WorldWideScience

Sample records for waste system impacts

  1. ATW system impact on high-level waste

    International Nuclear Information System (INIS)

    Arthur, E.D.

    1992-01-01

    This report discusses the Accelerator Transmutation of Waste (ATW) concept which aims at destruction of key long-lived radionuclides in high-level nuclear waste (HLW), both fission products and actinides. This focus makes it different from most other transmutation concepts which concentrate primarily on actinide burning. The ATW system uses an accelerator-driven, sub-critical assembly to create an intense thermal neutron environment for radionuclide transmutation. This feature allows rapid transmutation under low-inventory system conditions, which in turn, has a direct impact on the size of chemical separations and materials handling components of the system. Inventories in ATW are factors of eight to thirty times smaller than reactor systems of equivalent thermal power. Chemical separations systems are relatively small in scale and can be optimized to achieve high decontamination factors and minimized waste streams. The low-inventory feature also directly impacts material amounts remaining in the system at its end of life. In addition to its low-inventory operation, the accelerator-driven neutron source features of ATW are key to providing a sufficient level of neutrons to allow transmutation of long-lived fission products

  2. Igneous Intrusion Impacts on Waste Packages and Waste Forms

    International Nuclear Information System (INIS)

    P. Bernot

    2004-01-01

    The purpose of this model report is to assess the potential impacts of igneous intrusion on waste packages and waste forms in the emplacement drifts at the Yucca Mountain Repository. The model is based on conceptual models and includes an assessment of deleterious dynamic, thermal, hydrologic, and chemical impacts. This constitutes the waste package and waste form impacts submodel of the Total System Performance Assessment for the License Application (TSPA-LA) model assessing the impacts of a hypothetical igneous intrusion event on the repository total system performance. This submodel is carried out in accordance with Technical Work Plan for Waste Form Degradation Modeling, Testing, and Analyses in Support of SR and LA (BSC 2003a) and Total System Performance Assessment-License Application Methods and Approaches (BSC 2002a). The technical work plan is governed by the procedures of AP-SIII.10Q, Models. Any deviations from the technical work plan are documented in the TSPA-LA approach to implementing the models for waste package and waste form response during igneous intrusion is based on identification of damage zones. Zone 1 includes all emplacement drifts intruded by the basalt dike, and Zone 2 includes all other emplacement drifts in the repository that are not in Zone 1. This model report will document the following model: (1) Impacts of magma intrusion on the components of engineered barrier system (e.g., drip shields and cladding) of emplacement drifts in Zone 1, and the fate of waste forms. (2) Impacts of conducting magma heat and diffusing magma gases on the drip shields, waste packages, and cladding in the Zone 2 emplacement drifts adjacent to the intruded drifts. (3) Impacts of intrusion on Zone 1 in-drift thermal and geochemical environments, including seepage hydrochemistry. The scope of this model only includes impacts to the components stated above, and does not include impacts to other engineered barrier system (EBS) components such as the invert and

  3. Igneous Intrusion Impacts on Waste Packages and Waste Forms

    Energy Technology Data Exchange (ETDEWEB)

    P. Bernot

    2004-08-16

    The purpose of this model report is to assess the potential impacts of igneous intrusion on waste packages and waste forms in the emplacement drifts at the Yucca Mountain Repository. The model is based on conceptual models and includes an assessment of deleterious dynamic, thermal, hydrologic, and chemical impacts. This constitutes the waste package and waste form impacts submodel of the Total System Performance Assessment for the License Application (TSPA-LA) model assessing the impacts of a hypothetical igneous intrusion event on the repository total system performance. This submodel is carried out in accordance with Technical Work Plan for Waste Form Degradation Modeling, Testing, and Analyses in Support of SR and LA (BSC 2003a) and Total System Performance Assessment-License Application Methods and Approaches (BSC 2002a). The technical work plan is governed by the procedures of AP-SIII.10Q, Models. Any deviations from the technical work plan are documented in the TSPA-LA approach to implementing the models for waste package and waste form response during igneous intrusion is based on identification of damage zones. Zone 1 includes all emplacement drifts intruded by the basalt dike, and Zone 2 includes all other emplacement drifts in the repository that are not in Zone 1. This model report will document the following model: (1) Impacts of magma intrusion on the components of engineered barrier system (e.g., drip shields and cladding) of emplacement drifts in Zone 1, and the fate of waste forms. (2) Impacts of conducting magma heat and diffusing magma gases on the drip shields, waste packages, and cladding in the Zone 2 emplacement drifts adjacent to the intruded drifts. (3) Impacts of intrusion on Zone 1 in-drift thermal and geochemical environments, including seepage hydrochemistry. The scope of this model only includes impacts to the components stated above, and does not include impacts to other engineered barrier system (EBS) components such as the invert and

  4. IGNEOUS INTRUSION IMPACTS ON WASTE PACKAGES AND WASTE FORMS

    International Nuclear Information System (INIS)

    Bernot, P.

    2004-01-01

    The purpose of this model report is to assess the potential impacts of igneous intrusion on waste packages and waste forms in the emplacement drifts at the Yucca Mountain Repository. The models are based on conceptual models and includes an assessment of deleterious dynamic, thermal, hydrologic, and chemical impacts. The models described in this report constitute the waste package and waste form impacts submodel of the Total System Performance Assessment for the License Application (TSPA-LA) model assessing the impacts of a hypothetical igneous intrusion event on the repository total system performance. This submodel is carried out in accordance with Technical Work Plan for Waste Form Degradation Modeling, Testing, and Analyses in Support of LA (BSC 2004 [DIRS:167796]) and Total System Performance Assessment-License Application Methods and Approaches (BSC 2003 [DIRS: 166296]). The technical work plan was prepared in accordance with AP-2.27Q, Planning for Science Activities. Any deviations from the technical work plan are documented in the following sections as they occur. The TSPA-LA approach to implementing the models for waste package and waste form response during igneous intrusion is based on identification of damage zones. Zone 1 includes all emplacement drifts intruded by the basalt dike, and Zone 2 includes all other emplacement drifts in the repository that are not in Zone 1. This model report will document the following model assessments: (1) Mechanical and thermal impacts of basalt magma intrusion on the invert, waste packages and waste forms of the intersected emplacement drifts of Zone 1. (2) Temperature and pressure trends of basaltic magma intrusion intersecting Zone 1 and their potential effects on waste packages and waste forms in Zone 2 emplacement drifts. (3) Deleterious volatile gases, exsolving from the intruded basalt magma and their potential effects on waste packages of Zone 2 emplacement drifts. (4) Post-intrusive physical

  5. Life cycle assessment to compare the environmental impact of seven contemporary food waste management systems.

    Science.gov (United States)

    Edwards, Joel; Othman, Maazuza; Crossin, Enda; Burn, Stewart

    2018-01-01

    Municipal food waste (FW) represents 35-45% of household residual waste in Australia, with the nation generating 1.6Tg annually. It is estimated that 91% of this FW ends up in landfill. This study used life cycle assessment to determine and compare the environmental impact of seven contemporary FW management systems for two real-life jurisdictions; incorporating the complete waste service and expanding the system to include inert and garden waste. Although, no system exhibited a best ranking across all impact categories, FW digestion based systems were all revealed to have a lower global warming potential than composting and landfilling systems. Mechanical biological treatment, anaerobic co-digestion, and home composting all demonstrated the lowest environmental impacts for two or more of the environmental impact categories assessed. The assessment included market and technological specific variables and uncertainties providing a framework for robust decision making at a municipality level. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  6. Draft Environmental Impact Statement for the tank waste remediation system. Volume 4

    International Nuclear Information System (INIS)

    1996-04-01

    This appendix describes the current safety concerns associated with the tank waste and analyzes the potential accidents and associated potential health effects that could occur under the alternatives included in this Tank Waste Remediation System (TWRS) Environmental Impact Statement (EIS)

  7. Comparative assessment of the environmental impact of wastes from electricity generation systems

    International Nuclear Information System (INIS)

    Torres, C.; Smith, G.M.; Linsley, G.; Hossain, S.

    1994-01-01

    The paper describes an outline methodology for assessing and comparing the environmental impact arising from management of the wastes from nuclear and other electricity generation systems. The assessment framework is applicable to wastes from all generation systems, including nuclear, fossil and renewable fuel systems, and can also be applied to the management of mixed hazardous waste. The major energy technologies in terms of waste production can be classified according to three major categories of fuels: fossil, nuclear and renewable. The emphasis in this description is on nuclear utility low-level and mixed wastes and waste streams. The methodology may be used to support the project on Data Bases and Methodologies for Comparative Assessment of Different Energy Sources for Electricity Generation (DECADES project, (2)) which is being developed by the International Atomic Energy Agency in collaboration with other international agencies. The DECADES project has the overall objective to improve the abilities for comparative assessment of energy chains for electricity generation. The objective of a methodology such as that described here is to ensure that waste management aspects are included effectively in comparative assessments of energy systems. This paper discusses the waste strams arising from nuclear power plants

  8. Tank Waste Remediation System, Hanford Site, Richland, Washington. Final Environmental Impact Statement. Volume IV

    International Nuclear Information System (INIS)

    1996-08-01

    This document, Volume 4, describes the current safety concerns associated with the tank waste and analyzes the potential accidents and associated potential health effects that could occur under the alternatives included in this Tank Waste Remediation System (TWRS) Final Environmental Impact Statement (EIS) for the Hanford Site, Richland, Washington

  9. Methodology for evaluation of environmental impact of radioactive waste storage systems

    International Nuclear Information System (INIS)

    Peres, Sueli da Silva; Rochedo, Elaine R.R.

    2005-01-01

    The Biosphere has an important role in the assessment of the long-term environmental impact of radioactive waste disposal systems. This is because the biosphere is dynamic and its evolution over time can significantly affect the dose estimates and potential environmental impacts of a repository. Future events that may occur in the biosphere, such as climate change and the human actions, are the main sources of uncertainty in the modeling of the biosphere, and consequently, in anticipation of the scenarios of human exposure to radiation. In this context, the use of an alternative methodology more detailed and systematic for the development of conceptual models and prediction of uncertainty has been shown to be a useful tool to improve the quality of the evaluation. This methodology indicates the components and phenomena inherent to waste, design and location of the storage installation that need to be identified during the development of the conceptual model and the selection of the computer code to be used to represent the model. This methodology has been applied in assessing the long-term safety of radioactive waste storage systems. This paper presents the advantages of using this approach in the development of conceptual models and in the treatment of uncertainties

  10. Tank Waste Remediation System, Hanford Site, Richland, Washington. Final Environmental Impact Statement. Volume II

    International Nuclear Information System (INIS)

    1996-08-01

    This document, Volume 2, provides the inventory of waste addressed in this Final Environmental Impact Statement (EIS) for the Tank Waste Remediation System, Hanford Site, Richland, Washington. The inventories consist of waste from the following four groups: (1) Tank waste; (2) Cesium (Cs) and Strontium (Sr) capsules; (3) Inactive miscellaneous underground storage tanks (MUSTs); and (4) Anticipated future tank waste additions. The major component by volume of the overall waste is the tank waste inventory (including future tank waste additions). This component accounts for more than 99 percent of the total waste volume and approximately 70 percent of the radiological activity of the four waste groups identified previously. Tank waste data are available on a tank-by-tank basis, but the accuracy of these data is suspect because they primarily are based on historical records of transfers between tanks rather than statistically based sampling and analyses programs. However, while the inventory of any specific tank may be suspect, the overall inventory for all of the tanks combined is considered more accurate. The tank waste inventory data are provided as the estimated overall chemical masses and radioactivity levels for the single-shell tanks (SSTs) and double-shell tanks (DSTs). The tank waste inventory data are broken down into tank groupings or source areas that were developed for analyzing groundwater impacts

  11. Environmental impact assessment of the Swedish high-level radioactive waste disposal system - examples of likely considerations

    International Nuclear Information System (INIS)

    1994-01-01

    Sweden is investigating the feasibility of establishing a high-level radioactive waste (HLW) disposal system consisting of three components as follows: (1) Encapsulation facility, (2) system for transporting waste and (3) geologic repository. Swedish law requires that an Environmental Impact Assessment (EIA) be written for any planned action expected to have a significant impact on the environment. Before embarking on construction and operation of a HLW disposal system, the Swedish government will evaluate the expected environmental impacts to assure that the Swedish people and environmental will not be unduly affected by the disposal system. The EIA process requires that reasonable alternatives to the proposed action, including the 'zero' or 'no action' alternative, be considered so that the final approved plan for disposal will have undergone scrutiny and comparison of alternatives to arrive at a plan which is the best achievable given reasonable physical and monetary constraints. This report has been prepared by the Center for Nuclear Waste Regulatory Analyses (CNWRA) for use by the Swedish Radiation Protection Institute (SSI). The purpose of this report is to establish a document which outlines the types of information which would be in an EIA for a three part disposal system like that envisioned by the Swedish Nuclear Fuel and Waste Management Company (SKB) for the disposal of Sweden's HLW. Technical information that would normally be included in an EIA is outlined in this document. The SSI's primary interest is in radiological impacts. However, for the sake of completeness and also to evaluate all environmental impacts in a single document, non-radiological impacts are also included. Swedish authorities other than the SSI may have interest in the non-radiological parts of the document. 26 refs

  12. LCA of Solid Waste Management Systems

    DEFF Research Database (Denmark)

    Bakas, Ioannis; Laurent, Alexis; Clavreul, Julie

    2018-01-01

    The chapter explores the application of LCA to solid waste management systems through the review of published studies on the subject. The environmental implications of choices involved in the modelling setup of waste management systems are increasingly in the spotlight, due to public health...... concerns and new legislation addressing the impacts from managing our waste. The application of LCA to solid waste management systems, sometimes called “waste LCA”, is distinctive in that system boundaries are rigorously defined to exclude all life cycle stages except from the end-of-life. Moreover...... LCA on solid waste systems....

  13. Environmental assessment of solid waste systems and technologies: EASEWASTE

    DEFF Research Database (Denmark)

    Kirkeby, Janus Torsten; Birgisdottir, Harpa; Hansen, Trine Lund

    2006-01-01

    A new model has been developed for evaluating the overall resource consumption and environmental impacts of municipal solid waste management systems by the use of life cycle assessment. The model is named EASEWASTE (Environmental Assessment of Solid Waste Systems and Technologies) and is able...... may not always be the most environmentally friendly. The EASEWASTE model can identify the most environmentally sustainable solution, which may differ among waste materials and regions and can add valuable information about environmental achievements from each process in a solid waste management system....... to compare different waste management strategies, waste treatment methods and waste process technologies. The potential environmental impacts can be traced back to the most important processes and waste fractions that contribute to the relevant impacts. A model like EASEWASTE can be used by waste planners...

  14. Identifying potential environmental impacts of waste handling strategies in textile industry.

    Science.gov (United States)

    Yacout, Dalia M M; Hassouna, M S

    2016-08-01

    Waste management is a successful instrument to minimize generated waste and improve environmental conditions. In spite of the large share of developing countries in the textile industry, limited information is available concerning the waste management strategies implemented for textiles on those countries and their environmental impacts. In the current study, two waste management approaches for hazardous solid waste treatment of acrylic fibers (landfill and incineration) were investigated. The main research questions were: What are the different impacts of each waste management strategy? Which waste management strategy is more ecofriendly? Life cycle assessment was employed in order to model the environmental impacts of each waste streaming approach separately then compare them together. Results revealed that incineration was the more ecofriendly approach. Highest impacts of both approaches were on ecotoxicity and carcinogenic potentials due to release of metals from pigment wastes. Landfill had an impact of 46.8 % on human health as compared to 28 % by incineration. Incineration impact on ecosystem quality was higher than landfill impact (68.4 and 51.3 %, respectively). As for resources category, incineration had a higher impact than landfill (3.5 and 2.0 %, respectively). Those impacts could be mitigated if state-of-the-art landfill or incinerator were used and could be reduced by applying waste to energy approaches for both management systems In conclusion, shifting waste treatment from landfill to incineration would decrease the overall environmental impacts and allow energy recovery. The potential of waste to energy approach by incineration with heat recovery could be considered in further studies. Future research is needed in order to assess the implementation of waste management systems and the preferable waste management strategies in the textile industry on developing countries.

  15. System analysis of environmental impacts of the combustion of waste paper

    International Nuclear Information System (INIS)

    Palanterae, R.

    1996-01-01

    Combustion alternatives of different waste paper grades that are unsuitable or difficult to recycle were studied. Environmental impacts of alternative methods of waste paper treatment - combustion, dump disposal and use for fibre raw material - were studied with the aid of system analysis. Use of waste paper for energy production is usually recommended when there is oversupply of waste paper or it is unsuitable for recycled pulp. On the basis of certain studies it has also been suggested that it would be most profitable to use all waste paper as fuel. Refused tight paper rolls, baled brown paper and a mixture of adhesive paper and crushed building waste wood were chosen for waste paper in the combustion tests. The tests were run in the fluidised-bed combustion boiler of Maentaen Energia Oy. The mass flow of paper was about 3 t/h and its proportion of the fuel efficiency on average 20%. Prior to each paper combustion test, a blank trial was run with pure peat. The combustion tests indicated that flue gas emissions are not reduced by using paper instead of peat for energy production, but their composition is changed slightly. When the environmental effects of the use of waste paper for energy were compared with those of landfill dumping, the most significant difference was a reduction in greenhouse gases. The amount of methane emitted from the landfill will reduce. Differences in other emissions, e.g., in acidification due to SO 2 and NO 2 emissions, were rather small. The amount of solid waste was significantly lower in the combustion alternative. (38 refs.)

  16. RED-IMPACT. Impact of partitioning, transmutation and waste reduction technologies on the final nuclear waste disposal. Synthesis report

    Energy Technology Data Exchange (ETDEWEB)

    Lensa, Werner von; Nabbi, Rahim; Rossbach, Matthias (eds.) [Forschungszentrum Juelich GmbH (Germany)

    2008-07-01

    The impact of partitioning and transmutation (P and T) and waste reduction technologies on the nuclear waste management and particularly on the final disposal has been analysed within the EU-funded RED-IMPACT project. Five representative scenarios, ranging from direct disposal of the spent fuel to fully closed cycles (including minor actinide (MA) recycling) with fast neutron reactors or accelerator-driven systems (ADS), were chosen in the project to cover a wide range of representative waste streams, fuel cycle facilities and process performances. High and intermediate level waste streams have been evaluated for all of these scenarios with the aim of analysing the impact on geological disposal in different host formations such as granite, clay and salt. For each scenario and waste stream, specific waste package forms have been proposed and their main characteristics identified. Both equilibrium and transition analyses have been applied to those scenarios. The performed assessments have addressed parameters such as the total radioactive and radiotoxic inventory, discharges during reprocessing, thermal power and radiation emission of the waste packages, corrosion of matrices, transport of radioisotopes through the engineered and geological barriers or the resulting doses from the repository. The major conclusions of include the fact, that deep geological repository to host the remaining high level waste (HLW) and possibly the long-lived intermediate level waste (ILW) is unavoidable whatever procedure is implemented to manage waste streams from different fuel cycle scenarios including P and T of long-lived transuranic actinides.

  17. RED-IMPACT. Impact of partitioning, transmutation and waste reduction technologies on the final nuclear waste disposal. Synthesis report

    International Nuclear Information System (INIS)

    Lensa, Werner von; Nabbi, Rahim; Rossbach, Matthias

    2008-01-01

    The impact of partitioning and transmutation (P and T) and waste reduction technologies on the nuclear waste management and particularly on the final disposal has been analysed within the EU-funded RED-IMPACT project. Five representative scenarios, ranging from direct disposal of the spent fuel to fully closed cycles (including minor actinide (MA) recycling) with fast neutron reactors or accelerator-driven systems (ADS), were chosen in the project to cover a wide range of representative waste streams, fuel cycle facilities and process performances. High and intermediate level waste streams have been evaluated for all of these scenarios with the aim of analysing the impact on geological disposal in different host formations such as granite, clay and salt. For each scenario and waste stream, specific waste package forms have been proposed and their main characteristics identified. Both equilibrium and transition analyses have been applied to those scenarios. The performed assessments have addressed parameters such as the total radioactive and radiotoxic inventory, discharges during reprocessing, thermal power and radiation emission of the waste packages, corrosion of matrices, transport of radioisotopes through the engineered and geological barriers or the resulting doses from the repository. The major conclusions of include the fact, that deep geological repository to host the remaining high level waste (HLW) and possibly the long-lived intermediate level waste (ILW) is unavoidable whatever procedure is implemented to manage waste streams from different fuel cycle scenarios including P and T of long-lived transuranic actinides

  18. Nuclear Waste: Increasing Scale and Sociopolitical Impacts

    Science.gov (United States)

    La Porte, Todd R.

    1978-01-01

    Discusses the impact of radioactive waste management system on social and political development. The article also presents (1) types of information necessary to estimate the costs and consequences of radioactive waste management; and (2) an index of radioactive hazards to improve the basis for policy decisions. (HM)

  19. Guidelines for comparative assessment of the environmental impacts of wastes from electricity generation systems. A framework for the assessment and comparison of environmental impacts

    International Nuclear Information System (INIS)

    1995-02-01

    The report describes the initial phase of a project intended to provide guidance to those concerned with environmental aspects of solid and hazardous waste management in electrical energy production systems. The focus is on describing a methodology for assessing and comparing the environmental impact arising from these wastes, and thereby to provide an input to overall electrical generation comparison projects, such as DECADES. The structure of the report is as follows: after considering a range of electrical energy production systems with an outline discussion of the waste streams produced in each case, the relevant treatment technologies and disposal options are reviewed. Then the elements of the framework for comparative assessment proposed in this report are described. The types of environmental impact, environmental protection criteria and indicators or end-points to measure the impact, the way in which such impacts can be quantitatively assessed and compared are discussed. 59 refs, figs and tabs

  20. LCA comparison of container systems in municipal solid waste management

    International Nuclear Information System (INIS)

    Rives, Jesus; Rieradevall, Joan; Gabarrell, Xavier

    2010-01-01

    The planning and design of integrated municipal solid waste management (MSWM) systems requires accurate environmental impact evaluation of the systems and their components. This research assessed, quantified and compared the environmental impact of the first stage of the most used MSW container systems. The comparison was based on factors such as the volume of the containers, from small bins of 60-80 l to containers of 2400 l, and on the manufactured materials, steel and high-density polyethylene (HDPE). Also, some parameters such as frequency of collections, waste generation, filling percentage and waste container contents, were established to obtain comparable systems. The methodological framework of the analysis was the life cycle assessment (LCA), and the impact assessment method was based on CML 2 baseline 2000. Results indicated that, for the same volume, the collection systems that use HDPE waste containers had more of an impact than those using steel waste containers, in terms of abiotic depletion, global warming, ozone layer depletion, acidification, eutrophication, photochemical oxidation, human toxicity and terrestrial ecotoxicity. Besides, the collection systems using small HDPE bins (60 l or 80 l) had most impact while systems using big steel containers (2400 l) had less impact. Subsequent sensitivity analysis about the parameters established demonstrated that they could change the ultimate environmental impact of each waste container collection system, but that the comparative relationship between systems was similar.

  1. National high-level waste systems analysis plan

    International Nuclear Information System (INIS)

    Kristofferson, K.; Oholleran, T.P.; Powell, R.H.; Thiel, E.C.

    1995-05-01

    This document details the development of modeling capabilities that can provide a system-wide view of all US Department of Energy (DOE) high-level waste (HLW) treatment and storage systems. This model can assess the impact of budget constraints on storage and treatment system schedules and throughput. These impacts can then be assessed against existing and pending milestones to determine the impact to the overall HLW system. A nation-wide view of waste treatment availability will help project the time required to prepare HLW for disposal. The impacts of the availability of various treatment systems and throughput can be compared to repository readiness to determine the prudent application of resources or the need to renegotiate milestones

  2. Impact of decontamination on LWR radioactive waste treatment systems

    International Nuclear Information System (INIS)

    Hoenes, G.R.; Perrigo, L.D.; Divine, J.R.; Faust, L.G.

    1979-01-01

    Only at N-Reactor is there a means to accommodate radwaste produced during decontamination. The Dresden system is expected to be ready to accommodate such solutions by the summer of 1979. Solidification of the processed decontamination waste may be a significant problem. There is doubt that the materials in current radwaste treatment systems can handle chemicals from a concentrated process. The total storage volume, for concentrated decontamination, is not sufficient in existing radwaste treatment systems. Greater attention should be placed on designing reactors and radwaste treatment systems for decontamination. A means of handling waste material resulting from leaks in the primary system during the decontamination must be developed. On-site storage of solidified decontamination wastes may be a viable option, but license amendments will be necessary

  3. Savannah River Site Waste Management Final Environmental Impact Statement Addendum

    International Nuclear Information System (INIS)

    1995-07-01

    The purpose of this environmental impact statement is to help DOE decide how to manage over the next 30 years liquid high-level radioactive, low-level radioactive, mixed, hazardous, and transuranic wastes generated during 40 years of past operations and on-going activities (including management of wastes received from offsite) at Savannah River Site (SRS) in southwestern South Carolina. The wastes are currently stored at SRS. DOE seeks to dispose of the wastes in a cost-effective manner that protects human health and the environment. In this document, DOE assesses the cumulative environmental impacts of storing, treating, and disposing of the wastes, examines the impacts of alternatives, and identifies measures available to reduce adverse impacts. Evaluations of impacts on water quality, air quality, ecological systems, land use, geologic resources, cultural resources, socio-economic, and the health and safety of onsite workers and the public are included in the assessment

  4. Savannah River Site waste management. Final environmental impact statement - addendum

    International Nuclear Information System (INIS)

    1995-07-01

    The purpose of this environmental impact statement is to help DOE decide how to manage over the next 30 years liquid high-level radioactive, low-level radioactive, mixed, hazardous, and transuranic wastes generated during 40 years of past operations and on-going activities (including management of wastes received from offsite) at Savannah River Site (SRS) in southwestern South Carolina. The wastes are currently stored at SRS. DOE seeks to dispose of the wastes in a cost-effective manner that protects human health and the environment. In this document, DOE assesses the cumulative environmental impacts of storing, treating, and disposing of the wastes, examines the impacts of alternatives, and identifies measures available to reduce adverse impacts. Evaluations of impacts on water quality, air quality, ecological systems, land use, geologic resources, cultural resources, socio-economics, and the health and safety of onsite workers and the public are included in the assessment

  5. Tank Waste Remediation System, Hanford Site, Richland, Washington. Final Environmental Impact Statement. Volume I

    International Nuclear Information System (INIS)

    1996-08-01

    This document, Volume 1 of the Final Environmental Impact Statement, analyzes the potential environmental consequences related to the Hanford Site Tank Waste Remediation System (TWRS) alternatives for management and disposal of radioactive, hazardous, and mixed waste, and the management and disposal of approximately 1,930 cesium and strontium capsules located at the Hanford Site. This waste is currently or projected to be stored in 177 underground storage tanks and approximately 60 miscellaneous underground storage tanks. This document analyzes the following alternatives for remediating the tank waste: No Action, Long-Term Management, In Situ Fill and Cap, In Situ Vitrification, Ex Situ Intermediate Separations, Ex Situ No Separations, Ex Situ Extensive Separations, Ex Situ/In Situ Combination 1, and Ex Situ/In Situ Combination 2. This document also addresses a Phased Implementation alternative (the DOE and Ecology preferred alternative for remediation of tank waste). Alternatives analyzed for the cesium and strontium capsules include: No Action, Onsite Disposal, Overpack and Ship, and Vitrify with Tank Waste. The DOE and Ecology preferred alternative for the cesium and strontium capsules is the No Action alternative

  6. National high-level waste systems analysis report

    Energy Technology Data Exchange (ETDEWEB)

    Kristofferson, K.; Oholleran, T.P.; Powell, R.H.

    1995-09-01

    This report documents the assessment of budgetary impacts, constraints, and repository availability on the storage and treatment of high-level waste and on both existing and pending negotiated milestones. The impacts of the availabilities of various treatment systems on schedule and throughput at four Department of Energy sites are compared to repository readiness in order to determine the prudent application of resources. The information modeled for each of these sites is integrated with a single national model. The report suggests a high-level-waste model that offers a national perspective on all high-level waste treatment and storage systems managed by the Department of Energy.

  7. National high-level waste systems analysis report

    International Nuclear Information System (INIS)

    Kristofferson, K.; Oholleran, T.P.; Powell, R.H.

    1995-09-01

    This report documents the assessment of budgetary impacts, constraints, and repository availability on the storage and treatment of high-level waste and on both existing and pending negotiated milestones. The impacts of the availabilities of various treatment systems on schedule and throughput at four Department of Energy sites are compared to repository readiness in order to determine the prudent application of resources. The information modeled for each of these sites is integrated with a single national model. The report suggests a high-level-waste model that offers a national perspective on all high-level waste treatment and storage systems managed by the Department of Energy

  8. Hazardous waste management system design under population and environmental impact considerations.

    Science.gov (United States)

    Yilmaz, Ozge; Kara, Bahar Y; Yetis, Ulku

    2017-12-01

    This paper presents a multi objective mixed integer location/routing model that aims to minimize transportation cost and risks for large-scale hazardous waste management systems (HWMSs). Risks induced by hazardous wastes (HWs) on both public and the environment are addressed. For this purpose, a new environmental impact definition is proposed that considers the environmentally vulnerable elements including water bodies, agricultural areas, coastal regions and forestlands located within a certain bandwidth around transportation routes. The solution procedure yields to Pareto optimal curve for two conflicting objectives. The conceptual model developed prior to mathematical formulation addresses waste-to-technology compatibility and HW processing residues to assure applicability of the model to real-life HWMSs. The suggested model was used in a case study targeting HWMS in Turkey. Based on the proposed solution, it was possible to identify not only the transportation routes but also a set of information on HW handling facilities including the types, locations, capacities, and investment/operational cost. The HWMS of this study can be utilized both by public authorities and private sector investors for planning purposes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. National high-level waste systems analysis

    International Nuclear Information System (INIS)

    Kristofferson, K.; O'Holleran, T.P.

    1996-01-01

    Previously, no mechanism existed that provided a systematic, interrelated view or national perspective of all high-level waste treatment and storage systems that the US Department of Energy manages. The impacts of budgetary constraints and repository availability on storage and treatment must be assessed against existing and pending negotiated milestones for their impact on the overall HLW system. This assessment can give DOE a complex-wide view of the availability of waste treatment and help project the time required to prepare HLW for disposal. Facilities, throughputs, schedules, and milestones were modeled to ascertain the treatment and storage systems resource requirements at the Hanford Site, Savannah River Site, Idaho National Engineering Laboratory, and West Valley Demonstration Project. The impacts of various treatment system availabilities on schedule and throughput were compared to repository readiness to determine the prudent application of resources. To assess the various impacts, the model was exercised against a number of plausible scenarios as discussed in this paper

  10. Analytical method of waste allocation in waste management systems: Concept, method and case study

    Energy Technology Data Exchange (ETDEWEB)

    Bergeron, Francis C., E-mail: francis.b.c@videotron.ca

    2017-01-15

    Waste is not a rejected item to dispose anymore but increasingly a secondary resource to exploit, influencing waste allocation among treatment operations in a waste management (WM) system. The aim of this methodological paper is to present a new method for the assessment of the WM system, the “analytical method of the waste allocation process” (AMWAP), based on the concept of the “waste allocation process” defined as the aggregation of all processes of apportioning waste among alternative waste treatment operations inside or outside the spatial borders of a WM system. AMWAP contains a conceptual framework and an analytical approach. The conceptual framework includes, firstly, a descriptive model that focuses on the description and classification of the WM system. It includes, secondly, an explanatory model that serves to explain and to predict the operation of the WM system. The analytical approach consists of a step-by-step analysis for the empirical implementation of the conceptual framework. With its multiple purposes, AMWAP provides an innovative and objective modular method to analyse a WM system which may be integrated in the framework of impact assessment methods and environmental systems analysis tools. Its originality comes from the interdisciplinary analysis of the WAP and to develop the conceptual framework. AMWAP is applied in the framework of an illustrative case study on the household WM system of Geneva (Switzerland). It demonstrates that this method provides an in-depth and contextual knowledge of WM. - Highlights: • The study presents a new analytical method based on the waste allocation process. • The method provides an in-depth and contextual knowledge of the waste management system. • The paper provides a reproducible procedure for professionals, experts and academics. • It may be integrated into impact assessment or environmental system analysis tools. • An illustrative case study is provided based on household waste

  11. Analytical method of waste allocation in waste management systems: Concept, method and case study

    International Nuclear Information System (INIS)

    Bergeron, Francis C.

    2017-01-01

    Waste is not a rejected item to dispose anymore but increasingly a secondary resource to exploit, influencing waste allocation among treatment operations in a waste management (WM) system. The aim of this methodological paper is to present a new method for the assessment of the WM system, the “analytical method of the waste allocation process” (AMWAP), based on the concept of the “waste allocation process” defined as the aggregation of all processes of apportioning waste among alternative waste treatment operations inside or outside the spatial borders of a WM system. AMWAP contains a conceptual framework and an analytical approach. The conceptual framework includes, firstly, a descriptive model that focuses on the description and classification of the WM system. It includes, secondly, an explanatory model that serves to explain and to predict the operation of the WM system. The analytical approach consists of a step-by-step analysis for the empirical implementation of the conceptual framework. With its multiple purposes, AMWAP provides an innovative and objective modular method to analyse a WM system which may be integrated in the framework of impact assessment methods and environmental systems analysis tools. Its originality comes from the interdisciplinary analysis of the WAP and to develop the conceptual framework. AMWAP is applied in the framework of an illustrative case study on the household WM system of Geneva (Switzerland). It demonstrates that this method provides an in-depth and contextual knowledge of WM. - Highlights: • The study presents a new analytical method based on the waste allocation process. • The method provides an in-depth and contextual knowledge of the waste management system. • The paper provides a reproducible procedure for professionals, experts and academics. • It may be integrated into impact assessment or environmental system analysis tools. • An illustrative case study is provided based on household waste

  12. Impacts of the proposed program approach on waste stream characteristics

    International Nuclear Information System (INIS)

    King, J.F.; Fleming, M.E.

    1995-01-01

    The evolution of the U.S. Department of Energy's Civilian Radioactive Waste Management System (CRWMS) over the past few years has led to significant changes in key system scenario assumption. This paper describes the effects of two recent changes on waste stream characteristics focusing primarily on repository impacts. First, the multi-purpose canister (MPC) concept has been included in the Program baseline. The change from a bare fuel system to one including an MPC-based system forces the fuel assemblies initially loaded together in MPCs to remain together throughout the system. Second, current system analyses also assume a system without a monitored retrievable storage (MRS), with the understanding that an MRS would be reincorporated if a site becomes available. Together these two changes have significant impacts on waste stream characteristics. Those two changes create a class of scenarios referred to generally as Program Approach (PA) scenarios. Scenarios based on the previously assumed system, bare fuel with an MRS, are referred to here as the Previous Reference (PR) system scenarios. The analysis compares scenarios with otherwise consistent assumptions and presents summary comparisons. The number of disposal containers and the waste heat output are determined for eight PA and PR scenarios

  13. Between hype and veracity; privatization of municipal solid waste management and its impacts on the informal waste sector.

    Science.gov (United States)

    Sandhu, Kiran; Burton, Paul; Dedekorkut-Howes, Aysin

    2017-01-01

    The informal waste recycling sector has been an indispensable but ironically invisible part of the waste management systems in developing countries as India, often completely disregarded and overlooked by decision makers and policy frameworks. The turn towards liberalization of economy since 1991 in India opened the doors for privatization of urban services and the waste sector found favor with private companies facilitated by the local governments. In joining the privatization bandwagon, the local governments aim to create an image of a progressive city demonstrated most visibly through apt management of municipal solid waste. Resultantly, the long important stakeholder, the informal sector has been sidelined and left to face the adverse impacts of privatization. There is hardly any recognition of its contributions or any attempt to integrate it within the formal waste management systems. The study investigates the impacts of privatization on the waste pickers in waste recycling operations. Highlighting the other dimension of waste collection and management in urban India the study focuses on the waste pickers and small time informal scrap dealers and this is done by taking the case study of Amritsar city, which is an important historic centre and a metropolitan city in the state of Punjab, India. The paper develops an analytical framework, drawing from literature review to analyze the impacts. In conclusion, it supports the case for involving informal waste sector towards achieving sustainable waste management in the city. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Impact of nuclear waste traffic on highways

    International Nuclear Information System (INIS)

    Sebaaly, P.E.; Siddharthan, R.; Epps, J.A.

    1994-01-01

    A system was developed to evaluate the impact of nuclear waste traffic on the structural performance of highway pavements throughout the state of Nevada. The associated needs of maintenance and rehabilitations can also be evaluated along with their costs. This paper summarizes the system and provides two sample analyses

  15. Process equipment waste and process waste liquid collection systems

    International Nuclear Information System (INIS)

    1990-06-01

    The US DOE has prepared an environmental assessment for construction related to the Process Equipment Waste (PEW) and Process Waste Liquid (PWL) Collection System Tasks at the Idaho Chemical Processing Plant. This report describes and evaluates the environmental impacts of the proposed action (and alternatives). The purpose of the proposed action would be to ensure that the PEW and PWL collection systems, a series of enclosed process hazardous waste, and radioactive waste lines and associated equipment, would be brought into compliance with applicable State and Federal hazardous waste regulations. This would be accomplished primarily by rerouting the lines to stay within the buildings where the lined floors of the cells and corridors would provide secondary containment. Leak detection would be provided via instrumented collection sumps locate din the cells and corridors. Hazardous waste transfer lines that are routed outside buildings will be constructed using pipe-in-pipe techniques with leak detection instrumentation in the interstitial area. The need for the proposed action was identified when a DOE-sponsored Resource Conservation and Recovery Act (RCRA) compliance assessment of the ICPP facilities found that singly-contained waste lines ran buried in the soil under some of the original facilities. These lines carried wastes with a pH of less than 2.0, which were hazardous waste according to the RCRA standards. 20 refs., 7 figs., 1 tab

  16. Life cycle environmental impacts of different construction wood waste and wood packaging waste processing methods

    OpenAIRE

    Manninen, Kaisa; Judl, Jáchym; Myllymaa, Tuuli

    2016-01-01

    This study compared the life cycle environmental impacts of different wood waste processing methods in three impact categories: climate impact, acidification impacts and eutrophication impacts. The wood waste recovery methods examined were the use of wood waste in terrace boards made out of wood composite which replace impregnated terrace boards, incineration of wood waste in a multi-fuel boiler instead of peat and the use of wood waste in the production of particleboard in either Finland or ...

  17. Possible global environmental impacts of solid waste practices

    Energy Technology Data Exchange (ETDEWEB)

    Davis, M.M.; Holter, G.M.; DeForest, T.J.; Stapp, D.C. [Pacific Northwest Lab., Richland, WA (United States); Dibari, J.C. [Heritage College, Toppenish, WA (United States)

    1994-09-01

    Pollutants resulting from the management of solid waste have been shown to affect the air, land, oceans, and waterways. In addition, solid wastes have other, more indirect impacts such as reduction in feedstocks of natural resources, because useful materials are disposed of rather than recycled. The objective of this study is to evaluate solid waste management practices that have negative implications on the global environment and develop recommendations for reducing such impacts. Recommendations identifying needed changes are identified that will reduce global impacts of solid waste practices in the future. The scope of this study includes the range of non-hazardous solid wastes produced within our society, including municipal solid waste (MSW) and industrial solid waste (ISW), as well as industry-specific wastes from activities such as construction, demolition, and landclearing. Most solid waste management decisions continue to be made and implemented at very local levels, predominantly with a short-term focus to respond to relatively immediate pressures of landfill shortages, funding problems, political considerations, and the like. In this rush to address immediate local problems, little consideration is being given to potential impacts, either short- or long-term, at the national or global level resulting from solid waste management practices. More and more, the cumulative impacts from local decisions concerning solid waste management are beginning to manifest themselves in broader, longer-term impacts than are being addressed by the decision-makers or, at the very least, are presenting a greater and greater potential for such impacts.

  18. Environmental impact of PV cell waste scenario.

    Science.gov (United States)

    Bogacka, M; Pikoń, K; Landrat, M

    2017-12-01

    Rapid growth of the volume of waste from PV cells is expected in the following years. The problem of its utilization seems to be the most important issue for future waste management systems. The environmental impacts of the PV recycling scenario are presented in the manuscript. The analysis is based on the LCA approach and the average data available in specialized databases for silicon standard PV cell is used. The functional unit includes parameters like: efficiency, composition, surface area. The discussion on the environmental impact change due to the location of the PV production and waste processing plants is presented in the manuscript. Additionally, the discussion on the environmental effect of substituting different energy resources with PV cells is presented in the manuscript. The analysis of the PV cell life cycle scenario presented in the article was performed using the SIMA PRO software and data from Ecoinvent 3.0 database together with additional data obtained from other sources. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. 1993 baseline solid waste management system description

    International Nuclear Information System (INIS)

    Armacost, L.L.; Fowler, R.A.; Konynenbelt, H.S.

    1994-02-01

    Pacific Northwest Laboratory has prepared this report under the direction of Westinghouse Hanford Company. The report provides an integrated description of the system planned for managing Hanford's solid low-level waste, low-level mixed waste, transuranic waste, and transuranic mixed waste. The primary purpose of this document is to illustrate a collective view of the key functions planned at the Hanford Site to handle existing waste inventories, as well as solid wastes that will be generated in the future. By viewing this system as a whole rather than as individual projects, key facility interactions and requirements are identified and a better understanding of the overall system may be gained. The system is described so as to form a basis for modeling the system at various levels of detail. Model results provide insight into issues such as facility capacity requirements, alternative system operating strategies, and impacts of system changes (ie., startup dates). This description of the planned Hanford solid waste processing system: defines a baseline system configuration; identifies the entering waste streams to be managed within the system; identifies basic system functions and waste flows; and highlights system constraints. This system description will evolve and be revised as issues are resolved, planning decisions are made, additional data are collected, and assumptions are tested and changed. Out of necessity, this document will also be revised and updated so that a documented system description, which reflects current system planning, is always available for use by engineers and managers. It does not provide any results generated from the many alternatives that will be modeled in the course of analyzing solid waste disposal options; such results will be provided in separate documents

  20. Environmental impact assessment of solid waste management in Beijing City, China

    International Nuclear Information System (INIS)

    Zhao Yan; Christensen, Thomas H.; Lu Wenjing; Wu Huayong; Wang Hongtao

    2011-01-01

    The environmental impacts of municipal solid waste management in Beijing City were evaluated using a life-cycle-based model, EASEWASTE, to take into account waste generation, collection, transportation, treatment/disposal technologies, and savings obtained by energy and material recovery. The current system, mainly involving the use of landfills, has manifested significant adverse environmental impacts caused by methane emissions from landfills and many other emissions from transfer stations. A short-term future scenario, where some of the landfills (which soon will reach their capacity because of rising amount of waste in Beijing City) are substituted by incinerators with energy recovery, would not result in significant environmental improvement. This is primarily because of the low calorific value of mixed waste, and it is likely that the incinerators would require significant amounts of auxiliary fuels to support combustion of wet waste. As for the long-term future scenario, efficient source separation of food waste could result in significant environmental improvements, primarily because of increase in calorific value of remaining waste incinerated with energy recovery. Sensitivity analysis emphasized the importance of efficient source separation of food waste, as well as the electricity recovery in incinerators, in order to obtain an environmentally friendly waste management system in Beijing City.

  1. The impact of alternate weekly collections on waste arisings

    Energy Technology Data Exchange (ETDEWEB)

    Williams, I.D., E-mail: idw@soton.ac.uk [Waste Management Research Group, Faculty of Engineering and the Environment, Lanchester Building, University of Southampton, University Rd, Highfield, SOUTHAMPTON, Hampshire, SO17 1BJ (United Kingdom); Cole, C. [Centre for Innovative and Collaborative Construction Engineering, School of Civil and Building Engineering, Loughborough University, Epinal Way, Loughborough, LE11 3TU (United Kingdom)

    2013-02-15

    Residual waste is commonly collected separately from recyclable and organic materials. Different forms of collection and disposal are used internationally since regional or municipal authorities have to adapt to their own circumstances. Many authorities have adopted an alternate weekly collection (AWC) of residual waste and recyclables to force/encourage householders to recycle; however, the degree to which they achieve waste reduction has yet to be reliably quantified. This study reports on how the introduction of AWCs affects household waste arisings. The paper evaluates single and dual stream collection methods and compares their performance with the previous system. Household waste collection trials were conducted between March and June 2009 in England (Lichfield). The trials examined changes to frequency of collection, type of container issued, amounts of sorting required of residents, household participation and productivity levels. A survey of households was completed before any changes were implemented. The quantity of recyclates collected was examined for 2008/2009 and 2009/2010. The study showed that the AWC scheme positively impacted on recycling rates and household behaviour, with no adverse impacts on public participation, household waste arisings or the local environment. No public health problems were reported. Both trials saw an increase in the quantities of recyclates collected per household during the trial period compared to the same period of time in the previous year. The dual stream performed better than the single stream, collecting an average of 5.94 kg/hh/week compared to an average of 5.63 kg/hh/week. The single stream system showed a greater increase in the weight of material collected (0.53 kg/hh/week vs. 0.48 kg/hh/week). Participation and set-out rates showed an increase during the trial period. The single stream option (comingled materials in one container) outperformed the dual stream service. The reduction in costs and improved

  2. The impact of alternate weekly collections on waste arisings

    International Nuclear Information System (INIS)

    Williams, I.D.; Cole, C.

    2013-01-01

    Residual waste is commonly collected separately from recyclable and organic materials. Different forms of collection and disposal are used internationally since regional or municipal authorities have to adapt to their own circumstances. Many authorities have adopted an alternate weekly collection (AWC) of residual waste and recyclables to force/encourage householders to recycle; however, the degree to which they achieve waste reduction has yet to be reliably quantified. This study reports on how the introduction of AWCs affects household waste arisings. The paper evaluates single and dual stream collection methods and compares their performance with the previous system. Household waste collection trials were conducted between March and June 2009 in England (Lichfield). The trials examined changes to frequency of collection, type of container issued, amounts of sorting required of residents, household participation and productivity levels. A survey of households was completed before any changes were implemented. The quantity of recyclates collected was examined for 2008/2009 and 2009/2010. The study showed that the AWC scheme positively impacted on recycling rates and household behaviour, with no adverse impacts on public participation, household waste arisings or the local environment. No public health problems were reported. Both trials saw an increase in the quantities of recyclates collected per household during the trial period compared to the same period of time in the previous year. The dual stream performed better than the single stream, collecting an average of 5.94 kg/hh/week compared to an average of 5.63 kg/hh/week. The single stream system showed a greater increase in the weight of material collected (0.53 kg/hh/week vs. 0.48 kg/hh/week). Participation and set-out rates showed an increase during the trial period. The single stream option (comingled materials in one container) outperformed the dual stream service. The reduction in costs and improved

  3. Generic impact statement for commercial radioactive waste management

    International Nuclear Information System (INIS)

    Unruh, C.M.

    1976-01-01

    ERDA is preparing a generic environmental impact statement on the treatment and disposal of waste resulting from commercial reactors and post fission operations in the light water reactor (LWR) fuel cycle. Expert contributions will be provided by many of the ERDA national laboratories and contractors. The waste management aspects of the statement will be based on available technology as presented in the recently issued ''Alternatives for Managing Waste from Reactors and Post Fission Operations in the LWR Fuel Cycle,'' ERDA-76-43 Document. This 1500 page, five volume Technical Alternative Document (TAD) describes the status of technology (to September, 1975) for handling post fission radioactive waste generated by the production of electricity by nuclear power light water reactor-generator systems. The statement will be generic in nature discussing typical or hypothetical facilities in typical or hypothetical environments. It is not intended to replace environmental statements required in support of specific projects nor for Nuclear Regulatory Commission licensing procedures. A major purpose of the generic statement is to inform the public and to solicit comments on the ERDA program for: (1) the final disposition of commercial radioactive waste, (2) waste treatment, (3) waste interim storage, and (4) transportation of waste. The statement will discuss the ERDA contingency program to provide retrievable storage of such waste if they should be transferred to Federal custody prior to the availability of the geologic isolation facilities for terminal disposal. The generic statement will not address radioactive waste resulting from U.S. Defense Programs, the mining or milling of uranium, the management of waste from the breeder reactor program, waste from other nations, nor will it include an evaluation of the impact of waste resulting from power sources other than light water reactors

  4. The environmental impact of mine wastes - roles of microorganisms and their significance in treatment of mine wastes

    International Nuclear Information System (INIS)

    Ledin, M.; Pedersen, K.

    1996-01-01

    Mine wastes constitute a potential source of contamination to the environment, as heavy metals and acid are released in large amounts. A great variety of microorganisms has been found in mine wastes and microbiological processes are usually responsible for the environmental hazard created by mine wastes. However, microorganisms can also be used to retard the adverse impact of mine wastes on the environment. Conventionally, the mine drainage as well as the waste itself can be treated with alkali to increase pH and precipitate metals. The main drawback of this method is that it has to be continuously repeated to be fully effective. There may also be negative effects on beneficial microorganisms. Several other treatment methods have been developed to stop weathering processes thereby reducing the environmental impact of mine wastes. The other main approach is to treat the drainage water. Various methods aim at using microorganisms for this in natural or engineered systems. Recently, much interest has been focused on the use of natural or artificial wetlands for treatment. In general, the activity of microorganisms is neglected in the design of mine waste treatment systems, and the treatments are created merely from a technical point of view. This can result in situations where unexpected microbial processes take over, and, in the worst scenario, the overall effect is opposite to the desired

  5. Concept of waste and its impact on human health.

    Science.gov (United States)

    Pashkov, Vitalii M; Batyhina, Olena M; Trotska, Maryna V

    Impact of the environment on human health is increasingly being paid attention both at the international level and at the level of individual countries. Among the factors that anyhow can affect it negatively, various objects are distinguished and waste is not of the last consequence. It has different nature of origin, ways of further utilization and a degree of impact on human health and the environment. Its generation, utilization and neutralization are determined by the relevant processes; their research allows continuous improvement and reduction of their negative impact on human health and the environment. To analyze provisions of the international legislation concerning the concept of waste and its classification, as well as its potential impacts on human health and the environment. The study analyzes and uses international legal documents, data of international organizations and scientists' deductions. Furthermore, the study integrates information from scientific journals with scientific methods from the medical and legal point of view. Within the framework of the system approach, as well as analysis and synthesis, the concept of waste, its classification and impact on human health and the environment have been researched. In consequence of the conducted study, it has been found that at the European level, considerable attention is paid to waste in the context of its possible negative impact on human health and the environment. Solution of this problem is carried out with the integrated approach, which is expressed both in enacting statutory acts and amending existing ones, as well as elucidating various aspects at the scientific, methodological, statistical and other levels. Waste in itself has different nature of origin, negative impact, ways of its further utilization. Some kinds of it can be used further in order to achieve other goals and needs that are not related to their generation, others can no longer be used for human benefits taking into account

  6. Environmental-benefit analysis of two urban waste collection systems.

    Science.gov (United States)

    Aranda Usón, Alfonso; Ferreira, Germán; Zambrana Vásquez, David; Zabalza Bribián, Ignacio; Llera Sastresa, Eva

    2013-10-01

    Sustainable transportation infrastructure and travel policies aim to optimise the use of transportation systems to achieve economic and related social and environmental goals. To this end, a novel methodology based on life cycle assessment (LCA) has been developed in this study, with the aim of quantifying, in terms of CO2 emissions equivalent, the impact associated with different alternatives of waste collection systems in different urban typologies. This new approach is focussed on saving energy and raw materials and reducing the environmental impact associated with the waste collection system in urban areas, as well as allowing the design and planning of the best available technologies and most environment-friendly management. The methodology considers a large variety of variables from the point of view of sustainable urban transport such as the location and size of the urban area, the amount of solid waste generated, the level of social awareness on waste separation procedures, the distance between houses and waste collection points and the distance from the latter to the possible recovery plants and/or landfills, taking into account the material and energy recovery ratio within an integrated waste management system. As a case study, two different waste collection systems have been evaluated with this methodology in the ecocity Valdespartera located in Zaragoza, Spain, consisting of approximately 10,000 homes: (i) a system based on traditional truck transportation and manual collection, and (ii) a stationary vacuum waste collection system. Results show that, when operating at loads close to 100%, the stationary collection system has the best environmental performance in comparison with the conventional system. In contrast, when operating at load factors around 13% the environmental benefits in terms of net CO2-eq. emissions for the stationary collection system are around 60% lower in comparison with the conventional one. Copyright © 2013 Elsevier B.V. All

  7. Comparative Risk Analysis for Metropolitan Solid Waste Management Systems

    Science.gov (United States)

    Chang, Ni-Bin; Wang, S. F.

    1996-01-01

    Conventional solid waste management planning usually focuses on economic optimization, in which the related environmental impacts or risks are rarely considered. The purpose of this paper is to illustrate the methodology of how optimization concepts and techniques can be applied to structure and solve risk management problems such that the impacts of air pollution, leachate, traffic congestion, and noise increments can be regulated in the iong-term planning of metropolitan solid waste management systems. Management alternatives are sequentially evaluated by adding several environmental risk control constraints stepwise in an attempt to improve the management strategies and reduce the risk impacts in the long run. Statistics associated with those risk control mechanisms are presented as well. Siting, routing, and financial decision making in such solid waste management systems can also be achieved with respect to various resource limitations and disposal requirements.

  8. Domain Specific Language for Modeling Waste Management Systems

    DEFF Research Database (Denmark)

    Zarrin, Bahram

    environmental technologies i.e. solid waste management systems. Flow-based programming is used to support concurrent execution of the processes, and provides a model-integration language for composing processes from homogeneous or heterogeneous domains. And a domain-specific language is used to define atomic......In order to develop sustainable waste management systems with considering life cycle perspective, scientists and domain experts in environmental science require readily applicable tools for modeling and evaluating the life cycle impacts of the waste management systems. Practice has proved...... a domain specific language for modeling of waste-management systems on the basis of our framework. We evaluate the language by providing a set of case studies. The contributions of this thesis are; addressing separation of concerns in Flow-based programming and providing the formal specification of its...

  9. The Impact of Waste Loading on Viscosity in the Frit 418-SB3 System

    International Nuclear Information System (INIS)

    PEELER, DAVID

    2004-01-01

    In this report, data are provided to gain insight into the potential impact of a lower viscosity glass on melter stability (i.e., pressure spikes, cold cap behavior) and/or pour stream stability. High temperature viscosity data are generated for the Frit 418-SB3 system as a function of waste loading (from 30 to 45 percent) and compared to similar data from other systems that have been (or are currently being) processed through the Defense Waste Processing Facility (DWPF) melter. The data are presented in various formats to potentially align the viscosity data with physical observations at various points in the melter system or critical DWPF processing unit operations. The expectations is that the data will be provided adequate insight into the vitrification parameters which might evolve into working solutions as DWPF strives to maximize waste throughput. This report attempts to provide insight into a physical interpretation of the data from a DWPF perspective. The theories present ed are certainly not an all inclusive list and the order in which they are present does imply a ranking, probability, or likelihood that the proposed theory is even plausible. The intent of this discussion is to provide a forum in which the viscosity data can be discussed in relation to possible mechanisms which could potentially lead to a workable solution as discussed in relation to possible solution as higher overall attainment is striven for during processing of the current or future sludge batches

  10. Impacts of cathodic protection on waste package performance

    International Nuclear Information System (INIS)

    Atkins, J.E.; Lee, J.H.; Andrews, R.W.

    1996-01-01

    The current design concept for a multi-barrier waste container for the potential repository at Yucca Mountain, Nevada, calls for an outer barrier of 100 mm thick corrosion-allowance material (CAM) (carbon steel) and an inner barrier of 20 mm thick corrosion-resistant material (CRM) (Alloy 825). Fulfillment of the NRC subsystem requirements (10 CFR 60.113) of substantially complete containment and controlled release of radionuclides from the engineered barrier system (EBS) will rely mostly upon the robust waste container design, among other EBS components. In the current waste container design, some degree of cathodic protection of CRM will be provided by CAM. This paper discusses a sensitivity case study for the impacts of cathodic protection of the inner barrier by the outer barrier on the performance of waste package

  11. Environmental-benefit analysis of two urban waste collection systems

    International Nuclear Information System (INIS)

    Aranda Usón, Alfonso; Ferreira, Germán; Zambrana Vásquez, David; Zabalza Bribián, Ignacio; Llera Sastresa, Eva

    2013-01-01

    Sustainable transportation infrastructure and travel policies aim to optimise the use of transportation systems to achieve economic and related social and environmental goals. To this end, a novel methodology based on life cycle assessment (LCA) has been developed in this study, with the aim of quantifying, in terms of CO 2 emissions equivalent, the impact associated with different alternatives of waste collection systems in different urban typologies. This new approach is focussed on saving energy and raw materials and reducing the environmental impact associated with the waste collection system in urban areas, as well as allowing the design and planning of the best available technologies and most environment-friendly management. The methodology considers a large variety of variables from the point of view of sustainable urban transport such as the location and size of the urban area, the amount of solid waste generated, the level of social awareness on waste separation procedures, the distance between houses and waste collection points and the distance from the latter to the possible recovery plants and/or landfills, taking into account the material and energy recovery ratio within an integrated waste management system. As a case study, two different waste collection systems have been evaluated with this methodology in the ecocity Valdespartera located in Zaragoza, Spain, consisting of approximately 10,000 homes: (i) a system based on traditional truck transportation and manual collection, and (ii) a stationary vacuum waste collection system. Results show that, when operating at loads close to 100%, the stationary collection system has the best environmental performance in comparison with the conventional system. In contrast, when operating at load factors around 13% the environmental benefits in terms of net CO 2 -eq. emissions for the stationary collection system are around 60% lower in comparison with the conventional one. - Highlights: • A comprehensive

  12. Environmental-benefit analysis of two urban waste collection systems

    Energy Technology Data Exchange (ETDEWEB)

    Aranda Usón, Alfonso, E-mail: alaranda@unizar.es; Ferreira, Germán; Zambrana Vásquez, David; Zabalza Bribián, Ignacio; Llera Sastresa, Eva

    2013-10-01

    Sustainable transportation infrastructure and travel policies aim to optimise the use of transportation systems to achieve economic and related social and environmental goals. To this end, a novel methodology based on life cycle assessment (LCA) has been developed in this study, with the aim of quantifying, in terms of CO{sub 2} emissions equivalent, the impact associated with different alternatives of waste collection systems in different urban typologies. This new approach is focussed on saving energy and raw materials and reducing the environmental impact associated with the waste collection system in urban areas, as well as allowing the design and planning of the best available technologies and most environment-friendly management. The methodology considers a large variety of variables from the point of view of sustainable urban transport such as the location and size of the urban area, the amount of solid waste generated, the level of social awareness on waste separation procedures, the distance between houses and waste collection points and the distance from the latter to the possible recovery plants and/or landfills, taking into account the material and energy recovery ratio within an integrated waste management system. As a case study, two different waste collection systems have been evaluated with this methodology in the ecocity Valdespartera located in Zaragoza, Spain, consisting of approximately 10,000 homes: (i) a system based on traditional truck transportation and manual collection, and (ii) a stationary vacuum waste collection system. Results show that, when operating at loads close to 100%, the stationary collection system has the best environmental performance in comparison with the conventional system. In contrast, when operating at load factors around 13% the environmental benefits in terms of net CO{sub 2}-eq. emissions for the stationary collection system are around 60% lower in comparison with the conventional one. - Highlights: • A

  13. Greenhouse gas emission mitigation relevant to changes in municipal solid waste management system.

    Science.gov (United States)

    Pikoń, Krzysztof; Gaska, Krzysztof

    2010-07-01

    Standard methods for assessing the environmental impact of waste management systems are needed to underpin the development and implementation of sustainable waste management practice. Life cycle assessment (LCA) is a tool for comprehensively ensuring such assessment and covers all impacts associated with waste management. LCA is often called "from cradle to grave" analysis. This paper integrates information on the greenhouse gas (GHG) implications of various management options for some of the most common materials in municipal solid waste (MSW). Different waste treatment options for MSW were studied in a system analysis. Different combinations of recycling (cardboard, plastics, glass, metals), biological treatment (composting), and incineration as well as land-filling were studied. The index of environmental burden in the global warming impact category was calculated. The calculations are based on LCA methodology. All emissions taking place in the whole life cycle system were taken into account. The analysis included "own emissions," or emissions from the system at all stages of the life cycle, and "linked emissions," or emissions from other sources linked with the system in an indirect way. Avoided emissions caused by recycling and energy recovery were included in the analysis. Displaced emissions of GHGs originate from the substitution of energy or materials derived from waste for alternative sources. The complex analysis of the environmental impact of municipal waste management systems before and after application of changes in MSW systems according to European Union regulations is presented in this paper. The evaluation is made for MSW systems in Poland.

  14. Modeling the design and operations of the federal radioactive waste management system

    International Nuclear Information System (INIS)

    Joy, D.S.; Nehls, J.W. Jr.; Harrison, I.G.; Miller, C.; Vogel, L.W.; Martin, J.D.; Capone, R.L.; Dougherty, L.

    1989-04-01

    Many configuration, transportation and operating alternatives are available to the Office of Civilian Radioactive Waste Management (OCRWM) in the design and operation of the Federal Radioactive Waste Management System (FWMS). Each alternative has different potential impacts on system throughput, efficiency and the thermal and radiological characteristics of the waste to be shipped, stored and emplaced. A need therefore exists for a quantitative means of assessing the ramifications of alternative system designs and operating strategies. We developed the Systems integration Operations/Logistics Model (SOLMOD). That model is used to replicate a user-specified system configuration and simulate the operation of that system -- from waste pickup at reactors to emplacement in a repository -- under a variety of operating strategies. The model can thus be used to assess system performance with or without Monitored Retrievable Storage (MRS), with or without consolidation at the repository, with varying shipping cask availability and so forth. This simulation capability is also intended to provide a tool for examining the impact of facility and equipment capacity and redundancy on overall waste processing capacity and system performance. SOLMOD can measure the impacts on system performance of certain operating contingencies. It can be used to test effects on transportation and waste pickup schedules resulting from a shut-down of one or more hot cells in the waste handling building at the repository or MRS. Simulation can also be used to study operating procedures and rules such as fuel pickup schedules, general freight vs. dedicated freight. 3 refs., 2 figs., 2 tabs

  15. Environmental impact assessment of the incineration of municipal solid waste with auxiliary coal in China

    DEFF Research Database (Denmark)

    Zhao, Yan; Xing, Wei; Lu, Wenjing

    2012-01-01

    The environmental impacts of waste incineration with auxiliary coal were investigated using the life-cycle-based software, EASEWASTE, based on the municipal solid waste (MSW) management system in Shuozhou City. In the current system, MSW is collected, transported, and incinerated with 250kg of coal...... per ton of waste. Based on observed environmental impacts of incineration, fossil CO2 and heavy metals were primary contributors to global warming and ecotoxicity in soil, respectively. Compared with incinerators using excess coal, incineration with adequate coal presents significant benefits......-separated and landfilled, the incineration of rest-waste presents better results on global warming, acidification, nutrient enrichment, and even ecotoxicity in soil. This process is considered a promising solution for MSW management in Shuozhou City. Weighted normalized environmental impacts were assessed based on Chinese...

  16. Contribution of individual waste fractions to the environmental impacts from landfilling of municipal solid waste

    DEFF Research Database (Denmark)

    Manfredi, Simone; Tonini, Davide; Christensen, Thomas Højlund

    2010-01-01

    A number of LCA-based studies have reported on the environmental performance of landfilling of mixed waste, but little is known about the relative contributions of individual waste fractions to the overall impact potentials estimated for the mixed waste. In this paper, an empirical model has been...... used to estimate the emissions to the environment from landfilling of individual waste fractions. By means of the LCA-model EASEWASTE, the emissions estimated have been used to quantify how much of the overall impact potential for each impact category is to be attributed to the individual waste...... fractions. Impact potentials are estimated for 1 tonne of mixed waste disposed off in a conventional landfill with bottom liner, leachate collection and treatment and gas collection and utilization for electricity generation. All the environmental aspects are accounted for 100 years after disposal...

  17. Supplemental environmental impact statement - defense waste processing facility

    International Nuclear Information System (INIS)

    1994-11-01

    This document supplements the Final Environmental Impact Statement (EIS) DOE Issued in 1982 (DOE/EIS-0082) to construct and operate the Defense Waste Processing Facility (DWPF) at the Savannah River Site (SRS), a major DOE installation in southwestern South Carolina. That EIS supported the decision to construct and operate the DWPF to immobilize high-level waste generated as a result of nuclear materials processing at SRS. The DWPF would use a vitrification process to incorporate the radioactive waste into borosilicate glass and seal it in stainless steel canisters for eventual disposal at a permanent geologic repository. The DWPF is now mostly constructed and nearly ready for full operation. However, DOE has made design changes to the DWPF since the 1982 EIS to improve efficiency and safety of the facility. Each of these modifications was subjected to appropriate NEPA review. The purpose of this Supplemental EIS is to assist DOE in deciding whether and how to proceed with operation of the DWPF as modified since 1982 while ensuring appropriate consideration of potential environmental effects. In this document, DOE assesses the potential environmental impacts of completing and operating the DWPF in light of these design changes, examines the impact of alternatives, and identifies potential actions to be taken to reduce adverse impacts. Evaluations of impacts on water quality, air quality, ecological systems, land use, geologic resources, cultural resources, socioeconomics, and health and safety of onsite workers and the public are included in the assessment

  18. Life cycle inventory and mass-balance of municipal food waste management systems: Decision support methods beyond the waste hierarchy.

    Science.gov (United States)

    Edwards, Joel; Othman, Maazuza; Crossin, Enda; Burn, Stewart

    2017-11-01

    When assessing the environmental and human health impact of a municipal food waste (FW) management system waste managers typically rely on the principles of the waste hierarchy; using metrics such as the mass or rate of waste that is 'prepared for recycling,' 'recovered for energy,' or 'sent to landfill.' These metrics measure the collection and sorting efficiency of a waste system but are incapable of determining the efficiency of a system to turn waste into a valuable resource. In this study a life cycle approach was employed using a system boundary that includes the entire waste service provision from collection to safe end-use or disposal. A life cycle inventory of seven waste management systems was calculated, including the first service wide inventory of FW management through kitchen in-sink disposal (food waste disposer). Results describe the mass, energy and water balance of each system along with key emissions profile. It was demonstrated that the energy balance can differ significantly from its' energy generation, exemplified by mechanical biological treatment, which was the best system for generating energy from waste but only 5 th best for net-energy generation. Furthermore, the energy balance of kitchen in-sink disposal was shown to be reduced because 31% of volatile solids were lost in pre-treatment. The study also confirmed that higher FW landfill diversion rates were critical for reducing many harmful emissions to air and water. Although, mass-balance analysis showed that the alternative end-use of the FW material may still contain high impact pollutants. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  19. Tank Waste Remediation System, Hanford Site, Richland, Washington. Final Environmental Impact Statement. Volume VI

    International Nuclear Information System (INIS)

    1996-08-01

    The U.S. Department Of Energy and the Washington State Department of Ecology added Appendix L (Volume 6), Response to Public Comments, to the Tank Waste Remediation System (TWRS) Final Environmental Impact Statement (EIS) for the Hanford Site, Richland, Washington, to fully address and respond to public comments on the Draft EIS. In addition, DOE considered public comments, along with other factors such as programmatic need, short- and long-term impacts, technical feasibility, and cost, in arriving at DOE's preferred alternative. During the public comment period for the Draft EIS, more than 350 individuals, agencies, Tribal Nations, and organizations provided comments. This volume represents a broad spectrum of private citizens; businesses; local, State, and Federal officials; Tribal Nations; and public interest groups

  20. Waste package/repository impact study: Final report

    Energy Technology Data Exchange (ETDEWEB)

    1985-09-01

    The Waste Package/Repository Impact Study was conducted to evaluate the feasibility of using the current reference salt waste package in the salt repository conceptual design. All elements of the repository that may impact waste package parameters, i.e., (size, weight, heat load) were evaluated. The repository elements considered included waste hoist feasibility, transporter and emplacement machine feasibility, subsurface entry dimensions, feasibility of emplacement configuration, and temperature limits. The evaluations are discussed in detail with supplemental technical data included in Appendices to this report, as appropriate. Results and conclusions of the evaluations are discussed in light of the acceptability of the current reference waste package as the basis for salt conceptual design. Finally, recommendations are made relative to the salt project position on the application of the reference waste package as a basis for future design activities. 31 refs., 11 figs., 11 tabs.

