 µM). The organic complexant appears to have a negative impact on activated sludge activity as well, although results are variable. Ultimately the intent of this research is to help REE industries to develop environmentally friendly and economically sustainable beneficiation and recycling processes.

  6. Carbon footprint of aerobic biological treatment of winery wastewater.

    Science.gov (United States)

    Rosso, D; Bolzonella, D

    2009-01-01

    The carbon associated with wastewater and its treatment accounts for approximately 6% of the global carbon balance. Within the wastewater treatment industry, winery wastewater has a minor contribution, although it can have a major impact on wine-producing regions. Typically, winery wastewater is treated by biological processes, such as the activated sludge process. Biomass produced during treatment is usually disposed of directly, i.e. without digestion or other anaerobic processes. We applied our previously published model for carbon-footprint calculation to the areas worldwide producing yearly more than 10(6) m(3) of wine (i.e., France, Italy, Spain, California, Argentina, Australia, China, and South Africa). Datasets on wine production from the Food and Agriculture Organisation were processed and wastewater flow rates calculated with assumptions based on our previous experience. Results show that the wine production, hence the calculated wastewater flow, is reported as fairly constant in the period 2005-2007. Nevertheless, treatment process efficiency and energy-conservation may play a significant role on the overall carbon-footprint. We performed a sensitivity analysis on the efficiency of the aeration process (alphaSOTE per unit depth, or alphaSOTE/Z) in the biological treatment operations and showed significant margin for improvement. Our results show that the carbon-footprint reduction via aeration efficiency improvement is in the range of 8.1 to 12.3%.

  7. Evaluation of constructed wetland treatment performance for winery wastewater.

    Science.gov (United States)

    Grismer, Mark E; Carr, Melanie A; Shepherd, Heather L

    2003-01-01

    Rapid expansion of wineries in rural California during the past three decades has created contamination problems related to winery wastewater treatment and disposal; however, little information is available about performance of on-site treatment systems. Here, the project objective was to determine full-scale, subsurface-flow constructed wetland retention times and treatment performance through assessment of water quality by daily sampling of total dissolved solids, pH, total suspended solids, chemical oxygen demand (COD), tannins, nitrate, ammonium, total Kjeldahl nitrogen, phosphate, sulfate, and sulfide across operating systems for winery wastewater treatment. Measurements were conducted during both the fall crush season of heavy loading and the spring following bottling and racking operations at the winery. Simple decay model coefficients for these constituents as well as COD and tannin removal efficiencies from winery wastewater in bench-scale reactors are also determined. The bench-scale study used upward-flow, inoculated attached-growth (pea-gravel substrate) reactors fed synthetic winery wastewater. Inlet and outlet tracer studies for determination of actual retention times were essential to analyses of treatment performance from an operational subsurface-flow constructed wetland that had been overloaded due to failure to install a pretreatment system for suspended solids removal. Less intensive sampling conducted at a smaller operational winery wastewater constructed wetland that had used pretreatment suspended solids removal and aeration indicated that the constructed wetlands were capable of complete organic load removal from the winery wastewater.

  8. An experimental investigation of wastewater treatment using electron beam irradiation

    Science.gov (United States)

    Emami-Meibodi, M.; Parsaeian, M. R.; Amraei, R.; Banaei, M.; Anvari, F.; Tahami, S. M. R.; Vakhshoor, B.; Mehdizadeh, A.; Fallah Nejad, N.; Shirmardi, S. P.; Mostafavi, S. J.; Mousavi, S. M. J.

    2016-08-01

    Electron beam (EB) is used for disinfection and treatment of different types of sewage and industrial wastewater. However, high capital investment required and the abundant energy consumed by this process raise doubts about its cost-effectiveness. In this paper, different wastewaters, including two textile sewages and one municipal wastewater are experimentally studied under different irradiation strategies (i.e. batch, 60 l/min and 1000 m3/day) in order to establish the reliability and the optimum conditions for the treatment process. According to the results, EB improves the efficiency of traditional wastewater treatment methods, but, for textile samples, coagulation before EB irradiation is recommended. The cost estimation of EB treatment compared to conventional methods shows that EB has been more expensive than chlorination and less expensive than activated sludge. Therefore, EB irradiation is advisable if and only if conventional methods of textile wastewater treatment are insufficient or chlorination of municipal wastewater is not allowed for health reasons. Nevertheless, among the advanced oxidation processes (AOP), EB irradiation process may be the most suitable one in industrial scale operations.

  9. Treatment of Tehran refinery wastewater using rotating biological contactor

    Energy Technology Data Exchange (ETDEWEB)

    Ghazi, Masoud; Mirsajadi, Hassan; Ganjidoust, Hossien [Tarbeyat Modarres Univ., Teheran (Iran, Islamic Republic of). Environmental Engineering Dept.

    1993-12-31

    Tehran Refinery is a large plant which produces several petroleum products. The wastewaters are generated from several different refinery processes and units. Because of the wastewaters uniqueness they need to be treated in each specific plant. Currently, an activated sludge system is the main biological wastewater treatment process in Tehran refinery plant. A study was initiated in order to find a more suitable and reliable process which can produce a better treated effluent which might, in case the process be successful, be reused for irrigation lands. 5 refs., 5 figs.

  10. Treatment of Tehran refinery wastewater using rotating biological contactor

    Energy Technology Data Exchange (ETDEWEB)

    Ghazi, Masoud; Mirsajadi, Hassan; Ganjidoust, Hossien [Tarbeyat Modarres Univ., Teheran (Iran, Islamic Republic of). Environmental Engineering Dept.

    1994-12-31

    Tehran Refinery is a large plant which produces several petroleum products. The wastewaters are generated from several different refinery processes and units. Because of the wastewaters uniqueness they need to be treated in each specific plant. Currently, an activated sludge system is the main biological wastewater treatment process in Tehran refinery plant. A study was initiated in order to find a more suitable and reliable process which can produce a better treated effluent which might, in case the process be successful, be reused for irrigation lands. 5 refs., 5 figs.

  11. The OMEGA system for marine bioenergy, wastewater treatment, environmental enhancement, and aquaculture

    Science.gov (United States)

    Trent, J. D.

    2013-12-01

    OMEGA is an acronym for Offshore Membrane Enclosure for Growing Algae. The OMEGA system consists of photobioreactors (PBRs) made of flexible, inexpensive clear plastic tubes attached to floating docks, anchored offshore in naturally or artificially protected bays [1]. The system uses domestic wastewater and CO2 from coastal facilities to provide water, nutrients, and carbon for algae cultivation [2]. The surrounding seawater maintains the temperature inside the PBRs and prevents the cultivated (freshwater) algae from becoming invasive species in the marine environment (i.e., if a PBR module accidentally leaks, the freshwater algae that grow in wastewater cannot survive in the marine environment). The salt gradient between seawater and wastewater is used for forward osmosis (FO) to concentrate nutrients and facilitate algae harvesting [3]. Both the algae and FO clean the wastewater, removing nutrients as well as pharmaceuticals and personal-care products [4]. The offshore infrastructure provides a large surface area for solar-photovoltaic arrays and access to offshore wind or wave generators. The infrastructure can also support shellfish, finfish, or seaweed aquaculture. The economics of the OMEGA system are supported by a combination of biofuels production, wastewater treatment, alternative energy generation, and aquaculture. By using wastewater and operating offshore from coastal cities, OMEGA can be located close to wastewater and CO2 sources and it can avoid competing with agriculture for water, fertilizer, and land [5]. By combining biofuels production with wastewater treatment and aquaculture, the OMEGA system provides both products and services, which increase its economic feasibility. While the offshore location has engineering challenges and concerns about the impact and control of biofouling [6], large OMEGA structure will be floating marine habitats and will create protected 'no-fishing' zones that could increase local biodiversity and fishery

  12. The use of constructed wetlands for the treatment of industrial wastewater

    Directory of Open Access Journals (Sweden)

    Skrzypiecbcef Katarzyna

    2017-09-01

    Full Text Available Constructed wetlands are characterized by specific conditions enabling simultaneous various physical and biochemical processes. This is the result of specific environment for the growth of microorganisms and hydrophytes (aquatic and semiaquatic plants which are capable of living in aerobic, anaerobic and facultative anaerobic conditions. Their interaction contributes to the intensification of oxidation and reduction responsible for the removal and retention of pollutants. These processes are supported by sorption, sedimentation and assimilation. Thanks to these advantages, treatment wetland systems have been used in communal management for over 50 years. In recent years, thanks to its advantages, low operational costs and high removal efficiency, there is growing interest in the use of constructed wetlands for the treatment or pre-treatment of various types of industrial wastewater. The study analyzes current use of these facilities for the treatment of industrial wastewater in the world. The conditions of use and efficiency of pollutants removal from readily and slowly biodegradable wastewater, with special emphasis on specific and characteristic pollutants of particular industries were presented. The use of subsurface horizontal flow beds for the treatment of industrial wastewater, among others from crude oil processing, paper production, food industry including wineries and distillery, olive oil production and coffee processing was described. In Poland constructed wetlands are used for the treatment of sewage and sludge from milk processing in pilot scale or for dewatering of sewage sludge produced in municipal wastewater treatment plant treating domestic sewage with approximately 40% share of wastewater from dairy and fish industry. In all cases, constructed wetlands provided an appropriate level of treatment and in addition the so-called ecosystem service.

  13. The effects of physicochemical wastewater treatment operations on forward osmosis

    DEFF Research Database (Denmark)

    Hey, Tobias; Bajraktari, Niada; Vogel, Jörg

    2016-01-01

    Raw municipal wastewater from a full-scale wastewater treatment plant was physicochemically pretreated in a large pilot-scale system comprising coagulation, flocculation, microsieve and microfiltration operated in various configurations. The produced microsieve filtrates and microfiltration...... for small and medium-sized wastewater treatment plants. The study demonstrates that physicochemical pretreatment can improve the FO water flux by up to 20%. In contrast, the solute rejection decreases significantly compared to the FO-treated wastewater with mechanical pretreatment....... permeates were then concentrated using forward osmosis (FO). Aquaporin Inside(TM) FO membranes were used for both the microsieve filtrate and microfiltration permeates, and Hydration Technologies Inc.-thin-film composite membranes for the microfiltration permeate using only NaCl as the draw solution. The FO...

  14. Effect of time on dyeing wastewater treatment

    Science.gov (United States)

    Ye, Tingjin; Chen, Xin; Xu, Zizhen; Chen, Xiaogang; Shi, Liang; He, Lingfeng; Zhang, Yongli

    2018-03-01

    The preparation of carboxymethylchitosan wrapping fly-ash adsorbent using high temperature activated fly ash and sodium carboxymethyl chitosan (CWF), as with the iron-carbon micro-electrolysis process simulation and actual printing and dyeing wastewater. The effects of mixing time and static time on decolorization ratio, COD removing rate and turbidness removing rate were investigated. The experimental results show that the wastewater stirring times on the decolorization rate and COD removal rate and turbidity removal rate influence, with increasing of the stirring time, three showed a downward trend, and reached the peak at 10 min time; wastewater time on the decolorization ratio and COD removing efficiency and turbidness removing rate influence, along with standing time increase, three who declined and reached the maximum in 30min time.

  15. Occurrence of bisphenol A in wastewater and wastewater sludge of CUQ treatment plant

    Directory of Open Access Journals (Sweden)

    Dipti Prakash Mohapatra

    2011-09-01

    Full Text Available The identification and quantification of bisphenol A (BPA in wastewater (WW and wastewater sludge (WWS is of major interest to assess the endocrine activity of treated effluent discharged into the environment. BPA is manufactured in high quantities fro its use in adhesives, powder paints, thermal paper and paper coatings among others. Due to the daily use of these products, high concentration of BPA was observed in WW and WWS. BPA was measured in samples from Urban Community of Quebec wastewater treatment plant located in Quebec (Canada using LC-MS/MS method. The results showed that BPA was present in significant quantities (0.07 μg L–1 to 1.68 μg L–1 in wastewater and 0.104 μg g–1 to 0.312 μg g–1 in wastewater sludge in the wastewater treatment plant (WWTP. The treatment plant is efficient (76 % in removal of pollutant from process stream, however, environmentally significant concentrations of 0.41 μg L–1 were still present in the treated effluent. Rheological study established the partitioning of BPA within the treatment plant. This serves as the base to judge the portion of the process stream requiring more treatment for degradation of BPA and also in selection of different treatment methods. Higher BPA concentration was observed in primary and secondary sludge solids (0.36 and 0.24 μg g–1, respectively as compared to their liquid counterpart (0.27 and 0.15 μg L–1, respectively separated by centrifugation. Thus, BPA was present in significant concentrations in the WWTP and mostly partitioned in the solid fraction of sludge (Partition coefficient (Kd for primary, secondary and mixed sludge was 0.013, 0.015 and 0.012, respectively.

  16. Analysis of Treated Wastewater Produced from Al-Lajoun Wastewater Treatment Plant, Jordan

    Directory of Open Access Journals (Sweden)

    Waleed Manasreh

    2009-01-01

    Full Text Available Assessment of treated wastewater produced from Al-Lajoun collection tanks of the wastewater treatment plant in Karak province was carried out in term of physical properties, its major ionic composition, heavy metals and general organic content, for both wastewater influent and effluent. Sampling was done in two periods during (2005-2006 summer season and during winter season to detect the impact of climate on treated wastewater quality. Soil samples were collected from Al-Lajoun valley where the treated wastewater drained, to determine the heavy metal and total organic carbon concentrations at same time. The study showed that the treated wastewater was low in its heavy metals contents during both winter and summer seasons, which was attributed to high pH value enhancing their precipitations. Some of the major ions such as Cl-, Na+, HCO33-, Mg2+ in addition to biological oxygen demand and chemical oxygen demand were higher than the recommended Jordanian guidelines for drained water in valleys. The treated wastewater contained some organic compounds of toxic type such as polycyclic aromatic hydrocarbons. Results showed that the soil was low in its heavy metal contents and total organic carbon with distance from the discharging pond, which attributed to the adsorption of heavy metals, total organic carbon and sedimentation of suspended particulates. From this study it was concluded that the treated wastewater must be used in situ for production of animal fodder and prohibit its contact with the surface and groundwater resources of the area specially Al-Mujeb dam where it is collected.

  17. Treatment of Arctic Wastewater by Chemical Coagulation, UV and Peracetic Acid Disinfection

    OpenAIRE

    Chhetri, Ravi Kumar; Klupsch, Ewa; Andersen, Henrik Rasmus; Jensen, Pernille Erland

    2017-01-01

    Conventional wastewater treatment is challenging in the Arctic region due to the cold climate and scattered population. Thus, no wastewater treatment plant exists in Greenland and raw wastewater is discharged directly to nearby waterbodies without treatment. We investigated the efficiency of physico-chemical wastewater treatment, in Kangerlussuaq, Greenland. Raw wastewater from Kangerlussuaq was treated by chemical coagulation and UV disinfection. By applying 7.5 mg Al/L polyaluminium chlorid...

  18. CO₂-neutral wastewater treatment plants or robust, climate-friendly wastewater management? A systems perspective.

    Science.gov (United States)

    Larsen, Tove A

    2015-12-15

    CO2-neutral wastewater treatment plants can be obtained by improving the recovery of internal wastewater energy resources (COD, nutrients, energy) and reducing energy demand as well as direct emissions of the greenhouse gases N2O and CH4. Climate-friendly wastewater management also includes the management of the heat resource, which is most efficiently recovered at the household level, and robust wastewater management must be able to cope with a possible resulting temperature decrease. At the treatment plant there is a substantial energy optimization potential, both from improving electromechanical devices and sludge treatment as well as through the implementation of more energy-efficient processes like the mainstream anammox process or nutrient recovery from urine. Whether CO2 neutrality can be achieved depends not only on the actual net electricity production, but also on the type of electricity replaced: the cleaner the marginal electricity the more difficult to compensate for the direct emissions, which can be substantial, depending on the stability of the biological processes. It is possible to combine heat recovery at the household scale and nutrient recovery from urine, which both have a large potential to improve the climate friendliness of wastewater management. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Treatment of textiles industrial wastewater by electron beam and biological treatment (sbr)

    International Nuclear Information System (INIS)

    Khomsaton Abu Bakar; Khairul Zaman Mohd Dahlan; Zulkafli Ghazali; Ting Teo Ming

    2008-08-01

    Study of treating textiles industrial wastewater with combined of electron beam and Tower Style Biological Treatment (TSB) was investigated in Korea. In this project, textiles wastewater was also treated with electron beam, but hybrid with Sequencing Batch Reactor (SBR). The purpose of this research is to develop combined electron beam treatment with existing biological treatment facility (SBR), of textile industries in Malaysia. The objectives of this project are to determine the effective irradiation parameter for treatment and to identify effective total retention time in SBR system. To achieve the objective, samples fill in polypropyle tray were irradiated at 1 MeV, 20 mA and 1 MeV ,5 mA at doses 11, 20, 30, 40 and 50 kGy respectively. Raw effluent and two series of irradiated effluent at 1 MeV 20 mA (11, 20, 30, 40 and 50 kGy) and 1 MeV 5 mA (11, 20, 30, 40 and 50 kGy) were then treated in SBR system. Samples were analysed at 6, 14 and 20 hrs after aeration in the SBR. The results show that, average reduction in BOD was about 2-11% after irradiated at 5 mA, and the percentage increased to 21-73% after treatment in SBR system. At 20 mA, BOD reduced to 7-29% during irradiation and the value increased to 57-87% after treatment in SBR system. (Author)

  20. The effects of physicochemical wastewater treatment operations on forward osmosis

    OpenAIRE

    Hey, Tobias; Bajraktari, Niada; Vogel, Jörg; Hélix-Nielsen, Claus; La Cour Jansen, Jes; Jönsson, Karin

    2016-01-01

    Raw municipal wastewater from a full-scale wastewater treatment plant was physicochemically pretreated in a large pilot-scale system comprising coagulation, flocculation, microsieve and microfiltration operated in various configurations. The produced microsieve filtrates and microfiltration permeates were then concentrated using forward osmosis (FO). Aquaporin Inside(TM) FO membranes were used for both the microsieve filtrate and microfiltration permeates, and Hydration Technologies Inc.-thin...

  1. Pulsed reactor modelling for catalytic micropollutant treatment in wastewater

    OpenAIRE

    Juarros Bertolín, Helena Georgina

    2011-01-01

    This study stems from the problem of the presence of micropollutants (including phenolic compounds such as Bisphenol A, Nonylphenol and Triclosan) in urban and industrial wastewaters. Systems used in the wastewater treatment plants are inefficient in removing these micropollutants that are harmful for the environment. In an ongoing project, laccases, a group of enzymes, are used to efficiently catalyse the degradation of phenolic micropollutants. In this master thesis, it is proposed...

  2. Winery wastewater treatment using the land filter technique.

    Science.gov (United States)

    Christen, E W; Quayle, W C; Marcoux, M A; Arienzo, M; Jayawardane, N S

    2010-08-01

    This study outlines a new approach to the treatment of winery wastewater by application to a land FILTER (Filtration and Irrigated cropping for Land Treatment and Effluent Reuse) system. The land FILTER system was tested at a medium size rural winery crushing approximately 20,000 tonnes of grapes. The approach consisted of a preliminary treatment through a coarse screening and settling in treatment ponds, followed by application to the land FILTER planted to pasture. The land FILTER system efficiently dealt with variable volumes and nutrient loads in the wastewater. It was operated to minimize pollutant loads in the treated water (subsurface drainage) and provide adequate leaching to manage salt in the soil profile. The land FILTER system was effective in neutralizing the pH of the wastewater and removing nutrient pollutants to meet EPA discharge limits. However, suspended solids (SS) and biological oxygen demand (BOD) levels in the subsurface drainage waters slightly exceeded EPA limits for discharge. The high organic content in the wastewater initially caused some soil blockage and impeded drainage in the land FILTER site. This was addressed by reducing the hydraulic loading rate to allow increased soil drying between wastewater irrigations. The analysis of soil characteristics after the application of wastewater found that there was some potassium accumulation in the profile but sodium and nutrients decreased after wastewater application. Thus, the wastewater application and provision of subsurface drainage ensured adequate leaching, and so was adequate to avoid the risk of soil salinisation. Crown Copyright 2010. Published by Elsevier Ltd. All rights reserved.

  3. Method for treatment of wastewater of nuclear power plants

    International Nuclear Information System (INIS)

    Ito, Kazutoshi; Suzuki, Katsumi; Suzuki, Mamoru; Minato, Akira.

    1984-01-01

    A method for treatment of wastewater of nuclear power plants is characterized by the fact that concentration and volume reduction are performed after Ca and Mg as components for the formation of an adhering scale is converted to an 8-oxyquinoline complex, which is hardly soluble in water, and does not precipitate out as an adhering scale, by the addition of 8-oxyquinoline into nuclear power plant wastewater

  4. Constructed wetlands for wastewater treatment in cold climate - A review.

    Science.gov (United States)

    Wang, Mo; Zhang, Dong Qing; Dong, Jian Wen; Tan, Soon Keat

    2017-07-01

    Constructed wetlands (CWs) have been successfully used for treating various wastewaters for decades and have been identified as a sustainable wastewater management option worldwide. However, the application of CW for wastewater treatment in frigid climate presents special challenges. Wetland treatment of wastewater relies largely on biological processes, and reliable treatment is often a function of climate conditions. To date, the rate of adoption of wetland technology for wastewater treatment in cold regions has been slow and there are relatively few published reports on CW applications in cold climate. This paper therefore highlights the practice and applications of treatment wetlands in cold climate. A comprehensive review of the effectiveness of contaminant removal in different wetland systems including: (1) free water surface (FWS) CWs; (2) subsurface flow (SSF) CWs; and (3) hybrid wetland systems, is presented. The emphasis of this review is also placed on the influence of cold weather conditions on the removal efficacies of different contaminants. The strategies of wetland design and operation for performance intensification, such as the presence of plant, operational mode, effluent recirculation, artificial aeration and in-series design, which are crucial to achieve the sustainable treatment performance in cold climate, are also discussed. This study is conducive to further research for the understanding of CW design and treatment performance in cold climate. Copyright © 2017. Published by Elsevier B.V.

  5. Phytotoxicity testing of winery wastewater for constructed wetland treatment.

    Science.gov (United States)

    Arienzo, Michele; Christen, Evan W; Quayle, Wendy C

    2009-09-30

    Rapid and inexpensive phytotoxicity bioassays for winery wastewater (WW) are important when designing winery wastewater treatment systems involving constructed wetlands. Three macrophyte wetland species (Phragmites australis, Schoenoplectus validus and Juncus ingens) were tested using a pot experiment simulating a wetland microcosm. The winery wastewater concentration was varied (0.5%, 5%, 10%, 25%, 50%, 75% and 100%) and pH was corrected for some concentrations using lime as an amendment. The tolerance of the three aquatic macrophytes species to winery wastewater was studied through biomass production, total chlorophyll and nitrogen, phosphorous and potassium tissue concentrations. The results showed that at greater than 25% wastewater concentration all the macrophytes died and that Phragmites was the least hardy species. At less than 25% wastewater concentration the wetland microcosms were effective in reducing chemical oxygen demand, phenols and total soluble solids. We also evaluated the performance of two laboratory phytotoxicity assays; (1) Garden Cress (Lepidium sativum), and (2) Onion (Allium coepa). The results of these tests revealed that the effluent was highly toxic with effective concentration, EC(50), inhibition values, as low as 0.25%. Liming the WW increased the EC(50) by 10 fold. Comparing the cress and onion bioassays with the wetland microcosm results indicated that the thresholds for toxicity were of the same order of magnitude. As such we suggest that the onion and cress bioassays could be effectively used in the wine industry for rapid wastewater toxicity assessment.

  6. Development of an Integrated Wastewater Treatment System/water reuse/agriculture model

    Science.gov (United States)

    Fox, C. H.; Schuler, A.

    2017-12-01

    Factors like increasing population, urbanization, and climate change have made the management of water resources a challenge for municipalities. By understanding wastewater recycling for agriculture in arid regions, we can expand the supply of water to agriculture and reduce energy use at wastewater treatment plants (WWTPs). This can improve management decisions between WWTPs and water managers. The objective of this research is to develop a prototype integrated model of the wastewater treatment system and nearby agricultural areas linked by water and nutrients, using the Albuquerque Southeast Eastern Reclamation Facility (SWRF) and downstream agricultural system as a case study. Little work has been done to understand how such treatment technology decisions affect the potential for water ruse, nutrient recovery in agriculture, overall energy consumption and agriculture production and water quality. A holistic approach to understanding synergies and tradeoffs between treatment, reuse, and agriculture is needed. For example, critical wastewater treatment process decisions include options to nitrify (oxidize ammonia), which requires large amounts of energy, to operate at low dissolved oxygen concentrations, which requires much less energy, whether to recover nitrogen and phosphorus, chemically in biosolids, or in reuse water for agriculture, whether to generate energy from anaerobic digestion, and whether to develop infrastructure for agricultural reuse. The research first includes quantifying existing and feasible agricultural sites suitable for irrigation by reuse wastewater as well as existing infrastructure such as irrigation canals and piping by using GIS databases. Second, a nutrient and water requirement for common New Mexico crop is being determined. Third, a wastewater treatment model will be utilized to quantify energy usage and nutrient removal under various scenarios. Different agricultural reuse sensors and treatment technologies will be explored. The

  7. SEQUENCING BATCH REACTOR: A PROMISING TECHNOLOGY IN WASTEWATER TREATMENT

    Directory of Open Access Journals (Sweden)

    A. H. Mahvi

    2008-04-01

    Full Text Available Discharge of domestic and industrial wastewater to surface or groundwater is very dangerous to the environment. Therefore treatment of any kind of wastewater to produce effluent with good quality is necessary. In this regard choosing an effective treatment system is important. Sequencing batch reactor is a modification of activated sludge process which has been successfully used to treat municipal and industrial wastewater. The process could be applied for nutrients removal, high biochemical oxygen demand containing industrial wastewater, wastewater containing toxic materials such as cyanide, copper, chromium, lead and nickel, food industries effluents, landfill leachates and tannery wastewater. Of the process advantages are single-tank configuration, small foot print, easily expandable, simple operation and low capital costs. Many researches have been conducted on this treatment technology. The authors had been conducted some investigations on a modification of sequencing batch reactor. Their studies resulted in very high percentage removal of biochemical oxygen demand, chemical oxygen demand, total kjeldahl nitrogen, total nitrogen, total phosphorus and total suspended solids respectively. This paper reviews some of the published works in addition to experiences of the authors.

  8. Phytoremediation of Nitrogen as Green Chemistry for Wastewater Treatment System

    Directory of Open Access Journals (Sweden)

    Lennevey Kinidi

    2017-01-01

    Full Text Available It is noteworthy that ammoniacal nitrogen contamination in wastewater has reportedly posed a great threat to the environment. Although there are several conventional technologies being employed to remediate ammoniacal nitrogen contamination in wastewater, they are not sustainable and cost-effective. Along this line, the present study aims to highlight the significance of green chemistry characteristics of phytoremediation in nitrogen for wastewater treatment. Notably, ammoniacal nitrogen can be found in many types of sources and it brings harmful effects to the environment. Hence, the present study also reviews the phytoremediation of nitrogen and describes its green chemistry characteristics. Additionally, the different types of wastewater contaminants and their effects on phytoremediation and the phytoremediation consideration in wastewater treatment application and sustainable waste management of harvested aquatic macrophytes were reviewed. Finally, the present study explicates the future perspectives of phytoremediation. Based on the reviews, it can be concluded that green chemistry characteristics of phytoremediation in nitrogen have proved that it is sustainable and cost-effective in relation to other existing ammoniacal nitrogen remediation technologies. Therefore, it can be deduced that a cheaper and more environmental friendly ammoniacal nitrogen technology can be achieved with the utilization of phytoremediation in wastewater treatment.

  9. BIOFILTERS IN WASTEWATER TREATMENT AFTER RECYCLED PLASTIC MATERIALS

    Directory of Open Access Journals (Sweden)

    Irena Kania-Surowiec

    2014-10-01

    Full Text Available In this paper the possibility of using biological deposits in wastewater treatment of recycled plastics were presented. There are many aspects of this issue that should be considered to be able to use information technology solutions in the industry. This includes, inter alia, specify the types of laboratory tests based on the analysis of changes in the fluid during the wastewater treatment process, knowledge and selection factors for proper growth of biofilm in the deposit and to develop the right concept and a prototype for a particular processing plant, plastic processing plant. It is possible to determine the parameters that will increase the efficiency of sewage treatment while minimizing the financial effort on the part of the Company. Selection methods of wastewater treatment is also associated with the environmental strategy of the country at the enterprise level specified in the Environmental Policy. This is an additional argument for the use of biological methods in the treatment of industrial waste water.

  10. Development of Blumlein Line Generator and Reactor for Wastewater Treatment

    Directory of Open Access Journals (Sweden)

    Zainuddin Nawawi

    2013-11-01

    Full Text Available Nowadays the harm effects of wastewater from industrial sectors toward the environment become one of public major concern. There are several wastewater treatment methods and techniques which have been introduced such as by using biological, chemical, and physical process. However, it is found that there are some shortcomings in the current available methods and techniques. For instance, the application of chlorine can cause bacterial disinfection but produce secondary harmful carcinogenic disinfection.  And the application of ozone treatment –  which is one of the most reliable technique – requires improvement in term of ozone production and treatment system. In order to acquire a better understanding in wastewater treatment process, a study of wastewater treatment system and Hybrid Discharge reactor – to acquire gas-liquid phase corona like discharge – is carried out. In addition to the laboratory experiment, designing and development of the Blumlein pulse power circuit, and modification of reactor for wastewater treatment are accomplished as well.

