WorldWideScience

Sample records for waste recovery system

  1. Waste heat recovery system

    International Nuclear Information System (INIS)

    Phi Wah Tooi

    2010-01-01

    Full text: The Konzen in-house designed anaerobic digester system for the POME (Palm Oil Mill Effluent) treatment process is one of the registered Clean Development Mechanism (CDM) projects in Malaysia. It is an organic wastewater treatment process which achieves excellent co-benefits objectives through the prevention of water pollution and reduction of greenhouse gas emissions, which is estimated to be 40,000 to 50,000 t-CO 2 per year. The anaerobic digester was designed in mesophile mode with temperature ranging from 37 degree Celsius to 45 degree Celsius. A microorganisms growth is optimum under moderately warm temperature conditions. The operating temperature of the anaerobic digester needs to be maintained constantly. There are two waste heat recovery systems designed to make the treatment process self-sustaining. The heat recovered will be utilised as a clean energy source to heat up the anaerobic digester indirectly. The first design for the waste heat recovery system utilises heat generated from the flue gas of the biogas flaring system. A stainless steel water tank with an internal water layer is installed at the top level of the flare stack. The circulating water is heated by the methane enriched biogas combustion process. The second design utilizes heat generated during the compression process for the biogas compressor operation. The compressed biogas needs to be cooled before being recycled back into the digester tank for mixing purposes. Both the waste heat recovery systems use a design which applies a common water circulation loop and hot water tank to effectively become a closed loop. The hot water tank will perform both storage and temperature buffer functions. The hot water is then used to heat up recycled sludge from 30 degree Celsius to 45 degree Celsius with the maximum temperature setting at 50 degree Celsius. The recycled sludge line temperature will be measured and monitored by a temperature sensor and transmitter, which will activate the

  2. Optimization-based design of waste heat recovery systems

    DEFF Research Database (Denmark)

    Cignitti, Stefano

    /or selected. This dissertation focuses on the chemical product and process systems used for waste heat recovery. Here, chemical products are working fluids, which are under continuous development and screening to fulfill regulatory environmental protection and safe operation requirements. Furthermore......, for the recovery of low-grade waste heat, new fluids and processes are needed to make the recovery technically and economically feasible. As the chemical product is influential in the design of the process system, the design of novel chemical products must be considered with the process system. Currently, state...... product and process system in terms of efficiency and sustainability. Today, some of the most important chemical product design problems are solvents and working fluids. Solvents are a vital part in the recovery of valuable resources in separation processes or waste water treatment. Working fluids...

  3. WASTE HEAT RECOVERY IN HEAT PUMP SYSTEMS: SOLUTION TO REDUCE GLOBAL WARMING

    Directory of Open Access Journals (Sweden)

    Y. Baradey

    2015-11-01

    Full Text Available Energy conversion technologies, where waste heat recovery systems are included, have received significant attention in recent years due to reasons that include depletion of fossil fuel, increasing oil prices, changes in climatic conditions, and global warming. For low temperature applications, there are many sources of thermal waste heat, and several recovery systems and potential useful applications have been proposed by researchers [1-4]. In addition, many types of equipment are used to recover waste thermal energy from different systems at low, medium, and high temperature applications, such as heat exchangers, waste heat recovery boiler, thermo-electric generators, and recuperators. In this paper, the focus is on waste heat recovery from air conditioners, and an efficient application of these energy resources. Integration of solar energy with heat pump technologies and major factors that affect the feasibility of heat recovery systems have been studied and reviewed as well. KEYWORDS: waste heat recovery; heat pump.

  4. Rankine cycle waste heat recovery system

    Science.gov (United States)

    Ernst, Timothy C.; Nelson, Christopher R.

    2014-08-12

    This disclosure relates to a waste heat recovery (WHR) system and to a system and method for regulation of a fluid inventory in a condenser and a receiver of a Rankine cycle WHR system. Such regulation includes the ability to regulate the pressure in a WHR system to control cavitation and energy conversion.

  5. Transaction Costs in Collective Waste Recovery Systems in the EU

    OpenAIRE

    Nozharov, Shteryo

    2018-01-01

    The study aims to identify the institutional flaws of the current EU waste management model by analysing the economic model of extended producer responsibility and collective waste management systems and to create a model for measuring the transaction costs borne by waste recovery organizations. The model was approbated by analysing the Bulgarian collective waste management systems that have been complying with the EU legislation for the last 10 years. The analysis focuses on waste oils becau...

  6. System and method for determining the net output torque from a waste heat recovery system

    Science.gov (United States)

    Tricaud, Christophe; Ernst, Timothy C.; Zigan, James A.

    2016-12-13

    The disclosure provides a waste heat recovery system with a system and method for calculation of the net output torque from the waste heat recovery system. The calculation uses inputs from existing pressure and speed sensors to create a virtual pump torque sensor and a virtual expander torque sensor, and uses these sensors to provide an accurate net torque output from the WHR system.

  7. Model predictive control of a waste heat recovery system for automotive diesel engines

    NARCIS (Netherlands)

    Feru, E.; Willems, F.P.T.; de Jager, A.G.; Steinbuch, M.

    2014-01-01

    In this paper, a switching Model Predictive Control strategy is designed for an automotive Waste Heat Recovery system with two parallel evaporators. The objective is to maximize Waste Heat Recovery system output power, while satisfying safe operation under highly dynamic disturbances from the

  8. A Thermoelectric Waste-Heat-Recovery System for Portland Cement Rotary Kilns

    Science.gov (United States)

    Luo, Qi; Li, Peng; Cai, Lanlan; Zhou, Pingwang; Tang, Di; Zhai, Pengcheng; Zhang, Qingjie

    2015-06-01

    Portland cement is produced by one of the most energy-intensive industrial processes. Energy consumption in the manufacture of Portland cement is approximately 110-120 kWh ton-1. The cement rotary kiln is the crucial equipment used for cement production. Approximately 10-15% of the energy consumed in production of the cement clinker is directly dissipated into the atmosphere through the external surface of the rotary kiln. Innovative technology for energy conservation is urgently needed by the cement industry. In this paper we propose a novel thermoelectric waste-heat-recovery system to reduce heat losses from cement rotary kilns. This system is configured as an array of thermoelectric generation units arranged longitudinally on a secondary shell coaxial with the rotary kiln. A mathematical model was developed for estimation of the performance of waste heat recovery. Discussions mainly focus on electricity generation and energy saving, taking a Φ4.8 × 72 m cement rotary kiln as an example. Results show that the Bi2Te3-PbTe hybrid thermoelectric waste-heat-recovery system can generate approximately 211 kW electrical power while saving 3283 kW energy. Compared with the kiln without the thermoelectric recovery system, the kiln with the system can recover more than 32.85% of the energy that used to be lost as waste heat through the kiln surface.

  9. Bypass valve and coolant flow controls for optimum temperatures in waste heat recovery systems

    Science.gov (United States)

    Meisner, Gregory P

    2013-10-08

    Implementing an optimized waste heat recovery system includes calculating a temperature and a rate of change in temperature of a heat exchanger of a waste heat recovery system, and predicting a temperature and a rate of change in temperature of a material flowing through a channel of the waste heat recovery system. Upon determining the rate of change in the temperature of the material is predicted to be higher than the rate of change in the temperature of the heat exchanger, the optimized waste heat recovery system calculates a valve position and timing for the channel that is configurable for achieving a rate of material flow that is determined to produce and maintain a defined threshold temperature of the heat exchanger, and actuates the valve according to the calculated valve position and calculated timing.

  10. Performance evaluation and experiment system for waste heat recovery of diesel engine

    International Nuclear Information System (INIS)

    Wenzhi, Gao; Junmeng, Zhai; Guanghua, Li; Qiang, Bian; Liming, Feng

    2013-01-01

    In this paper, a waste heat recovery system is proposed where a high speed turbocharged diesel engine acts as the topper of a combined cycle with exhaust gases used for a bottoming Rankine cycle. The paper describes a mathematical model to evaluate the performance of Rankine cycle system with a reciprocating piston expander. The paper focuses on the performance evaluation and parameter selection of the heat exchanger and reciprocating piston expander that are suitable to waste heat recovery of ICE (internal combustion engine). The paper also describes the experimental setup and the preliminary results. The simulation results show that a proper intake pressure should be 4–5 MPa at its given mass flow rate of 0.015–0.021 kg/s depending on the waste heat recovery of a turbocharged diesel engine (80 kW/2590 rpm). The net power and net power rise rate at various ICE rotation speeds are calculated. The result shows that introducing heat recovery system can increase the engine power output by 12%, when diesel engine operates at 80 kW/2590 rpm. The preliminary experimental results indirectly prove the simulation model by two negative work loops in the P–V curve, under a low intake pressure and steam flow rate condition. - Highlights: • We investigate waste heat recovery through secondary fluid power cycle. • We establish a thermodynamic model of reciprocating steam engine. • We conduct the performance evaluation and experimental system development. • Primary parameters of the heat exchangers and expander are determined

  11. A review of waste heat recovery technologies for maritime applications

    International Nuclear Information System (INIS)

    Singh, Dig Vijay; Pedersen, Eilif

    2016-01-01

    Highlights: • Major waste heat sources available on ships have been reviewed. • A review of suitable waste heat recovery systems was conducted for marine vessels. • Technologies have been compared for their potential and suitability for marine use. • Kalina cycle offers the highest potential for marine waste heat recovery. • Turbo compound system most suitable for recovering diesel exhaust pressure energy. - Abstract: A waste heat recovery system produces power by utilizing the heat energy lost to the surroundings from thermal processes, at no additional fuel input. For marine vessels, about 50 percent of the total fuel energy supplied to diesel power-plant aboard is lost to the surroundings. While the total amount of wasted energy is considerable, the quality of this energy is quite low due to its low temperature and has limited potential for power production. Effective waste heat recovery systems use the available low temperature waste heat to produce mechanical/electrical power with high efficiency value. In this study a review of different waste heat recovery systems has been conducted, to lay out the potential recovery efficiencies and suitability for marine applications. This work helps in identifying the most suitable heat recovery technologies for maritime use depending on the properties of shipboard waste heat and achievable recovery efficiencies, whilst discussing the features of each type of system.

  12. Waste heat recovery system

    Energy Technology Data Exchange (ETDEWEB)

    Ernst, Timothy C.; Zigan, James A.

    2017-12-19

    A waste heat recovery system includes a Rankine cycle (RC) circuit having a pump, a boiler, an energy converter, and a condenser fluidly coupled via conduits in that order, to provide additional work. The additional work is fed to an input of a gearbox assembly including a capacity for oil by mechanically coupling to the energy converter to a gear assembly. An interface is positioned between the RC circuit and the gearbox assembly to partially restrict movement of oil present in the gear assembly into the RC circuit and partially restrict movement of working fluid present in the RC circuit into the gear assembly. An oil return line is fluidly connected to at least one of the conduits fluidly coupling the RC components to one another and is operable to return to the gear assembly oil that has moved across the interface from the gear assembly to the RC circuit.

  13. Design and modeling of an advanced marine machinery system including waste heat recovery and removal of sulphur oxides

    DEFF Research Database (Denmark)

    Frimann Nielsen, Rasmus; Haglind, Fredrik; Larsen, Ulrik

    2013-01-01

    -stroke diesel engine and a conventional waste heat recovery system. The results suggest that an organic Rankine cycle placed after the conventional waste heat recovery system is able to extract the sulphuric acid from the exhaust gas, while at the same time increase power generation from waste heat by 32...... consists of a two-stroke diesel engine, the wet sulphuric process for sulphur removal and an advanced waste heat recovery system including a conventional steam Rankine cycle and an organic Rankine cycle. The results are compared with those of a state-of-the-art machinery system featuring a two...

  14. Rankine cycle waste heat recovery system

    Science.gov (United States)

    Ernst, Timothy C.; Nelson, Christopher R.

    2015-09-22

    A waste heat recovery (WHR) system connects a working fluid to fluid passages formed in an engine block and/or a cylinder head of an internal combustion engine, forming an engine heat exchanger. The fluid passages are formed near high temperature areas of the engine, subjecting the working fluid to sufficient heat energy to vaporize the working fluid while the working fluid advantageously cools the engine block and/or cylinder head, improving fuel efficiency. The location of the engine heat exchanger downstream from an EGR boiler and upstream from an exhaust heat exchanger provides an optimal position of the engine heat exchanger with respect to the thermodynamic cycle of the WHR system, giving priority to cooling of EGR gas. The configuration of valves in the WHR system provides the ability to select a plurality of parallel flow paths for optimal operation.

  15. Modeling and Control of a Parallel Waste Heat Recovery System for Euro-VI Heavy-Duty Diesel Engines

    NARCIS (Netherlands)

    Feru, E.; Willems, F.P.T.; Jager, B. de; Steinbuch, M.

    2014-01-01

    This paper presents the modeling and control of a waste heat recovery system for a Euro-VI heavy-duty truck engine. The considered waste heat recovery system consists of two parallel evaporators with expander and pumps mechanically coupled to the engine crankshaft. Compared to previous work, the

  16. Control of automotive waste heat recovery systems with parallel evaporators

    NARCIS (Netherlands)

    Feru, E.; Willems, F.P.T.; Rascanu, G.C.; Jager, de A.G.; Steinbuch, M.

    2014-01-01

    In this paper, Model Predictive Control (MPC) is applied to control a Waste Heat Recovery system for a highly dynamic automotive application. As a benchmark, a commonly applied control strategy is used that consists of a feedforward based on engine conditions and of two PI controllers that

  17. Optimal Control of Diesel Engines with Waste Heat Recovery System

    NARCIS (Netherlands)

    Willems, F.P.T.; Donkers, M.C.F.; Kupper, F.

    2014-01-01

    This study presents an integrated energy and emission management strategy for a Euro-VI diesel engine with Waste Heat Recovery (WHR) system. This Integrated Powertrain Control (IPC) strategy optimizes the CO2-NOx trade-off by minimizing the operational costs associated with fuel and AdBlue

  18. Optimal control of diesel engines with waste heat recovery systems

    NARCIS (Netherlands)

    Willems, F.P.T.; Donkers, M.C.F.; Kupper, F.; Waschl, H.; Kolmanovsky, I.; Steinbuch, M.; Del Re, L.

    2014-01-01

    This study presents an integrated energy and emission management strategy for a Euro-VI diesel engine with Waste Heat Recovery (WHR) system. This Integrated Powertrain Control (IPC) strategy optimizes the CO 2 - NO x trade-off by minimizing the operational costs associated with fuel and AdBlue

  19. Energetic and exergetic analysis of waste heat recovery systems in the cement industry

    International Nuclear Information System (INIS)

    Karellas, S.; Leontaritis, A.-D.; Panousis, G.; Bellos, E.; Kakaras, E.

    2013-01-01

    In a typical cement producing procedure, 25% of the total energy used is electricity and 75% is thermal energy. However, the process is characterized by significant heat losses mainly by the flue gases and the ambient air stream used for cooling down the clinker (about 35%–40% of the process heat loss). Approximately 26% of the heat input to the system is lost due to dust, clinker discharge, radiation and convection losses from the kiln and the preheaters. A heat recovery system could be used to increase the efficiency of the cement plant and thus contribute to emissions decrease. The aim of this paper is to examine and compare energetically and exergetically, two different WHR (waste heat recovery) methods: a water-steam Rankine cycle, and an Organic Rankine Cycle (ORC). A parametric study proved that the water steam technology is more efficient than ORC in exhaust gases temperature higher than 310 °C. Finally a brief economic assessment of the most efficient solution was implemented. WHR installations in cement industry can contribute significantly in the reduction of the electrical consumptions operating cost thus being a very attractive investment with a payback period up to 5 years. - Highlights: • This paper presents waste heat recovery as a way to gain energy from the exhaust gases in a cement plant. • Water steam cycle and ORC has been analyzed for waste heat recovery. • The energetic and exergetic evaluation of the two waste heat recovery processes is presented and compared

  20. Temperature control of evaporators in automotive waste heat recovery systems

    NARCIS (Netherlands)

    Oom, M.E.E.; Feru, E.; de Jager, A.G.; de Lange, H.C.; Ouwerkerk, H.

    2017-01-01

    his paper presents a control strategy for the steam generation process in automotive waste heat recovery systems that are based on the subcritical Rankine cycle. The central question is how to regulate the flow of water into the evaporator such that dry steam is generated at its outlet, subject to

  1. Computational modelling of an Organic Rankine Cycle (ORC waste heat recovery system for an aircraft engine

    Directory of Open Access Journals (Sweden)

    Saadon S.

    2018-01-01

    Full Text Available Escalating fuel prices and carbon dioxide emission are causing new interest in methods to increase the thrust force of an aircraft engine with limitation of fuel consumption. One viable means is the conversion of exhaust engine waste heat to a more useful form of energy or to be used in the aircraft environmental system. A one-dimensional analysis method has been proposed for the organic Rankine cycle (ORC waste heat recovery system for turbofan engine in this paper. The paper contains two main parts: validation of the numerical model and a performance prediction of turbofan engine integrated to an ORC system. The cycle is compared with industrial waste heat recovery system from Hangzhou Chinen Steam Turbine Power CO., Ltd. The results show that thrust specific fuel consumption (TSFC of the turbofan engine reach lowest value at 0.91 lbm/lbf.h for 7000 lbf of thrust force. When the system installation weight is applied, the system results in a 2.0% reduction in fuel burn. Hence implementation of ORC system for waste heat recovery to an aircraft engine can bring a great potential to the aviation industry.

  2. Modeling and control of a parallel waste heat recovery system for Euro-VI heavy-duty diesel engines

    NARCIS (Netherlands)

    Feru, E.; Willems, F.P.T.; Jager, de A.G.; Steinbuch, M.

    2014-01-01

    This paper presents the modeling and control of a waste heat recovery systemfor a Euro-VI heavy-duty truck engine. The considered waste heat recovery system consists of two parallel evaporators with expander and pumps mechanically coupled to the engine crankshaft. Compared to previous work, the

  3. Thermodynamic analysis of an in-cylinder waste heat recovery system for internal combustion engines

    International Nuclear Information System (INIS)

    Zhu, Sipeng; Deng, Kangyao; Qu, Shuan

    2014-01-01

    In this paper, an in-cylinder waste heat recovery system especially for turbocharged engines is proposed to improve the thermal efficiencies of internal combustion engines. Simplified recovery processes can be described as follows: superheated steam generated by engine waste heat is injected into the pipe before the turbine to increase the boost pressure of the fresh air; intake valve close timing is adjusted to control the amount of fresh air as the original level, and thus the higher pressure charged air expands in the intake stroke and transfers the pressure energy directly to the crankshaft. In this way, the increased turbine output by the pre-turbine steam injection is finally recovered in the cylinder, which is different from the traditional Rankine cycle. The whole energy transfer processes are studied with thermodynamic analyses and numerical simulations. The results show that the mass flow rate of the injected steam has the biggest influence on the energy transfer processes followed by the temperature of the injected steam. With this in-cylinder waste heat recovery system, the fuel economy of a selected turbocharged diesel engine can be improved by 3.2% at the rated operating point when the injected mass flow ratio is set to be 0.1. - Highlights: • An in-cylinder waste heat recovery system is proposed. • Effects of injected parameters are studied with energy and exergy balance theories. • Variations of operating points on the compressor map are studied in detail. • The fuel economy is improved by 3.2% at the rated operating point

  4. Effects of introducing energy recovery processes to the municipal solid waste management system in Ulaanbaatar, Mongolia.

    Science.gov (United States)

    Toshiki, Kosuke; Giang, Pham Quy; Serrona, Kevin Roy B; Sekikawa, Takahiro; Yu, Jeoung-soo; Choijil, Baasandash; Kunikane, Shoichi

    2015-02-01

    Currently, most developing countries have not set up municipal solid waste management systems with a view of recovering energy from waste or reducing greenhouse gas emissions. In this article, we have studied the possible effects of introducing three energy recovery processes either as a single or combination approach, refuse derived fuel production, incineration and waste power generation, and methane gas recovery from landfill and power generation in Ulaanbaatar, Mongolia, as a case study. We concluded that incineration process is the most suitable as first introduction of energy recovery. To operate it efficiently, 3Rs strategies need to be promoted. And then, RDF production which is made of waste papers and plastics in high level of sorting may be considered as the second step of energy recovery. However, safety control and marketability of RDF will be required at that moment. Copyright © 2014. Published by Elsevier B.V.

  5. Comparative assessment of alternative cycles for waste heat recovery and upgrade

    International Nuclear Information System (INIS)

    Little, Adrienne B.; Garimella, Srinivas

    2011-01-01

    Thermally activated systems based on sorption cycles, as well as mechanical systems based on vapor compression/expansion are assessed in this study for waste heat recovery applications. In particular, ammonia-water sorption cycles for cooling and mechanical work recovery, a heat transformer using lithium bromide-water as the working fluid pair to yield high temperature heat, and organic Rankine cycles using refrigerant R245fa for work recovery as well as versions directly coupled to a vapor compression cycle to yield cooling are analyzed with overall heat transfer conductances for heat exchangers that use similar approach temperature differences for each cycle. Two representative cases are considered, one for smaller-scale and lower temperature applications using waste heat at 60 o C, and the other for larger-scale and higher temperature waste heat at 120 o C. Comparative assessments of these cycles on the basis of efficiencies and system footprints guide the selection of waste heat recovery and upgrade systems for different applications and waste heat availabilities. Furthermore, these considerations are used to investigate four case studies for waste heat recovery for data centers, vehicles, and process plants, illustrating the utility and limitations of such solutions. The increased implementation of such waste heat recovery systems in a variety of applications will lead to decreased primary source inputs and sustainable energy utilization. -- Highlights: → Sorption and mechanical pathways for the conversion of waste heat streams to work, cooling, and temperature boosting were investigated. → Waste heat sources including 300 W of energy at 60 o C and 1 kW of energy at 120 o C were analyzed. → Up to about seventy percent of the input waste heat can be converted to cooling. → Up to about ten percent can be converted to work. → Up to about 47 percent can be upgraded to a higher temperature.

  6. Advanced Waste Heat Recovery Systems within Hybrid Powertrains

    Directory of Open Access Journals (Sweden)

    Albert Boretti

    2018-01-01

    Full Text Available A waste heat recovery system (WHRS is very well known to provide no advantage during the cold start driving cycles, such as the New European Driving Cycle (NEDC, which are used for certification of emissions and assessment of fuel economy. Here, we propose a novel integrated WHRS using the internal combustion engine (ICE coolant passages and an exchanger on the exhaust working as pre-heater / boiler / super-heater of a Rankine cycle. The expander is connected to an electric generator unit (GU, and the pump is connected to an electric motor unit (MU. The vehicle is also fitted with an electric, kinetic energy recovery system (KERS. The expander and condenser are bypassed during the first part of the NEDC when the vehicle covers the four ECE-15 (Economic Commission for Europe - 15 - UDC (Urban Drive Cycle segments where the engine warms-up.  Only after the engine is fully warmed up, during the last part of the NEDC, the extra urban driving cycle (EUDC segment, the expander and condenser are activated to recover part of the coolant and exhaust energy.

  7. Metallurgical recovery of metals from electronic waste: A review

    International Nuclear Information System (INIS)

    Cui Jirang; Zhang Lifeng

    2008-01-01

    Waste electric and electronic equipment, or electronic waste, has been taken into consideration not only by the government but also by the public due to their hazardous material contents. In the detailed literature survey, value distributions for different electronic waste samples were calculated. It is showed that the major economic driver for recycling of electronic waste is from the recovery of precious metals. The state of the art in recovery of precious metals from electronic waste by pyrometallurgical processing, hydrometallurgical processing, and biometallurgical processing are highlighted in the paper. Pyrometallurgical processing has been a traditional technology for recovery of precious metals from waste electronic equipment. However, state-of-the-art smelters are highly depended on investments. Recent research on recovery of energy from PC waste gives an example for using plastics in this waste stream. It indicates that thermal processing provides a feasible approach for recovery of energy from electronic waste if a comprehensive emission control system is installed. In the last decade, attentions have been removed from pyrometallurgical process to hydrometallurgical process for recovery of metals from electronic waste. In the paper, hydrometallurgical processing techniques including cyanide leaching, halide leaching, thiourea leaching, and thiosulfate leaching of precious metals are detailed. In order to develop an environmentally friendly technique for recovery of precious metals from electronic scrap, a critical comparison of main leaching methods is analyzed for both economic feasibility and environmental impact. It is believed that biotechnology has been one of the most promising technologies in metallurgical processing. Bioleaching has been used for recovery of precious metals and copper from ores for many years. However, limited research was carried out on the bioleaching of metals from electronic waste. In the review, initial researches on the

  8. Metallurgical recovery of metals from electronic waste: A review

    Energy Technology Data Exchange (ETDEWEB)

    Cui Jirang [Department of Materials Science and Engineering, Norwegian University of Science and Technology (NTNU), Alfred Getz vei 2, N-7491 Trondheim (Norway)], E-mail: Jirang.Cui@material.ntnu.no; Zhang Lifeng [Department of Materials Science and Engineering, Norwegian University of Science and Technology (NTNU), Alfred Getz vei 2, N-7491 Trondheim (Norway)], E-mail: zhanglife@mst.edu

    2008-10-30

    Waste electric and electronic equipment, or electronic waste, has been taken into consideration not only by the government but also by the public due to their hazardous material contents. In the detailed literature survey, value distributions for different electronic waste samples were calculated. It is showed that the major economic driver for recycling of electronic waste is from the recovery of precious metals. The state of the art in recovery of precious metals from electronic waste by pyrometallurgical processing, hydrometallurgical processing, and biometallurgical processing are highlighted in the paper. Pyrometallurgical processing has been a traditional technology for recovery of precious metals from waste electronic equipment. However, state-of-the-art smelters are highly depended on investments. Recent research on recovery of energy from PC waste gives an example for using plastics in this waste stream. It indicates that thermal processing provides a feasible approach for recovery of energy from electronic waste if a comprehensive emission control system is installed. In the last decade, attentions have been removed from pyrometallurgical process to hydrometallurgical process for recovery of metals from electronic waste. In the paper, hydrometallurgical processing techniques including cyanide leaching, halide leaching, thiourea leaching, and thiosulfate leaching of precious metals are detailed. In order to develop an environmentally friendly technique for recovery of precious metals from electronic scrap, a critical comparison of main leaching methods is analyzed for both economic feasibility and environmental impact. It is believed that biotechnology has been one of the most promising technologies in metallurgical processing. Bioleaching has been used for recovery of precious metals and copper from ores for many years. However, limited research was carried out on the bioleaching of metals from electronic waste. In the review, initial researches on the

  9. Potential for nutrient recovery and biogas production from blackwater, food waste and greywater in urban source control systems.

    Science.gov (United States)

    Kjerstadius, H; Haghighatafshar, S; Davidsson, Å

    2015-01-01

    In the last decades, the focus on waste and wastewater treatment systems has shifted towards increased recovery of energy and nutrients. Separation of urban food waste (FW) and domestic wastewaters using source control systems could aid this increase; however, their effect on overall sustainability is unknown. To obtain indicators for sustainability assessments, five urban systems for collection, transport, treatment and nutrient recovery from blackwater, greywater and FW were investigated using data from implementations in Sweden or northern Europe. The systems were evaluated against their potential for biogas production and nutrient recovery by the use of mass balances for organic material, nutrients and metals over the system components. The resulting indicators are presented in units suitable for use in future sustainability studies or life-cycle assessment of urban waste and wastewater systems. The indicators show that source control systems have the potential to increase biogas production by more than 70% compared with a conventional system and give a high recovery of phosphorus and nitrogen as biofertilizer. The total potential increase in gross energy equivalence for source control systems was 20-100%; the greatest increase shown is for vacuum-based systems.

  10. Design of a predictive control strategy for an automotive electrically-assisted waste heat recovery system with preview

    NARCIS (Netherlands)

    Seretis, M.

    2017-01-01

    This report regards the development of a predictive control strategy for an automotive electrically-assisted Waste Heat Recovery System (eWHR) with preview information. In this system, the energy recovery is decoupled from the energy supply to the engine. For such dynamical systems with energy

  11. Technical evaluation of a tank-connected food waste disposer system for biogas production and nutrient recovery.

    Science.gov (United States)

    Davidsson, Å; Bernstad Saraiva, A; Magnusson, N; Bissmont, M

    2017-07-01

    In this study, a tank-connected food waste disposer system with the objective to optimise biogas production and nutrient recovery from food waste in Malmö was evaluated. The project investigated the source-separation ratio of food waste through waste composition analyses, determined the potential biogas production in ground food waste, analysed the organic matter content and the limiting components in ground food waste and analysed outlet samples to calculate food waste losses from the separation tank. It can be concluded that the tank-connected food waste disposer system in Malmö can be used for energy recovery and optimisation of biogas production. The organic content of the collected waste is very high and contains a lot of energy rich fat and protein, and the methane potential is high. The results showed that approximately 38% of the food waste dry matter is collected in the tank. The remaining food waste is either found in residual waste (34% of the dry matter) or passes the tank and goes through the outlet to the sewer (28%). The relatively high dry matter content in the collected fraction (3-5% DM) indicates that the separation tank can thicken the waste substantially. The potential for nutrient recovery is rather limited considering the tank content. Only small fractions of the phosphorus (15%) and nitrogen (21%) are recyclable by the collected waste in the tank. The quality of the outlet indicates a satisfactory separation of particulate organic matter and fat. The organic content and nutrients, which are in dissolved form, cannot be retained in the tank and are rather led to the sewage via the outlet. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Applications of thermal energy storage to waste heat recovery in the food processing industry

    Science.gov (United States)

    Wojnar, F.; Lunberg, W. L.

    1980-01-01

    A study to assess the potential for waste heat recovery in the food industry and to evaluate prospective waste heat recovery system concepts employing thermal energy storage was conducted. The study found that the recovery of waste heat in canning facilities can be performed in significant quantities using systems involving thermal energy storage that are both practical and economical. A demonstration project is proposed to determine actual waste heat recovery costs and benefits and to encourage system implementation by the food industry.

  13. Materials recovery system for source-separated noncombustible rubbish and bulky waste in Nishinomiya

    Energy Technology Data Exchange (ETDEWEB)

    Adachi, Yoshihiro

    1987-01-01

    Since 1980, the city of Nishinomiya has been recovering materials from source-separated non-combustible and bulky waste to reduce the amount of final disposal. Materials amounting to 33-39% of the throughput are recovered in the Shredding and Separation Facility, which consists of a manual separation system, a mechanical separation system, a shredder, a pair of shears and incinerators. The facility system is shown in order of processing of the waste. The secondary pollution control, safety equipment, instrumentation, etc., are also described. The recovery percentage and use of revenues are explained in detail.

  14. Mercury recovery from mercury-containing wastes using a vacuum thermal desorption system.

    Science.gov (United States)

    Lee, Woo Rim; Eom, Yujin; Lee, Tai Gyu

    2017-02-01

    Mercury (Hg)-containing waste from various industrial facilities is commonly treated by incineration or stabilization/solidification and retained in a landfill at a managed site. However, when highly concentrated Hg waste is treated using these methods, Hg is released into the atmosphere and soil environment. To eliminate these risks, Hg recovery technology using thermal treatment has been developed and commercialized to recover Hg from Hg-containing waste for safe disposal. Therefore, we developed Hg recovery equipment to treat Hg-containing waste under a vacuum of 6.67kPa (abs) at 400°C and recover the Hg. In addition, the dust generated from the waste was separated by controlling the temperature of the dust filtration unit to 230°C. Additionally, water and Hg vapors were condensed in a condensation unit. The Hg removal rate after waste treatment was 96.75%, and the Hg recovery rate as elemental Hg was 75.23%. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Optimization of a waste heat recovery system with thermoelectric generators by three-dimensional thermal resistance analysis

    International Nuclear Information System (INIS)

    Huang, Gia-Yeh; Hsu, Cheng-Ting; Fang, Chun-Jen; Yao, Da-Jeng

    2016-01-01

    Highlights: • The waste heat recovery system is modeled by three-dimensional thermal resistance. • This is a time-saving and efficient method to estimate power generation from TEGs. • Relations between power generation and varied factors can be rapidly revealed. • TEGs positions and uniformity of velocity profile should be considered together. • Power generation is more sensitive to either internal or external flow velocity. - Abstract: Three-dimensional (3D) thermal resistance analysis provides a rapid and simple method to estimate the power generated from a waste heat recovery system with thermoelectric generators (TEGs), and facilitates an optimization of the system. Such a system comprises three parts – a waste heat recovery chamber, TEG modules and a cooling system. A fin-structured duct serves as a waste heat recovery chamber, which is attached to the hot sides of the TEGs; the cold sides of the TEGs are attached to a cooling system. The waste heat recovery chamber harvests energy from exhaust heat that the TEGs convert into electricity. The estimation of generated power is an important part of the system design. Methods of Computational Fluid Dynamics (CFD) assist the analysis and improve the performance with great accuracy but great computational duration. The use of this method saves much time relative to such CFD methods. In 3D thermal resistance analysis, a node of unknown temperature is located at the centroid of each cell into which the system is divided. The relations of unknown temperatures at the cells are based on the energy conservation and the definition of thermal resistance. The temperatures of inlet waste hot gas and ambient fluid are known. With these boundary conditions, the unknown temperatures in the system are solved, enabling estimation of the power generated with TEGs. A 3D model of the system was simulated with FloTHERM; its numerical solution matched the solution of the 3D thermal resistance analysis within 6%. The power

  16. Engineering Scoping Study of Thermoelectric Generator Systems for Industrial Waste Heat Recovery

    Energy Technology Data Exchange (ETDEWEB)

    Hendricks, Terry [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Choate, William T. [BCS, Inc., Laurel, MD (United States)

    2006-11-01

    This report evaluates thermoelectric generator (TEG) systems with the intent to: 1) examine industrial processes in order to identify and quantify industrial waste heat sources that could potentially use TEGs; 2) describe the operating environment that a TEG would encounter in selected industrial processes and quantify the anticipated TEG system performance; 3) identify cost, design and/or engineering performance requirements that will be needed for TEGs to operate in the selected industrial processes; and 4) identify the research, development and deployment needed to overcome the limitations that discourage the development and use of TEGs for recovery of industrial waste heat.

  17. Applying waste heat recovery system in a sewage sludge dryer – A technical and economic optimization

    International Nuclear Information System (INIS)

    Tańczuk, Mariusz; Kostowski, Wojciech; Karaś, Marcin

    2016-01-01

    Highlights: • A modernization of waste heat recovery system in a sludge drying plant is proposed. • Energy performance analysis rejected the downsize case of modernization. • Optimal system sizes regarding Net Present Value and Net Present Value Ratio do not coincide. • Up to 683 MW h/y of chemical energy savings for optimal heat exchanger size. • Higher profitability for the larger heat exchanger cases: paybacks below 3.65 years. - Abstract: Drying of digested sewage sludge, as an important alternative to sludge disposal at dumping sites, should comply with the requirements of high energy efficiency as well as economic feasibility. The technical and economic optimization analysis of installing a waste process heat recovery unit in a medium-temperature belt dryer operated in a municipal waste water treatment plant was carried out. Inlet capacity of the plant is 1.83 Mg of wet sludge per hour. The post-process air was indicated as a source of waste heat and the configuration of a heat recovery system was proposed. The main objective of the research was to find the optimal size of a chosen type of waste heat recovery heat exchanger for preheating ambient air to the process. The maximization of Net Present Value, and, alternatively, also Net Present Value Ratio were selected for the objective function of the optimization procedure. Simulation of yearly operation of waste heat exchanger was made for a range of different heat exchanging areas (101–270 m"2) regarding given parameters of a post-process air and different temperatures of ambient air. Energy performance of the modernization was evaluated and economic indices were calculated for each of the analyzed cases. The location of the maximum of optimization function was found and the calculations show higher profitability of the cases with larger waste heat exchanger. It can be concluded that the location of optimum of the objective function is very sensitive to the price of natural gas supplied to the

  18. Two-phase plate-fin heat exchanger modeling for waste heat recovery systems in diesel engines

    NARCIS (Netherlands)

    Feru, E.; Jager, de A.G.; Willems, F.P.T.; Steinbuch, M.

    2014-01-01

    This paper presents the modeling and model validation for a modular two-phase heat exchanger that recovers energy in heavy-duty diesel engines. The model is developed for temperature and vapor quality prediction and for control design of the waste heat recovery system. In the studied waste heat

  19. Waste heat recovery system for recapturing energy after engine aftertreatment systems

    Science.gov (United States)

    Ernst, Timothy C.; Nelson, Christopher R.

    2014-06-17

    The disclosure provides a waste heat recovery (WHR) system including a Rankine cycle (RC) subsystem for converting heat of exhaust gas from an internal combustion engine, and an internal combustion engine including the same. The WHR system includes an exhaust gas heat exchanger that is fluidly coupled downstream of an exhaust aftertreatment system and is adapted to transfer heat from the exhaust gas to a working fluid of the RC subsystem. An energy conversion device is fluidly coupled to the exhaust gas heat exchanger and is adapted to receive the vaporized working fluid and convert the energy of the transferred heat. The WHR system includes a control module adapted to control at least one parameter of the RC subsystem based on a detected aftertreatment event of a predetermined thermal management strategy of the aftertreatment system.

  20. Current and future prospects for heat recovery from waste in European district heating systems: A literature and data review

    International Nuclear Information System (INIS)

    Persson, Urban; Münster, Marie

    2016-01-01

    Municipal solid waste has seen increasing annual volumes for many decades in contemporary Europe and constitutes, if not properly managed, an environmental problem due to local pollution and greenhouse gas emissions. From an energy perspective, waste is also an alternative fuel for power and heat generation; energy recovery from waste represents an effective measure to reduce landfilling and avoid disposal emissions while simultaneously reducing the equivalent demand for primary energy supply. A key factor for obtaining the full synergetic benefits of this energy recovery is the presence of local heat distribution infrastructures, without which no large-scale recovery and utilisation of excess heat is possible. In this paper, which aims to estimate municipal solid waste volumes available for heat recovery in European district heating systems in 2030, a literature and data review is performed to establish and assess current and future EU (European Union) waste generation and management. Main conclusions are that more heat can be recovered from current Waste-to-Energy facilities operating at low average heat recovery efficiencies, that efficient incineration capacity is geographically concentrated, and that waste available for heat recovery in 2030 is equally determined by total generation volumes by this year as by future EU deployment levels of district heating. - Highlights: • European municipal solid waste time series data analysed from 1995 to 2012. • Review of modelling approaches to assess future European waste generation. • Weather corrected district heat data for EU Member States in 1995 and 2012. • Low average heat recovery efficiency in current European waste incineration. • Future heat recovery efficiencies as determinant as future generation volumes.

  1. Experimental validation of a dynamic waste heat recovery system model for control purposes

    NARCIS (Netherlands)

    Feru, E.; Kupper, F.; Rojer, C.; Seykens, X.L.J.; Scappin, F.; Willems, F.P.T.; Smits, Jeroen; Jager, de A.G.; Steinbuch, M.

    2013-01-01

    This paper presents the identification and validation of a dynamic Waste Heat Recovery (WHR) system model. Driven by upcoming CO2 emission targets and increasing fuel costs, engine exhaust gas heat utilization has recently attracted much attention to improve fuel efficiency, especially for

  2. Energy efficiency of substance and energy recovery of selected waste fractions

    International Nuclear Information System (INIS)

    Fricke, Klaus; Bahr, Tobias; Bidlingmaier, Werner; Springer, Christian

    2011-01-01

    In order to reduce the ecological impact of resource exploitation, the EU calls for sustainable options to increase the efficiency and productivity of the utilization of natural resources. This target can only be achieved by considering resource recovery from waste comprehensively. However, waste management measures have to be investigated critically and all aspects of substance-related recycling and energy recovery have to be carefully balanced. This article compares recovery methods for selected waste fractions with regard to their energy efficiency. Whether material recycling or energy recovery is the most energy efficient solution, is a question of particular relevance with regard to the following waste fractions: paper and cardboard, plastics and biowaste and also indirectly metals. For the described material categories material recycling has advantages compared to energy recovery. In accordance with the improved energy efficiency of substance opposed to energy recovery, substance-related recycling causes lower emissions of green house gases. For the fractions paper and cardboard, plastics, biowaste and metals it becomes apparent, that intensification of the separate collection systems in combination with a more intensive use of sorting technologies can increase the extent of material recycling. Collection and sorting systems must be coordinated. The objective of the overall system must be to achieve an optimum of the highest possible recovery rates in combination with a high quality of recyclables. The energy efficiency of substance related recycling of biowaste can be increased by intensifying the use of anaerobic technologies. In order to increase the energy efficiency of the overall system, the energy efficiencies of energy recovery plants must be increased so that the waste unsuitable for substance recycling is recycled or treated with the highest possible energy yield.

  3. Thermodynamic analysis and performance optimization of an Organic Rankine Cycle (ORC) waste heat recovery system for marine diesel engines

    International Nuclear Information System (INIS)

    Song, Jian; Song, Yin; Gu, Chun-wei

    2015-01-01

    Escalating fuel prices and imposition of carbon dioxide emission limits are creating renewed interest in methods to increase the thermal efficiency of marine diesel engines. One viable means to achieve such improved thermal efficiency is the conversion of engine waste heat to a more useful form of energy, either mechanical or electrical. Organic Rankine Cycle (ORC) has been demonstrated to be a promising technology to recover waste heat. This paper examines waste heat recovery of a marine diesel engine using ORC technology. Two separated ORC apparatuses for the waste heat from both the jacket cooling water and the engine exhaust gas are designed as the traditional recovery system. The maximum net power output is chosen as the evaluation criterion to select the suitable working fluid and define the optimal system parameters. To simplify the waste heat recovery, an optimized system using the jacket cooling water as the preheating medium and the engine exhaust gas for evaporation is presented. The influence of preheating temperature on the system performance is evaluated to define the optimal operating condition. Economic and off-design analysis of the optimized system is conducted. The simulation results reveal that the optimized system is technically feasible and economically attractive. - Highlights: • ORC is used to recover waste heat from both exhaust gas and jacket cooling water. • Comparative study is conducted for different ORC systems. • Thermal performance, system structure and economic feasibility are considered. • Optimal preheating temperature of the system is selected

  4. Optimum length of finned pipe for waste heat recovery

    International Nuclear Information System (INIS)

    Soeylemez, M.S.

    2008-01-01

    A thermoeconomic feasibility analysis is presented yielding a simple algebraic optimization formula for estimating the optimum length of a finned pipe that is used for waste heat recovery. A simple economic optimization method is used in the present study by combining it with an integrated overall heat balance method based on fin effectiveness for calculating the maximum savings from a waste heat recovery system

  5. Evaluating the potential of process sites for waste heat recovery

    International Nuclear Information System (INIS)

    Oluleye, Gbemi; Jobson, Megan; Smith, Robin; Perry, Simon J.

    2016-01-01

    Highlights: • Analysis considers the temperature and duties of the available waste heat. • Models for organic Rankine cycles, absorption heat pumps and chillers proposed. • Exploitation of waste heat from site processes and utility systems. • Concept of a site energy efficiency introduced. • Case study presented to illustrate application of the proposed methodology. - Abstract: As a result of depleting reserves of fossil fuels, conventional energy sources are becoming less available. In spite of this, energy is still being wasted, especially in the form of heat. The energy efficiency of process sites (defined as useful energy output per unit of energy input) may be increased through waste heat utilisation, thereby resulting in primary energy savings. In this work, waste heat is defined and a methodology developed to identify the potential for waste heat recovery in process sites; considering the temperature and quantity of waste heat sources from the site processes and the site utility system (including fired heaters and, the cogeneration, cooling and refrigeration systems). The concept of the energy efficiency of a site is introduced – the fraction of the energy inputs that is converted into useful energy (heat or power or cooling) to support the methodology. Furthermore, simplified mathematical models of waste heat recovery technologies using heat as primary energy source, including organic Rankine cycles (using both pure and mixed organics as working fluids), absorption chillers and absorption heat pumps are developed to support the methodology. These models are applied to assess the potential for recovery of useful energy from waste heat. The methodology is illustrated for an existing process site using a case study of a petroleum refinery. The energy efficiency of the site increases by 10% as a result of waste heat recovery. If there is an infinite demand for recovered energy (i.e. all the recoverable waste heat sources are exploited), the site

  6. Energy efficiency of substance and energy recovery of selected waste fractions.

    Science.gov (United States)

    Fricke, Klaus; Bahr, Tobias; Bidlingmaier, Werner; Springer, Christian

    2011-04-01

    In order to reduce the ecological impact of resource exploitation, the EU calls for sustainable options to increase the efficiency and productivity of the utilization of natural resources. This target can only be achieved by considering resource recovery from waste comprehensively. However, waste management measures have to be investigated critically and all aspects of substance-related recycling and energy recovery have to be carefully balanced. This article compares recovery methods for selected waste fractions with regard to their energy efficiency. Whether material recycling or energy recovery is the most energy efficient solution, is a question of particular relevance with regard to the following waste fractions: paper and cardboard, plastics and biowaste and also indirectly metals. For the described material categories material recycling has advantages compared to energy recovery. In accordance with the improved energy efficiency of substance opposed to energy recovery, substance-related recycling causes lower emissions of green house gases. For the fractions paper and cardboard, plastics, biowaste and metals it becomes apparent, that intensification of the separate collection systems in combination with a more intensive use of sorting technologies can increase the extent of material recycling. Collection and sorting systems must be coordinated. The objective of the overall system must be to achieve an optimum of the highest possible recovery rates in combination with a high quality of recyclables. The energy efficiency of substance related recycling of biowaste can be increased by intensifying the use of anaerobic technologies. In order to increase the energy efficiency of the overall system, the energy efficiencies of energy recovery plants must be increased so that the waste unsuitable for substance recycling is recycled or treated with the highest possible energy yield. Copyright © 2010 Elsevier Ltd. All rights reserved.

  7. Integrated energy and emission management for heavy-duty diesel engines with waste heat recovery system

    NARCIS (Netherlands)

    Willems, F.P.T.; Kupper, F.; Rascanu, G.; Feru, E.

    2015-01-01

    Rankine-cycleWasteHeatRecovery (WHR)systems are promising solutions to reduce fuel consumption for trucks. Due to coupling between engine andWHR system, control of these complex systems is challenging. This study presents an integrated energy and emission management strategy for an Euro-VI Diesel

  8. Current and future prospects for heat recovery from waste in European district heating systems: A literature and data review

    DEFF Research Database (Denmark)

    Persson, Urban; Münster, Marie

    2016-01-01

    Municipal solid waste has seen increasing annual volumes for many decades in contemporary Europe and constitutes, if not properly managed, an environmental problem due to local pollution and greenhouse gas emissions. From an energy perspective, waste is also an alternative fuel for power and heat...... to establish and assess current and future EU (European Union) waste generation and management. Main conclusions are that more heat can be recovered from current Waste-to-Energy facilities operating at low average heat recovery efficiencies, that efficient incineration capacity is geographically concentrated...... heat distribution infrastructures, without which no large-scale recovery and utilisation of excess heat is possible. In this paper, which aims to estimate municipal solid waste volumes available for heat recovery in European district heating systems in 2030, a literature and data review is performed...

  9. Thermodynamic analysis of a low-temperature waste heat recovery system based on the concept of solar chimney

    International Nuclear Information System (INIS)

    Chen, Kai; Wang, Jiangfeng; Dai, Yiping; Liu, Yuqi

    2014-01-01

    Highlights: • A low grade waste heat recovery system based on the concept of solar chimney is proposed. • The effects of three key factors on the system performance are examined. • Thermodynamics analysis is to find a better way to utilize low grade heat source efficiently. - Abstract: The utilization of low-temperature waste heat draws more and more attention due to serious energy crisis nowadays. This paper proposes a low-temperature waste heat recovery system based on the concept of solar chimney. In the system, low-temperature waste heat is used to heat air to produce an air updraft in the chimney tower. The air updraft propels a turbine fixed at the base of the chimney tower to convert waste heat into electricity. The mathematical model of the system is established based on first law and second law of thermodynamics. Hot water is selected as the representative of low-temperature waste heat sources for researching. The heat source temperature, ambient air temperature and area of heat transfer are examined to evaluate their effects on the system performance such as velocity of updraft, mass flow rate of air, power output, conversion efficiency, and exergy efficiency. The velocity of air demonstrates a better stability than the mass flow rate of air and the pressure difference when temperature of heat source, ambient air temperature or area of heat transfer changes

  10. A Novel Ion Exchange System to Purify Mixed ISS Waste Water Brines for Chemical Production and Enhanced Water Recovery

    Science.gov (United States)

    Lunn, Griffin; Spencer, LaShelle; Ruby, Anna-Maria; McCaskill, Andrew

    2014-01-01

    Current International Space Station water recovery regimes produce a sizable portion of waste water brine. This brine is highly toxic and water recovery is poor: a highly wasteful proposition. With new biological techniques that do not require waste water chemical pretreatment, the resulting brine would be chromium-free and nitrate rich which can allow possible fertilizer recovery for future plant systems. Using a system of ion exchange resins we can remove hardness, sulfate, phosphate and nitrate from these brines to leave only sodium and potassium chloride. At this point modern chlor-alkali cells can be utilized to produce a low salt stream as well as an acid and base stream. The first stream can be used to gain higher water recovery through recycle to the water separation stage while the last two streams can be used to regenerate the ion exchange beds used here, as well as other ion exchange beds in the ISS. Conveniently these waste products from ion exchange regeneration would be suitable as plant fertilizer. In this report we go over the performance of state of the art resins designed for high selectivity of target ions under brine conditions. Using ersatz ISS waste water we can evaluate the performance of specific resins and calculate mass balances to determine resin effectiveness and process viability. If this system is feasible then we will be one step closer to closed loop environmental control and life support systems (ECLSS) for current or future applications.

  11. Control of a waste heat recovery system with decoupled expander for improved diesel engine efficiency

    NARCIS (Netherlands)

    Feru, E.; Willems, F.P.T.; Jager, de A.G.; Steinbuch, M.

    2015-01-01

    In this paper, a switching Model Predictive Control strategy is proposed for a Waste Heat Recovery system in heavy-duty automotive application. The objective is to maximize the WHR system output power while satisfying the output constraints under highly dynamic engine variations. For control design,

  12. Material and energy recovery in integrated waste management systems. An evaluation based on life cycle assessment

    International Nuclear Information System (INIS)

    Giugliano, Michele; Cernuschi, Stefano; Grosso, Mario; Rigamonti, Lucia

    2011-01-01

    This paper reports the environmental results, integrated with those arising from mass and energy balances, of a research project on the comparative analysis of strategies for material and energy recovery from waste, funded by the Italian Ministry of Education, University and Research. The project, involving the cooperation of five University research groups, was devoted to the optimisation of material and energy recovery activities within integrated municipal solid waste (MSW) management systems. Four scenarios of separate collection (overall value of 35%, 50% without the collection of food waste, 50% including the collection of food waste, 65%) were defined for the implementation of energetic, environmental and economic balances. Two sizes of integrated MSW management system (IWMS) were considered: a metropolitan area, with a gross MSW production of 750,000 t/year and an average province, with a gross MSW production of 150,000 t/year. The environmental analysis was conducted using Life Cycle Assessment methodology (LCA), for both material and energy recovery activities. In order to avoid allocation we have used the technique of the expansion of the system boundaries. This means taking into consideration the impact on the environment related to the waste management activities in comparison with the avoided impacts related to the saving of raw materials and primary energy. Under the hypotheses of the study, both for the large and for the small IWMS, the energetic and environmental benefits are higher than the energetic and environmental impacts for all the scenarios analysed in terms of all the indicators considered: the scenario with 50% separate collection in a drop-off scheme excluding food waste shows the most promising perspectives, mainly arising from the highest collection (and recycling) of all the packaging materials, which is the activity giving the biggest energetic and environmental benefits. Main conclusions of the study in the general field of the

  13. Modelling of Evaporator in Waste Heat Recovery System using Finite Volume Method and Fuzzy Technique

    Directory of Open Access Journals (Sweden)

    Jahedul Islam Chowdhury

    2015-12-01

    Full Text Available The evaporator is an important component in the Organic Rankine Cycle (ORC-based Waste Heat Recovery (WHR system since the effective heat transfer of this device reflects on the efficiency of the system. When the WHR system operates under supercritical conditions, the heat transfer mechanism in the evaporator is unpredictable due to the change of thermo-physical properties of the fluid with temperature. Although the conventional finite volume model can successfully capture those changes in the evaporator of the WHR process, the computation time for this method is high. To reduce the computation time, this paper develops a new fuzzy based evaporator model and compares its performance with the finite volume method. The results show that the fuzzy technique can be applied to predict the output of the supercritical evaporator in the waste heat recovery system and can significantly reduce the required computation time. The proposed model, therefore, has the potential to be used in real time control applications.

  14. Recovery of essential nutrients from municipal solid waste--Impact of waste management infrastructure and governance aspects.

    Science.gov (United States)

    Zabaleta, Imanol; Rodic, Ljiljana

    2015-10-01

    Every year 120-140 million tonnes of bio-waste are generated in Europe, most of which is landfilled, incinerated or stabilized and used as covering material in landfill operation. None of these practices enables the recovery of essential nutrients such as phosphorus (P) and nitrogen (N), which are in great demand for agricultural production. Recovery of these nutrients is a matter of international concern considering the non-renewable nature of P sources and the energy intensive production process required for the synthesis of N fertilizers. The objective of this research is to understand the relation between the municipal solid waste management (MSWM) system, both its the physical components and governance aspects, and the recovery of nutrients in Vitoria-Gasteiz (Basque Country) as a benchmark for European medium-size cities. The analysis shows that the existing physical infrastructure and facilities for bio-waste have high potential for nutrient recovery, 49% for N and 83% for P contained in bio-waste. However, governance aspects of the MSWM system such as legislation and user inclusivity play an important role and decrease the actual nutrient recovery to 3.4% and 7.4% for N and P respectively. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Recovery of essential nutrients from municipal solid waste – Impact of waste management infrastructure and governance aspects

    Energy Technology Data Exchange (ETDEWEB)

    Zabaleta, Imanol, E-mail: imanol.zabaleta@eawag.ch [Eawag: Swiss Federal Institute of Aquatic Science and Technology, Department of Water and Sanitation in Developing Countries (Sandec), P.O. Box 611, 8600 Dübendorf (Switzerland); Rodic, Ljiljana, E-mail: ljiljana.rodic@gmail.com [Wageningen University, Education and Competence Studies, Wageningen (Netherlands)

    2015-10-15

    Every year 120–140 million tonnes of bio-waste are generated in Europe, most of which is landfilled, incinerated or stabilized and used as covering material in landfill operation. None of these practices enables the recovery of essential nutrients such as phosphorus (P) and nitrogen (N), which are in great demand for agricultural production. Recovery of these nutrients is a matter of international concern considering the non-renewable nature of P sources and the energy intensive production process required for the synthesis of N fertilizers. The objective of this research is to understand the relation between the municipal solid waste management (MSWM) system, both its the physical components and governance aspects, and the recovery of nutrients in Vitoria-Gasteiz (Basque Country) as a benchmark for European medium-size cities. The analysis shows that the existing physical infrastructure and facilities for bio-waste have high potential for nutrient recovery, 49% for N and 83% for P contained in bio-waste. However, governance aspects of the MSWM system such as legislation and user inclusivity play an important role and decrease the actual nutrient recovery to 3.4% and 7.4% for N and P respectively.

  16. Affordable Rankine Cycle Waste Heat Recovery for Heavy Duty Trucks

    Energy Technology Data Exchange (ETDEWEB)

    Subramanian, Swami Nathan [Eaton Corporation

    2017-06-30

    Nearly 30% of fuel energy is not utilized and wasted in the engine exhaust. Organic Rankine Cycle (ORC) based waste heat recovery (WHR) systems offer a promising approach on waste energy recovery and improving the efficiency of Heavy-Duty diesel engines. Major barriers in the ORC WHR system are the system cost and controversial waste heat recovery working fluids. More than 40% of the system cost is from the additional heat exchangers (recuperator, condenser and tail pipe boiler). The secondary working fluid loop designed in ORC system is either flammable or environmentally sensitive. The Eaton team investigated a novel approach to reduce the cost of implementing ORC based WHR systems to Heavy-Duty (HD) Diesel engines while utilizing safest working fluids. Affordable Rankine Cycle (ARC) concept aimed to define the next generation of waste energy recuperation with a cost optimized WHR system. ARC project used engine coolant as the working fluid. This approach reduced the need for a secondary working fluid circuit and subsequent complexity. A portion of the liquid phase engine coolant has been pressurized through a set of working fluid pumps and used to recover waste heat from the exhaust gas recirculation (EGR) and exhaust tail pipe exhaust energy. While absorbing heat, the mixture is partially vaporized but remains a wet binary mixture. The pressurized mixed-phase engine coolant mixture is then expanded through a fixed-volume ratio expander that is compatible with two-phase conditions. Heat rejection is accomplished through the engine radiator, avoiding the need for a separate condenser. The ARC system has been investigated for PACCAR’s MX-13 HD diesel engine.

  17. Integrated Energy & Emission Management for Heavy-Duty Diesel Engines with Waste Heat Recovery System

    NARCIS (Netherlands)

    Willems, F.P.T.; Kupper, F.; Cloudt, R.P.M.

    2012-01-01

    This study presents an integrated energy and emission management strategy for an Euro-VI diesel engine with Waste Heat Recovery (WHR) system. This Integrated Powertrain Control (IPC) strategy optimizes the CO2-NOx trade-off by minimizing the operational costs associated with fuel and AdBlue

  18. Optimal waste heat recovery and reuse in industrial zones

    International Nuclear Information System (INIS)

    Stijepovic, Mirko Z.; Linke, Patrick

    2011-01-01

    Significant energy efficiency gains in zones with concentrated activity from energy intensive industries can often be achieved by recovering and reusing waste heat between processing plants. We present a systematic approach to target waste heat recovery potentials and design optimal reuse options across plants in industrial zones. The approach first establishes available waste heat qualities and reuse feasibilities considering distances between individual plants. A targeting optimization problem is solved to establish the maximum possible waste heat recovery for the industrial zone. Then, a design optimization problem is solved to identify concrete waste heat recovery options considering economic objectives. The paper describes the approach and illustrates its application with a case study. -- Highlights: → Developed a systematic approach to target waste heat recovery potentials and to design optimal recovery and reuse options across plants in industrial zones. → Five stage approach involving data acquisition, analysis, assessment, targeting and design. → Targeting optimization problem establishes the maximum possible waste heat recovery and reuse limit for the industrial zone. → Design optimization problem provides concrete waste heat recovery and reuse network design options considering economic objectives.

  19. A graphical criterion for working fluid selection and thermodynamic system comparison in waste heat recovery

    International Nuclear Information System (INIS)

    Xi, Huan; Li, Ming-Jia; He, Ya-Ling; Tao, Wen-Quan

    2015-01-01

    In the present study, we proposed a graphical criterion called CE diagram by achieving the Pareto optimal solutions of the annual cash flow and exergy efficiency. This new graphical criterion enables both working fluid selection and thermodynamic system comparison for waste heat recovery. It's better than the existing criterion based on single objective optimization because it is graphical and intuitionistic in the form of diagram. The features of CE diagram were illustrated by studying 5 examples with different heat-source temperatures (ranging between 100 °C to 260 °C), 26 chlorine-free working fluids and two typical ORC systems including basic organic Rankine cycle(BORC) and recuperative organic Rankine cycle (RORC). It is found that the proposed graphical criterion is feasible and can be applied to any closed loop waste heat recovery thermodynamic systems and working fluids. - Highlights: • A graphical method for ORC system comparison/working fluid selection was proposed. • Multi-objectives genetic algorithm (MOGA) was applied for optimizing ORC systems. • Application cases were performed to demonstrate the usage of the proposed method.

  20. Waste Heat Recovery of a PEMFC System by Using Organic Rankine Cycle

    Directory of Open Access Journals (Sweden)

    Tianqi He

    2016-04-01

    Full Text Available In this study, two systems are brought forward to recover the waste heat of a proton exchange membrane fuel cell (PEMFC, which are named the organic Rankine cycle (ORC, and heat pump (HP combined organic Rankine cycle (HPORC. The performances of both systems are simulated on the platform of MATLAB with R123, R245fa, R134a, water, and ethanol being selected as the working fluid, respectively. The results show that, for PEMFC where operating temperature is constantly kept at 60 °C, there exists an optimum working temperature for each fluid in ORC and HPORC. In ORC, the maximal net power can be achieved with R245fa being selected as the working fluid. The corresponding thermal efficiency of the recovery system is 4.03%. In HPORC, the maximal net power can be achieved with water being selected in HP and R123 in ORC. The thermal efficiency of the recovery system increases to 4.73%. Moreover, the possibility of using ORC as the cooling system of PEMFC is also studied. The heat released from PEMFC stack is assumed to be wholly recovered by the ORC or HPORC system. The results indicate that the HPORC system is much more feasible for the cooling system of a PEMFC stack, since the heat recovery ability can be promoted due to the presence of HP.

  1. ASPEN Plus simulation of coal integrated gasification combined blast furnace slag waste heat recovery system

    International Nuclear Information System (INIS)

    Duan, Wenjun; Yu, Qingbo; Wang, Kun; Qin, Qin; Hou, Limin; Yao, Xin; Wu, Tianwei

    2015-01-01

    Highlights: • An integrated system of coal gasification with slag waste heat recovery was proposed. • The goal of BF slag heat saving and emission reduction was achieved by this system. • The optimal parameters were obtained and the waste heat recovery rate reached 83.08%. • About 6.64 kmol/min syngas was produced when using one ton BF slag to provide energy. - Abstract: This article presented a model for the system of coal gasification with steam and blast furnace slag waste heat recovery by using the ASPEN Plus as the simulating and modeling tool. Constrained by mass and energy balance for the entire system, the model included the gasifier used to product syngas at the chemical equilibrium based on the Gibbs free energy minimization approach and the boiler used to recover the heat of the blast furnace slag (BF slag) and syngas. Two parameters of temperature and steam to coal ratio (S/C) were considered to account for their impacts on the Datong coal (DT coal) gasification process. The carbon gasification efficiency (CE), cold gasification efficiency (CGE), syngas product efficiency (PE) and the heating value of syngas produced by 1 kg pulverized coal (HV) were adopted as the indicators to examine the gasification performance. The optimal operating temperature and S/C were 800 °C and 1.5, respectively. At this condition, CE reached above 90% and the maximum values of the CGE, PE and HV were all obtained. Under the optimal operating conditions, 1000 kg/min BF slag, about 40.41 kg/min DT pulverized coal and 77.94 kg/min steam were fed into the gasifier and approximate 6.64 kmol/min syngas could be generated. Overall, the coal was converted to clean syngas by gasification reaction and the BF slag waste heat was also recovered effectively (reached up to 83.08%) in this system, achieving the objective of energy saving and emission reduction

  2. Heat exchanger modeling and identification for control of waste heat recovery systems in diesel engines

    NARCIS (Netherlands)

    Feru, E.; Willems, F.P.T.; Rojer, C.; Jager, B. de; Steinbuch, M.

    2013-01-01

    To meet future CO2 emission targets, Waste Heat Recovery systems have recently attracted much attention for automotive applications, especially for long haul trucks. This paper focuses on the development of a dynamic counter-flow heat exchanger model for control purposes. The model captures the

  3. Influence of Handling Practices on Material Recovery from Residential Solid Waste

    Directory of Open Access Journals (Sweden)

    Jairo F. Pereira

    2010-07-01

    Full Text Available Material recovery from municipal solid waste (MSW is becoming widely adopted in several developing countries. Residential solid waste is one of the most important components of MSW and the handling practices of the MSW by the generators have a major impact on the quality and quantity of the materials for recovery. This article analyzes the generation and composition of residential solid waste and the handling practices by users in three municipalities in Colombia that have a solid waste management plant (SWMP. The findings show that, although there are significant amounts of useful materials, their handling of the materials as “garbage”, the low recognition of recovery work, and the inadequate storage and source management practices, affect material recovery and the operation of SWMPs. These results may be taken as a reference for this type of municipality, because the solid waste management system and the type of operation of the SWMPs analyzed is similar to all of the SWMPs in the country as well as in other countries in the region.

  4. A review of technologies and performances of thermal treatment systems for energy recovery from waste

    Energy Technology Data Exchange (ETDEWEB)

    Lombardi, Lidia, E-mail: lidia.lombardi@unicusano.it [Niccolò Cusano University, via Don Carlo Gnocchi, 3, 00166 Rome (Italy); Carnevale, Ennio [Industrial Engineering Department, University of Florence, via Santa Marta, 3, 50129 Florence (Italy); Corti, Andrea [Department of Information Engineering and Mathematics, University of Siena, via Roma, 56, 53100 (Italy)

    2015-03-15

    Highlights: • The topic of energy recovery from waste by thermal treatment is reviewed. • Combustion, gasification and pyrolysis were considered. • Data about energy recovery performances were collected and compared. • Main limitations to high values of energy performances were illustrated. • Diffusion of energy recovery from waste in EU, USA and other countries was discussed. - Abstract: The aim of this work is to identify the current level of energy recovery through waste thermal treatment. The state of the art in energy recovery from waste was investigated, highlighting the differences for different types of thermal treatment, considering combustion/incineration, gasification and pyrolysis. Also different types of wastes – Municipal Solid Waste (MSW), Refuse Derived Fuel (RDF) or Solid Refuse Fuels (SRF) and some typologies of Industrial Waste (IW) (sludge, plastic scraps, etc.) – were included in the analysis. The investigation was carried out mainly reviewing papers, published in scientific journals and conferences, but also considering technical reports, to gather more information. In particular the goal of this review work was to synthesize studies in order to compare the values of energy conversion efficiencies measured or calculated for different types of thermal processes and different types of waste. It emerged that the dominant type of thermal treatment is incineration associated to energy recovery in a steam cycle. When waste gasification is applied, the produced syngas is generally combusted in a boiler to generate steam for energy recovery in a steam cycle. For both the possibilities – incineration or gasification – cogeneration is the mean to improve energy recovery, especially for small scale plants. In the case of only electricity production, the achievable values are strongly dependent on the plant size: for large plant size, where advanced technical solutions can be applied and sustained from an economic point of view, net

  5. Technology for industrial waste heat recovery by organic Rankine cycle systems

    Science.gov (United States)

    Cain, W. G.; Drake, R. L.; Prisco, C. J.

    1984-10-01

    The recovery of industrial waste heat and the conversion thereof to useful electric power by use of Rankine cycle systems is studied. Four different aspects of ORC technology were studied: possible destructive chemical reaction between an aluminum turbine wheel and R-113 working fluid under wheel-to-rotor rub conditions; possible chemical reaction between stainless steel or carbon steel and any of five different ORC working fluids under rotor-stator rub conditions; effects on electric generator properties of extended exposure to an environment of saturated R-113 vapor/fluid; and operational proof tests under laboratory conditions of two 1070 kW, ORC, R-113 hermetic turbogenerator power module systems.

  6. A case-study of landfill minimization and material recovery via waste co-gasification in a new waste management scheme.

    Science.gov (United States)

    Tanigaki, Nobuhiro; Ishida, Yoshihiro; Osada, Morihiro

    2015-03-01

    This study evaluates municipal solid waste co-gasification technology and a new solid waste management scheme, which can minimize final landfill amounts and maximize material recycled from waste. This new scheme is considered for a region where bottom ash and incombustibles are landfilled or not allowed to be recycled due to their toxic heavy metal concentration. Waste is processed with incombustible residues and an incineration bottom ash discharged from existent conventional incinerators, using a gasification and melting technology (the Direct Melting System). The inert materials, contained in municipal solid waste, incombustibles and bottom ash, are recycled as slag and metal in this process as well as energy recovery. Based on this new waste management scheme with a co-gasification system, a case study of municipal solid waste co-gasification was evaluated and compared with other technical solutions, such as conventional incineration, incineration with an ash melting facility under certain boundary conditions. From a technical point of view, co-gasification produced high quality slag with few harmful heavy metals, which was recycled completely without requiring any further post-treatment such as aging. As a consequence, the co-gasification system had an economical advantage over other systems because of its material recovery and minimization of the final landfill amount. Sensitivity analyses of landfill cost, power price and inert materials in waste were also conducted. The higher the landfill costs, the greater the advantage of the co-gasification system has. The co-gasification was beneficial for landfill cost in the range of 80 Euro per ton or more. Higher power prices led to lower operation cost in each case. The inert contents in processed waste had a significant influence on the operating cost. These results indicate that co-gasification of bottom ash and incombustibles with municipal solid waste contributes to minimizing the final landfill amount and has

  7. Handbook of solid waste disposal: materials and energy recovery

    Energy Technology Data Exchange (ETDEWEB)

    Pavoni, J L; Heer, Jr, J E; Hagerty, D J

    1975-01-01

    Traditional and innovative solid waste disposal techniques and new developments in materials and energy recovery systems are analyzed. Each method is evaluated in terms of system methodology, controlling process parameters, and process requirements, by-products, economics, and case histories. Medium and high temperature incineration; wet pulping; landfill with leachate recirculation; the Hercules, Inc., system; USBM front-end and back-end systems; pyrolysis; waste heat utilization, the Combustion Power Unit-400; use of refuse as a supplementary fuel; and methane production from anaerobic fermentation systems are considered, as well as sanitary landfilling, incineration, and composting. European solid waste management techniques are evaluated for their applicability to the US.

  8. Integrated energy and emission management for heavy-duty diesel engines with waste heat recovery system

    NARCIS (Netherlands)

    Willems, F.P.T.; Kupper, F.; Cloudt, R.P.M.

    2012-01-01

    This study presents an integrated energy and emission management strategy for an Euro-VI diesel engine with Waste Heat Recovery (WHR) system. This Integrated Powertrain Control (IPC) strategy optimizes the CO2-NOx trade-off by minimizing the operational costs associated with fuel and AdBlue

  9. Impact of waste heat recovery systems on energy efficiency improvement of a heavy-duty diesel engine

    Science.gov (United States)

    Ma, Zheshu; Chen, Hua; Zhang, Yong

    2017-09-01

    The increase of ship's energy utilization efficiency and the reduction of greenhouse gas emissions have been high lightened in recent years and have become an increasingly important subject for ship designers and owners. The International Maritime Organization (IMO) is seeking measures to reduce the CO2 emissions from ships, and their proposed energy efficiency design index (EEDI) and energy efficiency operational indicator (EEOI) aim at ensuring that future vessels will be more efficient. Waste heat recovery can be employed not only to improve energy utilization efficiency but also to reduce greenhouse gas emissions. In this paper, a typical conceptual large container ship employing a low speed marine diesel engine as the main propulsion machinery is introduced and three possible types of waste heat recovery systems are designed. To calculate the EEDI and EEOI of the given large container ship, two software packages are developed. From the viewpoint of operation and maintenance, lowering the ship speed and improving container load rate can greatly reduce EEOI and further reduce total fuel consumption. Although the large container ship itself can reach the IMO requirements of EEDI at the first stage with a reduction factor 10% under the reference line value, the proposed waste heat recovery systems can improve the ship EEDI reduction factor to 20% under the reference line value.