  1. Waste package/repository impact study: Final report

    International Nuclear Information System (INIS)

    1985-09-01

    The Waste Package/Repository Impact Study was conducted to evaluate the feasibility of using the current reference salt waste package in the salt repository conceptual design. All elements of the repository that may impact waste package parameters, i.e., (size, weight, heat load) were evaluated. The repository elements considered included waste hoist feasibility, transporter and emplacement machine feasibility, subsurface entry dimensions, feasibility of emplacement configuration, and temperature limits. The evaluations are discussed in detail with supplemental technical data included in Appendices to this report, as appropriate. Results and conclusions of the evaluations are discussed in light of the acceptability of the current reference waste package as the basis for salt conceptual design. Finally, recommendations are made relative to the salt project position on the application of the reference waste package as a basis for future design activities. 31 refs., 11 figs., 11 tabs

  2. Environmental impact of ICT and implications for e-waste management in Romania

    Directory of Open Access Journals (Sweden)

    Valentina TARTIU

    2010-12-01

    Full Text Available The development of Information and communications technology (ICT, as core of the digital economy, presents contradictory effects on the environment. The paper presents the main perspectives of environmental impact of ICT, especially in relation with waste electrical and electronic equipment (WEEE, e-waste, as they result from the approaches found in literature and the reports of official international and national bodies. The analysis of impact on environment and e-waste is done on two levels: the impact of ICT sectors and the impact of electronic applications (including the electronic commerce. The article ends with customizing the characteristics of the digital economy in Romania. Particular attention is paid to WEEE generated from the development of the digital economy and the significant challenges which the systems of collection, treatment and disposal must meet the environmental requirements.

  3. Environmental impact assessment of solid waste management in Beijing City, China

    DEFF Research Database (Denmark)

    Zhao, Yan; Christensen, Thomas Højlund; Lu, Wenjing

    2011-01-01

    The environmental impacts of municipal solid waste management in Beijing City were evaluated using a life-cycle-based model, EASEWASTE, to take into account waste generation, collection, transportation, treatment/disposal technologies, and savings obtained by energy and material recovery...... analysis emphasized the importance of efficient source separation of food waste, as well as the electricity recovery in incinerators, in order to obtain an environmentally friendly waste management system in Beijing City....... because of rising amount of waste in Beijing City) are substituted by incinerators with energy recovery, would not result in significant environmental improvement. This is primarily because of the low calorific value of mixed waste, and it is likely that the incinerators would require significant amounts...

  4. Tank Farm Contractor Waste Remediation System and Utilization Plan

    International Nuclear Information System (INIS)

    KIRKBRIDE, R.A.

    1999-01-01

    The Tank Waste Remediation System Operation and Utilization Plan updates the operating scenario and plans for the delivery of feed to BNFL Inc., retrieval of waste from single-shell tanks, and the overall process flowsheets for Phases I and II of the privatization of the Tank Waste Remediation System. The plans and flowsheets are updated with the most recent tank-by-tank inventory and sludge washing data. Sensitivity cases were run to evaluate the impact or benefits of proposed changes to the BNFL Inc. contract and to evaluate a risk-based SST retrieval strategy

  5. Contribution of individual waste fractions to the environmental impacts from landfilling of municipal solid waste.

    Science.gov (United States)

    Manfredi, Simone; Tonini, Davide; Christensen, Thomas H

    2010-03-01

    A number of LCA-based studies have reported on the environmental performance of landfilling of mixed waste, but little is known about the relative contributions of individual waste fractions to the overall impact potentials estimated for the mixed waste. In this paper, an empirical model has been used to estimate the emissions to the environment from landfilling of individual waste fractions. By means of the LCA-model EASEWASTE, the emissions estimated have been used to quantify how much of the overall impact potential for each impact category is to be attributed to the individual waste fractions. Impact potentials are estimated for 1 tonne of mixed waste disposed off in a conventional landfill with bottom liner, leachate collection and treatment and gas collection and utilization for electricity generation. All the environmental aspects are accounted for 100 years after disposal and several impact categories have been considered, including standard categories, toxicity-related categories and groundwater contamination. Amongst the standard and toxicity-related categories, the highest potential impact is estimated for human toxicity via soil (HTs; 12 mPE/tonne). This is mostly caused by leaching of heavy metals from ashes (e.g. residues from roads cleaning and vacuum cleaning bags), batteries, paper and metals. On the other hand, substantial net environmental savings are estimated for the categories Global Warming (GW; -31 mPE/tonne) and Eco-Toxicity in water chronic (ETwc; -53 mPE/tonne). These savings are mostly determined by the waste fractions characterized by a high content of biogenic carbon (paper, organics, other combustible waste). These savings are due to emissions from energy generation avoided by landfill gas utilization, and by the storage of biogenic carbon in the landfill due to incomplete waste degradation. Copyright 2009 Elsevier Ltd. All rights reserved.

  6. Report of safety of the characterizing system of radioactive waste

    International Nuclear Information System (INIS)

    Angeles C, A.; Jimenez D, J.; Reyes L, J.

    1998-09-01

    Report of safety of the system of radioactive waste of the ININ: Installation, participant personnel, selection of the place, description of the installation, equipment. Proposed activities: operations with radioactive material, calibration in energy, calibration in efficiency, types of waste. Maintenance: handling of radioactive waste, physical safety. Organization: radiological protection, armor-plating, personal dosemeter, risks and emergency plan, environmental impact, medical exams. (Author)

  7. Impact of radioactive waste management operations

    International Nuclear Information System (INIS)

    Paine, D.; Rogers, L.E.; Uresk, D.W.

    1977-01-01

    Impact assessment of radioactive waste management operations is considered separately for nonradiological impact on biota, impact on ecosystem structure and function and radiological impact on biota. Localized effects related to facility construction and maintenance activities probably occur but the large expanse of relatively undisturbed surrounding landscape minimizes any overall effects

  8. Thermal impact of waste emplacement and surface cooling associated with geologic disposal of nuclear waste

    Energy Technology Data Exchange (ETDEWEB)

    Wang, J.S.Y.; Mangold, D.C.; Spencer, R.K.; Tsang, C.F.

    1982-08-01

    The thermal effects associated with the emplacement of aged radioactive wastes in a geologic repository were studied, with emphasis on the following subjects: the waste characteristics, repository structure, and rock properties controlling the thermally induced effects; the current knowledge of the thermal, thermomechanical, and thermohydrologic impacts, determined mainly on the basis of previous studies that assume 10-year-old wastes; the thermal criteria used to determine the repository waste loading densities; and the technical advantages and disadvantages of surface cooling of the wastes prior to disposal as a means of mitigating the thermal impacts. The waste loading densities determined by repository designs for 10-year-old wastes are extended to older wastes using the near-field thermomechanical criteria based on room stability considerations. Also discussed are the effects of long surface cooling periods determined on the basis of far-field thermomechanical and thermohydrologic considerations. The extension of the surface cooling period from 10 years to longer periods can lower the near-field thermal impact but have only modest long-term effects for spent fuel. More significant long-term effects can be achieved by surface cooling of reprocessed high-level waste.

  9. Thermal impact of waste emplacement and surface cooling associated with geologic disposal of nuclear waste

    International Nuclear Information System (INIS)

    Wang, J.S.Y.; Mangold, D.C.; Spencer, R.K.; Tsang, C.F.

    1982-08-01

    The thermal effects associated with the emplacement of aged radioactive wastes in a geologic repository were studied, with emphasis on the following subjects: the waste characteristics, repository structure, and rock properties controlling the thermally induced effects; the current knowledge of the thermal, thermomechanical, and thermohydrologic impacts, determined mainly on the basis of previous studies that assume 10-year-old wastes; the thermal criteria used to determine the repository waste loading densities; and the technical advantages and disadvantages of surface cooling of the wastes prior to disposal as a means of mitigating the thermal impacts. The waste loading densities determined by repository designs for 10-year-old wastes are extended to older wastes using the near-field thermomechanical criteria based on room stability considerations. Also discussed are the effects of long surface cooling periods determined on the basis of far-field thermomechanical and thermohydrologic considerations. The extension of the surface cooling period from 10 years to longer periods can lower the near-field thermal impact but have only modest long-term effects for spent fuel. More significant long-term effects can be achieved by surface cooling of reprocessed high-level waste

  10. Solid waste accident analysis in support of the Savannah River Waste Management Environmental Impact Statement

    International Nuclear Information System (INIS)

    Copeland, W.J.; Crumm, A.T.; Kearnaghan, D.P.; Rabin, M.S.; Rossi, D.E.

    1994-07-01

    The potential for facility accidents and the magnitude of their impacts are important factors in the evaluation of the solid waste management addressed in the Environmental Impact Statement. The purpose of this document is to address the potential solid waste management facility accidents for comparative use in support of the Environmental Impact Statement. This document must not be construed as an Authorization Basis document for any of the SRS waste management facilities. Because of the time constraints placed on preparing this accident impact analysis, all accident information was derived from existing safety documentation that has been prepared for SRS waste management facilities. A list of facilities to include in the accident impact analysis was provided as input by the Savannah River Technology Section. The accident impact analyses include existing SRS waste management facilities as well as proposed facilities. Safety documentation exists for all existing and many of the proposed facilities. Information was extracted from this existing documentation for this impact analysis. There are a few proposed facilities for which safety analyses have not been prepared. However, these facilities have similar processes to existing facilities and will treat, store, or dispose of the same type of material that is in existing facilities; therefore, the accidents can be expected to be similar

  11. Impacts of transportation on a test and evaluation facility for nuclear waste disposal: a systems analysis

    International Nuclear Information System (INIS)

    Varadarajan, R.V.; Peterson, R.W.; Joy, D.S.; Gibson, S.M.

    1983-01-01

    An essential element of the Test and Evaluation Facility (TEF) is a waste packaging facility capable of producing a small number Test and Evaluation Facility of packages consisting of several different waste forms. The study envisions three scenarios for such a packaging facility: (1) modify an existing hot cell facility such as the Engine Maintenance Assembly and Disassembly (EMAD) facility at the Nevada Test Site so that it can serve as a packaging facility for the TEF. This scenario is referred to as the EMAD Option. (2) Build a new generic packaging facility (GPF) at the site of the TEF. In other words, colocate the GPF and the TEF. This scenario is referred to as the GPF Option, and (3) utilize the EMAD facility in conjunction with a colocated GPF (of minimal size and scope) at the TEF. This scenario is referred to as the Split Option. The results of the system study clearly bring out the fact that transportation has a significant impact on the selection and siting of the waste packaging facility. Preliminary conclusions, subject to the assumptions of the study, include the following: (1) regardless of the waste form, the GPF option is preferable to the other two in minimizing both transportation costs and logistical problems, (2) for any given scenario and choice of waste forms, there exists a candidate TEF location for which the transportation costs are at a minimum compared to the other locations, (3) in spite of the increased transportation costs and logistical complexity, the study shows that the overall system costs favor modification of an existing hot cell facility for the particular case considered

  12. Advanced mixed waste treatment project draft environmental impact statement

    International Nuclear Information System (INIS)

    1998-07-01

    The AMWTP DEIS assesses the potential environmental impacts associated with four alternatives related to the construction and operation of a proposed waste treatment facility at the INEEL. Four alternatives were analyzed: The No Action Alternative, the Proposed Action, the Non-Thermal Treatment Alternative, and the Treatment and Storage Alternative. The proposed AMWTP facility would treat low-level mixed waste, alpha-contaminated low-level mixed waste, and transuranic waste in preparation for disposal. Transuranic waste would be disposed of at the Waste isolation Pilot Plant in New Mexico. Low-level mixed waste would be disposed of at an approval disposal facility depending on decisions to be based on DOE's Final Waste Management Programmatic Environmental Impact Statement. Evaluation of impacts on land use, socio-economics, cultural resources, aesthetic and scenic resources, geology, air resources, water resources, ecological resources, noise, traffic and transportation, occupational and public health and safety, INEEL services, and environmental justice were included in the assessment. The AMWTP DEIS identifies as the Preferred Alternative the Proposed Action, which is the construction and operation of the AMWTP facility

  13. Feasibility analysis of constant TRU feeding in waste transmutation system using accelerator-driven subcritical system

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kun Jai; Cho, Nam Zin; Jo, Chang Keun; Park, Chang Je; Kim, Do Sam; Park, Jeong Hwan [Korea Advanced Institute of Science and Technology, Taejon (Korea)

    1999-03-01

    It is probable that the issue of nuclear spent fuel and high-level waste can have negative impact on the future expansion of nuclear power programs. Accelerator-driven nuclear waste transmutation with constant composition TRU feeding which satisfies non-proliferation condition will help establish the long-range nuclear waste disposal strategy. In this study, current status of accelerator-driven transmutation of waste technology, and feasibility analysis of constant composition TRU feeding system were investigated. We ascertained that solid system using constant composition TRU is feasible with the the capability of transmutation. (author). 13 refs., 53 figs., 20 tabs.

  14. Environmental impacts of waste incineration in a regional system (Emilia Romagna, Italy) evaluated from a life cycle perspective

    International Nuclear Information System (INIS)

    Morselli, Luciano; De Robertis, Claudia; Luzi, Joseph; Passarini, Fabrizio; Vassura, Ivano

    2008-01-01

    The advisability of using incineration, among the other technologies in Municipal Solid Waste Management, is still a debated issue. However, technological evolution in the field of waste incineration plants has strongly decreased their environmental impacts in the last years. A description of a regional situation in Northern Italy (Emilia Romagna Region) is here presented, to assess the impacts of incinerators by the application of Life Cycle Assessment (LCA) methodology and to stress the most impacting steps in incineration process. The management of solid residues and heavy metal emission resulted the most important environmental concerns. Furthermore, a tentative comparison with the environmental impact of landfill disposal, for the same amount of waste, pointed out that incineration process must be considered environmentally preferable

  15. Impact test for solid waste forms

    International Nuclear Information System (INIS)

    Wallace, R.M.; Kelley, J.A.

    1976-03-01

    Samples of concretes and glasses being considered for incorporation of radioactive waste sludge were subjected to impact tests to determine the relationship between the energy of the impact and the resulting increase in surface area of the damaged sample. Test results indicate that the increased surface area per unit of energy input for glass waste forms is less by a factor of about three than that for concretes containing 40 wt percent simulated sludge (average values of 9.6 cm 2 /Joule and 24.7 cm 2 /Joule for glass and concrete, respectively)

  16. Environmental and Economic Assessment of Swedish Municipal Solid Waste Management in a Systems Perspective

    International Nuclear Information System (INIS)

    Eriksson, Ola

    2003-01-01

    Waste management is something that affects most people. The waste amounts are still increasing, but the waste treatment is changing towards recycling and integrated solutions. In Sweden producers' responsibility for different products, a tax and bans on deposition of waste at landfills implicates a reorganisation of the municipal solid waste management. Plans are made for new incineration plants, which leads to that waste combustion comes to play a role in the reorganisation of the Swedish energy system as well. The energy system is supposed to adapt to governmental decisions on decommission of nuclear plants and decreased use of fossil fuels. Waste from private households consists of hazardous waste, scrap waste, waste electronics and wastes that to a large extent are generated in the kitchen. The latter type has been studied in this thesis, except for newsprint, glass- and metal packages that by source separation haven't ended up in the waste bin. Besides the remaining amount of the above mentioned fractions, the waste consists of food waste, paper, cardboard- and plastic packages and inert material. About 80-90 % of this mixed household waste is combustible, and the major part of that is also possible to recycle. Several systems analyses of municipal solid waste management have been performed. Deposition at landfill has been compared to energy recovery, recycling of material (plastic and cardboard) and recycling of nutrients (in food waste). Environmental impact, fuel consumption and costs are calculated for the entire lifecycle from the households, until the waste is treated and the by-products have been taken care of. To stop deposition at landfills is the most important measure to take as to decrease the environmental impact from landfills, and instead use the waste as a resource, thereby substituting production from virgin resources (avoiding resource extraction and emissions). The best alternative to landfilling is incineration, but also material recycling

  17. Environmental and Economic Assessment of Swedish Municipal Solid Waste Management in a Systems Perspective

    Energy Technology Data Exchange (ETDEWEB)

    Eriksson, Ola

    2003-04-01

    Waste management is something that affects most people. The waste amounts are still increasing, but the waste treatment is changing towards recycling and integrated solutions. In Sweden producers' responsibility for different products, a tax and bans on deposition of waste at landfills implicates a reorganisation of the municipal solid waste management. Plans are made for new incineration plants, which leads to that waste combustion comes to play a role in the reorganisation of the Swedish energy system as well. The energy system is supposed to adapt to governmental decisions on decommission of nuclear plants and decreased use of fossil fuels. Waste from private households consists of hazardous waste, scrap waste, waste electronics and wastes that to a large extent are generated in the kitchen. The latter type has been studied in this thesis, except for newsprint, glass- and metal packages that by source separation haven't ended up in the waste bin. Besides the remaining amount of the above mentioned fractions, the waste consists of food waste, paper, cardboard- and plastic packages and inert material. About 80-90 % of this mixed household waste is combustible, and the major part of that is also possible to recycle. Several systems analyses of municipal solid waste management have been performed. Deposition at landfill has been compared to energy recovery, recycling of material (plastic and cardboard) and recycling of nutrients (in food waste). Environmental impact, fuel consumption and costs are calculated for the entire lifecycle from the households, until the waste is treated and the by-products have been taken care of. To stop deposition at landfills is the most important measure to take as to decrease the environmental impact from landfills, and instead use the waste as a resource, thereby substituting production from virgin resources (avoiding resource extraction and emissions). The best alternative to landfilling is incineration, but also material

  18. Radiation doses in alternative commercial high-level waste management systems

    International Nuclear Information System (INIS)

    Schneider, K.J.; Pelto, P.J.; Lavender, J.C.; Daling, P.M.; Fecht, B.A.

    1986-01-01

    In the commercial high-level waste management system, potential changes are being considered that will augment the benefits of an integral monitored retrievable storage (MRS) facility. The US Department of Energy (DOE) has recognized that alternative options could be implemented in the authorized waste management system (i.e., without an integral MRS facility) to potentially achieve some of the same beneficial effects of the integral MRS system. This paper summarizes those DOE-sponsored analyses related to radiation doses resulting from changes in the waste management system. This report presents generic analyses of aggregated radiation dose impacts to the public and occupational workers, of nine postulated changes in the operation of a spent-fuel management system without an MRS facility

  19. Joint optimisation of the future Danish waste and energy system

    DEFF Research Database (Denmark)

    Münster, Marie; Pizarro, Amalia Rosa; Salvucci, Raffaele

    2015-01-01

    in future scenarios with higher biomass consumption, where the average heat prices are higher. In both scenarios, biogas produced from organic waste is upgraded and fed into the natural gas grid and waste is incinerated rather than being centrally sorted in a material recovery facility.......In this article the impact of the future development of the energy system on the feasibility of waste treatment options is analysed. In the article two different optimization tools are used: a regional electricity model (Balmorel) and a national waste treatment and district heating model (Opti......Waste). When performing optimization by minimizing the socio-economic costs, into future energy systems with high wind power production, it proves feasible primarily to incinerate waste in large scale combined heat and power (CHP) plants, whereas more incineration takes place in decentralized CHP plants...

  20. Final waste management programmatic environmental impact statement for managing treatment, storage, and disposl of radioactive and hazardous waste. Volume II

    International Nuclear Information System (INIS)

    1997-01-01

    The Final Waste Management Programmatic Environmental Impact Statement (WM PEIS) examines the potential environmental and cost impacts of strategic management alternatives for managing five types of radioactive and hazardous wastes that have resulted and will continue to result from nuclear defense and research activities at a variety of sites around the United States. The five waste types are low-level mixed waste, low-level waste, transuranic waste, high-level waste, and hazardous waste. The WM PEIS provides information on the impacts of various siting alternatives which the Department of Energy (DOE) will use to decide at which sites to locate additional treatment, storage, and disposal capacity for each waste type.Volume II is an integral part of the Office of Environmental Management''s (EM''s) Waste Management Programmatic Environmental Impact Statement (WM PEIS), which portrays the impacts of EM''s waste management activities at each of the 17 major DOE sites evaluated in the WM PEIS

  1. WASTE TREATMENT BUILDING SYSTEM DESCRIPTION DOCUMENT

    Energy Technology Data Exchange (ETDEWEB)

    F. Habashi

    2000-06-22

    The Waste Treatment Building System provides the space, layout, structures, and embedded subsystems that support the processing of low-level liquid and solid radioactive waste generated within the Monitored Geologic Repository (MGR). The activities conducted in the Waste Treatment Building include sorting, volume reduction, and packaging of dry waste, and collecting, processing, solidification, and packaging of liquid waste. The Waste Treatment Building System is located on the surface within the protected area of the MGR. The Waste Treatment Building System helps maintain a suitable environment for the waste processing and protects the systems within the Waste Treatment Building (WTB) from most of the natural and induced environments. The WTB also confines contaminants and provides radiological protection to personnel. In addition to the waste processing operations, the Waste Treatment Building System provides space and layout for staging of packaged waste for shipment, industrial and radiological safety systems, control and monitoring of operations, safeguards and security systems, and fire protection, ventilation and utilities systems. The Waste Treatment Building System also provides the required space and layout for maintenance activities, tool storage, and administrative facilities. The Waste Treatment Building System integrates waste processing systems within its protective structure to support the throughput rates established for the MGR. The Waste Treatment Building System also provides shielding, layout, and other design features to help limit personnel radiation exposures to levels which are as low as is reasonably achievable (ALARA). The Waste Treatment Building System interfaces with the Site Generated Radiological Waste Handling System, and with other MGR systems that support the waste processing operations. The Waste Treatment Building System interfaces with the General Site Transportation System, Site Communications System, Site Water System, MGR

  2. WASTE TREATMENT BUILDING SYSTEM DESCRIPTION DOCUMENT

    International Nuclear Information System (INIS)

    Habashi, F.

    2000-01-01

    The Waste Treatment Building System provides the space, layout, structures, and embedded subsystems that support the processing of low-level liquid and solid radioactive waste generated within the Monitored Geologic Repository (MGR). The activities conducted in the Waste Treatment Building include sorting, volume reduction, and packaging of dry waste, and collecting, processing, solidification, and packaging of liquid waste. The Waste Treatment Building System is located on the surface within the protected area of the MGR. The Waste Treatment Building System helps maintain a suitable environment for the waste processing and protects the systems within the Waste Treatment Building (WTB) from most of the natural and induced environments. The WTB also confines contaminants and provides radiological protection to personnel. In addition to the waste processing operations, the Waste Treatment Building System provides space and layout for staging of packaged waste for shipment, industrial and radiological safety systems, control and monitoring of operations, safeguards and security systems, and fire protection, ventilation and utilities systems. The Waste Treatment Building System also provides the required space and layout for maintenance activities, tool storage, and administrative facilities. The Waste Treatment Building System integrates waste processing systems within its protective structure to support the throughput rates established for the MGR. The Waste Treatment Building System also provides shielding, layout, and other design features to help limit personnel radiation exposures to levels which are as low as is reasonably achievable (ALARA). The Waste Treatment Building System interfaces with the Site Generated Radiological Waste Handling System, and with other MGR systems that support the waste processing operations. The Waste Treatment Building System interfaces with the General Site Transportation System, Site Communications System, Site Water System, MGR

  3. Hanford site tank waste remediation system programmatic environmental review report

    International Nuclear Information System (INIS)

    Haass, C.C.

    1998-01-01

    The US Department of Energy (DOE) committed in the Tank Waste Remediation System (TWRS) Environmental Impact Statement (EIS) Record of Decision (ROD) to perform future National Environmental Policy Act (NEPA) analysis at key points in the Program. Each review will address the potential impacts that new information may have on the environmental impacts presented in the TWRS EIS and support an assessment of whether DOE's plans for remediating the tank waste are still pursuing the appropriate plan for remediation or whether adjustments to the program are needed. In response to this commitment, DOE prepared a Supplement Analysis (SA) to support the first of these reevaluations. Subsequent to the completion of the SA, the Phase IB negotiations process with private contractors resulted in several changes to the planned approach. These changes along with other new information regarding the TWRS Program have potential implications for Phase 1 and Phase 2 of tank waste retrieval and waste storage and/or disposal that may influence the environmental impacts of the Phased Implementation alternative. This report focuses on identifying those potential environmental impacts that may require NEPA analysis prior to authorization to begin facility construction and operations

  4. A case study of packaging waste collection systems in Portugal - Part II: Environmental and economic analysis.

    Science.gov (United States)

    Pires, Ana; Sargedas, João; Miguel, Mécia; Pina, Joaquim; Martinho, Graça

    2017-03-01

    An understanding of the environmental impacts and costs related to waste collection is needed to ensure that existing waste collection schemes are the most appropriate with regard to both environment and cost. This paper is Part II of a three-part study of a mixed packaging waste collection system (curbside plus bring collection). Here, the mixed collection system is compared to an exclusive curbside system and an exclusive bring system. The scenarios were assessed using life cycle assessment and an assessment of costs to the waste management company. The analysis focuses on the collection itself so as to be relevant to waste managers and decision-makers who are involved only in this step of the packaging life cycle. The results show that the bring system has lower environmental impacts and lower economic costs, and is capable of reducing the environmental impacts of the mixed system. However, a sensitivity analysis shows that these results could differ if the curbside collection were to be optimized. From economic and environmental perspectives, the mixed system has few advantages. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Final waste management programmatic environmental impact statement for managing treatment, storage, and disposal of radioactive and hazardous waste. Summary

    International Nuclear Information System (INIS)

    1997-05-01

    This Waste Management Programmatic Environmental Impact Statement (WM PEIS) is a nationwide study examining the environmental impacts of managing five types of radioactive and hazardous wastes generated by past and future nuclear defense and research activities at a variety of sites located around the United States. The five waste types are low-level mixed waste (LLMW), low-level waste (LLW), transuranic waste (TRUW), high-level waste (HLW), and hazardous waste (HW)

  6. Food waste conversion options in Singapore: environmental impacts based on an LCA perspective.

    Science.gov (United States)

    Khoo, Hsien H; Lim, Teik Z; Tan, Reginald B H

    2010-02-15

    Proper management and recycling of huge volumes of food waste is one of the challenges faced by Singapore. Semakau island - the only offshore landfill of the nation - only accepts inert, inorganic solid waste and therefore a large bulk of food waste is directed to incinerators. A remaining small percent is sent for recycling via anaerobic digestion (AD), followed by composting of the digestate material. This article investigates the environmental performance of four food waste conversion scenarios - based on a life cycle assessment perspective - taking into account air emissions, useful energy from the incinerators and AD process, as well as carbon dioxide mitigation from the compost products derived from the digestate material and a proposed aerobic composting system. The life cycle impact results were generated for global warming, acidification, eutrophication, photochemical oxidation and energy use. The total normalized results showed that a small-scale proposed aerobic composting system is more environmentally favorable than incinerators, but less ideal compared to the AD process. By making full use of the AD's Recycling Phase II process alone, the Singapore Green Plan's 2012 aim to increase the recycling of food waste to 30% can easily be achieved, along with reduced global warming impacts.

  7. Impact of Sterile Compounding Batch Frequency on Pharmaceutical Waste.

    Science.gov (United States)

    Abbasi, Ghalib; Gay, Evan

    2017-01-01

    Purpose: To measure the impact of increasing sterile compounding batch frequency on pharmaceutical waste as it relates to cost and quantity. Methods: Pharmaceutical IV waste at a tertiary care hospital was observed and recorded for 7 days. The batching frequency of compounded sterile products (CSPs) was then increased from twice daily to 4 times daily. After a washout period, pharmaceutical IV waste was then recorded for another 7 days. The quantity of units wasted and the cost were compared between both phases to determine the impact that batching frequency has on IV waste, specifically among high- and low-cost drugs. Results: Patient days increased from 2,459 during phase 1 to 2,617 during phase 2. The total number of CSPs wasted decreased from 3.6 to 2.7 doses per 100 patient days. Overall cost was reduced from $4,585.36 in phase 1 to $4,453.88 in phase 2. The value of wasted high-cost drugs per 100 patient days increased from $146 in phase 1 to $149 in phase 2 ( p > .05). The value of wasted low cost drugs per 100 patient days decreased from $41 in phase 1 to $21 in phase 2 ( p waste quantity and cost. The highest impact of the intervention was observed among low-cost CSPs.

  8. A bi-level environmental impact assessment framework for comparing construction and demolition waste management strategies.

    Science.gov (United States)

    Yazdanbakhsh, Ardavan

    2018-04-27

    Several pioneering life cycle assessment (LCA) studies have been conducted in the past to assess the environmental impact of specific methods for managing mineral construction and demolition waste (MCDW), such as recycling the waste for use in concrete. Those studies focus on comparing the use of recycled MCDW and that of virgin components to produce materials or systems that serve specified functions. Often, the approaches adopted by the studies do not account for the potential environmental consequence of avoiding the existing or alternative waste management practices. The present work focuses on how product systems need to be defined in recycling LCA studies and what processes need to be within the system boundaries. A bi-level LCA framework is presented for modelling alternative waste management approaches in which the impacts are measured and compared at two scales of strategy and decision-making. Different functional units are defined for each level, all of which correspond to the same flow of MCDW in a cascade of product systems. For the sole purpose of demonstrating how the framework is implemented an illustrative example is presented, based on real data and a number of simplifying assumptions, which compares the impacts of a number of potential MCDW management strategies in New York City. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Draft Environmental Impact Statement for the tank waste remediation system. Volume 1

    International Nuclear Information System (INIS)

    1996-04-01

    This document analyzes the potential environmental consequences related to the Hanford Site Tank Waste Remediation System (TWRS) alternatives for management and disposal of radioactive, hazardous, and mixed waste. This waste is currently or projected to be stored in 177 underground storage tanks and approximately 60 miscellaneous underground storage tanks, and the management and disposal of approximately 1,930 cesium and strontium capsules located at the Hanford Site. This document analyzes the following alternatives for remediating the tank waste: No Action, Long-Term Management, In Situ Fill and Cap, In Situ Vitrification, Ex Situ Intermediate Separations, Ex Situ No Separations, Ex Situ Extensive Separations, and Ex Situ/In Situ Combination. This document also addresses a Phased Implementation alternative (the DOE and Ecology preferred alternative for remediation of tank waste). Alternatives analyzed for the cesium and strontium capsules include: No Action, Onsite Disposal, Overpack and Ship, and Vitrify with Tank Waste. At this time, DOE and Ecology do not have a preferred alternative for the cesium and strontium capsules

  10. System for decision analysis support on complex waste management issues

    International Nuclear Information System (INIS)

    Shropshire, D.E.

    1997-01-01

    A software system called the Waste Flow Analysis has been developed and applied to complex environmental management processes for the United States Department of Energy (US DOE). The system can evaluate proposed methods of waste retrieval, treatment, storage, transportation, and disposal. Analysts can evaluate various scenarios to see the impacts to waste slows and schedules, costs, and health and safety risks. Decision analysis capabilities have been integrated into the system to help identify preferred alternatives based on a specific objectives may be to maximize the waste moved to final disposition during a given time period, minimize health risks, minimize costs, or combinations of objectives. The decision analysis capabilities can support evaluation of large and complex problems rapidly, and under conditions of variable uncertainty. The system is being used to evaluate environmental management strategies to safely disposition wastes in the next ten years and reduce the environmental legacy resulting from nuclear material production over the past forty years

  11. Impact assessment of waste management options in Singapore.

    Science.gov (United States)

    Tan, Reginald B H; Khoo, Hsien H

    2006-03-01

    This paper describes the application of life cycle assessment for evaluating various waste management options in Singapore, a small-island city state. The impact assessment method by SimaPro is carried out for comparing the potential environmental impacts of waste treatment options including landfilling, incineration, recycling, and composting. The inventory data include gases and leachate from landfills, air emissions and energy recovery from incinerators, energy (and emission) savings from recycling, composting gases, and transport pollution. The impact assessment results for climate change, acidification, and ecotoxicity show that the incineration of materials imposes considerable harm to both human health and the environment, especially for the burning of plastics, paper/cardboard, and ferrous metals. The results also show that, although some amount of energy can be derived from the incineration of wastes, these benefits are outweighed by the air pollution (heavy metals and dioxins/furans) that incinerators produce. For Singapore, landfill gases and leachate generate minimal environmental damage because of the nation's policy to landfill only 10% of the total disposed wastes. Land transportation and separation of waste materials also pose minimal environmental damage. However, sea transportation to the landfill could contribute significantly to acidification because of the emissions of sulfur oxides and nitrogen oxides from barges. The composting of horticultural wastes hardly imposes any environmental damage. Out of all the waste strategies, the recycling of wastes offers the best solution for environmental protection and improved human health for the nation. Significant emission savings can be realized through recycling.

  12. Impact of Capital and Current Costs Changes of the Incineration Process of the Medical Waste on System Management Cost

    Science.gov (United States)

    Jolanta Walery, Maria

    2017-12-01

    The article describes optimization studies aimed at analysing the impact of capital and current costs changes of medical waste incineration on the cost of the system management and its structure. The study was conducted on the example of an analysis of the system of medical waste management in the Podlaskie Province, in north-eastern Poland. The scope of operational research carried out under the optimization study was divided into two stages of optimization calculations with assumed technical and economic parameters of the system. In the first stage, the lowest cost of functioning of the analysed system was generated, whereas in the second one the influence of the input parameter of the system, i.e. capital and current costs of medical waste incineration on economic efficiency index (E) and the spatial structure of the system was determined. Optimization studies were conducted for the following cases: with a 25% increase in capital and current costs of incineration process, followed by 50%, 75% and 100% increase. As a result of the calculations, the highest cost of system operation was achieved at the level of 3143.70 PLN/t with the assumption of 100% increase in capital and current costs of incineration process. There was an increase in the economic efficiency index (E) by about 97% in relation to run 1.

  13. Lawrence Livermore National Laboratory Decontamination and Waste Treatment Facility: Documentation of impact analysis for design alternatives presented in the Draft Environmental Impact Statement

    International Nuclear Information System (INIS)

    1988-05-01

    Lawrence Livermore National Laboratory (LLNL) is proposing to construct and operate a new Decontamination and Waste Treatment Facility (DWTF). The proposed DWTF would replace the existing Hazardous Waste Management (HWM) facilities at LLNL. The US Department of Energy (DOE) is preparing a Draft Environmental Impact Statement (DEIS) to assess the environmental consequences of the proposed DWTF and its alternatives. This report presents the assumptions, methodologies, and analyses used to estimate the waste flows, air emissions, ambient air quality impacts, and public health risks that are presented in the DEIS. Two DWTF design alternatives (Level I and Level II) have been designated as reasonable design alternatives considering available technologies, environmental regulations, and current and future LLNL waste generation. Both design alternatives would include new, separate radioactive and nonradioactive liquid waste treatment systems, a solidification unit, a new decontamination facility, storage and treatment facilities for reactive materials, a radioactive waste storage area, receiving and classification areas, and a uranium burn pan. The Level I design alternative would include a controlled-air incinerator system, while the Level II design alternative would include a rotary kiln incinerator system. 43 refs., 4 figs., 24 tabs

  14. Legislative impacts on Savannah River waste management operations

    International Nuclear Information System (INIS)

    Bauer, J.D.

    1987-01-01

    Today everyone has to be prepared to meet the challenges presented by new legislative actions. The Savannah River Plant is also impacted by this legislation as the exclusive nature of the Atomic Energy Act slowly erodes. This paper discusses the management of three types of radioactive waste from the production of defense nuclear materials and the impacts of major environmental legislation on the handling of these wastes. The paper briefly discusses the major environmental statutes, covers the statutes impact on the technical processes and, finally, considers the nontechnical impact of the statutes

  15. Waste flow analysis and life cycle assessment of integrated waste management systems as planning tools: Application to optimise the system of the City of Bologna.

    Science.gov (United States)

    Tunesi, Simonetta; Baroni, Sergio; Boarini, Sandro

    2016-09-01

    The results of this case study are used to argue that waste management planning should follow a detailed process, adequately confronting the complexity of the waste management problems and the specificity of each urban area and of regional/national situations. To support the development or completion of integrated waste management systems, this article proposes a planning method based on: (1) the detailed analysis of waste flows and (2) the application of a life cycle assessment to compare alternative scenarios and optimise solutions. The evolution of the City of Bologna waste management system is used to show how this approach can be applied to assess which elements improve environmental performance. The assessment of the contribution of each waste management phase in the Bologna integrated waste management system has proven that the changes applied from 2013 to 2017 result in a significant improvement of the environmental performance mainly as a consequence of the optimised integration between materials and energy recovery: Global Warming Potential at 100 years (GWP100) diminishes from 21,949 to -11,169 t CO2-eq y(-1) and abiotic resources depletion from -403 to -520 t antimony-eq. y(-1) This study analyses at great detail the collection phase. Outcomes provide specific operational recommendations to policy makers, showing the: (a) relevance of the choice of the materials forming the bags for 'door to door' collection (for non-recycled low-density polyethylene bags 22 kg CO2-eq (tonne of waste)(-1)); (b) relatively low environmental impacts associated with underground tanks (3.9 kg CO2-eq (tonne of waste)(-1)); (c) relatively low impact of big street containers with respect to plastic bags (2.6 kg CO2-eq. (tonne of waste)(-1)). © The Author(s) 2016.

  16. Environmental impact assessment of the incineration of municipal solid waste with auxiliary coal in China.

    Science.gov (United States)

    Zhao, Yan; Xing, Wei; Lu, Wenjing; Zhang, Xu; Christensen, Thomas H

    2012-10-01

    The environmental impacts of waste incineration with auxiliary coal were investigated using the life-cycle-based software, EASEWASTE, based on the municipal solid waste (MSW) management system in Shuozhou City. In the current system, MSW is collected, transported, and incinerated with 250 kg of coal per ton of waste. Based on observed environmental impacts of incineration, fossil CO(2) and heavy metals were primary contributors to global warming and ecotoxicity in soil, respectively. Compared with incinerators using excess coal, incineration with adequate coal presents significant benefits in mitigating global warming, whereas incineration with a mass of coal can avoid more impacts to acidification, photochemical ozone and nutrient enrichment because of increased electricity substitution and reduced emission from coal power plants. The "Emission standard of air pollutants for thermal power plants (GB13223-2011)" implemented in 2012 introduced stricter policies on controlling SO(2) and NO(x) emissions from coal power plants. Thus, increased use of auxiliary coal during incineration yields fewer avoided impacts on acidification and nutrient enrichment. When two-thirds of ash is source-separated and landfilled, the incineration of rest-waste presents better results on global warming, acidification, nutrient enrichment, and even ecotoxicity in soil. This process is considered a promising solution for MSW management in Shuozhou City. Weighted normalized environmental impacts were assessed based on Chinese political reduction targets. Results indicate that heavy metal and acidic gas emissions should be given more attention in waste incineration. This study provides scientific support for the management of MSW systems dominated by incineration with auxiliary coal in China. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Evaluation of environmental burdens caused by changes of food waste management systems in Seoul, Korea

    International Nuclear Information System (INIS)

    Lee, Suk-Hui; Choi, Ki-In; Osako, Masahiro; Dong, Jong-In

    2007-01-01

    During the last decade, there have been remarkable changes in food waste management in Korea following a ban on direct landfilling. To evaluate the environmental impacts of food waste management systems, we examined individual treatment systems with the LCA approach - landfill, incineration, composting, and feed manufacturing - and estimated the change from 1997 to 2005. The efficient system was different in each impact category, but it was evaluated that landfill is the main contributor to human toxicity and global warming (based on fossil CO 2 ). In contrast, due to the increase of food waste recycling, acidification, eutrophication, and fresh water aquatic ecotoxicity impact was increased. Especially, the high energy consumption and generated residue in recycling systems caused the large burdens in toxicity categories

  18. Import of combustible waste and its impact on emissions of climate gases

    Energy Technology Data Exchange (ETDEWEB)

    Haraldsson, Maarten; Sundberg, Johan (Profu, Moelndal (Sweden))

    2010-07-01

    Import of combustible waste for waste incineration in Sweden has increased over the last decade and prognosis show that importation will increase even further in the future. The reason for the projected increase is that many new incineration facilities are being built and several of those plan to use a portion of imported combustible waste as fuel. From an environmental perspective import of waste is controversial and some argue that the import short be restricted. Because of this controversial aspect it is essential to conduct a comprehensive analysis of the environmental impacts of the importation of combustible waste to Swedish incineration facilities. This project is a study of the impact of the import of combustible waste on climate emissions. This is a system analysis study which included both direct as well as indirect emissions from the activity of importation of combustible waste. Direct emissions occur from the incineration of waste while indirect emissions occur in systems that interact with the incineration facility. These systems are: transport of waste, alternative waste treatment, alternative electricity production and alternative heat production in the district heating system which the incineration facility is connected with. From the perspective of a system analysis the import of combustible waste to incineration leads to the following consequences regarding emissions of climate gases: - The imported waste is used as fuel in the incineration facility which generates heat and electricity. During the combustion process climate gases are being emitted - As the combustible waste is being imported it has to be transported from the country of origin to the incineration facility. The vehicle used for the transport is emitting climate gases - By importing combustible waste an alternative treatment method in the country of origin is avoided by that country. Emissions from the alternative treatment method are thereby avoided - Import of combustible waste

  19. Implementation of the Environmental Management System in Radioactive Waste Management

    International Nuclear Information System (INIS)

    Fabjan, M.; Kralj, M.; Rojc, J.

    2008-01-01

    Agency for Radwaste Management (ARAO) is a public institution assigned to provide effective, safe and responsible management of all kinds of radioactive waste in Slovenia from the moment they arise to their final disposal. Therefore it holds an important role in environmental protection. Its main assignment is to provide conditions for permanent disposal of radioactive waste. It is also authorised to perform public service of radioactive waste management from small producers that includes: collection of the waste from small producers at the producers' premises, transportation to the storage facility, treatment, conditioning storage of RW from small producers; acceptance of radioactive waste in case of emergency situation (e.g. transport accidents); acceptance of radioactive waste in case of unknown producer; operation and management of Central Interim Storage of Radioactive Waste. The quality of ARAO performance in carrying out its mission is assured by implementing the environmental management system according to the standard ISO 14001:2004. Its effectiveness was confirmed by certification in October 2007. The ISO 14001:2004 certificate represents a permanent commitment of ARAO to implement and improve the environmental management system and to include environmental aspects in all its activities, especially in performing the public service. We developed own evaluation criteria for determination of relevant environmental impacts and aspects. ARAO has defined its environmental policy and objectives, it evaluates its environmental impacts yearly, and defines its environmental programmes that not only fulfil legal requirements but tend even to reduce the impacts below legally set levels. A very important environmental programme in the last few years was the reconstruction of the storage facility. Public information and communication programmes are considered to be important also from the environmental management point of view, because public shows great interest in

  20. Influence of assumptions about household waste composition in waste management LCAs

    International Nuclear Information System (INIS)

    Slagstad, Helene; Brattebø, Helge

    2013-01-01

    Highlights: ► Uncertainty in waste composition of household waste. ► Systematically changed waste composition in a constructed waste management system. ► Waste composition important for the results of accounting LCA. ► Robust results for comparative LCA. - Abstract: This article takes a detailed look at an uncertainty factor in waste management LCA that has not been widely discussed previously, namely the uncertainty in waste composition. Waste composition is influenced by many factors; it can vary from year to year, seasonally, and with location, for example. The data publicly available at a municipal level can be highly aggregated and sometimes incomplete, and performing composition analysis is technically challenging. Uncertainty is therefore always present in waste composition. This article performs uncertainty analysis on a systematically modified waste composition using a constructed waste management system. In addition the environmental impacts of several waste management strategies are compared when applied to five different cities. We thus discuss the effect of uncertainty in both accounting LCA and comparative LCA. We found the waste composition to be important for the total environmental impact of the system, especially for the global warming, nutrient enrichment and human toxicity via water impact categories.

  1. Performance evaluation model of a pilot food waste collection system in Suzhou City, China.

    Science.gov (United States)

    Wen, Zongguo; Wang, Yuanjia; De Clercq, Djavan

    2015-05-01

    This paper analyses the food waste collection and transportation (C&T) system in a pilot project in Suzhou by using a novel performance evaluation method. The method employed to conduct this analysis involves a unified performance evaluation index containing qualitative and quantitative indicators applied to data from Suzhou City. Two major inefficiencies were identified: a) low system efficiency due to insufficient processing capacity of commercial food waste facilities; and b) low waste resource utilization due to low efficiency of manual sorting. The performance evaluation indicated that the pilot project collection system's strong points included strong economics, low environmental impact and low social impact. This study also shows that Suzhou's integrated system has developed a comprehensive body of laws and clarified regulatory responsibilities for each of the various government departments to solve the problems of commercial food waste management. Based on Suzhou's experience, perspectives and lessons can be drawn for other cities and areas where food waste management systems are in the planning stage, or are encountering operational problems. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Integrated waste management system costs in a MPC system

    International Nuclear Information System (INIS)

    Supko, E.M.

    1995-01-01

    The impact on system costs of including a centralized interim storage facility as part of an integrated waste management system based on multi-purpose canister (MPC) technology was assessed in analyses by Energy Resources International, Inc. A system cost savings of $1 to $2 billion occurs if the Department of Energy begins spent fuel acceptance in 1998 at a centralized interim storage facility. That is, the savings associated with decreased utility spent fuel management costs will be greater than the cost of constructing and operating a centralized interim storage facility

  3. Infectious waste feed system

    Science.gov (United States)

    Coulthard, E. James

    1994-01-01

    An infectious waste feed system for comminuting infectious waste and feeding the comminuted waste to a combustor automatically without the need for human intervention. The system includes a receptacle for accepting waste materials. Preferably, the receptacle includes a first and second compartment and a means for sealing the first and second compartments from the atmosphere. A shredder is disposed to comminute waste materials accepted in the receptacle to a predetermined size. A trough is disposed to receive the comminuted waste materials from the shredder. A feeding means is disposed within the trough and is movable in a first and second direction for feeding the comminuted waste materials to a combustor.

  4. Theory and evidence of economies of scale in the development of waste management systems

    International Nuclear Information System (INIS)

    Chang, Shoou-Yuh; Rivera, A.L.

    1989-01-01

    Waste is a cost of doing business. This cost can be considered in terms of the potential adverse health and environmental impacts, or the waste management costs associated with avoiding, minimizing, and controlling those impacts. There is an anticipated increase in the cost of waste management as a result of the increasing requirements for regulatory compliance. To meet the total waste management capacity needs of the organization and the compliance requirements, low-level radioactive, hazardous, and mixed waste management will need demonstrated technologies strategically managed as a technology portfolio. The role of the decision maker is to select the optimum mix of technologies and facilities to provide the waste management capacity needed for the next twenty years. The waste management system resulting from this mix includes multiple small-scale fixed facilities, large-scale centralized facilities, and waste management subcontracts. This study was conducted to examine the theory and evidence of economies of scale in the development of waste management systems as as exploratory research on the economic considerations in the process of technology selection and implementation. 25 refs., 24 figs., 11 tabs

  5. Life-cycle assessment of municipal solid wastes: Development of the WASTED model

    International Nuclear Information System (INIS)

    Diaz, R.; Warith, M.

    2006-01-01

    This paper describes the development of the Waste Analysis Software Tool for Environmental Decisions (WASTED) model. This model provides a comprehensive view of the environmental impacts of municipal solid waste management systems. The model consists of a number of separate submodels that describe a typical waste management process: waste collection, material recovery, composting, energy recovery from waste and landfilling. These submodels are combined to represent a complete waste management system. WASTED uses compensatory systems to account for the avoided environmental impacts derived from energy recovery and material recycling. The model is designed to provide solid waste decision-makers and environmental researchers with a tool to evaluate waste management plans and to improve the environmental performance of solid waste management strategies. The model is user-friendly and compares favourably with other earlier models

  6. Radiological impact of radioactive waste management

    International Nuclear Information System (INIS)

    Beninson, D.J.; Migliori de Beninson, Ambreta.

    1985-01-01

    The radiological impacts from management of wastes from the nuclear fuel cycle have been estimated for several alternative fuel cycle strategies. The impacts are expressed as collective effective dose equivalent commitments. Mill tailings make an important contribution, which depends on the uranium requirements for each reference fuel cycle, being the largest for once-through cycles. Disposal of high level waste or spent fuel is also an important contribution, usually larger for once-through cycle where the entire actinide inventory is disposed off. Although at present conversion and enrichment tailing are not considered wastes, they have assumed to be wastes in the reference cycle. In this case, their relative contribution is significant for fuel cycles using enriched uranium. The totals for waste management and disposal are of the same order of magnitude as the collective dose commitments from occupational and public exposures arising from the operation of the nuclear fuel cycle installations. The incomplete collective dose commitments from waste management and disposal assessed by integrating the collective dose rate over a fixed period of time (usually selected as 500 years), at time when the integral is maximum, are also comparable with the corresponding quantity arising from the operation of the fuel cycle installations. The maximum per caput doses predicted for the far future are small, usually a small fraction of the relevant dose limits. The maximun future doses in the critical groups in the vicinity of the repositories will be very low, of about a few percents of that experienced from the exposure to natural radiation sources. (M.E.L.) [es

  7. Comparative techniques for nuclear fuel cycle waste management systems

    International Nuclear Information System (INIS)

    Pelto, P.J.; Voss, J.W.

    1979-09-01

    A safety assessment approach for the evaluation of predisposal waste management systems is described and applied to selected facilities in the light water reactor (LWR) once-through fuel cycle and a potential coprocessed UO 2 -PuO 2 fuel cycle. This approach includes a scoping analysis on pretreatment waste streams and a more detailed analysis on proposed waste management processes. The primary evaluation parameters used in this study include radiation exposures to the public from radionuclide releases from normal operations and potential accidents, occupational radiation exposure from normal operations, and capital and operating costs. On an overall basis, the waste management aspects of the two fuel cycles examined are quite similar. On an individual facility basis, the fuel coprocessing plant has the largest waste management impact

  8. Three Mile Island Cleanup: experiences, waste disposal, and environmental impact

    International Nuclear Information System (INIS)

    King, L.J.; Opelka, J.H.

    1982-01-01

    These papers were presented in a two-session symposium during the American Institute of Chemical Engineers 1981 Summer National meeting in Detroit, Michigan, August 16-19, 1981. The cleanup activities described included the venting of the gases, mostly krypton-85, from the reactor containment building and several entries of personnel into the containment building to determine the physical conditions and the levels of radiation and radioactive contamination. Results of the latest process development tests of the flowsheet for the submerged Demineralizer Water Treatment System for decontaminating the water in the containment building were presented. The status of existing knowledge of radiation effects on ion exchange materials used in radioactive waste management were reviewed. A program to demonstrate incorporation of the loaded zeolite into a glass as a final waste form was also described. The generation, classification, treatment, and disposal of solid waste forms resulting from the cleanup were discussed with special consideration of the ion exchange media used for cleanup of liquids with relatively high radionuclide concentrations. The radiological, socioeconomic, and psychological impacts of the cleanup were evaluated. This work formed the basis for the recent issuance by the NRC of a programmatic environmental impact statement relative to decontamination and disposal of the radioactive wastes resulting from the accidents

  9. Progress in waste package and engineered barrier system performance assessment and design

    International Nuclear Information System (INIS)

    Van Luik, A.; Stahl, D.; Harrison, D.

    1993-01-01

    As part of the U.S. Department of Energy's evaluation of site suitability for a potential high-level radioactive waste repository, long-term interactions between the engineered barrier system and the site must be determined. This requires a waste-package/engineered-system design, a description of the environment around the emplacement zone, and models that simulate operative processes describing these engineered/natural systems interactions. Candidate designs are being evaluated, including a more robust, multi-barrier waste package, and a drift emplacement mode. Tools for evaluating designs, and emplacement mode are the currently available waste-package/engineered-system performance assessment codes development for the project. For assessments that support site suitability, environmental impact, or licensing decisions, more capable codes are needed. Code capability requirements are being written, and existing codes are to be evaluated against those requirements. Recommendations are being made to focus waste-packaging/engineered-system code-development

  10. Comparative environmental evaluation of construction waste management through different waste sorting systems in Hong Kong.

    Science.gov (United States)

    Hossain, Md Uzzal; Wu, Zezhou; Poon, Chi Sun

    2017-11-01

    This study aimed to compare the environmental performance of building construction waste management (CWM) systems in Hong Kong. Life cycle assessment (LCA) approach was applied to evaluate the performance of CWM systems holistically based on primary data collected from two real building construction sites and secondary data obtained from the literature. Different waste recovery rates were applied based on compositions and material flow to assess the influence on the environmental performance of CWM systems. The system boundary includes all stages of the life cycle of building construction waste (including transportation, sorting, public fill or landfill disposal, recovery and reuse, and transformation and valorization into secondary products). A substitutional LCA approach was applied for capturing the environmental gains due to the utilizations of recovered materials. The results showed that the CWM system by using off-site sorting and direct landfilling resulted in significant environmental impacts. However, a considerable net environmental benefit was observed through an on-site sorting system. For example, about 18-30kg CO 2 eq. greenhouse gases (GHGs) emission were induced for managing 1 t of construction waste through off-site sorting and direct landfilling, whereas significant GHGs emission could be potentially avoided (considered as a credit -126 to -182kg CO 2 eq.) for an on-site sorting system due to the higher recycling potential. Although the environmental benefits mainly depend on the waste compositions and their sortability, the analysis conducted in this study can serve as guidelines to design an effective and resource-efficient building CWM system. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. System Dynamic Analysis of Impacts of Government Charges on Disposal of Construction and Demolition Waste: A Hong Kong Case Study

    Directory of Open Access Journals (Sweden)

    Lai Sheung Au

    2018-04-01

    Full Text Available With the purpose of reducing the amount of construction and demolition (C&D waste disposed to landfills, many countries and municipalities have introduced increasingly stringent C&D waste disposal charges (CDWDC but the level of CDWDC is often determined without a clear understanding of its broad and complex impacts. Against this background, this paper aims to propose a system dynamics (SD model that can help predict CDWDC’s environmental implications as well as its financial implications. Specifically, the proposed model explains complex causal relationships between variables such as the level of CDWDC, the amount of C&D waste disposed to landfills, the government’s revenues from CDWDC as well as the costs of supplying and operating landfills over time. For a case study, the developed model is customized and calibrated with actual data from Hong Kong, where the remaining capacities of existing landfills are limited and the need for supplying more landfills is imminent. The simulation analysis with the model predicts that the current charging levels may not be high enough to effectively control the amount of C&D waste disposed to landfills or to compensate for the costs to the government of supplying additional landfills. The analysis also predicts how much illegal dumping may increase as the level of CDWDC increases. This case study illustrates that the proposed SD model can help policy makers to see the potential impacts of increased CDWDC on the amount of C&D waste disposed to landfills, government costs and the amount of illegal dumping of C&D waste; and can therefore help them to determine the most appropriate level of CDWDC.

  12. COMPARISON OF THE ENVIRONMENTAL IMPACT OF DIFFERENT METHODS OF MINING WASTE DISPOSAL TECHNOLOGY USING AHP METHOD

    Directory of Open Access Journals (Sweden)

    Justyna Kubicz

    2016-05-01

    Full Text Available Exploitation of tailing ponds sites for storing all types of waste materials creates multiple problems concerning waste disposal and the environmental impact of the waste. Tailing ponds waste may comprise e.g. flotation tailings from ore enrichment plants. Despite the fact that companies / corporations use state-of-the-art methods of extraction and processing of copper ore, and introduce modern systems of organization and production management, the area located closest to the reservoir is exposed to its negative effects. Many types of waste material are a valuable source of secondary raw materials which are suitable for use by various industries. Examples of such materials are mining waste (flotation tailings, usually neutral to the environment, whose quantities produced in the process of exploitation of minerals is sizeable. The article compares different technological methods of mining waste disposal using AHP method and their environmental impact.

  13. Life cycle costing of waste management systems: Overview, calculation principles and case studies

    DEFF Research Database (Denmark)

    Martinez Sanchez, Veronica; Kromann, Mikkel A.; Astrup, Thomas Fruergaard

    2015-01-01

    This paper provides a detailed and comprehensive cost model for the economic assessment of solid waste management systems. The model was based on the principles of Life Cycle Costing (LCC) and followed a bottom-up calculation approach providing detailed cost items for all key technologies within...... regarding the cost assessment of waste management, namely system boundary equivalency, accounting for temporally distributed emissions and impacts, inclusions of transfers, the internalisation of environmental impacts and the coverage of shadow prices, and there was also significant confusion regarding...

  14. Final waste management programmatic environmental impact statement for managing treatment, storage, and disposal of radioactive and hazardous waste. Volume I of V

    International Nuclear Information System (INIS)

    1997-05-01

    The Final Waste Management Programmatic Environmental Impact Statement (WM PEIS) examines the potential environmental and cost impacts of strategic management alternatives for managing five types of radioactive and hazardous wastes that have resulted and will continue to result from nuclear defense and research activities at a variety of sites around the United States. The five waste types are low-level mixed waste, low-level waste, transuranic waste, high-level waste, and hazardous waste. The WM PEIS provides information on the impacts of various siting alternatives which the Department of Energy (DOE) will use to decide at which sites to locate additional treatment, storage, and disposal capacity for each waste type. This information includes the cumulative impacts of combining future siting configurations for the five waste types and the collective impacts of other past, present, and reasonably foreseeable future activities. The selected waste management facilities being considered for these different waste types are treatment and disposal facilities for low-level mixed waste; treatment and disposal facilities for low-level waste; treatment and storage facilities for transuranic waste in the event that treatment is required before disposal; storage facilities for treated (vitrified) high-level waste canisters; and treatment of nonwastewater hazardous waste by DOE and commercial vendors. In addition to the no action alternative, which includes only existing or approved waste management facilities, the alternatives for each of the waste type configurations include decentralized, regionalized, and centralized alternatives for using existing and operating new waste management facilities. However, the siting, construction and operations of any new facility at a selected site will not be decided until completion of a sitewide or project-specific environmental impact review

  15. Environmental impact of the management of wastes from the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Sousselier, Y.

    1980-01-01

    The subject is discussed under the headings; introduction; present and future management of radioactive wastes (origin and characteristics of radioactive wastes; present and possible future processes for management); production of waste following present management methods (quantities produced by one reactor, and estimate of global production; estimate of cumulative global production to the year 2000); alternative management processes; environmental impacts of present management methods (pollution; land use; natural resources; socio-economic constraints); impacts of effluent release (radiation doses due to various isotopes, at different distances and over various periods); global impacts; impacts of radioactive waste processing, storing and disposal (various methods discussed); detailed consideration of underground disposal (migration of radionuclides through geologic formations); disposal of wastes from decommissioning of nuclear installations (reactors and reprocessing plants); mining wastes; alternative processes; conclusions. (U.K.)

  16. Environmental and health impacts of using food waste as animal feed: a comparative analysis of food waste management options.

    Science.gov (United States)

    Salemdeeb, Ramy; Zu Ermgassen, Erasmus K H J; Kim, Mi Hyung; Balmford, Andrew; Al-Tabbaa, Abir

    2017-01-01

    The disposal of food waste is a large environmental problem. In the United Kingdom (UK), approximately 15 million tonnes of food are wasted each year, mostly disposed of in landfill, via composting, or anaerobic digestion (AD). European Union (EU) guidelines state that food waste should preferentially be used as animal feed though for most food waste this practice is currently illegal, because of disease control concerns. Interest in the potential diversion of food waste for animal feed is however growing, with a number of East Asian states offering working examples of safe food waste recycling - based on tight regulation and rendering food waste safe through heat treatment. This study investigates the potential benefits of diverting food waste for pig feed in the UK. A hybrid, consequential life cycle assessment (LCA) was conducted to compare the environmental and health impacts of four technologies for food waste processing: two technologies of South Korean style-animal feed production (as a wet pig feed and a dry pig feed) were compared with two widespread UK disposal technologies: AD and composting. Results of 14 mid-point impact categories show that the processing of food waste as a wet pig feed and a dry pig feed have the best and second-best scores, respectively, for 13/14 and 12/14 environmental and health impacts. The low impact of food waste feed stems in large part from its substitution of conventional feed, the production of which has substantial environmental and health impacts. While the re-legalisation of the use of food waste as pig feed could offer environmental and public health benefits, this will require support from policy makers, the public, and the pig industry, as well as investment in separated food waste collection which currently occurs in only a minority of regions.

  17. Managing nuclear waste: Social and economic impacts

    International Nuclear Information System (INIS)

    Hemphill, R.C.; Bassett, G.W. Jr.

    1993-01-01

    Recent research has focused on perceptions of risk as a dominant source of economic impacts due to siting a high level radioactive waste facility. This article addresses the social and economic considerations involved with the issue of risk perception and other types of negative imagery. Emphasis is placed on ways of measuring the potential for economic effects resulting from perceptions prior to construction and operation of HLW facility. We describe the problems in arriving at defensible estimates of economic impacts. Our review has found that although legal and regulatory bases may soon allow inclusion of these impacts in EIS and for compensation purposes, credible scientific methods do not currently exist for predicting the existence or magnitude of changes in economic decision-making. Policy-makers should recognize the potential for perception-based economic impacts in determining the location and means of managing radioactive waste; but, they also need be cognizant of the current limitations of quantitative estimates of impacts in this area

  18. Managing nuclear waste: Social and economic impacts

    International Nuclear Information System (INIS)

    Hemphill, R.C.; Bassett, G.W. Jr.

    1993-01-01

    Recent research has focused on perceptions of risk dominant source of economic impacts due to siting a high level radioactive waste facility. This article addresses the social and economic considerations involved with the issue of risk perception and other types of negative imagery. Emphasis is placed on ways of measuring the potential for economic effects resulting from perceptions prior to construction and operation of a HLW facility. We describe the problems in arriving at defensible estimates of economic impacts. Our review has found that although legal and regulatory bases may soon allow inclusion of these impacts in EIS and for compensation purposes, credible scientific methods do not currently exist for predicting the existence or magnitude of changes in economic decision-making. Policy-makers should recognize the potential for perception-based economic impacts in determining the location and means of managing radioactive waste; but, they also need be cognizant of the current limitations of quantitative estimates of impacts in this area

  19. De Minimis waste impacts analysis methodology. IMPACTS - BRC user's guide and methodology for radioactive wastes below regulatory concern. Draft report for comment. Volume 2

    International Nuclear Information System (INIS)

    Forstom, J.M.; Goode, D.J.

    1986-07-01

    This report describes the methodology and computer program used by NRC to evaluate radiological impacts associated with petitions to have specific slightly contaminated radioactive waste streams designated as ''below regulatory concern.'' These wastes could be treated and disposed of at facilities which are not licensed for low-level radioactive waste management. The IMPACTS-BRC computer program is implemented on IBM-PC microcomputers using the FORTRAN programming language. Radiological impacts (doses) are estimated for several pathways including direct gamma radiation exposure, worker inhalation and exposure, offsite atmospheric and water releases, and intruder exposures. Annual impacts are calculated for the maximum individual, critical groups, and general population. The treatment and disposal options include onsite incineration, incineration at municipal and hazardous waste facilities, and disposal at sanitary landfills and hazardous waste landfills. Modifications to the program (from Volume 1) are primarily for microcomputer compatibility and to provide information needed to evaluate the petitions. Default environmental and facility parameters are developed representing conservative assumptions about site selection and operational procedures. In particular, the parameters of the groundwater pathway model are modified to represent more conservative assumptions than the original model (Volume 1)

  20. Life cycle modelling of environmental impacts from application of processed organic municipal solid waste on agricultural land (EASEWASTE)

    DEFF Research Database (Denmark)

    Hansen, Trine Lund; Bhander, Gurbakhash Singh; Christensen, Thomas Højlund

    2006-01-01

    and use of commercial fertilizers. The model is part of a larger model, Environmental Assessment of Solid Waste Systems and Technology (EASEWASTE), developed as a decisionsupport model, focusing on assessment of alternative waste management options. The environmental impacts of the land application......A model capable of quantifying the potential environmental impacts of agricultural application of composted or anaerobically digested source-separated organic municipal solid waste (MSW) is presented. In addition to the direct impacts, the model accounts for savings by avoiding the production...... of processed organic waste are quantified by emission coefficients referring to the composition of the processed waste and related to specific crop rotation as well as soil type. The model contains several default parameters based on literature data, field experiments and modelling by the agro-ecosystem model...

  1. Assessing the environmental impact of energy production from hydrochar generated via hydrothermal carbonization of food wastes.

    Science.gov (United States)

    Berge, Nicole D; Li, Liang; Flora, Joseph R V; Ro, Kyoung S

    2015-09-01

    Although there are numerous studies suggesting hydrothermal carbonization is an environmentally advantageous process for transformation of wastes to value-added products, a systems level evaluation of the environmental impacts associated with hydrothermal carbonization and subsequent hydrochar combustion has not been conducted. The specific objectives of this work are to use a life cycle assessment approach to evaluate the environmental impacts associated with the HTC of food wastes and the subsequent combustion of the generated solid product (hydrochar) for energy production, and to understand how parameters and/or components associated with food waste carbonization and subsequent hydrochar combustion influence system environmental impact. Results from this analysis indicate that HTC process water emissions and hydrochar combustion most significantly influence system environmental impact, with a net negative GWP impact resulting for all evaluated substituted energy-sources except biomass. These results illustrate the importance of electricity production from hydrochar particularly when it is used to offset coal-based energy sources. HTC process water emissions result in a net impact to the environment, indicating a need for developing appropriate management strategies. Results from this analysis also highlight a need for additional exploration of liquid and gas-phase composition, a better understanding of how changes in carbonization conditions (e.g., reaction time and temperature) influence metal and nutrient fate, and the exploration of liquid-phase treatment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Hanford Site Tank Waste Remediation System

    International Nuclear Information System (INIS)

    1993-05-01

    The US Department of Energy's (DOE) Hanford Site in southeastern Washington State has the most diverse and largest amount of highly radioactive waste of any site in the US. High-level radioactive waste has been stored in large underground tanks since 1944. A Tank Waste Remediation System Program has been established within the DOE to safely manage and immobilize these wastes in anticipation of permanent disposal in a geologic repository. The Hanford Site Tank Waste Remediation System Waste Management 1993 Symposium Papers and Viewgraphs covered the following topics: Hanford Site Tank Waste Remediation System Overview; Tank Waste Retrieval Issues and Options for their Resolution; Tank Waste Pretreatment - Issues, Alternatives and Strategies for Resolution; Low-Level Waste Disposal - Grout Issue and Alternative Waste Form Technology; A Strategy for Resolving High-Priority Hanford Site Radioactive Waste Storage Tank Safety Issues; Tank Waste Chemistry - A New Understanding of Waste Aging; Recent Results from Characterization of Ferrocyanide Wastes at the Hanford Site; Resolving the Safety Issue for Radioactive Waste Tanks with High Organic Content; Technology to Support Hanford Site Tank Waste Remediation System Objectives

  3. Implementation of SAP Waste Management System

    International Nuclear Information System (INIS)

    Frost, M.L.; LaBorde, C.M.; Nichols, C.D.

