WorldWideScience

Sample records for waste management institute

  1. LOGISTICS OF WASTE MANAGEMENT IN HEALTHCARE INSTITUTIONS

    Directory of Open Access Journals (Sweden)

    Halina Marczak

    2016-07-01

    Full Text Available The waste management system in health care is a tool that allows to conduct reasonable steps to reduce their amount, collection, storage and transport, and provide a high level of utilization or disposal. Logistics solutions in waste management are intended to make full use of the infrastructure and technical resources, optimize costs, ensure the safety and health at work and meet legal requirements. The article discusses the elements of the logistics system of waste management in hospital, necessary to ensure the smooth flow of waste from its origin to landfilling. The following criteria were characterized: technical and technological, ecological and economic that can be used in the analysis and evaluation of solutions in waste management in the hospital. Finally, solutions to improve waste management system in the hospital on the example of the real object have been presented.

  2. Nontechnical issues in waste management: ethical, institutional, and political concerns

    Energy Technology Data Exchange (ETDEWEB)

    Hebert, J.A.; Rankin, W.L.; Brown, P.G.; Schuller, C.R; Smith, R.F.; Goodnight, J.A.; Lippek, H.E.

    1978-05-01

    The report consists of a presentation and distillation of major nontechnical issues surrounding commercial waste management, followed by ethical, institutional, and political analyses of these issues. The ethical analysis consists of a discusson of what is meant by ''ethics'' and ''morality'' in the waste management context and an illustrative attempt at an ethical analysis of the commercial nuclear waste problem. Two institutional analyses are presented: one is an analysis of the possible problems of long-term human institutions in waste management; the other is a presentation of institutional arrangements for the short term. A final chapter discusses issues and concerns involving intergovernmental relations--that is, local, state, and federal interface problems in waste management.

  3. 1989 Report to Congress: Management of Hazardous Wastes from Educational Institutions

    Science.gov (United States)

    Report identifying the statutory and regulatory requirements, examining current hazardous waste management practices, and identifying possible ways for educational institutions to improve hazardous waste management.

  4. Greening academia: developing sustainable waste management at Higher Education Institutions.

    Science.gov (United States)

    Zhang, N; Williams, I D; Kemp, S; Smith, N F

    2011-07-01

    Higher Education Institutions (HEIs) are often the size of small municipalities. Worldwide, the higher education (HE) sector has expanded phenomenally; for example, since the 1960s, the United Kingdom (UK) HE system has expanded sixfold to >2.4 million students. As a consequence, the overall production of waste at HEIs throughout the world is very large and presents significant challenges as the associated legislative, economic and environmental pressures can be difficult to control and manage. This paper critically reviews why sustainable waste management has become a key issue for the worldwide HE sector to address and describes some of the benefits, barriers, practical and logistical problems. As a practical illustration of some of the issues and problems, the four-phase waste management strategy developed over 15 years by one of the largest universities in Southern England--the University of Southampton (UoS)--is outlined as a case study. The UoS is committed to protecting the environment by developing practices that are safe, sustainable and environmentally friendly and has developed a practical, staged approach to manage waste in an increasingly sustainable fashion. At each stage, the approach taken to the development of infrastructure (I), service provision (S) and behavior change (B) is explained, taking into account the Political, Economic, Social, Technological, Legal and Environmental (PESTLE) factors. Signposts to lessons learned, good practice and useful resources that other institutions--both nationally and internationally--can access are provided. As a result of the strategy developed at the UoS, from 2004 to 2008 waste costs fell by around £125k and a recycling rate of 72% was achieved. The holistic approach taken--recognizing the PESTLE factors and the importance of a concerted ISB approach--provides a realistic, successful and practical example for other institutions wishing to effectively and sustainably manage their waste.

  5. Infrastructure support for a waste management institute. Final project report, September 12, 1994--September 11, 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-11-01

    North Carolina A and T State University has completed the development of an infrastructure for the interdisciplinary Waste Management Institute (WMI). The Interdisciplinary Waste Management Institute (WMI) was approved in June, 1994 by the General Administration of the University of North Carolina as an academic support unit with research and public service functions. The mission of the WMI is to enhance awareness and understanding of waste management issues and to provide instructional support including research and outreach. The goals of WMI are as follows: increase the number of minority professionals who will work in waste management fields; develop cooperative and exchange programs involving faculty, students, government, and industry; serve as institutional sponsor of public awareness workshops and lecture series; and support interdisciplinary research programs. The vision of the WMI is to provide continued state-of-the art environmental educational programs, research, and outreach.

  6. Electronic Waste Management in Educational Institutions of Ambo Town, Ethiopia, East Africa

    OpenAIRE

    Abenezer Wakuma Kitila

    2016-01-01

    Rapid technological advancements, scale economies, and high obsolescence rate contributes a significant role in generating e-waste. The study examines electronic waste management in educational institutions of Ambo town namely; Ambo University, Ambo Micro Business and TVET Colleges. It employs survey research and comparative study. The main data gathering tools were questionnaires, interviews, observation and review of documents. Through purposive sampling technique, property management heads...

  7. Knowledge and awareness regarding biomedical waste management in dental teaching institutions in India: a systematic review

    OpenAIRE

    Kapoor, Daljit; Nirola, Ashutosh; Kapoor, Vinod; Gambhir, Ramandeep Singh

    2014-01-01

    Objectives: Proper handling, treatment and disposal of biomedical wastes are important elements in any health care setting. Not much attention has been paid to the management of Biomedical Waste (BMW) in recent years, in dental colleges and hospitals in India. The present systematic review was conducted to assess knowledge and awareness regarding BMW management among staff and students of dental teaching institutions in India. Material and Methods: A systematic review of relevant cross-sectio...

  8. Radioactive waste management at the Paul Scherrer Institute, the largest Swiss national research centre

    Directory of Open Access Journals (Sweden)

    Beer Hans-Frieder

    2009-01-01

    Full Text Available This paper presents the current radioactive waste management practices at the Paul Scherrer Institute (PSI. The PSI contributes to waste related problems in two aspects, namely to the scientific basis of waste management and disposal, and to the practical treatment and storage of radioactive waste. In addition to the tasks of treating on-site generated waste, PSI manages the wastes from medicine, industry, and research throughout Switzerland on behalf of the government. Therefore the Dismantling and Waste Management Section is a part of the Logistics Department at PSI. Proved and accepted methods have to be developed for the safe conditioning and storage of radioactive waste. Various waste treatment facilities exist at PSI. The conditioning facility is dedicated to sorting, compaction by a 120 t press, solidification with special cement, and embedding in concrete. Specialized facilities were constructed for waste from the decommissioning of research reactors. Activated aluminum and its alloys were melted in crucibles and embedded in concrete in a concrete container. After dismantling the structural material of the reactors, it was embedded in concrete in the same manner. For the conditioning of activated reactor graphite, a dedicated method was developed. Graphite was crushed to replace sand in the grout, for embedding radioactive waste in concrete containers. For accelerator waste, a walk-in hot cell equipped with an electrically driven manipulator is available where the highly activated large components (targets, beam dump can be cut into pieces and embedded in concrete in containers. To guarantee the fulfillment of the demands of the regulators, the Dismantling and Waste Management Section applies an accredited quality management system for the safe collection, conditioning, and storage of radioactive waste.

  9. Electronic Waste Management in Educational Institutions of Ambo Town, Ethiopia, East Africa

    Directory of Open Access Journals (Sweden)

    Abenezer Wakuma Kitila

    2016-02-01

    Full Text Available Rapid technological advancements, scale economies, and high obsolescence rate contributes a significant role in generating e-waste. The study examines electronic waste management in educational institutions of Ambo town namely; Ambo University, Ambo Micro Business and TVET Colleges. It employs survey research and comparative study. The main data gathering tools were questionnaires, interviews, observation and review of documents. Through purposive sampling technique, property management heads, directors, purchasers and storekeepers have been selected as sample respondents. The findings of the study highlighted that educational institutions are engrossed with average volume of e-waste generated from laboratories, academic and administrative staffs. Workers in General Service Department have not aware of issues related to e-waste. It is found that IT and Telecommunication, consumer and lighting equipment, control and monitoring equipment are widely generated type of e-waste. The major action taken to the discarded items is storing and to some extent donating. It was realized that absence of legislation, absence of recycling/refurbishing centers, and lack of awareness are the major challenges in e-waste management. After all the study recommends to create partnership with governmental and non-governmental organization to obtain legislation, management options, and infrastructures to ensure proper e-waste management for better human and environmental health.

  10. Marketing aspects of development of medical waste management in health care institutions in Ukraine

    Directory of Open Access Journals (Sweden)

    Inesa Gurinа

    2015-02-01

    Full Text Available The concept of marketing approach to medical waste management in health care is suggested.The goal of research was to study the state of marketing activities of health care institutions on medical waste management and development trends of   resolution of outstanding issues.Methods. The methods, which were used in the research, are the methods of mathematical statistics, social studies and scientific knowledge.Results. Environmental marketing institutions of healthcare means perfectly safe for the environment provision of health services. The main directions of environmental marketing concept in health care institutions is the acceptance generally binding legal standards of Use Resources, strict control the formation and licensing of medical waste; economic incentives for workers, aimed at minimizing their interest in the volumes of medical waste; financing of R & D relative to the development of new waste and sound technologies; develop a system of taxes and penalties for polluting the environment and so on.Conclusions. As a result of the implementation of marketing strategies for managing medical waste of healthcare institutions are obtained strategic, social, environmental and economic benefits.

  11. Building the institutional capacity for managing commercial high-level radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    None

    1982-05-01

    In July 1981, the Office of Nuclear Waste Management of the Department of Energy contracted with the National Academy of Public Administration for a study of institutional issues associated with the commercial radioactive waste management program. The two major sets of issues which the Academy was asked to investigate were (1) intergovernmental relationships, how federal, state, local and Indian tribal council governments relate to each other in the planning and implementation of a waste management program, and (2) interagency relationships, how the federal agencies with major responsibilities in this public policy arena interact with each other. The objective of the study was to apply the perspectives of public administration to a difficult and controversial question - how to devise and execute an effective waste management program workable within the constraints of the federal system. To carry out this task, the Academy appointed a panel composed of individuals whose background and experience would provide the several types of knowledge essential to the effort. The findings of this panel are presented along with the executive summary. The report consists of a discussion of the search for a radioactive waste management strategy, and an analysis of the two major groups of institutional issues: (1) intergovernmental, the relationship between the three major levels of government; and (2) interagency, the relationships between the major federal agencies having responsibility for the waste management program.

  12. Commercial and Institutional Waste

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund; Fruergaard, Thilde

    2011-01-01

    is handled in the municipal waste system, where information is easily accessible. An important part of commercial and institutional waste is packaging waste, and enterprises with large quantities of clean paper, cardboard and plastic waste may have their own facilities for baling and storing their waste......Commercial and institutional waste is primarily from retail (stores), hotels, restaurants, health care (except health risk waste), banks, insurance companies, education, retirement homes, public services and transport. Within some of these sectors, e.g. retail and restaurants, large variations...... are found in terms of which products and services are offered. Available data on unit generation rates and material composition as well as determining factors are discussed in this chapter. The characterizing of commercial and institutional waste is faced with the problem that often only a part of the waste...

  13. Risk Management Status of Waste Anesthetic Gases Using ECRI Institute Standards

    Directory of Open Access Journals (Sweden)

    S Asefzadeh

    2012-11-01

    Full Text Available Background: The aim of this study was assessment the risk management status of waste anesthetic gases in academicals hospitals in Iran to prevent from harmful effects of these gases on employees' health.Methods: A descriptive-analytic study was designed in 2011. Standard structured checklist developed by ECRI institute (Emergency Care Research Institute was applied. Checklists were filled onsite through direct observation and interviews with anesthesia personnel in 46 operating rooms at 4 hospitals from all of the hospitals under affiliation of Isfahan University of Medical Sciences. These hospitals were selected based on the number of surgical beds.Results: Total means score of WAGs risk management status was 1.72 from the scale of 3. In the studied operating rooms, only 28% complied with predetermined standards, 16% needed improvement and 56% had no compliance. Total mean scores of compliance in planning, training and evaluation and monitoring of waste anesthetic gases were weak and equipment and work activity was at medium level.Conclusion: The risk management status of waste anesthetic gases in the hospitals to be weak, therefore operating room personnel are exposed to medium to high level of these gases. The hospital mangers should prepare and apply scavenging equipment, development of control program, quality improvement, risk management and maintenance of anesthesia equipment. Finally, ongoing monitoring and evaluation, education to personnel and modification of policy and procedures and improvement of work activities should be considered.

  14. Institute of Energy and Climate Research IEK-6. Nuclear waste management and reactor safety report 2009/2010. Material science for nuclear waste management

    Energy Technology Data Exchange (ETDEWEB)

    Klinkenberg, M.; Neumeier, S.; Bosbach, D. (eds.)

    2011-07-01

    Due to the use of nuclear energy about 17.000 t (27.000 m{sup 3}) of high level waste and about 300.000 m{sup 3} of low and intermediated level waste will have accumulated in Germany until 2022. Research in the Institute of Energy and Climate Research (IEK-6), Nuclear Waste Management and Reactor Safety Division focuses on fundamental and applied aspects of the safe management of nuclear waste - in particular the nuclear aspects. In principle, our research in Forschungszentrum Juelich is looking at the material science/solid state aspects of nuclear waste management. It is organized in several research areas: The long-term safety of nuclear waste disposal is a key issue when it comes to the final disposal of high level nuclear waste in a deep geological formation. We are contributing to the scientific basis for the safety case of a nuclear waste repository in Germany. In Juelich we are focusing on a fundamental understanding of near field processes within a waste repository system. The main research topics are spent fuel corrosion and the retention of radionuclides by secondary phases. In addition, innovative waste management strategies are investigated to facilitate a qualified decision on the best strategy for Germany. New ceramic waste forms for disposal in a deep geological formation are studied as well as the partitioning of long-lived actinides. These research areas are supported by our structure research group, which is using experimental and computational approaches to examine actinide containing compounds. Complementary to these basic science oriented activities, IEK-6 also works on rather applied aspects. The development of non-destructive methods for the characterisation of nuclear waste packages has a long tradition in Juelich. Current activities focus on improving the segmented gamma scanning technique and the prompt gamma neutron activation analysis. Furthermore, the waste treatment group is developing concepts for the safe management of nuclear

  15. Waste management

    DEFF Research Database (Denmark)

    2000-01-01

    The case study deals with public accountability issues connected to household waste management in the municipality of Copenhagen, Denmark.......The case study deals with public accountability issues connected to household waste management in the municipality of Copenhagen, Denmark....

  16. Waste management

    DEFF Research Database (Denmark)

    2000-01-01

    The case study deals with public accountability issues connected to household waste management in the municipality of Copenhagen, Denmark.......The case study deals with public accountability issues connected to household waste management in the municipality of Copenhagen, Denmark....

  17. Workshop on establishing institutional credibility for SEAB Task Force on Radioactive Waste Management

    Energy Technology Data Exchange (ETDEWEB)

    1994-10-01

    At the request of the Secretary of Energy Advisory Board`s Task Force on Civilian Radioactive Waste Management, the National Research Council sponsored a workshop on Establishing Institutional Credibility. The purpose of the workshop was to (1) identify the range of available knowledge regarding the theoretical and conceptual issues of how institutions establish their credibility and legitimacy with key constituents, and (2) to help explore and clarify fundamental concepts in management theory related to these issues. The examination was to include what is known about how organizations establish, maintain, lose, and regain public trust and confidence. There was to be no attempt to develop consensus on these issues or to suggest particular courses of action. The workshop was held on October 24-25, 1991, in Denver, Colorado.

  18. Commercial and Institutional Waste

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund; Fruergaard, Thilde

    2011-01-01

    Commercial and institutional waste is primarily from retail (stores), hotels, restaurants, health care (except health risk waste), banks, insurance companies, education, retirement homes, public services and transport. Within some of these sectors, e.g. retail and restaurants, large variations...... are found in terms of which products and services are offered. Available data on unit generation rates and material composition as well as determining factors are discussed in this chapter. The characterizing of commercial and institutional waste is faced with the problem that often only a part of the waste...

  19. Greening of a Campus through Waste Management Initiatives: Experience from a Higher Education Institution in Thailand

    Science.gov (United States)

    Tangwanichagapong, Siwaporn; Nitivattananon, Vilas; Mohanty, Brahmanand; Visvanathan, Chettiyappan

    2017-01-01

    Purpose: This paper aims to describe the effects of 3R (reduce, reuse and recycle) waste management initiatives on a campus community. It ascertains the environmental attitudes and opinions of the residents and investigates their behavioral responses to waste management initiatives. Practical implications for enhancing sustainable waste management…

  20. Analysis of the Institutional Framework For Radioactive Waste Management in Indonesia

    Directory of Open Access Journals (Sweden)

    D.S. Wisnubroto

    2009-07-01

    Full Text Available The analysis of the infrastructure for radioactive waste management in Indonesia has been studied using several parameters, i.e. policy, regulatory authorities and their regulations, implementing organizations and financial system. By considering the international trends and the Indonesian program to utilize nuclear power, the infrastructure of radioactive waste management needs to be improved. The Act No. 10/1997 on Nuclear Energy for the future beneficence will have to be amended to incorporate several missing key points on waste management, such as definition of radioactive waste, disposal of Low and Intermediate Level Waste (LILW, and classification of waste. Full involvement of some important stakeholders, especially the State Ministry of Environment, on the radioactive waste management infrastructure is required since some radioactive waste is generated from non nuclear waste. Assigning full authority to the State Ministry of Environment for regulating radioactive waste generated by non nuclear facilities may be more effective, whereas BAPETEN is still holding onto control over the waste generated from nuclear facilities. In the near future, several regulations on clearance level, classification of waste, NORM/TENORM, and financial system are expected to be set up for urgent need. By considering the high risk for handling of radioactivity, including for transportation and storage, the liability or assurance of the safety for such activities must be accounted for. Finally, establishment of financial system for long term waste management in Indonesia needs to be implemented to ensure that the radioactive waste will not be the burden on future generations.