  11. Wastewater Treatment with Ammonia Recovery System

    OpenAIRE

    M. Örvös; T. Balázs; K. F. Both

    2008-01-01

    From environmental aspect purification of ammonia containing wastewater is expected. High efficiency ammonia desorption can be done from the water by air on proper temperature. After the desorption process, ammonia can be recovered and used in another technology. The calculation method described below give some methods to find either the minimum column height or ammonia rich solution of the effluent.

  12. Electron beam treatment of wastewaters and sludges

    International Nuclear Information System (INIS)

    Osborn, D.W.

    1980-01-01

    Various procedures for decreasing the health risks associated with the disposal of sewage sludges are discussed including land storage, thermophilic digestion, autothermal aerobic digestion, the Porteus Process, the Zimpro Process, incineration, pyrolysis, thermal pasteurisation, composting, lime utilisation, flash drying and radiation techniques. A fully automated sludge irradiation facility at Geiselbullach near Munich and an electron accelerator experimental plant near Boston are described. Advantages and disadvantages are given for both processes. Costs of electron radiation treatment of sewage sludges (a slurry containing 5 per cent solids) for a city the size of Johannesburg is estimated to be in the order of R900 000 per year at a dose rate of 4 000 Gy, which would produce a product of reasonable hygienic quality but not necessarily meet the criteria laid down by local authority medical officers at all times. In order to reduce costs it would be necessary to have a readily available market to dispose of disinfected material

  13. Electron beam treatment of wastewaters and sludges

    Energy Technology Data Exchange (ETDEWEB)

    Osborn, D W [City Health Dept., Johannesburg (South Africa)

    1980-12-01

    Various procedures for decreasing the health risks associated with the disposal of sewage sludges are discussed including land storage, thermophilic digestion, autothermal aerobic digestion, the Porteus Process, the Zimpro Process, incineration, pyrolysis, thermal pasteurisation, composting, lime utilisation, flash drying and radiation techniques. A fully automated sludge irradiation facility at Geiselbullach near Munich and an electron accelerator experimental plant near Boston are described. Advantages and disadvantages are given for both processes. Costs of electron radiation treatment of sewage sludges (a slurry containing 5 per cent solids) for a city the size of Johannesburg is estimated to be in the order of R900,000 per year at a dose rate of 4,000 Gy, which would produce a product of reasonable hygienic quality but not necessarily meet the criteria laid down by local authority medical officers at all times. In order to reduce costs it would be necessary to have a readily available market to dispose of disinfected material.

  14. Car wash wastewater treatment and water reuse - a case study.

    Science.gov (United States)

    Zaneti, R N; Etchepare, R; Rubio, J

    2013-01-01

    Recent features of a car wash wastewater reclamation system and results from a full-scale car wash wastewater treatment and recycling process are reported. This upcoming technology comprises a new flocculation-column flotation process, sand filtration, and a final chlorination. A water usage and savings audit (22 weeks) showed that almost 70% reclamation was possible, and fewer than 40 L of fresh water per wash were needed. Wastewater and reclaimed water were characterized by monitoring chemical, physicochemical and biological parameters. Results were discussed in terms of aesthetic quality (water clarification and odour), health (pathological) and chemical (corrosion and scaling) risks. A microbiological risk model was applied and the Escherichia coli proposed criterion for car wash reclaimed water is 200 CFU 100 mL(-1). It is believed that the discussions on car wash wastewater reclamation criteria may assist institutions to create laws in Brazil and elsewhere.

  15. Membrane bioreactors and their uses in wastewater treatments

    Energy Technology Data Exchange (ETDEWEB)

    Le-Clech, Pierre [New South Wales Univ., Sydney (Australia). UNESCO Centre for Membrane Science and Technology

    2010-12-15

    With the current need for more efficient and reliable processes for municipal and industrial wastewaters treatment, membrane bioreactor (MBR) technology has received considerable attention. After just a couple of decades of existence, MBR can now be considered as an established wastewater treatment system, competing directly with conventional processes like activated sludge treatment plant. However, MBR processes still suffer from major drawbacks, including high operational costs due to the use of anti-fouling strategies applied to the system to maintain sustainable filtration conditions. Moreover, this specific use of membranes has not reached full maturity yet, as MBR suppliers and users still lack experience regarding the long-term performances of the system. Still, major improvements of the MBR design and operation have been witnessed over the recent years, making MBR an option of choice for wastewater treatment and reuse. This mini-review reports recent developments and current research trends in the field. (orig.)

  16. Cryptosporidium and Giardia removal by secondary and tertiary wastewater treatment.

    Science.gov (United States)

    Taran-Benshoshan, Marina; Ofer, Naomi; Dalit, Vaizel-Ohayon; Aharoni, Avi; Revhun, Menahem; Nitzan, Yeshayahu; Nasser, Abidelfatah M

    2015-01-01

    Wastewater disposal may be a source of environmental contamination by Cryptosporidium and Giardia. This study was conducted to evaluate the prevalence of Cryptosporidium oocysts and Giardia cysts in raw and treated wastewater effluents. A prevalence of 100% was demonstrated for Giardia cysts in raw wastewater, at a concentration range of 10 to 12,225 cysts L(-1), whereas the concentration of Cryptosporidium oocysts in raw wastewater was 4 to 125 oocysts L(-1). The removal of Giardia cysts by secondary and tertiary treatment processes was greater than those observed for Cryptosporidium oocysts and turbidity. Cryptosporidium and Giardia were present in 68.5% and 76% of the tertiary effluent samples, respectively, at an average concentration of 0.93 cysts L(-1) and 9.94 oocysts L(-1). A higher detection limit of Cryptosporidium oocysts in wastewater was observed for nested PCR as compared to immune fluorescent assay (IFA). C. hominis was found to be the dominant genotype in wastewater effluents followed by C. parvum and C. andersoni or C. muris. Giardia was more prevalent than Cryptosporidium in the studied community and treatment processes were more efficient for the removal of Giardia than Cryptosporidium. Zoonotic genotypes of Cryptosporidium were also present in the human community. To assess the public health significance of Cryptosporidium oocysts present in tertiary effluent, viability (infectivity) needs to be assessed.

  17. Microbial Communities in Danish Wastewater Treatment Plants with Nutrient Removal

    DEFF Research Database (Denmark)

    Mielczarek, Artur Tomasz

    Activated sludge treatment plants are the most used wastewater treatment systems worldwide for biological nutrient removal from wastewater. Nevertheless, the treatment systems have been for many years operated as so called “black-box”, where specific process parameters were adjusted without...... that plants with return sludge Side-Stream Hydrolysis (SSH) instead of the normal anaerobic process tank tended to have significantly fewer unwanted GAOs in contrast to many plants with traditional mainstream anaerobic tank and thus it was proposed that this system might be an effective strategy of control...

  18. Efficiency of Moringa oleifera Seeds for Treatment of Laundry Wastewater

    Directory of Open Access Journals (Sweden)

    Al-Gheethi AA

    2017-01-01

    Full Text Available Laundry wastewater has simple characteristics in which the detergents compounds are the main constitutes. But these compounds have adverse effects on the aquatic organisms in the natural water bodies which received these wastes without treatment. Few studies were conducted on these wastes because it represent a small part of the total wastewater generated from different human activities. Moreover, the coagulation process for laundry wastewater might be effective to remove of detergents compounds. Therefore, in the present study, the efficiency of coagulation process by using chemical (ferrous sulphate and natural coagulants (Moringa oleifera seeds were investigated. The raw laundry wastewater samples were collected from laundromat located at Taman Universiti, Parit Raja. The characteristics of these wastes were determined and then the wastewater was subjected for the treatment process consisted of three units including aeration, coagulation and sedimentation process. The chemical and natural coagulants were used with four dosage (30, 60, 90 and 120 mg L−1 and the coagulation process was carried out at room temperature (25±2ºC for one hour. The results revealed that the laundry wastewater have high concentrations of turbidity (57.8-68.1 NTU and Chemical Oxygen Demand (COD (423-450 mg L−1 with pH value between 7.96 and 8.37. M. oleifera seeds exhibited high efficiency for removal of turbidity (83.63% with 120 mg L−1 of dosage, while 30 mg L−1 of FeSO4 was the best for removal of COD (54.18%. However, both parameters still more than Standard B for wastewater disposal suggesting the need to increase the period of coagulation process with M. oleifera seeds or to subject of the treated effluents for a secondary coagulation process with natural coagulant products to improve the characteristics of laundry wastewater without a secondary products as that generated with the chemical coagulants.

  19. A comparative analysis of methods to represent uncertainty in estimating the cost of constructing wastewater treatment plants.

    Science.gov (United States)

    Chen, Ho-Wen; Chang, Ni-Bin

    2002-08-01

    Prediction of construction cost of wastewater treatment facilities could be influential for the economic feasibility of various levels of water pollution control programs. However, construction cost estimation is difficult to precisely evaluate in an uncertain environment and measured quantities are always burdened with different types of cost structures. Therefore, an understanding of the previous development of wastewater treatment plants and of the related construction cost structures of those facilities becomes essential for dealing with an effective regional water pollution control program. But deviations between the observed values and the estimated values are supposed to be due to measurement errors only in the conventional regression models. The inherent uncertainties of the underlying cost structure, where the human estimation is influential, are rarely explored. This paper is designed to recast a well-known problem of construction cost estimation for both domestic and industrial wastewater treatment plants via a comparative framework. Comparisons were made for three technologies of regression analyses, including the conventional least squares regression method, the fuzzy linear regression method, and the newly derived fuzzy goal regression method. The case study, incorporating a complete database with 48 domestic wastewater treatment plants and 29 industrial wastewater treatment plants being collected in Taiwan, implements such a cost estimation procedure in an uncertain environment. Given that the fuzzy structure in regression estimation may account for the inherent human complexity in cost estimation, the fuzzy goal regression method does exhibit more robust results in terms of some criteria. Moderate economy of scale exists in constructing both the domestic and industrial wastewater treatment plants. Findings indicate that the optimal size of a domestic wastewater treatment plant is approximately equivalent to 15,000 m3/day (CMD) and higher in Taiwan

  20. Wastewater stabilization ponds - an appropriate technology for sewage treatment and refuse

    International Nuclear Information System (INIS)

    Aziz, J.A.

    1999-01-01

    Treatment of wastewater is imperative to protect human health and environmental quality. To this effect, the chosen technology should be cost effective, simple and easy to operate and maintain. Wastewater stabilization ponds offer one such technology and their use should be promoted in countries with scarcity of water so as to reuse the treated effluents in irrigation. Long term, pilot scale investigations on the performance of wastewater stabilization ponds have been undertaken at the Institute of Environmental Engineering and Research, Lahore to develop design criteria for their local use. This paper discuss the types and operation of waste stabilization ponds and the extent of their application in Pakistan. The need for users' education for effective operation of this simple facility is also emphasized. (author)

  1. Physical-chemical pretreatment as an option for increased sustainability of municipal wastewater treatment plants

    NARCIS (Netherlands)

    Mels, A.

    2001-01-01

    Keywords : municipal wastewater treatment, physical-chemical pretreatment, chemically enhanced primary treatment, organic polymers, environmental sustainability

    Most of the currently applied municipal wastewater treatment plants in The Netherlands are

  2. Future wastewater solutions: removal of pharmaceuticals in conventional wastewater treatment plants

    DEFF Research Database (Denmark)

    Jensen, Thomas

    Residues of pharmaceuticals, personal care products and industrial chemicals find their way into the environment mainly through incomplete removal in the conventional urban wastewater treatment plants (WWTPs) and appear as micro-pollutants at pg L-1 to μg L-1 concentrations. WWTPs were designed...

  3. Improvement of biodegradability of industrial wastewaters by radiation treatment

    International Nuclear Information System (INIS)

    Jo, H.J.; Kim, H.J.; Kim, J.G.; Jung, J.; Choi, J.S.; Park, Y.K.

    2006-01-01

    In order to evaluate the use of gamma-ray treatment as a pretreatment to conventional biological methods, the effects of gamma-irradiation on biodegradability (BOD 5 /COD) of textile and pulp wastewaters were investigated. For all wastewaters studied in this work, the efficiency of treatment based on TOC removal was insignificant even at an absorbed dose of 20 kGy. However, the change of biodegradability was noticeable and largely dependent on the chemical property of wastewaters and the absorbed dose of gamma-rays. For textile wastewaters, gamma-ray treatment increased the biodegradability of desizing effluent due to degradation of polymeric sizing agents such as polyvinyl alcohol. Interestingly, the weight-loss showed the highest value of 0.97 at a relatively low dose of 1 kGy. This may be caused by the degradation of less biodegradable ethylene glycol prior to terephthalic acid decomposition. For pulp wastewater, the gamma-ray treatment did not improve the biodegradability of cooking and bleaching of C/D effluents. However, the biodegradability of bleaching E1 and final effluents was abruptly increased up to 5 kGy then slowly decreased as the absorbed dose was increased. The initial increase of biodegradability may be induced by the decomposition of refractory organic compounds such as chlorophenols, which are known to be the main components of bleaching C/D and final effluents. (author)

  4. Biological treatment and nanofiltration of denim textile wastewater for reuse

    International Nuclear Information System (INIS)

    Sahinkaya, Erkan; Uzal, Nigmet; Yetis, Ulku; Dilek, Filiz B.

    2008-01-01

    This study aims at coupling of activated sludge treatment with nanofiltration to improve denim textile wastewater quality to reuse criteria. In the activated sludge reactor, the COD removal efficiency was quite high as it was 91 ± 2% and 84 ± 4% on the basis of total and soluble feed COD, respectively. The color removal efficiency was 75 ± 10%, and around 50-70% of removed color was adsorbed on biomass or precipitated within the reactor. The high conductivity of the wastewater, as high as 8 mS/cm, did not adversely affect system performance. Although biological treatment is quite efficient, the wastewater does not meet the reuse criteria. Hence, further treatment to improve treated water quality was investigated using nanofiltration. Dead-end microfiltration (MF) with 5 μm pore size was applied to remove coarse particles before nanofiltration. The color rejection of nanofiltration was almost complete and permeate color was always lower than 10 Pt-Co. Similarly, quite high rejections were observed for COD (80-100%). Permeate conductivity was between 1.98 and 2.67 mS/cm (65% conductivity rejection). Wastewater fluxes were between 31 and 37 L/m 2 /h at 5.07 bars corresponding to around 45% flux declines compared to clean water fluxes. In conclusion, for denim textile wastewaters nanofiltration after biological treatment can be applied to meet reuse criteria

  5. Adaptive model based control for wastewater treatment plants

    NARCIS (Netherlands)

    de Niet, Arie; van de Vrugt, Noëlle Maria; Korving, Hans; Boucherie, Richardus J.; Savic, D.A.; Kapelan, Z.; Butler, D.

    2011-01-01

    In biological wastewater treatment, nitrogen and phosphorous are removed by activated sludge. The process requires oxygen input via aeration of the activated sludge tank. Aeration is responsible for about 60% of the energy consumption of a treatment plant. Hence optimization of aeration can

  6. Electrochemical treatment of tannery wastewater using DSA electrodes

    International Nuclear Information System (INIS)

    Costa, Carla Regina; Botta, Clarice M.R.; Espindola, Evaldo L.G.; Olivi, Paulo

    2008-01-01

    In this work we studied the electrochemical treatment of a tannery wastewater using dimensionally stable anodes (DSA) containing tin, iridium, ruthenium, and titanium. The electrodes were prepared by thermal decomposition of the polymeric precursors. The electrolyses were performed under galvanostatic conditions, at room temperature. Effects of the oxide composition, current density, and effluent conductivity were investigated, and the current efficiency was calculated as a function of the time for the performed electrolyses. Results showed that all the studied electrodes led to a decrease in the content of both total phenolic compounds and total organic carbon (TOC), as well as lower absorbance in the UV-vis region. Toxicity tests using Daphnia similis demonstrated that the electrochemical treatment reduced the wastewater toxicity. The use of DSA type electrodes in the electrochemical treatment of tannery wastewater proved to be useful since it can promote a decrease in total phenolic compounds, TOC, absorbance, and toxicity

  7. Electrochemical treatment of tannery wastewater using DSA electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Carla Regina [Departamento de Quimica, Faculdade de Filosofia, Ciencias e Letras de Ribeirao Preto, Universidade de Sao Paulo, CEP 14049-901 Ribeirao Preto, SP (Brazil); Botta, Clarice M.R.; Espindola, Evaldo L.G. [Nucleo de Estudos em Ecossistemas Aquaticos, Centro de Recursos Hidricos e Ecologia Aplicada, Escola de Engenharia de Sao Carlos, Universidade de Sao Paulo, CP 292, CEP 13560-970 Sao Carlos, SP (Brazil); Olivi, Paulo [Departamento de Quimica, Faculdade de Filosofia, Ciencias e Letras de Ribeirao Preto, Universidade de Sao Paulo, CEP 14049-901 Ribeirao Preto, SP (Brazil)], E-mail: olivip@ffclrp.usp.br

    2008-05-01

    In this work we studied the electrochemical treatment of a tannery wastewater using dimensionally stable anodes (DSA) containing tin, iridium, ruthenium, and titanium. The electrodes were prepared by thermal decomposition of the polymeric precursors. The electrolyses were performed under galvanostatic conditions, at room temperature. Effects of the oxide composition, current density, and effluent conductivity were investigated, and the current efficiency was calculated as a function of the time for the performed electrolyses. Results showed that all the studied electrodes led to a decrease in the content of both total phenolic compounds and total organic carbon (TOC), as well as lower absorbance in the UV-vis region. Toxicity tests using Daphnia similis demonstrated that the electrochemical treatment reduced the wastewater toxicity. The use of DSA type electrodes in the electrochemical treatment of tannery wastewater proved to be useful since it can promote a decrease in total phenolic compounds, TOC, absorbance, and toxicity.

  8. Optimal design of regional wastewater pipelines and treatment plant systems.

    Science.gov (United States)

    Brand, Noam; Ostfeld, Avi

    2011-01-01

    This manuscript describes the application of a genetic algorithm model for the optimal design of regional wastewater systems comprised of transmission gravitational and pumping sewer pipelines, decentralized treatment plants, and end users of reclaimed wastewater. The algorithm seeks the diameter size of the designed pipelines and their flow distribution simultaneously, the number of treatment plants and their size and location, the pump power, and the required excavation work. The model capabilities are demonstrated through a simplified example application using base runs and sensitivity analyses. Scaling of the proposed methodology to real life wastewater collection and treatment plants design problems needs further testing and developments. The model is coded in MATLAB using the GATOOL toolbox and is available from the authors.

  9. Biological Treatment of Wastewater by Sequencing Batch Reactors

    Directory of Open Access Journals (Sweden)

    Tsvetko Prokopov

    2014-04-01

    Full Text Available In the present paper the operation of wastewater treatment plant (WWTP in the town of Hisarya which includes a biological stage with aeration basins of cyclic type (SBR-method was studied. The values of the standard indicators of input and output water from the wastewater treatment plant were evaluated. Moreover, the reached effects due to the biological treatment of the wastewater in terms of the COD (95.7%, BOD5 (96.6%, total nitrogen (81.3%, total phosphorus (53.7% and suspended solids (95.7% were established. It was concluded that the indexes of the treated water were significantly below the emission limits specified in the discharge permit

  10. A review of virus removal in wastewater treatment pond systems.

    Science.gov (United States)

    Verbyla, Matthew E; Mihelcic, James R

    2015-03-15

    Wastewater treatment ponds (lagoons) are one of the most common types of technologies used for wastewater management worldwide, especially in small cities and towns. They are particularly well-suited for systems where the effluent is reused for irrigation. However, the efficiency of virus removal in wastewater treatment pond systems is not very well understood. The main objective of this paper is to critically review the major findings related to virus removal in wastewater treatment pond systems and to statistically analyze results reported in the literature from field studies on virus removal in these systems. A comprehensive analysis of virus removal reported in the literature from 71 different wastewater treatment pond systems reveals only a weak to moderate correlation of virus removal with theoretical hydraulic retention time. On average, one log10 reduction of viruses was achieved for every 14.5-20.9 days of retention, but the 95th percentile value of the data analyzed was 54 days. The mechanisms responsible for virus removal in wastewater treatment ponds were also reviewed. One recent finding is that sedimentation may not be a significant virus removal mechanism in some wastewater ponds. Recent research has also revealed that direct and indirect sunlight-mediated mechanisms are not only dependent on pond water chemistry and optics, but also on the characteristics of the virus and its genome. MS2 coliphage is considered to be the best surrogate for studying sunlight disinfection in ponds. The interaction of viruses with particles, with other microorganisms, and with macroinvertebrates in wastewater treatment ponds has not been extensively studied. It is also unclear whether virus internalization by higher trophic-level organisms has a protective or a detrimental effect on virus viability and transport in pond systems. Similarly, the impact of virus-particle associations on sunlight disinfection in ponds is not well understood. Future research should focus on

  11. Disinfection of wastewater from a Riyadh Wastewater Treatment Plant with ionizing radiation

    International Nuclear Information System (INIS)

    Basfar, A.A.; Abdel Rehim, F.

    2002-01-01

    The goal of this research was to establish the applicability of the electron beam treatment process for treating wastewater intended for reuse. The objective of this study was to determine the effectiveness of gamma irradiation in the disinfection of wastewater, and the improvement of the water quality by determining the changes in organic matter as indicated by the measurement of biochemical oxygen demand (BOD), chemical oxygen demand (COD) and total organic carbon (TOC). Samples of effluent, before and after chlorination, and sludge were obtained from a Riyadh Wastewater Treatment Plant. The studies were conducted using a laboratory scale 60 Co gamma source. The improvement in quality of the irradiated samples was demonstrated by the reduction in bacteria, and the reduction in the BOD, COD and TOC. Radiation of the wastewater provided adequate disinfection while at the same time increasing the water quality. This treatment could lead to additional opportunities for the reuse of this valuable resource. Limited studies, conducted on the anaerobically digested secondary biosolids, showed an improvement in bacterial content and no change in COD

  12. Gorliz wastewater plant extension biofiltration as the solution for urban environment integrated facilities; Ampliacion de la EDAR de Gorliz. La biofiltracion como solucion en plantas integrada en medios urbanos

    Energy Technology Data Exchange (ETDEWEB)

    Bartolome Quintano, M.

    2005-07-01

    This article sets out to show biofiltration as the most suitable technology for wastewater treatment facilities that show specials requirements. Mainly, these considerations are surface deficiency, special foundations, high flow variations and environmentally sensitive areas. Gorliz wastewater plant extension is showed as a good example of this technology. It is located inside the urban environment and its constructive project has been recently approved. (Author)

  13. Optimizing the selection of small-town wastewater treatment processes

    Science.gov (United States)

    Huang, Jianping; Zhang, Siqi

    2018-04-01

    Municipal wastewater treatment is energy-intensive. This high energy consumption causes high sewage treatment plant operating costs and increases the energy burden. To mitigate the adverse impacts of China’s development, sewage treatment plants should adopt effective energy-saving technologies. Artificial fortified natural water treatment and use of activated sludge and biofilm are all suitable technologies for small-town sewage treatment. This study features an analysis of the characteristics of small and medium-sized township sewage, an overview of current technologies, and a discussion of recent progress in sewage treatment. Based on this, an analysis of existing problems in municipal wastewater treatment is presented, and countermeasures to improve sewage treatment in small and medium-sized towns are proposed.

  14. Interior microelectrolysis oxidation of polyester wastewater and its treatment technology

    Energy Technology Data Exchange (ETDEWEB)

    Yang Xiaoyi, E-mail: yangxiaoyi@buaa.edu.cn [Department of Thermal Energy Engineering, BeiHang University, Beijing 100191 (China)

    2009-09-30

    This paper has investigated the effects of interior microelectrolysis pretreatment on polyester wastewater treatment and analyzed its mechanism on COD and surfactant removal. The efficiency of interior microelectrolysis is mainly influenced by solution pH, aeration and reaction time. Contaminants can be removed not only by redox reaction and flocculation in the result of ferrous and ferric hydroxides but also by electrophoresis under electric fields created by electron flow. pH confirms the chemical states of surfactants, Fe(II)/Fe(III) ratio and the redox potential, and thus influences the effects of electrophoresis, flocculation and redox action on contaminant removal. Anaerobic and aerobic batch tests were performed to study the degradation of polyester wastewater. The results imply that interior microelectrolysis and anaerobic pretreatment are lacking of effectiveness if applied individually in treating polyester wastewater in spite of their individual advantages. The interior microelectrolysis-anaerobic-aerobic process was investigated to treat polyester wastewater with comparison with interior microelectrolysis-aerobic process and anaerobic-aerobic process. High COD removal efficiencies have been gotten by the combination of interior microelectrolysis with anaerobic technology and aerobic technology. The results also imply that only biological treatment was less effective in polyester wastewater treatment.

  15. Interior microelectrolysis oxidation of polyester wastewater and its treatment technology

    International Nuclear Information System (INIS)

    Yang Xiaoyi

    2009-01-01

    This paper has investigated the effects of interior microelectrolysis pretreatment on polyester wastewater treatment and analyzed its mechanism on COD and surfactant removal. The efficiency of interior microelectrolysis is mainly influenced by solution pH, aeration and reaction time. Contaminants can be removed not only by redox reaction and flocculation in the result of ferrous and ferric hydroxides but also by electrophoresis under electric fields created by electron flow. pH confirms the chemical states of surfactants, Fe(II)/Fe(III) ratio and the redox potential, and thus influences the effects of electrophoresis, flocculation and redox action on contaminant removal. Anaerobic and aerobic batch tests were performed to study the degradation of polyester wastewater. The results imply that interior microelectrolysis and anaerobic pretreatment are lacking of effectiveness if applied individually in treating polyester wastewater in spite of their individual advantages. The interior microelectrolysis-anaerobic-aerobic process was investigated to treat polyester wastewater with comparison with interior microelectrolysis-aerobic process and anaerobic-aerobic process. High COD removal efficiencies have been gotten by the combination of interior microelectrolysis with anaerobic technology and aerobic technology. The results also imply that only biological treatment was less effective in polyester wastewater treatment.

  16. Treatment of Wastewater Containing Organic Pollutants by Ionizing Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Kimura, A.; Taguchi, M. [Japan Atomic Energy Agency (Japan); Maruyama, A. [Gunma Prefectural Sewerage Manegement General Office (Japan)

    2012-07-01

    We have investigated the treatment of endocrine disrupting chemicals (EDCs) and halogented organic compounds (HOCs) in wastewater by ionizing radiation in the CRP. Three samples of the actual wastewater having estrogen activity were analyzed by the yeast two-hybrid assay, enzyme linked immunosorbent assay (ELISA) and total organic carbon (TOC) analysis. Treatment of the wastewater is required to decrease the estrogen activity to less than 1 ng / L; the lower limit concentration of appearance of endocrine disrupting property. Medaka estrogen activity (mEA) initially increased and then decreased by β-ray irradiation, indicating that decomposition products in the real wastewaters also have the estrogen activity. The doses required to decrease in mEA of samples 1 to 3 below 1 ng / L, D{sub 1ng}, were estimated to be 100, 200 and 150 Gy (J kg{sup -1}), respectively. Since the D{sub 1ng} of 17 β-stradiol (E2) at 500 ng/L (1.8 nmol/L) in pure water was estimated to be 5 Gy as mentioned in the previous CRP, the elimination of estrogen activity of real wastewater is considered to be interfered by organic impurities. The economic cost of the treatment process of EDCs using electron beam was estimated at 17 yen m{sup -3}. (author)

  17. Interior microelectrolysis oxidation of polyester wastewater and its treatment technology.

    Science.gov (United States)

    Yang, Xiaoyi

    2009-09-30

    This paper has investigated the effects of interior microelectrolysis pretreatment on polyester wastewater treatment and analyzed its mechanism on COD and surfactant removal. The efficiency of interior microelectrolysis is mainly influenced by solution pH, aeration and reaction time. Contaminants can be removed not only by redox reaction and flocculation in the result of ferrous and ferric hydroxides but also by electrophoresis under electric fields created by electron flow. pH confirms the chemical states of surfactants, Fe(II)/Fe(III) ratio and the redox potential, and thus influences the effects of electrophoresis, flocculation and redox action on contaminant removal. Anaerobic and aerobic batch tests were performed to study the degradation of polyester wastewater. The results imply that interior microelectrolysis and anaerobic pretreatment are lacking of effectiveness if applied individually in treating polyester wastewater in spite of their individual advantages. The interior microelectrolysis-anaerobic-aerobic process was investigated to treat polyester wastewater with comparison with interior microelectrolysis-aerobic process and anaerobic-aerobic process. High COD removal efficiencies have been gotten by the combination of interior microelectrolysis with anaerobic technology and aerobic technology. The results also imply that only biological treatment was less effective in polyester wastewater treatment.

  18. Treatment of Wastewater Containing Organic Pollutants by Ionizing Radiation

    International Nuclear Information System (INIS)

    Kimura, A.; Taguchi, M.; Maruyama, A.