  10. Impact of waste heat recovery systems on energy efficiency improvement of a heavy-duty diesel engine

    Directory of Open Access Journals (Sweden)

    Ma Zheshu

    2017-09-01

    Full Text Available The increase of ship’s energy utilization efficiency and the reduction of greenhouse gas emissions have been high lightened in recent years and have become an increasingly important subject for ship designers and owners. The International Maritime Organization (IMO is seeking measures to reduce the CO2 emissions from ships, and their proposed energy efficiency design index (EEDI and energy efficiency operational indicator (EEOI aim at ensuring that future vessels will be more efficient. Waste heat recovery can be employed not only to improve energy utilization efficiency but also to reduce greenhouse gas emissions. In this paper, a typical conceptual large container ship employing a low speed marine diesel engine as the main propulsion machinery is introduced and three possible types of waste heat recovery systems are designed. To calculate the EEDI and EEOI of the given large container ship, two software packages are developed. From the viewpoint of operation and maintenance, lowering the ship speed and improving container load rate can greatly reduce EEOI and further reduce total fuel consumption. Although the large container ship itself can reach the IMO requirements of EEDI at the first stage with a reduction factor 10% under the reference line value, the proposed waste heat recovery systems can improve the ship EEDI reduction factor to 20% under the reference line value.

  11. A case-study of landfill minimization and material recovery via waste co-gasification in a new waste management scheme

    Energy Technology Data Exchange (ETDEWEB)

    Tanigaki, Nobuhiro, E-mail: tanigaki.nobuhiro@eng.nssmc.com [NIPPON STEEL & SUMIKIN ENGINEERING CO., LTD., (EUROPEAN OFFICE), Am Seestern 8, 40547 Dusseldorf (Germany); Ishida, Yoshihiro [NIPPON STEEL & SUMIKIN ENGINEERING CO., LTD., 46-59, Nakabaru, Tobata-ku, Kitakyushu, Fukuoka 804-8505 (Japan); Osada, Morihiro [NIPPON STEEL & SUMIKIN ENGINEERING CO., LTD., (Head Office), Osaki Center Building 1-5-1, Osaki, Shinagawa-ku, Tokyo 141-8604 (Japan)

    2015-03-15

    Highlights: • A new waste management scheme and the effects of co-gasification of MSW were assessed. • A co-gasification system was compared with other conventional systems. • The co-gasification system can produce slag and metal with high-quality. • The co-gasification system showed an economic advantage when bottom ash is landfilled. • The sensitive analyses indicate an economic advantage when the landfill cost is high. - Abstract: This study evaluates municipal solid waste co-gasification technology and a new solid waste management scheme, which can minimize final landfill amounts and maximize material recycled from waste. This new scheme is considered for a region where bottom ash and incombustibles are landfilled or not allowed to be recycled due to their toxic heavy metal concentration. Waste is processed with incombustible residues and an incineration bottom ash discharged from existent conventional incinerators, using a gasification and melting technology (the Direct Melting System). The inert materials, contained in municipal solid waste, incombustibles and bottom ash, are recycled as slag and metal in this process as well as energy recovery. Based on this new waste management scheme with a co-gasification system, a case study of municipal solid waste co-gasification was evaluated and compared with other technical solutions, such as conventional incineration, incineration with an ash melting facility under certain boundary conditions. From a technical point of view, co-gasification produced high quality slag with few harmful heavy metals, which was recycled completely without requiring any further post-treatment such as aging. As a consequence, the co-gasification system had an economical advantage over other systems because of its material recovery and minimization of the final landfill amount. Sensitivity analyses of landfill cost, power price and inert materials in waste were also conducted. The higher the landfill costs, the greater the

  12. Supervisory control of a heavy-duty diesel engine with an electrified waste heat recovery system

    NARCIS (Netherlands)

    Feru, E.; Murgovski, N.; de Jager, A.G.; Willems, F.P.T.

    This paper presents an integrated energy and emission management strategy, called Integrated Powertrain Control (IPC), for an Euro-VI diesel engine with an electrified waste heat recovery system. This strategy optimizes the CO2–NOxCO2–NOx trade-off by minimizing the operational costs associated with

  13. Actinide recovery from waste and low-grade sources

    International Nuclear Information System (INIS)

    Navratil, J.D.; Schulz, W.W.

    1982-01-01

    Actinide and nuclear fuel cycle operations generate a variety of process waste streams. New methods are needed to remove and recover actinides. More interest is also being expressed in recovering uranium from oceans, phosphoric acid, and other low grade sources. To meet the need for an up-to-date status report in the area of actinide recovery from waste and low grade sources, these papers were brought together. The papers provide an authoritative, in-depth coverage of an important area of nuclear and industrial and engineering chemistry which cover the following topics: uranium recovery from oceans and phosphoric acid; recovery of actinides from solids and liquid wastes; plutonium scrap recovery technology; and other new developments in actinide recovery processes

  14. Waste Heat Recovery. Technology and Opportunities in U.S. Industry

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Ilona [BCS, Inc., Laurel, MD (United States); Choate, William T. [BCS, Inc., Laurel, MD (United States); Davidson, Amber [BCS, Inc., Laurel, MD (United States)

    2008-03-01

    This study was initiated in order to evaluate RD&D needs for improving waste heat recovery technologies. A bottomup approach is used to evaluate waste heat quantity, quality, recovery practices, and technology barriers in some of the largest energyconsuming units in U.S. manufacturing. The results from this investigation serve as a basis for understanding the state of waste heat recovery and providing recommendations for RD&D to advance waste heat recovery technologies.

  15. Refrigeration waste heat recovery

    Energy Technology Data Exchange (ETDEWEB)

    1983-03-01

    UK Super A Stores was built in 1972 and is part of a small indoor shopping complex linked together by a heated mall. The store has a public floor area of approximately 1,232 m{sup 2} (13,261 ft.{sup 2}) and sells the usual variety of food produce including a large selection of frozen foods. There are five lengths of refrigerated display cabinets with a total area of approximately 78 m{sup 2}. There are also some frozen food storage rooms at the back of the store. This report provides a description of a waste heat recovery system within a medium sized food store. It details how the waste heat that is produced by the conventional frozen food display cabinets, can be reused by the store's space heating system. Recommended uses for this waste heat include: diverting to the loading bays which would make the reheat coil unnecessary, diverting to the front of the shop, and heating the adjacent shopping mall. The CREDA (Conservation and Renewable Energy Demonstration Assistance) program contributed $17,444 towards the total project cost of $30,444. The project was initiated by the store owner, who is now realizing a lower annual fuel consumption, with the resulting financial savings. 11 figs., 1 tab.

  16. Analysis of ORC (Organic Rankine Cycle) systems with pure hydrocarbons and mixtures of hydrocarbon and retardant for engine waste heat recovery

    International Nuclear Information System (INIS)

    Song, Jian; Gu, Chun-wei

    2015-01-01

    The Organic Rankine Cycle (ORC) has been demonstrated to be a promising technology for the recovery of engine waste heat. Systems with hydrocarbons as the working fluids exhibit good thermal performance. However, the flammability of hydrocarbons limits their practical applications because of safety concerns. This paper examines the potential of using mixtures of a hydrocarbon and a retardant in an ORC system for engine waste heat recovery. Refrigerants R141b and R11 are selected as the retardants and blended with the hydrocarbons to form zeotropic mixtures. The flammability is suppressed, and in addition, zeotropic mixtures provide better temperature matches with the heat source and sink, which reduces the exergy loss within the heat exchange processes, thereby increasing the cycle efficiency. Energetic and exergetic analysis of ORC systems with pure hydrocarbons and with mixtures of a hydrocarbon and a retardant are conducted and compared. The net power output and the second law efficiency are chosen as the evaluation criteria to select the suitable working fluid compositions and to define the optimal set of thermodynamic parameters. The simulation results reveal that the ORC system with cyclohexane/R141b (0.5/0.5) is optimal for this engine waste heat recovery case, thereby increasing the net power output of the system by 13.3% compared to pure cyclohexane. - Highlights: • ORC with zeotropic mixtures for engine waste heat recovery is discussed. • Energetic and exergetic analysis of ORC system are conducted. • Optimal mixture working fluid composition is identified. • Greater utilization of jacket water and lower irreversible loss are important.

  17. Effects of Degree of Superheat on the Running Performance of an Organic Rankine Cycle (ORC Waste Heat Recovery System for Diesel Engines under Various Operating Conditions

    Directory of Open Access Journals (Sweden)

    Kai Yang

    2014-04-01

    Full Text Available This study analyzed the variation law of engine exhaust energy under various operating conditions to improve the thermal efficiency and fuel economy of diesel engines. An organic Rankine cycle (ORC waste heat recovery system with internal heat exchanger (IHE was designed to recover waste heat from the diesel engine exhaust. The zeotropic mixture R416A was used as the working fluid for the ORC. Three evaluation indexes were presented as follows: waste heat recovery efficiency (WHRE, engine thermal efficiency increasing ratio (ETEIR, and output energy density of working fluid (OEDWF. In terms of various operating conditions of the diesel engine, this study investigated the variation tendencies of the running performances of the ORC waste heat recovery system and the effects of the degree of superheat on the running performance of the ORC waste heat recovery system through theoretical calculations. The research findings showed that the net power output, WHRE, and ETEIR of the ORC waste heat recovery system reach their maxima when the degree of superheat is 40 K, engine speed is 2200 r/min, and engine torque is 1200 N·m. OEDWF gradually increases with the increase in the degree of superheat, which indicates that the required mass flow rate of R416A decreases for a certain net power output, thereby significantly decreasing the risk of environmental pollution.

  18. Low-temperature waste-heat recovery in the food and paper industries

    Energy Technology Data Exchange (ETDEWEB)

    Foell, W.K.; Lund, D.; Mitchell, J.W.; Ray, D.; Stevenson, R.; TenWolde, A.

    1980-11-01

    The potential of low-temperature waste-heat recovery technology is examined. An examination of barriers to impede waste-heat recovery is made and research programs are identified. Extensive information and data are presented in the following chapters: Waste Heat Recovery in the Wisconsin Food Industry; Waste Heat Recovery in the Wisconsin Pulp and Paper Industry; Industries' Economic Analysis of Energy Conservation Projects; Industrial Waste Heat Recovery (selection of heat-recovery heat exchangers for industrial applications, simplified procedure for selection of heat recovery heat exchangers for industrial applications, selection of heat pumps for industrial applications); Institutional Aspects of Industrial Energy Conservation (economic motivation for energy conservation and the industrial response, intrafirm idea channels and their sources, evaluation and approval of plant improvement projects, reported barriers to adopting waste heat recovery projects and recommendations for government involvement, and the final chapter is a summary with major conclusions given. Additional information is given in two appendices on the potential waste heat recovery in a cheese plant (calculation) and conditions for optimum exchanger size and break-even fuel cost. (MCW)

  19. Possibilities of heat energy recovery from greywater systems

    Science.gov (United States)

    Niewitecka, Kaja

    2018-02-01

    Waste water contains a large amount of heat energy which is irretrievably lost, so it is worth thinking about the possibilities of its recovery. It is estimated that in a residential building with full sanitary fittings, about 70% of the total tap water supplied is discharged as greywater and could be reused. The subject of the work is the opportunity to reuse waste water as an alternative source of heat for buildings. For this purpose, the design of heat exchangers used in the process of greywater heat recovery in indoor sewage systems, public buildings as well as in industrial plants has been reviewed. The possibility of recovering heat from waste water transported in outdoor sewage systems was also taken into consideration. An exemplary waste water heat recovery system was proposed, and the amount of heat that could be obtained using a greywater heat recovery system in a residential building was presented. The work shows that greywater heat recovery systems allow for significant savings in preheating hot tap water, and the rate of cost reimbursement depends on the purpose of the building and the type of installation. At the same time, the work shows that one should adjust the construction solutions of heat exchangers and indoor installations in buildings to the quality of the medium flowing, which is greywater.

  20. Performance analysis of waste heat recovery with a dual loop organic Rankine cycle (ORC) system for diesel engine under various operating conditions

    International Nuclear Information System (INIS)

    Yang, Fubin; Dong, Xiaorui; Zhang, Hongguang; Wang, Zhen; Yang, Kai; Zhang, Jian; Wang, Enhua; Liu, Hao; Zhao, Guangyao

    2014-01-01

    Highlights: • Dual loop ORC system is designed to recover waste heat from a diesel engine. • R245fa is used as working fluid for the dual loop ORC system. • Waste heat characteristic under engine various operating conditions is analyzed. • Performance of the combined system under various operating conditions is studied. • The waste heat from coolant and intake air has considerable potential for recovery. - Abstract: To take full advantage of the waste heat from a diesel engine, a set of dual loop organic Rankine cycle (ORC) system is designed to recover exhaust energy, waste heat from the coolant system, and released heat from turbocharged air in the intercooler of a six-cylinder diesel engine. The dual loop ORC system consists of a high temperature loop ORC system and a low temperature loop ORC system. R245fa is selected as the working fluid for both loops. Through the engine test, based on the first and second laws of thermodynamics, the performance of the dual loop ORC system for waste heat recovery is discussed based on the analysis of its waste heat characteristics under engine various operating conditions. Subsequently, the diesel engine-dual loop ORC combined system is presented, and the effective thermal efficiency and the brake specific fuel consumption (BSFC) are chosen to evaluate the operating performances of the diesel engine-dual loop ORC combined system. The results show that, the maximum waste heat recovery efficiency (WHRE) of the dual loop ORC system can reach 5.4% under engine various operating conditions. At the engine rated condition, the dual loop ORC system achieves the largest net power output at 27.85 kW. Compared with the diesel engine, the thermal efficiency of the combined system can be increased by 13%. When the diesel engine is operating at the high load region, the BSFC can be reduced by a maximum 4%

  1. Energy recovery from wastes

    International Nuclear Information System (INIS)

    De Stefanis, P.

    1999-01-01

    In this paper are reported analysis of some energy recovery form wastes plants. In this work are considered materials and energy flows, environmental impacts and related treatment costs and financial resources [it

  2. Compatibility analysis of material and energy recovery in a regional solid waste management system.

    Science.gov (United States)

    Chang, Ying-Hsi; Chang, Ni-Bin

    2003-01-01

    The rising prices of raw materials and concerns about energy conservation have resulted in an increasing interest in the simultaneous recovery of materials and energy from waste streams. Compatibility exists for several economic, environmental, and managerial reasons. Installing an on-site or off-site presorting facility before an incinerator could be a feasible alternative to achieve both goals if household recycling programs cannot succeed in local communities. However, the regional impacts of presorting solid waste on a waste-to-energy facility remain unclear because of the inherent complexity of solid waste compositions and properties over different areas. This paper applies a system-based approach to assess the impact of installing a refuse-derived fuel (RDF) process before an incinerator. Such an RDF process, consisting of standard unit operations of shredding, magnetic separation, trommel screening, and air classification, might be useful for integrating the recycling and presorting efforts for a large-scale municipal incinerator from a regional sense. An optimization modeling analysis is performed to characterize such integration potential so that the optimal size of the RDF process and associated shipping patterns for flow control can be foreseen. It aims at exploring how the waste inflows with different rates of generation, physical and chemical compositions, and heating values collected from differing administrative districts can be processed by either a centralized presorting facility or an incinerator to meet both the energy recovery and throughput requirements. A case study conducted in Taipei County, which is one of the most densely populated metropolitan areas in Taiwan, further confirms the application potential of such a cost-benefit analysis.

  3. Ethanol production from food waste at high solids content with vacuum recovery technology.

    Science.gov (United States)

    Huang, Haibo; Qureshi, Nasib; Chen, Ming-Hsu; Liu, Wei; Singh, Vijay

    2015-03-18

    Ethanol production from food wastes does not only solve environmental issues but also provides renewable biofuels. This study investigated the feasibility of producing ethanol from food wastes at high solids content (35%, w/w). A vacuum recovery system was developed and applied to remove ethanol from fermentation broth to reduce yeast ethanol inhibition. A high concentration of ethanol (144 g/L) was produced by the conventional fermentation of food waste without a vacuum recovery system. When the vacuum recovery is applied to the fermentation process, the ethanol concentration in the fermentation broth was controlled below 100 g/L, thus reducing yeast ethanol inhibition. At the end of the conventional fermentation, the residual glucose in the fermentation broth was 5.7 g/L, indicating incomplete utilization of glucose, while the vacuum fermentation allowed for complete utilization of glucose. The ethanol yield for the vacuum fermentation was found to be 358 g/kg of food waste (dry basis), higher than that for the conventional fermentation at 327 g/kg of food waste (dry basis).

  4. Applications of thermal energy storage to waste heat recovery in the food processing industry

    Science.gov (United States)

    Trebilcox, G. J.; Lundberg, W. L.

    1981-03-01

    The canning segment of the food processing industry is a major energy user within that industry. Most of its energy demand is met by hot water and steam and those fluids, in addition to product cooling water, eventually flow from the processes as warm waste water. To minimize the possibility of product contamination, a large percentage of that waste water is sent directly to factory drains and sewer systems without being recycled and in many cases the thermal energy contained by the waste streams also goes unreclaimed and is lost from further use. Waste heat recovery in canning facilities can be performed economically using systems that employ thermal energy storage (TES). A project was proposed in which a demonstration waste heat recovery system, including a TES feature, would be designed, installed and operated.

  5. A novel cascade organic Rankine cycle (ORC) system for waste heat recovery of truck diesel engines

    International Nuclear Information System (INIS)

    Chen, Tao; Zhuge, Weilin; Zhang, Yangjun; Zhang, Lei

    2017-01-01

    Highlights: • A confluent cascade expansion ORC (CCE-ORC) system is proposed. • Cyclopentane is considered as the most suitable fluid for this system. • The CCE-ORC system performance under full operating conditions is analyzed. • The BSFC of diesel engine can be reduced by 9.2% with the CCE-ORC system. • Performance comparison of CCE-ORC and dual-loop ORC is conducted. - Abstract: Waste heat recovery (WHR) of engines has attracted increasingly more concerns recently, as it can improve engine thermal efficiency and help truck manufacturers meet the restrictions of CO_2 emission. The organic Rankine cycle (ORC) has been considered as the most potential technology of WHR. To take full advantage of waste heat energy, the waste heat in both exhaust gases and the coolant need to be recovered; however, conventional multi-source ORC systems are too complex for vehicle applications. This paper proposed a confluent cascade expansion ORC (CCE-ORC) system for engine waste heat recovery, which has simpler architecture, a smaller volume and higher efficiency compared with conventional dual-loop ORC systems. Cyclopentane is analyzed to be regarded as the most suitable working fluid for this novel system. A thermodynamic simulation method is established for this system, and off-design performance of main components and the working fluid side pressure drop in the condenser have been taken into consideration. System performance simulations under full engine operating conditions are conducted for the application of this system on a heavy-duty truck diesel engine. Results show that the engine peak thermal efficiency can be improved from 45.3% to 49.5% where the brake specific fuel consumption (BSFC) decreases from 185.6 g/(kW h) to 169.9 g/(kW h). The average BSFC in the frequently operating region can decrease by 9.2% from 187.9 g/(kW h) to 172.2 g/(kW h). Compared with the conventional dual-loop ORC system, the CCE-ORC system can generate 8% more net power, while the

  6. A feasibility analysis of waste heat recovery systems for marine applications

    International Nuclear Information System (INIS)

    Baldi, Francesco; Gabrielii, Cecilia

    2015-01-01

    The shipping sector is today facing challenges which require a larger focus on energy efficiency and fuel consumption. In this article, a methodology for performing a feasibility analysis of the installation of a WHR (waste heat recovery) system on a vessel is described and applied to a case study vessel. The method proposes to calculate the amount of energy and exergy available for the WHR systems and to compare it with the propulsion and auxiliary power needs based on available data for ship operational profile. The expected exergy efficiency of the WHR system is used as an independent variable, thus allowing estimating the expected fuel savings when a detailed design of the WHR system is not yet available. The use of the proposed method can guide in the choice of the installation depending on the requirements of the owner in terms of payback time and capital investment. The results of the application of this method to the case study ship suggest that fuel savings of 5%–15% can realistically be expected, depending on the sources of waste heat used and on the expected efficiency of the WHR system. - Highlights: • Method for simple estimation of benefits from WHR on ships. • High detail account of ship operational profile is included in the analysis. • Detailed knowledge of the WHR system is not required; its exergy efficiency is used as independent variable

  7. Waste heat recovery options in a large gas-turbine combined power plant

    Science.gov (United States)

    Upathumchard, Ularee

    This study focuses on power plant heat loss and how to utilize the waste heat in energy recovery systems in order to increase the overall power plant efficiency. The case study of this research is a 700-MW natural gas combined cycle power plant, located in a suburban area of Thailand. An analysis of the heat loss of the combustion process, power generation process, lubrication system, and cooling system has been conducted to evaluate waste heat recovery options. The design of the waste heat recovery options depends to the amount of heat loss from each system and its temperature. Feasible waste heat sources are combustion turbine (CT) room ventilation air and lubrication oil return from the power plant. The following options are being considered in this research: absorption chillers for cooling with working fluids Ammonia-Water and Water-Lithium Bromide (in comparison) and Organic Rankine Cycle (ORC) with working fluids R134a and R245fa. The absorption cycles are modeled in three different stages; single-effect, double-effect and half-effect. ORC models used are simple ORC as a baseline, ORC with internal regenerator, ORC two-phase flash expansion ORC and ORC with multiple heat sources. Thermodynamic models are generated and each system is simulated using Engineering Equation Solver (EES) to define the most suitable waste heat recovery options for the power plant. The result will be synthesized and evaluated with respect to exergy utilization efficiency referred as the Second Law effectiveness and net output capacity. Results of the models give recommendation to install a baseline ORC of R134a and a double-effect water-lithium bromide absorption chiller, driven by ventilation air from combustion turbine compartment. The two technologies yield reasonable economic payback periods of 4.6 years and 0.7 years, respectively. The fact that this selected power plant is in its early stage of operation allows both models to economically and effectively perform waste heat

  8. Microbial Heat Recovery Cell (MHRC) System Concept

    Energy Technology Data Exchange (ETDEWEB)

    None

    2017-09-01

    This factsheet describes a project that aimed to develop a microbial heat recovery cell (MHRC) system that combines a microbial reverse electrodialysis technology with waste heat recovery to convert industrial effluents into electricity and hydrogen.

  9. HD Diesel engine equipped with a bottoming Rankine cycle as a waste heat recovery system. Part 1: Study and analysis of the waste heat energy

    OpenAIRE

    Dolz Ruiz, Vicente; Novella Rosa, Ricardo; García Martínez, Antonio; Sánchez Serrano, Jaime

    2012-01-01

    This paper describes the study of different bottoming Rankine cycles with water-steam and/or ORC configurations in classical and innovative setups such as a waste heat recovery system in a Heavy Duty Diesel (HDD) Engine. This work has been divided in two parts. This first part describes the model of the studied HDD engine and the available waste energy sources in this HDD Engine. The waste energy sources are studied from the standpoint of energy analysis to determine which are the most approp...

  10. Recovery and recycling practices in municipal solid waste management in Lagos, Nigeria

    International Nuclear Information System (INIS)

    Kofoworola, O.F.

    2007-01-01

    The population of Lagos, the largest city in Nigeria, increased seven times from 1950 to 1980 with a current population of over 10 million inhabitants. The majority of the city's residents are poor. The residents make a heavy demand on resources and, at the same time, generate large quantities of solid waste. Approximately 4 million tonnes of municipal solid waste (MSW) is generated annually in the city, including approximately 0.5 million of untreated industrial waste. This is approximately 1.1 kg/cap/day. Efforts by the various waste management agencies set up by the state government to keep its streets and neighborhoods clean have achieved only minimal success. This is because more than half of these wastes are left uncollected from the streets and the various locations due to the inadequacy and inefficiency of the waste management system. Whilst the benefits of proper solid waste management (SWM), such as increased revenues for municipal bodies, higher productivity rate, improved sanitation standards and better health conditions, cannot be overemphasized, it is important that there is a reduction in the quantity of recoverable materials in residential and commercial waste streams to minimize the problem of MSW disposal. This paper examines the status of recovery and recycling in current waste management practice in Lagos, Nigeria. Existing recovery and recycling patterns, recovery and recycling technologies, approaches to materials recycling, and the types of materials recovered from MSW are reviewed. Based on these, strategies for improving recovery and recycling practices in the management of MSW in Lagos, Nigeria are suggested

  11. Thermal performance analysis of Brayton cycle with waste heat recovery boiler for diesel engines of offshore oil production facilities

    International Nuclear Information System (INIS)

    Liu, Xianglong; Gong, Guangcai; Wu, Yi; Li, Hangxin

    2016-01-01

    Highlights: • Comparison of Brayton cycle with WHRB adopted in diesel engines with and without fans by thermal performance. • Waste heat recovery technology for FPSO. • The thermoeconomic analysis for the heat recovery for FPSO. - Abstract: This paper presents the theoretical analysis and on-site testing on the thermal performance of the waste heat recovery system for offshore oil production facilities, including the components of diesel engines, thermal boilers and waste heat boilers. We use the ideal air standard Brayton cycle to analyse the thermal performance. In comparison with the traditional design, the fans at the engine outlet of the waste heat recovery boiler is removed due to the limited space of the offshore platform. The cases with fan and without fan are compared in terms of thermal dynamics performance, energy efficiency and thermo-economic index of the system. The results show that the application of the WHRB increases the energy efficiency of the whole system, but increases the flow resistance in the duct. It is proved that as the waste heat recovery boiler takes the place of the thermal boiler, the energy efficiency of whole system without fan is slightly reduced but heat recovery efficiency is improved. This research provides an important guidance to improve the waste heat recovery for offshore oil production facilities.

  12. Preliminary market assessment of fluidized-bed waste-heat recovery technology

    Energy Technology Data Exchange (ETDEWEB)

    Campos, F.T.; Fey, C.L.; Grogan, P.J.; Klein, N.P.

    1980-06-01

    A preliminary assessment of fluidized-bed waste-heat recovery (FBWHR) system market potential is presented with emphasis on the factors influencing industrial acceptability. Preliminary market potential areas are identified based on the availability of waste heat. Trends in energy use are examined to see the effect they might have on these market potential areas in the future. Focus groups interviews are used to explore important factors in the industrial decision-making process. These important factors are explored quantitatively in a survey of industrial plant engineers. The survey deals with the waste-heat boiler configuration of the FBWHR system. Results indicate market acceptance of the fluidized-bed waste-heat boiler could be quite low.

  13. Influence of working fluids on Organic Rankine Cycle for waste heat recovery applications

    Energy Technology Data Exchange (ETDEWEB)

    Struzyna, Ralf; Eifler, Wolfgang; Steinmill, Jens [Bochum Univ. (Germany). Lehrstuhl fuer Verbrennungsmotoren

    2012-11-01

    More than 50% of the energy contained in fuel is lost due to the loss of heat content to the exhaust gas, the cooling water or the charge air cooler medium. Therefore, one of the most promising attempts to further increase the efficiency of internal combustion engines is waste heat recovery by means of a combined process. The Organic Rankine Cycle (ORC) is a promising process for waste heat recovery systems. The main purpose is to identify suitable working fluids to achieve best system performance. Therefore an analysis of the influence of different working fluids on system output is required. (orig.)

  14. Industrial Waste Heat Recovery - Potential Applications, Available Technologies and Crosscutting R&D Opportunities

    Energy Technology Data Exchange (ETDEWEB)

    Thekdi, Arvind [E3M Inc, North Potomac, MD (United States); Nimbalkar, Sachin U. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-01-01

    The purpose of this report was to explore key areas and characteristics of industrial waste heat and its generation, barriers to waste heat recovery and use, and potential research and development (R&D) opportunities. The report also provides an overview of technologies and systems currently available for waste heat recovery and discusses the issues or barriers for each. Also included is information on emerging technologies under development or at various stages of demonstrations, and R&D opportunities cross-walked by various temperature ranges, technology areas, and energy-intensive process industries.

  15. A review of concentrated photovoltaic-thermal (CPVT) hybrid solar systems with waste heat recovery (WHR)

    Institute of Scientific and Technical Information of China (English)

    Xing Ju; Chao Xu; Zhirong Liao; Xiaoze Du; Gaosheng Wei; Zhifeng Wang; Yongping Yang

    2017-01-01

    In conventional photovoltaic (PV) systems,a large portion of solar energy is dissipated as waste heat since the generating efficiency is usually less than 30%.As the dissipated heat can be recovered for various applications,the wasted heat recovery concentrator PV/thermal (WHR CPVT) hybrid systems have been developed.They can provide both electricity and usable heat by combining thermal systems with concentrator PV (CPV) module,which dramatically improves the overall conversion efficiency of solar energy.This paper systematically and comprehensively reviews the research and development ofWHR CPVT systems.WHR CPVT systems with innovative design configurations,different theoretical evaluation models and experimental test processes for several implementations are presented in an integrated manner.We aim to provide a global point of view on the research trends,market potential,technical obstacles,and the future work which is required in the development of WHR CPVT technology.Possibly,it will offer a generic guide to the investigators who are interested in the study of WHR CPVT systems.

  16. Waste acid/metal solution reduction and recovery by vacuum distillation

    International Nuclear Information System (INIS)

    Jones, E.O.; Wilcox, W.A.; Johnson, N.T.; Bowdish, F.W.

    1995-01-01

    Processes involving distillation under reduced pressure were developed at the Pacific Northwest Laboratory several years ago to recover spent acid solutions generated during the manufacture of nuclear fuel for the N-Reactor at the Hanford site. Following construction and testing of a pilot-plant, the technology was licensed to Viatec Recovery Systems, Inc. for commercialization. The technology developed included specialized distillation and rectification of volatile acids, removal of water and/or volatile acid from sulfuric acid, and precipitation of salts. A key feature of the Waste Acid Detoxification and Reclamation (WADR) technology is the development and use of advanced thermoplastic and fluoropolymer materials of construction in all critical process equipment. The technology was then expanded to include crystallization to recover metal salts for possible reuse. Economic and environmental advantages of the procedures include recovery of acids for reuse, simplification or elimination of the disposal of waste solutions, and possible recovery of metals. Industries expected to benefit from such applications include galvanizing, electroplating, sand leaching and any where metals are cleaned in acid solutions. Currently a modular system has been assembled for recovery of several different spent acid solutions

  17. Lyophilization for Water Recovery From Solid Waste

    Science.gov (United States)

    Flynn, Michael; Litwiller, Eric; Reinhard, Martin

    2003-01-01

    This abstract describes the development of a solid waste treatment system designed for a near term human exploration mission. The technology being developed is an energy- efficient lyophilization technique that recovers water from spacecraft solid waste. In the lyophilization process water in an aqueous waste is frozen and then sublimed, resulting in the separation of the waste into a dried solid material and liquid water. This technology is ideally suited to applications where water recovery rates approaching 100% are desirable but production of CO, is not. Water contained within solid wastes accounts for approximately 3% of the total water balance. If 100% closure of the water loop is desired the water contained within this waste would need to be recovered. To facilitate operation in microgravity thermoelectric heat pumps have be used in place of traditional fluid cycle heat pumps. A mathematical model of a thermoelectric lyophilizer has been developed and used to generate energy use and processing rate parameters. The results of laboratory investigations and discussions with ALS program management have been used to iteratively arrive at a prototype design. This design address operational limitations which were identified in the laboratory studies and handling and health concerns raised by ALS program management. The current prototype design is capable of integration into the ISS Waste Collection System.

  18. General Atomic's radioactive gas recovery system

    International Nuclear Information System (INIS)

    Mahn, J.A.; Perry, C.A.

    1975-01-01

    General Atomic Company has developed a Radioactive Gas Recovery System for the HTGR which separates, for purposes of retention, the radioactive components from the non-radioactive reactor plant waste gases. This provides the capability for reducing to an insignificant level the amount of radioactivity released from the gas waste system to the atmosphere--a most significant improvement in reducing total activity release to the environment. (U.S.)

  19. Rotary adsorbers for waste air purification and solvent recovery

    International Nuclear Information System (INIS)

    Konrad, G.; Eigenberger, G.

    1994-01-01

    Rotary Adsorbers for Waste Air Purification and Solvent Recovery. Thanks to their compact construction and low pressure drops, adsorbers with rotating adsorbent beds are highly suitable both for retrofitting of waste air purification units and generally for the removal of absorbable components from gas streams. When used in conjunction with straightforward hot gas desorption they permit almost complete purification of gas flows with concomitant concentration of the separated components in the desorbate by a factor of 10 to 20. They can also be used in conjunction with recovery of the separated components by partial condensation of the desorbate. Owing to the fixed coupling of adsorption and desorption times, which is determined by the geometry of the unit, the behaviour of the system is distinctly different from that of conventional multiple bed systems in cyclic operation. A detailed model description and computer simulation of operating behaviour are particularly useful for their analysis. It is shown that the behaviour of commercially available rotor concepts can be much better understood in this way and new concepts for exhaust air purification with integrated solvent recovery can be developed which are characterised by significantly reduced energy requirements for desorption and condensation. (orig.) [de

  20. Brayton cycle for internal combustion engine exhaust gas waste heat recovery

    Directory of Open Access Journals (Sweden)

    J Galindo

    2015-06-01

    Full Text Available An average passenger car engine effectively uses about one-third of the fuel combustion energy, while the two-thirds are wasted through exhaust gases and engine cooling. It is of great interest to automotive industry to recover some of this wasted energy, thus increasing the engine efficiency and lowering fuel consumption and contamination. Waste heat recovery for internal combustion engine exhaust gases using Brayton cycle machine was investigated. The principle problems of application of such a system in a passenger car were considered: compressor and expander machine selection, machine size for packaging under the hood, efficiency of the cycle, and improvement of engine efficiency. Important parameters of machines design have been determined and analyzed. An average 2-L turbocharged gasoline engine’s New European Driving Cycle points were taken as inlet points for waste heat recovery system. It is theoretically estimated that the recuperated power of 1515 W can be achieved along with 5.7% improvement in engine efficiency, at the point where engine power is 26550 W.

  1. Measures for waste water management from recovery processing of Zhushanxia uranium deposit

    International Nuclear Information System (INIS)

    Liu Yaochi; Xu Lechang

    2000-01-01

    Measures for waste water management from recovery processing of Zhushanxia uranium deposit of Wengyuan Mine is analyzed, which include improving process flow, recycling process water used in uranium mill as much as possible and choosing a suitable disposing system. All these can decrease the amount of waste water, and also reduce costs of disposing waste water and harm to environment

  2. Optimized Design of Thermoelectric Energy Harvesting Systems for Waste Heat Recovery from Exhaust Pipes

    Directory of Open Access Journals (Sweden)

    Marco Nesarajah

    2017-06-01

    Full Text Available With the increasing interest in energy efficiency and resource protection, waste heat recovery processes have gained importance. Thereby, one possibility is the conversion of the heat energy into electrical energy by thermoelectric generators. Here, a thermoelectric energy harvesting system is developed to convert the waste heat from exhaust pipes, which are very often used to transport the heat, e.g., in automobiles, in industrial facilities or in heating systems. That is why a mockup of a heating is built-up, and the developed energy harvesting system is attached. To build-up this system, a model-based development process is used. The setup of the developed energy harvesting system is very flexible to test different variants and an optimized system can be found in order to increase the energy yield for concrete application examples. A corresponding simulation model is also presented, based on previously developed libraries in Modelica®/Dymola®. In the end, it can be shown—with measurement and simulation results—that a thermoelectric energy harvesting system on the exhaust pipe of a heating system delivers extra energy and thus delivers a contribution for a more efficient usage of the inserted primary energy carrier.

  3. Programs of recovery of radioactive wastes from the trenches and land decontamination of the radioactive waste storage center

    International Nuclear Information System (INIS)

    Jimenez D, J.; Reyes L, J.

    1999-06-01

    In this report there are the decontamination program of the land of the Radioactive Waste Storage Center, the Program of Recovery of the radioactive waste of the trenches, the recovery of polluted bar with cobalt 60, the recovery of minerals and tailings of uranium and of earth with minerals and tailings of uranium, the recovery of worn out sealed sources and the waste recovery with the accustomed corresponding actions are presented. (Author)

  4. Implementation of Exhaust Gas Recirculation for Double Stage Waste Heat Recovery System on Large Container Vessel

    DEFF Research Database (Denmark)

    Andreasen, Morten; Marissal, Matthieu; Sørensen, Kim

    2014-01-01

    Concerned to push ships to have a lower impact on the environment, the International Maritime Organization are implementing stricter regulation of NOx and SOx emissions, called Tier III, within emission control areas (ECAs). Waste Heat Recovery Systems (WHRS) on container ships consist...... of recovering some of the waste heat from the exhaust gas. This heat is converted into electrical energy used on-board instead of using auxiliary engines. Exhaust Gas Recirculation (EGR) systems, are recirculating a part of the exhaust gas through the engine combustion chamber to reduce emissions. WHRS combined...... with EGR is a potential way to improve system efficiency while reducing emissions. This paper investigates the feasibility of combining the two systems. EGR dilutes the fuel, lowering the combustion temperature and thereby the formation of NOx, to reach Tier III limitation. A double stage WHRS is set up...

  5. Modeling the integration of thermoelectrics in anode exhaust combustors for waste heat recovery in fuel cell systems

    Science.gov (United States)

    Maghdouri Moghaddam, Anita

    Recently developed small-scale hydrocarbon-fueled fuel cell systems for portable power under 1 kW have overall system efficiencies typically no higher than 30-35%. This study explores the possibility of using of thermoelectric waste heat recovery in anode exhaust combustors to improve the fuel cell system efficiencies by as much as 4-5% points and further to reduce required battery power during system start-up. Two models were used to explore this. The first model simulated an integrated SOFC system with a simplified catalytic combustor model with TEs integrated between the combustor and air preheating channels for waste heat recovery. This model provided the basis for assessing how much additional power can achieve during SOFC operation as a function of fuel cell operating conditions. Results for the SOFC system indicate that while the TEs may recover as much as 4% of the total fuel energy into the system, their benefit is reduced in part because they reduce the waste heat transferred back to the incoming air stream and thereby lower the SOFC operating temperatures and operating efficiencies. A second model transient model of a TE-integrated catalytic combustor explored the performance of the TEs during transient start-up of the combustor. This model incorporated more detailed catalytic combustion chemistry and enhanced cooling air fin heat transfer to show the dynamic heating of the integrated combustor. This detailed model provided a basis for exploring combustor designs and showed the importance of adequate reactant preheating when burning exhaust from a reformer during start-up for the TEs to produce significant power to reduce the size of system batteries for start-up.

  6. Quantification of the resource recovery potential of municipal solid waste incineration bottom ashes

    Energy Technology Data Exchange (ETDEWEB)

    Allegrini, Elisa, E-mail: elia@env.dtu.dk [Technical University of Denmark, Department of Environmental Engineering, Building 115, 2800 Lyngby (Denmark); Maresca, Alberto; Olsson, Mikael Emil [Technical University of Denmark, Department of Environmental Engineering, Building 115, 2800 Lyngby (Denmark); Holtze, Maria Sommer [Afatek Ltd., Selinevej 18, 2300 Copenhagen S (Denmark); Boldrin, Alessio; Astrup, Thomas Fruergaard [Technical University of Denmark, Department of Environmental Engineering, Building 115, 2800 Lyngby (Denmark)

    2014-09-15

    Highlights: • Ferrous and non-ferrous metals were quantified in MSWI bottom ashes. • Metal recovery system efficiencies for bottom ashes were estimated. • Total content of critical elements was determined in bottom ash samples. • Post-incineration recovery is not viable for most critical elements. - Abstract: Municipal solid waste incineration (MSWI) plays an important role in many European waste management systems. However, increasing focus on resource criticality has raised concern regarding the possible loss of critical resources through MSWI. The primary form of solid output from waste incinerators is bottom ashes (BAs), which also have important resource potential. Based on a full-scale Danish recovery facility, detailed material and substance flow analyses (MFA and SFA) were carried out, in order to characterise the resource recovery potential of Danish BA: (i) based on historical and experimental data, all individual flows (representing different grain size fractions) within the recovery facility were quantified, (ii) the resource potential of ferrous (Fe) and non-ferrous (NFe) metals as well as rare earth elements (REE) was determined, (iii) recovery efficiencies were quantified for scrap metal and (iv) resource potential variability and recovery efficiencies were quantified based on a range of ashes from different incinerators. Recovery efficiencies for Fe and NFe reached 85% and 61%, respectively, with the resource potential of metals in BA before recovery being 7.2%ww for Fe and 2.2%ww for NFe. Considerable non-recovered resource potential was found in fine fraction (below 2 mm), where approximately 12% of the total NFe potential in the BA were left. REEs were detected in the ashes, but the levels were two or three orders of magnitude lower than typical ore concentrations. The lack of REE enrichment in BAs indicated that the post-incineration recovery of these resources may not be a likely option with current technology. Based on these results

  7. An improved CO_2-based transcritical Rankine cycle (CTRC) used for engine waste heat recovery

    International Nuclear Information System (INIS)

    Shu, Gequn; Shi, Lingfeng; Tian, Hua; Li, Xiaoya; Huang, Guangdai; Chang, Liwen

    2016-01-01

    Highlights: • Propose an improved CTRC system (PR-CTRC) for engine waste heat recovery. • The PR-CTRC achieves a significant increase in thermodynamic performance. • The PR-CTRC possesses a strong coupling capability for high and low grade waste heat. • The PR-CTRC uses smaller turbine design parameters than ORC systems. • Total cooling load analysis of combined engine and recovery system was conducted. - Abstract: CO_2-based transcritical Rankine cycle (CTRC) is a promising technology for the waste heat recovery of an engine considering its safety and environment friendly characteristics, which also matchs the high temperature of the exhaust gas and satisfies the miniaturization demand of recovery systems. But the traditional CTRC system with a basic configuration (B-CTRC) has a poor thermodynamic performance. This paper introduces an improved CTRC system containing both a preheater and regenerator (PR-CTRC), for recovering waste heat in exhaust gas and engine coolant of an engine, and compares its performance with that of the B-CTRC system and also with that of the traditional excellent Organic Rankine Cycle (ORC) systems using R123 as a working fluid. The utilization rate of waste heat, total cooling load, net power output, thermal efficiency, exergy loss, exergy efficiency and component size have been investigated. Results show that, the net power output of the PR-CTRC could reach up to 9.0 kW for a 43.8 kW engine, which increases by 150% compared with that of the B-CTRC (3.6 kW). The PR-CTRC also improves the thermal efficiency and exergy efficiency of the B-CTRC, with increases of 184% and 227%, respectively. Compared with the ORC system, the PR-CTRC shows the significant advantage of highly recycling the exhaust gas and engine coolant simultaneously due to the special property of supercritical CO_2’s specific heat capacity. The supercritical property of CO_2 also generates a better heat transfer and flowing performances. Meanwhile, the PR

  8. Physical inventory by use of modeling for the tritium aqueous waste recovery system

    International Nuclear Information System (INIS)

    Sienkiewicz, C.J.; Lentz, J.E.; Wiggins, D.V.

    1988-01-01

    Physical inventory requirements for the Tritium Aqueous Waste Recovery System (TAWRS) presented constraints that required unique solutions. Available analytical techniques for which sound measurement control practices existed could not be readily adapted to the system without significant modifications and expense. Based on the assumption that would accurately estimate total system inventory given a few key measurements, a model was developed for TAWRS. Tritium concentrations in two streams, the tritiated feed stream to the process and the tritiated hydrogen stream generated by the electrolysis cells, provided the key values to the model. The proposed mathematical model relates the tritium concentration throughout the system to the tritium concentration in these two streams. Testing of the system using low-level tritiated feed water was conducted to characterize tritium distribution in the system and to relate key values to total inventory. 4 refs., 2 figs.,

  9. Direct waste heat recovery via thermoelectric materials - chosen issues of the thermodynamic description

    International Nuclear Information System (INIS)

    Kolasiński, Piotr; Kolasińska, Ewa

    2016-01-01

    The effective waste heat recovery is one of the present-day challenges in the industry and power engineering. The energy systems dedicated for waste heat conversion into electricity are usually characterized by low efficiency and are complicated in the design. The possibility of waste heat recovery via thermoelectric materials may be an interesting alternative to the currently used technologies. In particular, due to their material characteristics, conducting polymers may be competitive when compared with the power machinery and equipment. These materials can be used in a wide range of the geometries e.g. the bulk products, thin films, pristine form or composites and the others. In this article, the authors present selected issues related to the mathematical and thermodynamic description of the heat transfer processes in the thermoelectric materials dedicated for the waste heat recovery. The link of these models with electrical properties of the material and a material solution based on a conducting polymer have also been presented in this paper. (paper)

  10. Complex processing of rubber waste through energy recovery

    Directory of Open Access Journals (Sweden)

    Roman Smelík

    2015-12-01

    Full Text Available This article deals with the applied energy recovery solutions for complex processing of rubber waste for energy recovery. It deals specifically with the solution that could maximize possible use of all rubber waste and does not create no additional waste that disposal would be expensive and dangerous for the environment. The project is economically viable and energy self-sufficient. The outputs of the process could replace natural gas and crude oil products. The other part of the process is also the separation of metals, which can be returned to the metallurgical secondary production.

  11. Determinants of sustainability in solid waste management - The Gianyar Waste Recovery Project in Indonesia

    Energy Technology Data Exchange (ETDEWEB)

    Zurbruegg, Christian, E-mail: zurbrugg@eawag.ch [Eawag: Swiss Federal Institute of Aquatic Science and Technology, Department of Water and Sanitation in Developing Countries (Sandec), Ueberlandstrasse 133, P.O. Box 611, 8600 Duebendorf (Switzerland); Gfrerer, Margareth, E-mail: margareth.gfrerer@gmx.net [Faculty of Engineering, University of Indonesia, Depok Campus, 16424 Jakarta (Indonesia); Ashadi, Henki, E-mail: henki@eng.ui.ac.id [Faculty of Engineering, University of Indonesia, Depok Campus, 16424 Jakarta (Indonesia); Brenner, Werner, E-mail: werner.brenner@gmx.at [Faculty of Engineering, University of Indonesia, Depok Campus, 16424 Jakarta (Indonesia); Kueper, David, E-mail: dkuper@indo.net.id [Yayasan Pemilahan Sampah Temesi, Temsi-Gianyar, Bali (Indonesia)

    2012-11-15

    Highlights: Black-Right-Pointing-Pointer Our assessment tool helps evaluate success factors in solid waste projects. Black-Right-Pointing-Pointer Success of the composting plant in Indonesia is linked to its community integration. Black-Right-Pointing-Pointer Appropriate technology is not a main determining success factor for sustainability. Black-Right-Pointing-Pointer Structured assessment of 'best practices' can enhance replication in other cities. - Abstract: According to most experts, integrated and sustainable solid waste management should not only be given top priority, but must go beyond technical aspects to include various key elements of sustainability to ensure success of any solid waste project. Aside from project sustainable impacts, the overall enabling environment is the key feature determining performance and success of an integrated and affordable solid waste system. This paper describes a project-specific approach to assess typical success or failure factors. A questionnaire-based assessment method covers issues of: (i) social mobilisation and acceptance (social element), (ii) stakeholder, legal and institutional arrangements comprising roles, responsibilities and management functions (institutional element); (iii) financial and operational requirements, as well as cost recovery mechanisms (economic element). The Gianyar Waste Recovery Project in Bali, Indonesia was analysed using this integrated assessment method. The results clearly identified chief characteristics, key factors to consider when planning country wide replication but also major barriers and obstacles which must be overcome to ensure project sustainability. The Gianyar project consists of a composting unit processing 60 tons of municipal waste per day from 500,000 inhabitants, including manual waste segregation and subsequent composting of the biodegradable organic fraction.

  12. Waste heat recovery for offshore applications

    DEFF Research Database (Denmark)

    Pierobon, Leonardo; Kandepu, Rambabu; Haglind, Fredrik

    2012-01-01

    vary in the range 20-30%. There are several technologies available for onshore gas turbines (and low/medium heat sources) to convert the waste heat into electricity. For offshore applications it is not economical and practical to have a steam bottoming cycle to increase the efficiency of electricity...... production, due to low gas turbine outlet temperature, space and weight restrictions and the need for make-up water. A more promising option for use offshore is organic Rankine cycles (ORC). Moreover, several oil and gas platforms are equipped with waste heat recovery units to recover a part of the thermal...... energy in the gas turbine off-gas using heat exchangers, and the recovered thermal energy acts as heat source for some of the heat loads on the platform. The amount of the recovered thermal energy depends on the heat loads and thus the full potential of waste heat recovery units may not be utilized...

  13. Exergy losses of resource recovery from a waste-to-energy plant

    DEFF Research Database (Denmark)

    Vyzinkarova, Dana; Laner, D.; Astrup, Thomas Fruergaard

    2013-01-01

    Metal resources recovered from waste incineration bottom ash (BA) are of lower quality as compared to primary resources, but to date no framework for expressing the quality losses exists. Exergy is a concept that may have the potential to evaluate the resource quality in waste management....... In this study, focusing on recovery from waste-to-energy plants with basic and advanced BA treatment, the goal is to give an indication about quality of selected recovered resources (Fe, Al, and Cu) by means of exergy analysis. Metal flows are modeled through both incineration scenarios, and then chemical....... The results indicate that exergy losses due to mixing are insignificant as compared to chemical exergies of metals in all flows. Total exergy losses for Fe, Al, and Cu recovery in the two WtE systems range from 38% to 90%....

  14. System analysis and optimisation of a Kalina split-cycle for waste heat recovery on large marine diesel engines

    DEFF Research Database (Denmark)

    Larsen, Ulrik; Nguyen, Tuong-Van; Knudsen, Thomas

    2014-01-01

    Waste heat recovery systems can produce power from heat without using fuel or emitting CO2, therefore their implementation is becoming increasingly relevant. The Kalina cycle is proposed as an efficient process for this purpose. The main reason for its high efficiency is the non-isothermal phase...... change characteristics of the ammonia-water working fluid. The present study investigates a unique type of Kalina process called the Split-cycle, applied to the exhaust heat recovery from large marine engines. In the Split-cycle, the working fluid concentration can be changed during the evaporation...

  15. Parametric analysis of a dual loop Organic Rankine Cycle (ORC) system for engine waste heat recovery

    International Nuclear Information System (INIS)

    Song, Jian; Gu, Chun-wei

    2015-01-01

    Highlights: • A dual loop ORC system is designed for engine waste heat recovery. • The two loops are coupled via a shared heat exchanger. • The influence of the HT loop condensation parameters on the LT loop is evaluated. • Pinch point locations determine the thermal parameters of the LT loop. - Abstract: This paper presents a dual loop Organic Rankine Cycle (ORC) system consisting of a high temperature (HT) loop and a low temperature (LT) loop for engine waste heat recovery. The HT loop recovers the waste heat of the engine exhaust gas, and the LT loop recovers that of the jacket cooling water in addition to the residual heat of the HT loop. The two loops are coupled via a shared heat exchanger, which means that the condenser of the HT loop is the evaporator of the LT loop as well. Cyclohexane, benzene and toluene are selected as the working fluids of the HT loop. Different condensation temperatures of the HT loop are set to maintain the condensation pressure slightly higher than the atmosphere pressure. R123, R236fa and R245fa are chosen for the LT loop. Parametric analysis is conducted to evaluate the influence of the HT loop condensation temperature and the residual heat load on the LT loop. The simulation results reveal that under different condensation conditions of the HT loop, the pinch point of the LT loop appears at different locations, resulting in different evaporation temperatures and other thermal parameters. With cyclohexane for the HT loop and R245fa for the LT loop, the maximum net power output of the dual loop ORC system reaches 111.2 kW. Since the original power output of the engine is 996 kW, the additional power generated by the dual loop ORC system can increase the engine power by 11.2%.

  16. Space Station Freedom regenerative water recovery system configuration selection

    Science.gov (United States)

    Reysa, R.; Edwards, J.

    1991-01-01

    The Space Station Freedom (SSF) must recover water from various waste water sources to reduce 90 day water resupply demands for a four/eight person crew. The water recovery system options considered are summarized together with system configuration merits and demerits, resource advantages and disadvantages, and water quality considerations used to select the SSF water recovery system.

  17. High-temperature and high-power-density nanostructured thermoelectric generator for automotive waste heat recovery

    International Nuclear Information System (INIS)

    Zhang, Yanliang; Cleary, Martin; Wang, Xiaowei; Kempf, Nicholas; Schoensee, Luke; Yang, Jian; Joshi, Giri; Meda, Lakshmikanth

    2015-01-01

    Highlights: • A thermoelectric generator (TEG) is fabricated using nanostructured half-Heusler materials. • The TE unicouple devices produce superior power density above 5 W/cm"2. • A TEG system with over 1 kW power output is demonstrated by recovering automotive waste heat. - Abstract: Given increasing energy use as well as decreasing fossil fuel sources worldwide, it is no surprise that interest in promoting energy efficiency through waste heat recovery is also increasing. Thermoelectric generators (TEGs) are one of the most promising pathways for waste heat recovery. Despite recent thermoelectric efficiency improvement in nanostructured materials, a variety of challenges have nevertheless resulted in few demonstrations of these materials for large-scale waste heat recovery. Here we demonstrate a high-performance TEG by combining high-efficiency nanostructured bulk materials with a novel direct metal brazing process to increase the device operating temperature. A unicouple device generates a high power density of 5.26 W cm"−"2 with a 500 °C temperature difference between hot and cold sides. A 1 kW TEG system is experimentally demonstrated by recovering the exhaust waste heat from an automotive diesel engine. The TEG system operated with a 2.1% heat-to-electricity efficiency under the average temperature difference of 339 °C between the TEG hot- and cold-side surfaces at a 550 °C exhaust temperature. The high-performance TEG reported here open up opportunities to use TEGs for energy harvesting and power generation applications.

  18. Determinants of sustainability in solid waste management – The Gianyar Waste Recovery Project in Indonesia

    International Nuclear Information System (INIS)

    Zurbrügg, Christian; Gfrerer, Margareth; Ashadi, Henki; Brenner, Werner; Küper, David

    2012-01-01

    Highlights: ► Our assessment tool helps evaluate success factors in solid waste projects. ► Success of the composting plant in Indonesia is linked to its community integration. ► Appropriate technology is not a main determining success factor for sustainability. ► Structured assessment of “best practices” can enhance replication in other cities. - Abstract: According to most experts, integrated and sustainable solid waste management should not only be given top priority, but must go beyond technical aspects to include various key elements of sustainability to ensure success of any solid waste project. Aside from project sustainable impacts, the overall enabling environment is the key feature determining performance and success of an integrated and affordable solid waste system. This paper describes a project-specific approach to assess typical success or failure factors. A questionnaire-based assessment method covers issues of: (i) social mobilisation and acceptance (social element), (ii) stakeholder, legal and institutional arrangements comprising roles, responsibilities and management functions (institutional element); (iii) financial and operational requirements, as well as cost recovery mechanisms (economic element). The Gianyar Waste Recovery Project in Bali, Indonesia was analysed using this integrated assessment method. The results clearly identified chief characteristics, key factors to consider when planning country wide replication but also major barriers and obstacles which must be overcome to ensure project sustainability. The Gianyar project consists of a composting unit processing 60 tons of municipal waste per day from 500,000 inhabitants, including manual waste segregation and subsequent composting of the biodegradable organic fraction.

  19. Quantification of the resource recovery potential of municipal solid waste incineration bottom ashes.

    Science.gov (United States)

    Allegrini, Elisa; Maresca, Alberto; Olsson, Mikael Emil; Holtze, Maria Sommer; Boldrin, Alessio; Astrup, Thomas Fruergaard

    2014-09-01

    Municipal solid waste incineration (MSWI) plays an important role in many European waste management systems. However, increasing focus on resource criticality has raised concern regarding the possible loss of critical resources through MSWI. The primary form of solid output from waste incinerators is bottom ashes (BAs), which also have important resource potential. Based on a full-scale Danish recovery facility, detailed material and substance flow analyses (MFA and SFA) were carried out, in order to characterise the resource recovery potential of Danish BA: (i) based on historical and experimental data, all individual flows (representing different grain size fractions) within the recovery facility were quantified, (ii) the resource potential of ferrous (Fe) and non-ferrous (NFe) metals as well as rare earth elements (REE) was determined, (iii) recovery efficiencies were quantified for scrap metal and (iv) resource potential variability and recovery efficiencies were quantified based on a range of ashes from different incinerators. Recovery efficiencies for Fe and NFe reached 85% and 61%, respectively, with the resource potential of metals in BA before recovery being 7.2%ww for Fe and 2.2%ww for NFe. Considerable non-recovered resource potential was found in fine fraction (below 2mm), where approximately 12% of the total NFe potential in the BA were left. REEs were detected in the ashes, but the levels were two or three orders of magnitude lower than typical ore concentrations. The lack of REE enrichment in BAs indicated that the post-incineration recovery of these resources may not be a likely option with current technology. Based on these results, it is recommended to focus on limiting REE-containing products in waste for incineration and improving pre-incineration sorting initiatives for these elements. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Energy use and recovery in waste management and implications for accounting of greenhouse gases and global warming contributions

    DEFF Research Database (Denmark)

    Fruergaard, Thilde; Astrup, Thomas; Ekvall, T.

    2009-01-01

    The energy system plays an essential role in accounting of greenhouse gas (GHG) emissions from waste management systems and waste technologies. This paper focuses on energy use and energy recovery in waste management and outlines how these aspects should be addressed consistently in a GHG perspec...

  1. Thermoelectric Waste Heat Recovery Program for Passenger Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Jovovic, Vladimir [Gentherm Incorporated, Azusa, CA (United States)

    2015-12-31

    Gentherm began work in October 2011 to develop a Thermoelectric Waste Energy Recovery System for passenger vehicle applications. Partners in this program were BMW and Tenneco. Tenneco, in the role of TIER 1 supplier, developed the system-level packaging of the thermoelectric power generator. As the OEM, BMW Group demonstrated the TEG system in their vehicle in the final program phase. Gentherm demonstrated the performance of the TEG in medium duty and heavy duty vehicles. Technology developed and demonstrated in this program showed potential to reduce fuel consumption in medium and heavy duty vehicles. In light duty vehicles it showed more modest potential.

  2. An improvement study on the closed chamber distillation system for recovery of renewable salts from salt wastes containing radioactive rare earth compounds

    International Nuclear Information System (INIS)

    Eun, H.C.; Cho, Y.Z.; Lee, T.K.; Kim, I.T.; Park, G.I.; Lee, H.S.

    2013-01-01

    In this paper, an improvement study on the closed chamber distillation system for recovery of renewable salts from salt wastes containing radioactive rare earth compounds was performed to determine optimum operating conditions. It was very important to maintain the pressure in the distillation chamber below 10 Torr for a high efficiency (salt recovery >99 %) of the salt distillation. This required increasing the salt vaporization and condensation rates in the distillation system. It was confirmed that vaporization and condensation rates could be improved controlling the given temperature of top of the condensation chamber. In the distillation tests of the salt wastes containing rare earth compounds, the operation time at a given temperature was greatly reduced changing the given temperature of top of the condensation chamber from 780 to 700 deg C. (author)

  3. Control of waste well casing vent gas from a thermal enhanced oil recovery operation

    International Nuclear Information System (INIS)

    Peavy, M.A.; Braun, J.E.

    1991-01-01

    This paper presents an overview of a waste gas treatment system designed to control emissions from thermally enhanced oil recovery wells. This case study discusses the need, design, installation and operations of the system. Oryx Energy Company (Oryx) operates approximately 940 wells in the Midway-Sunset (MWSS) field under casing vapor recovery systems. The emissions collected from well casing vent gas cotaining hydrocarbons and hydrogen sulfide that are collected and processed through casing vapor recovery skids. These skids are composed of condensers, compressors, and pumps that separate fluids from the waste gas stream. The non-condensible gas is then disposed of in incinerators that reduce the hydrocarbon and sulfur emissions into the atmosphere. Approximately 91,000 lbs/day of hydrocarbon and 10,116 lbs/day of sulfur dioxide are removed from the atmosphere from wells contained within these systems operated by Oryx. These hydrocarbons yield approximately 550 barrels of oil per day (BOPD). The system helps manage the pressure differential from the reservoir into each wellbore and contributes to improved ambient air quality in Kern County, California

  4. Cost-effective treatment of swine wastes through recovery of energy and nutrients.

    Science.gov (United States)

    Amini, Adib; Aponte-Morales, Veronica; Wang, Meng; Dilbeck, Merrill; Lahav, Ori; Zhang, Qiong; Cunningham, Jeffrey A; Ergas, Sarina J

    2017-11-01

    Wastes from concentrated animal feeding operations (CAFOs) are challenging to treat because they are high in organic matter and nutrients. Conventional swine waste treatment options in the U.S., such as uncovered anaerobic lagoons, result in poor effluent quality and greenhouse gas emissions, and implementation of advanced treatment introduces high costs. Therefore, the purpose of this paper is to evaluate the performance and life cycle costs of an alternative system for treating swine CAFO waste, which recovers valuable energy (as biogas) and nutrients (N, P, K + ) as saleable fertilizers. The system uses in-vessel anaerobic digestion (AD) for methane production and solids stabilization, followed by struvite precipitation and ion exchange (IX) onto natural zeolites (chabazite or clinoptilolite) for nutrient recovery. An alternative approach that integrated struvite recovery and IX into a single reactor, termed STRIEX, was also investigated. Pilot- and bench-scale reactor experiments were used to evaluate the performance of each stage in the treatment train. Data from these studies were integrated into a life cycle cost analysis (LCCA) to assess the cost-effectiveness of various process alternatives. Significant improvement in water quality, high methane production, and high nutrient recovery (generally over 90%) were observed with both the AD-struvite-IX process and the AD-STRIEX process. The LCCA showed that the STRIEX system can provide considerable financial savings compared to conventional systems. AD, however, incurs high capital costs compared to conventional anaerobic lagoons and may require larger scales to become financially attractive. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Feasibility of Thermoelectric Waste Heat Recovery from Research Reactor

    International Nuclear Information System (INIS)

    Lee, Byunghee

    2015-01-01

    A thermoelectric generator has the most competitive method to regenerate the waste heat from research reactors, because it has no limitation on operating temperature. In addition, since the TEG is a solid energy conversion device converting heat to electricity directly without moving parts, the regenerating power system becomes simple and highly reliable. In this regard, a waste heat recovery using thermoelectric generator (TEG) from 15-MW pool type research reactor is suggested and the feasibility is demonstrated. The producible power from waste heat is estimated with respect to the reactor parameters, and an application of the regenerated power is suggested by performing a safety analysis with the power. The producible power from TEG is estimated with respect to the LMTD of the HX and the required heat exchange area is also calculated. By increasing LMTD from 2 K to 20K, the efficiency and the power increases greatly. Also an application of the power regeneration system is suggested by performing a safety analysis with the system, and comparing the results with reference case without the power regeneration

  6. Thermoelectric automotive waste heat energy recovery using maximum power point tracking

    International Nuclear Information System (INIS)

    Yu Chuang; Chau, K.T.

    2009-01-01

    This paper proposes and implements a thermoelectric waste heat energy recovery system for internal combustion engine automobiles, including gasoline vehicles and hybrid electric vehicles. The key is to directly convert the heat energy from automotive waste heat to electrical energy using a thermoelectric generator, which is then regulated by a DC-DC Cuk converter to charge a battery using maximum power point tracking. Hence, the electrical power stored in the battery can be maximized. Both analysis and experimental results demonstrate that the proposed system can work well under different working conditions, and is promising for automotive industry.

  7. STORAGE AND RECOVERY OF SECONDARY WASTE COMING FROM MUNICIPAL WASTE INCINERATION PLANTS IN UNDERGROUND MINE

    Directory of Open Access Journals (Sweden)

    Waldemar Korzeniowski

    2016-09-01

    Full Text Available Regarding current and planned development of municipal waste incineration plants in Poland there is an important problem of the generated secondary waste management. The experience of West European countries in mining shows that waste can be stored successfully in the underground mines, but especially in salt mines. In Poland there is a possibility to set up the underground storage facility in the Salt Mine “Kłodawa”. The mine today is capable to locate over 3 million cubic meters and in the future it can increase significantly. Two techniques are proposed: 1 – storage of packaged waste, 2 – waste recovery as selfsolidifying paste with mining technology for rooms backfilling. Assuming the processing capacity of the storage facility as 100 000 Mg of waste per year, “Kłodawa” mine will be able to accept around 25 % of currently generated waste coming from the municipal waste incineration plants and the current volume of the storage space is sufficient for more than 20 years. Underground storage and waste recovery in mining techniques are beneficial for the economy and environment.

  8. Metal recovery from municipal solid waste incineration bottom ash (MSWIBA): state of the art, potential and environmental benefits

    DEFF Research Database (Denmark)

    Allegrini, Elisa; Holtze, Maria S.; Astrup, Thomas Fruergaard

    Incineration has a central role in the waste management system in Denmark (e.g. 52% of the household waste) resulting in approximately 726000t of solid residues each year. However, the targets imposed by the Danish Waste Strategy and the increasing discussions about resource in waste raise an issue...... on resource losses through waste incineration. In this framework, this study provides actual data on the state of the art of the recovery of resource in MSWIBA in Denmark (i.e. metals), on the potential for further recovery and on the environmental benefits or burdens assessed through the Life Cycle...

  9. Quantification of the resource recovery potential of municipal solid waste incineration bottom ashes

    DEFF Research Database (Denmark)

    Allegrini, Elisa; Maresca, Alberto; Olsson, Mikael Emil

    2014-01-01

    Municipal solid waste incineration (MSWI) plays an important role in many European waste management systems. However, increasing focus on resource criticality has raised concern regarding the possible loss of critical resources through MSWI. The primary form of solid output from waste incinerators....... The lack of REE enrichment in BAs indicated that the post-incineration recovery of these resources may not be a likely option with current technology. Based on these results, it is recommended to focus on limiting REE-containing products in waste for incineration and improving pre-incineration sorting...

  10. Cost Scaling of a Real-World Exhaust Waste Heat Recovery Thermoelectric Generator: A Deeper Dive

    Science.gov (United States)

    Hendricks, Terry J.; Yee, Shannon; LeBlanc, Saniya

    2015-01-01

    Cost is equally important to power density or efficiency for the adoption of waste heat recovery thermoelectric generators (TEG) in many transportation and industrial energy recovery applications. In many cases the system design that minimizes cost (e.g., the $/W value) can be very different than the design that maximizes the system's efficiency or power density, and it is important to understand the relationship between those designs to optimize TEG performance-cost compromises. Expanding on recent cost analysis work and using more detailed system modeling, an enhanced cost scaling analysis of a waste heat recovery thermoelectric generator with more detailed, coupled treatment of the heat exchangers has been performed. In this analysis, the effect of the heat lost to the environment and updated relationships between the hot-side and cold-side conductances that maximize power output are considered. This coupled thermal and thermoelectric treatment of the exhaust waste heat recovery thermoelectric generator yields modified cost scaling and design optimization equations, which are now strongly dependent on the heat leakage fraction, exhaust mass flow rate, and heat exchanger effectiveness. This work shows that heat exchanger costs most often dominate the overall TE system costs, that it is extremely difficult to escape this regime, and in order to achieve TE system costs of $1/W it is necessary to achieve heat exchanger costs of $1/(W/K). Minimum TE system costs per watt generally coincide with maximum power points, but Preferred TE Design Regimes are identified where there is little cost penalty for moving into regions of higher efficiency and slightly lower power outputs. These regimes are closely tied to previously-identified low cost design regimes. This work shows that the optimum fill factor Fopt minimizing system costs decreases as heat losses increase, and increases as exhaust mass flow rate and heat exchanger effectiveness increase. These findings have

  11. 76 FR 55846 - Hazardous Waste Management System: Identification and Listing of Hazardous Waste: Carbon Dioxide...

    Science.gov (United States)

    2011-09-09

    ... carbon dioxide (CO 2 ) streams that are hazardous from the definition of hazardous waste, provided these... management under the Resource Conservation and Recovery Act (RCRA) to conditionally exclude carbon dioxide... 2050-AG60 Hazardous Waste Management System: Identification and Listing of Hazardous Waste: Carbon...

  12. LCA of local strategies for energy recovery from waste in England, applied to a large municipal flow

    International Nuclear Information System (INIS)

    Tunesi, Simonetta

    2011-01-01

    An intense waste management (WM) planning activity is currently undergoing in England to build the infrastructure necessary to treat residual wastes, increase recycling levels and the recovery of energy from waste. From the analyses of local WM strategic and planning documents we have identified the emerging of three different energy recovery strategies: established combustion of residual waste; pre-treatment of residual waste and energy recovery from Solid Recovered Fuel in a dedicated plant, usually assumed to be a gasifier; pre-treatment of residual waste and reliance on the market to accept the 'fuel from waste' so produced. Each energy recovery strategy will result in a different solution in terms of the technology selected; moreover, on the basis of the favoured solution, the total number, scale and location of thermal treatment plants built in England will dramatically change. To support the evaluation and comparison of these three WM strategy in terms of global environmental impacts, energy recovery possibilities and performance with respect to changing 'fuel from waste' market conditions, the LCA comparison of eight alternative WM scenarios for a real case study dealing with a large flow of municipal wastes was performed with the modelling tool WRATE. The large flow of waste modelled allowed to formulate and assess realistic alternative WM scenarios and to design infrastructural systems which are likely to correspond to those submitted for approval to the local authorities. The results show that all alternative scenarios contribute to saving abiotic resources and reducing global warming potential. Particularly relevant to the current English debate, the performance of a scenario was shown to depend not from the thermal treatment technology but from a combination of parameters, among which most relevant are the efficiency of energy recovery processes (both electricity and heat) and the calorific value of residual waste and pre-treated material. The

  13. Water recovery and solid waste processing for aerospace and domestic applications. Volume 1: Final report

    Science.gov (United States)

    Murray, R. W.

    1973-01-01

    A comprehensive study of advanced water recovery and solid waste processing techniques employed in both aerospace and domestic or commercial applications is reported. A systems approach was used to synthesize a prototype system design of an advanced water treatment/waste processing system. Household water use characteristics were studied and modified through the use of low water use devices and a limited amount of water reuse. This modified household system was then used as a baseline system for development of several water treatment waste processing systems employing advanced techniques. A hybrid of these systems was next developed and a preliminary design was generated to define system and hardware functions.