    2008-01-01

    The Y-12 National Security Complex (Y-12) assumed responsibility for newly generated waste on October 1, 2005. To ensure effective management and accountability of newly generated waste, Y-12 has opted to utilize SAP, Y-12's Enterprise Resource Planning (ERP) tool, to track low-level radioactive waste (LLW), mixed waste (MW), hazardous waste, and non-regulated waste from generation through acceptance and disposal. SAP Waste will include the functionality of the current waste tracking system and integrate with the applicable modules of SAP already in use. The functionality of two legacy systems, the Generator Entry System (GES) and the Waste Information Tracking System (WITS), and peripheral spreadsheets, databases, and e-mail/fax communications will be replaced by SAP Waste. Fundamentally, SAP Waste will promote waste acceptance for certification and disposal, not storage. SAP Waste will provide a one-time data entry location where waste generators can enter waste container information, track the status of their waste, and maintain documentation. A benefit of the new system is that it will provide a single data repository where Y-12's Waste Management organization can establish waste profiles, verify and validate data, maintain inventory control utilizing hand-held data transfer devices, schedule and ship waste, manage project accounting, and report on waste handling activities. This single data repository will facilitate the production of detailed waste generation reports for use in forecasting and budgeting, provide the data for required regulatory reports, and generate metrics to evaluate the performance of the Waste Management organization and its subcontractors. SAP Waste will replace the outdated and expensive legacy system, establish tools the site needs to manage newly generated waste, and optimize the use of the site's ERP tool for integration with related business processes while promoting disposition of waste. (authors)

  4. Hazardous Waste Manifest System

    Science.gov (United States)

    EPA’s hazardous waste manifest system is designed to track hazardous waste from the time it leaves the generator facility where it was produced, until it reaches the off-site waste management facility that will store, treat, or dispose of the waste.

  5. Final waste management programmatic environmental impact statement for managing treatment, storage, and disposal of radioactive and hazardous waste. Volume V of V

    International Nuclear Information System (INIS)

    1997-01-01

    The Final Waste Management Programmatic Environmental Impact Statement (WM PEIS) examines the potential environmental and cost impacts of strategic management alternatives for managing five types of radioactive and hazardous wastes that have resulted and will continue to result from nuclear energy research and the development, production, and testing of nuclear weapons at a variety of sites around the United States. The five waste types are low-level mixed waste, low-level waste, transuranic waste, high-level waste, and hazardous waste. The WM PEIS provides information on the impacts of various siting alternatives, which the Department of Energy (DOE) will use to decide at which sites to locate additional treatment, storage, and disposal capacity for each waste type. This information includes the cumulative impacts of combining future siting configurations for the five waste types and the collective impacts of other past, present, and reasonably foreseeable future activities. The selected waste management facilities being considered for these different waste types are treatment and disposal facilities for low-level mixed waste; treatment and disposal facilities for low-level waste; treatment and storage facilities for transuranic waste in the event that treatment is required before disposal; storage facilities for created (vitrified) high-level waste canisters; and treatment of nonwastewater hazardous waste by DOE and commercial vendors. In addition to the No Action Alternative, which includes only existing of approved waste management facilities, the alternatives for each of the waste-type configurations include Decentralized, Regionalized, and Centralized Alternatives for using existing and operating new waste management facilities. However, the siting, construction, and operations of any new facility at a selected site will not be decided until completion of a sitewide or project-specific environmental impact review

  6. Final waste management programmatic environmental impact statement for managing treatment, storage, and disposal of radioactive and hazardous waste. Volume IV of V

    International Nuclear Information System (INIS)

    1997-01-01

    The Final Waste Management Programmatic Environmental Impact Statement (WM PEIS) examines the potential environmental and cost impacts of strategic management alternatives for managing five types of radioactive and hazardous wastes that have resulted and will continue to result from nuclear defense and research activities at a variety of sites around the United States. The five waste types are low-level mixed waste, low-level waste, transuranic waste, high-level waste, and hazardous waste. The WM PEIS provides information on the impacts of various siting alternatives which the Department of Energy (DOE) will use to decide at which sites to locate additional treatment, storage, and disposal capacity for each waste type.Transportation is an integral component of the alternatives being considered for each type of radioactive waste in the U.S. Department of Energy (DOE) Waste Management Programmatic Environmental Impact Statement (WM PEIS). The types of radioactive waste considered in Part I are high-level waste (HLW), low-level waste (LLW), transuranic waste (TRUW), and low-level mixed waste (LLMW). For some alternatives, radioactive waste would be shipped among the DOE sites at various stages of the treatment, storage, and disposal (TSD) process. The magnitude of the transportation-related activities varies with each alternative, ranging from minimal transportation for decentralized approaches to significant transportation for some centralized approaches. The human health risks associated with transporting various waste materials were assessed to ensure a complete appraisal of the impacts of each PEIS alternative being considered

  7. Final waste management programmatic environmental impact statement for managing treatment, storage, and disposal of radioactive and hazardous waste. Volume III of V

    International Nuclear Information System (INIS)

    1997-01-01

    The Final Waste Management Programmatic Environmental Impact Statement (WM PEIS) examines the potential environmental and cost impacts of strategic management alternatives for managing five types of radioactive and hazardous wastes that have resulted and will continue to result from nuclear defense and research activities at a variety of sites around the United States. The five waste types are low-level mixed waste, low-level waste, transuranic waste, high-level waste, and hazardous waste. The WM PEIS provides information on the impacts of various siting alternatives which the Department of Energy (DOE) will use to decide at which sites to locate additional treatment, storage, and disposal capacity for each waste type

  8. Planning for impact management: a systems perspective

    International Nuclear Information System (INIS)

    Leistritz, F.L.; Halstead, J.M.; Chase, R.A.; Murdock, S.H.

    1983-01-01

    The authors develop a conceptual basis for viewing impact events and their subsequent management, and thus for designing impact management programs. Following an examination of the pragmatic rationales for an impact management program for large-scale projects, such as a nuclear waste repository, they discuss the interrelated nature of impact events that clarify the need for an integrated systems-orientated socioeconomic impact management framework. They then present the key components of such a system and discusss its implementation. Although a concerted systems approach is difficult to implement and is complex in design, it will be more difficult to complete the repository siting process without one. 4 tables

  9. Influence of assumptions about household waste composition in waste management LCAs.

    Science.gov (United States)

    Slagstad, Helene; Brattebø, Helge

    2013-01-01

    This article takes a detailed look at an uncertainty factor in waste management LCA that has not been widely discussed previously, namely the uncertainty in waste composition. Waste composition is influenced by many factors; it can vary from year to year, seasonally, and with location, for example. The data publicly available at a municipal level can be highly aggregated and sometimes incomplete, and performing composition analysis is technically challenging. Uncertainty is therefore always present in waste composition. This article performs uncertainty analysis on a systematically modified waste composition using a constructed waste management system. In addition the environmental impacts of several waste management strategies are compared when applied to five different cities. We thus discuss the effect of uncertainty in both accounting LCA and comparative LCA. We found the waste composition to be important for the total environmental impact of the system, especially for the global warming, nutrient enrichment and human toxicity via water impact categories. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Composite waste analysis system

    International Nuclear Information System (INIS)

    Wachter, J.R.; Hagan, R.C.; Bonner, C.A.; Malcom, J.E.; Camp, K.L.

    1993-01-01

    Nondestructive analysis (NDA) of radioactive waste forms an integral component of nuclear materials accountability programs and waste characterization acceptance criterion. However, waste measurements are often complicated by unknown isotopic compositions and the potential for concealment of special nuclear materials in a manner that is transparent to gamma-ray measurement instruments. To overcome these complications, a new NDA measurement system has been developed to assay special nuclear material in both transuranic and low level waste from the same measurement platform. The system incorporates a NaI detector and customized commercial software routines to measure small quantities of radioactive material in low level waste. Transuranic waste analysis is performed with a coaxial HPGE detector and uses upgraded PC-based segmented gamma scanner software to assay containers up to 55 gal. in volume. Gamma-Ray isotopics analysis of both waste forms is also performed with this detector. Finally, a small neutron counter using specialized software is attached to the measurement platform to satisfy safeguards concerns related to nuclear materials that are not sensed by the gamma-ray instruments. This report describes important features and capabilities of the system and presents a series of test measurements that are to be performed to define system parameters

  11. Modelling sensitivity and uncertainty in a LCA model for waste management systems - EASETECH

    DEFF Research Database (Denmark)

    Damgaard, Anders; Clavreul, Julie; Baumeister, Hubert

    2013-01-01

    In the new model, EASETECH, developed for LCA modelling of waste management systems, a general approach for sensitivity and uncertainty assessment for waste management studies has been implemented. First general contribution analysis is done through a regular interpretation of inventory and impact...

  12. Tank Waste Remediation System, Hanford Site, Richland, Washington. Final environmental impact statement. Summary

    International Nuclear Information System (INIS)

    1996-08-01

    This document analyzes the potential environmental consequences related to the Hanford Site Tank Waste Remediation System (TWRS) alternatives for management and disposal of radioactive, hazardous, and mixed waste, and the management and disposal of approximately 1,930 cesium and strontium capsules located at the Hanford Site. This waste is currently or projected to be stored in 177 underground storage tanks and approximately 60 miscellaneous underground storage tanks. This document analyzes the following alternatives for remediating the tank waste: No Action, Long-Term Management, In Situ Fill and Cap, In Situ Vitrification, Ex Situ Intermediate Separations, Ex Situ No Separations, Ex Situ Extensive Separations, Ex Situ/In Situ Combination 1, and Ex Situ/In Situ Combination 2. This document also addresses a Phased Implementation alternative (the DOE and Ecology preferred alternative for remediation of tank waste). Alternatives analyzed for the cesium and strontium capsules include: No Action, Onsite Disposal, Overpack and Ship, and Vitrify with Tank Waste. The DOE and Ecology preferred alternative for the cesium and strontium capsules is the No Action alternative

  13. Life cycle assessment of a packaging waste recycling system in Portugal

    International Nuclear Information System (INIS)

    Ferreira, S.; Cabral, M.; Cruz, N.F. da; Simões, P.; Marques, R.C.

    2014-01-01

    Highlights: • We modeled a real packaging waste recycling system. • The analysis was performed using the life cycle assessment methodology. • The 2010 situation was compared with scenarios where the materials were not recycled. • The “Baseline” scenario seems to be more beneficial to the environment. - Abstract: Life Cycle Assessment (LCA) has been used to assess the environmental impacts associated with an activity or product life cycle. It has also been applied to assess the environmental performance related to waste management activities. This study analyses the packaging waste management system of a local public authority in Portugal. The operations of selective and refuse collection, sorting, recycling, landfilling and incineration of packaging waste were considered. The packaging waste management system in operation in 2010, which we called “Baseline” scenario, was compared with two hypothetical scenarios where all the packaging waste that was selectively collected in 2010 would undergo the refuse collection system and would be sent directly to incineration (called “Incineration” scenario) or to landfill (“Landfill” scenario). Overall, the results show that the “Baseline” scenario is more environmentally sound than the hypothetical scenarios

  14. Life cycle assessment of a packaging waste recycling system in Portugal

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, S.; Cabral, M. [CEG-IST, ULisboa, Av. Rovisco Pais, 1049-001 Lisbon (Portugal); Cruz, N.F. da, E-mail: nunocruz@tecnico.ulisboa.pt [IST, ULisboa, Av. Rovisco Pais, 1049-001 Lisbon (Portugal); Simões, P. [IST, ULisboa, Av. Rovisco Pais, 1049-001 Lisbon (Portugal); Marques, R.C. [CESUR, IST, ULisboa, Av. Rovisco Pais, 1049-001 Lisbon (Portugal)

    2014-09-15

    Highlights: • We modeled a real packaging waste recycling system. • The analysis was performed using the life cycle assessment methodology. • The 2010 situation was compared with scenarios where the materials were not recycled. • The “Baseline” scenario seems to be more beneficial to the environment. - Abstract: Life Cycle Assessment (LCA) has been used to assess the environmental impacts associated with an activity or product life cycle. It has also been applied to assess the environmental performance related to waste management activities. This study analyses the packaging waste management system of a local public authority in Portugal. The operations of selective and refuse collection, sorting, recycling, landfilling and incineration of packaging waste were considered. The packaging waste management system in operation in 2010, which we called “Baseline” scenario, was compared with two hypothetical scenarios where all the packaging waste that was selectively collected in 2010 would undergo the refuse collection system and would be sent directly to incineration (called “Incineration” scenario) or to landfill (“Landfill” scenario). Overall, the results show that the “Baseline” scenario is more environmentally sound than the hypothetical scenarios.

  15. DOE Office of Civilian Radioactive Waste Management (OCRWM) system studies digest

    International Nuclear Information System (INIS)

    McLeod, N.B.; Nguyen, T.D.; Drexelius, R.; McKee, R.W.

    1992-06-01

    The Department of Energy (DOE) Office of Civilian Radioactive Waste Management (OCRWM) has sponsored system studies to support the evaluation of alternative configurations and operations for the Civilian Radioactive Waste Management System (CRWMS) and the development of system requirements and design specifications. These studies are generally directed toward evaluating the impacts of alternatives to the monitored retrievable storage (MRS) and fuel rod consolidation, waste form and characteristics sequences, cask and canister concepts, allocation of waste acceptance rights, and system throughput rates. The objectives of this document are: To present major system issues and related system element issues in a structured manner; to discuss key results of major system studies and explain the basis for certain current system assumptions; to summarize the scope and results of completed system studies that are still relevant at the time this document is published; and to provide the background needed for identifying and prioritizing system issues to be resolved. Consistent with the objectives, the document does not include low-level subsystem studies addressing system element issues that do not interact with overall system issues. The document is expected to be updated as major new system studies are completed and significant new results are available

  16. Social impacts of radioactive waste disposal

    International Nuclear Information System (INIS)

    1985-11-01

    In this report an approach is developed for the assessment of socio-economic impacts from radioactive waste disposal. The approach provides recommendations on procedures to be used in identification and prediction of impacts. Two decision-aiding methods are also included. The first provides for the identification of key issues and the illustration of the trade-offs involved in the decision. Multi-attribute scoring and weighting techniques are then proposed for the illustration of impacts using quantitative measures. (author)

  17. Potential impact of salinity on methane production from food waste anaerobic digestion.

    Science.gov (United States)

    Zhao, Jianwei; Liu, Yiwen; Wang, Dongbo; Chen, Fei; Li, Xiaoming; Zeng, Guangming; Yang, Qi

    2017-09-01

    Previous studies have demonstrated that the presence of sodium chloride (NaCl) inhibited the production of methane from food waste anaerobic digestion. However, the details of how NaCl affects methane production from food waste remain unknown by now and the efficient approach to mitigate the impact of NaCl on methane production was seldom reported. In this paper, the details of how NaCl affects methane production was first investigated via a series of batch experiments. Experimental results showed the effect of NaCl on methane production was dosage dependent. Low level of NaCl improved the hydrolysis and acidification but inhibited the process of methanogenesis whereas high level of NaCl inhibit both steps of acidification and methanogenesis. Then an efficient approach, i.e. co-digestion of food waste and waste activated sludge, to mitigate the impact of NaCl on methane production was reported. Finally, the mechanisms of how co-digestion mitigates the effect on methane production caused by NaCl in co-digestion system were revealed. These findings obtained in this work might be of great importance for the operation of methane recovery from food waste in the presence of NaCl. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Evaluation of health and safety impacts of defense high-level waste in geologic repositories

    International Nuclear Information System (INIS)

    Smith, E.D.; Kocher, D.C.; Witherspoon, J.P.

    1985-02-01

    Pursuant to the requirement of the Nuclear Waste Policy Act of 1982 that the President evaluate the use of commercial high-level waste repositories for the disposal of defense high-level wastes, a comparative assessment has been performed of the potential health and safety impacts of disposal of defense wastes in commercial or defense-only repositories. Simplified models were used to make quantitative estimates of both long- and short-term health and safety impacts of several options for defense high-level waste disposal. The results indicate that potential health and safety impacts are not likely to vary significantly among the different disposal options for defense wastes. Estimated long-term health and safety impacts from all defense-waste disposal options are somewhat less than those from commercial waste disposal, while short-term health and safety impacts appear to be insensitive to the differences between defense and commercial wastes. In all cases, potential health and safety impacts are small because of the need to meet stringent standards promulgated by the US Environmental Protection Agency and the US Nuclear Regulatory Commission. We conclude that health and safety impacts should not be a significant factor in the choice of a disposal option for defense high-level wastes. 20 references, 14 tables

  19. Impacts of gold mine waste disposal on deepwater fish in a pristine tropical marine system

    International Nuclear Information System (INIS)

    Brewer, D.T.; Milton, D.A.; Fry, G.C.; Dennis, D.M.; Heales, D.S.; Venables, W.N.

    2007-01-01

    Little is known about the impacts of mine waste disposal, including deep-sea tailings, on tropical marine environments and this study presents the first account of this impact on deepwater fish communities. The Lihir gold mine in Papua New Guinea has deposited both excavated overburden and processed tailings slurry into the coastal environment since 1997. The abundances of fish species and trace metal concentrations in their tissues were compared between sites adjacent to and away from the mine. In this study (1999-2002), 975 fish of 98 species were caught. Significantly fewer fish were caught close to the mine than in neighbouring regions; the highest numbers were in regions distant from the mine. The catch rates of nine of the 17 most abundant species were lowest, and in three species were highest, close to the mine. There appears to be limited contamination in fish tissues caused by trace metals disposed as mine waste. Although arsenic (several species) and mercury (one species) were found in concentrations above Australian food standards. However, as in the baseline (pre-mine) sampling, it appears they are accumulating these metals mostly from naturally-occurring sources rather than the mine waste

  20. Potential Impacts of Organic Wastes on Small Stream Water Quality

    Science.gov (United States)

    Kaushal, S. S.; Groffman, P. M.; Findlay, S. E.; Fischer, D. T.; Burke, R. A.; Molinero, J.

    2005-05-01

    We monitored concentrations of dissolved organic carbon (DOC), dissolved oxygen (DO) and other parameters in 17 small streams of the South Fork Broad River (SFBR) watershed on a monthly basis for 15 months. The subwatersheds were chosen to reflect a range of land uses including forested, pasture, mixed, and developed. The SFBR watershed is heavily impacted by organic wastes, primarily from its large poultry industry, but also from its rapidly growing human population. The poultry litter is primarily disposed of by application to pastures. Our monthly monitoring results showed a strong inverse relationship between mean DOC and mean DO and suggested that concentrations of total nitrogen (TN), DOC, and the trace gases nitrous oxide, methane and carbon dioxide are impacted by organic wastes and/or nutrients from animal manure applied to the land and/or human wastes from wastewater treatment plants or septic tanks in these watersheds. Here we estimate the organic waste loads of these watersheds and evaluate the impact of organic wastes on stream DOC and alkalinity concentrations, electrical conductivity, sediment potential denitrification rate and plant stable nitrogen isotope ratios. All of these water quality parameters are significantly correlated with watershed waste loading. DOC is most strongly correlated with total watershed waste loading whereas conductivity, alkalinity, potential denitrification rate and plant stable nitrogen isotope ratio are most strongly correlated with watershed human waste loading. These results suggest that more direct inputs (e.g., wastewater treatment plant effluents, near-stream septic tanks) have a greater relative impact on stream water quality than more dispersed inputs (land applied poultry litter, septic tanks far from streams) in the SFBR watershed. Conductivity, which is generally elevated in organic wastes, is also significantly correlated with total watershed waste loading suggesting it may be a useful indicator of overall

  1. Waste wood as bioenergy feedstock. Climate change impacts and related emission uncertainties from waste wood based energy systems in the UK.

    Science.gov (United States)

    Röder, Mirjam; Thornley, Patricia

    2018-04-01

    Considering the urgent need to shift to low carbon energy carriers, waste wood resources could provide an alternative energy feedstock and at the same time reduce emissions from landfill. This research examines the climate change impacts and related emission uncertainties of waste wood based energy. For this, different grades of waste wood and energy application have been investigated using lifecycle assessment. Sensitivity analysis has then been applied for supply chain processes and feedstock properties for the main emission contributing categories: transport, processing, pelletizing, urea resin fraction and related N 2 O formation. The results show, depending on the waste wood grade, the conversion option, scale and the related reference case, that emission reductions of up to 91% are possible for non-treated wood waste. Compared to this, energy from treated wood waste with low contamination can achieve up to 83% emission savings, similar to untreated waste wood pellets, but in some cases emissions from waste wood based energy can exceed the ones of the fossil fuel reference - in the worst case by 126%. Emission reductions from highly contaminated feedstocks are largest when replacing electricity from large-scale coal and landfill. The highest emission uncertainties are related to the wood's resin fraction and N 2 O formation during combustion and, pelletizing. Comparing wood processing with diesel and electricity powered equipment also generated high variations in the results, while emission variations related to transport are relatively small. Using treated waste wood as a bioenergy feedstock can be a valid option to reduce emissions from energy production but this is only realisable if coal and landfill gas are replaced. To achieve meaningful emission reduction in line with national and international climate change targets, pre-treatment of waste wood would be required to reduce components that form N 2 O during the energy conversion. Copyright © 2017

  2. Waste Information Data System user guide

    International Nuclear Information System (INIS)

    Dietz, L.A.

    1996-09-01

    The Waste Information Data System (also known as the Environmental Sites Database) is a computerized system that provides a traceable source of information about environmental waste sites at the U.S. Department of Energy's Hanford Site in Richland, Washington. The system includes discovery, rejected, and accepted waste sites. The purpose of the system is to assist long-range waste management and environmental restoration planning by providing validated and reliable information about waste sites. The system is used to track site investigation, remediation, and closure-action activities

  3. Long-term impacts on sewers following food waste disposer installation in housing areas.

    Science.gov (United States)

    Mattsson, Jonathan; Hedström, Annelie; Viklander, Maria

    2014-01-01

    To increase biogas generation and decrease vehicle transportation of solid waste, the integration of food waste disposers (FWDs) into the wastewater system has been proposed. However, concerns have been raised about the long-term impact of the additional load of the FWDs on sewer systems. To examine the said impact, this study has used closed-circuit television inspection techniques to evaluate the status of 181 concrete pipes serving single family housing areas with a diameter of 225 mm, ranging from a 100% connection rate of households with an FWD to none. A minor study was also performed on a multi-family housing area, where mainly plastic pipes (200 mm) were used. The extent and distribution of deposits related to the ratio of FWDs, inclination and pipe sagging (backfalls) were ascertained by using linear regression and analysis of variance. The results showed that FWDs have had an impact on the level of deposits in the sewer, but this has, in turn, been of minor significance. With a high connection rate of FWDs upstream of a pipe, the extent of the total level of deposits, as well as finer sediments, was statistically determined to be greater. However, the majority of the deposits were observed to be small, which would suggest the impact of FWDs on sewer performance to be minor. As food waste not compatible with the FWD was seen in the sewers, educational campaigns could be beneficial to further lower the risks of sewer blocking.

  4. Tank waste remediation system dangerous waste training plan

    International Nuclear Information System (INIS)

    POHTO, R.E.

    1999-01-01

    This document outlines the dangerous waste training program developed and implemented for all Treatment, Storage, and Disposal (TSD) Units operated by Lockheed Martin Hanford Corporation (LMHC) Tank Waste Remediation System (TWRS) in the Hanford 200 East, 200 West and 600 Areas and the <90 Day Accumulation Area at 209E. Operating TSD Units operated by TWRS are: the Double-Shell Tank (DST) System (including 204-AR Waste Transfer Building), the 600 Area Purgewater Storage and the Effluent Treatment Facility. TSD Units undergoing closure are: the Single-Shell Tank (SST) System, 207-A South Retention Basin, and the 216-B-63 Trench

  5. Intelligent Information System for Waste Management; Jaetehuollon aelykaes tietojaerjestelmae iWaste

    Energy Technology Data Exchange (ETDEWEB)

    Mustonen, T. [Kuopio Univ. (Finland)

    2003-07-01

    'iWaste' is a project for developing and testing intelligent computational methods for more comprehensive waste management. Important issues are automated reporting, optimisation of waste collection, forecasting of waste formation, data handling of waste disposal sites and simulation and modelling of regional waste management. The main objective of the project is to identify and analyse known sources of information and to link them to the existing information processing systems in the field of waste management. Additionally, the goal is to identify and test functional elements that could be developed further to software products and services. The results of the project can be categorized into three sectors. Firstly, the guidelines for a comprehensive information system in waste management will be created. This includes the requirement specifications of different parties, definitions for the data exchange interfaces and an architectural plan for software products capable of co-operative processing. Secondly, the central parts of the intelligent information system will be piloted using the research database collected in the early stage of the project. The main topics investigated are data quality, the use of Geographical Information Systems (GIS), automated reporting, optimisation of waste collection and forecasting of waste formation. Additionally, the pilot information system can be utilized in derivative projects to speed up the starting phases of them. This makes it possible to create persistent development of waste management information systems both academically and commercially. (orig.)

  6. Tank Waste Remediation System Guide

    International Nuclear Information System (INIS)

    Robershotte, M.A.; Dirks, L.L.; Seaver, D.A.; Bothers, A.J.; Madden, M.S.

    1995-06-01

    The scope, number and complexity of Tank Waste Remediation System (TWRS) decisions require an integrated, consistent, and logical approach to decision making. TWRS has adopted a seven-step decision process applicable to all decisions. Not all decisions, however, require the same degree of rigor/detail. The decision impact will dictate the appropriate required detail. In the entire process, values, both from the public as well as from the decision makers, play a key role. This document concludes with a general discussion of the implementation process that includes the roles of concerned parties

  7. Waste Acceptance System Requirements document (WASRD)

    International Nuclear Information System (INIS)

    1993-01-01

    This Waste Acceptance System Requirements document (WA-SRD) describes the functions to be performed and the technical requirements for a Waste Acceptance System for accepting spent nuclear fuel (SNF) and high-level radioactive waste (HLW) into the Civilian Radioactive Waste Management System (CRWMS). This revision of the WA-SRD addresses the requirements for the acceptance of HLW. This revision has been developed as a top priority document to permit DOE's Office of Environmental Restoration and Waste Management (EM) to commence waste qualification runs at the Savannah River Site's (SRS) Defense Waste Processing Facility (DWPF) in a timely manner. Additionally, this revision of the WA-SRD includes the requirements from the Physical System Requirements -- Accept Waste document for the acceptance of SNF. A subsequent revision will fully address requirements relative to the acceptance of SNF

  8. 1995 Baseline solid waste management system description

    International Nuclear Information System (INIS)

    Anderson, G.S.; Konynenbelt, H.S.

    1995-09-01

    This provides a detailed solid waste system description that documents the treatment, storage, and disposal (TSD) strategy for managing Hanford's solid low-level waste, low-level mixed waste, transuranic and transuranic mixed waste, and greater-than-Class III waste. This system description is intended for use by managers of the solid waste program, facility and system planners, as well as system modelers. The system description identifies the TSD facilities that constitute the solid waste system and defines these facilities' interfaces, schedules, and capacities. It also provides the strategy for treating each of the waste streams generated or received by the Hanford Site from generation or receipt through final destination

  9. Yugoslav central disposal system or rad waste materials: necessity and justification of construction

    International Nuclear Information System (INIS)

    Peric, A.; Plecas, I.; Pavlovic, R.

    1995-01-01

    Decision on searching for the location and the choice of appropriate type of system for final disposal of low and intermediate level rad waste materials should be made urgently in Yugoslavia. capacities for further storing of such waste materials on the site of the Vinca Institute will be full in the next few years, following the trend of present rad waste generation and delivery. Selection of the location and type of the disposal system in Yugoslavia is of crucial importance from the point of view of conservation of environment quality level and enabling permanent control of disposed immobilized rad waste materials and its impact on the environment. (author)

  10. Energy implications of integrated solid waste management systems. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Little, R.E.; McClain, G.; Becker, M.; Ligon, P.; Shapiro, K.

    1994-07-01

    This study develops estimates of energy use and recovery from managing municipal solid waste (MSW) under various collection, processing, and disposal scenarios. We estimate use and recovery -- or energy balance -- resulting from MSW management activities such as waste collection, transport, processing, and disposal, as well as indirect use and recovery linked to secondary materials manufacturing using recycled materials. In our analysis, secondary materials manufacturing displaces virgin materials manufacturing for 13 representative products. Energy implications are expressed as coefficients that measure the net energy saving (or use) of displacing products made from virgin versus recycled materials. Using data developed for the 1992 New York City Master Plan as a starting point, we apply our method to an analysis of various collection systems and 30 types of facilities to illustrate bow energy balances shift as management systems are modified. In sum, all four scenarios show a positive energy balance indicating the energy and advantage of integrated systems versus reliance on one or few technology options. That is, energy produced or saved exceeds the energy used to operate the solid waste system. The largest energy use impacts are attributable to processing, including materials separation and composting. Collection and transportation energy are relatively minor contributors. The largest two contributors to net energy savings are waste combustion and energy saved by processing recycled versus virgin materials. An accompanying spatial analysis methodology allocates energy use and recovery to New York City, New York State outside the city, the U.S., and outside the U.S. Our analytical approach is embodied in a spreadsheet model that can be used by energy and solid waste analysts to estimate impacts of management scenarios at the state and substate level.

  11. [Methods for health impact assessment of policies for municipal solid waste management: the SESPIR Project].

    Science.gov (United States)

    Parmagnani, Federica; Ranzi, Andrea; Ancona, Carla; Angelini, Paola; Chiusolo, Monica; Cadum, Ennio; Lauriola, Paolo; Forastiere, Francesco

    2014-01-01

    The Project Epidemiological Surveillance of Health Status of Resident Population Around the Waste Treatment Plants (SESPIR) included five Italian regions (Emilia-Romagna, Piedmont, Lazio, Campania, and Sicily) and the National Institute of Health in the period 2010-2013. SESPIR was funded by the Ministry of Health as part of the National centre for diseases prevention and control (CCM) programme of 2010 with the general objective to provide methods and operational tools for the implementation of surveillance systems for waste and health, aimed at assessing the impact of the municipal solid waste (MSW) treatment cycle on the health of the population. The specific objective was to assess health impacts resulting from the presence of disposal facilities related to different regional scenarios of waste management. Suitable tools for analysis of integrated assessment of environmental and health impact were developed and applied, using current demographic, environmental and health data. In this article, the methodology used for the quantitative estimation of the impact on the health of populations living nearby incinerators, landfills and mechanical biological treatment plants is showed, as well as the analysis of three different temporal scenarios: the first related to the existing plants in the period 2008-2009 (baseline), the second based on regional plans, the latter referring to MSW virtuous policy management based on reduction of produced waste and an intense recovery policy.

  12. Materials Characterization Center meeting on impact testing of waste forms. Summary report

    International Nuclear Information System (INIS)

    Merz, M.D.; Atteridge, D.; Dudder, G.

    1981-10-01

    A meeting was held on March 25-26, 1981 to discuss impact test methods for waste form materials to be used in nuclear waste repositories. The purpose of the meeting was to obtain guidance for the Materials Characterization Center (MCC) in preparing the MCC-10 Impact Test Method to be approved by the Materials Review Board. The meeting focused on two essential aspects of the test method, namely the mechanical process, or impact, used to effect rapid fracture of a waste form and the analysis technique(s) used to characterize particulates generated by the impact

  13. Environmental system analysis of waste management. Experiences from applications of the ORWARE model

    Energy Technology Data Exchange (ETDEWEB)

    Bjoerklund, Anna

    2000-11-01

    Waste management has gone through a history of shifting problems, demands, and strategies over the years. In contrast to the long prevailing view that the problem could be solved by hiding or moving it, waste is now viewed as a problem ranging from local to global concern, and as being an integral part of several sectors in society. Decisive for this view has been society's increasing complexity and thus the increasing complexity of waste, together with a general development of environmental consciousness, moving from local focus on point emission sources, to regional and global issues of more complex nature. This thesis is about the development and application ORWARE; a model for computer aided environmental systems analysis of municipal waste management. Its origin is the hypothesis that widened perspectives are needed in waste management decision-making to avoid severe sub-optimisation of environmental performance. With a strong foundation in life cycle assessment (LCA), ORWARE aims to cover the environmental impacts over the entire life cycle of waste management. It also performs substance flow analysis (SFA) calculations at a rather detailed level of the system. Applying ORWARE has confirmed the importance of applying systems perspective and of taking into account site specific differences in analysis and planning of waste management, rather than relying on overly simplified solutions. Some findings can be generalised and used as guidelines to reduce environmental impact of waste management. Recovery of material and energy resources from waste generally leads to net reductions in energy use and environmental impact, because of the savings this brings about in other sectors. Waste treatment with low rate of energy and materials recovery should therefore be avoided. The exact choice of technology however depends on what products can be recovered and how they are used. Despite the complexity of the model and a certain degree of user unfriendliness, involved

  14. Waste Isolation Pilot Plant disposal phase final supplemental environmental impact statement. Summary

    International Nuclear Information System (INIS)

    1997-09-01

    The purpose of the Waste Isolation Pilot Plant Disposal Final Supplemental Environmental Impact Statement (SEIS-II) is to provide information on environmental impacts regarding the Department of Energy''s (DOE) proposed disposal operations at WIPP. The Proposed Action describes the treatment and disposal of the Basic inventory of TRU waste over a 35-year period. The Action Alternatives proposed the treatment of the Basic Inventory and an Additional Inventory as well as the transportation of the treated waste to WIPP for disposal over a 150- to 190-year period. The three Action Alternatives include the treatment of TRU waste at consolidation sites to meet WIPP planning-basic Waste Acceptance Criteria, the thermal treatment of TRU waste to meet Land Disposal Restrictions, and the treatment of TRU waste by a shred and grout process. SEIS-II evaluates environmental impacts resulting from the various treatment options; the transportation of TRU waste to WIPP using truck, a combination of truck and regular rail service, and a combination of truck and dedicated rail service; and the disposal of this waste in the repository. Evaluated impacts include those to the general environment and to human health. Additional issues associated with the implementation of the alternatives are discussed to provide further understanding of the decisions to be reached and to provide the opportunity for public input on improving DOE''s Environmental Management Program

  15. Waste Isolation Pilot Plant disposal phase: Draft supplemental Environmental Impact Statement

    International Nuclear Information System (INIS)

    1996-11-01

    Purpose of this SEIS-II is to provide information on environmental impacts regarding DOE's proposed disposal operations at WIPP. To that end, SEIS-II was prepared to assess the potential impacts of continuing the phased development of WIPP as a geologic repository for the safe disposal of transuranic (TRU) waste. SEIS-II evaluates a Proposed Action, three Action Alternatives, and two No Action Alternatives. The Proposed Action describes the treatment and disposal of the Basic Inventory of TRU waste over a 35-year period. SEIS-II evaluates environmental impacts resulting from the various treatment options; transportation of TRU waste to WIPP using truck, a combination of truck and regular rail service, and a combination of truck and dedicated rail service; and the disposal of this waste in the repository. Evaluated impacts include those to the general environment and to human health. Additional issues associated with implementation of the alternatives are discussed

  16. Life-cycle assessment of the municipal solid waste management system in Hangzhou, China (EASEWASTE).

    Science.gov (United States)

    Zhao, Yan; Wang, Hong-Tao; Lu, Wen-Jing; Damgaard, Anders; Christensen, Thomas H

    2009-06-01

    With the purpose of assessing the environmental impacts and benefits of the current municipal solid waste management system and two modified systems, EASEWASTE, a life-cycle-based model, was used to evaluate the waste system of Hangzhou city in China. An integrated model was established, including waste generation, collection, transportation, treatment, disposal and accompanying external processes. The results showed that CH(4) released from landfilling was the primary pollutant contributing to global warming, and HCl and NH(3) from incineration contributed most to acidification. Material recycling and incineration with energy recovery were important because of the induced savings in material production based on virgin materials and in energy production based on coal combustion. A modified system in which waste is transported to the nearest incinerators would be relatively better than the current system, mainly due to the decrease of pollution from landfilled waste and the increase in energy production from waste avoiding energy production by traditional power plants. A ban on free plastic bags for shopping was shown to reduce most environmental impacts due to saved oil resources and other materials used in producing the plastic bags. Sensitivity analysis confirmed the robustness of the results. LCA methodology and a model like EASEWASTE are very suitable for evaluating the overall environmental consequences, and can be used for decision support and strategic planning in developing countries such as China where pollution control has become increasingly important with the rapid increase of waste generation as well as the increasing public awareness of environmental protection.

  17. Waste Information Management System with 2012-13 Waste Streams - 13095

    International Nuclear Information System (INIS)

    Upadhyay, H.; Quintero, W.; Lagos, L.; Shoffner, P.; Roelant, D.

    2013-01-01

    The Waste Information Management System (WIMS) 2012-13 was updated to support the Department of Energy (DOE) accelerated cleanup program. The schedule compression required close coordination and a comprehensive review and prioritization of the barriers that impeded treatment and disposition of the waste streams at each site. Many issues related to waste treatment and disposal were potential critical path issues under the accelerated schedule. In order to facilitate accelerated cleanup initiatives, waste managers at DOE field sites and at DOE Headquarters in Washington, D.C., needed timely waste forecast and transportation information regarding the volumes and types of radioactive waste that would be generated by DOE sites over the next 40 years. Each local DOE site historically collected, organized, and displayed waste forecast information in separate and unique systems. In order for interested parties to understand and view the complete DOE complex-wide picture, the radioactive waste and shipment information of each DOE site needed to be entered into a common application. The WIMS application was therefore created to serve as a common application to improve stakeholder comprehension and improve DOE radioactive waste treatment and disposal planning and scheduling. WIMS allows identification of total forecasted waste volumes, material classes, disposition sites, choke points, technological or regulatory barriers to treatment and disposal, along with forecasted waste transportation information by rail, truck and inter-modal shipments. The Applied Research Center (ARC) at Florida International University (FIU) in Miami, Florida, developed and deployed the web-based forecast and transportation system and is responsible for updating the radioactive waste forecast and transportation data on a regular basis to ensure the long-term viability and value of this system. (authors)

  18. Waste Information Management System with 2012-13 Waste Streams - 13095

    Energy Technology Data Exchange (ETDEWEB)

    Upadhyay, H.; Quintero, W.; Lagos, L.; Shoffner, P.; Roelant, D. [Applied Research Center, Florida International University, 10555 West Flagler Street, Suite 2100, Miami, FL 33174 (United States)

    2013-07-01

    The Waste Information Management System (WIMS) 2012-13 was updated to support the Department of Energy (DOE) accelerated cleanup program. The schedule compression required close coordination and a comprehensive review and prioritization of the barriers that impeded treatment and disposition of the waste streams at each site. Many issues related to waste treatment and disposal were potential critical path issues under the accelerated schedule. In order to facilitate accelerated cleanup initiatives, waste managers at DOE field sites and at DOE Headquarters in Washington, D.C., needed timely waste forecast and transportation information regarding the volumes and types of radioactive waste that would be generated by DOE sites over the next 40 years. Each local DOE site historically collected, organized, and displayed waste forecast information in separate and unique systems. In order for interested parties to understand and view the complete DOE complex-wide picture, the radioactive waste and shipment information of each DOE site needed to be entered into a common application. The WIMS application was therefore created to serve as a common application to improve stakeholder comprehension and improve DOE radioactive waste treatment and disposal planning and scheduling. WIMS allows identification of total forecasted waste volumes, material classes, disposition sites, choke points, technological or regulatory barriers to treatment and disposal, along with forecasted waste transportation information by rail, truck and inter-modal shipments. The Applied Research Center (ARC) at Florida International University (FIU) in Miami, Florida, developed and deployed the web-based forecast and transportation system and is responsible for updating the radioactive waste forecast and transportation data on a regular basis to ensure the long-term viability and value of this system. (authors)

  19. Low-level waste management alternatives and analysis in DOE`s programmatic environmental impact statement

    Energy Technology Data Exchange (ETDEWEB)

    Gerstein, J.S. [Dept. of Energy, Washington, DC (United States). Office of Environmental Restoration and Waste Management

    1993-03-01

    The Department of Energy is preparing a Programmatic Environmental Impact Statement (PEIS) for the Environmental Restoration and Waste Management Program. The PEIS has been divided into an Environmental Restoration section and a Waste Management section. Each section has a unique set of alternatives. This paper will focus on the waste management alternatives and analysis. The set of alternatives for waste management has been divided into waste categories. These categories are: high-level waste, transuranic waste, low-level waste, low-level mixed waste, greater-than-class C and low-level waste from commercial sources, hazardous waste, and spent nuclear fuel. This paper will discuss the alternatives and analytical approach that will be used to evaluate these alternatives for the low-level waste section. Although the same alternatives will be considered for all waste types, the analysis will be performed separately for each waste type. In the sections that follow, information will be provided on waste management configurations, the analysis of waste management alternatives, waste types and locations, facility and transportation activities, the facility and transportation impacts assessment, and the compilation of impacts.

  20. Defense-Waste-Processing Faclity, Savannah River Plant, Aiken, SC: Draft environmental impact statement

    International Nuclear Information System (INIS)

    1981-09-01

    The purpose of this Environmental Impact Statement (EIS) is to provide environmental input into both the selection of an appropriate strategy for the permanent disposal of the high-level radioactive waste (HLW) currently stored at the Savannah River Plant (SRP) and the subsequent decision to construct and operate a Defense Waste Processing Facility (DWPF) at the SRP site. The SRP is a major US Department of Energy (DOE) installation for the production of nuclear materials for national defense. Approximately 83 x 10 3 m 3 (22 million gal) of HLW currently are stored in tanks at the SRP site. The proposed DWPF would process the liquid HLW generated by SRP operations into a stable form for ultimate disposal. This EIS assesses the effects of the proposed immobilization project on land use, air quality, water quality, ecological systems, health risk, cultural resources, endangered species, wetlands protection, resource depletion, and regional social and economic systems. The radiological and nonradiological risks of transporting the immobilized wastes are assessed. The environmental impacts of disposal alternatives have recently been evaluated in a previous EIS and are therefore only summarized in this EIS

  1. Defense Waste Processing Facility: Savannah River Plant, Aiken, SC. Final environmental impact statement

    International Nuclear Information System (INIS)

    1982-02-01

    The purpose of this Environmental Impact Statement (EIS) is to provide environmental input into both the selection of an appropriate strategy for the permanent disposal of the high-level radioactive waste (HLW) currently stored at the Savannah River Plant (SRP) and the subsequent decision to construct and operate a Defense Waste Processing Facility (DWPF) at the SRP site. The SRP is a major US Department of Envgy (DOE) installation for the production of nuclear materials for national defense. Approximately 83 x 10 3 m 3 (22 million gal) of HLW currently are stored in tanks at the SRP site. The proposed DWPF would process the liquid HLW generated by SRP operations into a stable form for ultimate disposal. This EIS assesses the effects of the proposed immobilization project on land use, air quality, water quality, ecological systems, health risk, cultural resources, endangered species, wetlands protection, resource depletion, and regional social and economic systems. The radiological and nonradiological risks of transporting the immobilized wastes are assessed. The environmental impacts of disposal alternatives have recently been evaluated in a previous EIS and are therefore only summarized in this EIS

  2. Potential radiological impacts of upper-bound operational accidents during proposed waste disposal alternatives for Hanford defense waste

    Energy Technology Data Exchange (ETDEWEB)

    Mishima, J.; Sutter, S.L.; Hawley, K.A.; Jenkins, C.E.; Napier, B.A.

    1986-02-01

    The Geologic Disposal Alternative, the In-Place Stabilization and Disposal Alternative, and the Reference Disposal Alternative are being evaluated for disposal of Hanford defense high-level, transuranic, and tank wastes. Environmental impacts associated with disposal of these wastes according to the alternatives listed above include potential doses to the downwind population from operation during the application of the handling and processing techniques comprising each disposal alternative. Scenarios for operational accident and abnormal operational events are postulated, on the basis of the currently available information, for the application of the techniques employed for each waste class for each disposal alternative. From these scenarios, an upper-bound airborne release of radioactive material was postulated for each waste class and disposal alternative. Potential downwind radiologic impacts were calculated from these upper-bound events. In all three alternatives, the single postulated event with the largest calculated radiologic impact for any waste class is an explosion of a mixture of ferri/ferro cyanide precipitates during the mechanical retrieval or microwave drying of the salt cake in single shell waste tanks. The anticipated downwind dose (70-year dose commitment) to the maximally exposed individual is 3 rem with a total population dose of 7000 man-rem. The same individual would receive 7 rem from natural background radiation during the same time period, and the same population would receive 3,000,000 man-rem. Radiological impacts to the public from all other postulated accidents would be less than that from this accident; furthermore, the radiological impacts resulting from this accident would be less than one-half that from the natural background radiation dose.

  3. Potential radiological impacts of upper-bound operational accidents during proposed waste disposal alternatives for Hanford defense waste

    International Nuclear Information System (INIS)

    Mishima, J.; Sutter, S.L.; Hawley, K.A.; Jenkins, C.E.; Napier, B.A.

    1986-02-01

    The Geologic Disposal Alternative, the In-Place Stabilization and Disposal Alternative, and the Reference Disposal Alternative are being evaluated for disposal of Hanford defense high-level, transuranic, and tank wastes. Environmental impacts associated with disposal of these wastes according to the alternatives listed above include potential doses to the downwind population from operation during the application of the handling and processing techniques comprising each disposal alternative. Scenarios for operational accident and abnormal operational events are postulated, on the basis of the currently available information, for the application of the techniques employed for each waste class for each disposal alternative. From these scenarios, an upper-bound airborne release of radioactive material was postulated for each waste class and disposal alternative. Potential downwind radiologic impacts were calculated from these upper-bound events. In all three alternatives, the single postulated event with the largest calculated radiologic impact for any waste class is an explosion of a mixture of ferri/ferro cyanide precipitates during the mechanical retrieval or microwave drying of the salt cake in single shell waste tanks. The anticipated downwind dose (70-year dose commitment) to the maximally exposed individual is 3 rem with a total population dose of 7000 man-rem. The same individual would receive 7 rem from natural background radiation during the same time period, and the same population would receive 3,000,000 man-rem. Radiological impacts to the public from all other postulated accidents would be less than that from this accident; furthermore, the radiological impacts resulting from this accident would be less than one-half that from the natural background radiation dose

  4. Proceedings from Workshop on System Studies of Integrated Solid Waste Management

    Energy Technology Data Exchange (ETDEWEB)

    Sundqvist, Jan-Olov (ed.) [Swedish Environmental Research Institute, Stockholm (Sweden); Finnveden, Goeran (ed.) [Stockholm Univ. and Swedish Defence Research Agency, Stockholm (Sweden). Environmental Strategies Research Group; Sundberg, Johan (ed.) [Chalmers Univ. of Technology, Goeteborg (Sweden). Div. of Energy Systems Technology

    2002-12-01

    This international workshop was held to discuss results and experience from system studies of waste management system and methodological questions and issues based on case studies. The workshop gathered more than 40 participants. These proceedings document more than 20 presentations as well as six discussion sessions. An overall aim of the workshop was to draw some general conclusions from the presented studies concerning - waste strategies that generally seem to be favourable or not favourable - methodological approaches and assumptions that can govern the results - lack of knowledge. Considering the environmental aspects, the presented studies indicated that the waste hierarchy seems to be valid: - Paper and plastic: Material recycling < Incineration < Landfilling - Biodegradable waste: Incineration {approx} Anaerobic digestion < Composting < Landfilling. A number of key aspects that can influence the results were identified: - Avoided products (heat, electricity, material, fertiliser produced from waste). - Efficiency in power plants, heating plants etc. and also recycling plants. - Emissions and impacts from recycling plants - Landfilling models, e.g. time frames. - Final sinks: there should be a distinction between temporary sinks (landfills) and final sinks - Local conditions and local impacts are often neglected. - Electricity production - Choice of alternatives to compare can have an influence on the conclusions drawn. - Stakeholders influence. - Linear modelling. - Data gaps. Especially data on toxic substances where identified as an important data gap.

  5. System analysis of energy utilization from waste - evaluation of energy, environment and economy. Summary report

    International Nuclear Information System (INIS)

    Sundqvist, Jan-Olov; Granath, Jessica; Frostell, Bjoern; Bjoerklund, Anna; Eriksson, Ola; Carlsson, Marcus

    1999-12-01

    Energy, environmental, and economic consequences of different management systems for municipal solid waste have been studied in a systems analysis. In the systems analysis, different combinations of incineration, materials recycling of separated plastic and cardboard containers, and biological treatment (anaerobic digestion and composting) of easily degradable organic waste, were studied and also compared to landfilling. In the study a computer model (ORWARE) based on LCA methodology was used. Case studies were performed for three different municipalities: Uppsala, Stockholm, and Aelvdalen. The following parameters were used for evaluating the different waste management options: consumption of energy resources, global warming potential, acidification, eutrophication, photo oxidant formation, heavy metal flows, financial economy and welfare economy, where welfare economy is the sum of financial economy and environmental economy. The study shows that reduced landfilling to the benefit of an increased use of energy and material from waste is positive from an environmental and energy as well as economic aspect. This is mainly due to the fact that the choice of waste management method affects processes outside the waste management system, such as production of district heating, electricity, vehicle fuel, plastic, cardboard, and fertiliser. This means that landfilling of energy-rich waste should be avoided as far as possible, both because of the the environmental impact, and because of the low recovery of resources. Incineration should constitute a basis in the waste management systems of the three municipalities studied, even if the waste has to be transported to a regional facility. Once the waste is collected, longer regional transports are of little significance, as long as the transports are carried out in an efficient manner. Comparing materials recycling and incineration, and biological treatment and incineration, no unambiguous conclusions can be drawn. There are

  6. Waste management system alternatives for treatment of wastes from spent fuel reprocessing

    International Nuclear Information System (INIS)

    McKee, R.W.; Swanson, J.L.; Daling, P.M.

    1986-09-01

    This study was performed to help identify a preferred TRU waste treatment alternative for reprocessing wastes with respect to waste form performance in a geologic repository, near-term waste management system risks, and minimum waste management system costs. The results were intended for use in developing TRU waste acceptance requirements that may be needed to meet regulatory requirements for disposal of TRU wastes in a geologic repository. The waste management system components included in this analysis are waste treatment and packaging, transportation, and disposal. The major features of the TRU waste treatment alternatives examined here include: (1) packaging (as-produced) without treatment (PWOT); (2) compaction of hulls and other compactable wastes; (3) incineration of combustibles with cementation of the ash plus compaction of hulls and filters; (4) melting of hulls and failed equipment plus incineration of combustibles with vitrification of the ash along with the HLW; (5a) decontamination of hulls and failed equipment to produce LLW plus incineration and incorporation of ash and other inert wastes into HLW glass; and (5b) variation of this fifth treatment alternative in which the incineration ash is incorporated into a separate TRU waste glass. The six alternative processing system concepts provide progressively increasing levels of TRU waste consolidation and TRU waste form integrity. Vitrification of HLW and intermediate-level liquid wastes (ILLW) was assumed in all cases

  7. Transport concept of new waste management system (inner packaging system)

    International Nuclear Information System (INIS)

    Hakozaki, K.; Wada, R.

    2004-01-01

    Kobe Steel, Ltd. (KSL) and Transnuclear Tokyo (TNT) have jointly developed a new waste management system concept (called ''Inner packaging system'') for high dose rate wastes generated from nuclear power plants under cooperation with Tokyo Electric Power Company (TEPCO). The inner packaging system is designed as a total management system dedicated to the wastes from nuclear plants in Japan, covering from the wastes conditioning in power plants up to the disposal in final repository. This paper presents the new waste management system concept

  8. Establishment and application of performance evaluation model for collection and transportation system of municipal solid waste

    Institute of Scientific and Technical Information of China (English)

    彭绪亚; 林晓东; 贾传兴; 王渝昆; 黄媛媛

    2009-01-01

    On the basis of analyzing the typical waste collection and transportation mode,the evaluation index system for performance of the waste collection and transportation system was proposed with three grades,which related to six factors,such as economic evaluation,high efficient evaluation,environmental impact assessment,resource evaluation,evaluation of security and emergency,evaluation of management and society. With the performance evaluation theory,the performance evaluation model of waste collection and transportation system was constructed,which quantified the grading standard of index and determined the index weight in analytic hierarchy process (AHP). After evaluating the waste collection and transportation system of the main districts of Chongqing city,the results show that the it has an excellent performance evaluation grade with very high performance level of three indices involving evaluation of management and society,environmental impact assessment,evaluation of security and emergency and quite low performance level of two indices that include high efficient evaluation and economic evaluation.

  9. System Planning With The Hanford Waste Operations Simulator

    International Nuclear Information System (INIS)

    Crawford, T.W.; Certa, P.J.; Wells, M.N.

    2010-01-01

    At the U. S. Department of Energy's Hanford Site in southeastern Washington State, 216 million liters (57 million gallons) of nuclear waste is currently stored in aging underground tanks, threatening the Columbia River. The River Protection Project (RPP), a fully integrated system of waste storage, retrieval, treatment, and disposal facilities, is in varying stages of design, construction, operation, and future planning. These facilities face many overlapping technical, regulatory, and financial hurdles to achieve site cleanup and closure. Program execution is ongoing, but completion is currently expected to take approximately 40 more years. Strategic planning for the treatment of Hanford tank waste is by nature a multi-faceted, complex and iterative process. To help manage the planning, a report referred to as the RPP System Plan is prepared to provide a basis for aligning the program scope with the cost and schedule, from upper-tier contracts to individual facility operating plans. The Hanford Tank Waste Operations Simulator (HTWOS), a dynamic flowsheet simulation and mass balance computer model, is used to simulate the current planned RPP mission, evaluate the impacts of changes to the mission, and assist in planning near-term facility operations. Development of additional modeling tools, including an operations research model and a cost model, will further improve long-term planning confidence. The most recent RPP System Plan, Revision 4, was published in September 2009.

  10. Decision and systems analysis for underground storage tank waste retrieval systems and tank waste remediation system

    International Nuclear Information System (INIS)

    Bitz, D.A.; Berry, D.L.; Jardine, L.J.

    1994-03-01

    Hanford's underground tanks (USTs) pose one of the most challenging hazardous and radioactive waste problems for the Department of Energy (DOE). Numerous schemes have been proposed for removing the waste from the USTs, but the technology options for doing this are largely unproven. To help assess the options, an Independent Review Group (IRG) was established to conduct a broad review of retrieval systems and the tank waste remediation system. The IRG consisted of the authors of this report

  11. Separate collection of household food waste for anaerobic degradation – Comparison of different techniques from a systems perspective

    International Nuclear Information System (INIS)

    Bernstad, A.; Cour Jansen, J. la

    2012-01-01

    Highlight: ► Four modern and innovative systems for household food waste collection are compared. ► Direct emissions and resource use were based on full-scale data. ► Conservation of nutrients/energy content over the system was considered. ► Systems with high energy/nutrient recovery are most environmentally beneficial. - Abstract: Four systems for household food waste collection are compared in relation the environmental impact categories eutrophication potential, acidification potential, global warming potential as well as energy use. Also, a hotspot analysis is performed in order to suggest improvements in each of the compared collection systems. Separate collection of household food waste in paper bags (with and without drying prior to collection) with use of kitchen grinders and with use of vacuum system in kitchen sinks were compared. In all cases, food waste was used for anaerobic digestion with energy and nutrient recovery in all cases. Compared systems all resulted in net avoidance of assessed environmental impact categories; eutrophication potential (−0.1 to −2.4 kg NO 3 - eq/ton food waste), acidification potential (−0.4 to −1.0 kg SO 2 - eq/ton food waste), global warming potential (−790 to −960 kg CO 2 - eq/ton food waste) and primary energy use (−1.7 to −3.6 GJ/ton food waste). Collection with vacuum system results in the largest net avoidance of primary energy use, while disposal of food waste in paper bags for decentralized drying before collection result in a larger net avoidance of global warming, eutrophication and acidification. However, both these systems not have been taken into use in large scale systems yet and further investigations are needed in order to confirm the outcomes from the comparison. Ranking of scenarios differ largely if considering only emissions in the foreground system, indicating the importance of taking also downstream emissions into consideration when comparing different collection systems. The

  12. Waste Isolation Pilot Plant disposal phase final supplemental environmental impact statement. Volume 2: Appendices

    International Nuclear Information System (INIS)

    1997-09-01

    The purpose of the Waste Isolation Pilot Plant Disposal Final Supplemental Environmental Impact Statement (SEIS-II) is to provide information on environmental impacts regarding the Department of Energy's (DOE) proposed disposal operations at WIPP. The Proposed Action describes the treatment and disposal of the Basic inventory of TRU waste over a 35-year period. The Action Alternatives proposed the treatment of the Basic Inventory and an Additional Inventory as well as the transportation of the treated waste to WIPP for disposal over a 150- to 190-year period. The three Action Alternatives include the treatment of TRU waste at consolidation sites to meet WIPP planning-basic Waste Acceptance Criteria, the thermal treatment of TRU waste to meet Land Disposal Restrictions, and the treatment of TRU waste by a shred and grout process. SEIS-II evaluates environmental impacts resulting from the various treatment options; the transportation of TRU waste to WIPP using truck, a combination of truck and regular rail service, and a combination of truck and dedicated rail service; and the disposal of this waste in the repository. Evaluated impacts include those to the general environment and to human health. Additional issues associated with the implementation of the alternatives are discussed to provide further understanding of the decisions to be reached and to provide the opportunity for public input on improving DOE's Environmental Management Program. This volume contains the following appendices: Waste inventory; Summary of the waste management programmatic environmental impact statement and its use in determining human health impacts at treatment sites; Air quality; Life-cycle costs and economic impacts; Transportation; Human health; Facility accidents; Long-term consequence analysis for proposed action and action alternatives; Long-term consequence analysis for no action alternative 2; and Updated estimates of the DOE's transuranic waste volumes

  13. The management of high level waste and its environmental impact

    International Nuclear Information System (INIS)

    Saunders, P.A.H.

    1981-01-01

    This paper summarises the techniques that are used for the management of the radioactive wastes that result from the nuclear generation of electricity and that cannot be released directly into the environment. The quantities and characteristics of the wastes are outlined and a description is given of current and probable future stores and their environmental impact. The research and development programme that is being undertaken to establish the safety and environmental impact of an ultimate repository is discussed and a comparison is made between the activities and toxic potentials of the wastes and those of naturally occurring materials, fossil fuels and fertilisers. It is concluded that the wastes can be managed without undue risk to man or to the environment. (author)

  14. Packaged low-level waste verification system

    Energy Technology Data Exchange (ETDEWEB)

    Tuite, K.; Winberg, M.R.; McIsaac, C.V. [Idaho National Engineering Lab., Idaho Falls, ID (United States)

    1995-12-31

    The Department of Energy through the National Low-Level Waste Management Program and WMG Inc. have entered into a joint development effort to design, build, and demonstrate the Packaged Low-Level Waste Verification System. Currently, states and low-level radioactive waste disposal site operators have no method to independently verify the radionuclide content of packaged low-level waste that arrives at disposal sites for disposition. At this time, the disposal site relies on the low-level waste generator shipping manifests and accompanying records to ensure that low-level waste received meets the site`s waste acceptance criteria. The subject invention provides the equipment, software, and methods to enable the independent verification of low-level waste shipping records to ensure that the site`s waste acceptance criteria are being met. The objective of the prototype system is to demonstrate a mobile system capable of independently verifying the content of packaged low-level waste.

  15. Accelerator-based systems for plutonium destruction and nuclear waste transmutation

    International Nuclear Information System (INIS)

    Arthur, E.D.

    1994-01-01

    Accelerator-base systems are described that can eliminate long-lived nuclear materials. The impact of these systems on global issues relating to plutonium minimization and nuclear waste disposal can be significant. An overview of the components that comprise these systems is given, along with discussion of technology development status and needs. A technology development plan is presented with emphasis on first steps that would demonstrate technical performance

  16. LANDFILLS FOR NON-HAZARDOUS WASTE AND INERT WASTE AND THEIR OPERATION CYCLE IN NEW SYSTEM OF THE WASTE MANAGEMENT

    Directory of Open Access Journals (Sweden)

    Joanna Kunc

    2017-06-01

    Full Text Available Until 2012, the chief method of disposing of municipal waste in Poland was by storing it on non-hazardous and inert waste landfills. The introduction of a new waste management system as well as new formal and legal requirements have forced changes in key documents related to landfill installations such as processing permits, landfill operation instructions and management instructions. The operation cycle has been disturbed, reducing considerably their operation time and leading to a premature discontinuation of waste receipt, closure, and rehabilitation. These processes result in many irregularities in land rehabilitation which are likely to have a significant impact on the environment. The article identifies the fundamental changes which can interrupt the landfill operation cycle, and discusses the threats to the process of rehabilitation, highlighting both administrative and technical problems discovered based on processes that have been already completed. The description has been drawn up based on the study of literature, analyses and the reports of public administration bodies as well as on own research into the number of landfills faced with this problem.

  17. Development of vitrified waste storage system

    International Nuclear Information System (INIS)

    Namiki, S.; Tani, Y.

    1993-01-01

    The authors have developed the radioactive waste vitrification technology and the vitrified waste storage technology. Regarding the vitrified waste storage system development, the authors have completed the design of two types of storage systems. One is a forced convection air cooling system, and the other is a natural convection air cooling system. They have carried out experiments and heat transfer analysis, seismic analysis, vitrified waste dropping and radiation shielding, etc. In this paper, the following three subjects, are discussed: the cooling air flow experiment, the wind effect experiment on the cooling air flow pattern, using a wind tunnel apparatus and the structural integrity evaluation on the dropping vitrified waste

  18. Systems evolution of waste and by-product management and bioenergy production

    Energy Technology Data Exchange (ETDEWEB)

    Okkonen, L.

    2009-07-01

    Evolutionary economic geography provides an inspiring extension to geographical systems analysis. The objective of this dissertation is to apply the systems approach and theory as an integrative framework of sustainable development, and as a capable analytical tool in the analysis of evolutionary resource management and energy production systems in their geographical contexts. The systems investigated are waste and by-product management and bioenergy production systems located in Finland and Scotland. Industrial ecosystem (IE) indicators are constructed for the analysis of waste and by-product management. They present both direct and indirect environmental, economic and social impacts of local waste management operations. The indicators are further applied in scenarios that dynamise the evolution of systems material and energy flows towards the balanced environmental, economic and social development, i.e. the vision of the industrial ecology. The results indicate that the energy use of waste derived fuels in regional cooperation has much potential in the development towards the optimal roundput model of industrial ecosystem. The business opportunities based on local woodfuels are investigated in the context of Scottish forestry policy. The evolution of institutional environments and arrangements of forest management in the Scottish Highlands enables a new type of rural entrepreneurship. The case study of Finnish heat entrepreneurship constructs a heat energy business model, including both the business architecture for product/service flows and the earning logics. Finally, a synthesis of the evolution of natural resource management systems is presented. The evolution process has many geographical contingent conditions, such as resources, technologies, institutions and organisations. Together with general socio-economic mechanisms, they affect the actors in spatial economic processes and interactions. Realisations of the system evolution are structures of economies

  19. Perceived risk impacts from siting hazardous waste facilities

    International Nuclear Information System (INIS)

    Hemphill, R.C.; Edwards, B.K.; Bassett, G.W. Jr.

    1992-01-01

    This paper describes methods for evaluating perception-based economic impacts resulting from siting hazardous waste facilities. Socioeconomic impact analysis has devoted increasing attention to the potential implications of changed public perceptions of risk due to an activity or situation. This contrasts with traditional socioecconomic impact analysis, which has been limited to measuring direct and indirect consequences of activities, e.g., the employment effects of placing a military base in a specified location. Approaches to estimating economic impacts due to changes in public perceptions are ex ante or ex post. The former predict impacts prior to the construction and operation of a facility, while the later is based on impacts that become evident only when the facility is up and running. The theoretical foundations and practical requirements for demonstrating impacts, resulting from the siting of a hazardous facility are described. The theoretical rationale supporting the study of perceived risk research is presented along with discussion of problems that arise in demonstrating the existence and measuring the quantitative importance of economic impacts due to changes in perceived risk. The high-level nuclear waste facility being considered in Nevada is presented as an example in which there is potential for impacts, but where the link between perceived risk and economic conditions has not yet been developed

  20. Perceived risk impacts from siting hazardous waste facilities

    International Nuclear Information System (INIS)

    Hemphill, R.C.; Edwards, B.K.; Bassett, G.W. Jr.

    1992-01-01

    This paper describes methods for evaluating perception-based economic impacts resulting from siting hazardous waste facilities. Socioeconomic impact analysis has devoted increasing attention to the potential implications of changed public perceptions of risk due to an activity or situation. This contrasts with traditional socioeconomic impact analysis, which has been limited to measuring direct and indirect consequences of activities, e.g., the employment effects of placing a military base in a specified location. Approaches to estimating economic impacts due to changes in public perceptions are ex ante or ex post. The former predict impacts prior to the construction and operation of a facility, while the later is based on impacts that become evident only when the facility is up and running. The theoretical foundations and practical requirements for demonstrating impacts resulting from the siting of a hazardous facility are described. The theoretical rationale supporting the study of perceived risk research is presented along with discussion of problems that arise in demonstrating the existence and measuring the quantitative importance of economic impacts due to changes in perceived risk. The high-level nuclear waste facility being considered in Nevada is presented as an example in which there is potential for impacts, but where the link between perceived risk and economic conditions has not yet been developed

  1. Preliminary environmental impact assessment for the final disposal of vanadium hazardous wastes

    International Nuclear Information System (INIS)

    Leyva Bombuse, D.; Peralta, J.L.; Gil Castillo, R.

    2006-01-01

    The aim of the present paper is the environmental impact assessment for the final management of vanadium wastes. The assessed practice is proposed as a final solution for a real problem in Cuba, related with the combustion fossil fuel burn in the electric generation. The study case, embrace the interim storage of hazardous wastes with high vanadium contents (5.08 T) and other heavy metals traces (Cr, Zn). According to the Cuban conditions (tacking into account the environmental regulations and infrastructure lack for the hazardous wastes disposal), it was decided the terrestrial dilution as a final disposal way. The environmental impact assessment methodology used, take into account, in the analyzed management practice, the actions, factors and environmental impacts. The positives and more relevant impacts were obtained for the socioeconomic means. The negative and irrelevant impacts were associated to the biotic and abiotic means. Socioeconomic factors were the most affected and the biotic and abiotic factors were less affected. The waste handling was the most relevant environmental action. According to the evaluated conditions, the obtained results showed that is feasible the terrestrial dilution as a sustainability way for the final disposal of vanadium hazardous wastes

  2. WASTES: Waste System Transportation and Economic Simulation--Version 2:

    International Nuclear Information System (INIS)

    Sovers, R.A.; Shay, M.R.; Ouderkirk, S.J.; McNair, G.W.; Eagle, B.G.