    2012-01-01

    We have investigated the treatment of endocrine disrupting chemicals (EDCs) and halogented organic compounds (HOCs) in wastewater by ionizing radiation in the CRP. Three samples of the actual wastewater having estrogen activity were analyzed by the yeast two-hybrid assay, enzyme linked immunosorbent assay (ELISA) and total organic carbon (TOC) analysis. Treatment of the wastewater is required to decrease the estrogen activity to less than 1 ng / L; the lower limit concentration of appearance of endocrine disrupting property. Medaka estrogen activity (mEA) initially increased and then decreased by β-ray irradiation, indicating that decomposition products in the real wastewaters also have the estrogen activity. The doses required to decrease in mEA of samples 1 to 3 below 1 ng / L, D 1ng , were estimated to be 100, 200 and 150 Gy (J kg -1 ), respectively. Since the D 1ng of 17 β-stradiol (E2) at 500 ng/L (1.8 nmol/L) in pure water was estimated to be 5 Gy as mentioned in the previous CRP, the elimination of estrogen activity of real wastewater is considered to be interfered by organic impurities. The economic cost of the treatment process of EDCs using electron beam was estimated at 17 yen m -3 . (author)

  19. Study on industrial wastewater treatment using superconducting magnetic separation

    Science.gov (United States)

    Zhang, Hao; Zhao, Zhengquan; Xu, Xiangdong; Li, Laifeng

    2011-06-01

    The mechanism of industrial wastewater treatment using superconducting magnetic separation is investigated. Fe 3O 4 nanoparticles were prepared by liquid precipitation and characterized by X-ray diffraction (XRD). Polyacrylic acid (PAA) film was coated on the magnetic particles using plasma coating technique. Transmission electron microscope (TEM) observation and infrared spectrum measurement indicate that the particle surface is well coated with PAA, and the film thickness is around 1 nm. Practical paper factory wastewater treatment using the modified magnetic seeds in a superconducting magnet (SCM) was carried out. The results show that the maximum removal rate of chemical oxygen demand (COD) by SCM method can reach 76%.

  20. Thermoeconomic analysis applied to an alternative wastewater treatment

    Energy Technology Data Exchange (ETDEWEB)

    Lamas, Wendell de Queiroz [University of Taubate, Post-graduate Programme in Mechanical Engineering, Department of Mechanical Engineering, Sp (Brazil); Sao Paulo State University, Faculty of Engineering, Campus of Guaratingueta, Postgraduate Programme in Mechanical Engineering, Sp (Brazil); Silveira, Jose Luz; Mattos dos Reis, Luiz Octavio [Sao Paulo State University, Faculty of Engineering, Campus of Guaratingueta, Postgraduate Programme in Mechanical Engineering, Sp (Brazil); Oscare Giacaglia, Giorgio Eugenio [University of Taubate, Post-graduate Programme in Mechanical Engineering, Department of Mechanical Engineering, Sp (Brazil)

    2010-10-15

    This work develops a methodology for the determination of costs associated to products generated in a small wastewater treatment station. The methodology begins with plant units identification, relating their fluid and thermodynamics features to each point indicated in its process diagram. Following, a functional diagram and a formulation are developed in exergetic basis, describing all equations for these points, which are the constraints for optimisation and are used to determine costs associated to products generated in a Small Wastewater Treatment Station - SWTS. The methodology is applied to a hypothetical system based on SWTS plants and presents consistent results when compared to values based on previous experiments and evaluations. (author)

  1. Wastewater treatment processes for the removal of emerging organic pollutants

    Directory of Open Access Journals (Sweden)

    Ainhoa Rubio Clemente

    2013-12-01

    Full Text Available Emerging organic pollutants form a very heterogeneous group of substances that have negative effects on aquatic organisms, so they should be removed from the environment. Unfortunately, conventional processes in wastewater treatment plants, especially biological ones, are inefficient in the degradation of these substances. It is therefore necessary to evaluate and optimize the effectiveness of the treatments, including advanced oxidation and membrane filtration processes. However, both techniques have drawbacks that may limit their stand-alone application, so it is proposed that the best solution may be to combine these technologies with biological processes to treat wastewater contaminated with emerging organic pollutants.

  2. Highly Polluted Wastewaters Treatment by Improved Dissolved Air Flotation Technology

    Science.gov (United States)

    Moga, I. C.; Covaliu, C. I.; Matache, M. G.; Doroftei, B. I.

    2017-06-01

    Numerous investigations are oriented towards the development of new wastewater treatment technologies, having high efficiencies for removing even low concentrations of pollutants found in water. These efforts were determined by the destroyer impact of the pollutants to the environment and human’s health. For this reason this paper presents our study concerning an improved dissolved air flotation technology for wastewater treatment. There is described a dissolved air flotation (DAF) installation composed by two equipments: pressurized capsule and lamellar settling. Also, there are presented some advantages of using nanoparticles as flotation collectors.

  3. Prevalence and characterisation of non-cholerae Vibrio spp. in final effluents of wastewater treatment facilities in two districts of the Eastern Cape Province of South Africa: implications for public health.

    Science.gov (United States)

    Okoh, Anthony I; Sibanda, Timothy; Nongogo, Vuyokazi; Adefisoye, Martins; Olayemi, Osuolale O; Nontongana, Nolonwabo

    2015-02-01

    Vibrios and other enteric pathogens can be found in wastewater effluents of a healthy population. We assessed the prevalence of three non-cholerae vibrios in wastewater effluents of 14 wastewater treatment plants (WWTP) in Chris Hani and Amathole district municipalities in the Eastern Cape Province of South Africa for a period of 12 months. With the exception of WWTP10 where presumptive vibrios were not detected in summer and spring, presumptive vibrios were detected in all seasons in other WWTP effluents. When a sample of 1,000 presumptive Vibrio isolates taken from across all sampling sites were subjected to molecular confirmation for Vibrio, 668 were confirmed to belong to the genus Vibrio, giving a prevalence rate of 66.8 %. Further, molecular characterisation of 300 confirmed Vibrio isolates revealed that 11.6 % (35) were Vibrio parahaemolyticus, 28.6 % (86) were Vibrio fluvialis and 28 % (84) were Vibrio vulnificus while 31.8 % (95) belonged to other Vibrio spp. not assayed for in this study. Antibiogram profiling of the three Vibrio species showed that V. parahaemolyticus was ≥50 % susceptible to 8 of the test antibiotics and ≥50 % resistant to only 5 of the 13 test antibiotics, while V. vulnificus showed a susceptibility profile of ≥50 % to 7 of the test antibiotics and a resistance profile of ≥50 % to 6 of the 13 test antibiotics. V. fluvialis showed ≥50 % resistance to 8 of the 13 antibiotics used while showing ≥50 % susceptibility to only 4 antibiotics used. All three Vibrio species were susceptible to gentamycin, cefuroxime, meropenem and imipenem. Multiple antibiotic resistance patterns were also evident especially against such antibiotics as tetracyclin, polymixin B, penicillin G, sulfamethazole and erythromycin against which all Vibrio species were resistant. These results indicate a significant threat to public health, more so in the Eastern Cape Province of South Africa which is characterised by widespread poverty, with more than a

  4. Coagulation and Adsorption Treatment of Printing Ink Wastewater

    OpenAIRE

    Klančnik, Maja

    2014-01-01

    The intention of the study was to improve the efficiency of total organic carbon (TOC) and colour removal from the wastewater samples polluted with flexographic printing ink following coagulation treatments with further adsorption onto activated carbons and ground orange peel. The treatment efficiencies were compared to those of further flocculation treatments and of coagulation and adsorption processes individually. Coagulation was a relatively effective single-treatment method, removing 99...

  5. Combined photo-Fenton-SBR process for antibiotic wastewater treatment

    Energy Technology Data Exchange (ETDEWEB)

    Elmolla, Emad S., E-mail: em_civil@yahoo.com [Department of Civil Engineering, Faculty of Engineering, Al-Azhar University, Cairo (Egypt); Chaudhuri, Malay [Department of Civil Engineering, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750 Tronoh, Perak (Malaysia)

    2011-09-15

    Highlights: {center_dot} The work focused on hazardous wastewater (antibiotic wastewater) treatment. {center_dot} Complete degradation of the antibiotics achieved by the treatment process. {center_dot} The SBR performance was found to be very sensitive to BOD{sub 5}/COD ratio below 0.40. {center_dot} Combined photo-Fenton-SBR process is a feasible treatment process for the antibiotic wastewater. - Abstract: The study examined combined photo-Fenton-SBR treatment of an antibiotic wastewater containing amoxicillin and cloxacillin. Optimum H{sub 2}O{sub 2}/COD and H{sub 2}O{sub 2}/Fe{sup 2+} molar ratio of the photo-Fenton pretreatment were observed to be 2.5 and 20, respectively. Complete degradation of the antibiotics occurred in one min. The sequencing batch reactor (SBR) was operated at different hydraulic retention times (HRTs) with the wastewater treated under different photo-Fenton operating conditions (H{sub 2}O{sub 2}/COD and H{sub 2}O{sub 2}/Fe{sup 2+} molar ratio). The SBR performance was found to be very sensitive to BOD{sub 5}/COD ratio of the photo-Fenton treated wastewater. Statistical analysis of the results indicated that it was possible to reduce the Fe{sup 2+} dose and increase the irradiation time of the photo-Fenton pretreatment. The best operating conditions of the combined photo-Fenton-SBR treatment were observed to be H{sub 2}O{sub 2}/COD molar ratio 2, H{sub 2}O{sub 2}/Fe{sup 2+} molar ratio 150, irradiation time 90 min and HRT of 12 h. Under the best operating conditions, 89% removal of sCOD with complete nitrification was achieved and the SBR effluent met the discharge standards.

  6. Combined photo-Fenton-SBR process for antibiotic wastewater treatment

    International Nuclear Information System (INIS)

    Elmolla, Emad S.; Chaudhuri, Malay

    2011-01-01

    Highlights: · The work focused on hazardous wastewater (antibiotic wastewater) treatment. · Complete degradation of the antibiotics achieved by the treatment process. · The SBR performance was found to be very sensitive to BOD 5 /COD ratio below 0.40. · Combined photo-Fenton-SBR process is a feasible treatment process for the antibiotic wastewater. - Abstract: The study examined combined photo-Fenton-SBR treatment of an antibiotic wastewater containing amoxicillin and cloxacillin. Optimum H 2 O 2 /COD and H 2 O 2 /Fe 2+ molar ratio of the photo-Fenton pretreatment were observed to be 2.5 and 20, respectively. Complete degradation of the antibiotics occurred in one min. The sequencing batch reactor (SBR) was operated at different hydraulic retention times (HRTs) with the wastewater treated under different photo-Fenton operating conditions (H 2 O 2 /COD and H 2 O 2 /Fe 2+ molar ratio). The SBR performance was found to be very sensitive to BOD 5 /COD ratio of the photo-Fenton treated wastewater. Statistical analysis of the results indicated that it was possible to reduce the Fe 2+ dose and increase the irradiation time of the photo-Fenton pretreatment. The best operating conditions of the combined photo-Fenton-SBR treatment were observed to be H 2 O 2 /COD molar ratio 2, H 2 O 2 /Fe 2+ molar ratio 150, irradiation time 90 min and HRT of 12 h. Under the best operating conditions, 89% removal of sCOD with complete nitrification was achieved and the SBR effluent met the discharge standards.

  7. Coagulation and Adsorption Treatment of Printing Ink Wastewater

    Directory of Open Access Journals (Sweden)

    Maja Klančnik

    2015-03-01

    Full Text Available The intention of the study was to improve the efficiency of total organic carbon (TOC and colour removal from the wastewater samples polluted with flexographic printing ink following coagulation treatments with further adsorption onto activated carbons and ground orange peel. The treatment efficiencies were compared to those of further flocculation treatments and of coagulation and adsorption processes individually. Coagulation was a relatively effective single-treatment method, removing 99.7% of the colour and 86.9% of the organic substances (TOC from the printing ink wastewater samples. Further flocculation did not further eliminate organic pollutants, whereas subsequent adsorption with 7 g/l of granular activated carbon further reduced organic substances by 35.1%, and adsorption with 7 g/l of powdered activated carbon further reduced organic substances by 59.3%. Orange peel was an inappropriate adsorbent for wastewater samples with low amounts of pollution, such as water that had been treated by coagulation. However, in highly polluted printing ink wastewater samples, the adsorption treatment with ground orange peel achieved efficiencies comparable to those of the granular activated carbon treatments.

  8. Incentives in the water chain: wastewater treatment and reuse in developing countries

    NARCIS (Netherlands)

    Gengenbach, M.F.

    2010-01-01

    The proper management of wastewater and its reuse is crucial in order to reduce hazards and maintain a variety of benefits. The merits of improvements in wastewater management are particularly high where effective wastewater treatment is not in place and completely untreated wastewater is reused.

  9. Treatment of wastewaters and methane fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Lescure, J P; Bourlet, P

    1980-01-01

    The laboratory, pilot plant, and industrial scale experiments were conducted on the anaerobic fermentation of spent sugar beet pulps and wastewater from wineries. The product of the fermentation was a gas typically containing CH/sub 4/ 65, CO/sub 2/ 15, H/sub 2/S 2.4, 0.3, N 0.8, and nonidentified substances 16.1 volume %. A 500 L pilot plant could process 10 kg/day of the spent beet pulp containing 20% solids and produce 500-600 L/day gas. The conversion of organic C was 66-91%.

  10. Treatment of Antibiotic Pharmaceutical Wastewater Using a Rotating Biological Contactor

    Directory of Open Access Journals (Sweden)

    Rongjun Su

    2015-01-01

    Full Text Available Rotating biological contactors (RBC are effective for treating wastewater, while they are rarely reported to be used for treating antibiotic pharmaceutical wastewater (APW. The current study investigates treatment of APW using an RBC. The effects of influent concentration, number of stages, and temperature on the remediation of APW were studied. The results indicated, even at low ambient temperature, 45% COD and 40% NH4+-N removal efficiencies. Moreover, the BOD5 removal efficiency was 85%. Microscopic observations illustrated that there were various active microorganisms displayed in the biofilms and their distribution changed from stage to stage. Compared with activated sludge, the biofilms in this study have higher content of dry matter and are easier to dehydrate and settle. Compared with current commercial incineration processes or advanced oxidation processes, RBC can greatly reduce the treatment cost. This research shows RBC is effective for such an inherently biorecalcitrant wastewater even at low ambient temperature.

  11. Progress report: Use of water hyacinth in wastewater treatment

    International Nuclear Information System (INIS)

    Mohd Yusof, Abdullah bin

    1981-01-01

    Previous studies have revealed that water hyacinth shows remarkable ability to remove, besides heavy metals, BOD and COD load from wastewaters which contain mainly organic pollutants. A survey was conducted to select suitable industrial effluents for pilot field studies, in particular wastewaters which were organic in nature such as those from food industries. A proposal to set up a pilot treatment system for field studies m addition to laboratory investigations was consistent with the recommendation put forward at the First Interim Project Review Meeting held in 1980 . It has been reported that introduction of water hyacinth into digested sugar waste would significantly enhance the efficiency of purification of the waste. Brief trials with a sugar refinery effluent in the laboratory showed the possibility of subjecting the wastewater to the water hyacinth treatment system in a pilot field study and arrangements were then made for the study to be carried out at site

  12. Occurrence of antibiotics in pharmaceutical industrial wastewater, wastewater treatment plant and sea waters in Tunisia.

    Science.gov (United States)

    Tahrani, Leyla; Van Loco, Joris; Ben Mansour, Hedi; Reyns, Tim

    2016-04-01

    Antibiotics are among the most commonly used group of pharmaceuticals in human medicine. They can therefore reach surface and groundwater bodies through different routes, such as wastewater treatment plant effluents, surface runoff, or infiltration of water used for agricultural purposes. It is well known that antibiotics pose a significant risk to environmental and human health, even at low concentrations. The aim of the present study was to evaluate the presence of aminoglycosides and phenicol antibiotics in municipal wastewaters, sea water and pharmaceutical effluents in Tunisia. All analysed water samples contained detectable levels of aminoglycoside and phenicol antibiotics. The highest concentrations in wastewater influents were observed for neomycin and kanamycin B (16.4 ng mL(-1) and 7.5 ng mL(-1), respectively). Chloramphenicol was found in wastewater influents up to 3 ng mL(-1). It was observed that the waste water treatment plants were not efficient in completely removing these antibiotics. Chloramphenicol and florfenicol were found in sea water samples near aquaculture sites at levels up to, respectively, 15.6 ng mL(-1) and 18.4 ng mL(-1). Also aminoglycoside antibiotics were found near aquaculture sites with the highest concentration of 3.4 ng mL(-1) for streptomycin. In pharmaceutical effluents, only gentamycin was found at concentrations up to 19 ng mL(-1) over a sampling period of four months.

  13. EFFLUENT TREATMENT FACILITY PEROXIDE DESTRUCTION CATALYST TESTING

    International Nuclear Information System (INIS)

    HALGREN DL

    2008-01-01

    The 200 Area Effluent Treatment Facility (ETF) main treatment train includes the peroxide destruction module (PDM) where the hydrogen peroxide residual from the upstream ultraviolet light/hydrogen peroxide oxidation unit is destroyed. Removal of the residual peroxide is necessary to protect downstream membranes from the strong oxidizer. The main component of the PDM is two reaction vessels utilizing granular activated carbon (GAC) as the reaction media. The PDM experienced a number of operability problems, including frequent plugging, and has not been utilized since the ETF changed to groundwater as the predominant feed. The unit seemed to be underperforming in regards to peroxide removal during the early periods of operation as well. It is anticipated that a functional PDM will be required for wastewater from the vitrification plant and other future streams. An alternate media or methodology needs to be identified to replace the GAC in the PDMs. This series of bench scale tests is to develop information to support an engineering study on the options for replacement of the existing GAC method for peroxide destruction at the ETF. A number of different catalysts will be compared as well as other potential methods such as strong reducing agents. The testing should lead to general conclusions on the viability of different catalysts and identify candidates for further study and evaluation

  14. Persistence of pathogenic prion protein during simulated wastewater treatment processes

    Science.gov (United States)

    Hinckley, G.T.; Johnson, C.J.; Jacobson, K.H.; Bartholomay, C.; Mcmahon, K.D.; McKenzie, D.; Aiken, Judd M.; Pedersen, J.A.

    2008-01-01

    Transmissible spongiform encephalopathies (TSEs, prion diseases) are a class of fatal neurodegenerative diseases affecting a variety of mammalian species including humans. A misfolded form of the prion protein (PrP TSE) is the major, if not sole, component of the infectious agent. Prions are highly resistant to degradation and to many disinfection procedures suggesting that, if prions enter wastewater treatment systems through sewers and/or septic systems (e.g., from slaughterhouses, necropsy laboratories, rural meat processors, private game dressing) or through leachate from landfills that have received TSE-contaminated material, prions could survive conventional wastewater treatment Here, we report the results of experiments examining the partitioning and persistence of PrPTSE during simulated wastewater treatment processes including activated and mesophilic anaerobic sludge digestion. Incubation with activated sludge did not result in significant PrPTSE degradation. PrPTSE and prion infectivity partitioned strongly to activated sludge solids and are expected to enter biosolids treatment processes. A large fraction of PrPTSE survived simulated mesophilic anaerobic sludge digestion. The small reduction in recoverable PrPTSE after 20-d anaerobic sludge digestion appeared attributable to a combination of declining extractability with time and microbial degradation. Our results suggest that if prions were to enter municipal wastewater treatment systems, most would partition to activated sludge solids, survive mesophilic anaerobic digestion, and be present in treated biosolids. ?? 2008 American Chemical Society.

  15. Integrated Risk Framework for Onsite Wastewater Treatment Systems

    Science.gov (United States)

    Carroll, Steven; Goonetilleke, Ashantha; Thomas, Evan; Hargreaves, Megan; Frost, Ray; Dawes, Les

    2006-08-01

    Onsite wastewater treatment systems (OWTS) are becoming increasingly important for the treatment and dispersal of effluent in new urbanised developments that are not serviced by centralised wastewater collection and treatment systems. However, the current standards and guidelines adopted by many local authorities for assessing suitable site and soil conditions for OWTS are increasingly coming under scrutiny due to the public health and environmental impacts caused by poorly performing systems, in particular septic tank-soil adsorption systems. In order to achieve sustainable onsite wastewater treatment with minimal impacts on the environment and public health, more appropriate means of assessment are required. This paper highlights an integrated risk based approach for assessing the inherent hazards associated with OWTS in order to manage and mitigate the environmental and public health risks inherent with onsite wastewater treatment. In developing a sound and cohesive integrated risk framework for OWTS, several key issues must be recognised. These include the inclusion of relevant stakeholders throughout framework development, the integration of scientific knowledge, data and analysis with risk assessment and management ideals, and identification of the appropriate performance goals for successful management and mitigation of associated risks. These issues were addressed in the development of the risk framework to provide a generic approach to assessing risk from OWTS. The utilisation of the developed risk framework for achieving more appropriate assessment and management techniques for OWTS is presented in a case study for the Gold Coast region, Queensland State, Australia.

  16. Industrial detergent wastewater treatment via fenton reagent

    International Nuclear Information System (INIS)

    Mohd Zairie Mohd Yusuff; Mohd Zulkifli Mohamad Noor; Izirwan Izhab

    2010-01-01

    Production of detergent can generates wastewater containing an organic matter with will consume an oxidation demand, surfactants, suspended solids, fat and oil. Besides, sulfate concentration is high in the most detergent plant effluent because of the sulphonation process that has physiological and toxic effects on marine organisms. Therefore, a research must be conducted to find the solution for this problem. The feasibility of Fentons reagent to treat detergent waste was investigated in this study. The sample of detergent wastewater was taken from FPG Oleo chemicals Sdn. Bhd. This experiment studied the effect of temperature towards the feasibility of Fentons reagent process besides the dosage between hydrogen peroxide (H 2 O 2 ) and ferrous ion (Fe 2+ ) in the reagent. While, evaluated efficiency of Fentons reagent in term of chemical oxygen demand (COD), total suspended solid (TSS) and the turbidity reduction within the experimental design. The result found that overall removal was achieved until 96.2 % in term of COD, 98.1 % in term of TSS and 99.6 % in term of turbidity using Fentons reagent process. Besides, also found that this process is optimum at temperature 35 degree Celsius are able to achieve the Standard A of Parameter Limit of Effluent of Standard A and Standard B were outlined by Department of Environment Malaysia (DOE) based on Environment Quality Act 1974. (author)

  17. Seabrook, N.H. Wastewater Treatment Plant Chief Operator Recognized for Outstanding Service

    Science.gov (United States)

    Dustin Price, a resident of Berwick Maine and the Chief Operator of the Seabrook, N.H. Wastewater Treatment Plant, was honored by EPA with a 2016 Regional Wastewater Treatment Plant Operator of the Year Excellence Award.

  18. Applications of artificial intelligence technology to wastewater treatment fields in China

    Institute of Scientific and Technical Information of China (English)

    QING Xiao-xia; WANG Bo; MENG De-tao

    2005-01-01

    Current applications of artificial intelligence technology to wastewater treatment in China are summarized. Wastewater treatment plants use expert system mainly in the operation decision-making and fault diagnosis of system operation, use artificial neuron network for system modeling, water quality forecast and soft measure, and use fuzzy control technology for the intelligence control of wastewater treatment process. Finally, the main problems in applying artificial intelligence technology to wastewater treatment in China are analyzed.

  19. Treatment of Synthetic Wastewater Containing Reactive Red 198 by Electrocoagulation Process

    OpenAIRE

    N.M Mahmoodi; A Ameri; M Gholami; A Jonidi jafari; A Dalvand

    2011-01-01

    "nBackground and Objectives: Discharge of textile colored wastewater industries without providing enough treatment in water bodies, is harmful for human and aquatic organisms and poses serious damages to the environment. Most of conventional wastewater treatment methods don't have enough efficiency to remove textile dyes from colored wastewater; thus in this research the efficiency of electrocoagulation treatment process with aluminum electrodes for treatment of a synthetic wastewater co...

  20. Foraging at wastewater treatment works increases the potential for ...

    African Journals Online (AJOL)

    Wastewater treatment works (WWTWs) are known to provide profitable foraging areas for insectivorous bats in Europe and the New World because of their association with high abundance of pollution-tolerant midges (Diptera). However, bats that feed on these insects may also accumulate metal pollutants such as cadmium ...

  1. A systematic methodology for controller tuning in wastewater treatment plants

    DEFF Research Database (Denmark)

    Mauricio Iglesias, Miguel; Jørgensen, S.B.; Sin, G.

    2012-01-01

    Wastewater treatment plants are typically subject to continuous disturbances caused by influent variations which exhibits diurnal patterns as well as stochastic changes due to rain and storm water events. In order to achieve an efficient operation, the control system of the plant should be able t...

  2. Sludge Reduction by Lumbriculus Variegatus in Ahvaz Wastewater Treatment Plant

    Directory of Open Access Journals (Sweden)

    Tim Hendrickx

    2012-08-01

    Full Text Available Sludge production is an avoidable problem arising from the treatment of wastewater. The sludge remained after municipal wastewater treatment contains considerable amounts of various contaminants and if is not properly handled and disposed, it may produce extensivehealth hazards. Application of aquatic worm is an approach to decrease the amount of biological waste sludge produced in wastewater treatment plants. In the present research reduction of the amount of waste sludge from Ahvaz wastewater treatment plant was studied with the aquatic worm Lumbriculus variegatus in a reactor concept. The sludge reduction in the reactor with worm was compared to sludge reduction in a blank reactor (without worm.The effects of changes in dissolved oxygen (DO concentration up to 3 mg/L (run 1 and up to 6 mg/L (run 2 were studied in the worm and blank reactors. No meaningful relationship was found between DO concentration and the rate of total suspended solids reduction. Theaverage sludge reductions were obtained as 33% (run 2 and 32% (run 1 in worm reactor,and 16% (run 1 and 12% (run 2 in the blank reactor. These results showed that the worm reactors may reduce the waste sludge between 2 and 2.75 times higher than in the blankconditions. The obtained results showed that the worm reactor has a high potential for use in large-scale sludge processing.

  3. Lipase-producing fungi for potential wastewater treatment and ...

    African Journals Online (AJOL)

    The use of fungal biomass as a lipase biocatalyst represents an attractive approach for the treatments of oil wastewater as well as for the production of biodiesel from oil and residual grease, due to its greater stability, possibility of reuse, and lower cost. In this work, 20 filamentous fungi were isolated from the grease trap ...

  4. Assessment of dairy wastewater treatment and its potential for ...

    African Journals Online (AJOL)

    The extent of pollution of dairy wastewater treated in a septic tank and its potential for biogas production was investigated. Performance of the existing treatment system was assessed through characterization of both raw and treated effluents. From the analysis parameters likeChemical Oxygen Demand (COD), Biochemical ...

  5. Operation of Wastewater Treatment Plants, Manual of Practice No. 11.

    Science.gov (United States)

    Albertson, Orrie E.; And Others

    This book is intended to be a reference or textbook on the operation of wastewater treatment plants. The book contains thirty-one chapters and three appendices and includes the description, requirements, and latest techniques of conventional unit process operation, as well as the symptoms and corrective measures regarding process problems. Process…

  6. Operation of Wastewater Treatment Plants: A Home Study Training Program.

    Science.gov (United States)

    California State Univ., Sacramento. Dept. of Civil Engineering.

    This manual was prepared by experienced wastewater treatment plant operators to provide a home study course to develop new qualified workers and expand the abilities of existing workers. The objective of this manual is to provide the knowledge and skills necessary for certification. Participants learn the basic operational aspects of treatment…

  7. Benchmarking Biological Nutrient Removal in Wastewater Treatment Plants

    DEFF Research Database (Denmark)

    Flores-Alsina, Xavier; Gernaey, Krist; Jeppsson, Ulf

    2011-01-01

    This paper examines the effect of different model assumptions when describing biological nutrient removal (BNR) by the activated sludge models (ASM) 1, 2d & 3. The performance of a nitrogen removal (WWTP1) and a combined nitrogen and phosphorus removal (WWTP2) benchmark wastewater treatment plant...

  8. Efficiency of domestic wastewater treatment plant for agricultural reuse

    Directory of Open Access Journals (Sweden)

    Claudinei Fonseca Souza

    2015-07-01

    Full Text Available The increasing demand for water has made the treatment and reuse of wastewater a topic of global importance. This work aims to monitor and evaluate the efficiency of a wastewater treatment plant’s (WWTP physical and biological treatment of wastewater by measuring the reduction of organic matter content of the effluent during the treatment and the disposal of nutrients in the treated residue. The WWTP has been designed to treat 2500 liters of wastewater per day in four compartments: a septic tank, a microalgae tank, an upflow anaerobic filter and wetlands with cultivation of Zantedeschia aethiopica L. A plant efficiency of 90% of organic matter removal was obtained, resulting in a suitable effluent for fertigation, including Na and Ca elements that showed high levels due to the accumulation of organic matter in the upflow anaerobic filter and wetlands. The WWTP removes nitrogen and phosphorus by the action of microalgae and macrophytes used in the process. The final effluent includes important agricultural elements such as nitrogen, phosphorus, calcium and potassium and, together with the load of organic matter and salts, meets the determination of NBR 13,969/1997 (Standard of the Brazilian Technical Standards Association for reuse in agriculture, but periodic monitoring of soil salinity is necessary.

  9. Treatment of grain distillation wastewaters in an upflow anaerobic ...

    African Journals Online (AJOL)

    In operation of the full-scale upflow anaerobic sludge bed (UASB) system at the Stellenbosch Farmers' Winery (SFW) Wellington distillery, a problem encountered in the treatment of grain distillation wastewater was the accumulation of a floating scum layer. On occasion this was so severe that it forced shutdown of the UASB ...