  14. Recov'Heat: An estimation tool of urban waste heat recovery potential in sustainable cities

    Science.gov (United States)

    Goumba, Alain; Chiche, Samuel; Guo, Xiaofeng; Colombert, Morgane; Bonneau, Patricia

    2017-02-01

    Waste heat recovery is considered as an efficient way to increase carbon-free green energy utilization and to reduce greenhouse gas emission. Especially in urban area, several sources such as sewage water, industrial process, waste incinerator plants, etc., are still rarely explored. Their integration into a district heating system providing heating and/or domestic hot water could be beneficial for both energy companies and local governments. EFFICACITY, a French research institute focused on urban energy transition, has developed an estimation tool for different waste heat sources potentially explored in a sustainable city. This article presents the development method of such a decision making tool which, by giving both energetic and economic analysis, helps local communities and energy service companies to make preliminary studies in heat recovery projects.

  15. Selective extraction and recovery of rare earth metals from phosphor powders in waste fluorescent lamps using an ionic liquid system

    International Nuclear Information System (INIS)

    Yang, Fan; Kubota, Fukiko; Baba, Yuzo; Kamiya, Noriho; Goto, Masahiro

    2013-01-01

    Highlights: • Recycling of rare earth metals from fluorescent lamps was conducted by ionic liquid-mediated extraction. • Acid leaching from a waste phosphor powder was carried out using sulfuric and nitric acids. • An ionic liquid was used as extracting solvent for the rare earth metals. • Selective extraction of rare earth metals from leach solutions was attained. •The extracting ionic liquid phase was recyclable in the recovery process. -- Abstract: The recycling of rare earth metals from phosphor powders in waste fluorescent lamps by solvent extraction using ionic liquids was studied. Acid leaching of rare earth metals from the waste phosphor powder was examined first. Yttrium (Y) and europium (Eu) dissolved readily in the acid solution; however, the leaching of other rare earth metals required substantial energy input. Ionization of target rare earth metals from the waste phosphor powders into the leach solution was critical for their successful recovery. As a high temperature was required for the complete leaching of all rare earth metals, ionic liquids, for which vapor pressure is negligible, were used as an alternative extracting phase to the conventional organic diluent. An extractant, N, N-dioctyldiglycol amic acid (DODGAA), which was recently developed, showed a high affinity for rare earth metal ions in liquid–liquid extraction although a conventional commercial phosphonic extractant did not. An effective recovery of the rare earth metals, Y, Eu, La and Ce, from the metal impurities, Fe, Al and Zn, was achieved from the acidic leach solution of phosphor powders using an ionic liquid containing DODGAA as novel extractant system

  16. Selective extraction and recovery of rare earth metals from phosphor powders in waste fluorescent lamps using an ionic liquid system

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Fan; Kubota, Fukiko; Baba, Yuzo [Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Fukuoka 819-0395 (Japan); Kamiya, Noriho [Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Fukuoka 819-0395 (Japan); Center for Future Chemistry, Kyushu University, 744 Motooka, Fukuoka 819-0395 (Japan); Goto, Masahiro, E-mail: m-goto@mail.cstm.kyushu-u.ac.jp [Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Fukuoka 819-0395 (Japan); Center for Future Chemistry, Kyushu University, 744 Motooka, Fukuoka 819-0395 (Japan)

    2013-06-15

    Highlights: • Recycling of rare earth metals from fluorescent lamps was conducted by ionic liquid-mediated extraction. • Acid leaching from a waste phosphor powder was carried out using sulfuric and nitric acids. • An ionic liquid was used as extracting solvent for the rare earth metals. • Selective extraction of rare earth metals from leach solutions was attained. •The extracting ionic liquid phase was recyclable in the recovery process. -- Abstract: The recycling of rare earth metals from phosphor powders in waste fluorescent lamps by solvent extraction using ionic liquids was studied. Acid leaching of rare earth metals from the waste phosphor powder was examined first. Yttrium (Y) and europium (Eu) dissolved readily in the acid solution; however, the leaching of other rare earth metals required substantial energy input. Ionization of target rare earth metals from the waste phosphor powders into the leach solution was critical for their successful recovery. As a high temperature was required for the complete leaching of all rare earth metals, ionic liquids, for which vapor pressure is negligible, were used as an alternative extracting phase to the conventional organic diluent. An extractant, N, N-dioctyldiglycol amic acid (DODGAA), which was recently developed, showed a high affinity for rare earth metal ions in liquid–liquid extraction although a conventional commercial phosphonic extractant did not. An effective recovery of the rare earth metals, Y, Eu, La and Ce, from the metal impurities, Fe, Al and Zn, was achieved from the acidic leach solution of phosphor powders using an ionic liquid containing DODGAA as novel extractant system.

  17. Automotive Thermoelectric Waste Heat Recovery

    Science.gov (United States)

    Meisner, Gregory P.

    2015-03-01

    Considerable fuel energy, as much as 70%, is not converted to useful work by internal combustion engines but is instead rejected as waste heat, and more than half of the waste heat, nearly 40% of fuel energy, is contained in vehicle exhaust gas. This provides an opportunity to recover some of the wasted fuel energy and convert it from heat into useful work, subject to the laws of thermodynamics, and thereby improve vehicle energy efficiency. Thermoelectric (TE) materials have been extensively researched and TE devices are now being developed for operation at high temperatures corresponding to automotive exhaust gases for direct solid-state conversion of heat into electricity. This has stimulated substantial progress in the development of practical TE generator (TEG) systems for large-scale commercialization. A significant enabler of this progress has been the US Department of Energy's Vehicle Technologies Program through funding for low cost solutions for automotive TE waste heat recovery to improve fuel economy. Our current project at General Motors has culminated in the identification of the potential supply chain for all components and assembly of an automotive TEG. A significant focus has been to develop integrated and iterative modeling tools for a fully optimized TEG design that includes all components and subsystems (TE modules, heat exchangers, thermal interfaces, electrical interconnects, power conditioning, and vehicle integration for maximal use of TEG power). We have built and tested a new, low-cost Initial TEG prototype based on state-of-the-art production-scale skutterudite TE modules, novel heat exchanger designs, and practical solutions to the many technical challenges for optimum TEG performance. We will use the results for our Initial TEG prototype to refine our modeling and design tools for a Final automotive TEG system prototype. Our recent results will be presented. Thanks to: J.R. Salvador, E.R. Gundlach, D. Thompson, N.K. Bucknor, M

  18. Energy recovery system using an organic rankine cycle

    Science.gov (United States)

    Ernst, Timothy C

    2013-10-01

    A thermodynamic system for waste heat recovery, using an organic rankine cycle is provided which employs a single organic heat transferring fluid to recover heat energy from two waste heat streams having differing waste heat temperatures. Separate high and low temperature boilers provide high and low pressure vapor streams that are routed into an integrated turbine assembly having dual turbines mounted on a common shaft. Each turbine is appropriately sized for the pressure ratio of each stream.

  19. Review of organic Rankine cycles for internal combustion engine exhaust waste heat recovery

    International Nuclear Information System (INIS)

    Sprouse, Charles; Depcik, Christopher

    2013-01-01

    Escalating fuel prices and future carbon dioxide emission limits are creating a renewed interest in methods to increase the thermal efficiency of engines beyond the limit of in-cylinder techniques. One promising mechanism that accomplishes both objectives is the conversion of engine waste heat to a more useful form of energy, either mechanical or electrical. This paper reviews the history of internal combustion engine exhaust waste heat recovery focusing on Organic Rankine Cycles since this thermodynamic cycle works well with the medium-grade energy of the exhaust. Selection of the cycle expander and working fluid are the primary focus of the review, since they are regarded as having the largest impact on system performance. Results demonstrate a potential fuel economy improvement around 10% with modern refrigerants and advancements in expander technology. -- Highlights: ► This review article focuses on engine exhaust waste heat recovery works. ► The organic Rankine cycle is superior for low to medium exergy heat sources. ► Working fluid and expander selection strongly influence efficiency. ► Several authors demonstrate viable systems for vehicle installation

  20. Integrated working fluid-thermodynamic cycle design of organic Rankine cycle power systems for waste heat recovery

    DEFF Research Database (Denmark)

    Cignitti, Stefano; Andreasen, Jesper Graa; Haglind, Fredrik

    2017-01-01

    recovery. Inthis paper, an organic Rankine cycle process and its pure working fluid are designed simultaneously forwaste heat recovery of the exhaust gas from a marine diesel engine. This approach can overcome designissues caused by the high sensitivity between the fluid and cycle design variables......Today, some established working fluids are being phased out due to new international regulations on theuse of environmentally harmful substances. With an ever-increasing cost to resources, industry wants toconverge on improved sustainability through resource recovery, and in particular waste heat...

  1. Industrial wastes solidification and material recovery: prospectives in Italy. Prospettive dell'applicazione delle tecniche di inertizzazione

    Energy Technology Data Exchange (ETDEWEB)

    De Angelis, G; Balzano, S

    1988-12-01

    This paper focuses on state-of-the-art materials recovery techniques employed in the solidification/stabilization of industrial wastes. Particular consideration is given to the Italian situation. After a review, with reference to waste/matrix compatibility inherent problems, of the presently employed main encapsulation techniques (with matrices based on cement, lime, clay, thermoplastic materials, organic polymers, macroencapsulating compounds), attention is addressed to solidification systems which allow a recovery of the waste material as low-technology by-products. Regarding the most important industrial waste streams: thermoplastic refuse, incinerator ashes, chemical sludges, the paper reviews efforts devoted not only to their chemical fixation in order to fulfill the current land disposal requirements, but mainly to their employment for production of manufactured articles.

  2. Application and design of an economizer for waste heat recovery in a cogeneration plant

    Directory of Open Access Journals (Sweden)

    Martić Igor I.

    2016-01-01

    Full Text Available Energy increase cost has required its more effective use. However, many industrial heating processes generate waste energy. Use of waste-heat recovery systems decreases energy consumption. This paper presents case study of waste heat recovering of the exhaust flue gas in a 1415 kWe cogeneration plant. This waste heat can be recovered by installing an economizer to heat the condensed and fresh water in thermal degasification unit and reduce steam use for maintaining the temperature of 105˚C for oxygen removal. Design methodology of economizer is presented.

  3. Solid municipal waste management: Systems and reference technologies

    International Nuclear Information System (INIS)

    Ciancio, G.; Mura, A.

    1993-03-01

    The management of solid municipal wastes comprises simple methods such as dumping into suitably controlled waste disposal sites, and more complex solutions, which can include waste segregation, some form of materials and/or energy recovery, and the use of combined cycle combustion systems. All these methods, however, require environmental protection systems with custom designed techniques, equipment and safeguards. This paper reviews the technical-economic aspects of different pollution control options currently available to meet the specific requirements of various waste management alternatives

  4. Silver recovery from the waste materials by the method of flotation process

    OpenAIRE

    B. Oleksiak; G. Siwiec; A. Tomaszewska; D. Piękoś

    2018-01-01

    During the leaching process of zinc concentrates, the waste materials rich in various metals such as eg. silver are produced. So far no attempts of silver recovery from the mentioned waste materials have been made due to the lack of any method which would be both effective and beneficial. The paper presents some possibilities of application of flotation process in silver recovery form waste materials generated during zinc production.

  5. Waste heat and water recovery opportunities in California tomato paste processing

    International Nuclear Information System (INIS)

    Amón, Ricardo; Maulhardt, Mike; Wong, Tony; Kazama, Don; Simmons, Christopher W.

    2015-01-01

    Water and energy efficiency are important for the vitality of the food processing industry as demand for these limited resources continues to increase. Tomato processing, which is dominated by paste production, is a major industry in California – where the majority of tomatoes are processed in the United States. Paste processing generates large amounts of condensate as moisture is removed from the fruit. Recovery of the waste heat in this condensate and reuse of the water may provide avenues to decrease net energy and water use at processing facilities. However, new processing methods are needed to create demand for the condensate waste heat. In this study, the potential to recover condensate waste heat and apply it to the tomato enzyme thermal inactivation processing step (the hot break) is assessed as a novel application. A modeling framework is established to predict heat transfer to tomatoes during the hot break. Heat recovery and reuse of the condensate water are related to energy and monetary savings gained through decreased use of steam, groundwater pumping, cooling towers, and wastewater processing. This analysis is informed by water and energy usage data from relevant unit operations at a commercial paste production facility. The case study indicates potential facility seasonal energy and monetary savings of 7.3 GWh and $166,000, respectively, with most savings gained through reduced natural gas use. The sensitivity of heat recovery to various process variables associated with heat exchanger design and processing conditions is presented to identify factors that affect waste heat recovery. - Highlights: • The potential to recovery waste heat in tomato paste processing is examined. • Heat transfer from evaporator condensate to tomatoes in the hot break is modeled. • Processing facility data is used in model to predict heat recovery energy savings. • The primary benefit of heat recovery is reduced use of natural gas in boilers. • Reusing

  6. Investigation of recovery system for Am and Cm. Results in 1999

    International Nuclear Information System (INIS)

    Watanabe, Masayuki; Kamiya, Masayoshi; Tanaka, Hiroshi

    2000-07-01

    In JAPAN NUCLEAR CYCLE DEVELOPMENT INSTITUTE, the feasibility study has been carried out in order to evaluate various methods of FBR cycle technology and to propose candidate concepts of practical technology. As a part of this, we investigated material balance and a process flow diagram of SETFICS process for the recovery system of Am and Cm from high level radioactive liquid waste, and we preliminarily evaluated the equipment scale, the cost and waste generation rate of this system. As a result, it was obtained that these values are about 17,15 and 10%, respectively, of the recycle plant based on the simplified PUREX process. In addition, we investigated preliminary flowsheets of 4 recovery systems for Am and Cm, and compared each to each of them. It was evaluated that the equipment scale of any process was also equivalent. From these results, each system is applicable as the recovery system of Am and Cm. But these results suggest that the facility may be much larger than the PUREX plant, in spite of small contents of the recovery materials in each system. Therefore, whichever method is applied to the recovery system of Am and Cm, we need to develop the process in order to make the system more compact and economical. (author)

  7. Environmental and economic benefits of the recovery of materials in a municipal solid waste management system.

    Science.gov (United States)

    De Feo, Giovanni; Ferrara, Carmen; Finelli, Alessio; Grosso, Alberto

    2017-12-07

    The main aim of this study was to perform a Life cycle assessment study as well as an economic evaluation of the recovery of recyclable materials in a municipal solid waste management system. If citizens separate erroneously waste fractions, they produce both environmental and economic damages. The environmental and economic evaluation was performed for the case study of Nola (34.349 inhabitants) in Southern Italy, with a kerbside system that assured a source separation of 62% in 2014. The economic analysis provided a quantification of the economic benefits obtainable for the population in function of the achievable percentage of source separation. The comparison among the environmental performance of four considered scenarios showed that the higher the level of source separation was, the lower the overall impacts were. This occurred because, even if the impacts of the waste collection and transport increased, they were overcome by the avoided impacts of the recycling processes. Increasing the source separation by 1% could avoid the emission of 5 kg CO 2 eq. and 5 g PM10 for each single citizen. The economic and environmental indicators defined in this study provide simple and effective information useful for a wide-ranging audience in a behavioural change programme perspective.

  8. A high recovery membrane process for purification of low-level radioactive liquid waste

    Energy Technology Data Exchange (ETDEWEB)

    Al-Samadi, R. [Ontario Power Generation, Pickering, Ontario (Canada); Davloor, R.; Harper, B., E-mail: ram.davloor@brucepower.com [Bruce Power, Tiverton, Ontario (Canada)

    2013-07-01

    An advanced Active Liquid Waste Treatment System (ALWTS) was designed placed in-service at the Bruce Nuclear Generating Station 'A' in 1999. As part of this unique system an innovative high recovery reverse osmosis system (ROS) was installed to concentrate the contaminants into a small retentate stream that can be processed on-site or sent off-site for disposal. The permeate is discharged to the lake. The overall permeate recovery of the system is greater than 98%. This patented system which saw its first commercial application at the station has now operated continuously for over thirteen years. It has enabled the ALWTS to consistently produce high quality effluent that exceeds environmental discharge limits. This paper discusses the high recovery membrane process its unique design features aimed at minimizing the volume of rejects its separation performance operating history. (author)

  9. A high recovery membrane process for purification of low-level radioactive liquid waste

    International Nuclear Information System (INIS)

    Al-Samadi, R.; Davloor, R.; Harper, B.

    2013-01-01

    An advanced Active Liquid Waste Treatment System (ALWTS) was designed placed in-service at the Bruce Nuclear Generating Station 'A' in 1999. As part of this unique system an innovative high recovery reverse osmosis system (ROS) was installed to concentrate the contaminants into a small retentate stream that can be processed on-site or sent off-site for disposal. The permeate is discharged to the lake. The overall permeate recovery of the system is greater than 98%. This patented system which saw its first commercial application at the station has now operated continuously for over thirteen years. It has enabled the ALWTS to consistently produce high quality effluent that exceeds environmental discharge limits. This paper discusses the high recovery membrane process its unique design features aimed at minimizing the volume of rejects its separation performance operating history. (author)

  10. Safe Disposal of Medical and Plastic Waste and Energy Recovery Possibilities using Plasma Pyrolysis Technology

    International Nuclear Information System (INIS)

    Nema, S.K.; Mukherjee, S.

    2010-01-01

    Plasma pyrolysis and plasma gasification are emerging technologies that can provide complete solution to organic solid waste disposal. In these technologies plasma torch is used as a workhorse to convert electrical energy into heat energy. These technologies dispose the organic waste in an environment friendly manner. Thermal plasma provides extremely high temperature in oxygen free or controlled air environment which is required for pyrolysis or gasification reactions. Plasma based medical waste treatment is an extremely complex technology since it has to contend with extreme temperatures and corrosion-prone environment, complex pyro-chemistry resulting in toxic and dangerous products, if not controlled. In addition, one has to take care of complete combustion of pyrolyzed gases followed by efficient scrubbing to meet the emission standards set by US EPA and Central Pollution Control Board, India. In medical waste, high volume and low packing density waste with nonstandard composition consisting of a variety of plastics, organic material and liquids used to be present. The present paper describes the work carried out at Institute for Plasma Research, India, on plasma pyrolysis of (i) medical waste disposal and the results of emission measurement done at various locations in the system and (ii) energy recovery from cotton and plastic waste. The process and system development has been done in multiple steps. Different plasma pyrolysis models were made and each subsequent model was improved upon to meet stringent emission norms and to make the system energy efficient and user friendly. FCIPT, has successfully demonstrated up to 50 kg/ hr plasma pyrolysis systems and have installed plasma pyrolysis facilities at various locations in India . Plastic Waste disposal along with energy recovery in 15 kg/ hr model has also been developed and demonstrated at FCIPT. In future, this technology has great potential to dispose safely different waste streams such as biomass

  11. Waste Processing Cost Recovery at Los Alamos National Laboratory-Analysis and Recommendations

    International Nuclear Information System (INIS)

    Booth, St. R.

    2009-01-01

    Los Alamos National Laboratory is implementing full cost recovery for waste processing in fiscal year 2009 (FY2009), after a transition year in FY2008. Waste processing cost recovery has been implemented in various forms across the nuclear weapons complex and in corporate America. The fundamental reasoning of sending accurate price signals to waste generators is economically sound, and leads to waste minimization and reduced waste expense over time. However, Los Alamos faces significant implementation challenges because of its status as a government-owned, contractor-operated national scientific institution with a diverse suite of experimental and environmental cleanup activities, and the fact that this represents a fundamental change in how waste processing is viewed by the institution. This paper describes the issues involved during the transition to cost recovery and the ultimate selection of the business model. Of the six alternative cost recovery models evaluated, the business model chosen to be implemented in FY2009 is Recharge Plus Generators Pay Distributed Direct. Under this model, all generators who produce waste must pay a distributed direct share associated with their specific waste type to use a waste processing capability. This cost share is calculated using the distributed direct method on the fixed cost only, i.e., the fixed cost share is based on each program's forecast proportion of the total Los Alamos volume forecast of each waste type. (Fixed activities are those required to establish the waste processing capability, i.e., to make the process ready, permitted, certified, and prepared to handle the first unit of waste. Therefore, the fixed cost ends at the point just before waste begins to be processed. The activities to actually process the waste are considered variable.) The volume of waste actually sent for processing is charged a unit cost based solely on the variable cost of disposing of that waste. The total cost recovered each year is the

  12. Fuzzy Nonlinear Dynamic Evaporator Model in Supercritical Organic Rankine Cycle Waste Heat Recovery Systems

    Directory of Open Access Journals (Sweden)

    Jahedul Islam Chowdhury

    2018-04-01

    Full Text Available The organic Rankine cycle (ORC-based waste heat recovery (WHR system operating under a supercritical condition has a higher potential of thermal efficiency and work output than a traditional subcritical cycle. However, the operation of supercritical cycles is more challenging due to the high pressure in the system and transient behavior of waste heat sources from industrial and automotive engines that affect the performance of the system and the evaporator, which is the most crucial component of the ORC. To take the transient behavior into account, the dynamic model of the evaporator using renowned finite volume (FV technique is developed in this paper. Although the FV model can capture the transient effects accurately, the model has a limitation for real-time control applications due to its time-intensive computation. To capture the transient effects and reduce the simulation time, a novel fuzzy-based nonlinear dynamic evaporator model is also developed and presented in this paper. The results show that the fuzzy-based model was able to capture the transient effects at a data fitness of over 90%, while it has potential to complete the simulation 700 times faster than the FV model. By integrating with other subcomponent models of the system, such as pump, expander, and condenser, the predicted system output and pressure have a mean average percentage error of 3.11% and 0.001%, respectively. These results suggest that the developed fuzzy-based evaporator and the overall ORC-WHR system can be used for transient simulations and to develop control strategies for real-time applications.

  13. Energy recovery from garden waste in a LCA perspective

    DEFF Research Database (Denmark)

    Naroznova, Irina; Møller, Jacob; Scheutz, Charlotte

    2015-01-01

    According to the common strategies regarding waste management and energy supply in EU countries, more efficient utilization of organic waste resources (including garden waste) with both nutrient and energy recovery is desired. Each of the most common treatments applied today – composting, direct...... use on land and incineration – only provides one of the two services. A technology ensuring both nutrient and energy utilization is anaerobic digestion (AD) that has become applicable for treatment of garden waste recently. In this study, life cycle assessment aimed to compare four garden waste...

  14. Silver recovery from the waste materials by the method of flotation process

    Directory of Open Access Journals (Sweden)

    B. Oleksiak

    2018-01-01

    Full Text Available During the leaching process of zinc concentrates, the waste materials rich in various metals such as eg. silver are produced. So far no attempts of silver recovery from the mentioned waste materials have been made due to the lack of any method which would be both effective and beneficial. The paper presents some possibilities of application of flotation process in silver recovery form waste materials generated during zinc production.

  15. Selective extraction and recovery of rare earth metals from phosphor powders in waste fluorescent lamps using an ionic liquid system.

    Science.gov (United States)

    Yang, Fan; Kubota, Fukiko; Baba, Yuzo; Kamiya, Noriho; Goto, Masahiro

    2013-06-15

    The recycling of rare earth metals from phosphor powders in waste fluorescent lamps by solvent extraction using ionic liquids was studied. Acid leaching of rare earth metals from the waste phosphor powder was examined first. Yttrium (Y) and europium (Eu) dissolved readily in the acid solution; however, the leaching of other rare earth metals required substantial energy input. Ionization of target rare earth metals from the waste phosphor powders into the leach solution was critical for their successful recovery. As a high temperature was required for the complete leaching of all rare earth metals, ionic liquids, for which vapor pressure is negligible, were used as an alternative extracting phase to the conventional organic diluent. An extractant, N, N-dioctyldiglycol amic acid (DODGAA), which was recently developed, showed a high affinity for rare earth metal ions in liquid-liquid extraction although a conventional commercial phosphonic extractant did not. An effective recovery of the rare earth metals, Y, Eu, La and Ce, from the metal impurities, Fe, Al and Zn, was achieved from the acidic leach solution of phosphor powders using an ionic liquid containing DODGAA as novel extractant system. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Integrated energy and emission management for diesel engines with waste heat recovery using dynamic models

    NARCIS (Netherlands)

    Willems, F.P.T.; Kupper, F.; Rascanu, G.C.; Feru, E.

    2015-01-01

    Rankine-cycle Waste Heat Recovery (WHR) systems are promising solutions to reduce fuel consumption for trucks. Due to coupling between engine and WHR system, control of these complex systems is challenging. This study presents an integrated energy and emission management strategy for an Euro-VI

  17. Efficiency of energy recovery from municipal solid waste and the resultant effect on the greenhouse gas balance.

    Science.gov (United States)

    Gohlke, Oliver

    2009-11-01

    Global warming is a focus of political interest and life-cycle assessment of waste management systems reveals that energy recovery from municipal solid waste is a key issue. This paper demonstrates how the greenhouse gas effects of waste treatment processes can be described in a simplified manner by considering energy efficiency indicators. For evaluation to be consistent, it is necessary to use reasonable system boundaries and to take the generation of electricity and the use of heat into account. The new European R1 efficiency criterion will lead to the development and implementation of optimized processes/systems with increased energy efficiency which, in turn, will exert an influence on the greenhouse gas effects of waste management in Europe. Promising technologies are: the increase of steam parameters, reduction of in-plant energy consumption, and the combined use of heat and power. Plants in Brescia and Amsterdam are current examples of good performance with highly efficient electricity generation. Other examples of particularly high heat recovery rates are the energy-from-waste (EfW) plants in Malmö and Gothenburg. To achieve the full potential of greenhouse gas reduction in waste management, it is necessary to avoid landfilling combustible wastes, for example, by means of landfill taxes and by putting incentives in place for increasing the efficiency of EfW systems.

  18. Performance investigation of a cogeneration plant with the efficient and compact heat recovery system

    KAUST Repository

    Myat, Aung

    2011-10-03

    This paper presents the performance investigation of a cogeneration plant equipped with an efficient waste heat recovery system. The proposed cogeneration system produces four types of useful energy namely: (i) electricity, (ii) steam, (iii) cooling and (iv) dehumidification. The proposed plant comprises a Capstone C30 micro-turbine which generates 24 kW of electricity, a compact and efficient waste heat recovery system and a host of waste heat activated devices namely (i) a steam generator, (ii) an absorption chiller, (iii) an adsorption chiller and (iv) a multi-bed desiccant dehumidifier. The numerical analysis for the host of waste heat recovery system and thermally activated devices using FORTRAN power station linked to powerful IMSL library is performed to investigate the performance of the overall system. A set of experiments, both part load and full load, of micro-turbine is conducted to examine the electricity generation and the exhaust gas temperature. It is observed that energy utilization factor (EUF) could achieve as high as 70% while Fuel Energy Saving Ratio (FESR) is found to be 28%.

  19. Bioenergy, material, and nutrients recovery from household waste: Advanced material, substance, energy, and cost flow analysis of a waste refinery process

    International Nuclear Information System (INIS)

    Tonini, Davide; Dorini, Gianluca; Astrup, Thomas Fruergaard

    2014-01-01

    Highlights: • We modeled material, substance, energy, and cost flows of a waste refinery process. • Ca. 56% of 1 Mg dry waste input can be recovered as bioliquid yielding 6.2 GJ biogas. • Nutrients and carbon recovery in the bioliquid was estimated to 81–89%. • The biogenic carbon in the input waste was 63% of total carbon based on 14 C analyses. • The quality of the digestate may be critical with respect to use on land. - Abstract: Energy, materials, and resource recovery from mixed household waste may contribute to reductions in fossil fuel and resource consumption. For this purpose, legislation has been enforced to promote energy recovery and recycling. Potential solutions for separating biogenic and recyclable materials are offered by waste refineries where a bioliquid is produced from enzymatic treatment of mixed waste. In this study, potential flows of materials, energy, and substances within a waste refinery were investigated by combining sampling, analyses, and modeling. Existing material, substance, and energy flow analysis was further advanced by development of a mathematical optimization model for determination of the theoretical recovery potential. The results highlighted that the waste refinery may recover ca. 56% of the dry matter input as bioliquid, yielding 6.2 GJ biogas-energy. The potential for nitrogen, phosphorous, potassium, and biogenic carbon recovery was estimated to be between 81% and 89% of the input. Biogenic and fossil carbon in the mixed household waste input was determined to 63% and 37% of total carbon based on 14 C analyses. Additional recovery of metals and plastic was possible based on further process optimization. A challenge for the process may be digestate quality, as digestate may represent an emission pathway when applied on land. Considering the potential variability of local revenues for energy outputs, the costs for the waste refinery solution appeared comparable with alternatives such as direct incineration

  20. Audit Report on 'Waste Processing and Recovery Act Acceleration Efforts for Contact-Handled Transuranic Waste at the Hanford Site'

    International Nuclear Information System (INIS)

    2010-01-01

    The Department of Energy's Office of Environmental Management's (EM), Richland Operations Office (Richland), is responsible for disposing of the Hanford Site's (Hanford) transuranic (TRU) waste, including nearly 12,000 cubic meters of radioactive contact-handled TRU wastes. Prior to disposing of this waste at the Department's Waste Isolation Pilot Plant (WIPP), Richland must certify that it meets WIPP's waste acceptance criteria. To be certified, the waste must be characterized, screened for prohibited items, treated (if necessary) and placed into a satisfactory disposal container. In a February 2008 amendment to an existing Record of Decision (Decision), the Department announced its plan to ship up to 8,764 cubic meters of contact-handled TRU waste from Hanford and other waste generator sites to the Advanced Mixed Waste Treatment Project (AMWTP) at Idaho's National Laboratory (INL) for processing and certification prior to disposal at WIPP. The Department decided to maximize the use of the AMWTP's automated waste processing capabilities to compact and, thereby, reduce the volume of contact-handled TRU waste. Compaction reduces the number of shipments and permits WIPP to more efficiently use its limited TRU waste disposal capacity. The Decision noted that the use of AMWTP would avoid the time and expense of establishing a processing capability at other sites. In May 2009, EM allocated $229 million of American Recovery and Reinvestment Act of 2009 (Recovery Act) funds to support Hanford's Solid Waste Program, including Hanford's contact-handled TRU waste. Besides providing jobs, these funds were intended to accelerate cleanup in the short term. We initiated this audit to determine whether the Department was effectively using Recovery Act funds to accelerate processing of Hanford's contact-handled TRU waste. Relying on the availability of Recovery Act funds, the Department changed course and approved an alternative plan that could increase costs by about $25 million

  1. Efficiency of energy recovery from waste incineration, in the light of the new Waste Framework Directive.

    Science.gov (United States)

    Grosso, Mario; Motta, Astrid; Rigamonti, Lucia

    2010-07-01

    This paper deals with a key issue related to municipal waste incineration, which is the efficiency of energy recovery. A strong driver for improving the energy performances of waste-to-energy plants is the recent Waste Framework Directive (Directive 2008/98/EC of the European Parliament and of the Council of 19 November 2008 on waste and repealing certain Directives), which allows high efficiency installations to benefit from a status of "recovery" rather than "disposal". The change in designation means a step up in the waste hierarchy, where the lowest level of priority is now restricted to landfilling and low efficiency wastes incineration. The so-called "R1 formula" reported in the Directive, which counts for both production of power and heat, is critically analyzed and correlated to the more scientific-based approach of exergy efficiency. The results obtained for waste-to-energy plants currently operating in Europe reveal some significant differences in their performance, mainly related to the average size and to the availability of a heat market (district heating). Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  2. Energy recovery from municipal solid wastes in Italy: Actual study and perspective for future

    International Nuclear Information System (INIS)

    Brunetti, N.; Ciampa, F.; De Cecco, C.

    1992-01-01

    Materials and energy recovery from municipal solid wastes (MSW) and assimilable waste, and their re-use is one of strong points of current regulations and tendencies, both at the national and at community level in Europe. In Italy, the interest in energy recovery from renewable sources has been encouraged by energy-savings law which included financial incentives for thermal plant building if low grade fuels such as MSW were employed. New electric power prices imposed by Italian Electric Power Authority, ENEL, encourage energy recovery from waste burners. This paper aims to point out the present state of energy recovery from wastes in Italy, trends and prospects to satisfy, with new plants, the need for waste thermal destruction and part of the demand for energy in the different Italian regions: only about 10% of MSW are burned and just a small percentage of the estimated amount of recoverable energy (2 MTOE/y) is recuperated. Different technological cycles are discussed: incineration of untreated wastes and energy recovery; incineration (or gasification) of RDF (refuse derived fuels) and heat-electricity co-generation; burning of RDF in industrial plants, in addition to other fuels

  3. The Recovery of Zinc Heavy Metal from Industrial Liquid Waste

    International Nuclear Information System (INIS)

    Panggabean, Sahat M.

    2000-01-01

    It had been studied the recovery of zinc heavy metal from liquid waste of electroplating industry located at East Jakarta. The aim of this study was to minimize the waste arisen from industrial activities by taking out zinc metal in order to reused on-site. The method of recovery was two steps precipitation using NaOH reagent and pH variation. The first step of precipitation at pH optimum around 6 yielded iron metal. The second step at pH optimum around 10 yielded zinc metal. The zinc metal was taken out assessed to the possibility of reused at that fabric. By applying its, it will yield the volume reduction of sludge waste about 36.1% or 53.2% of zinc metal containing in the waste. It means the cost of waste treatment will be lower. Beside its, the effluent arisen from the method had fulfill the maximum limit and it allowed to release to the environment. (author)

  4. Comparison of energy and material recovery of household waste management from the environmental point of view - Case Kaunas, Lithuania

    International Nuclear Information System (INIS)

    Luoranen, Mika; Soukka, Risto; Denafas, Gintaras; Horttanainen, Mika

    2009-01-01

    The results of life cycle assessment of five different energy recovery-based waste management system options are presented. The system options were designed for the city of Kaunas, Lithuania. The Kaunas model was formed according to the Simple Integrated System Management concept developed at Lappeenranta University of Technology. CML2001 was selected as the method according to which the life cycle impact assessment profiles were compiled and analyzed. The results suggest that energy recovery from biowaste, paper and cardboard derived from households could be a more recommendable waste management option than material recovery of the fractions (composting of biowaste and recycling of paper and cardboard). The calculations were carried out with limited process information, and cannot thus be generalized in all parts

  5. Comparative assessment of metallurgical recovery of metals from electronic waste with special emphasis on bioleaching.

    Science.gov (United States)

    Priya, Anshu; Hait, Subrata

    2017-03-01

    Waste electrical and electronic equipment (WEEE) or electronic waste (e-waste) is one of the fastest growing waste streams in the urban environment worldwide. The core component of printed circuit board (PCB) in e-waste contains a complex array of metals in rich quantity, some of which are toxic to the environment and all of which are valuable resources. Therefore, the recycling of e-waste is an important aspect not only from the point of waste treatment but also from the recovery of metals for economic growth. Conventional approaches for recovery of metals from e-waste, viz. pyrometallurgical and hydrometallurgical techniques, are rapid and efficient, but cause secondary pollution and economically unviable. Limitations of the conventional techniques have led to a shift towards biometallurgical technique involving microbiological leaching of metals from e-waste in eco-friendly manner. However, optimization of certain biotic and abiotic factors such as microbial species, pH, temperature, nutrients, and aeration rate affect the bioleaching process and can lead to profitable recovery of metals from e-waste. The present review provides a comprehensive assessment on the metallurgical techniques for recovery of metals from e-waste with special emphasis on bioleaching process and the associated factors.

  6. A comparative thermodynamic analysis of ORC and Kalina cycles for waste heat recovery: A case study for CGAM cogeneration system

    Directory of Open Access Journals (Sweden)

    Arash Nemati

    2017-03-01

    Full Text Available A thermodynamic modeling and optimization is carried out to compare the advantages and disadvantages of organic Rankine cycle (ORC and Kalina cycle (KC as a bottoming cycle for waste heat recovery from CGAM cogeneration system. Thermodynamic models for combined CGAM/ORC and CGAM/KC systems are performed and the effects of some decision variables on the energy and exergy efficiency and turbine size parameter of the combined systems are investigated. Solving simulation equations and optimization process have been done using direct search method by EES software. It is observed that at the optimum pressure ratio of air compressor, produced power of bottoming cycles has minimum values. Also, evaporator pressure optimizes the performance of cycle, but this optimum pressure level in ORC (11 bar is much lower than that of Kalina (46 bar. In addition, ORC's simpler configuration, higher net produced power and superheated turbine outlet flow, which leads to a reliable performance for turbine, are other advantages of ORC. Kalina turbine size parameter is lower than that of the ORC which is a positive aspect of Kalina cycle. However, by a comprehensive comparison between Kalina and ORC, it is concluded that the ORC has significant privileges for waste heat recovery in this case.

  7. Application of insoluble tannin to recovery of uranium, TRU and heavy metals elements form radioactive liquid waste

    International Nuclear Information System (INIS)

    Hamaguchi, Kazuhiko; Shirato, Wataru; Nakamura, Yasuo; Matsumura, Tatsuro; Takeshita, Kenji; Nakano, Yoshio

    1999-01-01

    Mitsubishi Nuclear Fuel Co., Ltd. (MNF) has developed a new adsorbent, TANNIX (tread mark), for the recovery of uranium, TRU and heavy metal elements in the liquid waste, in which TANNIX derived from a natural tannin polymer. TANNIX has same advantages that handling is easier than that of standard IX-resin, and that the volume of secondary waste is reduced by burning the used TANNIX. We have replaced its radioactive liquid waste treatment system from the conventional co-precipitation process to adsorption process by using TANNIX. TANNIX was founded to be more effective for the recovery of Pu, TRU, and hexavalent chromium Cr-(VI) as well as Uranium. (author)

  8. Greenhouse effect reduction and energy recovery from waste landfill

    Energy Technology Data Exchange (ETDEWEB)

    Lombardi, Lidia [Dipartimento di Energetica ' Sergio Stecco' , Universita degli Studi di Firenze, Via Santa Marta 3, 50139 Florence (Italy)]. E-mail: lidia.lombardi@pin.unifi.it; Carnevale, Ennio [Dipartimento di Energetica ' Sergio Stecco' , Universita degli Studi di Firenze, Via Santa Marta 3, 50139 Florence (Italy); Corti, Andrea [Dipartimento di Ingegneria dell' Informazione, Universita degli Studi di Siena, Via Roma 56, 53100 Siena (Italy)

    2006-12-15

    Waste management systems are a non-negligible source of greenhouse gases. In particular, methane and carbon dioxide emissions occur in landfills due to the breakdown of biodegradable carbon compounds operated on by anaerobic bacteria. The conventional possibilities of reducing the greenhouse effect (GHE) from waste landfilling consists in landfill gas (LFG) flaring or combustion with energy recovery in reciprocating engines. These conventional treatments are compared with three innovative possibilities: the direct LFG feeding to a fuel cell (FC); the production of a hydrogen-rich gas, by means of steam reforming and CO{sub 2} capture, to feed a stationary FC; the production of a hydrogen-rich gas, by means of steam reforming and CO{sub 2} capture, to feed a vehicle FC. The comparison is carried out from an environmental point of view, calculating the specific production of GHE per unit mass of waste disposed in landfill equipped with the different considered technologies.

  9. Material resources, energy, and nutrient recovery from waste: are waste refineries the solution for the future?

    DEFF Research Database (Denmark)

    Tonini, Davide; Martinez-Sanchez, Veronica; Astrup, Thomas Fruergaard

    2013-01-01

    Waste refineries focusing on multiple outputs of material resources, energy carriers, and nutrients may potentially provide more sustainable utilization of waste resources than traditional waste technologies. This consequential life cycle assessment (LCA) evaluated the environmental performance....... Overall, the waste refinery provided global warming (GW) savings comparable with efficient incineration, MBT, and bioreactor landfilling technologies. The main environmental benefits from waste refining were a potential for improved phosphorus recovery (about 85%) and increased electricity production (by...

  10. Organic Rankine cycle unit for waste heat recovery on ships (PilotORC)

    DEFF Research Database (Denmark)

    Haglind, Fredrik; Montagud, Maria E. Mondejar; Andreasen, Jesper Graa

    The project PilotORC was aimed at evaluating the technical and economic feasibility of the use of organic Rankine cycle (ORC) units to recover low-temperature waste heat sources (i.e. exhaust gases, scavenge air, engine cooling system, and lubricant oil system) on container vessels. The project...... included numerical simulations and experimental tests on a 125 kW demonstration ORC unit that utilizes the waste heat of the main engine cooling system on board one of Mærsk's container vessels. During the design of the demonstration ORC unit, different alternatives for the condenser were analyzed in order...... of using ORC units for maritime applications, and the relevance of this technology for new-building projects. Firstly, an evaluation of the waste heat resources available on board Mærsk containers fleet, and an estimation of the potential energy recovery by means of the ORC technology was performed...

  11. Assessment of the energy recovery potentials of solid waste ...

    African Journals Online (AJOL)

    Otoigiakih

    The main attributes of waste as a fuel are water content, calorific value, and burnable content. The study was conducted to evaluate the energy recovery potential of solid waste generated in. Akosombo. A total of twelve (12) samples were collected from the township in December, 2012 (dry month) and May, 2013 (Wet ...

  12. Recovery of mineral oil from waste emulsion using electrocoagulation method

    Directory of Open Access Journals (Sweden)

    Razali Mohd Najib

    2016-01-01

    Full Text Available This paper presents a research to recover mineral oil from industrial waste emulsion. This research also evaluates the standard of water produced after the oil recovery. The ecosystem could be polluted if this waste is not treated prior to discharge. The equipment needed for this experiment is power supply (generator, connecting wire and metal plate for providing the coagulant. The chosen plates were aluminium and iron plate. The power supply will be connected to the plate producing anode (positive terminal and cathode (negative terminal. Both plates are immersed into a beaker containing waste emulsion. The charge supplied by the current will cause the aluminium or ferum to dissisipate and became ions. These ions will attract the oil to flock together and float at the surface. The water will then filter by using filter paper. Electrocoagulation was done without addition of chemical thus can prevent the hazard from the chemicals. The samples was sent for oil and grease test. The optimum time needed for recovery of oil was 3 hours. The percentage recovery reach constant trend of 95% afterwards. When the power consumption increases, the percentage recovery also increases. However, the current should be lower than 0.5 ampere as it is the limit that human body can withstand. Thus, power consumption of 27.5 Watt was chosen as optimum value. The oil recovery of at power consumption at 27.5W is 96%. The best plate in the process was the aluminium pair which can recover more than ferum plate. The present work concludes the promising future for waste water treatment by usage of electrocoagulation technique.

  13. Design, empirical modelling and analysis of a waste-heat recovery system coupled to a traditional cooking stove

    International Nuclear Information System (INIS)

    Sakdanuphab, Rachsak; Sakulkalavek, Aparporn

    2017-01-01

    Highlights: • WHR system was implemented to utilise the waste heat from a stove. • The empirical modelling by RSM can be used to predict the generated TEG power. • The total conversion efficiency of the WHR system was more than 80%. • The stove efficiency decreased less than 5% when the WHR system was attached. - Abstract: In this work, a waste-heat recovery (WHR) system was designed and implemented to utilise the waste heat from a cooking stove. The WHR system was designed to preserve maximum thermal energy efficiency, use passive cooling, and produce a system that did not alter the body of the cooking stove. The thermal energy from the cooking stove was converted into electrical energy by a thermoelectric generator (TEG) and used in a waste-heat hot water boiler. The cold side of the TEG was cooled by heat pipes immersed in a water box that offers a high heat transfer rate. The heated water can be used for domestic purposes. Dependent variables were the heater temperature and the volume of water. The heater temperature was varied between 130 and 271 °C, and 4.2–9.5 L of water was investigated. At equilibrium, response surface methodology based on a central composite design was used to empirically model the influence of the heater temperature and the volume of water on the electrical power generation and the hot water temperature. Experimental results of the system efficiency showed that the heater temperature was more influential than was the volume of water. The total efficiency of the WHR system was more than 80%. Thermal contact resistance was analysed to improve the WHR system performance. Finally, the thermal efficiency of a cooking stove, both with and without the WHR system, was measured. Results showed that the thermal efficiency of the cooking stove decreased by less than 5% when the WHR system was attached.

  14. A review on waste heat recovery from exhaust in the ceramics industry

    Science.gov (United States)

    Delpech, Bertrand; Axcell, Brian; Jouhara, Hussam

    2017-11-01

    Following the energy crisis in 1980, many saving technologies have been investigated with attempts to implement them into various industries, one of them is the field of ceramic production. In order to comply with energy saving trends and environmental issues, the European ceramic industry sector has developed energy efficient systems which reduced significantly production time and costs and reduced total energy consumption. The last achievement is of great importance as the energy consumption of the ceramic process accounts for a significant percentage of the total production costs. More precisely, the firing stage consumes the highest amount of energy during the whole ceramic production process. The use of roller kilns, fired by natural gas, involves a loss of 50% of the input energy via the flue gas and the cooling gas exhausts. This review paper briefly describes the production process of the different ceramic products, with a focus on the ceramic sector in Europe. Due to the limited on waste heat recovery in the ceramic industry, other high temperature waste heat recovery applications are considered in the paper, such as in concrete and steel production, which could have a potential use in the ceramic industry. The state of the art technologies used in the ceramics industry are reviewed with a special interest in waste heat recovery from the ceramic process exhaust stacks and energy saving technologies.

  15. MUNICIPAL SOLID WASTE AND RECOVERY POTENTIAL: BANGLADESH PERSPECTIVE

    Directory of Open Access Journals (Sweden)

    M. Alamgir, A. Ahsan

    2007-04-01

    Full Text Available A total of 7690 tons of municipal solid waste generated daily at the six major cities of Bangladesh, namely, Dhaka, Chittagong, Khulna, Rajshahi, Barisal and Sylhet, as estimated in 2005. Sampling was done at different waste generation sources such as residential, commercial, institutional and open areas, in different seasons. The composition of the entire waste stream was about 74.4% organic matter, 9.1% paper, 3.5% plastic, 1.9% textile and wood, 0.8% leather and rubber, 1.5% metal, 0.8% glass and 8% other waste. The per capita generation of municipal solid waste was ranged from 0.325 to 0.485 kg/cap/day while the average rate was 0.387 kg/cap/day as measured in the six major cities. The potential for waste recovery and reduction based on the waste characteristics are evaluated and it is predicted that 21.64 million US$/yr can be earned from recycling and composting of municipal solid waste.

  16. A combined thermodynamic cycle used for waste heat recovery of internal combustion engine

    International Nuclear Information System (INIS)

    He, Maogang; Zhang, Xinxin; Zeng, Ke; Gao, Ke

    2011-01-01

    In this paper, we present a steady-state experiment, energy balance and exergy analysis of exhaust gas in order to improve the recovery of the waste heat of an internal combustion engine (ICE). Considering the different characteristics of the waste heat of exhaust gas, cooling water, and lubricant, a combined thermodynamic cycle for waste heat recovery of ICE is proposed. This combined thermodynamic cycle consists of two cycles: the organic Rankine cycle (ORC), for recovering the waste heat of lubricant and high-temperature exhaust gas, and the Kalina cycle, for recovering the waste heat of low-temperature cooling water. Based on Peng–Robinson (PR) equation of state (EOS), the thermodynamic parameters in the high-temperature ORC were calculated and determined via an in-house computer program. Suitable working fluids used in high-temperature ORC are proposed and the performance of this combined thermodynamic cycle is analyzed. Compared with the traditional cycle configuration, more waste heat can be recovered by the combined cycle introduced in this paper. -- Highlights: ► We study the energy balance of fuel in internal combustion engine. ► Heat recovery effect of exhaust gas is good when ICE is at a high-load condition. ► We propose a new combined thermodynamic cycle for waste heat of ICE. ► The combined cycle has a higher recovery efficiency than previous configurations.

  17. Bioelectrochemical Integration of Waste Heat Recovery, Waste-to- Energy Conversion, and Waste-to-Chemical Conversion with Industrial Gas and Chemical Manufacturing Processes

    Energy Technology Data Exchange (ETDEWEB)

    Mac Dougall, James [Air Products and Chemicals, Inc., Allentown, PA (United States)

    2016-02-05

    Many U.S. manufacturing facilities generate unrecovered, low-grade waste heat, and also generate or are located near organic-content waste effluents. Bioelectrochemical systems, such as microbial fuel cells and microbial electrolysis cells, provide a means to convert organic-content effluents into electric power and useful chemical products. A novel biochemical electrical system for industrial manufacturing processes uniquely integrates both waste heat recovery and waste effluent conversion, thereby significantly reducing manufacturing energy requirements. This project will enable the further development of this technology so that it can be applied across a wide variety of US manufacturing segments, including the chemical, food, pharmaceutical, refinery, and pulp and paper industries. It is conservatively estimated that adoption of this technology could provide nearly 40 TBtu/yr of energy, or more than 1% of the U.S. total industrial electricity use, while reducing CO2 emissions by more than 6 million tons per year. Commercialization of this technology will make a significant contribution to DOE’s Industrial Technology Program goals for doubling energy efficiency and providing a more robust and competitive domestic manufacturing base.

  18. Disposing and recycling waste printed circuit boards: disconnecting, resource recovery, and pollution control.

    Science.gov (United States)

    Wang, Jianbo; Xu, Zhenming

    2015-01-20

    Over the past decades, China has been suffering from negative environmental impacts from distempered e-waste recycling activities. After a decade of effort, disassembly and raw materials recycling of environmentally friendly e-waste have been realized in specialized companies, in China, and law enforcement for illegal activities of e-waste recycling has also been made more and more strict. So up to now, the e-waste recycling in China should be developed toward more depth and refinement to promote industrial production of e-waste resource recovery. Waste printed circuit boards (WPCBs), which are the most complex, hazardous, and valuable components of e-waste, are selected as one typical example in this article that reviews the status of related regulations and technologies of WPCBs recycling, then optimizes, and integrates the proper approaches in existence, while the bottlenecks in the WPCBs recycling system are analyzed, and some preliminary experiments of pinch technologies are also conducted. Finally, in order to provide directional guidance for future development of WPCBs recycling, some key points in the WPCBs recycling system are proposed to point towards a future trend in the e-waste recycling industry.

  19. Energy and nutrient recovery from anaerobic treatment of organic wastes

    Science.gov (United States)

    Henrich, Christian-Dominik

    The objective of the research was to develop a complete systems design and predictive model framework of a series of linked processes capable of providing treatment of landfill leachate while simultaneously recovering nutrients and bioenergy from the waste inputs. This proposed process includes an "Ammonia Recovery Process" (ARP) consisting of: (1) ammonia de-sorption requiring leachate pH adjustment with lime or sodium hydroxide addition followed by, (2) ammonia re-absorption into a 6-molar sulfuric acid spray-tower followed by, (3) biological activated sludge treatment of soluble organic residuals (BOD) followed by, (4) high-rate algal post-treatment and finally, (5) an optional anaerobic digestion process for algal and bacterial biomass, and/or supplemental waste fermentation providing the potential for additional nutrient and energy recovery. In addition, the value provided by the waste treatment function of the overall processes, each of the sub-processes would provide valuable co-products offering potential GHG credit through direct fossil-fuel replacement, or replacement of products requiring fossil fuels. These valuable co-products include, (1) ammonium sulfate fertilizer, (2) bacterial biomass, (3) algal biomass providing, high-protein feeds and oils for biodiesel production and, (4) methane bio-fuels. Laboratory and pilot reactors were constructed and operated, providing data supporting the quantification and modeling of the ARP. Growth parameters, and stoichiometric coefficients were determined, allowing for design of the leachate activated sludge treatment sub-component. Laboratory and pilot algal reactors were constructed and operated, and provided data that supported the determination of leachate organic/inorganic-nitrogen ratio, and loading rates, allowing optimum performance of high-rate algal post-treatment. A modular and expandable computer program was developed, which provided a systems model framework capable of predicting individual component

  20. Thermoelectrics for waste heat recovery and climate control in automobiles

    Energy Technology Data Exchange (ETDEWEB)

    Maranville, Clay W. [Ford Motor Company, Dearborn, MI (United States); Schmitz, Peter [Ford Forschungszentrum Aachen GmbH, Aachen (Germany)

    2011-07-01

    Thermoelectric (TE) devices have received renewed attention in the past decade for use in light-duty automotive applications. Governmental organizations and private corporations world-wide are sponsoring research at both the basic materials level, as well as for applied research and technology demonstrations. This funding has led to measurable improvement in TE device cost and efficiency, as well as spurring the emergence and growth of a vertically-integrated TE industry. The two broad categories of applications that have been considered for thermoelectrics are power generation through waste-heat recovery and cabin climate control through the use of TE heat pumps. Neither of these uses of TE devices has ever been commercialized in large-scale vehicle applications, in large part due to the challenges of low device efficiency and high costs. While it is still not clear that TEs will emerge as a winner in the marketplace in the near-term, there are several new developments which provide justification for this renewed interest. Among these reasons are increasing electrification of the vehicle fleet, demands from governments and consumers for improvement in fuel economy and reduction in tailpipe CO{sub 2} emissions, and a greater emphasis on occupant comfort. With governments and industry around the world placing substantial financial bets on the promise of this technology to help address national and global concerns for reducing CO{sub 2} and hydrocarbon consumption, it makes sense for the automotive industry to leverage this investment and to re-evaluate TE-based technology for use in vehicles. In this paper, we will present an overview of Ford Motor Company's current and upcoming research efforts into TE technology. This effort is focused on the use of TE waste heat recovery systems in a vehicle exhaust; and the use of TE HVAC systems in hybrid vehicles. We will discuss the role of the automotive OEM in establishing guidelines and targets for cost, power density

  1. Life-cycle assessment of municipal solid wastes: Development of the WASTED model

    International Nuclear Information System (INIS)

    Diaz, R.; Warith, M.

    2006-01-01

    This paper describes the development of the Waste Analysis Software Tool for Environmental Decisions (WASTED) model. This model provides a comprehensive view of the environmental impacts of municipal solid waste management systems. The model consists of a number of separate submodels that describe a typical waste management process: waste collection, material recovery, composting, energy recovery from waste and landfilling. These submodels are combined to represent a complete waste management system. WASTED uses compensatory systems to account for the avoided environmental impacts derived from energy recovery and material recycling. The model is designed to provide solid waste decision-makers and environmental researchers with a tool to evaluate waste management plans and to improve the environmental performance of solid waste management strategies. The model is user-friendly and compares favourably with other earlier models

  2. Performance analysis of a waste heat recovery thermoelectric generation system for automotive application

    International Nuclear Information System (INIS)

    Liu, X.; Deng, Y.D.; Li, Z.; Su, C.Q.

    2015-01-01

    Graphical abstract: A new automotive exhaust-based thermoelectric generator and its “four-TEGs” system are constructed, and the performance characteristics of system are discussed through road test and revolving drum test. - Highlights: • The automotive thermoelectric generator system was constructed and studied. • Road test and revolving drum test were used to measure the output power. • A performance of 201.7 V (open circuit voltage)/944 W obtained. - Abstract: Thermoelectric power generators are one of the promising green energy sources. In this case study, an energy-harvesting system which extracts heat from an automotive exhaust pipe and turns the heat into electricity by using thermoelectric power generators (TEGs) has been constructed. The test bench is developed to analysis the performance of TEG system characteristics, which are undertaken to assess the feasibility of automotive applications. Based on the test bench, a new system called “four-TEGs” system is designed and assembled into prototype vehicle called “Warrior”, through the road test and revolving drum test table, characteristics of the system such as hot-side temperature, cold-side temperature, open circuit voltage and power output are studied, and a maximum power of 944 W was obtained, which completely meets the automotive application. The present study shows the promising potential of using this kind of thermoelectric generator for low-temperature waste heat recovery vehicle

  3. Process equipment waste and process waste liquid collection systems

    International Nuclear Information System (INIS)

    1990-06-01

    The US DOE has prepared an environmental assessment for construction related to the Process Equipment Waste (PEW) and Process Waste Liquid (PWL) Collection System Tasks at the Idaho Chemical Processing Plant. This report describes and evaluates the environmental impacts of the proposed action (and alternatives). The purpose of the proposed action would be to ensure that the PEW and PWL collection systems, a series of enclosed process hazardous waste, and radioactive waste lines and associated equipment, would be brought into compliance with applicable State and Federal hazardous waste regulations. This would be accomplished primarily by rerouting the lines to stay within the buildings where the lined floors of the cells and corridors would provide secondary containment. Leak detection would be provided via instrumented collection sumps locate din the cells and corridors. Hazardous waste transfer lines that are routed outside buildings will be constructed using pipe-in-pipe techniques with leak detection instrumentation in the interstitial area. The need for the proposed action was identified when a DOE-sponsored Resource Conservation and Recovery Act (RCRA) compliance assessment of the ICPP facilities found that singly-contained waste lines ran buried in the soil under some of the original facilities. These lines carried wastes with a pH of less than 2.0, which were hazardous waste according to the RCRA standards. 20 refs., 7 figs., 1 tab

  4. Performance assessment techniques for groundwater recovery and treatment systems

    Energy Technology Data Exchange (ETDEWEB)

    Kirkpatrick, G.L. [Environmental Resources Management, Inc., Exton, PA (United States)

    1993-03-01

    Groundwater recovery and treatment (pump and treat systems) continue to be the most commonly selected remedial technology for groundwater restoration and protection programs at hazardous waste sites and RCRA facilities nationwide. Implementing a typical groundwater recovery and treatment system includes the initial assessment of groundwater quality, characterizing aquifer hydrodynamics, recovery system design, system installation, testing, permitting, and operation and maintenance. This paper focuses on methods used to assess the long-term efficiency of a pump and treat system. Regulatory agencies and industry alike are sensitive to the need for accurate assessment of the performance and success of groundwater recovery systems for contaminant plume abatement and aquifer restoration. Several assessment methods are available to measure the long-term performance of a groundwater recovery system. This paper presents six assessment techniques: degree of compliance with regulatory agency agreement (Consent Order of Record of Decision), hydraulic demonstration of system performance, contaminant mass recovery calculation, system design and performance comparison, statistical evaluation of groundwater quality and preferably, integration of the assessment methods. Applying specific recovery system assessment methods depends upon the type, amount, and quality of data available. Use of an integrated approach is encouraged to evaluate the success of a groundwater recovery and treatment system. The methods presented in this paper are for engineers and corporate management to use when discussing the effectiveness of groundwater remediation systems with their environmental consultant. In addition, an independent (third party) system evaluation is recommended to be sure that a recovery system operates efficiently and with minimum expense.

  5. Application of a power recovery system to gas turbine exhaust gases

    International Nuclear Information System (INIS)

    Baudat, N.P.; James, O.R.

    1979-01-01

    This paper discusses the application of a power recovery system to recover waste heat from the exhaust gases of gas turbines and convert this energy into shaft horsepower. Also discussed are power cycles, selection of power fluid, equipment selection, and application of the power recovery system to various gas turbines. Several charts and tables are included: process flow diagram, cycle efficiencies, curve for estimating recoverable horsepower

  6. Environmental-benefit analysis of two urban waste collection systems.

    Science.gov (United States)

    Aranda Usón, Alfonso; Ferreira, Germán; Zambrana Vásquez, David; Zabalza Bribián, Ignacio; Llera Sastresa, Eva

    2013-10-01

    Sustainable transportation infrastructure and travel policies aim to optimise the use of transportation systems to achieve economic and related social and environmental goals. To this end, a novel methodology based on life cycle assessment (LCA) has been developed in this study, with the aim of quantifying, in terms of CO2 emissions equivalent, the impact associated with different alternatives of waste collection systems in different urban typologies. This new approach is focussed on saving energy and raw materials and reducing the environmental impact associated with the waste collection system in urban areas, as well as allowing the design and planning of the best available technologies and most environment-friendly management. The methodology considers a large variety of variables from the point of view of sustainable urban transport such as the location and size of the urban area, the amount of solid waste generated, the level of social awareness on waste separation procedures, the distance between houses and waste collection points and the distance from the latter to the possible recovery plants and/or landfills, taking into account the material and energy recovery ratio within an integrated waste management system. As a case study, two different waste collection systems have been evaluated with this methodology in the ecocity Valdespartera located in Zaragoza, Spain, consisting of approximately 10,000 homes: (i) a system based on traditional truck transportation and manual collection, and (ii) a stationary vacuum waste collection system. Results show that, when operating at loads close to 100%, the stationary collection system has the best environmental performance in comparison with the conventional system. In contrast, when operating at load factors around 13% the environmental benefits in terms of net CO2-eq. emissions for the stationary collection system are around 60% lower in comparison with the conventional one. Copyright © 2013 Elsevier B.V. All

  7. Environmental impacts of the Swiss collection and recovery systems for Waste Electrical and Electronic Equipment (WEEE): A follow-up

    International Nuclear Information System (INIS)

    Waeger, P.A.; Hischier, R.; Eugster, M.

    2011-01-01

    While Waste Electrical and Electronic Equipment (WEEE) collection and recovery have significantly gained in importance all over Europe in the last 15 years, comprehensive studies assessing the environmental loads and benefits of these systems still are not common. In this paper we present the results of a combined material flow analysis and life cycle assessment study, which aimed to calculate the overall environmental impacts of collection, pre-processing and end-processing for the existing Swiss WEEE collection and recovery systems, as well as of incineration and landfilling scenarios, in which the same amount of WEEE is either incinerated in a an MSWI plant or landfilled. According to the calculations based on the material flow data for the year 2009 and a new version of the ecoinvent life cycle inventory database (ecoinvent v2.01), collection, recovery and disposal result in significantly lower environmental impacts per t of WEEE for midpoint indicators such as global warming or ozone depletion and the endpoint indicator Eco-Indicator '99 points. A comparison between the environmental impacts of the WEEE recovery scenarios 2009 and 2004, both calculated with ecoinvent v2.01 data, shows that the impacts per t of WEEE in 2009 were slightly lower. This appears to be mainly due to the changes in the treatment of plastics (more recycling, less incineration). Compared to the overall environmental impacts of the recovery scenario 2004 obtained with an old version of ecoinvent (ecoinvent v1.1), the calculation with ecoinvent v2.01 results in an increase of the impacts by about 20%, which is primarily the consequence of a more adequate modeling of several WEEE fractions (e.g. metals, cables or CRT devices). In view of a further increase of the environmental benefits associated with the Swiss WEEE collection and recovery systems, the recovery of geochemically scarce metals should be further investigated, in particular. - Research Highlights: → Comprehensive MFA

  8. Metal Recovery from Industrial Solid Waste — Contribution to Resource Sustainability

    Science.gov (United States)

    Yang, Yongxiang

    Increased demand of metals has driven the accelerated mining and metallurgical production in recent years, causing fast depletion of primary metals resources. On the contrary, the mining and metallurgical industry generates large amount of solid residues and waste such as tailings, slags, flue dust and leach residues, with relative low valuable metal contents. On the other hand, end-of-life (EoL) consumer products form another significant resources. The current technology and processes for primary metals production are not readily applicable for direct metals extraction from these waste materials, and special adaptation and tailor-made processes are required. In the present paper, various solid waste resources are reviewed, and current technologies and R&D trends are discussed. The recent research at author's group is illustrated for providing potential solutions to future resource problems, including metal recovery from MSW incinerator bottom ashes, zinc recovery from industrial ashes and residues, and rare earth metals recovery from EoL permanent magnets.

  9. Vehicle Exhaust Waste Heat Recovery Model with Integrated Thermal Load Leveling

    Science.gov (United States)

    2015-08-01

    backpressure can decrease engine power by ~1% per inch Hg.27 A specific exhaust heat exchanger design would need to take this effect into account...Materials. 2009;39:2142–2148. 4. Sprouse III C, Depcik C. Review of organic Rankine cycles for internal combustion engine exhaust waste heat recovery...Adams TG. Effect of exhaust system design on engine performance. 1980. SAE Technical Paper No. 800319. 16 1 DEFENSE TECHNICAL

  10. Design manual. [High temperature heat pump for heat recovery system

    Energy Technology Data Exchange (ETDEWEB)

    Burch, T.E.; Chancellor, P.D.; Dyer, D.F.; Maples, G.

    1980-01-01

    The design and performance of a waste heat recovery system which utilizes a high temperature heat pump and which is intended for use in those industries incorporating indirect drying processes are described. It is estimated that use of this heat recovery system in the paper, pulp, and textile industries in the US could save 3.9 x 10/sup 14/ Btu/yr. Information is included on over all and component design for the heat pump system, comparison of prime movers for powering the compressor, control equipment, and system economics. (LCL)

  11. Application of fee-rebate system to foster urban waste reduction and recovery; Aplicacion de sistemas de bonificacion-penalizacion para incentivar la reduccion y el reciclaje en mancomunidades

    Energy Technology Data Exchange (ETDEWEB)

    Puig Ventosa, I.

    2002-07-01

    Waste management facilities are often shared among different municipalities as a way to manage wastes more efficiently. Usually, management costs are assigned to each municipality considering population or total waste amount, regardless of important environmental aspects such as per capita waste generation or results in composting and recycling. This article presents a fee bate (fee + rebate) system aimed to foster urban waste reduction and recovery. The proposal suggests that municipalities achieving better results in their waste management performance (from an ecological viewpoint) be recompensed with a rebate obtained from a fee charged to those municipalities taking less care of the environment. (Author) 7 refs.

  12. Recycling of wastes from uranium mining and metallurgy and recovery of useful resources in China

    International Nuclear Information System (INIS)

    Pan Yingjie; Xue Jianxin; Chen Zhongqiu

    2012-01-01

    Recycling of wastes from uranium mining and metallurgy in China and recovery of useful resources are summarized from the aspects such as recovery of uranium from mine water, reusing of waste water, decontaminating and recycling of radioactivity contaminated metal, backfill of gangues and tailings, and comprehensive recovery and utilization of associated uranium deposits. (authors)

  13. Performance Analysis of Thermoelectric Based Automotive Waste Heat Recovery System with Nanofluid Coolant

    Directory of Open Access Journals (Sweden)

    Zhi Li

    2017-09-01

    Full Text Available Output performance of a thermoelectric-based automotive waste heat recovery system with a nanofluid coolant is analyzed in this study. Comparison between Cu-Ethylene glycol (Cu-EG nanofluid coolant and ethylene glycol with water (EG-W coolant under equal mass flow rate indicates that Cu-EG nanofluid as a coolant can effectively improve power output and thermoelectric conversion efficiency for the system. Power output enhancement for a 3% concentration of nanofluid is 2.5–8 W (12.65–13.95% compared to EG-Water when inlet temperature of exhaust varies within 500–710 K. The increase of nanofluid concentration within a realizable range (6% has positive effect on output performance of the system. Study on the relationship between total area of thermoelectric modules (TEMs and output performance of the system indicates that optimal total area of TEMs exists for maximizing output performance of the system. Cu-EG nanofluid as coolant can decrease optimal total area of TEMs compared with EG-W, which will bring significant advantages for the optimization and arrangement of TEMs whether the system space is sufficient or not. Moreover, power output enhancement under Cu-EG nanofluid coolant is larger than that of EG-W coolant due to the increase of hot side heat transfer coefficient of TEMs.

  14. Evaluation of resource recovery from waste incineration residues--the case of zinc.

    Science.gov (United States)

    Fellner, J; Lederer, J; Purgar, A; Winterstetter, A; Rechberger, H; Winter, F; Laner, D

    2015-03-01

    Solid residues generated at European Waste to Energy plants contain altogether about 69,000 t/a of Zn, of which more than 50% accumulates in air pollution control residues, mainly boiler and filter ashes. Intensive research activities aiming at Zn recovery from such residues recently resulted in a technical scale Zn recovery plant at a Swiss waste incinerator. By acidic leaching and subsequent electrolysis this technology (FLUREC) allows generating metallic Zn of purity>99.9%. In the present paper the economic viability of the FLUREC technology with respect to Zn recovery from different solid residues of waste incineration has been investigated and subsequently been categorised according to the mineral resource classification scheme of McKelvey. The results of the analysis demonstrate that recovery costs for Zn are highly dependent on the costs for current fly ash disposal (e.g. cost for subsurface landfilling). Assuming current disposal practice costs of 220€/ton fly ash, resulting recovery costs for Zn are generally higher than its current market price of 1.6€/kg Zn. With respect to the resource classification this outcome indicates that none of the identified Zn resources present in incineration residues can be economically extracted and thus cannot be classified as a reserve. Only for about 4800 t/a of Zn an extraction would be marginally economic, meaning that recovery costs are only slightly (less than 20%) higher than the current market price for Zn. For the remaining Zn resources production costs are between 1.5 and 4 times (7900 t/a Zn) and 10-80 times (55,300 t/a Zn) higher than the current market value. The economic potential for Zn recovery from waste incineration residues is highest for filter ashes generated at grate incinerators equipped with wet air pollution control. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Laboratory simulations of the mixed solvent extraction recovery of dominate polymers in electronic waste.

    Science.gov (United States)

    Zhao, Yi-Bo; Lv, Xu-Dong; Yang, Wan-Dong; Ni, Hong-Gang

    2017-11-01

    The recovery of four dominant plastics from electronic waste (e-waste) using mixed solvent extraction was studied. The target plastics included polycarbonate (PC), polystyrene (PS), acrylonitrile butadiene styrene (ABS), and styrene acrylonitrile (SAN). The extraction procedure for multi-polymers at room temperature yielded PC, PS, ABS, and SAN in acceptable recovery rates (64%, 86%, 127%, and 143%, respectively, where recovery rate is defined as the mass ratio of the recovered plastic to the added standard polymer). Fourier transform infrared spectroscopy (FTIR) was used to verify the recovered plastics' purity using a similarity analysis. The similarities ranged from 0.98 to 0.99. Another similar process, which was denoted as an alternative method for plastic recovery, was examined as well. Nonetheless, the FTIR results showed degradation may occur over time. Additionally, the recovery cost estimation model of our method was established. The recovery cost estimation indicated that a certain range of proportion of plastics in e-waste, especially with a higher proportion of PC and PS, can achieve a lower cost than virgin polymer product. It also reduced 99.6%, 30.7% and 75.8% of energy consumptions and CO 2 emissions during the recovery of PC, PS and ABS, and reduced the amount of plastic waste disposal via landfill or incineration and associated environmental impacts. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Comparative environmental evaluation of construction waste management through different waste sorting systems in Hong Kong.