    1988-02-01

    The Waste System Transportation and Economic Simulation (WASTES) Technical Reference Manual was written to describe and document the algorithms used within the WASTES model as implemented in Version 2.23. The manual will serve as a reference for users of the WASTES system. The intended audience for this manual are knowledgeable users of WASTES who have an interest in the underlying principles and algorithms used within the WASTES model. Each algorithm is described in nonprogrammers terminology, and the source and uncertainties of the constants in use by these algorithms are described. The manual also describes the general philosophy and rules used to: 1) determine the allocation and priority of spent fuel generation sources to facility destinations, 2) calculate transportation costs, and 3) estimate the cost of at-reactor ex-pool storage. A detailed description of the implementation of many of the algorithms is also included in the WASTES Programmers Reference Manual (Shay and Buxbaum 1986a). This manual is separated into sections based on the general usage of the algorithms being discussed. 8 refs., 14 figs., 2 tabs

  3. Progress in reducing the environmental impacts of offshore drilling wastes

    International Nuclear Information System (INIS)

    Flemming, D; Candler, J.E.

    2002-01-01

    Full text:Over the past several years, great progress has been made in understanding and reducing the environmental impacts of offshore drilling wastes. Our understanding of sea floor impacts has been helped along by new environmental assessment tools such us computer modeling of sea floor deposition of drilling discharges, sediment profile imaging, and in situ sediment toxicity bioassays. To further reduce environmental impacts, new pollution prevention technologies have been developed that can shrink the environmental footprint of offshore drilling. These technologies reduce the total amount of drilling wastes discharged and include cuttings dryers and centrifuges that can reduce the drilling fluid content of drill cuttings to below 10 percent. In conclusion, the oil and gas industry is adopting more environmentally compatible drilling fluids, new environmental assessment tools and pollution prevention technologies that dramatically reduce the amount of drilling wastes discharged. Together, all of these elements have the potential to reduce environmental impacts of offshore drilling

  4. Radioactive waste disposal system for Cuba. Safety assessment for the long term

    International Nuclear Information System (INIS)

    Peralta Vital, J.L.; Gil Castillo, R.; Mirta Torrez, B.

    1998-01-01

    The present work is performed within the frame of evaluating the radiological impact of the post-closure stage of the facility for disposal of the radioactive wastes generated in Cuba, including a description of the waste disposal systems defined in the country, and taking account of significant elements of their long term safety. The Methodology for Safety Assessment includes: the definition of possible scenarios for evaluation, the identification of principal present uncertainties, the model simulating the release of the radionuclides of the facility, their transport through the geosphere, and their final access to man, evaluating ultimately the radiological impact of the disposal system considering the dose for a critical group. The results obtained allow to demonstrate the radiological safety of the nominative barrier in the design of the system for the particular conditions of Cuba. (author)

  5. Physical System Requirements: Transport Waste

    International Nuclear Information System (INIS)

    1992-04-01

    The Nuclear Waste Policy Act (NWPA) of 1982 assigned to the Department of Energy (DOE) the responsibility for managing the disposal of spent nuclear fuel and high-level radioactive waste and established the Office of Civilian Radioactive Waste Management (OCRWM) for that purpose. The Secretary of Energy, in his November 1989 report to Congress (DOE/RW-0247), announced three new initiatives for the conduct of the Civilian Radioactive Waste Management (CRWM) program. One of these initiatives was to establish improved management structure and procedures. In response, OCRWM performed a management study and the Director subsequently issued the Management Systems Improvement Strategy (MSIS) on August 10, 1990, calling for a rigorous implementation of systems engineering principles with a special emphasis on functional analysis. The functional analysis approach establishes a framework for integrating the program management efforts with the technical requirements analysis into a single, unified, and consistent program. This approach recognizes that just as the facilities and equipment comprising the physical waste management system must perform certain functions, so must certain programmatic and management functions be performed within the program in order to successfully bring the physical system into being. The objective of this document is to establish the essential functions, requirements, interfaces, and system architecture for the Transport Waste mission. Based upon the Nuclear Waste Policy Act, the mission of the Waste Transportation System is to transport SNF and/or HLW from the purchaser's/producer's facilities to, and between, NWMS facilities in a manner that protects the health and safety of the public and of workers and the quality of the environment makes effective use of financial and other resources, and to the fullest extent possible uses the private sector

  6. Socio-economic impact of improper hospital waste management on waste disposal employees

    International Nuclear Information System (INIS)

    Khan, M.R.; Raza, Z. L.

    2011-01-01

    Background: Improper disposal of hospital waste results in spread of disease to the community and its handlers. Objectives: To study the socio-economic impact of inappropriate disposal of hospital waste on the health of the waste disposal staff. Materials and Methods: Interviews were conducted from 50 hospital waste collectors of Lahore and using a pre-structured questionnaire, the information was filled. The data were statistically analyzed for frequencies, and cross tabulation. Results: The improper disposal of hospital waste lead to disease in 45 hospital waste collectors. Eighteen waste collectors were infected with respiratory diseases,14 with skin infection, 7 with tuberculosis and 6 with hepatitis. Only 8 workers were provided with special clothes by the hospital management. The chances of getting infection was high in those who were not provided with special clothes like, gowns, gloves and shoes as compared to those who were provided with these.The total cost of recovery for these diseases also varied with an amount of Rs. 68,340 for the treatment of hepatitis, Rs. 3,150 for tuberculosis, Rs. 1,500 for respiratory diseases and Rs. 1,000 for skin infection. Only 12 workers were given a small remuneration ranging from Rs.100-400 per month as compensation from the hospital administration. Conclusions: Use of protective clothing by the hospital waste disposal collectors can significantly reduce their exposure to the diseases. Policy message: Provision of clothing and gloves to the waste disposal collectors, would help significantly in reducing diseases like tuberculosis, hepatitis, respiratory diseases and skin infection. (author)

  7. Final environmental impact statement. Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    1980-10-01

    This volume contains the appendices for the Final Environmental Impact Statement for the Waste Isolation Pilot Plant (WIPP). Alternative geologic environs are considered. Salt, crystalline rock, argillaceous rock, and tuff are discussed. Studies on alternate geologic regions for the siting of WIPP are reviewed. President Carter's message to Congress on the management of radioactive wastes and the findings and recommendations of the interagency review group on nuclear waste management are included. Selection criteria for the WIPP site including geologic, hydrologic, tectonic, physicochemical compatability, and socio-economic factors are presented. A description of the waste types and the waste processing procedures are given. Methods used to calculate radiation doses from radionuclide releases during operation are presented. A complete description of the Los Medanos site, including archaeological and historic aspects is included. Environmental monitoring programs and long-term safety analysis program are described

  8. System analysis of energy utilization from waste - evaluation of energy, environment and economy. Case study - Aelvdalen

    International Nuclear Information System (INIS)

    Sundqvist, Jan-Olov; Granath, Jessica; Frostell, Bjoern; Bjoerklund, Anna; Eriksson, Ola; Carlsson, Marcus

    1999-12-01

    Energy, environmental, and economic consequences of different management systems for municipal solid waste have been studied in a systems analysis. In the systems analysis, different combinations of incineration, materials recycling of separated plastic and cardboard containers, and biological treatment (anaerobic digestion and composting) of easily degradable organic waste, were studied and also compared to landfilling. In the study a computer model (ORWARE) based on LCA methodology was used. The following parameters were used for evaluating the different waste management options: consumption of energy resources, global warming potential, acidification, eutrophication, photo oxidant formation, heavy metal flows, financial economy and welfare economy, where welfare economy is the sum of financial economy and environmental economy. The study shows that reduced landfilling to the benefit of an increased use of energy and material from waste is positive from an environmental and energy as well as economic aspect. This is mainly due to the fact that the choice of waste management method affects processes outside the waste management system, such as production of district heating, vehicle fuel, plastic, cardboard, and fertiliser. This means that landfilling of energy-rich waste should be avoided as far as possible, both because of the the environmental impact, and because of the low recovery of resources. Incineration should constitute a basis in the waste management system of Aelvdalen, even if the waste has to be transported to a regional facility. Once the waste is collected, longer regional transports are of little significance, as long as the transports are carried out in an efficient manner. Comparing materials recycling and incineration, and biological treatment and incineration, no unambiguous conclusions can be drawn. There are benefits and drawbacks associated with all these waste management options. Materials recycling of plastic containers is comparable to

  9. WASTE ELECTRICAL AND ELECTRONIC EQUIPMENT FRAMEWORK LEGISLATION AND MANAGEMENT SYSTEM IN EUROPE

    Directory of Open Access Journals (Sweden)

    Maria-Loredana NICOLESCU

    2015-07-01

    Full Text Available Waste electrical and electronic equipment (WEEE has become one of the most significant waste streams due to the increasing amounts and environmental impact. It is very important to know how to manage the WEEE quantities, what laws are in force in this field and what policies are available to apply. This paper presents the e-waste legislation and management system from some of the European countries, as examples. The hierarchy of the management systems is presented according to the framework Directive and legislative approaches. There are also shown the "take-back" policy, the "polluter pays" principle and the "extended producer responsibility" principle. The goal of this research is to highlight the WEEE framework legislation in Europe and to present the EU policies for the WEEE management system.

  10. Impact of advanced fuel cycle options on waste management policies

    International Nuclear Information System (INIS)

    Gordelier, Stan; Cavedon, Jean-Marc

    2006-01-01

    OECD/NEA has performed a study on the impact of advanced fuel cycle options on waste management policies with 33 experts from 12 member countries, 1 non-member country and 2 international organizations. The study extends a series of previous ones on partitioning and transmutation (P and T) issues, focusing on the performance assessments for repositories of high-level waste (HLW) arising from advanced fuel cycles. This study covers a broader spectrum than previous studies, from present industrial practice to fully closed cycles via partially closed cycles (in terms of transuranic elements); 9 fuel cycle schemes and 4 variants. Elements of fuel cycles are considered primarily as sources of waste, the internal mass flows of each scheme being kept for the sake of mass conservation. The compositions, activities and heat loads of all waste flows are also tracked. Their impact is finally assessed on the waste repository concepts. The study result confirms the findings from the previous NEA studies on P and T on maximal reduction of the waste source term and maximal use of uranium resources. In advanced fuel cycle schemes the activity of the waste is reduced by burning first plutonium and then minor actinides and also the uranium consumption is reduced, as the fraction of fast reactors in the park is increased to 100%. The result of the repository performance assessments, analysing the effect of different HLW isotopic composition on repository performance and on repository capacity, shows that the maximum dose released to biosphere at any time in normal conditions remains, for all schemes and for all the repository concepts examined, well below accepted radiation protection thresholds. The major impact is on the detailed concept of the repositories, through heat load and waste volume. Advanced fuel cycles could allow a repository to cover waste produced from 5 to 20 times more electricity generation than PWR once-through cycle. Given the flexibility of the advanced fuel

  11. Advancing grate-firing for greater environmental impacts and efficiency for decentralized biomass/wastes combustion

    DEFF Research Database (Denmark)

    Yin, Chungen; Li, Shuangshuang

    2017-01-01

    to well suit decentralized biomass and municipal/industrial wastes combustion. This paper discusses with concrete examples how to advance grate-firing for greater efficiency and environmental impacts, e.g., use of advanced secondary air system, flue gas recycling and optimized grate assembly, which...

  12. Waste Feed Delivery Transfer System Analysis

    Energy Technology Data Exchange (ETDEWEB)

    JULYK, L.J.

    2000-05-05

    This document provides a documented basis for the required design pressure rating and pump pressure capacity of the Hanford Site waste-transfer system in support of the waste feed delivery to the privatization contractor for vitrification. The scope of the analysis includes the 200 East Area double-shell tank waste transfer pipeline system and the associated transfer system pumps for a11 Phase 1B and Phase 2 waste transfers from AN, AP, AW, AY, and A2 Tank Farms.

  13. Waste Feed Delivery Transfer System Analysis

    International Nuclear Information System (INIS)

    JULYK, L.J.

    2000-01-01

    This document provides a documented basis for the required design pressure rating and pump pressure capacity of the Hanford Site waste-transfer system in support of the waste feed delivery to the privatization contractor for vitrification. The scope of the analysis includes the 200 East Area double-shell tank waste transfer pipeline system and the associated transfer system pumps for a11 Phase 1B and Phase 2 waste transfers from AN, AP, AW, AY, and A2 Tank Farms

  14. Waste acceptance product specifications for vitrified high-level waste forms

    International Nuclear Information System (INIS)

    Applewhite-Ramsey, A.; Sproull, J.F.

    1994-01-01

    The Department of Energy (DOE) Office of Environmental Restoration and Waste Management (EM) has developed Waste Acceptance Product Specifications (EM-WAPS). The EM-WAPS will be the basis for defining product acceptance criteria compatible with the requirements of the Civilian Radioactive Waste Management System (CRWMS). The relationship between the EM-WAPS and the CRWMS Systems Requirements document (WA-SRD) will be discussed. The impact of the EM-WAPS on the Savannah River Sit (SRS) Defense Waste Processing Facility's (DWPF) Waste Acceptance Program, Waste Qualification Run planning, and startup schedule will also be reported. 14 refs., 2 tabs

  15. Liquid waste treatment system. Final report

    International Nuclear Information System (INIS)

    Baker, M.N.; Houston, H.M.

    1999-01-01

    Pretreatment of high-level liquid radioactive waste (HLW) at the West Valley Demonstration Project (WVDP) involved three distinct processing operations: decontamination of liquid HLW in the Supernatant Treatment System (STS); volume reduction of decontaminated liquid in the Liquid Waste Treatment System (LWTS); and encapsulation of resulting concentrates into an approved cement waste form in the Cement Solidification System (CSS). Together, these systems and operations made up the Integrated Radwaste Treatment System (IRTS)

  16. Northeast Regional environmental impact study: Waste disposal technical report

    Science.gov (United States)

    Saguinsin, J. L. S.

    1981-04-01

    The potential for cumulative and interactive environmental impacts associated with the conversion of multiple generating stations in the Northeast is assessed. The estimated quantities and composition of wastes resulting from coal conversion, including ash and SO2 scrubber sludge, are presented. Regulations governing the use of ash and scrubber sludge are identified. Currently available waste disposal schemes are described. The location, capacity, and projected life of present and potential disposal sites in the region are identified. Waste disposal problems, both hazardous and nonhazardous, are evaluated. Environmental regulations within the region as they pertain to coal conversion and as they affect the choice of conversion alternatives are discussed. A regional waste management strategy for solid waste disposal is developed.

  17. The effects of unit pricing system upon household solid waste management: The Korean experience

    Energy Technology Data Exchange (ETDEWEB)

    Hong, S.

    1999-09-01

    Initial effects of adoption of a unit pricing system paired with aggressive recycling programs appear to be substantial. This paper explores the impact of price incentives under the unit pricing system on household solid waste generation and recycling in Korea. The author employs a simultaneous equation model considering the feedback effects between total waste generation and recycling. Estimation results using 3017 Korean household survey data indicate that a rise in waste collection fee induces households to recycle more wastes. However, this effect is partially offset by decreases in source-reduction efforts due to the feedback effects, resulting in relatively lower price elasticity of demand for solid waste collection services. This implies that household demand for solid waste collection services will not decrease much with additional increases in the collection fee, unless further recycling incentives such as more frequent recyclable pickup services are accompanied.

  18. The impact measure of solid waste management on health: the hazard index

    Directory of Open Access Journals (Sweden)

    Loredana Musmeci

    2010-01-01

    Full Text Available The risk associated with waste exposure depends on the level of emissions arising from waste disposal and from the effects of these emissions on human health (dose-reponse. In 2007 an epidemiological study was conducted in two Italian provinces of the Campania Region, namely Naples and Caserta, with the aim of assessing the health effects deriving from exposure to waste. In these studies, the important aspect is the population exposure assessment, in relation to the different types of waste disposal. The Regional Agency for Environmental Protection (ARPA Campania has identified and characterized the various authorized/unauthorized dumping sites in the provinces of Naples and Caserta. Most of the waste disposals used are illegal and invisible (sunken or buried; thus, the toxic substances therein contained are unknown and difficult to identify. In order to locate the possible areas exposed to a higher waste-related health risk, a synthetical "hazard index" (at the municipality level was designed. By means of GIS, the number of waste impact areas was identified for each of the 196 municipalities in the two provinces; then, Census data (ISTAT 2001 was used to estimate the proportion of the population living in the impact areas. The synthetical hazard index at municipality level accounts for three elements: a the intrinsic characterization of the waste disposal, determining the way in which the pollutant is released; b the impact area of the dumping site (within 1 km radius, same areas are influenced by more than one site; c the density of the population living in the "impact area" surrounding the waste disposal site.

  19. Environmental impacts of food waste: Learnings and challenges from a case study on UK.

    Science.gov (United States)

    Tonini, Davide; Albizzati, Paola Federica; Astrup, Thomas Fruergaard

    2018-06-01

    Food waste, particularly when avoidable, incurs loss of resources and considerable environmental impacts due to the multiple processes involved in the life cycle. This study applies a bottom-up life cycle assessment method to quantify the environmental impacts of the avoidable food waste generated by four sectors of the food supply chain in United Kingdom, namely processing, wholesale and retail, food service, and households. The impacts were quantified for ten environmental impact categories, from Global Warming to Water Depletion, including indirect land use change impacts due to demand for land. The Global Warming impact of the avoidable food waste was quantified between 2000 and 3600 kg CO 2 -eq. t -1 . The range reflected the different compositions of the waste in each sector. Prominent contributors to the impact, across all the environmental categories assessed, were land use changes and food production. Food preparation, for households and food service sectors, also provided an important contribution to the Global Warming impacts, while waste management partly mitigated the overall impacts by incurring significant savings when landfilling was replaced with anaerobic digestion and incineration. To further improve these results, it is recommended to focus future efforts on providing improved data regarding the breakdown of specific food products within the mixed waste, indirect land use change effects, and the share of food waste undergoing cooking. Learning from this and previous studies, we highlight the challenges related to modelling and methodological choices. Particularly, food production datasets should be chosen and used carefully, to avoid double counting and overestimation of the final impacts. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  20. Life cycle assessment of capital goods in waste management systems

    DEFF Research Database (Denmark)

    Brogaard, Line Kai-Sørensen; Christensen, Thomas Højlund

    2016-01-01

    plant, an incinerator and a landfill site. The contribution of capital goods to the overall environmental aspects of managing the waste was significant but varied greatly depending on the technology and the impact category: Global Warming: 1-17%, Stratospheric Ozone Depletion: 2-90%, Ionising Radiation......The environmental importance of capital goods (trucks, buildings, equipment, etc.) was quantified by LCA modelling 1 tonne of waste treated in five different waste management scenarios. The scenarios involved a 240L collection bin, a 16m3 collection truck, a composting plant, an anaerobic digestion...... for treatment facilities than for the collection and transportation of waste and for the landfilling of waste. It is concluded that the environmental impacts of capital goods should always be included in the LCA modelling of waste management, unless the only impact category considered is Global Warming....

  1. Effect of the waste exclusion distance on the postclosure performance of a reference disposal system

    International Nuclear Information System (INIS)

    Goodwin, B.W.; Hajas, W.C.; Melnyk, T.W.; Kitson, C.I.

    1995-07-01

    The concept for disposal of Canada's nuclear fuel waste involves the isolation of the waste in corrosion-resistant containers placed in a sealed vault at a depth of 500 to 1000 metres in plutonic rock of the Canadian Shield. The technical feasibility of this concept, and its impact on the environment and human health, are summarized in an Environmental Impact Statement (EIS). The EIS is supported by nine primary references, one of which describes the postclosure assessment of the concept. The postclosure assessment is concerned with the long-term performance and behaviour of the disposal system, starting from the time the disposal facility is closed and extending far into the future. The discussions presented in the EIS and the postclosure assessment are based on a case study of a hypothetical disposal system with specific design features and host rock characteristics. The design features are founded on a conceptual engineering study and the rock characteristics are derived from geological studies of a field research area. In the case study, the long-term performance of the hypothetical disposal system was strongly dependent on a design parameter called the waste exclusion distance. This distance is defined as the minimum length of low-permeability sparsely fractured rock between the waste-emplacement part of the hypothetical vault and a nearby conductive fracture zone in the host rock. In this report, we examine trends in estimates of radiological impact as a function of the waste exclusion distance. (author). 18 refs., 14 figs

  2. Review of LCA studies of solid waste management systems – Part I: Lessons learned and perspectives

    International Nuclear Information System (INIS)

    Laurent, Alexis; Bakas, Ioannis; Clavreul, Julie; Bernstad, Anna; Niero, Monia; Gentil, Emmanuel; Hauschild, Michael Z.; Christensen, Thomas H.

    2014-01-01

    Highlights: • We perform a critical review of 222 LCA studies of solid waste management systems. • Studies mainly concentrated in Europe with little application in developing countries. • Assessments of relevant waste types apart from household waste have been overlooked. • Local specificities of systems prevent a meaningful generalisation of the LCA results. • LCA should support recommendations representative of the local conditions. - Abstract: The continuously increasing solid waste generation worldwide calls for management strategies that integrate concerns for environmental sustainability. By quantifying environmental impacts of systems, life cycle assessment (LCA) is a tool, which can contribute to answer that call. But how, where and to which extent has it been applied to solid waste management systems (SWMSs) until now, and which lessons can be learnt from the findings of these LCA applications? To address these questions, we performed a critical review of 222 published LCA studies of SWMS. We first analysed the geographic distribution and found that the published studies have primarily been concentrated in Europe with little application in developing countries. In terms of technological coverage, they have largely overlooked application of LCA to waste prevention activities and to relevant waste types apart from household waste, e.g. construction and demolition waste. Waste management practitioners are thus encouraged to abridge these gaps in future applications of LCA. In addition to this contextual analysis, we also evaluated the findings of selected studies of good quality and found that there is little agreement in the conclusions among them. The strong dependence of each SWMS on local conditions, such as waste composition or energy system, prevents a meaningful generalisation of the LCA results as we find it in the waste hierarchy. We therefore recommend stakeholders in solid waste management to regard LCA as a tool, which, by its ability of

  3. Review of LCA studies of solid waste management systems – Part I: Lessons learned and perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Laurent, Alexis, E-mail: alau@dtu.dk [Division for Quantitative Sustainability Assessment, Department of Management Engineering, Technical University of Denmark, 2800 Kgs. Lyngby (Denmark); Bakas, Ioannis [Division for Quantitative Sustainability Assessment, Department of Management Engineering, Technical University of Denmark, 2800 Kgs. Lyngby (Denmark); Clavreul, Julie [Residual Resources Engineering, Department of Environmental Engineering, Technical University of Denmark, 2800 Kgs. Lyngby (Denmark); Bernstad, Anna [Water and Environmental Engineering, Department of Chemical Engineering, Lund University, 221 00 Lund (Sweden); Niero, Monia [Division for Quantitative Sustainability Assessment, Department of Management Engineering, Technical University of Denmark, 2800 Kgs. Lyngby (Denmark); ECO – Ecosystems and Environmental Sustainability, Department of Chemical and Biochemical Engineering, Technical University of Denmark, 4000 Roskilde (Denmark); Gentil, Emmanuel [Copenhagen Resource Institute, 1215 Copenhagen K (Denmark); Hauschild, Michael Z. [Division for Quantitative Sustainability Assessment, Department of Management Engineering, Technical University of Denmark, 2800 Kgs. Lyngby (Denmark); Christensen, Thomas H. [Residual Resources Engineering, Department of Environmental Engineering, Technical University of Denmark, 2800 Kgs. Lyngby (Denmark)

    2014-03-01

    Highlights: • We perform a critical review of 222 LCA studies of solid waste management systems. • Studies mainly concentrated in Europe with little application in developing countries. • Assessments of relevant waste types apart from household waste have been overlooked. • Local specificities of systems prevent a meaningful generalisation of the LCA results. • LCA should support recommendations representative of the local conditions. - Abstract: The continuously increasing solid waste generation worldwide calls for management strategies that integrate concerns for environmental sustainability. By quantifying environmental impacts of systems, life cycle assessment (LCA) is a tool, which can contribute to answer that call. But how, where and to which extent has it been applied to solid waste management systems (SWMSs) until now, and which lessons can be learnt from the findings of these LCA applications? To address these questions, we performed a critical review of 222 published LCA studies of SWMS. We first analysed the geographic distribution and found that the published studies have primarily been concentrated in Europe with little application in developing countries. In terms of technological coverage, they have largely overlooked application of LCA to waste prevention activities and to relevant waste types apart from household waste, e.g. construction and demolition waste. Waste management practitioners are thus encouraged to abridge these gaps in future applications of LCA. In addition to this contextual analysis, we also evaluated the findings of selected studies of good quality and found that there is little agreement in the conclusions among them. The strong dependence of each SWMS on local conditions, such as waste composition or energy system, prevents a meaningful generalisation of the LCA results as we find it in the waste hierarchy. We therefore recommend stakeholders in solid waste management to regard LCA as a tool, which, by its ability of

  4. Modeling for waste management associated with environmental-impact abatement under uncertainty.

    Science.gov (United States)

    Li, P; Li, Y P; Huang, G H; Zhang, J L

    2015-04-01

    Municipal solid waste (MSW) treatment can generate significant amounts of pollutants, and thus pose a risk on human health. Besides, in MSW management, various uncertainties exist in the related costs, impact factors, and objectives, which can affect the optimization processes and the decision schemes generated. In this study, a life cycle assessment-based interval-parameter programming (LCA-IPP) method is developed for MSW management associated with environmental-impact abatement under uncertainty. The LCA-IPP can effectively examine the environmental consequences based on a number of environmental impact categories (i.e., greenhouse gas equivalent, acid gas emissions, and respiratory inorganics), through analyzing each life cycle stage and/or major contributing process related to various MSW management activities. It can also tackle uncertainties existed in the related costs, impact factors, and objectives and expressed as interval numbers. Then, the LCA-IPP method is applied to MSW management for the City of Beijing, the capital of China, where energy consumptions and six environmental parameters [i.e., CO2, CO, CH4, NOX, SO2, inhalable particle (PM10)] are used as systematic tool to quantify environmental releases in entire life cycle stage of waste collection, transportation, treatment, and disposal of. Results associated with system cost, environmental impact, and the related policy implication are generated and analyzed. Results can help identify desired alternatives for managing MSW flows, which has advantages in providing compromised schemes under an integrated consideration of economic efficiency and environmental impact under uncertainty.

  5. Thermodynamic analysis of waste heat power generation system

    International Nuclear Information System (INIS)

    Guo, Jiangfeng; Xu, Mingtian; Cheng, Lin

    2010-01-01

    In the present work, a waste heat power generation system is analyzed based on the criteria with and without considering the heat/exergy loss to the environment. For the criteria without considering the heat/exergy loss to the environment, the first- and second-law efficiencies display different tendencies with the variations of some system parameters. When the heat/exergy loss to the environment is taken into consideration, the first and second law efficiencies display the same tendency. Thus, choosing the appropriate expressions for the performance criteria is crucial for the optimization design of the waste heat power generation system. It is found that there are two approaches to improving the system performance: one is to improve the heat/exergy input; the other is to enhance the heat-work conversion ability of the system. The former would deteriorate the environment if the heat-work conversion ability of the system remains unchanged; the latter could reduce the environmental impact but it's restricted by the heat/exergy input. Therefore, the optimal operation condition should be achieved at the trade-off between the heat/exergy input and the heat-work conversion ability of the system.

  6. Waste Management System Description Document (WMSD)

    International Nuclear Information System (INIS)

    1992-02-01

    This report is an appendix of the ''Waste Management Description Project, Revision 1''. This appendix is about the interim approach for the technical baseline of the waste management system. It describes the documentation and regulations of the waste management system requirements and description. (MB)

  7. Waste monitoring system for effluents

    International Nuclear Information System (INIS)

    Macdonald, J.M.; Gomez, B.; Trujillo, L.; Malcom, J.E.; Nekimken, H.; Pope, N.; Bibeau, R.

    1995-07-01

    The waste monitoring system in use at Los Alamos National Laboratory's Plutonium Facility, TA-55, is a computer-based system that proves real-time information on industrial effluents. Remote computers monitor discharge events and data moves from one system to another via a local area network. This report describes the history, system design, summary, instrumentation list, displays, trending screens, and layout of the waste monitoring system

  8. System analysis of energy utilization from waste - evaluation of energy, environment and economy. Case study - Uppsala

    International Nuclear Information System (INIS)

    Sundqvist, Jan-Olov; Granath, Jessica; Frostell, Bjoern; Bjoerklund, Anna; Eriksson, Ola; Carlsson, Marcus

    1999-12-01

    Energy, environmental, and economic consequences of different management systems for municipal solid waste have been studied in a systems analysis. In the systems analysis, different combinations of incineration, materials recycling of separated plastic and cardboard containers, and biological treatment (anaerobic digestion and composting) of easily degradable organic waste, were studied and also compared to landfilling. In the study a computer model (ORWARE) based on LCA methodology was used. The following parameters were used for evaluating the different waste management options: consumption of energy resources, global warming potential, acidification, eutrophication, photo oxidant formation, heavy metal flows, financial economy and welfare economy, where welfare economy is the sum of financial economy and environmental economy. The study shows that reduced landfilling to the benefit of an increased use of energy and material from waste is positive from an environmental and energy as well as economic aspect. This is mainly due to the fact that the choice of waste management method affects processes outside the waste management system, such as production of district heating, electricity, vehicle fuel, plastic, cardboard, and fertiliser. This means that landfilling of energy-rich waste should be avoided as far as possible, both because of the the environmental impact, and because of the low recovery of resources. Incineration should constitute a basis in the waste management system of Uppsala. Once the waste is collected, longer regional transports are of little significance, as long as the transports are carried out in an efficient manner. Comparing materials recycling and incineration, and biological treatment and incineration, no unambiguous conclusions can be drawn. There are benefits and drawbacks associated with all these waste management options. Materials recycling of plastic containers is comparable to incineration from a welfare economic aspect, but gives

  9. Forecasting municipal solid waste generation in a fast-growing urban region with system dynamics modeling

    International Nuclear Information System (INIS)

    Dyson, Brian; Chang, N.-B.

    2005-01-01

    Both planning and design of municipal solid waste management systems require accurate prediction of solid waste generation. Yet achieving the anticipated prediction accuracy with regard to the generation trends facing many fast-growing regions is quite challenging. The lack of complete historical records of solid waste quantity and quality due to insufficient budget and unavailable management capacity has resulted in a situation that makes the long-term system planning and/or short-term expansion programs intangible. To effectively handle these problems based on limited data samples, a new analytical approach capable of addressing socioeconomic and environmental situations must be developed and applied for fulfilling the prediction analysis of solid waste generation with reasonable accuracy. This study presents a new approach - system dynamics modeling - for the prediction of solid waste generation in a fast-growing urban area based on a set of limited samples. To address the impact on sustainable development city wide, the practical implementation was assessed by a case study in the city of San Antonio, Texas (USA). This area is becoming one of the fastest-growing regions in North America due to the economic impact of the North American Free Trade Agreement (NAFTA). The analysis presents various trends of solid waste generation associated with five different solid waste generation models using a system dynamics simulation tool - Stella[reg]. Research findings clearly indicate that such a new forecasting approach may cover a variety of possible causative models and track inevitable uncertainties down when traditional statistical least-squares regression methods are unable to handle such issues

  10. Potential nuclear material safeguards applied to the Department of Energy's Civilian Radioactive Waste Management System

    International Nuclear Information System (INIS)

    Danker, W.J.; Floyd, W.

    1993-01-01

    The Office of Civilian Radioactive Waste Management (OCRWM) within the U.S. Department of Energy is charged with the responsibility of safe and efficient disposal of this Nation's civilian high-level radioactive waste and spent fuel. Part of this responsibility includes providing for the application of both domestic and international safeguards on nuclear material at facilities of the Civilian Waste Management System. While detailed safeguards requirements for these disposal facilities have yet to be established, once established, they could impact facility design. Accordingly, OCRWM has participated in efforts to develop safeguards approaches for geologic repositories and will continue to participate actively with the Nuclear Regulatory Commission (NRC), International Atomic Energy Agency (IAEA), as well as other Department of Energy (DOE) Offices in efforts to resolve safeguards issues related to spent fuel disposal, to minimize any potential design impacts and to support effective nuclear material safeguards. The following paper discusses current plants and issues related to the application of safeguards to the Civilian Radioactive Waste Management System (CRWMS)

  11. Final environmental impact statement. Waste Isolation Pilot Plant

    Energy Technology Data Exchange (ETDEWEB)

    1980-10-01

    This volume contains the appendices for the Final Environmental Impact Statement for the Waste Isolation Pilot Plant (WIPP). Alternative geologic environs are considered. Salt, crystalline rock, argillaceous rock, and tuff are discussed. Studies on alternate geologic regions for the siting of WIPP are reviewed. President Carter's message to Congress on the management of radioactive wastes and the findings and recommendations of the interagency review group on nuclear waste management are included. Selection criteria for the WIPP site including geologic, hydrologic, tectonic, physicochemical compatability, and socio-economic factors are presented. A description of the waste types and the waste processing procedures are given. Methods used to calculate radiation doses from radionuclide releases during operation are presented. A complete description of the Los Medanos site, including archaeological and historic aspects is included. Environmental monitoring programs and long-term safety analysis program are described. (DMC)

  12. Cost Implications of an Interim Storage Facility in the Waste Management System

    Energy Technology Data Exchange (ETDEWEB)

    Jarrell, Joshua J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Joseph, III, Robert Anthony [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Howard, Rob L [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Petersen, Gordon M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Nutt, Mark [Argonne National Lab. (ANL), Argonne, IL (United States); Carter, Joe [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Cotton, Thomas [Complex Systems Group, Bozeman, MT (United States)

    2016-09-01

    This report provides an evaluation of the cost implications of incorporating a consolidated interim storage facility (ISF) into the waste management system (WMS). Specifically, the impacts of the timing of opening an ISF relative to opening a repository were analyzed to understand the potential effects on total system costs.

  13. Household food waste to wastewater or to solid waste? That is the question.

    Science.gov (United States)

    Diggelman, Carol; Ham, Robert K

    2003-12-01

    Decision makers need sound analyses of economic and environmental impacts of options for managing household food waste. Food waste impacts public health (it rots, smells, and attracts rodents) and costs (it drives collection frequency). A life cycle inventory is used to quantify total materials, energy, costs and environmental flows for three municipal solid waste systems (collection followed by compost, waste-to-energy or landfill) and two wastewater systems (kitchen food waste disposer followed by rural on-site or municipal wastewater treatment) for food waste management. Inventory parameters are expressed per 100 kg of food waste (wet weight) to place data on a normalised basis for comparison. System boundaries include acquisition, use and decommissioning. Parameters include inputs (land, materials, water) and output emissions to air, water and land. Parameters are ranked simply from high to low. Ranking highest overall was the rural wastewater system, which has a high amount of food waste and carrier water relative to the total throughput over its design life. Waste-to-energy was second; burning food waste yields little exportable energy and is costly. Next, municipal wastewater tied with landfill. Municipal wastewater is low for land, material, energy and cost, but is highest for food waste by-product (sludge). Landfill ranks low for air emissions and cost. Compost ranks lowest; it has the lowest material and water inputs and generates the least wastewater and waterborne waste.

  14. Environmental impacts of food waste: Learnings and challenges from a case study on UK

    DEFF Research Database (Denmark)

    Tonini, Davide; Albizzati, Paola Federica; Astrup, Thomas Fruergaard

    2018-01-01

    Food waste, particularly when avoidable, incurs loss of resources and considerable environmental impacts due to the multiple processes involved in the life cycle. This study applies a bottom-up life cycle assessment method to quantify the environmental impacts of the avoidable food waste generate...... highlight the challenges related to modelling and methodological choices. Particularly, food production datasets should be chosen and used carefully, to avoid double counting and overestimation of the final impacts.......Food waste, particularly when avoidable, incurs loss of resources and considerable environmental impacts due to the multiple processes involved in the life cycle. This study applies a bottom-up life cycle assessment method to quantify the environmental impacts of the avoidable food waste generated...... by four sectors of the food supply chain in United Kingdom, namely processing, wholesale and retail, food service, and households. The impacts were quantified for ten environmental impact categories, from Global Warming to Water Depletion, including indirect land use change impacts due to demand for land...

  15. Health and environmental risk-related impacts of actinide burning on high-level waste disposal

    International Nuclear Information System (INIS)

    Forsberg, C.W.

    1992-05-01

    The potential health and environmental risk-related impacts of actinide burning for high-level waste disposal were evaluated. Actinide burning, also called waste partitioning-transmutation, is an advanced method for radioactive waste management based on the idea of destroying the most toxic components in the waste. It consists of two steps: (1) selective removal of the most toxic radionuclides from high-level/spent fuel waste and (2) conversion of those radionuclides into less toxic radioactive materials and/or stable elements. Risk, as used in this report, is defined as the probability of a failure times its consequence. Actinide burning has two potential health and environmental impacts on waste management. Risks and the magnitude of high-consequence repository failure scenarios are decreased by inventory reduction of the long-term radioactivity in the repository. (What does not exist cannot create risk or uncertainty.) Risk may also be reduced by the changes in the waste characteristics, resulting from selection of waste forms after processing, that are superior to spent fuel and which lower the potential of transport of radionuclides from waste form to accessible environment. There are no negative health or environmental impacts to the repository from actinide burning; however, there may be such impacts elsewhere in the fuel cycle

  16. Adaptation to the waste anesthesia gas system: Gaps in knowledge and opportunities for positive environmental impact

    Directory of Open Access Journals (Sweden)

    John Palmisano

    2015-12-01

    Full Text Available Canisters containing activated charcoal are commonly used in the laboratory setting to collect waste anesthetic gas (WAG. This requires the weighing of the WAG canister after each use and for investigators to maintain an accurate time log of anesthesia duration. A typical rodent anesthesia station may include the use of 3 WAG canisters; one for the anesthesia induction box, one for the operative table, and one for gas monitoring. To simplify the anesthesia breathing circuit, we have developed a “T” connector that replaces the need for having multiple WAG canisters. The “T” connector directs the waste anesthetic from multiple sources; the anesthesia induction box, operative table and gas monitor into a single WAG canister. Use of the “T” connector appears to be a safe, acceptable device that conveniently directs waste gas while improving charcoal adsorption within the canister. In addition, this device may have a positive impact on the environment with a secondary benefit of possible cost savings associated with the purchase and disposal of the hazardous waste contents.

  17. Environmental systems analysis of biogas systems-Part II: The environmental impact of replacing various reference systems

    International Nuclear Information System (INIS)

    Boerjesson, Pal; Berglund, Maria

    2007-01-01

    This paper analyses the overall environmental impact when biogas systems are introduced and replace various reference systems for energy generation, waste management and agricultural production. The analyses are based on Swedish conditions using a life-cycle perspective. The biogas systems included are based on different combinations of raw materials and final use of the biogas produced (heat, power and transportation fuel). A general conclusion is that biogas systems normally lead to environmental improvements, which in some cases are considerable. This is often due to indirect environmental benefits of changed land use and handling of organic waste products (e.g. reduced nitrogen leaching, emissions of ammonia and methane), which often exceed the direct environmental benefits achieved when fossil fuels are replaced by biogas (e.g. reduced emissions of carbon dioxide and air pollutants). Such indirect benefits are seldom considered when biogas is evaluated from an environmental point of view. The environmental impact from different biogas systems can, however, vary significantly due to factors such as the raw materials utilised, energy service provided and reference system replaced

  18. Hanford solid waste management system simulation

    International Nuclear Information System (INIS)

    Shaver, S.R.; Armacost, L.L.; Konynenbelt, H.S.; Wehrman, R.R.

    1994-12-01

    This paper describes systems analysis and simulation model development for a proposed solid waste management system at a U.S. Department of Energy Site. The proposed system will include a central storage facility, four treatment facilities, and three disposal sites. The material managed by this system will include radioactive, hazardous, and mixed radioactive and hazardous wastes. The objective of the modeling effort is to provide a means of evaluating throughput and capacity requirements for the proposed treatment, storage, and disposal facilities. The model is used to evaluate alternative system configurations and the effect on the alternatives of changing waste stream characteristics and receipt schedules. An iterative modeling and analysis approach is used that provides macro-level models early in the project and establishes credibility with the customer. The results from the analyses based on the macro models influence system design decisions and provide information that helps focus subsequent model development. Modeling and simulation of alternative system configurations and operating strategies yield a better understanding of the solid waste system requirements. The model effectively integrates information obtained through systems analysis and waste characterization to provide a consistent basis for system and facility planning

  19. LCA of waste management systems: Development of tools for modeling and uncertainty analysis

    DEFF Research Database (Denmark)

    Clavreul, Julie

    Since the late 1990s, life cycle assessment (LCA) has been increasingly applied to waste management to quantify direct, indirect and avoided impacts from various treatment options. The construction of inventories for waste management systems differs from classical product-LCAs in that (1...... to be modelled rather than monitored as in classical LCA (e.g. landfilling or the application of processed waste on agricultural land). Therefore LCA-tools are needed which specifically address these issues and enable practitioners to model properly their systems. In this thesis several pieces of work...... in waste treatment technologies. These material transfer functions specify how substances in input flows are transferred to output flows and environmental compartments and include for example processes for anaerobic digestion or landfill gas generation. • Offering a flexible user interface where the user...

  20. Nuclear Waste Policy Act and socioeconomic impact mitigation provisions and problems

    International Nuclear Information System (INIS)

    Smith, R.D.

    1984-01-01

    Although enormous effort was devoted to the drafting, negotiation, and passage of the Nuclear Waste Policy Act, the final product is not without deficiencies. Amont the observations presented in this paper a few are of sufficient import to justify reiteration here. First among those observations is the caveat that the availability of extensive impact mitigation mechanisms should not diminish any effort to prevent or minimize impacts in the first place. A second key point is that although the federal government is responsible for implementing the high-level waste management program, the generators and owners are obligated to pay all costs of implementing the program. And third, the structural flaw in the Act that merits the greatest attention is the probable time lag between occurrence of repository impacts and initiation of impact assistance grants. Though none of the concerns identified in this paper are likely to prove fatal to the high-level waste management effort, some of them could cause anxious moments and difficult situations. Early attention to and resolution of these problems should substantially enhance the overall quality of the high-level waste management program

  1. A system dynamics model to evaluate effects of source separation of municipal solid waste management: A case of Bangkok, Thailand.

    Science.gov (United States)

    Sukholthaman, Pitchayanin; Sharp, Alice

    2016-06-01

    Municipal solid waste has been considered as one of the most immediate and serious problems confronting urban government in most developing and transitional economies. Providing solid waste performance highly depends on the effectiveness of waste collection and transportation process. Generally, this process involves a large amount of expenditures and has very complex and dynamic operational problems. Source separation has a major impact on effectiveness of waste management system as it causes significant changes in quantity and quality of waste reaching final disposal. To evaluate the impact of effective source separation on waste collection and transportation, this study adopts a decision support tool to comprehend cause-and-effect interactions of different variables in waste management system. A system dynamics model that envisages the relationships of source separation and effectiveness of waste management in Bangkok, Thailand is presented. Influential factors that affect waste separation attitudes are addressed; and the result of change in perception on waste separation is explained. The impacts of different separation rates on effectiveness of provided collection service are compared in six scenarios. 'Scenario 5' gives the most promising opportunities as 40% of residents are willing to conduct organic and recyclable waste separation. The results show that better service of waste collection and transportation, less monthly expense, extended landfill life, and satisfactory efficiency of the provided service at 60.48% will be achieved at the end of the simulation period. Implications of how to get public involved and conducted source separation are proposed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Mine waste management

    International Nuclear Information System (INIS)

    Hutchinson, I.P.G.; Ellison, R.D.

    1992-01-01

    This book reports on mine waste management. Topics covered include: Performance review of modern mine waste management units; Mine waste management requirements; Prediction of acid generation potential; Attenuation of chemical constituents; Climatic considerations; Liner system design; Closure requirements; Heap leaching; Ground water monitoring; and Economic impact evaluation

  3. Life-cycle assessment of energy consumption and environmental impact of an integrated food waste-based biogas plant

    International Nuclear Information System (INIS)

    Jin, Yiying; Chen, Ting; Chen, Xin; Yu, Zhixin

    2015-01-01

    Highlights: • 47.76% of the energy consumption is from the primary treatment process. • The dominant environmental impact comes from GWP100 emission (96.97 kgCO 2 -eq/t). • Increasing recycling rate of product can effectively reduce consumption and impact. - Abstract: Recycling food waste to produce biogas by anaerobic digestion (AD) is a promising process that can both provide renewable energy and dispose solid waste safely. However, this process affects the environment due to greenhouse gas emissions. By lifecycle assessment (LCA), we assessed the energy consumption (EC) and environmental impact (EI) of an integrated food waste-based biogas system and its subsystems. Data were collected from an actual plant in China that adopted a combination of wet-heat treatment and wet AD process at thermophilic condition. The EC of the system for processing 1 ton of waste was 663.89 MJ, among which 47.76% was from the primary treatment process (including pretreatment and AD). The GWP 100 (100-year global warming potential) emission of the system reached 96.97 kgCO 2 -eq/t, and the AP (acidification potential), EP (eutrophication potential), HTP inf (human toxicity potential) and FAETP inf (fresh water ecotoxicity) emissions were low. The EI was mainly generated by two subsystems, namely, the primary treatment and the secondary pollution control. Sensitivity analysis showed that a 40% increase of the feed fat content resulted in 38% increase in the net energy value output and 48% decrease in EP effect. The increase in oil content and biogas production rate could significantly reduce the EC and EI of the system. It has been shown that improving the technology of the process and increasing the recycling rate of products will result in the reduction of EC and EI of the biogas system. In addition, a quantitative assessment model of EC and EI in integrated food waste-based biogas technology is established

  4. Risk assessment for the on-site transportation of radioactive wastes for the U.S. Department of Energy Waste Management Programmatic Environmental Impact Statement

    International Nuclear Information System (INIS)

    Biwer, B.M.; Monette, F.A.; Chen, S.Y.

    1996-12-01

    This report documents the risk assessment performed for the on-site transportation of radioactive wastes in the US Department of Energy (DOE) Waste Management Programmatic Environmental Impact Statement (WM PEIS). Risks for the routine shipment of wastes and the impacts from potential accidental releases are analyzed for operations at the Hanford Site (Hanford) near Richland, Washington. Like other large DOE sites, hanford conducts waste management operations for all wastes types; consequently, the impacts calculated for Hanford are expected to be greater than those for smaller sites. The risk assessment conducted for on-site transportation is intended to provide an estimate of the magnitude of the potential risk for comparison with off-site transportation risks assessed for the WM PEIS

  5. Solid Waste Information Tracking System (SWITS), Backlog Waste Modifications, Software Requirements Specification (SRS)

    International Nuclear Information System (INIS)

    Clark, R.E.

    1995-01-01

    Purpose of this document is to define the system requirements necessary to improve computer support for the WHC backlog waste business process through enhancements to the backlog waste function of the SWITS system. This SRS document covers enhancements to the SWITS system to support changes to the existing Backlog Waste screens including new data elements, label changes, and new pop-up screens. The pop-ups will allow the user to flag the processes that a waste container must have performed on it, and will provide history tracking of changes to data. A new screen will also be provided allowing Acceptable Services to perform mass updates to specific data in Backlog Waste table. The SWITS Backlog Waste enhancements in this document will support the project goals in WHC-SD-WM-003 and its Revision 1 (Radioactive Solid Waste Tracking System Conceptual Definition) for the control, tracing, and inventory management of waste as the packages are generated and moved through final disposal (cradle-to-grave)

  6. The safety and environmental impact of nuclear wastes

    International Nuclear Information System (INIS)

    Luo Shanggeng

    2001-01-01

    Radioactive matters were discovered in 1989. Exploitation and using of nuclear energy and nuclear technologies bring mankind huge benefits, but the disposal of radioactive wastes is becoming one of the safety and environmental problems. The author describes six issues related to nuclear wastes. They are as follows: (1) The origin and characteristics of the nuclear wastes; (2) The principles of management of nuclear wastes established by the International Atomic Energy Agency (IAEA) as well as the Chinese '40 words principles' and the major tasks of Chinese nuclear waste management; (3) The treatment and disposal technologies of nuclear wastes and the emphasis on new technologies, waste minimization and exemption and clean release; (4) The safety management of spent radiation sources including technical and administrative measures; (5) The safety management of spent nuclear fuel and the emphasis on high level radioactive wastes to be safety disposed of; (6) The environmental impact of nuclear waste. The author takes the Qinshan Nuclear Power Plant and the Daya bay Nuclear Power Plant I, China, as two examples to prove that nuclear wastes can be safely controlled and managed to ensure environmental safety. The Chinese north-west disposal land of nuclear wastes under operation recently is also discussed. It is believed that the suggested disposal land can ensure the isolation of radioactive wastes and the surrounding environment according to the present standards. The north-west disposal land and the Beilong disposal land, Guangdong province, China, are built according to the international standard and advanced technologies

  7. Assessing waste management systems using reginalt software

    International Nuclear Information System (INIS)

    Meshkov, N.K.; Camasta, S.F.; Gilbert, T.L.

    1988-03-01

    A method for assessing management systems for low-level radioactive waste is being developed for US Department of Energy. The method is based on benefit-cost-risk analysis. Waste management is broken down into its component steps, which are generation, treatment, packaging, storage, transportation, and disposal. Several different alternatives available for each waste management step are described. A particular waste management system consists of a feasible combination of alternatives for each step. Selecting an optimal waste management system would generally proceed as follows: (1) qualitative considerations are used to narrow down the choice of waste management system alternatives to a manageable number; (2) the costs and risks for each of these system alternatives are evaluated; (3) the number of alternatives is further reduced by eliminating alternatives with similar risks but higher costs, or those with similar costs but higher risks; (4) a trade-off factor between cost and risk is chosen and used to compute the objective function (sum of the cost and risk); and (5) the selection of the optimal waste management system among the remaining alternatives is made by choosing the alternative with the smallest value for the objective function. The authors propose that the REGINALT software system, developed by EG and G Idaho, Inc., as an acid for managers of low-level commerical waste, be augmented for application to the managment of DOE-generated waste. Specific recommendations for modification of the REGINALT system are made. 51 refs., 3 figs., 2 tabs

  8. MRS systems study, Task F: Transportation impacts of a monitored retrievable storage facility

    Energy Technology Data Exchange (ETDEWEB)

    Brentlinger, L.A.; Gupta, S.; Plummer, A.M.; Smith, L.A.; Tzemos, S.

    1989-05-01

    The passage of the Nuclear Waste Policy Amendments Act of 1987 (NWPAA) modified the basis from which the Office of Civilian Radioactive Waste Management (OCRWM) had derived and developed the configuration of major elements of the waste system (repository, monitored retrievable storage, and transportation). While the key aspects of the Nuclear Waste Policy Act of 1982 remain unaltered, NWPAA provisions focusing site characterization solely at Yucca Mountain, authorizing a monitored retrievable storage (MRS) facility with specific linkages to the repository, and establishing an MRS Review Commission make it prudent for OCRWM to update its analysis of the role of the MRS in the overall waste system configuration. This report documents the differences in transportation costs and radiological dose under alternative scenarios pertaining to a nuclear waste management system with and without an MRS, to include the effect of various MRS packaging functions and locations. The analysis is limited to the impacts of activities related directly to the hauling of high-level radioactive waste (HLW), including the capital purchase and maintenance costs of the transportation cask system. Loading and unloading impacts are not included in this study because they are treated as facility costs in the other task reports. Transportation costs are based on shipments of 63,000 metric tons of uranium (MTU) of spent nuclear fuel and 7,000 MTU equivalent of HLW. 10 refs., 41 tabs.

  9. Life cycle costing of waste management systems: overview, calculation principles and case studies.

    Science.gov (United States)

    Martinez-Sanchez, Veronica; Kromann, Mikkel A; Astrup, Thomas Fruergaard

    2015-02-01

    This paper provides a detailed and comprehensive cost model for the economic assessment of solid waste management systems. The model was based on the principles of Life Cycle Costing (LCC) and followed a bottom-up calculation approach providing detailed cost items for all key technologies within modern waste systems. All technologies were defined per tonne of waste input, and each cost item within a technology was characterised by both a technical and an economic parameter (for example amount and cost of fuel related to waste collection), to ensure transparency, applicability and reproducibility. Cost items were classified as: (1) budget costs, (2) transfers (for example taxes, subsidies and fees) and (3) externality costs (for example damage or abatement costs related to emissions and disamenities). Technology costs were obtained as the sum of all cost items (of the same type) within a specific technology, while scenario costs were the sum of all technologies involved in a scenario. The cost model allows for the completion of three types of LCC: a Conventional LCC, for the assessment of financial costs, an Environmental LCC, for the assessment of financial costs whose results are complemented by a Life Cycle Assessment (LCA) for the same system, and a Societal LCC, for socio-economic assessments. Conventional and Environmental LCCs includes budget costs and transfers, while Societal LCCs includes budget and externality costs. Critical aspects were found in the existing literature regarding the cost assessment of waste management, namely system boundary equivalency, accounting for temporally distributed emissions and impacts, inclusions of transfers, the internalisation of environmental impacts and the coverage of shadow prices, and there was also significant confusion regarding terminology. The presented cost model was implemented in two case study scenarios assessing the costs involved in the source segregation of organic waste from 100,000 Danish households and

  10. The occurrence of cyanobacteria in pulp and paper waste-treatment systems.

    Science.gov (United States)

    Kirkwood, A E; Nalewajko, C; Fulthorpe, R R

    2001-08-01

    Pulp and paper secondary waste-treatment systems in Brazil, Canada, New Zealand, and the U.S.A. contained dynamic cyanobacterial communities, some of which exceeded heterotrophic bacterial biomass. No other viable photoautotrophic populations were detected in the ponds. Regardless of geographical location, Oscillatoriales including Phormidium, Geitlerinema, and Pseudanabaena were the dominant taxa. As well, Chroococcus (Chroococcales) was an important genus in Brazil and New Zealand. The possible impact of cyanobacteria on waste-treatment efficiency deserves further study given their large biomass and diverse metabolic characteristics.

  11. A PC-based discrete event simulation model of the Civilian Radioactive Waste Management System

    International Nuclear Information System (INIS)

    Airth, G.L.; Joy, D.S.; Nehls, J.W.

    1991-01-01

    A System Simulation Model has been developed for the Department of Energy to simulate the movement of individual waste packages (spent fuel assemblies and fuel containers) through the Civilian Radioactive Waste Management System (CRWMS). A discrete event simulation language, GPSS/PC, which runs on an IBM/PC and operates under DOS 5.0, mathematically represents the movement and processing of radioactive waste packages through the CRWMS and the interaction of these packages with the equipment in the various facilities. This model can be used to quantify the impacts of different operating schedules, operational rules, system configurations, and equipment reliability and availability considerations on the performance of processes comprising the CRWMS and how these factors combine to determine overall system performance for the purpose of making system design decisions. The major features of the System Simulation Model are: the ability to reference characteristics of the different types of radioactive waste (age, burnup, etc.) in order to make operational and/or system design decisions, the ability to place stochastic variations on operational parameters such as processing time and equipment outages, and the ability to include a rigorous simulation of the transportation system. Output from the model includes the numbers, types, and characteristics of waste packages at selected points in the CRWMS and the extent to which various resources will be utilized in order to transport, process, and emplace the waste

  12. Decentralized Energy from Waste Systems

    Directory of Open Access Journals (Sweden)

    Blanca Antizar-Ladislao

    2010-01-01

    Full Text Available In the last five years or so, biofuels have been given notable consideration worldwide as an alternative to fossil fuels, due to their potential to reduce greenhouse gas emissions by partial replacement of oil as a transport fuel. The production of biofuels using a sustainable approach, should consider local production of biofuels, obtained from local feedstocks and adapted to the socio-economical and environmental characteristics of the particular region where they are developed. Thus, decentralized energy from waste systems will exploit local biomass to optimize their production and consumption. Waste streams such as agricultural and wood residues, municipal solid waste, vegetable oils, and algae residues can all be integrated in energy from waste systems. An integral optimization of decentralized energy from waste systems should not be based on the optimization of each single process, but the overall optimization of the whole process. This is by obtaining optimal energy and environmental benefits, as well as collateral beneficial co-products such as soil fertilizers which will result in a higher food crop production and carbon dioxide fixation which will abate climate change.

  13. Decentralized energy from waste systems

    International Nuclear Information System (INIS)

    Antizar-Ladislao, B.; Turrion-Gomez, J. L.

    2010-01-01

    In the last five years or so, biofuels have been given notable consideration worldwide as an alternative to fossil fuels, due to their potential to reduce greenhouse gas emissions by partial replacement of oil as a transport fuel. The production of biofuels using a sustainable approach, should consider local production of biofuels, obtained from local feedstocks and adapted to the socio-economical and environmental characteristics of the particular region where they are developed. Thus, decentralized energy from waste systems will exploit local biomass to optimize their production and consumption. Waste streams such as agricultural and wood residues, municipal solid waste, vegetable oils, and algae residues can all be integrated in energy from waste systems. An integral optimization of decentralized energy from waste systems should not be based on the optimization of each single process, but the overall optimization of the whole process. This is by obtaining optimal energy and environmental benefits, as well as collateral beneficial co-products such as soil fertilizers which will result in a higher food crop production and carbon dioxide fixation which will abate climate change. (author)

  14. Wastes behavior and environmental impacts, researches and methods

    International Nuclear Information System (INIS)

    Labeyrie, J.; Chateau, L.; Gin, St.

    2001-01-01

    The wastes management policy takes into account more and more often the environmental impacts mastership. This evolution is particularly appreciable when the wastes directly interact with the environment: storage, utilization for roads construction and so on. In this context the ADEME organized the 8 june 2000 a colloquium to present the new evaluation methods and tools, to describe the regulations and to identify the research programs needed for this environmental policy. Eleven papers are presented. (A.L.B.)

  15. Waste management programmatic environmental impact statement methodology for estimating human health risks

    International Nuclear Information System (INIS)

    Bergenback, B.; Blaylock, B.P.; Legg, J.L.

    1995-05-01

    The US Department of Energy (DOE) has produced large quantities of radioactive and hazardous waste during years of nuclear weapons production. As a result, a large number of sites across the DOE Complex have become chemically and/or radiologically contaminated. In 1990, the Secretary of Energy charged the DOE Office of Environmental Restoration and Waste management (EM) with the task of preparing a Programmatic Environmental Impact Statement (PEIS). The PEIS should identify and assess the potential environmental impacts of implementing several integrated Environmental Restoration (ER) and Waste Management (WM) alternatives. The determination and integration of appropriate remediation activities and sound waste management practices is vital for ensuring the diminution of adverse human health impacts during site cleanup and waste management programs. This report documents the PEIS risk assessment methodology used to evaluate human health risks posed by WM activities. The methodology presents a programmatic cradle to grave risk assessment for EM program activities. A unit dose approach is used to estimate risks posed by WM activities and is the subject of this document

  16. Intelligent Information System for Waste Management; Jaetehuollon aelykaes tietojaerjestelmae - iWaste

    Energy Technology Data Exchange (ETDEWEB)

    Mustonen, T. [Kuopio Univ. (Finland); Isoaho, S. [Tampere Univ. (Finland)

    2004-07-01

    ''Waste'' - Intelligent Information System for Waste Management - is a joint project of the University of Kuopio and the Tampere University of Technology. The main objective of the project is to create a basis for more comprehensive utilisation and management of waste management data and for the development of database management systems. The results of the project are numerous. A study of the present state of data management in the field of waste management was carried out. The studied aspects were for example information needs of different actors and their requirements for the information quality, interfaces for information exchange between different actors, and the characteristics of the software products. During the second phase of the project, a hyper document describing waste management systems, and a software application for describing material flows and their management will be finalized. Also methodologies and practices for processing data into information, which is needed in the decision making process, will be developed. The developed methodologies include e.g. data mining techniques, and the practices include e.g. the prediction of waste generation and optimisation of waste collection and transport. (orig.)

  17. Final environmental impact statement. Management of commercially generated radioactive waste. Volume 2. Appendices

    Energy Technology Data Exchange (ETDEWEB)

    1980-10-01

    This EIS analyzes the significant environmental impacts that could occur if various technologies for management and disposal of high-level and transuranic wastes from commercial nuclear power reactors were to be developed and implemented. This EIS will serve as the environmental input for the decision on which technology, or technologies, will be emphasized in further research and development activities in the commercial waste management program. The action proposed in this EIS is to (1) adopt a national strategy to develop mined geologic repositories for disposal of commercially generated high-level and transuranic radioactive waste (while continuing to examine subseabed and very deep hole disposal as potential backup technologies) and (2) conduct a R and D program to develop such facilities and the necessary technology to ensure the safe long-term containment and isolation of these wastes. The Department has considered in this statement: development of conventionally mined deep geologic repositories for disposal of spent fuel from nuclear power reactors and/or radioactive fuel reprocessing wastes; balanced development of several alternative disposal methods; and no waste disposal action. This volume contains appendices of supplementary data on waste management systems, geologic disposal, radiological standards, radiation dose calculation models, related health effects, baseline ecology, socio-economic conditions, hazard indices, comparison of defense and commercial wastes, design considerations, and wastes from thorium-based fuel cycle alternatives. (DMC)

  18. Final environmental impact statement. Management of commercially generated radioactive waste. Volume 2. Appendices

    International Nuclear Information System (INIS)

    1980-10-01

    This EIS analyzes the significant environmental impacts that could occur if various technologies for management and disposal of high-level and transuranic wastes from commercial nuclear power reactors were to be developed and implemented. This EIS will serve as the environmental input for the decision on which technology, or technologies, will be emphasized in further research and development activities in the commercial waste management program. The action proposed in this EIS is to (1) adopt a national strategy to develop mined geologic repositories for disposal of commercially generated high-level and transuranic radioactive waste (while continuing to examine subseabed and very deep hole disposal as potential backup technologies) and (2) conduct a R and D program to develop such facilities and the necessary technology to ensure the safe long-term containment and isolation of these wastes. The Department has considered in this statement: development of conventionally mined deep geologic repositories for disposal of spent fuel from nuclear power reactors and/or radioactive fuel reprocessing wastes; balanced development of several alternative disposal methods; and no waste disposal action. This volume contains appendices of supplementary data on waste management systems, geologic disposal, radiological standards, radiation dose calculation models, related health effects, baseline ecology, socio-economic conditions, hazard indices, comparison of defense and commercial wastes, design considerations, and wastes from thorium-based fuel cycle alternatives

  19. Integrated High-Level Waste System Planning - Utilizing an Integrated Systems Planning Approach to Ensure End-State Definitions are Met and Executed - 13244

    Energy Technology Data Exchange (ETDEWEB)

    Ling, Lawrence T. [URS-Savannah River Remediation, Savannah River Site, Building 766-H Room 2205, Aiken, SC 29808 (United States); Chew, David P. [URS-Savannah River Remediation, Savannah River Site, Building 766-H Room 2426, Aiken, SC 29808 (United States)

    2013-07-01

    . There is currently a premium on processing and storage space in the radioactive liquid waste tank system. To enable continuation of risk reduction initiatives, the Plan establishes a processing strategy that provides tank space required to meet, or minimizes the impacts to meeting, programmatic objectives. The Plan also addresses perturbations in funding and schedule impacts. (authors)

  20. Integrated High-Level Waste System Planning - Utilizing an Integrated Systems Planning Approach to Ensure End-State Definitions are Met and Executed - 13244

    International Nuclear Information System (INIS)

    Ling, Lawrence T.; Chew, David P.

    2013-01-01

    . There is currently a premium on processing and storage space in the radioactive liquid waste tank system. To enable continuation of risk reduction initiatives, the Plan establishes a processing strategy that provides tank space required to meet, or minimizes the impacts to meeting, programmatic objectives. The Plan also addresses perturbations in funding and schedule impacts. (authors)

  1. Risk assessment for the on-site transportation of radioactive wastes for the U.S. Department of Energy Waste Management programmatic environmental impact statement

    International Nuclear Information System (INIS)

    Biwer, B.M.; Monette, F.A.; Chen, S.Y.

    1995-04-01

    This report documents the risk assessment performed for the on-site transportation of radioactive wastes in the U.S. Department of Energy (DOE) Waste Management (WM) Programmatic Environmental Impact Statement (PEIS). Risks for the routine shipment of wastes and the impacts from potential accidental releases are analyzed for operations at the Hanford Site (Hanford) near Richland, Washington. Like other large DOE sites, Hanford conducts waste management operations for all wastes types; consequently, the impacts calculated for Hanford are expected to be greater than those for smaller sites. The risk assessment conducted for on-site transportation is intended to provide an estimate of the magnitude of the potential risk for comparison with off-site transportation risks assessed for the WM PEIS

  2. The performance assessment impacts of disposal of high-moisture, low-level radioactive waste at the Nevada Test Site

    International Nuclear Information System (INIS)

    Crowe, B.M.; Hansen, W.; Hechnova, A.; Voss, C.; Waters, R.; Sully, M.; Levitt, D.

    1999-01-01

    A panel of independent scientists was convened by the Department of Energy to assess the performance impacts of disposal of low-level radioactive waste from the Fernald Environmental Management Project. This waste stream was involved in a transportation incident in December 1997. A resulting outgrowth of investigations of the transportation incident was the recognition that the waste was transported and disposed in stress-fractured metal boxes and some of the waste contained excess moisture (high volumetric water contents). The panel was charged with determining whether disposal of this waste in the Area 5 radioactive waste management site on the Nevada Test Site has impacted the conclusions of the completed performance assessment. Three questions were developed by the panel to assess performance impacts: (1) the performance impacts of reduced container integrity, (2) the impact of reduced container integrity on subsidence of waste in the disposal pits and (3) the performance impacts of excess moisture. No performance or subsidence impacts were noted from disposal of the Fernald waste. The impacts of excess moisture were assessed through simulation modeling of the movement of moisture in the vadose zone assuming high water contents (wet waste) for different percentages of the waste inventory. No performance impacts were noted for either the base-case scenario (ambient conditions) or a scenario involving subsidence and flooding of the waste cells. The absence of performance impacts results form the extreme conservatism used in the Area 5-performance assessment and the robust nature of the disposal site

  3. Radiological impact assessment of the domestic on-road transportation of radioactive isotope wastes

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Myung Hwan; Hong, Sung Wook; Park, Jin Beak [Korea Radioactive Waste Agency, Technology Institute, Daejeon (Korea, Republic of)

    2016-09-15

    Korea Radioactive Waste Agency (KORAD) began to operate the low and intermediate level radioactive waste disposal facility in Gyeongju and to transport the radioactive waste containing radioactive isotopes from Daejeon to the disposal facility for the first time at 2015. For this radioactive waste transportation, in this study, radiological impact assessment is carried out for workers and public. The dose rate to workers and public during the transportation is estimated with consideration of the transportation scenarios and is compared with the Korean regulatory limit. The sensitivity analysis is carried out by considering both the variation of release ratios of the radioactive isotopes from the waste and the variation of the distances between the radioactive waste drum and worker during loading and unloading of radioactive waste. As for all the transportation scenarios, radiological impacts for workers and public have met the regulatory limits.