  10. Advanced oxidation-based treatment of furniture industry wastewater.

    Science.gov (United States)

    Tichonovas, Martynas; Krugly, Edvinas; Grybauskas, Arturas; Jankūnaitė, Dalia; Račys, Viktoras; Martuzevičius, Dainius

    2017-07-16

    The paper presents a study on the treatment of the furniture industry wastewater in a bench scale advanced oxidation reactor. The researched technology utilized a simultaneous application of ozone, ultraviolet radiation and surface-immobilized TiO 2 nanoparticle catalyst. Various combinations of processes were tested, including photolysis, photocatalysis, ozonation, catalytic ozonation, photolytic ozonation and photocatalytic ozonation were tested against the efficiency of degradation. The efficiency of the processes was primarily characterized by the total organic carbon (TOC) analysis, indicating the remaining organic material in the wastewater after the treatment, while the toxicity changes in wastewater were researched by Daphnia magna toxicity tests. Photocatalytic ozonation was confirmed as the most effective combination of processes (99.3% of TOC reduction during 180 min of treatment), also being the most energy efficient (4.49-7.83 MJ/g). Photocatalytic ozonation and photolytic ozonation remained efficient across a wide range of pH (3-9), but the pH was an important factor in photocatalysis. The toxicity of wastewater depended on the duration of the treatment: half treated water was highly toxic, while fully treated water did not possess any toxicity. Our results indicate that photocatalytic ozonation has a high potential for the upscaling and application in industrial settings.

  11. Behavior of natural radionuclides in wastewater treatment plants

    International Nuclear Information System (INIS)

    Camacho, A.; Montaña, M.; Vallés, I.; Devesa, R.; Céspedes-Sánchez, R.; Serrano, I.; Blázquez, S.; Barjola, V.

    2012-01-01

    56 samples, including influent, primary effluent, secondary effluent and final effluent wastewater from two Spanish municipal wastewater treatment plants (WWTPs), were analyzed to assess both the occurrence and behavior of natural radioactivity during 12 sampling campaigns carried out over the period 2007–2010. Influent and final effluent wastewaters were sampled by taking into account the hydraulic residence time within the WWTP. A wide range of gross alpha activities (15–129 mBq/L) and gross beta activities (477–983 mBq/L) in liquid samples were obtained. A correlation analysis between radioactivity in liquid samples and the performance characteristics of the WWTPs was performed. The results in liquid samples showed that gross beta activities were not influenced by treatment in the studied WWTPs. However, gross alpha activities behave differently and an increase was detected in the effluent values compared with influent wastewater. This behavior was due to the increase in the total dissolved uranium produced during secondary treatment. The results indicate that the radiological characteristics of the effluents do not present a significant radiological risk and make them suitable for future applications. - Highlights: ► Liquids from WWTPs were analyzed to know the behavior of natural radionuclides. ► Gross beta activities were not influenced by treatment in the studied WWTPs. ► Increase in gross alpha activity was observed due to uranium desorption/solubilisation. ► Correlation between gross alpha activity and the chemical oxygen demand was found

  12. Operation and effluent quality of a small rural wastewater treatment ...

    African Journals Online (AJOL)

    The objective of this study was to evaluate the impact of effluent and sludge discharges of an abattoir wastewater treatment plant (WWTP) on the operation of a municipal aerated pond WWTP. Experiments were carried out in Cervera WWTP, located in northeastern Spain, which comprises four ponds operating in series.

  13. Methodology for Plantwide Design and Optimization of Wastewater Treatment Plants

    DEFF Research Database (Denmark)

    Maria Dragan, Johanna; Zubov, Alexandr; Sin, Gürkan

    2017-01-01

    Design of Wastewater Treatment Plants (WWTPs) is a complex engineering task which requires integration of knowledge and experience from environmental biotechnology, process engineering, process synthesis and design as well as mathematical programming. A methodology has been formulated and applied...... for the systematic analysis and development of plantwide design of WWTPs using mathematical optimization and statistical methods such as sensitivity and uncertainty analyses....

  14. STUDY ON OIL WASTEWATER TREATMENT WITH POLYMERIC REAGENTS

    Directory of Open Access Journals (Sweden)

    RODICA BUCUROIU

    2016-04-01

    Full Text Available Used the polymeric reagents in oil wastewater treatment is an effective method of eliminate hydrocarbons. The present study aims to finding reagents that lead to lowering of extractible (EXT, suspended solids (SS and chemical oxygen demand (COD of industrial wastewater from washing cars in loading ramps petroleum products. For this purpose five reagents were tested, namely: polyamines, cationic polyacrylamides, polydiallydimethyl ammonium chloride (PolyDADMAC, melamine formaldehyde polymer resin and polydicyandiamide polymer resin. Obtaining removal degrees over 80 % justifies using this method in the industrial practice.

  15. Electrochemical treatment of pharmaceutical and industrial wastewater by anodic oxidation

    International Nuclear Information System (INIS)

    Menapace, H. M.; Fellerer, M.; Treschnitzer, M.

    2009-01-01

    In modern medicine pharmaceuticals play a decisive role: because of an increased life expectancy and intensive care medicine an increasing amount of pharmaceuticals is produced. thus these substances are consumed in a mass of tons per year in industrialized countries. Wastewater effluents from sewage treatment plants (STP) are important point sources for residues of pharmaceuticals and complexing agents in the aquatic environment. For this reason a research project, which started in December 2006, was established to eliminate pharmaceutical substances and complexing agents found in wastewater as micropollutants. (Author)

  16. Sterols indicate water quality and wastewater treatment efficiency.

    Science.gov (United States)

    Reichwaldt, Elke S; Ho, Wei Y; Zhou, Wenxu; Ghadouani, Anas

    2017-01-01

    As the world's population continues to grow, water pollution is presenting one of the biggest challenges worldwide. More wastewater is being generated and the demand for clean water is increasing. To ensure the safety and health of humans and the environment, highly efficient wastewater treatment systems, and a reliable assessment of water quality and pollutants are required. The advance of holistic approaches to water quality management and the increasing use of ecological water treatment technologies, such as constructed wetlands and waste stabilisation ponds (WSPs), challenge the appropriateness of commonly used water quality indicators. Instead, additional indicators, which are direct measures of the processes involved in the stabilisation of human waste, have to be established to provide an in-depth understanding of system performance. In this study we identified the sterol composition of wastewater treated in WSPs and assessed the suitability of human sterol levels as a bioindicator of treatment efficiency of wastewater in WSPs. As treatment progressed in WSPs, the relative abundance of human faecal sterols, such as coprostanol, epicoprostanol, 24-ethylcoprostanol, and sitostanol decreased significantly and the sterol composition in wastewater changed significantly. Furthermore, sterol levels were found to be correlated with commonly used wastewater quality indicators, such as BOD, TSS and E. coli. Three of the seven sterol ratios that have previously been used to track sewage pollution in the environment, detected a faecal signal in the effluent of WSPs, however, the others were influenced by high prevalence of sterols originating from algal and fungal activities. This finding poses a concern for environmental assessment studies, because environmental pollution from waste stabilisation ponds can go unnoticed. In conclusion, faecal sterols and their ratios can be used as reliable indicators of treatment efficiency and water quality during wastewater

  17. Treatment and valorization of olive mill wastewaters

    Directory of Open Access Journals (Sweden)

    Nabila Slimani Alaoui

    2016-04-01

    Full Text Available This study aims to evaluate the effectiveness of the physicochemical process with lime and ferric chloride in removing the pollution generated by the olive mill wastewaters (OMW .The characterization of the samples has shown that they are acidic, with a black color and a strong organic load due to the presence of phenolic compounds. The combination of the lime and the ferric chloride allows the removal of 87% of the total suspended solid (TSs, 58% of chemical oxygen demand (COD and 75% of Phenolic compounds. After purification the treated OMW were valorised as wash water or used for irrigation of green spaces and the generated sludge were dried and used to combustion. 

  18. Problematic effects of antibiotics on anaerobic treatment of swine wastewater.

    Science.gov (United States)

    Cheng, D L; Ngo, H H; Guo, W S; Chang, S W; Nguyen, D D; Kumar, S Mathava; Du, B; Wei, Q; Wei, D

    2018-05-04

    Swine wastewaters with high levels of organic pollutants and antibiotics have become serious environmental concerns. Anaerobic technology is a feasible option for swine wastewater treatment due to its advantage in low costs and bioenergy production. However, antibiotics in swine wastewater have problematic effects on micro-organisms, and the stability and performance of anaerobic processes. Thus, this paper critically reviews impacts of antibiotics on pH, COD removal efficiencies, biogas and methane productions as well as the accumulation of volatile fatty acids (VFAs) in the anaerobic processes. Meanwhile, impacts on the structure of bacteria and methanogens in anaerobic processes are also discussed comprehensively. Furthermore, to better understand the effect of antibiotics on anaerobic processes, detailed information about antimicrobial mechanisms of antibiotics and microbial functions in anaerobic processes is also summarized. Future research on deeper knowledge of the effect of antibiotics on anaerobic processes are suggested to reduce their adverse environmental impacts. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Comparative overview of primary sedimentation-based mechanical stage in some Romanian wastewater treatment systems

    Science.gov (United States)

    Zaharia, C.

    2017-08-01

    Nowadays, wastewater (WW) treatment facilities are considered significant exposure pathways for solid particles, and also significant concerns of any quality conscious manufacturer. Most solid particles have some forms of organic coating either used as active material or to suspend and/or stabilize different present solid materials, having increase in toxicity that must be reduced, or sometimes even totally eliminated, especially if effluent is either discharged directly to surface water, or distributed through industrial water supplies. Representatives providing innovative technologies, comprehensive supports and expertise in wastewater and sludge treatment field are known, each one using modern treatment technology and facilities. Mechanical treatment is indispensable in primary treatment steps of both municipal and industrial WW applications, its main goal being separation of floating, settling and suspended materials (especially into a primary sedimentation-based treatment step). The aim of this work is to present comparatively the performance in solids removal of conventional mechanical WW treatment stages, especially those based on primary sedimentation, or sedimentation-like operations applied for Romanian urban WW treatment plants (serving two towns with ca 18,000 inhabitants), industrial WW treatment plants (deserving industries of vegetal food processing and organic chemicals’ manufacturing) and additional information on valorisation of separated solid material and improvement possibilities.

  20. Supported graphene oxide hollow fibre membrane for oily wastewater treatment

    Science.gov (United States)

    Othman, Nur Hidayati; Alias, Nur Hashimah; Shahruddin, Munawar Zaman; Hussein, Siti Nurliyana Che Mohamed; Dollah, Aqilah

    2017-12-01

    Oil and gas industry deals with a large amount of undesirable discharges of liquid, solid, and gaseous wastes and the amounts can considerably change during the production phases. Oilfield wastewater or produced water is known to constitute various organic and inorganic components. Discharging the produced water can pollute surface and underground water and therefore the necessity to treat this oily wastewater is an inevitable challenge. The current technologies for the treatment of this metastable oil-in-water are not really effective and very pricey. As a result, there is a great interest from many parties around the world in finding cost-effective technologies. In recent years, membrane processes have been utilized for oily wastewater treatment. In these work, a graphene oxide membrane supported on a highly porous Al2O3 hollow fibre was prepared using vacuum assisted technique and its performance in treating oily wastewater was investigated. Graphene oxide (GO) was prepared using a modified Hummer's method and further characterized using XRD, FTIR, TGA and SEM. The results showed that the GO was successfully synthesized. The GO membrane was deposited on alumina hollow fibre substrates. The membrane performance was then investigated using dead-end filtration setup with synthetic oily wastewater as a feed. The effects of operating times on rejection rate and permeate flux were investigated. The experimental results showed that the oil rejections were over 90%. It was concluded that the supported GO membrane developed in this study may be considered feasible in treating oily wastewater. Detail study on the effects of transmembrane pressure, oil concentration, pH and fouling should be carried out in the future

  1. How Does Scale of Implementation Impact the Environmental Sustainability of Wastewater Treatment Integrated with Resource Recovery?

    Science.gov (United States)

    Cornejo, Pablo K; Zhang, Qiong; Mihelcic, James R

    2016-07-05

    Energy and resource consumptions required to treat and transport wastewater have led to efforts to improve the environmental sustainability of wastewater treatment plants (WWTPs). Resource recovery can reduce the environmental impact of these systems; however, limited research has considered how the scale of implementation impacts the sustainability of WWTPs integrated with resource recovery. Accordingly, this research uses life cycle assessment (LCA) to evaluate how the scale of implementation impacts the environmental sustainability of wastewater treatment integrated with water reuse, energy recovery, and nutrient recycling. Three systems were selected: a septic tank with aerobic treatment at the household scale, an advanced water reclamation facility at the community scale, and an advanced water reclamation facility at the city scale. Three sustainability indicators were considered: embodied energy, carbon footprint, and eutrophication potential. This study determined that as with economies of scale, there are benefits to centralization of WWTPs with resource recovery in terms of embodied energy and carbon footprint; however, the community scale was shown to have the lowest eutrophication potential. Additionally, technology selection, nutrient control practices, system layout, and topographical conditions may have a larger impact on environmental sustainability than the implementation scale in some cases.

  2. Carbon footprint of four different wastewater treatment scenarios

    Science.gov (United States)

    Diafarou, Moumouni; Mariska, Ronteltap, ,, Dr.; Damir, Brdjanovic, ,, Prof.

    2014-05-01

    Since the era of industrialization, concentrations of greenhouse gases (GHGs) have tremendously increased in the atmosphere, as a result of the extensive use of fossil fuels, deforestation, improper waste management, transport, and other economic activities (Boer, 2008).This has led to a great accumulation of greenhouse gases, forming a blanket around the Earth which contributes in the so-called "Global Warming". Over the last decades, wastewater treatment has developed strongly and has become a very important asset in mitigating the impact of domestic and industrial effluents on the environment. There are many different forms of wastewater treatment, and one of the most effective treatment technology in terms COD, N and P removal, activated sludge is often criticized for its high energy use. Some other treatment concepts have a more "green" image, but it is not clear whether this image is justified based on their greenhouse gas emission. This study focuses on the estimation of GHG emissions of four different wastewater treatment configurations, both conventional and innovative systems namely: (1) Harnaschpolder, (2) Sneek, (3) EIER-Ouaga and (4) Siddhipur. This analysis is based on COD mass balance, the Intergovernmental Panel on Climate Change (IPCC) 2006 guidelines for estimating CO2 and CH4, and literature review. Furthermore, the energy requirements for each of the systems were estimated based on energy survey. The study showed that an estimated daily average of 87 g of CO2 equivalent, ranging between 38 to 192 g, was derived to be the per capita CO2 emission for the four different wastewater treatment scenarios. Despite the fact that no electrical energy is used in the treatment process, the GHG emission from EIER Ouaga anaerobic pond systems is found to be the highest compared to the three other scenarios analysed. It was estimated 80% higher than the most favourable scenario (Sneek). Moreover, the results indicate that the GHGs emitted from these WWTPs are

  3. Membrane bio-reactor for textile wastewater treatment plant upgrading.

    Science.gov (United States)

    Lubello, C; Gori, R

    2005-01-01

    Textile industries carry out several fiber treatments using variable quantities of water, from five to forty times the fiber weight, and consequently generate large volumes of wastewater to be disposed of. Membrane Bio-reactors (MBRs) combine membrane technology with biological reactors for the treatment of wastewater: micro or ultrafiltration membranes are used for solid-liquid separation replacing the secondary settling of the traditional activated sludge system. This paper deals with the possibility of realizing a new section of one existing WWTP (activated sludge + clariflocculation + ozonation) for the treatment of treating textile wastewater to be recycled, equipped with an MBR (76 l/s as design capacity) and running in parallel with the existing one. During a 4-month experimental period, a pilot-scale MBR proved to be very effective for wastewater reclamation. On average, removal efficiency of the pilot plant (93% for COD, and over 99% for total suspended solids) was higher than the WWTP ones. Color was removed as in the WWTP. Anionic surfactants removal of pilot plant was lower than that of the WWTP (90.5 and 93.2% respectively), while the BiAS removal was higher in the pilot plant (98.2 vs. 97.1). At the end cost analysis of the proposed upgrade is reported.

  4. Treatment of Wastewater by Ozone Produced in Dielectric Barrier Discharge

    Directory of Open Access Journals (Sweden)

    Rita Bhatta

    2015-01-01

    Full Text Available There is rapid diminishing of water resources in many countries due to, for example, population growth and constant reduction in fresh water supply. The sewage wastewater, industrial effluents, and municipal wastewater are directly and indiscriminately discharged into rivers and lakes and thus primarily cause water pollution in Nepal. This has increased the water crisis and also causes environmental deterioration. Therefore, the need for the development of an effective, cheap, and environmentally friendly process for the treatment of wastewater before discharging into aquatic environment has emerged. Treatment by ozone produced from dielectric barrier discharge is one of the emerging technologies for such application. The ozonation process is more effective for disinfection and degradation of organic pollutants from water. The current study describes the treatment of wastewater of selected site within Kathmandu. Results on various physicochemical and microbial parameters of the inlet and outlet samples are discussed. Our results showed slight increase in pH, decrease in chemical oxygen demand, and significant increase in dissolved oxygen after ozonation. Importantly, ozonation caused total reduction of fecal coliform.

  5. Wastewater Sludge Stabilization Using Lime A Case Study of West Ahwaz Wastewater Treatment Plant

    Directory of Open Access Journals (Sweden)

    Mehdi Farzadkia

    2009-01-01

    Full Text Available Lime stabilization is a chemical method used for wastewater sludge stabilization. It is capable of decreasing large quantities of pathogens and of preventing microbial degradation of sludge organic materials. The main objective of the present experimental research was to investigate stabilization of the sludge from west Ahwaz wastewater treatment plant by lime addition and to control if the microbial quality of this sludge conforms to the USEPA standards for sludge reuse and safe disposal. The study was carried out on a pilot scale in 5 stages over a period of 12 months (July 2005 to June 2006 at west Ahwaz wastewater treatment plant laboratory using raw sludge. For the purposes of this study, a 30-liter reactor was commissioned and loaded with sludge and appropriate quantities of hydrated lime were added based on the solid waste percent. The parameters used to determine stabilization efficiency were pH, Total Coliform, Fecal Coliform, and parasite eggs. The results showed that lime addition at a ratio of 265g Ca(OH2/kg. ds was the optimum level for sludge stabilization in westAhwazwastewater treatment plant, which is acceptable from both economic and technical viewpoints. The method is capable of achieving class B but never satisfied class A of USEPA standards.

  6. Biological treatment of nitrate bearing wastewater from a uranium production plant

    International Nuclear Information System (INIS)

    Benear, A.K.; Kneip, R.W.

    1988-01-01

    The Feed Materials Production Center (FMPC) produces uranium metal products used for DOE defense programs resulting in the generation of nitrate-bearing wastewaters. To treat these wastewaters, a two-column fluidized bed biodenitrification facility (BDN) was constructed at the FMPC. The operation of the BDN resulted in substantial compliance with the design criteria limits for nitrate from July through November, 1987. Since the BDN surge lagoon (BSL) proved inadequate for providing nitrate concentration equalization, the BDN feed nitrate concentration fluctuated widely throughout this period of operation. BDN effluent caused a doubling of the hydraulic loading and a tripling of the organic loading on the FMPC sewage treatment plant (STP). Better control of the methanol feed to the BDN, coupled with reduced throughput and improved preaeration, caused a significant improvement in the operation of the STP. The overloading of the STP prompted a decision to add a stand-alone effluent treatment system to the BDN

  7. PRE-FEASIBILITY STUDY FOR TREATMENT WETLAND APPLICATION FOR WASTEWATER TREATMENT IN DISPERSED DEVELOPMENT

    Directory of Open Access Journals (Sweden)

    Magdalena Gajewska

    2016-07-01

    Full Text Available The aim of the paper is to present the conducted analyses of pre-feasibility study of different approaches for wastewater management in a settlement of 180 persons. In the assessment both technical and economic aspects were analyzed. The costs were calculated for three different and, at the same time, most popular as well as possible technical solutions like: (i construction of local wastewater treatment plant with gravitational and pressurized networks, (ii construction of single family wastewater treatment plants, (iii construction of sealed septic tanks. Carried out analyses of investment and maintenance costs revealed that at the stage of construction the most expensive is local sewer network with treatment plant, while the construction of a single family treatment plant has similar cost regardless of the technology used. When the long term operation and investment cost are accounted the most economical reasonable solution is the application of wetland treatment for household wastewater treatment.

  8. Strategies to Combat Antibiotic Resistance in the Wastewater Treatment Plants

    Directory of Open Access Journals (Sweden)

    Fateme Barancheshme

    2018-01-01

    Full Text Available The main goal of this manuscript is to review different treatment strategies and mechanisms for combating the antibiotic resistant bacteria (ARB and antibiotic resistant genes (ARGs in the wastewater environment. The high amount of antibiotics is released into the wastewater that may promote selection of ARB and ARGs which find their way into natural environments. Emerging microbial pathogens and increasing antibiotic resistance among them is a global public health issue. The propagation and spread of ARB and ARGs in the environment may result in an increase of antibiotic resistant microbial pathogens which is a worldwide environmental and public health concern. A proper treatment of wastewater is essential before its discharge into rivers, lake, or sewage system to prevent the spread of ARB and ARGs into the environment. This review discusses various treatment options applied for combating the spread of ARB and ARGs in wastewater treatment plants (WWTPs. It was reported that low-energy anaerobic–aerobic treatment reactors, constructed wetlands, and disinfection processes have shown good removal efficiencies. Nanomaterials and biochar combined with other treatment methods and coagulation process are very recent strategies regarding ARB and ARGs removal and need more investigation and research. Based on current studies a wide-ranging removal efficiency of ARGs can be achieved depending on the type of genes present and treatment processes used, still, there are gaps that need to be further investigated. In order to find solutions to control dissemination of antibiotic resistance in the environment, it is important to (1 study innovative strategies in large scale and over a long time to reach an actual evaluation, (2 develop risk assessment studies to precisely understand occurrence and abundance of ARB/ARGs so that their potential risks to human health can be determined, and (3 consider operating and environmental factors that affect the

  9. Occurrence and fate of illicit drugs and pharmaceuticals in wastewater from two wastewater treatment plants in Costa Rica

    NARCIS (Netherlands)

    Causanilles, A.; Ruepert, C.; Ibáñez, M.; Emke, E.; Hernández, F.; de Voogt, P.

    2017-01-01

    Chemical analysis of raw wastewater in order to assess the presence of biological markers entering a wastewater treatment plant can provide objective information about the health and lifestyle of the population connected to the sewer system. This work was performed in a tropical country of Central

  10. Decentralised wastewater treatment effluent fertigation: preliminary ...

    African Journals Online (AJOL)

    2018-04-02

    Apr 2, 2018 ... The experimental site at Newlands-Mashu Research Facility, located in Durban ... Samples of effluent used during the study were collected from the AF ... Yield parameters of banana (number and mass of true fingers ..... GHOREISHI M, HOSSINI Y and MAFTOON M (2012) Simple models for predicting leaf ...

  11. Treatment of laundry wastewater by biological and electrocoagulation methods.

    Science.gov (United States)

    Ramcharan, Terelle; Bissessur, Ajay

    2017-01-01

    The present study describes an improvement in the current electrocoagulation treatment process and focuses on a comparative study for the clean-up of laundry wastewater (LWW) after each wash and rinse cycle by biological and electrocoagulation treatment methods. For biological treatment, the wastewater was treated with a Bacillus strain of aerobic bacteria especially suited for the degradation of fats, lipids, protein, detergents and hydrocarbons. Treatment of the LWW by electrocoagulation involved the oxidation of aluminium metal upon the application of a controlled voltage which produces various aluminium hydroxy species capable of adsorbing pollutants from the wastewater. The efficiency of the clean-up of LWW using each method was assessed by determination of surfactant concentration, chemical oxygen demand and total dissolved solids. A rapid decrease in surfactant concentration was noted within 0.5 hour of electrocoagulation, whereas a notable decrease in the surfactant concentration was observed only after 12 hour of biological treatment. The rapid generation of aluminium hydroxy species in the electrocoagulation cell allowed adsorption of pollutants at a faster rate when compared to the aerobic degradation of the surfactant; hence a reduced period of time is required for treatment of LWW by electrocoagulation.

  12. Post treatment of antibiotic wastewater by adsorption on activated carbon

    Science.gov (United States)

    Mullai, P.; Rajesh, V.

    2018-02-01

    The most common method of treating industrial wastewater involves biomethanation in anaerobic digesters. This biological treatment process is ineffective in color removal and it requires post-treatment methods. The color is the first contaminant in wastewater which affects the water bodies in several ways. As the anaerobically digested antibiotic wastewater was found with color, an attempt was made to remove color using granulated activated carbon as an adsorbent. Experiments were carried out in batch reactors to find out the color removal efficiency of the wastewater at four different dosages such as 25, 50, 75 and 100 mg of adsorbent material at each of the four different initial concentrations of effluent like 1956, 1450, 1251 and 1040 mg COD/L. The steady state values of color removal efficiencies were 96.6, 97.64, 98.64 and 99.63%, respectively, using 100 mg of activated carbon under shaking condition at the end of the 120th min. The effect of contact time on the percentage of color removal was also studied. It was observed that the adsorption of effluent obtained equilibrium at 120 minutes. The equilibrium data fitted well with the Langmuir and Freundlich isotherms.

  13. The effects of physicochemical wastewater treatment operations on forward osmosis.

    Science.gov (United States)

    Hey, Tobias; Bajraktari, Niada; Vogel, Jörg; Hélix Nielsen, Claus; la Cour Jansen, Jes; Jönsson, Karin

    2017-09-01

    Raw municipal wastewater from a full-scale wastewater treatment plant was physicochemically pretreated in a large pilot-scale system comprising coagulation, flocculation, microsieve and microfiltration operated in various configurations. The produced microsieve filtrates and microfiltration permeates were then concentrated using forward osmosis (FO). Aquaporin Inside TM FO membranes were used for both the microsieve filtrate and microfiltration permeates, and Hydration Technologies Inc.-thin-film composite membranes for the microfiltration permeate using only NaCl as the draw solution. The FO performance was evaluated in terms of the water flux, water flux decline and solute rejections of biochemical oxygen demand, and total and soluble phosphorus. The obtained results were compared with the results of FO after only mechanical pretreatment. The FO permeates satisfied the Swedish discharge demands for small and medium-sized wastewater treatment plants. The study demonstrates that physicochemical pretreatment can improve the FO water flux by up to 20%. In contrast, the solute rejection decreases significantly compared to the FO-treated wastewater with mechanical pretreatment.

  14. A critical review on textile wastewater treatments: Possible approaches.

    Science.gov (United States)

    Holkar, Chandrakant R; Jadhav, Ananda J; Pinjari, Dipak V; Mahamuni, Naresh M; Pandit, Aniruddha B

    2016-11-01

    Waste water is a major environmental impediment for the growth of the textile industry besides the other minor issues like solid waste and resource waste management. Textile industry uses many kinds of synthetic dyes and discharge large amounts of highly colored wastewater as the uptake of these dyes by fabrics is very poor. This highly colored textile wastewater severely affects photosynthetic function in plant. It also has an impact on aquatic life due to low light penetration and oxygen consumption. It may also be lethal to certain forms of marine life due to the occurrence of component metals and chlorine present in the synthetic dyes. So, this textile wastewater must be treated before their discharge. In this article, different treatment methods to treat the textile wastewater have been presented along with cost per unit volume of treated water. Treatment methods discussed in this paper involve oxidation methods (cavitation, photocatalytic oxidation, ozone, H2O2, fentons process), physical methods (adsorption and filtration), biological methods (fungi, algae, bacteria, microbial fuel cell). This review article will also recommend the possible remedial measures to treat different types of effluent generated from each textile operation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Nutrient recovery from airplane wastewater: composition, treatment and ecotoxicological assay.

    Science.gov (United States)

    Filho, Jorge Luiz da Paixão; Tonetti, Adriano Luiz; Guimarães, Martha Tavanielli; Silva, Dailto

    2017-04-01

    For the 2014 World Cup and the 2016 Olympic Games, Brazil has expanded its airport infrastructure. This will lead to an increase in wastewater generation from aircrafts. This wastewater is traditionally taken from the aircrafts and disposed in the public sewage collection system. However, this residual water may have a different composition than the usual sanitary sewage. Therefore, it is important to study an alternative to treat this kind of wastewater. Thus, the objective of this study was to characterize and analyze the treatment of wastewater from airplane toilets through chemical precipitation for the removal of ammonia in the form of struvite. The airplanes' effluent showed a composition similar to human urine with pH 8.9, ammonia nitrogen 4,215 mg L -1 , phosphorus 430 mg L -1 and a very high acute toxicity (Vibrio fischeri). The best treatment for struvite formation was with pH 9.0 and molar ratio Mg:NH 4 :PO 4 equal to 1.5:1.0:1.0. In this case, the removal of ammonia and phosphorus achieved 97.0% and 95.3%, respectively. After this procedure, the toxicity by Vibrio fischeri decreased.

  16. Influences of mechanical pre-treatment on the non-biological treatment of municipal wastewater by forward osmosis

    DEFF Research Database (Denmark)

    Hey, Tobias; Zarebska, Agata; Bajraktari, Niada

    2016-01-01

    municipal wastewater treatment without the biological treatment step, including the effects of different pre-treatment configurations, e.g., direct membrane filtration before forward osmosis. Forward osmosis was tested using raw wastewater and wastewater subjected to different types of mechanical pre-treatment......, e.g., microsieving and microfiltration permeation, as a potential technology for municipal wastewater treatment. Forward osmosis was performed using thin-film-composite, Aquaporin Inside(TM) and HTI membranes with NaCl as the draw solution. Both types of forward osmosis membranes were tested......-sized wastewater treatment plants....