  1. Non-radioactive waste management in a Nuclear Energy Research Institution

    Energy Technology Data Exchange (ETDEWEB)

    Furusawa, Helio A.; Martins, Elaine A.J.; Cotrim, Marycel E.B.; Pires, Maria A. F., E-mail: helioaf@ipen.br, E-mail: elaine@ipen.br, E-mail: mecotrim@ipen.br, E-mail: mapires@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEM-SP), Sao Paulo, SP (Brazil). Centro de Quimica e Meio Ambiente

    2013-07-01

    For more than 50 years, non-radioactive materials have been used in processes at IPEN to support the nuclear fuel development and all related activities. Reagents, raw materials, products and by-products have been stored. Many of these are hazardous highly toxic or reactants materials. Some years ago actions sent part of these non-radioactive waste materials to proper disposal (technical incineration) resulting in an Institutional Non-Radioactive Waste Management Program. In 2005, an internal set of procedures and information entitled - Guia de Procedimentos para Armazenamento, Tratamento e Descarte de Residuos de Laboratorio Quimico - (Guide of Procedures for Storage, Treatment, and Disposal of Chemistry Laboratory Wastes) - was published to be used at the IPEN's facilities. A data base managed by software was created in order to allow the Units to input data and information about the routinely generated wastes and those already existing. Even after disposing so huge amount of wastes, a latent demand still exists. Several goals were achieved notably a well-organized and roomy space; safer storage places; local, state, and nationwide laws enforcement (for radioactive and non-radioactive materials); and improvement in chemicals control as hazardous and aged materials are more frequently disposed. A special stress was conducted to know and follow laws, regulations, and technical norms as the entire process is very detailed and this is not a day-by-day routine for the IPEN's technical personnel. The immediate consequence is that the safer the workplace the safer the nuclear related activities are done. (author)

  2. Social Surveys about Solid Waste Management within Higher Education Institutes: A Comparison

    Directory of Open Access Journals (Sweden)

    Navarro Ferronato

    2017-03-01

    Full Text Available Solid waste mismanagement is a social burden that requires the introduction of reliable public policies, including recycling principles and technological facilities. However, the development of recycling plans is a real issue for municipal governments, since it involves psychological and cultural factors, both in developed and developing countries. Questionnaire survey is an important tool for evaluating which solid waste management policy is suited for each specific study area, involving citizens and stakeholders. The aim of this paper is to evaluate what approach should be applied for social surveys in higher education institutes, comparing developing and developed countries. Italy is the developed country analyzed, where two universities in different cities are compared, while La Paz (Bolivia is the emerging reality considered. The research conducted in La Paz led us to understand that, although recycling rates are low (about 8%, many students (56.96% separate up to half of the waste produced at home. At the same time, about 53% of those interviewed do not know the recycling practices implemented by the informal sector which is the one that constantly act for improving the recycling rates of the city. Low technological acceptance is instead underlined in the high income country, since there is a common negative opinion concerning the introduction of landfills and incinerators near residential areas (49% disagree. A comparison of the methodologies adopted for the two case studies is introduced whereas investigations results are presented.

  3. Management of Mercury Waste in an Institution of São Paulo State Health Secretary, the Case of Butantan Institute

    Directory of Open Access Journals (Sweden)

    Debora Mastantuono

    2015-06-01

    Full Text Available Metallic mercury is a species of interest for public health and the environment due to its high toxicity. The activities related to health assistance are among the important sources of anthropic emissions of mercury. There are alternatives to the use of mercury which are safe and economically viable for almost all its applications the health care. The São Paulo State Secretary of Health published Resolution SS-SP no. 239 on 12/07/2010, prohibiting the purchase, the use and the storage of mercury containing products in the institutions under its jurisdiction and determined that they should be disposed of following the accepted procedures. Instituto Butantan is a biomedical research center of the São Paulo State Secretary of Health and is responsible for the production of vaccines and serums for prophylactic and curative use. It also develops scientific research related to public health. In order to comply with the Resolution SS-SP no. 239, the Environment Management (EM in collaboration with the Purchase Section and the Quality Assurance Department (QAD replaced all mercury containing thermometers in the Institute. 183.0 kg of waste were sent to a company specialized in mercury phase-out process, through which the distilled mercury was extracted and the other materials were decontaminated. DOI:  http://dx.doi.org/10.17807/orbital.v7i2.696 

  4. Systematic Evaluation of Industrial, Commercial, and Institutional Food Waste Management Strategies in the United States.

    Science.gov (United States)

    Hodge, Keith L; Levis, James W; DeCarolis, Joseph F; Barlaz, Morton A

    2016-08-16

    New regulations and targets limiting the disposal of food waste have been recently enacted in numerous jurisdictions. This analysis evaluated selected environmental implications of food waste management policies using life-cycle assessment. Scenarios were developed to evaluate management alternatives applicable to the waste discarded at facilities where food waste is a large component of the waste (e.g., restaurants, grocery stores, and food processors). Options considered include anaerobic digestion (AD), aerobic composting, waste-to-energy combustion (WTE), and landfilling, and multiple performance levels were considered for each option. The global warming impact ranged from approximately -350 to -45 kg CO2e Mg(-1) of waste for scenarios using AD, -190 to 62 kg CO2e Mg(-1) for those using composting, -350 to -28 kg CO2e Mg(-1) when all waste was managed by WTE, and -260 to 260 kg CO2e Mg(-1) when all waste was landfilled. Landfill diversion was found to reduce emissions, and diverting food waste from WTE generally increased emissions. The analysis further found that when a 20 year GWP was used instead of a 100 year GWP, every scenario including WTE was preferable to every scenario including landfill. Jurisdictions seeking to enact food waste disposal regulations should consider regional factors and material properties before duplicating existing statutes.

  5. Modernising solid waste management at municipal level : institutional arrangements in urban centres of East Africa

    NARCIS (Netherlands)

    Majale, C.

    2011-01-01

    The task of municipal problem solving has become a team sport that has spilled beyond the borders of government agencies and now engages a far more extensive network of social actors - public as well as private, non-profit and profit. Solid waste management is one of the key tasks associated with mu

  6. Infrastructure support for the Waste Management Institute at North Carolina A&T State University. Progress report, September 1994--January 1995

    Energy Technology Data Exchange (ETDEWEB)

    Uzochukwu, G.A.

    1995-01-25

    The mission of the Waste Management Institute is two-fold: (1) to enhance awareness and understanding of waste problems and their management in our society and, (2) to provide leadership in research, instruction and outreach to improve the quality of life on a global scale and protect the environment.

  7. Infrastructure support for the Waste Management Institute at North Carolina A&T State University. Progress report, September 1994--January 1995

    Energy Technology Data Exchange (ETDEWEB)

    Uzochukwu, G.A.

    1995-01-25

    The mission of the Waste Management Institute is two-fold: (1) to enhance awareness and understanding of waste problems and their management in our society and, (2) to provide leadership in research, instruction and outreach to improve the quality of life on a global scale and protect the environment.

  8. Proposal for Managing Eco-efficient Operations Plant Dedicated to Waste Handling at Costa Rican Institute of Electricity

    Directory of Open Access Journals (Sweden)

    Annie Chinchilla

    2015-06-01

    Full Text Available In the present study, different eco-efficient specifications were established considered by Ingeniería y Construcciónor IC (Engineering and Construction, a business of the Costa Rican Institute of Electricity (ICE, in Spanish, at the time of developing an operational plant devoted to the handling of waste, in order to make rational use of resources and generate the lowest environmental impact. Initially a general diagnosis was conducted to learn about the current process of waste management in IC, as well as the identification and assessment of its aspects and environmental impacts. An ecoefficiency proposal program was subsequently prepared to be implemented once the ordinary, special and hazardous waste plant is operating. As part of this investigation, eco-efficient measures and technologies were also identified; this can be adopted by IC or any organization to improve its waste management. Finally, it is necessary that the Eco-efficient Management Program (PGE, in Spanish is organized, planned and systematized over time; in addition, the need to have an Ecoefficiency Management Committee arises, which will allow to implement it and measure it through a series of indicators.

  9. Radioactive waste engineering and management

    CERN Document Server

    Nakayama, Shinichi

    2015-01-01

    This book describes essential and effective management for reliably ensuring public safety from radioactive wastes in Japan. This is the first book to cover many aspects of wastes from the nuclear fuel cycle to research and medical use, allowing readers to understand the characterization, treatment and final disposal of generated wastes, performance assessment, institutional systems, and social issues such as intergenerational ethics. Exercises at the end of each chapter help to understand radioactive waste management in context.

  10. The Historically Black Colleges and Universities/Minority Institutions Environmental Technology and Waste Management Consortium annual report, 1990--1991

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1991-12-31

    The HBCU/MI Environmental Technology and Waste Management Consortium was established in January 1990, through a Memorandum of Understanding (MOU) among the member institutions. This group of research-oriented Historically Black Colleges and Universities and Minority Institutions (HBCU/MI) agreed to work together to initiate research, technology development and education programs to address the nation`s critical environmental problems. As a group the HBCU/MI Consortium is uniquely positioned to reach women and the minority populations of African Americans, Hispanics and American Indians. As part of their initial work, they developed the Research, Education, and Technology Transfer (RETT) Plan to actualize the Consortium`s guiding principles. In addition to developing a comprehensive research agenda, four major programs were begun to meet these goals. This report summarizes the 1990--1991 progress.

  11. Deployed Force Waste Management

    Science.gov (United States)

    2004-11-01

    Granath J., Baky A., Thhyselius L., (2004). Municipal Solid Waste Management from a Systems Perspective. Journal of Cleaner Production , forthcoming...Municipal Solid Waste Management from a Systems Perspective. Journal of Cleaner Production , forthcoming article In this paper different waste

  12. Introduction to Waste Management

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund

    2011-01-01

    Solid waste management is as old as human civilization, although only considered an engineering discipline for about one century. The change from the previous focus on public cleansing of the cities to modern waste management was primarily driven by industrialization, which introduced new materials...... and chemicals, dramatically changing the types and composition of waste, and by urbanization making waste management in urban areas a complicated and costly logistic operation. This book focuses on waste that commonly appears in the municipal waste management system. This chapter gives an introduction to modern...... waste management, including issues as waste definition, problems associated with waste, waste management criteria and approaches to waste management. Later chapters introduce aspects of engineering (Chapter 1.2), economics (Chapter 1.3) and regulation (Chapter 1.4)....

  13. Introduction to Waste Management

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund

    2011-01-01

    Solid waste management is as old as human civilization, although only considered an engineering discipline for about one century. The change from the previous focus on public cleansing of the cities to modern waste management was primarily driven by industrialization, which introduced new materials...... waste management, including issues as waste definition, problems associated with waste, waste management criteria and approaches to waste management. Later chapters introduce aspects of engineering (Chapter 1.2), economics (Chapter 1.3) and regulation (Chapter 1.4)....

  14. Knowledge, attitude and practice of biomedical waste management among health care personnel in a teaching institution in Haryana, India

    Directory of Open Access Journals (Sweden)

    Puneet Anand

    2016-10-01

    Results: 305 participants took part in the study. Doctors, nurses and lab technicians had good knowledge, attitude and practice regarding biomedical waste management but there was scope of improvement in certain areas. Knowledge, attitude and practices regarding biomedical waste management of class IV employees were found to be very low. Conclusions: There should be a continuous training programme for all health personnel with special focus on sanitary staff. Biomedical waste management rules should be strictly implemented at all levels. [Int J Res Med Sci 2016; 4(10.000: 4246-4250

  15. The Swedish Radiation Protection Institute's regulations concerning the final management of spent nuclear fuel and nuclear waste - with background and comments

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-11-01

    This report presents and comments on the Swedish Radiation Protection Institute's Regulations concerning the Protection of Human Health and the Environment in connection with the Final Management of Spent Nuclear Fuel or Nuclear Waste, SSI FS 1998: 1.

  16. Awareness about Biomedical Waste Management in Undergraduate Medical and Nursing Students at a Teaching Institute in Vizianagaram, Andhra Pradesh

    Directory of Open Access Journals (Sweden)

    Ukey Ujwala U, Kambatla Ramasankaram, Dash Satyanarayan, Naidu NR Appajirao, Kulkarni Ved P

    2012-09-01

    Full Text Available Background: Bio-medical waste collection and proper disposal is a concern for both medical and general community. Medical and Nursing students during and after completing their studies are at potential risk for hazards due to biomedical waste. Thorough knowledge about the subject will decide their practices. Hence the study was limited only to awareness assessment. Objective: To assess awareness in undergraduate medical and nursing students about biomedical waste, its hazards and management. Methods: Data collection was done by a predesigned self administered questionnaire. Results: MBBS students had a fairly better awareness regarding the subject than nursing students. Almost all study participants were aware about colour coding in segregation of biomedical waste. But when asked about which waste is to be put in which bag, correct response was given by almost half amongst them. Conclusions: Practical implications related to the matter should be covered so that hazards of biomedical waste are avoided.

  17. National Institutes of Health: Mixed waste minimization and treatment

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-08-01

    The Appalachian States Low-Level Radioactive Waste Commission requested the US Department of Energy`s National Low-Level Waste Management Program (NLLWMP) to assist the biomedical community in becoming more knowledgeable about its mixed waste streams, to help minimize the mixed waste stream generated by the biomedical community, and to identify applicable treatment technologies for these mixed waste streams. As the first step in the waste minimization process, liquid low-level radioactive mixed waste (LLMW) streams generated at the National Institutes of Health (NIH) were characterized and combined into similar process categories. This report identifies possible waste minimization and treatment approaches for the LLMW generated by the biomedical community identified in DOE/LLW-208. In development of the report, on site meetings were conducted with NIH personnel responsible for generating each category of waste identified as lacking disposal options. Based on the meetings and general waste minimization guidelines, potential waste minimization options were identified.

  18. Biomedical Waste Management

    OpenAIRE

    Sikovska, Biljana; Dimova, Cena; Sumanov, Gorgi; Vankovski, Vlado

    2016-01-01

    Medical waste is all waste material generated at health care facilities, such as hospitals, clinics, physician’s offices, dental practices, blood banks, and veterinary hospitals/clinics, as well as medical research facilities and laboratories. Poor management of health care waste potentially exposes health care workers, waste handlers, patients and the community at large to infection, toxic effects and injuries, and risks polluting the environment. It is essential that all medical waste ma...

  19. BIOMEDICAL WASTE MANAGEMENT OF GOVERNMENT HEALTH INSTITUTIONS IN GUWAHATI CITY, ASSAM WITH SPECIAL REFERENCE TO IMMUNIZATION SESSION

    Directory of Open Access Journals (Sweden)

    Sthapana

    2015-06-01

    Full Text Available BACKGROUND: Biomedical waste Management has recently emerged as a matter of serious concern to national and International health and environment agencies. OBJECTIVES: to assess the Biomedical Waste Management of the Govt . Health facilities in Guwahati city and to obs erve the waste practices of health care providers related to immunization session waste. MATERIALS AND METHODS: Facility based cross sectional study was conducted in all 46 primary and secondary level Govt . health facility and data was collected with pre d esigned pretested semi structured proforma based on observation of facilities and interviews of Health care providers. RESULTS: Knowledge regarding the importance of Hub cutter and collection of sharps were from 95% facilities. However knowledge regarding treatment of mutilated needles and syringes were only 39%. In none of facilities needles and syringes underwent chemical treatment before disposal. Sharp pit and deep burial pit was available in only 17.4% and 6.5% facilities respectively. 9 out of 46 faci lities (19.6% providers were found to wash their hands with soap and water and dried with clean towel. None of the providers wore gloves when required. None of the providers wore gloves when required. Recapping or bending of syringe was done in 4 faciliti es (8.7% and use of separate needle and syringe for each injection was done in 97.8% of facilities. CONCLUSION: Proper treatment, storage prior to treatment or disposal and safe disposal of biomedical waste is the need of the hour.

  20. Grid connected integrated community energy system. Phase II: final state 2 report. Preliminary design waste management and institutional analysis

    Energy Technology Data Exchange (ETDEWEB)

    1978-03-22

    The Preliminary Design of a Regional, Centralized Solid Waste Management System for the Twin Cities Metropolitan Region in Minnesota is presented. The concept has been developed for the sound environmental and safe disposal of solid waste generated from its health care industry, although some additional waste supplements are included as economic assistance in order to approach a competitive alternative to current health care solid waste disposal costs. The system design focuses on a 132 tons per day high-temperature, slagging pyrolysis system manufactured by Andco Incorporated, Andco-Torrax Division Design criteria are given. A Collection and Transportation System (CTS) has been planned for the movements of solid waste (General and Special) from the generating HHC facilities within a 10-mile waste-shed zone, for municipal solid waste from a local transfer station currently processing municipal solid waste, and for pyrolysis residue to final disposal. Each of these facilities is now considered as service contract operations. Approximately 15 vehicle trips per day are estimated as vehicle traffic delivering the refuse to the pyrolysis facility. Cost estimates for the CTS have been determined in conjunction with current municipal refuse haulers in the TCMR, and valued at the following: HHC General Solid Waste (HHC/GSW) at 6.00 $/T; HHC Special Solid Waste (HHC/SSW) at 20.00 $/T; Municipal Transfer at 4.00 to be paid the pyrolysis system as a drop charge. Special box-bag containers are to be required in handling the HHC/SSW at a cost of 30.19 $/T estimate. The total operating cost for the pyrolysis system has been estimated to be 13.73 $/T, with a steam credit of 11.70 $/T, to yield a net cost of 2.03 $/T. Capital cost has been estimated to be 7,700,800 dollars, 1978. A back-up facility capital investment of $163,000 dollars, 1978 has been estimated, which should be applied to the existing University of Minnesota incinerator.