    Science.gov (United States)

    Hossain, Md Uzzal; Wu, Zezhou; Poon, Chi Sun

    2017-11-01

    This study aimed to compare the environmental performance of building construction waste management (CWM) systems in Hong Kong. Life cycle assessment (LCA) approach was applied to evaluate the performance of CWM systems holistically based on primary data collected from two real building construction sites and secondary data obtained from the literature. Different waste recovery rates were applied based on compositions and material flow to assess the influence on the environmental performance of CWM systems. The system boundary includes all stages of the life cycle of building construction waste (including transportation, sorting, public fill or landfill disposal, recovery and reuse, and transformation and valorization into secondary products). A substitutional LCA approach was applied for capturing the environmental gains due to the utilizations of recovered materials. The results showed that the CWM system by using off-site sorting and direct landfilling resulted in significant environmental impacts. However, a considerable net environmental benefit was observed through an on-site sorting system. For example, about 18-30kg CO 2 eq. greenhouse gases (GHGs) emission were induced for managing 1 t of construction waste through off-site sorting and direct landfilling, whereas significant GHGs emission could be potentially avoided (considered as a credit -126 to -182kg CO 2 eq.) for an on-site sorting system due to the higher recycling potential. Although the environmental benefits mainly depend on the waste compositions and their sortability, the analysis conducted in this study can serve as guidelines to design an effective and resource-efficient building CWM system. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Experimental investigations on a cascaded steam-/organic-Rankine-cycle (RC/ORC) system for waste heat recovery (WHR) from diesel engine

    International Nuclear Information System (INIS)

    Yu, Guopeng; Shu, Gequn; Tian, Hua; Huo, Yongzhan; Zhu, Weijie

    2016-01-01

    Highlights: • A novel cascaded RC/ORC system was constructed for WHR of a heavy-duty diesel engine. • The RC/ORC system was experimentally investigated under engine operating conditions. • Good system stability and satisfying thermal states of working fluids were observed. • The power increment can reach up to 5.6% by equipping the novel cascaded RC/ORC system. - Abstract: A novel cascaded RC/ORC system that comprises a steam Rankine cycle as the high-temperature loop (H-RC) and an organic Rankine cycle as the low-temperature loop (L-ORC) was constructed and experimentally investigated to recover waste heat from exhaust gas of a heavy-duty diesel engine (DE). By monitoring key parameters of the RC/ORC system against time, good system stability and satisfying thermal states of working fluids were observed. Impacts that the engine operations have on this proposed waste-heat-recovery (WHR) system were studied, indicating that waste heat recovered from the gas increases gradually and greatly as the engine load increases, yet decreases slightly as the speed grows. At full loads at speeds lower than 2050 rpm, up to 101.5 kW of waste heat can be abstracted from the gas source, showing a promising heat transfer potential. Besides, observations of key exergy states as well as estimations and comparisons of potential output power were carried out stepwise. Results indicated that up to 12.7 kW of output power could be obtained by the novel RC/ORC system under practical estimations. Comparing to the basic diesel engine, the power increment reaches up to 5.6% by equipping the cascaded RC/ORC system.

  18. Process integration in bioprocess indystry: waste heat recovery in yeast and ethyl alcohol plant

    International Nuclear Information System (INIS)

    Raskovic, P.; Anastasovski, A.; Markovska, Lj.; Mesko, V.

    2010-01-01

    The process integration of the bioprocess plant for production of yeast and alcohol was studied. Preliminary energy audit of the plant identified the huge amount of thermal losses, caused by waste heat in exhausted process streams, and reviled the great potential for energy efficiency improvement by heat recovery system. Research roadmap, based on process integration approach, is divided on six phases, and the primary tool used for the design of heat recovery network was Pinch Analysis. Performance of preliminary design are obtained by targeting procedure, for three process stream sets, and evaluated by the economic criteria. The results of process integration study are presented in the form of heat exchanger networks which fulfilled the utilization of waste heat and enable considerable savings of energy in short payback period.

  19. Energy implications of integrated solid waste management systems. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Little, R.E.; McClain, G.; Becker, M.; Ligon, P.; Shapiro, K.

    1994-07-01

    This study develops estimates of energy use and recovery from managing municipal solid waste (MSW) under various collection, processing, and disposal scenarios. We estimate use and recovery -- or energy balance -- resulting from MSW management activities such as waste collection, transport, processing, and disposal, as well as indirect use and recovery linked to secondary materials manufacturing using recycled materials. In our analysis, secondary materials manufacturing displaces virgin materials manufacturing for 13 representative products. Energy implications are expressed as coefficients that measure the net energy saving (or use) of displacing products made from virgin versus recycled materials. Using data developed for the 1992 New York City Master Plan as a starting point, we apply our method to an analysis of various collection systems and 30 types of facilities to illustrate bow energy balances shift as management systems are modified. In sum, all four scenarios show a positive energy balance indicating the energy and advantage of integrated systems versus reliance on one or few technology options. That is, energy produced or saved exceeds the energy used to operate the solid waste system. The largest energy use impacts are attributable to processing, including materials separation and composting. Collection and transportation energy are relatively minor contributors. The largest two contributors to net energy savings are waste combustion and energy saved by processing recycled versus virgin materials. An accompanying spatial analysis methodology allocates energy use and recovery to New York City, New York State outside the city, the U.S., and outside the U.S. Our analytical approach is embodied in a spreadsheet model that can be used by energy and solid waste analysts to estimate impacts of management scenarios at the state and substate level.

  20. Waste heat recovery from adiabatic diesel engines by exhaust-driven Brayton cycles

    Science.gov (United States)

    Khalifa, H. E.

    1983-01-01

    An evaluation of Bryton Bottoming Systems (BBS) as waste heat recovery devices for future adiabatic diesel engines in heavy duty trucks is presented. Parametric studies were performed to evaluate the influence of external and internal design parameters on BBS performance. Conceptual design and trade-off studies were undertaken to estimate the optimum configuration, size, and cost of major hardware components. The potential annual fuel savings of long-haul trucks equipped with BBS were estimated. The addition of a BBS to a turbocharged, nonaftercooled adiabatic engine would improve fuel economy by as much as 12%. In comparison with an aftercooled, turbocompound engine, the BBS-equipped turbocharged engine would offer a 4.4% fuel economy advantage. If installed in tandem with an aftercooled turbocompound engine, the BBS could effect a 7.2% fuel economy improvement. The cost of a mass-produced 38 Bhp BBS is estimated at about $6460 or 170/Bhp. Technical and economic barriers that hinder the commercial introduction of bottoming systems were identified. Related studies in the area of waste heat recovery from adiabatic diesel engines and NASA-CR-168255 (Steam Rankine) and CR-168256 (Organic Rankine).

  1. ThermoEnergy Ammonia Recovery Process for Municipal and Agricultural Wastes

    Directory of Open Access Journals (Sweden)

    Alex G. Fassbender

    2001-01-01

    Full Text Available The Ammonia Recovery Process (ARP is an award-winning, low-cost, environmentally responsible method of recovering nitrogen, in the form of ammonia, from various dilute waste streams and converting it into concentrated ammonium sulfate. The ThermoEnergy Biogas System utilizes the new chemisorption-based ARP to recover ammonia from anaerobically digested wastes. The process provides for optimal biogas production and significantly reduced nitrogen levels in the treated water discharge. Process flows for the ammonia recovery and ThermoEnergy biogas processes are presented and discussed. A comparison with other techniques such as biological nitrogen removal is made. The ARP technology uses reversible chemisorption and double salt crystal precipitation to recover and concentrate the ammonia. The ARP technology was successfully proven in a recent large-scale field demonstration at New York City’s Oakwood Beach Wastewater Treatment Plant, located on Staten Island. This project was a joint effort with Foster Wheeler Environmental Corporation, the Civil Engineering Research Foundation, and New York City Department of Environmental Protection. Independent validated plant data show that ARP consistently recovers up to 99.9% of the ammonia from the city’s centrate waste stream (derived from dewatering of sewage sludge, as ammonium sulfate. ARP technology can reduce the nitrogen (ammonia discharged daily into local bodies of water by municipalities, concentrated animal farming operations, and industry. Recent advances to ARP enhance its performance and economic competitiveness in comparison to stripping or ammonia destruction technologies.

  2. Resource recovery from residual household waste: An application of exergy flow analysis and exergetic life cycle assessment.

    Science.gov (United States)

    Laner, David; Rechberger, Helmut; De Soete, Wouter; De Meester, Steven; Astrup, Thomas F

    2015-12-01

    Exergy is based on the Second Law of thermodynamics and can be used to express physical and chemical potential and provides a unified measure for resource accounting. In this study, exergy analysis was applied to four residual household waste management scenarios with focus on the achieved resource recovery efficiencies. The calculated exergy efficiencies were used to compare the scenarios and to evaluate the applicability of exergy-based measures for expressing resource quality and for optimizing resource recovery. Exergy efficiencies were determined based on two approaches: (i) exergy flow analysis of the waste treatment system under investigation and (ii) exergetic life cycle assessment (LCA) using the Cumulative Exergy Extraction from the Natural Environment (CEENE) as a method for resource accounting. Scenario efficiencies of around 17-27% were found based on the exergy flow analysis (higher efficiencies were associated with high levels of material recycling), while the scenario efficiencies based on the exergetic LCA lay in a narrow range around 14%. Metal recovery was beneficial in both types of analyses, but had more influence on the overall efficiency in the exergetic LCA approach, as avoided burdens associated with primary metal production were much more important than the exergy content of the recovered metals. On the other hand, plastic recovery was highly beneficial in the exergy flow analysis, but rather insignificant in exergetic LCA. The two approaches thereby offered different quantitative results as well as conclusions regarding material recovery. With respect to resource quality, the main challenge for the exergy flow analysis is the use of exergy content and exergy losses as a proxy for resource quality and resource losses, as exergy content is not per se correlated with the functionality of a material. In addition, the definition of appropriate waste system boundaries is critical for the exergy efficiencies derived from the flow analysis, as it

  3. Use of Drying Technologies for Resource Recovery from Solid Wastes and Brines

    Science.gov (United States)

    Wignarajah, Kanapathipillai; Alba, Ric; Fisher, John W.; Hogan, John A.; Polonsky, Alex

    2010-01-01

    Long term storage of unprocessed biological wastes and human wastes can present major health issues and a loss of potential resources. Space vehicles and planetary habitats are typically resource-scarce or resource-limited environments for long-term human habitation. To-date, most of the resources will need to be supplied from Earth, but this may not be possible for long duration human exploration. Based on present knowledge, there is only very limited in-situ resources on planetary habitats. Hence, the opportunity to "live off the land" in a planetary habitat is limited. However, if we assume that wastes generated by human explorers are viewed as resources, there is great potential to utilize and recycle them, thereby reducing the requirements for supply Earth and enabling the "live off the land" exploration scenario. Technologies used for the recovery of resources from wastes should be reliable, safe, easy to operate, fail-proof, modular, automated and preferably multifunctional in being capable of handling mixed solid and liquid wastes. For a lunar habitat, energy does not appear to be the major driving factor amongst the technologies studied. Instead, reliability appears to be more important[1] . This paper reports studies to date on drying technologies to remove water from solid wastes and brines. Experimental performance data obtained for recovery water from wastes and brine are presented. Simplicity of operation of hardware and energy efficiency are discussed. Some improvements and modifications to hardware were performed. Hopefully, this information will assist in future efforts in the "downselection" of technologies for recovery of water and resources from solid wastes and brines.

  4. Solutions for energy recovery of animal waste from leather industry

    International Nuclear Information System (INIS)

    Lazaroiu, Gheorghe; Pană, Constantin; Mihaescu, Lucian; Cernat, Alexandru; Negurescu, Niculae; Mocanu, Raluca; Negreanu, Gabriel

    2017-01-01

    Highlights: • Animal fats in blend with diesel fuel for energy valorification through combustion. • Animal waste from tanneries as fuel and for biogas production. • Experimental tests using animal fats as fuel for diesel engines. • Experimental tests modifying the characteristic parameters. - Abstract: Secondary products from food and leather industries are regarded as animal wastes. Conversion of these animal wastes into fuels represents an energy recovery solution not only because of their good combustion properties, but also from the viewpoint of supply stability. A tannery factory usually processes 60–70 t/month of crude leathers, resulting in 12–15 t/month of waste. Fats, which can be used as the input fuel for diesel engines (in crude state or as biodiesel), represent 10% of this animal waste, while the rest are proteins that can be used to generate biogas through anaerobic digestion. Herein, we analyse two approaches to the use of animal waste from tanneries: as fuel for diesel engines and for biogas generation for heat production. Diesel fuelling and fuelling by animal wastes are compared in terms of the engine performance and pollutant emissions. The effects of animal waste usage on the pollutant emissions level, exhaust gas temperature, indicated mean effective pressure, maximum pressure, and engine efficiency are analysed. The energy recovery technologies for animal waste, which are analysed in this work, can be easily implemented and can simultaneously solve the problem posed by animal wastes by using them as an alternative to fossil fuels. Animal fats can be considered an excellent alternative fuel for diesel engines without major constructive modifications.

  5. Recovery of phosphorus and volatile fatty acids from wastewater and food waste with an iron-flocculation sequencing batch reactor and acidogenic co-fermentation.

    Science.gov (United States)

    Li, Ruo-Hong; Li, Xiao-Yan

    2017-12-01

    A sequencing batch reactor-based system was developed for enhanced phosphorus (P) removal and recovery from municipal wastewater. The system consists of an iron-dosing SBR for P precipitation and a side-stream anaerobic reactor for sludge co-fermentation with food waste. During co-fermentation, sludge and food waste undergo acidogenesis, releasing phosphates under acidic conditions and producing volatile fatty acids (VFAs) into the supernatant. A few types of typical food waste were investigated for their effectiveness in acidogenesis and related enzymatic activities. The results show that approximately 96.4% of total P in wastewater was retained in activated sludge. Food waste with a high starch content favoured acidogenic fermentation. Around 55.7% of P from wastewater was recovered as vivianite, and around 66% of food waste loading was converted into VFAs. The new integration formed an effective system for wastewater treatment, food waste processing and simultaneous recovery of P and VFAs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Application of molten salt oxidation for the minimization and recovery of plutonium-238 contaminated wastes

    International Nuclear Information System (INIS)

    Wishau, R.; Ramsey, K.B.; Montoya, A.

    1998-01-01

    This paper presents the technical and economic feasibility of molten salt oxidation technology as a volume reduction and recovery process for 238 Pu contaminated waste. Combustible low-level waste material contaminated with 238 Pu residue is destroyed by oxidation in a 900 C molten salt reaction vessel. The combustible waste is destroyed creating carbon dioxide and steam and a small amount of ash and insoluble 2328 Pu in the spent salt. The valuable 238 Pu is recycled using aqueous recovery techniques. Experimental test results for this technology indicate a plutonium recovery efficiency of 99%. Molten salt oxidation stabilizes the waste converting it to a non-combustible waste. Thus installation and use of molten salt oxidation technology will substantially reduce the volume of 238 Pu contaminated waste. Cost-effectiveness evaluations of molten salt oxidation indicate a significant cost savings when compared to the present plans to package, or re-package, certify and transport these wastes to the Waste Isolation Pilot Plant for permanent disposal. Clear and distinct cost advantages exist for MSO when the monetary value of the recovered 238 Pu is considered

  7. Exergy analysis of aluminum recovery from municipal solid waste incineration

    DEFF Research Database (Denmark)

    Vyzinkarova, Dana; Allegrini, Elisa; Laner, D.

    Two main challenges, associated with the recovery of aluminum from state-of-the-art municipal solid waste (MSW) incineration plants, are yield as well as quality losses of metallic aluminum due to particle surface oxidation and presence of impurities. Yet, in the framework of life cycle assessment...... (LCA) a direct measure for expressing the quality of primary and secondary resources is missing. In view of a possible solution, exergy has been proposed as a concept to evaluate the quality of resources. In this paper, LCA and exergy analyses for two waste treatment approaches are conducted...... in parallel to each other, with a goal to evaluate the added value of exergy for LCA studies in the resource recovery context. The functional unit is the treatment of 1 ton MSW. Two alternative approaches for recovering aluminum from MSW directed to a waste-to-energy plant are considered. A) MSW is treated...

  8. Aluminium recovery from waste incineration bottom ash, and its oxidation level.

    Science.gov (United States)

    Biganzoli, Laura; Grosso, Mario

    2013-09-01

    The recovery of aluminium (Al) scraps from waste incineration bottom ash is becoming a common practice in waste management. However, during the incineration process, Al in the waste undergoes oxidation processes that reduce its recycling potential. This article investigates the behaviour of Al scraps in the furnace of two selected grate-fired waste-to-energy plants and the amount recoverable from the bottom ash. About 21-23% of the Al fed to the furnace with the residual waste was recovered and potentially recycled from the bottom ash. Out of this amount, 76-87% was found in the bottom ash fraction above 5 mm and thus can be recovered with standard eddy current separation technology. These values depend on the characteristics and the mechanical strength of the Al items in the residual waste. Considering Al packaging materials, about 81% of the Al in cans can be recovered from the bottom ash as an ingot, but this amount decreases to 51% for trays, 27% for a mix of aluminium and poly-laminated foils and 47% for paper-laminated foils. This shows that the recovery of Al from the incineration residues increases proportionally to the thickness of the packaging.

  9. Tomatoes in oil recovery. [Plant waste additives improve yield

    Energy Technology Data Exchange (ETDEWEB)

    1981-01-01

    The waste from processing tomato, squash and pepper stalks found unexpected use in recovery of oil. Even a negligible amount thereof in an aqueous solution pumped into an oil-bearing formation turned out to be sufficient to increase the yield. Substances of plant origin, which improve dramatically the oil-flushing properties of water, not only increase the recovery of oil, but reduce the volume of fluid to be pumped into the stratum. The staff of the Institute of Deep Oil and Gas Deposits of the Azerbaijan Academy of Sciences, who proved the technological and economical advantages of using the waste from plant processing, transmitted their findings to the oil workers of Baku. The scientists have concluded that there is a good raw material base in this republic for utilizing this method on oil-bearing formations.

  10. Environmental impacts of the Swiss collection and recovery systems for Waste Electrical and Electronic Equipment (WEEE): a follow-up.

    Science.gov (United States)

    Wäger, P A; Hischier, R; Eugster, M

    2011-04-15

    While Waste Electrical and Electronic Equipment (WEEE) collection and recovery have significantly gained in importance all over Europe in the last 15years, comprehensive studies assessing the environmental loads and benefits of these systems still are not common. In this paper we present the results of a combined material flow analysis and life cycle assessment study, which aimed to calculate the overall environmental impacts of collection, pre-processing and end-processing for the existing Swiss WEEE collection and recovery systems, as well as of incineration and landfilling scenarios, in which the same amount of WEEE is either incinerated in a an MSWI plant or landfilled. According to the calculations based on the material flow data for the year 2009 and a new version of the ecoinvent life cycle inventory database (ecoinvent v2.01), collection, recovery and disposal result in significantly lower environmental impacts per t of WEEE for midpoint indicators such as global warming or ozone depletion and the endpoint indicator Eco-Indicator '99 points. A comparison between the environmental impacts of the WEEE recovery scenarios 2009 and 2004, both calculated with ecoinvent v2.01 data, shows that the impacts per t of WEEE in 2009 were slightly lower. This appears to be mainly due to the changes in the treatment of plastics (more recycling, less incineration). Compared to the overall environmental impacts of the recovery scenario 2004 obtained with an old version of ecoinvent (ecoinvent v1.1), the calculation with ecoinvent v2.01 results in an increase of the impacts by about 20%, which is primarily the consequence of a more adequate modeling of several WEEE fractions (e.g. metals, cables or CRT devices). In view of a further increase of the environmental benefits associated with the Swiss WEEE collection and recovery systems, the recovery of geochemically scarce metals should be further investigated, in particular. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Socio-technical systems analysis of waste to energy from municipal solid waste in developing economies: a case for Nigeria

    Directory of Open Access Journals (Sweden)

    Iyamu Hope O.

    2017-01-01

    Full Text Available Waste generation is an inevitable by-product of human activity, and it is on the rise due to rapid urbanisation, industrialisation, increased wealth and population. The composition of municipal solid waste (MSW in developed and developing economies differ, especially with the organic fraction. Research shows that the food waste stream of MSW in developing countries is over 50%. The case study for this investigation, Nigeria, has minimal formal recycling or resource recovery programs. The average composition of waste from previous research in the country is between 50–70% putrescible and 30–50% non-putrescible, presenting significant resource recovery potential in composting and biogas production. Waste-to-energy (WtE is an important waste management solution that has been successfully implemented and operated in most developed economies. This contribution reports the conditions that would be of interest before WtE potentials of MSW is harnessed, in an efficient waste management process in a developing economy like Nigeria. The investigation presents a set of socio-technical parameters and transition strategy model that would inform a productive MSW management and resource recovery, in which WtE can be part of the solution. This model will find application in the understanding of the interactions between the socio-economic, technical and environmental system, to promote sustainable resource recovery programs in developing economies, among which is WtE.

  12. Waste-heat recovery potential in Turkish textile industry. Case study for city of Bursa

    Energy Technology Data Exchange (ETDEWEB)

    Pulat, E.; Etemoglu, A.B.; Can, M. [Uludag University, Faculty of Engineering and Architecture, Mechanical Engineering Department, Gorukle, TR-16059, Bursa (Turkey)

    2009-04-15

    Textile sector of Turkey has a large production capacity and it is one of the important sectors. Many industrial heating processes generate waste energy in textile industry. Therefore, there is a tremendous waste-heat potential to utilize in textile applications. This study assesses the potential of waste-heat obtained from particularly dyeing process at textile industry in Bursa where textile center of Turkey. Energy consumptions could be decreased by using of waste-heat recovery systems (WHRSs). A thermodynamic analysis is performed in this study. An exergy-based approach is performed for optimizing the effective working conditions for WHRSs with water-to-water shell and tube heat exchanger. The payback period is found to be less than 6 months. The variations of the parameters which affect the system performance such as waste-water inlet temperature, mass flow rate, cooling water inlet pressure and dead state conditions are examined respectively. The results of the analysis show that the exergy destruction rate and economical profit increase with increasing of mass flow rate of the waste water. Similarly, exergy destruction rate, effectiveness and economical profit increase while the second law efficiency decreases as the waste-water inlet temperature increases. (author)

  13. PROCESS DEVELOPMENT FOR THE RECOVERY OF CRITICAL MATERIALS FROM ELECTRONIC WASTE

    Energy Technology Data Exchange (ETDEWEB)

    Lister, T. E.; Diaz, L. A.; Clark, G. G.; Keller, P.

    2016-09-01

    As electronic technology continues to evolve there is a growing need to develop processes which recover valuable material from antiquated technology. This need follows from the environmental challenges associated with the availability of raw materials and fast growing generation of electronic waste. Although just present in small quantities in electronic devices, the availability of raw materials, such as rare earths and precious metals, becomes critical for the production of high tech electronic devices and the development of green technologies (i.e. wind turbines, electric motors, and solar panels). Therefore, the proper recycling and processing of increasing volumes of electronic waste present an opportunity to stabilize the market of critical materials, reducing the demand of mined products, and providing a proper disposal and treatment of a hazardous waste stream. This paper will describe development and techno-economic assessment of a comprehensive process for the recovery of value and critical materials from electronic waste. This hydrometallurgical scheme aims to selectively recover different value segments in the materials streams (base metals, precious metals, and rare earths). The economic feasibility for the recovery of rare earths from electronic waste is mostly driven by the efficient recovery of precious metals, such as Au and Pd (ca. 80 % of the total recoverable value). Rare earth elements contained in magnets (speakers, vibrators and hard disk storage) can be recovered as a mixture of rare earths oxides which can later be reduced to the production of new magnets.

  14. 40 CFR 63.6092 - Are duct burners and waste heat recovery units covered by subpart YYYY?

    Science.gov (United States)

    2010-07-01

    ... Combustion Turbines What This Subpart Covers § 63.6092 Are duct burners and waste heat recovery units covered by subpart YYYY? No, duct burners and waste heat recovery units are considered steam generating units... 40 Protection of Environment 12 2010-07-01 2010-07-01 true Are duct burners and waste heat...

  15. Risks associated with nuclear material recovery and waste preparation

    Energy Technology Data Exchange (ETDEWEB)

    Fullwood, R R; Erdmann, R C

    1983-01-01

    An analysis of the risk associated with nuclear material recovery and waste preparation is presented. The steps involve: reprocessing of spent fuel to recycle fissionable material, refabrication of the recovered material for use as reactor fuel, and the transportation links connecting these plants with the power plants and waste repositories. The risks considered are radiological and non-radiological, accident and routine effects on the public and workers during plant construction, operation and decommissioning.

  16. Environmental-benefit analysis of two urban waste collection systems

    International Nuclear Information System (INIS)

    Aranda Usón, Alfonso; Ferreira, Germán; Zambrana Vásquez, David; Zabalza Bribián, Ignacio; Llera Sastresa, Eva

    2013-01-01

    Sustainable transportation infrastructure and travel policies aim to optimise the use of transportation systems to achieve economic and related social and environmental goals. To this end, a novel methodology based on life cycle assessment (LCA) has been developed in this study, with the aim of quantifying, in terms of CO 2 emissions equivalent, the impact associated with different alternatives of waste collection systems in different urban typologies. This new approach is focussed on saving energy and raw materials and reducing the environmental impact associated with the waste collection system in urban areas, as well as allowing the design and planning of the best available technologies and most environment-friendly management. The methodology considers a large variety of variables from the point of view of sustainable urban transport such as the location and size of the urban area, the amount of solid waste generated, the level of social awareness on waste separation procedures, the distance between houses and waste collection points and the distance from the latter to the possible recovery plants and/or landfills, taking into account the material and energy recovery ratio within an integrated waste management system. As a case study, two different waste collection systems have been evaluated with this methodology in the ecocity Valdespartera located in Zaragoza, Spain, consisting of approximately 10,000 homes: (i) a system based on traditional truck transportation and manual collection, and (ii) a stationary vacuum waste collection system. Results show that, when operating at loads close to 100%, the stationary collection system has the best environmental performance in comparison with the conventional system. In contrast, when operating at load factors around 13% the environmental benefits in terms of net CO 2 -eq. emissions for the stationary collection system are around 60% lower in comparison with the conventional one. - Highlights: • A comprehensive

  17. Environmental-benefit analysis of two urban waste collection systems

    Energy Technology Data Exchange (ETDEWEB)

    Aranda Usón, Alfonso, E-mail: alaranda@unizar.es; Ferreira, Germán; Zambrana Vásquez, David; Zabalza Bribián, Ignacio; Llera Sastresa, Eva

    2013-10-01

    Sustainable transportation infrastructure and travel policies aim to optimise the use of transportation systems to achieve economic and related social and environmental goals. To this end, a novel methodology based on life cycle assessment (LCA) has been developed in this study, with the aim of quantifying, in terms of CO{sub 2} emissions equivalent, the impact associated with different alternatives of waste collection systems in different urban typologies. This new approach is focussed on saving energy and raw materials and reducing the environmental impact associated with the waste collection system in urban areas, as well as allowing the design and planning of the best available technologies and most environment-friendly management. The methodology considers a large variety of variables from the point of view of sustainable urban transport such as the location and size of the urban area, the amount of solid waste generated, the level of social awareness on waste separation procedures, the distance between houses and waste collection points and the distance from the latter to the possible recovery plants and/or landfills, taking into account the material and energy recovery ratio within an integrated waste management system. As a case study, two different waste collection systems have been evaluated with this methodology in the ecocity Valdespartera located in Zaragoza, Spain, consisting of approximately 10,000 homes: (i) a system based on traditional truck transportation and manual collection, and (ii) a stationary vacuum waste collection system. Results show that, when operating at loads close to 100%, the stationary collection system has the best environmental performance in comparison with the conventional system. In contrast, when operating at load factors around 13% the environmental benefits in terms of net CO{sub 2}-eq. emissions for the stationary collection system are around 60% lower in comparison with the conventional one. - Highlights: • A

  18. Advanced Thermoelectric Materials for Efficient Waste Heat Recovery in Process Industries

    Energy Technology Data Exchange (ETDEWEB)

    Adam Polcyn; Moe Khaleel

    2009-01-06

    The overall objective of the project was to integrate advanced thermoelectric materials into a power generation device that could convert waste heat from an industrial process to electricity with an efficiency approaching 20%. Advanced thermoelectric materials were developed with figure-of-merit ZT of 1.5 at 275 degrees C. These materials were not successfully integrated into a power generation device. However, waste heat recovery was demonstrated from an industrial process (the combustion exhaust gas stream of an oxyfuel-fired flat glass melting furnace) using a commercially available (5% efficiency) thermoelectric generator coupled to a heat pipe. It was concluded that significant improvements both in thermoelectric material figure-of-merit and in cost-effective methods for capturing heat would be required to make thermoelectric waste heat recovery viable for widespread industrial application.

  19. Impact of Water Recovery from Wastes on the Lunar Surface Mission Water Balance

    Science.gov (United States)

    Fisher, John W.; Hogan, John Andrew; Wignarajah, Kanapathipi; Pace, Gregory S.

    2010-01-01

    Future extended lunar surface missions will require extensive recovery of resources to reduce mission costs and enable self-sufficiency. Water is of particular importance due to its potential use for human consumption and hygiene, general cleaning, clothes washing, radiation shielding, cooling for extravehicular activity suits, and oxygen and hydrogen production. Various water sources are inherently present or are generated in lunar surface missions, and subject to recovery. They include: initial water stores, water contained in food, human and other solid wastes, wastewaters and associated brines, ISRU water, and scavenging from residual propellant in landers. This paper presents the results of an analysis of the contribution of water recovery from life support wastes on the overall water balance for lunar surface missions. Water in human wastes, metabolic activity and survival needs are well characterized and dependable figures are available. A detailed life support waste model was developed that summarizes the composition of life support wastes and their water content. Waste processing technologies were reviewed for their potential to recover that water. The recoverable water in waste is a significant contribution to the overall water balance. The value of this contribution is discussed in the context of the other major sources and loses of water. Combined with other analyses these results provide guidance for research and technology development and down-selection.

  20. Assessing recycling versus incineration of key materials in municipal waste: The importance of efficient energy recovery and transport distances.

    Science.gov (United States)

    Merrild, Hanna; Larsen, Anna W; Christensen, Thomas H

    2012-05-01

    Recycling of materials from municipal solid waste is commonly considered to be superior to any other waste treatment alternative. For the material fractions with a significant energy content this might not be the case if the treatment alternative is a waste-to-energy plant with high energy recovery rates. The environmental impacts from recycling and from incineration of six material fractions in household waste have been compared through life cycle assessment assuming high-performance technologies for material recycling as well as for waste incineration. The results showed that there are environmental benefits when recycling paper, glass, steel and aluminium instead of incinerating it. For cardboard and plastic the results were more unclear, depending on the level of energy recovery at the incineration plant, the system boundaries chosen and which impact category was in focus. Further, the environmental impact potentials from collection, pre-treatment and transport was compared to the environmental benefit from recycling and this showed that with the right means of transport, recyclables can in most cases be transported long distances. However, the results also showed that recycling of some of the material fractions can only contribute marginally in improving the overall waste management system taking into consideration their limited content in average Danish household waste. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. The heat recovery with heat transfer methods from solar photovoltaic systems

    International Nuclear Information System (INIS)

    Özakın, A. N.; Karsli, S.; Kaya, F.; Güllüce, H.

    2016-01-01

    Although there are many fluctuations in energy prices, they seems like rising day by day. Thus energy recovery systems have increasingly trend. Photovoltaic systems converts solar radiation directly into electrical energy thanks to semiconductors. But due to the nature of semiconductors, whole of solar energy cannot turn into electrical energy and the remaining energy turns into waste heat. The aim of this research is evaluate this waste heat energy by air cooling system. So, the energy efficiency of the system will be increased using appropriate heat transfer technologies such as fin, turbulator etc. (paper)

  2. Thermo-economic analysis and optimization of a combined cooling and power (CCP) system for engine waste heat recovery

    International Nuclear Information System (INIS)

    Xia, Jiaxi; Wang, Jiangfeng; Lou, Juwei; Zhao, Pan; Dai, Yiping

    2016-01-01

    Highlights: • A combined cooling and power system was proposed for engine waste heat recovery. • Effects of key parameters on thermodynamic performance of the system were studied. • Exergoeconomic parameter analysis was performed for the system. • A single-objective optimization by means of genetic algorithm was carried out. - Abstract: A combined cooling and power (CCP) system is developed, which comprises a CO 2 Brayton cycle (BC), an organic Rankine cycle (ORC) and an ejector refrigeration cycle for the cascade utilization of waste heat from an internal combustion engine. By establishing mathematical model to simulate the overall system, thermodynamic analysis and exergoeconomic analysis are conducted to examine the effects of five key parameters including the compressor pressure ratio, the compressor inlet temperature, the BC turbine inlet temperature, the ORC turbine inlet pressure and the ejector primary flow pressure on system performance. What’s more, a single-objective optimization by means of genetic algorithm (GA) is carried out to search the optimal system performance from viewpoint of exergoeconomic. Results show that the increases of the BC turbine inlet temperature, the ORC turbine inlet pressure and the ejector primary flow pressure are benefit to both thermodynamic and exergoeconimic performances of the CCP system. However, the rises in compressor pressure ratio and compressor inlet temperature will lead to worse system performances. By the single-objective optimization, the lowest average cost per unit of exergy product for the overall system is obtained.

  3. Energy recovery from municipal solid waste by refuse derived fuel production in Malaysia

    International Nuclear Information System (INIS)

    Sanaz Saheri; Noorezlin Ahmad Baseri; Masoud Aghajani Mir; Malmasi Saeed

    2010-01-01

    Energy recovery from municipal solid waste (MSW) is so beneficial both for the energy and for the positive environmental implications. Mainly related to the saving of primary energy derived from fossil fuel. Malaysia as a fast growing population country has the average amount of municipal solid waste (MSW) generated around 0.5-0.8 kg/person/day and it has been increased to 1.7 kg/person/day in major cities. Regarding characterization exercise, the main parts of the Malaysian MSW were found to be food, paper and plastic, which made up almost 80 % of the waste by weight. Furthermore, the average moisture content of the MSW was about 55 %, making incineration a challenging mission. In addition waste sectors in Malaysia contributes to 1.3 million ton of CH 4 compare to total CH 4 emission which is 2.2 MT. In order to overcome waste problem considering other technical, environmental and economical methods seems to be necessarily. Resource recovery centers recovers the maximum proportion of recyclable and recoverable resources from the mixed municipal solid waste .The resource recovery process itself is one of the step-by-step segregation and elimination of all non-combustibles , and separation of the combustibles in the desired form of fuel for good combustion. Then, a further mechanical separation process converts combustible materials to refuse derived fuel (RDF) with moisture content between 20 and 30 % and an average calorific fuel value of about 3450 kcal/kg. So, the aim of this paper is taking into account resource recovery from waste using refuse derived fuel as a secondary resource with regarding advantages and disadvantages of this kind of energy production in Malaysia as a developing country. (author)

  4. Trade study for water and waste management concepts. Task 7: Support special analysis. [cost analysis of life support systems for waste utilization during space missions

    Science.gov (United States)

    1975-01-01

    Cost analyses and tradeoff studies are given for waste management in the Space Station, Lunar Surface Bases, and interplanetary space missions. Crew drinking water requirements are discussed and various systems to recycle water are examined. The systems were evaluated for efficiency and weight savings. The systems considered effective for urine water recovery were vapor compression, flash evaporation, and air evaporation with electrolytic pretreatment. For wash water recovery, the system of multifiltration was selected. A wet oxidation system, which can process many kinds of wastes, is also considered.

  5. Fouzth report to Congress: resource recovery and waste reduction

    Energy Technology Data Exchange (ETDEWEB)

    1977-01-01

    The report covers domestic refuse generation and resource recovery estimates. A discussion of waste reduction at various national organizational levels, source separation, mixed refuse processing for energy production, and environmental and economic impact of beverage containers deposit law are included.

  6. Recovery of acetic acid from waste streams by extractive distillation.

    Science.gov (United States)

    Demiral, H; Yildirim, M Ercengiz

    2003-01-01

    Wastes have been considered to be a serious worldwide environmental problem in recent years. Because of increasing pollution, these wastes should be treated. However, industrial wastes can contain a number of valuable organic components. Recovery of these components is important economically. Using conventional distillation techniques, the separation of acetic acid and water is both impractical and uneconomical, because it often requires large number of trays and a high reflux ratio. In practice special techniques are used depending on the concentration of acetic acid. Between 30 and 70% (w/w) acetic acid contents, extractive distillation was suggested. Extractive distillation is a multicomponent-rectification method similar in purpose to azeotropic distillation. In extractive distillation, to a binary mixture which is difficult or impossible to separate by ordinary means, a third component termed an entrainer is added which alters the relative volatility of the original constituents, thus permitting the separation. In our department acetic acid is used as a solvent during the obtaining of cobalt(III) acetate from cobalt(II) acetate by an electrochemical method. After the operation, the remaining waste contains acetic acid. In thiswork, acetic acid which has been found in this waste was recovered by extractive distillation. Adiponitrile and sulfolane were used as high boiling solvents and the effects of solvent feed rate/solution feed rate ratio and type were investigated. According to the experimental results, it was seem that the recovery of acetic acid from waste streams is possible by extractive distillation.

  7. Thermal energy storage for industrial waste heat recovery

    Science.gov (United States)

    Hoffman, H. W.; Kedl, R. J.; Duscha, R. A.

    1978-01-01

    The potential is examined for waste heat recovery and reuse through thermal energy storage in five specific industrial categories: (1) primary aluminum, (2) cement, (3) food processing, (4) paper and pulp, and (5) iron and steel. Preliminary results from Phase 1 feasibility studies suggest energy savings through fossil fuel displacement approaching 0.1 quad/yr in the 1985 period. Early implementation of recovery technologies with minimal development appears likely in the food processing and paper and pulp industries; development of the other three categories, though equally desirable, will probably require a greater investment in time and dollars.

  8. Valorisation of food and beverage waste via saccharification for sugars recovery.

    Science.gov (United States)

    Kwan, Tsz Him; Ong, Khai Lun; Haque, Md Ariful; Kwan, Wing Hei; Kulkarni, Sandeep; Lin, Carol Sze Ki

    2018-05-01

    Valorisation of mixed food and beverage (F&B) waste was studied for the recovery of sugars via saccharification. Glucoamylase and sucrase were employed to hydrolyse the starch and sucrose present in the mixed F&B waste because of the high cost-effectiveness for such recovery. The Michaelis-Menten kinetics model suggests that preservatives and additives in beverages did not inhibit glucoamylase and sucrase during saccharification. High levels of glucose (228.1 g L -1 ) and fructose (55.7 g L -1 ) were efficiently produced within 12 h at a solid-to-liquid ratio of 37.5% (w/v) in 2.5 L bioreactors. An overall conversion yield of 0.17 g sugars per g of mixed F&B waste was obtained in mass balance analysis. Lastly, possible industrial applications of the sugar-rich hydrolysate and by-products are discussed. This study is believed to cast insights into F&B waste recycling via biotechnology to produce high-value added products to promote the establishment of a circular bio-economy. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Thermal comfort analysis of a low temperature waste energy recovery system. SIECHP

    Energy Technology Data Exchange (ETDEWEB)

    Herrero Martin, R. [Departamento de Ingenieria Termica y de Fluidos, Universidad Politecnica de Cartagena, C/Dr. Fleming, s/n (Campus Muralla), 30202 Cartagena, Murcia (Spain); Rey Martinez, F.J.; Velasco Gomez, E. [Departamento de Ingenieria Energetica y Fluidomecanica, ETSII, Universidad de Valladolid, Paseo del Cauce s/n, 47011 Valladolid (Spain)

    2008-07-01

    The use of a recovery device is justified in terms of energy savings and environmental concerns. But it is clear that the use of a recovery system also has to lead to controlling indoor environmental quality, nowadays a priority concern. In this article, experimental research has been carried out whose aim is to study the thermal comfort provided by a combined recovery equipment (SIECHP), consisting of a ceramic semi-indirect evaporative cooler (SIEC) and a heat pipe device (HP) to recover energy at low temperature in air-conditioning systems. To characterize this device empirically in terms of thermal comfort (TC), Fanger's predicted mean vote (PMV), draught rate, and vertical air temperature difference were used in this study as the TC criteria. (author)

  10. Anaerobic digestion and gasification hybrid system for potential energy recovery from yard waste and woody biomass

    International Nuclear Information System (INIS)

    Yao, Zhiyi; Li, Wangliang; Kan, Xiang; Dai, Yanjun; Tong, Yen Wah; Wang, Chi-Hwa

    2017-01-01

    There is a rapid growing interest in using biomass as an alternative source for clean and sustainable energy production. In this work, a hybrid system was developed to combine anaerobic digestion (AD) and gasification for energy recovery from yard waste and woody biomass. The feasibility of the proposed hybrid system was validated experimentally and numerically and the energy efficiency was maximized by varying energy input in the drying process. The experiments were performed in two stages. At the first stage, AD of yard waste was conducted by mixing with anaerobic sludge. At the second stage, co-gasification was added as post-treatment for the AD residue for syngas production. The co-gasification experiments of AD residue and woody biomass were conducted at varying mixing ratios and varying moisture contents of AD residue. Optimal energy efficiency was found to be 70.8% at mixing ratio of 20 wt% AD residue with 30 wt% moisture content. Two kinetic models were then adapted for prediction of biogas produced in AD process and syngas produced in gasification process, respectively. Both experimental and numerical results showed that full utilization of biomass could be realized to produce energy through the combination of these two technologies. - Highlights: • The feasibility of the proposed two-stage hybrid system was validated experimentally and numerically. • The proposed hybrid system could effectively improve the quality of produced gas. • The operating parameters were optimized to improve the overall energy efficiency of the system. • Drying process was found to play an important role in determining overall energy efficiency. • Optimal moisture content of AD residue was investigated for maximizing energy efficiency.

  11. Design and modeling of an advanced marine machinery system including waste heat recovery and removal of sulphur oxides

    DEFF Research Database (Denmark)

    Frimann Nielsen, Rasmus; Haglind, Fredrik; Larsen, Ulrik

    2014-01-01

    the efficiency of machinery systems. The wet sulphuric acid process is an effective way of removing flue gas sulphur oxides from land-based coal-fired power plants. Moreover, organic Rankine cycles (ORC) are suitable for heat to power conversion for low temperature heat sources. This paper describes the design...... that an ORC placed after the conventional waste heat recovery system is able to extract the sulphuric acid from the exhaust gas, while at the same time increase the combined cycle thermal efficiency by 2.6%. The findings indicate that the technology has potential in marine applications regarding both energy...... and modeling of a highly efficient machinery system which includes the removal of exhaust gas sulphur oxides. The system consists of a two-stroke diesel engine, the wet sulphuric process for sulphur removal, a conventional steam Rankine cycle and an ORC. Results of numerical modeling efforts suggest...

  12. Recovery of uranium (VI) from low level aqueous radioactive waste

    International Nuclear Information System (INIS)

    Kulshrestha, Mukul

    1996-01-01

    Investigation was undertaken to evaluate the uranium (VI) removal and recovery potential of a naturally occurring, nonviable macrofungus, Ganoderma Lucidum from the simulated low level aqueous nuclear waste. These low level waste waters discharged from nuclear mine tailings and nuclear power reactors have a typical U(VI) concentration of 10-100 mg/L. It is possible to recover this uranium economically with the advent of biosorption as a viable technology. Extensive laboratory studies have revealed Ganoderma Lucidum to be a potential biosorbent with a specific uptake of 2.75 mg/g at an equilibrium U(VI) concentration of 10 mg/L at pH 4.5. To recover the sorbed U(VI), the studies indicated 0.2N Na 2 CO 3 to be an effective elutant. The kinetics of U(VI) desorption from loaded Ganoderma Lucidum with 0.2N Na 2 CO 3 as elutant, was found to be rapid with more than 75% recovery occurring in the first five minutes, the specific metal release rate being 0.102 mg/g/min. The equilibrium data fitted to a linearised Freundlich plot and exhibited a near 100% recovery of sorbed U(VI), clearly revealing a cost-effective method of recovery of precious uranium from low level wastewater. (author). 7 refs., 3 figs., 1 tab

  13. Plasma methods for metals recovery from metal-containing waste.

    Science.gov (United States)

    Changming, Du; Chao, Shang; Gong, Xiangjie; Ting, Wang; Xiange, Wei

    2018-04-27

    Metal-containing waste, a kind of new wastes, has a great potential for recycling and is also difficult to deal with. Many countries pay more and more attention to develop the metal recovery process and equipment of this kind of waste as raw material, so as to solve the environmental pollution and comprehensively utilize the discarded metal resources. Plasma processing is an efficient and environmentally friendly way for metal-containing waste. This review mainly discuss various metal-containing waste types, such as printed circuit boards (PCBs), red mud, galvanic sludge, Zircon, aluminium dross and incinerated ash, and the corresponding plasma methods, which include DC extended transferred arc plasma reactor, DC non-transferred arc plasma torch, RF thermal plasma reactor and argon and argon-hydrogen plasma jets. In addition, the plasma arc melting technology has a better purification effect on the extraction of useful metals from metal-containing wastes, a great capacity of volume reduction of waste materials, and a low leaching toxicity of solid slag, which can also be used to deal with all kinds of metal waste materials, having a wide range of applications. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Recovery and concentration of antioxidants from winery wastes.

    Science.gov (United States)

    Soto, María Luisa; Conde, Enma; González-López, Noelia; Conde, María Jesús; Moure, Andrés; Sineiro, Jorge; Falqué, Elena; Domínguez, Herminia; Núñez, María José; Parajó, Juan Carlos

    2012-03-09

    Grape and wine byproducts have been extensively studied for the recovery of phenolic compounds with antioxidant activity and a variety of biological actions. The selective recovery and concentration of the phenolic compounds from the liquid phase separated from further diluted winery wastes has been proposed. Adsorption onto non ionic polymeric resins and further desorption with ethanolic solutions was studied. Several commercial food grade resins were screened with the aim of selecting the most suited for the practical recovery of phenolic compounds with radical scavenging activity. Under the optimized desorption conditions (using Sepabeads SP207 or Diaion HP20 as adsorbents and eluting with 96% ethanol at 50 °C) a powdered yellow-light brown product with 50% phenolic content, expressed as gallic acid equivalents, was obtained. The radical scavenging capacity of one gram of product was equivalent to 2-3 g of Trolox.

  15. Utilizing waste heat. Energy recovery options for trade and industry

    Energy Technology Data Exchange (ETDEWEB)

    Krieg, W

    1988-08-01

    The article shows options for efficient and low-cost thermal energy recovery. Heat recovery involves a number of problems, e.g. the type of waste heat, the uses of the energy recovered, and the best way of utilizing it. There is no generally applicable way of solving these problems. Some practical examples are presented. Economically efficient solutions require detailed technical knowledge as well as a good portion of creativity and imagination. (BR).

  16. Gasification: An alternative solution for energy recovery and utilization of vegetable market waste.

    Science.gov (United States)

    Narnaware, Sunil L; Srivastava, Nsl; Vahora, Samir

    2017-03-01

    Vegetables waste is generally utilized through a bioconversion process or disposed of at municipal landfills, dumping sites or dumped on open land, emitting a foul odor and causing health hazards. The presents study deals with an alternative way to utilize solid vegetable waste through a thermochemical route such as briquetting and gasification for its energy recovery and subsequent power generation. Briquettes of 50 mm diameter were produced from four different types of vegetable waste. The bulk density of briquettes produced was increased 10 to 15 times higher than the density of the dried vegetable waste in loose form. The lower heating value (LHV) of the briquettes ranged from 10.26 MJ kg -1 to 16.60 MJ kg -1 depending on the type of vegetable waste. The gasification of the briquettes was carried out in an open core downdraft gasifier, which resulted in syngas with a calorific value of 4.71 MJ Nm -3 at the gasification temperature between 889°C and 1011°C. A spark ignition, internal combustion engine was run on syngas and could generate a maximum load up to 10 kW e . The cold gas efficiency and the hot gas efficiency of the gasifier were measured at 74.11% and 79.87%, respectively. Energy recovery from the organic vegetable waste was possible through a thermochemical conversion route such as briquetting and subsequent gasification and recovery of the fuel for small-scale power generation.

  17. Volume reduction and plutonium recovery in alpha wastes by cryogenic crushing and lixiviation

    International Nuclear Information System (INIS)

    Arnal, T.; Pajot, J.

    1986-06-01

    The industry of plutonium generates solid alpha wastes of medium activity called ''technological wastes''. They are mainly produced during the fabrication and reprocessing of nuclear reactor fuels and they are of a wide variety i.e: vinyl bags, gloves, glass, steel materials used in glove box operation, etc... These wastes contain relevant residual quantities of uranium and plutonium in the form of oxides or nitrates, reaching up to several dozen grams per cubic meter. Up to the beginning of the eighties, they were conditionned without any treatment and stored as such on the production site. However, for an economic and safe storage, recovering of the plutonium contained in these waste streams and reduction of their volume is of obvious importance. At the plutonium ''Complexe de Fabrication des Combustibles de Cadarache'' was developed a new technical solution of this problem that combines cryogenic crushing of the solid waste and plutonium recovery from the crushed material by chemical lixiviation. The first results obtained in applying this system on the industrial scale are reported briefly

  18. Advanced Energy and Water Recovery Technology from Low Grade Waste Heat

    Energy Technology Data Exchange (ETDEWEB)

    Dexin Wang

    2011-12-19

    The project has developed a nanoporous membrane based water vapor separation technology that can be used for recovering energy and water from low-temperature industrial waste gas streams with high moisture contents. This kind of exhaust stream is widely present in many industrial processes including the forest products and paper industry, food industry, chemical industry, cement industry, metal industry, and petroleum industry. The technology can recover not only the sensible heat but also high-purity water along with its considerable latent heat. Waste heats from such streams are considered very difficult to recover by conventional technology because of poor heat transfer performance of heat-exchanger type equipment at low temperature and moisture-related corrosion issues. During the one-year Concept Definition stage of the project, the goal was to prove the concept and technology in the laboratory and identify any issues that need to be addressed in future development of this technology. In this project, computational modeling and simulation have been conducted to investigate the performance of a nanoporous material based technology, transport membrane condenser (TMC), for waste heat and water recovery from low grade industrial flue gases. A series of theoretical and computational analyses have provided insight and support in advanced TMC design and experiments. Experimental study revealed condensation and convection through the porous membrane bundle was greatly improved over an impermeable tube bundle, because of the membrane capillary condensation mechanism and the continuous evacuation of the condensate film or droplets through the membrane pores. Convection Nusselt number in flue gas side for the porous membrane tube bundle is 50% to 80% higher than those for the impermeable stainless steel tube bundle. The condensation rates for the porous membrane tube bundle also increase 60% to 80%. Parametric study for the porous membrane tube bundle heat transfer

  19. APPLICATIONS OF THERMAL ENERGY STORAGE TO WASTE HEAT RECOVERY IN THE FOOD PROCESSING INDUSTRY, Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Lundberg, W. L.; Christenson, James A.

    1979-07-31

    A project is discussed in which the possibilities for economical waste heat recovery and utilization in the food industry were examined. Waste heat availability and applications surveys were performed at two manufacturing plants engaged in low temperature (freezing) and high temperature (cooking, sterilizing, etc.) food processing. The surveys indicate usable waste heat is available in significant quantities which could be applied to existing, on-site energy demands resulting in sizable reductions in factory fuel and energy usage. At the high temperature plant, the energy demands involve the heating of fresh water for boiler make-up, for the food processes and for the daily clean-up operation. Clean-up poses an opportunity for thermal energy storage since waste heat is produced during the one or two production shifts of each working day while the major clean-up effort does not occur until food production ends. At the frozen food facility, the clean-up water application again exists and, in addition, refrigeration waste heat could also be applied to warm the soil beneath the ground floor freezer space. Systems to recover and apply waste heat in these situations were developed conceptually and thermal/economic performance predictions were obtained. The results of those studies indicate the economics of waste heat recovery can be attractive for facilities with high energy demand levels. Small factories, however, with relatively low energy demands may find the economics marginal although, percentagewise, the fuel and energy savings are appreciable.

  20. Application of fuel cells with heat recovery for integrated utility systems

    Science.gov (United States)

    Shields, V.; King, J. M., Jr.

    1975-01-01

    This paper presents the results of a study of fuel cell powerplants with heat recovery for use in an integrated utility system. Such a design provides for a low pollution, noise-free, highly efficient integrated utility. Use of the waste heat from the fuel cell powerplant in an integrated utility system for the village center complex of a new community results in a reduction in resource consumption of 42 percent compared to conventional methods. In addition, the system has the potential of operating on fuels produced from waste materials (pyrolysis and digester gases); this would provide further reduction in energy consumption.

  1. Design compliance matrix waste sample container filling system for nested, fixed-depth sampling system

    International Nuclear Information System (INIS)

    BOGER, R.M.

    1999-01-01

    This design compliance matrix document provides specific design related functional characteristics, constraints, and requirements for the container filling system that is part of the nested, fixed-depth sampling system. This document addresses performance, external interfaces, ALARA, Authorization Basis, environmental and design code requirements for the container filling system. The container filling system will interface with the waste stream from the fluidic pumping channels of the nested, fixed-depth sampling system and will fill containers with waste that meet the Resource Conservation and Recovery Act (RCRA) criteria for waste that contains volatile and semi-volatile organic materials. The specifications for the nested, fixed-depth sampling system are described in a Level 2 Specification document (HNF-3483, Rev. 1). The basis for this design compliance matrix document is the Tank Waste Remediation System (TWRS) desk instructions for design Compliance matrix documents (PI-CP-008-00, Rev. 0)

  2. Waste heat recovery technologies for offshore platforms

    DEFF Research Database (Denmark)

    Pierobon, Leonardo; Benato, Alberto; Scolari, E.

    2014-01-01

    This article aims at finding the most suitable waste heat recovery technology for existing and future offshore facilities. The technologies considered in this work are the steam Rankine cycle, the air bottoming cycle and the organic Rankine cycle. A multi-objective optimization approach is employed...... to attain optimal designs for each bottoming unit by selecting specific functions tailored to the oil and gas sector, i.e. yearly CO2 emissions, weight and economic revenue. The test case is the gas turbine-based power system serving an offshore platform in the North Sea. Results indicate that the organic...... and of the primary heat exchanger, organic Rankine cycle turbogenerators appear thus to be the preferred solution to abate CO2 emissions and pollutants on oil and gas facilities. As a practical consequence, this paper provides guidelines for the design of high-efficiency, cost-competitive and low-weight power...

  3. Requirements Development Issues for Advanced Life Support Systems: Solid Waste Management

    Science.gov (United States)

    Levri, Julie A.; Fisher, John W.; Alazraki, Michael P.; Hogan, John A.

    2002-01-01

    Long duration missions pose substantial new challenges for solid waste management in Advanced Life Support (ALS) systems. These possibly include storing large volumes of waste material in a safe manner, rendering wastes stable or sterilized for extended periods of time, and/or processing wastes for recovery of vital resources. This is further complicated because future missions remain ill-defined with respect to waste stream quantity, composition and generation schedule. Without definitive knowledge of this information, development of requirements is hampered. Additionally, even if waste streams were well characterized, other operational and processing needs require clarification (e.g. resource recovery requirements, planetary protection constraints). Therefore, the development of solid waste management (SWM) subsystem requirements for long duration space missions is an inherently uncertain, complex and iterative process. The intent of this paper is to address some of the difficulties in writing requirements for missions that are not completely defined. This paper discusses an approach and motivation for ALS SWM requirements development, the characteristics of effective requirements, and the presence of those characteristics in requirements that are developed for uncertain missions. Associated drivers for life support system technological capability are also presented. A general means of requirements forecasting is discussed, including successive modification of requirements and the need to consider requirements integration among subsystems.

  4. Assessing recycling versus incineration of key materials in municipal waste: The importance of efficient energy recovery and transport distances

    DEFF Research Database (Denmark)

    Merrild, Hanna; Larsen, Anna W.; Christensen, Thomas H.

    2012-01-01

    that there are environmental benefits when recycling paper, glass, steel and aluminium instead of incinerating it. For cardboard and plastic the results were more unclear, depending on the level of energy recovery at the incineration plant, the system boundaries chosen and which impact category was in focus. Further...... rates. The environmental impacts from recycling and from incineration of six material fractions in household waste have been compared through life cycle assessment assuming high-performance technologies for material recycling as well as for waste incineration. The results showed...... of the material fractions can only contribute marginally in improving the overall waste management system taking into consideration their limited content in average Danish household waste....

  5. Joint optimisation of the future Danish waste and energy system

    DEFF Research Database (Denmark)

    Münster, Marie; Pizarro, Amalia Rosa; Salvucci, Raffaele

    2015-01-01

    in future scenarios with higher biomass consumption, where the average heat prices are higher. In both scenarios, biogas produced from organic waste is upgraded and fed into the natural gas grid and waste is incinerated rather than being centrally sorted in a material recovery facility.......In this article the impact of the future development of the energy system on the feasibility of waste treatment options is analysed. In the article two different optimization tools are used: a regional electricity model (Balmorel) and a national waste treatment and district heating model (Opti......Waste). When performing optimization by minimizing the socio-economic costs, into future energy systems with high wind power production, it proves feasible primarily to incinerate waste in large scale combined heat and power (CHP) plants, whereas more incineration takes place in decentralized CHP plants...

  6. Recovery and Concentration of Antioxidants from Winery Wastes

    Directory of Open Access Journals (Sweden)

    Juan Carlos Parajó

    2012-03-01

    Full Text Available Grape and wine byproducts have been extensively studied for the recovery of phenolic compounds with antioxidant activity and a variety of biological actions. The selective recovery and concentration of the phenolic compounds from the liquid phase separated from further diluted winery wastes has been proposed. Adsorption onto non ionic polymeric resins and further desorption with ethanolic solutions was studied. Several commercial food grade resins were screened with the aim of selecting the most suited for the practical recovery of phenolic compounds with radical scavenging activity. Under the optimized desorption conditions (using Sepabeads SP207 or Diaion HP20 as adsorbents and eluting with 96% ethanol at 50 °C a powdered yellow-light brown product with 50% phenolic content, expressed as gallic acid equivalents, was obtained. The radical scavenging capacity of one gram of product was equivalent to 2–3 g of Trolox.

  7. Comparing Waste-to-Energy technologies by applying energy system analysis

    DEFF Research Database (Denmark)

    Münster, Marie; Lund, Henrik

    2010-01-01

    Even when policies of waste prevention, re-use and recycling are prioritised a fraction of waste will still be left which can be used for energy recovery. This article asks the question: How to utilise waste for energy in the best way seen from an energy system perspective? Eight different Waste......-to-Energy technologies are compared with a focus on fuel efficiency, CO2 reductions and costs. The comparison is carried out by conducting detailed energy system analyses of the present as well as a potential future Danish energy system with a large share of combined heat and power as well as wind power. The study shows...... potential of using waste for the production of transport fuels. Biogas and thermal gasification technologies are hence interesting alternatives to waste incineration and it is recommended to support the use of biogas based on manure and organic waste. It is also recommended to support research...

  8. Shielding evaluation of the Thorium Lean Raffinate (TLR) waste treatment system at Waste Immobilisation Plant, Trombay

    International Nuclear Information System (INIS)

    Bhosale, Nitin A.; Deepa, A.K.; Jakhete, A.P.; Gopalakrishnan, R.K.; Prasad, S.K.; Gangadharan, Anand; Singh, Neelima

    2012-01-01

    Thoria rods irradiated in research reactors were reprocessed for 233 U recovery and resulted in 9 m 3 of acidic Th-bearing raffinate waste. A two step treatment system was planned to treat the raffinate waste. The first step was the generation of thorium lean raffinate waste (TLR) after separation of thorium and the second step was the separation of residual radioactivity and conditioning planned at WIP. The beta activity in the TLR waste is around 50 mCi/i having 137 Cs, 90 Sr and 125 Sb as its main constituents. Shielding calculations were carried out for the various stages of the treatment system at Area-61 of WIP, Trombay. Dose rate evaluations at each step of the treatment system were evaluated to keep the personnel exposure during campaign, ALARA. The work set the base for the shielding design of the treatment system and for the estimation of the man-rem budgeting during commissioning of the system

  9. Performance investigation of a cogeneration plant with the efficient and compact heat recovery system

    KAUST Repository

    Myat, Aung; Thu, Kyaw; Kim, Young-Deuk; Choon, Ng Kim

    2011-01-01

    This paper presents the performance investigation of a cogeneration plant equipped with an efficient waste heat recovery system. The proposed cogeneration system produces four types of useful energy namely: (i) electricity, (ii) steam, (iii) cooling

  10. A pilot-scale steam autoclave system for treating municipal solid waste for recovery of renewable organic content: Operational results and energy usage.

    Science.gov (United States)

    Holtman, Kevin M; Bozzi, David V; Franqui-Villanueva, Diana; Offeman, Richard D; Orts, William J

    2016-05-01

    A pilot-scale (1800 kg per batch capacity) autoclave used in this study reduces municipal solid waste to a debris contaminated pulp product that is efficiently separated into its renewable organic content and non-renewable organic content fractions using a rotary trommel screen. The renewable organic content can be recovered at nearly 90% efficiency and the trommel rejects are also much easier to sort for recovery. This study provides the evaluation of autoclave operation, including mass and energy balances for the purpose of integration into organic diversion systems. Several methods of cooking municipal solid waste were explored from indirect oil heating only, a combination of oil and direct steam during the same cooking cycle, and steam only. Gross energy requirements averaged 1290 kJ kg(-1) material in vessel, including the weight of free water and steam added during heating. On average, steam recovery can recoup 43% of the water added and 30% of the energy, supplying on average 40% of steam requirements for the next cook. Steam recycle from one vessel to the next can reduce gross energy requirements to an average of 790 kJ kg(-1). © The Author(s) 2016.

  11. An environmental friendly animal waste disposal process with ammonia recovery and energy production: Experimental study and economic analysis.

    Science.gov (United States)

    Shen, Ye; Tan, Michelle Ting Ting; Chong, Clive; Xiao, Wende; Wang, Chi-Hwa

    2017-10-01

    Animal manure waste is considered as an environmental challenge especially in farming areas mainly because of gaseous emission and water pollution. Among all the pollutants emitted from manure waste, ammonia is of greatest concern as it could contribute to formation of aerosols in the air and could hardly be controlled by traditional disposal methods like landfill or composting. On the other hand, manure waste is also a renewable source for energy production. In this work, an environmental friendly animal waste disposal process with combined ammonia recovery and energy production was proposed and investigated both experimentally and economically. Lab-scale feasibility study results showed that 70% of ammonia in the manure waste could be converted to struvite as fertilizer, while solid manure waste was successfully gasified in a 10kW downdraft fixed-bed gasifier producing syngas with the higher heating value of 4.9MJ/(Nm 3 ). Based on experimental results, economic study for the system was carried out using a cost-benefit analysis to investigate the financial feasibility based on a Singapore case study. In addition, for comparison, schemes of gasification without ammonia removal and incineration were also studied for manure waste disposal. The results showed that the proposed gasification-based manure waste treatment process integrated with ammonia recovery was most financially viable. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Pyrolysis Recovery of Waste Shipping Oil Using Microwave Heating

    Directory of Open Access Journals (Sweden)

    Wan Adibah Wan Mahari

    2016-09-01

    Full Text Available This study investigated the use of microwave pyrolysis as a recovery method for waste shipping oil. The influence of different process temperatures on the yield and composition of the pyrolysis products was investigated. The use of microwave heating provided a fast heating rate (40 °C/min to heat the waste oil at 600 °C. The waste oil was pyrolyzed and decomposed to form products dominated by pyrolysis oil (up to 66 wt. % and smaller amounts of pyrolysis gases (24 wt. % and char residue (10 wt. %. The pyrolysis oil contained light C9–C30 hydrocarbons and was detected to have a calorific value of 47–48 MJ/kg which is close to those traditional liquid fuels derived from fossil fuel. The results show that microwave pyrolysis of waste shipping oil generated an oil product that could be used as a potential fuel.

  13. Life cycle assessment of waste management systems: Assessing technical externalities

    DEFF Research Database (Denmark)

    Brogaard, Line Kai-Sørensen

    The life cycle assessment (LCA) of a waste management system relies on many internal characteristics such as pollution control systems and recovery efficiencies. It also relies on technical externalities supporting the waste management system in terms of capital goods and energy and material...... for the primary and secondary production of materials, 366 datasets were gathered. The materials in focus were: paper, newsprint, cardboard, corrugated board, glass, aluminium, steel and plastics (HDPE, LDPE, LLDPE, PET, PS, PVC). Only one quarter of these data concerned secondary production, thus underlining...

  14. A linear programming approach for the optimal planning of a future energy system. Potential contribution of energy recovery from municipal solid wastes

    DEFF Research Database (Denmark)

    Xydis, George; Koroneos, C.

    2012-01-01

    In the present paper the mismatch between the energy supply levels and the end use, in a broader sense, was studied for the Hellenic energy system. The ultimate objective was to optimize the way to meet the country's energy needs in every different administrative and geographical region using...... renewable energy sources (RES) and at the same time to define the remaining available space for energy recovery units from municipal solid waste (MSW) in each region to participate in the energy system. Based on the results of the different scenarios examined for meeting the electricity needs using linear...

  15. Simultaneous Waste Heat and Water Recovery from Power Plant Flue Gases for Advanced Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Dexin [Gas Technology Inst., Des Plaines, IL (United States)

    2016-12-31

    This final report presents the results of a two-year technology development project carried out by a team of participants sponsored by the Department of Energy (DOE). The objective of this project is to develop a membrane-based technology to recover both water and low grade heat from power plant flue gases. Part of the recovered high-purity water and energy can be used directly to replace plant boiler makeup water as well as improving its efficiency, and the remaining part of the recovered water can be used for Flue Gas Desulfurization (FGD), cooling tower water makeup or other plant uses. This advanced version Transport Membrane Condenser (TMC) with lower capital and operating costs can be applied to existing plants economically and can maximize waste heat and water recovery from future Advanced Energy System flue gases with CO2 capture in consideration, which will have higher moisture content that favors the TMC to achieve higher efficiency.

  16. Economic assessment of greenhouse gas reduction through low-grade waste heat recovery using organic Rankine cycle (ORC)

    Energy Technology Data Exchange (ETDEWEB)

    Imran, Muhammad; Park, Byung Sik; Kim, Hyouck Ju; Usman, Muhammad [University of Science and Technology, Daejeon (Korea, Republic of); Lee, Dong Hyun [Korea Institute of Energy Research, Daejeon (Korea, Republic of)

    2015-02-15

    Low-grade waste heat recovery technologies reduce the environmental impact of fossil fuels and improve overall efficiency. This paper presents the economic assessment of greenhouse gas (GHG) reduction through waste heat recovery using organic Rankine cycle (ORC). The ORC engine is one of the mature low temperature heat engines. The low boiling temperature of organic working fluid enables ORC to recover low-temperature waste heat. The recovered waste heat is utilized to produce electricity and hot water. The GHG emissions for equivalent power and hot water from three fossil fuels-coal, natural gas, and diesel oil-are estimated using the fuel analysis approach and corresponding emission factors. The relative decrease in GHG emission is calculated using fossil fuels as the base case. The total cost of the ORC system is used to analyze the GHG reduction cost for each of the considered fossil fuels. A sensitivity analysis is also conducted to investigate the effect of the key parameter of the ORC system on the cost of GHG reduction. Throughout the 20-year life cycle of the ORC plant, the GHG reduction cost for R245fa is 0.02 $/kg to 0.04 $/kg and that for pentane is 0.04 $/kg to 0.05 $/kg. The working fluid, evaporation pressure, and pinch point temperature difference considerably affect the GHG emission.

  17. Systems analysis for the development of small resource recovery systems: system performance data. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Crnkovich, P G; Helmstetter, A J

    1980-10-01

    The technologies that should be developed to make small-scale solid waste processing facilities attractive and viable for small municipalities with solid waste between 50 and 250 tons per day are identified. The resource recovery systems investigated were divided into three categories: thermal processng, mechanical separation, and biological processing. Thermal processing systems investigated are: excess-air incineration; starved-air incineration/gasification; and pyrolysis (indirect heating). Mechanical processing systems investigated are: coarse refuse derived fuel; materials separation; dust refuse derived fuel; densified refuse derived fuel; and fine refuse derived fuel. Mechanical processing components investigated include: receiving module; primary size reduction module; combustible separation module; refuse derived fuel preparation module; fuel densification; fuel storage module; ferrous separation; and building and facilities. Pretreatment processes and principle methods of bioconversion of MSW dealing with biological processing are investigated. (MCW)

  18. Leaching capacity of metals-metalloids and recovery of valuable materials from waste LCDs.

    Science.gov (United States)

    Savvilotidou, Vasiliki; Hahladakis, John N; Gidarakos, Evangelos

    2015-11-01

    The purpose of Directive 2012/19/EU which is related to WEEE (Waste Electrical and Electronic Equipment), also known as "e-waste", is to contribute to their sustainable production and consumption that would most possibly be achieved by their recovery, recycling and reuse. Under this perspective, the present study focused on the recovery of valuable materials, metals and metalloids from LCDs (Liquid Crystal Displays). Indium (In), arsenic (As) and stibium (Sb) were selected to be examined for their Leaching Capacity (R) from waste LCDs. Indium was selected mainly due to its rarity and preciousness, As due to its high toxicity and wide use in LCDs and Sb due to its recent application as arsenic's replacement to improve the optimal clarity of a LCD screen. The experimental procedure included disassembly of screens along with removal and recovery of polarizers via thermal shock, cutting, pulverization and digestion of the shredded material and finally leaching evaluation of the aforementioned elements. Leaching tests were conducted under various temperatures, using various solid:liquid (S/L) ratios and solvents (acid mixtures), to determine the optimal conditions for obtaining the maximum leaching capacities. The examined elements exhibited different leaching behaviors, mainly due to the considerable diversity in their inherent characteristic properties. Indium demonstrated the highest recovery percentages (approximately 60%), while the recovery of As and Sb was unsuccessful, obtaining poor leaching percentages (0.16% and 0.5%, respectively). Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Second law analysis of a diesel engine waste heat recovery with a combined sensible and latent heat storage system

    International Nuclear Information System (INIS)

    Pandiyarajan, V.; Chinnappandian, M.; Raghavan, V.; Velraj, R.

    2011-01-01

    The exhaust gas from an internal combustion engine carries away about 30% of the heat of combustion. The energy available in the exit stream of many energy conversion devices goes as waste. The major technical constraint that prevents successful implementation of waste heat recovery is due to intermittent and time mismatched demand for and availability of energy. The present work deals with the use of exergy as an efficient tool to measure the quantity and quality of energy extracted from a diesel engine and stored in a combined sensible and latent heat storage system. This analysis is utilized to identify the sources of losses in useful energy within the components of the system considered, and provides a more realistic and meaningful assessment than the conventional energy analysis. The energy and exergy balance for the overall system is quantified and illustrated using energy and exergy flow diagrams. In order to study the discharge process in a thermal storage system, an illustrative example with two different cases is considered and analyzed, to quantify the destruction of exergy associated with the discharging process. The need for promoting exergy analysis through policy decision in the context of energy and environment crisis is also emphasized. - Highlights: → WHR with TES system eliminates the mismatch between the supply of energy and demand. → A saving of 15.2% of energy and 1.6% of exergy is achieved with PCM storage. → Use of multiple PCMs with cascaded system increases energy and exergy efficiency.