  17. Operation and Maintenance Manual for the Central Facilities Area Sewage Treatment Plant

    Energy Technology Data Exchange (ETDEWEB)

    Norm Stanley

    2011-02-01

    This Operation and Maintenance Manual lists operator and management responsibilities, permit standards, general operating procedures, maintenance requirements and monitoring methods for the Sewage Treatment Plant at the Central Facilities Area at the Idaho National Laboratory. The manual is required by the Municipal Wastewater Reuse Permit (LA-000141-03) the sewage treatment plant.

  18. Biohydrogen production and wastewater treatment from organic wastewater by anaerobic fermentation with UASB

    Science.gov (United States)

    Wang, Lu; Li, Yong-feng; Wang, Yi-xuan; Yang, Chuan-ping

    2010-11-01

    In order to discuss the ability of H2-production and wastewater treatment, an up-flow anaerobic sludge bed (UASB) using a synthesized substrate with brown sugar wastewater was conducted to investigate the hydrogen yield, hydrogen producing rate, fermentation type of biohydrogen production, and the chemical oxygen demand (COD) removal rate, respectively. The results show that when the biomass of inoculants was 22.5 g SSṡL-1 and the influent concentration, hydraulic retention time (HRT) and initial pH were within the ranges of 4000˜6000 mg CODṡL-1, 8 h and 5-5.5, respectively, and the biohydrogen producing reactor could work effectively. The maximum hydrogen production rate is 5.98 Lṡd-1. Simultaneously, the concentration of ethanol and acetic acid is around 80% of the aqueous terminal production in the system, which presents the typical ethanol type fermentation. pH is at the range of 4˜4.5 during the whole performing process, however, the removal rate of COD is just about 20%. Therefore, it's still needs further research to successfully achieve the biohydrogen production and wastewater treatment, simultaneously.

  19. F/H Effluent Treatment Facility. Preliminary engineering report

    International Nuclear Information System (INIS)

    1985-01-01

    The Department of Energy is currently proposing to construct the F/H ETF to process wastewater from the Separations Areas and replace the existing seepage basins. Reasons for seepage basin closure are two-fold. First, nonradioactive hazardous materials routinely discharged to the seepage basins may have adversely impacted the quality of the groundwater in the vicinity of the basins. Second, amendments to the Resource Conservation and Recovery Act (RCRA) were approved in 1984, prohibiting the discharge of hazardous wastes to unlined seepage basins after November, 1988. The F/H ETF will consist of wastewater storage facilities and a treatment plant discharging treated effluent to Upper Three Runs Creek. Seepage basin use in F and H Areas wil be discontinued after startup, allowing timely closure of these basins. 3 refs

  20. Application of Ionizing Radiation on the Cork Wastewater Treatment

    Energy Technology Data Exchange (ETDEWEB)

    Melo, R.; Madureira, J.; Verde, S. Cabo; Nunes, I.; Santos, P. M.P.; Silva, T.; Leal, J. P.; Botelho, M. L. [Instituto Tecnológico e Nuclear, Instituto Superior Técnico, Universidade Técnica de Lisboa, Sacavém (Portugal)

    2012-07-01

    In the framework of the CRP on “Radiation treatment of wastewater for reuse with particular focus on wastewaters containing organic pollutants” Portuguese team is been developed studies on the implementation of ionizing radiation technology as a complementary treatment for industrial effluents and increase the added value of these wastewaters. Based on these assumptions, preliminary studies of the gamma radiation effects on the antioxidant compounds present in cork cooking water were carried out. Radiation studies were performed by using radiation between 20 and 50 kGy at 0.4 kGy/h and 2.4 kGy/h. The radiation effects on organic matter content were evaluated by Chemical Oxygen Demand (COD). The antioxidant activity was measured by Ferric Reducing Power (FRAP) assay. The total phenolic content was studied by Folin-Ciocalteau method. Results point out that gamma radiation increases both the amount of phenolic compounds and antioxidant capacity of cork cooking water. By the other hand, the radiolytic degradation by ionizing radiation of gallic acid and esculetin as models for recalcitrants were studied. The objective of this study was to find out if radiolytic degradation, followed by microbial degradation could increase the treatment efficiency. A natural cork wastewater bacterium was selected from the irradiated wastewater at 9 kGy. The applied methodology was based on the evaluation of growth kinetics of the selected bacteria by turbidimetry and colony forming units, in minimal salt medium with non-irradiated and irradiated phenolic as substrate. The overall obtained results highlights the potential of this technology for increase the add value of cork waters and raised some issues to explain by new methodological setup on biodegradation studies. (author)

  1. Application of Ionizing Radiation on the Cork Wastewater Treatment

    International Nuclear Information System (INIS)

    Melo, R.; Madureira, J.; Verde, S. Cabo; Nunes, I.; Santos, P.M.P.; Silva, T.; Leal, J.P.; Botelho, M.L.

    2012-01-01

    In the framework of the CRP on “Radiation treatment of wastewater for reuse with particular focus on wastewaters containing organic pollutants” Portuguese team is been developed studies on the implementation of ionizing radiation technology as a complementary treatment for industrial effluents and increase the added value of these wastewaters. Based on these assumptions, preliminary studies of the gamma radiation effects on the antioxidant compounds present in cork cooking water were carried out. Radiation studies were performed by using radiation between 20 and 50 kGy at 0.4 kGy/h and 2.4 kGy/h. The radiation effects on organic matter content were evaluated by Chemical Oxygen Demand (COD). The antioxidant activity was measured by Ferric Reducing Power (FRAP) assay. The total phenolic content was studied by Folin-Ciocalteau method. Results point out that gamma radiation increases both the amount of phenolic compounds and antioxidant capacity of cork cooking water. By the other hand, the radiolytic degradation by ionizing radiation of gallic acid and esculetin as models for recalcitrants were studied. The objective of this study was to find out if radiolytic degradation, followed by microbial degradation could increase the treatment efficiency. A natural cork wastewater bacterium was selected from the irradiated wastewater at 9 kGy. The applied methodology was based on the evaluation of growth kinetics of the selected bacteria by turbidimetry and colony forming units, in minimal salt medium with non-irradiated and irradiated phenolic as substrate. The overall obtained results highlights the potential of this technology for increase the add value of cork waters and raised some issues to explain by new methodological setup on biodegradation studies. (author)

  2. Research and development on municipal Wastewater treatment processes using electron beams

    International Nuclear Information System (INIS)

    Kashiwaya, Mamoru

    1994-01-01

    This paper was described concerning the experimental results and their engineering evaluations on electron beam irradiation treatment to effluent and sludge produced in existing municipal wastewater treatment plants implemented by the Japan Atomic Energy Research Institute and the study committee for past five years. Laboratory tests using an electron accelerator were carried out for the purposes of disinfection both to effluent and to dewatered sludge. And composting tests by a pilot-plant were also carried out to find the optimal conditions on design and operation, and initial and operational cost estimations for pelletized sludge with/without the irradiation. It was found that these applications to effluent, sludge and supernatant were quite effective. However, several problems awaiting solution were found from the tests and evaluating works on the matters of marketed electron accelerators. As the results of tests and evaluating works, electron beam irradiation treatment process applied to effluent should be carried out at the municipal wastewater treatment plants. Regenerated granular activated carbon treated by electron beam irradiation may also be applicable to remove hazardous organic substances in effluent. However, long-term tests by pilotplants will be necessary to determine the design criteria, operation and maintenance conditions, and so on. For composting of dewatered sludge produced at municipal wastewater treatment plants, several sizes of smaller electron accelerator are required to be on the market. Especially, medium and small sizes municipalities expect to install composting facilities in the plant. (J.P.N.)

  3. Radiological Instrumentation Assessment for King County Wastewater Treatment Division

    International Nuclear Information System (INIS)

    Strom, Daniel J.; McConn, Ronald J.; Brodzinski, Ronald L.

    2005-01-01

    The King County Wastewater Treatment Division (WTD) have concern about the aftermath of a radiological dispersion event (RDE) leading to the introduction of significant quantities of radioactive material into its combined sanitary and storm sewer system. Radioactive material could come from the use of a radiological dispersion device (RDD). RDDs include 'dirty bombs' that are not nuclear detonations but are explosives designed to spread radioactive material. Radioactive material also could come from deliberate introduction or dispersion of radioactive material into the environment, including waterways and water supply systems. Volume 2 of PNNL-15163 assesses the radiological instrumentation needs for detection of radiological or nuclear terrorism, in support of decisions to treat contaminated wastewater or to bypass the West Point Treatment Plant (WPTP), and in support of radiation protection of the workforce, the public, and the infrastructure of the WPTP. Fixed radiation detection instrumentation should be deployed in a defense-in-depth system that provides (1) early warning of significant radioactive material on the way to the WPTP, including identification of the radionuclide(s) and estimates of the soluble concentrations, with a floating detector located in the wet well at the Interbay Pump Station and telemetered via the internet to all authorized locations; (2) monitoring at strategic locations within the plant, including (2a) the pipe beyond the hydraulic ram in the bar screen room; (2b) above the collection funnels in the fine grit facility; (2c) in the sampling tank in the raw sewage pump room; and (2d) downstream of the concentration facilities that produce 6% blended and concentrated biosolids. Engineering challenges exist for these applications. It is necessary to deploy both ultra-sensitive detectors to provide early warning and identification and detectors capable of functioning in high-dose rate environments that are likely under some scenarios

  4. Chemical treatment of wastewaters produced during separation of iodine 131

    International Nuclear Information System (INIS)

    Cohen, P.; Marcaillou, J.; Amavis, R.

    1959-01-01

    The authors report the development and assessment of a chemical treatment of radioactive wastewaters by co-precipitation. This treatment is aimed at replacing a treatment based on the use of calcium phosphate which proved to be insufficient for wastewaters resulting from the production of iodine 131. After a presentation of the characteristics of the effluents to be processed, the authors report co-precipitation tests performed on effluents before release in the storage vessel (by using barium hydroxide, lead acetate or lead sulfate) and on effluents diluted on the storage vessel. They show that a co-precipitation method based on the use of lead sulfate in alkaline medium gives the best results

  5. Wastewater Treatment Optimization for Fish Migration Using Harmony Search

    Directory of Open Access Journals (Sweden)

    Zong Woo Geem

    2014-01-01

    Full Text Available Certain types of fish migrate between the sea and fresh water to spawn. In order for them to swim without any breathing problem, river should contain enough oxygen. If fish is passing along the river in municipal area, it needs sufficient dissolved oxygen level which is influenced by dumped amount of wastewater into the river. If existing treatment methods such as settling and biological oxidation are not enough, we have to consider additional treatment methods such as microscreening filtration and nitrification. This study constructed a wastewater treatment optimization model for migratory fish, which considers three costs (filtration cost, nitrification cost, and irrigation cost and two environmental constraints (minimal dissolved oxygen level and maximal nitrate-nitrogen concentration. Results show that the metaheuristic technique such as harmony search could find good solutions robustly while calculus-based technique such as generalized reduced gradient method was trapped in local optima or even divergent.

  6. Pollution abatement with peat onsite wastewater treatment systems

    Energy Technology Data Exchange (ETDEWEB)

    Brooks, J L [University of Maine, Orano, ME (United States). Dept. of Civil Engineering

    1994-02-01

    The purpose of onsite wastewater treatment is to provide economical removal of dissolved nutrients, pathogens and other contaminates from septic tank effluent to avoid the pollution of groundwater or creation of other health hazards. The effective use of conventional soil adsorption systems is limited by a number of factors including site characteristics, soil type and condition, and the proximity of the system to surface waters or a source of potable water. On adverse sites, where the use of conventional subsurface soil adsorption systems does not provide acceptable levels of treatment, Sphagnum peat may be used as an economical method of onsite wastewater treatment. The peat system, when properly designed and constructed, is relatively simple to install, requires minimal energy and maintenance, and provides a high quality effluent without additional disinfection. 19 refs.

  7. Pharmaceutical Compounds in Wastewater: Wetland Treatment as a Potential Solution

    Directory of Open Access Journals (Sweden)

    John R. White

    2006-01-01

    Full Text Available Pharmaceutical compounds are being released into the aquatic environment through wastewater discharge around the globe. While there is limited removal of these compounds within wastewater treatment plants, wetland treatment might prove to be an effective means to reduce the discharge of the compounds into the environment. Wetlands can promote removal of these pharmaceutical compounds through a number of mechanisms including photolysis, plant uptake, microbial degradation, and sorption to the soil. We review relevant laboratory research on these various mechanisms and provide data on the few studies that have examined wetland removal. There is a need to document the degree to which various pharmaceutical compounds are removed in full-scale treatment wetlands, as there is a paucity of data on overall pharmaceutical removal rates.

  8. New framework for standardized notation in wastewater treatment modelling

    DEFF Research Database (Denmark)

    Corominas, L.; Rieger, L.; Takacs, I.

    2010-01-01

    Many unit process models are available in the field of wastewater treatment. All of these models use their own notation, causing problems for documentation, implementation and connection of different models (using different sets of state variables). The main goal of this paper is to propose a new...... is a framework that can be used in whole plant modelling, which consists of different fields such as activated sludge, anaerobic digestion, sidestream treatment, membrane bioreactors, metabolic approaches, fate of micropollutants and biofilm processes. The main objective of this consensus building paper...... notational framework which allows unique and systematic naming of state variables and parameters of biokinetic models in the wastewater treatment field. The symbols are based on one main letter that gives a general description of the state variable or parameter and several subscript levels that provide...

  9. Applications of nanotechnology in water and wastewater treatment.

    Science.gov (United States)

    Qu, Xiaolei; Alvarez, Pedro J J; Li, Qilin

    2013-08-01

    Providing clean and affordable water to meet human needs is a grand challenge of the 21st century. Worldwide, water supply struggles to keep up with the fast growing demand, which is exacerbated by population growth, global climate change, and water quality deterioration. The need for technological innovation to enable integrated water management cannot be overstated. Nanotechnology holds great potential in advancing water and wastewater treatment to improve treatment efficiency as well as to augment water supply through safe use of unconventional water sources. Here we review recent development in nanotechnology for water and wastewater treatment. The discussion covers candidate nanomaterials, properties and mechanisms that enable the applications, advantages and limitations as compared to existing processes, and barriers and research needs for commercialization. By tracing these technological advances to the physicochemical properties of nanomaterials, the present review outlines the opportunities and limitations to further capitalize on these unique properties for sustainable water management. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Exposure to Airborne Noroviruses and Other Bioaerosol Components at a Wastewater Treatment Plant in Denmark

    DEFF Research Database (Denmark)

    Uhrbrand, Katrine; Schultz, Anna Charlotte; Madsen, Anne Mette

    2011-01-01

    Exposure to bioaerosols associated with wastewater treatment processes may represent an occupational health risk for workers at wastewater treatment plants (WWTPs). A high frequency of acute symptoms in the gastrointestinal tract among the wastewater workers at a Danish WWTP has been reported. Th...

  11. Sustainable Optimization for Wastewater Treatment System Using PSF-HS

    Directory of Open Access Journals (Sweden)

    Zong Woo Geem

    2016-03-01

    Full Text Available The sustainability in a river with respect to water quality is critical because it is highly related with environmental pollution, economic expenditure, and public health. This study proposes a sustainability problem of wastewater treatment system for river ecosystem conservation which helps the healthy survival of the aquatic biota and human beings. This study optimizes the design of a wastewater treatment system using the parameter-setting-free harmony search algorithm, which does not require the existing tedious value-setting process for algorithm parameters. The real-scale system has three different options of wastewater treatment, such as filtration, nitrification, and diverted irrigation (fertilization, as well as two existing treatment processes (settling and biological oxidation. The objective of this system design is to minimize life cycle costs, including initial construction costs of those treatment options, while satisfying minimal dissolved oxygen requirements in the river, maximal nitrate-nitrogen concentration in groundwater, and a minimal nitrogen requirement for crop farming. Results show that the proposed technique could successfully find solutions without requiring a tedious setting process.

  12. Life Cycle Assessment to Municipal Wastewater Treatment Plant

    International Nuclear Information System (INIS)

    Garcia, J. s.; Herrera, I.; Rodriguez, A.

    2011-01-01

    The evaluation was done at a Municipal Wastewater Treatment Plant (MWTP), through the application of the methodology of Life Cycle Assessment (LCA) performed by using a commercial tool called SIMAPRO. The objective of this study was to apply Life Cycle Assessment (LCA) in two systems: municipal wastewater effluent without treatment and Wastewater Treatment Plant (WTP) that is operating in poor condition and has a direct discharge to a natural body, which is a threat to the environment. A LCA was done using SIMAPRO 7, in order to determine the environmental impact in each scenery was assessed, a comparison of the impacts and propose improvements to decrease, following the steps this methodology and according to the respective standardized normative (ISO 14040/ ISO 14044). In this study, most of used data have been reported by the plant from early 2010 and some data from literature. We identified the environmental impacts generated by the treatment, making emphasis on those related to the subsequent use of the water body receiving the discharge, such as eutrophication (near to 15% reduction). Likewise, a comparative analysis between the impacts in the two systems, with and without treatment by analyzing the variation in the impact categories studied. Finally within this work, alternatives of improvements, in order to reduce the identified and quantified impacts are proposed. (Author) 33 refs.

  13. Full scale electron beam systems for treatment of water, wastewater and medical waste

    International Nuclear Information System (INIS)

    Waite, T.D.; Kurucz, C.N.; Cooper, W.J.; Brown, D.

    1998-01-01

    High energy electron accelerators have been used in numerous applications for several decades. In the early 1980's several attempts to use electron accelerators for the disinfection of sludge proved that the technology could be used for that application. One such facility was designed, built and tested for one year at the Miami-Dade Virginia Key Wastewater Treatment Plant. The process successfully disinfected anaerobically digested sludge. However, due to changing local regulations the process was never implemented. Now this process may provide a viable alternative for the ultimate destruction of toxic and hazardous organic chemicals from water and sludges. When high energy electrons impact an aqueous solution, with or without particulate matter present, reactive transient species are formed. The three transient species of most interest are the aqueous electron, e - aq, hydrogen radical, H·, and the hydroxyl radical, ·OH. The relative concentration of these radicals in an irradiated solution of pure water is 44, 10 and 46%, respectively. The absolute concentration of the radicals is dose and water quality dependent, but is in excess of mM levels in potable, raw and secondary wastewater effluent at our facility. This paper describes the facilities at the Electron Beam Research Facility (EBRF) in Miami, FL. The accelerator is a 1.5 MeV, 50 mA insulated core transformer type. Several areas of research have been the focus of the studies with an interdisciplinary team of faculty and students in engineering and science. The areas included are, inactivation of bacteria in raw and chlorinated and unchlorinated secondary wastewater and the changes in biochemical oxygen demand and chemical oxygen demand in the raw and unchlorinated secondary wastewater. The removal of toxic chemicals has also been studied in some detail. These studies have been conducted both at the EBRF and using 60 Co gamma irradiation. To examine the effect of water quality on the destruction of the

  14. Fate and behaviour of ZnO engineered nanoparticles in a simulated domestic wastewater treatment plant

    CSIR Research Space (South Africa)

    Chaúquea, EFC

    2013-08-01

    Full Text Available Wastewater treatment plants (WWTPs) employ activated sludge processes to treat domestic wastewater using a consortium of bacteria essentially to degrade organic matter. However, bacteria activity is inhibited by toxic substances; thus, potentially...

  15. Energy and nutrient recovery for munipal wastewater treatment : how to design a feasible plant layout?

    NARCIS (Netherlands)

    Khiewwijit, R.; Temmink, B.G.; Rijnaarts, H.H.M.; Keesman, K.J.

    2016-01-01

    Activated sludge systems are commonly used for robust and efficient treatment of municipal wastewater. However, these systems cannot achieve their maximum potential to recover valuable resources from wastewater. This study demonstrates a procedure to design a feasible novel configuration for

  16. The Energy, Greenhouse Gas Emissions, and Cost Implications of Municipal Water Supply & Wastewater Treatment

    Science.gov (United States)

    Rodriguez-Winter, Thelma

    All man-made structures and materials have a design life. Across the United States there is a common theme for our water and wastewater treatment facilities and infrastructure. The design life of many of our mid 20 th century water and wastewater infrastructures in the United States have reached or are reaching life expectancy limits (ASCE, 2010). To compound the financial crisis of keeping up with the degradation, meeting and exceeding quality standards has never been more important in order to protect local fresh water supplies. This thesis analyzes the energy consumption of a municipal water and wastewater treatment system from a Lake Erie intake through potable treatment and back through wastewater treatment then discharge. The system boundary for this thesis includes onsite energy consumed by the treatment system and distribution/reclamation system as well as the energy consumed by the manufacturing of treatment chemicals applied during the study periods. By analyzing energy consumption, subsequent implications from greenhouse gas emissions and financial expenditures were quantified. Through the segregation of treatment and distribution processes from non-process energy consumption, such as heating, lighting, and air handling, this study identified that the potable water treatment system consumed an annual average of 2.42E+08 kBtu, spent 5,812,144 for treatment and distribution, and emitted 28,793 metric tons of CO2 equivalent emissions. Likewise, the wastewater treatment system consumed an annual average of 2.45E+08 kBtu, spent 3,331,961 for reclamation and treatment, and emitted 43,780 metric tons of CO2 equivalent emissions. The area with the highest energy usage, financial expenditure, and greenhouse gas emissions for the potable treatment facility and distribution system was from the manufacturing of the treatment chemicals, 1.10E+08 kBtu, 3.7 million, and 17,844 metric tons of CO2 equivalent, respectively. Of the onsite energy (1.4E-03 kWh per gallon

  17. Evaluation of on-site wastewater treatment systems

    International Nuclear Information System (INIS)

    Dunn, J.

    2002-01-01

    'Full text:' This presentation will describe the nature, scope, and findings of a program designed to conduct a third-party group evaluation of wastewater denitrification technologies appropriate for low-flow systems, partially funded by a grant from the Pennsylvania Department of Environmental Protection (PADEP). The objective of this program is to verify the performance of products that provide nutrient reduction in wastewater from a variety of sources, including domestic wastewater, agricultural runoff, or other waste streams. The evaluation process will be overseen and coordinated by the Environmental Technology Evaluation Center (EvTEC), a program of the Civil Engineering Research Foundation (CERF), the research and technology transfer arm of the American Society of Civil Engineers (ASCE). EvTEC is a pilot program evaluating innovative environmental technologies under the US Environmental Protection Agency's (USEPA) Environmental Technology Verification (ETV) Program. Among other performance issues, the potential energy savings of using nutrient reducing technologies scaled to treat low flows - larger than an individual septic tank but smaller than that of a conventional wastewater treatment plant - will be assessed. The energy savings realized by reduced construction and equipment transport costs alone could make low-flow nutrient reduction technologies viable options for rural communities, small farms, and other low-flow settings. The evaluation is being funded in part by PADEP, which is sponsoring this evaluation due to its interest in developing low-cost wastewater treatment technologies for Pennsylvania's rural communities. However, the evaluation is national in scope, and participants will come from all areas of the country. The presentation will include a description of the process for establishing the testing protocol, testing results from various nutrient reducing technologies, and obstacles encountered and lessons learned during the process. (author)

  18. ``Living off the land'': resource efficiency of wetland wastewater treatment

    Science.gov (United States)

    Nelson, M.; Odum, H. T.; Brown, M. T.; Alling, A.

    Bioregenerative life support technologies for space application are advantageous if they can be constructed using locally available materials, and rely on renewable energy resources, lessening the need for launch and resupply of materials. These same characteristics are desirable in the global Earth environment because such technologies are more affordable by developing countries, and are more sustainable long-term since they utilize less non-renewable, imported resources. Subsurface flow wetlands (wastewater gardens™) were developed and evaluated for wastewater recycling along the coast of Yucatan. Emergy evaluations, a measure of the environmental and human economic resource utilization, showed that compared to conventional sewage treatment, wetland wastewater treatment systems use far less imported and purchased materials. Wetland systems are also less energy-dependent, lessening dependence on electrical infrastructure, and require simpler maintenance since the system largely relies on the ecological action of microbes and plants for their efficacy. Detailed emergy evaluations showed that wetland systems use only about 15% the purchased emergy of conventional sewage systems, and that renewable resources contribute 60% of total emergy used (excluding the sewage itself) compared to less than 1% use of renewable resources in the high-tech systems. Applied on a larger scale for development in third world countries, wetland systems would require 1/5 the electrical energy of conventional sewage treatment (package plants), and save 2/3 of total capital and operating expenses over a 20-year timeframe. In addition, there are numerous secondary benefits from wetland systems including fiber/fodder/food from the wetland plants, creation of ecosystems of high biodiversity with animal habitat value, and aesthestic/landscape enhancement of the community. Wetland wastewater treatment is an exemplar of ecological engineering in that it creates an interface ecosystem to handle

  19. Use of hydrodynamic cavitation in (waste)water treatment.

    Science.gov (United States)

    Dular, Matevž; Griessler-Bulc, Tjaša; Gutierrez-Aguirre, Ion; Heath, Ester; Kosjek, Tina; Krivograd Klemenčič, Aleksandra; Oder, Martina; Petkovšek, Martin; Rački, Nejc; Ravnikar, Maja; Šarc, Andrej; Širok, Brane; Zupanc, Mojca; Žitnik, Miha; Kompare, Boris

    2016-03-01

    The use of acoustic cavitation for water and wastewater treatment (cleaning) is a well known procedure. Yet, the use of hydrodynamic cavitation as a sole technique or in combination with other techniques such as ultrasound has only recently been suggested and employed. In the first part of this paper a general overview of techniques that employ hydrodynamic cavitation for cleaning of water and wastewater is presented. In the second part of the paper the focus is on our own most recent work using hydrodynamic cavitation for removal of pharmaceuticals (clofibric acid, ibuprofen, ketoprofen, naproxen, diclofenac, carbamazepine), toxic cyanobacteria (Microcystis aeruginosa), green microalgae (Chlorella vulgaris), bacteria (Legionella pneumophila) and viruses (Rotavirus) from water and wastewater. As will be shown, hydrodynamic cavitation, like acoustic, can manifest itself in many different forms each having its own distinctive properties and mechanisms. This was until now neglected, which eventually led to poor performance of the technique. We will show that a different type of hydrodynamic cavitation (different removal mechanism) is required for successful removal of different pollutants. The path to use hydrodynamic cavitation as a routine water cleaning method is still long, but recent results have already shown great potential for optimisation, which could lead to a low energy tool for water and wastewater cleaning. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Slaughterhouse wastewater treatment by combined chemical coagulation and electrocoagulation process.

    Science.gov (United States)

    Bazrafshan, Edris; Kord Mostafapour, Ferdos; Farzadkia, Mehdi; Ownagh, Kamal Aldin; Mahvi, Amir Hossein

    2012-01-01

    Slaughterhouse wastewater contains various and high amounts of organic matter (e.g., proteins, blood, fat and lard). In order to produce an effluent suitable for stream discharge, chemical coagulation and electrocoagulation techniques have been particularly explored at the laboratory pilot scale for organic compounds removal from slaughterhouse effluent. The purpose of this work was to investigate the feasibility of treating cattle-slaughterhouse wastewater by combined chemical coagulation and electrocoagulation process to achieve the required standards. The influence of the operating variables such as coagulant dose, electrical potential and reaction time on the removal efficiencies of major pollutants was determined. The rate of removal of pollutants linearly increased with increasing doses of PACl and applied voltage. COD and BOD(5) removal of more than 99% was obtained by adding 100 mg/L PACl and applied voltage 40 V. The experiments demonstrated the effectiveness of chemical and electrochemical techniques for the treatment of slaughterhouse wastewaters. Consequently, combined processes are inferred to be superior to electrocoagulation alone for the removal of both organic and inorganic compounds from cattle-slaughterhouse wastewater.

  1. Application of Electrocoagulation Process for Dairy Wastewater Treatment

    Directory of Open Access Journals (Sweden)

    Edris Bazrafshan

    2013-01-01

    Full Text Available Dairy industry wastewater is characterized by high biochemical oxygen demand (BOD5, chemical oxygen demand (COD, and other pollution load. The purpose of this study was to investigate the effects of the operating parameters such as applied voltage, number of electrodes, and reaction time on a real dairy wastewater in the electrocoagulation process. For this purpose, aluminum electrodes were used in the presence of potassium chloride as electrolytes. It has been shown that the removal efficiency of COD, BOD5, and TSS increased with increasing the applied voltage and the reaction time. The results indicate that electrocoagulation is efficient and able to achieve 98.84% COD removal, 97.95% BOD5 removal, 97.75% TSS removal, and >99.9% bacterial indicators at 60 V during 60 min. The experiments demonstrated the effectiveness of electrocoagulation techniques for the treatment of dairy wastewaters. Finally, the results demonstrated the technical feasibility of electrocoagulation process using aluminum electrodes as a reliable technique for removal of pollutants from dairy wastewaters.