  4. Environmental impact of incineration of calorific industrial waste: rotary kiln vs. cement kiln.

    Science.gov (United States)

    Vermeulen, Isabel; Van Caneghem, Jo; Block, Chantal; Dewulf, Wim; Vandecasteele, Carlo

    2012-10-01

    Rotary kiln incinerators and cement kilns are two energy intensive processes, requiring high temperatures that can be obtained by the combustion of fossil fuel. In both processes, fossil fuel is often substituted by high or medium calorific waste to avoid resource depletion and to save costs. Two types of industrial calorific waste streams are considered: automotive shredder residue (ASR) and meat and bone meal (MBM). These waste streams are of current high interest: ASR must be diverted from landfill, while MBM can no longer be used for cattle feeding. The environmental impact of the incineration of these waste streams is assessed and compared for both a rotary kiln and a cement kiln. For this purpose, data from an extensive emission inventory is applied for assessing the environmental impact using two different modeling approaches: one focusing on the impact of the relevant flows to and from the process and its subsystems, the other describing the change of environmental impact in response to these physical flows. Both ways of assessing emphasize different aspects of the considered processes. Attention is paid to assumptions in the methodology that can influence the outcome and conclusions of the assessment. It is concluded that for the incineration of calorific wastes, rotary kilns are generally preferred. Nevertheless, cement kilns show opportunities in improving their environmental impact when substituting their currently used fuels by more clean calorific waste streams, if this improvement is not at the expense of the actual environmental impact. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Performance Assessment of a Low-Level Radioactive Waste Disposal Site using GoldSim Integrated Systems Model

    Science.gov (United States)

    Merrell, G.; Singh, A.; Tauxe, J.; Perona, R.; Dornsife, W.; grisak, G. E.; Holt, R. M.

    2011-12-01

    Texas Commission on Environmental Quality has approved licenses for four landfills at the Waste Control Specialists (WCS) site located in Andrews County, West Texas. The site includes a hazardous waste landfill and three landfills for radioactive waste. An updated performance assessment is necessary prior to acceptance of waste at the landfills. The updated performance assessment a) provides for more realistic and flexible dose modeling capabilities, b) addresses all plausible release and accident scenarios as they relate to the performance objectives, c) includes impact of climate and hydrologic scenarios that may impact long-term performance of the landfill, d) addresses impact of cover naturalization and degradation on the landfill, and e) incorporates uncertainty and sensitivity analysis for critical parameters. For the updated performance assessment, WCS has developed an integrated systems level performance assessment model using the GoldSim platform. GoldSim serves as a model for integrating all of the major components of a performance assessment, which include the radionuclide source term, facility design, environmental transport pathways, exposure scenarios, and radiological doses. Unlike many computer models that are based on first principles, GoldSim is a systems level model that can be used to integrate and abstract more complex sub-models into one system. This can then be used to assess the results into a unified model of the disposal system and environment. In this particular application, the GoldSim model consists of a) hydrogeologic model that simulates flow and transport through the Dockum geologic unit that underlies all of the waste facilities, b) waste cells that represent the containment unit and simulate degradation of waste forms, radionuclide leaching, and partitioning into the liquid and vapor phase within the waste unit, c) a cover system model that simulates upward diffusive transport from the underground repository to the atmosphere. In

  6. The effect of alternative cost and environmental impact minimisation strategies on radioactive waste disposal strategies

    International Nuclear Information System (INIS)

    Laundy, R.S.; James, A.R.; Groom, M.S.; Dalrymple, G.J.

    1985-06-01

    The study reported here investigates the effects of different cost and environmental impact minimisation strategies for a single waste disposal scenario. Four disposal options are considered. The study examines the environmental impacts from waste storage and transport and the disposal impacts in terms of collective dose, maximum individual dose and individual dose from intrusion. The total cost of disposing of waste takes account of storage, transport and disposal costs to each of the four facilities. Two minimum cost scenarios and seven minimum impact assessments were performed. The results showed clearly that a trade-off has to be made between the environmental impacts from transport and storage of waste. A low objective risk of transport is achieved by directing waste to the engineered trench, assumed to have a central location. This waste is stored until the facility is available in 1995 thus increasing the potential impact from storage. The results also show a trade-off has to be made between minimising the maximum individual dose from disposal and collective dose. The study shows that for relatively little cost large reductions in the impacts can be obtained particularly in short and long-term collective dose and the individual dose from intrusion. (author)

  7. 76 FR 4823 - Hazardous Waste Management System; Identifying and Listing Hazardous Waste Exclusion

    Science.gov (United States)

    2011-01-27

    ... Waste Management System; Identifying and Listing Hazardous Waste Exclusion AGENCY: Environmental... hazardous wastes. The Agency has decided to grant the petition based on an evaluation of waste-specific... excludes the petitioned waste from the requirements of hazardous waste regulations under the Resource...

  8. Transmutation of nuclear waste in accelerator-driven systems

    CERN Document Server

    Herrera-Martínez, A

    2004-01-01

    Today more than ever energy is not only a cornerstone of human development, but also a key to the environmental sustainability of economic activity. In this context, the role of nuclear power may be emphasized in the years to come. Nevertheless, the problems of nuclear waste, safety and proliferation still remain to be solved. It is believed that the use of accelerator-driven systems (ADSs) for nuclear waste transmutation and energy production would address these problems in a simple, clean and economically viable, and therefore sustainable, manner. This thesis covers the major nuclear physics aspects of ADSs, in particular the spallation process and the core neutronics specific to this type of systems. The need for accurate nuclear data is described, together with a detailed analysis of the specific isotopes and energy ranges in which this data needs to be improved and the impact of their uncertainty. Preliminary experimental results for some of these isotopes, produced by the Neutron Time-of-Flight (n_TOF) ...

  9. Hazardous waste database: Waste management policy implications for the US Department of Energy's Environmental Restoration and Waste Management Programmatic Environmental Impact Statement

    International Nuclear Information System (INIS)

    Lazaro, M.A.; Policastro, A.J.; Antonopoulos, A.A.; Hartmann, H.M.; Koebnick, B.; Dovel, M.; Stoll, P.W.

    1994-01-01

    The hazardous waste risk assessment modeling (HaWRAM) database is being developed to analyze the risk from treatment technology operations and potential transportation accidents associated with the hazardous waste management alternatives. These alternatives are being assessed in the Department of Energy's Environmental Restoration and Waste Management Programmatic Environmental Impact Statement (EM PEIS). To support the risk analysis, the current database contains complexwide detailed information on hazardous waste shipments from 45 Department of Energy installations during FY 1992. The database is currently being supplemented with newly acquired data. This enhancement will improve database information on operational hazardous waste generation rates, and the level and type of current on-site treatment at Department of Energy installations

  10. Physical system requirements - Accept waste

    International Nuclear Information System (INIS)

    1992-08-01

    The Nuclear Waste Policy Act (NWPA) assigned to the Department of Energy (DOE) the responsibility for managing the disposal of spent nuclear fuel and high-level radioactive waste and established the Office of Civilian Radioactive Waste Management (OCRWM) for that purpose. The Secretary of Energy, in his November 1989 report to Congress (DOE/RW-0247), announced new initiatives for the conduct of the Civilian Radioactive Waste Management (CRWM) program. One of these initiatives was to establish improved management structure and procedures. In response, OCRWM performed a management study and the OCRWM Director subsequently issued the Management Systems improvement Strategy (MSIS) on August 10, 1990, calling for a rigorous implementation of systems engineering principles with a special emphasis on functional analysis. The functional analysis approach establishes a framework for integrating the program management efforts with the technical requirements analysis into a single, unified, and consistent program. This approach recognizes that just as the facilities and equipment comprising the physical waste management system must perform certain functions, so must certain programmatic and management functions be performed within the program in order to successfully bring the physical system into being. Thus, a comprehensive functional analysis effort has been undertaken which is intended to: Identify the functions that must be performed to fulfill the waste disposal mission; Identify the corresponding requirements imposed on each of the functions; and Identify the conceptual architecture that will be used to satisfy the requirements. The principal purpose of this requirements document is to present the results that were obtained from the conduct of a functional analysis effort for the Accept Waste mission

  11. An information system for sustainable materials management with material flow accounting and waste input–output analysis

    Directory of Open Access Journals (Sweden)

    Pi-Cheng Chen

    2017-05-01

    Full Text Available Sustainable materials management focuses on the dynamics of materials in economic and environmental activities to optimize material use efficiency and reduce environmental impact. A preliminary web-based information system is thus developed to analyze the issues of resource consumption and waste generation, enabling countries to manage resources and wastes from a life cycle perspective. This pioneering system features a four-layer framework that integrates information on physical flows and economic activities with material flow accounting and waste input–output table analysis. Within this framework, several applications were developed for different waste and resource management stakeholders. The hierarchical and interactive dashboards allow convenient overview of economy-wide material accounts, waste streams, and secondary resource circulation. Furthermore, the system can trace material flows through associated production supply chain and consumption activities. Integrated with economic models; this system can predict the possible overloading on the current waste management facility capacities and provide decision support for designing strategies to approach resource sustainability. The limitations of current system are specified for directing further enhancement of functionalities.

  12. Biogas-centred domestic waste recycling system

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, C L

    1983-04-01

    In fast developing suburban towns, there is an urgent need for an integrated system for waste recycling and energy and fertiliser supply on a single house basis. This is because even though toilet waste is handled by a septic tank-soak pit arrangement, kitchen and bathroom water and solid organic wastes have to be discharged outside the house. A biogas based domestic waste recycling system has been designed and constructed and has been successfully working. Some salient features of this plant are discussed here.

  13. Contribution to draft generic environmental impact statement on commercial waste management: radioactive waste isolation in geologic formations

    International Nuclear Information System (INIS)

    1978-04-01

    This document concentrates on deep geologic isolation of wastes in bedded salt, granite, shale, and basalt with emphasis on wastes from three fuel cycles: reprocessing wastes from uranium and plutonium recycling, reprocessing wastes from uranium-only recycling, and spent unreprocessed fuel with no recycling. The analyses presented in this document are based on preconceptual repository designs. As the repository designs progress through future phases, refinements will occur which might modify some of these results. The 12 sections in the report are: introduction; selection and description of generic repository sites; LWR wastes to be isolated in geologic formations; description of waste isolation facilities; effluents from the waste isolation facility; assessment of environment impacts for various geographical locations of a waste isolation facility; environmental monitoring; decommissioning; mine decommissioning site restoration; deep geologic alternative actions; potential mechanisms of containment failure; and considerations relevant to provisional versus final storage

  14. Impact of hazardous waste risks and liabilities on the contracting process

    International Nuclear Information System (INIS)

    Gleason, G.L.

    1991-01-01

    Hazardous waste risks include the following: (1) An emerging environmental cleanup industry that differs significantly from traditional engineering; (2) The inability to predict and control the subsurface environment; (3) The implementation of new and often untested technologies; (4) The statutory imposition of strict, joint and several, as well as retroactive, liability; (5) The lack of insurance and other risk-transfer mechanisms to protect against losses; (6) Costly and time consuming litigation to determine liability; and (7) Others. The liabilities associated with the risks inherent in hazardous waste cleanup directly impact hazardous waste contracting. Contract negotiations become onerous during discussions of liability, indemnification, and issues surrounding scope of work and other clauses. Other impacts include (1) Defensive engineering; (2) Lack of incentive to implement innovative technologies; (3) Increased costs to cover risks. Required client indemnification is a necessary and responsible risks management practice, regardless of whether the client is a federal or private client. Federal government indemnification authorities, as well as private contract indemnification mechanisms, will be explained and analyzed. Conflict of interest concerns are also of critical importance in the hazardous waste market, particularly due to concerns over the complexity of the litigation surrounding hazardous waste sites and the need to ensure unbiased results. Other examples of hazardous waste risk management impacts on contracting in the following market sectors will also be provided: (1) U.S. Environmental Protection Agency; (2) Department of Defense; (3) Department of Energy; and (4) Private sector contracts

  15. Expert system for transuranic waste assay

    Energy Technology Data Exchange (ETDEWEB)

    Zoolalian, M.L.; Gibbs, A.; Kuhns, J.D.

    1989-01-01

    Transuranic wastes are generated at the Savannah River Site (SRS) as a result of routine production of nuclear materials. These wastes contain Pu-238 and Pu-239 and are placed into lined 55-gallon waste drums. The drums are placed on monitored storage pads pending shipment to the Waste Isolation Pilot Plant in New Mexico. A passive-active neutron (PAN) assay system is used to determine the mass of the radioactive material within the waste drums. Assay results are used to classify the wastes as either low-level or transuranic (TRU). During assays, the PAN assay system communicates with an IBM-AT computer. A Fortran computer program, called NEUT, controls and performs all data analyses. Unassisted, the NEUT program cannot adequately interpret assay results. To eliminate this limitation, an expert system shell was used to write a new algorithm, called the Transuranic Expert System (TRUX), to drive the NEUT program and add decision making capabilities for analysis of the assay results. The TRUX knowledge base was formulated by consulting with human experts in the field of neutron assay, by direct experimentation on the PAN assay system, and by observing operations on a daily basis. TRUX, with its improved ability to interpret assay results, has eliminated the need for close supervision by a human expert, allowing skilled technicians to operate the PAN assay system. 4 refs., 1 fig., 4 tabs.

  16. Expert system for transuranic waste assay

    International Nuclear Information System (INIS)

    Zoolalian, M.L.; Gibbs, A.; Kuhns, J.D.

    1989-01-01

    Transuranic wastes are generated at the Savannah River Site (SRS) as a result of routine production of nuclear materials. These wastes contain Pu-238 and Pu-239 and are placed into lined 55-gallon waste drums. The drums are placed on monitored storage pads pending shipment to the Waste Isolation Pilot Plant in New Mexico. A passive-active neutron (PAN) assay system is used to determine the mass of the radioactive material within the waste drums. Assay results are used to classify the wastes as either low-level or transuranic (TRU). During assays, the PAN assay system communicates with an IBM-AT computer. A Fortran computer program, called NEUT, controls and performs all data analyses. Unassisted, the NEUT program cannot adequately interpret assay results. To eliminate this limitation, an expert system shell was used to write a new algorithm, called the Transuranic Expert System (TRUX), to drive the NEUT program and add decision making capabilities for analysis of the assay results. The TRUX knowledge base was formulated by consulting with human experts in the field of neutron assay, by direct experimentation on the PAN assay system, and by observing operations on a daily basis. TRUX, with its improved ability to interpret assay results, has eliminated the need for close supervision by a human expert, allowing skilled technicians to operate the PAN assay system. 4 refs., 1 fig., 4 tabs

  17. Waste Information Management System-2012 - 12114

    Energy Technology Data Exchange (ETDEWEB)

    Upadhyay, H.; Quintero, W.; Shoffner, P.; Lagos, L.; Roelant, D. [Applied Research Center, Florida International University, 10555 West Flagler Street, Suite 2100, Miami, FL 33174 (United States)

    2012-07-01

    The Waste Information Management System (WIMS) -2012 was updated to support the Department of Energy (DOE) accelerated cleanup program. The schedule compression required close coordination and a comprehensive review and prioritization of the barriers that impeded treatment and disposition of the waste streams at each site. Many issues related to waste treatment and disposal were potential critical path issues under the accelerated schedule. In order to facilitate accelerated cleanup initiatives, waste managers at DOE field sites and at DOE Headquarters in Washington, D.C., needed timely waste forecast and transportation information regarding the volumes and types of radioactive waste that would be generated by DOE sites over the next 40 years. Each local DOE site historically collected, organized, and displayed waste forecast information in separate and unique systems. In order for interested parties to understand and view the complete DOE complex-wide picture, the radioactive waste and shipment information of each DOE site needed to be entered into a common application. The WIMS application was therefore created to serve as a common application to improve stakeholder comprehension and improve DOE radioactive waste treatment and disposal planning and scheduling. WIMS allows identification of total forecasted waste volumes, material classes, disposition sites, choke points, technological or regulatory barriers to treatment and disposal, along with forecasted waste transportation information by rail, truck and inter-modal shipments. The Applied Research Center (ARC) at Florida International University (FIU) in Miami, Florida, developed and deployed the web-based forecast and transportation system and is responsible for updating the radioactive waste forecast and transportation data on a regular basis to ensure the long-term viability and value of this system. WIMS continues to successfully accomplish the goals and objectives set forth by DOE for this project. It has

  18. Reviewing the anaerobic digestion and co-digestion process of food waste from the perspectives on biogas production performance and environmental impacts.

    Science.gov (United States)

    Chiu, Sam L H; Lo, Irene M C

    2016-12-01

    In this paper, factors that affect biogas production in the anaerobic digestion (AD) and anaerobic co-digestion (coAD) processes of food waste are reviewed with the aim to improve biogas production performance. These factors include the composition of substrates in food waste coAD as well as pre-treatment methods and anaerobic reactor system designs in both food waste AD and coAD. Due to the characteristics of the substrates used, the biogas production performance varies as different effects are exhibited on nutrient balance, inhibitory substance dilution, and trace metal element supplement. Various types of pre-treatment methods such as mechanical, chemical, thermal, and biological methods are discussed to improve the rate-limiting hydrolytic step in the digestion processes. The operation parameters of a reactor system are also reviewed with consideration of the characteristics of the substrates. Since the environmental awareness and concerns for waste management systems have been increasing, this paper also addresses possible environmental impacts of AD and coAD in food waste treatment and recommends feasible methods to reduce the impacts. In addition, uncertainties in the life cycle assessment (LCA) studies are also discussed.

  19. Environmental evaluation of municipal waste prevention

    International Nuclear Information System (INIS)

    Gentil, Emmanuel C.; Gallo, Daniele; Christensen, Thomas H.

    2011-01-01

    Highlights: → Influence of prevention on waste management systems, excluding avoided production, is relatively minor. → Influence of prevention on overall supply chain, including avoided production is very significant. → Higher relative benefits of prevention are observed in waste management systems relying mainly on landfills. - Abstract: Waste prevention has been addressed in the literature in terms of the social and behavioural aspects, but very little quantitative assessment exists of the environmental benefits. Our study evaluates the environmental consequences of waste prevention on waste management systems and on the wider society, using life-cycle thinking. The partial prevention of unsolicited mail, beverage packaging and food waste is tested for a 'High-tech' waste management system relying on high energy and material recovery and for a 'Low-tech' waste management system with less recycling and relying on landfilling. Prevention of 13% of the waste mass entering the waste management system generates a reduction of loads and savings in the waste management system for the different impacts categories; 45% net reduction for nutrient enrichment and 12% reduction for global warming potential. When expanding our system and including avoided production incurred by the prevention measures, large savings are observed (15-fold improvement for nutrient enrichment and 2-fold for global warming potential). Prevention of food waste has the highest environmental impact saving. Prevention generates relatively higher overall relative benefit for 'Low-tech' systems depending on landfilling. The paper provides clear evidence of the environmental benefits of waste prevention and has specific relevance in climate change mitigation.

  20. Radioactive waste storage and disposal: methodologies for impact assessment

    International Nuclear Information System (INIS)

    Perret, F.L.

    1975-01-01

    The study reviews the basic issues created by the existing and future inventory of high-level wastes and analyzes the characteristics of the wastes produced by various types of reactors. As the quantities of actinides and fission products do not vary much with reactor type, the analysis is carried out without considering the scenario of nuclear development. The four main classes of waste management schemes are the geologic, ice-sheet, seabed, and extraterrestrial schemes. Approximately 20 waste management alternatives are briefly discussed. Evaluation of the waste management schemes will be carried out by governmental institutions, reprocessing organizations, private or public utilities, the public, and the population concerned by the impacts of high-level waste. A list of approximately 40 criteria, organized in six classes, is proposed for comparing the proposed high-level waste management schemes. An attempt of grouping together technological, economical, societal, environmental, moral, social, and political criteria is proposed. Three categories of evaluation methods are examined and illustrated with comparisons of a geologic and an extraterrestrial scheme

  1. How it is possible to build a national system for decommissioning waste management without site nor waste liberation: the case of France

    International Nuclear Information System (INIS)

    Averous, Jeremie; Chapalain, Estelle

    2003-01-01

    Past experience in decommissioning in France has shown that a national system has to be put in place to deal with decommissioning, waste elimination and site cleaning up activities in order to allow a consistent, safe, transparent and industrially applicable management of these matters. A system founded on successive lines of defence has been put into enforcement, which does not involve any site nor waste liberation, as it is considered that the criteria associated are always prone to discussion and contradiction. This system is based on the following concepts: - 'nuclear waste', waste prone to have been contaminated or activated, is segregated from 'conventional waste' using a system involving successive lines of defence, and hence, building a very high level of confidence that no 'nuclear waste' will be eliminated without control in conventional waste eliminators or recycling facilities; - 'nuclear waste' is eliminated in dedicated facilities or repositories, or in conventional facilities under the condition of a special authorization based on a radiological impact study and a public inquiry; - a global safety evaluation of the nuclear site is conducted after decommissioning in order to define possible use restrictions. In all cases, minimum restrictions will be put into enforcement in urbanization plans to ensure sufficient precaution when planning future uses of the ground or the building. This paper describes this global system in detail and shows that its inherent consistency allows it to be easily applicable by operators while achieving a high level of safety and confidence. It is now widely accepted by stakeholders. The French Nuclear Safety Authority is now working to apply this methodology more widely to other nuclear practices like the waste management from medical, research and industrial activities, or from past or remediation activities. (authors)

  2. Impact assessment of the forest fires on Oarai Research and Development Center Waste Treatment Facility

    International Nuclear Information System (INIS)

    Shimomura, Yusuke; Kitamura, Ryoichi; Hanari, Akira; Sato, Isamu

    2016-03-01

    In response to new standards for regulating waste treatment facility ('new regulatory standards'; December 18, 2013 enforcement), it was carried out impact assessment of forest fires on the Waste Treatment Facility existed in Oarai Research and Development Center of Japan Atomic Energy Agency. At first, a fire spread scenario of forest fires was assumed. The intensity of forest fires was evaluated from field surveys, forest fire evaluation models and so on. As models of forest fire intensity evaluation, Rothermel Model and Canadian Forest Fire Behavior Prediction (FBP) System were used. Impact assessment of radiant heat to the facility was carried out, and temperature change of outer walls for the assumed forest fires was estimated. The outer wall temperature of facility was estimated around 160degC at the maximum, it was revealed that it doesn't reach allowable temperature limit. Consequently, it doesn't influence the strength of concrete. In addition, a probability of fire breach was estimated to be about 20%. This report illustrates an example of evaluation of forest fires for the new regulatory standards through impact assessment of the forest fires on the Waste Treatment Facility. (author)

  3. Waste Minimization Measurement and Progress Reporting

    International Nuclear Information System (INIS)

    Stone, K.A.

    1995-01-01

    Westinghouse Savannah River Company is implementing productivity improvement concepts into the Waste Minimization Program by focusing on the positive initiatives taken to reduce waste generation at the Savannah River Site. Previous performance measures, based only on waste generation rates, proved to be an ineffective metric for measuring performance and promoting continuous improvements within the Program. Impacts of mission changes and non-routine operations impeded development of baseline waste generation rates and often negated waste generation trending reports. A system was developed to quantify, document and track innovative activities that impact waste volume and radioactivity/toxicity reductions. This system coupled with Management-driven waste disposal avoidance goals is proving to be a powerful tool to promote waste minimization awareness and the implementation of waste reduction initiatives. Measurement of waste not generated, in addition to waste generated, increases the credibility of the Waste Minimization Program, improves sharing of success stories, and supports development of regulatory and management reports

  4. A system dynamic modeling approach for evaluating municipal solid waste generation, landfill capacity and related cost management issues

    International Nuclear Information System (INIS)

    Kollikkathara, Naushad; Feng Huan; Yu Danlin

    2010-01-01

    As planning for sustainable municipal solid waste management has to address several inter-connected issues such as landfill capacity, environmental impacts and financial expenditure, it becomes increasingly necessary to understand the dynamic nature of their interactions. A system dynamics approach designed here attempts to address some of these issues by fitting a model framework for Newark urban region in the US, and running a forecast simulation. The dynamic system developed in this study incorporates the complexity of the waste generation and management process to some extent which is achieved through a combination of simpler sub-processes that are linked together to form a whole. The impact of decision options on the generation of waste in the city, on the remaining landfill capacity of the state, and on the economic cost or benefit actualized by different waste processing options are explored through this approach, providing valuable insights into the urban waste-management process.

  5. Impact of hazardous waste handling legislation on nuclear installations and radioactive waste management in the United States

    International Nuclear Information System (INIS)

    Trosten, L.M.

    1988-01-01

    The United States has enacted complex legislation to help assure proper handling of hazardous waste and the availability of funds to cover the expenditures. There are a number of uncertainties concerning the impact of this legislation, and regulations promulgated by the Environmental Protection Agency and the states, upon nuclear installations and radioactive waste management. This report provides an overview of the U.S. hazardous waste legislation and examines the outlook for its application to the nuclear industry (NEA) [fr

  6. Systems costs for disposal of Savannah River high-level waste sludge and salt

    International Nuclear Information System (INIS)

    McDonell, W.R.; Goodlett, C.B.

    1984-01-01

    A systems cost model has been developed to support disposal of defense high-level waste sludge and salt generated at the Savannah River Plant. Waste processing activities covered by the model include decontamination of the salt by a precipitation process in the waste storage tanks, incorporation of the sludge and radionuclides removed from the salt into glass in the Defense Waste Processing Facility (DWPF), and, after interim storage, final disposal of the DWPF glass waste canisters in a federal geologic repository. Total costs for processing of waste generated to the year 2000 are estimated to be about $2.9 billion (1984 dollars); incremental unit costs for DWPF and repository disposal activities range from $120,000 to $170,000 per canister depending on DWPF processing schedules. In a representative evaluation of process alternatives, the model is used to demonstrate cost effectiveness of adjustments in the frit content of the waste glass to reduce impacts of wastes generated by the salt decontamination operations. 13 references, 8 tables

  7. System design description for Waste Information and Control System

    International Nuclear Information System (INIS)

    Harris, R.R.

    1994-01-01

    The Westinghouse Hanford Company (WHC) Hazardous Material Control Group (HMC) of the 222-S Laboratory has requested the development of a system to help resolve many of the difficulties associated with tracking and data collection of containers and drums of waste. This system has been identified as the Waste Information and Control System (WICS). WICS shall partially automate the procedure for acquisition, tracking and reporting of the container, drum, and waste data that is currently manually processed. The WICS project shall use handheld computer units (HCU) to collect laboratory data, a local database with an user friendly interface to import the laboratory data from the HCUs, and barcode technology with associated software and operational procedures. After the container, drum, and waste data has been collected and verified, WICS shall be manipulated to provide informal reports containing data required to properly document waste disposal. 8 refs, 82 figs, 69 tabs

  8. Final environmental impact statement. Management of commercially generated radioactive waste. Volume 1 of 3

    Energy Technology Data Exchange (ETDEWEB)

    1980-10-01

    This EIS analyzes the significant environmental impacts that could occur if various technologies for management and disposal of high-level and transuranic wastes from commercial nuclear power reactors were to be developed and implemented. This EIS will serve as the environmental input for the decision on which technology, or technologies, will be emphasized in further research and development activities in the commercial waste management program. The action proposed in this EIS is to (1) adopt a national strategy to develop mined geologic repositories for disposal of commercially generated high-level and transuranic radioactive waste (while continuing to examine subseabed and very deep hole disposal as potential backup technologies) and (2) conduct a R and D program to develop such facilities and the necessary technology to ensure the safe long-term containment and isolation of these wastes. The Department has considered in this statement: development of conventionally mined deep geologic repositories for disposal of spent fuel from nuclear power reactors and/or radioactive fuel reprocessing wastes; balanced development of several alternative disposal methods; and no waste disposal action. This EIS reflects the public review of and comments offered on the draft statement. Included are descriptions of the characteristics of nuclear waste, the alternative disposal methods under consideration, and potential environmental impacts and costs of implementing these methods. Because of the programmatic nature of this document and the preliminary nature of certain design elements assumed in assessing the environmental consequences of the various alternatives, this study has been based on generic, rather than specific, systems. At such time as specific facilities are identified for particular sites, statements addressing site-specific aspects will be prepared for public review and comment.

  9. Final environmental impact statement. Management of commercially generated radioactive waste. Volume 1 of 3

    International Nuclear Information System (INIS)

    1980-10-01

    This EIS analyzes the significant environmental impacts that could occur if various technologies for management and disposal of high-level and transuranic wastes from commercial nuclear power reactors were to be developed and implemented. This EIS will serve as the environmental input for the decision on which technology, or technologies, will be emphasized in further research and development activities in the commercial waste management program. The action proposed in this EIS is to (1) adopt a national strategy to develop mined geologic repositories for disposal of commercially generated high-level and transuranic radioactive waste (while continuing to examine subseabed and very deep hole disposal as potential backup technologies) and (2) conduct a R and D program to develop such facilities and the necessary technology to ensure the safe long-term containment and isolation of these wastes. The Department has considered in this statement: development of conventionally mined deep geologic repositories for disposal of spent fuel from nuclear power reactors and/or radioactive fuel reprocessing wastes; balanced development of several alternative disposal methods; and no waste disposal action. This EIS reflects the public review of and comments offered on the draft statement. Included are descriptions of the characteristics of nuclear waste, the alternative disposal methods under consideration, and potential environmental impacts and costs of implementing these methods. Because of the programmatic nature of this document and the preliminary nature of certain design elements assumed in assessing the environmental consequences of the various alternatives, this study has been based on generic, rather than specific, systems. At such time as specific facilities are identified for particular sites, statements addressing site-specific aspects will be prepared for public review and comment

  10. Scoring methods and results for qualitative evaluation of public health impacts from the Hanford high-level waste tanks. Integrated Risk Assessment Program

    International Nuclear Information System (INIS)

    Buck, J.W.; Gelston, G.M.; Farris, W.T.

    1995-09-01

    The objective of this analysis is to qualitatively rank the Hanford Site high-level waste (HLW) tanks according to their potential public health impacts through various (groundwater, surface water, and atmospheric) exposure pathways. Data from all 149 single-shell tanks (SSTs) and 23 of the 28 double-shell tanks (DSTs) in the Tank Waste Remediation System (TWRS) Program were analyzed for chemical and radiological carcinogenic as well as chemical noncarcinogenic health impacts. The preliminary aggregate score (PAS) ranking system was used to generate information from various release scenarios. Results based on the PAS ranking values should be considered relative health impacts rather than absolute risk values

  11. Yucca Mountain Project waste package design for MRS [Monitored Retrievable Storage] system studies

    International Nuclear Information System (INIS)

    Nelson, T.; Russell, E.; Johnson, G.L.; Morissette, R.; Stahl, D.; LaMonica, L.; Hertel, G.

    1989-04-01

    This report, prepared by the Yucca Mountain Project, is the report for Task E of the MRS System Study. A number of assumptions were necessary prior to initiation of this system study. These assumptions have been defined in Section 2 for the packaging scenarios, the waste forms, and the waste package concepts and materials. Existing concepts were utilized because of schedule constraints. Section 3 provides a discussion of sensitivity considerations regarding the impact of different assumptions on the overall result of the system study. With the exception of rod consolidation considerations, the system study should not be sensitive to the parameters assumed for the waste package. The current reference waste package materials and concepts are presented in Section 4. Although stainless steel is assumed for this study, a container material has not yet been selected for Advanced Conceptual Design (ACD) from the six candidates currently under study. Section 5 discusses the current thinking for possible alternate waste package materials and concepts. These concepts are being considered in the event that the waste package emplacement environment is more severe than is currently anticipated. Task E also provides a concept in Section 6 for an MRS canister to contain consolidated fuel for storage at the MRS and eventual shipment to the repository. 5 refs., 14 figs., 10 tabs

  12. SITE GENERATED RADIOLOGICAL WASTE HANDLING SYSTEM DESCRIPTION DOCUMENT

    Energy Technology Data Exchange (ETDEWEB)

    S. C. Khamankar

    2000-06-20

    The Site Generated Radiological Waste Handling System handles radioactive waste products that are generated at the geologic repository operations area. The waste is collected, treated if required, packaged for shipment, and shipped to a disposal site. Waste streams include low-level waste (LLW) in solid and liquid forms, as-well-as mixed waste that contains hazardous and radioactive constituents. Liquid LLW is segregated into two streams, non-recyclable and recyclable. The non-recyclable stream may contain detergents or other non-hazardous cleaning agents and is packaged for shipment. The recyclable stream is treated to recycle a large portion of the water while the remaining concentrated waste is packaged for shipment; this greatly reduces the volume of waste requiring disposal. There will be no liquid LLW discharge. Solid LLW consists of wet solids such as ion exchange resins and filter cartridges, as-well-as dry active waste such as tools, protective clothing, and poly bags. Solids will be sorted, volume reduced, and packaged for shipment. The generation of mixed waste at the Monitored Geologic Repository (MGR) is not planned; however, if it does come into existence, it will be collected and packaged for disposal at its point of occurrence, temporarily staged, then shipped to government-approved off-site facilities for disposal. The Site Generated Radiological Waste Handling System has equipment located in both the Waste Treatment Building (WTB) and in the Waste Handling Building (WHB). All types of liquid and solid LLW are processed in the WTB, while wet solid waste from the Pool Water Treatment and Cooling System is packaged where received in the WHB. There is no installed hardware for mixed waste. The Site Generated Radiological Waste Handling System receives waste from locations where water is used for decontamination functions. In most cases the water is piped back to the WTB for processing. The WTB and WHB provide staging areas for storing and shipping LLW

  13. SITE GENERATED RADIOLOGICAL WASTE HANDLING SYSTEM DESCRIPTION DOCUMENT

    International Nuclear Information System (INIS)

    S. C. Khamankar

    2000-01-01

    The Site Generated Radiological Waste Handling System handles radioactive waste products that are generated at the geologic repository operations area. The waste is collected, treated if required, packaged for shipment, and shipped to a disposal site. Waste streams include low-level waste (LLW) in solid and liquid forms, as-well-as mixed waste that contains hazardous and radioactive constituents. Liquid LLW is segregated into two streams, non-recyclable and recyclable. The non-recyclable stream may contain detergents or other non-hazardous cleaning agents and is packaged for shipment. The recyclable stream is treated to recycle a large portion of the water while the remaining concentrated waste is packaged for shipment; this greatly reduces the volume of waste requiring disposal. There will be no liquid LLW discharge. Solid LLW consists of wet solids such as ion exchange resins and filter cartridges, as-well-as dry active waste such as tools, protective clothing, and poly bags. Solids will be sorted, volume reduced, and packaged for shipment. The generation of mixed waste at the Monitored Geologic Repository (MGR) is not planned; however, if it does come into existence, it will be collected and packaged for disposal at its point of occurrence, temporarily staged, then shipped to government-approved off-site facilities for disposal. The Site Generated Radiological Waste Handling System has equipment located in both the Waste Treatment Building (WTB) and in the Waste Handling Building (WHB). All types of liquid and solid LLW are processed in the WTB, while wet solid waste from the Pool Water Treatment and Cooling System is packaged where received in the WHB. There is no installed hardware for mixed waste. The Site Generated Radiological Waste Handling System receives waste from locations where water is used for decontamination functions. In most cases the water is piped back to the WTB for processing. The WTB and WHB provide staging areas for storing and shipping LLW

  14. E-Waste Recycling Systems and Sound Circulative Economies in East Asia: A Comparative Analysis of Systems in Japan, South Korea, China and Taiwan

    Directory of Open Access Journals (Sweden)

    Soo-cheol Lee

    2010-06-01

    Full Text Available The main purpose of this paper is to review and compare E-waste management systems operating in East Asian countries in efforts to identify future challenges facing the circulative economies in the region. The first topic of this paper is cost sharing (physical and financial as applied to the various stakeholders, including producers, consumers, local governments and recyclers, in the E-waste management systems. The second topic is the environmental and economical impacts of these E-waste management systems on recycling technology, trans-boundary movement of E-wastes and Design for Environment (DfE. The final topic is the possibility for international cooperation in the region in terms of E-waste management systems. The authors’ preliminary result is that the E-waste management systems operating in these East Asian countries have contributed to extended producer responsibility and DfE to some extent, but many challenges remain in their improvement through proper cost sharing among the stakeholders. It is also clear that the cross-border transfer of E-wastes cannot be resolved by one nation alone, and thus international cooperation will be indispensable in finding a suitable solution.

  15. Package materials, waste form

    International Nuclear Information System (INIS)

    Anon.

    1980-01-01

    The schedules for waste package development for the various host rocks were presented. The waste form subtask activities were reviewed, with the papers focusing on high-level waste, transuranic waste, and spent fuel. The following ten papers were presented: (1) Waste Package Development Approach; (2) Borosilicate Glass as a Matrix for Savannah River Plant Waste; (3) Development of Alternative High-Level Waste Forms; (4) Overview of the Transuranic Waste Management Program; (5) Assessment of the Impacts of Spent Fuel Disassembly - Alternatives on the Nuclear Waste Isolation System; (6) Reactions of Spent Fuel and Reprocessing Waste Forms with Water in the Presence of Basalt; (7) Spent Fuel Stabilizer Screening Studies; (8) Chemical Interactions of Shale Rock, Prototype Waste Forms, and Prototype Canister Metals in a Simulated Wet Repository Environment; (9) Impact of Fission Gas and Volatiles on Spent Fuel During Geologic Disposal; and (10) Spent Fuel Assembly Decay Heat Measurement and Analysis

  16. The aesthetics of hazardous waste - Distinguishing visual impacts from publicly perceived risk

    International Nuclear Information System (INIS)

    Sheppard, S.

    1986-01-01

    The need to address the aesthetic impacts of hazardous waste projects on the environment and the public stems from two sources: government regulations which specifically require assessment of aesthetic effects; and rapidly increasing public concern for perceived impacts and risks of existing or proposed hazardous waste facilities. How aesthetic issues are handled on hazardous waste projects can potentially have significant implications on the fate of those projects. These implications range from delays in the permitting process to denial of sites or costly legal judgments in damage suits. This paper discusses strategies for evaluating the aesthetic/perceptual aspects of hazardous waste. In particular, it focuses upon ways to distinguish visual concerns from other influences on public perceptions such as perceived health and safety risks

  17. Defense Waste Processing Facility (DWPF), Modular CSSX Unit (CSSX), and Waste Transfer Line System of Salt Processing Program (U)

    International Nuclear Information System (INIS)

    CHANG, ROBERT

    2006-01-01

    All of the waste streams from ARP, MCU, and SWPF processes will be sent to DWPF for vitrification. The impact these new waste streams will have on DWPF's ability to meet its canister production goal and its ability to support the Salt Processing Program (ARP, MCU, and SWPF) throughput needed to be evaluated. DWPF Engineering and Operations requested OBU Systems Engineering to evaluate DWPF operations and determine how the process could be optimized. The ultimate goal will be to evaluate all of the Liquid Radioactive Waste (LRW) System by developing process modules to cover all facilities/projects which are relevant to the LRW Program and to link the modules together to: (1) study the interfaces issues, (2) identify bottlenecks, and (3) determine the most cost effective way to eliminate them. The results from the evaluation can be used to assist DWPF in identifying improvement opportunities, to assist CBU in LRW strategic planning/tank space management, and to determine the project completion date for the Salt Processing Program

  18. Packaged low-level waste verification system

    International Nuclear Information System (INIS)

    Tuite, K.T.; Winberg, M.; Flores, A.Y.; Killian, E.W.; McIsaac, C.V.

    1996-01-01

    Currently, states and low-level radioactive waste (LLW) disposal site operators have no method of independently verifying the radionuclide content of packaged LLW that arrive at disposal sites for disposal. At this time, disposal sites rely on LLW generator shipping manifests and accompanying records to insure that LLW received meets the waste acceptance criteria. An independent verification system would provide a method of checking generator LLW characterization methods and help ensure that LLW disposed of at disposal facilities meets requirements. The Mobile Low-Level Waste Verification System (MLLWVS) provides the equipment, software, and methods to enable the independent verification of LLW shipping records to insure that disposal site waste acceptance criteria are being met. The MLLWVS system was developed under a cost share subcontract between WMG, Inc., and Lockheed Martin Idaho Technologies through the Department of Energy's National Low-Level Waste Management Program at the Idaho National Engineering Laboratory (INEL)

  19. Tank waste remediation system retrieval and disposal mission key enabling assumptions

    International Nuclear Information System (INIS)

    Baldwin, J.H.

    1998-01-01

    An overall systems approach has been applied to develop action plans to support the retrieval and immobilization waste disposal mission. The review concluded that the systems and infrastructure required to support the mission are known. Required systems are either in place or plans have been developed. An analysis of the programmatic, management and technical activities necessary to declare Readiness to Proceed with execution of the mission demonstrates that the system, people, and hardware will be on line and ready to support the private contractors. The systems approach included defining the retrieval and immobilized waste disposal mission requirements and evaluating the readiness of the TWRS contractor to supply waste feed to the private contractors in June 2002. The Phase 1 feed delivery requirements from the Private Contractor Request for Proposals were reviewed, transfer piping routes were mapped on it, existing systems were evaluated, and upgrade requirements were defined. Technical Basis Reviews were completed to define work scope in greater detail, cost estimates and associated year by year financial analyses were completed. Personnel training, qualifications, management systems and procedures were reviewed and shown to be in place and ready to support the Phase 1B mission. Key assumptions and risks that could negatively impact mission success were evaluated and appropriate mitigative actions plans were planned and scheduled

  20. Multiple system modelling of waste management

    International Nuclear Information System (INIS)

    Eriksson, Ola; Bisaillon, Mattias

    2011-01-01

    Highlights: → Linking of models will provide a more complete, correct and credible picture of the systems. → The linking procedure is easy to perform and also leads to activation of project partners. → The simulation procedure is a bit more complicated and calls for the ability to run both models. - Abstract: Due to increased environmental awareness, planning and performance of waste management has become more and more complex. Therefore waste management has early been subject to different types of modelling. Another field with long experience of modelling and systems perspective is energy systems. The two modelling traditions have developed side by side, but so far there are very few attempts to combine them. Waste management systems can be linked together with energy systems through incineration plants. The models for waste management can be modelled on a quite detailed level whereas surrounding systems are modelled in a more simplistic way. This is a problem, as previous studies have shown that assumptions on the surrounding system often tend to be important for the conclusions. In this paper it is shown how two models, one for the district heating system (MARTES) and another one for the waste management system (ORWARE), can be linked together. The strengths and weaknesses with model linking are discussed when compared to simplistic assumptions on effects in the energy and waste management systems. It is concluded that the linking of models will provide a more complete, correct and credible picture of the consequences of different simultaneous changes in the systems. The linking procedure is easy to perform and also leads to activation of project partners. However, the simulation procedure is a bit more complicated and calls for the ability to run both models.

  1. Gas generation and migration analysis for TRU waste disposal system

    International Nuclear Information System (INIS)

    Ando, Kenichi; Noda, Masaru; Yamamoto, Mikihiko; Mihara, Morihiro

    2005-09-01

    In TRU waste disposal system, significant quantities of gases may be generated due to metal corrosion, radiolysis effect and microorganism activities. It is therefore recommended that the potential impact of gas generation and migration on TRU waste repository should be evaluated. In this study, gas generation rates were calculated in the repository and gas migration analysis in the disposal system were carried out using two phase flow model with results of gas generation rates. First, the time dependencies of gas generation rate in each TRU waste repositories were evaluated based on amounts of metal, organic matter and radioactivity. Next, the accumulation pressure of gases and expelled pore water volume nuclides in the repository were calculated by TOUGH2 code. After that, the results showed that the increase of gas pressure was the range of 1.3 to 1.4 MPa. In the repository with and without buffer, the rate of expelled pore water was 0.006 - 0.009 m 3 /y and 0.018 - 0.24m 3 /y, respectively. In addition, the radioactive gas migration through the repository and geosphere are evaluated. And re-saturation analysis is also performed to evaluate the initial condition of the system. (author)

  2. Life cycle costing of waste management systems: Overview, calculation principles and case studies

    International Nuclear Information System (INIS)

    Martinez-Sanchez, Veronica; Kromann, Mikkel A.; Astrup, Thomas Fruergaard

    2015-01-01

    Highlights: • We propose a comprehensive model for cost assessment of waste management systems. • The model includes three types of LCC: Conventional, Environmental and Societal LCCs. • The applicability of the proposed model is tested with two case studies. - Abstract: This paper provides a detailed and comprehensive cost model for the economic assessment of solid waste management systems. The model was based on the principles of Life Cycle Costing (LCC) and followed a bottom-up calculation approach providing detailed cost items for all key technologies within modern waste systems. All technologies were defined per tonne of waste input, and each cost item within a technology was characterised by both a technical and an economic parameter (for example amount and cost of fuel related to waste collection), to ensure transparency, applicability and reproducibility. Cost items were classified as: (1) budget costs, (2) transfers (for example taxes, subsidies and fees) and (3) externality costs (for example damage or abatement costs related to emissions and disamenities). Technology costs were obtained as the sum of all cost items (of the same type) within a specific technology, while scenario costs were the sum of all technologies involved in a scenario. The cost model allows for the completion of three types of LCC: a Conventional LCC, for the assessment of financial costs, an Environmental LCC, for the assessment of financial costs whose results are complemented by a Life Cycle Assessment (LCA) for the same system, and a Societal LCC, for socio-economic assessments. Conventional and Environmental LCCs includes budget costs and transfers, while Societal LCCs includes budget and externality costs. Critical aspects were found in the existing literature regarding the cost assessment of waste management, namely system boundary equivalency, accounting for temporally distributed emissions and impacts, inclusions of transfers, the internalisation of environmental

  3. Life cycle costing of waste management systems: Overview, calculation principles and case studies

    Energy Technology Data Exchange (ETDEWEB)

    Martinez-Sanchez, Veronica, E-mail: vems@env.dtu.dk [Technical University of Denmark, Department of Environmental Engineering, Miljoevej, Building 113, 2800 Kgs. Lyngby (Denmark); Kromann, Mikkel A. [COWI A/S, Parallelvej 2, 2800 Kgs. Lyngby (Denmark); Astrup, Thomas Fruergaard [Technical University of Denmark, Department of Environmental Engineering, Miljoevej, Building 113, 2800 Kgs. Lyngby (Denmark)

    2015-02-15

    Highlights: • We propose a comprehensive model for cost assessment of waste management systems. • The model includes three types of LCC: Conventional, Environmental and Societal LCCs. • The applicability of the proposed model is tested with two case studies. - Abstract: This paper provides a detailed and comprehensive cost model for the economic assessment of solid waste management systems. The model was based on the principles of Life Cycle Costing (LCC) and followed a bottom-up calculation approach providing detailed cost items for all key technologies within modern waste systems. All technologies were defined per tonne of waste input, and each cost item within a technology was characterised by both a technical and an economic parameter (for example amount and cost of fuel related to waste collection), to ensure transparency, applicability and reproducibility. Cost items were classified as: (1) budget costs, (2) transfers (for example taxes, subsidies and fees) and (3) externality costs (for example damage or abatement costs related to emissions and disamenities). Technology costs were obtained as the sum of all cost items (of the same type) within a specific technology, while scenario costs were the sum of all technologies involved in a scenario. The cost model allows for the completion of three types of LCC: a Conventional LCC, for the assessment of financial costs, an Environmental LCC, for the assessment of financial costs whose results are complemented by a Life Cycle Assessment (LCA) for the same system, and a Societal LCC, for socio-economic assessments. Conventional and Environmental LCCs includes budget costs and transfers, while Societal LCCs includes budget and externality costs. Critical aspects were found in the existing literature regarding the cost assessment of waste management, namely system boundary equivalency, accounting for temporally distributed emissions and impacts, inclusions of transfers, the internalisation of environmental

  4. PROBABILISTIC ANALYSES OF WASTE PACKAGE QUANTITIES IMPACTED BY POTENTIAL IGNEOUS DISRUPTION AT YUCCA MOUNTAIN

    International Nuclear Information System (INIS)

    M.G. Wallace

    2005-01-01

    A probabilistic analysis was conducted to estimate ranges for the numbers of waste packages that could be damaged in a potential future igneous event through a repository at Yucca Mountain. The analyses include disruption from an intrusive igneous event and from an extrusive volcanic event. This analysis supports the evaluation of the potential consequences of future igneous activity as part of the total system performance assessment for the license application for the Yucca Mountain Project (YMP). The first scenario, igneous intrusion, investigated the case where one or more igneous dikes intersect the repository. A swarm of dikes was characterized by distributions of length, width, azimuth, and number of dikes and the spacings between them. Through the use in part of a latin hypercube simulator and a modified video game engine, mathematical relationships were built between those parameters and the number of waste packages hit. Corresponding cumulative distribution function curves (CDFs) for the number of waste packages hit under several different scenarios were calculated. Variations in dike thickness ranges, as well as in repository magma bulkhead positions were examined through sensitivity studies. It was assumed that all waste packages in an emplacement drift would be impacted if that drift were intersected by a dike. Over 10,000 individual simulations were performed. Based on these calculations, out of a total of over 11,000 planned waste packages distributed over an area of approximately 5.5 km 2 , the median number of waste packages impacted was roughly 1/10 of the total. Individual cases ranged from 0 waste packages to the entire inventory being impacted. The igneous intrusion analysis involved an explicit characterization of dike-drift intersections, built upon various distributions that reflect the uncertainties associated with the inputs. The second igneous scenario, volcanic eruption (eruptive conduits), considered the effects of conduits formed in

  5. The Impact of Urban Solid Waste Management on Urban Environment

    Directory of Open Access Journals (Sweden)

    خالد عبد الوهاب

    2017-03-01

    Full Text Available The growing population and the rising standard of living in cities as well as the increased commercial, industrial and agricultural activities around the world led to massive production of waste containing different materials and one of them is the municipal solid waste (MSW, so there is a major problem facing the cities around the world about the waste, how to collect, transfer it and how to discard it. Because the accumulation of wastes, whether in the city alleys or in its squares and especially in its residential areas affect the health of their populations besides this situation will be a major indication of the deteriorating quality of life in the city, as hygiene considered a fundamental criterion for the city beauty as well as an indication of the protection provided by the city to their environment and the level of protection provided to the health of city residence. The accumulated waste which is left in the city without treatment significantly affects the psychological behavior of the residence of these areas towards their community and environment and therefore their behavior towards their regions and their cities. From here emerged the general research problem concerning the modern civilization and its lifestyle that produced great amounts of (municipal solid waste, which became a big problem facing the modern cities concerning their collection, transportation and finally their disposal, how can these great amounts of waste be used whether by recycling, energy recovery or transferring to plant fertilizers ... etc. To serve the sustainable growth of these modern cities, this lead to the specific research problem concerning the lack of clarity concerning the impact of waste collection, transporting and treating and city urban environment and its townscape. Research Hypothesis: The process of collecting, transporting and. treating city solid waste or using it has a great impact on city urban environment and its townscape.

  6. An interval-based possibilistic programming method for waste management with cost minimization and environmental-impact abatement under uncertainty.

    Science.gov (United States)

    Li, Y P; Huang, G H

    2010-09-15

    Considerable public concerns have been raised in the past decades since a large amount of pollutant emissions from municipal solid waste (MSW) disposal of processes pose risks on surrounding environment and human health. Moreover, in MSW management, various uncertainties exist in the related costs, impact factors and objectives, which can affect the optimization processes and the decision schemes generated. In this study, an interval-based possibilistic programming (IBPP) method is developed for planning the MSW management with minimized system cost and environmental impact under uncertainty. The developed method can deal with uncertainties expressed as interval values and fuzzy sets in the left- and right-hand sides of constraints and objective function. An interactive algorithm is provided for solving the IBPP problem, which does not lead to more complicated intermediate submodels and has a relatively low computational requirement. The developed model is applied to a case study of planning a MSW management system, where mixed integer linear programming (MILP) technique is introduced into the IBPP framework to facilitate dynamic analysis for decisions of timing, sizing and siting in terms of capacity expansion for waste-management facilities. Three cases based on different waste-management policies are examined. The results obtained indicate that inclusion of environmental impacts in the optimization model can change the traditional waste-allocation pattern merely based on the economic-oriented planning approach. The results obtained can help identify desired alternatives for managing MSW, which has advantages in providing compromised schemes under an integrated consideration of economic efficiency and environmental impact under uncertainty. Copyright 2010 Elsevier B.V. All rights reserved.

  7. WASTE HANDLING BUILDING FIRE PROTECTION SYSTEM DESCRIPTION DOCUMENT

    Energy Technology Data Exchange (ETDEWEB)

    J. D. Bigbee

    2000-06-21

    The Waste Handling Building Fire Protection System provides the capability to detect, control, and extinguish fires and/or mitigate explosions throughout the Waste Handling Building (WHB). Fire protection includes appropriate water-based and non-water-based suppression, as appropriate, and includes the distribution and delivery systems for the fire suppression agents. The Waste Handling Building Fire Protection System includes fire or explosion detection panel(s) controlling various detectors, system actuation, annunciators, equipment controls, and signal outputs. The system interfaces with the Waste Handling Building System for mounting of fire protection equipment and components, location of fire suppression equipment, suppression agent runoff, and locating fire rated barriers. The system interfaces with the Waste Handling Building System for adequate drainage and removal capabilities of liquid runoff resulting from fire protection discharges. The system interfaces with the Waste Handling Building Electrical Distribution System for power to operate, and with the Site Fire Protection System for fire protection water supply to automatic sprinklers, standpipes, and hose stations. The system interfaces with the Site Fire Protection System for fire signal transmission outside the WHB as needed to respond to a fire emergency, and with the Waste Handling Building Ventilation System to detect smoke and fire in specific areas, to protect building high-efficiency particulate air (HEPA) filters, and to control portions of the Waste Handling Building Ventilation System for smoke management and manual override capability. The system interfaces with the Monitored Geologic Repository (MGR) Operations Monitoring and Control System for annunciation, and condition status.

  8. WASTE HANDLING BUILDING FIRE PROTECTION SYSTEM DESCRIPTION DOCUMENT

    International Nuclear Information System (INIS)

    J. D. Bigbee

    2000-01-01

    The Waste Handling Building Fire Protection System provides the capability to detect, control, and extinguish fires and/or mitigate explosions throughout the Waste Handling Building (WHB). Fire protection includes appropriate water-based and non-water-based suppression, as appropriate, and includes the distribution and delivery systems for the fire suppression agents. The Waste Handling Building Fire Protection System includes fire or explosion detection panel(s) controlling various detectors, system actuation, annunciators, equipment controls, and signal outputs. The system interfaces with the Waste Handling Building System for mounting of fire protection equipment and components, location of fire suppression equipment, suppression agent runoff, and locating fire rated barriers. The system interfaces with the Waste Handling Building System for adequate drainage and removal capabilities of liquid runoff resulting from fire protection discharges. The system interfaces with the Waste Handling Building Electrical Distribution System for power to operate, and with the Site Fire Protection System for fire protection water supply to automatic sprinklers, standpipes, and hose stations. The system interfaces with the Site Fire Protection System for fire signal transmission outside the WHB as needed to respond to a fire emergency, and with the Waste Handling Building Ventilation System to detect smoke and fire in specific areas, to protect building high-efficiency particulate air (HEPA) filters, and to control portions of the Waste Handling Building Ventilation System for smoke management and manual override capability. The system interfaces with the Monitored Geologic Repository (MGR) Operations Monitoring and Control System for annunciation, and condition status

  9. Integrated waste and water management system

    Science.gov (United States)

    Murray, R. W.; Sauer, R. L.

    1986-01-01

    The performance requirements of the NASA Space Station have prompted a reexamination of a previously developed integrated waste and water management system that used distillation and catalytic oxydation to purify waste water, and microbial digestion and incineration for waste solids disposal. This system successfully operated continuously for 206 days, for a 4-man equivalent load of urine, feces, wash water, condensate, and trash. Attention is given to synergisms that could be established with other life support systems, in the cases of thermal integration, design commonality, and novel technologies.

  10. Integrating the radioactive waste management system into other management systems

    International Nuclear Information System (INIS)

    Silva, Ana Cristina Lourenco da; Nunes Neto, Carlos Antonio

    2007-01-01

    Radioactive waste management is to be included in the Integrated Management System (IMS) which pursues the continuous improvement of the company's quality, occupational safety and health, and environment protection processes. Radioactive waste management is based on the following aspects: optimization of human and material resources for execution of tasks, including the provision of a radiation protection supervisor to watch over the management of radioactive waste; improved documentation (management plan and procedures); optimization of operational levels for waste classification and release; maintenance of generation records and history through a database that facilitates traceability of information; implementation of radioactive waste segregation at source (source identification, monitoring and decontamination) activities intended to reduce the amount of radioactive waste; licensing of initial storage site for radioactive waste control and storage; employee awareness training on radioactive waste generation; identification and evaluation of emergency situations and response planning; implementation of preventive maintenance program for safety related items; development and application of new, advanced treatment methodologies or systems. These aspects are inherent in the concepts underlying quality management (establishment of administrative controls and performance indicators), environment protection (establishment of operational levels and controls for release), occupational health and safety (establishment of operational controls for exposure in emergency and routine situations and compliance with strict legal requirements and standards). It is noted that optimizing the addressed aspects of a radioactive waste management system further enhances the efficiency of the Integrated Management System for Quality, Environment, and Occupational Safety and Health. (author)

  11. Television systems for radioactive waste management

    International Nuclear Information System (INIS)

    Quartly, J.R.

    1989-01-01

    Radiation-tolerant television cameras, widely used for the inspection of nuclear plants, are now used for monitoring radioactive waste management processes. Two systems are described in this paper that differ in the methods of maintaining the camera equipment. At the British Nuclear Fuels plc (BNFL) Sellafield plant, a major capital investment program is under way that includes plants for spent-fuel reprocessing and radioactive waste management. The Windscale vitrification plant (WVP) will convert highly active liquid waste to a solid glass-like form. The WVP television system was based on in-cell cameras designed to be removable by remote-handling equipment. The plant to encapsulate medium active solid waste, encapsulation plant 1 (EP1) used through-wall and through-roof viewing systems with a glass viewing dome as the biological shield, allowing the camera and optics to be withdrawn to a safe area for maintenance. Both systems used novel techniques to obtain a record of the waste-processing operations. The WVP system used a microcomputer to overlay reference information onto the television picture and a motion detector to automatically trigger the video recording. The television system for EP1 included automatic character recognition to generate a computer data record of drum serial numbers

  12. Los Alamos Plutonium Facility Waste Management System

    International Nuclear Information System (INIS)

    Smith, K.; Montoya, A.; Wieneke, R.; Wulff, D.; Smith, C.; Gruetzmacher, K.

    1997-01-01

    This paper describes the new computer-based transuranic (TRU) Waste Management System (WMS) being implemented at the Plutonium Facility at Los Alamos National Laboratory (LANL). The Waste Management System is a distributed computer processing system stored in a Sybase database and accessed by a graphical user interface (GUI) written in Omnis7. It resides on the local area network at the Plutonium Facility and is accessible by authorized TRU waste originators, count room personnel, radiation protection technicians (RPTs), quality assurance personnel, and waste management personnel for data input and verification. Future goals include bringing outside groups like the LANL Waste Management Facility on-line to participate in this streamlined system. The WMS is changing the TRU paper trail into a computer trail, saving time and eliminating errors and inconsistencies in the process

  13. Evaluation of Externality Costs in Life-Cycle Optimization of Municipal Solid Waste Management Systems

    DEFF Research Database (Denmark)

    Martinez Sanchez, Veronica; Levis, James W.; Damgaard, Anders

    2017-01-01

    The development of sustainable solid waste management (SWM) systems requires consideration of both economic and environmental impacts. Societal life-cycle costing (S-LCC) provides a quantitative framework to estimate both economic and environmental impacts, by including "budget costs...... suburban U.S. county of 500 000 people generating 320 000 Mg of waste annually. Estimated externality costs are based on emissions of CO2, CH4, N2O, PM2.5, PM10, NOx, SO2, VOC, CO, NH3, Hg, Pb, Cd, Cr (VI), Ni, As, and dioxins. The results indicate that incorporating S-LCC into optimized SWM strategy...... development encourages the use of a mixed waste material recovery facility with residues going to incineration, and separated organics to anaerobic digestion. Results are sensitive to waste composition, energy mix and recycling rates. Most of the externality costs stem from SO2, NOx, PM2.5, CH4, fossil CO2...

  14. Nuclear waste management and the impact of Carter Administration policies

    International Nuclear Information System (INIS)

    Williams, R.F.

    1979-01-01

    The impact of Carter Administration's policies on the nuclear waste management program are evaluated in this article. The waste management program faces numerous inconsistencies resulting from: a lack of a clearly defined schedule and division of responsibility; the requirement to meet conflicting procedural requirements; and the lack of clear statements from the President and Congress supporting the major programs. Some of the ramifications of these points are discussed with reference to the schedule for the 3 key program elements: National Waste Terminal Storage (NWTS) Facility scheduled for commercial operation in 1985 to handle commercial high-level wastes; the Spent Unreprocessed Fuel (SURF) Facility scheduled for operation in 1985 to handle spent fuel from commercial power plants; the Waste Isolation Pilot Plant (WIPP) scheduled for operation in 1983 or 1984 for the disposal of TRU defense wastes. Possible avenues for improvement are suggested

  15. Transportable Vitrification System Demonstration on Mixed Waste

    International Nuclear Information System (INIS)

    Zamecnik, J.R.; Whitehouse, J.C.; Wilson, C.N.; Van Ryn, F.R.

    1998-01-01

    This paper describes preliminary results from the first demonstration of the Transportable Vitrification System (TVS) on actual mixed waste. The TVS is a fully integrated, transportable system for the treatment of mixed and low-level radioactive wastes. The demonstration was conducted at Oak Ridge's East Tennessee Technology Park (ETTP), formerly known as the K-25 site. The purpose of the demonstration was to show that mixed wastes could be vitrified safely on a 'field' scale using joule-heated melter technology and obtain information on system performance, waste form durability, air emissions, and costs

  16. Feasibility analysis of wastewater and solid waste systems for application in Indonesia.

    Science.gov (United States)

    Kerstens, S M; Leusbrock, I; Zeeman, G

    2015-10-15

    Indonesia is one of many developing countries with a backlog in achieving targets for the implementation of wastewater and solid waste collection, treatment and recovery systems. Therefore a technical and financial feasibility analysis of these systems was performed using Indonesia as an example. COD, BOD, nitrogen, phosphorus and pathogen removal efficiencies, energy requirements, sludge production, land use and resource recovery potential (phosphorus, energy, duckweed, compost, water) for on-site, community based and off-site wastewater systems were determined. Solid waste systems (conventional, centralized and decentralized resource recovery) were analyzed according to land requirement, compost and energy production and recovery of plastic and paper. In the financial analysis, investments, operational costs & benefits and Total Lifecycle Costs (TLC) of all investigated options were compared. Technical performance and TLC were used to guide system selection for implementation in different residential settings. An analysis was undertaken to determine the effect of price variations of recoverable resources and land prices on TLC. A 10-fold increase in land prices for land intensive wastewater systems resulted in a 5 times higher TLC, whereas a 4-fold increase in the recovered resource selling price resulted in maximum 1.3 times higher TLC. For solid waste, these impacts were reversed - land price and resource selling price variations resulted in a maximum difference in TLC of 1.8 and 4 respectively. Technical and financial performance analysis can support decision makers in system selection and anticipate the impact of price variations on long-term operation. The technical analysis was based on published results of international research and the approach can be applied for other tropical, developing countries. All costs were converted to per capita unit costs and can be updated to assess other countries' estimated costs and benefits. Consequently, the approach can

  17. Environmental impact statement for initiation of transuranic waste disposal at the waste isolation pilot plant

    International Nuclear Information System (INIS)

    Johnson, H.E.; Whatley, M.E.

    1996-01-01

    WIPP's long-standing mission is to demonstrate the safe disposal of TRU waste from US defense activities. In 1980, to comply with NEPA, US DOE completed its first environmental impact statement (EIS) which compared impacts of alternatives for TRU waste disposal. Based on this 1980 analysis, DOE decided to construct WIPP in 1981. In a 1990 decision based on examination of alternatives in a 1990 Supplemental EIS, DOE decided to continue WIPP development by proceeding with a testing program to examine WIPP's suitability as a TRU waste repository. Now, as DOE's Carlsbad Area Office (CAO) attempts to complete its regulatory obligations to begin WIPP disposal operations, CAO is developing WIPP's second supplemental EIS (SEIS-II). To complete the SEIS-II, CAO will have to meet a number of challenges. This paper explores both the past and present EISs prepared to evaluate the suitability of WIPP. The challenges in completing an objective comparison of alternatives, while also finalizing other critical-path compliance documents, controlling costs, and keeping stakeholders involved during the decision-making process are addressed

  18. System analysis of energy utilization from waste - evaluation of energy, environment and economy. Case study - Stockholm

    International Nuclear Information System (INIS)

    Sundqvist, Jan-Olov; Granath, Jessica; Frostell, Bjoern; Bjoerklund, Anna; Eriksson, Ola; Carlsson, Marcus

    1999-12-01

    Energy, environmental, and economic consequences of different management systems for municipal solid waste have been studied in a systems analysis. In the systems analysis, different combinations of incineration, materials recycling of separated plastic and cardboard containers, and biological treatment (anaerobic digestion) of easily degradable organic waste, were studied and also compared to landfilling. In the study a computer model (ORWARE) based on LCA methodology was used. The following parameters were used for evaluating the different waste management options: consumption of energy resources, global warming potential, acidification, eutrophication, photo oxidant formation, heavy metal flows, financial economy and welfare economy, where welfare economy is the sum of financial economy and environmental economy. The study shows that reduced landfilling to the benefit of an increased use of energy and material from the waste is positive, from an environmental and energy as well as economic aspect. This is mainly due to the fact that the choice of waste management method affects processes outside the waste management system, such as production of district heating, electricity, vehicle fuel, plastic, cardboard, and fertiliser. This means that landfilling of energy-rich waste should be avoided as far as possible, both because of the the environmental impact, and because of the low recovery of resources. Incineration should constitute a basis in the waste management system of Stockholm. Once the waste is collected, longer regional transports are of little significance, as long as the transports are carried out in an efficient manner. Comparing materials recycling and incineration, and biological treatment and incineration, no unambiguous conclusions can be drawn. There are benefits and drawbacks associated with all these waste management options. Materials recycling of plastic containers is comparable to incineration from a welfare economic aspect, but gives less

  19. Municipal solid waste management system: decision support through systems analysis

    OpenAIRE

    Pires, Ana Lúcia Lourenço

    2010-01-01

    Thesis submitted to the Universidade Nova de Lisboa, Faculdade de Ciências e Tecnologia for the degree of Doctor of Philosophy in Environmental Engineering The present study intends to show the development of systems analysis model applied to solid waste management system, applied into AMARSUL, a solid waste management system responsible for the management of municipal solid waste produced in Setúbal peninsula, Portugal. The model developed intended to promote sustainable decision making, ...

  20. The legal system of nuclear waste disposal

    International Nuclear Information System (INIS)

    Dauk, W.