  20. Disintegration-wave method of recovery of industrial waste iron and steel industry enterprises

    Directory of Open Access Journals (Sweden)

    M. A. Vasechkin

    2016-01-01

    Full Text Available Rational use of raw materials and waste is one of the most important factors determining the effectiveness of any processing enterprise. Industrial wastes of mining and metallurgical industries are a valuable source of many elements. However, little activity of the mineral and inconsistent chemical and phase composition of the waste reduce their attractiveness for use as a secondary raw material, and the presence of heavy metals and water-soluble compounds is a serious environmental threat. Fractional excretion of elements that make up the slag can be carried out with the help of their recovery by disintegration-wave method. The paper presents a machine-hardware circuits for the implementation of recovery process of slag and disintegrator design. In conducting research on the example of slag samples of the enterprises in Stavropol and Krasnoyarsk territories, it was found out that the observed enrichment of slags on the composition of iron takes place, its physical and chemical activity increases and persists for a long period of time. These facts were noted in the study of the microstructure and the results of spectral analysis of the initial slags and subjected to recovery by disintegration-wave method. The results analysis led to the conclusion about the possibility of waste recovery of mining and metallurgical industries with by disintegration-wave method. Resulting in the processing materials with enhanced activity of the mineral part and certain chemical and phase composition, can be used as raw material for the production of metallurgical, cement and other industries.

  1. Enhancing gold recovery from electronic waste via lixiviant metabolic engineering in Chromobacterium violaceum

    Science.gov (United States)

    Tay, Song Buck; Natarajan, Gayathri; Rahim, Muhammad Nadjad bin Abdul; Tan, Hwee Tong; Chung, Maxey Ching Ming; Ting, Yen Peng; Yew, Wen Shan

    2013-01-01

    Conventional leaching (extraction) methods for gold recovery from electronic waste involve the use of strong acids and pose considerable threat to the environment. The alternative use of bioleaching microbes for gold recovery is non-pollutive and relies on the secretion of a lixiviant or (bio)chemical such as cyanide for extraction of gold from electronic waste. However, widespread industrial use of bioleaching microbes has been constrained by the limited cyanogenic capabilities of lixiviant-producing microorganisms such as Chromobacterium violaceum. Here we show the construction of a metabolically-engineered strain of Chromobacterium violaceum that produces more (70%) cyanide lixiviant and recovers more than twice as much gold from electronic waste compared to wild-type bacteria. Comparative proteome analyses suggested the possibility of further enhancement in cyanogenesis through subsequent metabolic engineering. Our results demonstrated the utility of lixiviant metabolic engineering in the construction of enhanced bioleaching microbes for the bioleaching of precious metals from electronic waste. PMID:23868689

  2. Potential conflicts connected with the recovery of secondary materials from post mining waste dump

    Directory of Open Access Journals (Sweden)

    Gawor Łukasz

    2017-12-01

    Full Text Available Coal mine spoil dumping grounds are present in the landscape of every mining region. Although the composition of waste material is in general safe for the environment (sedimentary rocks – sandstones, mudstones and siltstones, there may be up to 10% of coal particles in disposed wastes. The presence of organic material causes self-ignition processes and fire hazards. There is a need and the possibility of the recovery of coal, and which should be conducted according to legal regulations and environmental protection rules. The recovery should also be preceded by a feasibility study, a drilling campaign, laboratory tests and requires different environmental permissions. Recovery processes are connected with the work of a preparation plant, which is usually linked with protests from the local community and potential conflicts. This article presents the most significant hazards to the environment, health and human life connected with the functions associated with the installation of the recovery processes of coal from waste material deposited on the dumps. The methods of reducing these threats are described with regards to legal regulations, particularly law deeds concerning the safe recovery processes and further reclamation and restoration of degraded post-mining dumping grounds. The role and participation of interested community members at the preparation for investment stage as well as the period of realization of the preparation processes is described. The question of re-using and managing the post-mining dumping grounds after completion of the recovery processes is discussed.

  3. Feasibility analysis of wastewater and solid waste systems for application in Indonesia.

    Science.gov (United States)

    Kerstens, S M; Leusbrock, I; Zeeman, G

    2015-10-15

    Indonesia is one of many developing countries with a backlog in achieving targets for the implementation of wastewater and solid waste collection, treatment and recovery systems. Therefore a technical and financial feasibility analysis of these systems was performed using Indonesia as an example. COD, BOD, nitrogen, phosphorus and pathogen removal efficiencies, energy requirements, sludge production, land use and resource recovery potential (phosphorus, energy, duckweed, compost, water) for on-site, community based and off-site wastewater systems were determined. Solid waste systems (conventional, centralized and decentralized resource recovery) were analyzed according to land requirement, compost and energy production and recovery of plastic and paper. In the financial analysis, investments, operational costs & benefits and Total Lifecycle Costs (TLC) of all investigated options were compared. Technical performance and TLC were used to guide system selection for implementation in different residential settings. An analysis was undertaken to determine the effect of price variations of recoverable resources and land prices on TLC. A 10-fold increase in land prices for land intensive wastewater systems resulted in a 5 times higher TLC, whereas a 4-fold increase in the recovered resource selling price resulted in maximum 1.3 times higher TLC. For solid waste, these impacts were reversed - land price and resource selling price variations resulted in a maximum difference in TLC of 1.8 and 4 respectively. Technical and financial performance analysis can support decision makers in system selection and anticipate the impact of price variations on long-term operation. The technical analysis was based on published results of international research and the approach can be applied for other tropical, developing countries. All costs were converted to per capita unit costs and can be updated to assess other countries' estimated costs and benefits. Consequently, the approach can

  4. Bioenergy, material, and nutrients recovery from household waste: Advanced material, substance, energy, and cost flow analysis of a waste refinery process

    DEFF Research Database (Denmark)

    Tonini, Davide; Dorini, Gianluca Fabio; Astrup, Thomas Fruergaard

    2014-01-01

    Energy, materials, and resource recovery from mixed household waste may contribute to reductions in fossil fuel and resource consumption. For this purpose, legislation has been enforced to promote energy recovery and recycling. Potential solutions for separating biogenic and recyclable materials...

  5. Energy recovery from waste food by combustion or gasification with the potential for regenerative dehydration: A case study

    International Nuclear Information System (INIS)

    Caton, P.A.; Carr, M.A.; Kim, S.S.; Beautyman, M.J.

    2010-01-01

    Energy recovery from food waste was studied using the food service at the US Naval Academy as a case study. Post-consumer food waste was captured over a period of ten days to estimate individual waste per meal and total waste per month. The food waste was analyzed for chemical composition and water content using ultimate and proximate analysis, and for energy content, and compared with the same analyses of wood (a more typical biomass fuel). Three different samples of food waste showed relative uniformity of properties despite being sampled on different days, with different menus. Food waste had lower oxygen content, higher nitrogen and ash content, and higher energy content than wood. The food waste in this study had approximately 70% water content. Temperatures and emissions from combustion of wood pellets, dried pelletized food waste, and dried non-pelletized food waste were measured and compared using a modified residential pellet stove. Temperatures were higher for food waste due to the higher energy content. Emissions of NO, HC, and soot were slightly higher for food waste. Despite the large water content, thermodynamic analysis showed that regenerative dehydration, in which waste energy from the combustion system is used to remove water from the incoming wet fuel, is possible. An excess enthalpy ratio is defined to formalize the comparison of waste sensible enthalpy with the energy required for dehydration. Analysis of fuel-lean combustion and fuel-rich gasification shows that little, if any, external energy would necessarily be required to remove the water from the incoming fuel. An equilibrium model was used to simulate waste food gasification by extending the simulation to high water content levels. Probable ranges for successful food waste gasification are identified. Energy recovery of waste food could result in cost savings by offsetting traditional fuel-use (e.g. natural gas for heating) and by reducing disposal costs.

  6. Energy recovery from waste food by combustion or gasification with the potential for regenerative dehydration: A case study

    Energy Technology Data Exchange (ETDEWEB)

    Caton, P.A.; Carr, M.A.; Kim, S.S.; Beautyman, M.J. [US Naval Academy, Department of Mechanical Engineering, 590 Holloway Road, Annapolis, MD 21402 (United States)

    2010-06-15

    Energy recovery from food waste was studied using the food service at the US Naval Academy as a case study. Post-consumer food waste was captured over a period of ten days to estimate individual waste per meal and total waste per month. The food waste was analyzed for chemical composition and water content using ultimate and proximate analysis, and for energy content, and compared with the same analyses of wood (a more typical biomass fuel). Three different samples of food waste showed relative uniformity of properties despite being sampled on different days, with different menus. Food waste had lower oxygen content, higher nitrogen and ash content, and higher energy content than wood. The food waste in this study had approximately 70% water content. Temperatures and emissions from combustion of wood pellets, dried pelletized food waste, and dried non-pelletized food waste were measured and compared using a modified residential pellet stove. Temperatures were higher for food waste due to the higher energy content. Emissions of NO, HC, and soot were slightly higher for food waste. Despite the large water content, thermodynamic analysis showed that regenerative dehydration, in which waste energy from the combustion system is used to remove water from the incoming wet fuel, is possible. An excess enthalpy ratio is defined to formalize the comparison of waste sensible enthalpy with the energy required for dehydration. Analysis of fuel-lean combustion and fuel-rich gasification shows that little, if any, external energy would necessarily be required to remove the water from the incoming fuel. An equilibrium model was used to simulate waste food gasification by extending the simulation to high water content levels. Probable ranges for successful food waste gasification are identified. Energy recovery of waste food could result in cost savings by offsetting traditional fuel-use (e.g. natural gas for heating) and by reducing disposal costs. (author)

  7. Bioelectrochemical recovery of waste-derived volatile fatty acids and production of hydrogen and alkali

    DEFF Research Database (Denmark)

    Zhang, Yifeng; Angelidaki, Irini

    2015-01-01

    Volatile fatty acids (VFA) are organic compounds of great importance for various industries and environmental processes. Fermentation and anaerobic digestion of organic wastes are promising alternative technologies for VFA production. However, one of the major challenges is development...... of sustainable downstream technologies for VFA recovery. In this study, an innovative microbial bipolar electrodialysis cell (MBEDC) was developed to meet the challenge of waste-derived VFA recovery, produce hydrogen and alkali, and potentially treat wastewater. The MBEDC was operated in fed-batch mode....... At an applied voltage of 1.2 V, a VFA recovery efficiency of 98.3%, H2 of 18.4 mL and alkali production presented as pH of 12.64 were obtained using synthetic fermentation broth. The applied voltage, initial VFA concentrations and composition were affecting the VFA recovery. The energy balance revealed that net...

  8. Evaluation of extractant-coated magnetic microparticles for the recovery of hazardous metals from waste solution

    International Nuclear Information System (INIS)

    Kaminski, M. D.

    1998-01-01

    A magnetically assisted chemical separation (MACS) process was developed earlier at Argonne National Laboratory (ANL). This compact process was designed for the separation of transuranics (TRU) and radionuclides from the liquid waste streams that exist at many DOE sites, with an overall reduction in waste volume requiring disposal. The MACS process combines the selectivity afforded by solvent extractant/ion exchange materials with magnetic separation to provide an efficient chemical separation. Recently, the MACS process has been evaluated with acidic organophosphorus extractants for hazardous metal recovery from waste solutions. Moreover, process scale-up design issues have been addressed with respect to particle filtration and recovery. Two acidic organophosphorus compounds have been investigated for hazardous metal recovery, bis(2,4,4-trimethylpentyl) phosphinic acid (Cyanexreg-sign 272) and bis(2,4,4-trimethylpentyl) dithiophosphinic acid (Cyanexreg-sign 301). Coated onto magnetic microparticles, these extractants demonstrated superior recovery of hazardous metals from solution, relative to what was expected on the basis of results from solvent extraction experiments. The results illustrate the diverse applications of MACS technology for dilute waste streams. Preliminary process scale-up experiments with a high-gradient magnetic separator at Oak Ridge National Laboratory have revealed that very low microparticle loss rates are possible

  9. Recovery and removal of mercury from mixed wastes. Final report, September 1994--June 1995

    International Nuclear Information System (INIS)

    Sutton, W.F.; Weyand, T.E.; Koshinski, C.J.

    1995-06-01

    In recognition of the major environmental problem created by mercury contamination of wastes and soils at an estimated 200,000 sites along US natural gas and oil pipelines and at a number of government facilities, including Oak Ridge, Savannah River, Hanford, and Rocky Flats, the US Department of Energy (DOE) is seeking an effective and economical process for removing mercury from various DOE waste streams in order to allow the base waste streams to be treated by means of conventional technologies. In response to the need for Unproved mercury decontamination technology, Mercury Recovery Services (MRS) has developed and commercialized a thermal treatment process for the recovery of mercury from contaminated soils and industrial wastes. The objectives of this program were to: demonstrate the technical and economic feasibility of the MRS process to successfully remove and recover mercury from low-level mixed waste containing mercury compounds (HgO, HgS, HgCl 2 ) and selected heavy metal compounds (PbO, CdO); determine optimum processing conditions required to consistently reduce the residual total mercury content to 1 mg/kg while rendering the treated product nontoxic as determined by TCLP methods; and provide an accurate estimate of the capital and operating costs for a commercial processing facility designed specifically to remove and recovery mercury from various waste streams of interest at DOE facilities. These objectives were achieved in a four-stage demonstration program described within with results

  10. Energy recovery from waste incineration: Assessing the importance of district heating networks

    International Nuclear Information System (INIS)

    Fruergaard, T.; Christensen, T.H.; Astrup, T.

    2010-01-01

    Municipal solid waste incineration contributes with 20% of the heat supplied to the more than 400 district heating networks in Denmark. In evaluation of the environmental consequences of this heat production, the typical approach has been to assume that other (fossil) fuels could be saved on a 1:1 basis (e.g. 1 GJ of waste heat delivered substitutes for 1 GJ of coal-based heat). This paper investigates consequences of waste-based heat substitution in two specific Danish district heating networks and the energy-associated interactions between the plants connected to these networks. Despite almost equal electricity and heat efficiencies at the waste incinerators connected to the two district heating networks, the energy and CO 2 accounts showed significantly different results: waste incineration in one network caused a CO 2 saving of 48 kg CO 2 /GJ energy input while in the other network a load of 43 kg CO 2 /GJ. This was caused mainly by differences in operation mode and fuel types of the other heat producing plants attached to the networks. The paper clearly indicates that simple evaluations of waste-to-energy efficiencies at the incinerator are insufficient for assessing the consequences of heat substitution in district heating network systems. The paper also shows that using national averages for heat substitution will not provide a correct answer: local conditions need to be addressed thoroughly otherwise we may fail to assess correctly the heat recovery from waste incineration.

  11. Sustainability assessment and comparison of waste management systems: The Cities of Sofia and Niš case studies.

    Science.gov (United States)

    Milutinović, Biljana; Stefanović, Gordana; Kyoseva, Vanya; Yordanova, Dilyana; Dombalov, Ivan

    2016-09-01

    Sustainability assessment of a waste management system is a very complex problem for numerous reasons. Firstly, it is a problem of environmental assessment, economic viability and social acceptability, and also a choice of the most practical waste treatment technique, taking into account all the specific areas in which a waste management system is implemented. For these reasons, among others, it is very important to benchmark, cooperate and exchange experiences in areas with similar characteristics. In this study, a comparison of waste management scenarios in the Cities of Niš and Sofia was performed. Based on the amount and composition of municipal solid waste, and taking into account local specifics (economic conditions, social acceptance, etc.), different scenarios were developed: landfilling without energy recovery, landfilling with energy recovery, mechanical-biological treatment, anaerobic digestion with biogas utilization and incineration with energy recovery. Scenario ranking was done using multi-criteria analysis and 12 indicators were chosen as the criteria. The obtained results show that the most sustainable scenario in both case studies is the mechanical-biological treatment (recycling, composting and Refuse Derived Fuel production). Having in mind that this scenario is the current waste management system in Sofia, these results can help decision-makers in the City of Niš in choosing a successful and sustainable waste management system. © The Author(s) 2016.

  12. Precious metal recovery from waste printed circuit boards using cyanide and non-cyanide lixiviants--A review.

    Science.gov (United States)

    Akcil, Ata; Erust, Ceren; Gahan, Chandra Sekhar; Ozgun, Mehmet; Sahin, Merve; Tuncuk, Aysenur

    2015-11-01

    Waste generated by the electrical and electronic devices is huge concern worldwide. With decreasing life cycle of most electronic devices and unavailability of the suitable recycling technologies it is expected to have huge electronic and electrical wastes to be generated in the coming years. The environmental threats caused by the disposal and incineration of electronic waste starting from the atmosphere to the aquatic and terrestrial living system have raised high alerts and concerns on the gases produced (dioxins, furans, polybrominated organic pollutants, and polycyclic aromatic hydrocarbons) by thermal treatments and can cause serious health problems if the flue gas cleaning systems are not developed and implemented. Apart from that there can be also dissolution of heavy metals released to the ground water from the landfill sites. As all these electronic and electrical waste do posses richness in the metal values it would be worth recovering the metal content and protect the environmental from the pollution. Cyanide leaching has been a successful technology worldwide for the recovery of precious metals (especially Au and Ag) from ores/concentrates/waste materials. Nevertheless, cyanide is always preferred over others because of its potential to deliver high recovery with a cheaper cost. Cyanidation process also increases the additional work of effluent treatment prior to disposal. Several non-cyanide leaching processes have been developed considering toxic nature and handling problems of cyanide with non-toxic lixiviants such as thiourea, thiosulphate, aqua regia and iodine. Therefore, several recycling technologies have been developed using cyanide or non-cyanide leaching methods to recover precious and valuable metals. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Contribution of plastic waste recovery to greenhouse gas (GHG) savings in Spain.

    Science.gov (United States)

    Sevigné-Itoiz, Eva; Gasol, Carles M; Rieradevall, Joan; Gabarrell, Xavier

    2015-12-01

    This paper concentrates on the quantification of greenhouse gas (GHG) emissions of post-consumer plastic waste recovery (material or energy) by considering the influence of the plastic waste quality (high or low), the recycled plastic applications (virgin plastic substitution or non-plastic substitution) and the markets of recovered plastic (regional or global). The aim is to quantify the environmental consequences of different alternatives in order to evaluate opportunities and limitations to select the best and most feasible plastic waste recovery option to decrease the GHG emissions. The methodologies of material flow analysis (MFA) for a time period of thirteen years and consequential life cycle assessment (CLCA) have been integrated. The study focuses on Spain as a representative country for Europe. The results show that to improve resource efficiency and avoid more GHG emissions, the options for plastic waste management are dependent on the quality of the recovered plastic. The results also show that there is an increasing trend of exporting plastic waste for recycling, mainly to China, that reduces the GHG benefits from recycling, suggesting that a new focus should be introduced to take into account the split between local recycling and exporting. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. INEL RCRA [Resource Conservation and Recovery Act] permit for incineration of hazardous waste: Status report

    International Nuclear Information System (INIS)

    McFee, J.N.; Dalton, J.D.; Bohrer, H.A.

    1987-01-01

    The Waste Experimental Reduction Facility (WERF) was constructed to reduce the volume of low-level radioactive waste at the Idaho National Engineering Laboratory (INEL). To address the problem of radioactively contaminated ignitable hazardous waste resulting from INEL activities, a development program was carried out to evaluate WERF's ability to meet the regulated criteria for incinerating liquid and solid ignitable waste. Concurrently, INEL submitted its hazardous waste Part B application under the Resource Conservation and Recovery Act (RCRA). As required, and as a major step in the permitting process, the WERF incinerator portion of the permit application included a proposed trial burn, which is a demonstration test of the incinerator's ability to destroy hazardous materials. The trial burn plan was designed to demonstrate the system performance for liquid and solid ignitable wastes at three operating conditions, using a prepared mix of materials representative of waste to be processed. EPA Region X reviewed and commented on the plan prior to the trial burn. Results of the liquid feed trial burn showed a greater than 97% probability of meeting the RCRA-dictated DRE value for chlorinated solvents and a greater than 99% probability for nonchlorinated solvents. Nonchlorinated solid waste results were calculated at a 93% probability of meeting the required DRE, with a 75% probability for chlorinated solid wastes. In addition, the incinerator DRE continued to improve long after the assumed pre-test equilibrium period had ended. The trial burn demonstrates that the WERF incinerator can safely and adequately destroy ignitable hazardous and mixed waste and provides a significant enhancement of the INEL's waste management system

  15. Thermodynamic analysis and performance optimization of an ORC (Organic Rankine Cycle) system for multi-strand waste heat sources in petroleum refining industry

    International Nuclear Information System (INIS)

    Song, Jian; Li, Yan; Gu, Chun-wei; Zhang, Li

    2014-01-01

    Low-grade waste heat source accounts for a large part of the total industrial waste heat, which cannot be efficiently recovered. The ORC (Organic Rankine Cycle) system has been proved to be a promising solution for the utilization of low-grade heat sources. It is evident that there might be several waste heat sources distributing in different temperature levels in one industry unit, and the entire recovery system will be extremely large and complex if the different heat sources are utilized one by one through several independent ORC subsystems. This paper aims to design and optimize a comprehensive ORC system to recover multi-strand waste heat sources in Shijiazhuang Refining and Chemical Company in China, involving defining suitable working fluids and operating parameters. Thermal performance is a first priority criterion for the system, and system simplicity, technological feasibility and economic factors are considered during optimization. Four schemes of the recovery system are presented in continuous optimization progress. By comparison, the scheme of dual integrated subsystems with R141B as a working fluid is optimal. Further analysis is implemented from the view of economic factors and off-design conditions. The analytical method and optimization progress presented can be widely applied in similar multi-strand waste heat sources recovery. - Highlights: • This paper focuses on the recovery of multi-strand waste heat sources. • ORC technology is used as a promising solution for the recovery. • Thermal performance, system simplicity and economic factors are considered

  16. Assessing the environmental sustainability of energy recovery from municipal solid waste in the UK.

    Science.gov (United States)

    Jeswani, H K; Azapagic, A

    2016-04-01

    Even though landfilling of waste is the least favourable option in the waste management hierarchy, the majority of municipal solid waste (MSW) in many countries is still landfilled. This represents waste of valuable resources and could lead to higher environmental impacts compared to energy recovered by incineration, even if the landfill gas is recovered. Using life cycle assessment (LCA) as a tool, this paper aims to find out which of the following two options for MSW disposal is more environmentally sustainable: incineration or recovery of biogas from landfills, each producing either electricity or co-generating heat and electricity. The systems are compared on a life cycle basis for two functional units: 'disposal of 1 tonne of MSW' and 'generation of 1 kWh of electricity'. The results indicate that, if both systems are credited for their respective recovered energy and recyclable materials, energy from incineration has much lower impacts than from landfill biogas across all impact categories, except for human toxicity. The impacts of incineration co-generating heat and electricity are negative for nine out of 11 categories as the avoided impacts for the recovered energy and materials are higher than those caused by incineration. By improving the recovery rate of biogas, some impacts of landfilling, such as global warming, depletion of fossil resources, acidification and photochemical smog, would be significantly reduced. However, most impacts of the landfill gas would still be higher than the impacts of incineration, except for global warming and human toxicity. The analysis on the basis of net electricity produced shows that the LCA impacts of electricity from incineration are several times lower in comparison to the impacts of electricity from landfill biogas. Electricity from incineration has significantly lower global warming and several other impacts than electricity from coal and oil but has higher impacts than electricity from natural gas or UK grid. At

  17. Analysis of vehicle exhaust waste heat recovery potential using a Rankine cycle

    International Nuclear Information System (INIS)

    Domingues, António; Santos, Helder; Costa, Mário

    2013-01-01

    This study evaluates the vehicle exhaust WHR (waste heat recovery) potential using a RC (Rankine cycle ). To this end, both a RC thermodynamic model and a heat exchanger model have been developed. Both models use as input, experimental data obtained from a vehicle tested on a chassis dynamometer. The thermodynamic analysis was performed for water, R123 and R245fa and revealed the advantage of using water as the working fluid in applications of thermal recovery from exhaust gases of vehicles equipped with a spark-ignition engine. Moreover, the heat exchanger effectiveness for the organic working fluids R123 and R245fa is higher than that for the water and, consequently, they can also be considered appropriate for use in vehicle WHR applications through RCs when the exhaust gas temperatures are relatively low. For an ideal heat exchanger, the simulations revealed increases in the internal combustion engine thermal and vehicle mechanical efficiencies of 1.4%–3.52% and 10.16%–15.95%, respectively, while for a shell and tube heat exchanger, the simulations showed an increase of 0.85%–1.2% in the thermal efficiency and an increase of 2.64%–6.96% in the mechanical efficiency for an evaporating pressure of 2 MPa. The results confirm the advantages of using the thermal energy contained in the vehicle exhaust gases through RCs. Furthermore, the present analysis demonstrates that improved evaporator designs and appropriate expander devices allowing for higher evaporating pressures are required to obtain the maximum WHR potential from vehicle RC systems. -- Highlights: ► This study evaluates the vehicle exhaust waste heat recovery potential using Rankine cycle systems. ► A thermodynamic model and a heat exchanger model were developed. ► Experimental data obtained in a vehicle tested on a chassis dynamometer was used as models input. ► Thermodynamic analysis was performed for water, R123 and R245fa. ► Results confirm advantages of using the thermal energy

  18. Applying the principles of thermoeconomics to the organic Rankine Cycle for low temperature waste heat recovery

    International Nuclear Information System (INIS)

    Xiao, F.; Lilun, Q.; Changsun, S.

    1989-01-01

    In this paper, thermoeconomic principle is used to study the selection of working fluids and the option of the cycle parameters in the organic Rankine cycle of low temperature waste heat recovery. The parameter ξ, the product of the ratio of waste heat recovery and real cycle thermal efficiency, is suggested as a unified thermodynamic criterion for the selection of the working fluids. The mathematical expressions are developed to determine the optimal boiling temperature and the optimal pin point temperature difference in the heat recovery exchanger by way of thermoeconomic principle

  19. Validation of a Waste Heat Recovery Model for a 1kW PEM Fuel Cell using Thermoelectric Generator

    Science.gov (United States)

    Saufi Sulaiman, M.; Mohamed, W. A. N. W.; Singh, B.; Fitrie Ghazali, M.

    2017-08-01

    Fuel cell is a device that generates electricity through electrochemical reaction between hydrogen and oxygen. A major by-product of the exothermic reaction is waste heat. The recovery of this waste heat has been subject to research on order to improve the overall energy utilization. However, nearly all of the studies concentrate on high temperature fuel cells using advanced thermodynamic cycles due to the high quality of waste heat. The method, characteristics and challenges in harvesting waste heat from a low temperature fuel cell using a direct energy conversion device is explored in this publication. A heat recovery system for an open cathode 1kW Proton Exchange Membrane fuel cell (PEM FC) was developed using a single unit of thermoelectric generator (TEG) attached to a heat pipe. Power output of the fuel cell was varied to obtain the performance of TEG at different stack temperatures. Natural and forced convections modes of cooling were applied to the TEG cold side. This is to simulate the conditions of a mini fuel cell vehicle at rest and in motion. The experimental results were analysed and a mathematical model based on the thermal circuit analogy was developed and compared. Forced convection mode resulted in higher temperature difference, output voltage and maximum power which are 3.3°C, 33.5 mV, and 113.96mW respectively. The heat recovery system for 1 kW Proton Exchange Membrane fuel cell (PEM FC) using single TEG was successfully established and improved the electrical production of fuel cell. Moreover, the experimental results obtained was in a good agreement with theoretical results.

  20. Battleground Energy Recovery Project

    Energy Technology Data Exchange (ETDEWEB)

    Bullock, Daniel [USDOE Gulf Coast Clean Energy Application Center, Woodlands, TX (United States)

    2011-12-31

    In October 2009, the project partners began a 36-month effort to develop an innovative, commercial-scale demonstration project incorporating state-of-the-art waste heat recovery technology at Clean Harbors, Inc., a large hazardous waste incinerator site located in Deer Park, Texas. With financial support provided by the U.S. Department of Energy, the Battleground Energy Recovery Project was launched to advance waste heat recovery solutions into the hazardous waste incineration market, an area that has seen little adoption of heat recovery in the United States. The goal of the project was to accelerate the use of energy-efficient, waste heat recovery technology as an alternative means to produce steam for industrial processes. The project had three main engineering and business objectives: Prove Feasibility of Waste Heat Recovery Technology at a Hazardous Waste Incinerator Complex; Provide Low-cost Steam to a Major Polypropylene Plant Using Waste Heat; and Create a Showcase Waste Heat Recovery Demonstration Project.

  1. Transportation of separate waste fractions in an underground waste transportation system

    OpenAIRE

    Shibutani, Satomi

    2010-01-01

    Today waste management has entered a new stage. Since wastes still contain natural materials and energy that can be extracted, it should be treated in effective ways, for example, for energy recovery or material recycling. Many countries and the municipalities have therefore made waste treatment strategies in accordance with for example, EU directives or governmental regulations. In such circumstances, Envac is one of waste management companies in Sweden, which collects different kinds of was...

  2. Studies on the recovery of 233U from phosphate containing aqueous waste using DBDECMP as extractant

    International Nuclear Information System (INIS)

    Sagar, V.B.; Oak, M.S.; Pawar, S.M.; Sivaramakrishnan, C.K.; Patil, S.K.

    1990-01-01

    A method for the recovery and purification of 233 U from phosphate containing analytical waste is developed. Extraction studies with Di-butyl N,N-diethylcarbamoylmethylphosphonate (DBDECMP) in xylene were carried out to explore the feasibility of separation and purification of 233 U from such wastes. Based on the data obtained, optimum conditions for the recovery of 233 U are suggested. (author) 11 refs.; 1 fig.; 3 tabs

  3. Assessing recycling versus incineration of key materials in municipal waste: The importance of efficient energy recovery and transport distances

    International Nuclear Information System (INIS)

    Merrild, Hanna; Larsen, Anna W.; Christensen, Thomas H.

    2012-01-01

    Highlights: ► We model the environmental impact of recycling and incineration of household waste. ► Recycling of paper, glass, steel and aluminium is better than incineration. ► Recycling and incineration of cardboard and plastic can be equally good alternatives. ► Recyclables can be transported long distances and still have environmental benefits. ► Paper has a higher environmental benefit than recyclables found in smaller amounts. - Abstract: Recycling of materials from municipal solid waste is commonly considered to be superior to any other waste treatment alternative. For the material fractions with a significant energy content this might not be the case if the treatment alternative is a waste-to-energy plant with high energy recovery rates. The environmental impacts from recycling and from incineration of six material fractions in household waste have been compared through life cycle assessment assuming high-performance technologies for material recycling as well as for waste incineration. The results showed that there are environmental benefits when recycling paper, glass, steel and aluminium instead of incinerating it. For cardboard and plastic the results were more unclear, depending on the level of energy recovery at the incineration plant, the system boundaries chosen and which impact category was in focus. Further, the environmental impact potentials from collection, pre-treatment and transport was compared to the environmental benefit from recycling and this showed that with the right means of transport, recyclables can in most cases be transported long distances. However, the results also showed that recycling of some of the material fractions can only contribute marginally in improving the overall waste management system taking into consideration their limited content in average Danish household waste.

  4. Recovery of exhaust waste heat for a hybrid car using steam turbine

    Science.gov (United States)

    Ababatin, Yasser

    A number of car engines operate with an efficiency rate of approximately 22% to 25% [1]. The remainder of the energy these engines generate is wasted through heat escape out of the exhaust pipe. There is now an increasing desire to reuse this heat energy, which would improve the overall efficiency of car engines by reducing their consumption of fuel. Another benefit is that such reuse would minimize harmful greenhouse gases that are emitted into the environment. Therefore, the purpose of this project is to examine how the wasted heat energy can be reused and/or recovered by use of a heat recovery system that would store this energy in a hybrid car battery. Green turbines will be analyzed as a possible solution to recycle the lost energy in a way that will also improve the overall automotive energy efficiency.

  5. Thermoelectric Generators for Automotive Waste Heat Recovery Systems Part I: Numerical Modeling and Baseline Model Analysis

    Science.gov (United States)

    Kumar, Sumeet; Heister, Stephen D.; Xu, Xianfan; Salvador, James R.; Meisner, Gregory P.

    2013-04-01

    A numerical model has been developed to simulate coupled thermal and electrical energy transfer processes in a thermoelectric generator (TEG) designed for automotive waste heat recovery systems. This model is capable of computing the overall heat transferred, the electrical power output, and the associated pressure drop for given inlet conditions of the exhaust gas and the available TEG volume. Multiple-filled skutterudites and conventional bismuth telluride are considered for thermoelectric modules (TEMs) for conversion of waste heat from exhaust into usable electrical power. Heat transfer between the hot exhaust gas and the hot side of the TEMs is enhanced with the use of a plate-fin heat exchanger integrated within the TEG and using liquid coolant on the cold side. The TEG is discretized along the exhaust flow direction using a finite-volume method. Each control volume is modeled as a thermal resistance network which consists of integrated submodels including a heat exchanger and a thermoelectric device. The pressure drop along the TEG is calculated using standard pressure loss correlations and viscous drag models. The model is validated to preserve global energy balances and is applied to analyze a prototype TEG with data provided by General Motors. Detailed results are provided for local and global heat transfer and electric power generation. In the companion paper, the model is then applied to consider various TEG topologies using skutterudite and bismuth telluride TEMs.

  6. Integrated water and waste management system for future spacecraft

    Science.gov (United States)

    Ingelfinger, A. L.; Murray, R. W.

    1974-01-01

    Over 200 days of continuous testing have been completed on an integrated waste management-water recovery system developed by General Electric under a jointly funded AEC/NASA/AF Contract. The 4 man system provides urine, feces, and trash collection; water reclamation; storage, heating and dispensing of the water; storage and disposal of the feces and urine residue and all of other nonmetallic waste material by incineration. The heat required for the 1200 deg F purification processes is provided by a single 420-w radioisotope heater. A second 836-w radioisotope heater supplemented by 720 w of electrical heat provides for distillation and water heating. Significant test results are no pre-or-post treatment, greater than 98 per cent potable water recovery, approximately 95 per cent reduction in solids weight and volume, all outflows are sterile with the water having no bacteria or virus, and the radioisotope capsule radiation level is only 7.9 mrem/hr unshielded at 1 m (neutrons and gamma).

  7. Averthermodynamic analysis of waste heat recovery for cooling systems in hybrid and electric vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Javani, N.; Dincer, I.; Naterer, G.F. [Faculty of Engineering and Applied Science, University of Ontario Institute of Technology (Canada)], email: nader.javani@uoit.ca

    2011-07-01

    The transportation sector is a heavy consumer of energy and better energy use is needed to reduce fuel consumption. One way to improve energy usage is to recover waste heat for cabin heating, cooling, or to produce electricity. The aim of this paper is to examine the use of waste heat in hybrid electric vehicles (HEV) and electric vehicles for cooling purposes using an ejector cooling cycle and an absorption cooling cycle. Energy and exergy analyses were conducted using waste heat from the battery pack and the exhaust gases to power the boiler and generator. Results showed that waste energy from the battery pack does not provide enough energy to produce cabin cooling but that exhaust gases can produce 7.32 kW and 7.91 kW cooling loads in the ejector and absorption systems. This study demonstrated that both ejector and absorption systems can reduce energy consumption in vehicles through the use of waste heat from exhaust gases.

  8. Bioelectrochemical recovery of waste-derived volatile fatty acids and production of hydrogen and alkali.

    Science.gov (United States)

    Zhang, Yifeng; Angelidaki, Irini

    2015-09-15

    Volatile fatty acids (VFA) are organic compounds of great importance for various industries and environmental processes. Fermentation and anaerobic digestion of organic wastes are promising alternative technologies for VFA production. However, one of the major challenges is development of sustainable downstream technologies for VFA recovery. In this study, an innovative microbial bipolar electrodialysis cell (MBEDC) was developed to meet the challenge of waste-derived VFA recovery, produce hydrogen and alkali, and potentially treat wastewater. The MBEDC was operated in fed-batch mode. At an applied voltage of 1.2 V, a VFA recovery efficiency of 98.3%, H2 of 18.4 mL and alkali production presented as pH of 12.64 were obtained using synthetic fermentation broth. The applied voltage, initial VFA concentrations and composition were affecting the VFA recovery. The energy balance revealed that net energy (5.20-6.86 kWh/kg-VFA recovered) was produced at all the applied voltages (0.8-1.4 V). The coexistence of other anionic species had no negative effect on VFA transportation. The VFA concentration was increased 2.96 times after three consecutive batches. Furthermore, the applicability of MBEDC was successfully verified with digestate. These results demonstrate for the first time the possibility of a new method for waste-derived VFA recovery and valuable products production that uses wastewater as fuel and bacteria as catalyst. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Potential of Electronic Plastic Waste as a Source of Raw Material and Energy Recovery

    International Nuclear Information System (INIS)

    Norazli Othman; Nor Ezlin Ahmad Basri; Lariyah Mohd Sidek

    2009-01-01

    Nowadays, the production of electronic equipment is one of the fastest growing industrial activities in this world. The increase use of plastic in this sector resulted in an increase of electronic plastic waste. Basically, electronic plastic material contains various chemical elements which act as a flame retardant when electronic equipment is operated. In general, the concept of recycling electronic plastic waste should be considered in order to protect the environment. For this purpose, research has been conducted to different resins of electronic plastic waste to identify the potential of electronic plastic waste as a source of raw material and energy recovery. This study was divided into two part for example determination of physical and chemical characteristics of plastic resins and calculation of heating value for plastic resins based on Dulong formula. Results of this research show that the average calorific value of electronic waste is 30,872.42 kJ/ kg (7,375 kcal/ kg). The emission factor analysis showed that the concentration of emission value that might occur during waste management activities is below the standard set by the Environment Quality Act 1974. Basically, this research shows that electronic plastic waste has the potential to become the source of raw material and energy recovery. (author)

  10. Assessment of the greenhouse effect impact of technologies used for energy recovery from municipal waste: a case for England.

    Science.gov (United States)

    Papageorgiou, A; Barton, J R; Karagiannidis, A

    2009-07-01

    Waste management activities contribute to global greenhouse gas emissions approximately by 4%. In particular the disposal of waste in landfills generates methane that has high global warming potential. Effective mitigation of greenhouse gas emissions is important and could provide environmental benefits and sustainable development, as well as reduce adverse impacts on public health. The European and UK waste policy force sustainable waste management and especially diversion from landfill, through reduction, reuse, recycling and composting, and recovery of value from waste. Energy from waste is a waste management option that could provide diversion from landfill and at the same time save a significant amount of greenhouse gas emissions, since it recovers energy from waste which usually replaces an equivalent amount of energy generated from fossil fuels. Energy from waste is a wide definition and includes technologies such as incineration of waste with energy recovery, or combustion of waste-derived fuels for energy production or advanced thermal treatment of waste with technologies such as gasification and pyrolysis, with energy recovery. The present study assessed the greenhouse gas emission impacts of three technologies that could be used for the treatment of Municipal Solid Waste in order to recover energy from it. These technologies are Mass Burn Incineration with energy recovery, Mechanical Biological Treatment via bio-drying and Mechanical Heat Treatment, which is a relatively new and uninvestigated method, compared to the other two. Mechanical Biological Treatment and Mechanical Heat Treatment can turn Municipal Solid Waste into Solid Recovered Fuel that could be combusted for energy production or replace other fuels in various industrial processes. The analysis showed that performance of these two technologies depends strongly on the final use of the produced fuel and they could produce GHG emissions savings only when there is end market for the fuel. On the

  11. Energy and economic analysis of total energy systems for residential and commercial buildings. [utilizing waste heat recovery techniques

    Science.gov (United States)

    Maag, W. L.; Bollenbacher, G.

    1974-01-01

    Energy and economic analyses were performed for an on-site power-plant with waste heat recovery. The results show that for any specific application there is a characteristic power conversion efficiency that minimizes fuel consumption, and that efficiencies greater than this do not significantly improve fuel consumption. This type of powerplant appears to be a reasonably attractive investment if higher fuel costs continue.

  12. Support for designing waste sorting systems: A mini review.

    Science.gov (United States)

    Rousta, Kamran; Ordoñez, Isabel; Bolton, Kim; Dahlén, Lisa

    2017-11-01

    This article presents a mini review of research aimed at understanding material recovery from municipal solid waste. It focuses on two areas, waste sorting behaviour and collection systems, so that research on the link between these areas could be identified and evaluated. The main results presented and the methods used in the articles are categorised and appraised. The mini review reveals that most of the work that offered design guidelines for waste management systems was based on optimising technical aspects only. In contrast, most of the work that focused on user involvement did not consider developing the technical aspects of the system, but was limited to studies of user behaviour. The only clear consensus among the articles that link user involvement with the technical system is that convenient waste collection infrastructure is crucial for supporting source separation. This mini review reveals that even though the connection between sorting behaviour and technical infrastructure has been explored and described in some articles, there is still a gap when using this knowledge to design waste sorting systems. Future research in this field would benefit from being multidisciplinary and from using complementary methods, so that holistic solutions for material recirculation can be identified. It would be beneficial to actively involve users when developing sorting infrastructures, to be sure to provide a waste management system that will be properly used by them.

  13. Development of Thermoelectric Power Generators for high temperature Waste Heat Recovery

    DEFF Research Database (Denmark)

    Van Nong, Ngo; Pryds, Nini

    By converting heat directly into electricity, thermoclectric generators (TEGs) provide a very promising solution for emerging energy saving and environmental issues. These devices could be incorporated in a variety of applications, in particular those making use of waste heat recovery. To expand...

  14. Simultaneous heat integration and techno-economic optimization of Organic Rankine Cycle (ORC) for multiple waste heat stream recovery

    International Nuclear Information System (INIS)

    Yu, Haoshui; Eason, John; Biegler, Lorenz T.; Feng, Xiao

    2017-01-01

    In the past decades, the Organic Rankine Cycle (ORC) has become a promising technology for low and medium temperature energy utilization. In refineries, there are usually multiple waste heat streams to be recovered. From a safety and controllability perspective, using an intermedium (hot water) to recover waste heat before releasing heat to the ORC system is more favorable than direct integration. The mass flowrate of the intermediate hot water stream determines the amount of waste heat recovered and the final hot water temperature affects the thermal efficiency of ORC. Both, in turn, exert great influence on the power output. Therefore, the hot water mass flowrate is a critical decision variable for the optimal design of the system. This study develops a model for techno-economic optimization of an ORC with simultaneous heat recovery and capital cost optimization. The ORC is modeled using rigorous thermodynamics with the concept of state points. The task of waste heat recovery using the hot water intermedium is modeled using the Duran-Grossmann model for simultaneous heat integration and process optimization. The combined model determines the optimal design of an ORC that recovers multiple waste heat streams in a large scale background process using an intermediate heat transfer stream. In particular, the model determines the optimal heat recovery approach temperature (HRAT), the utility load of the background process, and the optimal operating conditions of the ORC simultaneously. The effectiveness of this method is demonstrated with a case study that uses a refinery as the background process. Sensitivity of the optimal solution to the parameters (electricity price, utility cost) is quantified in this paper. - Highlights: • A new model for Organic Rankine cycle design optimization is presented. • Process heat integration and ORC are considered simultaneously. • Rigorous equation oriented models of the ORC are used for accurate results. • Impact of working

  15. System tradeoffs in siting a solar photovoltaic material recovery infrastructure.

    Science.gov (United States)

    Goe, Michele; Gaustad, Gabrielle; Tomaszewski, Brian

    2015-09-01

    The consumption and disposal of rare and hazardous metals contained in electronics and emerging technologies such as photovoltaics increases the material complexity of the municipal waste stream. Developing effective waste policies and material recovery systems is required to inhibit landfilling of valuable and finite resources. This work developed a siting and waste infrastructure configuration model to inform the management and recovery of end-of-life photovoltaics. This model solves the siting and waste location-allocation problem for a New York State case study by combining multi-criteria decision methods with spatial tools, however this methodology is generalizable to any geographic area. For the case study, the results indicate that PV installations are spatially statistically significant (i.e., clustered). At least 9 sites, which are co-located with landfills and current MRFs, were 'highly' suitable for siting according to our criteria. After combining criteria in an average weighted sum, 86% of the study area was deemed unsuitable for siting while less than 5% is characterized as highly suitable. This method implicitly prioritized social and environmental concerns and therefore, these concerns accounted for the majority of siting decisions. As we increased the priority of economic criteria, the likelihood of siting near ecologically sensitive areas such as coastline or socially vulnerable areas such as urban centers increased. The sensitivity of infrastructure configurations to land use and waste policy are analyzed. The location allocation model results suggest current tip fees are insufficient to avoid landfilling of photovoltaics. Scenarios where tip fees were increased showed model results where facilities decide to adopt limited recycling technologies that bypass compositionally complex materials; a result with strong implications for global PV installations as well as other waste streams. We suggest a multi-pronged approach that lowers technology cost

  16. Feasibility analysis of wastewater and solid waste systems for application in Indonesia

    NARCIS (Netherlands)

    Kerstens, S.M.; Leusbrock, I.; Zeeman, G.

    2015-01-01

    Indonesia is one of many developing countries with a backlog in achieving targets for the implementation of wastewater and solid waste collection, treatment and recovery systems. Therefore a technical and financial feasibility analysis of these systems was performed using Indonesia as an example.

  17. Cooling systems for waste heat. Cooling systems, review and selection criteria. Kuehlsysteme fuer Abwaerme. Kuehlsysteme, Ueberblick und Auswahlkriterien

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, W. (Jaeggi, Wallisellen (Switzerland))

    1990-05-01

    In many areas of ventilation, air-conditioning and refrigeration engineering, chemical and process engineering and energy production waste heat occurs. If a reduction in energy losses or heat recovery is not possible waste heat has to be drawn off through cooling systems. For this the following systems can be used: dry cooling systems, dry cooler with spray system, open-cycle wet cooler, hybrid dry cooler, and closed-cycle wet cooler. Particularly hybrid cooling systems can give acceptable solutions when the results with other systems are only unsatisfactory. (BWI).

  18. Waste Socio-technological Transitions

    DEFF Research Database (Denmark)

    Zapata Campos, Maria José; Zapata, Patrik; Eriksson-Zetterquist, Ulla

    2014-01-01

    -in as the theoretical context to explore the Swedish case. Then, the evolution of waste handling sociotechnological systems and the challenges faced specifically by waste packaging recovery models in Sweden are presented. Finally, the cases are discussed under the prism of the theoretical framework....... recycling rates can be pointless if the amount of waste does not decrease. This is an example of how well established waste recovery regimes can stand in the way of more sustainable forms to handle waste (Corvellec et al, 2013) and, ultimately, hinder the development towards the EU objective (2008...

  19. Dynamic analysis of the dual-loop Organic Rankine Cycle for waste heat recovery of a natural gas engine

    International Nuclear Information System (INIS)

    Wang, Xuan; Shu, Gequn; Tian, Hua; Liu, Peng; Jing, Dongzhan; Li, Xiaoya

    2017-01-01

    Highlights: • The performance of DORC under five typical engine working conditions is analyzed. • The control object of superheat degree in LT ORC can be much lower than that in HT ORC. • The DORC has excellent working condition adaptability. • Enlarging the HT cooling water mass flux can enhance the DORC power, but not obviously. - Abstract: Natural gas internal combustion engines for electric generating are important primary movers in distributed energy systems. However, more than half of the energy is wasted by exhaust, jacket water and so on. Therefore, it is very meaningful to recover the waste heat, especially the exhaust heat. The DORC (Double loop ORC) is regarded as a suitable way to recover exhaust heat and it can produce electric required by users all the year around. As the waste heat recovery system of the engine, it often works under different working conditions owing to the varying energy demand of users. However, there is few study on the part-load performance of the DORC under different working conditions. Consequently, the dynamic math model of the DORC for waste heat recovery of a natural gas engine with 1000 kW rated power is established by Simulink in this work. With the PID control of the system, the static performance and dynamic behavior of the DORC under five typical engine working conditions are simulated and analyzed. Besides, the effects of the mass flow rate of the HT (high temperature) cooling water which is the connection between the two loops on the DORC performance are researched as well. The results illustrate that the DORC can improve the efficiency of the combined system quite well from 100% to 60% engine working condition, showing good working condition adaptability. Besides, enlarging the mass flow rate of the HT cooling water can enhance the output power of the DORC system, but not very obviously.

  20. Liners and Leak Detection Systems for Hazardous Waste Land Disposal Units - Federal Register Notice, January 29, 1992

    Science.gov (United States)

    The EPA is amending its current regulations under the Resource Conservation and Recovery Act (RCRA) concerning liner and leachate collection and removal systems for hazardous waste surface impoundments, landfills, and waste piles.

  1. Life-cycle-assessment of the historical development of air pollution control and energy recovery in waste incineration.

    Science.gov (United States)

    Damgaard, Anders; Riber, Christian; Fruergaard, Thilde; Hulgaard, Tore; Christensen, Thomas H

    2010-07-01

    Incineration of municipal solid waste is a debated waste management technology. In some countries it is the main waste management option whereas in other countries it has been disregarded. The main discussion point on waste incineration is the release of air emissions from the combustion of the waste, but also the energy recovery efficiency has a large importance. The historical development of air pollution control in waste incineration was studied through life-cycle-assessment modelling of eight different air pollution control technologies. The results showed a drastic reduction in the release of air emissions and consequently a significant reduction in the potential environmental impacts of waste incineration. Improvements of a factor 0.85-174 were obtained in the different impact potentials as technology developed from no emission control at all, to the best available emission control technologies of today (2010). The importance of efficient energy recovery was studied through seven different combinations of heat and electricity recovery, which were modelled to substitute energy produced from either coal or natural gas. The best air pollution control technology was used at the incinerator. It was found that when substituting coal based energy production total net savings were obtained in both the standard and toxic impact categories. However, if the substituted energy production was based on natural gas, only the most efficient recovery options yielded net savings with respect to the standard impacts. With regards to the toxic impact categories, emissions from the waste incineration process were always larger than those from the avoided energy production based on natural gas. The results shows that the potential environmental impacts from air emissions have decreased drastically during the last 35 years and that these impacts can be partly or fully offset by recovering energy which otherwise should have been produced from fossil fuels like coal or natural gas

  2. Life-cycle-assessment of the historical development of air pollution control and energy recovery in waste incineration

    International Nuclear Information System (INIS)

    Damgaard, Anders; Riber, Christian; Fruergaard, Thilde; Hulgaard, Tore; Christensen, Thomas H.

    2010-01-01

    Incineration of municipal solid waste is a debated waste management technology. In some countries it is the main waste management option whereas in other countries it has been disregarded. The main discussion point on waste incineration is the release of air emissions from the combustion of the waste, but also the energy recovery efficiency has a large importance. The historical development of air pollution control in waste incineration was studied through life-cycle-assessment modelling of eight different air pollution control technologies. The results showed a drastic reduction in the release of air emissions and consequently a significant reduction in the potential environmental impacts of waste incineration. Improvements of a factor 0.85-174 were obtained in the different impact potentials as technology developed from no emission control at all, to the best available emission control technologies of today (2010). The importance of efficient energy recovery was studied through seven different combinations of heat and electricity recovery, which were modelled to substitute energy produced from either coal or natural gas. The best air pollution control technology was used at the incinerator. It was found that when substituting coal based energy production total net savings were obtained in both the standard and toxic impact categories. However, if the substituted energy production was based on natural gas, only the most efficient recovery options yielded net savings with respect to the standard impacts. With regards to the toxic impact categories, emissions from the waste incineration process were always larger than those from the avoided energy production based on natural gas. The results shows that the potential environmental impacts from air emissions have decreased drastically during the last 35 years and that these impacts can be partly or fully offset by recovering energy which otherwise should have been produced from fossil fuels like coal or natural gas.

  3. Thermodynamic performance comparison between ORC and Kalina cycles for multi-stream waste heat recovery

    International Nuclear Information System (INIS)

    Wang, Yufei; Tang, Qikui; Wang, Mengying; Feng, Xiao

    2017-01-01

    Highlights: • Comparison between ORC and Kalina cycles (KC) for multi-stream waste heat recovery. • Divide waste heat into straight, convex and concave based on its composite curve. • Use heat ratio and temperature of the most point to show the feature of waste heat. • KC is suitable for straight and most concave heat, while ORC for convex one. - Abstract: Organic Rankine cycle (ORC) and Kalina cycle are the main technologies to recover waste heat for power generation. Up to now, many works dealing with the thermodynamic performance comparison between ORC and Kalina cycles are available, but these studies considered for heat recovery from a single heat source or stream. In the process industry, there are multiple waste heat streams, forming a complex heat source profile. In this paper, based on the simulation model developed in the Aspen Hysys software, the two cycles are calculated and compared. According to the waste heat composite curve, the multi-stream waste heat is divided into three kinds, straight, convex, and concave waste heat. Two parameters, the ratio of the heat above and below the most salient/concave point (R) and the temperature of the most point, are used to roughly express the feature of waste heat. With the efficiency from waste heat (exergy) to power as energy performance indicator, the calculation results for waste heat with maximum supply temperature 180 °C show that for straight and concave waste heat with R not less than 0.2, Kalina cycle is better than ORC, while for convex waste heat, ORC is preferable. The work can provide a reference to choose a suitable technology to recover low temperature waste heat for power generation in the process industry.

  4. New strategic solid waste management in Sicily

    International Nuclear Information System (INIS)

    Messineo, A.; Panno, D.; Ticali, D.

    2005-01-01

    The solid waste management is, today, a very critical issue. In spite of all the attempts in order to recovery and to recycle waste, the dump still remains the more followed solution, while only a small part of solid waste is going to be burnt down. But the rubbish dump isn't, actually, an environmentally sustainable solution. In the last years the waste incineration systems with energy recovery are spreading more over the territory, and if on one hand they allow to recover energy, on the other they also generate waste. So the emergency remains and it has to be faced. Today, the waste incineration system with energy recovery seems to be the best solution for this problem. the following article examinates the main strategic aspects of the solid waste management in Sicily after the General Plan of Waste Management application [it

  5. Electronic waste recovery in Finland: Consumers' perceptions towards recycling and re-use of mobile phones.

    Science.gov (United States)

    Ylä-Mella, Jenni; Keiski, Riitta L; Pongrácz, Eva

    2015-11-01

    This paper examines consumers' awareness and perceptions towards mobile phone recycling and re-use. The results are based on a survey conducted in the city of Oulu, Finland, and analysed in the theoretical framework based on the theories of planned behaviour (TPB) and value-belief-norm (VBN). The findings indicate that consumers' awareness of the importance and existence of waste recovery system is high; however, awareness has not translated to recycling behaviour. The survey reveals that 55% of respondents have two or more unused mobile phones at homes. The more phones stored at homes, the more often reasons 'I don't know where to return' and/or 'have not got to do it yet' were mentioned. This indicates that proximity and the convenience of current waste management system are inadequate in promoting the return of small waste electrical and electronic equipment (WEEE). To facilitate re-use, and the highest level of recovery, consumers will need to be committed to return end-of-use electronics to WEEE collection centres without delays. Further, the supply and demand of refurbished mobile phones do not meet at this moment in Finland due to consumer's storing habits versus expectations of recent features under guarantee and unrealistic low prizes. The study also points out that, in order to change current storing habits of consumers, there is an explicit need for more information and awareness on mobile phone collection in Finland, especially on regarding retailers' take-back. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Thermoelectric System Absorbing Waste Heat from a Steel Ladle

    Science.gov (United States)

    Lu, Baiyi; Meng, Xiangning; Zhu, Miaoyong; Suzuki, Ryosuke O.

    2018-06-01

    China's iron and steel industry has made great progress in energy savings and emission reductions with the application of many waste heat recovery technologies. However, most of the medium and low temperature waste heat and radiant waste heat has not been effectively utilized. This paper proposes a thermoelectric system that generates electricity by absorbing the radiant heat from the surface of steel ladles in a steel plant. The thermoelectric behavior of modules in this system is analyzed by a numerical simulation method. The effects of external resistance and module structure on thermoelectric performance are also discussed in the temperature range of the wall surface of a steel ladle. The results show that the wall temperature has a significant influence on the thermoelectric behavior of the module, so its uniformity and stability should be considered in practical application. The ratio of the optimum external resistance to the internal resistance of the thermoelectric module is in the range of 1.6-2.0, which indicates the importance of external load optimization for a given thermoelectric system. In addition, the output power and the conversion efficiency of the module can be significantly improved by increasing the length of the thermoelectric legs and adopting a double-layer structure. Finally, through the optimization of external resistance and structure, the power output can reach 83-304 W/m2. This system is shown to be a promising approach for energy recovery.

  7. Thermoelectric as recovery and harvesting of waste heat from portable generator

    Science.gov (United States)

    Mustafa, S. N.; Kamarrudin, N. S.; Hashim, M. S. M.; Bakar, S. A.; Razlan, Z. M.; Harun, A.; Ibrahim, I.; Faizi, M. K.; Saad, M. A. M.; Zunaidi, I.; Wan, W. K.; Desa, H.

    2017-10-01

    Generation of waste heat was ineluctable especially during energy producing process. Waste heat falls into low temperature grade make it complicated to utilize. Thermoelectric generator (TEG) offers opportunity to harvest any temperature grade heat into useful electricity. This project is covered about recovery and utilizing waste heat from portable electric generator by using a TEG which placed at exhaust surface. Temperature difference at both surfaces of TEG was enhanced with supplying cold air from a wind blower. It is found that, even at low air speed, the TEG was successfully produced electricity with aid from DC-DC booster. Results shows possibility to harvest low temperature grade heat and still exist areas for continual improvement.

  8. Energy Systems Analysis of Waste to Energy Technologies by use of EnergyPLAN

    DEFF Research Database (Denmark)

    Münster, Marie

    Even when policies of waste prevention, re-use and recycling are prioritised, a fraction of waste will still be left which can be used for energy recovery. This report asks the question: How to utilise waste for energy in the best way seen from an energy system perspective? Eight different Waste......-to-Energy technologies are compared with a focus on fuel efficiency, CO2 reductions and costs. The comparison is made by conducting detailed energy system analyses of the present system as well as a potential future Danish energy system with a large share of combined heat and power and wind power. The study shows...... the potential of using waste for the production of transport fuels such as upgraded biogas and petrol made from syngas. Biogas and thermal gasification technologies are interesting alternatives to waste incineration and it is recommended to support the use of biogas based on manure and organic waste. It is also...

  9. Recovery of fission products from acidic waste solutions thereof

    International Nuclear Information System (INIS)

    Carlin, W.W.; Darlington, W.B.; Dubois, D.W.

    1975-01-01

    Fission products, e.g., palladium, ruthenium and technetium, are removed from aqueous, acidic waste solutions thereof. The acidic waste solution is electrolyzed in an electrolytic cell under controlled cathodic potential conditions and technetium, ruthenium, palladium and rhodium are deposited on the cathode. Metal deposit is removed from the cathode and dissolved in acid. Acid insoluble rhodium metal is recovered, dissolved by alkali metal bisulfate fusion and purified by electrolysis. In one embodiment, the solution formed by acid dissolution of the cathode metal deposit is treated with a strong oxidizing agent and distilled to separate technetium and ruthenium (as a distillate) from palladium. Technetium is separated from ruthenium by organic solvent extraction and then recovered, e.g., as an ammonium salt. Ruthenium is disposed of as waste by-product. Palladium is recovered by electrolysis of an acid solution thereof under controlled cathodic potential conditions. Further embodiments wherein alternate metal recovery sequences are used are described. (U.S.)

  10. Steady-state and dynamic modelling of a 1 MWel commercial waste heat recovery ORC power plant

    OpenAIRE

    Andritsos, George; Desideri, Adriano; Gantiez, Clement; Lemort, Vincent; Quoilin, Sylvain

    2016-01-01

    ORC power systems have been proven to be a mature technology for low quality waste heat recovery applications. ORC units stand out for their simple structure, reliability and cost- effectiveness. The non-constant nature of the energy source requires the ORC power unit to be flexible. Dynamic modelling can be adopted to evaluate and optimize the response time of a system in case of transient conditions, to develop and test control strategies, to support the tuning of the controller and to supp...

  11. Recycling and recovery routes of plastic solid waste (PSW): A review

    International Nuclear Information System (INIS)

    Al-Salem, S.M.; Lettieri, P.; Baeyens, J.

    2009-01-01

    Plastic solid waste (PSW) presents challenges and opportunities to societies regardless of their sustainability awareness and technological advances. In this paper, recent progress in the recycling and recovery of PSW is reviewed. A special emphasis is paid on waste generated from polyolefinic sources, which makes up a great percentage of our daily single-life cycle plastic products. The four routes of PSW treatment are detailed and discussed covering primary (re-extrusion), secondary (mechanical), tertiary (chemical) and quaternary (energy recovery) schemes and technologies. Primary recycling, which involves the re-introduction of clean scrap of single polymer to the extrusion cycle in order to produce products of the similar material, is commonly applied in the processing line itself but rarely applied among recyclers, as recycling materials rarely possess the required quality. The various waste products, consisting of either end-of-life or production (scrap) waste, are the feedstock of secondary techniques, thereby generally reduced in size to a more desirable shape and form, such as pellets, flakes or powders, depending on the source, shape and usability. Tertiary treatment schemes have contributed greatly to the recycling status of PSW in recent years. Advanced thermo-chemical treatment methods cover a wide range of technologies and produce either fuels or petrochemical feedstock. Nowadays, non-catalytic thermal cracking (thermolysis) is receiving renewed attention, due to the fact of added value on a crude oil barrel and its very valuable yielded products. But a fact remains that advanced thermo-chemical recycling of PSW (namely polyolefins) still lacks the proper design and kinetic background to target certain desired products and/or chemicals. Energy recovery was found to be an attainable solution to PSW in general and municipal solid waste (MSW) in particular. The amount of energy produced in kilns and reactors applied in this route is sufficiently

  12. A Comparative Study of the Effect of Turbocompounding and ORC Waste Heat Recovery Systems on the Performance of a Turbocharged Heavy-Duty Diesel Engine

    Directory of Open Access Journals (Sweden)

    Amin Mahmoudzadeh Andwari

    2017-07-01

    Full Text Available In this study the influence of utilization of two Waste Heat Recovery (WHR strategies, namely organic Rankine cycle (ORC and turbocompounding, have been investigated based on the performance of a heavy-duty diesel engine using 1-D simulation engine code (GT-Power in terms of Brake Specific Fuel Consumptions (BSFC at various engine speeds and Brake Mean Effective Pressures (BMEP. The model of a 6-cylinder turbocharged engine (Holset HDX55V was calibrated using an experimental BSFC map to predict engine exhaust thermodynamic conditions such as exhaust mass flow rate and exhaust temperature under various operating conditions. These engine exhaust conditions were then utilized to feed the inlet conditions for both the ORC and turbocompounding models, evaluating the available exhaust energy to be recovered by each technology. Firstly the ORC system model was simulated to obtain the power that can be generated from the system. Having this additional power converted to useful work, the BSFC was observed to reduce around 2–5% depending upon engine’s speed and BMEP. The initial model of the engine was then modified by considering a second turbine representing turbocompounding heat recovery system. The BSFC was increased due to the back-pressure from the second turbine, but the energy generated from the turbine was sufficient to reduce the BSFC further. However, by application of turbocompounding no improvement in BSFC was achieved at low engine’s speeds. It is concluded that ORC heat recovery system produces a satisfactory results at low engine speeds with both low and high loads whereas at medium and high engine speeds turbocompounding heat recovery system causes higher BSFC reduction.

  13. An LCA model for waste incineration enhanced with new technologies for metal recovery and application to the case of Switzerland.

    Science.gov (United States)

    Boesch, Michael E; Vadenbo, Carl; Saner, Dominik; Huter, Christoph; Hellweg, Stefanie

    2014-02-01

    A process model of municipal solid waste incinerators (MSWIs) and new technologies for metal recovery from combustion residues was developed. The environmental impact is modeled as a function of waste composition as well as waste treatment and material recovery technologies. The model includes combustion with a grate incinerator, several flue gas treatment technologies, electricity and steam production from waste heat recovery, metal recovery from slag and fly ash, and landfilling of residues and can be tailored to specific plants and sites (software tools can be downloaded free of charge). Application of the model to Switzerland shows that the treatment of one tonne of municipal solid waste results on average in 425 kg CO2-eq. generated in the incineration process, and 54 kg CO2-eq. accrue in upstream processes such as waste transport and the production of operating materials. Downstream processes, i.e. residue disposal, generates 5 kg CO2-eq. Savings from energy recovery are in the range of 67 to 752 kg CO2-eq. depending on the assumptions regarding the substituted energy production, while the recovery of metals from slag and fly ash currently results in a net saving of approximately 35 kg CO2-eq. A similar impact pattern is observed when assessing the MSWI model for aggregated environmental impacts (ReCiPe) and for non-renewable resource consumption (cumulative exergy demand), except that direct emissions have less and no relevance, respectively, on the total score. The study illustrates that MSWI plants can be an important element of industrial ecology as they provide waste disposal services and can help to close material and energetic cycles. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Recovery of americium from slag and crucible wastes and its purification

    International Nuclear Information System (INIS)

    Michael, K.M.; Dabholkar, G.M.; Vijayan, K.; Ramamoorthy, N.; Narayanan, C.V.; Jambunathan, U.; Kapoor, S.C.

    1990-01-01

    A method of recovery and purification of americium-241 from slag waste streams is described. Extraction of Am from slag solution of 0.16 M HNO 3 was carried out by tri-n-butyl phosphate. After stripping with acetic acid, Am was precipitated at pH 1. This was followed by metathesis to remove Ca. Final separation of Pu from Am solution was achieved by anion exchange method using Dowex 1x4 anion exchange resin. Details of large scale recovery of Am from slag are also described. (author). 12 refs., 11 tabs., 1 fig

  15. Renewable energy recovery through selected industrial wastes

    Science.gov (United States)

    Zhang, Pengchong

    Typically, industrial waste treatment costs a large amount of capital, and creates environmental concerns as well. A sound alternative for treating these industrial wastes is anaerobic digestion. This technique reduces environmental pollution, and recovers renewable energy from the organic fraction of those selected industrial wastes, mostly in the form of biogas (methane). By applying anaerobic technique, selected industrial wastes could be converted from cash negative materials into economic energy feed stocks. In this study, three kinds of industrial wastes (paper mill wastes, brown grease, and corn-ethanol thin stillage) were selected, their performance in the anaerobic digestion system was studied and their applicability was investigated as well. A pilot-scale system, including anaerobic section (homogenization, pre-digestion, and anaerobic digestion) and aerobic section (activated sludge) was applied to the selected waste streams. The investigation of selected waste streams was in a gradually progressive order. For paper mill effluents, since those effluents contain a large amount of recalcitrant or toxic compounds, the anaerobic-aerobic system was used to check its treatability, including organic removal efficiency, substrate utilization rate, and methane yield. The results showed the selected effluents were anaerobically treatable. For brown grease, as it is already well known as a treatable substrate, a high rate anaerobic digester were applied to check the economic effect of this substrate, including methane yield and substrate utilization rate. These data from pilot-scale experiment have the potential to be applied to full-scale plant. For thin stillage, anaerobic digestion system has been incorporated to the traditional ethanol making process as a gate-to-gate process. The performance of anaerobic digester was applied to the gate-to-gate life-cycle analysis to estimate the energy saving and industrial cost saving in a typical ethanol plant.

  16. Building waste management core indicators through Spatial Material Flow Analysis: net recovery and transport intensity indexes.

    Science.gov (United States)

    Font Vivanco, David; Puig Ventosa, Ignasi; Gabarrell Durany, Xavier

    2012-12-01

    In this paper, the material and spatial characterization of the flows within a municipal solid waste (MSW) management system are combined through a Network-Based Spatial Material Flow Analysis. Using this information, two core indicators are developed for the bio-waste fraction, the Net Recovery Index (NRI) and the Transport Intensity Index (TII), which are aimed at assessing progress towards policy-related sustainable MSW management strategies and objectives. The NRI approaches the capacity of a MSW management system for converting waste into resources through a systematic metabolic approach, whereas the TII addresses efficiency in terms of the transport requirements to manage a specific waste flow throughout the entire MSW management life cycle. Therefore, both indicators could be useful in assessing key MSW management policy strategies, such as the consecution of higher recycling levels (sustainability principle) or the minimization of transport by locating treatment facilities closer to generation sources (proximity principle). To apply this methodological approach, the bio-waste management system of the region of Catalonia (Spain) has been chosen as a case study. Results show the adequacy of both indicators for identifying those points within the system with higher capacity to compromise its environmental, economic and social performance and therefore establishing clear targets for policy prioritization. Moreover, this methodological approach permits scenario building, which could be useful in assessing the outcomes of hypothetical scenarios, thus proving its adequacy for strategic planning. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. 40 CFR Appendix Xiii to Part 266 - Mercury Bearing Wastes That May Be Processed in Exempt Mercury Recovery Units

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 26 2010-07-01 2010-07-01 false Mercury Bearing Wastes That May Be Processed in Exempt Mercury Recovery Units XIII Appendix XIII to Part 266 Protection of Environment... XIII to Part 266—Mercury Bearing Wastes That May Be Processed in Exempt Mercury Recovery Units These...