  1. Waste Management Technical Manual

    Energy Technology Data Exchange (ETDEWEB)

    Buckingham, J.S. [ed.

    1967-08-31

    This Manual has been prepared to provide a documented compendium of the technical bases and general physical features of Isochem Incorporated`s Waste Management Program. The manual is intended to be used as a means of training and as a reference handbook for use by personnel responsible for executing the Waste Management Program. The material in this manual was assembled by members of Isochem`s Chemical Processing Division, Battelle Northwest Laboratory, and Hanford Engineering Services between September 1965 and March 1967. The manual is divided into the following parts: Introduction, contains a summary of the overall Waste Management Program. It is written to provide the reader with a synoptic view and as an aid in understanding the subsequent parts; Feed Material, contains detailed discussion of the type and sources of feed material used in the Waste Management Program, including a chapter on nuclear reactions and the formation of fission products; Waste Fractionization Plant Processing, contains detailed discussions of the processes used in the Waste Fractionization Plant with supporting data and documentation of the technology employed; Waste Fractionization Plant Product and Waste Effluent Handling, contains detailed discussions of the methods of handling the product and waste material generated by the Waste Fractionization Plant; Plant and Equipment, describes the layout of the Waste Management facilities, arrangement of equipment, and individual equipment pieces; Process Control, describes the instruments and analytical methods used for process control; and Safety describes process hazards and the methods used to safeguard against them.

  2. WASTE MANAGEMENT IN A SCHOOL RESTAURANT

    Directory of Open Access Journals (Sweden)

    Bianca Peruchin

    2013-06-01

    Full Text Available Nowadays, the amount of waste generated and its proper final destination is one of the greatest environmental issues. The higher education institutions are an important source of waste due to its diversity of teaching, researching and extension activities undertaken by academic world. The university restaurant supplies meals to the university community and ends up generating a kind of waste similar to the domestic waste, but in a bigger amount. The aim of this study was to investigate the gravimetric composition of the waste generated in the school restaurant of a higher-education institution in southern Brazil and provide a diagnostic of the current waste management. The data were obtained through a characterization process of the solid waste generated in one week; an interview with the responsible managers and direct observation of the local structure. It was found non-existence of a Management Plan for Solid Waste, as well as a lack of practices relative to its management. The waste segregation is impaired due the lack of specific and labeled bins, besides the overworked employees. Along the experimental period it were characterized 547,068 Kg of solid waste, in which more than 80% were organic waste. The paper concludes that the organic waste could be treated by composting. It is recommended the formulation and implementation of an integrated management plan for solid waste in order to provide adequate infrastructure for waste management in the school restaurant.

  3. Biohazardous waste management plan.

    Energy Technology Data Exchange (ETDEWEB)

    Lane, Todd W.

    2004-01-01

    This plan describes the process for managing non-medical biohazardous waste at Sandia National Laboratories California. It applies to operations at the Chemical and Radiation Detection Laboratory (CRDL), Building 968, and other biosafety level 1 or 2 activities at the site. It addresses the accumulation, storage, treatment and disposal of biohazardous waste and sharps waste. It also describes the procedures to comply with regulatory requirements and SNL policies applicable to non-medical biohazardous waste.

  4. Medical waste management plan.

    Energy Technology Data Exchange (ETDEWEB)

    Lane, Todd W.; VanderNoot, Victoria A.

    2004-12-01

    This plan describes the process for managing research generated medical waste at Sandia National Laboratories/California. It applies to operations at the Chemical and Radiation Detection Laboratory (CRDL), Building 968, and other biosafety level 1 or 2 activities at the site. It addresses the accumulation, storage, treatment and disposal of medical waste and sharps waste. It also describes the procedures to comply with regulatory requirements and SNL policies applicable to medical waste.

  5. Waste management in South Africa: Institutional and legal discords a call for Constitutional and related laws’ reform

    CSIR Research Space (South Africa)

    Nhamo, G

    2008-11-01

    Full Text Available . The President, Deputy President, various cabinet ministers and deputies, National Assembly of Parliamentarians and several parliamentary portfolio committees head the national government. The provincial governments are led by premiers and various Members.... In terms of environmental and waste management, the full hierarchy involves, at the national level, the Parliamentary Portfolio Committee for the Environment, the Minister of Environmental Affairs and Tourism plus the Deputy, Committee of Ministers...

  6. 温州市口腔医疗废物管理现状调查%SURVEY ON MANAGEMENT STATUS OF MEDICAL WASTE IN DENTAL INSTITUTIONS IN WENZHOU

    Institute of Scientific and Technical Information of China (English)

    刘劲松; 潘乙怀; 赵一荣; 何钢风

    2012-01-01

    Objective To know the management status of medical waste in dental institutions in Wenzhou, to identify the problems and to provide a way to deal with the situation. Methods Field investigation and questionnaires were used to investigate and analysis the medical waste collection, storage and disposal in 181 dental institutions. Results The qualified rate of waste collection and storage in stomatology hospitals was 100% , while it was very low among dental departments in general hospitals, dental clinics and dental out - patient departments. Some practitioners knew little about the management of medical waste. The daily waste disposal procedure used as a substitute for medical waste disposal procedure was popular among dental clinics and dental out - patient departments. Conclusion The measurement to improve the management of medical waste should be focus on strengthen management, training of dental practitioners, and construction of medical waste collection network.%目的 了解温州地区口腔医疗机构医疗废物的管理状况,找出存在的问题,提出对策.方法 通过现场查看和问卷调查方式,对温州地区181家口腔医疗机构医疗废物收集、存储和处理情况进行调查与分析.结果 口腔专科医院对医疗废物收集储存方法合格率为100%,医院口腔科、口腔门诊、口腔诊所合格率比较低.部分从业人员医疗废物相关知识匮乏,医疗废物按普通生活垃圾处置现象突出.结论 加强培训、强化管理和医疗废物收集的网络建设是温州地区口腔医疗废物管理的着力点.

  7. Development drivers for waste management.

    Science.gov (United States)

    Wilson, David C

    2007-06-01

    This paper identifies six broad groups of drivers for development in waste management. Public health led to the emergence of formalized waste collection systems in the nineteenth century, and remains a key driver in developing countries. Environmental protection came to the forefront in the 1970s, with an initial focus on eliminating uncontrolled disposal, followed by the systematic increasing of technical standards. Today, developing countries seem still to be struggling with these first steps; while climate change is also emerging as a key driver. The resource value of waste, which allows people to make a living from discarded materials, was an important driver historically, and remains so in developing countries today. A current trend in developed countries is closing the loop, moving from the concept of 'end-of-pipe' waste management towards a more holistic resource management. Two underpinning groups of drivers are institutional and responsibility issues, and public awareness. There is no, one single driver for development in waste management: the balance between these six groups of drivers has varied over time, and will vary between countries depending on local circumstances, and between stakeholders depending on their perspective. The next appropriate steps towards developing a sustainable, integrated waste management system will also vary in each local situation.

  8. E-waste management

    CERN Document Server

    Hieronymi, Klaus; Williams, Eric

    2012-01-01

    The landscape of electronic waste, e-waste, management is changing dramatically. Besides a rapidly increasing world population, globalization is driving the demand for products, resulting in rising prices for many materials. Absolute scarcity looms for some special resources such as indium. Used electronic products and recyclable materials are increasingly crisscrossing the globe. This is creating both - opportunities and challenges for e-waste management. This focuses on the current and future trends, technologies and regulations for reusable and recyclable e-waste worldwide.

  9. Waste management in NUCEF

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Y.; Maeda, A.; Sugikawa, S.; Takeshita, I. [Japan Atomic Energy Research Institute, Dept. of Safety Research Technical Support, Tokai-Mura, Naka-Gun, Ibaraki-Ken (Japan)

    2000-07-01

    In the NUCEF, the researches on criticality safety have been performed at two critical experiment facilities, STACY and TRACY in addition to the researches on fuel cycle such as advanced reprocessing and partitioning in alpha-gamma concrete cells and glove boxes. Many kinds of radioactive wastes have been generated through the research activities. Furthermore, the waste treatment itself may produce some secondary wastes. In addition, the separation and purification of plutonium of several tens-kg from MOX powder are scheduled in order to supply plutonium nitrate solution fuel for critical experiments at STACY. A large amount of wastes containing plutonium and americium will be generated from the plutonium fuel treatment. From the viewpoint of safety, the proper waste management is one of important works in NUCEF. Many efforts, therefore, have been made for the development of advanced waste treatment techniques to improve the waste management in NUCEF. Especially the reduction of alpha-contaminated wastes is a major interest. For example, the separation of americium is planned from the liquid waste evolved alter plutonium purification by application of tannin gel as an adsorbent of actinide elements. The waste management and the relating technological development in NUCEF are briefly described in this paper. (authors)

  10. Mixed waste management options

    Energy Technology Data Exchange (ETDEWEB)

    Owens, C.B.; Kirner, N.P. [EG and G Idaho, Inc., Idaho Falls, ID (United States). Idaho National Engineering Lab.

    1991-12-31

    Disposal fees for mixed waste at proposed commercial disposal sites have been estimated to be $15,000 to $40,000 per cubit foot. If such high disposal fees are imposed, generators may be willing to apply extraordinary treatment or regulatory approaches to properly dispose of their mixed waste. This paper explores the feasibility of several waste management scenarios and attempts to answer the question: Can mixed waste be managed out of existence? Existing data on commercially generated mixed waste streams are used to identify the realm of mixed waste known to be generated. Each waste stream is evaluated from both a regulatory and technical perspective in order to convert the waste into a strictly low-level radioactive or a hazardous waste. Alternative regulatory approaches evaluated in this paper include a delisting petition, no migration petition, and a treatability variance. For each waste stream, potentially available treatment options are identified that could lead to these variances. Waste minimization methodology and storage for decay are also considered. Economic feasibility of each option is discussed broadly.

  11. Avoidable waste management costs

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, K.; Burns, M.; Priebe, S.; Robinson, P.

    1995-01-01

    This report describes the activity based costing method used to acquire variable (volume dependent or avoidable) waste management cost data for routine operations at Department of Energy (DOE) facilities. Waste volumes from environmental restoration, facility stabilization activities, and legacy waste were specifically excluded from this effort. A core team consisting of Idaho National Engineering Laboratory, Los Alamos National Laboratory, Rocky Flats Environmental Technology Site, and Oak Ridge Reservation developed and piloted the methodology, which can be used to determine avoidable waste management costs. The method developed to gather information was based on activity based costing, which is a common industrial engineering technique. Sites submitted separate flow diagrams that showed the progression of work from activity to activity for each waste type or treatability group. Each activity on a flow diagram was described in a narrative, which detailed the scope of the activity. Labor and material costs based on a unit quantity of waste being processed were then summed to generate a total cost for that flow diagram. Cross-complex values were calculated by determining a weighted average for each waste type or treatability group based on the volume generated. This study will provide DOE and contractors with a better understanding of waste management processes and their associated costs. Other potential benefits include providing cost data for sites to perform consistent cost/benefit analysis of waste minimization and pollution prevention (WMIN/PP) options identified during pollution prevention opportunity assessments and providing a means for prioritizing and allocating limited resources for WMIN/PP.

  12. Solid-Waste Management

    Science.gov (United States)

    Science Teacher, 1973

    1973-01-01

    Consists of excerpts from a forthcoming publication of the United States Environmental Protection Agency, Student's Guide to Solid-Waste Management.'' Discusses the sources of wastes from farms, mines, factories, and communities, the job of governments, ways to collect trash, methods of disposal, processing, and suggests possible student action.…

  13. Waste management in healthcare establishments within Jos ...

    African Journals Online (AJOL)

    EJIRO

    Patient. Primary to tertiary. Health care. 2. State Specialist Hospital, Jos ... For instance a pharmacist who had worked .... Documentation of waste management activities .... National Institute for Occupational Safety and Health (NIOSH) (2004).

  14. Study Of Museum Institutional Management

    Directory of Open Access Journals (Sweden)

    - Rohanda

    2016-11-01

    development of information and library science, particularly institution of information in addition to the library. Second, it provides an overview of the governance of the museum in government institutions. Third, the scope of study is limited to institutional management of museums in government institutions, thus there is a need for the development of studies on institutional management of museums for other types of museums, such as museums that are managed by private or personal institutions. Keywords: Gawitra, information institution, management, museum.

  15. Solid Waste Management Districts

    Data.gov (United States)

    Vermont Center for Geographic Information — The Solid waste management districts layer is part of a dataset that contains administrative boundaries for Vermont's Agency of Natural Resources. This dataset...

  16. Waste Management Program management plan. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-02-01

    As the prime contractor to the Department of Energy Idaho Operations Office (DOE-ID), Lockheed Martin Idaho Technologies Company (LMITCO) provides comprehensive waste management services to all contractors at the Idaho National Engineering and Environmental Laboratory (INEEL) through the Waste Management (WM) Program. This Program Management Plan (PMP) provides an overview of the Waste Management Program objectives, organization and management practices, and scope of work. This document will be reviewed at least annually and updated as needed to address revisions to the Waste Management`s objectives, organization and management practices, and scope of work. Waste Management Program is managed by LMITCO Waste Operations Directorate. The Waste Management Program manages transuranic, low-level, mixed low-level, hazardous, special-case, and industrial wastes generated at or transported to the INEEL.

  17. Integrated solid waste management in megacities

    Directory of Open Access Journals (Sweden)

    M.A. Abdoli

    2016-05-01

    Full Text Available Rapid urbanization and industrialization, population growth and economic growth in developing countries make management of municipal solid waste more complex comparing with developed countries. Furthermore, the conventional municipal solid waste management approach often is reductionists, not tailored to handle complexity. Therefore, the need to a comprehensive and multi-disciplinary approach regarding the municipal solid waste management problems is increasing. The concept of integrated solid waste management is accepted for this aim all over the world. This paper analyzes the current situation as well as opportunities and challenges regarding municipal solid waste management in Isfahan according to the integrated solid waste management framework in six aspects: environmental, political/legal, institutional, socio-cultural, financial/economic, technical and performance aspects. Based on the results obtained in this analysis, the main suggestions for future integrated solid waste management of Isfahan are as i promoting financial sustainability by taking the solid waste fee and reducing the expenses through the promoting source collection of recyclable materials, ii improving compost quality and also marketing the compost products simultaneously, iii promoting the private sector involvements throughout the municipal solid waste management system.

  18. Proceedings of the tenth annual DOE low-level waste management conference: Session 1: Institutional and regulatory issues

    Energy Technology Data Exchange (ETDEWEB)

    1988-12-01

    This document contains eleven papers on various aspects of low-level radioactive waste regulation. Topics include: EPA environmental standards; international exemption principles; the concept of below regulatory concern; envirocare activities in Utah; mixed waste; FUSRAP and the Superfund; and a review of various incentive programs. Individual papers are processed separately for the data base. (TEM)

  19. Solid Waste Management Plan. Revision 4

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-04-26

    The waste types discussed in this Solid Waste Management Plan are Municipal Solid Waste, Hazardous Waste, Low-Level Mixed Waste, Low-Level Radioactive Waste, and Transuranic Waste. The plan describes for each type of solid waste, the existing waste management facilities, the issues, and the assumptions used to develop the current management plan.

  20. Waste management and chemical inventories

    Energy Technology Data Exchange (ETDEWEB)

    Gleckler, B.P.

    1995-06-01

    This section of the 1994 Hanford Site Environmental Report summarizes the classification and handling of waste at the Hanford Site. Waste produced at the Hanford Site is classified as either radioactive, nonradioactive, or mixed waste. Radioactive wastes are further categorized as transuranic, high-level, and low-level. Mixed waste may contain both radioactive and hazardous nonradioactive substances. This section describes waste management practices and chemical inventories at the site.

  1. An Assessment Of Plateau Environmental Protection And Sanitation Agency Pepsa As A Waste Management Institution In Jos City Nigeria.

    Directory of Open Access Journals (Sweden)

    Ogboji Frederick Eche

    2015-02-01

    Full Text Available Abstract Municipal solid waste constitutes mans unwanted materials that need to be discarded. It is consisting of substances materials and objects considered as worthless or defective and of no value for human economic productive activities at a point in time. Apart from constituting an eye sore to urban environment it constitute health hazards and threatens the health of man and animals in the city. This research attempts an assessment of the performance of Plateau Environmental agency the research made use of both primary and secondary data. Data generated was analyzed using descriptive statistics while inferential technique of chi-square was used to test the research hypothesis. Results obtained shows that majority of the respondents were traders 34.3 with secondary education 36. Forty-five percent 45 of landuse type responsible for waste generation is residential that 42 of waste generated is mostly ashes. Majority of waste containers used are plastic 33 and that 52 of respondents are aware of PEPSA activities in their locations. A focus group discussion FGD shaded more light on the prospect and limitations of PEPSA. The research concludes that there is the need to overhaul methods of municipal solid waste collection and disposal in metropolitan Jos. Relevant recommendations were made in respect of the study area.