    1983-01-01

    This doctoral thesis presents solutions to some of the legal problems encountered in the interpretation of the various laws and regulations governing nuclear waste disposal, and reveals the legal system supporting the variety of individual regulations. Proposals are made relating to modifications of problematic or not well defined provisions, in order to contribute to improved juridical security, or inambiguity in terms of law. The author also discusses the question of the constitutionality of the laws for nuclear waste disposal. Apart from the responsibility of private enterprise to contribute to safe treatment or recycling, within the framework of the integrated waste management concept, and apart from the Government's responsibility for interim or final storage of radioactive waste, there is a third possibility included in the legal system for waste management, namely voluntary measures taken by private enterprise for radioactive waste disposal. The licence to be applied for in accordance with section 3, sub-section (1) of the Radiation Protection Ordinance is interpreted to pertain to all measures of radioactive waste disposal, thus including final storage of radioactive waste by private companies. Although the terminology and systematic concept of nuclear waste disposal are difficult to understand, there is a functionable system of legal provisions contained therein. This system fits into the overall concept of laws governing technical safety and safety engineering. (orig./HSCH) [de

  1. 21-PWR Waste Package Side and End Impacts

    International Nuclear Information System (INIS)

    V. Delabrosse

    2003-01-01

    The objective of this calculation is to determine the structural response of a 21-Pressurized Water Reactor (PWR) spent nuclear fuel waste package impacting an unyielding surface. A range of initial velocities and initial angles between the waste package and the unyielding surface is studied. The scope of this calculation is limited to estimating the area of the outer shell (OS) where the residual stress exceeds a given limit (hereafter ''damaged area''). The stress limit is defined as a fraction of the yield strength of the OS material, Alloy 22 (SB-575 N06022), at the appropriate temperature. The design of the 21-PWR waste package used in this calculation is that defined in Reference 8. However, a value of 4 mm was used for the gap between the inner shell and the OS, and the thickness of the OS was reduced by 2 mm. The sketch in Attachment I provides additional information not included in Reference 8. All obtained results are valid for this design only. This calculation is associated with the waste package design and was performed by the Specialty Analyses and Waste Package Design Section. The waste package (i.e. uncanistered spent nuclear fuel disposal container) is classified as Quality Level 1

  2. 21-PWR Waste Package Side and End Impacts

    International Nuclear Information System (INIS)

    T. Schmitt

    2005-01-01

    The objective of this calculation is to determine the structural response of a 21-Pressurized Water Reactor (PWR) spent nuclear fuel waste package impacting an unyielding surface. A range of initial velocities and initial angles between the waste package and the unyielding surface is studied. The scope of this calculation is limited to estimating the area of the outer shell (OS) where the residual stress exceeds a given limit (hereafter ''damaged area''). The stress limit is defined as a fraction of the yield strength of the OS material, Alloy 22 (SB-575 N06022), at the appropriate temperature. The design of the 21-PWR waste package used in this calculation is that defined in Reference 8. However, a value of 4 mm was used for the gap between the inner shell and the OS, and the thickness of the OS was reduced by 2 mm. The sketch in Attachment I provides additional information not included in Reference 8. All obtained results are valid for this design only. This calculation is associated with the waste package design and was performed by the Specialty Analyses and Waste Package Design Section. The waste package (i.e. uncanistered spent nuclear fuel disposal container) is classified as Quality Level 1

  3. Mobile waste inspection real time radiography system

    International Nuclear Information System (INIS)

    Vigil, J.; Taggart, D.; Betts, S.; Rael, C.; Martinez, F.; Mendez, J.

    1995-01-01

    The 450-KeV Mobile Real Time Radiography System was designed and purchased to inspect containers of radioactive waste produced at Los Alamos National Laboratory (LANL). The Mobile Real Time Radiography System has the capability of inspecting waste containers of various sizes from 5-gal. buckets to standard waste boxes (SWB, dimensions 54.5 in. x 71 in. x 37 in.). The fact that this unit is mobile makes it an attractive alternative to the costly road closures associated with moving waste from the waste generator to storage or disposal facilities

  4. Waste processing system for nuclear power plant

    International Nuclear Information System (INIS)

    Higashinakagawa, Emiko; Tezuka, Fuminobu; Maesawa, Yukishige; Irie, Hiromitsu; Daibu, Etsuji.

    1996-01-01

    The present invention concerns a waste processing system of a nuclear power plant, which can reduce the volume of a large amount of plastics without burying them. Among burnable wastes and plastic wastes to be discarded in the power plant located on the sea side, the plastic wastes are heated and converted into oils, and the burnable wastes are burnt using the oils as a fuel. The system is based on the finding that the presence of Na 2 O, K 2 O contained in the wastes catalytically improves the efficiency of thermal decomposition in a heating atmosphere, in the method of heating plastics and converting them into oils. (T.M.)

  5. Management of waste heat at nuclear power plants: Its potential impact on the environment and its possible economic use

    International Nuclear Information System (INIS)

    Tsai, Y.H.

    1987-01-01

    The efficacy of the disposal of waste heat from nuclear power plants by means of once-through and closed-cycle cooling systems is examined in the context of the physical aspects of water quality standards and guidelines for thermal discharges. Typical thermal standards for each of the four classes of water bodies (rivers, lakes, estuaries, and coastal waters) are identified. Examples of thermal standards established for once-through cooling on open coastal waters are presented. The design and general layout of various types of cooling systems are reviewed. The advantages and disadvantages of each of the cooling systems are presented, with particular emphasis on the discussion of potential environmental impacts. Modeling techniques available for impact assessment are presented. Proper selection and application of the models depend on the availability of site characteristics and understanding of the modeling techniques. Guidelines for choosing an appropriate model are presented. Various methods have been developed for the beneficial use of waste heat largely dissipated to the environment. Examples and associated problems of waste-heat utilization are discussed for agricultural, industrial, aquacultural, and residential uses

  6. 78 FR 57538 - Proposed Waste Confidence Rule and Draft Generic Environmental Impact Statement

    Science.gov (United States)

    2013-09-19

    ..., Chief, Communication, Planning, and Rulemaking Branch Waste Confidence Directorate, Office of Nuclear...-2012-0246] RIN 3150-AJ20 Proposed Waste Confidence Rule and Draft Generic Environmental Impact... disposal (proposed Waste Confidence rule). In addition, the NRC will receive public comment on its...

  7. Review of LCA studies of solid waste management systems – Part I: Lessons learned and perspectives

    DEFF Research Database (Denmark)

    Laurent, Alexis; Bakas, Ioannis; Clavreul, Julie

    2014-01-01

    distribution and found that the published studies have primarily been concentrated in Europe with little application in developing countries. In terms of technological coverage, they have largely overlooked application of LCA to waste prevention activities and to relevant waste types apart from household waste......The continuously increasing solid waste generation worldwide calls for management strategies that integrate concerns for environmental sustainability. By quantifying environmental impacts of systems, life cycle assessment (LCA) is a tool, which can contribute to answer that call. But how, where...... and to which extent has it been applied to solid waste management systems (SWMSs) until now, and which lessons can be learnt from the findings of these LCA applications? To address these questions, we performed a critical review of 222 published LCA studies of SWMS. We first analysed the geographic...

  8. Environmental impact of low concentrated wastes

    International Nuclear Information System (INIS)

    Barescut, J.C.

    1998-01-01

    A means to reduce the impact of a waste landfill is to limit its content so that after a reasonably short time, its radioactivity does not significantly exceed the natural level. For this means to be effective, it must be demonstrated that the system will not, in the long run, spontaneously evolve towards local sports of higher concentration. This process would require considerable converging migrations that would offer many opportunities for mixing and thus be inconsistent with concentration. Moreover, concentration is an energy-demanding process that will be limited by the availability of energy, especially in chemical form. For these reasons, it is wise to avoid placing a landfill where energy is likely to be more readily available than on the average. It is also advisable to avoid artificial protections, if their future evolution is not fully understood, since they necessarily contain an excess of energy relative to the undisturbed natural state. (author)

  9. DOE systems approach to a low-level waste management information system: summary paper

    International Nuclear Information System (INIS)

    Esparza, V.

    1987-01-01

    The LLWMP is performing an assessment of waste information systems currently in use at each DOE site for recording LLW data. The assessment is being conducted to determine what changes to the waste information systems, if any, are desirable to support implementation of this systems approach to LLW management. Recommendations will be made to DOE from this assessment and what would be involved to modify current DOE waste generator information practices to support an appropriately structured overall DOE LLW data systems. In support of reducing the uncertainty of decision-making, DOE has selected a systems approach to keep pace with an evolving regulatory climate to low-level waste. This approach considers the effects of each stage of the entire low-level waste management process. The proposed systems approach starts with the disposal side of the waste management system and progresses towards the waste generation side of the waste management system. Using this approach provides quantitative performance to be achieved. In addition, a systems approach also provides a method for selecting appropriate technology based on engineering models

  10. INEL test plan for evaluating waste assay systems

    International Nuclear Information System (INIS)

    Mandler, J.W.; Becker, G.K.; Harker, Y.D.; Menkhaus, D.E.; Clements, T.L. Jr.

    1996-09-01

    A test bed is being established at the Idaho National Engineering Laboratory (INEL) Radioactive Waste Management Complex (RWMC). These tests are currently focused on mobile or portable radioassay systems. Prior to disposal of TRU waste at the Waste Isolation Pilot Plant (WIPP), radioassay measurements must meet the quality assurance objectives of the TRU Waste Characterization Quality Assurance Program Plan. This test plan provides technology holders with the opportunity to assess radioassay system performance through a three-tiered test program that consists of: (a) evaluations using non-interfering matrices, (b) surrogate drums with contents that resemble the attributes of INEL-specific waste forms, and (c) real waste tests. Qualified sources containing a known mixture and range of radionuclides will be used for the non-interfering and surrogate waste tests. The results of these tests will provide technology holders with information concerning radioassay system performance and provide the INEL with data useful for making decisions concerning alternative or improved radioassay systems that could support disposal of waste at WIPP

  11. INEL test plan for evaluating waste assay systems

    Energy Technology Data Exchange (ETDEWEB)

    Mandler, J.W.; Becker, G.K.; Harker, Y.D.; Menkhaus, D.E.; Clements, T.L. Jr.

    1996-09-01

    A test bed is being established at the Idaho National Engineering Laboratory (INEL) Radioactive Waste Management Complex (RWMC). These tests are currently focused on mobile or portable radioassay systems. Prior to disposal of TRU waste at the Waste Isolation Pilot Plant (WIPP), radioassay measurements must meet the quality assurance objectives of the TRU Waste Characterization Quality Assurance Program Plan. This test plan provides technology holders with the opportunity to assess radioassay system performance through a three-tiered test program that consists of: (a) evaluations using non-interfering matrices, (b) surrogate drums with contents that resemble the attributes of INEL-specific waste forms, and (c) real waste tests. Qualified sources containing a known mixture and range of radionuclides will be used for the non-interfering and surrogate waste tests. The results of these tests will provide technology holders with information concerning radioassay system performance and provide the INEL with data useful for making decisions concerning alternative or improved radioassay systems that could support disposal of waste at WIPP.

  12. Functional analysis, a resilience improvement tool applied to a waste management system - application to the "household waste management chain"

    Science.gov (United States)

    Beraud, H.; Barroca, B.; Hubert, G.

    2012-12-01

    A waste management system plays a leading role in the capacity of an area to restart after flooding, as their impact on post-crisis management can be very considerable. Improving resilience, i.e. enabling it to maintain or recover acceptable operating levels after flooding is primordial. To achieve this, we must understand how the system works for bringing any potential dysfunctions to light and taking preventive measures. Functional analysis has been used for understanding the complexity of this type of system. The purpose of this article is to show the interest behind this type of method and the limits in its use for improving resilience of waste management system as well as other urban technical systems1, by means of theoretical modelling and its application on a study site. 1In a systemic vision of the city, urban technical systems combine all the user service systems that are essential for the city to operate (electricity, water supplies, transport, sewerage, etc.). These systems are generally organised in the form of networks (Coutard, 2010; CERTU, 2005).

  13. Tank waste remediation system risk management list

    International Nuclear Information System (INIS)

    Collard, L.B.

    1995-01-01

    The Tank Waste Remedation System (TWRS) Risk Management List and it's subset of critical risks, the Critical Risk Management List, provide a tool to senior RL and WHC management (Level-1 and -2) to manage programmatic risks that may significantly impact the TWRS program. The programmatic risks include cost, schedule, and performance risks. Performance risk includes technical risk, supportability risk (such as maintainability and availability), and external risk (i.e., beyond program control, for example, changes in regulations). The risk information includes a description, its impacts, as evaluation of the likelihood, consequences and risk value, possible mitigating actions, and responsible RL and WHC managers. The issues that typically form the basis for the risks are presented in a separate table and the affected functions are provided on the management lists

  14. Social impact mitigation and nuclear waste repository siting

    International Nuclear Information System (INIS)

    Peelle, E.

    1980-01-01

    Some aspects of the socioeconomic impacts of siting, constructing, and operating radioactive waste repositories in rural areas are discussed. These include public perceptions of high risk and uncertainty; limited benefits and no incentives; dissociations of costs and benefits; remoteness and inaccessibility of the decision making process for large energy facilities; no institutions to provide protection and accountability for those who may be affected by the siting; the fact that not all risks or impacts are fully mitigable; and constraints on DOE's present ability or authority to mitigate impacts

  15. Potential future waste-to-energy systems

    OpenAIRE

    Thorin, Eva; Guziana, Bozena; Song, Han; Jääskeläinen, Ari; Szpadt, Ryszard; Vasilic, Dejan; Ahrens, Thorsten; Anne, Olga; Lõõnik, Jaan

    2012-01-01

    This report discusses potential future systems for waste-to-energy production in the Baltic Sea Region, and especially for the project REMOWE partner regions, the County of Västmanland in Sweden, Northern Savo in Finland, Lower Silesia in Poland, western part of Lithuania and Estonia. The waste-to-energy systems planned for in the partner regions are combustion of municipal solid waste (MSW) and solid recovered fuels from household and industry as well as anaerobic digestion of sewage sludge ...

  16. Environmental impact assessment of decommissioning treatment about radioactive model plant waste ore storage site

    International Nuclear Information System (INIS)

    Bei Xinyu

    2012-01-01

    Aiming at decommissioning treatment project of radioactive model plant waste ore storage site, based on the detailed investigations of source terms and project description, systematic environmental impacts have been identified. The environmental impacts both during decommissioning treatment, radioactive waste transportation and after treatment are assessed. Some specific environmental protection measures are proposed so as to minimize the adverse environmental impacts. (author)

  17. The disposal of Canada's nuclear fuel waste: postclosure assessment of a reference system

    International Nuclear Information System (INIS)

    Goodwin, B.W.; McConnell, D.B.; Andres, T.H.

    1994-01-01

    The concept for disposal of Canada's nuclear fuel waste is based on a vault located deep in plutonic rock of the Canadian Shield. We document in this report a method to assess the long-term impacts of a disposal facility for nuclear fuel waste. The assessment integrates relevant information from engineering design studies, site investigations, laboratory studies, expert judgment and detailed mathematical analyses to evaluate system performance in terms of safety criteria, guidelines and standards. The method includes the use of quantitative tools such as the Systems Variability Analysis computer Code (SYVAC) to deal with parameter uncertainty and the use of reasoned arguments based on well-established scientific principles. We also document the utility of the method by describing its application to a hypothetical implementation of the concept called the reference disposal system. The reference disposal system generally conforms to the overall characteristics of the concept, except we have made some specific site and design choices so that the assessment would be more realistic. To make the reference system more representative of a real system, we have used the geological observations of the AECL's Whiteshell Research Area located near Lac du Bonnet, Manitoba, to define the characteristics of the geosphere and the groundwater flow system. This research area has been subject to more than a decade of geological and hydrological studies. The analysis of the reference disposal system provides estimates of radiological and chemical toxicity impacts on members of a critical group and estimates of possible impacts on the environment. The latter impacts include estimates of radiation dose to nonhuman organisms. Other quantitative analyses examine the use of derived constraints to improve the margin of safety, the effectiveness of engineered and natural barriers, and the sensitivity of the results to influential features, events, and processes of the reference disposal

  18. Tank waste remediation system retrieval and disposal mission waste feed delivery plan

    International Nuclear Information System (INIS)

    Potter, R.D.

    1998-01-01

    This document is a plan presenting the objectives, organization, and management and technical approaches for the Waste Feed Delivery (WFD) Program. This WFD Plan focuses on the Tank Waste Remediation System (TWRS) Project's Waste Retrieval and Disposal Mission

  19. Environmental and economic analysis of an in-vessel food waste composting system at Kean University in the U.S.

    Science.gov (United States)

    Mu, Dongyan; Horowitz, Naomi; Casey, Maeve; Jones, Kimmera

    2017-01-01

    A composting system provides many benefits towards achieving sustainability such as, replacing fertilizer use, increasing the quantity of produce sold, and diverting organic wastes from landfills. This study delves into the many benefits a composting system provided by utilizing an established composting system at Kean University (KU) in New Jersey, as a scale project to examine the composters' environmental and economic impacts. The results from the study showed that composting food wastes in an in-vessel composter when compared to typical disposal means by landfilling, had lower impacts in the categories of fossil fuel, GHG emissions, eutrophication, smog formation and respiratory effects; whereas, its had higher impacts in ozone depletion, acidification human health impacts, and ecotoxicity. The environmental impacts were mainly raised from the manufacturing of the composter and the electricity use for operation. Applying compost to the garden can replace fertilizers and also lock carbon and nutrients in soil, which reduced all of the environmental impact categories examined. In particular, the plant growth and use stage reduced up to 80% of respiratory effects in the life cycle of food waste composting. A cost-benefit analysis showed that the composting system could generate a profit of $13,200 a year by selling vegetables grown with compost to the student cafeteria at Kean and to local communities. When educational and environmental benefits were included in the analysis, the revenue increased to $23,550. The results suggest that in-vessel composting and the subsequent usage of a vegetable garden should be utilized by Universities or food markets that generate intensive food wastes across the U.S. Published by Elsevier Ltd.

  20. Establishment of database system for management of KAERI wastes

    International Nuclear Information System (INIS)

    Shon, J. S.; Kim, K. J.; Ahn, S. J.

    2004-07-01

    Radioactive wastes generated by KAERI has various types, nuclides and characteristics. To manage and control these kinds of radioactive wastes, it comes to need systematic management of their records, efficient research and quick statistics. Getting information about radioactive waste generated and stored by KAERI is the basic factor to construct the rapid information system for national cooperation management of radioactive waste. In this study, Radioactive Waste Management Integration System (RAWMIS) was developed. It is is aimed at management of record of radioactive wastes, uplifting the efficiency of management and support WACID(Waste Comprehensive Integration Database System) which is a national radioactive waste integrated safety management system of Korea. The major information of RAWMIS supported by user's requirements is generation, gathering, transfer, treatment, and storage information for solid waste, liquid waste, gas waste and waste related to spent fuel. RAWMIS is composed of database, software (interface between user and database), and software for a manager and it was designed with Client/Server structure. RAWMIS will be a useful tool to analyze radioactive waste management and radiation safety management. Also, this system is developed to share information with associated companies. Moreover, it can be expected to support the technology of research and development for radioactive waste treatment

  1. Hanford 200 area (sanitary) waste water system

    International Nuclear Information System (INIS)

    Danch, D.A.; Gay, A.E.

    1994-09-01

    The US Department of Energy (DOE) Hanford Site is located in southeastern Washington State. The Hanford Site is approximately 1,450 sq. km (560 sq. mi) of semiarid land set aside for activities of the DOE. The reactor fuel processing and waste management facilities are located in the 200 Areas. Over the last 50 years at Hanford dicard of hazardous and sanitary waste water has resulted in billions of liters of waste water discharged to the ground. As part of the TPA, discharges of hazardous waste water to the ground and waters of Washington State are to be eliminated in 1995. Currently sanitary waste water from the 200 Area Plateau is handled with on-site septic tank and subsurface disposal systems, many of which were constructed in the 1940s and most do not meet current standards. Features unique to the proposed new sanitary waste water handling systems include: (1) cost effective operation of the treatment system as evaporative lagoons with state-of-the-art liner systems, and (2) routing collection lines to avoid historic contamination zones. The paper focuses on the challenges met in planning and designing the collection system

  2. Environmental evaluation of municipal waste prevention

    DEFF Research Database (Denmark)

    Gentil, Emmanuel; Gallo, Daniele; Christensen, Thomas Højlund

    2011-01-01

    society, using life-cycle thinking. The partial prevention of unsolicited mail, beverage packaging and food waste is tested for a “High-tech” waste management system relying on high energy and material recovery and for a “Low-tech” waste management system with less recycling and relying on landfilling......Waste prevention has been addressed in the literature in terms of the social and behavioural aspects, but very little quantitative assessment exists of the environmental benefits. Our study evaluates the environmental consequences of waste prevention on waste management systems and on the wider....... Prevention of 13% of the waste mass entering the waste management system generates a reduction of loads and savings in the waste management system for the different impacts categories; 45% net reduction for nutrient enrichment and 12% reduction for global warming potential. When expanding our system...

  3. Boiling water reactor liquid radioactive waste processing system

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    The standard sets forth minimum design, construction and performance requirements with due consideration for operation of the liquid radioactive waste processing system for boiling water reactor plants for routine operation including design basis fuel leakage and design basis occurrences. For the purpose of this standard, the liquid radioactive waste processing system begins at the interfaces with the reactor coolant pressure boundary, at the interface valve(s) in lines from other systems and at those sumps and floor drains provided for liquid waste with the potential of containing radioactive material. The system terminates at the point of controlled discharge to the environment, at the point of interface with the waste solidification system and at the point of recycle back to storage for reuse. The standard does not include the reactor coolant clean-up system, fuel pool clean-up system, sanitary waste system, any nonaqueous liquid system or controlled area storm drains

  4. Radioisotope waste processing systems

    International Nuclear Information System (INIS)

    Machida, Tadashi

    1978-01-01

    The Atomic Energy Safety Bureau established the policy entitled ''On Common Processing System of Radioactive Wastes'' consulting with the Liaison Committee of Radioactive Waste Processing. Japan Atomic Energy Research Institute (JAERI) and Japan Radioisotope Association (JRIA) had been discussing the problems required for the establishment of the common disposal facilities based on the above policy, and they started the organization in spring, 1978. It is a foundation borrowing equipments from JAERI though installing newly some of them not available from JAERI, and depending the fund on JRIA. The operation expenses will be borne by those who want to dispose the wastes produced. The staffs are sent out from JAERI and JRIA. For animal wastes contaminated with RI, formaldehyde dipping should be abolished, but drying and freezing procedures will be taken before they are burnt up in a newly planned exclusive furnace with disposing capacity of 50 kg/hour. To settle the problems of other wastes, enough understanding and cooperation of users are to be requested. (Kobatake, H.)

  5. Radioactive waste and its impact on the environment; Les dechets nucleaires: quel impact sur l'environnement?

    Energy Technology Data Exchange (ETDEWEB)

    Bonin, B. [Institut de Radioprotection et de Surete Nucleaire en Detachement a Cogema, Dir. de la Recherche et du Developpement, 78 - Velizy (France)

    2002-07-01

    What impact will radioactive waste have on the environment and mankind ultimately? If category B waste and all or some of category C waste is disposed of in a deep geological facility, after an interim storage period which presents its own risks, scientists can now predict that its worst case impact will be minimal and localized. While they cannot strictly demonstrate the safety of disposal over the time scales in question, they can nevertheless vouch for sound, well-engineered design. They can furnish a whole host of convergent evidence to demonstrate that they really have thought of all the events that could affect radioactive packages disposed of in a given environment, separated from the biosphere by barriers with well-defined properties. (author)

  6. Bar-code automated waste tracking system

    International Nuclear Information System (INIS)

    Hull, T.E.

    1994-10-01

    The Bar-Code Automated Waste Tracking System was designed to be a site-Specific program with a general purpose application for transportability to other facilities. The system is user-friendly, totally automated, and incorporates the use of a drive-up window that is close to the areas dealing in container preparation, delivery, pickup, and disposal. The system features ''stop-and-go'' operation rather than a long, tedious, error-prone manual entry. The system is designed for automation but allows operators to concentrate on proper handling of waste while maintaining manual entry of data as a backup. A large wall plaque filled with bar-code labels is used to input specific details about any movement of waste

  7. Thermal processing systems for TRU mixed waste

    International Nuclear Information System (INIS)

    Eddy, T.L.; Raivo, B.D.; Anderson, G.L.

    1992-01-01

    This paper presents preliminary ex situ thermal processing system concepts and related processing considerations for remediation of transuranic (TRU)-contaminated wastes (TRUW) buried at the Radioactive Waste Management Complex (RWMC) of the Idaho National Engineering Laboratory (INEL). Anticipated waste stream components and problems are considered. Thermal processing conditions required to obtain a high-integrity, low-leachability glass/ceramic final waste form are considered. Five practical thermal process system designs are compared. Thermal processing of mixed waste and soils with essentially no presorting and using incineration followed by high temperature melting is recommended. Applied research and development necessary for demonstration is also recommended

  8. 75 FR 58346 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste

    Science.gov (United States)

    2010-09-24

    ... Waste Management System; Identification and Listing of Hazardous Waste AGENCY: Environmental Protection... Chemical Company-Texas Operations (Eastman) to exclude (or delist) certain solid wastes generated by its Longview, Texas, facility from the lists of hazardous wastes. EPA used the Delisting Risk Assessment...

  9. EASEWASTE-life cycle modeling capabilities for waste management technologies

    DEFF Research Database (Denmark)

    Bhander, Gurbakhash Singh; Christensen, Thomas Højlund; Hauschild, Michael Zwicky

    2010-01-01

    Background, Aims and Scope The management of municipal solid waste and the associated environmental impacts are subject of growing attention in industrialized countries. EU has recently strongly emphasized the role of LCA in its waste and resource strategies. The development of sustainable solid...... waste management systems applying a life-cycle perspective requires readily understandable tools for modelling the life cycle impacts of waste management systems. The aim of the paper is to demonstrate the structure, functionalities and LCA modelling capabilities of the PC-based life cycle oriented...... waste management model EASEWASTE, developed at the Technical University of Denmark specifically to meet the needs of the waste system developer with the objective to evaluate the environmental performance of the various elements of existing or proposed solid waste management systems. Materials...

  10. Science, society, and America's nuclear waste: Unit 4, The waste management system

    International Nuclear Information System (INIS)

    1992-01-01

    This is unit 4 (The Waste Management System) in a four-unit secondary curriculum. It is intended to provide information about scientific and societal issues related to the management of spent nuclear fuel from generation of electricity at nuclear powerplants and high-level radioactive waste from US national defense activities. The curriculum, supporting classroom activities, and teaching materials present a brief discussion of energy and electricity generation, including that produced at nuclear powerplants; information on sources, amounts, location, and characteristics of spent nuclear fuel and high-level radioactive waste; sources, types and effects of radiation; US policy for managing and disposing of spent nuclear fuel and high-level radioactive waste and what other countries are doing; and the components of the nuclear waste management system

  11. Enviromental impact of a hospital waste incineration plant in Krakow (Poland).

    Science.gov (United States)

    Gielar, Agnieszka; Helios-Rybicka, Edeltrauda

    2013-07-01

    The environmental impact of a hospital waste incineration plant in Krakow was investigated. The objective of this study was to assess the degree of environmental effect of the secondary solid waste generated during the incineration process of medical waste. The analysis of pollution of the air emissions and leaching test of ashes and slag were carried out. The obtained results allowed us to conclude that (i) the hospital waste incineration plant significantly solves the problems of medical waste treatment in Krakow; (ii) the detected contaminant concentrations were generally lower than the permissible values; (iii) the generated ashes and slag contained considerable concentrations of heavy metals, mainly zinc, and chloride and sulfate anions. Ashes and slag constituted 10-15% of the mass of incinerated wastes; they are more harmful for the environment when compared with untreated waste, and after solidification they can be deposited in the hazardous waste disposal.

  12. Hanford high-level waste melter system evaluation data packages

    International Nuclear Information System (INIS)

    Elliott, M.L.; Shafer, P.J.; Lamar, D.A.; Merrill, R.A.; Grunewald, W.; Roth, G.; Tobie, W.

    1996-03-01

    The Tank Waste Remediation System is selecting a reference melter system for the Hanford High-Level Waste vitrification plant. A melter evaluation was conducted in FY 1994 to narrow down the long list of potential melter technologies to a few for testing. A formal evaluation was performed by a Melter Selection Working Group (MSWG), which met in June and August 1994. At the June meeting, MSWG evaluated 15 technologies and selected six for more thorough evaluation at the Aug. meeting. All 6 were variations of joule-heated or induction-heated melters. Between the June and August meetings, Hanford site staff and consultants compiled data packages for each of the six melter technologies as well as variants of the baseline technologies. Information was solicited from melter candidate vendors to supplement existing information. This document contains the data packages compiled to provide background information to MSWG in support of the evaluation of the six technologies. (A separate evaluation was performed by Fluor Daniel, Inc. to identify balance of plant impacts if a given melter system was selected.)

  13. Radioactive waste integrated management system

    International Nuclear Information System (INIS)

    Song, D. Y.; Choi, S. S.; Han, B. S.

    2003-01-01

    In this paper, we present an integrated management system for radioactive waste, which can keep watch on the whole transporting process of each drum from nuclear power plant temporary storage house to radioactive waste storage house remotely. Our approach use RFID(Radio Frequency Identification) system, which can recognize the data information without touch, GSP system, which can calculate the current position precisely using the accurate time and distance measured from satellites, and the spread spectrum technology CDMA, which is widely used in the area of mobile communication

  14. Radioactive waste integrated management system

    Energy Technology Data Exchange (ETDEWEB)

    Song, D Y; Choi, S S; Han, B S [Atomic Creative Technology, Taejon (Korea, Republic of)

    2003-10-01

    In this paper, we present an integrated management system for radioactive waste, which can keep watch on the whole transporting process of each drum from nuclear power plant temporary storage house to radioactive waste storage house remotely. Our approach use RFID(Radio Frequency Identification) system, which can recognize the data information without touch, GSP system, which can calculate the current position precisely using the accurate time and distance measured from satellites, and the spread spectrum technology CDMA, which is widely used in the area of mobile communication.

  15. Incineration systems for low level and mixed wastes

    International Nuclear Information System (INIS)

    Vavruska, J.

    1986-01-01

    A variety of technologies has emerged for incineration of combustible radioactive, hazardous, and mixed wastes. Evaluation and selection of an incineration system for a particular application from such a large field of options are often confusing. This paper presents several current incineration technologies applicable to Low Level Waste (LLW), hazardous waste, and mixed waste combustion treatment. The major technologies reviewed include controlled-air, rotary kiln, fluidized bed, and liquid injection. Coupled with any incineration technique is the need to select a compatible offgas effluent cleaning system. This paper also reviews the various methods of treating offgas emissions for acid vapor, particulates, organics, and radioactivity. Such effluent control systems include the two general types - wet and dry scrubbing with a closer look at quenching, inertial systems, fabric filtration, gas absorption, adsorption, and various other filtration techniques. Selection criteria for overall waste incineration systems are discussed as they relate to waste characterization

  16. Environmental impacts of the Swiss collection and recovery systems for Waste Electrical and Electronic Equipment (WEEE): A follow-up

    International Nuclear Information System (INIS)

    Waeger, P.A.; Hischier, R.; Eugster, M.

    2011-01-01

    While Waste Electrical and Electronic Equipment (WEEE) collection and recovery have significantly gained in importance all over Europe in the last 15 years, comprehensive studies assessing the environmental loads and benefits of these systems still are not common. In this paper we present the results of a combined material flow analysis and life cycle assessment study, which aimed to calculate the overall environmental impacts of collection, pre-processing and end-processing for the existing Swiss WEEE collection and recovery systems, as well as of incineration and landfilling scenarios, in which the same amount of WEEE is either incinerated in a an MSWI plant or landfilled. According to the calculations based on the material flow data for the year 2009 and a new version of the ecoinvent life cycle inventory database (ecoinvent v2.01), collection, recovery and disposal result in significantly lower environmental impacts per t of WEEE for midpoint indicators such as global warming or ozone depletion and the endpoint indicator Eco-Indicator '99 points. A comparison between the environmental impacts of the WEEE recovery scenarios 2009 and 2004, both calculated with ecoinvent v2.01 data, shows that the impacts per t of WEEE in 2009 were slightly lower. This appears to be mainly due to the changes in the treatment of plastics (more recycling, less incineration). Compared to the overall environmental impacts of the recovery scenario 2004 obtained with an old version of ecoinvent (ecoinvent v1.1), the calculation with ecoinvent v2.01 results in an increase of the impacts by about 20%, which is primarily the consequence of a more adequate modeling of several WEEE fractions (e.g. metals, cables or CRT devices). In view of a further increase of the environmental benefits associated with the Swiss WEEE collection and recovery systems, the recovery of geochemically scarce metals should be further investigated, in particular. - Research Highlights: → Comprehensive MFA

  17. Legal system of nuclear waste disposal. Das System der atomaren Entsorgungsregelung

    Energy Technology Data Exchange (ETDEWEB)

    Dauk, W

    1983-01-01

    This doctoral thesis presents solutions to some of the legal problems encountered in the interpretation of the various laws and regulations governing nuclear waste disposal, and reveals the legal system supporting the variety of individual regulations. Proposals are made relating to modifications of problematic or not well defined provisions, in order to contribute to improved juridical security, or inambiguity in terms of law. The author also discusses the question of the constitutionality of the laws for nuclear waste disposal. Apart from the responsibility of private enterprise to contribute to safe treatment or recycling, within the framework of the integrated waste management concept, and apart from the Government's responsibility for interim or final storage of radioactive waste, there is a third possibility included in the legal system for waste management, namely voluntary measures taken by private enterprise for radioactive waste disposal. The licence to be applied for in accordance with section 3, sub-section (1) of the Radiation Protection Ordinance is interpreted to pertain to all measures of radioactive waste disposal, thus including final storage of radioactive waste by private companies. Although the terminology and systematic concept of nuclear waste disposal are difficult to understand, there is a functionable system of legal provisions contained therein. This system fits into the overall concept of laws governing technical safety and safety engineering.

  18. Corrosion control for the Hanford site waste transfer system

    International Nuclear Information System (INIS)

    Haberman, J.H.

    1995-01-01

    Processing large volumes of spent reactor fuel and other related waste management activities produced radioactive wastes which have been stored in underground high-level waste storage tanks since the 1940s. The effluent waste streams from the processing facilities were stored underground in high-level waste storage tanks. The waste was transferred between storage tanks and from the tanks to waste processing facilities in a complex network of underground piping. The underground waste transfer system consists of process piping, catch tanks, lift tanks, diversion boxes, pump pits, valves, and jumpers. Corrosion of the process piping from contact with the soil is a primary concern. The other transfer system components are made of corrosion-resistant alloys or they are isolated from the underground environment and experience little degradation. Corrosion control of the underground transfer system is necessary to ensure that transfer routes will be available for future waste retrieval, processing,a nd disposal. Today, most waste transfer lines are protected by an active impressed-current cathodic protection (CP) system. The original system has been updated. Energization surveys and a recent base-line survey demonstrate that system operational goals are met

  19. Municipal solid waste generation in municipalities: Quantifying impacts of household structure, commercial waste and domestic fuel

    International Nuclear Information System (INIS)

    Lebersorger, S.; Beigl, P.

    2011-01-01

    Waste management planning requires reliable data concerning waste generation, influencing factors on waste generation and forecasts of waste quantities based on facts. This paper aims at identifying and quantifying differences between different municipalities' municipal solid waste (MSW) collection quantities based on data from waste management and on socio-economic indicators. A large set of 116 indicators from 542 municipalities in the Province of Styria was investigated. The resulting regression model included municipal tax revenue per capita, household size and the percentage of buildings with solid fuel heating systems. The model explains 74.3% of the MSW variation and the model assumptions are met. Other factors such as tourism, home composting or age distribution of the population did not significantly improve the model. According to the model, 21% of MSW collected in Styria was commercial waste and 18% of the generated MSW was burned in domestic heating systems. While the percentage of commercial waste is consistent with literature data, practically no literature data are available for the quantity of MSW burned, which seems to be overestimated by the model. The resulting regression model was used as basis for a waste prognosis model (Beigl and Lebersorger, in preparation).

  20. Technical report for a fluidless directional drilling system demonstrated at Solid Waste Storage Area 6 shallow buried waste sites

    International Nuclear Information System (INIS)

    1995-09-01

    The purpose of the research was to demonstrate a fluidless directional drilling and monitoring system (FDD) specifically tailored to address environmental drilling concerns for shallow buried wasted. The major concerns are related to worker exposure, minimizing waste generation, and confining the spread of contamination. The FDD is potentially applicable to Environmental Restoration (ER) activities for the Oak Ridge National Laboratory Waste Area Grouping 6 (WAG 6) shallow buried waste disposed in unlined trenches. Major ER activities for directional drilling are to develop a drilling system for leachate collection directly beneath trenches, and to provide localized control over leachate release to the environment. Other ER FDD activities could include vadose zone and groundwater monitoring of contaminant transport. The operational constraints pointed the research in the direction of purchasing a steerable impact hammer, or mole, manufactured by Steer-Rite Ltd. of Racine, Wisconsin. This drill was selected due to the very low cost ($25,000) associated with procuring the drill, steering module, instrumentation and service lines. The impact hammer is a self propelled drill which penetrates the soil by compacting cut material along the sidewalls of the borehole. Essentially, it forces its way through the subsurface. Although the pneumatic hammer exhausts compressed air which must be handled at the borehole collar, it does not generate soil cuttings or liquids. This is the basis for the term fluidless. A stub casing muffler was attached to the entrance hole for controlling exhaust gas and any airborne releases. Other environmental compliance modifications made to the equipment included operating the tool without lubrication, and using water instead of hydraulic fluid to actuate the steering fins on the tool

  1. 75 FR 11002 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste; Final Rule

    Science.gov (United States)

    2010-03-10

    ... Waste Management System; Identification and Listing of Hazardous Waste; Final Rule AGENCY: Environmental... and specific types of management of the petitioned waste, the quantities of waste generated, and waste... wastes. This final rule responds to a petition submitted by Valero to delist F037 waste. The F037 waste...

  2. 78 FR 46940 - Hazardous and Solid Waste Management System: Identification and Listing of Special Wastes...

    Science.gov (United States)

    2013-08-02

    ...The U.S. Environmental Protection Agency (EPA or the Agency) invites comment on additional information obtained in conjunction with the proposed rule: Hazardous and Solid Waste Management System: Identification and Listing of Special Wastes; Disposal of Coal Combustion Residuals From Electric Utilities that was published in the Federal Register on June 21, 2010. This information is categorized as: additional data to supplement the Regulatory Impact Analysis and risk assessment, information on large scale fill, and data on the surface impoundment structural integrity assessments. EPA is also seeking comment on two issues associated with the requirements for coal combustion residual management units. The Agency is not reopening any other aspect of the proposal or underlying support documents, and will consider comments on any issues other than those raised in the NODA to be late comments and not part of the rulemaking record.

  3. Tank waste remediation system program plan

    International Nuclear Information System (INIS)

    Powell, R.W.

    1998-01-01

    This program plan establishes the framework for conduct of the Tank Waste Remediation System (TWRS) Project. The plan focuses on the TWRS Retrieval and Disposal Mission and is specifically intended to support the DOE mid-1998 Readiness to Proceed with Privatized Waste Treatment evaluation for establishing firm contracts for waste immobilization

  4. Tank waste remediation system program plan

    Energy Technology Data Exchange (ETDEWEB)

    Powell, R.W.

    1998-01-05

    This program plan establishes the framework for conduct of the Tank Waste Remediation System (TWRS) Project. The plan focuses on the TWRS Retrieval and Disposal Mission and is specifically intended to support the DOE mid-1998 Readiness to Proceed with Privatized Waste Treatment evaluation for establishing firm contracts for waste immobilization.

  5. Waste Isolation Pilot Plant: Draft Supplement Environmental Impact Statement

    International Nuclear Information System (INIS)

    1989-04-01

    The US Department of Energy (DOE) has prepared this supplement to the 1980 Final Environmental Impact Statement (FEIS) for the Waste Isolation Pilot Plant (WIPP) in order to assess the environmental impacts that may occur from the continued development of the WIPP as a minced geologic repository for transuranic (TRU) waste. Since the publication of the FEIS in October 1980, new data collected at the WIPP have led to changes in the understanding of the hydrogeologic characteristics of the area and their potential implications for the long-term performance of the WIPP. In addition, there have been changes in the FEIS Proposed Action and new regulatory requirements. This supplement to the FEIS (SEIS) evaluates the environmental consequences of the Proposed Action as modified since 1980 in light of new data and assumptions. The new information pertains mainly to the geologic and hydrologic systems at the WIPP site and their effect on the long-term performance of the WIPP. The SEIS includes new data indicating that: the permeability of the Salado Formation, the geologic formation in which the WIPP underground facilities are located, is lower than previously believed; the moisture content of the Salado Formation and the consequent brine inflow is higher than previously believed; a higher transmissivity zone is present in the Rustler Formation in the southeastern portion of the WIPP site; and ''salt creep'' (convergence) in the repository occurs faster than previously believed. Volume 2 contains 11 appendices

  6. Radioactive and hazardous chemical wastes. Impact on man and his environment

    International Nuclear Information System (INIS)

    Parker, F.L.; Suess, M.J.

    1984-01-01

    The main objective of the various safety measures in all fields of human activities is to prevent deleterious effects of various agents on human health. Preventive health and safety measures therefore play an important role in achieving the main goal of the World Health Organization (WHO): 'Health for all by the year 2000'. The present WHO programme on environmental health emphasizes the prevention of chemical hazards as one of the most important environmental factors affecting human health. At the same time, protection from physical factors, including radiological protection, is part of this programme. Therefore, WHO compares health detriments from both physical and chemical agents. The paper describes the hazardous waste problems of great concern in industrialized countries. For instance, the Commission of the European Communities countries produce about 2x10 9 tonnes of waste per year, a rate which grows by 2 to 3% annually. This poses serious problems of pollution, particularly where the toxic ingredients do not decay. Special attention will also be given to the safe handling of high-level radioactive waste from the peaceful use of nuclear technology. These wastes have to be stored in safe storage facilities, or be disposed of without causing damage to man and his environment. The international measures to contain and control these wastes are described, including the activities of WHO within the Global Environmental Monitoring System and Regional Sea programmes of the United Nations Environment Programme. Guidelines and methodologies for the management of hazardous chemical and radioactive wastes are being developed through WHO to assist national authorities in this task. The paper pays special attention to a comparative assessment of environmental and public health impacts of toxic chemical and radioactive wastes. (author)

  7. Development of a comprehensive radioactive waste classification system

    International Nuclear Information System (INIS)

    Smith, C.F.; Cohen, J.J.

    1989-01-01

    Several previous studies have been conducted with the intent of developing a rational system for classification of radioactive wastes. Although none of the proposed systems has gained general acceptance, certain waste classes, specifically high-level waste and low-level waste suitable for shallow land burial have been essentially defined by regulation. Wastes which remain undefined include: those intermediate level wastes which require more restrictive controls than that provided by shallow land burial but not the high degree of isolation needed for high level wastes, and wastes below regulatory concern (BRC) which entail so low a radiological risk that they can be managed according to their nonradiological properties. This study has developed a framework within which the complete spectrum of radioactive wastes can be defined

  8. Environmental impacts of food waste: Learnings and challenges from a case study on UK

    DEFF Research Database (Denmark)

    Tonini, Davide; Albizzati, Paola Federica; Astrup, Thomas Fruergaard

    2018-01-01

    by four sectors of the food supply chain in United Kingdom, namely processing, wholesale and retail, food service, and households. The impacts were quantified for ten environmental impact categories, from Global Warming to Water Depletion, including indirect land use change impacts due to demand for land......Food waste, particularly when avoidable, incurs loss of resources and considerable environmental impacts due to the multiple processes involved in the life cycle. This study applies a bottom-up life cycle assessment method to quantify the environmental impacts of the avoidable food waste generated...

  9. Evaluation of environmental impact of radioactive waste from reactor operation

    International Nuclear Information System (INIS)

    Lombard, J.; Pages, P.

    1989-10-01

    This paper evaluates the environmental impact of radioactive wastes from reactors operation. We estimate a case of a plant of 20 GWe power operating for 30 years which is equivalent to 600 tons of uranium per year. According to the properties, the waste is stored on surface (Aube site). Starting from the year of storage, we have defined the maximum dose equivalent for an individual from the reference group. The calculation depends on water of outlet water in which some initially stored radionuclides have migrated. Under the most pessimistic estimation, maximum annual dose was of the order of magnitude 0.5 μ Sv (0.05 mrem) for the storage 400 years after opening the site, and after 4000 years. Compared to the values obtained for the radioactive waste storage, the value of this impact is five times higher than the respective surface storage, but two time less than values for underground storage [fr

  10. Consolidation and Centralization of Waste Operations Business Systems - 12319

    Energy Technology Data Exchange (ETDEWEB)

    Newton, D. Dean [Oak Ridge Operations, Oak Ridge, TN 37830 (United States)

    2012-07-01

    - unless however; your objective is to build a strong, strategic alliance across the enterprise in order to execute an unprecedented change in waste management, transportation and logistical operations. The success of such an initiative can be achieved by creating a responsible framework by enabling key individuals to 'own' the sustainability of the program. This includes the strategic collaboration of responsible revolutionaries covering application developers, information owners and federal stakeholders to ensure compliance, security and risk management are 'baked' into the process and sustainability is fostered through continued innovation by both technology and application functionality. This ensures that working software can adapt to changing circumstances and is the principle measure of the success of the program. The consolidation of waste management business systems must be achieved in order to realize efficiencies in information technology portfolio management, data integrity, business intelligence and the lifecycle management of hazardous materials within the DOE enterprise architecture. By identifying best practices across the enterprise and aggregating computational and application development resources, you can provide a unified, holistic solution serviceable from a single location while being accessed from anywhere. The business impact of integrating and delivering a unified solution would reduce costs to the Department of Energy within the first year of deployment with increased savings annually. (author)

  11. Science, society, and America's nuclear waste: Unit 4, The waste management system

    International Nuclear Information System (INIS)

    1992-01-01

    This is the teachers guide to unit 4, (The Waste Management System), of a four-unit secondary curriculum. It is intended to provide information about scientific and societal issues related to the management of spent nuclear fuel from generation of electricity at nuclear powerplants and high-level radioactive waste from US national defense activities. The curriculum, supporting classroom activities, and teaching materials present a brief discussion of energy and electricity generation, including that produced at nuclear powerplants; information on sources, amounts, location, and characteristics of spent nuclear fuel and high-level radioactive waste; sources, types and effects of radiation; US policy for managing and disposing of spent nuclear fuel and high-level radioactive waste and what other countries are doing; and the components of the nuclear waste management system

  12. WASTE-ACC: A computer model for analysis of waste management accidents

    International Nuclear Information System (INIS)

    Nabelssi, B.K.; Folga, S.; Kohout, E.J.; Mueller, C.J.; Roglans-Ribas, J.

    1996-12-01

    In support of the U.S. Department of Energy's (DOE's) Waste Management Programmatic Environmental Impact Statement, Argonne National Laboratory has developed WASTE-ACC, a computational framework and integrated PC-based database system, to assess atmospheric releases from facility accidents. WASTE-ACC facilitates the many calculations for the accident analyses necessitated by the numerous combinations of waste types, waste management process technologies, facility locations, and site consolidation strategies in the waste management alternatives across the DOE complex. WASTE-ACC is a comprehensive tool that can effectively test future DOE waste management alternatives and assumptions. The computational framework can access several relational databases to calculate atmospheric releases. The databases contain throughput volumes, waste profiles, treatment process parameters, and accident data such as frequencies of initiators, conditional probabilities of subsequent events, and source term release parameters of the various waste forms under accident stresses. This report describes the computational framework and supporting databases used to conduct accident analyses and to develop source terms to assess potential health impacts that may affect on-site workers and off-site members of the public under various DOE waste management alternatives

  13. Liquid low level waste management expert system

    International Nuclear Information System (INIS)

    Ferrada, J.J.; Abraham, T.J.; Jackson, J.R.

    1991-01-01

    An expert system has been developed as part of a new initiative for the Oak Ridge National Laboratory (ORNL) systems analysis program. This expert system will aid in prioritizing radioactive waste streams for treatment and disposal by evaluating the severity and treatability of the problem, as well as the final waste form. The objectives of the expert system development included: (1) collecting information on process treatment technologies for liquid low-level waste (LLLW) that can be incorporated in the knowledge base of the expert system, and (2) producing a prototype that suggests processes and disposal technologies for the ORNL LLLW system. 4 refs., 9 figs

  14. Final environmental impact statement. Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    1980-10-01

    In accordance with the National Environmental Policy Act (NEPA) of 1969, the US Department of Energy (DOE) has prepared this document as environmental input to future decisions regarding the Waste Isolation Pilot Plant (WIPP), which would include the disposal of transuranic waste, as currently authorized. The alternatives covered in this document are the following: (1) Continue storing transuranic (TRU) waste at the Idaho National Engineering Laboratory (INEL) as it is now or with improved confinement. (2) Proceed with WIPP at the Los Medanos site in southeastern New Mexico, as currently authorized. (3) Dispose of TRU waste in the first available repository for high-level waste. The Los Medanos site would be investigated for its potential suitability as a candidate site. This is administration policy and is the alternative preferred by the DOE. (4) Delay the WIPP to allow other candidate sites to be evaluated for TRU-waste disposal. This environmental impact statement is arranged in the following manner: Chapter 1 is an overall summary of the analysis contained in the document. Chapters 2 and 4 set forth the objectives of the national waste-management program and analyze the full spectrum of reasonable alternatives for meeting these objectives, including the WIPP. Chapter 5 presents the interim waste-acceptance criteria and waste-form alternatives for the WIPP. Chapters 6 through 13 provide a detailed description and environmental analysis of the WIPP repository and its site. Chapter 14 describes the permits and approvals necessary for the WIPP and the interactions that have taken place with Federal, State, and local authorities, and with the general public in connection with the repository. Chapter 15 analyzes the many comments received on the DEIS and tells what has been done in this FEIS in response. The appendices contain data and discussions in support of the material in the text

  15. Final environmental impact statement. Waste Isolation Pilot Plant

    Energy Technology Data Exchange (ETDEWEB)

    1980-10-01

    In accordance with the National Environmental Policy Act (NEPA) of 1969, the US Department of Energy (DOE) has prepared this document as environmental input to future decisions regarding the Waste Isolation Pilot Plant (WIPP), which would include the disposal of transuranic waste, as currently authorized. The alternatives covered in this document are the following: (1) Continue storing transuranic (TRU) waste at the Idaho National Engineering Laboratory (INEL) as it is now or with improved confinement. (2) Proceed with WIPP at the Los Medanos site in southeastern New Mexico, as currently authorized. (3) Dispose of TRU waste in the first available repository for high-level waste. The Los Medanos site would be investigated for its potential suitability as a candidate site. This is administration policy and is the alternative preferred by the DOE. (4) Delay the WIPP to allow other candidate sites to be evaluated for TRU-waste disposal. This environmental impact statement is arranged in the following manner: Chapter 1 is an overall summary of the analysis contained in the document. Chapters 2 and 4 set forth the objectives of the national waste-management program and analyze the full spectrum of reasonable alternatives for meeting these objectives, including the WIPP. Chapter 5 presents the interim waste-acceptance criteria and waste-form alternatives for the WIPP. Chapters 6 through 13 provide a detailed description and environmental analysis of the WIPP repository and its site. Chapter 14 describes the permits and approvals necessary for the WIPP and the interactions that have taken place with Federal, State, and local authorities, and with the general public in connection with the repository. Chapter 15 analyzes the many comments received on the DEIS and tells what has been done in this FEIS in response. The appendices contain data and discussions in support of the material in the text.

  16. Valorisation of fish by-products against waste management treatments--Comparison of environmental impacts.

    Science.gov (United States)

    Lopes, Carla; Antelo, Luis T; Franco-Uría, Amaya; Alonso, Antonio A; Pérez-Martín, Ricardo

    2015-12-01

    Reuse and valorisation of fish by-products is a key process for marine resources conservation. Usually, fishmeal and oil processing factories collect the by-products generated by fishing port and industry processing activities, producing an economical benefit to both parts. In the same way, different added-value products can be recovered by the valorisation industries whereas fishing companies save the costs associated with the management of those wastes. However, it is important to estimate the advantages of valorisation processes not only in terms of economic income, but also considering the environmental impacts. This would help to know if the valorisation of a residue provokes higher impact than other waste management options, which means that its advantages are probably not enough for guarantying a sustainable waste reuse. To that purpose, there are several methodologies to evaluate the environmental impacts of processes, including those of waste management, providing different indicators which give information on relevant environmental aspects. In the current study, a comparative environmental assessment between a valorisation process (fishmeal and oil production) and different waste management scenarios (composting, incineration and landfilling) was developed. This comparison is a necessary step for the development and industrial implementation of these processes as the best alternative treatment for fish by-products. The obtained results showed that both valorisation process and waste management treatments presented similar impacts. However, a significant benefit can be achieved through valorisation of fish by-products. Additionally, the implications of the possible presence of pollutants were discussed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Waste Isolation Pilot Plant disposal phase final supplemental environmental impact statement. Volume 1, Chapters 1--6

    International Nuclear Information System (INIS)

    1997-09-01

    The purpose of the Waste Isolation Pilot Plant Disposal Final Supplemental Environmental Impact Statement (SEIS-II) is to provide information on environmental impacts regarding the Department of Energy's (DOE) proposed disposal operations at WIPP. The Proposed Action describes the treatment and disposal of the Basic inventory of TRU waste over a 35-year period. The Action Alternatives proposed the treatment of the Basic Inventory and an Additional Inventory as well as the transportation of the treated waste to WIPP for disposal over a 150- to 190-year period. The three Action Alternatives include the treatment of TRU waste at consolidation sites to meet WIPP planning-basic Waste Acceptance Criteria, the thermal treatment of TRU waste to meet Land Disposal Restrictions, and the treatment of TRU waste by a shred and grout process. SEIS-II evaluates environmental impacts resulting from the various treatment options; the transportation of TRU waste to WIPP using truck, a combination of truck and regular rail service, and a combination of truck and dedicated rail service; and the disposal of this waste in the repository. Evaluated impacts include those to the general environment and to human health. Additional issues associated with the implementation of the alternatives are discussed to provide further understanding of the decisions to be reached and to provide the opportunity for public input on improving DOE's Environmental Management Program. Chapters 1--6 include an introduction, background information, description of the proposed action and alternatives, description of the affected environments, environmental impacts, and consultations and permits

  18. 75 FR 57686 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste Amendment

    Science.gov (United States)

    2010-09-22

    ... Waste Management System; Identification and Listing of Hazardous Waste Amendment AGENCY: Environmental...) 260.20 and 260.22 allows facilities to demonstrate that a specific waste from a particular generating facility should not be regulated as a hazardous waste. Based on waste-specific information provided by the...

  19. Disaster waste management: A review article

    International Nuclear Information System (INIS)

    Brown, Charlotte; Milke, Mark; Seville, Erica

    2011-01-01

    Depending on their nature and severity, disasters can create large volumes of debris and waste. The waste can overwhelm existing solid waste management facilities and impact on other emergency response and recovery activities. If poorly managed, the waste can have significant environmental and public health impacts and can affect the overall recovery process. This paper presents a system overview of disaster waste management based on existing literature. The main literature available to date comprises disaster waste management plans or guidelines and isolated case studies. There is ample discussion on technical management options such as temporary storage sites, recycling, disposal, etc.; however, there is little or no guidance on how these various management options are selected post-disaster. The literature does not specifically address the impact or appropriateness of existing legislation, organisational structures and funding mechanisms on disaster waste management programmes, nor does it satisfactorily cover the social impact of disaster waste management programmes. It is envisaged that the discussion presented in this paper, and the literature gaps identified, will form a basis for future comprehensive and cohesive research on disaster waste management. In turn, research will lead to better preparedness and response to disaster waste management problems.

  20. Environmental impacts of the Swiss collection and recovery systems for Waste Electrical and Electronic Equipment (WEEE): a follow-up.

    Science.gov (United States)

    Wäger, P A; Hischier, R; Eugster, M

    2011-04-15

    While Waste Electrical and Electronic Equipment (WEEE) collection and recovery have significantly gained in importance all over Europe in the last 15years, comprehensive studies assessing the environmental loads and benefits of these systems still are not common. In this paper we present the results of a combined material flow analysis and life cycle assessment study, which aimed to calculate the overall environmental impacts of collection, pre-processing and end-processing for the existing Swiss WEEE collection and recovery systems, as well as of incineration and landfilling scenarios, in which the same amount of WEEE is either incinerated in a an MSWI plant or landfilled. According to the calculations based on the material flow data for the year 2009 and a new version of the ecoinvent life cycle inventory database (ecoinvent v2.01), collection, recovery and disposal result in significantly lower environmental impacts per t of WEEE for midpoint indicators such as global warming or ozone depletion and the endpoint indicator Eco-Indicator '99 points. A comparison between the environmental impacts of the WEEE recovery scenarios 2009 and 2004, both calculated with ecoinvent v2.01 data, shows that the impacts per t of WEEE in 2009 were slightly lower. This appears to be mainly due to the changes in the treatment of plastics (more recycling, less incineration). Compared to the overall environmental impacts of the recovery scenario 2004 obtained with an old version of ecoinvent (ecoinvent v1.1), the calculation with ecoinvent v2.01 results in an increase of the impacts by about 20%, which is primarily the consequence of a more adequate modeling of several WEEE fractions (e.g. metals, cables or CRT devices). In view of a further increase of the environmental benefits associated with the Swiss WEEE collection and recovery systems, the recovery of geochemically scarce metals should be further investigated, in particular. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. Determination of a radioactive waste classification system

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, J.J.; King, W.C.

    1978-03-01

    Several classification systems for radioactive wastes are reviewed and a system is developed that provides guidance on disposition of the waste. The system has three classes: high-level waste (HLW), which requires complete isolation from the biosphere for extended time periods; low-level waste (LLW), which requires containment for shorter periods; and innocuous waste (essentially nonradioactive), which may be disposed of by conventional means. The LLW/innocuous waste interface was not defined in this study. Reasonably conservative analytical scenarios were used to calculate that HLW/LLW interface level which would ensure compliance with the radiological exposure guidelines of 0.5 rem/y maximum exposure for a few isolated individuals and 0.005 rem/y for large population groups. The recommended HLW/LLW interface level for /sup 239/Pu or mixed transuranic waste is 1.0 ..mu..Ci/cm/sup 3/ of waste. Levels for other radionuclides are based upon a risk equivalent to this level. A cost-benefit analysis in accordance with as low as reasonably achievable (ALARA) and National Environmental Protection Act (NEPA) guidance indicates that further reduction of this HLW/LLL interface level would entail marginal costs greater than $10/sup 8/ per man-rem of dose avoided. The environmental effects considered were limited to those involving human exposure to radioactivity.

  2. Determination of a radioactive waste classification system

    International Nuclear Information System (INIS)

    Cohen, J.J.; King, W.C.

    1978-03-01

    Several classification systems for radioactive wastes are reviewed and a system is developed that provides guidance on disposition of the waste. The system has three classes: high-level waste (HLW), which requires complete isolation from the biosphere for extended time periods; low-level waste (LLW), which requires containment for shorter periods; and innocuous waste (essentially nonradioactive), which may be disposed of by conventional means. The LLW/innocuous waste interface was not defined in this study. Reasonably conservative analytical scenarios were used to calculate that HLW/LLW interface level which would ensure compliance with the radiological exposure guidelines of 0.5 rem/y maximum exposure for a few isolated individuals and 0.005 rem/y for large population groups. The recommended HLW/LLW interface level for 239 Pu or mixed transuranic waste is 1.0 μCi/cm 3 of waste. Levels for other radionuclides are based upon a risk equivalent to this level. A cost-benefit analysis in accordance with as low as reasonably achievable (ALARA) and National Environmental Protection Act (NEPA) guidance indicates that further reduction of this HLW/LLL interface level would entail marginal costs greater than $10 8 per man-rem of dose avoided. The environmental effects considered were limited to those involving human exposure to radioactivity

  3. Response to waste electrical and electronic equipments in China: legislation, recycling system, and advanced integrated process.

    Science.gov (United States)

    Zhou, Lei; Xu, Zhenming

    2012-05-01

    Over the past 30 years, China has been suffering from negative environmental impacts from distempered waste electrical and electronic equipments (WEEE) recycling activities. For the purpose of environmental protection and resource reusing, China made a great effort to improve WEEE recycling. This article reviews progresses of three major fields in the development of China's WEEE recycling industry: legal system, formal recycling system, and advanced integrated process. Related laws concerning electronic waste (e-waste) management and renewable resource recycling are analyzed from aspects of improvements and loopholes. The outcomes and challenges for existing formal recycling systems are also discussed. The advantage and deficiency related to advanced integrated recycling processes for typical e-wastes are evaluated respectively. Finally, in order to achieve high disposal rates of WEEE, high-quantify separation of different materials in WEEE and high added value final products produced by separated materials from WEEE, an idea of integrated WEEE recycling system is proposed to point future development of WEEE recycling industry. © 2012 American Chemical Society

  4. Literature review of the potential impact of glycolic acid on the technetium chemistry of srs tank waste

    International Nuclear Information System (INIS)

    Nash, Charles A.; McCabe, Daniel J.

    2017-01-01

    This document presents a literature study of the impact of glycolate on technetium chemistry in the Savannah River Site (SRS) waste system and specifically Saltstone. A predominant portion of the Tc at SRS will be sent to the Saltstone Facility where it will be immobilized. The Tc in the tank waste is in the highly soluble chemical form of pertechnetate ion (TcO 4 - ) which is reduced by blast furnace slag (BFS) in Saltstone, rendering it highly insoluble and resistant to leaching.

  5. Below Regulatory Conern Owners Group: Radiologic impact of accidents and unexpected events from disposal of BRC waste

    International Nuclear Information System (INIS)

    Waite, D.A.; Dolan, M.M.; Rish, W.R.; Rossi, A.J.; McCourt, J.E.

    1989-07-01

    This report determines the radiological impact of accidents and unexpected events in the disposal of Below Regulatory Concern (BRC) waste. The accident analysis considers the transportation, incineration, and disposal of BRC waste as municipal solid waste. The potential greatest radiological impact for each type of accident is identified through the use of event trees. These accident events are described in terms of the generic waste property(ies) (e.g., flammability, dispersibility, leachability, and solubility) that cause the greatest radiological impact. 7 refs., 32 figs., 12 tabs

  6. Uncertainties in life cycle assessment of waste management systems

    DEFF Research Database (Denmark)

    Clavreul, Julie; Christensen, Thomas Højlund

    2011-01-01

    Life cycle assessment has been used to assess environmental performances of waste management systems in many studies. The uncertainties inherent to its results are often pointed out but not always quantified, which should be the case to ensure a good decisionmaking process. This paper proposes...... a method to assess all parameter uncertainties and quantify the overall uncertainty of the assessment. The method is exemplified in a case study, where the goal is to determine if anaerobic digestion of organic waste is more beneficial than incineration in Denmark, considering only the impact on global...... warming. The sensitivity analysis pointed out ten parameters particularly highly influencing the result of the study. In the uncertainty analysis, the distributions of these ten parameters were used in a Monte Carlo analysis, which concluded that incineration appeared more favourable than anaerobic...

  7. Double-shell tank system dangerous waste permit application

    International Nuclear Information System (INIS)

    1991-06-01

    This Double-Shell Tank System Dangerous Waste Permit Application should be read in conjunction with the 242-A Evaporator Dangerous Waste Permit Application and the Liquid Effluent Retention Facility Dangerous Waste Permit Application, also submitted on June 28, 1991. Information contained in the Double-Shell Tank System permit application is referenced in the other two permit applications. The Double-Shell Tank System stores and treats mixed waste received from a variety of sources on the Hanford Site. The 242-A Evaporator treats liquid mixed waste received from the double-shell tanks. The 242-A Evaporator returns a mixed-waste slurry to the double-shell tanks and generates the dilute mixed-waste stream stored in the Liquid Effluent Retention Facility. This report contains information on the following topics: Facility Description and General Provisions; Waste Characteristics; Process Information; Groundwater Monitoring; Procedures to Prevent Hazards; Contingency Plan; Personnel Training; Exposure Information Report; Waste Minimization Plan; Closure and Postclosure Requirements; Reporting and Recordkeeping; other Relevant Laws; and Certification. 150 refs., 141 figs., 118 tabs

  8. Waste management in Ukraine: Municipal solid waste landfills and their impact on rural areas

    Directory of Open Access Journals (Sweden)

    Nataliia Makarenko

    2017-03-01

    Full Text Available The article presents the results of a study of the influence of Myronivka municipal solid waste landfill in the surrounding rural areas. It is established that environmentally hazardous situation has generated in the locations of the landfills causes dissatisfaction among the local population. It is shown that incorrect use may be the cause of the deterioration of quality of drinking water, atmospheric air, sanitary and hygienic condition of agricultural soils. It is established that the effect of the landfill extends beyond the sanitary protection zone, therefore there is a need to improve its monitoring system with obligatory consideration of impacts on adjacent rural areas. The size of the normative sanitary-protective zone was specified under the actual level of air pollution and natural factors. It is shown that such a scientific and methodical approach can provide a more objective establishment of the sanitary protection zone. In turn, this will provide an opportunity to take appropriate organizational and managerial decisions on the placement of different objects and prevent the negative impact of landfills on rural areas.

  9. The Integrated Waste Tracking Systems (IWTS) - A Comprehensive Waste Management Tool

    International Nuclear Information System (INIS)

    Robert S. Anderson

    2005-01-01

    The US Department of Energy (DOE) Idaho National Laboratory (INL) site located near Idaho Falls, ID USA, has developed a comprehensive waste management and tracking tool that integrates multiple operational activities with characterization data from waste declaration through final waste disposition. The Integrated Waste Tracking System (IWTS) provides information necessary to help facility personnel properly manage their waste and demonstrate a wide range of legal and regulatory compliance. As a client?server database system, the IWTS is a proven tracking, characterization, compliance, and reporting tool that meets the needs of both operations and management while providing a high level of flexibility. This paper describes some of the history involved with the development and current use of IWTS as a comprehensive waste management tool as well as a discussion of IWTS deployments performed by the INL for outside clients. Waste management spans a wide range of activities including: work group interactions, regulatory compliance management, reporting, procedure management, and similar activities. The IWTS documents these activities and performs tasks in a computer-automated environment. Waste characterization data, container characterization data, shipments, waste processing, disposals, reporting, and limit compliance checks are just a few of the items that IWTS documents and performs to help waste management personnel perform their jobs. Throughout most hazardous and radioactive waste generating, storage and disposal sites, waste management is performed by many different groups of people in many facilities. Several organizations administer their areas of waste management using their own procedures and documentation independent of other organizations. Files are kept, some of which are treated as quality records, others not as stringent. Quality records maintain a history of: changes performed after approval, the reason for the change(s), and a record of whom and when

  10. Report of safety of the characterizing system of radioactive waste; Informe de seguridad del sistema caracterizador de desechos radiactivos

    Energy Technology Data Exchange (ETDEWEB)

    Angeles C, A; Jimenez D, J; Reyes L, J [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)

    1998-09-15

    Report of safety of the system of radioactive waste of the ININ: Installation, participant personnel, selection of the place, description of the installation, equipment. Proposed activities: operations with radioactive material, calibration in energy, calibration in efficiency, types of waste. Maintenance: handling of radioactive waste, physical safety. Organization: radiological protection, armor-plating, personal dosemeter, risks and emergency plan, environmental impact, medical exams. (Author)

  11. In itinere strategic environmental assessment of an integrated provincial waste system.

    Science.gov (United States)

    Federico, Giovanna; Rizzo, Gianfranco; Traverso, Marzia

    2009-06-01

    In the paper, the practical problem of analysing in an integrated way the performance of provincial waste systems is approached, in the framework of the Strategic Environmental Assessment (SEA). In particular, the in itinere phase of SEA is analysed herein. After separating out a proper group of ambits, to which the waste system is supposed to determine relevant impacts, pertinent sets of single indicators are proposed. Through the adoption of such indicators the time trend of the system is investigated, and the suitability of each indicator is critically revised. The structure of the evaluation scheme, which is essentially based on the use of ambit issues and analytical indicators, calls for the application of the method of the Dashboard of Sustainability for the integrated evaluation of the whole system. The suitability of this method is shown through the paper, together with the possibility of a comparative analysis of different scenarios of interventions. Of course, the reliability of the proposed method strongly relies on the availability of a detailed set of territorial data. The method appears to represent a useful tool for public administration in the process of optimizing the policy actions aimed at minimizing the increasing problem represented by waste production in urban areas.