  18. Recovery of polyphenols from Pink Guava processing wastes by ultra filtration

    International Nuclear Information System (INIS)

    Lilis Sukeksi; Che Rosmani Che Hassan; Nik Meriam Sulaiman; Mohamed Kheireddine Aroua

    2010-01-01

    Full text: Processing of fruits are results in high amounts of waste material that is prone to microbial spoilage and usually represents a problem that is further aggravated by legal restrictions. Polyphenols are a wide variety of compounds that occur in pink guava fruit or others fruits and vegetables. Recovery from pink guava wastes seems to be promising in the case of polyphenols, which are of considerable interest due to their healthy and anti oxidative properties. In this work the performance of commercial tubular PVDF membrane FP 200 with nominal MWCO 200,000, was studied during pretreatment for recovery polyphenols from pink guava processing wastes. The experiments have been carried out at trans-membrane pressure of 0.5 until 2.5 Bar, and all permeate flux significantly decreased with time until a steady-state was established. The steady-state permeates flux reached a maximum at a trans-membrane pressure of about 1 bar. The first results obtained confirm the flux decline at 20 minutes was 35 % of the total flux. Meanwhile concentration of polyphenols at first step reached a steady state after 900 ml of permeate volume (47 %) and the concentration of polyphenols when the permeate volume at VCR = 4 or 3000 ml is 54 %. (author)

  19. An LCA model for waste incineration enhanced with new technologies for metal recovery and application to the case of Switzerland

    Energy Technology Data Exchange (ETDEWEB)

    Boesch, Michael E. [Aveny GmbH, Schwandenholzstr. 212, CH-8046 Zürich (Switzerland); Vadenbo, Carl, E-mail: vadenbo@ifu.baug.ethz.ch [ETH Zurich, Institute of Environmental Engineering, Schafmattstrasse 6, CH-8093 Zurich (Switzerland); Saner, Dominik [Swiss Post, Communications, Politics and Social Responsibility, Viktoriastrasse 21, P.O. Box, CH-3030 Berne (Switzerland); Huter, Christoph [City of Zürich, ERZ Entsorgung - Recycling Zürich, Hagenholzstrasse 110, P.O. Box, CH-8050 Zürich (Switzerland); Hellweg, Stefanie [ETH Zurich, Institute of Environmental Engineering, Schafmattstrasse 6, CH-8093 Zurich (Switzerland)

    2014-02-15

    Highlights: • An enhanced process-based LCA model for MSWI is featured and applied in case study. • LCA modeling of recent technological developments for metal recovery from fly ash. • Net release from Swiss MSWI 133 kg CO{sub 2}-eq/tonne waste from attributional LCA perspective. • Net savings from a consequential LCA perspective reach up to 303 kg CO{sub 2}-eq/tonne waste. • Impacts according to ReCiPe and CExD show similar pattern to climate change. - Abstract: A process model of municipal solid waste incinerators (MSWIs) and new technologies for metal recovery from combustion residues was developed. The environmental impact is modeled as a function of waste composition as well as waste treatment and material recovery technologies. The model includes combustion with a grate incinerator, several flue gas treatment technologies, electricity and steam production from waste heat recovery, metal recovery from slag and fly ash, and landfilling of residues and can be tailored to specific plants and sites (software tools can be downloaded free of charge). Application of the model to Switzerland shows that the treatment of one tonne of municipal solid waste results on average in 425 kg CO{sub 2}-eq. generated in the incineration process, and 54 kg CO{sub 2}-eq. accrue in upstream processes such as waste transport and the production of operating materials. Downstream processes, i.e. residue disposal, generates 5 kg CO{sub 2}-eq. Savings from energy recovery are in the range of 67 to 752 kg CO{sub 2}-eq. depending on the assumptions regarding the substituted energy production, while the recovery of metals from slag and fly ash currently results in a net saving of approximately 35 kg CO{sub 2}-eq. A similar impact pattern is observed when assessing the MSWI model for aggregated environmental impacts (ReCiPe) and for non-renewable resource consumption (cumulative exergy demand), except that direct emissions have less and no relevance, respectively, on the total

  20. An LCA model for waste incineration enhanced with new technologies for metal recovery and application to the case of Switzerland

    International Nuclear Information System (INIS)

    Boesch, Michael E.; Vadenbo, Carl; Saner, Dominik; Huter, Christoph; Hellweg, Stefanie

    2014-01-01

    Highlights: • An enhanced process-based LCA model for MSWI is featured and applied in case study. • LCA modeling of recent technological developments for metal recovery from fly ash. • Net release from Swiss MSWI 133 kg CO 2 -eq/tonne waste from attributional LCA perspective. • Net savings from a consequential LCA perspective reach up to 303 kg CO 2 -eq/tonne waste. • Impacts according to ReCiPe and CExD show similar pattern to climate change. - Abstract: A process model of municipal solid waste incinerators (MSWIs) and new technologies for metal recovery from combustion residues was developed. The environmental impact is modeled as a function of waste composition as well as waste treatment and material recovery technologies. The model includes combustion with a grate incinerator, several flue gas treatment technologies, electricity and steam production from waste heat recovery, metal recovery from slag and fly ash, and landfilling of residues and can be tailored to specific plants and sites (software tools can be downloaded free of charge). Application of the model to Switzerland shows that the treatment of one tonne of municipal solid waste results on average in 425 kg CO 2 -eq. generated in the incineration process, and 54 kg CO 2 -eq. accrue in upstream processes such as waste transport and the production of operating materials. Downstream processes, i.e. residue disposal, generates 5 kg CO 2 -eq. Savings from energy recovery are in the range of 67 to 752 kg CO 2 -eq. depending on the assumptions regarding the substituted energy production, while the recovery of metals from slag and fly ash currently results in a net saving of approximately 35 kg CO 2 -eq. A similar impact pattern is observed when assessing the MSWI model for aggregated environmental impacts (ReCiPe) and for non-renewable resource consumption (cumulative exergy demand), except that direct emissions have less and no relevance, respectively, on the total score. The study illustrates

  1. The potential environmental gains from recycling waste plastics: Simulation of transferring recycling and recovery technologies to Shenyang, China

    International Nuclear Information System (INIS)

    Chen Xudong; Xi Fengming; Geng Yong; Fujita, Tsuyoshi

    2011-01-01

    Research highlights: → Urban symbiosis creates compatibility of industrial development and waste management. → Mechanical technology leads to more CO 2 emission reduction. → Energy recovery technology leads to more fossil fuel saving. → Clean energy makes recycling technologies cleaner. → Demand management is crucial for realizing potential environmental gains of recycling. - Abstract: With the increasing attention on developing a low-carbon economy, it is necessary to seek appropriate ways on reducing greenhouse gas (GHG) emissions through innovative municipal solid waste management (MSWM), such as urban symbiosis. However, quantitative assessments on the environmental benefits of urban symbiosis, especially in developing countries, are limited because only a limited number of planned synergistic activities have been successful and it is difficult to acquire detailed inventory data from private companies. This paper modifies and applies a two-step simulation system and used it to assess the potential environmental benefits, including the reduction of GHG emissions and saving of fossil fuels, by employing various Japanese plastics recycling/energy-recovery technologies in Shenyang, China. The results showed that among various recycling/energy-recovery technologies, the mechanical waste plastics recycling technology, which produces concrete formwork boards (NF boards), has the greatest potential in terms of reducing GHG emissions (1.66 kg CO 2 e/kg plastics), whereas the technology for the production of refuse plastic fuel (RPF) has the greatest potential on saving fossil fuel consumption (0.77 kgce/kg-plastics). Additional benefits can be gained by applying combined technologies that cascade the utilization of waste plastics. Moreover, the development of clean energy in conjunction with the promotion of new waste plastics recycling programs could contribute to additional reductions in GHG emissions and fossil fuel consumption.

  2. Double-Shell Tanks System Maintenance and Recovery Needs Report

    International Nuclear Information System (INIS)

    SMITH, D.F.

    2002-01-01

    This report represents an initial effort to identify maintenance equipment needed to support critical components used for delivery of waste feed to the Waste Isolation and Treatment Plant (WTP). Rough estimates of cost benefits for selected maintenance capabilities are provided. A follow-on to this report should include a detailed cost analysis showing cost benefits and tradeoffs in selection and development of specific maintenance capabilities. Critical component failures during delivery of waste feed from the DSTs to the WTP have the potential to idle WTP facilities if the duration of the recovery operations are long enough to allow the WTP to exhaust a planned 60-day lag storage capacity for waste feed. If a critical component within the transfer route fails, current planning does not provide for an alternative HLW feed source. Critical components with relatively high failure frequencies and recovery times are identified, along with a summary of documentation regarding historical maintenance and recovery operations and planning. Components, such as mixer pumps and transfer pumps, are estimated to have relatively long recovery times due, in part, to the current practice of sending spare pumps, when needed, off-site to a remote location, for vendor refurbishment and testing prior to installation in a tank. No capability is provided on-site for pump ''run-in''. As neither the spare pumps in storage, installed pumps, or other critical components are subjected to periodic preventive maintenance, and these critical components are planned to be operated intermittently over a long period of time, component failures are to be expected. Recommendations are made for further analysis to identify specific equipment cost benefits, development costs, and tradeoffs in selection of alternatives. This new equipment will provide capabilities for component storage and maintenance in line with vendor recommendations, reduce the duration of recovery operations, and support personnel

  3. Parametric optimization and comparative study of organic Rankine cycle (ORC) for low grade waste heat recovery

    International Nuclear Information System (INIS)

    Dai Yiping; Wang Jiangfeng; Gao Lin

    2009-01-01

    Organic Rankine cycles for low grade waste heat recovery are described with different working fluids. The effects of the thermodynamic parameters on the ORC performance are examined, and the thermodynamic parameters of the ORC for each working fluid are optimized with exergy efficiency as an objective function by means of the genetic algorithm. The optimum performance of cycles with different working fluids was compared and analyzed under the same waste heat condition. The results show that the cycles with organic working fluids are much better than the cycle with water in converting low grade waste heat to useful work. The cycle with R236EA has the highest exergy efficiency, and adding an internal heat exchanger into the ORC system could not improve the performance under the given waste heat condition. In addition, for the working fluids with non-positive saturation vapor curve slope, the cycle has the best performance property with saturated vapor at the turbine inlet

  4. System to control contamination during retrieval of buried TRU waste

    Science.gov (United States)

    Menkhaus, Daniel E.; Loomis, Guy G.; Mullen, Carlan K.; Scott, Donald W.; Feldman, Edgar M.; Meyer, Leroy C.

    1993-01-01

    A system to control contamination during the retrieval of hazardous waste comprising an outer containment building, an inner containment building, within the outer containment building, an electrostatic radioactive particle recovery unit connected to and in communication with the inner and outer containment buildings, and a contaminate suppression system including a moisture control subsystem, and a rapid monitoring system having the ability to monitor conditions in the inner and outer containment buildings.

  5. Protein recovery from dairy industry wastes with aerobic biofiltration

    Energy Technology Data Exchange (ETDEWEB)

    Wheatley, A D; Mitra, R I; Hawkes, H A

    1982-01-01

    Experiments were carried out to improve the economics of effluent treatment by the recovery of single cell protein. Field observations showed that acidic strong wastes, such as those from the dairy industry, produced a predominantly fungal biomass. Mixtures of dairy waste and domestic sewage did not produce fungal films. The most common fungi isolated were Fusarium and Geotrichum, but the species was affected by local conditions, i.e. creamery, yoghurt, milk or cheese wastes and the load to the plant. Batch culture was used to determine the growth requirements of Fusarium and Geotrichum and continuous culture, on vertical and horizontal fixed films, to determine growth and sloughing at different organic loads. The fungi grew well on acidic strong wastes which would discourage other organisms. A 1 cubic metre/hour pilot plant was built to treat the wastes from cheese, butter and cream production. The plant was run at pH 4-5 and at between 5 and 10 kg of BOD/day/cubic metres. BOD removal was between 30 and 50% and biomass production between 0.1 and 0.5 kg of dry solids/day. The filamentous fungal growth was separated from the tower effluent by an inclined screen. The amino acid content of the product was similar to other single-cell protein. Feeding trials are being carried out. (Refs. 14).

  6. Potential use of feebate systems to foster environmentally sound urban waste management

    International Nuclear Information System (INIS)

    Puig-Ventosa, Ignasi

    2004-01-01

    Waste treatment facilities are often shared among different municipalities as a means of managing wastes more efficiently. Usually, management costs are assigned to each municipality depending on the size of the population or total amount of waste produced, regardless of important environmental aspects such as per capita waste generation or achievements in composting or recycling. This paper presents a feebate (fee+rebate) system aimed to foster urban waste reduction and recovery. The proposal suggests that municipalities achieving better results in their waste management performance (from an ecological viewpoint) be recompensated with a rebate obtained from a fee charged to those municipalities that are less environmentally sound. This is a dynamic and flexible instrument that would positively encourage municipalities to reduce waste whilst increasing the recycling

  7. A Multi-Approach Evaluation System (MA-ES) of Organic Rankine Cycles (ORC) used in waste heat utilization

    International Nuclear Information System (INIS)

    Shu, Gequn; Yu, Guopeng; Tian, Hua; Wei, Haiqiao; Liang, Xingyu

    2014-01-01

    Highlights: • The MA-ES provides comprehensive valuations on ORC used for waste heat utilization. • The MA-ES covers energetic, exergetic and economic evaluations of typical ORCs. • The MA-ES is a general assessing method without restriction to specific ORC condition. • Two ORC cases of ICE waste-heat-recovery are exemplified applying the MA-ES. - Abstract: A Multi-Approach Evaluation System (MA-ES) is established in this paper providing comprehensive evaluations on Organic Rankine Cycles (ORC) used for waste heat utilization. The MA-ES covers three main aspects of typical ORC performance: basic evaluations of energy distribution and system efficiency based on the 1st law of thermodynamics; evaluations of exergy distribution and exergy efficiency based on the 2nd law of thermodynamics; economic evaluations based on calculations of equipment capacity, investment and cost recovery. The MA-ES is reasonably organized aiming at providing a general method of ORC performance assessment, without restrictions to system configurations, operation modes, applications, working fluid types, equipment conditions, process parameters and so on. Two ORC cases of internal combustion engines’ (ICEs) waste-heat-recovery are exemplified to illustrate the applications of the evaluation system. The results clearly revealed the performance comparisons among ORC configurations and working fluids referred. The comparisons will provide credible guidance for ORC design, equipment selection and system construction

  8. A recovery installation for sodium sulfates, thiosulfates and sulfides from waste water resulting from hydrogen sulfide fabrication

    International Nuclear Information System (INIS)

    Mazilu, Mihai; Costescu, Sanda

    2002-01-01

    An installation for recovery of sodium sulfate and sulfur suspensions from waste water was conceived. It consists from a preheater, vacuum evaporator and a refrigerating system with drum and scraper. This equipment concentration the solution by eliminating in the first stage the water in the vacuum evaporator. The water resulting at this stage is chemically pure and can be discharged in the sewage sludge system. The concentrated solution is then directed to the refrigerating system with drum and scrapper. Here the sodium sulfates, thiosulfates and sulfides get crystallized onto the drum surface. The resulting aqueous solution to be discharged in the sewage sludge system is previously analyzed as in case of the absent of the recovery installation, but the amount of pollutants will be much lower because sulfates, thiosulfates and sulfides were already recovered as scales from the drum. These solid scales can be used in detergent industry

  9. Modelling, sizing and testing a scroll expander for a waste heat recovery application on a gasoline engine

    Science.gov (United States)

    Legros, Arnaud; Guillaume, Ludovic; Diny, Mouad; Lemort, Vincent

    2015-08-01

    Waste heat recovery technologies in a mobile application emerge every time energy becomes a valuable resource. It has been the case in the 70s with oil crisis and it is starting to regain some interests now due to the continuously rising price of oil and due to the restrictive standards imposed by the different governments. This paper deals with the recovery on the exhaust gases of an internal combustion engine by using a Rankine system. The study focuses on the expander, which is one of the most important components of the system. The use of a scroll expander operating with steam is currently investigated through simulation and experimentation. This paper presents the modelling of a scroll expander. The model is a detailed model including various losses such as leakage, friction or under or over expansion. This model has been used to design and size a tailor-made scroll expander. This was necessary due to the small amount of expanders on the market and also to have a machine that fits our application. After designing the machine, a prototype has been built. It has also been tested on our prototype bench of waste heat recovery on a gasoline engine, by means of a Rankine cycle. Measured performance will be presented, analysed and compared to predictions by the model. The first results will be presented here and discussed in order to give recommendations for the design of next prototypes.

  10. Model Predictive Control of Offshore Power Stations With Waste Heat Recovery

    DEFF Research Database (Denmark)

    Pierobon, Leonardo; Chan, Richard; Li, Xiangan

    2016-01-01

    The implementation of waste heat recovery units on oil and gas offshore platforms demands advances in both design methods and control systems. Model-based control algorithms can play an important role in the operation of offshore power stations. A novel regulator based on a linear model predictive...... control (MPC) coupled with a steady-state performance optimizer has been developed in the SIMULINK language and is documented in the paper. The test case is the regulation of a power system serving an oil and gas platform in the Norwegian Sea. One of the three gas turbines is combined with an organic...... Rankine cycle (ORC) turbogenerator to increase the energy conversion efficiency. Results show a potential reduction of frequency drop up to 40%for a step in the load set-point of 4 MW, compared to proportional–integral control systems. Fuel savings in the range of 2–3% are also expected by optimizing on...

  11. Applications guide for waste heat recovery

    Science.gov (United States)

    Moynihan, P. I.

    1983-01-01

    The state-of-the-art of commercially available organic Rankine cycle (ORC) hardware from a literature search and industry survey is assessed. Engineering criteria for applying ORC technology are established, and a set of nomograms to enable the rapid sizing of the equipment is presented. A comparison of an ORC system with conventional heat recovery techniques can be made with a nomogram developed for a recuperative heat exchanger. A graphical technique for evaluating the economic aspects of an ORC system and conventional heat recovery method is discussed: also included is a description of anticipated future trends in organic Rankine cycle R&D.

  12. Maximization of revenues for power sales from a solid waste resources recovery facility

    Energy Technology Data Exchange (ETDEWEB)

    1991-12-01

    The report discusses the actual implementation of the best alternative in selling electrical power generated by an existing waste-to-energy facility, the Metro-Dade County Resources Recovery Plant. After the plant processes and extracts various products out of the municipal solid waste, it burns it to produce electrical power. The price for buying power to satisfy the internal needs of our Resources Recovery Facility (RRF) is substantially higher than the power price for selling electricity to any other entity. Therefore, without any further analysis, it was decided to first satisfy those internal needs and then export the excess power. Various alternatives were thoroughly explored as to what to do with the excess power. Selling power to the power utilities or utilizing the power in other facilities were the primary options.

  13. Evaluation of alternatives for radium recovery of phosphogysum waste from chemical treatment of phosphatic ore

    International Nuclear Information System (INIS)

    Santos, J.A. dos.

    1986-12-01

    The results from the research work undertaken to evaluate the economic recovery of the Itataia, Ceara phosphogypsum waste, obtained during the treatment of uranium bearing phosphatic ore are present. The implications involved in the waste storage taking into account different aspects of environmental safety, are discussed. (M.A.C.) [pt

  14. Integrated process analysis of treatment systems for mixed low level waste

    International Nuclear Information System (INIS)

    Cooley, C.R.; Schwinkendorf, W.E.; Bechtold, T.E.

    1997-10-01

    Selection of technologies to be developed for treatment of DOE's mixed low level waste (MLLW) requires knowledge and understanding of the expected costs, schedules, risks, performance, and reliability of the total engineered systems that use these technologies. Thus, an integrated process analysis program was undertaken to identify the characteristics and needs of several thermal and nonthermal systems. For purposes of comparison, all systems were conceptually designed for a single facility processing the same amount of waste at the same rate. Thirty treatment systems were evaluated ranging from standard incineration to innovative thermal systems and innovative nonthermal chemical treatment. Treating 236 million pounds of waste in 20 years through a central treatment was found to be the least costly option with total life cycle cost ranging from $2.1 billion for a metal melting system to $3.9 billion for a nonthermal acid digestion system. Little cost difference exists among nonthermal systems or among thermal systems. Significant cost savings could be achieved by working towards maximum on line treatment time per year; vitrifying the final waste residue; decreasing front end characterization segregation and sizing requirements; using contaminated soil as the vitrifying agent; and delisting the final vitrified waste form from Resource Conservation and Recovery Act (RCRA) Land Disposal Restriction (LDR) requirements

  15. DEVELOPMENT AND DEMONSTRATION OF INTEGRATED CARBON RECOVERY SYSTEMS FROM FINE COAL PROCESSING WASTE

    Energy Technology Data Exchange (ETDEWEB)

    Y.P. Chugh; D. Patil; A. Patwardhan; R.Q. Honaker; B.K. Parekh; D. Tao; Latif Khan

    2000-07-01

    The project involves the development of an efficient, environmentally friendly system for the economical recovery of carbon from fine-coal refuse ponds. The project will be conducted in two phases. Phase I was involved in the development and evaluation of process equipment and techniques to be used in carbon recovery, product dewatering and reconstitution, and refuse management. Phase II will integrate the various units into a continuously operating circuit that will be demonstrated at a site selected based on the results presented in this study.

  16. Consumption and recovery of packaging waste in Germany in 2008; Aufkommen und Verwertung von Verpackungsabfaellen in Deutschland im Jahr 2008

    Energy Technology Data Exchange (ETDEWEB)

    Schueler, Kurt [Gesellschaft fuer Verpackungsmarktforschung mbH, Mainz (Germany)

    2010-12-15

    Pursuant to EU Directive 94/62/EC on packaging and packaging waste dated 20.12.1994 in connection with Directive 2004/12/EC, EU Member States are obliged to report annually on the consumption and recovery of packaging. This report shall be prepared on the basis of the Commission's decision of 22.03.2005 on establishing mandatory table formats (2005/270/EC). The study determines the quantity of packaging (packaging consumption) for the material groups of glass, plastics, paper, aluminium, tin plate, composites, other steel, wood and other packaging materials placed on the market in Germany. In addition to the quantity of packaging used in Germany, filled exports and imports were also ascertained in order to calculate the consumption rate. The quantity of packaging waste of waste relevance in Germany was calculated on the basis of the quantity of packaging placed on the market as e.g. reusable and durable packaging will only be discarded at some point in the future. All existing data from associations, the waste disposal industry and environmental statistics were compiled and documented systematically in order to determine the recovery quantities and recovery paths. The quantities incinerated at waste incineration plants with energy recovery could only be calculated as the difference between the total quantity to be discarded and quantities actually recovered. In 2008, 16.04 million tons of packaging were consumed and became waste. Compared to the reference year 2005, packaging consumption increased by 3.7 % (minus 0.4 % compared to 2007). A total of 13.10 million tons was recovered in terms of material or energy, of which a total of 2.41 million tons outside Germany. In addition, 1.40 million tons of imported packaging waste were recovered in Germany. In 2008, 2.10 million tons were incinerated at waste incineration plants with energy recovery. (orig.)

  17. Consumption and recovery of packaging waste in Germany in 2008; Aufkommen und Verwertung von Verpackungsabfaellen in Deutschland im Jahr 2008

    Energy Technology Data Exchange (ETDEWEB)

    Schueler, Kurt [Gesellschaft fuer Verpackungsmarktforschung mbH, Mainz (Germany)

    2010-12-15

    Pursuant to EU Directive 94/62/EC on packaging and packaging waste dated 20.12.1994 in connection with Directive 2004/12/EC, EU Member States are obliged to report annually on the consumption and recovery of packaging. This report shall be prepared on the basis of the Commission's decision of 22.03.2005 on establishing mandatory table formats (2005/270/EC). The study determines the quantity of packaging (packaging consumption) for the material groups of glass, plastics, paper, aluminium, tin plate, composites, other steel, wood and other packaging materials placed on the market in Germany. In addition to the quantity of packaging used in Germany, filled exports and imports were also ascertained in order to calculate the consumption rate. The quantity of packaging waste of waste relevance in Germany was calculated on the basis of the quantity of packaging placed on the market as e.g. reusable and durable packaging will only be discarded at some point in the future. All existing data from associations, the waste disposal industry and environmental statistics were compiled and documented systematically in order to determine the recovery quantities and recovery paths. The quantities incinerated at waste incineration plants with energy recovery could only be calculated as the difference between the total quantity to be discarded and quantities actually recovered. In 2008, 16.04 million tons of packaging were consumed and became waste. Compared to the reference year 2005, packaging consumption increased by 3.7 % (minus 0.4 % compared to 2007). A total of 13.10 million tons was recovered in terms of material or energy, of which a total of 2.41 million tons outside Germany. In addition, 1.40 million tons of imported packaging waste were recovered in Germany. In 2008, 2.10 million tons were incinerated at waste incineration plants with energy recovery. (orig.)

  18. Consumption and recovery of packaging waste in Germany in 2009; Aufkommen und Verwertung von Verpackungsabfaellen in Deutschland im Jahr 2009

    Energy Technology Data Exchange (ETDEWEB)

    Schueler, Kurt [GVM Gesellschaft fuer Verpackungsmarktforschung mbH, Mainz (Germany)

    2012-04-15

    Pursuant to EU Directive 94/62/EC on packaging and packaging waste dated 20.12.1994 in connection with Directive 2004/12/EC, EU Member States are obliged to report annually on the consumption and recovery of packaging. This report shall be prepared on the basis of the Commission's decision of 22.03.2005 on establishing mandatory table formats (2005/270/EC). The study determines the quantity of packaging (packaging consumption) for the material groups of glass, plastics, paper, aluminium, tin plate, composites, other steel, wood and other packaging materials placed on the market in Germany. In addition to the quantity of packaging used in Germany, filled exports and imports were also ascertained in order to calculate the consumption rate. The quantity of packaging waste of waste relevance in Germany was calculated on the basis of the quantity of packaging placed on the market as e.g. reusable and durable packaging will only be discarded at some point in the future. All existing data from associations, the waste disposal industry and environmental statistics were compiled and documented systematically in order to determine the recovery quantities and recovery paths. The quantities incinerated at waste incineration plants with energy recovery could only be calculated as the difference between the total quantity to be discarded and quantities actually recovered. In 2008, 15.05 million tons of packaging were consumed and became waste. Compared to the reference year 2008, packaging consumption decreased by 6.2 %. A total of 12.73 million tons was recovered in terms of material or energy, of which a total of 2.45 million tons outside Germany. In addition, 1.42 million tons of imported packaging waste were recovered in Germany. In 2009, 1.55 million tons were incinerated at waste incineration plants with energy recovery.

  19. Experimental investigation of the quality characteristics of agricultural plastic wastes regarding their recycling and energy recovery potential

    International Nuclear Information System (INIS)

    Briassoulis, D.; Hiskakis, M.; Babou, E.; Antiohos, S.K.; Papadi, C.

    2012-01-01

    Highlights: ► Definition of parameters characterising agricultural plastic waste (APW) quality. ► Analysis of samples to determine APW quality for recycling or energy recovery. ► Majority of APW samples from various countries have very good quality for recycling. ► Upper limit of 50% w/w soil contamination in APW acceptable for energy recovery. ► Chlorine and heavy metals content in APW below the lowest limit for energy recovery. - Abstract: A holistic environmentally sound waste management scheme that transforms agricultural plastic waste (APW) streams into labelled guaranteed quality commodities freely traded in open market has been developed by the European research project LabelAgriWaste. The APW quality is defined by the APW material requirements, translated to technical specifications, for recycling or energy recovery. The present work investigates the characteristics of the APW quality and the key factors affecting it from the introduction of the virgin product to the market to the APW stream reaching the disposer. Samples of APW from different countries were traced from their application to the field through their storage phase and transportation to the final destination. The test results showed that the majority of APW retained their mechanical properties after their use preserving a “very good quality” for recycling in terms of degradation. The degree of soil contamination concerning the APW recycling and energy recovery potential fluctuates depending on the agricultural plastic category and application. The chlorine and heavy metal content of the tested APW materials was much lower than the maximum acceptable limits for their potential use in cement industries.

  20. Assessment of opportunities to increase the recovery and recycling rates of waste oils

    Energy Technology Data Exchange (ETDEWEB)

    Graziano, D.J.; Daniels, E.J.

    1995-08-01

    Waste oil represents an important energy resource that, if properly managed and reused, would reduce US dependence on imported fuels. Literature and current practice regarding waste oil generation, regulations, collection, and reuse were reviewed to identify research needs and approaches to increase the recovery and recycling of this resource. The review revealed the need for research to address the following three waste oil challenges: (1) recover and recycle waste oil that is currently disposed of or misused; (2) identify and implement lubricating oil source and loss reduction opportunities; and (3) develop and foster an effective waste oil recycling infrastructure that is based on energy savings, reduced environment at impacts, and competitive economics. The United States could save an estimated 140 {times} 1012 Btu/yr in energy by meeting these challenges.

  1. Hybrid heat recovery - flat plate Stirling engine system

    International Nuclear Information System (INIS)

    Bogdanizh, A.M.; Budin, R.; Sutlovizh, I.

    2000-01-01

    In this paper, the possibility of process condensate heat recovery for boiler water preheating as well as for combined heat and power production for chosen process in textile industry has been investigated. The garment industry requires low pressure process steam or hot water for which production expensive fossil fuel should be used. Fuel usage can be reduced by various energy conservation methods. During the process a great quantity of hot condensate or waste hot water is rejected in the sewage system. To reduce heat wastes and improve technological process this condensate could be returned to the boiler for feed water preheating. When 60% condensate is returned to the steam generator about 8 % natural gas is saved. The rest of the condensate should be used for driving low temperature flat plate Stirling motor the advantage of the flat plate Stirling engine is ability to work at low temperatures. This engine produces electrical energy which can put in motion an electrogenerator in the same plant. While Stirling engine can be used electrical power and economical effect could be much greater using such a hybrid system the process waste heat is not only converted into useful work but at the same time thermal pollution is greatly diminished. (Author)

  2. Factors influencing the life cycle burdens of the recovery of energy from residual municipal waste.

    Science.gov (United States)

    Burnley, Stephen; Coleman, Terry; Peirce, Adam

    2015-05-01

    A life cycle assessment was carried out to assess a selection of the factors influencing the environmental impacts and benefits of incinerating the fraction of municipal waste remaining after source-separation for reuse, recycling, composting or anaerobic digestion. The factors investigated were the extent of any metal and aggregate recovery from the bottom ash, the thermal efficiency of the process, and the conventional fuel for electricity generation displaced by the power generated. The results demonstrate that incineration has significant advantages over landfill with lower impacts from climate change, resource depletion, acidification, eutrophication human toxicity and aquatic ecotoxicity. To maximise the benefits of energy recovery, metals, particularly aluminium, should be reclaimed from the residual bottom ash and the energy recovery stage of the process should be as efficient as possible. The overall environmental benefits/burdens of energy from waste also strongly depend on the source of the power displaced by the energy from waste, with coal giving the greatest benefits and combined cycle turbines fuelled by natural gas the lowest of those considered. Regardless of the conventional power displaced incineration presents a lower environmental burden than landfill. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Using wastes as resources

    International Nuclear Information System (INIS)

    Prakasam, T.B.S.; Lue-Hing, C.

    1992-01-01

    The collection, treatment, and disposal of domestic and industrial wastewater, garbage, and other wastes present considerable problems in urban and semiurban areas of developing countries. Major benefits of using integrated treatment and resource recovery systems include waste stabilization, recovering energy as biogas, producing food from algae and fish, irrigation, improved public health, and aquatic weed control and use. Information and research are needed, however, to assesss the appropriateness, benefits, and limitations of such technology on a large scale. System configuration depends on the types and quantities of wastes available for processing. There must be enough collectable waste for the system to be viable. Information should be gathered to asses whether there is a net public health benefit by implementing a waste treatment and resource recovery system. Benefits such as savings in medical expenses and increased worker productivity due to improved health may be difficult to quantify. The potential health risks created by implementing a resource recovery system should be studied. The most difficult issues to contend with are socioeconomic in nature. Often, the poor performance of a proven technology is attributed to a lack of proper understanding of its principles by the operators, lack of community interest, improper operator training, and poor management. Public education to motivate people to accept technologies that are beneficial to them is important

  4. Simultaneous power generation and heat recovery using a heat pipe assisted thermoelectric generator system

    International Nuclear Information System (INIS)

    Remeli, Muhammad Fairuz; Tan, Lippong; Date, Abhijit; Singh, Baljit; Akbarzadeh, Aliakbar

    2015-01-01

    Highlights: • A new passive power cogeneration system using industrial waste heat was introduced. • Heat pipes and thermoelectrics were used for recovering waste heat and electricity. • Theoretical model predicted the 2 kW test rig could recover 1.345 kW thermal power. • 10.39 W electrical power was produced equivalent to 0.77% conversion efficiency. - Abstract: This research explores a new method of recovering waste heat and electricity using a combination of heat pipes and thermoelectric generators (HP-TEG). The HP-TEG system consists of Bismuth Telluride (Bi 2 Te 3 ) based thermoelectric generators (TEGs), which are sandwiched between two finned heat pipes to achieve a temperature gradient across the TEG for thermoelectricity generation. A theoretical model was developed to predict the waste heat recovery and electricity conversion performances of the HP-TEG system under different parametric conditions. The modelling results show that the HP-TEG system has the capability of recovering 1.345 kW of waste heat and generating 10.39 W of electrical power using 8 installed TEGs. An experimental test bench for the HP-TEG system is under development and will be discussed in this paper

  5. Guide for the recovery of high grade waste paper from federal office buildings through at-source separation

    Energy Technology Data Exchange (ETDEWEB)

    1978-01-01

    This guide is intended to serve as a manual for organizing and managing office waste paper recovery programs in Canadian federal buildings. Waste paper generated in such buildings is of particular interest for recycling as it is produced in sufficiently large amounts, and contains large amounts of high-grade waste paper which obtain good prices from paper mills. The key to successful recovery of such paper is separation, at the source of waste generation, from other less-valuable papers and non-paper materials. In recommending ways to do this, the manual covers assessment of the viability of a collection program in a particular building, estimating the quantities of waste generated, calculating storage space necessary, marketing the paper collected, using proper collection and storage containers, promoting employee awareness, and administering and monitoring the program. A sample cost-benefit analysis is given for a general office building with 1,000 employees. Includes glossary. 14 refs., 10 figs., 5 tabs.

  6. Environmental evaluation of the electric and cogenerative configurations for the energy recovery of the Turin municipal solid waste incineration plant.

    Science.gov (United States)

    Panepinto, Deborah; Genon, Giuseppe

    2014-07-01

    Given the desirability of reducing fossil fuel consumption, together with the increasing production of combustible solid wastes, there is clearly a need for waste treatment systems that achieve both volume reduction and energy recovery. Direct incineration method is one such system. The aim of this work was to analyze the municipal solid waste incineration plant currently under construction in the province of Turin (Piedmont, North Italy), especially the potential for energy recovery, and the consequent environmental effects. We analyzed two kinds of energy recovery: electric energy (electrical configuration) only, and both electric and thermal energy (cogenerative configuration), in this case with a different connection hypothesis to the district heating network. After we had evaluated the potential of the incinerator and considered local demographic, energy and urban planning effects, we assumed different possible connections to the district heating network. We computed the local and global environmental balances based on the characteristics of the flue gas emitted from the stack, taking into consideration the emissions avoided by the substituted sources. The global-scale results provided relevant information on the carbon dioxide emissions parameter. The results on the local scale were used as reference values for the implementation of a Gaussian model (Aermod) that allows evaluation of the actual concentration of the pollutants released into the atmosphere. The main results obtained highlight the high energy efficiency of the combined production of heat and electricity, and the opportunity to minimize the environmental impact by including cogeneration in a district heating scheme. © The Author(s) 2014.

  7. 300 Area dangerous waste tank management system: Compliance plan approach. Final report

    International Nuclear Information System (INIS)

    1996-03-01

    In its Dec. 5, 1989 letter to DOE-Richland (DOE-RL) Operations, the Washington State Dept. of Ecology requested that DOE-RL prepare ''a plant evaluating alternatives for storage and/or treatment of hazardous waste in the 300 Area...''. This document, prepared in response to that letter, presents the proposed approach to compliance of the 300 Area with the federal Resource Conservation and Recovery Act and Washington State's Chapter 173-303 WAC, Dangerous Waste Regulations. It also contains 10 appendices which were developed as bases for preparing the compliance plan approach. It refers to the Radioactive Liquid Waste System facilities and to the radioactive mixed waste

  8. Study on waste heat recovery from exhaust gas spark ignition (S.I. engine using steam turbine mechanism

    Directory of Open Access Journals (Sweden)

    Talib Kamarulhelmy

    2017-01-01

    Full Text Available The issue of global warming has pushed the effort of researchers not only to find alternative renewable energy, but also to improve the machine’s energy efficiency. This includes the utilization of waste energy into ‘useful energy’. For a vehicle using internal combustion engine (ICE, the waste energy produce by exhaust gas can be utilize to ‘useful energy’ up to 34%. The energy from the automotive exhaust can be harness by implementing heat pipe heat exchanger in the automotive system. In order to maximize the amount of waste energy that can be turned to ‘useful energy’, the used of appropriate fluid in the heat exchanger is important. In this study, the fluid used is water, thus converting the fluid into steam and thus drive the turbine that coupling with generator. The paper will explore the performance of a naturally aspirated spark ignition (S.I. engine equipped with waste heat recovery mechanism (WHRM that used water as the heat absorption medium. The experimental and simulation test suggest that the concept is thermodynamically feasible and could significantly enhance the system performance depending on the load applied to the engine.

  9. Programs of recovery of radioactive wastes from the trenches and land decontamination of the radioactive waste storage center; Programas de recuperacion de los desechos radiactivos de las trincheras y de descontaminacion del predio del centro de almacenamiento de desechos radiactivos

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez D, J.; Reyes L, J. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)

    1999-06-15

    In this report there are the decontamination program of the land of the Radioactive Waste Storage Center, the Program of Recovery of the radioactive waste of the trenches, the recovery of polluted bar with cobalt 60, the recovery of minerals and tailings of uranium and of earth with minerals and tailings of uranium, the recovery of worn out sealed sources and the waste recovery with the accustomed corresponding actions are presented. (Author)

  10. Water extraction from high moisture lignite by means of efficient integration of waste heat and water recovery technologies with flue gas pre-drying system

    International Nuclear Information System (INIS)

    Han, Xiaoqu; Yan, Junjie; Karellas, Sotirios; Liu, Ming; Kakaras, Emmanuel; Xiao, Feng

    2017-01-01

    Highlights: • Energy-saving potential of FPLPS in different cold-ends and lignite types is evaluated. • Water-saving of FPLPS is realized through recovery of water extracted from lignite. • Integrations of low pressure economizer and spray tower with FPLPS are proposed. • Thermodynamic and economic performances of different schemes are investigated. - Abstract: The flue gas pre-dried lignite-fired power system (FPLPS) integrates the fan mill flue gas dryer with an open pulverizing system and yields an increase of the boiler efficiency. Particularly, the dryer exhaust gas contains a large amount of vapor removed from high moisture lignite, which exhibits great potential for waste heat and water recovery. Two available options are considered to realize the extraction of water from lignite: the low pressure economizer (LPE) for water-cooled units and the spray tower (SPT) integrated with heat pump for air-cooled units. This paper aims at evaluating the energy saving and water recovery potentials of the FPLPS integrated with both schemes. Results showed that the plant efficiency improvement of the FPLPS at base case varied from 1.14% to 1.47% depending on the moisture content of raw lignite. The water recovery ratio and plant efficiency improvement in the optimal LPE scheme were 39.4% and 0.20%, respectively. In contrast, 83.3% of water recover ratio and 110.6 MW_t_h heat supply were achieved in the SPT system. Both schemes were economically feasible with discounted payback periods of around 3 years. Moreover, parametric analysis was conducted to examine the economic viability of both schemes with different lignite types and market factors.

  11. Critical review of real-time methods for solid waste characterisation: Informing material recovery and fuel production.

    Science.gov (United States)

    Vrancken, C; Longhurst, P J; Wagland, S T

    2017-03-01

    Waste management processes generally represent a significant loss of material, energy and economic resources, so legislation and financial incentives are being implemented to improve the recovery of these valuable resources whilst reducing contamination levels. Material recovery and waste derived fuels are potentially valuable options being pursued by industry, using mechanical and biological processes incorporating sensor and sorting technologies developed and optimised for recycling plants. In its current state, waste management presents similarities to other industries that could improve their efficiencies using process analytical technology tools. Existing sensor technologies could be used to measure critical waste characteristics, providing data required by existing legislation, potentially aiding waste treatment processes and assisting stakeholders in decision making. Optical technologies offer the most flexible solution to gather real-time information applicable to each of the waste mechanical and biological treatment processes used by industry. In particular, combinations of optical sensors in the visible and the near-infrared range from 800nm to 2500nm of the spectrum, and different mathematical techniques, are able to provide material information and fuel properties with typical performance levels between 80% and 90%. These sensors not only could be used to aid waste processes, but to provide most waste quality indicators required by existing legislation, whilst offering better tools to the stakeholders. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Recovery of Exhaust Waste Heat for ICE Using the Beta Type Stirling Engine

    Directory of Open Access Journals (Sweden)

    Wail Aladayleh

    2015-01-01

    Full Text Available This paper investigates the potential of utilizing the exhaust waste heat using an integrated mechanical device with internal combustion engine for the automobiles to increase the fuel economy, the useful power, and the environment safety. One of the ways of utilizing waste heat is to use a Stirling engine. A Stirling engine requires only an external heat source as wasted heat for its operation. Because the exhaust gas temperature may reach 200 to 700°C, Stirling engine will work effectively. The indication work, real shaft power and specific fuel consumption for Stirling engine, and the exhaust power losses for IC engine are calculated. The study shows the availability and possibility of recovery of the waste heat from internal combustion engine using Stirling engine.

  13. The feasibility study on supercritical methane Recuperated Brayton Cycle for waste heat recovery

    KAUST Repository

    Dyuisenakhmetov, Aibolat

    2017-01-01

    solar power. RBC’s compactness and the ease at which it can be integrated into existent power plants for waste heat recovery require few modifications. Methane, carbon dioxide and trifluoromethane are analyzed as possible working fluids. This work shows

  14. Building waste management core indicators through Spatial Material Flow Analysis: Net recovery and transport intensity indexes

    International Nuclear Information System (INIS)

    Font Vivanco, David; Puig Ventosa, Ignasi; Gabarrell Durany, Xavier

    2012-01-01

    Highlights: ► Sustainability and proximity principles have a key role in waste management. ► Core indicators are needed in order to quantify and evaluate them. ► A systematic, step-by-step approach is developed in this study for their development. ► Transport may play a significant role in terms of environmental and economic costs. ► Policy action is required in order to advance in the consecution of these principles. - Abstract: In this paper, the material and spatial characterization of the flows within a municipal solid waste (MSW) management system are combined through a Network-Based Spatial Material Flow Analysis. Using this information, two core indicators are developed for the bio-waste fraction, the Net Recovery Index (NRI) and the Transport Intensity Index (TII), which are aimed at assessing progress towards policy-related sustainable MSW management strategies and objectives. The NRI approaches the capacity of a MSW management system for converting waste into resources through a systematic metabolic approach, whereas the TII addresses efficiency in terms of the transport requirements to manage a specific waste flow throughout the entire MSW management life cycle. Therefore, both indicators could be useful in assessing key MSW management policy strategies, such as the consecution of higher recycling levels (sustainability principle) or the minimization of transport by locating treatment facilities closer to generation sources (proximity principle). To apply this methodological approach, the bio-waste management system of the region of Catalonia (Spain) has been chosen as a case study. Results show the adequacy of both indicators for identifying those points within the system with higher capacity to compromise its environmental, economic and social performance and therefore establishing clear targets for policy prioritization. Moreover, this methodological approach permits scenario building, which could be useful in assessing the outcomes of

  15. The Optimal Evaporation Temperature of Subcritical ORC Based on Second Law Efficiency for Waste Heat Recovery

    Directory of Open Access Journals (Sweden)

    Xiaoxiao Xu

    2012-03-01

    Full Text Available The subcritical Organic Rankine Cycle (ORC with 28 working fluids for waste heat recovery is discussed in this paper. The effects of the temperature of the waste heat, the critical temperature of working fluids and the pinch temperature difference in the evaporator on the optimal evaporation temperature (OET of the ORC have been investigated. The second law efficiency of the system is regarded as the objective function and the evaporation temperature is optimized by using the quadratic approximations method. The results show that the OET will appear for the temperature ranges investigated when the critical temperatures of working fluids are lower than the waste heat temperatures by 18 ± 5 K under the pinch temperature difference of 5 K in the evaporator. Additionally, the ORC always exhibits the OET when the pinch temperature difference in the evaporator is raised under the fixed waste heat temperature. The maximum second law efficiency will decrease with the increase of pinch temperature difference in the evaporator.

  16. A multi-criteria analysis of options for energy recovery from municipal solid waste in India and the UK.

    Science.gov (United States)

    Yap, H Y; Nixon, J D

    2015-12-01

    Energy recovery from municipal solid waste plays a key role in sustainable waste management and energy security. However, there are numerous technologies that vary in suitability for different economic and social climates. This study sets out to develop and apply a multi-criteria decision making methodology that can be used to evaluate the trade-offs between the benefits, opportunities, costs and risks of alternative energy from waste technologies in both developed and developing countries. The technologies considered are mass burn incineration, refuse derived fuel incineration, gasification, anaerobic digestion and landfill gas recovery. By incorporating qualitative and quantitative assessments, a preference ranking of the alternative technologies is produced. The effect of variations in decision criteria weightings are analysed in a sensitivity analysis. The methodology is applied principally to compare and assess energy recovery from waste options in the UK and India. These two countries have been selected as they could both benefit from further development of their waste-to-energy strategies, but have different technical and socio-economic challenges to consider. It is concluded that gasification is the preferred technology for the UK, whereas anaerobic digestion is the preferred technology for India. We believe that the presented methodology will be of particular value for waste-to-energy decision-makers in both developed and developing countries. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Process for the recovery of curium-244 from nuclear waste

    International Nuclear Information System (INIS)

    Posey, J.C.

    1980-10-01

    A process has been designed for the recovery of curium from purex waste. Curium and americium are separated from the lanthanides by a TALSPEAK extraction process using differential extraction. Equations were derived for the estimation of the economically optimum conditions for the extraction using laboratory batch extraction data. The preparation of feed for the extraction involves the removal of nitric acid from the Purex waste by vaporization under reduced pressure, the leaching of soluble nitrates from the resulting cake, and the oxalate precipitation of a pure lanthanide-actinide fraction. Final separation of the curium from americium is done by ion-exchange. The steps of the process, except ion-exchange, were tested on a laboratory scale and workable conditions were determined

  18. Life cycle assessment of integrated waste management systems for alternative legacy scenarios of the London Olympic Park

    Energy Technology Data Exchange (ETDEWEB)

    Parkes, Olga, E-mail: o.parkes@ucl.ac.uk; Lettieri, Paola, E-mail: p.lettieri@ucl.ac.uk; Bogle, I. David L.

    2015-06-15

    Highlights: • Application of LCA in planning integrated waste management systems. • Environmental valuation of 3 legacy scenarios for the Olympic Park. • Hot-spot analysis highlights the importance of energy and materials recovery. • Most environmental savings are achieved through materials recycling. • Sensitivity analysis shows importance of waste composition and recycling rates. - Abstract: This paper presents the results of the life cycle assessment (LCA) of 10 integrated waste management systems (IWMSs) for 3 potential post-event site design scenarios of the London Olympic Park. The aim of the LCA study is to evaluate direct and indirect emissions resulting from various treatment options of municipal solid waste (MSW) annually generated on site together with avoided emissions resulting from energy, materials and nutrients recovery. IWMSs are modelled using GaBi v6.0 Product Sustainability software and results are presented based on the CML (v.Nov-10) characterisation method. The results show that IWMSs with advanced thermal treatment (ATT) and incineration with energy recovery have the lowest Global Warming Potential (GWP) than IWMSs where landfill is the primary waste treatment process. This is due to higher direct emissions and lower avoided emissions from the landfill process compared to the emissions from the thermal treatment processes. LCA results demonstrate that significant environmental savings are achieved through substitution of virgin materials with recycled ones. The results of the sensitivity analysis carried out for IWMS 1 shows that increasing recycling rate by 5%, 10% and 15% compared to the baseline scenario can reduce GWP by 8%, 17% and 25% respectively. Sensitivity analysis also shows how changes in waste composition affect the overall result of the system. The outcomes of such assessments provide decision-makers with fundamental information regarding the environmental impacts of different waste treatment options necessary for

  19. An innovative treatment method for an aqueous waste from the enhanced oil recovery process

    International Nuclear Information System (INIS)

    Alimahmoodi, M.; Mulligan, C.N.

    2009-01-01

    Anaerobic treatment was evaluated to determine its effectiveness in treating a waste stream from the process of Enhanced Oil Recovery (EOR) to remove solubilized CO 2 (98%) and petroleum hydrocarbons (83%) using formate (2 g/L) and sucrose (2.5 g/L) as electron donors in two consecutive reactors. The method of evolutionary operation (EVOP) factorial design was applied to optimize the system and the net energy ratio (NER) of 3.7 was calculated for the system which showed a sustainable biogas production. This method is less complex than other competitive methods, and in addition to its low energy requirements, it can produce CH 4 from CO 2 as a clean source of energy. (author)

  20. Study of working fluid selection of organic Rankine cycle (ORC) for engine waste heat recovery

    International Nuclear Information System (INIS)

    Wang, E.H.; Zhang, H.G.; Fan, B.Y.; Ouyang, M.G.; Zhao, Y.; Mu, Q.H.

    2011-01-01

    Organic Rankine Cycle (ORC) could be used to recover low-grade waste heat. When a vehicle is running, the engine exhaust gas states have a wide range of variance. Defining the operational conditions of the ORC that achieve the maximum utilization of waste heat is important. In this paper the performance of different working fluids operating in specific regions was analyzed using a thermodynamic model built in Matlab together with REFPROP. Nine different pure organic working fluids were selected according to their physical and chemical properties. The results were compared in the regions when net power outputs were fixed at 10 kW. Safety levels and environmental impacts were also evaluated. The outcomes indicate that R11, R141b, R113 and R123 manifest slightly higher thermodynamic performances than the others; however, R245fa and R245ca are the most environment-friendly working fluids for engine waste heat-recovery applications. The optimal control principle of ORC under the transient process is discussed based on the analytical results. -- Highlights: → R11, R141b, R113 and R123 manifest the best thermodynamic performances. → R245fa and R245ca are the most environment-friendly working fluids for the engine waste heat-recovery application. → The condensing temperature has more important effect than the evaporating pressure to the performance of ORC. → The optimal control principle of ORC under the transient process was defined according to the calculation results for the vehicle engine waste heat-recovery application. → ORC thermodynamic model was built in Matlab together with REFPROP.

  1. Partitioning and recovery of neptunium from high level waste streams of PUREX origin using 30% TBP

    International Nuclear Information System (INIS)

    Mathur, J.N.; Murali, M.S.; Balarama Krishna, M.V.; Iyer, R.H.; Chitnis, R.R.; Wattal, P.K.; Theyyunni, T.K.; Ramanujam, A.; Dhami, P.S.; Gopalakrishnan, V.

    1995-01-01

    237 Np is one of the longest-lived nuclides among the actinides present in the high level waste solutions of reprocessing origin. Its separation, recovery and transmutation can reduce the problem of long term storage of the vitrified waste to a great extent. With this objective, the present work was initiated to study the extraction of neptunium into TBP under the conditions relevant to high level waste, along with uranium and plutonium by oxidising it to hexavalent state using potassium dichromate and subsequently recovering it by selective stripping. Three types of simulated HLW solutions namely sulphate bearing (SB), with an acidity of ∼ 0.3 M and non-sulphate wastes originating from the reprocessing of fuels from pressurised heavy water reactor (PHWR) and fast breeder reactor (FBR) with acidities of 3.0 M HNO 3 were employed in these studies. The extraction of U(VI), Np(VI) and Pu(VI) was very high for PHWR- and FBR-HLW solutions, whereas for the SB-HLW solution, these values were less but reasonably high. Quantitative recovery of neptunium and plutonium was achieved using a stripping solution containing 0.1 M H 2 O 2 and 0.01 M ascorbic acid at an acidity of 2.0 M. Since, cerium present in the waste solutions is expected to undergo oxidation in presence of K 2 Cr 2 O 7 , its extraction behaviour was also studied under similar conditions. Based on the results, a scheme was formulated for the recovery of neptunium along with plutonium and was successfully applied to actual high level waste solution originating from the reprocessing of research reactor fuels. (author). 19 refs., 2 figs., 17 tabs

  2. Energy systems analysis of waste to energy technologies by use of EnergyPLAN

    Energy Technology Data Exchange (ETDEWEB)

    Muenster, M.

    2009-04-15

    Even when policies of waste prevention, re-use and recycling are prioritised, a fraction of waste will still be left which can be used for energy recovery. This report asks the question: How to utilise waste for energy in the best way seen from an energy system perspective? Eight different Waste-to-Energy technologies are compared with a focus on fuel efficiency, CO{sub 2} reductions and costs. The comparison is made by conducting detailed energy system analyses of the present system as well as a potential future Danish energy system with a large share of combined heat and power and wind power. The study shows the potential of using waste for the production of transport fuels such as upgraded biogas and petrol made from syngas. Biogas and thermal gasification technologies are interesting alternatives to waste incineration and it is recommended to support the use of biogas based on manure and organic waste. It is also recommended to support research into gasification of waste without the addition of coal and biomass. Together, the two solutions may contribute to an alternate use of one third of the waste which is currently incinerated. The remaining fractions should still be incinerated with priority given to combined heat and power plants with high electrical efficiencies. (author)

  3. A Comparison of Organic and Steam Rankine Cycle Power Systems for Waste Heat Recovery on Large Ships

    Directory of Open Access Journals (Sweden)

    Jesper Graa Andreasen

    2017-04-01

    Full Text Available This paper presents a comparison of the conventional dual pressure steam Rankine cycle process and the organic Rankine cycle process for marine engine waste heat recovery. The comparison was based on a container vessel, and results are presented for a high-sulfur (3 wt % and low-sulfur (0.5 wt % fuel case. The processes were compared based on their off-design performance for diesel engine loads in the range between 25% and 100%. The fluids considered in the organic Rankine cycle process were MM(hexamethyldisiloxane, toluene, n-pentane, i-pentane and c-pentane. The results of the comparison indicate that the net power output of the steam Rankine cycle process is higher at high engine loads, while the performance of the organic Rankine cycle units is higher at lower loads. Preliminary turbine design considerations suggest that higher turbine efficiencies can be obtained for the ORC unit turbines compared to the steam turbines. When the efficiency of the c-pentane turbine was allowed to be 10% points larger than the steam turbine efficiency, the organic Rankine cycle unit reaches higher net power outputs than the steam Rankine cycle unit at all engine loads for the low-sulfur fuel case. The net power production from the waste heat recovery units is generally higher for the low-sulfur fuel case. The steam Rankine cycle unit produces 18% more power at design compared to the high-sulfur fuel case, while the organic Rankine cycle unit using MM produces 33% more power.

  4. Recovery of Organic and Amino Acids from Sludge and Fish Waste in Sub Critical Water Conditions

    Directory of Open Access Journals (Sweden)

    Muhammad Faisal

    2011-12-01

    Full Text Available The possibility of organic and amino acid production from the treatment of sludge and fish waste using water at sub critical conditions was investigated. The results indicated that at sub-critical conditions, where the ion product of water went through a maximum, the formation of organic acids was favorable. The presence of oxidant favored formation of acetic and formic acid. Other organic acids of significant amount were propionic, succinic and lactic acids. Depending on the type of wastes, formation of other organic acids was also possible. Knowing the organic acids obtained by hydrolysis and oxidation in sub-critical water of various wastes are useful in designing of applicable waste treatment process, complete degradation of organic wastes into volatile carbon and water, and also on the viewpoint of resource recovery. The production of lactic acid was discussed as well. The results indicated that temperature of 573 K, with the absence of oxidant, yield of lactic acid from fish waste was higher than sewage sludge. The maximum yield of total amino acids (137 mg/g-dry fish from waste fish entrails was obtained at subcritical condition (T = 523 K, P = 4 MPa at reaction time of 60 min by using the batch reactor. The amino acids obtained in this study were mainly alanine and glycine. Keywords:  organic acids, amino acids, sub-critical water, hydrothermal, resources recovery

  5. Ideal Point Design and Operation of CO2-Based Transcritical Rankine Cycle (CTRC System Based on High Utilization of Engine’s Waste Heats

    Directory of Open Access Journals (Sweden)

    Lingfeng Shi

    2017-10-01

    Full Text Available This research conducted a study specially to systematically analyze combined recovery of exhaust gas and engine coolant and related influence mechanism, including a detailed theoretical study and an assistant experimental study. In this research, CO2-based transcritical Rankine cycle (CTRC was used for fully combining the wastes heats. The main objective of theoretical research was to search an ‘ideal point’ of the recovery system and related influence mechanism, which was defined as operating condition of complete recovery of two waste heats. The theoretical methodology of this study could also provide a design reference for effective combined recovery of two or multiple waste heats in other fields. Based on a kW-class preheated CTRC prototype that was designed by the ‘ideal point’ method, an experimental study was conducted to verify combined utilization degree of two engine waste heats by the CTRC system. The operating results showed that the prototype can gain 44.4–49.8 kW and 22.7–26.7 kW heat absorption from exhaust gas and engine coolant, respectively. To direct practical operation, an experimental optimization work on the operating process was conducted for complete recovery of engine coolant exactly, which avoided deficient or excessive recovery.

  6. Department of Energy plan for recovery and utilization of nuclear byproducts from defense wastes. Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    1983-08-01

    Nuclear wastes from the defense production cycle contain many uniquely useful, intrinsically valuable, and strategically important materials. These materials have a wide range of known and potential applications in food technology, agriculture, energy, public health, medicine, industrial technology, and national security. Furthermore, their removal from the nuclear waste stream can facilitate waste management and yield economic, safety, and environmental advantages in the management and disposal of the residual nuclear wastes that have no redemptive value. This document is the program plan for implementing the recovery and beneficial use of these valuable materials. An Executive Summary of this document, DOE/DP-0013, Vol. 1, January 1983, is available. Program policy, goals and strategy are stated in Section 2. Implementation tasks, schedule and funding are detailed in Section 3. The remaining five sections and the appendixes provide necessary background information to support these two sections. Section 4 reviews some of the unique properties of the individual byproduct materials and describes both demonstrated and potential applications. The amounts of byproduct materials that are available now for research and demonstration purposes, and the amounts that could be recovered in the future for expanded applications are detailed in Section 5. Section 6 describes the effects byproduct recovery and utilization have on the management and final disposal of nuclear wastes. The institutional issues that affect the recovery, processing and utilization of nuclear byproducts are discussed in Section 7. Finally, Section 8 presents a generalized mathematical process by which applications can be evaluated and prioritized (rank-ordered) to provide planning data for program management.

  7. Department of Energy plan for recovery and utilization of nuclear byproducts from defense wastes. Volume 2

    International Nuclear Information System (INIS)

    1983-08-01

    Nuclear wastes from the defense production cycle contain many uniquely useful, intrinsically valuable, and strategically important materials. These materials have a wide range of known and potential applications in food technology, agriculture, energy, public health, medicine, industrial technology, and national security. Furthermore, their removal from the nuclear waste stream can facilitate waste management and yield economic, safety, and environmental advantages in the management and disposal of the residual nuclear wastes that have no redemptive value. This document is the program plan for implementing the recovery and beneficial use of these valuable materials. An Executive Summary of this document, DOE/DP-0013, Vol. 1, January 1983, is available. Program policy, goals and strategy are stated in Section 2. Implementation tasks, schedule and funding are detailed in Section 3. The remaining five sections and the appendixes provide necessary background information to support these two sections. Section 4 reviews some of the unique properties of the individual byproduct materials and describes both demonstrated and potential applications. The amounts of byproduct materials that are available now for research and demonstration purposes, and the amounts that could be recovered in the future for expanded applications are detailed in Section 5. Section 6 describes the effects byproduct recovery and utilization have on the management and final disposal of nuclear wastes. The institutional issues that affect the recovery, processing and utilization of nuclear byproducts are discussed in Section 7. Finally, Section 8 presents a generalized mathematical process by which applications can be evaluated and prioritized (rank-ordered) to provide planning data for program management

  8. Recovery of gold from hydrometallurgical leaching solution of electronic waste via spontaneous reduction by polyaniline

    Directory of Open Access Journals (Sweden)

    Yuanzhao Wu

    2017-08-01

    Full Text Available The present study is primarily designed to develop an environmentally-benign approach for the recovery of precious metals, especially gold, from the ever increasingly-discarded electronic wastes (e-waste. By coupling the metal reduction process with an increase in the intrinsic oxidation state of the aniline polymers, and the subsequent re-protonation and reduction of the intrinsically oxidized polymer to the protonated emeraldine (EM salt, polyaniline (PANi films and polyaniline coated cotton fibers are able to recover metallic gold from acid/halide leaching solutions of electronic wastes spontaneously and sustainably. The current technique, which does not require the use of extensive extracting reagents or external energy input, can recover as much as 90% of gold from the leaching acidic solutions. The regeneration of polyaniline after gold recovery, as confirmed by the X-ray photoelectron spectroscopy measurements, promises the continuous operation using the current approach. The as-recovered elemental gold can be further concentrated and purified by incineration in air.

  9. Experiments on the Recovery of Waste Heat in Cooling Ducts, Special Report

    Science.gov (United States)

    Silverstein, Abe

    1939-01-01

    Tests have been conducted in the N.A.C.A. full-scale wind tunnel to investigate the partial recovery of the heat energy which is apparently wasted in the cooling of aircraft engines. The results indicate that if the radiator is located in an expanded duct, a part of the energy lost in cooling is recovered; however, the energy recovery is not of practical importance up to airplane speeds of 400 miles per hour. Throttling of the duct flow occurs with heated radiators and must be considered in designing the duct outlets from data obtained with cold radiators in the ducts.

  10. Enhanced oil recovery system

    Science.gov (United States)

    Goldsberry, Fred L.

    1989-01-01

    All energy resources available from a geopressured geothermal reservoir are used for the production of pipeline quality gas using a high pressure separator/heat exchanger and a membrane separator, and recovering waste gas from both the membrane separator and a low pressure separator in tandem with the high pressure separator for use in enhanced oil recovery, or in powering a gas engine and turbine set. Liquid hydrocarbons are skimmed off the top of geothermal brine in the low pressure separator. High pressure brine from the geothermal well is used to drive a turbine/generator set before recovering waste gas in the first separator. Another turbine/generator set is provided in a supercritical binary power plant that uses propane as a working fluid in a closed cycle, and uses exhaust heat from the combustion engine and geothermal energy of the brine in the separator/heat exchanger to heat the propane.

  11. Toward a sustainable waste management system: a comprehensive assessment of thermal and electric energy recovery from waste incineration

    Energy Technology Data Exchange (ETDEWEB)

    Salvia, Monica; Cosmi, Carmelina; Cuomo, Vincenzo; Macchiato, Maria [Istituto Nazionale per la Fisica della Materia, Napoli (Italy); Mangiamele, Lucia [Univ. della Basilicata, Potenza (Italy). Dipt. Ingegneria e Fisica dell Ambiente; Pietrapertosa, Filomena [Univ. di Napoli Federico II, (Italy). Dipt. di Scienze Fisiche

    2002-12-01

    Energy-environmental planning must join normative, environmental and socio-economic features to obtain effective strategies aimed to a sustainable development. Therefore a comprehensive methodology for the analysis and the optimisation of the anthropogenic activities system configuration, can usefully support decision-makers in the definition of harmonised sector plans, joining waste management issues with resource use problems and exploiting energy and materials feedback among supply and demand sectors. In this paper we present an innovative application of the Advanced Local Energy Environmental Planning methodology (ALEP), aimed to the definition of optimal waste management strategies which comply with comprehensive as well as sectorial issues.

  12. A Comparison of Organic and Steam Rankine Cycle Power Systems for Waste Heat Recovery on Large Ships

    DEFF Research Database (Denmark)

    Andreasen, Jesper Graa; Meroni, Andrea; Haglind, Fredrik

    2017-01-01

    %) fuel case. The processes were compared based on their off-design performance for diesel engine loads in the range between 25% and 100%. The fluids considered in the organic Rankine cycle process were MM(hexamethyldisiloxane), toluene, n-pentane, i-pentane and c-pentane. The results of the comparison....... The net power production from the waste heat recovery units is generally higher for the low-sulfur fuel case. The steam Rankine cycle unit produces 18% more power at design compared to the high-sulfur fuel case, while the organic Rankine cycle unit using MM produces 33% more power....

  13. The potential environmental gains from recycling waste plastics: simulation of transferring recycling and recovery technologies to Shenyang, China.

    Science.gov (United States)

    Chen, Xudong; Xi, Fengming; Geng, Yong; Fujita, Tsuyoshi

    2011-01-01

    With the increasing attention on developing a low-carbon economy, it is necessary to seek appropriate ways on reducing greenhouse gas (GHG) emissions through innovative municipal solid waste management (MSWM), such as urban symbiosis. However, quantitative assessments on the environmental benefits of urban symbiosis, especially in developing countries, are limited because only a limited number of planned synergistic activities have been successful and it is difficult to acquire detailed inventory data from private companies. This paper modifies and applies a two-step simulation system and used it to assess the potential environmental benefits, including the reduction of GHG emissions and saving of fossil fuels, by employing various Japanese plastics recycling/energy-recovery technologies in Shenyang, China. The results showed that among various recycling/energy-recovery technologies, the mechanical waste plastics recycling technology, which produces concrete formwork boards (NF boards), has the greatest potential in terms of reducing GHG emissions (1.66 kg CO(2)e/kg plastics), whereas the technology for the production of refuse plastic fuel (RPF) has the greatest potential on saving fossil fuel consumption (0.77 kg ce/kg-plastics). Additional benefits can be gained by applying combined technologies that cascade the utilization of waste plastics. Moreover, the development of clean energy in conjunction with the promotion of new waste plastics recycling programs could contribute to additional reductions in GHG emissions and fossil fuel consumption. Copyright © 2010 Elsevier Ltd. All rights reserved.

  14. Life cycle assessment of resource recovery from municipal solid waste incineration bottom ash

    DEFF Research Database (Denmark)

    Allegrini, Elisa; Vadenbo, Carl; Boldrin, Alessio

    2015-01-01

    Bottom ash, the main solid output from municipal solid waste incineration (MSWI), has significant potential for the recovery of resources such as scrap metals and aggregates. The utilisation of these resources ideally enables natural resources to be saved. However, the quality of the recovered...

  15. Energy Recovery from the Organic Fraction of Municipal Solid Waste: A Real Options-Based Facility Assessment

    Directory of Open Access Journals (Sweden)

    Luigi Ranieri

    2018-01-01

    Full Text Available During the last years, due to the strict regulations on waste landfilling, anaerobic digestion (AD of the organic fraction of municipal solid waste (OFMSW is increasingly considered a sustainable alternative for waste stabilization and energy recovery. AD can reduce the volume of OFMSW going to landfill and produce, at the same time, biogas and compost, all at a profit. The uncertainty about the collected quantity of organic fraction, however, may undermine the economic-financial sustainability of such plants. While the flexibility characterizing some AD technologies may prove very valuable in uncertain contexts since it allows adapting plant capacity to changing environments, the investment required for building flexible systems is generally higher than the investment for dedicated equipment. Hence, an adequate justification of investments in these flexible systems is needed. This paper presents the results of a study aimed at investigating how different technologies may perform from technical, economic and financial standpoints, in presence of an uncertain organic fraction quantity to be treated. Focusing on two AD treatment plant configurations characterized by a technological process with different degree of flexibility, a real options-based model is developed and then applied to the case of the urban waste management system of the Metropolitan Area of Bari (Italy. Results show the importance of pricing the flexibility of treatment plants, which becomes a critical factor in presence of an uncertain organic fraction. Hence, it has to be taken into consideration in the design phase of these plants.

  16. Development of an Organic Rankine Cycle system for exhaust energy recovery in internal combustion engines

    Science.gov (United States)

    Cipollone, Roberto; Bianchi, Giuseppe; Gualtieri, Angelo; Di Battista, Davide; Mauriello, Marco; Fatigati, Fabio

    2015-11-01

    Road transportation is currently one of the most influencing sectors for global energy consumptions and CO2 emissions. Nevertheless, more than one third of the fuel energy supplied to internal combustion engines is still rejected to the environment as thermal waste at the exhaust. Therefore, a greater fuel economy might be achieved recovering the energy from exhaust gases and converting it into useful power on board. In the current research activity, an ORC-based energy recovery system was developed and coupled with a diesel engine. The innovative feature of the recovery power unit relies upon the usage of sliding vane rotary machines as pump and expander. After a preliminary exhaust gas mapping, which allowed to assess the magnitude of the thermal power to be recovered, a thermodynamic analysis was carried out to design the ORC system and the sliding vane machines using R236fa as working fluid. An experimental campaign was eventually performed at different operating regimes according to the ESC procedure and investigated the recovery potential of the power unit at design and off-design conditions. Mechanical power recovered ranged from 0.7 kW up to 1.9 kW, with an overall cycle efficiency from 3.8% up to 4.8% respectively. These results candidate sliding vane machines as efficient and reliable devices for waste heat recovery applications.

  17. Eco-friendly copper recovery process from waste printed circuit boards using Fe{sup 3+}/Fe{sup 2+} redox system

    Energy Technology Data Exchange (ETDEWEB)

    Fogarasi, Szabolcs [Babeş-Bolyai University, Faculty of Chemistry and Chemical Engineering, 11 Arany Janos Street, Cluj-Napoca RO-400028 (Romania); Imre-Lucaci, Florica [Babeş-Bolyai University, Interdisciplinary Research Institute on Bio-Nano-Sciences, 42 Treboniu Laurian Street, Cluj-Napoca RO-400271 (Romania); Egedy, Attila [University of Pannonia, Department of Process Engineering, Egyetem Str. 10, H-8200 Veszprém (Hungary); Imre-Lucaci, Árpád, E-mail: aimre@chem.ubbcluj.ro [Babeş-Bolyai University, Faculty of Chemistry and Chemical Engineering, 11 Arany Janos Street, Cluj-Napoca RO-400028 (Romania); Ilea, Petru [Babeş-Bolyai University, Faculty of Chemistry and Chemical Engineering, 11 Arany Janos Street, Cluj-Napoca RO-400028 (Romania)

    2015-06-15

    Highlights: • We developed an ecofriendly mediated electrochemical process for copper recovery. • The recovery of copper was achieved without mechanical pretreatment of the samples. • We identified the optimal flow rate for the leaching and electrowinning of copper. • The copper content of the obtained cathodic deposits was over 99.9%. - Abstract: The present study aimed at developing an original and environmentally friendly process for the recovery of copper from waste printed circuit boards (WPCBs) by chemical dissolution with Fe{sup 3+} combined with the simultaneous electrowinning of copper and oxidant regeneration. The recovery of copper was achieved in an original set-up consisting of a three chamber electrochemical reactor (ER) connected in series with a chemical reactor (CR) equipped with a perforated rotating drum. Several experiments were performed in order to identify the optimal flow rate for the dissolution of copper in the CR and to ensure the lowest energy consumption for copper electrodeposition in the ER. The optimal hydrodynamic conditions were provided at 400 mL/min, leading to the 75% dissolution of metals and to a low specific energy consumption of 1.59 kW h/kg Cu for the electrodeposition process. In most experiments, the copper content of the obtained cathodic deposits was over 99.9%.

  18. Analysis of the application of decontamination technologies to radioactive metal waste minimization using expert systems

    Energy Technology Data Exchange (ETDEWEB)

    Bayrakal, Suna [Iowa State Univ., Ames, IA (United States)

    1993-09-30

    Radioactive metal waste makes up a significant portion of the waste currently being sent for disposal. Recovery of this metal as a valuable resource is possible through the use of decontamination technologies. Through the development and use of expert systems a comparison can be made of laser decontamination, a technology currently under development at Ames Laboratory, with currently available decontamination technologies for applicability to the types of metal waste being generated and the effectiveness of these versus simply disposing of the waste. These technologies can be technically and economically evaluated by the use of expert systems techniques to provide a waste management decision making tool that generates, given an identified metal waste, waste management recommendations. The user enters waste characteristic information as input and the system then recommends decontamination technologies, determines residual contamination levels and possible waste management strategies, carries out a cost analysis and then ranks, according to cost, the possibilities for management of the waste. The expert system was developed using information from literature and personnel experienced in the use of decontamination technologies and requires validation by human experts and assignment of confidence factors to the knowledge represented within.