  2. Radioactive waste management; Gerencia de rejeitos radioativos

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-11-15

    This eighth chapter presents the radioactive wastes and waste disposal; classification of radioactive wastes; basis requests of the radioactive waste management; conditions for a radioactive waste disposal; registers and inventories; transport of radioactive wastes from a facility to another and the radioactive waste management plan.

  3. Guide for Industrial Waste Management

    Science.gov (United States)

    The purpose of the Guide is to provide facility managers, state and tribal regulators, and the interested public with recommendations and tools to better address the management of land-disposed, non-hazardousindustrial wastes.

  4. Stakeholder analysis for industrial waste management systems.

    Science.gov (United States)

    Heidrich, Oliver; Harvey, Joan; Tollin, Nicola

    2009-02-01

    Stakeholder approaches have been applied to the management of companies with a view to the improvement of all areas of performance, including economic, health and safety, waste reduction, future policies, etc. However no agreement exists regarding stakeholders, their interests and levels of importance. This paper considers stakeholder analysis with particular reference to environmental and waste management systems. It proposes a template and matrix model for identification of stakeholder roles and influences by rating the stakeholders. A case study demonstrates the use of these and their ability to be transferred to other circumstances and organizations is illustrated by using a large educational institution.

  5. Waste vs Resource Management

    CSIR Research Space (South Africa)

    Oelofse, Suzanna HH

    2014-10-01

    Full Text Available Recent global waste statistics show that in the order of 70% of all municipal waste generated worldwide is disposed at landfill, 11% is treated in thermal and Waste-to-Energy (WtE) facilities and the rest (19%) is recycled or treated by mechanical...

  6. Management of Indian Institutional Repositories

    OpenAIRE

    2010-01-01

    The study investigates various issues concerning the management of institutional repositories (IRs) developed in India. Data collection done using a web based questionnaire, created using software provided by surveymonkey.com. The entire population i.e. all IRs identified in India were surveyed. It was observed that in 42.86% (6) of Institutional Repositories implementation programmes were headed by librarians. No special staff was appointed by any institution for carrying out different jobs...

  7. INTEGRATED WASTE MANAGEMENT SYSTEM IN HARGHITA COUNTY

    Directory of Open Access Journals (Sweden)

    Mihai-Constantin AVORNICULUI

    2015-11-01

    Full Text Available Waste management problems in Harghita County (and other places in the country have a major negative impact on society and pose a direct threat to human health, and an adverse effect on quality of life. Considering the current practices, it is clear that the system of waste management in Romania and Harghita county needs to be improved to meet the requirements of new national and European regulations. In Harghita County there are 36 protected areas of national interest, four protected areas of local interest and 18 Natura 2000 sites, including 13 Sites of Community Importance (SCI and 5 Special Protection Areas (SPA. Strengthening a sustainable waste management system involves major changes to current practices. Implementing such changes can be successfully achieved only through the involvement of the whole society: population– as users, entrepreneurs, socio-economic institutions and public authorities.

  8. 40 CFR 273.52 - Waste management.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 26 2010-07-01 2010-07-01 false Waste management. 273.52 Section 273...) STANDARDS FOR UNIVERSAL WASTE MANAGEMENT Standards for Universal Waste Transporters § 273.52 Waste management. (a) A universal waste transporter must comply with all applicable U.S. Department...

  9. Materials and Waste Management Research

    Science.gov (United States)

    EPA is developing data and tools to reduce waste, manage risks, reuse and conserve natural materials, and optimize energy recovery. Collaboration with states facilitates assessment and utilization of technologies developed by the private sector.

  10. Management Strategy for Hazardous Waste

    OpenAIRE

    Vilgerts, J; Timma, L; Blumberga, D.

    2012-01-01

    During the past year authorities, manufactures and scientists have been focused on the management and treatment methods of hazardous wastes, because they realized that “prevention costs” of activities connected to handling of hazardous waste are lower than “restoration costs” after damage is done. Uncontrolled management of hazardous substances may lead to contamination of any ecosystem on Earth: freshwater, ocean and terrestrial. Moreover leakage of toxic gasses creates also air pollution...

  11. A study on knowledge and practice regarding biomedical waste management among staff nurses and nursing students of Rajendra Institute of Medical Sciences, Ranchi

    Directory of Open Access Journals (Sweden)

    Shamim Haider

    2015-03-01

    Full Text Available Background: Hospitals are the centre of cure and also the important centres of infectious waste generation. Effective management of Biomedical Waste (BMW is not only a legal necessity but also a social responsibility. Aims and Objectives: To assess the knowledge and practice in managing the biomedical wastes among nursing staff and student nurses in RIMS, Ranchi. Materials and methods: The study was conducted at RIMS, Ranchi from Oct 2013 to March 2014 (6 months. It was a descriptive, hospital based, cross-sectional study. A total of 240 nurses participated in the present study, randomly chosen from various departments A pre-designed, pre-tested, structured proforma was used for data collection after getting their informed consent. Self-made scoring system was used to categorize the participants as having good, average and poor scores. Data was tabulated and analyzed using percentages and chi-square test. Results: The knowledge regarding general information about BMW management was assessed(with scores 0-8,it was found  that level of knowledge was better in student nurses than staff nurses as student nurses scored good(6-8correct answers in more than half of the questions (65%.Whereas staff nurses scored good in only 33.33% questions. When the practical information regarding the BMW management is assessed (with scores 0-8, it was found that staff nurses had relatively better practice regarding BMW management than students as they scored good(6-8correct answers in 40% and 30% respectively. Conclusion: Though overall knowledge of study participants was good but still they need good quality training to improve their current knowledge about BMW. 

  12. The Travel of Global Ideas of Waste Management

    DEFF Research Database (Denmark)

    Zapata Campos, Maria José; Zapata, Patrik

    2014-01-01

    Informal settlements in the global South cities are often neglected by formal solid waste collection services. In the city of Managua, the municipality and international and local NGOs recently implemented several waste management projects to provide waste collection in informal settlements...... by municipal truck to the municipal landfill. New institutionalism theory and the “travel metaphor” illuminate how the “waste transfer station” idea travelled to Managua from various international organizations. New urban infrastructure and waste management models introduced by donors were decoupled from...... existing waste management models and practices. Despite the organizational hypocrisy of the city administration, introducing this new model via pilot projects in three city districts challenges the logic of the existing centralized waste management system, which ignores the city's informal settlements...

  13. The management of radioactive waste treatment facility

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kil Jeong; An, Sum Jin; Lee, Kang Moo; Lee, Young Hee; Sohn, Jong Sik; Bae, Sang Min; Kang, Kwon Ho; Sohn, Young Jun; Yim, Kil Sung; Kim, Tae Kuk; Jeong, Kyeong Hwan; Wi, Keum San; Park, Young Yoong; Park, Seung Chul; Lee, Chul Yong [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1994-12-01

    The radioactive wastes generated at Korea Atomic Energy Research Institute (KAERI) in 1994 are about 56 m{sup 3} of liquid waste and 323 drums of solid waste. Liquid waste were treated by the evaporation process, the bituminization process, and the solar evaporation process. The solid wastes were treated in 1994 are about 87 m{sup 3} of liquid waste and 81 drums of solid waste, respectively. 2 tabs., 26 figs., 12 refs. (Author) .new.

  14. Hazardous and toxic waste management in Botswana: practices and challenges.

    Science.gov (United States)

    Mmereki, Daniel; Li, Baizhan; Meng, Liu

    2014-12-01

    Hazardous and toxic waste is a complex waste category because of its inherent chemical and physical characteristics. It demands for environmentally sound technologies and know-how as well as clean technologies that simultaneously manage and dispose it in an environmentally friendly way. Nevertheless, Botswana lacks a system covering all the critical steps from importation to final disposal or processing of hazardous and toxic waste owing to limited follow-up of the sources and types of hazardous and toxic waste, lack of modern and specialised treatment/disposal facilities, technical know-how, technically skilled manpower, funds and capabilities of local institutions to take lead in waste management. Therefore, because of a lack of an integrated system, there are challenges such as lack of cooperation among all the stakeholders about the safe management of hazardous and toxic waste. Furthermore, Botswana does not have a systematic regulatory framework regarding monitoring and hazardous and toxic waste management. In addition to the absence of a systematic regulatory framework, inadequate public awareness and dissemination of information about hazardous and toxic waste management, slower progress to phase-out persistent and bio-accumulative waste, and lack of reliable and accurate information on hazardous and toxic waste generation, sources and composition have caused critical challenges to effective hazardous and toxic waste management. It is, therefore, important to examine the status of hazardous and toxic waste as a waste stream in Botswana. By default; this mini-review article presents an overview of the current status of hazardous and toxic waste management and introduces the main challenges in hazardous and toxic waste management. Moreover, the article proposes the best applicable strategies to achieve effective hazardous and toxic waste management in the future. © The Author(s) 2014.

  15. [Hazardous medical waste management as a public health issue].

    Science.gov (United States)

    Marinković, Natalija; Vitale, Ksenija; Afrić, Ivo; Janev Holcer, Natasa

    2005-03-01

    The amount of waste produced is connected with the degree of a country's economic development; more developed countries produce more waste. This paper reviews the quantities, manipulation and treatment methods of medical waste in Croatia, as well as hazardous potentials of medical waste for human health. Medical waste must be collected and sorted in containers suitable for its characteristics, amount, means of transportation and treatment method in order to prevent contact with environment and to protect people who are working with waste. Hazardous medical waste in Croatia is largely produced by hospitals. Even though only one hospital has a licence to incinerate infectious medical waste, many other hospitals incinerate their hazardous waste in inappropriate facilities. Healthcare institutions also store great amounts of old medical waste, mostly pharmaceutical, anti-infectious, and cytostatic drugs and chemical waste. Data on waste treatment effects on human health are scarce, while environmental problems are covered better. Croatian medical waste legislation is not being implemented. It is very important to establish a medical waste management system that would implement the existing legislation in all waste management cycles from waste production to treatment and final disposal.

  16. Geotechnics of waste management

    Energy Technology Data Exchange (ETDEWEB)

    Husami, Z.I. (ed.)

    1982-01-01

    Seven lectures are presented on the geological aspects hazardous and nuclear waste disposal are presented. Each lecture has been abstracted and indexed for the Department of Energy's Energy Data Base (EDB).

  17. Greening waste management

    CSIR Research Space (South Africa)

    Godfrey, Linda K

    2014-11-01

    Full Text Available by issues of population growth and urbanisation; increasing quantity and complexity of waste; climate change; carbon economics; resource scarcity; commodity prices; energy security; globalisation; job creation; and tightening regulation (DST, 2014a...

  18. Environmental aspects of commercial radioactive waste management

    Energy Technology Data Exchange (ETDEWEB)

    1979-05-01

    Volume 2 contains chapters 6 through 10: environmental effects related to radioactive waste management associated with LWR fuel reprocessing - mixed-oxide fuel fabrication plant; environmental effects related to transporting radioactive wastes associated with LWR fuel reprocessing and fabrication; environmental effects related to radioactive waste management associated with LWR fuel reprocessing - retrievable waste storage facility; environmental effects related to geologic isolation of LWR fuel reprocessing wastes; and integrated systems for commercial radioactive waste management. (LK)

  19. Municipal solid waste management in Malaysia: practices and challenges.

    Science.gov (United States)

    Manaf, Latifah Abd; Samah, Mohd Armi Abu; Zukki, Nur Ilyana Mohd

    2009-11-01

    Rapid economic development and population growth, inadequate infrastructure and expertise, and land scarcity make the management of municipal solid waste become one of Malaysia's most critical environmental issues. The study is aimed at evaluating the generation, characteristics, and management of solid waste in Malaysia based on published information. In general, the per capita generation rate is about 0.5-0.8 kg/person/day in which domestic waste is the primary source. Currently, solid waste is managed by the Ministry of Housing and Local Government, with the participation of the private sector. A new institutional and legislation framework has been structured with the objectives to establish a holistic, integrated, and cost-effective solid waste management system, with an emphasis on environmental protection and public health. Therefore, the hierarchy of solid waste management has given the highest priority to source reduction through 3R, intermediate treatment and final disposal.

  20. e-Waste Management Scenarios in Malaysia

    OpenAIRE

    Fatihah Suja; Rakmi Abdul Rahman; Arij Yusof; Mohd Shahbudin Masdar

    2014-01-01

    e-Waste, or electronic waste, disposal that is uncontrolled can be harmful to human health and the environment because e-waste contains toxic substances and heavy metals. However, if the waste is properly managed, it can become a business opportunity that produces high returns because e-waste also contains valuable materials, such as gold, silver, platinum, and palladium. The government of Malaysia wants to ensure the safe, effective, and economically beneficial management of e-waste in Malay...

  1. e-Waste Management Scenarios in Malaysia

    OpenAIRE

    Fatihah Suja; Rakmi Abdul Rahman; Arij Yusof; Mohd Shahbudin Masdar

    2014-01-01

    e-Waste, or electronic waste, disposal that is uncontrolled can be harmful to human health and the environment because e-waste contains toxic substances and heavy metals. However, if the waste is properly managed, it can become a business opportunity that produces high returns because e-waste also contains valuable materials, such as gold, silver, platinum, and palladium. The government of Malaysia wants to ensure the safe, effective, and economically beneficial management of e-waste in Malay...

  2. Waste not Want not’- Sustainable Waste Management in Malta - Comment

    Directory of Open Access Journals (Sweden)

    Tilak A. Ginige

    2010-12-01

    Full Text Available This paper aims to look at the implications of EU’s sustainable waste management policy as applied to the Maltese Islands. It will review the development of waste management in Malta, pre and post EU accession. It will bring the current analysis of the Waste Framework Directive 2008 in order to understand the implications to Malta. When discussing waste management in the context of sustainable development, we are considering a system involving a process of change in which the core components, i.e. society, resource use, investment, technologies, institutions, and consumption patterns, need to operate in harmony with ecosystems. Malta, whose efforts in waste management are reviewed in this paper, whilst serving as the locus for contribution to the waste management debate as early as 2005, has made great efforts in its strive to abide by the ‘Life Cycle Thinking’ approach highlighted in Municipal Waste Management Workshop it hosted together with the EC’s JRC in 2005. The outputs of that workshop showed that the modern aim of waste management plans is to lay the groundwork for sustainable waste management. However, drafting the strategy and implementing it in the field are two different realities, as depicted in this review.

  3. Conceptual Model for Systematic Construction Waste Management

    OpenAIRE

    Abd Rahim Mohd Hilmi Izwan; Kasim Narimah

    2017-01-01

    Development of the construction industry generated construction waste which can contribute towards environmental issues. Weaknesses of compliance in construction waste management especially in construction site have also contributed to the big issues of waste generated in landfills and illegal dumping area. This gives sign that construction projects are needed a systematic construction waste management. To date, a comprehensive criteria of construction waste management, particularly for const...

  4. ICDF Complex Operations Waste Management Plan

    Energy Technology Data Exchange (ETDEWEB)

    W.M. Heileson

    2006-12-01

    This Waste Management Plan functions as a management and planning tool for managing waste streams generated as a result of operations at the Idaho CERCLA Disposal Facility (ICDF) Complex. The waste management activities described in this plan support the selected remedy presented in the Waste Area Group 3, Operable Unit 3-13 Final Record of Decision for the operation of the Idaho CERCLA Disposal Facility Complex. This plan identifies the types of waste that are anticipated during operations at the Idaho CERCLA Disposal Facility Complex. In addition, this plan presents management strategies and disposition for these anticipated waste streams.

  5. SECONDARY WASTE MANAGEMENT STRATEGY FOR EARLY LOW ACTIVITY WASTE TREATMENT

    Energy Technology Data Exchange (ETDEWEB)

    TW, CRAWFORD

    2008-07-17

    This study evaluates parameters relevant to River Protection Project secondary waste streams generated during Early Low Activity Waste operations and recommends a strategy for secondary waste management that considers groundwater impact, cost, and programmatic risk. The recommended strategy for managing River Protection Project secondary waste is focused on improvements in the Effiuent Treatment Facility. Baseline plans to build a Solidification Treatment Unit adjacent to Effluent Treatment Facility should be enhanced to improve solid waste performance and mitigate corrosion of tanks and piping supporting the Effiuent Treatment Facility evaporator. This approach provides a life-cycle benefit to solid waste performance and reduction of groundwater contaminants.

  6. Strategic personnel management in an educational institution

    OpenAIRE

    KOROTKOVA M.V.; RYBKINA M.V.; NIKITINA S.O.; SCHERNYKH A.V.

    2016-01-01

    The article analyzes the strategic human resource management in an educational institution. Analyzes the basic normative-legal documents regulating educational activities, including the part of management. Particular importance is given to the types of educational institutions (budgetary, state, and autonomous). The stages of strategic management of staff in educational institutions and development model of strategic management personnel are shown.

  7. Indian programme on radioactive waste management

    Indian Academy of Sciences (India)

    P K Wattal

    2013-10-01

    The primary objective of radioactive waste management is protection of human health, environment and future generation. This article describes, briefly, the Indian programme on management of different radioactive wastes arising in the entire nuclear fuel cycle adhering to this objective.

  8. Radioactive Waste Management BasisApril 2006

    Energy Technology Data Exchange (ETDEWEB)

    Perkins, B K

    2011-08-31

    This Radioactive Waste Management Basis (RWMB) documents radioactive waste management practices adopted at Lawrence Livermore National Laboratory (LLNL) pursuant to Department of Energy (DOE) Order 435.1, Radioactive Waste Management. The purpose of this Radioactive Waste Management Basis is to describe the systematic approach for planning, executing, and evaluating the management of radioactive waste at LLNL. The implementation of this document will ensure that waste management activities at LLNL are conducted in compliance with the requirements of DOE Order 435.1, Radioactive Waste Management, and the Implementation Guide for DOE Manual 435.1-1, Radioactive Waste Management Manual. Technical justification is provided where methods for meeting the requirements of DOE Order 435.1 deviate from the DOE Manual 435.1-1 and Implementation Guide.