  2. Slaughterhouse Wastewater Treatment by Combined Chemical Coagulation and Electrocoagulation Process

    Science.gov (United States)

    Bazrafshan, Edris; Kord Mostafapour, Ferdos; Farzadkia, Mehdi; Ownagh, Kamal Aldin; Mahvi, Amir Hossein

    2012-01-01

    Slaughterhouse wastewater contains various and high amounts of organic matter (e.g., proteins, blood, fat and lard). In order to produce an effluent suitable for stream discharge, chemical coagulation and electrocoagulation techniques have been particularly explored at the laboratory pilot scale for organic compounds removal from slaughterhouse effluent. The purpose of this work was to investigate the feasibility of treating cattle-slaughterhouse wastewater by combined chemical coagulation and electrocoagulation process to achieve the required standards. The influence of the operating variables such as coagulant dose, electrical potential and reaction time on the removal efficiencies of major pollutants was determined. The rate of removal of pollutants linearly increased with increasing doses of PACl and applied voltage. COD and BOD5 removal of more than 99% was obtained by adding 100 mg/L PACl and applied voltage 40 V. The experiments demonstrated the effectiveness of chemical and electrochemical techniques for the treatment of slaughterhouse wastewaters. Consequently, combined processes are inferred to be superior to electrocoagulation alone for the removal of both organic and inorganic compounds from cattle-slaughterhouse wastewater. PMID:22768233

  3. Wastewater treatment in a hybrid activated sludge baffled reactor

    Energy Technology Data Exchange (ETDEWEB)

    Tizghadam, Mostafa [Laboratoire des Sciences de l' Eau et de l' Environnement, Universite de Limoges, ENSIL, Parc ESTER, 16 Rue Atlantis, F-87068 Limoges Cedex (France); Dagot, Christophe [Laboratoire des Sciences de l' Eau et de l' Environnement, Universite de Limoges, ENSIL, Parc ESTER, 16 Rue Atlantis, F-87068 Limoges Cedex (France)], E-mail: dagot@ensil.unilim.fr; Baudu, Michel [Laboratoire des Sciences de l' Eau et de l' Environnement, Universite de Limoges, ENSIL, Parc ESTER, 16 Rue Atlantis, F-87068 Limoges Cedex (France)

    2008-06-15

    A novel hybrid activated sludge baffled reactor (HASBR), which contained both suspended and attached-growth biomass perfect mixing cells in series, was developed by installing standing and hanging baffles and introducing plastic brushes into a conventional activated sludge (CAS) reactor. It was used for the treatment of domestic wastewater. The effects on the operational performance of developing the suspended and attached-growth biomass and reactor configuration were investigated. The change of the flow regime from complete-mix to plug-flow, and the addition of plastic brushes as a support for biofilm, resulted in considerable improvements in the COD, nitrogen removal efficiency of domestic wastewater and sludge settling properties. In steady state, approximately 98 {+-} 2% of the total COD and 98 {+-} 2% of the ammonia of the influent were removed in the HASBR, when the influent wastewater concentration was 593 {+-} 11 mg COD/L and 43 {+-} 5 mg N/L, respectively, at a HRT of 10 h. These results were 93 {+-} 3 and 6 {+-} 3% for the CAS reactor, respectively. Approximately 90 {+-} 7% of the total COD was removed in the HASBR, when the influent wastewater concentration was 654 {+-} 16 mg COD/L at a 3 h HRT, and in the organic loading rate (OLR) of 5.36 kg COD m{sup -3} day{sup -1}. The result for the CAS reactor was 60 {+-} 3%. Existing CAS plants can be upgraded by changing the reactor configuration and introducing biofilm support media into the aeration tank.

  4. Contaminant removal by wastewater treatment plants in the Stillaguamish River Basin, Washington

    Science.gov (United States)

    Barbash, Jack E.; Moran, Patrick W.; Wagner, Richard J.; Wolanek, Michael

    2015-01-01

    Human activities in most areas of the developed world typically release nutrients, pharmaceuticals, personal care products, pesticides, and other contaminants into the environment, many of which reach freshwater ecosystems. In urbanized areas, wastewater treatment plants (WWTPs) are critical facilities for collecting and reducing the amounts of wastewater contaminants (WWCs) that ultimately discharge to rivers, coastal areas, and groundwater. Most WWTPs use multiple methods to remove contaminants from wastewater. These include physical methods to remove solid materials (primary treatment), biological and chemical methods to remove most organic matter (secondary treatment), advanced methods to reduce the concentrations of various contaminants such as nitrogen, phosphorus and (or) synthetic organic compounds (tertiary treatment), and disinfection prior to discharge (Metcalf and Eddy, Inc., 1979). This study examined the extent to which 114 organic WWCs were removed by each of three WWTPs, prior to discharge to freshwater and marine ecosystems, in a rapidly developing area in northwestern Washington State. Removal percentages for each WWC were estimated by comparing the concentrations measured in the WWTP influents with those measured in the effluents. The investigation was carried out in the 700-mi2Stillaguamish River Basin, the fifth largest watershed that discharges to Puget Sound (fig. 1).

  5. Removal of indicator organisms by chemical treatment of wastewater.

    Science.gov (United States)

    De Zutter, L; van Hoof, J

    1981-01-01

    Recently a new chemical wastewater treatment process based upon precipitation of proteins by sodium lignosulphonate under acid conditions is used to purify the wastewater from slaughterhouses and poultry processing plants. In order to determine the reduction of indicator organisms due to this treatment process, influent and effluent samples from two of such plants (plant A in a pig slaughterhouse and plant B in a poultry processing plant) were examined. The results demonstrated that the pH used in the process, has a considerable influence on the reduction of the indicator organisms. On the first sampling day in plant A the initial working-pH was 4 and the corresponding reduction of the different microorganisms varied from 0.7 to 1.5 log. According to the decrease of the pH to 2.3, the reduction increased to a minimum of at least 1.9 and a maximum of at least 4.5 log. In the other samples from this plant (working-pH 2.4) the elimination ranged from 1.8 to 4.0 log. In plant B, the removal of the indicator organisms brought about by a working-pH of 3.0 ranged from 2.1 to 3.1 log. The results showed that in comparison with the biological treatment processes this chemical wastewater treatment process realized a significant greater removal of indicator organisms.

  6. Study on the Development of Household Wastewater Treatment Unit

    Directory of Open Access Journals (Sweden)

    Ali Hadi Ghawi

    2018-03-01

    Full Text Available The cities of Iraq in general and the city of Al Diwaniyah in particular are characterized by the fact that the majority of households use septic tank to dispose of sewage, leading to contamination of ground and surface water and a disturbance to the environment. The objective of this study is to protect the water and soil sources from the risk of pollution, eliminate the process of perfusion and thus, reduce costs, maintain public health, as well as design and implement the proposed purification unit for domestic wastewater treatment. A domestic wastewater treatment unit has been improved to meet the standard specifications for the quality of the effluent wastewater. In this study, a compact non-electric sewage treatment unit was improved and implemented. Treatment is based on an effective modern biological purification process. Experimental verification and analysis of results were performed to demonstrate the improvement of physical and chemical parameters. The performance of the septic tanks-bioreactor gave satisfactory results. The removal efficiencies of Total Biochemical Oxygen Demand (BOD, Total Chemical Oxygen Demand (COD, NH4-N, Total Nitrogen and Total Suspended Solid (TSS were 96.9%, 84.6%, 78.8%, 79.9% and 95.3%, respectively.

  7. Hydroponic root mats for wastewater treatment-a review.

    Science.gov (United States)

    Chen, Zhongbing; Cuervo, Diego Paredes; Müller, Jochen A; Wiessner, Arndt; Köser, Heinz; Vymazal, Jan; Kästner, Matthias; Kuschk, Peter

    2016-08-01

    Hydroponic root mats (HRMs) are ecotechnological wastewater treatment systems where aquatic vegetation forms buoyant filters by their dense interwoven roots and rhizomes, sometimes supported by rafts or other floating materials. A preferential hydraulic flow is created in the water zone between the plant root mat and the bottom of the treatment system. When the mat touches the bottom of the water body, such systems can also function as HRM filter; i.e. the hydraulic flow passes directly through the root zone. HRMs have been used for the treatment of various types of polluted water, including domestic wastewater; agricultural effluents; and polluted river, lake, stormwater and groundwater and even acid mine drainage. This article provides an overview on the concept of applying floating HRM and non-floating HRM filters for wastewater treatment. Exemplary performance data are presented, and the advantages and disadvantages of this technology are discussed in comparison to those of ponds, free-floating plant and soil-based constructed wetlands. Finally, suggestions are provided on the preferred scope of application of HRMs.

  8. Occurrence of Legionella in wastewater treatment plants linked to wastewater characteristics.

    Science.gov (United States)

    Caicedo, C; Beutel, S; Scheper, T; Rosenwinkel, K H; Nogueira, R

    2016-08-01

    In recent years, the occurrence of Legionella in wastewater treatment plants (WWTP) has often been reported. However, until now there is limited knowledge about the factors that promote Legionella's growth in such systems. The aim of this study was to investigate the chemical wastewater parameters that might be correlated to the concentration of Legionella spp. in WWTP receiving industrial effluents. For this purpose, samples were collected at different processes in three WWTP. In 100 % of the samples taken from the activated sludge tanks Legionella spp. were detected at varying concentrations (4.8 to 5.6 log GU/mL) by the quantitative real-time polymerase chain reaction method, but not by the culture method. Statistical analysis with various parameters yielded positive correlations of Legionella spp. concentration with particulate chemical oxygen demand, Kjeldahl nitrogen and protein concentration. Amino acids were quantified in wastewater and activated sludge samples at concentrations that may not support the growth of Legionella, suggesting that in activated sludge tanks this bacterium multiplied in protozoan hosts.

  9. Characterization of the variability of settling in wastewater treatment

    International Nuclear Information System (INIS)

    Cherif, Hayet; Touhami, Youssef; Shayeb, Hedi

    2009-01-01

    The processes of biological treatment of wastewater in activated sludge are complex dynamic processes are difficult to manage. The ability of the sludge settling is a key parameter for the overall effectiveness of pollution control process and for preserving the quality of the receiving environment. So for better management of wastewater treatment plants, a study of interactions between the couple reactor clarifier is necessary. A new management technique must notify the operator to problems related to sludge mainly to the loss of the sludge blanket which will have adverse effects on the environment. The approach is widely adopted and applied an approach aims to identify factors that may explain the observed phenomena in order to draw strategies that could improve the sludge settling on an industrial scale. The widely used approach is based on measuring Mohlman index and gives an impression, on the ability of the mud settling, but does not prevent the operator to anomalies that have places in the decanter.

  10. Anaerobic fluidized bed treatment of a tannery wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Chen, S.J.; Li, C.T.; Shieh, W.K.

    1988-11-01

    The anaerobic fluidized bed system, in conjunction with neutralization and chemical coagulation/flocculation, was evaluated for treatment of a tannery wastewater produced from a chrome tanning operation. Neutralization with 1 N sulphuric acid was effective for removal of chromate, with complete removal achieved at pH=8.0. Chemical coagulation/flocculation with alum at a dosage of 200 mg/L was able to remove 97% of feed SS and 65% of feed grease. Evaluation of the performance of the anaerobic fluidized bed system indicated more than 75% of feed COD could be removed up to an F/M ratio of approximately 0.4 g COD/g TVS center dot day. The observed methane production rate was 0.221 of CH/sub 4/ produced per gram COD removed. The anaerobic fluidized bed system could provide an effective treatment of a pretreated tannery wastewater.

  11. Using AHP for Selecting the Best Wastewater Treatment Process

    Directory of Open Access Journals (Sweden)

    AbdolReza Karimi

    2011-01-01

    Full Text Available In this paper, Analytical Hierarchy Process (AHP method that is based on expert knowledge is used for the selection of the optimal anaerobic wastewater treatment process in industrial estates. This method can be applied for complicated multi-criteria decision making to obtain reasonable results. The different anaerobic processes employed in Iranian industrial estates consist of UASB, UAFB, ABR, Contact process, and Anaerobic Lagoons. Based on the general conditions in wastewater treatment plants in industrial estates and on expert judgments and using technical, economic, environmental, and administrative criteria, the processes are weighted and the results obtained are assessed using the Expert Choice Software. Finally, the five processes investigated are ranked as 1 to 5 in a descending order of UAFB, ABR, UASB, Anaerobic Lagoon, and Contact Process. Sensitivity analysis showing the effects of input parameters on changes in the results was applied for technical, economic, environmental, and administrative criteria.

  12. Treatment of wheat straw pulp wastewater by microwave irradiation

    International Nuclear Information System (INIS)

    Feng Jianmin; Deng Yu; Li Lanqingzi

    2005-01-01

    A microwave treatment has been developed for decoloration of wheat straw pulp wastewater. Granular activated carbon (GAC) and steel slag are used as catalyst. Effective factors on chrominance removal, such as quantity and ratio of the mixed catalyst, microwave power, and reaction time, were studied. Over 95% of chrominance removal from 50 mL wastewater could be achieved by putting in it 10 gram of GAC and steel slag at a ratio of 1:23 and operating the microwave oven at 800 W for 10 minutes. It was find that when the catalyst was used for the fourth time, the chrominance removal could still be more than 80%. A kinetics study on the treatment suggested that the decoloration process accorded to a fist-order reaction. (authors)

  13. Perspectives on modelling micropollutants in wastewater treatment plants

    DEFF Research Database (Denmark)

    Clouzot, Ludiwine; Cloutier, Frédéric; Vanrolleghem, Peter A.

    2013-01-01

    Models for predicting the fate of micropollutants (MPs) in wastewater treatment plants (WWTPs) have been developed to provide engineers and decision-makers with tools that they can use to improve their understanding of, and evaluate how to optimize, the removal of MPs and determine their impact......) addressing advancements in WWTP treatment technologies, (iii) making use of common approaches to data acquisition for model calibration and (iv) integrating ecotoxicological effects of MPs in receiving waters....... on the receiving waters. This paper provides an overview of such models, and discusses the impact of regulation, engineering practice and research on model development. A review of the current status of MP models reveals that a single model cannot represent the wide range of MPs that are present in wastewaters...

  14. Limited dissemination of the wastewater treatment plant core resistome

    OpenAIRE

    Munck, Christian; Albertsen, Mads; Telke, Amar; Ellabaan, Mostafa M Hashim; Nielsen, Per Halkjær; Sommer, Morten Otto Alexander

    2015-01-01

    Horizontal gene transfer is a major contributor to the evolution of bacterial genomes and can facilitate the dissemination of antibiotic resistance genes between environmental reservoirs and potential pathogens. Wastewater treatment plants (WWTPs) are believed to play a central role in the dissemination of antibiotic resistance genes. However, the contribution of the dominant members of the WWTP resistome to resistance in human pathogens remains poorly understood. Here we use a combination of...

  15. Microbial biotechnology and circular economy in wastewater treatment

    OpenAIRE

    Nielsen, Per Halkjær

    2017-01-01

    Summary Microbial biotechnology is essential for the development of circular economy in wastewater treatment by integrating energy production and resource recovery into the production of clean water. A comprehensive knowledge about identity, physiology, ecology, and population dynamics of process‐critical microorganisms will improve process stability, reduce CO2 footprints, optimize recovery and bioenergy production, and help finding new approaches and solutions. Examples of research needs an...

  16. Liquid Effluent Retention Facility/Effluent Treatment Facility Hazards Assessment

    International Nuclear Information System (INIS)

    Simiele, G.A.

    1994-01-01

    This document establishes the technical basis in support of Emergency Planning activities for the Liquid Effluent Retention Facility and Effluent Treatment Facility the Hanford Site. The document represents an acceptable interpretation of the implementing guidance document for DOE ORDER 5500.3A. Through this document, the technical basis for the development of facility specific Emergency Action Levels and the Emergency Planning Zone is demonstrated

  17. Management Recommendations for Improving Decentralized Wastewater Treatment by the Food and Beverage Industries in Nigeria

    Directory of Open Access Journals (Sweden)

    Olajumoke F. Kayode

    2018-03-01

    Full Text Available The main aim of this study was to identify the enabling conditions that can lead to better wastewater management by industries (non-oil and gas sector in Nigeria. The relevant data and information’s required for this study were obtained through semi-structured interviews with different stakeholders in the Nigerian environmental sector. The lack of financial capability, technical expertise, and environmental awareness was envisaged as the main reason for non-compliance. According to the results, the enabling conditions that can lead to better decentralized wastewater management are government support, improved legal and regulatory framework, increased capacity, and skills of the regulators and financial arrangements for implementing environmental policies and treatment technologies in polluting facilities.

  18. A novel approach for harnessing biofilm communities in moving bed biofilm reactors for industrial wastewater treatment

    Directory of Open Access Journals (Sweden)

    Joe A. Lemire

    2015-10-01

    Full Text Available Moving bed biofilm reactors (MBBRs are an effective biotechnology for treating industrial wastewater. Biomass retention on moving bed biofilm reactor (MBBR carriers (biofilm support materials, allows for the ease-of-operation and high treatment capacity of MBBR systems. Optimization of MBBR systems has largely focused on aspects of carrier design, while little attention has been paid to enhancing strategies for harnessing microbial biomass. Previously, our research group demonstrated that mixed-species biofilms can be harvested from an industrial wastewater inoculum [oil sands process water (OSPW] using the Calgary Biofilm Device (CBD. Moreover, the resultant biofilm communities had the capacity to degrade organic toxins (naphthenic acids—NAs that are found in OSPW. Therefore, we hypothesized that harnessing microbial communities from industrial wastewater, as biofilms, on MBBR carriers may be an effective method to bioremediate industrial wastewater.Here, we detail our methodology adapting the workflow employed for using the CBD, to generate inoculant carriers to seed an MBBR.In this study, OSPW-derived biofilm communities were successfully grown, and their efficacy evaluated, on commercially available MBBR carriers affixed within a modified CBD system. The resultant biofilms demonstrated the capacity to transfer biomass to recipient carriers within a scaled MBBR. Moreover, MBBR systems inoculated in this manner were fully active 2 days post-inoculation, and readily degraded a select population of NAs. Together, these findings suggest that harnessing microbial communities on carriers affixed within a modified CBD system may represent a facile and rapid method for obtaining functional inoculants for use in wastewater MBBR treatment systems.

  19. Biological wastewater treatment of azo dyes

    Energy Technology Data Exchange (ETDEWEB)

    Shaul, G.M.; Dempsey, C.R.; Dostal, K.A. (Environmental Protection Agency, Cincinnati, OH (USA))

    1988-09-01

    EPA Water Engineering Research Laboratory, Office of Research and Development, undertook a study to determine the fate of specific water soluble azo dye compounds in the activated sludge process (ASP). The study was approached by dosing the feed to the pilot ASP systems with various water soluble azo dyes and by monitoring each dye compound through the system, analyzing both liquid and sludge samples. The fate of the parent dye compound was assessed via mass balance calculations. These data could determine if the compound was removed by adsorption, apparent biodegradation, or not removed at all. The paper presents results for 18 dye compounds tested from June 1985 through August 1987. The study was conducted at EPAs Test and Evaluation Facility in Cincinnati, Ohio. The objective of this study was to determine the partitioning of water soluble azo dyes in the ASP.

  20. Microbial contamination of the air at the wastewater treatment plant

    Directory of Open Access Journals (Sweden)

    Monika Vítězová

    2012-01-01

    Full Text Available Wastewater treatment plants (WWTPs primarily serve to protect the environment. Their task is to clean waste water from the agglomerations. On the other hand wastewater treatment plants can also negatively affect the environment in their neighbourhood. These include emissions of odour and microorganisms. This article discusses the microbial contamination of the air, called bioaerosols in selected wastewater treatment plant for 18 000 p.e. From results of the work is evident that the largest group of microorganisms in the monitored air were psychrophilic and mesophilic bacteria and microscopic fungi. The number of psychrophilic bacteria ranged from 14 to 12 000 CFU/m3 (colony forming units in 1 m3, the number of mesophilic bacteria varied in the range from 20 to 18 500 CFU/m3 and the fungi from 25 to 32 000 CFU/m3 in the air. The amount of actinomycetes ranged from 1 to 1 030 CFU/m3 and faecal coliform bacteria from 0 to 2 500 CFU/m3. Furthermore, it was confirmed that the highest air contamination was around the activation tank, area for dewatered sludge and around the building of mechanical cleaning, depending on the season. The density of studied microorganisms correlated with air temperature.

  1. Bacterial communities in full-scale wastewater treatment systems.

    Science.gov (United States)

    Cydzik-Kwiatkowska, Agnieszka; Zielińska, Magdalena

    2016-04-01

    Bacterial metabolism determines the effectiveness of biological treatment of wastewater. Therefore, it is important to define the relations between the species structure and the performance of full-scale installations. Although there is much laboratory data on microbial consortia, our understanding of dependencies between the microbial structure and operational parameters of full-scale wastewater treatment plants (WWTP) is limited. This mini-review presents the types of microbial consortia in WWTP. Information is given on extracellular polymeric substances production as factor that is key for formation of spatial structures of microorganisms. Additionally, we discuss data on microbial groups including nitrifiers, denitrifiers, Anammox bacteria, and phosphate- and glycogen-accumulating bacteria in full-scale aerobic systems that was obtained with the use of molecular techniques, including high-throughput sequencing, to shed light on dependencies between the microbial ecology of biomass and the overall efficiency and functional stability of wastewater treatment systems. Sludge bulking in WWTPs is addressed, as well as the microbial composition of consortia involved in antibiotic and micropollutant removal.

  2. Constructed wetlands for wastewater treatment: five decades of experience.

    Science.gov (United States)

    Vymazal, Jan

    2011-01-01

    The first experiments on the use of wetland plants to treat wastewaters were carried out in the early 1950s by Dr. Käthe Seidel in Germany and the first full-scale systems were put into operation during the late 1960s. Since then, the subsurface systems have been commonly used in Europe while free water surface systems have been more popular in North America and Australia. During the 1970s and 1980s, the information on constructed wetland technology spread slowly. But since the 1990 s the technology has become international, facilitated by exchange among scientists and researchers around the world. Because of the need for more effective removal of ammonia and total nitrogen, during the 1990 s and 2000s vertical and horizontal flow constructed wetlands were combined to complement each other to achieve higher treatment efficiency. Today, constructed wetlands are recognized as a reliable wastewater treatment technology and they represent a suitable solution for the treatment of many types of wastewater.

  3. Treatment of uranium contaminated wastewater – a review

    International Nuclear Information System (INIS)

    Dulama, M.; Iordache, M.; Deneanu, N.

    2013-01-01

    The paper presents a study of the treatment techniques used for uranium recovery from aqueous solutions, such as: precipitation, ion exchange processes, sorption processes, solvent extractions, separation by liquid membrane, nanofiltration and reverse osmosis. The necessary elements for rigorous treatment experiments that can be used to define innovative procedure for uranium contaminated wastewater treatment are described in this review. The published data were summarized and the areas for further research were identified in order to be able to propose an environmental friendly technology in the field of uranium production and recovery cycle. (authors)

  4. Radiological Risk Assessment for King County Wastewater Treatment Division

    Energy Technology Data Exchange (ETDEWEB)

    Strom, Daniel J.

    2005-08-05

    Staff of the King County Wastewater Treatment Division (WTD) have concern about the aftermath of a radiological dispersion event (RDE) leading to the introduction of significant quantities of radioactive material into the combined sanitary and storm sewer system in King County, Washington. Radioactive material could come from the use of a radiological dispersion device (RDD). RDDs include "dirty bombs" that are not nuclear detonations but are explosives designed to spread radioactive material (National Council on Radiation Protection and Measurements (NCRP) 2001). Radioactive material also could come from deliberate introduction or dispersion of radioactive material into the environment, including waterways and water supply systems. This document develops plausible and/or likely scenarios, including the identification of likely radioactive materials and quantities of those radioactive materials to be involved. These include 60Co, 90Sr, 137Cs, 192Ir, 226Ra, plutonium, and 241Am. Two broad categories of scenarios are considered. The first category includes events that may be suspected from the outset, such as an explosion of a "dirty bomb" in downtown Seattle. The explosion would most likely be heard, but the type of explosion (e.g., sewer methane gas or RDD) may not be immediately known. Emergency first responders must be able to quickly detect the radioisotopes previously listed, assess the situation, and deploy a response to contain and mitigate (if possible) detrimental effects resulting from the incident. In such scenarios, advance notice of about an hour or two might be available before any contaminated wastewater reaches a treatment plant. The second category includes events that could go initially undetected by emergency personnel. Examples of such a scenario would be the inadvertent or surreptitious introduction of radioactive material into the sewer system. Intact rogue radioactive sources from industrial radiography devices, well-logging apparatus, or

  5. Overview of a conceptualized waste water treatment facility for the Consolidated Incinerator Facility

    International Nuclear Information System (INIS)

    McCabe, D.J.

    1992-01-01

    The offgas system in the Consolidated Incinerator Facility (CIF) will generate an aqueous waste stream which is expected to contain hazardous, nonhazardous, and radioactive components. The actual composition of this waste stream will not be identified until startup of the facility, and is expected to vary considerably. Wastewater treatment is being considered as a pretreatment to solidification in order to make a more stable final waste form and to reduce disposal costs. A potential treatment scenario has been defined which may allow disposition of this waste in compliance with all applicable regulations. The conceptualized wastewater treatment plant is based on literature evaluations for treating hazardous metals. Laboratory tests hwill be run to verify the design for its ability to remove the hazardous and radioactive components from this waste stream. The predominant mechanism employed for removal of the hazardous and radioactive metal ions is coprecipitation. The literature indicates that reasonably low quantities of hazardous metals can be achieved with this technique. The effect on the radioactive metal ions is not predictable and has not been tested. The quantity of radioactive metal ions predicted to be present in the waste is significantly less than the solubility limit of those ions, but is higher than the discharge guidelines established by DOE Order 5400.5

  6. Occurrence of illicit drugs in water and wastewater and their removal during wastewater treatment.

    Science.gov (United States)

    Yadav, Meena K; Short, Michael D; Aryal, Rupak; Gerber, Cobus; van den Akker, Ben; Saint, Christopher P

    2017-11-01

    This review critically evaluates the types and concentrations of key illicit drugs (cocaine, amphetamines, cannabinoids, opioids and their metabolites) found in wastewater, surface water and drinking water sources worldwide and what is known on the effectiveness of wastewater treatment in removing such compounds. It is also important to amass information on the trends in specific drug use as well as the sources of such compounds that enter the environment and we review current international knowledge on this. There are regional differences in the types and quantities of illicit drug consumption and this is reflected in the quantities detected in water. Generally, the levels of illicit drugs in wastewater effluents are lower than in raw influent, indicating that the majority of compounds can be at least partially removed by conventional treatment processes such as activated sludge or trickling filters. However, the literature also indicates that it is too simplistic to assume non-detection equates to drug removal and/or mitigation of associated risks, as there is evidence that some compounds may avoid detection via inadequate sampling and/or analysis protocols, or through conversion to transformation products. Partitioning of drugs from the water to the solids fraction (sludge/biosolids) may also simply shift the potential risk burden to a different environmental compartment and the review found no information on drug stability and persistence in biosolids. Generally speaking, activated sludge-type processes appear to offer better removal efficacy across a range of substances, but the lack of detail in many studies makes it difficult to comment on the most effective process configurations and operations. There is also a paucity of information on the removal effectiveness of alternative treatment processes. Research is also required on natural removal processes in both water and sediments that may over time facilitate further removal of these compounds in receiving

  7. Environmental sustainability of wastewater sludge treatments

    DEFF Research Database (Denmark)

    Boyer-Souchet, Florence; Larsen, Henrik Fred

    treatment for municipal waste water. A special focus area in Neptune is sludge handling because the sludge amount is expected to increase due to advanced waste water treatment. The main sludge processing methods assessed in Neptune can be divided into two categories: disintegration processes before...... anaerobic digestion (thermal hydrolysis and ultrasound disintegration) and inertisation processes performed at high temperatures (incineration, pyrolysis, gasification, wet oxidation) but they all aim at volume reduction and removal of biodegradable compounds before safe sludge disposal or reuse of its...... resources. As part of a sustainability assessment (or “best practice evaluation”), a comparison between the existing and new sludge handling techniques have been done by use of life cycle assessment (LCA).The concept of induced impacts as compared to avoided impacts when introducing a new sludge treatment...

  8. Pharmaceutical manufacturing facility discharges can substantially increase the pharmaceutical load to U.S. wastewaters

    Science.gov (United States)

    Scott, Tia-Marie; Phillips, Patrick J.; Kolpin, Dana W.; Colella, Kaitlyn M.; Furlong, Edward T.; Foreman, William T.; Gray, James L.

    2018-01-01

    Discharges from pharmaceutical manufacturing facilities (PMFs) previously have been identified as important sources of pharmaceuticals to the environment. Yet few studies are available to establish the influence of PMFs on the pharmaceutical source contribution to wastewater treatment plants (WWTPs) and waterways at the national scale. Consequently, a national network of 13 WWTPs receiving PMF discharges, six WWTPs with no PMF input, and one WWTP that transitioned through a PMF closure were selected from across the United States to assess the influence of PMF inputs on pharmaceutical loading to WWTPs. Effluent samples were analyzed for 120 pharmaceuticals and pharmaceutical degradates. Of these, 33 pharmaceuticals had concentrations substantially higher in PMF-influenced effluent (maximum 555,000 ng/L) compared to effluent from control sites (maximum 175 ng/L). Concentrations in WWTP receiving PMF input are variable, as discharges from PMFs are episodic, indicating that production activities can vary substantially over relatively short (several months) periods and have the potential to rapidly transition to other pharmaceutical products. Results show that PMFs are an important, national-scale source of pharmaceuticals to the environment.