  19. Analysis of the application of decontamination technologies to radioactive metal waste minimization using expert systems

    International Nuclear Information System (INIS)

    Bayrakal, S.

    1993-01-01

    Radioactive metal waste makes up a significant portion of the waste currently being sent for disposal. Recovery of this metal as a valuable resource is possible through the use of decontamination technologies. Through the development and use of expert systems a comparison can be made of laser decontamination, a technology currently under development at Ames Laboratory, with currently available decontamination technologies for applicability to the types of metal waste being generated and the effectiveness of these versus simply disposing of the waste. These technologies can be technically and economically evaluated by the use of expert systems techniques to provide a waste management decision making tool that generates, given an identified metal waste, waste management recommendations. The user enters waste characteristic information as input and the system then recommends decontamination technologies, determines residual contamination levels and possible waste management strategies, carries out a cost analysis and then ranks, according to cost, the possibilities for management of the waste. The expert system was developed using information from literature and personnel experienced in the use of decontamination technologies and requires validation by human experts and assignment of confidence factors to the knowledge represented within

  20. POLLUTION PREVENTION IN THE SEMICONDUCTOR INDUSTRY THROUGH RECOVERY AND RECYCLING OF GALLIUM AND ARSENIC FROM GAAS POLISHING WASTES

    Science.gov (United States)

    A process was developed for the recovery of both arsenic and gallium from gallium arsenide polishing wastes. The economics associated with the current disposal techniques utilizing ferric hydroxide precipitation dictate that sequential recovery of toxic arsenic and valuble galliu...

  1. Numerical Modeling of Fin and Tube Heat Exchanger for Waste Heat Recovery

    DEFF Research Database (Denmark)

    Singh, Shobhana; Sørensen, Kim; Condra, Thomas Joseph

    In the present work, multiphysics numerical modeling is carried out to predict the performance of a liquid-gas fin and tube heat exchanger design. Three-dimensional (3D) steady-state numerical model using commercial software COMSOL based on finite element method (FEM) is developed. The study...... associates conjugate heat transfer phenomenon with the turbulent flow to describe the variable temperature and velocity profile. The performance of heat exchanger design is investigated in terms of overall heat transfer coefficient, Nusselt number, Colburn j-factor, flow resistance factor, and efficiency...... between fin and tube. The present numerical model predicts the performance of the heat exchanger design, therefore, can be applied to existing waste heat recovery systems to improve the overall performance with optimized design and process-dependent parameters....

  2. Final report for the Iowa Livestock Industry Waste Characterization and Methane Recovery Information Dissemination Project

    Energy Technology Data Exchange (ETDEWEB)

    Garrison, M.V.; Richard, Thomas L

    2001-11-13

    This report summarizes analytical methods, characterizes Iowa livestock wastes, determines fossil fuel displacement by methane use, assesses the market potential, and offers recommendations for the implementation of methane recovery technologies.

  3. Lowering operation costs by energy recovery

    Energy Technology Data Exchange (ETDEWEB)

    Wegener, W; Hausmann, H; Hausmann, K H

    1976-01-01

    Heat recovery and the heat sources available as well as possible applications of the heat recovered are discussed. Groundwater, shower water and waste air are considered as energy sources. Energy recovery by means of finned-tube systems and the heat pump, and economic aspects of the techniques are described.

  4. Copper recovery and gold enrichment from waste printed circuit boards by mediated electrochemical oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Fogarasi, Szabolcs [“Babeş-Bolyai” University, Faculty of Chemistry and Chemical Engineering, Department of Chemical Engineering, 11 Arany Janos Street, Cluj-Napoca RO-400028 (Romania); Imre-Lucaci, Florica [“Babeş-Bolyai” University, Interdisciplinary Research Institute on Bio-Nano-Sciences, 42 Treboniu Laurian Street, Cluj-Napoca RO-400271 (Romania); Imre-Lucaci, Árpád, E-mail: aimre@chem.ubbcluj.ro [“Babeş-Bolyai” University, Faculty of Chemistry and Chemical Engineering, Department of Chemical Engineering, 11 Arany Janos Street, Cluj-Napoca RO-400028 (Romania); Ilea, Petru [“Babeş-Bolyai” University, Faculty of Chemistry and Chemical Engineering, Department of Chemical Engineering, 11 Arany Janos Street, Cluj-Napoca RO-400028 (Romania)

    2014-05-01

    Highlights: • We developed a mediated electrochemical process for electronic waste treatment. • We achieved the simultaneous recovery of copper and gold enrichment. • Process scale up was realized based on the optimal values of operating parameters. • The waste does not require mechanical pretreatment in the scaled process. • The process proved to be efficient and eco-friendly as well. - Abstract: The present study aims to develop an eco-friendly chemical–electrochemical process for the simultaneous recovery of copper and separation of a gold rich residue from waste printed circuit boards (WPCBs). The process was carried out by employing two different types of reactors coupled in series: a leaching reactor with a perforated rotating drum, for the dissolution of base metals and a divided electrochemical reactor for the regeneration of the leaching solution with the parallel electrowinning of copper. The process performances were evaluated on the basis of the dissolution efficiency, current efficiency and specific energy consumptions. Finally a process scale up was realized taking into consideration the optimal values of the operating parameters. The laboratory scale leaching plant allowed the recovery of a high purity copper deposit (99.04 wt.%) at a current efficiency of 63.84% and specific energy consumption of 1.75 kW h/kg cooper. The gold concentration in the remained solid residue was 25 times higher than the gold concentration in the initial WPCB samples.

  5. Copper recovery and gold enrichment from waste printed circuit boards by mediated electrochemical oxidation

    International Nuclear Information System (INIS)

    Fogarasi, Szabolcs; Imre-Lucaci, Florica; Imre-Lucaci, Árpád; Ilea, Petru

    2014-01-01

    Highlights: • We developed a mediated electrochemical process for electronic waste treatment. • We achieved the simultaneous recovery of copper and gold enrichment. • Process scale up was realized based on the optimal values of operating parameters. • The waste does not require mechanical pretreatment in the scaled process. • The process proved to be efficient and eco-friendly as well. - Abstract: The present study aims to develop an eco-friendly chemical–electrochemical process for the simultaneous recovery of copper and separation of a gold rich residue from waste printed circuit boards (WPCBs). The process was carried out by employing two different types of reactors coupled in series: a leaching reactor with a perforated rotating drum, for the dissolution of base metals and a divided electrochemical reactor for the regeneration of the leaching solution with the parallel electrowinning of copper. The process performances were evaluated on the basis of the dissolution efficiency, current efficiency and specific energy consumptions. Finally a process scale up was realized taking into consideration the optimal values of the operating parameters. The laboratory scale leaching plant allowed the recovery of a high purity copper deposit (99.04 wt.%) at a current efficiency of 63.84% and specific energy consumption of 1.75 kW h/kg cooper. The gold concentration in the remained solid residue was 25 times higher than the gold concentration in the initial WPCB samples

  6. Application of molten salt oxidation for the minimization and recovery of plutonium-238 contaminated wastes

    International Nuclear Information System (INIS)

    Wishau, R.

    1998-05-01

    Molten salt oxidation (MSO) is proposed as a 238 Pu waste treatment technology that should be developed for volume reduction and recovery of 238 Pu and as an alternative to the transport and permanent disposal of 238 Pu waste to the WIPP repository. In MSO technology, molten sodium carbonate salt at 800--900 C in a reaction vessel acts as a reaction media for wastes. The waste material is destroyed when injected into the molten salt, creating harmless carbon dioxide and steam and a small amount of ash in the spent salt. The spent salt can be treated using aqueous separation methods to reuse the salt and to recover 99.9% of the precious 238 Pu that was in the waste. Tests of MSO technology have shown that the volume of combustible TRU waste can be reduced by a factor of at least twenty. Using this factor the present inventory of 574 TRU drums of 238 Pu contaminated wastes is reduced to 30 drums. Further 238 Pu waste costs of $22 million are avoided from not having to repackage 312 of the 574 drums to a drum total of more than 4,600 drums. MSO combined with aqueous processing of salts will recover approximately 1.7 kilograms of precious 238 Pu valued at 4 million dollars (at $2,500/gram). Thus, installation and use of MSO technology at LANL will result in significant cost savings compared to present plans to transport and dispose 238 Pu TRU waste to the WIPP site. Using a total net present value cost for the MSO project as $4.09 million over a five-year lifetime, the project can pay for itself after either recovery of 1.6 kg of Pu or through volume reduction of 818 drums or a combination of the two. These savings show a positive return on investment

  7. LCA and Cost Analysis of Membrane Bioreactor Systems: Influence of Scale, Population Density, Climate, and Methane Recovery

    Science.gov (United States)

    Future changes in drinking and waste water infrastructure need to incorporate a holistic view of the water service sustainability tradeoffs and potential benefits when considering shifts towards new treatment technology, decentralized systems, energy recovery and reuse of treated...

  8. The feasibility study on supercritical methane Recuperated Brayton Cycle for waste heat recovery

    KAUST Repository

    Dyuisenakhmetov, Aibolat

    2017-05-01

    Recuperated Brayton Cycle (RBC) has attracted the attention of research scientists not only as a possible replacement for the steam cycle at nuclear power plants but also as an efficient bottoming cycle for waste heat recovery and for concentrated solar power. RBC’s compactness and the ease at which it can be integrated into existent power plants for waste heat recovery require few modifications. Methane, carbon dioxide and trifluoromethane are analyzed as possible working fluids. This work shows that it is possible to achieve higher efficiencies using methane under some operating conditions. However, as it turns out, the performance of Recuperated Brayton Cycle should be evaluated based on net output work. When the performance is assessed on the net output work criteria carbon dioxide still proves to be superior to other gases. This work also suggests that piston engines as compressors and expanders may be used instead of rotating turbines since reciprocating pistons have higher isentropic efficiencies.

  9. Multi-objective optimization of organic Rankine cycles for waste heat recovery: Application in an offshore platform

    DEFF Research Database (Denmark)

    Pierobon, Leonardo; Nguyen, Tuong-Van; Larsen, Ulrik

    2013-01-01

    This paper aims at finding the optimal design of MW-size organic Rankine cycles by employing the multi-objective optimization with the genetic algorithm as the optimizer. We consider three objective functions: thermal efficiency, total volume of the system and net present value. The optimization...... for acetone. Other promising working fluids are cyclohexane, hexane and isohexane. The present methodology can be utilized in waste heat recovery applications where a compromise between performance, compactness and economic revenue is required. © 2013 Elsevier Ltd. All rights reserved....

  10. A Thermal Energy Recovery System and its Applications in Building (A Short Comunication

    Directory of Open Access Journals (Sweden)

    Afsane Chavoshani

    2016-01-01

    Full Text Available In this paper a heat recovery system from oil heater as a water heater is proposed and analyzed. The potential of heat recovery is studied technically and economically. A model was built and experiments on it are discussed. Recovery of waste heat from the oil heater stack and its application in building is proven to be economically beneficial. The most part of this apparatus was a double-walled tanks and oil heater stack act as firebox for water heater. This tank with 200 liters volume was made of galvanized iron sheets and painted with black color for adsorption of solar radiation. The tank of water heater was filled with 12-15○C water. Sampling was performed at 8 in the morning to 8 at night during one week. The analysis results show that the heat recovery system is recognized as a well option for the examined residential building from both economic and environmental points of view. With the operation considering optimal economic benefits, cost is reduced by about 50%. With maximizing the environmental advantages, CO2 emissions are decreased.

  11. Prediction of dynamic Rankine Cycle waste heat recovery performance and fuel saving potential in passenger car applications considering interactions with vehicles’ energy management

    International Nuclear Information System (INIS)

    Horst, Tilmann Abbe; Tegethoff, Wilhelm; Eilts, Peter; Koehler, Juergen

    2014-01-01

    Highlights: • Method for evaluating fuel saving potential of vehicle waste heat recovery systems. • Analysis of interactions between waste heat recovery system and vehicle. • Evaluation of fuel saving potential in dynamic motorway driving scenario. • Parameter study for increasing fuel saving potential of integrated system. - Abstract: Waste heat recovery (WHR) by means of a Rankine Cycle is a promising approach for achieving reductions in fuel consumption and, as a result, exhaust emissions of passenger car engines. To find the best compromise between complexity and fuel saving potential, methods for predicting the WHR performance for different system configurations and stationary as well as dynamic driving scenarios are needed. Since WHR systems are usually not included in today’s car concepts, they are mostly designed as add-on systems. As a result their integration may lead to negative interactions due to increased vehicle weight, engine backpressure and cooling demand. These effects have to be considered when evaluating the fuel saving potential. A new approach for predicting WHR performance and fuel saving potential was developed and is presented in this paper. It is based on simple dynamic models of a system for recovering exhaust gas waste heat and its interfaces with the vehicle: the exhaust system for heat input, the on-board electric system for power delivery and the engine cooling system for heat rejection. The models are validated with test bench measurements of the cycle components. A study of fuel saving potential in an exemplary dynamic motorway driving scenario shows the effect of vehicle integration: while the WHR system could improve fuel economy by 3.4%, restrictions in power output due to the architecture of the on-board electric system, package considerations, increased weight, cooling demand and exhaust gas backpressure lead to a reduction of fuel saving potential by 60% to 1.3%. A parameter study reveals that, in addition to weight

  12. Multi-Objective Thermo-Economic Optimization Strategy for ORCs Applied to Subcritical and Transcritical Cycles for Waste Heat Recovery

    Directory of Open Access Journals (Sweden)

    Steven Lecompte

    2015-04-01

    Full Text Available Organic Rankine cycles (ORCs are an established technology to convert waste heat to electricity. Although several commercial implementations exist, there is still considerable potential for thermo-economic optimization. As such, a novel framework for designing optimized ORC systems is proposed based on a multi-objective optimization scheme in combination with financial appraisal in a post-processing step. The suggested methodology provides the flexibility to quickly assess several economic scenarios and this without the need of knowing the complex design procedure. This novel way of optimizing and interpreting results is applied to a waste heat recovery case. Both the transcritical ORC and subcritical ORC are investigated and compared using the suggested optimization strategy.

  13. Waste heat recovery systems for internal combustion engines: classification and benefits

    OpenAIRE

    Marchenko, A.; Samoilenko, D.; Adel Hamzah, Ali; Adel Hamzah, Omar

    2014-01-01

    Recent trend about the best ways of using the deployable sources of energy in to useful work in order to reduce the rate of consumption of fossil fuel as well as pollution. Out of all the available sources, the internal combustion engines are the major consumer of fossil fuel around the globe. The remaining heat is expelled to the environment through exhaust gases and engine cooling systems, resulting in to entropy rise and serious environmental pollution, so it is required to utilized waste ...

  14. Dietary carbohydrate composition can change waste production and biofilter load in recirculating aquaculture systems

    NARCIS (Netherlands)

    Meriac, A.; Eding, E.H.; Schrama, J.W.; Kamstra, A.; Verreth, J.A.J.

    2014-01-01

    This study investigated the effect of dietary carbohydrate composition on the production, recovery and degradability of fecal waste from rainbow trout (Oncorhynchus mykiss) in recirculating aquaculture systems (RAS). Dietary carbohydrate composition was altered by substituting starch with non-starch

  15. Demonstration of high temperature thermoelectric waste heat recovery from exhaust gases of a combustion engine

    Energy Technology Data Exchange (ETDEWEB)

    Trottmann, Matthias; Weidenkaff, Anke; Populoh, Sascha; Brunko, Oliver; Veziridis, Angelika; Bach, Christian; Cabalzar, Urs [Empa, Duebendorf (Switzerland)

    2011-07-01

    The energy efficiency of passenger cars becomes increasingly important due to a growing awareness in terms of climate change and shortages of resources associated with rising fuel prices. In addition to the efforts towards the optimization of the engine's internal efficiency, waste heat recovery is the main objective. In this respect, thermoelectric (TE) devices seem to be suited as heat recuperation systems. Thermoelectric generators allow for direct transformation of thermal into electrical energy. In order to thoroughly investigate this type of recovery system a TE demonstrator was mounted on the muffler of a VW Touran and tested. The waste heat of the exhaust gas was converted into electricity with a conversion rate of {proportional_to}. 3.5%. The limiting factor was the low thermal stability of the commercial modules used in this pre-study to elaborate reference values. Thermoelectric modules based on sustainable and temperature-stable materials are being developed to improve the measured values. A thermoelectric test generator with perovskite-type oxide modules was constructed confirm the function and stability at elevated temperatures. Despite all the advantages of this material class, the TE performance is still to be improved. A quantitative measure of a material's TE performance is the temperature-independent Figure of Merit ZT. ZT increases with decreasing thermal and increasing electrical conductivity. An approach to thermal conductivity reduction is nanostructuring of the material. The Ultrasonic Spray Combustion (USC) technique allows to produce powders with a grain size on the nanoscale and was tested in this study. (orig.)

  16. Comparison of costs for three hypothetical alternative kitchen waste management systems.

    Science.gov (United States)

    Schiettecatte, Wim; Tize, Ronald; De Wever, Heleen

    2014-11-01

    Urban water and waste management continues to be a major challenge, with the Earth's population projected to rise to 9 billion by 2050, with 70% of this population expected to live in cities. A combined treatment of wastewater and the organic fraction of municipal solid waste offers opportunities for improved environmental protection and energy recovery, but the collection and transport of organic wastes must be cost effective. This study compares three alternative kitchen waste collection and transportation systems for a virtual modern urban area with 300,000 residents and a population density of 10,000 persons per square kilometre. Door-to-door collection, being the standard practice in modern urban centres, remains the most economically advantageous at a cost of 263 euros per tonne of kitchen waste. Important drawbacks are the difficult logistics, increased city traffic, air and noise pollution. The quieter, cleaner and more hygienic vacuum transport of kitchen waste comes with a higher cost of 367 euros per tonne, mainly resulting from a higher initial investment cost for the system installation. The third option includes the well-known use of under-sink food waste disposers (often called garbage grinders) that are connected to the kitchen's wastewater piping system, with a total yearly cost of 392 euros per tonne. Important advantages with this system are the clean operation and the current availability of a city-wide sewage conveyance pipeline system. Further research is recommended, for instance the application of a life cycle assessment approach, to more fully compare the advantages and disadvantages of each option. © The Author(s) 2014.

  17. A thermodynamic analysis of waste heat recovery from reciprocating engine power plants by means of Organic Rankine Cycles

    International Nuclear Information System (INIS)

    Uusitalo, Antti; Honkatukia, Juha; Turunen-Saaresti, Teemu; Larjola, Jaakko

    2014-01-01

    Organic Rankine Cycle (ORC) is a Rankine cycle using organic fluid as the working fluid instead of water and steam. The ORC process is a feasible choice in waste heat recovery applications producing electricity from relatively low-temperature waste heat sources or in applications having a rather low power output. Utilizing waste heat from a large high-efficiency reciprocating engine power plant with ORC processes is studied by means of computations. In addition to exhaust gas heat recovery, this study represents and discusses an idea of directly replacing the charge air cooler (CAC) of a large turbocharged engine with an ORC evaporator to utilize the charge air heat in additional power production. A thermodynamic analysis for ORCs was carried out with working fluids toluene, n-pentane, R245fa and cyclohexane. The effect of different ORC process parameters on the process performance are presented and analyzed in order to investigate the heat recovery potential from the exhaust gas and charge air. A simplified feasibility consideration is included by comparing the ratio of the theoretical heat transfer areas needed and the obtained power output from ORC processes. The greatest potential is related to the exhaust gas heat recovery, but in addition also the lower temperature waste heat streams could be utilized to boost the electrical power of the engine power plant. A case study for a large-scale gas-fired engine was carried out showing that the maximum power increase of 11.4% was obtained from the exhaust gas and 2.4% from the charge air heat. - Highlights: • Waste heat recovery potential of reciprocating engines was studied. • Thermodynamic optimization for ORCs was carried out with different fluids. • The utilization of exhaust gas and charge air heat is presented and discussed. • Simplified economic feasibility study was included in the analysis. • Power increase of 11.4% was obtained from exhaust gas and 2.4% from charge air

  18. Agriculture/municipal/industrial waste management and resource recovery feasibility study : renewable energy clusters and improved end-use efficiency : a formula for sustainable development[Prepared for the North Okanagan Waste to Energy Consortium

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-10-15

    The North Okanagan Waste to Energy Consortium initiated a study that evaluated the technical, environmental and economic feasibility of a proposed biomass to renewable energy eco-system, using the technologies of anaerobic digestion (AD), cogeneration and hydroponics in a centralized waste treatment and recovery facility. The Okanagan Valley is well suited for the demonstration plant because of its concentration of food producers and processors and abundance of rich organic waste stream. The agricultural, municipal and industrial waste management consortium consisted of a dairy farm, 5 municipalities and local waste handlers. The consortium proposed to combine several organic waste streams such as dairy manure, slaughterhouse offal and source separated municipal solid waste (MSW) to produce biogas in an anaerobic digester. The methane would be processed into renewable energy (heat and electricity) for a hydroponics barley sprout operation. It is expected that the synergies resulting from this project would increase productivity, end-use efficiency and profitability. This study reviewed the basics of AD technology, technological options and evaluated several technology providers. The type and quantity of waste available in the area was determined through a waste audit and analysis. The potential to market the system by-products locally was also reviewed as well as the general economic viability of a centralized system. The study also evaluated site selection, preliminary design and costing, with reference to proximity to feedstock and markets, access to roads, impacts on neighbours and insurance of minimal environmental impact. 84 refs., 82 figs., 10 appendices.

  19. Environmental system analysis of waste management. Experiences from applications of the ORWARE model

    Energy Technology Data Exchange (ETDEWEB)

    Bjoerklund, Anna

    2000-11-01

    Waste management has gone through a history of shifting problems, demands, and strategies over the years. In contrast to the long prevailing view that the problem could be solved by hiding or moving it, waste is now viewed as a problem ranging from local to global concern, and as being an integral part of several sectors in society. Decisive for this view has been society's increasing complexity and thus the increasing complexity of waste, together with a general development of environmental consciousness, moving from local focus on point emission sources, to regional and global issues of more complex nature. This thesis is about the development and application ORWARE; a model for computer aided environmental systems analysis of municipal waste management. Its origin is the hypothesis that widened perspectives are needed in waste management decision-making to avoid severe sub-optimisation of environmental performance. With a strong foundation in life cycle assessment (LCA), ORWARE aims to cover the environmental impacts over the entire life cycle of waste management. It also performs substance flow analysis (SFA) calculations at a rather detailed level of the system. Applying ORWARE has confirmed the importance of applying systems perspective and of taking into account site specific differences in analysis and planning of waste management, rather than relying on overly simplified solutions. Some findings can be generalised and used as guidelines to reduce environmental impact of waste management. Recovery of material and energy resources from waste generally leads to net reductions in energy use and environmental impact, because of the savings this brings about in other sectors. Waste treatment with low rate of energy and materials recovery should therefore be avoided. The exact choice of technology however depends on what products can be recovered and how they are used. Despite the complexity of the model and a certain degree of user unfriendliness, involved

  20. A new method for recovery of cellulose from lignocellulosic bio-waste: Pile processing.

    Science.gov (United States)

    Tezcan, Erdem; Atıcı, Oya Galioğlu

    2017-12-01

    This paper presents a new delignification method (pile processing) for the recovery of cellulose from lignocellulosic bio-wastes, adapted from heap leaching technology in metallurgy. The method is based on the stacking of cellulosic materials in a pile, irrigation of the pile with aqueous reactive solution from the top, lignin and hemicellulose removal and enrichment of cellulose by the reactive solution while percolation occurs through the bottom of the pile, recirculating the reactive solution after adjusting several values such as chemical concentrations, and allow the system run until the desired time or cellulose purity. Laboratory scale systems were designed using fall leaves (FL) as lignocellulosic waste materials. The ideal condition for FL was noted as: 0.1g solid NaOH addition per gram of FL into the irrigating solution resulting in instant increase in pH to about 13.8, later allowing self-decrease in pH due to delignification over time down to 13.0, at which point another solid NaOH addition was performed. The new method achieved enrichment of cellulose from 30% to 81% and removal of 84% of the lignin that prevents industrial application of lignocellulosic bio-waste using total of 0.3g NaOH and 4ml of water per gram of FL at environmental temperature and pressure. While the stirring reactions used instead of pile processing required the same amount of NaOH, they needed at least 12ml of water and delignification was only 56.1%. Due to its high delignification performance using common and odorless chemicals and simple equipment in mild conditions, the pile processing method has great promise for the industrial evaluation of lignocellulosic bio-waste. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Intelligent design of waste heat recovery systems using thermoelectric generators and optimization tools

    DEFF Research Database (Denmark)

    Goudarzi, A. M.; Mozaffari, Ahmad; Samadian, Pendar

    2014-01-01

    design to maximize the electricity demand of Damavand power plant as the biggest thermal system in Middle East sited in Iran. The idea of designing is laid behind applying a number of thermoelectric modules within the condenser in order to recover the waste heat of the thermal systems. Besides......Optimal design of thermal systems that effectively use energy resources is one of the foremost challenges that researchers almost confront. Until now, several researches have been made to enhance the performance of major thermal systems. In this investigation, the authors try to make a conceptual...

  2. Building waste management core indicators through Spatial Material Flow Analysis: Net recovery and transport intensity indexes

    Energy Technology Data Exchange (ETDEWEB)

    Font Vivanco, David, E-mail: font@cml.leidenuniv.nl [Institut de Ciencia i Tecnologia Ambientals (ICTA), Departament d' Enginyeria Quimica, Universitat Autonoma de Barcelona (UAB), 08193 Bellaterra, Barcelona (Spain); Institute of Environmental Sciences (CML), Leiden University, P.O. Box 9518, 2300 RA Leiden (Netherlands); Puig Ventosa, Ignasi [ENT Environment and Management, Carrer Sant Joan 39, First Floor, 08800 Vilanova i la Geltru, Barcelona (Spain); Gabarrell Durany, Xavier [Institut de Ciencia i Tecnologia Ambientals (ICTA), Departament d' Enginyeria Quimica, Universitat Autonoma de Barcelona (UAB), 08193 Bellaterra, Barcelona (Spain)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer Sustainability and proximity principles have a key role in waste management. Black-Right-Pointing-Pointer Core indicators are needed in order to quantify and evaluate them. Black-Right-Pointing-Pointer A systematic, step-by-step approach is developed in this study for their development. Black-Right-Pointing-Pointer Transport may play a significant role in terms of environmental and economic costs. Black-Right-Pointing-Pointer Policy action is required in order to advance in the consecution of these principles. - Abstract: In this paper, the material and spatial characterization of the flows within a municipal solid waste (MSW) management system are combined through a Network-Based Spatial Material Flow Analysis. Using this information, two core indicators are developed for the bio-waste fraction, the Net Recovery Index (NRI) and the Transport Intensity Index (TII), which are aimed at assessing progress towards policy-related sustainable MSW management strategies and objectives. The NRI approaches the capacity of a MSW management system for converting waste into resources through a systematic metabolic approach, whereas the TII addresses efficiency in terms of the transport requirements to manage a specific waste flow throughout the entire MSW management life cycle. Therefore, both indicators could be useful in assessing key MSW management policy strategies, such as the consecution of higher recycling levels (sustainability principle) or the minimization of transport by locating treatment facilities closer to generation sources (proximity principle). To apply this methodological approach, the bio-waste management system of the region of Catalonia (Spain) has been chosen as a case study. Results show the adequacy of both indicators for identifying those points within the system with higher capacity to compromise its environmental, economic and social performance and therefore establishing clear targets for policy

  3. Recovery of heavy metals from intractable wastes: A thermal approach

    Energy Technology Data Exchange (ETDEWEB)

    Kirk, D.W. [Univ. of Toronto (Canada)

    1996-12-31

    The generation of industrial solid wastes containing leachable species of environmental concern is a problem for developing and developed nations alike. These materials arise from direct processing of mineral ores, from production of metals and minerals, from manufacturing operations, and from air and water pollution treatment processes. The general characteristics that make these wastes intractable is that their content of hazardous species is not easily liberated from the waste yet is not bound so tightly that they are safe for landfill disposal or industrial use. The approach taken in this work is a thermal treatment that separates the inorganic contaminants from the wastes. The objective is to provide recovery and reuse of both the residual solids and liberated contaminants. The results from operating this technique using two very different types of waste are described. The reasons that the process will work for a wide variety of wastes are explored. By using the knowledge of the thermodynamic stability of the phases found from the characterization analyses, a thermal regime was found that allowed separation of the contaminants without capturing the matrix materials. Bench scale studies were carried out using a tube furnace. Samples of the wastes were heated in crucible boats from 750 to 1150{degrees}C in the presence of various chlorinating agents. The offgas contained 90{sup +}% of the targeted contaminants despite their complex matrix form. The residue was free of contamination. As a result of the efficient concentrating mechanism of the process, the contaminants in the offgas solids are attractive for reuse in metallurgical industries. As an additional benefit, the organic contaminants of the residues were eliminated. Dioxin traces in the solids before treatment were absent after treatment. 15 refs., 4 figs., 4 tabs.

  4. Life-cycle modelling of waste management in Europe: tools, climate change and waste prevention

    DEFF Research Database (Denmark)

    Gentil, Emmanuel

    . The outcome of the study indicates that, despite a common ‘minimum’ regulatory regime, the performance of waste management systems is very different among member states. The best performing member states are the nations which have promoted efficient material and energy recovery, leading to significant...... operated by each member state (structural indicators). Managing waste appropriately generates environmental benefits, leading to the comforting, and potentially misleading impression that waste generation is acceptable, as long as environmental value is gained from the recovery of materials and energy....... However, it is quite clear that, if waste is not produced in the first place, through waste prevention activities, waste management impacts and benefits cease to exist. Problem solved. The issue is that a ‘waste free’ or a ‘zero waste’ society is a purely abstract concept that has little value...

  5. The ultrasonically assisted metals recovery treatment of printed circuit board waste sludge by leaching separation.

    Science.gov (United States)

    Xie, Fengchun; Li, Haiying; Ma, Yang; Li, Chuncheng; Cai, Tingting; Huang, Zhiyuan; Yuan, Gaoqing

    2009-10-15

    This paper provides a practical technique that realized industrial scale copper and iron separation from printed circuit board (PCB) waste sludge by ultrasonically assisted acid leaching in a low cost, low energy consumption and zero discharge of wastes manner. The separation efficiencies of copper and iron from acid leaching with assistance of ultrasound were compared with the one without assistance of ultrasound and the effects of the leaching procedure, pH value, and ultrasonic strength have been investigated in the paper. With the appropriate leaching procedure, a final pH of 3.0, an ultrasonic generator power of 160 W (in 1l tank), leaching time of 60 min, leaching efficiencies of copper and iron had reached 97.83% and 1.23%, respectively. Therefore the separation of copper and iron in PCB waste sludge was virtually achieved. The lab results had been successfully applied to the industrial scaled applications in a heavy metal recovery plant in city of Huizhou, China for more than two years. It has great potentials to be used in even the broad metal recovery practices.

  6. HWMA/RCRA Closure Plan for the TRA Fluorinel Dissolution Process Mockup and Gamma Facilities Waste System

    International Nuclear Information System (INIS)

    K. Winterholler

    2007-01-01

    This Hazardous Waste Management Act/Resource Conservation and Recovery Act closure plan was developed for the Test Reactor Area Fluorinel Dissolution Process Mockup and Gamma Facilities Waste System, located in Building TRA-641 at the Reactor Technology Complex (RTC), Idaho National Laboratory Site, to meet a further milestone established under the Voluntary Consent Order SITE-TANK-005 Action Plan for Tank System TRA-009. The tank system to be closed is identified as VCO-SITE-TANK-005 Tank System TRA-009. This closure plan presents the closure performance standards and methods for achieving those standards

  7. Waste Heat Recovery from a High Temperature Diesel Engine

    Science.gov (United States)

    Adler, Jonas E.

    Government-mandated improvements in fuel economy and emissions from internal combustion engines (ICEs) are driving innovation in engine efficiency. Though incremental efficiency gains have been achieved, most combustion engines are still only 30-40% efficient at best, with most of the remaining fuel energy being rejected to the environment as waste heat through engine coolant and exhaust gases. Attempts have been made to harness this waste heat and use it to drive a Rankine cycle and produce additional work to improve efficiency. Research on waste heat recovery (WHR) demonstrates that it is possible to improve overall efficiency by converting wasted heat into usable work, but relative gains in overall efficiency are typically minimal ( 5-8%) and often do not justify the cost and space requirements of a WHR system. The primary limitation of the current state-of-the-art in WHR is the low temperature of the engine coolant ( 90 °C), which minimizes the WHR from a heat source that represents between 20% and 30% of the fuel energy. The current research proposes increasing the engine coolant temperature to improve the utilization of coolant waste heat as one possible path to achieving greater WHR system effectiveness. An experiment was performed to evaluate the effects of running a diesel engine at elevated coolant temperatures and to estimate the efficiency benefits. An energy balance was performed on a modified 3-cylinder diesel engine at six different coolant temperatures (90 °C, 100 °C, 125 °C, 150 °C, 175 °C, and 200 °C) to determine the change in quantity and quality of waste heat as the coolant temperature increased. The waste heat was measured using the flow rates and temperature differences of the coolant, engine oil, and exhaust flow streams into and out of the engine. Custom cooling and engine oil systems were fabricated to provide adequate adjustment to achieve target coolant and oil temperatures and large enough temperature differences across the

  8. Effects of sludge recirculation rate and mixing time on performance of a prototype single-stage anaerobic digester for conversion of food wastes to biogas and energy recovery.

    Science.gov (United States)

    Ratanatamskul, Chavalit; Saleart, Tawinan

    2016-04-01

    Food wastes have been recognized as the largest waste stream and accounts for 39.25 % of total municipal solid waste in Thailand. Chulalongkorn University has participated in the program of in situ energy recovery from food wastes under the Ministry of Energy (MOE), Thailand. This research aims to develop a prototype single-stage anaerobic digestion system for biogas production and energy recovery from food wastes inside Chulalongkorn University. Here, the effects of sludge recirculation rate and mixing time were investigated as the main key parameters for the system design and operation. From the results obtained in this study, it was found that the sludge recirculation rate of 100 % and the mixing time of 60 min per day were the most suitable design parameters to achieve high efficiencies in terms of chemical oxygen demand (COD), total solids (TS), and total volatile solid (TVS) removal and also biogas production by this prototype anaerobic digester. The obtained biogas production was found to be 0.71 m(3)/kg COD and the composition of methane was 61.6 %. Moreover, the efficiencies of COD removal were as high as 82.9 % and TVS removal could reach 83.9 % at the optimal condition. Therefore, the developed prototype single-stage anaerobic digester can be highly promising for university canteen application to recover energy from food wastes via biogas production.

  9. Prospects for energy recovery during hydrothermal and biological processing of waste biomass.

    Science.gov (United States)

    Gerber Van Doren, Léda; Posmanik, Roy; Bicalho, Felipe A; Tester, Jefferson W; Sills, Deborah L

    2017-02-01

    Thermochemical and biological processes represent promising technologies for converting wet biomasses, such as animal manure, organic waste, or algae, to energy. To convert biomass to energy and bio-chemicals in an economical manner, internal energy recovery should be maximized to reduce the use of external heat and power. In this study, two conversion pathways that couple hydrothermal liquefaction with anaerobic digestion or catalytic hydrothermal gasification were compared. Each of these platforms is followed by two alternative processes for gas utilization: 1) combined heat and power; and 2) combustion in a boiler. Pinch analysis was applied to integrate thermal streams among unit processes and improve the overall system efficiency. A techno-economic analysis was conducted to compare the feasibility of the four modeled scenarios under different market conditions. Our results show that a systems approach designed to recover internal heat and power can reduce external energy demands and increase the overall process sustainability. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Waste flow analysis and life cycle assessment of integrated waste management systems as planning tools: Application to optimise the system of the City of Bologna.

    Science.gov (United States)

    Tunesi, Simonetta; Baroni, Sergio; Boarini, Sandro

    2016-09-01

    The results of this case study are used to argue that waste management planning should follow a detailed process, adequately confronting the complexity of the waste management problems and the specificity of each urban area and of regional/national situations. To support the development or completion of integrated waste management systems, this article proposes a planning method based on: (1) the detailed analysis of waste flows and (2) the application of a life cycle assessment to compare alternative scenarios and optimise solutions. The evolution of the City of Bologna waste management system is used to show how this approach can be applied to assess which elements improve environmental performance. The assessment of the contribution of each waste management phase in the Bologna integrated waste management system has proven that the changes applied from 2013 to 2017 result in a significant improvement of the environmental performance mainly as a consequence of the optimised integration between materials and energy recovery: Global Warming Potential at 100 years (GWP100) diminishes from 21,949 to -11,169 t CO2-eq y(-1) and abiotic resources depletion from -403 to -520 t antimony-eq. y(-1) This study analyses at great detail the collection phase. Outcomes provide specific operational recommendations to policy makers, showing the: (a) relevance of the choice of the materials forming the bags for 'door to door' collection (for non-recycled low-density polyethylene bags 22 kg CO2-eq (tonne of waste)(-1)); (b) relatively low environmental impacts associated with underground tanks (3.9 kg CO2-eq (tonne of waste)(-1)); (c) relatively low impact of big street containers with respect to plastic bags (2.6 kg CO2-eq. (tonne of waste)(-1)). © The Author(s) 2016.

  11. Separate collection of household food waste for anaerobic degradation – Comparison of different techniques from a systems perspective

    International Nuclear Information System (INIS)

    Bernstad, A.; Cour Jansen, J. la

    2012-01-01

    Highlight: ► Four modern and innovative systems for household food waste collection are compared. ► Direct emissions and resource use were based on full-scale data. ► Conservation of nutrients/energy content over the system was considered. ► Systems with high energy/nutrient recovery are most environmentally beneficial. - Abstract: Four systems for household food waste collection are compared in relation the environmental impact categories eutrophication potential, acidification potential, global warming potential as well as energy use. Also, a hotspot analysis is performed in order to suggest improvements in each of the compared collection systems. Separate collection of household food waste in paper bags (with and without drying prior to collection) with use of kitchen grinders and with use of vacuum system in kitchen sinks were compared. In all cases, food waste was used for anaerobic digestion with energy and nutrient recovery in all cases. Compared systems all resulted in net avoidance of assessed environmental impact categories; eutrophication potential (−0.1 to −2.4 kg NO 3 - eq/ton food waste), acidification potential (−0.4 to −1.0 kg SO 2 - eq/ton food waste), global warming potential (−790 to −960 kg CO 2 - eq/ton food waste) and primary energy use (−1.7 to −3.6 GJ/ton food waste). Collection with vacuum system results in the largest net avoidance of primary energy use, while disposal of food waste in paper bags for decentralized drying before collection result in a larger net avoidance of global warming, eutrophication and acidification. However, both these systems not have been taken into use in large scale systems yet and further investigations are needed in order to confirm the outcomes from the comparison. Ranking of scenarios differ largely if considering only emissions in the foreground system, indicating the importance of taking also downstream emissions into consideration when comparing different collection systems. The

  12. Final report for the Iowa Livestock Industry Waste Characterization and Methane Recovery Information Dissemination Project; FINAL

    International Nuclear Information System (INIS)

    Garrison, M.V.; Richard, Thomas L

    2001-01-01

    This report summarizes analytical methods, characterizes Iowa livestock wastes, determines fossil fuel displacement by methane use, assesses the market potential, and offers recommendations for the implementation of methane recovery technologies

  13. GIS-based planning system for managing the flow of construction and demolition waste in Brazil.

    Science.gov (United States)

    Paz, Diogo Henrique Fernandes da; Lafayette, Kalinny Patrícia Vaz; Sobral, Maria do Carmo

    2018-05-01

    The objective of this article was to plan a network for municipal management of construction and demolition waste in Brazil with the assistance of a geographic information system, using the city of Recife as a case study. The methodology was carried out in three stages. The first was to map the illegal construction and demolition of waste disposal points across Recife and classify the waste according to its recyclability. In sequence, a method for indicating suitable areas for installation of voluntary delivery points, for small waste generators, are presented. Finally, a method for indicating suitable areas for the installation of trans-shipment and waste sorting areas, developed for large generators, is presented. The results show that a geographic information system is an essential tool in the planning of municipal construction and demolition waste management, in order to facilitate the spatial analysis and control the generation, sorting, collection, transportation, and final destination of construction and demolition waste, increasing the rate of recovery and recycling of materials.

  14. Potencial management of waste phosphogypsum with particular focus on recovery of rare earth metals

    Directory of Open Access Journals (Sweden)

    Podbiera-Matysik Kinga

    2015-03-01

    Full Text Available Phosphogypsum is a noxious industrial waste contributing to global environmental and economic problems. This publication focuses above all on phosphogypsum resulting from the processing of apatite as a phosphorus bearing compound, since it contains considerable amounts of lanthanides due to its magma origin. The possibilities of its waste-free processing are large, however they require the application of suitable technologies, frequently expensive ones, and allowing for the individual characteristics of the given waste. The research works conducted so far confirm the possibility of applying phosphogypsum for the recovery of lanthanides, and the process enhances the removal of remaining impurities, thanks to which the purified calcium sulphate (gypsum may find application for the production of construction materials.

  15. Application of molten salt oxidation for the minimization and recovery of plutonium-238 contaminated wastes

    Energy Technology Data Exchange (ETDEWEB)

    Wishau, R.

    1998-05-01

    Molten salt oxidation (MSO) is proposed as a {sup 238}Pu waste treatment technology that should be developed for volume reduction and recovery of {sup 238}Pu and as an alternative to the transport and permanent disposal of {sup 238}Pu waste to the WIPP repository. In MSO technology, molten sodium carbonate salt at 800--900 C in a reaction vessel acts as a reaction media for wastes. The waste material is destroyed when injected into the molten salt, creating harmless carbon dioxide and steam and a small amount of ash in the spent salt. The spent salt can be treated using aqueous separation methods to reuse the salt and to recover 99.9% of the precious {sup 238}Pu that was in the waste. Tests of MSO technology have shown that the volume of combustible TRU waste can be reduced by a factor of at least twenty. Using this factor the present inventory of 574 TRU drums of {sup 238}Pu contaminated wastes is reduced to 30 drums. Further {sup 238}Pu waste costs of $22 million are avoided from not having to repackage 312 of the 574 drums to a drum total of more than 4,600 drums. MSO combined with aqueous processing of salts will recover approximately 1.7 kilograms of precious {sup 238}Pu valued at 4 million dollars (at $2,500/gram). Thus, installation and use of MSO technology at LANL will result in significant cost savings compared to present plans to transport and dispose {sup 238}Pu TRU waste to the WIPP site. Using a total net present value cost for the MSO project as $4.09 million over a five-year lifetime, the project can pay for itself after either recovery of 1.6 kg of Pu or through volume reduction of 818 drums or a combination of the two. These savings show a positive return on investment.

  16. Activation of bentonite to remove the chromium from waste water produced by panning industry, and studying the chromium recovery efficiency

    International Nuclear Information System (INIS)

    Abbasi, S.; Wahba, H.; AL-Masri, M.S.

    2010-01-01

    The fast development of tanning industry led to an increase in environmental problems resulting from discharging its wastes to the surrounding environment. Thus solving this problem became one of the most important aims that the researchers work on. The chromium content of the industrial water wastes of the tanning industry considered as the main pollutant for the environment. The Aleppo Bentonite is used in early research to remove the chromium from the industrial waste water.The current research aims to find a method to activate the Aleppo Bentonite in order to increase the effective removal of chromium from the industrial waste water which is produced by tanning industry, as well as to specify the optimal conditions for chromium recovery.This study used the Aleppo Bentonite, whose origin is Tal Ajar-Aleppo to study the activation aspects using Sulfuric Acid, Hydrochloric Acid and Nitric Acid, in addition to study the recovery aspects using the same acids and hydrogen peroxide and to specify the optimal conditions for chromium recovery through applying some experiments based on three main factors: concentration, settling time and temperature.It was observed from the applied experiments that it is possible to recover chromium from Bentonite efficiently up to (80% - 90%) by treating the Bentonite with hydrogen peroxide(33% concentration) at room temperature, or by treating it with hydrogen peroxide(8.25% concentration) at 75 o C, while the settling time factor proved that full recovery of chromium is obtained during the first hour, and increasing the time factor does not affect the efficiency of chromium recovery. (author)

  17. Study of mixtures based on hydrocarbons used in ORC (Organic Rankine Cycle) for engine waste heat recovery

    International Nuclear Information System (INIS)

    Shu, Gequn; Gao, Yuanyuan; Tian, Hua; Wei, Haiqiao; Liang, Xingyu

    2014-01-01

    For high temperature ORC (Organic Rankine Cycle) used in engine waste heat recovery, it's very critical to select a high temperature working fluid. HCs (Hydrocarbons) usually have excellent cycle performance, but the flammability limits their practical application. Considering that some retardants can be used to suppress flammability, the paper presents an application of mixtures based on hydrocarbons blending with refrigerant retardants to engine waste heat ORC. Three pure hydrocarbons (cyclopentane, cyclohexane, benzene) and two retardants (R11, R123) are selected for combination. Thermal efficiency and exergy loss are selected as the main objective functions. Based on thermodynamic model, the effects of retardants mass fraction, evaporation temperature and IHE (internal heat exchanger) are investigated. Results show that zeotropic mixtures do have higher thermal efficiency and lower exergy loss than pure fluids, at a certain mixture ratio. There exists the OMR (optimal mixture ratio) for different mixtures, and it changes with the evaporation temperature. When adding IHE to system, cycle performance could be obviously improved, and for benzene/R11 (0.7/0.3), the efficiency growth is about 7.12%∼9.72%. Using it, the maximum thermal efficiency of the system can achieve 16.7%, and minimum exergy loss is only 30.76 kW. - Highlights: • A theoretical analysis of Organic Rankine Cycle for engine exhaust heat recovery is proposed. • Mixtures based on hydrocarbons as working fluids have been suggested. • Effects of the IHE (internal heat exchanger) on ORC system are investigated. • OMR (Optimal mixture ratio) changes with the evaporation temperature. • Using the system, maximum thermal efficiency can achieve 16.7%

  18. Integrated refinery waste management

    Energy Technology Data Exchange (ETDEWEB)

    Shieh, Y -S [ETG Environmental, Inc., Blue Bell, PA (US); Sheehan, W J [Separation and Recovery Systems, Inc., Irvine, CA (US)

    1992-01-01

    In response to the RCRA land ban regulations and TC rule promulgated by the U.S. Federal Environmental Protection Agency (EPA) in 1988-1990, an Integrated Refinery Waste Management (IRWM) program has been developed to provide cost-effective solutions to petroleum industry customers. The goal of IRWM is to provide technology based remediation treatment services to manage sludges and wastewaters generated from the oil refining processes, soils contaminated with petroleum distillates and groundwater contaminated with fuels. Resource recovery, volume reduction and waste minimization are the primary choices to mitigate environmental problems. Oil recovery has been performed through phase separation (such as centrifugation and filtration) and heating of heavy oils. Volume reduction is achieved by dewatering systems such as centrifuges and filter presses, and low temperature thermal treatment. Waste minimization can be accomplished by bioremediation and resource recovery through a cement kiln. (Author).

  19. Economic assessment of a proposed integrated resource recovery facility

    International Nuclear Information System (INIS)

    Burnett, J.S.

    1993-01-01

    This report comprises an initial economic and market appraisal of the proposals made by Materials Recycling Management (MRM) Ltd for a commercial plant engaged in waste treatment and energy recovery. The MRM design is an integrated waste handling system for commercial and industrial non hazardous wastes and civic amenity wastes. After primary separation into three selected broad waste categories, wastes are processed in the plant to recover basic recyclables such as paper, timber, plastics and metals. A quantity of material is directed for composting and the remainder converted into a fuel and combusted on site for energy recovery. Wastes unworthy of processing would be sent for disposal. A basic technical review has been undertaken. The focus of this review has been on the main processing plant where materials are segregated and the fuel and compost produced. (author)

  20. Laboratory-scale membrane up-concentration and co-anaerobic digestion for energy recovery from sewage and kitchen waste.

    Science.gov (United States)

    Tuyet, Nguyen Thi; Dan, Nguyen Phuoc; Vu, Nguyen Cong; Trung, Nguyen Le Hoang; Thanh, Bui Xuan; De Wever, Heleen; Goemans, Marcel; Diels, Ludo

    2016-01-01

    This study assessed an alternative concept for co-treatment of sewage and organic kitchen waste in Vietnam. The goal was to apply direct membrane filtration for sewage treatment to generate a permeate that is suitable for discharge. The obtained chemical oxygen demand (COD) concentrations in the permeate of ultrafiltration tests were indeed under the limit value (50 mg/L) of the local municipal discharge standards. The COD of the concentrate was 5.4 times higher than that of the initial feed. These concentrated organics were then co-digested with organic kitchen wastes at an organic loading rate of 2.0 kg VS/m(3).d. The volumetric biogas production of the digester was 1.94 ± 0.34 m(3)/m(3).d. The recovered carbon, in terms of methane gas, accounted for 50% of the total carbon input of the integrated system. Consequently, an electrical production of 64 Wh/capita/d can be obtained when applying the proposed technology with the current wastes generated in Ho Chi Minh City. Thus, it is an approach with great potential in terms of energy recovery and waste treatment.

  1. Energy implications of the thermal recovery of biodegradable municipal waste materials in the United Kingdom

    International Nuclear Information System (INIS)

    Burnley, Stephen; Phillips, Rhiannon; Coleman, Terry; Rampling, Terence

    2011-01-01

    Highlights: → Energy balances were calculated for the thermal treatment of biodegradable wastes. → For wood and RDF, combustion in dedicated facilities was the best option. → For paper, garden and food wastes and mixed waste incineration was the best option. → For low moisture paper, gasification provided the optimum solution. - Abstract: Waste management policies and legislation in many developed countries call for a reduction in the quantity of biodegradable waste landfilled. Anaerobic digestion, combustion and gasification are options for managing biodegradable waste while generating renewable energy. However, very little research has been carried to establish the overall energy balance of the collection, preparation and energy recovery processes for different types of wastes. Without this information, it is impossible to determine the optimum method for managing a particular waste to recover renewable energy. In this study, energy balances were carried out for the thermal processing of food waste, garden waste, wood, waste paper and the non-recyclable fraction of municipal waste. For all of these wastes, combustion in dedicated facilities or incineration with the municipal waste stream was the most energy-advantageous option. However, we identified a lack of reliable information on the energy consumed in collecting individual wastes and preparing the wastes for thermal processing. There was also little reliable information on the performance and efficiency of anaerobic digestion and gasification facilities for waste.

  2. Uses and abuses of recovery: implementing recovery-oriented practices in mental health systems

    Science.gov (United States)

    Slade, Mike; Amering, Michaela; Farkas, Marianne; Hamilton, Bridget; O'Hagan, Mary; Panther, Graham; Perkins, Rachel; Shepherd, Geoff; Tse, Samson; Whitley, Rob

    2014-01-01

    An understanding of recovery as a personal and subjective experience has emerged within mental health systems. This meaning of recovery now underpins mental health policy in many countries. Developing a focus on this type of recovery will involve transformation within mental health systems. Human systems do not easily transform. In this paper, we identify seven mis-uses (“abuses”) of the concept of recovery: recovery is the latest model; recovery does not apply to “my” patients; services can make people recover through effective treatment; compulsory detention and treatment aid recovery; a recovery orientation means closing services; recovery is about making people independent and normal; and contributing to society happens only after the person is recovered. We then identify ten empirically-validated interventions which support recovery, by targeting key recovery processes of connectedness, hope, identity, meaning and empowerment (the CHIME framework). The ten interventions are peer support workers, advance directives, wellness recovery action planning, illness management and recovery, REFOCUS, strengths model, recovery colleges or recovery education programs, individual placement and support, supported housing, and mental health trialogues. Finally, three scientific challenges are identified: broadening cultural understandings of recovery, implementing organizational transformation, and promoting citizenship. PMID:24497237

  3. Greenhouse gas emission mitigation relevant to changes in municipal solid waste management system.

    Science.gov (United States)

    Pikoń, Krzysztof; Gaska, Krzysztof

    2010-07-01

    Standard methods for assessing the environmental impact of waste management systems are needed to underpin the development and implementation of sustainable waste management practice. Life cycle assessment (LCA) is a tool for comprehensively ensuring such assessment and covers all impacts associated with waste management. LCA is often called "from cradle to grave" analysis. This paper integrates information on the greenhouse gas (GHG) implications of various management options for some of the most common materials in municipal solid waste (MSW). Different waste treatment options for MSW were studied in a system analysis. Different combinations of recycling (cardboard, plastics, glass, metals), biological treatment (composting), and incineration as well as land-filling were studied. The index of environmental burden in the global warming impact category was calculated. The calculations are based on LCA methodology. All emissions taking place in the whole life cycle system were taken into account. The analysis included "own emissions," or emissions from the system at all stages of the life cycle, and "linked emissions," or emissions from other sources linked with the system in an indirect way. Avoided emissions caused by recycling and energy recovery were included in the analysis. Displaced emissions of GHGs originate from the substitution of energy or materials derived from waste for alternative sources. The complex analysis of the environmental impact of municipal waste management systems before and after application of changes in MSW systems according to European Union regulations is presented in this paper. The evaluation is made for MSW systems in Poland.

  4. WASTE TREATMENT BUILDING SYSTEM DESCRIPTION DOCUMENT

    Energy Technology Data Exchange (ETDEWEB)

    F. Habashi

    2000-06-22

    The Waste Treatment Building System provides the space, layout, structures, and embedded subsystems that support the processing of low-level liquid and solid radioactive waste generated within the Monitored Geologic Repository (MGR). The activities conducted in the Waste Treatment Building include sorting, volume reduction, and packaging of dry waste, and collecting, processing, solidification, and packaging of liquid waste. The Waste Treatment Building System is located on the surface within the protected area of the MGR. The Waste Treatment Building System helps maintain a suitable environment for the waste processing and protects the systems within the Waste Treatment Building (WTB) from most of the natural and induced environments. The WTB also confines contaminants and provides radiological protection to personnel. In addition to the waste processing operations, the Waste Treatment Building System provides space and layout for staging of packaged waste for shipment, industrial and radiological safety systems, control and monitoring of operations, safeguards and security systems, and fire protection, ventilation and utilities systems. The Waste Treatment Building System also provides the required space and layout for maintenance activities, tool storage, and administrative facilities. The Waste Treatment Building System integrates waste processing systems within its protective structure to support the throughput rates established for the MGR. The Waste Treatment Building System also provides shielding, layout, and other design features to help limit personnel radiation exposures to levels which are as low as is reasonably achievable (ALARA). The Waste Treatment Building System interfaces with the Site Generated Radiological Waste Handling System, and with other MGR systems that support the waste processing operations. The Waste Treatment Building System interfaces with the General Site Transportation System, Site Communications System, Site Water System, MGR

  5. WASTE TREATMENT BUILDING SYSTEM DESCRIPTION DOCUMENT

    International Nuclear Information System (INIS)

    Habashi, F.

    2000-01-01

    The Waste Treatment Building System provides the space, layout, structures, and embedded subsystems that support the processing of low-level liquid and solid radioactive waste generated within the Monitored Geologic Repository (MGR). The activities conducted in the Waste Treatment Building include sorting, volume reduction, and packaging of dry waste, and collecting, processing, solidification, and packaging of liquid waste. The Waste Treatment Building System is located on the surface within the protected area of the MGR. The Waste Treatment Building System helps maintain a suitable environment for the waste processing and protects the systems within the Waste Treatment Building (WTB) from most of the natural and induced environments. The WTB also confines contaminants and provides radiological protection to personnel. In addition to the waste processing operations, the Waste Treatment Building System provides space and layout for staging of packaged waste for shipment, industrial and radiological safety systems, control and monitoring of operations, safeguards and security systems, and fire protection, ventilation and utilities systems. The Waste Treatment Building System also provides the required space and layout for maintenance activities, tool storage, and administrative facilities. The Waste Treatment Building System integrates waste processing systems within its protective structure to support the throughput rates established for the MGR. The Waste Treatment Building System also provides shielding, layout, and other design features to help limit personnel radiation exposures to levels which are as low as is reasonably achievable (ALARA). The Waste Treatment Building System interfaces with the Site Generated Radiological Waste Handling System, and with other MGR systems that support the waste processing operations. The Waste Treatment Building System interfaces with the General Site Transportation System, Site Communications System, Site Water System, MGR

  6. Recovery of precious metals from waste materials by the method of flotation process

    Directory of Open Access Journals (Sweden)

    B. Oleksiak

    2013-01-01

    Full Text Available The article presents the investigation results upon recovery of precious metals from electronics waste and used ceramic catalytic converters. Various frothing agents which generate stable and abundant foam as well as collectors and pH regulators have been used in the investigations. The tests were conducted with the use of laboratory flotation device.

  7. Methods for the Evaluation of Waste Treatment Processes

    Directory of Open Access Journals (Sweden)

    Hans-Joachim Gehrmann

    2017-01-01

    Full Text Available Decision makers for waste management are confronted with the problem of selecting the most economic, environmental, and socially acceptable waste treatment process. This paper elucidates evaluation methods for waste treatment processes for the comparison of ecological and economic aspects such as material flow analysis, statistical entropy analysis, energetic and exergetic assessment, cumulative energy demand, and life cycle assessment. The work is based on the VDI guideline 3925. A comparison of two thermal waste treatment plants with different process designs and energy recovery systems was performed with the described evaluation methods. The results are mainly influenced by the type of energy recovery, where the waste-to-energy plant providing district heat and process steam emerged to be beneficial in most aspects. Material recovery options from waste incineration were evaluated according to sustainability targets, such as saving of resources and environmental protection.

  8. Potentials and limitations of energy recovery from municipal solid waste in Vietnam

    Energy Technology Data Exchange (ETDEWEB)

    Schulenburg, Hong Giang

    2012-11-01

    The major aim of study is the evaluation of the potentials and limitations of energy recovery from MSW in Vietnam through a comparative assessment of the climate change impacts (via CO2-eq.) among waste-to-energy (WtE) options in order to select the suitable technique for waste management. Recovered energy by these waste management options is assumed to replace the energy from fossil fuels-based sources, including three power possibilities. A survey on national legal and institutional framework for solid waste management was therefore undertaken to point out the strength and weakness and suggest the developing and improvement policies in this field. A view on economic benefit is also one important objective and it represented in terms of ''CO2- Avoidance Cost'' among different investment options. Sensitivity analysis has been carried out with regard to the optimum technical parameters and the change of energy mix in 2020-2030 in order to assess the variations of overall GHGs impacts in Vietnam. Due to waste composition, the energy mix and legal framework on solid waste management at national level are not robust, therefore the outcomes of this study do not aim to select the best waste management approach or to pose the Vietnamese waste managers or decision makers under pressure. Instead, it endeavors to indicate the potential of GHGs savings and the economic benefits that could be gained by introducing WtE practices. It also aims to suggest the improvement of national legal framework in solid waste management and energy development plan in order to transfer the technical knowledge and experience on WtE technology from developed countries to Vietnam.

  9. Life-cycle-assessment of the historical development of air pollution control and energy recovery in waste incineration

    DEFF Research Database (Denmark)

    Damgaard, Anders; Riber, C.; Fruergaard, Thilde

    2010-01-01

    Incineration of municipal solid waste is a debated waste management technology. In some countries it is the main waste management option whereas in other countries it has been disregarded. The main discussion point on waste incineration is the release of air emissions from the combustion...... impacts. With regards to the toxic impact categories, emissions from the waste incineration process were always larger than those from the avoided energy production based on natural gas. The results shows that the potential environmental impacts from air emissions have decreased drastically during...... of the waste, but also the energy recovery efficiency has a large importance. The historical development of air pollution control in waste incineration was studied through life-cycle-assessment modelling of eight different air pollution control technologies. The results showed a drastic reduction...

  10. Integrated computer-aided framework for chemical product and process application design and optimization for waste heat recovery

    DEFF Research Database (Denmark)

    Cignitti, Stefano; Woodley, John M.; Abildskov, Jens

    2017-01-01

    This contribution presents an integrated framework for product-process design. The framework integrates the two design problems into one and finds the optimal solution through simultaneous optimization. The framework consists of four hierarchical steps and uses a set of methods, tools and databases...... for property prediction, novel fluid design and mathematical programming. The application of the framework is targeted for waste heat recovery design systems, where the sensitivity of product and process design variables is high and the simultaneous design is necessary. The sustainable design solutions...... are showcased in this paper for mixed refrigeration design....

  11. Environmental impact assessment of solid waste management in Beijing City, China

    International Nuclear Information System (INIS)

    Zhao Yan; Christensen, Thomas H.; Lu Wenjing; Wu Huayong; Wang Hongtao

    2011-01-01

    The environmental impacts of municipal solid waste management in Beijing City were evaluated using a life-cycle-based model, EASEWASTE, to take into account waste generation, collection, transportation, treatment/disposal technologies, and savings obtained by energy and material recovery. The current system, mainly involving the use of landfills, has manifested significant adverse environmental impacts caused by methane emissions from landfills and many other emissions from transfer stations. A short-term future scenario, where some of the landfills (which soon will reach their capacity because of rising amount of waste in Beijing City) are substituted by incinerators with energy recovery, would not result in significant environmental improvement. This is primarily because of the low calorific value of mixed waste, and it is likely that the incinerators would require significant amounts of auxiliary fuels to support combustion of wet waste. As for the long-term future scenario, efficient source separation of food waste could result in significant environmental improvements, primarily because of increase in calorific value of remaining waste incinerated with energy recovery. Sensitivity analysis emphasized the importance of efficient source separation of food waste, as well as the electricity recovery in incinerators, in order to obtain an environmentally friendly waste management system in Beijing City.

  12. Material Recovery and Waste Form Development FY 2015 Accomplishments Report

    Energy Technology Data Exchange (ETDEWEB)

    Todd, Terry Allen [Idaho National Lab. (INL), Idaho Falls, ID (United States); Braase, Lori Ann [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-11-01

    The Material Recovery and Waste Form Development (MRWFD) Campaign under the U.S. Department of Energy (DOE) Fuel Cycle Technologies (FCT) Program is responsible for developing advanced separation and waste form technologies to support the various fuel cycle options defined in the DOE Nuclear Energy Research and Development Roadmap, Report to Congress, April 2010. The FY 2015 Accomplishments Report provides a highlight of the results of the research and development (R&D) efforts performed within the MRWFD Campaign in FY-14. Each section contains a high-level overview of the activities, results, technical point of contact, applicable references, and documents produced during the fiscal year. This report briefly outlines campaign management and integration activities, but primarily focuses on the many technical accomplishments made during FY-15. The campaign continued to utilize an engineering driven-science-based approach to maintain relevance and focus. There was increased emphasis on development of technologies that support near-term applications that are relevant to the current once-through fuel cycle.

  13. Environmental evaluation of municipal waste prevention

    DEFF Research Database (Denmark)

    Gentil, Emmanuel; Gallo, Daniele; Christensen, Thomas Højlund

    2011-01-01

    society, using life-cycle thinking. The partial prevention of unsolicited mail, beverage packaging and food waste is tested for a “High-tech” waste management system relying on high energy and material recovery and for a “Low-tech” waste management system with less recycling and relying on landfilling......Waste prevention has been addressed in the literature in terms of the social and behavioural aspects, but very little quantitative assessment exists of the environmental benefits. Our study evaluates the environmental consequences of waste prevention on waste management systems and on the wider....... Prevention of 13% of the waste mass entering the waste management system generates a reduction of loads and savings in the waste management system for the different impacts categories; 45% net reduction for nutrient enrichment and 12% reduction for global warming potential. When expanding our system...

  14. Environmental impact assessment of solid waste management in Beijing City, China

    DEFF Research Database (Denmark)

    Zhao, Yan; Christensen, Thomas Højlund; Lu, Wenjing

    2011-01-01

    The environmental impacts of municipal solid waste management in Beijing City were evaluated using a life-cycle-based model, EASEWASTE, to take into account waste generation, collection, transportation, treatment/disposal technologies, and savings obtained by energy and material recovery...... analysis emphasized the importance of efficient source separation of food waste, as well as the electricity recovery in incinerators, in order to obtain an environmentally friendly waste management system in Beijing City....... because of rising amount of waste in Beijing City) are substituted by incinerators with energy recovery, would not result in significant environmental improvement. This is primarily because of the low calorific value of mixed waste, and it is likely that the incinerators would require significant amounts...

  15. Energy recovery from containerized waste

    International Nuclear Information System (INIS)

    Benoit, M.R.; Hansen, E.R.; Reese, T.J.

    1991-01-01

    This patent describes a method for achieving environmentally sound disposal of solid waste in an operating rotary kiln. It comprises: a heated, rotated cylinder containing in-process mineral material, the method comprising the steps of packaging the waste in containers and charging the containerized waste into the kiln to contact the mineral material at a point along the length of the kiln cylinder where the kiln gas temperature is sufficient to decompose volatile components of the waste released upon contact of the waste with the in-process mineral material

  16. Transportable Vitrification System RCRA Closure Practical Waste Disposition Saves Time And Money

    International Nuclear Information System (INIS)

    Brill, Angie; Boles, Roger; Byars, Woody

    2003-01-01

    The Transportable Vitrification System (TVS) was a large-scale vitrification system for the treatment of mixed wastes. The wastes contained both hazardous and radioactive materials in the form of sludge, soil, and ash. The TVS was developed to be moved to various United States Department of Energy (DOE) facilities to vitrify mixed waste as needed. The TVS consists of four primary modules: (1) Waste and Additive Materials Processing Module; (2) Melter Module; (3) Emissions Control Module; and (4) Control and Services Module. The TVS was demonstrated at the East Tennessee Technology Park (ETTP) during September and October of 1997. During this period, approximately 16,000 pounds of actual mixed waste was processed, producing over 17,000 pounds of glass. After the demonstration was complete it was determined that it was more expensive to use the TVS unit to treat and dispose of mixed waste than to direct bury this waste in Utah permitted facility. Thus, DOE had to perform a Resource Conservation and Recovery Act (RCRA) closure of the facility and find a reuse for as much of the equipment as possible. This paper will focus on the following items associated with this successful RCRA closure project: TVS site closure design and implementation; characterization activities focused on waste disposition; pollution prevention through reuse; waste minimization efforts to reduce mixed waste to be disposed; and lessons learned that would be integrated in future projects of this magnitude

  17. Recovering Value from Waste: Anaerobic Digester System Basics

    Science.gov (United States)

    Biogas recovery may hold the key to unlocking the financial and environmental benefits of managing manure generated from livestock operations and organic wastes from the agriculture and food production sectors.

  18. Recycling and recovery of post-consumer plastic solid waste in a European context

    Directory of Open Access Journals (Sweden)

    Dewil Raf

    2012-01-01

    Full Text Available The disposal of waste plastics has become a major worldwide environmental problem. The USA, Europe and Japan generate annually about 50 million tons of post-consumer plastic waste, previously landfilled, generally considered as a non-sustainable and environmentally questionable option. Landfill sites and their capacity are, moreover, decreasing rapidly, and legislation is stringent. Several European Directives and US legislation concern plastic wastes and the required management. They are briefly discussed in this paper. New processes have emerged, i.e., advanced mechanical recycling of plastic waste as virgin or second grade plastic feedstock, and thermal treatments to recycle the waste as virgin monomer, as synthetic fuel gas, or as heat source (incineration with energy recovery. These processes avoid land filling, where the non-biodegradable plastics remain a lasting environmental burden. The paper reviews these alternative options through mostly thermal processing (pyrolysis, gasification and waste-to-energy. Additional research is, however, still needed to confirm the potential on pilot and commercial scale. [Acknowledgments. The research was partly funded by the Fundamental Research Funds for the Central Universities RC1101 (PR China and partly funded by Project KP/09/005 (SCORES4CHEM Knowledge Platform of the Industrial Research Council of the KU Leuven (Belgium.

  19. Quarry waste management and recovery: first results connected to Carrara marble ravaneti (Italy)

    Science.gov (United States)

    Antonella Dino, Giovanna; Chiappino, Claudia; Rossetti, Piergiorgio

    2017-04-01

    Quarry waste (QW) represents a huge economic and environmental issue, due to loss of resources and to economic and environmental costs connected to waste management and landfilling activities. In many cases, valuable Raw Materials (RM) and Secondary Raw Materials (SRM) can be supplied by enhancing the QW recovery. In Italy large amounts of QW have been and still are dumped: such materials, if their quality (chemical, mineralogical, physical characteristics) and quantity are adequate, and if the impacts connected to their management are positive, can represent a valuable resource for SRM exploitation. Several dimension stone quarries have been and are interested by researches as for QW exploitation. Some researches show positive results, which are the basis for QW recovery (both from waste streams and from quarry dumps exploitation): a noticeable example is represented by Carrara marble waste. The Carrara quarry basin is characterized by ca. one hundred quarries for colored and white marble exploitation. The waste production can be summarized in: 80 Mm3 waste present in old quarry dumps (Ravaneti) and 3 Mm3/y of waste stream from quarrying activities. At present only 0.5 Mm3/y of QW is exploited for SRM production, causing a huge loss of resource. This has been the background for a preliminary research, on Carrara marble Ravaneti characterization, which was carried out thanks to the close cooperation between University of Torino, Società Apuana Marmi srl, and SET srl. In 2015, two QW dumping areas, Calocara and Lorano, were selected as representative for sampling activities. Three main sample categories were individuated based on granulometry (0.5-4 mm, 0-25 mm, 0-150 mm) to be characterized (size distribution, density, Atterberg limits, Los Angeles test, freezing and heat tests, flat and shape indexes, geochemistry, mineralogy). The results obtained are promising: the physical characterization shows an attitude for Carrara QW to be recovered as crushed materials

  20. A Compact, Efficient Pyrolysis/Oxidation System for Solid Waste Resource Recovery in Space, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Both pyrolysis and oxidation steps have been considered as the key solid waste processing step for a Controlled Ecological Life Support System (CELSS). Pyrolysis is...