  9. International waste management fact book

    Energy Technology Data Exchange (ETDEWEB)

    Amaya, J P; LaMarche, M N; Upton, J F

    1997-10-01

    Many countries around the world are faced with nuclear and environmental management problems similar to those being addressed by the US Department of Energy. The purpose of this Fact Book is to provide the latest information on US and international organizations, programs, activities and key personnel to promote mutual cooperation to solve these problems. Areas addressed include all aspects of closing the commercial and nuclear fuel cycle and managing the wastes and sites from defense-related, nuclear materials production programs.

  10. Waste Management Information System (WMIS) User Guide

    Energy Technology Data Exchange (ETDEWEB)

    R. E. Broz

    2008-12-22

    This document provides the user of the Waste Management Information System (WMIS) instructions on how to use the WMIS software. WMIS allows users to initiate, track, and close waste packages. The modular design supports integration and utilization of data throuh the various stages of waste management. The phases of the waste management work process include generation, designation, packaging, container management, procurement, storage, treatment, transportation, and disposal.

  11. Online Management of Waste Storage

    Directory of Open Access Journals (Sweden)

    Eugenia IANCU

    2011-01-01

    Full Text Available The paper presents a telematic system designed to monitor the areas affected by the uncontrollable waste storing by using the newest informational and communicational technologies through the elaboration of a GPS/GIS electronic geographical positioning system. Within the system for online management of the affected locations within the built up areas, the following data categories are defined and processed: data regarding the waste management (monitored locations within the built up areas, waste, pollution sources, waste stores, waste processing stations, data describing the environment protection (environmental quality parameters: water, air, soil, spatial data (thematic maps. Using the automatic collection of the data referring to the environment quality, it is aiming at the realization of a monitoring system, equipped with sensors and/or translators capable of measuring and translating (into electrical signals measures with meteorological character (the intensity of the solar radiation, temperature, humidity but also indicators of the ecological system (such as: the concentration of nutrients in water and soil, the pollution in water, air and soil, biomasses. The organization, the description and the processing of the spatial data requires the utilization of a GIS (Geographical Information System type product.

  12. Regional solid waste management study

    Energy Technology Data Exchange (ETDEWEB)

    1992-09-01

    In 1990, the Lower Savannah Council of Governments (LSCOG) began dialogue with the United States Department of Energy (DOE) regarding possibilities for cooperation and coordination of solid waste management practices among the local governments and the Savannah River Site. The Department of Energy eventually awarded a grant to the Lower Savannah Council of Governments for the development of a study, which was initiated on March 5, 1992. After careful analysis of the region`s solid waste needs, this study indicates a network approach to solid waste management to be the most viable. The network involves the following major components: (1) Rural Collection Centers, designed to provide convenience to rural citizens, while allowing some degree of participation in recycling; (2) Rural Drop-Off Centers, designed to give a greater level of education and recycling activity; (3) Inert landfills and composting centers, designed to reduce volumes going into municipal (Subtitle D) landfills and produce useable products from yard waste; (4) Transfer Stations, ultimate landfill disposal; (5) Materials Recovery Facilities, designed to separate recyclables into useable and sellable units, and (6) Subtitle D landfill for burial of all solid waste not treated through previous means.

  13. Framing the Problem of Radioactive Waste: Public and Institutional Perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Hunt, Jane [Lancaster Univ. (United Kingdom). Centre for the Study of Environmental Change

    2001-07-01

    Public acceptability has been the rock on which radioactive waste management plans have foundered in many countries. As a response to this, public consultation, information provision, and transparency have been recognised as necessary elements for successful development and implementation of management plans. However, the actual practice of public consultation, in many cases, fails to adequately incorporate the significance of questioning the ways in which the problem is defined, the issues that are important, and the overall 'framing' of the problem. Public framing generally differs substantially from the way in which the problem is understood by those institutions responsible for its management; further, there are differences in the ways in which different publics frame issues. These public differences may or may not be attributable to demographic factors, but are closely related to the problem context - that is, the history of relationships, structural conditions, and the cultural resources available to make sense of the issues. The author argues that it is crucial that public framing(s) are adequately taken into account in developing management initiatives, so that policies reflect these different understandings, and thus have more social purchase, in line with Grove-White and Wynne's argument that in order for radioactive waste management to become a solvable problem, it is necessary to generate social ownership of the problem. However, traditional, and even many novel, consultation processes do not comprehensively address the issue of framing, but reproduce assumptions about the nature of the problem and how it should be addressed. These assumptions are present in, for example, the institutional arrangements and scientific and technical agendas. The author reports on a project undertaken this year with Nirex entitled 'The Front of the Front End' which used repeat focus groups to directly elicit the ways in which different publics

  14. Local waste management constraints and waste administrators in China.

    Science.gov (United States)

    Chung, Shan Shan; Lo, Carlos W H

    2008-01-01

    Local level waste authorities and their officials directly interact and serve the people on behalf of higher governments. Given the influential positions they have on the quality of life of the citizens, these local waste authorities deserve more attention from researchers. This study throws light on the factors related to local waste management and administrators that have caused waste management failures in three mainland Chinese cities. Based on a survey conducted in 2002-2003, it was found that waste administrators in these cities are not professionally competent in their jobs and they are also not confident in using economic instruments to address waste management issues in their cities. These local waste authorities are generally under-funded, and funding politics has to some extent eroded the incentives to carry out the instructions of higher waste authorities. The community at large also does not respect local waste management work. The residents frequently litter, are unobservant of waste collection times and are unwilling to pay for waste collection service. All of these are handicapping environmentally sound waste management.

  15. Oak Ridge Reservation Waste Management Plan

    Energy Technology Data Exchange (ETDEWEB)

    Turner, J.W. [ed.

    1995-02-01

    This report presents the waste management plan for the Oak Ridge Reservation facilities. The primary purpose is to convey what facilities are being used to manage wastes, what forces are acting to change current waste management systems, and what plans are in store for the coming fiscal year.

  16. Management of health-care waste in Izmir, Turkey

    Directory of Open Access Journals (Sweden)

    Ahmet Soysal

    2010-01-01

    Full Text Available The aim of this study was to evaluate health-care waste in the 18 districts of metropolitan municipality of the third biggest city in Turkey. This cross-sectional study was carried out with 825 health institutions established in the 18 districts of Izmir metropolitan municipality, in 2007. The total amount of health-care waste collected was 4841 tons and 621 kilograms per patient's bed in 2007. Most of the medical wastes were collected from Konak, Karsiyaka and Bornova districts and were 2308, 272 and 1020 tons, respectively. Regarding to overpopulation, the number of health institutions in these districts are more than the number of health institutions in the other administrative districts. There was a statistically significant, positive correlation between the amount of health-care waste collected and population of the 18 districts (r = 0.79, p < 0.001, and number of beds/patients (r = 0.83, p < 0.001. To provide a safe health-care waste management metropolitan municipality must provide hazardous waste separation in health institutions, establish sterilization units for infectious waste, and provide the last storage of medical waste in completely different, safe and special areas apart from the municipal waste storage areas.

  17. Scenario Of Solid Waste Management In Hetauda Municipality, Nepal

    Directory of Open Access Journals (Sweden)

    Bigyan Neupane

    2013-12-01

    Full Text Available The paper aims to enlighten the solid waste management of Hetauda Municipality in Makwanpur district of an area of 44.5 sq. km. The total human population of the municipality is 84,671 (CBS 2011. Out of 11 wards, 5 wards (1, 2, 3, 4 and 10 were selected for the present study. In total 50 households, 10 institutions and 10 commercial sectors were selected from studied wards from which samples of different types of wastes were collected, segregated and weighed. Weight was calculated using a digital spring balance and a bag 0.043 m3 was used for the estimation of volume. Organic wastes were found to be dominant in the household (51.73% and commercial sectors (61.70% whereas in institutions, plastic (50.36% and papers (38.19% were prevailing. The findings revealed that per capita 155.4 gm/person/day household waste was generated in Hetauda Municipality. The residents are also aware of the harmful effects of the wastes, and demand an effective solid waste management services. Though they are aware about the sustainable management of wastes, due to erratic collection of wastes, some of them throw the wastes in the open lands - The local people also participate in the awareness campaigns organized by local NGOs and municipal. Solid waste management strategies are timely need for an effective management of anthropogenic wastes. Regular waste collection, improvement of dumping sites and sufficient number of composting plants are recommended in the municipality. International Journal of Environment, Volume-2, Issue-1, Sep-Nov 2013, Pages 105-114 DOI: http://dx.doi.org/10.3126/ije.v2i1.9214

  18. Challenges and opportunities associated with waste management in India

    Science.gov (United States)

    Kumar, Sunil; Smith, Stephen R.; Fowler, Geoff; Velis, Costas; Kumar, S. Jyoti; Arya, Shashi; Rena; Kumar, Rakesh

    2017-01-01

    India faces major environmental challenges associated with waste generation and inadequate waste collection, transport, treatment and disposal. Current systems in India cannot cope with the volumes of waste generated by an increasing urban population, and this impacts on the environment and public health. The challenges and barriers are significant, but so are the opportunities. This paper reports on an international seminar on ‘Sustainable solid waste management for cities: opportunities in South Asian Association for Regional Cooperation (SAARC) countries’ organized by the Council of Scientific and Industrial Research-National Environmental Engineering Research Institute and the Royal Society. A priority is to move from reliance on waste dumps that offer no environmental protection, to waste management systems that retain useful resources within the economy. Waste segregation at source and use of specialized waste processing facilities to separate recyclable materials has a key role. Disposal of residual waste after extraction of material resources needs engineered landfill sites and/or investment in waste-to-energy facilities. The potential for energy generation from landfill via methane extraction or thermal treatment is a major opportunity, but a key barrier is the shortage of qualified engineers and environmental professionals with the experience to deliver improved waste management systems in India. PMID:28405362

  19. An assessment of pharmaceutical waste management in some ...

    African Journals Online (AJOL)

    An assessment of pharmaceutical waste management in some Nigerian pharmaceutical industries. ... African Journal of Biotechnology ... waste, pharmaceuticals, wastewater, waste management, environment, regulatory authorities, effluent.

  20. Aerospace vehicle water-waste management

    Science.gov (United States)

    Pecoraro, J. N.

    1973-01-01

    The collection and disposal of human wastes, such as urine and feces, in a spacecraft environment are performed in an aesthetic and reliable manner to prevent degradation of crew performance. The waste management system controls, transfers, and processes materials such as feces, emesis, food residues, used expendables, and other wastes. The requirements, collection, transport, and waste processing are described.

  1. Aerospace vehicle water-waste management

    Science.gov (United States)

    Pecoraro, J. N.

    1973-01-01

    The collection and disposal of human wastes, such as urine and feces, in a spacecraft environment are performed in an aesthetic and reliable manner to prevent degradation of crew performance. The waste management system controls, transfers, and processes materials such as feces, emesis, food residues, used expendables, and other wastes. The requirements, collection, transport, and waste processing are described.

  2. LCA Modeling of Waste Management Scenarios

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund; Simion, F.; Tonini, Davide

    2011-01-01

    and shows that recycling is superior to incineration with energy recovery, which again is better than landfilling. Cleary (2010) reviewed 20 waste management scenarios assessed in 11 studies published in the period 2002–2008 and concluded that, due to lack of transparency regarding boundary conditions...... and exchange with the energy systems, a comparison of results was hampered on a system level. In addition, differences in waste composition may affect the LCA results. This chapter provides results of LCA modeling of 40 waste management scenarios handling the same municipal waste (MSW) and using different...... management systems. The study focuses on Europe in terms of waste composition and exchange with the energy system. The waste management systems modeled are described with respect to waste composition, waste management technologies, mass flows and energy exchange in the systems. Results are first presented...

  3. Improving waste management through a process of learning: the South African waste information system.

    Science.gov (United States)

    Godfrey, Linda; Scott, Dianne

    2011-05-01

    Piloting of the South African Waste Information System (SAWIS) provided an opportunity to research whether the collection of data for a national waste information system could, through a process of learning, change the way that waste is managed in the country, such that there is a noticeable improvement. The interviews with officials from municipalities and private waste companies, conducted as part of the piloting of the SAWIS, highlighted that certain organizations, typically private waste companies have been successful in collecting waste data. Through a process of learning, these organizations have utilized this waste data to inform and manage their operations. The drivers of such data collection efforts were seen to be financial (business) sustainability and environmental reporting obligations, particularly where the company had an international parent company. However, participants highlighted a number of constraints, particularly within public (municipal) waste facilities which hindered both the collection of waste data and the utilization of this data to effect change in the way waste is managed. These constraints included a lack of equipment and institutional capacity in the collection of data. The utilization of this data in effecting change was further hindered by governance challenges such as politics, bureaucracy and procurement, evident in a developing country context such as South Africa. The results show that while knowledge is a necessary condition for resultant action, a theoretical framework of learning does not account for all observed factors, particularly external influences.

  4. A NEW RUSSIAN WASTE MANAGEMENT INSTALLATION

    Energy Technology Data Exchange (ETDEWEB)

    Griffith, Andrew; Engxy, Thor; Endregard, Monica; Schwab, Patrick; Nazarian, Ashot; Krumrine, Paul; Backe, Steinar; Gorin, Stephen; Evans, Brent

    2003-02-27

    The Polyarninsky Shipyard (sometimes called Navy Yard No. 10 or the Shkval Shipyard) has been designated as the recipient for Solid Radioactive Waste (SRW) management facilities under the Arctic Military Environmental Cooperation (AMEC) Program. The existing SRW storage site at this shipyard is filled to capacity, which is forcing the shipyard to reduce its submarine dismantlement activities. The Polyarninsky Shipyard Waste Management Installation is planned as a combination of several AMEC projects. It will have several elements, including a set of hydraulic metal cutting tools, containers for transport and storage, the Mobile Pretreatment Facility (MPF) for Solid Radioactive Waste, the PICASSO system for radiation monitoring, and a Waste Storage Facility. Hydraulically operated cutting tools can cut many metal items via shearing so that dusts or particulates are not generated. The AMEC Program procured a cutting tool system, consisting of a motor and hydraulic pumping unit, a 38-mm conduit-cutting tool, a 100- mm pipe-cutting tool, and a spreading tool all mounted on a wheeled cart. The vendor modified the tool system for extremely cold conditions and Russian electrical standards, then delivered the tool system to the Polyarninsky shipyard. A new container for transportation and storage of SRW and been designed and fabricated. The first 400 of these containers have been delivered to the Northern Fleet of the Russian Navy for use at the Polyarninsky Shipyard Waste Management Installation. These containers are cylindrical in shape and can hold seven standard 200-liter drums. They are the first containers ever certified in Russia for the offsite transport of military SRW. These containers can be transported by truck, rail, barge, or ship. The MPF will be the focal point of the Polyarninsky Shipyard Waste Management Installation and a key element in meeting the nuclear submarine dismantlement and waste processing needs of the Russian Federation. It will receive raw

  5. Waste Management in Hunter-Gatherer Communities

    Directory of Open Access Journals (Sweden)

    Havlíček Filip

    2015-11-01

    Full Text Available This article describes examples of material and waste management with a focus on select Upper Paleolithic and Mesolithic sites. It examines the structuring of space and landscape from the perspective of waste management as a certain need of natural human behavior. The article touches on the concept of purity and on defining the creation of waste.

  6. Sustainable Waste Management for Green Highway Initiatives

    Directory of Open Access Journals (Sweden)

    Husin Nur Illiana

    2016-01-01

    Full Text Available Green highway initiative is the transportation corridors based on sustainable concept of roadway. It incorporates both transportation functionality and ecological requirements. Green highway also provides more sustainable construction technique that maximizes the lifespan of highway. Waste management is one of the sustainable criterias in the elements of green highway. Construction of highway consumes enormous amounts of waste in term of materials and energy. These wastes need to be reduce to sustain the environment. This paper aims to identify the types of waste produced from highway construction. Additionally, this study also determine the waste minimization strategy and waste management practiced.. This study main focus are construction and demolition waste only. The methodology process begin with data collection by using questionnaire survey. 22 concession companies listed under Lembaga Lebuhraya Malaysia acted as a respondent. The questionnaires were distributed to all technical department staffs. The data received was analyzed using IBM SPSS. The results shows the most production of waste is wood, soil, tree root and concrete. The least production of waste is metal. For waste minimization, the best waste minimization is reuse for all type of waste except for tree root and stump. Whereas, the best waste management is providing strategic plan. The least practice for waste management is recording the quantity of waste.

  7. The Integrated Waste Tracking System - A Flexible Waste Management Tool

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Robert Stephen

    2001-02-01

    The US Department of Energy (DOE) Idaho National Engineering and Environmental Laboratory (INEEL) has fully embraced a flexible, computer-based tool to help increase waste management efficiency and integrate multiple operational functions from waste generation through waste disposition while reducing cost. The Integrated Waste Tracking System (IWTS)provides comprehensive information management for containerized waste during generation,storage, treatment, transport, and disposal. The IWTS provides all information necessary for facilities to properly manage and demonstrate regulatory compliance. As a platformindependent, client-server and Web-based inventory and compliance system, the IWTS has proven to be a successful tracking, characterization, compliance, and reporting tool that meets the needs of both operations and management while providing a high level of management flexibility.