  12. Low-level waste inventory, characteristics, generation, and facility assessment for treatment, storage, and disposal alternatives considered in the US Department of Energy waste management programmatic environmental impact statement

    Energy Technology Data Exchange (ETDEWEB)

    Goyette, M.L.; Dolak, D.A.

    1996-12-01

    This report provides technical support information for use in analyzing environmental impacts associated with U.S. Department of Energy (DOE) low-level radioactive waste (LLW) management alternatives in the Waste-Management (WM) Programmatic Environmental Impact Statement (PEIS). Waste loads treated and disposed of for each of the LLW alternatives considered in the DOE WM PEIS are presented. Waste loads are presented for DOE Waste Management (WM) wastes, which are generated from routine operations. Radioactivity concentrations and waste quantities for treatment and disposal under the different LLW alternatives are described for WM waste. 76 refs., 14 figs., 42 tabs.

  13. Expert system for liquid low-level waste management

    International Nuclear Information System (INIS)

    Ferrada, J.J.

    1992-01-01

    An expert system prototype has been developed to support system analysis activities at the Oak Ridge National Laboratory (ORNL) for waste management tasks. This expert system will aid in prioritizing radioactive waste streams for treatment and disposal by evaluating the severity and treatability of the problem as well as the final waste form. The objectives of the expert system development included: (1) collecting information on process treatment technologies for liquid low-level waste (LLLW) that can be incorporated in the knowledge base of the expert system, and (2) producing a prototype that suggests processes and disposal technologies for the ORNL LLLW system. The concept under which the expert system has been designed is integration of knowledge. There are many sources of knowledge (data bases, text files, simulation programs, etc.) that an expert would regularly consult in order to solve a problem of liquid waste management. The expert would normally know how to extract the information from these different sources of knowledge. The general scope of this project would be to include as much pertinent information as possible within the boundaries of the expert system. As a result, the user, who may not be an expert in every aspect of liquid waste management, may be able to apply the content of the information to a specific waste problem. This paper gives the methodological steps to develop the expert system under this general framework

  14. 76 FR 16534 - Hazardous Waste Management System Identification and Listing of Hazardous Waste; Final Exclusion

    Science.gov (United States)

    2011-03-24

    ... Waste Management System Identification and Listing of Hazardous Waste; Final Exclusion AGENCY...) on a one-time basis from the lists of hazardous waste, a certain solid waste generated at its Mt... waste is [[Page 16535

  15. Alpha low-level stored waste systems design study

    Energy Technology Data Exchange (ETDEWEB)

    Feizollahi, F.; Teheranian, B. (Morrison Knudson Corp., San Francisco, CA (United States). Environmental Services Div.); Quapp, W.J. (EG and G Idaho, Inc., Idaho Falls, ID (United States))

    1992-08-01

    The Stored Waste System Design Study (SWSDS), commissioned by the Waste Technology Development Department at the Idaho National Engineering Laboratory (INEL), examines relative life-cycle costs associated with three system concepts for processing the alpha low-level waste (alpha-LLW) stored at the Radioactive Waste Management Complex's Transuranic Storage Area at the INEL. The three system concepts are incineration/melting; thermal treatment/solidification; and sort, treat, and repackage. The SWSDS identifies system functional and operational requirements and assesses implementability; effectiveness; cost; and demonstration, testing, and evaluation (DT E) requirements for each of the three concepts.

  16. Alpha low-level stored waste systems design study

    Energy Technology Data Exchange (ETDEWEB)

    Feizollahi, F.; Teheranian, B. [Morrison Knudson Corp., San Francisco, CA (United States). Environmental Services Div.; Quapp, W.J. [EG and G Idaho, Inc., Idaho Falls, ID (United States)

    1992-08-01

    The Stored Waste System Design Study (SWSDS), commissioned by the Waste Technology Development Department at the Idaho National Engineering Laboratory (INEL), examines relative life-cycle costs associated with three system concepts for processing the alpha low-level waste (alpha-LLW) stored at the Radioactive Waste Management Complex`s Transuranic Storage Area at the INEL. The three system concepts are incineration/melting; thermal treatment/solidification; and sort, treat, and repackage. The SWSDS identifies system functional and operational requirements and assesses implementability; effectiveness; cost; and demonstration, testing, and evaluation (DT&E) requirements for each of the three concepts.

  17. Alpha low-level stored waste systems design study

    International Nuclear Information System (INIS)

    Feizollahi, F.; Teheranian, B.

    1992-08-01

    The Stored Waste System Design Study (SWSDS), commissioned by the Waste Technology Development Department at the Idaho National Engineering Laboratory (INEL), examines relative life-cycle costs associated with three system concepts for processing the alpha low-level waste (alpha-LLW) stored at the Radioactive Waste Management Complex's Transuranic Storage Area at the INEL. The three system concepts are incineration/melting; thermal treatment/solidification; and sort, treat, and repackage. The SWSDS identifies system functional and operational requirements and assesses implementability; effectiveness; cost; and demonstration, testing, and evaluation (DT ampersand E) requirements for each of the three concepts

  18. Environmental impacts and benefits of state-of-the-art technologies for E-waste management.

    Science.gov (United States)

    Ikhlayel, Mahdi

    2017-10-01

    This study aims to evaluate the environmental impacts and benefits of state-of-the-art technologies for proper e-waste handling using Jordan as a case study. Life Cycle Assessment (LCA) was employed to evaluate five advanced management systems represent state-of-the-art treatment technologies, including sanitary landfilling; proper recycling of metals, materials, and precious metals (PMs); and incineration of plastic and the hazardous portion of printed circuit boards (PCBs). Six e-waste products that contribute the most to the e-waste in Jordan were included in the assessment of each scenario, which resulted in 30 total cases of e-waste management. The findings indicated that landfills for the entire components of the e-waste stream are the worst option and should be avoided. The most promising e-waste management scenario features integrated e-waste processes based on the concept of Integrated Waste Management (IWM), including recycling materials such as non-PMs and PMs, incinerating plastic and the hazardous content of PCBs using the energy recovered from incineration, and using sanitary landfills of residues. For this scenario, the best environmental performance was obtained for the treatment of mobile phones. Incineration of the portion of hazardous waste using energy recovery is an option that deserves attention. Because scenario implementation depends on more than just the environmental benefits (e.g., economic cost and technical aspects), the study proposes a systematic approach founded on the IWM concept for e-waste management scenario selection. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Climate impacts from import of waste fuels; Klimatpaaverkan fraan import av braennbart avfall

    Energy Technology Data Exchange (ETDEWEB)

    Haraldsson, Maarten; Sundberg, Johan (Profu, Moelndal (Sweden))

    2009-04-15

    Imports of combustible waste has increased in recent years and imported waste has become an increasingly important fuel in the Swedish district heating systems. The projections for the next few years show that the imports can be much higher, partly due to reduced amounts of waste in the wake of economic downturn the world economy, partly because several new incinerators will be put into operation. In a environmental perspective, imports are controversial and it has been proposed that imports should be restricted. This report provides an assessment of the climate impact of importing waste for combustion. The report shows that greenhouse gas emissions due to imports of waste to the Swedish district heating plants in 2007 was reduced by 500 000 tonnes of carbon dioxide. This is equivalent to the emissions from 300 000 Swedes car journeys a year, or 2.5% of the total emission reduction target set by the Government for the non-trading sector until 2020. Imports of wood waste-chips accounts for the largest reduction, but the study shows that imports of other types of waste contribute to a reduction in emissions of greenhouse gases. The reasons for the reduction is that the use of imported waste fuel substitute for other heating and electricity generation, which gives the consequence that emissions are avoided. The largest emission reductions are obtained, however, by the importation of household waste by replacing the alternative waste treatment of the corresponding waste in the country of origin. In the countries from which imports of waste currently takes place there is a lack of treatment capacity for organic waste. The alternative treatment available is primarily deposition. This treatment causes significant emissions of methane, which is a very strong greenhouse gas. The shipment of waste that occur as a result of imports gives a marginal contribution of greenhouse gases, compared against the emission reductions outlined above

  20. Municipal solid waste generation in municipalities: quantifying impacts of household structure, commercial waste and domestic fuel.

    Science.gov (United States)

    Lebersorger, S; Beigl, P

    2011-01-01

    Waste management planning requires reliable data concerning waste generation, influencing factors on waste generation and forecasts of waste quantities based on facts. This paper aims at identifying and quantifying differences between different municipalities' municipal solid waste (MSW) collection quantities based on data from waste management and on socio-economic indicators. A large set of 116 indicators from 542 municipalities in the Province of Styria was investigated. The resulting regression model included municipal tax revenue per capita, household size and the percentage of buildings with solid fuel heating systems. The model explains 74.3% of the MSW variation and the model assumptions are met. Other factors such as tourism, home composting or age distribution of the population did not significantly improve the model. According to the model, 21% of MSW collected in Styria was commercial waste and 18% of the generated MSW was burned in domestic heating systems. While the percentage of commercial waste is consistent with literature data, practically no literature data are available for the quantity of MSW burned, which seems to be overestimated by the model. The resulting regression model was used as basis for a waste prognosis model (Beigl and Lebersorger, in preparation). Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Evaluation of the MADAM waste measurement system

    Energy Technology Data Exchange (ETDEWEB)

    Foster, L.A.; Wachter, J.R.; Hagan, R.C.

    1995-03-01

    The Multiple Assay Dual Analysis Measurement (MADAM) system is a combined low-level and transuranic waste assay system. The system integrates commercially available Segmented Gamma Scanner (SGS) capability with a multienergy x-ray and gamma-ray analysis to measure these two waste forms. In addition, the system incorporates a small neutron slab detector to satisfy safeguards concerns and the capability for automated high-resolution gamma-ray analysis for isotope identification. Since delivery of the system to this facility, an evaluation of the waste measurement characteristics of the system has been conducted. A set of specially constructed NIST-traceable standards was fabricated for calibration and evaluation of the low-level waste (LLW) measurement system. The measurement characteristics of the LLW assay system were determined during the evaluation, including detection limits for all isotopes of interest, matrix attenuation effects, and detector response as a function of source position. Based on these studies, several modifications to the existing analysis algorithms have been performed, new correction factors for matrix attenuation have been devised, and measurement error estimates have been calculated and incorporated into the software.

  2. Evaluation of the MADAM waste measurement system

    International Nuclear Information System (INIS)

    Foster, L.A.; Wachter, J.R.; Hagan, R.C.

    1995-01-01

    The Multiple Assay Dual Analysis Measurement (MADAM) system is a combined low-level and transuranic waste assay system. The system integrates commercially available Segmented Gamma Scanner (SGS) capability with a multienergy x-ray and gamma-ray analysis to measure these two waste forms. In addition, the system incorporates a small neutron slab detector to satisfy safeguards concerns and the capability for automated high-resolution gamma-ray analysis for isotope identification. Since delivery of the system to this facility, an evaluation of the waste measurement characteristics of the system has been conducted. A set of specially constructed NIST-traceable standards was fabricated for calibration and evaluation of the low-level waste (LLW) measurement system. The measurement characteristics of the LLW assay system were determined during the evaluation, including detection limits for all isotopes of interest, matrix attenuation effects, and detector response as a function of source position. Based on these studies, several modifications to the existing analysis algorithms have been performed, new correction factors for matrix attenuation have been devised, and measurement error estimates have been calculated and incorporated into the software

  3. Transuranic waste: long-term planning

    International Nuclear Information System (INIS)

    Young, K.C.

    1985-07-01

    Societal concerns for the safe handling and disposal of toxic waste are behind many of the regulations and the control measures in effect today. Transuranic waste, a specific category of toxic (radioactive) waste, serves as a good example of how regulations and controls impact changes in waste processing - and vice versa. As problems would arise with waste processing, changes would be instituted. These changes improved techniques for handling and disposal of transuranic waste, reduced the risk of breached containment, and were usually linked with regulatory changes. Today, however, we face a greater public awareness of and concern for toxic waste control; thus, we must anticipate potential problems and work on resolving them before they can become real problems. System safety analyses are valuable aids in long-term planning for operations involving transuranic as well as other toxic materials. Examples of specific system safety analytical methods demonstrate how problems can be anticipated and resolution initiated in a timely manner having minimal impacts upon allocation of resource and operational goals. 7 refs., 1 fig

  4. Impacts of waste from concentrated animal feeding operations on water quality

    Science.gov (United States)

    Burkholder, J.; Libra, B.; Weyer, P.; Heathcote, S.; Kolpin, D.; Thorne, P.S.; Wichman, M.

    2007-01-01

    Waste from agricultural livestock operations has been a long-standing concern with respect to contamination of water resources, particularly in terms of nutrient pollution. However, the recent growth of concentrated animal feeding operations (CAFOs) presents a greater risk to water quality because of both the increased volume of waste and to contaminants that may be present (e.g., antibiotics and other veterinary drugs) that may have both environmental and public health importance. Based on available data, generally accepted livestock waste management practices do not adequately or effectively protect water resources from contamination with excessive nutrients, microbial pathogens, and pharmaceuticals present in the waste. Impacts on surface water sources and wildlife have been documented in many agricultural areas in the United States. Potential impacts on human and environmental health from long-term inadvertent exposure to water contaminated with pharmaceuticals and other compounds are a growing public concern. This workgroup, which is part of the Conference on Environmental Health Impacts of Concentrated Animal Feeding Operations: Anticipating Hazards-Searching for Solutions, identified needs for rigorous ecosystem monitoring in the vicinity of CAFOs and for improved characterization of major toxicants affecting the environment and human health. Last, there is a need to promote and enforce best practices to minimize inputs of nutrients and toxicants from CAFOs into freshwater and marine ecosystems.

  5. Food waste and the food-energy-water nexus: A review of food waste management alternatives.

    Science.gov (United States)

    Kibler, Kelly M; Reinhart, Debra; Hawkins, Christopher; Motlagh, Amir Mohaghegh; Wright, James

    2018-04-01

    Throughout the world, much food produced is wasted. The resource impact of producing wasted food is substantial; however, little is known about the energy and water consumed in managing food waste after it has been disposed. Herein, we characterize food waste within the Food-Energy-Water (FEW) nexus and parse the differential FEW effects of producing uneaten food and managing food loss and waste. We find that various food waste management options, such as waste prevention, landfilling, composting, anaerobic digestion, and incineration, present variable pathways for FEW impacts and opportunities. Furthermore, comprehensive sustainable management of food waste will involve varied mechanisms and actors at multiple levels of governance and at the level of individual consumers. To address the complex food waste problem, we therefore propose a "food-waste-systems" approach to optimize resources within the FEW nexus. Such a framework may be applied to devise strategies that, for instance, minimize the amount of edible food that is wasted, foster efficient use of energy and water in the food production process, and simultaneously reduce pollution externalities and create opportunities from recycled energy and nutrients. Characterization of FEW nexus impacts of wasted food, including descriptions of dynamic feedback behaviors, presents a significant research gap and a priority for future work. Large-scale decision making requires more complete understanding of food waste and its management within the FEW nexus, particularly regarding post-disposal impacts related to water. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Waste heat discharges in the aquatic environment -- impact and monitoring 2

    International Nuclear Information System (INIS)

    Kamath, P.R.

    1980-01-01

    Studies on ecological impacts, on fishes in particular, of waste heat discharges in the aquatic environment are briefly reviewed. These studies cover the susceptibility of fishes to disease and predation, population biology, parasite proliferation and its impact on fishes, synergistic effects due to heat and other stresses such as chemicals, pollutant, lowering of saturation limit of dissolved oxygen at elevated temperature and radioactivity. Experiences of monitoring waste heat discharges at the Rajasthan Atomic Power Station (RAPS) and the Tarapur Atomic Power Station (TAPS) are presented. Entrainment losses and impingement losses are also reviewed. Requirements for thermal monitoring are mentioned. (M.G.B.)

  7. Implementation Plan. Environmental Restoration and Waste Management Programmatic Environmental Impact Statement

    Energy Technology Data Exchange (ETDEWEB)

    1994-01-01

    In accordance with the Department of Energy`s National Environmental Policy Act implementing procedures in Volume 10 of the Code of Federal Regulations, Section 1021,312, the Environmental Restoration and Waste Management Programmatic Environmental Impact Statement Implementation Plan has two primary purposes: to provide guidance for the preparation of the Programmatic Environmental Impact Statement and to record the issues resulting from the scoping and the extended public participation process. The Implementation Plan identifies and discusses the following: background of Environmental Restoration and Waste Management activities, the purpose of the Programmatic Environmental Impact Statement, and the relationship of the Programmatic Environmental Impact Statement to other Departmental initiatives (Chapter 1); need and purposes for action (Chapter 2); scoping process and results of the public participation program in defining the scope of the Programmatic Environmental Impact Statement, including a summary of the comments received and their disposition (Chapter 3); planned scope and content of the Programmatic Environmental Impact Statement (Chapter 4); consultations with other agencies and the role of cooperating agencies (Chapter 5); planned schedule of major Programmatic Environmental Impact Statement milestones (Chapter 6); and responsibilities for preparation of the Programmatic Environmental Impact Statement (Chapter 7).

  8. Outline of environmental impact of waste management

    International Nuclear Information System (INIS)

    1979-09-01

    This document presents background information on the environmental impacts from the management and disposal of radioactive waste for seven reference fuel cycles selected by INFCE Working Group 7, but excluding the health and safety impact on man. The main factors considered were: use of natural resources, land, water, energy, labour and materials; effects of chemical and thermal effluents; effects of meteorology, hydrology and natural hazards; and social effects. The environmental impacts are generally largest for the once-through fuel cycles and smallest for the FBR and HWR U/Th cycles, due to the impacts being correlated to uranium requirements. The main impact is the use of land which varies from 0.1 - 1.6 ha/GWa with the FBR strategy requiring the smallest use of land and the LWR once-through strategy the largest. The land use for mill tailings is, except for the FBR and U/Th cycles, dominant compared to the land use for the rest of the fuel cycle

  9. Evolution of a Waste Information System

    International Nuclear Information System (INIS)

    Speed, D.

    2009-01-01

    Managing information has become a pervasive task in our society and business activities. This is especially true in the arena of government facilities and nuclear materials. Accomplishing the required tasks is not sufficient in the new millennium; plans are made, reviewed and approved, specifications for materials are developed, materials are procured and delivered, inspected, invoices are audited and paid. Activities are conducted to procedures with embedded quality checks and a final turn-over inspection is performed. In order to make the most efficient use of our human capital, we turn to machines to assist us in managing the information flood. How best to address this task? This is new territory - there was no prior art at this level. The challenge is to exercise an appropriate level of control, and at the same time, add value. The key to accomplishing this goal is having a good team with a carefully engineered processes applying an appropriate level of automation. At the Waste Isolation Pilot Plant (WIPP), information is managed about the facility, its performance (environmental monitoring), mining operations, facility services, cyber security, human resources, business processes, and waste information. This paper addresses experience gained with the management of waste information over the first decade of operation. The WIPP Waste Information System (WWIS) was created to fill both a gatekeeper function to screen waste for disposal at Waste Isolation Pilot Plant (WIPP) and the official record of the properties of the waste contained in the WIPP transuranic waste repository. The WWIS has been a very successful system as the monitor of waste acceptance criteria and data integrity; it is an integral part of the success of the WIPP operation. The WWIS is now in its thirteenth year of operation. This period has included close regulatory scrutiny as a part of determining facility readiness for initial waste acceptance, and more than 40 significant software revisions

  10. Hazardous waste and health impact: a systematic review of the scientific literature.

    Science.gov (United States)

    Fazzo, L; Minichilli, F; Santoro, M; Ceccarini, A; Della Seta, M; Bianchi, F; Comba, P; Martuzzi, M

    2017-10-11

    Waste is part of the agenda of the European Environment and Health Process and included among the topics of the Sixth Ministerial Conference on Environment and Health. Disposal and management of hazardous waste are worldwide challenges. We performed a systematic review to evaluate the evidence of the health impact of hazardous waste exposure, applying transparent and a priori defined methods. The following five steps, based on pre-defined systematic criteria, were applied. 1. Specify the research question, in terms of "Population-Exposure-Comparators-Outcomes" (PECO). people living near hazardous waste sites; Exposure: exposure to hazardous waste; Comparators: all comparators; Outcomes: all diseases/health disorders. 2. Carry out the literature search, in Medline and EMBASE. 3. Select studies for inclusion: original epidemiological studies, published between 1999 and 2015, on populations residentially exposed to hazardous waste. 4. Assess the quality of selected studies, taking into account study design, exposure and outcome assessment, confounding control. 5. Rate the confidence in the body of evidence for each outcome taking into account the reliability of each study, the strength of the association and concordance of results.Fifty-seven papers of epidemiological investigations on the health status of populations living near hazardous waste sites were selected for the evidence evaluation. The association between 95 health outcomes (diseases and disorders) and residential exposure to hazardous waste sites was evaluated. Health effects of residential hazardous waste exposure, previously partially unrecognized, were highlighted. Sufficient evidence was found of association between exposure to oil industry waste that releases high concentrations of hydrogen sulphide and acute symptoms. The evidence of causal relationship with hazardous waste was defined as limited for: liver, bladder, breast and testis cancers, non-Hodgkin lymphoma, asthma, congenital anomalies

  11. Expert system technology for nondestructive waste assay

    International Nuclear Information System (INIS)

    Becker, G.K.; Determan, J.C.

    1998-01-01

    Nondestructive assay waste characterization data generated for use in the National TRU Program must be of known and demonstrable quality. Each measurement is required to receive an independent technical review by a qualified expert. An expert system prototype has been developed to automate waste NDA data review of a passive/active neutron drum counter system. The expert system is designed to yield a confidence rating regarding measurement validity. Expert system rules are derived from data in a process involving data clustering, fuzzy logic, and genetic algorithms. Expert system performance is assessed against confidence assignments elicited from waste NDA domain experts. Performance levels varied for the active, passive shielded, and passive system assay modes of the drum counter system, ranging from 78% to 94% correct classifications

  12. Comparison of the organic waste management systems in the Danish-German border region using life cycle assessment (LCA)

    DEFF Research Database (Denmark)

    Jensen, Morten Bang; Møller, Jacob; Scheutz, Charlotte

    2016-01-01

    This study assessed the management of the organic household waste in the Danish-German border region and points out major differences between the systems and their potential effects on the environment using life cycle assessment (LCA). The treatment of organic waste from households in the Danish...... cycle assessment showing large differences in the environmental performance of the two different regions with the Danish region performing better in 10 out of 14 impact categories. Furthermore, the importance of the substituted district heating systems was investigated showing an impact up to 34......-German border region is very different on each side of the border; the Danish region only uses incineration for the treatment of organic household waste while the German region includes combined biogas production and composting, mechanical and biological treatment (MBT) and incineration. Data on all parts...

  13. Literature review of the potential impact of glycolic acid on the technetium chemistry of srs tank waste

    Energy Technology Data Exchange (ETDEWEB)

    Nash, Charles A. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); McCabe, Daniel J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-10-09

    This document presents a literature study of the impact of glycolate on technetium chemistry in the Savannah River Site (SRS) waste system and specifically Saltstone. A predominant portion of the Tc at SRS will be sent to the Saltstone Facility where it will be immobilized. The Tc in the tank waste is in the highly soluble chemical form of pertechnetate ion (TcO4 -) which is reduced by blast furnace slag (BFS) in Saltstone, rendering it highly insoluble and resistant to leaching.

  14. Environment impact of a very low level waste specific landfill

    International Nuclear Information System (INIS)

    Brun-Yaba, C.; Peres, J.M.; Besnus, F.

    1996-01-01

    Operating enrichment plants, nuclear power plants and reprocessing plants and the decommissioning of nuclear facilities will give rise to large volumes of waste material (concrete, steel and others metals, technological wastes heat insulators...) and most of them, in term of quantities, will be categorized as very low level wastes. This paper deals with the environmental impact of a specific landfill as a final destination for the very low level radioactive waste (VLLW) with the aim of providing technical elements for safer workers practices during the operational and the monitoring phases and for a public occupation after closure of the site. This study has been made on the basis of inventories in terms of estimated quantities and spectra of the French VLLW for a set of scenarios which are representative of practices in a landfill. (author)

  15. An expert system framework for nondestructive waste assay

    International Nuclear Information System (INIS)

    Becker, G.K.

    1996-01-01

    Management and disposition of transuranic (RU) waste forms necessitates determining entrained RU and associated radioactive material quantities as per National RU Waste Characterization Program requirements. Technical justification and demonstration of a given NDA method used to determine RU mass and uncertainty in accordance with program quality assurance is difficult for many waste forms. Difficulties are typically founded in waste NDA methods that employ standards compensation and/or employment of simplifying assumptions on waste form configurations. Capability to determine and justify RU mass and mass uncertainty can be enhanced through integration of waste container data/information using expert system and empirical data-driven techniques with conventional data acquisition and analysis. Presented is a preliminary expert system framework that integrates the waste form data base, alogrithmic techniques, statistical analyses, expert domain knowledge bases, and empirical artificial intelligence modules into a cohesive system. The framework design and bases in addition to module development activities are discussed

  16. Development of a Radioactive Waste Assay System

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Duck Won; Song, Myung Jae; Shin, Sang Woon; Sung, Kee Bang; Ko, Dae Hach [Korea Electric Power Research Institute, Taejon (Korea, Republic of); Kim, Kil Jeong; Park, Jong Mook; Jee, Kwang Yoong [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1996-12-31

    Nuclear Act of Korea requires the manifest of low and intermediate level radioactive waste generated at nuclear power plants prior to disposal sites.Individual history records of the radioactive waste should be contained the information about the activity of nuclides in the drum, total activity, weight, the type of waste. A fully automated nuclide analysis assay system, non-destructive analysis and evaluation system of the radioactive waste, was developed through this research project. For the nuclides that could not be analysis directly by MCA, the activities of the representative {gamma}-emitters(Cs-137, Co-60) contained in the drum were measured by using that system. Then scaling factors were used to calculate the activities of {alpha}, {beta}-emitters. Furthermore, this system can automatically mark the analysis results onto the drum surface. An automated drum handling system developed through this research project can reduce the radiation exposure to workers. (author). 41 refs., figs.

  17. The Integrated Waste Tracking Systems (IWTS) - A Comprehensive Waste Management Tool

    Energy Technology Data Exchange (ETDEWEB)

    Robert S. Anderson

    2005-09-01

    The US Department of Energy (DOE) Idaho National Laboratory (INL) site located near Idaho Falls, ID USA, has developed a comprehensive waste management and tracking tool that integrates multiple operational activities with characterization data from waste declaration through final waste disposition. The Integrated Waste Tracking System (IWTS) provides information necessary to help facility personnel properly manage their waste and demonstrate a wide range of legal and regulatory compliance. As a client?server database system, the IWTS is a proven tracking, characterization, compliance, and reporting tool that meets the needs of both operations and management while providing a high level of flexibility. This paper describes some of the history involved with the development and current use of IWTS as a comprehensive waste management tool as well as a discussion of IWTS deployments performed by the INL for outside clients. Waste management spans a wide range of activities including: work group interactions, regulatory compliance management, reporting, procedure management, and similar activities. The IWTS documents these activities and performs tasks in a computer-automated environment. Waste characterization data, container characterization data, shipments, waste processing, disposals, reporting, and limit compliance checks are just a few of the items that IWTS documents and performs to help waste management personnel perform their jobs. Throughout most hazardous and radioactive waste generating, storage and disposal sites, waste management is performed by many different groups of people in many facilities. Several organizations administer their areas of waste management using their own procedures and documentation independent of other organizations. Files are kept, some of which are treated as quality records, others not as stringent. Quality records maintain a history of: changes performed after approval, the reason for the change(s), and a record of whom and when

  18. Performance assessment for underground radioactive waste disposal systems

    International Nuclear Information System (INIS)

    1985-01-01

    A waste disposal system comprises a number of subsystems and components. The performance of most systems can be demonstrated only indirectly because of the long period that would be required to test them. This report gives special attention to performance assessment of subsystems within the total waste disposal system, and is an extension of an IAEA report on Safety Assessment for the Underground Disposal of Radioactive Wastes

  19. Improved liquid waste processing system of PWR plant

    International Nuclear Information System (INIS)

    Suehiro, Kazuyasu

    1977-01-01

    Mitsubishi Heavy Industries, Ltd. has engaged in the improvement and enhancement of waste-processing facilities for PWR power stations, and recently established the improved processing system. With this system, it becomes possible to contain radioactive waste gas semi-permanently within plants and to recycle waste liquid after the treatment, thus to make the release of radioactive wastes practically zero. The improved system has the following features, namely the recycling system is adopted, drain is separated and each separated drain is treated by specialized process, the reboiler type evaporator and the reverse osmosis equipment are used, and the leakless construction is adopted for the equipments. The radioactive liquid wastes in PWR power stations are classified into coolant drain, drain from general equipments, chemical drain and cleaning water. The outline of the improved processing system and the newly developed equipments such as the reboiler type evaporator and the reverse osmosis equipment are explained. With the evaporator, the concentration rate of waste liquid can be raised to about three times, and foaming waste can be treated efficiently. The decontamination performance is excellent. The reverse osmosis treatment is stable and reliable method, and is useful for the treatment of cleaning water. It is also effective for concentrating treatment. The unmanned automatic operation is possible. (Kako, I.)

  20. Waste collection systems for recyclables

    DEFF Research Database (Denmark)

    Larsen, Anna Warberg; Merrild, Hanna Kristina; Møller, Jacob

    2010-01-01

    and technical limitations are respected, and what will the environmental and economic consequences be? This was investigated in a case study of a municipal waste management system. Five scenarios with alternative collection systems for recyclables (paper, glass, metal and plastic packaging) were assessed...... and treatment of waste were reduced with increasing recycling, mainly because the high cost for incineration was avoided. However, solutions for mitigation of air pollution caused by increased collection and transport should be sought. (C) 2009 Elsevier Ltd. All rights reserved....

  1. Insular Biobjective Routing with Environmental Considerations for a Solid Waste Collection System in Southern Chile

    Directory of Open Access Journals (Sweden)

    Daniela S. Arango González

    2017-01-01

    Full Text Available This paper presents a biobjective problem for a solid waste collection system in a set of islands in southern Chile. The first objective minimizes transportation cost and the second one reduces the environmental impact caused by the accumulation of solid waste at the collection points. To solve this problem, biobjective mixed integer linear programming is used. In the model, an itinerary scheme is considered for the visit to the islands. The model decides which collection points are visited per island, the collection pattern, and quantity of solid waste to be collected at each site. The quantity of solid waste is obtained dividing the solid waste generated in the island by the number of collection points selected in that same island and the frequency of visits. For this problem, we considered that the environmental impact function varies through the days during which solid waste is accumulated at each collection point. We present an instance based on real data for a set of islands in Chiloe and Palena regions in southern Chile, in which the deposit node is Dalcahue. We used the epsilon-constraint method and the weighted sum method to obtain the Pareto front, using commercial optimization software.

  2. Revised Draft Hanford Site Solid (Radioactive and Hazardous) Waste Program Environmental Impact Statement, Richland, Washington

    International Nuclear Information System (INIS)

    2003-01-01

    This ''Revised Draft Hanford Site Solid (Radioactive and Hazardous) Waste Program Environmental Impact Statement'' (HSW EIS) covers three primary aspects of waste management at Hanford--waste treatment, storage, and disposal. It also addresses four kinds of solid waste--low-level waste (LLW), mixed (radioactive and chemically hazardous) low-level waste (MLLW), transuranic (TRU) waste, and immobilized low-activity waste (ILAW). It fundamentally asks the question: how should we manage the waste we have now and will have in the future? This EIS analyzes the impacts of the LLW, MLLW, TRU waste, and ILAW we currently have in storage, will generate, or expect to receive at Hanford. The HSW EIS is intended to help us determine what specific facilities we will continue to use, modify, or construct to treat, store, and dispose of these wastes (Figure S.1). Because radioactive and chemically hazardous waste management is a complex, technical, and difficult subject, we have made every effort to minimize the use of acronyms (making an exception for our four waste types listed above), use more commonly understood words, and provide the ''big picture'' in this summary. An acronym list, glossary of terms, and conversions for units of measure are provided in a readers guide in Volume 1 of this EIS

  3. Explanation of Significant Differences Between Models used to Assess Groundwater Impacts for the Disposal of Greater-Than-Class C Low-Level Radioactive Waste and Greater-Than-Class C-Like Waste Environmental Impact Statement (DOE/EIS-0375-D) and the

    Energy Technology Data Exchange (ETDEWEB)

    Annette Schafer; Arthur S. Rood; A. Jeffrey Sondrup

    2011-08-01

    Models have been used to assess the groundwater impacts to support the Draft Environmental Impact Statement for the Disposal of Greater-Than-Class C (GTCC) Low-Level Radioactive Waste and GTCC-Like Waste (DOE-EIS 2011) for a facility sited at the Idaho National Laboratory and the Environmental Assessment for the INL Remote-Handled Low-Level Waste Disposal Project (INL 2011). Groundwater impacts are primarily a function of (1) location determining the geologic and hydrologic setting, (2) disposal facility configuration, and (3) radionuclide source, including waste form and release from the waste form. In reviewing the assumptions made between the model parameters for the two different groundwater impacts assessments, significant differences were identified. This report presents the two sets of model assumptions and discusses their origins and implications for resulting dose predictions. Given more similar model parameters, predicted doses would be commensurate.

  4. Waste package performance allocation system study report

    International Nuclear Information System (INIS)

    Memory, R.D.

    1994-01-01

    The Waste Package Performance Allocation system study was performed in order to provide a technical basis for the selection of the waste package period of substantially complete containment and its resultant contribution to the overall total system performance. This study began with a reference case based on the current Mined Geologic Disposal System (MGDS) baseline design and added a number of alternative designs. The waste package designs were selected from the designs being considered in detail during Advanced Conceptual Design (ACD). The waste packages considered were multi-barrier packages with a 0.95 cm Alloy 825 inner barrier and a 10, 20, or 45 cm thick carbon steel outer barrier. The waste package capacities varied from 6 to 12 to 21 Pressurized Water Reactor (PWR) fuel assemblies. The vertical borehole and in-drift emplacement modes were also considered, as were thermal loadings of 25, 57, and 114 kW/acre. The repository cost analysis indicated that the 21 PWR in-drift emplacement mode option with the 10 cm and 20 cm outer barrier thicknesses are the least expensive and that the 12 PWR in-drift case has approximately the same cost as the 6 PWR vertical borehole. It was also found that the cost increase from the 10 cm outer barrier waste package to the 20 cm waste package was less per centimeter than the increase from the 20 cm outer barrier waste package to the 45 cm outer barrier waste package. However, the repository cost was nearly linear with the outer barrier thickness for the 21 PWR in-drift case. Finally, corrosion rate estimates are provided and the relationship of repository cost versus waste package lifetime is discussed as is cumulative radionuclide release from the waste package and to the accessible environment for time periods of 10,000 years and 100,000 years

  5. Disaster waste management: a review article.

    Science.gov (United States)

    Brown, Charlotte; Milke, Mark; Seville, Erica

    2011-06-01

    Depending on their nature and severity, disasters can create large volumes of debris and waste. The waste can overwhelm existing solid waste management facilities and impact on other emergency response and recovery activities. If poorly managed, the waste can have significant environmental and public health impacts and can affect the overall recovery process. This paper presents a system overview of disaster waste management based on existing literature. The main literature available to date comprises disaster waste management plans or guidelines and isolated case studies. There is ample discussion on technical management options such as temporary storage sites, recycling, disposal, etc.; however, there is little or no guidance on how these various management options are selected post-disaster. The literature does not specifically address the impact or appropriateness of existing legislation, organisational structures and funding mechanisms on disaster waste management programmes, nor does it satisfactorily cover the social impact of disaster waste management programmes. It is envisaged that the discussion presented in this paper, and the literature gaps identified, will form a basis for future comprehensive and cohesive research on disaster waste management. In turn, research will lead to better preparedness and response to disaster waste management problems. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Systems analysis support to the waste management technology center

    International Nuclear Information System (INIS)

    Rivera, A.L.; Osborne-Lee, I.W.; DePaoli, S.M.

    1988-01-01

    This paper describes a systems analysis concept being developed in support of waste management planning and analysis activities for Martin Marietta Energy Systems, Inc. (Energy Systems), sites. This integrated systems model serves as a focus for the accumulation and documentation of technical and economic information from current waste management practices, improved operations projects, remedial actions, and new system development activities. The approach is generic and could be applied to a larger group of sites. This integrated model is a source of technical support to waste management groups in the Energy Systems complex for integrated waste management planning and related technology assessment activities. This problem-solving methodology for low-level waste (LLW) management is being developed through the Waste Management Technology Center (WMTC) for the Low-Level Waste Disposal, Development, and Demonstration (LLWDDD) Program. In support of long-range planning activities, this capability will include the development of management support tools such as specialized systems models, data bases, and information systems. These management support tools will provide continuing support in the identification and definition of technical and economic uncertainties to be addressed by technology demonstration programs. Technical planning activities and current efforts in the development of this system analysis capability for the LLWDDD Program are presented in this paper

  7. Environmental impact by toxic compounds from waste treatment; Miljoepaaverkan fraan toxiska aemnen vid hantering av avfall

    Energy Technology Data Exchange (ETDEWEB)

    Loefblad, Gun; Bisaillon, Mattias; Sundberg, Johan (Profu AB (Sweden))

    2010-07-01

    was made to use a weighted index for toxicity - such as used for climate impact, acidification, etc. in system analyses for waste treatment. The result was not useful due to the limited availability of characterisation factors for the chosen substances. In stead, the toxic impact was assessed by other comparisons, from a local and a national perspective. No acute effects on human health and on the environment are expected to occur from waste processes or from the use of compost and anaerobic digestion residue. The conclusion is that emissions of toxic substances from waste treatment will contribute to the present fugitive levels of pollutants in the environment. The toxic impact is proposed to be quantified as the total emission of metals and persistent organic pollutants, without consideration to the way emissions are made; to air, water and soil. Emissions, even though they are small, contribute to present levels of pollution with the risk of further elevated concentrations and further dispersion in nutrient chains. In all environ metal work it is essential to reduce emissions of toxic persistent compounds. Many activities in society contribute to the total levels. Waste treatment is an unavoidable activity in the society. By massive actions to limit the use and to con tol the emissions of toxic compounds, a cleaner waste is expected to be the result. In addition, measures such as more effective source separation and separation of hazardous waste will make a more optimised treatment of different types of waste possible

  8. Waste Management Systems Requirements and Descriptions (SRD)

    International Nuclear Information System (INIS)

    Conner, C.W.

    1986-01-01

    The Department of Energy (DOE), Office of Civilian Radioactive Waste Management (OCRWM) is responsible for the development of a system for the management of high-level radioactive waste and spent fuel in accordance with the Nuclear Waste Policy Act of 1982. The Waste Management system requirements and description document is the program-level technical baseline document. The requirements include the functions that must be performed in order to achieve the system mission and performance criteria for those functions. This document covers only the functional requirements of the system; it does not cover programmatic or procedural requirements pertaining to the processes of designing, siting and licensing. The requirements are largely based on the Nuclear Waste Policy Act of 1982, Environmental Protection Agency standards, Nuclear Regulatory Commission regulations, and DOE orders and guidance. However, nothing in this document should be construed as to relieve the DOE or its contractors from their responsibilities to comply with applicable statutes, regulations, and standards. This document also provides a brief description of the system being developed to meet the requirements. In addition to the described ''authorized system,'' a system description is provided for an ''improved-performance system'' which would include a monitored retrievable storage (MRS) facility. In the event that an MRS facility is approved by Congress, the improved-performance system will become the reference system. Neither system description includes Federal Interim Storage (FIS) capabilities. Should the need for FIS be identified, it will be included as an additional system element. The descriptions are focused on the interfaces between the system elements, rather than on the detail of the system elements themselves

  9. Characterization optimization for the National TRU waste system

    International Nuclear Information System (INIS)

    Basabilvazo, George T.; Countiss, S.; Moody, D.C.; Jennings, S.G.; Lott, S.A.

    2002-01-01

    On March 26, 1999, the Waste Isolation Pilot Plant (WIPP) received its first shipment of transuranic (TRU) waste. On November 26, 1999, the Hazardous Waste Facility Permit (HWFP) to receive mixed TRU waste at WIPP became effective. Having achieved these two milestones, facilitating and supporting the characterization, transportation, and disposal of TRU waste became the major challenges for the National TRU Waste Program. Significant challenges still remain in the scientific, engineering, regulatory, and political areas that need to be addressed. The National TRU Waste System Optimization Project has been established to identify, develop, and implement cost-effective system optimization strategies that address those significant challenges. Fundamental to these challenges is the balancing and prioritization of potential regulatory changes with potential technological solutions. This paper describes some of the efforts to optimize (to make as functional as possible) characterization activities for TRU waste.

  10. Influence of system considerations on waste form design

    International Nuclear Information System (INIS)

    Bauer, A.A.; Matthews, S.C.; Peterson, R.W.

    1979-01-01

    The design of waste forms is constrained by waste management system considerations imposed during generation, treatment, packaging, transportation, storage, and isolation. In the isolation phase, the waste form provides one of the barriers to release in a multibarrier system that includes the natural geologic and hydrologic barriers as well as other engineered barriers

  11. Review of LCA studies of solid waste management systems – Part II: Methodological guidance for a better practice

    International Nuclear Information System (INIS)

    Laurent, Alexis; Clavreul, Julie; Bernstad, Anna; Bakas, Ioannis; Niero, Monia; Gentil, Emmanuel; Christensen, Thomas H.; Hauschild, Michael Z.

    2014-01-01

    Highlights: • We perform a critical review of 222 LCA studies of solid waste management systems. • We analyse the past LCA practice against the ISO standard and ILCD Handbook guidance. • Malpractices exist in many methodological aspects with large variations among studies. • Many of these aspects are important for the reliability of the results. • We provide detailed recommendations to practitioners of waste management LCAs. - Abstract: Life cycle assessment (LCA) is increasingly used in waste management to identify strategies that prevent or minimise negative impacts on ecosystems, human health or natural resources. However, the quality of the provided support to decision- and policy-makers is strongly dependent on a proper conduct of the LCA. How has LCA been applied until now? Are there any inconsistencies in the past practice? To answer these questions, we draw on a critical review of 222 published LCA studies of solid waste management systems. We analyse the past practice against the ISO standard requirements and the ILCD Handbook guidelines for each major step within the goal definition, scope definition, inventory analysis, impact assessment, and interpretation phases of the methodology. Results show that malpractices exist in several aspects of the LCA with large differences across studies. Examples are a frequent neglect of the goal definition, a frequent lack of transparency and precision in the definition of the scope of the study, e.g. an unclear delimitation of the system boundaries, a truncated impact coverage, difficulties in capturing influential local specificities such as representative waste compositions into the inventory, and a frequent lack of essential sensitivity and uncertainty analyses. Many of these aspects are important for the reliability of the results. For each of them, we therefore provide detailed recommendations to practitioners of waste management LCAs

  12. Review of LCA studies of solid waste management systems – Part II: Methodological guidance for a better practice

    Energy Technology Data Exchange (ETDEWEB)

    Laurent, Alexis, E-mail: alau@dtu.dk [Division for Quantitative Sustainability Assessment, Department of Management Engineering, Technical University of Denmark, 2800 Kgs. Lyngby (Denmark); Clavreul, Julie [Residual Resources Engineering, Department of Environmental Engineering, Technical University of Denmark, 2800 Kgs. Lyngby (Denmark); Bernstad, Anna [Water and Environmental Engineering, Department of Chemical Engineering, Lund University, 221 00 Lund (Sweden); Bakas, Ioannis [Division for Quantitative Sustainability Assessment, Department of Management Engineering, Technical University of Denmark, 2800 Kgs. Lyngby (Denmark); Niero, Monia [Division for Quantitative Sustainability Assessment, Department of Management Engineering, Technical University of Denmark, 2800 Kgs. Lyngby (Denmark); ECO – Ecosystems and Environmental Sustainability, Department of Chemical and Biochemical Engineering, Technical University of Denmark, 4000 Roskilde (Denmark); Gentil, Emmanuel [Copenhagen Resource Institute, 1215 Copenhagen K (Denmark); Christensen, Thomas H. [Residual Resources Engineering, Department of Environmental Engineering, Technical University of Denmark, 2800 Kgs. Lyngby (Denmark); Hauschild, Michael Z. [Division for Quantitative Sustainability Assessment, Department of Management Engineering, Technical University of Denmark, 2800 Kgs. Lyngby (Denmark)

    2014-03-01

    Highlights: • We perform a critical review of 222 LCA studies of solid waste management systems. • We analyse the past LCA practice against the ISO standard and ILCD Handbook guidance. • Malpractices exist in many methodological aspects with large variations among studies. • Many of these aspects are important for the reliability of the results. • We provide detailed recommendations to practitioners of waste management LCAs. - Abstract: Life cycle assessment (LCA) is increasingly used in waste management to identify strategies that prevent or minimise negative impacts on ecosystems, human health or natural resources. However, the quality of the provided support to decision- and policy-makers is strongly dependent on a proper conduct of the LCA. How has LCA been applied until now? Are there any inconsistencies in the past practice? To answer these questions, we draw on a critical review of 222 published LCA studies of solid waste management systems. We analyse the past practice against the ISO standard requirements and the ILCD Handbook guidelines for each major step within the goal definition, scope definition, inventory analysis, impact assessment, and interpretation phases of the methodology. Results show that malpractices exist in several aspects of the LCA with large differences across studies. Examples are a frequent neglect of the goal definition, a frequent lack of transparency and precision in the definition of the scope of the study, e.g. an unclear delimitation of the system boundaries, a truncated impact coverage, difficulties in capturing influential local specificities such as representative waste compositions into the inventory, and a frequent lack of essential sensitivity and uncertainty analyses. Many of these aspects are important for the reliability of the results. For each of them, we therefore provide detailed recommendations to practitioners of waste management LCAs.

  13. The RS-485 communication system design of the waste steel radioactivity detector system

    International Nuclear Information System (INIS)

    Zhang Yongli

    2014-01-01

    The importance and schematic structure of the waste steel radioactivity detector system is given firstly in this paper, and then the RS-485 communication system design including the circuit and program of the waste steel radioactivity detector system is provided. The test result of RS-485 communication system is also introduced, that shows the design completely meets the requirements of the waste steel radioactivity detector system. (author)

  14. Radioactive waste incineration system cold demonstration test

    Energy Technology Data Exchange (ETDEWEB)

    Hozumi, Masahiro; Takaoku, Yoshinobu; Koyama, Shigeru; Nagae, Madoka; Seike, Yasuhiko; Yamanaka, Yasuhiro; Shibata, Kenji; Manabe, Kyoichi

    1984-12-01

    To demonstrate Waste Incineration System (WIS) which our company has been licensed by Combustion Engineering Inc., USA we installed a demonstration test plant in our Hiratsuka Research Laboratory and started the demonstration test on January 1984. One of the characteristics of this system is to be able to process many kinds of wastes with only one system, and to get high volume reduction factors. In our test plant, we processed paper, cloth, wood, polyethylene sheets as the samples of solid combustible wastes and spent ion exchange resins with incineration and processed condensed liquid wastes with spray drying. We have got good performances and enough Decontamination Factor (DF) data for the dust control equipment. In this paper, we introduce this demonstration test plant and report the test results up to date. (author).

  15. Performance assessment of nuclear waste isolation systems

    International Nuclear Information System (INIS)

    Lee, W.L.

    1984-01-01

    A number of concepts have been proposed for the isolation of highly radioactive wastes, and it will be necessary to demonstrate the safety of such systems. In many countries including the U.S., the waste isolation system of choice is deep mined geologic repositories. Because of the complex nature of the multiple isolation barriers afforded by mined geologic disposal systems, and the long isolation periods involved, this demonstration can only be indirect. In recent years this indirect demonstration, mostly through mathematical modeling, is called performance assessment. Performance Assessment can be defined to mean the development, testing, and application of a series of mathematical models and computer codes which traces the movement of radionuclides from a waste isolation system to the biosphere and any resultant dose to man. In modeling such a repository system, it is often convenient to divide it into a number of subsystems, there may be several different processes that need to be modeled, individually and interactively. For instance, this waste package will probably consist of a waste form such as borosilicate glass containing the radioisotopes, a canister, an overpack material such as steel or copper, and a buffer material such as bentonite. The processes to be modeled at the waste package scale include radioisotope inventory and decay, thermal radiation, radiolysis effects, corrosion, leading and fluid flow. In tracing radionuclide transport through rock, the processes of importance are probably groundwater flow, and sorption and retardation of radionuclide movement

  16. Evaluating and controlling the characteristics of the nuclear waste in the FWMS using waste stream analysis model

    International Nuclear Information System (INIS)

    Andress, D.; McLeod, N.B.; Joy, D.S.

    1990-01-01

    The Waste Stream Analysis (WSA) Model is used by the Department of Energy to model the item and location dependent properties of the nuclear waste stream in the Federal Waste Managements System and at utility spent fuel storage facilities. WSA can simulate a wide variety of FWMS configurations and operating strategies and can select and sequence spent fuel for optimal efficiency in the FWMS while minimizing adverse impact on the utility sector. WSA tracks each assembly from the time of discharge to ultimate geologic disposal including all shipping cask and waste package loadings and both at-reactor and FWMS consolidation. WSA selects the highest capacity shipping cask or waste package that does not violate external dose rate or heat limitations for a group of spent fuel assemblies to be containerized. This paper presents an overview of the Waste Stream Analysis Model and a number of key results from a set of coordinated SIMS runs, which illustrates both the impact of waste characteristics on system performance and the ability to control waste characteristics by use of selection and sequencing strategies. 7 refs., 6 figs

  17. Waste Information Management System with Integrated Transportation Forecast Data

    International Nuclear Information System (INIS)

    Upadhyay, H.; Quintero, W.; Shoffner, P.; Lagos, L.

    2009-01-01

    The Waste Information Management System with Integrated Transportation Forecast Data was developed to support the Department of Energy (DOE) mandated accelerated cleanup program. The schedule compression required close coordination and a comprehensive review and prioritization of the barriers that impeded treatment and disposition of the waste streams at each site. Many issues related to site waste treatment and disposal were potential critical path issues under the accelerated schedules. In order to facilitate accelerated cleanup initiatives, waste managers at DOE field sites and at DOE Headquarters in Washington, D.C., needed timely waste forecast and transportation information regarding the volumes and types of waste that would be generated by the DOE sites over the next 40 years. Each local DOE site has historically collected, organized, and displayed site waste forecast information in separate and unique systems. However, waste and shipment information from all sites needed a common application to allow interested parties to understand and view the complete complex-wide picture. The Waste Information Management System with Integrated Transportation Forecast Data allows identification of total forecasted waste volumes, material classes, disposition sites, choke points, technological or regulatory barriers to treatment and disposal, along with forecasted waste transportation information by rail, truck and inter-modal shipments. The Applied Research Center (ARC) at Florida International University (FIU) in Miami, Florida, has deployed the web-based forecast and transportation system and is responsible for updating the waste forecast and transportation data on a regular basis to ensure the long-term viability and value of this system. (authors)

  18. Tank waste remediation system: An update

    International Nuclear Information System (INIS)

    Alumkal, W.T.; Babad, H.; Dunford, G.L.; Honeyman, J.O.; Wodrich, D.D.

    1995-02-01

    The US Department of Energy's Hanford Site, located in southeastern Washington State, contains the largest amount and the most diverse collection of highly radioactive waste in the US. High-level radioactive waste has been stored at the Hanford Site in large, underground tanks since 1944. Approximately 217,000 M 3 (57 Mgal) of caustic liquids, slurries, saltcakes, and sludges have accumulated in 177 tanks. In addition, significant amounts of 90 Sr and 137 Cs were removed from the tank waste, converted to salts, doubly encapsulated in metal containers, and stored in water basins. The Tank Waste Remediation System Program was established by the US Department of Energy in 1991 to safely manage and immobilize these wastes in anticipation of permanent disposal of the high-level waste fraction in a geologic repository. Since 1991, significant progress has been made in resolving waste tank safety issues, upgrading Tank Farm facilities and operations, and developing a new strategy for retrieving, treating, and immobilizing the waste for disposal

  19. Hazardous waste systems analysis at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Urioste, J.

    1997-01-01

    Los Alamos National Laboratory produces routine and non-routine hazardous waste as a by-product of mission operations. Hazardous waste commonly generated at the Laboratory includes many types of laboratory research chemicals, solvents, acids, bases, carcinogens, compressed gases, metals, and other solid waste contaminated with hazardous waste. The Los Alamos National Laboratory Environmental Stewardship Office has established a Hazardous Waste Minimization Coordinator to specifically focus on routine and non-routine RCRA, TSCA, and other administratively controlled wastes. In this process, the Waste Minimization Coordinator has developed and implemented a systems approach to define waste streams, estimate waste management costs and develop plans to implement avoidance practices, and develop projects to reduce or eliminate the waste streams at the Laboratory. The paper describes this systems approach

  20. Defense High Level Waste Disposal Container System Description Document

    International Nuclear Information System (INIS)

    2000-01-01

    The Defense High Level Waste Disposal Container System supports the confinement and isolation of waste within the Engineered Barrier System of the Monitored Geologic Repository (MGR). Disposal containers are loaded and sealed in the surface waste handling facilities, transferred to the underground through the accesses using a rail mounted transporter, and emplaced in emplacement drifts. The defense high level waste (HLW) disposal container provides long-term confinement of the commercial HLW and defense HLW (including immobilized plutonium waste forms (IPWF)) placed within disposable canisters, and withstands the loading, transfer, emplacement, and retrieval loads and environments. U.S. Department of Energy (DOE)-owned spent nuclear fuel (SNF) in disposable canisters may also be placed in a defense HLW disposal container along with commercial HLW waste forms, which is known as 'co-disposal'. The Defense High Level Waste Disposal Container System provides containment of waste for a designated period of time, and limits radionuclide release. The disposal container/waste package maintains the waste in a designated configuration, withstands maximum handling and rockfall loads, limits the individual canister temperatures after emplacement, resists corrosion in the expected handling and repository environments, and provides containment of waste in the event of an accident. Defense HLW disposal containers for HLW disposal will hold up to five HLW canisters. Defense HLW disposal containers for co-disposal will hold up to five HLW canisters arranged in a ring and one DOE SNF canister in the ring. Defense HLW disposal containers also will hold two Multi-Canister Overpacks (MCOs) and two HLW canisters in one disposal container. The disposal container will include outer and inner cylinders, outer and inner cylinder lids, and may include a canister guide. An exterior label will provide a means by which to identify the disposal container and its contents. Different materials

  1. Waste Quantity, Mix and Throughput Study Report

    International Nuclear Information System (INIS)

    Ovadia E, Lev

    1997-01-01

    This report describes the impact that waste stream parameters have on repository design, including surface, subsurface and waste package designs. Two design basis waste streams and corresponding design levels are established for two documented inventories of wastes: (a) Mined Geologic Design System (MGDS) Baseline (Viability Assessment) (VA) and (b) Extended Baseline. The MGDS Baseline VA inventory is currently used as the basis for the VA design of the repository, and is limited by statutes to a total of 70,000 MTU. The Extended Baseline includes the total documented inventories of commercial spent nuclear fuel, high-level waste and US Department of Energy spent nuclear fuel. Impacts of the two design bases on surface, subsurface and waste package designs are projected. The impact of potential disposal of additional commercial and Department of Energy miscellaneous wastes on design is assessed qualitatively

  2. Material and energy recovery in integrated waste management systems. An evaluation based on life cycle assessment

    International Nuclear Information System (INIS)

    Giugliano, Michele; Cernuschi, Stefano; Grosso, Mario; Rigamonti, Lucia

    2011-01-01

    This paper reports the environmental results, integrated with those arising from mass and energy balances, of a research project on the comparative analysis of strategies for material and energy recovery from waste, funded by the Italian Ministry of Education, University and Research. The project, involving the cooperation of five University research groups, was devoted to the optimisation of material and energy recovery activities within integrated municipal solid waste (MSW) management systems. Four scenarios of separate collection (overall value of 35%, 50% without the collection of food waste, 50% including the collection of food waste, 65%) were defined for the implementation of energetic, environmental and economic balances. Two sizes of integrated MSW management system (IWMS) were considered: a metropolitan area, with a gross MSW production of 750,000 t/year and an average province, with a gross MSW production of 150,000 t/year. The environmental analysis was conducted using Life Cycle Assessment methodology (LCA), for both material and energy recovery activities. In order to avoid allocation we have used the technique of the expansion of the system boundaries. This means taking into consideration the impact on the environment related to the waste management activities in comparison with the avoided impacts related to the saving of raw materials and primary energy. Under the hypotheses of the study, both for the large and for the small IWMS, the energetic and environmental benefits are higher than the energetic and environmental impacts for all the scenarios analysed in terms of all the indicators considered: the scenario with 50% separate collection in a drop-off scheme excluding food waste shows the most promising perspectives, mainly arising from the highest collection (and recycling) of all the packaging materials, which is the activity giving the biggest energetic and environmental benefits. Main conclusions of the study in the general field of the

  3. Goals for nuclear waste management

    International Nuclear Information System (INIS)

    Watson, R.A.

    1978-01-01

    Establishing a publicly, politically, economically, and technologically acceptable waste management system for the fuel cycle is a necessary condition for accepting the nuclear program as a national energy option. Findings are given on the technology, politics, economics, morality, aesthetics, and societal impact of waste management. Proposed goals are outlined for the regulation of waste management

  4. A nationwide low-level waste management system

    International Nuclear Information System (INIS)

    1985-01-01

    The National Governors' Association, in conjunction with the Department of Energy's National Low-Level Waste Management Program, invited various representatives of states, regions, and federal agencies to comment on their perceptions of what major features would constitute a nationwide low-level waste management system. Three meetings were conducted and this report summarizes results of those meetings. The Low-Level Radioactive Waste Policy Act of 1980 placed primary responsibility on the states for disposal of low-level waste. Although initial efforts of states have been directed toward establishing compacts, it is evident that a successful long term system requires significant cooperation and communication among states, regions, federal agencies, and Congress

  5. Gaseous radioactive waste processing system

    International Nuclear Information System (INIS)

    Onizawa, Hideo.

    1976-01-01

    Object: To prevent explosion of hydrogen gas within gaseous radioactive waste by removing the hydrogen gas by means of a hydrogen absorber. Structure: A coolant extracted from a reactor cooling system is sprayed by nozzle into a gaseous phase (hydrogen) portion within a tank, thus causing slipping of radioactive rare gas. The gaseous radioactive waste rich in hydrogen, which is purged in the tank, is forced by a waste gas compressor into a hydrogen occlusion device. The hydrogen occlusion device is filled with hydrogen occluding agents such as Mg, Mg-Ni alloy, V-Nb alloy, La-Ni alloy and so forth, and hydrogen in the waste gas is removed through reaction to produce hydrogen metal. The gaseous radioactive waste, which is deprived of hydrogen and reduced in volume, is stored in an attenuation tank. The hydrogen stored in the hydrogen absorber is released and used again as purge gas. (Horiuchi, T.)

  6. SUGERE - a unified system for waste management

    International Nuclear Information System (INIS)

    Silva, Eliane Magalhaes Pereira da; Vasconcelos, Vanderley de; Senne Junior, Murillo; Jordao, Elizabete

    2005-01-01

    Generation and disposal of wastes has been responsible for many economical, ecological and public health problems. In order to manage hazardous wastes in an environment friendly manner, many technical and administrative procedures should be implemented, including prevention, control of generation, and final disposal. A software named SUGERE - a unified system for waste management - is being developed. It is an easy to use tool that integrates all the steps involved in hazardous and radioactive waste management. This system is intended to help generators, transporters and owners of treatment, storage and disposal facilities to manage hazardous and radioactive wastes, by assuring compliance with environmental laws and consumer requirements. This paper presents the current status of the SUGERE software, developed using Borland Delphi package. The nuclear industry is used as a reference for developing this work. (author)

  7. Review of LCA studies of solid waste management systems--part II: methodological guidance for a better practice.

    Science.gov (United States)

    Laurent, Alexis; Clavreul, Julie; Bernstad, Anna; Bakas, Ioannis; Niero, Monia; Gentil, Emmanuel; Christensen, Thomas H; Hauschild, Michael Z

    2014-03-01

    Life cycle assessment (LCA) is increasingly used in waste management to identify strategies that prevent or minimise negative impacts on ecosystems, human health or natural resources. However, the quality of the provided support to decision- and policy-makers is strongly dependent on a proper conduct of the LCA. How has LCA been applied until now? Are there any inconsistencies in the past practice? To answer these questions, we draw on a critical review of 222 published LCA studies of solid waste management systems. We analyse the past practice against the ISO standard requirements and the ILCD Handbook guidelines for each major step within the goal definition, scope definition, inventory analysis, impact assessment, and interpretation phases of the methodology. Results show that malpractices exist in several aspects of the LCA with large differences across studies. Examples are a frequent neglect of the goal definition, a frequent lack of transparency and precision in the definition of the scope of the study, e.g. an unclear delimitation of the system boundaries, a truncated impact coverage, difficulties in capturing influential local specificities such as representative waste compositions into the inventory, and a frequent lack of essential sensitivity and uncertainty analyses. Many of these aspects are important for the reliability of the results. For each of them, we therefore provide detailed recommendations to practitioners of waste management LCAs. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Progress and challenges to the global waste management system.

    Science.gov (United States)

    Singh, Jagdeep; Laurenti, Rafael; Sinha, Rajib; Frostell, Björn

    2014-09-01

    Rapid economic growth, urbanization and increasing population have caused (materially intensive) resource consumption to increase, and consequently the release of large amounts of waste to the environment. From a global perspective, current waste and resource management lacks a holistic approach covering the whole chain of product design, raw material extraction, production, consumption, recycling and waste management. In this article, progress and different sustainability challenges facing the global waste management system are presented and discussed. The study leads to the conclusion that the current, rather isolated efforts, in different systems for waste management, waste reduction and resource management are indeed not sufficient in a long term sustainability perspective. In the future, to manage resources and wastes sustainably, waste management requires a more systems-oriented approach that addresses the root causes for the problems. A specific issue to address is the development of improved feedback information (statistics) on how waste generation is linked to consumption. © The Author(s) 2014.

  9. Waste Isolation Pilot Plant disposal phase final supplemental environmental impact statement. Volume 3: Comment response document

    International Nuclear Information System (INIS)

    1997-09-01

    The purpose of the Waste Isolation Pilot Plant Disposal Final Supplemental Environmental Impact Statement (SEIS-II) is to provide information on environmental impacts regarding the Department of Energy''s (DOE) proposed disposal operations at WIPP. The Proposed Action describes the treatment and disposal of the Basic inventory of TRU waste over a 35-year period. The Action Alternatives proposed the treatment of the Basic Inventory and an Additional Inventory as well as the transportation of the treated waste to WIPP for disposal over a 150- to 190-year period. The three Action Alternatives include the treatment of TRU waste at consolidation sites to meet WIPP planning-basic Waste Acceptance Criteria, the thermal treatment of TRU waste to meet Land Disposal Restrictions, and the treatment of TRU waste by a shred and grout process. SEIS-II evaluates environmental impacts resulting from the various treatment options; the transportation of TRU waste to WIPP using truck, a combination of truck and regular rail service, and a combination of truck and dedicated rail service; and the disposal of this waste in the repository. Evaluated impacts include those to the general environment and to human health. Additional issues associated with the implementation of the alternatives are discussed to provide further understanding of the decisions to be reached and to provide the opportunity for public input on improving DOE''s Environmental Management Program. This volume provides responses to public comments on the Draft SEIS-II. Comments are related to: Alternatives; TRU waste; DOE credibility; Editorial; Endorsement/opposition; Environmental justice; Facility accidents; Generator site operations; Health and safety; Legal and policy issues; NEPA process; WIPP facilities; WIPP waste isolation performance; Purpose and need; WIPP operations; Site characterization; Site selection; Socioeconomics; and Transportation

  10. Compaction and packaging of dry active municipal wastes

    International Nuclear Information System (INIS)

    Chen Zongming; Xi Xinmin

    1994-01-01

    The authors present the feature of a compaction system for active municipal wastes and the radiological monitoring results of workplace and environment. A variety of dry active municipal wastes could be compacted by this system. Volume reduction factor attained to 5 to 7 for soft wastes and 8 to 13 for hard wastes. No evident radiological impact was found on workplace and environment

  11. A comparative study on per capita waste generation according to a waste collecting system in Korea.

    Science.gov (United States)

    Oh, Jung Hwan; Lee, Eui-Jong; Oh, Jeong Ik; Kim, Jong-Oh; Jang, Am

    2016-04-01

    As cities are becoming increasingly aware of problems related to conventional mobile collection systems, automated pipeline-based vacuum collection (AVAC) systems have been introduced in some densely populated urban areas. The reasons are that in addition to cost savings, AVAC systems can be efficient, hygienic, and environmentally friendly. Despite difficulties in making direct comparisons of municipal waste between a conventional mobile collection system and an AVAC system, it is meaningful to measure the quantities in each of these collection methods either in total or on a per capita generation of waste (PCGW, g/(day*capita)) basis. Thus, the aim of this study was to assess the difference in per capita generation of household waste according to the different waste collection methods in Korea. Observations on household waste show that there were considerable differences according to waste collection methods. The value of per capita generation of food waste (PCGF) indicates that a person in a city using AVAC produces 60 % of PCGF (109.58 g/(day*capita)), on average, compared with that of a truck system (173.10 g/(day*capita)) as well as 23 %p less moisture component than that with trucks. The value of per capita generation of general waste (PCGG) in a city with an AVAC system showed 147.73 g/(day*capita), which is 20 % less than that with trucks delivered (185 g/(day*capita)). However, general waste sampled from AVAC showed a 35 %p increased moisture content versus truck delivery.

  12. Waste Management Information System (WMIS) User Guide

    International Nuclear Information System (INIS)

    Broz, R.E.

    2008-01-01

    This document provides the user of the Waste Management Information System (WMIS) instructions on how to use the WMIS software. WMIS allows users to initiate, track, and close waste packages. The modular design supports integration and utilization of data through the various stages of waste management. The phases of the waste management work process include generation, designation, packaging, container management, procurement, storage, treatment, transportation, and disposal

  13. Waste Management Information System (WMIS) User Guide

    Energy Technology Data Exchange (ETDEWEB)

    R. E. Broz

    2008-12-22

    This document provides the user of the Waste Management Information System (WMIS) instructions on how to use the WMIS software. WMIS allows users to initiate, track, and close waste packages. The modular design supports integration and utilization of data throuh the various stages of waste management. The phases of the waste management work process include generation, designation, packaging, container management, procurement, storage, treatment, transportation, and disposal.

  14. Methodology for assessing performance of waste management systems

    International Nuclear Information System (INIS)

    Meshkov, N.K.; Herzenberg, C.L.; Camasta, S.F.