  1. Sequencing biological acidification of waste-activated sludge aiming to optimize phosphorus dissolution and recovery.

    Science.gov (United States)

    Guilayn, Felipe; Braak, Etienne; Piveteau, Simon; Daumer, Marie-Line

    2017-06-01

    Phosphorus (P) recovery in wastewater treatment plants (WWTP) as pure crystals such as struvite (MgNH 4 PO 4 .6H 2 O), potassium struvite (KMgPO 4 .6H 2 O) and calcium phosphates (e.g. Ca 3 (PO 4 ) 2 ) is an already feasible technique that permits the production of green and marketable fertilizers and the reduction of operational costs. Commercial crystallizers can recovery more than 90% of soluble P. However, most of the P in WWTP sludge is unavailable for the processes (not dissolved). P solubilization and separation are thus the limiting steps in P-crystallization. With an innovative two-step sequencing acidification strategy, the current study has aimed to improve biological P solubilization on waste-activated sludge (WAS) from a full-scale plant. In the first step (P-release), low charges of organic waste were used as co-substrates of WAS pre-fermentation, seeking to produce volatile fatty acids to feed the P-release by Polyphosphate-accumulating organisms, while keeping its optimal metabolic pH (6-7). In this phase, milk serum, WWTP grease, urban organic waste and collective restaurant waste were individually applied as co-substrates. In the second step (P-dissolution), pH 4 was aimed at as it allows the dissolution of the most common precipitated species of P. Biological acidification was performed by white sugar addition, as a carbohydrate-rich organic waste model, which was compared to chemical acidification by HCl (12M) addition. With short retention times (48-96 h) and without inoculum application, all experiences succeeded on P solubilization (37-55% of soluble P), principally when carbohydrate-rich co-substrates were applied. Concentrations from 270 to 450 mg [Formula: see text] were achieved. [Formula: see text].

  2. Gravity packaging final waste recovery based on gravity separation and chemical imaging control.

    Science.gov (United States)

    Bonifazi, Giuseppe; Serranti, Silvia; Potenza, Fabio; Luciani, Valentina; Di Maio, Francesco

    2017-02-01

    Plastic polymers are characterized by a high calorific value. Post-consumer plastic waste can be thus considered, in many cases, as a typical secondary solid fuels according to the European Commission directive on End of Waste (EoW). In Europe the practice of incineration is considered one of the solutions for waste disposal waste, for energy recovery and, as a consequence, for the reduction of waste sent to landfill. A full characterization of these products represents the first step to profitably and correctly utilize them. Several techniques have been investigated in this paper in order to separate and characterize post-consumer plastic packaging waste fulfilling the previous goals, that is: gravity separation (i.e. Reflux Classifier), FT-IR spectroscopy, NIR HyperSpectralImaging (HSI) based techniques and calorimetric test. The study demonstrated as the proposed separation technique and the HyperSpectral NIR Imaging approach allow to separate and recognize the different polymers (i.e. PolyVinyl Chloride (PVC), PolyStyrene (PS), PolyEthylene (PE), PoliEtilene Tereftalato (PET), PolyPropylene (PP)) in order to maximize the removal of the PVC fraction from plastic waste and to perform the full quality control of the resulting products, can be profitably utilized to set up analytical/control strategies finalized to obtain a low content of PVC in the final Solid Recovered Fuel (SRF), thus enhancing SRF quality, increasing its value and reducing the "final waste". Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Engine Load Effects on the Energy and Exergy Performance of a Medium Cycle/Organic Rankine Cycle for Exhaust Waste Heat Recovery

    Directory of Open Access Journals (Sweden)

    Peng Liu

    2018-02-01

    Full Text Available The Organic Rankine Cycle (ORC has been proved a promising technique to exploit waste heat from Internal Combustion Engines (ICEs. Waste heat recovery systems have usually been designed based on engine rated working conditions, while engines often operate under part load conditions. Hence, it is quite important to analyze the off-design performance of ORC systems under different engine loads. This paper presents an off-design Medium Cycle/Organic Rankine Cycle (MC/ORC system model by interconnecting the component models, which allows the prediction of system off-design behavior. The sliding pressure control method is applied to balance the variation of system parameters and evaporating pressure is chosen as the operational variable. The effect of operational variable and engine load on system performance is analyzed from the aspects of energy and exergy. The results show that with the drop of engine load, the MC/ORC system can always effectively recover waste heat, whereas the maximum net power output, thermal efficiency and exergy efficiency decrease linearly. Considering the contributions of components to total exergy destruction, the proportions of the gas-oil exchanger and turbine increase, while the proportions of the evaporator and condenser decrease with the drop of engine load.

  4. Launch and Recovery System Literature Review

    Science.gov (United States)

    2010-12-01

    water. Goldie [21] suggests a sled or cart recovery system for use with UAV’s on the Littoral Combatant Ship (LCS) and other small deck navy ships...21. Goldie , J., “A Recovery System for Unmanned Aerial Vehicles (UAVs) Aboard LCS and other Small-Deck Navy Ships,” ASNE Launch and Recovery of

  5. Improving radioactive waste management: an overview of the Environmental Protection Agency's low-activity waste effort.

    Science.gov (United States)

    Schultheisz, Daniel J; Czyscinski, Kenneth S; Klinger, Adam D

    2006-11-01

    Radioactive waste disposal in the United States is marked by a fragmented regulatory system, with requirements that often focus on the origin or statutory definition of the waste, rather than the hazard of the material in question. It may be possible to enhance public protection by moving toward a system that provides disposal options appropriate for the hazard presented by the waste in question. This paper summarizes aspects of an approach focusing on the potential use, with appropriate conditions, of Resource Conservation and Recovery Act Subtitle-C hazardous waste landfills for disposal of "low-activity" wastes and public comments on the suggested approach.

  6. Solid waste landfills under the Resource Conservation and Recovery Act Subtitle D

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-11-01

    This document provides guidance for meeting: (1) Guidelines for the Land Disposal of Solid Waste (40 CFR 241); (2) Criteria for Classification of Solid Waste Disposal Facilities and Practices (40 CFR 257); and (3) Criteria for Municipal Solid Waste Landfills (MSWLFs) (40 CFR Part 258). Revisions to 40 CFR 257 and a new Part 258 were published in the Federal Register (56 FR 50978, 10/9/91). The Guidelines for the Land Disposal of Solid Waste set requirements and recommended procedures to ensure that the design, construction, and operation of land disposal sites is done in a manner that will protect human health and the environment. These regulations are applicable to MSWLFs and non-MSWLFs (e.g., landfills used only for the disposal of demolition debris, commercial waste, and/or industrial waste). These guidelines are not applicable to the, land disposal of hazardous, agricultural, and/or mining wastes. These criteria are to be used under the Resource Conservation and Recovery Act (RCRA) in determining which solid waste disposal facilities pose a reasonable possibility of adversely affecting human health or the environment. Facilities failing to satisfy these criteria will be considered to be open dumps which are prohibited under Section 4005 of RCRA. The Criteria for MSWLFs are applicable only to MSWLFs, including those MSWLFs in which sewage sludge is co-disposed with household waste. Based on specific criteria, certain MSWLFs are exempt from some, or all, of the regulations of 40 CFR 258. MSWLFs that fail to satisfy the criteria specified in 40 CFR 258 are also considered open dumps for the purposes of Section 4005 of RCRA. Through the use of a series of interrelated flow diagrams, this guidance document directs the reader to each design, operation, maintenance, and closure activity that must be performed for MSWLFs and non-MSWLFs.

  7. Experimental and life cycle assessment analysis of gas emission from mechanically–biologically pretreated waste in a landfill with energy recovery

    Energy Technology Data Exchange (ETDEWEB)

    Di Maria, Francesco, E-mail: francesco.dimaria@unipg.it; Sordi, Alessio; Micale, Caterina

    2013-11-15

    Highlights: • Bio-methane landfill emissions from different period (0, 4, 8, 16 weeks) MTB waste have been evaluated. • Electrical energy recoverable from landfill gas ranges from 11 to about 90 kW h/tonne. • Correlation between oxygen uptake, energy recovery and anaerobic gas production shows R{sup 2} ranging from 0.78 to 0.98. • LCA demonstrate that global impact related to gaseous emissions achieve minimum for 4 week of MBT. - Abstract: The global gaseous emissions produced by landfilling the Mechanically Sorted Organic Fraction (MSOF) with different weeks of Mechanical Biological Treatment (MBT) was evaluated for an existing waste management system. One MBT facility and a landfill with internal combustion engines fuelled by the landfill gas for electrical energy production operate in the waste management system considered. An experimental apparatus was used to simulate 0, 4, 8 and 16 weeks of aerobic stabilization and the consequent biogas potential (Nl/kg) of a large sample of MSOF withdrawn from the full-scale MBT. Stabilization achieved by the waste was evaluated by dynamic oxygen uptake and fermentation tests. Good correlation coefficients (R{sup 2}), ranging from 0.7668 to 0.9772, were found between oxygen uptake, fermentation and anaerobic test values. On the basis of the results of several anaerobic tests, the methane production rate k (year{sup −1}) was evaluated. k ranged from 0.436 to 0.308 year{sup −1} and the bio-methane potential from 37 to 12 N m{sup 3}/tonne, respectively, for the MSOF with 0 and 16 weeks of treatment. Energy recovery from landfill gas ranged from about 11 to 90 kW h per tonne of disposed MSOF depending on the different scenario investigated. Life cycle analysis showed that the scenario with 0 weeks of pre-treatment has the highest weighted global impact even if opposite results were obtained with respect to the single impact criteria. MSOF pre-treatment periods longer than 4 weeks showed rather negligible variation

  8. Experimental and life cycle assessment analysis of gas emission from mechanically–biologically pretreated waste in a landfill with energy recovery

    International Nuclear Information System (INIS)

    Di Maria, Francesco; Sordi, Alessio; Micale, Caterina

    2013-01-01

    Highlights: • Bio-methane landfill emissions from different period (0, 4, 8, 16 weeks) MTB waste have been evaluated. • Electrical energy recoverable from landfill gas ranges from 11 to about 90 kW h/tonne. • Correlation between oxygen uptake, energy recovery and anaerobic gas production shows R 2 ranging from 0.78 to 0.98. • LCA demonstrate that global impact related to gaseous emissions achieve minimum for 4 week of MBT. - Abstract: The global gaseous emissions produced by landfilling the Mechanically Sorted Organic Fraction (MSOF) with different weeks of Mechanical Biological Treatment (MBT) was evaluated for an existing waste management system. One MBT facility and a landfill with internal combustion engines fuelled by the landfill gas for electrical energy production operate in the waste management system considered. An experimental apparatus was used to simulate 0, 4, 8 and 16 weeks of aerobic stabilization and the consequent biogas potential (Nl/kg) of a large sample of MSOF withdrawn from the full-scale MBT. Stabilization achieved by the waste was evaluated by dynamic oxygen uptake and fermentation tests. Good correlation coefficients (R 2 ), ranging from 0.7668 to 0.9772, were found between oxygen uptake, fermentation and anaerobic test values. On the basis of the results of several anaerobic tests, the methane production rate k (year −1 ) was evaluated. k ranged from 0.436 to 0.308 year −1 and the bio-methane potential from 37 to 12 N m 3 /tonne, respectively, for the MSOF with 0 and 16 weeks of treatment. Energy recovery from landfill gas ranged from about 11 to 90 kW h per tonne of disposed MSOF depending on the different scenario investigated. Life cycle analysis showed that the scenario with 0 weeks of pre-treatment has the highest weighted global impact even if opposite results were obtained with respect to the single impact criteria. MSOF pre-treatment periods longer than 4 weeks showed rather negligible variation in the global impact of

  9. Acid decomposition processing system for radioactive wastes

    International Nuclear Information System (INIS)

    Oomine, Toshimitsu.

    1984-01-01

    Purpose: To perform plutonium recovery at a low energy consumption irrespective of the plutonium density within the wastes. Method: In a decomposing and volume-reducing device for combustible or less combustible wastes containing transuranic elements using an acid, the wastes are in contact with nitric acid before feeding to a reactor. Then, the transuranic elements are transferred into the nitric acid, which is then in contact with ion exchange resins. After adsorbing the transuranic elements to the ion exchange resins, the nitric acid removed with the transuranic elements is caused to flow into a reaction vessel or heating vessel and used as a decomposing and oxidizing agent. (Seki, T.)

  10. Utilisation of solid waste

    Energy Technology Data Exchange (ETDEWEB)

    Balu, K

    1978-07-01

    The prime solution to the present energy crisis is the recovery of latent energy from waste materials, for solid waste contains recoverable energy and it merely needs to be released. The paper is concerned with classification of solid waste, energy content of waste, methods of solid waste disposal, and chemical processing of solid waste. Waste disposal must be performed in situ with energy recovery. Scarcity of available land, pollution problem, and unrecovered latent energy restrict the use of the land-filling method. Pyrolysis is an effective method for the energy recovery and disposal problems. Chemical processing is suitable for the separated cellulosic fraction of the waste material.

  11. Optimal design of advanced distillation configuration for enhanced energy efficiency of waste solvent recovery process in semiconductor industry

    International Nuclear Information System (INIS)

    Chaniago, Yus Donald; Minh, Le Quang; Khan, Mohd Shariq; Koo, Kee-Kahb; Bahadori, Alireza; Lee, Moonyong

    2015-01-01

    Highlights: • Thermally coupled distillation process is proposed for waste solvent recovery. • A systematic optimization procedure is used to optimize distillation columns. • Response surface methodology is applied to optimal design of distillation column. • Proposed advanced distillation allows energy efficient waste solvent recovery. - Abstract: The semiconductor industry is one of the largest industries in the world. On the other hand, the huge amount of solvent used in the industry results in high production cost and potential environmental damage because most of the valuable chemicals discharged from the process are incinerated at high temperatures. A distillation process is used to recover waste solvent, reduce the production-related costs and protect the environment from the semiconductor industrial waste. Therefore, in this study, a distillation process was used to recover the valuable chemicals from semiconductor industry discharge, which otherwise would have been lost to the environment. The conventional sequence of distillation columns, which was optimized using the Box and sequential quadratic programming method for minimum energy objectives, was used. The energy demands of a distillation problem may have a substantial influence on the profitability of a process. A thermally coupled distillation and heat pump-assisted distillation sequence was implemented to further improve the distillation performance. Finally, a comparison was made between the conventional and advanced distillation sequences, and the optimal conditions for enhancing recovery were determined. The proposed advanced distillation configuration achieved a significant energy saving of 40.5% compared to the conventional column sequence

  12. Infectious waste feed system

    Science.gov (United States)

    Coulthard, E. James

    1994-01-01

    An infectious waste feed system for comminuting infectious waste and feeding the comminuted waste to a combustor automatically without the need for human intervention. The system includes a receptacle for accepting waste materials. Preferably, the receptacle includes a first and second compartment and a means for sealing the first and second compartments from the atmosphere. A shredder is disposed to comminute waste materials accepted in the receptacle to a predetermined size. A trough is disposed to receive the comminuted waste materials from the shredder. A feeding means is disposed within the trough and is movable in a first and second direction for feeding the comminuted waste materials to a combustor.

  13. DTDGA impregnated XAD-16 beads for separation and recovery of palladium from acidic wastes

    International Nuclear Information System (INIS)

    Singh, Krishan Kant; Kanagare, Anant B.; Bairwa, K.K.; Manmohan Kumar; Bajaj, Parma N.; Ruhela, Ritesh; Singh, Ajoy K.; Hubli, Rajendra C.

    2014-01-01

    In the present study DTDGA extractant impregnated XAD16 polymeric beads (DTDGA- XAD16) were synthesized by wet chemical method and the beads were characterized by various techniques viz. FT-IR, Optical microscopy, SEM and TGA. The DTDGA-XAD 16 beads were evaluated for separation and recovery of palladium from high level waste solutions (HLW)

  14. Energy recovery potential and life cycle impact assessment of municipal solid waste management technologies in Asian countries using ELP model

    Energy Technology Data Exchange (ETDEWEB)

    Pandyaswargo, Andante Hadi; Onoda, Hiroshi; Nagata, Katsuya [Waseda Univ., Saitama (Japan). Graduate School of Environment and Energy Engineering

    2012-11-01

    Natural resource scarcity and the effects of environmental destruction have pushed societies to use and reuse resources more efficiently. Waste should no longer be seen as a burden but rather as another source of material such as energy fuel. This study analyzes the potential of three waste management technologies - incineration with energy recovery, composting, and sanitary landfill gas collection - as ways to recover energy and material from municipal solid waste. The study applies the environmental load point (ELP) method and utilizes municipal waste characteristics and composition from India, Indonesia, and China as case studies. The ELP methodology employs integrated weighting in the quantification process to get a one-unit result. This study particularly uses analytic hierarchical process questionnaires to get the weighting value of the nine impact categories: energy depletion, global warming, ozone depletion, resource consumption, ecosystem influence, water pollution, waste disposal, air pollution, and acid rain. The results show that the scenario which includes composting organic waste and sanitary landfill with gas collection for energy recovery has medium environmental impact and the highest practicability. The optimum material and energy potential is from the Chinese case study in which 254 tonnes of compost fertilizer and 60 MWh of electricity is the estimated output for every 1,000 tonnes of waste treated. (orig.)

  15. Environmental and Economic Assessment of Swedish Municipal Solid Waste Management in a Systems Perspective

    International Nuclear Information System (INIS)

    Eriksson, Ola

    2003-01-01

    Waste management is something that affects most people. The waste amounts are still increasing, but the waste treatment is changing towards recycling and integrated solutions. In Sweden producers' responsibility for different products, a tax and bans on deposition of waste at landfills implicates a reorganisation of the municipal solid waste management. Plans are made for new incineration plants, which leads to that waste combustion comes to play a role in the reorganisation of the Swedish energy system as well. The energy system is supposed to adapt to governmental decisions on decommission of nuclear plants and decreased use of fossil fuels. Waste from private households consists of hazardous waste, scrap waste, waste electronics and wastes that to a large extent are generated in the kitchen. The latter type has been studied in this thesis, except for newsprint, glass- and metal packages that by source separation haven't ended up in the waste bin. Besides the remaining amount of the above mentioned fractions, the waste consists of food waste, paper, cardboard- and plastic packages and inert material. About 80-90 % of this mixed household waste is combustible, and the major part of that is also possible to recycle. Several systems analyses of municipal solid waste management have been performed. Deposition at landfill has been compared to energy recovery, recycling of material (plastic and cardboard) and recycling of nutrients (in food waste). Environmental impact, fuel consumption and costs are calculated for the entire lifecycle from the households, until the waste is treated and the by-products have been taken care of. To stop deposition at landfills is the most important measure to take as to decrease the environmental impact from landfills, and instead use the waste as a resource, thereby substituting production from virgin resources (avoiding resource extraction and emissions). The best alternative to landfilling is incineration, but also material recycling

  16. Environmental and Economic Assessment of Swedish Municipal Solid Waste Management in a Systems Perspective

    Energy Technology Data Exchange (ETDEWEB)

    Eriksson, Ola

    2003-04-01

    Waste management is something that affects most people. The waste amounts are still increasing, but the waste treatment is changing towards recycling and integrated solutions. In Sweden producers' responsibility for different products, a tax and bans on deposition of waste at landfills implicates a reorganisation of the municipal solid waste management. Plans are made for new incineration plants, which leads to that waste combustion comes to play a role in the reorganisation of the Swedish energy system as well. The energy system is supposed to adapt to governmental decisions on decommission of nuclear plants and decreased use of fossil fuels. Waste from private households consists of hazardous waste, scrap waste, waste electronics and wastes that to a large extent are generated in the kitchen. The latter type has been studied in this thesis, except for newsprint, glass- and metal packages that by source separation haven't ended up in the waste bin. Besides the remaining amount of the above mentioned fractions, the waste consists of food waste, paper, cardboard- and plastic packages and inert material. About 80-90 % of this mixed household waste is combustible, and the major part of that is also possible to recycle. Several systems analyses of municipal solid waste management have been performed. Deposition at landfill has been compared to energy recovery, recycling of material (plastic and cardboard) and recycling of nutrients (in food waste). Environmental impact, fuel consumption and costs are calculated for the entire lifecycle from the households, until the waste is treated and the by-products have been taken care of. To stop deposition at landfills is the most important measure to take as to decrease the environmental impact from landfills, and instead use the waste as a resource, thereby substituting production from virgin resources (avoiding resource extraction and emissions). The best alternative to landfilling is incineration, but also material

  17. Flow analysis of metals in a municipal solid waste management system

    International Nuclear Information System (INIS)

    Jung, C.H.; Matsuto, T.; Tanaka, N.

    2006-01-01

    This study aimed to identify the metal flow in a municipal solid waste (MSW) management system. Outputs of a resource recovery facility, refuse derived fuel (RDF) production facility, carbonization facility, plastics liquefaction facility, composting facility, and bio-gasification facility were analyzed for metal content and leaching concentration. In terms of metal content, bulky and incombustible waste had the highest values. Char from a carbonization facility, which treats household waste, had a higher metal content than MSW incinerator bottom ash. A leaching test revealed that Cd and Pb in char and Pb in RDF production residue exceeded the Japanese regulatory criteria for landfilling, so special attention should be paid to final disposal of these substances. By multiplying metal content and the generation rate of outputs, the metal content of input waste to each facility was estimated. For most metals except Cr, the total contribution ratio of paper/textile/plastics, bulky waste, and incombustible waste was over 80%. Approximately 30% of Cr originated from plastic packaging. Finally, several MSW management scenarios showed that most metals are transferred to landfills and the leaching potential of metals to the environment is quite small

  18. recovery of enriched uranium from waste solution obtained from fuel fabrication laboratories

    International Nuclear Information System (INIS)

    Othman, S.H.A.

    2003-01-01

    reversed-phase partition chromatography is shown to be a convenient and applicable method for the quantitative recovery of uranium (19.7% enriched with 235 U) from highly impure solution . the processing of uranium compounds for atomic energy project especially in FMPP(Egyptian fuel manufacture pilot plant) gives rise to a variety of wastes in which the uranium content is of considerable importance. the recovery of uranium from concentrated mother liquors produced from ADU (ammonium diuranate ) precipitation, as well as those due to ADU washing is studied in this work. column of poly-trifluoro-monochloro-ethilene (Kel-F) supporting tri-n-butyl-phosphate (TBP) retains uranium .impurities are eluted with 6.5 M HCl, and the uranium is eluted with water and the recovery of uranium is better than 94%. A mathematical model was suggested to stimulate the sorption process of uranium ions (or any other ion ) by column of solvent impregnated resin containing organic extractant (the same as the previous column) . An excellent agreement was founded between the experimental results and the mathematical model

  19. Bottoming organic Rankine cycle configurations to increase Internal Combustion Engines power output from cooling water waste heat recovery

    International Nuclear Information System (INIS)

    Peris, Bernardo; Navarro-Esbrí, Joaquín; Molés, Francisco

    2013-01-01

    This work is focused on waste heat recovery of jacket cooling water from Internal Combustion Engines (ICEs). Cooling water heat does not always find use due to its low temperature, typically around 90 °C, and usually is rejected to the ambient despite its high thermal power. An efficient way to take benefit from the ICE cooling water waste heat can be to increase the power output through suitable bottoming Organic Rankine Cycles (ORCs). Thereby, this work simulates six configurations using ten non flammable working fluids and evaluates their performances in efficiency, safety, cost and environmental terms. Results show that the Double Regenerative ORC using SES36 gets the maximum net efficiency of 7.15%, incrementing the ICE electrical efficiency up to 5.3%, although requires duplicating the number of main components and high turbine size. A more rigorous analysis, based on the system feasibility, shows that small improvements in the basic cycle provide similar gains compared to the most complex schemes proposed. So, the single Regenerative ORC using R236fa and the Reheat Regenerative ORC using R134a seem suitable cycles which provide a net efficiency of 6.55%, incrementing the ICE electrical efficiency up to 4.9%. -- Highlights: • Suitable bottoming cycles for ICE cooling water waste heat recovery are studied. • Non flammable working fluids and various ORC configurations are evaluated. • Double regenerative cycle using SES36 is the most efficient configuration. • Regenerative and reheat regenerative ORCs seem feasible cycles. • Electrical efficiency of the ICE can be improved up to 5.3%

  20. Heat recovery from a cement plant with a Marnoch Heat Engine

    International Nuclear Information System (INIS)

    Saneipoor, P.; Naterer, G.F.; Dincer, I.

    2011-01-01

    This paper examines the performance of a new Marnoch Heat Engine (MHE) that recovers waste heat from within a typical cement plant. Two MHE units with compressed air as the working fluid are installed to recover the waste heat. The first unit on the main stack has four pairs of shell and tube heat exchangers. The second heat recovery unit is installed on a clinker quenching system. This unit operates with three pairs of shell and tube heat exchangers. The recovered heat is converted to electricity through the MHE system and used internally within the cement plant. A predictive model and results are presented and discussed. The results show the promising performance of the MHE's capabilities for efficient generation of electricity from waste heat sources in a cement plant. The new heat recovery system increases the efficiency of the cement plant and lowers the CO 2 emissions from the clinker production process. Moreover, it reduces the amount of waste heat to the environment and lowers the temperature of the exhaust gases. - Highlights: → This paper examines the thermodynamic performance of a new Marnoch Heat Engine (MHE) that recovers waste heat to produce electricity and improve the operating efficiency of a typical cement plant. → The first unit of the MHE on the main stack has four pairs of shell and tube heat exchangers and the second heat recovery unit is installed on a clinker quenching system. → Both predicted and experimental results demonstrate the promising performance of the MHE's capabilities for efficient generation of electricity from waste heat sources in a cement plant.

  1. Co-gasification of municipal solid waste and material recovery in a large-scale gasification and melting system.

    Science.gov (United States)

    Tanigaki, Nobuhiro; Manako, Kazutaka; Osada, Morihiro

    2012-04-01

    This study evaluates the effects of co-gasification of municipal solid waste with and without the municipal solid waste bottom ash using two large-scale commercial operation plants. From the viewpoint of operation data, there is no significant difference between municipal solid waste treatment with and without the bottom ash. The carbon conversion ratios are as high as 91.7% and 95.3%, respectively and this leads to significantly low PCDD/DFs yields via complete syngas combustion. The gross power generation efficiencies are 18.9% with the bottom ash and 23.0% without municipal solid waste bottom ash, respectively. The effects of the equivalence ratio are also evaluated. With the equivalence ratio increasing, carbon monoxide concentration is decreased, and carbon dioxide and the syngas temperature (top gas temperature) are increased. The carbon conversion ratio is also increased. These tendencies are seen in both modes. Co-gasification using the gasification and melting system (Direct Melting System) has a possibility to recover materials effectively. More than 90% of chlorine is distributed in fly ash. Low-boiling-point heavy metals, such as lead and zinc, are distributed in fly ash at rates of 95.2% and 92.0%, respectively. Most of high-boiling-point heavy metals, such as iron and copper, are distributed in metal. It is also clarified that slag is stable and contains few harmful heavy metals such as lead. Compared with the conventional waste management framework, 85% of the final landfill amount reduction is achieved by co-gasification of municipal solid waste with bottom ash and incombustible residues. These results indicate that the combined production of slag with co-gasification of municipal solid waste with the bottom ash constitutes an ideal approach to environmental conservation and resource recycling. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Model based control for waste heat recovery rankine cycle system in heavy duty trucks

    OpenAIRE

    Grelet, Vincent; Dufour, Pascal; Nadri, Madiha; Lemort, Vincent; Reiche, Thomas

    2015-01-01

    Driven by future emissions legislations and increase in fuel prices engine, gas heat recovering has recently attracted a lot of interest. In the past few years, a high number of studies have shown the interest of energy recovery Rankine based systems for heavy duty trucks engine compounding. Recent studies have brought a significant potential for such a system in a Heavy Duty (HD) vehicle, which can lead to a decrease in fuel consumption of about 5% [Wang et al. (2011)] and reduce engine emis...

  3. Source separation of household waste: A case study in China

    International Nuclear Information System (INIS)

    Zhuang Ying; Wu Songwei; Wang Yunlong; Wu Weixiang; Chen Yingxu

    2008-01-01

    A pilot program concerning source separation of household waste was launched in Hangzhou, capital city of Zhejiang province, China. Detailed investigations on the composition and properties of household waste in the experimental communities revealed that high water content and high percentage of food waste are the main limiting factors in the recovery of recyclables, especially paper from household waste, and the main contributors to the high cost and low efficiency of waste disposal. On the basis of the investigation, a novel source separation method, according to which household waste was classified as food waste, dry waste and harmful waste, was proposed and performed in four selected communities. In addition, a corresponding household waste management system that involves all stakeholders, a recovery system and a mechanical dehydration system for food waste were constituted to promote source separation activity. Performances and the questionnaire survey results showed that the active support and investment of a real estate company and a community residential committee play important roles in enhancing public participation and awareness of the importance of waste source separation. In comparison with the conventional mixed collection and transportation system of household waste, the established source separation and management system is cost-effective. It could be extended to the entire city and used by other cities in China as a source of reference

  4. Analytical study on different blade-shape design of HAWT for wasted kinetic energy recovery system (WKERS)

    Science.gov (United States)

    Goh, J. B.; Jamaludin, Z.; Jafar, F. A.; Mat Ali, M.; Mokhtar, M. N. Ali; Tan, C. H.

    2017-06-01

    Wasted kinetic energy recovery system (WKERS) is a wind renewable gadget installed above a cooling tower outlet to harvest the discharged wind for electrical regeneration purpose. The previous WKERS is operated by a horizontal axis wind turbine (HAWT) with delta blade design but the performance is still not at the optimum level. Perhaps, a better blade-shape design should be determined to obtain the optimal performance, as it is believed that the blade-shape design plays a critical role in HAWT. Hence, to determine a better blade-shape design for a new generation of WKERS, elliptical blade, swept blade and NREL Phase IV blade are selected for this benchmarking process. NREL Phase IV blade is a modern HAWT’s blade design by National Renewable Energy Laboratory (NREL) research lab. During the process of benchmarking, Computational Fluid Dynamics (CFD) analysis was ran by using SolidWorks design software, where all the designs are simulated with linear flow simulation. The wind speed in the simulation is set at 10.0 m/s, which is compatible with the average wind speed produced by a standard size cooling tower. The result is obtained by flow trajectories of air motion, surface plot and cut plot of the applied blade-shape. Besides, the aspect ratio of each blade is calculated and included as one of the reference in the comparison. Hence, the final selection of the best blade-shape design will bring to the new generation of WKERS.

  5. Simulation of a heat pump system for total heat recovery from flue gas

    International Nuclear Information System (INIS)

    Wei, Maolin; Yuan, Weixing; Song, Zhijia; Fu, Lin; Zhang, Shigang

    2015-01-01

    This paper introduces an approach of using an open-cycle absorption heat pump (OAHP) for recovering waste heat from the flue gas of a gas boiler with a system model. And equivalent energy efficiency is used to evaluate two other heat recovery systems that integrate an electric compression heat pump (EHP) or an absorption heat pump (AHP) with a boiler. The key factors influencing the systems are evaluated. The OAHP system efficiency is improved by 11% compared to the base case. And the OAHP system is more efficient than the AHP or the EHP systems, especially when the solution mass flow rate is only a little less than the cold water mass flow rate. The energy efficiency comparison is supplemented with a simplified economic analysis. The results indicate that the OAHP system is the best choice for the current prices of electricity and natural gas in Beijing. - Highlights: • An OAHP system is analyzed to improve heat recovery from natural gas flue gas. • OAHP system models are presented and analyzed. • The key factors influencing the OAHP systems are analyzed. • The OAHP system is most efficient for most cases compared with other systems. • The OAHP system is more economic than other systems

  6. Comparison through a LCA evaluation analysis of food waste disposal options from the perspective of global warming and resource recovery

    International Nuclear Information System (INIS)

    Kim, Mi-Hyung; Kim, Jung-Wk

    2010-01-01

    This study evaluated feed manufacturing including dry feeding and wet feeding, composting, and landfilling for food waste disposal options from the perspective of global warming and resource recovery. The method of the expanded system boundaries was employed in order to compare different by-products. The whole stages of disposal involved in the systems such as separate discharge, collection, transportation, treatment, and final disposal, were included in the system boundary and evaluated. The Global Warming Potential generated from 1 tonne of food wastes for each disposal system was analyzed by the life cycle assessment method. The results showed that 200 kg of CO 2 -eq could be produced from dry feeding process, 61 kg of CO 2 -eq from wet feeding process, 123 kg of CO 2 -eq from composting process, and 1010 kg of CO 2 -eq from landfilling. Feed manufacturing and composting, the common treatment methods currently employed, have been known to be environment friendlier than other methods. However, this study shows that they can negatively affect the environment if their by-products are not appropriately utilized as intended.

  7. LCA Modeling of Waste Management Scenarios

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund; Simion, F.; Tonini, Davide

    2011-01-01

    combinations of waste recycling, biological treatment, incineration, mechanical–biological treatment and landfilling. The purpose is to compare waste management on a system level and to indentify the steps and treatments within the system contributing the most to the environmental performance of waste...... and shows that recycling is superior to incineration with energy recovery, which again is better than landfilling. Cleary (2010) reviewed 20 waste management scenarios assessed in 11 studies published in the period 2002–2008 and concluded that, due to lack of transparency regarding boundary conditions...

  8. Fuel cell heat utilization system; Nenryo denchi netsuriyo sochi

    Energy Technology Data Exchange (ETDEWEB)

    Urata, T. [Tokyo (Japan); Omura, T. [Tokyo (Japan)

    1995-07-04

    In the conventional fuel cell heat utilization system, the waste heat is recovered to be utilized by either the waste heat recovery heat exchanger or the waste heat recovery steam. In the employment of the waste heat recovery heat exchanger system, however, the utility value is decreased when the temperature of the waste heat is lowered. Contrarily, in the employment of the waste heat recovery steam system, the supplementary water requirement is increased corresponding to the amount of waste heat recovery steam, resulting in the cost increase for water treatment. This invention solves the problem. In the invented fuel cell heat utilization system, a pressurized water from the steam separator is introduced into the second circuit to utilize directly the heat in the heat utilization system without employing the heat exchanger. If a blowdown valve is installed between the second circuit heat utilization system and the steam separator, the heat loss due to the blowdown can be reduced, since the low temperature water is blown down after being utilized in the heat utilization system. 4 figs.

  9. Characterization of char derived from various types of solid wastes from the standpoint of fuel recovery and pretreatment before landfilling

    International Nuclear Information System (INIS)

    Hwang, I.H.; Matsuto, T.; Tanaka, N.; Sasaki, Y.; Tanaami, K.

    2007-01-01

    Carbonization is a kind of pyrolysis process to produce char from organic materials under an inert atmosphere. In this work, chars derived from various solid wastes were characterized from the standpoint of fuel recovery and pretreatment of waste before landfilling. Sixteen kinds of municipal and industrial solid wastes such as residential combustible wastes, non-combustible wastes, bulky wastes, construction and demolition wastes, auto shredder residue, and sludges were carbonized at 500 deg. C for 1 h under nitrogen atmosphere. In order to evaluate the quality of char as fuel, proximate analysis and heating value were examined. The composition of raw waste had a significant influence on the quality of produced char. The higher the ratio of woody biomass in waste, the higher heating value of char produced. Moreover, an equation to estimate heating value of char was developed by using the weight fraction of fixed carbon and volatile matter in char. De-ashing and chlorine removal were performed to improve the quality of char. The pulverization and sieving method seems to be effective for separation of incombustibles such as metal rather than ash. Most char met a 0.5 wt% chlorine criterion for utilization as fuel in a shaft blast furnace after it was subjected to repeated water-washing. Carbonization could remove a considerable amount of organic matter from raw waste. In addition, the leaching of heavy metals such as chrome, cadmium, and lead appears to be significantly suppressed by carbonization regardless of the type of raw waste. From these results, carbonization could be considered as a pretreatment method for waste before landfilling, as well as for fuel recovery

  10. Rankine cycle system and method

    Science.gov (United States)

    Ernst, Timothy C.; Nelson, Christopher R.

    2014-09-09

    A Rankine cycle waste heat recovery system uses a receiver with a maximum liquid working fluid level lower than the minimum liquid working fluid level of a sub-cooler of the waste heat recovery system. The receiver may have a position that is physically lower than the sub-cooler's position. A valve controls transfer of fluid between several of the components in the waste heat recovery system, especially from the receiver to the sub-cooler. The system may also have an associated control module.

  11. Evaluation of two different alternatives of energy recovery from municipal solid waste in Brazil.

    Science.gov (United States)

    Medina Jimenez, Ana Carolina; Nordi, Guilherme Henrique; Palacios Bereche, Milagros Cecilia; Bereche, Reynaldo Palacios; Gallego, Antonio Garrido; Nebra, Silvia Azucena

    2017-11-01

    Brazil has a large population with a high waste generation. The municipal solid waste (MSW) generated is deposited mainly in landfills. However, a considerable fraction of the waste is still improperly disposed of in dumpsters. In order to overcome this inadequate deposition, it is necessary to seek alternative routes. Between these alternatives, it is possible to quote gasification and incineration. The objective of this study is to compare, from an energetic and economic point of view, these technologies, aiming at their possible implementation in Brazilian cities. A total of two configurations were evaluated: (i) waste incineration with energy recovery and electricity production in a steam cycle; and (ii) waste gasification, where the syngas produced is used as fuel in a boiler of a steam cycle for electricity production. Simulations were performed assuming the same amount of available waste for both configurations, with a composition corresponding to the MSW from Santo André, Brazil. The thermal efficiencies of the gasification and incineration configurations were 19.3% and 25.1%, respectively. The difference in the efficiencies was caused by the irreversibilities associated with the gasification process, and the additional electricity consumption in the waste treatment step. The economic analysis presented a cost of electrical energy produced of 0.113 (US$ kWh -1 ) and 0.139 (US$ kWh -1 ) for the incineration and gasification plants respectively.

  12. Hanford Site Tank Waste Remediation System

    International Nuclear Information System (INIS)

    1993-05-01

    The US Department of Energy's (DOE) Hanford Site in southeastern Washington State has the most diverse and largest amount of highly radioactive waste of any site in the US. High-level radioactive waste has been stored in large underground tanks since 1944. A Tank Waste Remediation System Program has been established within the DOE to safely manage and immobilize these wastes in anticipation of permanent disposal in a geologic repository. The Hanford Site Tank Waste Remediation System Waste Management 1993 Symposium Papers and Viewgraphs covered the following topics: Hanford Site Tank Waste Remediation System Overview; Tank Waste Retrieval Issues and Options for their Resolution; Tank Waste Pretreatment - Issues, Alternatives and Strategies for Resolution; Low-Level Waste Disposal - Grout Issue and Alternative Waste Form Technology; A Strategy for Resolving High-Priority Hanford Site Radioactive Waste Storage Tank Safety Issues; Tank Waste Chemistry - A New Understanding of Waste Aging; Recent Results from Characterization of Ferrocyanide Wastes at the Hanford Site; Resolving the Safety Issue for Radioactive Waste Tanks with High Organic Content; Technology to Support Hanford Site Tank Waste Remediation System Objectives

  13. Implementation of SAP Waste Management System

    International Nuclear Information System (INIS)

    Frost, M.L.; LaBorde, C.M.; Nichols, C.D.

    2008-01-01

    The Y-12 National Security Complex (Y-12) assumed responsibility for newly generated waste on October 1, 2005. To ensure effective management and accountability of newly generated waste, Y-12 has opted to utilize SAP, Y-12's Enterprise Resource Planning (ERP) tool, to track low-level radioactive waste (LLW), mixed waste (MW), hazardous waste, and non-regulated waste from generation through acceptance and disposal. SAP Waste will include the functionality of the current waste tracking system and integrate with the applicable modules of SAP already in use. The functionality of two legacy systems, the Generator Entry System (GES) and the Waste Information Tracking System (WITS), and peripheral spreadsheets, databases, and e-mail/fax communications will be replaced by SAP Waste. Fundamentally, SAP Waste will promote waste acceptance for certification and disposal, not storage. SAP Waste will provide a one-time data entry location where waste generators can enter waste container information, track the status of their waste, and maintain documentation. A benefit of the new system is that it will provide a single data repository where Y-12's Waste Management organization can establish waste profiles, verify and validate data, maintain inventory control utilizing hand-held data transfer devices, schedule and ship waste, manage project accounting, and report on waste handling activities. This single data repository will facilitate the production of detailed waste generation reports for use in forecasting and budgeting, provide the data for required regulatory reports, and generate metrics to evaluate the performance of the Waste Management organization and its subcontractors. SAP Waste will replace the outdated and expensive legacy system, establish tools the site needs to manage newly generated waste, and optimize the use of the site's ERP tool for integration with related business processes while promoting disposition of waste. (authors)

  14. Radioactive mixed waste disposal

    International Nuclear Information System (INIS)

    Jasen, W.G.; Erpenbeck, E.G.

    1993-02-01

    Various types of waste have been generated during the 50-year history of the Hanford Site. Regulatory changes in the last 20 years have provided the emphasis for better management of these wastes. Interpretations of the Atomic Energy Act of 1954 (AEA), the Resource Conservation and Recovery Act of 1976 (RCRA), and the Hazardous and Solid Waste Amendments (HSWA) have led to the definition of radioactive mixed wastes (RMW). The radioactive and hazardous properties of these wastes have resulted in the initiation of special projects for the management of these wastes. Other solid wastes at the Hanford Site include low-level wastes, transuranic (TRU), and nonradioactive hazardous wastes. This paper describes a system for the treatment, storage, and disposal (TSD) of solid radioactive waste

  15. Hazardous Waste Manifest System

    Science.gov (United States)

    EPA’s hazardous waste manifest system is designed to track hazardous waste from the time it leaves the generator facility where it was produced, until it reaches the off-site waste management facility that will store, treat, or dispose of the waste.

  16. CO2 recovery system using solar energy; Taiyo energy wo riyoshita CO2 bunri kaishu system

    Energy Technology Data Exchange (ETDEWEB)

    Hosho, F; Naito, H; Yugami, H; Arashi, H [Tohoku University, Sendai (Japan)

    1997-11-25

    As a part of studies on chemical absorption process with MEA (monoethanolamine) for CO2 recovery from boiler waste gas in thermal power plants, use of solar heat as MEA regenerating energy was studied. An integrated stationary evacuated concentrator (ISEC) effective as collector in a medium temperature range was used to realize a regenerating temperature range of 100-120degC. ISEC is featured by vacuum insulation, use of selective absorbing membranes for an absorber, a CPC (compound parabolic concentrator)-shaped reflection mirror, and high-efficiency. An MEA regenerator is composed of an ISEC and PG(propylene glycol)-MEA heat exchanger, and circulates PG as heat medium. Heat collection experiment was also made using water instead of MEA. Both batch and continuous systems could supply a heat quantity necessary for MEA regeneration. CO2 concentration in the top of the regenerator rapidly decreased with PG circulation regenerating MEA. As mol ratios of CO2/MEA were compared between before and after regeneration, a recovery rate was estimated to be 59.4% for the batch system. 8 figs., 4 tabs.

  17. Improving sample recovery

    International Nuclear Information System (INIS)

    Blanchard, R.J.

    1995-09-01

    This Engineering Task Plan (ETP) describes the tasks, i.e., tests, studies, external support and modifications planned to increase the recovery of the recovery of the waste tank contents using combinations of improved techniques, equipment, knowledge, experience and testing to better the recovery rates presently being experienced

  18. Life-cycle assessment of the municipal solid waste management system in Hangzhou, China (EASEWASTE).

    Science.gov (United States)

    Zhao, Yan; Wang, Hong-Tao; Lu, Wen-Jing; Damgaard, Anders; Christensen, Thomas H

    2009-06-01

    With the purpose of assessing the environmental impacts and benefits of the current municipal solid waste management system and two modified systems, EASEWASTE, a life-cycle-based model, was used to evaluate the waste system of Hangzhou city in China. An integrated model was established, including waste generation, collection, transportation, treatment, disposal and accompanying external processes. The results showed that CH(4) released from landfilling was the primary pollutant contributing to global warming, and HCl and NH(3) from incineration contributed most to acidification. Material recycling and incineration with energy recovery were important because of the induced savings in material production based on virgin materials and in energy production based on coal combustion. A modified system in which waste is transported to the nearest incinerators would be relatively better than the current system, mainly due to the decrease of pollution from landfilled waste and the increase in energy production from waste avoiding energy production by traditional power plants. A ban on free plastic bags for shopping was shown to reduce most environmental impacts due to saved oil resources and other materials used in producing the plastic bags. Sensitivity analysis confirmed the robustness of the results. LCA methodology and a model like EASEWASTE are very suitable for evaluating the overall environmental consequences, and can be used for decision support and strategic planning in developing countries such as China where pollution control has become increasingly important with the rapid increase of waste generation as well as the increasing public awareness of environmental protection.

  19. Composite waste analysis system

    International Nuclear Information System (INIS)

    Wachter, J.R.; Hagan, R.C.; Bonner, C.A.; Malcom, J.E.; Camp, K.L.

    1993-01-01

    Nondestructive analysis (NDA) of radioactive waste forms an integral component of nuclear materials accountability programs and waste characterization acceptance criterion. However, waste measurements are often complicated by unknown isotopic compositions and the potential for concealment of special nuclear materials in a manner that is transparent to gamma-ray measurement instruments. To overcome these complications, a new NDA measurement system has been developed to assay special nuclear material in both transuranic and low level waste from the same measurement platform. The system incorporates a NaI detector and customized commercial software routines to measure small quantities of radioactive material in low level waste. Transuranic waste analysis is performed with a coaxial HPGE detector and uses upgraded PC-based segmented gamma scanner software to assay containers up to 55 gal. in volume. Gamma-Ray isotopics analysis of both waste forms is also performed with this detector. Finally, a small neutron counter using specialized software is attached to the measurement platform to satisfy safeguards concerns related to nuclear materials that are not sensed by the gamma-ray instruments. This report describes important features and capabilities of the system and presents a series of test measurements that are to be performed to define system parameters

  20. Development of Natural Gas Fired Combined Cycle Plant for Tri-Generation of Power, Cooling and Clean Water Using Waste Heat Recovery: Techno-Economic Analysis

    Directory of Open Access Journals (Sweden)

    Gowtham Mohan

    2014-10-01

    Full Text Available Tri-generation is one of the most efficient ways for maximizing the utilization of available energy. Utilization of waste heat (flue gases liberated by the Al-Hamra gas turbine power plant is analyzed in this research work for simultaneous production of: (a electricity by combining steam rankine cycle using heat recovery steam generator (HRSG; (b clean water by air gap membrane distillation (AGMD plant; and (c cooling by single stage vapor absorption chiller (VAC. The flue gases liberated from the gas turbine power cycle is the prime source of energy for the tri-generation system. The heat recovered from condenser of steam cycle and excess heat available at the flue gases are utilized to drive cooling and desalination cycles which are optimized based on the cooling energy demands of the villas. Economic and environmental benefits of the tri-generation system in terms of cost savings and reduction in carbon emissions were analyzed. Energy efficiency of about 82%–85% is achieved by the tri-generation system compared to 50%–52% for combined cycles. Normalized carbon dioxide emission per MW·h is reduced by 51.5% by implementation of waste heat recovery tri-generation system. The tri-generation system has a payback period of 1.38 years with cumulative net present value of $66 million over the project life time.

  1. Recovery of nitrogen and water from landfill leachate by a microbial electrolysis cell-forward osmosis system.

    Science.gov (United States)

    Qin, Mohan; Molitor, Hannah; Brazil, Brian; Novak, John T; He, Zhen

    2016-01-01

    A microbial electrolysis cell (MEC)-forward osmosis (FO) system was previously reported for recovering ammonium and water from synthetic solutions, and here it has been advanced with treating landfill leachate. In the MEC, 65.7±9.1% of ammonium could be recovered in the presence of cathode aeration. Without aeration, the MEC could remove 54.1±10.9% of ammonium from the leachate, but little ammonia was recovered. With 2M NH4HCO3 as the draw solution, the FO process achieved 51% water recovery from the MEC anode effluent in 3.5-h operation, higher than that from the raw leachate. The recovered ammonia was used as a draw solute in the FO for successful water recovery from the treated leachate. Despite the challenges with treating returning solution from the FO, this MEC-FO system has demonstrated the potential for resource recovery from wastes, and provide a new solution for sustainable leachate management. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Combined Municipal Solid Waste and biomass system optimization for district energy applications.

    Science.gov (United States)

    Rentizelas, Athanasios A; Tolis, Athanasios I; Tatsiopoulos, Ilias P

    2014-01-01

    Municipal Solid Waste (MSW) disposal has been a controversial issue in many countries over the past years, due to disagreement among the various stakeholders on the waste management policies and technologies to be adopted. One of the ways of treating/disposing MSW is energy recovery, as waste is considered to contain a considerable amount of bio-waste and therefore can lead to renewable energy production. The overall efficiency can be very high in the cases of co-generation or tri-generation. In this paper a model is presented, aiming to support decision makers in issues relating to Municipal Solid Waste energy recovery. The idea of using more fuel sources, including MSW and agricultural residue biomass that may exist in a rural area, is explored. The model aims at optimizing the system specifications, such as the capacity of the base-load Waste-to-Energy facility, the capacity of the peak-load biomass boiler and the location of the facility. Furthermore, it defines the quantity of each potential fuel source that should be used annually, in order to maximize the financial yield of the investment. The results of an energy tri-generation case study application at a rural area of Greece, using mixed MSW and biomass, indicate positive financial yield of investment. In addition, a sensitivity analysis is performed on the effect of the most important parameters of the model on the optimum solution, pinpointing the parameters of interest rate, investment cost and heating oil price, as those requiring the attention of the decision makers. Finally, the sensitivity analysis is enhanced by a stochastic analysis to determine the effect of the volatility of parameters on the robustness of the model and the solution obtained. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. A new conceptual cold-end design of boilers for coal-fired power plants with waste heat recovery

    International Nuclear Information System (INIS)

    Yang, Yongping; Xu, Cheng; Xu, Gang; Han, Yu; Fang, Yaxiong; Zhang, Dongke

    2015-01-01

    Highlights: • A new cold-end design of boilers for CFPPs with waste heat recovery is proposed. • Thermodynamic and economic analyses are quantitatively conducted. • Higher energy efficiency improvement and greater economic benefits are achieved. • Lower exergy destruction and better matched energy level are obtained. - Abstract: After conducting an in-depth analysis of the conventional boiler cold-end design for waste heat recovery, this work proposed a new conceptual boiler cold-end design integrated with the steam cycle in a 1000 MW CFPP, in which the preheating of air was divided into high-temperature air preheater (HTAP), main air preheater (MAP) and low-temperature air preheater (LTAP). The HTAP and an economizer were installed in separate flue ducts, and the low temperature economizer (LTE) was situated between the MAP and the LTAP in the main flue duct to heat the condensed water. In the proposed boiler cold-end design, the flue gas waste heat was not only used to heat condensed water, but also to further preheat the combustion air. The air temperature at the air-preheater outlet increases and part of the steam bleeds with high exergy can be saved, resulting in greater energy-savings and better economics. Results showed that, for a typical 1000 MW CFPP in China, using the proposed boiler cold-end design for waste heat recovery could produce 13.3 MW e additional net power output with a heat rate reduction of approximately 112.0 kJ/kW h and could yield a net benefit of up to $85.8 M per year, which is much greater than those of the conventional cases. Exergy destruction is also reduced from 49.9 MW th in the conventional boiler cold-end design to 39.6 MW th in the proposed design

  4. Zinc recovery from iron and steel making wastes by conventional and microwave assisted leaching

    Directory of Open Access Journals (Sweden)

    Ján Vereš

    2011-12-01

    Full Text Available Significant quantities of sludge and dust are generated as a waste material or byproduct every day from iron and steel industries.Nowadays The occurrence and recovery of metallurgical wastes from steelmaking and iron making processes is a great problem, mainlydue to the big amount and environmental pollution of these wastes by heavy metals. The future technology of fine-grain metallurgicalwastes treatment is mainly the thing of ecological and financial limits. This work explains the removal of zinc from blast furnace sludgeby hydrometallurgical process. The aim of this work was to carry out a chemical, physical, structural, and morphologicalcharacterization of these waste materials and subsequently to find out the best suitable method for the hydrometallurgical treatment.The experimental work includes full plant experiments. Extraction conditions such as the effect of microwave power, leaching agent,acid concentration, S/L ratio and extraction time on the zinc removal efficiency were evaluated. The main goal is to set the bestconditions to transfer zinc into the solution while the iron should to remain in the solid phase.

  5. Leaching for recovery of copper from municipal solid waste incineration fly ash: influence of ash properties and metal speciation.

    Science.gov (United States)

    Lassesson, Henric; Fedje, Karin Karlfeldt; Steenari, Britt-Marie

    2014-08-01

    Recovery of metals occurring in significant amounts in municipal solid waste incineration fly ash, such as copper, could offer several advantages: a decreased amount of potentially mobile metal compounds going to landfill, saving of natural resources and a monetary value. A combination of leaching and solvent extraction may constitute a feasible recovery path for metals from municipal solid waste incineration fly ash. However, it has been shown that the initial dissolution and leaching is a limiting step in such a recovery process. The work described in this article was focused on elucidating physical and chemical differences between two ash samples with the aim of explaining the differences in copper release from these samples in two leaching methods. The results showed that the chemical speciation is an important factor affecting the release of copper. The occurrence of copper as phosphate or silicate will hinder leaching, while sulphate and chloride will facilitate leaching. © The Author(s) 2014.

  6. Experimental study on heat pipe assisted heat exchanger used for industrial waste heat recovery

    International Nuclear Information System (INIS)

    Ma, Hongting; Yin, Lihui; Shen, Xiaopeng; Lu, Wenqian; Sun, Yuexia; Zhang, Yufeng; Deng, Na

    2016-01-01

    Highlights: • A heat pipe heat exchanger (HPHE) was used to recycle the waste heat in a slag cooling process of steel industry. • An specially designed on-line cleaning device was construed and used to enhance the heat transfer of HPHE. • The performance characteristics of a HPHE has been assessed by integrating the first and second law of thermodynamics. • The optimum operation conditions was determined by integrating the first and the second law of thermodynamics. - Abstract: Steel industry plays an important role economically in China. A great amount of hot waste liquids and gases are discharged into environment during many steelmaking processes. These waste liquids and gases have crucial energy saving potential, especially for steel slag cooling process. It could be possible to provide energy saving by employing a waste heat recovery system (WHRS). The optimum operation condition was assessed by integrating the first and the second law of thermodynamics for a water–water heat pipe heat exchanger (HPHE) for a slag cooling process in steel industry. The performance characteristics of a HPHE has been investigated experimentally by analyzing heat transfer rate, heat transfer coefficient, effectiveness, exergy efficiency and number of heat transfer units (NTU). A specially designed on-line cleaning device was used to clean the heat exchange tubes and enhance heat transfer. The results indicated that the exergy efficiency increased with the increment of waste water mass flow rate at constant fresh water mass flow rate, while the effectiveness decreased at the same operation condition. As the waste water mass flow rate varied from 0.83 m"3/h to 1.87 m"3/h, the effectiveness and exergy efficiency varied from 0.19 to 0.09 and from 34% to 41%, respectively. In the present work, the optimal flow rates of waste water and fresh water were 1.20 m"3/h and 3.00 m"3/h, respectively. The on-line cleaning device had an obvious effect on the heat transfer, by performing

  7. Actinide recovery using aqueous biphasic extraction: Initial developmental studies

    International Nuclear Information System (INIS)

    Chaiko, D.J.; Mensah-Biney, R.; Mertz, C.J.; Rollins, A.N.

    1992-08-01

    Aqueous biphasic extraction systems are being developed to treat radioactive wastes. The separation technique involves the selective partitioning of either solutes or colloid-size particles between two scible aqueous phases. Wet grinding of plutonium residues to an average particle size of one micron will be used to liberate the plutonium from the bulk of the particle matrix. The goal is to produce a plutonium concentrate that will integrate with existing and developing chemical recovery processes. Ideally, the process would produce a nonTRU waste stream. Coupling physical beneficiation with chemical processing will result in a substantial reduction in the volume of mixed wastes generated from dissolution recovery processes. As part of this program, we will also explore applications of aqueous biphasic extraction that include the separation and recovery of dissolved species such as metal ions and water-soluble organics. The expertise and data generated in this work will form the basis for developing more cost-effective processes for handling waste streams from environmental restoration and waste management activities within the DOE community. This report summarizes the experimental results obtained during the first year of this effort. Experimental efforts were focused on elucidating the surface and solution chemistry variables which govern partitioning behavior of plutonium and silica in aqueous biphasic extraction systems. Additional efforts were directed toward the development of wet grinding methods for producing ultrafine particles with diameters of one micron or less

  8. Actinide recovery using aqueous biphasic extraction: Initial developmental studies

    Energy Technology Data Exchange (ETDEWEB)

    Chaiko, D.J.; Mensah-Biney, R.; Mertz, C.J.; Rollins, A.N.

    1992-08-01

    Aqueous biphasic extraction systems are being developed to treat radioactive wastes. The separation technique involves the selective partitioning of either solutes or colloid-size particles between two scible aqueous phases. Wet grinding of plutonium residues to an average particle size of one micron will be used to liberate the plutonium from the bulk of the particle matrix. The goal is to produce a plutonium concentrate that will integrate with existing and developing chemical recovery processes. Ideally, the process would produce a nonTRU waste stream. Coupling physical beneficiation with chemical processing will result in a substantial reduction in the volume of mixed wastes generated from dissolution recovery processes. As part of this program, we will also explore applications of aqueous biphasic extraction that include the separation and recovery of dissolved species such as metal ions and water-soluble organics. The expertise and data generated in this work will form the basis for developing more cost-effective processes for handling waste streams from environmental restoration and waste management activities within the DOE community. This report summarizes the experimental results obtained during the first year of this effort. Experimental efforts were focused on elucidating the surface and solution chemistry variables which govern partitioning behavior of plutonium and silica in aqueous biphasic extraction systems. Additional efforts were directed toward the development of wet grinding methods for producing ultrafine particles with diameters of one micron or less.

  9. Evaluation of improved chemical waste disposal and recovery methods for N reactor fuel fabrication operations: 1984 annual report

    International Nuclear Information System (INIS)

    Stewart, T.L.; Hartley, J.N.

    1984-12-01

    Pacific Northwest Laboratory personnel identified and evaluated alternative methods for recovery, recycle, and disposal of waste acids produced during N Reactor fuel operations. This work was conducted under a program sponsored by UNC Nuclear Industries, Inc.; the program goals were to reduce the volume of liquid waste by rejuvenating and recycling acid solutions and to generate a residual waste low in nitrates, fluorides, and metals. Disposal methods under consideration included nitric acid reclamation, grout encapsulation of final residual waste, nitrogen fertilizer production, biodenitrifaction, chemical or thermal destruction of NO 3 , and short-term impoundment of liquid NO 3 /SO 4 wastes. Preliminary testing indicated that the most feasible and practicable of these alternatives were (1) nitric acid reclamation followed by grouting of residual waste and (2) nitrogen fertilizer production. This report summarizes the investigations, findings, and recommendations for the 1984 fiscal year

  10. LCA of Solid Waste Management Systems

    DEFF Research Database (Denmark)

    Bakas, Ioannis; Laurent, Alexis; Clavreul, Julie

    2018-01-01

    The chapter explores the application of LCA to solid waste management systems through the review of published studies on the subject. The environmental implications of choices involved in the modelling setup of waste management systems are increasingly in the spotlight, due to public health...... concerns and new legislation addressing the impacts from managing our waste. The application of LCA to solid waste management systems, sometimes called “waste LCA”, is distinctive in that system boundaries are rigorously defined to exclude all life cycle stages except from the end-of-life. Moreover...... LCA on solid waste systems....

  11. Parametric and exergetic analysis of waste heat recovery system based on thermoelectric generator and organic rankine cycle utilizing R123

    International Nuclear Information System (INIS)

    Shu, Gequn; Zhao, Jian; Tian, Hua; Liang, Xingyu; Wei, Haiqiao

    2012-01-01

    The paper analyzes the combined TEG-ORC (thermoelectric generator and organic rankine cycle) used in exhaust heat recovery of ICE (internal combustion engine) theoretically. A theoretical model is proposed to calculate the optimal parameters of the bottoming cycle based on thermodynamic theory when net output power and volumetric expansion ratio are selected as objective functions, which affect system performance and size. The effects of relative TEG flow direction, TEG scale, highest temperature, condensation temperature, evaporator pressure and efficiency of IHE (internal heat exchanger) on system performance are investigated. R123 is chosen among the fluids whose decomposition temperature exceeds 600 K to avoid fluid resolving and resulting in wet stroke when expansion process ends. The thermodynamic irreversibility that occurs in evaporator, turbine, IHE, condenser, pump and TEG is revealed at target working areas. The results indicate a significant increase of system performance when TEG and IHE are combined with ORC bottoming cycle. It is also suggested that TEG-ORC system is suitable to recovering waste heat from engines, because TEG can extend the temperature range of heat source and thereby improve the security and fuel economy of engines. -- Highlights: ► Development of a TEG-ORC system using R123 as working fluid for WHR of engines. ► Performance of the developed cycle was investigated theoretically. ► Optimization of configurations and parameters can be obtained. ► Irreversibility in the evaporator, turbine, IHE, condenser, pump and TEG is revealed. ► Optimal net power and indicated efficiency is 27 kW and 45.7%, respectively.

  12. Selective recovery of silver from waste low-temperature co-fired ceramic and valorization through silver nanoparticle synthesis.

    Science.gov (United States)

    Swain, Basudev; Shin, Dongyoon; Joo, So Yeong; Ahn, Nak Kyoon; Lee, Chan Gi; Yoon, Jin-Ho

    2017-11-01

    Considering the value of silver metal and silver nanoparticles, the waste generated during manufacturing of low temperature co-fired ceramic (LTCC) were recycled through the simple yet cost effective process by chemical-metallurgy. Followed by leaching optimization, silver was selectively recovered through precipitation. The precipitated silver chloride was valorized though silver nanoparticle synthesis by a simple one-pot greener synthesis route. Through leaching-precipitation optimization, quantitative selective recovery of silver chloride was achieved, followed by homogeneous pure silver nanoparticle about 100nm size were synthesized. The reported recycling process is a simple process, versatile, easy to implement, requires minimum facilities and no specialty chemicals, through which semiconductor manufacturing industry can treat the waste generated during manufacturing of LTCC and reutilize the valorized silver nanoparticles in manufacturing in a close loop process. Our reported process can address issues like; (i) waste disposal, as well as value-added silver recovery, (ii) brings back the material to production stream and address the circular economy, and (iii) can be part of lower the futuristic carbon economy and cradle-to-cradle technology management, simultaneously. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Experimental investigation of the quality characteristics of agricultural plastic wastes regarding their recycling and energy recovery potential.

    Science.gov (United States)

    Briassoulis, D; Hiskakis, M; Babou, E; Antiohos, S K; Papadi, C

    2012-06-01

    A holistic environmentally sound waste management scheme that transforms agricultural plastic waste (APW) streams into labelled guaranteed quality commodities freely traded in open market has been developed by the European research project LabelAgriWaste. The APW quality is defined by the APW material requirements, translated to technical specifications, for recycling or energy recovery. The present work investigates the characteristics of the APW quality and the key factors affecting it from the introduction of the virgin product to the market to the APW stream reaching the disposer. Samples of APW from different countries were traced from their application to the field through their storage phase and transportation to the final destination. The test results showed that the majority of APW retained their mechanical properties after their use preserving a "very good quality" for recycling in terms of degradation. The degree of soil contamination concerning the APW recycling and energy recovery potential fluctuates depending on the agricultural plastic category and application. The chlorine and heavy metal content of the tested APW materials was much lower than the maximum acceptable limits for their potential use in cement industries. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Split radiator design for heat rejection optimization for a waste heat recovery system

    Science.gov (United States)

    Ernst, Timothy C.; Nelson, Christopher R.

    2016-10-18

    A cooling system provides improved heat recovery by providing a split core radiator for both engine cooling and condenser cooling for a Rankine cycle (RC). The cooling system includes a radiator having a first cooling core portion and a second cooling core portion. An engine cooling loop is fluidly connected the second cooling core portion. A condenser of an RC has a cooling loop fluidly connected to the first cooling core portion. A valve is provided between the engine cooling loop and the condenser cooling loop adjustably control the flow of coolant in the condenser cooling loop into the engine cooling loop. The cooling system includes a controller communicatively coupled to the valve and adapted to determine a load requirement for the internal combustion engine and adjust the valve in accordance with the engine load requirement.

  15. Eco-friendly copper recovery process from waste printed circuit boards using Fe³⁺/Fe²⁺ redox system.

    Science.gov (United States)

    Fogarasi, Szabolcs; Imre-Lucaci, Florica; Egedy, Attila; Imre-Lucaci, Árpád; Ilea, Petru

    2015-06-01

    The present study aimed at developing an original and environmentally friendly process for the recovery of copper from waste printed circuit boards (WPCBs) by chemical dissolution with Fe(3+) combined with the simultaneous electrowinning of copper and oxidant regeneration. The recovery of copper was achieved in an original set-up consisting of a three chamber electrochemical reactor (ER) connected in series with a chemical reactor (CR) equipped with a perforated rotating drum. Several experiments were performed in order to identify the optimal flow rate for the dissolution of copper in the CR and to ensure the lowest energy consumption for copper electrodeposition in the ER. The optimal hydrodynamic conditions were provided at 400 mL/min, leading to the 75% dissolution of metals and to a low specific energy consumption of 1.59 kW h/kg Cu for the electrodeposition process. In most experiments, the copper content of the obtained cathodic deposits was over 99.9%. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Energy recovery from Municipal Solid Waste in EU: proposals to assess the management performance under a circular economy perspective

    Directory of Open Access Journals (Sweden)

    Rada Elena Cristina

    2017-01-01

    Full Text Available In 2015 the European Commission issued a package of documents on Circular Economy concerning an integrated revision of legislative proposals on waste management. The aim was to stimulate a European transition towards a circular economy concept, which is expected to foster competitiveness, sustainable economic growth and new jobs generation. Three indicators are proposed in this paper to contribute to the assessment of the energy recovery management performance from MSW in a scenario of circular economy: a referring to MSW directly used (RMSW or indirectly used (SRF as input of thermochemical plants, an indicator can be the percentage of waste having LHV > 13MJ/kg; b referring to the MSW directly or indirectly used as input of thermochemical plants, the percentage of waste having ash recovered; c referring to food waste, percentage of this stream sent to anaerobic digestion. The above indicators, proposed and discussed in this paper, have to be integrated with other ones in order to complete the quantification of the role of MSW management in term of energy recovery under a circular economy strategy. It is not the aim of the present paper to give a comprehensive solution to this complex issue.

  17. Optimal utilization of waste-to-energy in an LCA perspective.

    Science.gov (United States)

    Fruergaard, T; Astrup, T

    2011-03-01

    Energy production from two types of municipal solid waste was evaluated using life cycle assessment (LCA): (1) mixed high calorific waste suitable for production of solid recovered fuels (SRF) and (2) source separated organic waste. For SRF, co-combustion was compared with mass burn incineration. For organic waste, anaerobic digestion (AD) was compared with mass burn incineration. In the case of mass burn incineration, incineration with and without energy recovery was modelled. Biogas produced from anaerobic digestion was evaluated for use both as transportation fuel and for heat and power production. All relevant consequences for energy and resource consumptions, emissions to air, water and soil, upstream processes and downstream processes were included in the LCA. Energy substitutions were considered with respect to two different energy systems: a present-day Danish system based on fossil fuels and a potential future system based on 100% renewable energy. It was found that mass burn incineration of SRF with energy recovery provided savings in all impact categories, but co-combustion was better with respect to Global Warming (GW). If all heat from incineration could be utilized, however, the two alternatives were comparable for SRF. For organic waste, mass burn incineration with energy recovery was preferable over anaerobic digestion in most impact categories. Waste composition and flue gas cleaning at co-combustion plants were critical for the environmental performance of SRF treatment, while the impacts related to utilization of the digestate were significant for the outcome of organic waste treatment. The conclusions were robust in a present-day as well as in a future energy system. This indicated that mass burn incineration with efficient energy recovery is a very environmentally competitive solution overall. Copyright © 2010 Elsevier Ltd. All rights reserved.

  18. Thermal treatment of municipal waste: An overview

    International Nuclear Information System (INIS)

    Sivaprasad, K.S.

    2010-01-01

    Waste generation, like a shadow accompanies all kinds of human activities. For a long time waste was ignored as of no consequence. Nevertheless in recent times the presence of Waste was felt by the adverse impact it began to have on human life. Attention was given to waste disposal. Various methods of disposal were developed. Actually a process of evolution was set in this area. Starting with Dumpsite it developed in to sanitary land fill. Adverse impact was beginning to be seen in leachate contaminating ground water, and long term emission of methane contributing to climate change. This set the thinking to seek other solutions. Waste was begun to be seen as a resource instead of a nuisance to be disposed off. Bio-methanation of waste for recovery of methane rich biogas was developed. The concept of thermal treatment of waste for disposal came in to being in order to reduce volume of disposal as only the ash will be disposed instead of the whole volume of waste when waste is subjected to thermal treatment. However, it was beset with certain pollution problems which needed to be addressed. Suitable pollution abatement systems were developed. In the meantime, with the increase in global population and lifestyle changes across the globe, demand for natural resources went up rapidly resulting in pressure on the finite resources of the earth. Emphasis shifted to recovery of value from waste while disposing. Recovery of Recyclables, and energy came in to focus. RDF technology was developed facilitating this making it possible to recover recyclables like plastics, metals etc besides generating the prepared fuel RDF for energy recovery. (Author)

  19. Recovery of cyanide in gold leach waste solution by volatilization and absorption.

    Science.gov (United States)

    Gönen, N; Kabasakal, O S; Ozdil, G

    2004-09-10

    In this study, the effects of pH, time and temperature in regeneration of cyanide in the leaching waste solution of gold production from disseminated gold ore by cyanidation process were investigated and the optimum conditions, consumptions and cyanide recovery values were determined. The sample of waste solution containing 156 mg/l free CN- and 358 mg/l total CN-, that was obtained from Gümüşhane-Mastra/Turkey disseminated gold ores by cyanidation and carbon-in-pulp (CIP) process under laboratory conditions was used in the experiments. Acidification with H2SO4, volatilization of hydrogen cyanide (HCN) with air stripping and absorption of HCN in a basic solution stages were applied and under optimum conditions, 100% of free cyanide and 48% of complex cyanide and consequently 70% of the total cyanide in the liquid phase of gold leach effluent are recovered.

  20. Waste Information Data System user guide

    International Nuclear Information System (INIS)

    Dietz, L.A.

    1996-09-01

    The Waste Information Data System (also known as the Environmental Sites Database) is a computerized system that provides a traceable source of information about environmental waste sites at the U.S. Department of Energy's Hanford Site in Richland, Washington. The system includes discovery, rejected, and accepted waste sites. The purpose of the system is to assist long-range waste management and environmental restoration planning by providing validated and reliable information about waste sites. The system is used to track site investigation, remediation, and closure-action activities