  8. Investigation on medical waste management in medical institutions in Hu-bei Province%湖北省医疗机构医疗废物管理现状调查

    Institute of Scientific and Technical Information of China (English)

    韩颖; 赖晓全; 熊薇; 徐敏; 魏诗晴; 谢红艳

    2016-01-01

    目的:调查湖北省医疗机构医疗废物的管理现状,并提出改进对策。方法依据相关规范自行设计调查问卷,采用随机分层抽样方法于2015年4月实地调查湖北省75所医院医疗废物管理情况,获得有效问卷73份。结果73所医院的医疗废物管理软硬件建设基本符合规范要求,组织与制度管理、科室分类处置情况各项合格率均在90%以上;83.56%(61/73)的医院开展了医疗废物最佳环境实践相关宣传;减少使用一次性医疗器械、用品品种达40余种;76.71%(56/73)的医院输液软袋都交由签约公司回收利用;医院病理科的化学性废液交危险废物处置中心处理的仅占21.54%(14/65);骨科钢板处置方法不一,56.16%(41/73)的医院将其作为医疗废物,仅35.62%(26/73)的医院告知患者处置方式,与患者签署知情同意书。结论湖北省医疗机构医疗废物管理已逐步得到重视,但对于特殊类别的医疗废物处置,如输液袋(瓶)、骨科钢板、病理科化学性废液处置均存在不同程度的问题,仍需加大培训,进一步规范医疗废物分类处置。%Objective To investigate the situation of medical waste management in medical institutions of Hubei Prov-ince,and put forward the improvement strategies.Methods The questionnaires were designed according to the relevant standards,situation of medical waste management in 75 hospitals in Hubei Province was investigated by stratified sampling, 73 available questionnaires were got.Results The construction of medical waste management software and hardware in 73 hospitals were basically met the requirements of the standards,the qualified rates in organization and system management, classification and disposal of medical waste in departments were all >90%;83.56% (61/73)of the hospitals carried out the best environmental practice(BEP)for medical waste;application of

  9. International E-Waste Management Network (IEMN)

    Science.gov (United States)

    EPA and the Environmental Protection Administration Taiwan (EPAT) have collaborated since 2011 to build global capacity for the environmentally sound management of waste electrical and electronic equipment (WEEE), which is commonly called e-waste.

  10. LCA of Solid Waste Management Systems

    DEFF Research Database (Denmark)

    Bakas, Ioannis; Laurent, Alexis; Clavreul, Julie

    2017-01-01

    The chapter explores the application of LCA to solid waste management systems through the review of published studies on the subject. The environmental implications of choices involved in the modelling setup of waste management systems are increasingly in the spotlight, due to public health...... concerns and new legislation addressing the impacts from managing our waste. The application of LCA to solid waste management systems, sometimes called “waste LCA”, is distinctive in that system boundaries are rigorously defined to exclude all life cycle stages except from the end-of-life. Moreover......, specific methodological challenges arise when investigating waste systems, such as the allocation of impacts and the consideration of long-term emissions. The complexity of waste LCAs is mainly derived from the variability of the object under study (waste) which is made of different materials that may...

  11. Impacts on waste planning and management

    CSIR Research Space (South Africa)

    Oelofse, Suzan

    2016-11-01

    Full Text Available the skills or experience to manage this waste responsibly. Available waste water infrastructure in the study area is under pressure and requires urgent intervention. The technologies and capacity at these already stressed facilities are not sufficient...

  12. Management of radioactive waste: A review

    Directory of Open Access Journals (Sweden)

    Luis Paulo Sant'ana

    2016-06-01

    Full Text Available The issue of disposal of radioactive waste around the world is not solved by now and the principal reason is the lack of an efficient technologic system. The fact that radioactive waste decays of radioactivity with time are the main reasons for setting nuclear or radioactive waste apart from the other common hazardous wastes management. Radioactive waste can be classified according to the state of matter and level of radioactivity and this classification can be differently interpreted from country to country. Furthermore, microbiological procedures, plasma vitrification process, chemical precipitation, ion exchange, evaporation and reverse osmosis are strategies used for the treatment of radioactive wastes. The major challenge is to manage these radioactive substances after being used and discharged. This report brings data from the literature published worldwide from 2009 to 2014 on radioactive waste management studies and it covers production, classification and management of radioactive solid, liquid and gas waste.

  13. E-Waste Management and Challenges

    Science.gov (United States)

    Narayanan, S.; Kumar, K. Ram

    2010-11-01

    E-Waste is one of the silent degraders of the environment in the fast-growing world. This paper explores briefly the ultra-modern problem of E-Waste. After enumerating the causes and effects of the E-Waste, it focuses on management of the E-waste using modern techniques. The paper also deals with the responsibilities of the governments, industries and citizens in reducing E-waste.

  14. Disaster waste management: a review article.

    Science.gov (United States)

    Brown, Charlotte; Milke, Mark; Seville, Erica

    2011-06-01

    Depending on their nature and severity, disasters can create large volumes of debris and waste. The waste can overwhelm existing solid waste management facilities and impact on other emergency response and recovery activities. If poorly managed, the waste can have significant environmental and public health impacts and can affect the overall recovery process. This paper presents a system overview of disaster waste management based on existing literature. The main literature available to date comprises disaster waste management plans or guidelines and isolated case studies. There is ample discussion on technical management options such as temporary storage sites, recycling, disposal, etc.; however, there is little or no guidance on how these various management options are selected post-disaster. The literature does not specifically address the impact or appropriateness of existing legislation, organisational structures and funding mechanisms on disaster waste management programmes, nor does it satisfactorily cover the social impact of disaster waste management programmes. It is envisaged that the discussion presented in this paper, and the literature gaps identified, will form a basis for future comprehensive and cohesive research on disaster waste management. In turn, research will lead to better preparedness and response to disaster waste management problems. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Integrated sustainable waste management in developing countries

    OpenAIRE

    Wilson, D C; Velis, C.A.; Rodic-Wiersma, L.

    2013-01-01

    This paper uses the lens of ‘integrated sustainable waste management’ to examine how cities in developing countries have been tackling their solid waste problems. The history of related concepts and terms is reviewed, and ISWM is clearly differentiated from integrated waste management, used mostly in the context of technological integration in developed countries. Instead, integrated sustainable waste management examines both the physical components (collection, disposal and recycling) and th...

  16. Radioactive Waste Management in A Hospital

    OpenAIRE

    Khan, Shoukat; Syed, AT; Ahmad, Reyaz; Rather, Tanveer A; Ajaz, M.; Jan, FA

    2010-01-01

    Most of the tertiary care hospitals use radioisotopes for diagnostic and therapeutic applications. Safe disposal of the radioactive waste is a vital component of the overall management of the hospital waste. An important objective in radioactive waste management is to ensure that the radiation exposure to an individual (Public, Radiation worker, Patient) and the environment does not exceed the prescribed safe limits. Disposal of Radioactive waste in public domain is undertaken in accordance w...

  17. The Radioactive Waste Management at Studsvik

    Energy Technology Data Exchange (ETDEWEB)

    Hedlund, R.; Lindskog, A.

    1966-04-15

    The report was originally prepared as a contribution to the discussions in an IAEA panel on economics of radioactive waste management held in Vienna from 13 - 17 December 1965. It contains the answers and comments to the questions of a questionnaire for the panel concerning the various operations associated with the management (collection, transport, treatment, discharge, storage, and operational monitoring) of: - radioactive liquid wastes, except high-level effluents from reactor fuel recovering operations; - solid wastes, except those produced from treatment of high level wastes; - gaseous wastes produced from treatment of the foregoing liquid and solid wastes; - equipment decontamination facilities and radioactive laundries.

  18. Effectiveness of waste management in Mataram City

    Science.gov (United States)

    Widayanti, B. H.; Hirsan, F. P.; Kurniawan, A.

    2017-06-01

    Mataram city as National Activity Center (NAC) led to increased of activity that occurs in this region. This condition impacted the increasing of population and the amount of waste. The amount of waste in Mataram City currently reaches 1,444 m3/day and that has been transported by the Sanitation Department as much as 1,033.82 m3 or 71.59%. This research aims to analyze the effectiveness of community-based waste or waste management. The method that was used is quantitative descriptive analysis of waste heaps and analysis of waste management. The results of the analysis of waste heaps is that in the next 10 years (2026) the amount of waste will reach 2,019 m3/day. By using the analysis of waste management, if there are 25 units machines today and 48 waste management groups are effectively utilized, then 948 m3 amount of waste could be processed in a day or as much as 65.65% of the waste is managed by the community. So that, in order to get over this waste problems, collaboration between government and the community in Mataram City is needed.

  19. Assessing waste management systems using reginalt software

    Energy Technology Data Exchange (ETDEWEB)

    Meshkov, N.K.; Camasta, S.F.; Gilbert, T.L.

    1988-03-01

    A method for assessing management systems for low-level radioactive waste is being developed for US Department of Energy. The method is based on benefit-cost-risk analysis. Waste management is broken down into its component steps, which are generation, treatment, packaging, storage, transportation, and disposal. Several different alternatives available for each waste management step are described. A particular waste management system consists of a feasible combination of alternatives for each step. Selecting an optimal waste management system would generally proceed as follows: (1) qualitative considerations are used to narrow down the choice of waste management system alternatives to a manageable number; (2) the costs and risks for each of these system alternatives are evaluated; (3) the number of alternatives is further reduced by eliminating alternatives with similar risks but higher costs, or those with similar costs but higher risks; (4) a trade-off factor between cost and risk is chosen and used to compute the objective function (sum of the cost and risk); and (5) the selection of the optimal waste management system among the remaining alternatives is made by choosing the alternative with the smallest value for the objective function. The authors propose that the REGINALT software system, developed by EG and G Idaho, Inc., as an acid for managers of low-level commerical waste, be augmented for application to the managment of DOE-generated waste. Specific recommendations for modification of the REGINALT system are made. 51 refs., 3 figs., 2 tabs.

  20. Waste Management Technician Partnership Program. Final Report.

    Science.gov (United States)

    Campbell, Donna

    This final report for Columbia Basin College's waste management technician partnership program outlines 4 objectives: (1) develop at least 4 waste management competency-based curriculum modules; (2) have 50 participants complete at least 1 module; (3) have 100 participants complete a training and/or certification program and 200 managers complete…

  1. Community Participation in Solid Waste Management, Kathmandu

    OpenAIRE

    Gotame, Manira

    2012-01-01

    Waste management in Nepal is one of the important topics discussed today. Participation of the community is thus,being encouraged to manage solid waste. My study area is Kathmandu (Buddhajyoti, Chamati and Milijuli, Ganesh and Jagriti settlements in Kathmandu). My paper focuses in community participation in solid waste management in these settlements/communities. there are different projects working for this purpose in these settlements. I used household survey...

  2. Ceramics in nuclear waste management

    Energy Technology Data Exchange (ETDEWEB)

    Chikalla, T D; Mendel, J E [eds.

    1979-05-01

    Seventy-three papers are included, arranged under the following section headings: national programs for the disposal of radioactive wastes, waste from stability and characterization, glass processing, ceramic processing, ceramic and glass processing, leaching of waste materials, properties of nuclear waste forms, and immobilization of special radioactive wastes. Separate abstracts were prepared for all the papers. (DLC)

  3. e-Waste Management Scenarios in Malaysia

    Directory of Open Access Journals (Sweden)

    Fatihah Suja

    2014-01-01

    Full Text Available e-Waste, or electronic waste, disposal that is uncontrolled can be harmful to human health and the environment because e-waste contains toxic substances and heavy metals. However, if the waste is properly managed, it can become a business opportunity that produces high returns because e-waste also contains valuable materials, such as gold, silver, platinum, and palladium. The government of Malaysia wants to ensure the safe, effective, and economically beneficial management of e-waste in Malaysia. Management approaches have included law enforcement and regulation and the promotion of e-waste recovery activities. e-Waste of no commercial value must be disposed of at sites/premises licensed by the Department of Environment (DOE, Malaysia. To date, 18 full recovery facilities and 128 partial recovery facilities that use various available technologies have been designated for the segregation, dismantling, and treatment of e-waste. However, there are issues faced by the recovery facilities in achieving the goal of converting e-waste into a source material. The issues include the e-waste supply, the importation of e-waste derived products and coding, and finally the need to develop the criteria for e-waste processing technologies to ensure the safety and the sustainability of the facilities.

  4. Life Cycle Assessment of Municipal Waste Management System ...

    African Journals Online (AJOL)

    Life Cycle Assessment of Municipal Waste Management System (Case Study: ... solid waste management systems for determine the optimum municipal solid waste ... include water pollution, air pollution, consumed energy and waste residues.

  5. Sustainable sound waste management startegies in Juja, Kenya ...

    African Journals Online (AJOL)

    Sustainable sound waste management startegies in Juja, Kenya. ... Integrated solid waste management includes source reduction, source separation, recycling ... waste in Juja consisted of 80% food and other organic wastes, 10% plastics, ...

  6. Integrated sustainable waste management in developing countries

    NARCIS (Netherlands)

    Wilson, D.C.; Velis, C.A.; Rodic-Wiersma, L.

    2013-01-01

    This paper uses the lens of ‘integrated sustainable waste management’ to examine how cities in developing countries have been tackling their solid waste problems. The history of related concepts and terms is reviewed, and ISWM is clearly differentiated from integrated waste management, used mostly

  7. 40 CFR 273.13 - Waste management.

    Science.gov (United States)

    2010-07-01

    ... waste to the environment. The universal waste pesticides must be contained in one or more of the..., structurally sound, compatible with the pesticide, and that lacks evidence of leakage, spillage, or damage that... 40 Protection of Environment 26 2010-07-01 2010-07-01 false Waste management. 273.13 Section 273...

  8. 40 CFR 273.33 - Waste management.

    Science.gov (United States)

    2010-07-01

    ... component of a universal waste to the environment. The universal waste pesticides must be contained in one... the pesticide, and that lacks evidence of leakage, spillage, or damage that could cause leakage under... 40 Protection of Environment 26 2010-07-01 2010-07-01 false Waste management. 273.33 Section 273...

  9. Solid Waste Management Practices in EBRP Schools.

    Science.gov (United States)

    Mann, Nadine L.

    1994-01-01

    A Louisiana school district has made tremendous progress toward developing and implementing an environmentally friendly solid waste management program. Packaging changes in school food service, newspaper and aluminum can recycling, and composting of leaf and yard waste have contributed to reduced waste sent to the local landfill. (MLF)

  10. Solid Waste Management in Recreational Forest Areas.

    Science.gov (United States)

    Spooner, Charles S.

    The Forest Service, U. S. Department of Agriculture, requested the Bureau of Solid Waste Management to conduct a study of National Forest recreation areas to establish waste generation rates for major recreation activities and to determine the cost of solid waste handling for selected Forest Service Districts. This report describes the 1968 solid…

  11. Waste to energy – key element for sustainable waste management

    Energy Technology Data Exchange (ETDEWEB)

    Brunner, Paul H., E-mail: paul.h.brunner@tuwien.ac.at; Rechberger, Helmut

    2015-03-15

    Highlights: • First paper on the importance of incineration from a urban metabolism point of view. • Proves that incineration is necessary for sustainable waste management. • Historical and technical overview of 100 years development of MSW incineration. - Abstract: Human activities inevitably result in wastes. The higher the material turnover, and the more complex and divers the materials produced, the more challenging it is for waste management to reach the goals of “protection of men and environment” and “resource conservation”. Waste incineration, introduced originally for volume reduction and hygienic reasons, went through a long and intense development. Together with prevention and recycling measures, waste to energy (WTE) facilities contribute significantly to reaching the goals of waste management. Sophisticated air pollution control (APC) devices ensure that emissions are environmentally safe. Incinerators are crucial and unique for the complete destruction of hazardous organic materials, to reduce risks due to pathogenic microorganisms and viruses, and for concentrating valuable as well as toxic metals in certain fractions. Bottom ash and APC residues have become new sources of secondary metals, hence incineration has become a materials recycling facility, too. WTE plants are supporting decisions about waste and environmental management: They can routinely and cost effectively supply information about chemical waste composition as well as about the ratio of biogenic to fossil carbon in MSW and off-gas.

  12. Managing Nuclear Waste: Options Considered

    Energy Technology Data Exchange (ETDEWEB)

    DOE

    2002-05-02

    Starting in the 1950s, U.S. scientists began to research ways to manage highly radioactive materials accumulating at power plants and other sites nationwide. Long-term surface storage of these materials poses significant potential health, safety, and environmental risks. Scientists studied a broad range of options for managing spent nuclear fuel and high-level radioactive waste. The options included leaving it where it is, disposing of it in various ways, and making it safer through advanced technologies. International scientific consensus holds that these materials should eventually be disposed of deep underground in what is called a geologic repository. In a recent special report, the National Academy of Sciences summarized the various studies and emphasized that geologic disposal is ultimately necessary.

  13. CHALLENGES OF MUNICIPAL WASTE MANAGEMENT IN HUNGARY

    Directory of Open Access Journals (Sweden)

    ZOLTÁN OROSZ

    2008-06-01

    Full Text Available Aims, tasks and priorities of medium term development plans of national waste management were defined in the National Waste Management Plan, which was made for the period of 2003–2008 in Hungary. Supporting of the European Union is indispensable for carrying out of plan. The most important areas are related to the developing projects of municipal solid waste treatment (increasingthe capacity of landfills, accomplishment of the infrastructure of selective waste collection, building of new composting plants. The national environmental policy does not focus sufficiently on the prevention of waste production. Due to the high expenses of investment and operation the energetic recovery and the incineration of municipal solid waste do not compete with the deposition. We inclined to think that the waste management of Hungary will be deposition-orientated until 2015. The main problems to the next years will be the lack of reprocessing industry of plastic and glass packaging waste. The high number of to-be-recultivated landfills and the attainability of necessary financial sources are also serious problems. There are many questions. What is the future in national waste management? How can we reduce the quantity of dumped waste? What are challenges of national waste management on the short and long term?