  9. Treatment of Arctic Wastewater by Chemical Coagulation, UV and Peracetic Acid Disinfection

    DEFF Research Database (Denmark)

    Chhetri, Ravi Kumar; Klupsch, Ewa; Andersen, Henrik Rasmus

    2017-01-01

    Conventional wastewater treatment is challenging in the Arctic region due to the cold climate and scattered population. Thus, no wastewater treatment plant exists in Greenland and raw wastewater is discharged directly to nearby waterbodies without treatment. We investigated the efficiency...... of physico-chemical wastewater treatment, in Kangerlussuaq, Greenland. Raw wastewater from Kangerlussuaq was treated by chemical coagulation and UV disinfection. By applying 7.5 mg Al/L polyaluminium chloride (PAX XL100), 73% of turbidity and 28% phosphate was removed from raw wastewater. E. coli...... of heterotrophic bacteria by applying 6 mg/L and 12 mg/L peracetic acid was 2.8 and 3.1 log, respectively. Similarly, removal of heterotrophic bacteria by applying 0.21 kWh/m3 and 2.10 kWh/m3 for UV irradiation was 2.1 and greater than 4 log, respectively. Physico-chemical treatment of raw wastewater followed...

  10. Carbon and energy footprint of electrochemical vinegar wastewater treatment

    Science.gov (United States)

    Gerek, Emine Esra; Yilmaz, Seval; Savaş Koparal, A.; Nezih Gerek, Ömer

    2017-11-01

    Electrochemical treatment of wastewaters that are rich in organic compounds is a popular method, due to its acidic nature that avoids biological treatment. In many cases, the pollution hazard is considered as the chemical oxygen demand (COD) from active carbon, and the success of the treatment is measured in terms of how much this specific parameter is reduced. However, if electricity is used during the treatment process, the treatment "itself" has manufacturing and operational energy costs. Many of the studies consider energy utilization as a monetary cost, and try to reduce its amount. However, the energy cost of the treatment also causes emission of carbon at the energy producing side of the closed loop. This carbon emission can be converted into oxygen demand, too. Therefore, it can be argued that one must look for the total optimal carbon efficiency (or oxygen demand), while reducing the COD. We chose a highly acidic wastewater case of vinegar production, which is a popular food product in Turkey, to demonstrate the high energy consumption and carbon emission problem of the electrochemical treatment approach. A novel strategy is presented to monitor total oxygen demand simultaneously at the treatment and energy production sides. Necessity of renewable energy utilization and conditions on process termination points are discussed.

  11. Treatment of high strength distillery wastewater (cherry stillage) by integrated aerobic biological oxidation and ozonation.

    Science.gov (United States)

    Beltrán, F J; Alvarez, P M; Rodríguez, E M; García-Araya, J F; Rivas, J

    2001-01-01

    The performance of integrated aerobic digestion and ozonation for the treatment of high strength distillery wastewater (i.e., cherry stillage) is reported. Experiments were conducted in laboratory batch systems operating in draw and fill mode. For the biological step, activated sludge from a municipal wastewater treatment facility was used as inoculum, showing a high degree of activity to distillery wastewater. Thus, BOD and COD overall conversions of 95% and 82% were achieved, respectively. However, polyphenol content and absorbance at 254 nm (A(254)) could not be reduced more than 35% and 15%, respectively, by means of single biological oxidation. By considering COD as substrate, the aerobic digestion process followed a Contois' model kinetics, from which the maximum specific growth rate of microorganisms (mu(max)) and the inhibition factor, beta, were then evaluated at different conditions of temperature and pH. In the combined process, the effect of a post-ozonation stage was studied. The main goals achieved by the ozonation step were the removal of polyphenols and A(254). Therefore, ozonation was shown to be an appropriate technology to aid aerobic biological oxidation in the treatment of cherry stillage.

  12. Economics of social trade-off: Balancing wastewater treatment cost and ecosystem damage.

    Science.gov (United States)

    Jiang, Yu; Dinar, Ariel; Hellegers, Petra

    2018-04-01

    We have developed a social optimization model that integrates the financial and ecological costs associated with wastewater treatment and ecosystem damage. The social optimal abatement level of water pollution is determined by finding the trade-off between the cost of pollution control and its resulting ecosystem damage. The model is applied to data from the Lake Taihu region in China to demonstrate this trade-off. A wastewater treatment cost function is estimated with a sizable sample from China, and an ecological damage cost function is estimated following an ecosystem service valuation framework. Results show that the wastewater treatment cost function has economies of scale in facility capacity, and diseconomies in pollutant removal efficiency. Results also show that a low value of the ecosystem service will lead to serious ecological damage. One important policy implication is that the assimilative capacity of the lake should be enhanced by forbidding over extraction of water from the lake. It is also suggested that more work should be done to improve the accuracy of the economic valuation. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Evaluating the impacts of triclosan on wastewater treatment performance during startup and acclimation.

    Science.gov (United States)

    Holzem, R M; Gardner, C M; Gunsch, C K

    2018-01-01

    Triclosan (TCS) is a broad range antimicrobial agent used in many personal care products, which is commonly discharged to wastewater treatment facilities (WWTFs). This study examined the impact of TCS on wastewater treatment performance using laboratory bench-scale sequencing batch reactors (SBRs) coupled with anaerobic digesters. The SBRs were continuously fed synthetic wastewater amended with or without 0.68 μM TCS, with the aim of determining the effect of chronic TCS exposure as opposed to a pulse TCS addition as previously studied. Overall, the present study suggests inhibition of nitrogen removal during reactor startup. However, NH 4 + removal fully rebounded after 63 days, suggesting acclimation of the associated microbial communities to TCS. An initial decrease in microbial community diversity was observed in the SBRs fed TCS as compared to the control SBRs, followed by an increase in community diversity, which coincided with the increase in NH 4 + removal. Elevated levels of NO 3 - and NO 2 - were found in the reactor effluent after day 58, however, suggesting ammonia oxidizing bacteria rebounding more rapidly than nitrogen oxidizing bacteria. Similar effects on treatment efficiencies at actual WWTFs have not been widely observed, suggesting that continuous addition of TCS in their influent may have selected for TCS-resistant nitrogen oxidizing bacteria.

  14. Vertical Subsurface Flow (VSSF) constructed wetland for domestic wastewater treatment

    Science.gov (United States)

    Perdana, M. C.; Sutanto, H. B.; Prihatmo, G.

    2018-04-01

    Vertical Subsurface Flow Constructed Wetland (VSSF) is appraised to become an alternative solution for treating domestic wastewater effectively and efficiently. The system which imitates the natural wetland concept is able to reduce organic material and nutrients in wastewater; therefore, it will be more feasible to be discharged to the environment. This study aimed to compare which species is more recommended to be applied for reducing organic material and nutrients in domestic wastewater. This experimental study applied four treatments, i.e 1) control (unplanted), 2) single species Iris pseudacorus, 3) single species Echinodorus palaefolius, and 4) combination (Iris pseudacorus and Echinodorus palaefolius) with three days of retention time. The application of those plants aims for holding the role in increasing wastewater quality and adding aesthetic impression at once. The plants were planted on VSSF media, in relatively same of weight and size to compare their effectiveness in decreasing organic and inorganic load. The parameters measured pervade TDS, pH, BOD5, COD, Nitrate, and Phosphate. The plants’ condition was also observed during and after the system worked. The result showed that the best average value of effectiveness for each of parameters: COD by combination treatment (50.76%), BOD5 by single I. pseudacorus (30.15%), Nitrate by single E. palaefolius (58.06%), Phosphate by single E. palaefolius (99.5%), and TDS by E.palaefolius (3.25%). The result showed that there was a significant difference of Nitrate and Phosphate reduction between control and three other treatments, while pH parameter showed non-significant change among them. In term of performance, I.pseudacorus seemed showed a preferable achievement.

  15. Passive treatment of wastewater and contaminated groundwater

    Science.gov (United States)

    Phifer, Mark A.; Sappington, Frank C.; Millings, Margaret R.; Turick, Charles E.; McKinsey, Pamela C.

    2007-11-06

    A bioremediation system using inorganic oxide-reducing microbial consortia for the treatment of, inter alia coal mine and coal yard runoff uses a containment vessel for contaminated water and a second, floating phase for nutrients. Biodegradable oils are preferred nutrients.

  16. Treatment of wastewaters containing anilines using enzymes: an overview

    International Nuclear Information System (INIS)

    Mantha, R.; Biswas, N.; Taylor, K.E.; Bewtra, J.K.

    2002-01-01

    Aromatic amines are manufactured in a large scale for use in industries dealing with resins, dyes, plastics and rubber, pesticides and explosives. The majority of the production-related waste is either incinerated or released into the environment. The majority of them are highly toxic, carcinogenic or mutagenic and impose serious health hazards to mankind. Available conventional physical-chemical processes including activated carbon adsorption processes, solvent extraction processes, microbial degradation and various chemical-oxidation processes developed over the years are not selective in terms of the range of the aromatic pollutant removed during treatment. Thus, such treatment strategies are more economically suitable for treatment of dilute wastewaters and are invariably used as polishing steps. Enzymes such as peroxidases, in the presence of hydrogen peroxide, and laccases, in the presence of oxygen, catalyze the oxidation of a wide variety of phenols, biphenyls, anilines, benzidines and other related aromatic compounds. Various peroxidases and laccases have been used to treat wastewaters. With respect to anilines, the potential, scope and cost of enzymatic treatment is reviewed here and compared with conventional technology, e.g., the cost of enzymatic treatment using a crude enzyme preparation of soybean peroxidase was reported to be about $0.36/m 3 for synthetic wastewater containing 1 mM of aniline, compared to an activated sludge process of $1.05/m 3 and $1.31/m 3 for activated carbon process, while for p-toluidine, it was about $0.17/m 3 . Thus, through choice of enzyme and its mode of operation, treatment costs less than the conventional treatment strategies can be achieved. (author)

  17. Configuration of biological wastewater treatment line and influent composition as the main factors driving bacterial community structure of activated sludge.

    Science.gov (United States)

    Jaranowska, Paulina; Cydzik-Kwiatkowska, Agnieszka; Zielińska, Magdalena

    2013-07-01

    The structure of microbial consortia in wastewater treatment facilities is a resultant of environmental conditions created by the operational parameters of the purification process. In the research, activated sludge from nine Polish wastewater treatment plants (WWTPs) was investigated at a molecular level to determine the impact of the complexity of biological treatment line and the influent composition on the species structure and the diversity of bacterial consortia. The community fingerprints and technological data were subjected to the canonical correspondence and correlation analyses. The number of separated biological processes realized in the treatment line and the presence of industrial wastewater in the influent were the key factors determining the species structure of total and ammonia-oxidizing bacteria in biomass. The N2O-reducers community composition depended significantly on the design of the facility; the highest species richness of denitrifiers was noted in the WWTPs with separated denitrification tanks. The contribution of industrial streams to the inflow affected the diversity of total and denitrifying bacterial consortia and diminished the diversity of ammonia oxidizers. The obtained data are valuable for engineers since they revealed the main factors, including the design of wastewater treatment plant, influencing the microbial groups critical for the stability of purification processes.

  18. MBBR evaluation for oil refinery wastewater treatment, with post-ozonation and BAC, for wastewater reuse.

    Science.gov (United States)

    Schneider, E E; Cerqueira, A C F P; Dezotti, M

    2011-01-01

    This work evaluated the performance of a Moving Bed Biofilm Reactor (MBBR) in the treatment of an oil refinery wastewater. Also, it investigated the possibility of reuse of the MBBR effluent, after ozonation in series with a biological activated carbon (BAC) column. The best performance of the MBBR was achieved with a hydraulic retention time (HRT) of 6 hours, employing a bed to bioreactor volume ratio (V(B)/V(R)) of 0.6. COD and N-NH₄(+) MBBR effluent concentrations ranged from 40 to 75 mg L⁻¹ (removal efficiency of 69-89%) and 2 to 6 mg L⁻¹ (removal efficiency of 45-86%), respectively. Ozonation carried out for 15 min with an ozone concentration of 5 mg L⁻¹ was able to improve the treated wastewater biodegradability. The treatment performance of the BAC columns was practically the same for ozonated and non ozonated MBBR effluents. The dissolved organic carbon (DOC) content of the columns of the activated carbon columns (CAG) was in the range of 2.1-3.8 mg L⁻¹, and the corresponding DOC removal efficiencies were comprised between 52 and 75%. The effluent obtained at the end of the proposed treatment presented a quality, which meet the requirements for water reuse in the oil refinery.

  19. Recent Progress in TiO2-Mediated Solar Photocatalysis for Industrial Wastewater Treatment

    Directory of Open Access Journals (Sweden)

    Tong Zhang

    2014-01-01

    Full Text Available The current paper reviews the application of TiO2-mediated solar photocatalysis for industrial wastewater treatment, starting with a brief introduction on the background of industrial wastewater and the development of wastewater treatment processes, especially advanced oxidation processes (AOPs. We, then, discuss the application of solar TiO2 photocatalysis in treating different kinds of industrial wastewater, such as paper mill wastewater, textile wastewater, and olive mill wastewater. In the end, we compare solar TiO2 photocatalysis with other AOPs in terms of effectiveness, energy, and chemical consumption. Personal perspectives are also given, which may provide new insights to the future development of TiO2 photocatalysis for industrial wastewater.

  20. Tertiary Treatment and Recycling of Wastewater

    Science.gov (United States)

    2015-05-18

    of the Worrell design (Figure 2.1) illustrates the modular treatment cells filled with vitrified expanded clay (or similar media) and planted with...General Construction Storm Water permit Sanitary / Storm Drainage Restriction: Absolutely no materials are to be disposed of via the sanitary ...sewer or storm water systems without consulting the Environmental Office. Exception: Water may be discharged down the sanitary sewer when:  The

  1. Security of water treatment facilities

    Energy Technology Data Exchange (ETDEWEB)

    Forsha, C.A. [Univ. of Pittsburgh at Johnstown, Johnstowne, PA (United States)

    2002-06-15

    The safety of the nation's water supply is at risk. Although harm may or may not be done to water sources, the fear is definitely a factor. No matter what size system supplies water, the community will expect increased security. Decisions must be made as to how much will be spent on security and what measures will be taken with the money. Small systems often have a difficult time in finding a direction to focus on. Physical and electronic protection is less involved because of the scale of service. Biological contamination is difficult to prevent if the assailants are determined. Small-scale water storage and low magnitudes of flow increase a contamination threat. Large systems have a size advantage when dealing with biological contamination because of the dilution factor, but physical and electronic protection is more involved. Large-scale systems are more likely to overlook components. A balance is maintained through anything dealing with the public. Having greater assurance that water quality will be maintained comes at the cost of knowing less about how water is protected and treated, and being banned from public land within watersheds that supply drinking water. Whether good or bad ideas are being implemented, security of water treatment facilities is changing. (author)

  2. Security of water treatment facilities

    International Nuclear Information System (INIS)

    Forsha, C.A.

    2002-01-01

    The safety of the nation's water supply is at risk. Although harm may or may not be done to water sources, the fear is definitely a factor. No matter what size system supplies water, the community will expect increased security. Decisions must be made as to how much will be spent on security and what measures will be taken with the money. Small systems often have a difficult time in finding a direction to focus on. Physical and electronic protection is less involved because of the scale of service. Biological contamination is difficult to prevent if the assailants are determined. Small-scale water storage and low magnitudes of flow increase a contamination threat. Large systems have a size advantage when dealing with biological contamination because of the dilution factor, but physical and electronic protection is more involved. Large-scale systems are more likely to overlook components. A balance is maintained through anything dealing with the public. Having greater assurance that water quality will be maintained comes at the cost of knowing less about how water is protected and treated, and being banned from public land within watersheds that supply drinking water. Whether good or bad ideas are being implemented, security of water treatment facilities is changing. (author)

  3. Wastewater treatment with Moringa oleifera seed extract: Impact on turbidity and sedimentation of Cryptosporidium parvum oocysts

    DEFF Research Database (Denmark)

    Petersen, Heidi H.; Woolsey, Ian; Dalsgaard, Anders

    produced from seeds of the Moringa oleifera tree (MO) in reducing Cryptosporidium parvum oocysts and turbidity in wastewater. To a total of 5 x 12 glass jars containing 500 ml wastewater samples from a Danish treatment plant, 1.2 x 106 ± 1.2 x 105 oocysts L-1 were added. To half of the wastewater samples 8...

  4. Toxicity of fluoride to microorganisms in biological wastewater treatment systems.

    Science.gov (United States)

    Ochoa-Herrera, Valeria; Banihani, Qais; León, Glendy; Khatri, Chandra; Field, James A; Sierra-Alvarez, Reyes

    2009-07-01

    Fluoride is a common contaminant in a variety of industrial wastewaters. Available information on the potential toxicity of fluoride to microorganisms implicated in biological wastewater treatment is very limited. The objective of this study was to evaluate the inhibitory effect of fluoride towards the main microbial populations responsible for the removal of organic constituents and nutrients in wastewater treatment processes. The results of short-term batch bioassays indicated that the toxicity of sodium fluoride varied widely depending on the microbial population. Anaerobic microorganisms involved in various metabolic steps of anaerobic digestion processes were found to be very sensitive to the presence of fluoride. The concentrations of fluoride causing 50% metabolic inhibition (IC(50)) of propionate- and butyrate-degrading microorganisms as well as mesophilic and thermophilic acetate-utilizing methanogens ranged from 18 to 43 mg/L. Fluoride was also inhibitory to nitrification, albeit at relatively high levels (IC(50)=149 mg/L). Nitrifying bacteria appeared to adapt rapidly to fluoride, and a near complete recovery of their metabolic activity was observed after only 4d of exposure to high fluoride levels (up to 500 mg/L). All other microbial populations evaluated in this study, i.e., glucose fermenters, aerobic glucose-degrading heterotrophs, denitrifying bacteria, and H(2)-utilizing methanogens, tolerated fluoride at very high concentrations (>500 mg/L).

  5. Microbial ecology of denitrification in biological wastewater treatment.

    Science.gov (United States)

    Lu, Huijie; Chandran, Kartik; Stensel, David

    2014-11-01

    Globally, denitrification is commonly employed in biological nitrogen removal processes to enhance water quality. However, substantial knowledge gaps remain concerning the overall community structure, population dynamics and metabolism of different organic carbon sources. This systematic review provides a summary of current findings pertaining to the microbial ecology of denitrification in biological wastewater treatment processes. DNA fingerprinting-based analysis has revealed a high level of microbial diversity in denitrification reactors and highlighted the impacts of carbon sources in determining overall denitrifying community composition. Stable isotope probing, fluorescence in situ hybridization, microarrays and meta-omics further link community structure with function by identifying the functional populations and their gene regulatory patterns at the transcriptional and translational levels. This review stresses the need to integrate microbial ecology information into conventional denitrification design and operation at full-scale. Some emerging questions, from physiological mechanisms to practical solutions, for example, eliminating nitrous oxide emissions and supplementing more sustainable carbon sources than methanol, are also discussed. A combination of high-throughput approaches is next in line for thorough assessment of wastewater denitrifying community structure and function. Though denitrification is used as an example here, this synergy between microbial ecology and process engineering is applicable to other biological wastewater treatment processes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Treatment of Wastewater with High Conductivity by Pulsed Discharge Plasma

    Science.gov (United States)

    Wang, Zhaojun; Jiang, Song; Liu, Kefu

    2014-07-01

    A wastewater treatment system was established by means of pulsed dielectric barrier discharge (DBD). The main advantage of this system is that the wastewater is employed as one of the electrodes for the degradation of rhodamine B, which makes use of the high conductivity and lessenes its negative influence on the discharge process. At the same time, the reactive species like ozone and ultraviolet (UV) light generated by the DBD can be utilized for the treatment of wastewater. The effects of some factors like conductivity, peak pulse voltage, discharge frequency and pH values were investigated. The results show that the combination of these reactive species could enhance the degradation of the dye while the ozone played the most important role in the process. The degradation efficiency was enhanced with the increase of energy supplied. The reduction in the concentration of rhodamine B was much more effective with high solution conductivity; under the highest conductivity condition, the degradation rate could rise to 99%.

  7. Treatment of Wastewater with High Conductivity by Pulsed Discharge Plasma

    International Nuclear Information System (INIS)

    Wang Zhaojun; Jiang Song; Liu Kefu

    2014-01-01

    A wastewater treatment system was established by means of pulsed dielectric barrier discharge (DBD). The main advantage of this system is that the wastewater is employed as one of the electrodes for the degradation of rhodamine B, which makes use of the high conductivity and lessenes its negative influence on the discharge process. At the same time, the reactive species like ozone and ultraviolet (UV) light generated by the DBD can be utilized for the treatment of wastewater. The effects of some factors like conductivity, peak pulse voltage, discharge frequency and pH values were investigated. The results show that the combination of these reactive species could enhance the degradation of the dye while the ozone played the most important role in the process. The degradation efficiency was enhanced with the increase of energy supplied. The reduction in the concentration of rhodamine B was much more effective with high solution conductivity; under the highest conductivity condition, the degradation rate could rise to 99%. (plasma technology)

  8. Integrated copper-containing wastewater treatment using xanthate process.

    Science.gov (United States)

    Chang, Yi-Kuo; Chang, Juu-En; Lin, Tzong-Tzeng; Hsu, Yu-Ming

    2002-09-02

    Although, the xanthate process has been shown to be an effective method for heavy metal removal from contaminated water, a heavy metal contaminated residual sludge is produced by the treatment process and the metal-xanthate sludge must be handled in accordance with the Taiwan EPA's waste disposal requirements. This work employed potassium ethyl xanthate (KEX) to remove copper ions from wastewater. The toxicity characteristic leaching procedure (TCLP) and semi-dynamic leaching test (SDLT) were used to determine the leaching potential and stability characteristics of the residual copper xanthate (Cu-EX) complexes. Results from metal removal experiments showed that KEX was suitable for the treatment of copper-containing wastewater over a wide copper concentration range (50, 100, 500, and 1000 mg/l) to the level that meets the Taiwan EPA's effluent regulations (3mg/l). The TCLP results of the residual Cu-EX complexes could meet the current regulations and thus the Cu-EX complexes could be treated as a non-hazardous material. Besides, the results of SDLT indicated that the complexes exhibited an excellent performance for stabilizing metals under acidic conditions, even slight chemical changes of the complexes occurred during extraction. The xanthate process, mixing KEX with copper-bearing solution to form Cu-EX precipitates, offered a comprehensive strategy for solving both copper-containing wastewater problems and subsequent sludge disposal requirements.

  9. Anaerobic treatment of winery wastewater in fixed bed reactors.

    Science.gov (United States)

    Ganesh, Rangaraj; Rajinikanth, Rajagopal; Thanikal, Joseph V; Ramanujam, Ramamoorty Alwar; Torrijos, Michel

    2010-06-01

    The treatment of winery wastewater in three upflow anaerobic fixed-bed reactors (S9, S30 and S40) with low density floating supports of varying size and specific surface area was investigated. A maximum OLR of 42 g/l day with 80 +/- 0.5% removal efficiency was attained in S9, which had supports with the highest specific surface area. It was found that the efficiency of the reactors increased with decrease in size and increase in specific surface area of the support media. Total biomass accumulation in the reactors was also found to vary as a function of specific surface area and size of the support medium. The Stover-Kincannon kinetic model predicted satisfactorily the performance of the reactors. The maximum removal rate constant (U(max)) was 161.3, 99.0 and 77.5 g/l day and the saturation value constant (K(B)) was 162.0, 99.5 and 78.0 g/l day for S9, S30 and S40, respectively. Due to their higher biomass retention potential, the supports used in this study offer great promise as media in anaerobic fixed bed reactors. Anaerobic fixed-bed reactors with these supports can be applied as high-rate systems for the treatment of large volumes of wastewaters typically containing readily biodegradable organics, such as the winery wastewater.

  10. Treatment of dairy wastewater with a membrane bioreactor

    Directory of Open Access Journals (Sweden)

    L. H. Andrade

    2013-12-01

    Full Text Available Among the food industries, the dairy industry is considered to be the most polluting one because of the large volume of wastewater generated and its high organic load. In this study, an aerobic membrane bioreactor (MBR was used for the treatment of wastewater from a large dairy industry and two hydraulic retention times (HRT, 6 and 8 hours, were evaluated. For both HRTs removal efficiencies of organic matter of 99% were obtained. Despite high permeate flux (27.5 L/h.m², the system operated fairly stablely. The molecular weight distribution of feed, permeate and mixed liquor showed that only the low molecular weight fraction is efficiently degraded by biomass and that the membrane has an essential role in producing a permeate of excellent quality.

  11. Application of Fenton oxidation to cosmetic wastewaters treatment.

    Science.gov (United States)

    Bautista, P; Mohedano, A F; Gilarranz, M A; Casas, J A; Rodriguez, J J

    2007-05-08

    The removal of organic matter (TOC and COD) from a cosmetic wastewater by Fenton oxidation treatment has been evaluated. The operating conditions (temperature as well as ferrous ion and hydrogen peroxide dosage) have been optimized. Working at an initial pH equal to 3.0, a Fe(2+) concentration of 200 mg/L and a H(2)O(2) concentration to COD initial weight ratio corresponding to the theoretical stoichiometric value (2.12), a TOC conversion higher than 45% at 25 degrees C and 60% at 50 degrees C was achieved. Application of the Fenton oxidation process allows to reach the COD regional limit for industrial wastewaters discharges to the municipal sewer system. A simple kinetic analysis based on TOC was carried out. A second-order equation describes well the overall kinetics of the process within a wide TOC conversion range covering up to the 80-90% of the maximum achievable conversion.

  12. Laboratory and Feasibility Study for Industrial Wastewater Effluents Treatment by Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Zimek, Z.; Głuszewski, W. [Centre for Radiation Research and Technology, Institute of Nuclear Chemistry and Technology, Warsaw (Poland)

    2012-07-01

    The study of wastewater treatment by radiation regarding chemical processes contribution and physical-chemical separation of highly concentrated non-organic pollutants deposited in specific industrial waste are proposed. Laboratory stand should be build and the study should be performed to confirm possible mechanism of the sedimentation process of nonorganic pollutants during separation initiated by ionizing radiation. Evaluation from technical and economical point of view of this specific radiation technology and feasibility study preparation for industrial facility will be the main output at the final stage of the project. (author)

  13. Laboratory and Feasibility Study for Industrial Wastewater Effluents Treatment by Radiation

    International Nuclear Information System (INIS)

    Zimek, Z.; Głuszewski, W.

    2012-01-01

    The study of wastewater treatment by radiation regarding chemical processes contribution and physical-chemical separation of highly concentrated non-organic pollutants deposited in specific industrial waste are proposed. Laboratory stand should be build and the study should be performed to confirm possible mechanism of the sedimentation process of nonorganic pollutants during separation initiated by ionizing radiation. Evaluation from technical and economical point of view of this specific radiation technology and feasibility study preparation for industrial facility will be the main output at the final stage of the project. (author)

  14. Wastewater treatment in relation to marine disposal

    DEFF Research Database (Denmark)

    Harremoës, Poul

    2002-01-01

    , the water is not lost (non-consumptive uses); but it is heavily polluted. Water treatment can be interpreted as the means by which to purify the water from any degree of impurity to any degree of purity that fits the desired use. Marine discharge may violate quality required for use of the marine waters......The water resource is under increasing pressure, both from the increase in population and from rising living standards. In some parts of the world with a scarce resource, the issue is the loss of water, either by evaporation or by discharge to the sea (consumptive uses). But for most urban use...

  15. Treatment of Arctic wastewater by chemical coagulation, UV and peracetic acid disinfection.

    Science.gov (United States)

    Chhetri, Ravi Kumar; Klupsch, Ewa; Andersen, Henrik Rasmus; Jensen, Pernille Erland

    2017-02-16

    Conventional wastewater treatment is challenging in the Arctic region due to the cold climate and scattered population. Thus, no wastewater treatment plant exists in Greenland, and raw wastewater is discharged directly to nearby waterbodies without treatment. We investigated the efficiency of physicochemical wastewater treatment, in Kangerlussuaq, Greenland. Raw wastewater from Kangerlussuaq was treated by chemical coagulation and UV disinfection. By applying 7.5 mg Al/L polyaluminium chloride (PAX XL100), 73% of turbidity and 28% phosphate was removed from raw wastewater. E. coli and Enterococcus were removed by 4 and 2.5 log, respectively, when UV irradiation of 0.70 kWh/m 3 was applied to coagulated wastewater. Furthermore, coagulated raw wastewater in Denmark, which has a chemical quality similar to Greenlandic wastewater, was disinfected by peracetic acid or UV irradiation. Removal of heterotrophic bacteria by applying 6 and 12 mg/L peracetic acid was 2.8 and 3.1 log, respectively. Similarly, removal of heterotrophic bacteria by applying 0.21 and 2.10 kWh/m 3 for UV irradiation was 2.1 and greater than 4 log, respectively. Physicochemical treatment of raw wastewater followed by UV irradiation and/or peracetic acid disinfection showed the potential for treatment of arctic wastewater.

  16. Fungal treatment: a prospective process for eco-friendly bioremediation of wastewater sludge

    International Nuclear Information System (INIS)

    Molla, A. H.; Fakhru'l-Razi, A.

    2009-01-01

    None of the conventional techniques is safe and environmental friendly for wastewaters/sludge disposal. A sustainable, safe and environmental friendly biological technique is a great apprehension to the relevant scientists. Since the fungal treatment was exercised to evaluate its potentially for sustainable bioseparation and bioremediation of wastewater. Bioseparation and bioremediation of wastewater sludge by fungal inoculation implied the decreasing of bio solids, total suspended solids (TSS), turbidity, chemical oxygen demand (COD) and specific resistance to filtration (SRF) of wastewater. (Author)

  17. Methicillin-Resistant Staphylococcus aureus (MRSA) Detected at Four U.S. Wastewater Treatment Plants

    OpenAIRE

    Goldstein, Rachel E. Rosenberg; Micallef, Shirley A.; Gibbs, Shawn G.; Davis, Johnnie A.; He, Xin; George, Ashish; Kleinfelter, Lara M.; Schreiber, Nicole A.; Mukherjee, Sampa; Sapkota, Amir; Joseph, Sam W.; Sapkota, Amy R.