    1988-01-01

    The newly revised draft DOE Order 5820.2, Chapter 3, requires that DOE low-level waste shall be managed on a systematic basis using the most appropriate combination of waste generation reduction, segregation, treatment, and disposal practices so that the radioactive components are contained and the overall cost effectiveness is minimized. This order expects each site to prepare and maintain an overall waste management systems performance assessment supporting the combination of waste management practices used in generation reduction segregation, treatment, packaging, storage, and disposal. A document prepared by EG and G Idaho, Inc. for the Department of Energy called Guidance for Conduct of Waste Management Systems Performance Assessment is specifically intended to provide the approach necessary to meet the systems performance assessment requirement of DOE Order 5820.2, Chapter 3, and other applicable state regulations dealing with LLW (low-level radioactive wastes). Methods and procedures are needed for assessing the performance of a waste management system. This report addresses this need. The purpose of the methodology provided in this report is to select the optimal way to manage particular sets of waste streams from generation to disposal in a safe and cost-effective manner, and thereby assist the DOE LLW mangers in complying with the DOE Order 5820.2, Chapter 3, and the associated guidance document

  15. Functional analysis, a resilience improvement tool applied to a waste management system – application to the "household waste management chain"

    Directory of Open Access Journals (Sweden)

    H. Beraud

    2012-12-01

    Full Text Available A waste management system plays a leading role in the capacity of an area to restart after flooding, as their impact on post-crisis management can be very considerable. Improving resilience, i.e. enabling it to maintain or recover acceptable operating levels after flooding is primordial. To achieve this, we must understand how the system works for bringing any potential dysfunctions to light and taking preventive measures. Functional analysis has been used for understanding the complexity of this type of system. The purpose of this article is to show the interest behind this type of method and the limits in its use for improving resilience of waste management system as well as other urban technical systems1, by means of theoretical modelling and its application on a study site.


    1In a systemic vision of the city, urban technical systems combine all the user service systems that are essential for the city to operate (electricity, water supplies, transport, sewerage, etc.. These systems are generally organised in the form of networks (Coutard, 2010; CERTU, 2005.

  16. Temporal evolution of the environmental performance of implementing selective collection in municipal waste management systems in developing countries: A Brazilian case study.

    Science.gov (United States)

    Ibáñez-Forés, Valeria; Bovea, María D; Coutinho-Nóbrega, Claudia; de Medeiros-García, Hozana R; Barreto-Lins, Raissa

    2018-02-01

    The aim of this study is to analyse the evolution of the municipal solid waste management system of João Pessoa (Brazil), which was one of the Brazilian pioneers cities in implementing door-to-door selective collection programmes, in order to analyse the effect of policy decisions adopted in last decade with regard to selective collection. To do it, this study focuses on analysing the evolution, from 2005 to 2015, of the environmental performance of the municipal solid waste management (MSWM) system implemented in different sorting units with selective collection programmes by applying the Life Cycle Assessment (LCA) methodology and using as a starting point data collected directly from the different stakeholders involved in the MSWM system. This article presents the temporal evolution of environmental indicators measuring the environmental performance of the MSWM system implemented in João Pessoa by sorting unit, for each stage of the life cycle of the waste (collection, classification, intermediate transports, recycling and landfilling), for each waste fraction and for each collection method (selective collection or mixed collection), with the aim of identifying the key aspects with the greatest environmental impact and their causes. Results show on one hand, that environmental behaviour of waste management in a door-to-door selective collection programme significantly improves the behaviour of the overall waste management system. Consequently, the potential to reduce the existing environmental impact based on citizens' increased participation in selective collection is evidenced, so the implementation of awareness-raising campaigns should be one of the main issues of the next policies on solid waste. On the other hand, increasing the amount of recyclable wastes collected selectively, implementing alternative methods for valorising the organic fraction (compost/biomethanization) and improving the efficiency of the transportation stage by means of optimizing

  17. Historical perspective, economic analysis, and regulatory analysis of the impacts of waste partitioning-transmutation on the disposal of radioactive wastes

    International Nuclear Information System (INIS)

    Forsberg, C.W.; Croff, A.G.; Kocher, D.C.

    1990-10-01

    Partitioning-transmutation, sometimes called actinide burning, is an alternative approach to high-level radioactive waste management. It consists of removing long-lived radionuclides from wastes and destroying those radionuclides, thus reducing the long-term hazards of radioactive waste. It was studied in detail in the 1970's. New developments in technology and other factors are resulting in a reexamination of this waste management option. This report consists of three papers which summarize the historical work, update the analysis of the costs of waste disposal, and describe current regulatory requirements which might be impacted by P-T. The papers provide a starting point for future research on P-T. 152 refs., 2 figs., 19 tabs

  18. Solid municipal waste management: Systems and reference technologies

    International Nuclear Information System (INIS)

    Ciancio, G.; Mura, A.

    1993-03-01

    The management of solid municipal wastes comprises simple methods such as dumping into suitably controlled waste disposal sites, and more complex solutions, which can include waste segregation, some form of materials and/or energy recovery, and the use of combined cycle combustion systems. All these methods, however, require environmental protection systems with custom designed techniques, equipment and safeguards. This paper reviews the technical-economic aspects of different pollution control options currently available to meet the specific requirements of various waste management alternatives

  19. Waste system optimization - can diameter selection

    International Nuclear Information System (INIS)

    Ashline, R.C.

    1983-08-01

    The purpose of the waste system optimization study is to define in terms of cost incentives the preferred waste package for HLW which has been converted to glass at a commercial reprocessing plant. The Waste Management Economic Model (WMEM) was employed to analyze the effect of varying important design parameters on the overall net present cost of waste handling. The parameters found to have the greatest effect on the calculated overall net present cost were can diameter, repository type (salt, basalt/bentonite, or welded tuff), allowable areal heat loading, and the repository availability date. The overall net present of a waste handling option is calculated over a 20-year operating period. It includes the total capital and operating costs associated with high-level and intermediate-level liquid waste storage, liquid waste solidification, hulls storage and compaction, and general process trash handling. It also includes the cask leasing and transportation costs associated with each waste type and the waste repository disposal costs. The waste repository disposal costs used in WMEM for this analysis were obtained from Battelle Pacific Northwest Laboratories and thir RECON model. 2 figures, 2 tables

  20. Insular Biobjective Routing with Environmental Considerations for a Solid Waste Collection System in Southern Chile

    OpenAIRE

    Daniela S. Arango González; Elias Olivares-Benitez; Pablo A. Miranda

    2017-01-01

    This paper presents a biobjective problem for a solid waste collection system in a set of islands in southern Chile. The first objective minimizes transportation cost and the second one reduces the environmental impact caused by the accumulation of solid waste at the collection points. To solve this problem, biobjective mixed integer linear programming is used. In the model, an itinerary scheme is considered for the visit to the islands. The model decides which collection points are visited p...

  1. Life-cycle assessment of a Waste-to-Energy plant in central Norway: Current situation and effects of changes in waste fraction composition.

    Science.gov (United States)

    Lausselet, Carine; Cherubini, Francesco; Del Alamo Serrano, Gonzalo; Becidan, Michael; Strømman, Anders Hammer

    2016-12-01

    Waste-to-Energy (WtE) plants constitute one of the most common waste management options to deal with municipal solid waste. WtE plants have the dual objective to reduce the amount of waste sent to landfills and simultaneously to produce useful energy (heat and/or power). Energy from WtE is gaining steadily increasing importance in the energy mix of several countries. Norway is no exception, as energy recovered from waste currently represents the main energy source of the Norwegian district heating system. Life-cycle assessments (LCA) of WtE systems in a Norwegian context are quasi-nonexistent, and this study assesses the environmental performance of a WtE plant located in central Norway by combining detailed LCA methodology with primary data from plant operations. Mass transfer coefficients and leaching coefficients are used to trace emissions over the various life-cycle stages from waste logistics to final disposal of the ashes. We consider different fractions of input waste (current waste mix, insertion of 10% car fluff, 5% clinical waste and 10% and 50% wood waste), and find a total contribution to Climate Change Impact Potential ranging from 265 to 637gCO 2 eq/kg of waste and 25 to 61gCO 2 eq/MJ of heat. The key drivers of the environmental performances of the WtE system being assessed are the carbon biogenic fraction and the lower heating value of the incoming waste, the direct emissions at the WtE plant, the leaching of the heavy metals at the landfill sites and to a lesser extent the use of consumables. We benchmark the environmental performances of our WtE systems against those of fossil energy systems, and we find better performance for the majority of environmental impact categories, including Climate Change Impact Potential, although some trade-offs exist (e.g. higher impacts on Human Toxicity Potential than natural gas, but lower than coal). Also, the insertion of challenging new waste fractions is demonstrated to be an option both to cope with the

  2. WASTES II: Waste System Transportation and Economic Simulation. Version II. User's guide

    International Nuclear Information System (INIS)

    Shay, M.R.; Buxbaum, M.E.

    1986-02-01

    The WASTES II model was developed to provide detailed analyses beyond the capabilities of other available models. WASTES uses discrete event simulation techniques to model the generation of commercial spent nuclear fuel, the buildup of spent fuel inventories within the system, and the transportation requirements for the movement of radioactive waste throughout the system. The model is written in FORTRAN 77 as an extension to the SLAM commercial simulation language package. In addition to the pool storage and dry storage located at the reactors, the WASTES model provides a choice of up to ten other storage facilities of four different types. The simulation performed by WASTES may be controlled by a combination of source- and/or destination-controlled transfers that are requested by the code user. The user supplies shipping cask characteristics for truck or rail shipment casks. As part of the facility description, the user specifies which casks the facility can use. Shipments within the system can be user specified to occur optimally, or proximally. Optimized shipping can be used when exactly two destination facilities of the same facility type are open for receipt of fuel. Optimized shipping selects source/destination pairs so that the total shipping distance or total shipping costs in a given year are minimized when both facilities are fully utilized. Proximity shipping sequentially fills the closest facility to the source according to the shipment priorities without regard for the total annual shipments. This results in sub-optimal routing of waste material but can be used to approximate an optimal shipping strategy when more than two facilities of the same type are available to receive waste. WASTES is currently able to analyze each of the commercial spent fuel logistics scenarios specified in the 1985 DOE Mission Plan

  3. Long-term affected energy production of waste to energy technologies identified by use of energy system analysis

    DEFF Research Database (Denmark)

    Münster, Marie; Meibom, Peter

    2010-01-01

    Affected energy production is often decisive for the outcome of consequential life-cycle assessments when comparing the potential environmental impact of products or services. Affected energy production is however difficult to determine. In this article the future long-term affected energy...... production is identified by use of energy system analysis. The focus is on different uses of waste for energy production. The Waste-to-Energy technologies analysed include co-combustion of coal and waste, anaerobic digestion and thermal gasification. The analysis is based on optimization of both investments...... and production of electricity, district heating and bio-fuel in a future possible energy system in 2025 in the countries of the Northern European electricity market (Denmark, Norway, Sweden, Finland and Germany). Scenarios with different CO2 quota costs are analysed. It is demonstrated that the waste...

  4. Environmental Assessment of Possible Future Waste Management Scenarios

    Directory of Open Access Journals (Sweden)

    Yevgeniya Arushanyan

    2017-02-01

    Full Text Available Waste management has developed in many countries and will continue to do so. Changes towards increased recovery of resources in order to meet climate targets and for society to transition to a circular economy are important driving forces. Scenarios are important tools for planning and assessing possible future developments and policies. This paper presents a comprehensive life cycle assessment (LCA model for environmental assessments of scenarios and waste management policy instruments. It is unique by including almost all waste flows in a country and also allow for including waste prevention. The results show that the environmental impacts from future waste management scenarios in Sweden can differ a lot. Waste management will continue to contribute with environmental benefits, but less so in the more sustainable future scenarios, since the surrounding energy and transportation systems will be less polluting and also because less waste will be produced. Valuation results indicate that climate change, human toxicity and resource depletion are the most important environmental impact categories for the Swedish waste management system. Emissions of fossil CO2 from waste incineration will continue to be a major source of environmental impacts in these scenarios. The model is used for analyzing environmental impacts of several policy instruments including weight based collection fee, incineration tax, a resource tax and inclusion of waste in a green electricity certification system. The effect of the studied policy instruments in isolation are in most cases limited, suggesting that stronger policy instruments as well as combinations are necessary to reach policy goals as set out in for example the EU action plan on circular economy.

  5. Waste heat recovery system

    International Nuclear Information System (INIS)

    Phi Wah Tooi

    2010-01-01

    Full text: The Konzen in-house designed anaerobic digester system for the POME (Palm Oil Mill Effluent) treatment process is one of the registered Clean Development Mechanism (CDM) projects in Malaysia. It is an organic wastewater treatment process which achieves excellent co-benefits objectives through the prevention of water pollution and reduction of greenhouse gas emissions, which is estimated to be 40,000 to 50,000 t-CO 2 per year. The anaerobic digester was designed in mesophile mode with temperature ranging from 37 degree Celsius to 45 degree Celsius. A microorganisms growth is optimum under moderately warm temperature conditions. The operating temperature of the anaerobic digester needs to be maintained constantly. There are two waste heat recovery systems designed to make the treatment process self-sustaining. The heat recovered will be utilised as a clean energy source to heat up the anaerobic digester indirectly. The first design for the waste heat recovery system utilises heat generated from the flue gas of the biogas flaring system. A stainless steel water tank with an internal water layer is installed at the top level of the flare stack. The circulating water is heated by the methane enriched biogas combustion process. The second design utilizes heat generated during the compression process for the biogas compressor operation. The compressed biogas needs to be cooled before being recycled back into the digester tank for mixing purposes. Both the waste heat recovery systems use a design which applies a common water circulation loop and hot water tank to effectively become a closed loop. The hot water tank will perform both storage and temperature buffer functions. The hot water is then used to heat up recycled sludge from 30 degree Celsius to 45 degree Celsius with the maximum temperature setting at 50 degree Celsius. The recycled sludge line temperature will be measured and monitored by a temperature sensor and transmitter, which will activate the

  6. Modular life cycle assessment of municipal solid waste management.

    Science.gov (United States)

    Haupt, M; Kägi, T; Hellweg, S

    2018-05-31

    Life cycle assessment (LCA) is commonly applied to examine the environmental performance of waste management systems. The system boundaries are, however, often limited to either one tonne of material or to specific waste treatments and are, therefore, lacking a systems perspective. Here, a framework is proposed to assess complete waste management systems based on actual waste flows, assessed with a detailed material flow analysis (MFA) in a modular MFA/LCA approach. The transformation of the MFA into a product-process-matrix facilitates a direct link between MFA and LCA, therefore allowing for the assessment of variations in flows. To allow for an up-to-date and geographically specific assessment, 190 LCA modules were set up based on primary industrial data and the ecoinvent database. The LCA modules show where there have been improvements in different recycling processes over the past years (e.g. for paper recycling) and highlight that, from an environmental perspective, closed-loop recycling is not always preferable to open-loop recycling. In a case study, the Swiss municipal solid waste management system, of which there is already a detailed MFA, was modeled using the new LCA modules and applying the modular MFA/LCA approach. Five different mass flow distribution scenarios for the Swiss municipal solid waste management system were assessed to show the environmental impact of political measures and to test the sensitivity of the results to key parameters. The results of the case study highlight the importance of the dominant fractions in the overall environmental impacts assessment; while the metal fraction has the highest impact on a per kilogram basis, paper, cardboard, glass and mixed municipal solid waste were found to dominate the environmental impacts of the Swiss waste management system due to their mass. The scenarios also highlight the importance of the energy efficiency of municipal solid waste incineration plants and the credits from material

  7. Environmental and economic benefits of the recovery of materials in a municipal solid waste management system.

    Science.gov (United States)

    De Feo, Giovanni; Ferrara, Carmen; Finelli, Alessio; Grosso, Alberto

    2017-12-07

    The main aim of this study was to perform a Life cycle assessment study as well as an economic evaluation of the recovery of recyclable materials in a municipal solid waste management system. If citizens separate erroneously waste fractions, they produce both environmental and economic damages. The environmental and economic evaluation was performed for the case study of Nola (34.349 inhabitants) in Southern Italy, with a kerbside system that assured a source separation of 62% in 2014. The economic analysis provided a quantification of the economic benefits obtainable for the population in function of the achievable percentage of source separation. The comparison among the environmental performance of four considered scenarios showed that the higher the level of source separation was, the lower the overall impacts were. This occurred because, even if the impacts of the waste collection and transport increased, they were overcome by the avoided impacts of the recycling processes. Increasing the source separation by 1% could avoid the emission of 5 kg CO 2 eq. and 5 g PM10 for each single citizen. The economic and environmental indicators defined in this study provide simple and effective information useful for a wide-ranging audience in a behavioural change programme perspective.

  8. 75 FR 61356 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste; Correction

    Science.gov (United States)

    2010-10-05

    ... Waste Management System; Identification and Listing of Hazardous Waste; Correction AGENCY: Environmental... thermal desorber residual solids with Hazardous Waste Numbers: F037, F038, K048, K049, K050, and K051. In... and correcting it in Table 1 of appendix IX to part 261--Waste Excluded Under Sec. Sec. 260.20 and 260...

  9. Environmental impact statement on management of commercially generated radioactive wastes

    International Nuclear Information System (INIS)

    Shupe, M.W.; Kreiter, M.R.

    1979-01-01

    This report describes the generic environmental impact statement on the management of generated high-level and transuranic radioactive wastes. The contents of the statement are summarized. The alternatives considered include: geologic disposal; chemical resynthesis; very deep hole disposal; rock melting concept; island disposal; subseabed disposal; icesheet disposal; reverse well disposal; transmutation treatment; and space disposal concepts. The types and quantities of wastes considered are from 3 different fuel cycles for the LWR reactor: once through; uranium-only recycle; and uranium and platinum recycle

  10. Identification of the recommended waste management systems and system development schedules: Regional Management Plan

    International Nuclear Information System (INIS)

    1986-01-01

    This report describes the evaluations of alternatives for low-level waste treatment and disposal leading to the selection of four disposal methods and two treatment alternatives (including the alternative of only continuing current methods of waste treatment used by the waste generators) that were used to form candidate waste management systems. The subsequent evaluation of waste management systems and schedules for the development of the regional waste management system under four different scenarios are also included. The report also describes the consequences to the member states and their waste generators of the four scenarios and presents insights into preferred courses of action that arise from the scheduling exercise. 13 refs., 14 figs., 2 tabs

  11. Load Absorption Characteristics of Tyre Production Waste Rubber for Playground Floor Systems

    Directory of Open Access Journals (Sweden)

    Abdul Ghani A.N.

    2014-01-01

    Full Text Available The floor surfaces where slides and swings are placed in parks and playrooms should be soft and thick to ensure that whenever a child falls, the surface can withstand the impact and minimize injuries to the child. Shredded tyres from waste tyres or waste rubber from tyre manufacturing could become beneficial as shock absorber material which can be used as a playground floor. In this study, rubber cubes and rubber pads with 5%, 8% and 10% SBR mixes were prepared for mechanical testing. Two types of floor design surfaces with and without plywood on the surface were assembled for the shock test. Gmax and HIC of this waste rubber flooring system were investigated using the compression test for the rubber cube and the drop test for the rubber pad. The criteria of general protection standards are 200g for optimum acceleration and 1000 for HIC. The Gmax and HIC results indicated that the material and system could ensure a safe fall from up to 1.0m height.

  12. Description of waste pretreatment and interfacing systems dynamic simulation model

    International Nuclear Information System (INIS)

    Garbrick, D.J.; Zimmerman, B.D.

    1995-05-01

    The Waste Pretreatment and Interfacing Systems Dynamic Simulation Model was created to investigate the required pretreatment facility processing rates for both high level and low level waste so that the vitrification of tank waste can be completed according to the milestones defined in the Tri-Party Agreement (TPA). In order to achieve this objective, the processes upstream and downstream of the pretreatment facilities must also be included. The simulation model starts with retrieval of tank waste and ends with vitrification for both low level and high level wastes. This report describes the results of three simulation cases: one based on suggested average facility processing rates, one with facility rates determined so that approximately 6 new DSTs are required, and one with facility rates determined so that approximately no new DSTs are required. It appears, based on the simulation results, that reasonable facility processing rates can be selected so that no new DSTs are required by the TWRS program. However, this conclusion must be viewed with respect to the modeling assumptions, described in detail in the report. Also included in the report, in an appendix, are results of two sensitivity cases: one with glass plant water recycle steams recycled versus not recycled, and one employing the TPA SST retrieval schedule versus a more uniform SST retrieval schedule. Both recycling and retrieval schedule appear to have a significant impact on overall tank usage

  13. Comparison of the waste management aspects of spent fuel disposal and reprocessing: post-disposal radiological impact

    International Nuclear Information System (INIS)

    Mobbs, S.F.; Harvey, M.P.; Martin, J.S.; Mayall, A.; Jones, M.E.

    1991-01-01

    A joint project involving contractors from France, Germany and the UK was set up by the Commission of the European Communities to assess the implications of two waste management options: the direct disposal of spent fuel and reprocessing of that fuel. This report describes the calculation of the radiological impact on the public of the management and disposal of the wastes associated with these two options. Six waste streams were considered: discharge of liquid reprocessing effluents, discharge of gaseous reprocessing effluents, disposal of low-level solid wastes arising from reprocessing, disposal of intermediate-level solid wastes arising from reprocessing, disposal of vitrified high-level reprocessing wastes, and direct disposal of spent fuel. The results of the calculations are in the form of maximum annual doses and risks to individual members of the public, and collective doses to four population groups, integrated over six time periods. These results were designed for input into a computer model developed by another contractor, Yard Ltd, which combines costs and impacts in a multi-attribute hierarchy to give an overall measure of the impact of a given option

  14. Automated system for handling tritiated mixed waste

    International Nuclear Information System (INIS)

    Dennison, D.K.; Merrill, R.D.; Reitz, T.C.

    1995-03-01

    Lawrence Livermore National Laboratory (LLNL) is developing a semi system for handling, characterizing, processing, sorting, and repackaging hazardous wastes containing tritium. The system combines an IBM-developed gantry robot with a special glove box enclosure designed to protect operators and minimize the potential release of tritium to the atmosphere. All hazardous waste handling and processing will be performed remotely, using the robot in a teleoperational mode for one-of-a-kind functions and in an autonomous mode for repetitive operations. Initially, this system will be used in conjunction with a portable gas system designed to capture any gaseous-phase tritium released into the glove box. This paper presents the objectives of this development program, provides background related to LLNL's robotics and waste handling program, describes the major system components, outlines system operation, and discusses current status and plans

  15. Development of waste water reuse water system for power plants

    Energy Technology Data Exchange (ETDEWEB)

    Park, K K; Kim, D H; Weon, D Y; Yoon, S W; Song, H R [Korea Electric Power Research Institute, Taejeon (Korea, Republic of)

    1998-12-31

    1. Status of waste water discharge at power plants 2. Present status of waste water reuse at power plants 3. Scheme of waste water reuse at power plants 4. Standardization of optimum system for waste water reuse at power plants 5. Establishment of low cost zero discharge system for waste water 6. Waste water treatment technology of chemical cleaning. (author). 132 figs., 72 tabs.

  16. Development of waste water reuse water system for power plants

    Energy Technology Data Exchange (ETDEWEB)

    Park, K.K.; Kim, D.H.; Weon, D.Y.; Yoon, S.W.; Song, H.R. [Korea Electric Power Research Institute, Taejeon (Korea, Republic of)

    1997-12-31

    1. Status of waste water discharge at power plants 2. Present status of waste water reuse at power plants 3. Scheme of waste water reuse at power plants 4. Standardization of optimum system for waste water reuse at power plants 5. Establishment of low cost zero discharge system for waste water 6. Waste water treatment technology of chemical cleaning. (author). 132 figs., 72 tabs.

  17. Waste-based materials; capability, application and impact on indoor environment – literature review

    DEFF Research Database (Denmark)

    Krejcirikova, Barbora; Rode, Carsten; Kolarik, Jakub

    2014-01-01

    This paper reviews and discusses various sustainable materials utilizing waste products with the focus on their properties having an impact on the indoor environmental conditions and indoor air quality (IAQ). Materials included in the review are selected considering the following aspects......: sustainability, cradle to cradle perspective, application, their impact on indoor environment and human well-being. The attempt of the paper is to cover a wide spectrum of information so to provide better understanding of waste utilization in construction industry....

  18. Test plan for buried waste containment system materials

    International Nuclear Information System (INIS)

    Weidner, J.; Shaw, P.

    1997-03-01

    The objectives of the FY 1997 barrier material work at the Idaho National Engineering and Environmental Laboratory are to (1) select a waste barrier material and verify that it is compatible with the Buried Waste Containment System Process, and (2) determine if, and how, the Buried Waste Containment System emplacement process affects the material properties and performance (on proof of principle scale). This test plan describes a set of measurements and procedures used to validate a waste barrier material for the Buried Waste Containment System. A latex modified proprietary cement manufactured by CTS Cement Manufacturing Company will be tested. Emplacement properties required for the Buried Waste Containment System process are: slump between 8 and 10 in., set time between 15 and 30 minutes, compressive strength at set of 20 psi minimum, and set temperature less than 100 degrees C. Durability properties include resistance to degradation from carbonate, sulfate, and waste-site soil leachates. A set of baseline barrier material properties will be determined to provide a data base for comparison with the barrier materials when tested in the field. The measurements include permeability, petrographic analysis to determine separation and/or segregation of mix components, and a set of mechanical properties. The measurements will be repeated on specimens from the field test material. The data will be used to determine if the Buried Waste Containment System equipment changes the material. The emplacement properties will be determined using standard laboratory procedures and instruments. Durability of the barrier material will be evaluated by determining the effect of carbonate, sulfate, and waste-site soil leachates on the compressive strength of the barrier material. The baseline properties will be determined using standard ASTM procedures. 9 refs., 1 fig., 2 tabs

  19. Status of Pantex Plant Waste Management Project/program control system

    International Nuclear Information System (INIS)

    Price, Wesley J.; Matthews, William L.

    1992-01-01

    During a December 1990 Waste Management Program Review held in Albuquerque, New Mexico, the Waste Management and Operational Surety Division (WMOSD) introduced the project control system to be used for the Waste Management (WM) Operations Program. The system was entitled 'TRAC-WM' (Tracking and Control for Waste Management). The stated objective for this system was to establish a frame work for planning, managing, and controlling work within the WM program. As a result Mason and Hanger (the operating contractor at the Pantex Plant) initiated the development of a computerized waste management project tracking system. (author)

  20. Informal E-waste recycling in developing countries: review of metal(loid)s pollution, environmental impacts and transport pathways.

    Science.gov (United States)

    Ackah, Michael

    2017-11-01

    Crude or primitive recycling practices are often adopted in material resource recovery from E-waste in developing nations. Significant human health and environmental impacts may occur because of such practices. Literature on metal(loid)s pollution during E-waste processing is fragmented. Here, I review the health and environmental impacts of E-waste recycling operations and transport pathways of metal(loid)s, dispersed during operations. This paper is organised into five sections. Section 1 relates to the background of global E-waste generation and legal/illegal trade, citing specific cases from Ghana and other developing nations. Section 2 provides a brief information on sources of metal(loid)s in E-waste. Section 3 describes characteristics of informal E-waste recycling operations in developing nations. Section 4 examines the health and environmental impacts in E-waste recycling while section 5 evaluates major transport pathways of metal(loid)s contaminants.

  1. Environmental impacts and resource losses of incinerating misplaced household special wastes (WEEE, batteries, ink cartridges and cables)

    DEFF Research Database (Denmark)

    Bigum, Marianne Kristine Kjærgaard; Damgaard, Anders; Scheutz, Charlotte

    2017-01-01

    The contribution of misplaced special waste (sWEEE, lamps, CRT, batteries, ink cartridges and cables) to environmental impacts from incineration of residual household waste was quantified through life cycle assessment (LCA)-modelling. Misplaced special waste was quantified to constitute less than 1...... and batteries. However as shown by sensitivity analysis, lack of good data on the transfer of rare and hazardous metals to the flue gas in the incineration process should receive further investigation before the environmental impacts from misplaced incinerated special waste can fully be concluded upon. Although...... special waste (sWEEE, lamps, CRT, batteries, ink cartridges, and cables)....

  2. THE WASTE REDUCTION (WAR) ALGORITHM: ENVIRONMENTAL IMPACTS, ENERGY CONSUMPTION, AND ENGINEERING ECONOMICS

    Science.gov (United States)

    A general theory known as the WAste Reduction (WAR) algorithm has been developed to describe the flow and the generation of potential environmental impact through a chemical process. This theory defines potential environmental impact indexes that characterize the generation and t...

  3. 75 FR 73972 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste; Removal of...

    Science.gov (United States)

    2010-11-30

    ... Waste Management System; Identification and Listing of Hazardous Waste; Removal of Direct Final.... Lists of Subjects in 40 CFR Part 261 Environmental Protection, Hazardous waste, Recycling, Reporting and... follows: PART 261--IDENTIFICATION AND LISTING OF HAZARDOUS WASTE 0 1. The authority citation for part 261...

  4. Application bar-code system for solid radioactive waste management

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Y. H.; Kim, T. K.; Kang, I. S.; Cho, H. S.; Son, J. S. [KAERI, Taejon (Korea, Republic of)

    2004-07-01

    Solid radioactive wastes are generated from the post-irradiated fuel examination facility, the irradiated material examination facility, the research reactor, and the laboratories at KAERI. A bar-code system for a solid radioactive waste management of a research organization became necessary while developing the RAWMIS(Radioactive Waste Management Integration System) which it can generate personal history management for efficient management of a waste, documents, all kinds of statistics. This paper introduces an input and output application program design to do to database with data in the results and a stream process of a treatment that analyzed the waste occurrence present situation and data by bar-code system.

  5. 75 FR 60632 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste; Direct Final Rule

    Science.gov (United States)

    2010-10-01

    ... Waste Management System; Identification and Listing of Hazardous Waste; Direct Final Rule AGENCY... management and treatment of several F- and K-waste codes. These waste codes are F037, F038, K048, K049, K051... released from the waste, plausible and specific types of management of the petitioned waste, the quantities...

  6. E-waste: an assessment of global production and environmental impacts.

    Science.gov (United States)

    Robinson, Brett H

    2009-12-20

    E-waste comprises discarded electronic appliances, of which computers and mobile telephones are disproportionately abundant because of their short lifespan. The current global production of E-waste is estimated to be 20-25 million tonnes per year, with most E-waste being produced in Europe, the United States and Australasia. China, Eastern Europe and Latin America will become major E-waste producers in the next ten years. Miniaturisation and the development of more efficient cloud computing networks, where computing services are delivered over the internet from remote locations, may offset the increase in E-waste production from global economic growth and the development of pervasive new technologies. E-waste contains valuable metals (Cu, platinum group) as well as potential environmental contaminants, especially Pb, Sb, Hg, Cd, Ni, polybrominated diphenyl ethers (PBDEs), and polychlorinated biphenyls (PCBs). Burning E-waste may generate dioxins, furans, polycyclic aromatic hydrocarbons (PAHs), polyhalogenated aromatic hydrocarbons (PHAHs), and hydrogen chloride. The chemical composition of E-waste changes with the development of new technologies and pressure from environmental organisations on electronics companies to find alternatives to environmentally damaging materials. Most E-waste is disposed in landfills. Effective reprocessing technology, which recovers the valuable materials with minimal environmental impact, is expensive. Consequently, although illegal under the Basel Convention, rich countries export an unknown quantity of E-waste to poor countries, where recycling techniques include burning and dissolution in strong acids with few measures to protect human health and the environment. Such reprocessing initially results in extreme localised contamination followed by migration of the contaminants into receiving waters and food chains. E-waste workers suffer negative health effects through skin contact and inhalation, while the wider community are exposed

  7. E-waste: An assessment of global production and environmental impacts

    International Nuclear Information System (INIS)

    Robinson, Brett H.

    2009-01-01

    E-waste comprises discarded electronic appliances, of which computers and mobile telephones are disproportionately abundant because of their short lifespan. The current global production of E-waste is estimated to be 20-25 million tonnes per year, with most E-waste being produced in Europe, the United States and Australasia. China, Eastern Europe and Latin America will become major E-waste producers in the next ten years. Miniaturisation and the development of more efficient cloud computing networks, where computing services are delivered over the internet from remote locations, may offset the increase in E-waste production from global economic growth and the development of pervasive new technologies. E-waste contains valuable metals (Cu, platinum group) as well as potential environmental contaminants, especially Pb, Sb, Hg, Cd, Ni, polybrominated diphenyl ethers (PBDEs), and polychlorinated biphenyls (PCBs). Burning E-waste may generate dioxins, furans, polycyclic aromatic hydrocarbons (PAHs), polyhalogenated aromatic hydrocarbons (PHAHs), and hydrogen chloride. The chemical composition of E-waste changes with the development of new technologies and pressure from environmental organisations on electronics companies to find alternatives to environmentally damaging materials. Most E-waste is disposed in landfills. Effective reprocessing technology, which recovers the valuable materials with minimal environmental impact, is expensive. Consequently, although illegal under the Basel Convention, rich countries export an unknown quantity of E-waste to poor countries, where recycling techniques include burning and dissolution in strong acids with few measures to protect human health and the environment. Such reprocessing initially results in extreme localised contamination followed by migration of the contaminants into receiving waters and food chains. E-waste workers suffer negative health effects through skin contact and inhalation, while the wider community are exposed

  8. E-waste: An assessment of global production and environmental impacts

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, Brett H., E-mail: brett.robinson@lincoln.ac.nz [Department of Soil and Physical Sciences, Lincoln University, Lincoln 7647, Canterbury (New Zealand)

    2009-12-20

    E-waste comprises discarded electronic appliances, of which computers and mobile telephones are disproportionately abundant because of their short lifespan. The current global production of E-waste is estimated to be 20-25 million tonnes per year, with most E-waste being produced in Europe, the United States and Australasia. China, Eastern Europe and Latin America will become major E-waste producers in the next ten years. Miniaturisation and the development of more efficient cloud computing networks, where computing services are delivered over the internet from remote locations, may offset the increase in E-waste production from global economic growth and the development of pervasive new technologies. E-waste contains valuable metals (Cu, platinum group) as well as potential environmental contaminants, especially Pb, Sb, Hg, Cd, Ni, polybrominated diphenyl ethers (PBDEs), and polychlorinated biphenyls (PCBs). Burning E-waste may generate dioxins, furans, polycyclic aromatic hydrocarbons (PAHs), polyhalogenated aromatic hydrocarbons (PHAHs), and hydrogen chloride. The chemical composition of E-waste changes with the development of new technologies and pressure from environmental organisations on electronics companies to find alternatives to environmentally damaging materials. Most E-waste is disposed in landfills. Effective reprocessing technology, which recovers the valuable materials with minimal environmental impact, is expensive. Consequently, although illegal under the Basel Convention, rich countries export an unknown quantity of E-waste to poor countries, where recycling techniques include burning and dissolution in strong acids with few measures to protect human health and the environment. Such reprocessing initially results in extreme localised contamination followed by migration of the contaminants into receiving waters and food chains. E-waste workers suffer negative health effects through skin contact and inhalation, while the wider community are exposed

  9. Technology for commercial radioactive waste management

    International Nuclear Information System (INIS)

    1979-05-01

    Conceptual processes and facilities for treating gaseous and various transuranium (TRU) wastes produced during the past fission portion of the light water reactor fuel cycle are described in volume 2. The goal of the treatment process for TRU wastes and for long-lived radionuclides removed from the gaseous waste streams is to convert these wastes to stable products suitable for placement in geologic isolation repositories. The treatment concepts are based on available technology. They do not necessarily represent an optimum design but are representative of what could be achieved with current technology. In actual applications it is reasonable to expect that there could be some improvement over these concepts that might be reflected in either lower costs or lower environmental impacts or both. These conceptual descriptions do provide a reasonable basis for cost analysis and for development of estimates of environmental impacts. The waste treatment technologies considered here include: high-level waste solidification, packaging of fuel residue, failed equipment and noncombustible waste treatment, general trash and combustible waste treatment, degraded solvent treatment, dilute aqueous waste pretreatment, immobilization of wet and solid wastes, off-gas particle removal systems, fuel reprocessing plant dissolver off-gas treatment, process off-gas treatment, and fuel reprocessing plant atmospheric protection system

  10. What Is the Contribution of City-Scale Actions to the Overall Food System's Environmental Impacts?: Assessing Water, Greenhouse Gas, and Land Impacts of Future Urban Food Scenarios.

    Science.gov (United States)

    Boyer, Dana; Ramaswami, Anu

    2017-10-17

    This paper develops a methodology for individual cities to use to analyze the in- and trans-boundary water, greenhouse gas (GHG), and land impacts of city-scale food system actions. Applied to Delhi, India, the analysis demonstrates that city-scale action can rival typical food policy interventions that occur at larger scales, although no single city-scale action can rival in all three environmental impacts. In particular, improved food-waste management within the city (7% system-wide GHG reduction) matches the GHG impact of preconsumer trans-boundary food waste reduction. The systems approach is particularly useful in illustrating key trade-offs and co-benefits. For instance, multiple diet shifts that can reduce GHG emissions have trade-offs that increase water and land impacts. Vertical farming technology (VFT) with current applications for fruits and vegetables can provide modest system-wide water (4%) and land reductions (3%), although implementation within the city itself may raise questions of constraints in water-stressed cities, with such a shift in Delhi increasing community-wide direct water use by 16%. Improving the nutrition status for the bottom 50% of the population to the median diet is accompanied by proportionally smaller increases of water, GHG, and land impacts (4%, 9%, and 8%, systemwide): increases that can be offset through simultaneous city-scale actions, e.g., improved food-waste management and VFT.

  11. 75 FR 60689 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste; Proposed Rule

    Science.gov (United States)

    2010-10-01

    ... Waste Management System; Identification and Listing of Hazardous Waste; Proposed Rule AGENCY... exclude (or delist) a certain solid waste generated by its Beaumont, Texas, facility from the lists of hazardous wastes. EPA used the Delisting Risk Assessment Software (DRAS) Version 3.0 in the evaluation of...

  12. Waste inventory record keeping systems (WIRKS) for the management and disposal of radioactive waste

    International Nuclear Information System (INIS)

    2001-06-01

    This report is intended to serve Member States planning to develop or implement radioactive waste disposal programmes and to discuss possible ways for compiling and managing information about the inventories in their radioactive waste repositories, which includes low and intermediate level waste (short lived and long lived) and high level radioactive waste. This report identifies generic information that may be recorded in a Waste Inventory Record Keeping System (WIRKS), as identified by consultants and based on their collective expertise in radioactive waste management. The report provides examples of WIRKS implementation in some countries

  13. Utilizing a 'systems' approach to improve the management of waste from healthcare facilities: best practice case studies from England and Wales.

    Science.gov (United States)

    Tudor, Terry L; Woolridge, Anne C; Bates, Margaret P; Phillips, Paul S; Butler, Sharon; Jones, Keith

    2008-06-01

    Changes in environmental legislation and standards governing healthcare waste, such as the Hazardous Waste Regulations are expected to have a significant impact on healthcare waste quantities and costs in England and Wales. This paper presents findings from two award winning case study organizations, the Cardiff and Vale NHS Trust and the Cornwall NHS Trust on 'systems' they have employed for minimizing waste. The results suggest the need for the development and implementation of a holistic range of systems in order to develop best practice, including waste minimization strategies, key performance indicators, and staff training and awareness. The implications for the sharing of best practice from the two case studies are also discussed.

  14. Risk-based systems analysis of emerging high-level waste tank remediation technologies. Volume 1: Executive summary

    International Nuclear Information System (INIS)

    Peters, B.B.; Cameron, R.J.; McCormack, W.D.

    1994-08-01

    This report describes a System Analysis Model developed under the US Department of Energy (DOE) Office of Technology Development (OTD) Underground Storage Tank-Integrated Demonstration (UST-ID) program to aid technology development funding decisions for radioactive tank waste remediation. Current technology development selection methods evaluate new technologies in isolation from other components of an overall tank waste remediation system. These methods do not show the relative effect of new technologies on tank remediation systems as a whole. Consequently, DOE may spend its resources on technologies that promise to improve a single function but have a small or possibly negative, impact on the overall system, or DOE may overlook a technology that does not address a high priority problem in the system but that does, if implemented, offer sufficient overall improvements. Systems engineering and detailed analyses often conducted under the National Environmental Policy Act (NEPA 1969) use a ''whole system'' approach but are costly, too time-consuming, and often not sufficiently focused to support the needs of the technology program decision-makers. An alternative approach is required to evaluate these systems impacts but still meet the budget and schedule needs of the technology program

  15. 76 FR 59960 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste; Withdrawal of...

    Science.gov (United States)

    2011-09-28

    ... Waste Management System; Identification and Listing of Hazardous Waste; Withdrawal of proposed rule... Permitting Division, Corrective Action and Waste Minimization Section (6PD-C), 1445 Ross Avenue, Dallas, TX... petition. A new petition will be required for this waste stream. List of Subjects in 40 CFR Part 261...

  16. 76 FR 5110 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste; Proposed Rule

    Science.gov (United States)

    2011-01-28

    ... will dispose of the leachate at a publicly owned treatment works or at an industrial waste disposal... classification of listed waste pursuant to Sec. Sec. 261.31 and 261.32. Specifically, in its petition, Gulf West... Waste Management System; Identification and Listing of Hazardous Waste; Proposed Rule AGENCY...

  17. Monetising the impacts of waste incinerators sited on brownfield land using the hedonic pricing method.

    Science.gov (United States)

    Rivas Casado, Monica; Serafini, Jan; Glen, John; Angus, Andrew

    2017-03-01

    In England and Wales planning regulations require local governments to treat waste near its source. This policy principle alongside regional self-sufficiency and the logistical advantages of minimising distances for waste treatment mean that energy from waste incinerators have been built close to, or even within urban conurbations. There is a clear policy and research need to balance the benefits of energy production from waste incinerators against the negative externalities experienced by local residents. However, the monetary costs of nuisance emissions from incinerators are not immediately apparent. This study uses the Hedonic Pricing Method to estimate the monetary value of impacts associated with three incinerators in England. Once operational, the impact of the incinerators on local house prices ranged from approximately 0.4% to 1.3% of the mean house price for the respective areas. Each of the incinerators studied had been sited on previously industrialised land to minimise overall impact. To an extent this was achieved and results support the effectiveness of spatial planning strategies to reduce the impact on residents. However, negative impacts occurred in areas further afield from the incinerator, suggesting that more can be done to minimise the impacts of incinerators. The results also suggest that in some case the incinerator increased the value of houses within a specified distance of incinerators under specific circumstances, which requires further investigation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Goals for a waste management system: a task force report

    International Nuclear Information System (INIS)

    Bishop, W.

    1976-01-01

    This task force set out in a holistic way to study societal concerns regarding nuclear waste management, and to seek places where the technology interacts with our social system. The procedures involved in the goals for safe waste management are outlined and the organizations needed to carry them out are considered. The task force concluded that the needs for disposing of the present waste should not dictate the nature of the systems to be designed for the future wastes, and that budgetary considerations should not slow down the waste management in the second time frame (wastes no longer being produced). Other desirable goals, such as independence of waste management system regarding the stability of social institutions, are also discussed

  19. 300 Area waste acid treatment system closure plan

    International Nuclear Information System (INIS)

    LUKE, S.N.

    1999-01-01

    The Hanford Facility Dangerous Waste Permit Application is considered to be a single application organized into a General Information Portion (document number DOERL-91-28) and a Unit-Specific Portion. The scope of the Unit-Specific Portion includes closure plan documentation submitted for individual, treatment, storage, and/or disposal units undergoing closure, such as the 300 Area Waste Acid Treatment System. Documentation contained in the General Information Portion is broader in nature and could be used by multiple treatment, storage, and/or disposal units (e.g., the glossary provided in the General Information Portion). Whenever appropriate, 300 Area Waste Acid Treatment System documentation makes cross-reference to the General Information Portion, rather than duplicating text. This 300 Area Waste Acid Treatment System Closure Plan (Revision 2) includes a Hanford Facility Dangerous Waste Permit Application, Part A, Form 3. Information provided in this closure plan is current as of April 1999

  20. 300 Area waste acid treatment system closure plan

    Energy Technology Data Exchange (ETDEWEB)

    LUKE, S.N.

    1999-05-17

    The Hanford Facility Dangerous Waste Permit Application is considered to be a single application organized into a General Information Portion (document number DOERL-91-28) and a Unit-Specific Portion. The scope of the Unit-Specific Portion includes closure plan documentation submitted for individual, treatment, storage, and/or disposal units undergoing closure, such as the 300 Area Waste Acid Treatment System. Documentation contained in the General Information Portion is broader in nature and could be used by multiple treatment, storage, and/or disposal units (e.g., the glossary provided in the General Information Portion). Whenever appropriate, 300 Area Waste Acid Treatment System documentation makes cross-reference to the General Information Portion, rather than duplicating text. This 300 Area Waste Acid Treatment System Closure Plan (Revision 2) includes a Hanford Facility Dangerous Waste Permit Application, Part A, Form 3. Information provided in this closure plan is current as of April 1999.

  1. Waste removal systems and recycling participation in residential environments

    DEFF Research Database (Denmark)

    Thøgersen, John

    2002-01-01

    Systems for the removal of waste are important although often overlooked elements of any residential environment. It is an old insight that when these systems are ineffective (and this is globally and historically the rule rather than the exception), human living conditions and often even human...... health are severely impaired (Pieters, 1989). More recently, resource waste and environmental hazards from waste have given rise to public and political concern as well, even when disposal systems are well managed. This concern has led to efforts to divert solid waste away from disposal and towards some...

  2. Review of comparative LCAs of food waste management systems – Current status and potential improvements

    International Nuclear Information System (INIS)

    Bernstad, A.; Cour Jansen, J. la

    2012-01-01

    Highlights: ► GHG-emissions from different treatment alternatives vary largely in 25 reviewed comparative LCAs of bio-waste management. ► System-boundary settings often vary largely in reviewed studies. ► Existing LCA guidelines give varying recommendations in relation to several key issues. - Abstract: Twenty-five comparative cycle assessments (LCAs) addressing food waste treatment were reviewed, including the treatment alternatives landfill, thermal treatment, compost (small and large scale) and anaerobic digestion. The global warming potential related to these treatment alternatives varies largely amongst the studies. Large differences in relation to setting of system boundaries, methodological choices and variations in used input data were seen between the studies. Also, a number of internal contradictions were identified, many times resulting in biased comparisons between alternatives. Thus, noticed differences in global warming potential are not found to be a result of actual differences in the environmental impacts from studied systems, but rather to differences in the performance of the study. A number of key issues with high impact on the overall global warming potential from different treatment alternatives for food waste were identified through the use of one-way sensitivity analyses in relation to a previously performed LCA of food waste management. Assumptions related to characteristics in treated waste, losses and emissions of carbon, nutrients and other compounds during the collection, storage and pretreatment, potential energy recovery through combustion, emissions from composting, emissions from storage and land use of bio-fertilizers and chemical fertilizers and eco-profiles of substituted goods were all identified as highly relevant for the outcomes of this type of comparisons. As the use of LCA in this area is likely to increase in coming years, it is highly relevant to establish more detailed guidelines within this field in order to

  3. Plastic solidification system for radioactive waste

    International Nuclear Information System (INIS)

    Kani, Jiro; Irie, Hiromitsu; Obu, Etsuji; Nakayama, Yasuyuki; Matsuura, Hiroyuki.

    1979-01-01

    The establishment of a new solidification system is an important theme for recent radioactive-waste disposal systems. The conditions required of new systems are: (1) the volume of the solidified product to be reduced, and (2) the property of the solidified product to be superior to the conventional ones. In the plastic solidification system developed by Toshiba, the waste is first dried and then solidified with thermosetting resin. It has been confirmed that the property of the plastic solidified product is superior to that of the cement-or bitumen-solidified product. Investigation from various phases is being carried on for the application of this method to commercial plants. (author)

  4. Smart Garbage Monitoring System for Waste Management

    Directory of Open Access Journals (Sweden)

    Mohd Yusof Norfadzlia

    2017-01-01

    Full Text Available Piles of rubbish are one of the major problems faced by most people in Malaysia, especially those who live in flats, as the number of bins is limited and shared among all residents. It may cause pollutions, which may lead to sanitary issues and diseases. This project presents the development of a smart garbage monitoring system in order to measure waste level in the garbage bin in real-time and to alert the municipality, in particular cases, via SMS. The proposed system is consisted by the ultrasonic sensor to measure the waste level, the GSM module to send the SMS, and an Arduino Uno which controls the system operation. It supposes to generate and send the warning messages to the municipality via SMS when the waste bin is full or almost full, so the garbage can be collected immediately. Furthermore, it is expected to contribute to improving the efficiency of the solid waste disposal management.

  5. GREENER CHEMICAL PROCESS DESIGN ALTERNATIVES ARE REVEALED USING THE WASTE REDUCTION DECISION SUPPORT SYSTEM (WAR DSS)

    Science.gov (United States)

    The Waste Reduction Decision Support System (WAR DSS) is a Java-based software product providing comprehensive modeling of potential adverse environmental impacts (PEI) predicted to result from newly designed or redesigned chemical manufacturing processes. The purpose of this so...

  6. Waste feed delivery program systems engineering implementation plan

    International Nuclear Information System (INIS)

    O'Toole, S.M.; Hendel, B.J.

    1998-01-01

    This document defines the systems engineering processes and products planned by the Waste Feed Delivery Program to develop the necessary and sufficient systems to provide waste feed to the Privatization Contractor for Phase 1. It defines roles and responsibilities for the performance of the systems engineering processes and generation of products

  7. A system dynamics-based environmental performance simulation of construction waste reduction management in China.

    Science.gov (United States)

    Ding, Zhikun; Yi, Guizhen; Tam, Vivian W Y; Huang, Tengyue

    2016-05-01

    A huge amount of construction waste has been generated from increasingly higher number of construction activities than in the past, which has significant negative impacts on the environment if they are not properly managed. Therefore, effective construction waste management is of primary importance for future sustainable development. Based on the theory of planned behaviors, this paper develops a system dynamic model of construction waste reduction management at the construction phase to simulate the environmental benefits of construction waste reduction management. The application of the proposed model is shown using a case study in Shenzhen, China. Vensim is applied to simulate and analyze the model. The simulation results indicate that source reduction is an effective waste reduction measure which can reduce 27.05% of the total waste generation. Sorting behaviors are a premise for improving the construction waste recycling and reuse rates which account for 15.49% of the total waste generated. The environmental benefits of source reduction outweigh those of sorting behaviors. Therefore, to achieve better environmental performance of the construction waste reduction management, attention should be paid to source reduction such as low waste technologies and on-site management performance. In the meantime, sorting behaviors encouragement such as improving stakeholders' waste awareness, refining regulations, strengthening government supervision and controlling illegal dumping should be emphasized. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Method of controlling radioactive waste processing systems

    International Nuclear Information System (INIS)

    Mikawa, Hiroji; Sato, Takao.

    1981-01-01

    Purpose: To minimize the pellet production amount, maximize the working life of a solidifying device and maintaining the mechanical strength of pellets to a predetermined value irrespective of the type and the cycle of occurrence of the secondary waste in the secondary waste solidifying device for radioactive waste processing systems in nuclear power plants. Method: Forecasting periods for the type, production amount and radioactivity level of the secondary wastes are determined in input/output devices connected to a control system and resulted signals are sent to computing elements. The computing elements forecast the production amount of regenerated liquid wastes after predetermined days based on the running conditions of a condensate desalter and the production amounts of filter sludges and liquid resin wastes after predetermined days based on the liquid waste processing amount or the like in a processing device respectively. Then, the mass balance between the type and the amount of the secondary wastes presently stored in a tank are calculated and the composition and concentration for the processing liquid are set so as to obtain predetermined values for the strength of pellets that can be dried to solidify, the working life of the solidifying device itself and the radioactivity level of the pellets. Thereafter, the running conditions for the solidifying device are determined so as to maximize the working life of the solidifying device. (Horiuchi, T.)

  9. Impacts of Process and Prediction Uncertainties on Projected Hanford Waste Glass Amount

    Energy Technology Data Exchange (ETDEWEB)

    Gervasio, V.; Kim, D. S.; Vienna, J. D.; Kruger, A. A.

    2018-03-08

    Analyses were performed to evaluate the impacts of using the advanced glass models, constraints (Vienna et al. 2016), and uncertainty descriptions on projected Hanford glass mass. The maximum allowable waste oxide loading (WOL) was estimated for waste compositions while simultaneously satisfying all applicable glass property and composition constraints with sufficient confidence. Different components of prediction and composition/process uncertainties were systematically included in the calculations to evaluate their impacts on glass mass. The analyses estimated the production of 23,360 MT of immobilized high-level waste (IHLW) glass when no uncertainties were taken into account. Accounting for prediction and composition/process uncertainties resulted in 5.01 relative percent increase in estimated glass mass of 24,531 MT. Roughly equal impacts were found for prediction uncertainties (2.58 RPD) and composition/process uncertainties (2.43 RPD). The immobilized low-activity waste (ILAW) mass was predicted to be 282,350 MT without uncertainty and with waste loading “line” rules in place. Accounting for prediction and composition/process uncertainties resulted in only 0.08 relative percent increase in estimated glass mass of 282,562 MT. Without application of line rules the glass mass decreases by 10.6 relative percent (252,490 MT) for the case with no uncertainties. Addition of prediction uncertainties increases glass mass by 1.32 relative percent and the addition of composition/process uncertainties increase glass mass by an additional 7.73 relative percent (9.06 relative percent increase combined). The glass mass estimate without line rules (275,359 MT) was 2.55 relative percent lower than that with the line rules (282,562 MT), after accounting for all applicable uncertainties.

  10. Characterizing the environmental impact of metals in construction and demolition waste.

    Science.gov (United States)

    Yu, Danfeng; Duan, Huabo; Song, Qingbin; Li, Xiaoyue; Zhang, Hao; Zhang, Hui; Liu, Yicheng; Shen, Weijun; Wang, Jinben

    2018-05-01

    Large quantities of construction and demolition (C&D) waste are generated in China every year, but their potential environmental impacts on the surrounding areas are rarely assessed. This study focuses on metals contained in C&D waste, characterizing the metal concentrations and their related environmental risks. C&D waste samples were collected in Shenzhen City, China, from building demolition sites, renovation areas undergoing refurbishment, landfill sites, and recycling companies (all located in Shenzhen city) that produce recycled aggregate, in order to identify pollution levels of the metals As, Cd, Cr, Cu, Pb, Ni, and Zn. The results showed that (1) the metal concentrations in most demolition and renovation waste samples were below the soil environmental quality standard for agricultural purposes (SQ-Agr.) in China; (2) Cd, Cu, and Zn led to relatively higher environmental risks than other metals, especially for Zn (DM5 tile sample, 360 mg/kg; R4 tile sample, 281 mg/kg); (3) non-inert C&D waste such as wall insulation and foamed plastic had high concentrations of As and Cd, so that these materials required special attention for sound waste management; and (4) C&D waste collected from landfill sites had higher concentrations of Cd and Cu than did waste collected from demolition and refurbishment sites.

  11. Tank waste remediation system retrieval and disposal mission key enabling assumptions

    International Nuclear Information System (INIS)

    Baldwin, J.H.

    1998-01-01

    An overall systems approach has been applied to develop action plans to support the retrieval and immobilization waste disposal mission. The review concluded that the systems and infrastructure required to support the mission are known. Required systems are either in place or plans have been developed to ensure they exist when needed. The review showed that since October 1996 a robust system engineering approach to establishing integrated Technical Baselines, work breakdown structures, tank farm structure and configurations and work scope and costs has been established itself as part of the culture within TWRS. An analysis of the programmatic, management and technical activities necessary to declare readiness to proceed with execution of the mission demonstrates that the system, people and hardware will be on line and ready to support the private contractors. The systems approach included defining the retrieval and immobilized waste disposal mission requirements and evaluating the readiness of the TWRS contractor to supply waste feed to the private contractors in June 2OO2. The Phase 1 feed delivery requirements from the Private Contractor Request for Proposals were reviewed. Transfer piping routes were mapped out, existing systems were evaluated, and upgrade requirements were defined. Technical Basis Reviews were completed to define work scope in greater detail, cost estimates and associated year by year financial analyses were completed. TWRS personnel training, qualifications, management systems and procedures were reviewed and shown to be in place and ready to support the Phase 1B mission. Key assumptions and risks that could negatively impact mission success were evaluated and appropriate mitigative actions plans were planned and scheduled

  12. Impact of LWR decontamination on radwaste systems

    International Nuclear Information System (INIS)

    Perrigo, L.D.; Divine, J.R.

    1979-01-01

    Increased radiation levels around certain reactors in the United States and accompanying increases in personnel exposures are causing a reexamination of options available to utilities to continue operation. One of the options is decontamination of the primary system to reduce radiation levels. The Battelle-Northwest study of decontamination and its impact on radwaste systems has been directed towards existing reactors and allied systems as they are employed during their operational lifetimes. Decommissioning and cleanup during such work are not within the scope of this project although certain processes and waste systems might be similar. Rupture debris cleanup represents a special situation that requires different design features and concepts and it is not a part of this study

  13. Systems approach to nuclear waste glass development

    International Nuclear Information System (INIS)

    Jantzen, C.M.

    1986-01-01

    Development of a host solid for the immobilization of nuclear waste has focused on various vitreous wasteforms. The systems approach requires that parameters affecting product performance and processing be considered simultaneously. Application of the systems approach indicates that borosilicate glasses are, overall, the most suitable glasses for the immobilization of nuclear waste. Phosphate glasses are highly durable; but the glass melts are highly corrosive and the glasses have poor thermal stability and low solubility for many waste components. High-silica glasses have good chemical durability, thermal stability, and mechanical stability, but the associated high melting temperatures increase volatilization of hazardous species in the waste. Borosilicate glasses are chemically durable and are stable both thermally and mechanically. The borosilicate melts are generally less corrosive than commercial glasses, and the melt temperature miimizes excessive volatility of hazardous species. Optimization of borosilicate waste glass formulations has led to their acceptance as the reference nuclear wasteform in the United States, United Kingdom, Belgium, Germany, France, Sweden, Switzerland, and Japan

  14. Tank waste remediation system high-level waste vitrification system development and testing requirements

    International Nuclear Information System (INIS)

    Calmus, R.B.

    1995-01-01

    This document provides the fiscal year (FY) 1995 recommended high-level waste melter system development and testing (D and T) requirements. The first phase of melter system testing (FY 1995) will focus on the feasibility of high-temperature operation of recommended high-level waste melter systems. These test requirements will be used to establish the basis for defining detailed testing work scope, cost, and schedules. This document includes a brief summary of the recommended technologies and technical issues associated with each technology. In addition, this document presents the key D and T activities and engineering evaluations to be performed for a particular technology or general melter system support feature. The strategy for testing in Phase 1 (FY 1995) is to pursue testing of the recommended high-temperature technologies, namely the high-temperature, ceramic-lined, joule-heated melter, referred to as the HTCM, and the high-frequency, cold-wall, induction-heated melter, referred to as the cold-crucible melter (CCM). This document provides a detailed description of the FY 1995 D and T needs and requirements relative to each of the high-temperature technologies

  15. Selecting the recommended waste management system for the midwest compact

    International Nuclear Information System (INIS)

    Sutherland, A.A.; Robertson, B.C.; Drobny, N.L.

    1987-01-01

    One of the early important steps in the evolution of a low-level waste Compact is the development of a Regional Management Plan. Part of the Regional Management Plan is a description of the waste management system that indicates what kinds of facilities that will be available within the compact's region. The facilities in the waste management system can include those for storage, treatment and disposal of low-level radioactive waste. The Regional Management Plan also describes the number of facilities that will be operated simultaneously. This paper outlines the development of the recommended waste management system for the Midwest Compact. It describes the way a data base on low-level radioactive waste from the Compact was collected and placed into a computerized data base management system, and how that data base was subsequently used to analyze various options for treatment and disposal of low-level radioactive waste within the Midwest Compact. The paper indicates the thought process that led to the definition of four recommended waste management systems. Six methods for reducing the volume of waste to be disposed of in the Midwest Compact were considered. Major attention was focused on the use of regional compaction or incineration facilities. Seven disposal technologies, all different from the shallow land burial currently practiced, were also considered for the waste management system. After evaluating the options available, the Compact Commissioners recommended four waste disposal technologies--above-ground vaults, below-ground vaults, concrete canisters placed above ground, and concrete canisters placed below ground--to the host state that will be chosen in 1987. The Commissioners did not recommend use of a regional waste treatment facility

  16. Analysis of long-term impacts of TRU waste remaining at generator/storage sites for No Action Alternative 2

    International Nuclear Information System (INIS)

    Buck, J.W.; Bagaasen, L.M.; Bergeron, M.P.; Streile, G.P.

    1997-09-01

    This report is a supplement to the Waste Isolation Pilot Plant Disposal-Phase Final Supplemental Environmental Impact Statement (SEIS-II). Described herein are the underlying information, data, and assumptions used to estimate the long-term human-health impacts from exposure to radionuclides and hazardous chemicals in transuranic (TRU) waste remaining at major generator/storage sites after loss of institutional control under No Action Alternative 2. Under No Action Alternative 2, TRU wastes would not be emplaced at the Waste Isolation Pilot Plant (WIPP) but would remain at generator/storage sites in surface or near-surface storage. Waste generated at smaller sites would be consolidated at the major generator/storage sites. Current TRU waste management practices would continue, but newly generated waste would be treated to meet the WIPP waste acceptance criteria. For this alternative, institutional control was assumed to be lost 100 years after the end of the waste generation period, with exposure to radionuclides and hazardous chemicals in the TRU waste possible from direct intrusion and release to the surrounding environment. The potential human-health impacts from exposure to radionuclides and hazardous chemicals in TRU waste were analyzed for two different types of scenarios. Both analyses estimated site-specific, human-health impacts at seven major generator/storage sites: the Hanford Site (Hanford), Idaho National Engineering and Environmental Laboratory (INEEL), Lawrence Livermore National Laboratory (LLNL), Los Alamos National Laboratory (LANL), Oak Ridge National Laboratory (ORNL), Rocky Flats Environmental Technology Site (RFETS), and Savannah River Site (SRS). The analysis focused on these seven sites because 99 % of the estimated TRU waste volume and inventory would remain there under the assumptions of No Action Alternative 2

  17. Treatment of solid waste highly contaminated by alpha emitters: Low-temperature impact crushing, leaching and incineration

    International Nuclear Information System (INIS)

    Bertolotti, G.; Vigreux, B.; Caillol, A.; Koehly, G.

    1987-01-01

    Reprocessing plants, hot laboratories and fuel fabrication plants produce solid wastes containing residual amounts of plutonium and uranium in nitrate and oxide form at concentrations up to several tens of grams per m/sup 3/. Dismantling of nuclear facilities having handled these radioelements also generates large volumes of solid wastes highly contaminated with alpha emitters. It is desirable to process these alpha wastes to recover valuable fissile materials and/or permit surface storage. Solid waste treatment by low-temperature impact crushing and then leaching, after minimal sorting and classifying at the sites of production, meets the corresponding requirements for high volume reduction plus fissile material recovery or waste decontamination. Additional volume reduction of crushed wastes containing mainly combustible materials can be obtained by incineration. This is facilitated by the low fissile material content after low-temperature impact crushing and leaching. Sorted wastes can also be leached or incinerated directly after, in most cases, crushing by more conventional techniques

  18. Using an information system to meet Hazardous Waste Management needs

    International Nuclear Information System (INIS)

    Stewart, J.J. Jr.; Howe, R.E.; Townsend, S.L.; Maloy, D.T.; Kochhar, R.K.

    1995-02-01

    Lawrence Livermore National Laboratory (LLNL) is a large quantity RCRA hazardous waste generator. LLNL also generates low level and transuranic radioactive waste that is managed in accordance with the Department of Energy (DOE) orders. The mixed low level and mixed transuranic waste generated must be managed to comply with both RCRA regulations and DOE orders. LLNL's hazardous and radioactive waste generation is comprised of 900 generators who contribute to nearly two hundred waste streams. LLNL has a permitted EPA treatment and storage (TSD) facility for handling RCRA hazardous waste that is operated by LLNL's Hazardous Waste Management (HWM) division. In HWM we have developed an information system, the Total Waste Management System (TWMS), to replace an inadequate ''cradle to grave'' tracking of all the waste types described above. The goals of this system are to facilitate the safe handling and storage of these hazardous wastes, provide compliance with the regulations and serve as an informational tool to help HWM manage and dispose of these wastes in a cost effective manner

  19. The impact of an efficient collection sites location on the zoning phase in municipal solid waste management

    Energy Technology Data Exchange (ETDEWEB)

    Ghiani, Gianpaolo, E-mail: gianpaolo.ghiani@unisalento.it; Manni, Andrea, E-mail: andrea.manni@unisalento.it; Manni, Emanuele, E-mail: emanuele.manni@unisalento.it; Toraldo, Massimiliano, E-mail: massimiliano.toraldo@unisalento.it

    2014-11-15

    Highlights: • We study the problems of locating collection areas and zoning the service territory in a municipal waste management system. • We investigate the impact that an efficient collection sites location has on the subsequent zoning phase. • On a real-world test case, we show that the proposed approach could allow achieving significant monetary savings. - Abstract: In this paper, we study two decisional problems arising when planning the collection of solid waste, namely the location of collection sites (together with bin allocation) and the zoning of the service territory, and we assess the potential impact that an efficient location has on the subsequent zoning phase. We first propose both an exact and a heuristic approach to locate the unsorted waste collection bins in a residential town, and to decide the capacities and characteristics of the bins to be located at each collection site. A peculiar aspect we consider is that of taking into account the compatibility between the different types of bins when allocating them to collection areas. Moreover, we propose a fast and effective heuristic approach to identify homogeneous zones that can be served by a single collection vehicle. Computational results on data related to a real-life instance show that an efficient location is fundamental in achieving consistent monetary savings, as well as a reduced environmental impact. These reductions are the result of one vehicle less needed to perform the waste collection operations, and an overall traveled distance reduced by about 25% on the average.

  20. Assessment of Food Waste Prevention and Recycling Strategies Using a Multilayer Systems Approach.

    Science.gov (United States)

    Hamilton, Helen A; Peverill, M Samantha; Müller, Daniel B; Brattebø, Helge

    2015-12-15

    Food waste (FW) generates large upstream and downstream emissions to the environment and unnecessarily consumes natural resources, potentially affecting future food security. The ecological impacts of FW can be addressed by the upstream strategies of FW prevention or by downstream strategies of FW recycling, including energy and nutrient recovery. While FW recycling is often prioritized in practice, the ecological implications of the two strategies remain poorly understood from a quantitative systems perspective. Here, we develop a multilayer systems framework and scenarios to quantify the implications of food waste strategies on national biomass, energy, and phosphorus (P) cycles, using Norway as a case study. We found that (i) avoidable food waste in Norway accounts for 17% of sold food; (ii) 10% of the avoidable food waste occurs at the consumption stage, while industry and retailers account for only 7%; (iii) the theoretical potential for systems-wide net process energy savings is 16% for FW prevention and 8% for FW recycling; (iv) the theoretical potential for systems-wide P savings is 21% for FW prevention and 9% for FW recycling; (v) while FW recycling results in exclusively domestic nutrient and energy savings, FW prevention leads to domestic and international savings due to large food imports; (vi) most effective is a combination of prevention and recycling, however, FW prevention reduces the potential for FW recycling and therefore needs to be prioritized to avoid potential overcapacities for FW recycling.