  14. Technology Roadmapping for Waste Management

    Energy Technology Data Exchange (ETDEWEB)

    Bray, O.

    2003-02-26

    Technology roadmapping can be an effective strategic technology planning tool. This paper describes a process for customizing a generic technology roadmapping process. Starting with a generic process reduces the learning curve and speeds up the roadmap development. Similarly, starting with a generic domain model provides leverage across multiple applications or situations within the domain. A process that combines these two approaches facilitates identifying technology gaps and determining common core technologies that can be reused for multiple applications or situations within the domain. This paper describes both of these processes and how they can be integrated. A core team and a number of technology working groups develop the technology roadmap, which includes critical system requirements and targets, technology areas and metrics for each area, and identifies and evaluates possible technology alternatives to recommend the most appropriate ones to pursue. A generalized waste management model, generated by considering multiple situations or applications in terms of a generic waste management model, provides the domain requirements for the technology roadmapping process. Finally, the paper discusses lessons learns from a number of roadmapping projects.

  15. The Orbital Workshop Waste Management Compartment

    Science.gov (United States)

    1972-01-01

    This image is a wide-angle view of the Orbital Workshop waste management compartment. The waste management facilities presented a unique challenge to spacecraft designers. In addition to collection of liquid and solid human wastes, there was a medical requirement to dry all solid human waste products and to return the residue to Earth for examination. Liquid human waste (urine) was frozen for return to Earth. Total quantities of each astronaut's liquid and solid wastes were precisely measured. Cabin air was drawn into the toilet, shown on the wall at right in this photograph, and over the waste products to generate a flow of the waste in the desired direction. The air was then filtered for odor control and antiseptic purposes prior to being discharged back into the cabin.

  16. Waste Management Facilities Cost Information Report

    Energy Technology Data Exchange (ETDEWEB)

    Feizollahi, F.; Shropshire, D.

    1992-10-01

    The Waste Management Facility Cost Information (WMFCI) Report, commissioned by the US Department of Energy (DOE), develops planning life-cycle cost (PLCC) estimates for treatment, storage, and disposal facilities. This report contains PLCC estimates versus capacity for 26 different facility cost modules. A procedure to guide DOE and its contractor personnel in the use of estimating data is also provided. Estimates in the report apply to five distinctive waste streams: low-level waste, low-level mixed waste, alpha contaminated low-level waste, alpha contaminated low-level mixed waste, and transuranic waste. The report addresses five different treatment types: incineration, metal/melting and recovery, shredder/compaction, solidification, and vitrification. Data in this report allows the user to develop PLCC estimates for various waste management options.

  17. Waste Management Facilities Cost Information Report

    Energy Technology Data Exchange (ETDEWEB)

    Feizollahi, F.; Shropshire, D.

    1992-10-01

    The Waste Management Facility Cost Information (WMFCI) Report, commissioned by the US Department of Energy (DOE), develops planning life-cycle cost (PLCC) estimates for treatment, storage, and disposal facilities. This report contains PLCC estimates versus capacity for 26 different facility cost modules. A procedure to guide DOE and its contractor personnel in the use of estimating data is also provided. Estimates in the report apply to five distinctive waste streams: low-level waste, low-level mixed waste, alpha contaminated low-level waste, alpha contaminated low-level mixed waste, and transuranic waste. The report addresses five different treatment types: incineration, metal/melting and recovery, shredder/compaction, solidification, and vitrification. Data in this report allows the user to develop PLCC estimates for various waste management options.

  18. Electronic waste management approaches: An overview

    Energy Technology Data Exchange (ETDEWEB)

    Kiddee, Peeranart [Centre for Environmental Risk Assessment and Remediation, University of South Australia, Mawson Lakes Campus, Adelaide, SA 5095 (Australia); Cooperative Research Centre for Contamination Assessment and Remediation of the Environment, Mawson Lakes Campus, Adelaide, SA 5095 (Australia); Naidu, Ravi, E-mail: ravi.naidu@crccare.com [Centre for Environmental Risk Assessment and Remediation, University of South Australia, Mawson Lakes Campus, Adelaide, SA 5095 (Australia); Cooperative Research Centre for Contamination Assessment and Remediation of the Environment, Mawson Lakes Campus, Adelaide, SA 5095 (Australia); Wong, Ming H. [Croucher Institute for Environmental Sciences, Department of Biology, Hong Kong Baptist University, Kowloon Tong (China)

    2013-05-15

    Highlights: ► Human toxicity of hazardous substances in e-waste. ► Environmental impacts of e-waste from disposal processes. ► Life Cycle Assessment (LCA), Material Flow Analysis (MFA), Multi Criteria Analysis (MCA) and Extended Producer Responsibility (EPR) to and solve e-waste problems. ► Key issues relating to tools managing e-waste for sustainable e-waste management. - Abstract: Electronic waste (e-waste) is one of the fastest-growing pollution problems worldwide given the presence if a variety of toxic substances which can contaminate the environment and threaten human health, if disposal protocols are not meticulously managed. This paper presents an overview of toxic substances present in e-waste, their potential environmental and human health impacts together with management strategies currently being used in certain countries. Several tools including Life Cycle Assessment (LCA), Material Flow Analysis (MFA), Multi Criteria Analysis (MCA) and Extended Producer Responsibility (EPR) have been developed to manage e-wastes especially in developed countries. The key to success in terms of e-waste management is to develop eco-design devices, properly collect e-waste, recover and recycle material by safe methods, dispose of e-waste by suitable techniques, forbid the transfer of used electronic devices to developing countries, and raise awareness of the impact of e-waste. No single tool is adequate but together they can complement each other to solve this issue. A national scheme such as EPR is a good policy in solving the growing e-waste problems.

  19. Waste management in the Irkutsk Region, Siberia, Russia: Environmental assessment of current practice focusing on landfilling

    DEFF Research Database (Denmark)

    Starostina, Vlada; Damgaard, Anders; Rechberger, Helmut

    2014-01-01

    The municipal waste management system of the region of Irkutsk is described and a life cycle assessment (LCA) performed to assess the environmental performance of the system. Annually about 500 000 tons of waste are managed. The waste originates from three sources: household waste (27%), commercial...... waste (23%) and office & institutional waste (44%). Other waste of unknown composition constitutes 6%. Only 3% of the waste is recycled; 97% of the municipal waste is disposed of at the old Alexandrovsky landfill. The environmental impact from the current system is dominated by the landfill, which has...... years, the LCA modelling showed that introduction of a new and modern landfill with gas and leachate collection could improve the performance of the waste management system significantly. Collection of landfill gas and utilization for 30 years for electricity production (gas turbine) would reduce...

  20. Waste Management Facilities cost information for low-level waste

    Energy Technology Data Exchange (ETDEWEB)

    Shropshire, D.; Sherick, M.; Biadgi, C.

    1995-06-01

    This report contains preconceptual designs and planning level life-cycle cost estimates for managing low-level waste. The report`s information on treatment, storage, and disposal modules can be integrated to develop total life-cycle costs for various waste management options. A procedure to guide the US Department of Energy and its contractor personnel in the use of cost estimation data is also summarized in this report.

  1. 'Wasteaware' benchmark indicators for integrated sustainable waste management in cities.

    Science.gov (United States)

    Wilson, David C; Rodic, Ljiljana; Cowing, Michael J; Velis, Costas A; Whiteman, Andrew D; Scheinberg, Anne; Vilches, Recaredo; Masterson, Darragh; Stretz, Joachim; Oelz, Barbara

    2015-01-01

    This paper addresses a major problem in international solid waste management, which is twofold: a lack of data, and a lack of consistent data to allow comparison between cities. The paper presents an indicator set for integrated sustainable waste management (ISWM) in cities both North and South, to allow benchmarking of a city's performance, comparing cities and monitoring developments over time. It builds on pioneering work for UN-Habitat's solid waste management in the World's cities. The comprehensive analytical framework of a city's solid waste management system is divided into two overlapping 'triangles' - one comprising the three physical components, i.e. collection, recycling, and disposal, and the other comprising three governance aspects, i.e. inclusivity; financial sustainability; and sound institutions and proactive policies. The indicator set includes essential quantitative indicators as well as qualitative composite indicators. This updated and revised 'Wasteaware' set of ISWM benchmark indicators is the cumulative result of testing various prototypes in more than 50 cities around the world. This experience confirms the utility of indicators in allowing comprehensive performance measurement and comparison of both 'hard' physical components and 'soft' governance aspects; and in prioritising 'next steps' in developing a city's solid waste management system, by identifying both local strengths that can be built on and weak points to be addressed. The Wasteaware ISWM indicators are applicable to a broad range of cities with very different levels of income and solid waste management practices. Their wide application as a standard methodology will help to fill the historical data gap.

  2. Report: biomedical waste management practices at Balrampur Hospital, Lucknow, India.

    Science.gov (United States)

    Gupta, Saurabh; Boojh, Ram

    2006-12-01

    Biomedical waste has become a serious health hazard in many countries, including India. Careless and indiscriminate disposal of this waste by healthcare establishments and research institutions can contribute to the spread of serious diseases such as hepatitis and AIDS (HIV) among those who handle it and also among the general public. The present study pertains to the biomedical waste management practices at Balrampur Hospital, a premier healthcare establishment in Lucknow, in North India. The study shows that infectious and non-infectious wastes are dumped together within the hospital premises, resulting in a mixing of the two, which are then disposed of with municipal waste at the dumping sites in the city. All types of wastes are collected in common bins placed outside the patients wards. For disposal of this waste the hospital depends on the generosity of the Lucknow Municipal Corporation, whose employees generally collect it every 2 or 3 days. The hospital does not have any treatment facility for infectious waste. The laboratory waste materials, which are disposed of directly into the municipal sewer without proper disinfection of pathogens, ultimately reach the Gomti River. All disposable plastic items are segregated by the rag pickers from the hospital as well as municipal bins and dumps. The waste is deposited either inside the hospital grounds, or outside in the community bin for further transportation and disposal along with municipal solid waste. The open dumping of the waste makes it freely accessible to rag pickers who become exposed to serious health hazards due to injuries from sharps, needles and other types of material used when giving injections. The results of the study demonstrate the need for strict enforcement of legal provisions and a better environmental management system for the disposal of biomedical waste in the Balrampur Hospital, as well as other healthcare establishments in Lucknow.

  3. SOLID WASTE MANAGEMENT IN TABRIZ PETROCHEMICAL COMPLEX

    Directory of Open Access Journals (Sweden)

    M. A. Abduli, M. Abbasi, T. Nasrabadi, H. Hoveidi, N. Razmkhah

    2006-07-01

    Full Text Available Tabriz petrochemical complex is located in the northwest of Iran. Major products of this industry include raw plastics like, polyethylene, polystyrene, acrylonitrile, butadiene, styrene, etc. Sources of waste generation include service units, health and cure units, water, power, steam and industrial processes units. In this study, different types of solid waste including hazardous and non hazardous solid wastes were investigated separately. The aim of the study was to focus on the management of the industrial wastes in order to minimize the adverse environmental impacts. In the first stage, locating map and dispersion limits were prepared. Then, the types and amounts of industrial waste generated in were evaluated by an inventory and inspection. Wastes were classified according to Environmental Protection Agency and Basel Standards and subsequently hazards of different types were investigated. The waste management of TPC is quite complex because of the different types of waste and their pollution. In some cases recycling/reuse of waste is the best option, but treatment and disposal are also necessary tools. In this study, using different sources and references, generally petrochemical sources, various solid waste management practices were investigated and the best options were selected. Some wastes should be treated before land filling and some of them should be reused or recycled. In the case of solid waste optimization, source reduction ways were recommended as well as prior incineration system was modified.

  4. Learning to listen. Institutional change and legitimation in UK radioactive waste policy

    Energy Technology Data Exchange (ETDEWEB)

    Mackerron, G. [SPRU Science and Technology Policy Research, University of Sussex, Brighton (United Kingdom); Berkhout, F. [Institute for Environmental Studies IVM, VU University, Amsterdam (Netherlands)

    2009-04-15

    Over the course of 50 years, UK radioactive waste policy change has been coupled with institutional change, without much progress towards the ultimate goal of safe, long-term stewardship of wastes. We explain this history as a search for legitimacy against a shifting context of legitimation needs and deficits. Following Habermas, we argue that legitimation is derived from a process of justificatory discourse. In principle, there must be a reasonable exchange of arguments between diverse parties in society, based on common norms, for legitimacy to be achieved. We show that the work of legitimation in UK radioactive waste policy has moved from a focus on factual validity claims towards an increasing emphasis on deliberative processes. This reframing of legitimation needs explains institutional and policy changes in UK radioactive waste policy. The most recent phase of policy and institutional change, which placed public deliberation about long-term management and disposal options centre-stage, represents a new step towards bridging legitimation deficits. Plans to build new nuclear reactors in the UK based on a more closed 'streamlined' decision process risk reversing the legitimacy gains that have been achieved through growing openness on radioactive waste management.

  5. Evaluation of Bio-Medical Waste Management Practices in a Government Medical College and Hospital

    Directory of Open Access Journals (Sweden)

    Srivastav Shalini, Mahajan Harsh, Mathur B P

    2012-01-01

    Full Text Available Background: Biomedical waste (BMW collection and proper disposal has become a significant concern for both the medical and the general community as improper management poses risks to the health care workers, waste handlers, patients, community in general and largely the environment. Objectives: (i Assessment of current Bio-medical waste management practices including collection, segregation, transportation, storage, treatment and disposal technologies in tertiary health care center. (ii Assessment of health and safety practices for the health care personnel involved in Bio-Medical Waste Management. Materials and Methods: Waste management practices in the Government Hospital was studied during March 2009 – May 2009.The information / data regarding Bio-Medical Waste Management practices and safety was collected by way of semi- structured interview. Results: M.L.B Medical College generates 0.52Kgs waste per bed per day and maximum waste is generated in wards. The institute has got separate color coded bins in wards for collection of waste but segregation practices needs to be more refined. The safety measures taken by health care workers was not satisfactory, it was basically due to un-awareness of health hazards which may occur because of improper waste management practices. Conclusion: Thus it is concluded that there should be strict implementation of a waste management policy set up in the institute; training and motivation must be given paramount importance to meet the current needs and standards of bio-medical waste management.

  6. Managing institutional dynamics: generalisation of modern approaches

    Directory of Open Access Journals (Sweden)

    Mazur Olena Ye.

    2013-03-01

    Full Text Available The article presents a critical analysis and systematisation of modern approaches to state management of development of institutional structures. It identifies the most popular approaches to management of institutional dynamics: implantations or shock therapy, import (transplantation and its modifications (institutional experimenting and building intermediary institutions, growing institutions and modification (elevation and cultivation and influence upon external factors of institution development. The article builds structural and logical schemes to each approach and identifies main shortcomings and restrictions of their application. It justifies prospectiveness and universality of the theory of priority of external factors in re-formation of socio-economic institutions. It offers a direction of further scientific studies on development of a specific methodology of re-formation of a specific institution on the basis of a selected and justified common strategy.

  7. Supplemental Information Source Document Waste Management

    Energy Technology Data Exchange (ETDEWEB)

    Wood, Craig [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Halpern, Jonathan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Wrons, Ralph [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Reiser, Anita [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Mond, Michael du [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Shain, Matthew [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-12-01

    This Supplemental Information Source Document for Waste Management was prepared in support of future analyses including those that may be performed as part of the Sandia National Laboratories, New Mexico (SNL/NM) Site-Wide Environmental Impact Statement. This document presents information about waste management practices at SNL/NM, including definitions, inventory data, and an overview of current activities.

  8. Can we talk? Communications management for the Waste Isolation Pilot Plant, a complex nuclear waste management project

    Energy Technology Data Exchange (ETDEWEB)

    Goldstein, S.A.; Pullen, G.M.; Brewer, D.R.

    1995-07-01

    Sandia Nuclear Waste Management Program is pursuing for DOE an option for permanently disposing radioactive waste in deep geologic repositories. Included in the Program are the Waste Isolation Pilot Plant (WIPP) Project for US defense program mixed waste the Yucca Mountain Project (YMP) for spent power reactor fuel and vitrified high-level waste, projects for other waste types, and development efforts in environmental decision support technologies. WIPP and YMP are in the public arena, of a controversial nature, and provide significant management challenges. Both projects have large project teams, multiple organization participants, large budgets, long durations, are very complex, have a high degree of programmatic risk, and operate in an extremely regulated environment requiring legal defensibility. For environmental projects like these to succeed, SNL`s Program is utilizing nearly all areas in PMI`s Project Management Body of Knowledge (PMBOK) to manage along multiple project dimensions such as the physical sciences (e.g., geophysics and geochemistry; performance assessment; decision analysis) management sciences (controlling the triple constraint of performance, cost and schedule), and social sciences (belief systems; public participation; institutional politics). This discussion focuses primarily on communication challenges active on WIPP. How is the WIPP team meeting the challenges of managing communications?`` and ``How are you approaching similar challenges?`` will be questions for a dialog with the audience.