    2012-01-01

    Background: The incidence of community-acquired methicillin-resistant Staphylococcus aureus (CA-MRSA) infections is increasing in the United States, and it is possible that municipal wastewater could be a reservoir of this microorganism. To date, no U.S. studies have evaluated the occurrence of MRSA in wastewater. Objective: We examined the occurrence of MRSA and methicillin-susceptible S. aureus (MSSA) at U.S. wastewater treatment plants. Methods: We collected wastewater samples from two Mid...

  18. Nuclear fuel treatment facility for 'Mutsu'

    International Nuclear Information System (INIS)

    Kanazawa, Toshio; Fujimura, Kazuo; Horiguchi, Eiji; Kobayashi, Tetsuji; Tamekiyo, Yoshizou

    1989-01-01

    A new fixed mooring harbor in Sekinehama and surrounding land facilities to accommodate a test voyage for the nuclear-powered ship 'Mutsu' in 1990 were constructed by the Japan Atomic Energy Research Institute. Kobe Steel took part in the construction of the nuclear fuel treatment process in various facilities, beginning in October, 1988. This report describes the outline of the facility. (author)

  19. Submerged membrane bioreactor for domestic wastewater treatment and reuse

    International Nuclear Information System (INIS)

    Feki; Firas; Jraou, Mouna; Loukil, Slim; Kchaou, Sonia; Sayadi, Sami; Arnolt, Tom

    2009-01-01

    The Mediterranean basin (and particularly North African countries) is one of the poorest regions in the world in terms of water resources. In Tunisia, treated municipal wastewater is becoming one of the main alternative sources of water. Indeed, in 2007, 99 municipal wastewater treatment plants (WWTP) has treated a quantity of 215 millions of m 3 from which more than 30 pour cent are reused. The treated volume in 2011 is expected to be 266 millions m 3 , whereas the reused wastewaters should reach more than 50 pour cent. However, especially in the eastern and northern Mediterranean regions, wastewaters are inefficiently treated and re-used for irrigation or sanitary purposes, serving as a carrier for diseases or causing water pollution when discharged to water bodies. In the last decade, several water treatment technologies have been used in the region with little success in pathogen removal. Membrane bioreactor (MBR) technology is a very promising alternative to those conventional water treatments as membranes act as a barrier against bacteria and viruses achieving a high degree of water purification. However, most membrane bioreactors currently in use have very high running costs because of the high pressure drop and high air-flushing rate required for their operation. The objective of this PURATREAT FP 6 EU project was to study a new approach to the operation of membrane bioreactors. This study was included a comparison of three leading membrane technologies. The operating procedure to be studied is expected to yield very low energy consumption and reduced maintenance costs. After the start up period, the MBR3 was operated with a MLSS concentration of 4.5 and 9 g/L, respectively. Different fluxes as 16, 18, 20 and 22 Lh -1 m -2 were tested. When the flux increase from 16 to 22 Lh -1 m -2 , the treatment energy consumption decreased from 7 to 5 kWh/m 3 . However the increases of MLSS concentration from 4.5 and 9 g/L raise the membrane fouling frequency from 1

  20. Wastewater treatment plants as a pathway for microplastics: Development of a new approach to sample wastewater-based microplastics.

    Science.gov (United States)

    Ziajahromi, Shima; Neale, Peta A; Rintoul, Llew; Leusch, Frederic D L

    2017-04-01

    Wastewater effluent is expected to be a pathway for microplastics to enter the aquatic environment, with microbeads from cosmetic products and polymer fibres from clothes likely to enter wastewater treatment plants (WWTP). To date, few studies have quantified microplastics in wastewater. Moreover, the lack of a standardized and applicable method to identify microplastics in complex samples, such as wastewater, has limited the accurate assessment of microplastics and may lead to an incorrect estimation. This study aimed to develop a validated method to sample and process microplastics from wastewater effluent and to apply the developed method to quantify and characterise wastewater-based microplastics in effluent from three WWTPs that use primary, secondary and tertiary treatment processes. We applied a high-volume sampling device that fractionated microplastics in situ and an efficient sample processing procedure to improve the sampling of microplastics in wastewater and to minimize the false detection of non-plastic particles. The sampling device captured between 92% and 99% of polystyrene microplastics using 25 μm-500 μm mesh screens in laboratory tests. Microplastic type, size and suspected origin in all studied WWTPs, along with the removal efficiency during the secondary and tertiary treatment stages, was investigated. Suspected microplastics were characterised using Fourier Transform Infrared spectroscopy, with between 22 and 90% of the suspected microplastics found to be non-plastic particles. An average of 0.28, 0.48 and 1.54 microplastics per litre of final effluent was found in tertiary, secondary and primary treated effluent, respectively. This study suggests that although low concentrations of microplastics are detected in wastewater effluent, WWTPs still have the potential to act as a pathway to release microplastics given the large volumes of effluent discharged to the aquatic environment. This study focused on a single sampling campaign, with

  1. Radioactive and hazardous wastewater treatment and sludge stabilization by filtration

    International Nuclear Information System (INIS)

    Martin, H.L.; Pickett, J.B.; Langton, C.A.

    1991-01-01

    Concentrated effluents from batch discharges of spent process solutions are mixed with filter cake from treatment of the dilute effluents and stored in a large tank at the optimum high pH for hydroxide precipitation of heavy metals. Supernate is decanted from the storage tanks and mixed with the dilute effluents before treatment. A filtration and stabilization process has been developed to treat and stored sludge as well as the concentrated wastewater slurry as it is generated. A 94% waste volume reduction over conventional technology can be achieved. Furthermore, leachate from the solidified waste filter cake meets the EPA land disposal restrictions

  2. Performance assessment of aquatic macrophytes for treatment of municipal wastewater.

    Science.gov (United States)

    Shah, Mumtaz; Hashmi, Hashim Nisar; Ali, Arshad; Ghumman, Abdul Razzaq

    2014-01-01

    The objective of the study was to evaluate the performance of three different aquatic macrophytes for treatment of municipal wastewater collected from Taxila (Pakistan). A physical model of treatment plant was constructed and was operated for six experimental runs with each species of macrophyte. Every experimental run consist of thirty days period. Regular monitoring of influent and effluent concentrations were made during each experimental run. For the treatment locally available macrophyte species i.e. water hyacinth, duckweed & water lettuce were selected to use. To evaluate the treatment performance of each macrophyte, BOD5, COD, and Nutrients (Nitrogen and Phosphorus) were monitored in effluent from model at different detention time of every experimental run after ensuring steady state conditions. The average reduction of effluent value of each parameter using water hyacinth were 50.61% for BOD5, 46.38% for COD, 40.34% for Nitrogen and 18.76% for Phosphorus. For duckweed the average removal efficiency for selected parameters were 33.43% for BOD5, 26.37% for COD, 17.59% for Nitrogen and 15.25% for Phosphorus and for Water Lettuce the average removal efficiency were 33.43% for BOD5, 26.37% for COD, 17.59% for Nitrogen and 15.25% for Phosphorus. The mechanisms of pollutant removal in this system include both aerobic and anaerobic microbiological conversions, sorption, sedimentation, volatilization and chemical transformations. The rapid growth of the biomass was measured within first ten days detention time. It was also observed that performance of macrophytes is influenced by variation of pH and Temperature. A pH of 6-9 and Temperature of 15-38°C is most favorable for treatment of wastewater by macrophytes. The option of macrophytes for treatment of Municipal sewage under local environmental conditions can be explored by further verifying the removal efficiency under variation of different environmental conditions. Also this is need of time that macrophyte

  3. Operator decision support system for integrated wastewater management including wastewater treatment plants and receiving water bodies.

    Science.gov (United States)

    Kim, Minsoo; Kim, Yejin; Kim, Hyosoo; Piao, Wenhua; Kim, Changwon

    2016-06-01

    An operator decision support system (ODSS) is proposed to support operators of wastewater treatment plants (WWTPs) in making appropriate decisions. This system accounts for water quality (WQ) variations in WWTP influent and effluent and in the receiving water body (RWB). The proposed system is comprised of two diagnosis modules, three prediction modules, and a scenario-based supporting module (SSM). In the diagnosis modules, the WQs of the influent and effluent WWTP and of the RWB are assessed via multivariate analysis. Three prediction modules based on the k-nearest neighbors (k-NN) method, activated sludge model no. 2d (ASM2d) model, and QUAL2E model are used to forecast WQs for 3 days in advance. To compare various operating alternatives, SSM is applied to test various predetermined operating conditions in terms of overall oxygen transfer coefficient (Kla), waste sludge flow rate (Qw), return sludge flow rate (Qr), and internal recycle flow rate (Qir). In the case of unacceptable total phosphorus (TP), SSM provides appropriate information for the chemical treatment. The constructed ODSS was tested using data collected from Geumho River, which was the RWB, and S WWTP in Daegu City, South Korea. The results demonstrate the capability of the proposed ODSS to provide WWTP operators with more objective qualitative and quantitative assessments of WWTP and RWB WQs. Moreover, the current study shows that ODSS, using data collected from the study area, can be used to identify operational alternatives through SSM at an integrated urban wastewater management level.

  4. Toxic Byproduct Formation during Electrochemical Treatment of Latrine Wastewater.

    Science.gov (United States)

    Jasper, Justin T; Yang, Yang; Hoffmann, Michael R

    2017-06-20

    Electrochemical systems are an attractive option for onsite latrine wastewater treatment due to their high efficiency and small footprint. While concerns remain over formation of toxic byproducts during treatment, rigorous studies examining byproduct formation are lacking. Experiments treating authentic latrine wastewater over variable treatment times, current densities, chloride concentrations, and anode materials were conducted to characterize byproducts and identify conditions that minimize their formation. Production of inorganic byproducts (chlorate and perchlorate) and indicator organic byproducts (haloacetic acids and trihalomethanes) during electrolysis dramatically exceeded recommendations for drinking water after one treatment cycle (∼10-30 000 times), raising concerns for contamination of downstream water supplies. Stopping the reaction after ammonium was removed (i.e., the chlorination breakpoint) was a promising method to minimize byproduct formation without compromising disinfection and nutrient removal. Though treatment was accelerated at increased chloride concentrations and current densities, byproduct concentrations remained similar near the breakpoint. On TiO 2 /IrO 2 anodes, haloacetic acids (up to ∼50 μM) and chlorate (up to ∼2 μM) were of most concern. Although boron-doped diamond anodes mineralized haloacetic acids after formation, high production rates of chlorate and perchlorate (up to ∼4 and 25 μM) made them inferior to TiO 2 /IrO 2 anodes in terms of toxic byproduct formation. Organic byproduct formation was similar during chemical chlorination and electrolysis of wastewater, suggesting that organic byproducts are formed by similar pathways in both cases (i.e., reactions with chloramines and free chlorine).

  5. Removal of bacterial contaminants and antibiotic resistance genes by conventional wastewater treatment processes in Saudi Arabia: Is the treated wastewater safe to reuse for agricultural irrigation?

    KAUST Repository

    Aljassim, Nada I.; Ansari, Mohd Ikram; Harb, Moustapha; Hong, Pei-Ying

    2015-01-01

    This study aims to assess the removal efficiency of microbial contaminants in a local wastewater treatment plant over the duration of one year, and to assess the microbial risk associated with reusing treated wastewater in agricultural irrigation

  6. Emission of bacteria and fungi in the air from wastewater treatment plants - a review.

    Science.gov (United States)

    Korzeniewska, Ewa

    2011-01-01

    An increase in global population, coupled with intensive development of industry and agriculture, has resulted in the generation and accumulation of large amounts of waste around the world. The spread of pathogenic microorganisms, endotoxins, odours and dust particles in the air is an inevitable consequence of waste production and waste management. Thus, the risk of infections associated with wastewater treatment plants (WWTPs) has become of a particular importance in recent decades. Sewage and unstable sludge contain various pathogens such as viruses, bacteria, and human and animal parasites. These microorganisms can be transmitted to the ambient air in wastewater droplets, which are generated during aeration or mechanical moving of the sewage. Bioaerosols generated during wastewater treatment may therefore pose a potential health hazard to workers of these plants or to habitants of their surroundings. The degree of human exposure to airborne bacteria, fungi, endotoxin and other allergens may vary significantly depending upon the type and the capacity of a plant, kind of the facilities, performed activities and meteorological conditions.

  7. Hazard Baseline Downgrade Effluent Treatment Facility

    International Nuclear Information System (INIS)

    Blanchard, A.

    1998-01-01

    This Hazard Baseline Downgrade reviews the Effluent Treatment Facility, in accordance with Department of Energy Order 5480.23, WSRC11Q Facility Safety Document Manual, DOE-STD-1027-92, and DOE-EM-STD-5502-94. It provides a baseline grouping based on the chemical and radiological hazards associated with the facility. The Determination of the baseline grouping for ETF will aid in establishing the appropriate set of standards for the facility

  8. Hydrothermal Liquefaction of Wastewater Treatment Plant Solids

    Energy Technology Data Exchange (ETDEWEB)

    Billing, Justin M.

    2016-10-16

    Feedstock cost is the greatest barrier to the commercial production of biofuels. The merits of any thermochemical or biological conversion process are constrained by their applicability to the lowest cost feedstocks. At PNNL, a recent resource assessment of wet waste feedstocks led to the identification of waste water treatment plant (WWTP) solids as a cost-negative source of biomass. WWTP solids disposal is a growing environmental concern [1, 2] and can account for up to half of WWTP operating costs. The high moisture content is well-suited for hydrothermal liquefaction (HTL), avoiding the costs and parasitic energy losses associated with drying the feedstock for incineration. The yield and quality of biocrude and upgraded biocrude from WWTP solids is comparable to that obtained from algae feedstocks but the feedstock cost is $500-1200 less per dry ton. A collaborative project was initiated and directed by the Water Environment & Reuse Foundation (WERF) and included feedstock identification, dewatering, shipping to PNNL, conversion to biocrude by HTL, and catalytic hydrothermal gasification of the aqueous byproduct. Additional testing at PNNL included biocrude upgrading by catalytic hydrotreatment, characterization of the hydrotreated product, and a preliminary techno-economic analysis (TEA) based on empirical results. This short article will cover HTL conversion and biocrude upgrading. The WERF project report with complete HTL results is now available through the WERF website [3]. The preliminary TEA is available as a PNNL report [4].

  9. Natural light-micro aerobic condition for PSB wastewater treatment: a flexible, simple, and effective resource recovery wastewater treatment process.

    Science.gov (United States)

    Lu, Haifeng; Han, Ting; Zhang, Guangming; Ma, Shanshan; Zhang, Yuanhui; Li, Baoming; Cao, Wei

    2018-01-01

    Photosynthetic bacteria (PSB) have two sets of metabolic pathways. They can degrade pollutants through light metabolic under light-anaerobic or oxygen metabolic pathways under dark-aerobic conditions. Both metabolisms function under natural light-microaerobic condition, which demands less energy input. This work investigated the characteristics of PSB wastewater treatment process under that condition. Results showed that PSB had very strong adaptability to chemical oxygen demand (COD) concentration; with F/M of 5.2-248.5 mg-COD/mg-biomass, the biomass increased three times and COD removal reached above 91.5%. PSB had both advantages of oxygen metabolism in COD removal and light metabolism in resource recovery under natural light-microaerobic condition. For pollutants' degradation, COD, total organic carbon, nitrogen, and phosphorus removal reached 96.2%, 91.0%, 70.5%, and 92.7%, respectively. For resource recovery, 74.2% of C in wastewater was transformed into biomass. Especially, coexistence of light and oxygen promote N recovery ratio to 70.9%, higher than with the other two conditions. Further, 93.7% of N-removed was synthesized into biomass. Finally, CO 2 emission reduced by 62.6% compared with the traditional process. PSB wastewater treatment under this condition is energy-saving, highly effective, and environment friendly, and can achieve pollution control and resource recovery.

  10. Performance of slow rate systems for treatment of domestic wastewater.

    Science.gov (United States)

    Tzanakakis, V E; Paranychianakis, N V; Angelakis, A N

    2007-01-01

    The performance of slow rate (SR) systems in terms of treatment efficiency, environmental and health risks, and land sustainability was investigated over a three-year period in a rural community close to Iraklio, Greece. Four plant species (Acacia cyanophylla, Eucalyptus camandulensis, Populus nigra and Arundo donax) were used in order to investigate the role of vegetation in the treatment of wastewater and in biomass production. Wastewater effluent was pre-treated in a septic tank before its application to land. Applied hydraulic loading rates were based on crop water requirements which were determined separately for each plant species. The evaluation of treatment performance was accomplished by measuring COD, TKN, NH3-N, NO3-N, total and reactive P, TC and FC in soil solution samples taken at different depths (15, 30 and 60 cm). SR systems showed great potential for COD, TKN and NH4-N removal which reached 89, 90 and 94%, respectively at a depth of 15 cm. An outstanding removal was also observed for TC and FC which reached 99.99%. The concentration of both P and NO3-N in soil solution increased with the passage of time, but it was lower in winter. Despite the differences in the application rates among the SR systems planted with different plant species, the treatment efficiency was not affected. Moreover, increasing the soil depth from 15 to 60 cm had no effect on the treatment efficiency of the SR systems.

  11. Study on Olive Oil Wastewater Treatment: Nanotechnology Impact

    Directory of Open Access Journals (Sweden)

    Nika Gholamzadeh

    2016-11-01

    Full Text Available The olive mill wastewater (OMW is generated from olive oil extraction in olive mills. It contains a very high organic load and considerable quantities of phytotoxicity compounds. Comprehensive articles with different methods have been published about the treatment of OMW. This paper reviews the recent reports on the variety methods of OMW treatment. Biological process, containing aerobic pre-treatment by using different cultures and anaerobic co-digestion with other sewage and also added external nutrient with optimum ratio attracted much attention in the treatment of OMW. However, advanced oxidation process (AOP due to the high oxidation potential which causes destruction of organic pollutants, toxic and chlorinated compounds have been considered. Furthermore, membrane technologies consist of microfiltration, ultrafiltration and especially nanofiltrationin wastewater treatment are growing in recent years. They offer high efficiency and mediocre investments owing to novel membrane materials, membrane design technics, module figures and improvement of the skills. In addition, fouling reduces the membrane performances in time, which is a main problem of cost efficiency.

  12. COMPARATIVE STUDY OF TERTIARY WASTEWATER TREATMENT BY COMPUTER SIMULATION

    Directory of Open Access Journals (Sweden)

    Stefania Iordache

    2010-01-01

    Full Text Available The aim of this work is to asses conditions for implementation of a Biological Nutrient Removal (BNR process in theWastewater Treatment Plant (WWTP of Moreni city (Romania. In order to meet the more increased environmentalregulations, the wastewater treatment plant that was studied, must update the actual treatment process and have tomodernize it. A comparative study was undertaken of the quality of effluents that could be obtained by implementationof biological nutrient removal process like A2/O (Anaerobic/Anoxic/Oxic and VIP (Virginia Plant Initiative aswastewater tertiary treatments. In order to asses the efficiency of the proposed treatment schemata based on the datamonitored at the studied WWTP, it were realized computer models of biological nutrient removal configurations basedon A2/O and VIP process. Computer simulation was realized using a well-known simulator, BioWin by EnviroSimAssociates Ltd. The simulation process allowed to obtain some data that can be used in design of a tertiary treatmentstage at Moreni WWTP, in order to increase the efficiency in operation.

  13. Application of Ozone MBBR Process in Refinery Wastewater Treatment

    Science.gov (United States)

    Lin, Wang

    2018-01-01

    Moving Bed Biofilm Reactor (MBBR) is a kind of sewage treatment technology based on fluidized bed. At the same time, it can also be regarded as an efficient new reactor between active sludge method and the biological membrane method. The application of ozone MBBR process in refinery wastewater treatment is mainly studied. The key point is to design the ozone +MBBR combined process based on MBBR process. The ozone +MBBR process is used to analyze the treatment of concentrated water COD discharged from the refinery wastewater treatment plant. The experimental results show that the average removal rate of COD is 46.0%~67.3% in the treatment of reverse osmosis concentrated water by ozone MBBR process, and the effluent can meet the relevant standard requirements. Compared with the traditional process, the ozone MBBR process is more flexible. The investment of this process is mainly ozone generator, blower and so on. The prices of these items are relatively inexpensive, and these costs can be offset by the excess investment in traditional activated sludge processes. At the same time, ozone MBBR process has obvious advantages in water quality, stability and other aspects.

  14. Treatment of hospital laundry wastewater by UV/H2O2 process.

    Science.gov (United States)

    Zotesso, Jaqueline Pirão; Cossich, Eneida Sala; Janeiro, Vanderly; Tavares, Célia Regina Granhen

    2017-03-01

    Hospitals consume a large volume of water to carry out their activities and, hence, generate a large volume of effluent that is commonly discharged into the local sewage system without any treatment. Among the various sectors of healthcare facilities, the laundry is responsible for the majority of water consumption and generates a highly complex effluent. Although several advanced oxidation processes (AOPs) are currently under investigation on the degradation of a variety of contaminants, few of them are based on real wastewater samples. In this paper, the UV/H 2 O 2 AOP was evaluated on the treatment of a hospital laundry wastewater, after the application of a physicochemical pretreatment composed of coagulation-flocculation and anthracite filtration. For the UV/H 2 O 2 process, a photoreactor equipped with a low-pressure UV-C lamp was used and the effects of initial pH and [H 2 O 2 ]/chemical oxygen demand (COD) ratio on COD removal were investigated through a randomized factorial block design that considered the batches of effluent as blocks. The results indicated that the initial pH had no significant effect on the COD removal, and the process was favored by the increase in [H 2 O 2 ]/COD ratio. Color and turbidity were satisfactorily reduced after the application of the physicochemical pretreatment, and COD was completely removed by the UV/H 2 O 2 process under suitable conditions. The results of this study show that the UV/H 2 O 2 AOP is a promising candidate for hospital laundry wastewater treatment and should be explored to enable wastewater reuse in the washing process.

  15. Cosmetic wastewater treatment by coagulation and advanced oxidation processes.

    Science.gov (United States)

    Naumczyk, Jeremi; Bogacki, Jan; Marcinowski, Piotr; Kowalik, Paweł

    2014-01-01

    In this study, the treatment process of three cosmetic wastewater types has been investigated. Coagulation allowed to achieve chemical oxygen demand (COD) removal of 74.6%, 37.7% and 74.0% for samples A (Al2(SO4)3), B (Brentafloc F3) and C (PAX 16), respectively. The Fenton process proved to be effective as well - COD removal was equal to 75.1%, 44.7% and 68.1%, respectively. Coagulation with FeCl3 and the subsequent photo-Fenton process resulted in the best values of final COD removal equal to 92.4%, 62.8% and 90.2%. In case of the Fenton process, after coagulation these values were equal to 74.9%, 50.1% and 84.8%, while in case of the H2O2/UV process, the obtained COD removal was 83.8%, 36.2% and 80.9%. High value of COD removal in the Fenton process carried out for A and C wastewater samples was caused by a significant contribution of the final neutralization/coagulation. Very small effect of the oxidation reaction in the Fenton process in case of sample A resulting from the presence of antioxidants, 'OH radical scavengers' in the wastewater.

  16. Shrimp pond wastewater treatment using pyrolyzed chicken feather as adsorbent

    Science.gov (United States)

    Moon, Wei Chek; Jbara, Mohamad Hasan; Palaniandy, Puganeshwary; Yusoff, Mohd Suffian

    2017-10-01

    In this study, chicken feather fiber was used as a raw material to prepare a non-expensive adsorbent by pyrolysis without chemical activation. The main pollutants treated in this study were chemical oxygen demand (COD) and ammoniacal nitrogen (NH3-N) from shrimp pond wastewater containing high concentrations of nutrients, which caused the eutrophication phenomenon in adjacent water. Batch adsorption studies were performed to investigate the effect of pH (5-8), mass of adsorbent (0.5-3 g), and shaking time (0.5-2 h) on the removal efficiency of COD and NH3- N. Experimental results showed that the optimum conditions were as follows: pH 5, 0.5 g of adsorbent, and 0.5 h of shaking. Under these conditions, 34.01% and 40.47% of COD and NH3-N were removed, respectively, from shrimp pond wastewater. The adsorption processes were best described by the Langmuir isotherm model for COD and NH3-N removal, with maximum monolayer adsorption capacity of 36.9 and 7.24 mg/g for COD and NH3-N, respectively. The results proved that chicken feather could remove COD and NH3-N from shrimp pond wastewater. However, further studies on thermal treatment should be carried out to increase the removal efficiency of pyrolyzed chicken feather fiber.

  17. Emerging energy-efficient technologies for the Californian wastewater industry

    NARCIS (Netherlands)

    Slaa, Jan Willem

    2011-01-01

    SUMMARY Wastewater treatment is of vital importance for protecting human health and minimizing the environmental impact of polluted water. Since the beginning of the 20th century public facilities have been installed globally which treat wastewater at a

  18. Pharmaceutical wastewater treatment by internal micro-electrolysis--coagulation, biological treatment and activated carbon adsorption.

    Science.gov (United States)

    Wang, Kangle; Liu, Suiqing; Zhang, Qiang; He, Yiliang

    2009-12-01

    Treatment of pharmaceutical wastewater by the combined process of internal micro-electrolysis and coagulation, biological treatment and activated carbon adsorption was studied. Internal micro-electrolysis and coagulation served as the pretreatment for the wastewater before biological treatment to reduce the contaminants' toxicity to microbes and improve the biodegradability of wastewater to guarantee the smooth operation of the biological process. Biological treatment was the main body of the whole process which took an unparalleled role in removing COD (chemical oxygen demand). Activated carbon adsorption was adopted as the post-treatment process to further remove the remaining non-biodegradable particles. Results showed that the removal rates of COD and S2- (sulphide ion) by pretreatment were 66.9% and 98.9%, respectively, and the biodegradability, as measured by the ratio of biodegradable COD to initial COD, of the wastewater was greatly improved from 0.16 +/- 0.02 to 0.41 +/- 0.02. The overall removal rate of COD in the wastewater achieved by this combined treatment process was up to 96%, and the effluent COD met the Chinese tertiary discharge standard (GB 8978-1996).

  19. Combination of ozonation and photocatalysis for pharmaceutical wastewater treatment

    Science.gov (United States)

    Ratnawati, Enjarlis, Slamet

    2017-11-01

    The chemical oxygen demand (COD) and phenol removal from pharmaceutical wastewater were investigated using configuration of two circulation batch reactors in a series with ozonation and photocatalytic processes. The ozonation is conducted with O3/granulated activated carbon (O3/GAC), whereas photocatalysis with TiO2 that immobilized on pumice stone (PS-TiO2). The effect of circulation flow rate (10; 12; 15 L/min) and the amount PS-TiO2 (200 g, 250 g, 300 g) were examined. Wastewater of 20 L was circulated pass through the pipe that injected with O3 by the ozone generator, and subsequently flow through two GAC columns, and finally, go through photoreactor that contains photocatalyst PS-TiO2 which equipped with mercury lamp as a photon source. At a time interval, COD and phenol concentration were measured to assess the performance of the process. FESEM imaging confirmed that TiO2 was successfully impregnated on PS, as corroborated by EDX spectra. Meanwhile, degradation process indicated that the combined ozonation and photocatalytic processes (O3/GAC-TiO2) is more efficient compared to the ozonation and photocatalysis alone. For combination process with the circulation flow rate of 10 L/min and 300 g of PS-TiO2,the influent COD of around 1000 ppm are effectively degraded to a final effluent COD of 290 ppm (71% removal) and initial phenol concentration of 4.75 ppm down to 0 ppm for 4 h which this condition fulfill the discharge standards quality. Therefore, this portable prototype reactor is effective that can be used in the pharmaceutical wastewater treatment. For the future, this process condition will be developed for orientation on the industrial applications (portable equipment) since pharmaceutical industries produce wastewater relatively in the small amount.

  20. Wastewater treatment in a hybrid activated sludge baffled reactor

    International Nuclear Information System (INIS)

    Tizghadam, Mostafa; Dagot, Christophe; Baudu, Michel

    2008-01-01

    A novel hybrid activated sludge baffled reactor (HASBR), which contained both suspended and attached-growth biomass perfect mixing cells in series, was developed by installing standing and hanging baffles and introducing plastic brushes into a conventional activated sludge (CAS) reactor. It was used for the treatment of domestic wastewater. The effects on the operational performance of developing the suspended and attached-growth biomass and reactor configuration were investigated. The change of the flow regime from complete-mix to plug-flow, and the addition of plastic brushes as a support for biofilm, resulted in considerable improvements in the COD, nitrogen removal efficiency of domestic wastewater and sludge settling properties. In steady state, approximately 98 ± 2% of the total COD and 98 ± 2% of the ammonia of the influent were removed in the HASBR, when the influent wastewater concentration was 593 ± 11 mg COD/L and 43 ± 5 mg N/L, respectively, at a HRT of 10 h. These results were 93 ± 3 and 6 ± 3% for the CAS reactor, respectively. Approximately 90 ± 7% of the total COD was removed in the HASBR, when the influent wastewater concentration was 654 ± 16 mg COD/L at a 3 h HRT, and in the organic loading rate (OLR) of 5.36 kg COD m -3 day -1 . The result for the CAS reactor was 60 ± 3%. Existing CAS plants can be upgraded by changing the reactor configuration and introducing biofilm support media into the aeration tank