  9. Solid Waste Management Practices of Select State Universities in CALABARZON, Philippines

    Directory of Open Access Journals (Sweden)

    Amado C. Gequinto

    2017-02-01

    Full Text Available The enactment of the Ecological Solid Waste Management Act prompted higher education institutions including state universities and colleges (SUCs to incorporate ecological waste management in the school system. Thus, this paper aimed to assess the extent of implementation of solid waste management practices in select SUCs in CALABARZON in terms of waste reuse, waste reduction, waste collection, waste recycling, waste treatment, and final waste disposal. Respondents of the study included university administrators, faculty members, non-teaching staff, students and concessionaries for a total of 341. A survey questionnaire was used to gather data from Batangas State University (BatState-U, Cavite State University (CavSU, Laguna State Polytechnic University (LSPU and Southern Luzon State University (SLSU. Result revealed that solid waste management practices are implemented to a great extent. Among the practices, waste collection got the highest composite mean particularly on the promotion of 3Rs (reduce, reuse, recycle in the collection of waste. On the other hand, waste recycling and waste treatment obtained the lowest composite mean. In terms of waste recycling, establishing partnership with local or private business for recyclable recovery program was to moderate extent. Waste treatment particularly neutralization of acid bases was also of moderate extent. The study recommended strengthening of publicprivate partnership (PPP on the recycling and treatment of wastes.

  10. Waste management fiscal year 1998 progress report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-31

    The Waste Management Program is pleased to issue the Fiscal Year 1998 Progress Report presenting program highlights and major accomplishments of the last year. This year-end update describes the current initiatives in waste management and the progress DOE has made toward their goals and objectives, including the results of the waste management annual performance commitments. One of the most important program efforts continues to be opening the Waste Isolation Pilot Plant (WIPP), located near Carlsbad, New Mexico, for the deep geologic disposal of transuranic waste. A major success was achieved this year by the West Valley Demonstration Project in New York, which in June completed the project`s production phase of high-level waste processing ahead of schedule and under budget. Another significant accomplishment this year was the award of two privatization contracts for major waste management operations, one at Oak ridge for transuranic waste treatment, and one at Hanford for the Tank Waste Remediation System privatization project. DOE is proud of the progress that has been made, and will continue to pursue program activities that allow it to safely and expeditiously dispose of radioactive and hazardous wastes across the complex, while reducing worker, public, and environmental risks.

  11. Federal facilities compliance act waste management

    Energy Technology Data Exchange (ETDEWEB)

    Bowers, J; Gates-Anderson, D; Hollister, R; Painter, S

    1999-07-06

    Site Treatment Plans (STPs) developed through the Federal Facilities Compliance Act pose many technical and administrative challenges. Legacy wastes managed under these plans require Land Disposal Restriction (LDR) compliance through treatment and ultimate disposal. Although capacity has been defined for most of the Department of Energy wastes, many waste streams require further characterization and many need additional treatment and handling beyond LDR criteria to be able to dispose of the waste. At Lawrence Livermore National Laboratory (LLNL), the Hazardous Waste Management Division has developed a comprehensive Legacy Waste Program. The program directs work to manage low level and mixed wastes to ensure compliance with nuclear facility rules and its STP. This paper provides a survey of work conducted on these wastes at LLNL. They include commercial waste treatment and disposal, diverse forms of characterization, inventory maintenance and reporting, on-site treatment, and treatability studies. These activities are conducted in an integrated fashion to meet schedules defined in the STP. The processes managing wastes are dynamic due to required integration of administrative, regulatory, and technical concerns spanning the gamut to insure safe proper disposal.

  12. Radioactive waste management status and prospects in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ik Hwan [Nuclear Environment Technology Institite, Korea Electric Power Corporation, Taejon (Korea, Republic of)

    1999-07-01

    This paper reviews the status of radioactive waste management including management policy and system in the Republic of Korea. Also included are the status and plan of the radioactive waste management projects: construction of a low-level radioactive waste repository, construction of spent fuel interim storage facility, transportation, radioisotope waste management, and public acceptance program. Finally, the status and prospects on radioactive waste management based on the national radioactive waste management program are briefly introduced. (author)

  13. Waste to energy--key element for sustainable waste management.

    Science.gov (United States)

    Brunner, Paul H; Rechberger, Helmut

    2015-03-01

    Human activities inevitably result in wastes. The higher the material turnover, and the more complex and divers the materials produced, the more challenging it is for waste management to reach the goals of "protection of men and environment" and "resource conservation". Waste incineration, introduced originally for volume reduction and hygienic reasons, went through a long and intense development. Together with prevention and recycling measures, waste to energy (WTE) facilities contribute significantly to reaching the goals of waste management. Sophisticated air pollution control (APC) devices ensure that emissions are environmentally safe. Incinerators are crucial and unique for the complete destruction of hazardous organic materials, to reduce risks due to pathogenic microorganisms and viruses, and for concentrating valuable as well as toxic metals in certain fractions. Bottom ash and APC residues have become new sources of secondary metals, hence incineration has become a materials recycling facility, too. WTE plants are supporting decisions about waste and environmental management: They can routinely and cost effectively supply information about chemical waste composition as well as about the ratio of biogenic to fossil carbon in MSW and off-gas. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Exploring Space Management Goals in Institutional Care Facilities in China

    Science.gov (United States)

    Zhang, Jiankun

    2017-01-01

    Space management has been widely examined in commercial facilities, educational facilities, and hospitals but not in China's institutional care facilities. Poor spatial arrangements, such as wasted space, dysfunctionality, and environment mismanagement, are increasing; in turn, the occupancy rate is decreasing due to residential dissatisfaction. To address these problems, this paper's objective is to explore the space management goals (SMGs) in institutional care facilities in China. Systematic literature analysis was adopted to set SMGs' principles, to identify nine theoretical SMGs, and to develop the conceptual model of SMGs for institutional care facilities. A total of 19 intensive interviews were conducted with stakeholders in seven institutional care facilities to collect data for qualitative analysis. The qualitative evidence was analyzed through open coding, axial coding, and selective coding. As a result, six major categories as well as their interrelationships were put forward to visualize the path diagram for exploring SMGs in China's institutional care facilities. Furthermore, seven expected SMGs that were explored from qualitative evidence were confirmed as China's SMGs in institutional care facilities by a validation test. Finally, a gap analysis among theoretical SMGs and China's SMGs provided recommendations for implementing space management in China's institutional care facilities.

  15. Proposed Model For Industrial Waste Management Practices and Its Impact on Organisational Performance

    Directory of Open Access Journals (Sweden)

    Suzy Noviyanti

    2015-03-01

    Full Text Available Due to environment protection issue, waste management becomes one of important factors in maintaining organization sustainability. In developed country, a growing number of companies began to integrate the pro environment practices, such as waste management practices, into their business strategy. In contrast, the implementation of waste management practices by business organizations in developing country, like Indonesia, is still rare. Waste generated by industries is greater than the capacity to manage this volume of waste. This poses a problem that leads to improper disposal of waste and pollution. This study aims to design a research model which investigates the relation of institutional environment including cognitive, regulatory, and normative element; manager environmental attitudes, worker environmental attitudes, environmental policy, strategic waste management practices, and financial performance.

  16. Recycling - Danish Waste Management Strategy

    DEFF Research Database (Denmark)

    Romann, Anne Funch; Thøgersen, John; Husmer, Lis

    The report challanges recycling as the only waste handling strategy. The tonnes of recycled materials should not be the only goal - it is essential to minimize the waste production and focus on eliminating hazardous materials.......The report challanges recycling as the only waste handling strategy. The tonnes of recycled materials should not be the only goal - it is essential to minimize the waste production and focus on eliminating hazardous materials....

  17. Recycling - Danish Waste Management Strategy

    DEFF Research Database (Denmark)

    Romann, Anne Funch; Thøgersen, John; Husmer, Lis

    The report challanges recycling as the only waste handling strategy. The tonnes of recycled materials should not be the only goal - it is essential to minimize the waste production and focus on eliminating hazardous materials.......The report challanges recycling as the only waste handling strategy. The tonnes of recycled materials should not be the only goal - it is essential to minimize the waste production and focus on eliminating hazardous materials....

  18. Radioactive waste management in Austria

    OpenAIRE

    Neubauer Josef

    2004-01-01

    At the Austrian Research Centers Seibersdorf, there are several facilities in stalled for treatment of waste of low and intermediate radioactivity level (radwaste). A separate company within Centers, Nuclear Engineering Seibersdorf, has been formed recently, acting as a centralized facility for treatment, conditioning and storing of such waste within the country. The relevant treatment technology is applied depending on the waste category. In total about 6900 m3 of solid waste of low and inte...

  19. Waste prevention for sustainable resource and waste management

    DEFF Research Database (Denmark)

    Sakai, Shin-Ichi; Yano, Junya; Hirai, Yasuhiro

    2017-01-01

    Although the 2Rs (reduce and reuse) are considered high-priority approaches, there has not been enough quantitative research on effective 2R management. The purpose of this paper is to provide information obtained through the International Workshop in Kyoto, Japan, on 11–13 November 2015, which...... a sustainable society. 3R and resource management policies, including waste prevention, will play a crucial role. Approaches using material/substance flow analyses have become sophisticated enough to describe the fate of resources and/or hazardous substances based on human activity and the environment......, including the final sink. Life-cycle assessment has also been developed to evaluate waste prevention activities. Regarding target products for waste prevention, food loss is one of the waste fractions with the highest priority because its countermeasures have significant upstream and downstream effects...

  20. Annual Report 2011 : Institute for Nuclear Waste Disposal. (KIT Scientific Reports ; 7617)

    OpenAIRE

    Geckeis, H.; Stumpf, T. [Hrsg.

    2012-01-01

    The R&D at the Institute for Nuclear Waste Disposal, INE, (Institut für Nukleare Entsorgung) of the Karlsruhe Institute of Technology (KIT) focuses on (i) long term safety research for nuclear waste disposal, (ii) immobilization of high level radioactive waste (HLW), (iii) separation of minor actinides from HLW and (iv) radiation protection.

  1. Electronic waste management approaches: an overview.

    Science.gov (United States)

    Kiddee, Peeranart; Naidu, Ravi; Wong, Ming H

    2013-05-01

    Electronic waste (e-waste) is one of the fastest-growing pollution problems worldwide given the presence if a variety of toxic substances which can contaminate the environment and threaten human health, if disposal protocols are not meticulously managed. This paper presents an overview of toxic substances present in e-waste, their potential environmental and human health impacts together with management strategies currently being used in certain countries. Several tools including life cycle assessment (LCA), material flow analysis (MFA), multi criteria analysis (MCA) and extended producer responsibility (EPR) have been developed to manage e-wastes especially in developed countries. The key to success in terms of e-waste management is to develop eco-design devices, properly collect e-waste, recover and recycle material by safe methods, dispose of e-waste by suitable techniques, forbid the transfer of used electronic devices to developing countries, and raise awareness of the impact of e-waste. No single tool is adequate but together they can complement each other to solve this issue. A national scheme such as EPR is a good policy in solving the growing e-waste problems. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  2. [Health services waste management: a biosafety issue].

    Science.gov (United States)

    Garcia, Leila Posenato; Zanetti-Ramos, Betina Giehl

    2004-01-01

    The subject of "health services waste" is controversial and widely discussed. Biosafety, the principles of which include safeguarding occupational health, community health, and environmental safety, is directly involved in the issue of medical waste management. There are controversies as to the risks posed by medical waste, as evidenced by diverging opinions among authors: some advocate severe approaches on the basis that medical waste is hazardous, while others contend that the potential for infection from medical waste is nonexistent. The Brazilian National Health Surveillance Agency (ANVISA) has published resolution RDC 33/2003 to standardize medical waste management nationwide. There is an evident need to implement biosafety procedures in this area, including heath care workers' training and provision of information to the general population.

  3. Cleaner production for solid waste management in leather industry ...

    African Journals Online (AJOL)

    Cleaner production for solid waste management in leather industry. ... are generated which include wastewater effluents, solid wastes, and hazardous wastes. ... industries discharge wastes into the environment without any proper treatment.

  4. Healthcare waste generation and its management system: the case ...

    African Journals Online (AJOL)

    Healthcare waste generation and its management system: the case of health ... in the course of activities, the generation of hazardous and non hazardous waste is a ... Segregation of wastes and pre treatment of infectious wastes were not ...

  5. EVALUATION OF BIOMEDICAL WASTE MANAGEMENT PRACTICES IN MULTI-SPECIALITY TERTIARY HOSPITAL

    Directory of Open Access Journals (Sweden)

    Shalini Srivastav

    2010-06-01

    Full Text Available Background: Biomedical Waste (BMW, collection and proper disposal has become a significant concern for both the medical and the general community The scientific “Hospital waste Management “is of vital importance as its improper management poses risks to the health care workers ,waste handlers patients, community in general and largely the environment. Objectives: (i To assess current practices of Bio-medical Waste management including generation, collection, transportation storage, treatment and disposal technologies in tertiary health care center. (ii To assess health andsafetypracticesfor the health care personnel involved in Bio-Medical waste Management. Materials and Methods: Waste management practices in tertiary care-centre was studied during May 2010 June 2010. The information/data regarding Bio-Medical Waste Management practices and safety was collected by way of semi structured interview, proforma being the one used for WASTE AUDITING QUESTIONNAIRE. The information collected was verified by personal observations of waste management practices in each ward of hospital. Results : SRMS-IMS generates 1. 25Kgs waste per bed per day and maximum waste is generated in wards. The institute has got separate color coded bins in each ward for collection of waste but segregation practices needs to be more refined. The safety measures taken by health care workers was not satisfactory it was not due to unavailability of Personal protective measures but because of un-awareness of health hazards which may occur due to improper waste management practices. Thus it is concluded that there should be strict implementation of a waste management policy set up in the institute, training and motivation must be given paramount importance to meet the current needs and standard of bio-medical waste management.

  6. 76 FR 63252 - Hazardous and Solid Waste Management System: Identification and Listing of Special Wastes...

    Science.gov (United States)

    2011-10-12

    ...: Hazardous and Solid Waste Management System: Identification and Listing of Special Wastes; Disposal of Coal... Hazardous and Solid Waste Management System: Identification and Listing of Special Wastes; Disposal of Coal... Hazardous and Solid Waste Management System: Identification and Listing of Special......

  7. Mixed Waste Management Options: 1995 Update. National Low-Level Waste Management Program

    Energy Technology Data Exchange (ETDEWEB)

    Kirner, N.; Kelly, J.; Faison, G.; Johnson, D. [Foster Wheeler Environmental Corp. (United States)

    1995-05-01

    In the original mixed Waste Management Options (DOE/LLW-134) issued in December 1991, the question was posed, ``Can mixed waste be managed out of existence?`` That study found that most, but not all, of the Nation`s mixed waste can theoretically be managed out of existence. Four years later, the Nation is still faced with a lack of disposal options for commercially generated mixed waste. However, since publication of the original Mixed Waste Management Options report in 1991, limited disposal capacity and new technologies to treat mixed waste have become available. A more detailed estimate of the Nation`s mixed waste also became available when the US Environmental Protection Agency (EPA) and the US Nuclear Regulatory Commission (NRC) published their comprehensive assessment, titled National Profile on Commercially Generated Low-Level Radioactive Mixed Waste (National Profile). These advancements in our knowledge about mixed waste inventories and generation, coupled with greater treatment and disposal options, lead to a more applied question posed for this updated report: ``Which mixed waste has no treatment option?`` Beyond estimating the volume of mixed waste requiring jointly regulated disposal, this report also provides a general background on the Atomic Energy Act (AEA) and the Resource Conservation and Recovery Act (RCRA). It also presents a methodical approach for generators to use when deciding how to manage their mixed waste. The volume of mixed waste that may require land disposal in a jointly regulated facility each year was estimated through the application of this methodology.

  8. Biomedical waste management: Incineration vs. environmental safety

    Directory of Open Access Journals (Sweden)

    Gautam V

    2010-01-01

    Full Text Available Public concerns about incinerator emissions, as well as the creation of federal regulations for medical waste incinerators, are causing many health care facilities to rethink their choices in medical waste treatment. As stated by Health Care Without Harm, non-incineration treatment technologies are a growing and developing field. Most medical waste is incinerated, a practice that is short-lived because of environmental considerations. The burning of solid and regulated medical waste generated by health care creates many problems. Medical waste incinerators emit toxic air pollutants and toxic ash residues that are the major source of dioxins in the environment. International Agency for Research on Cancer, an arm of WHO, acknowledged dioxins cancer causing potential and classified it as human carcinogen. Development of waste management policies, careful waste segregation and training programs, as well as attention to materials purchased, are essential in minimizing the environmental and health impacts of any technology.

  9. Hazardous waste management in the Pacific basin

    Energy Technology Data Exchange (ETDEWEB)

    Cirillo, R.R.; Chiu, S.; Chun, K.C.; Conzelmann, G. [Argonne National Lab., IL (United States); Carpenter, R.A.; Indriyanto, S.H. [East-West Center, Honolulu, HI (United States)

    1994-11-01

    Hazardous waste control activities in Asia and the Pacific have been reviewed. The review includes China (mainland, Hong Kong, and Taiwan), Indonesia, Korea, Malaysia, Papua New Guinea, the Philippines, Singapore, and Thailand. It covers the sources of hazardous waste, the government structure for dealing with hazardous waste, and current hazardous waste control activities in each country. In addition, the hazardous waste program activities of US government agencies, US private-sector organizations, and international organizations are reviewed. The objective of these reviews is to provide a comprehensive picture of the current hazardous waste problems and the waste management approaches being used to address them so that new program activities can be designed more efficiently.

  10. Perceived strategic implication of solid waste recycling across Malaysian higher education institutions

    Directory of Open Access Journals (Sweden)

    Baharum Mohamad Rizal

    2016-01-01

    Full Text Available Sustainability of higher education institution campuses is the main concern in the institution sector worldwide. In achieving sustainability, strategic management such as planning, implementation and strategic implication of recycling initiatives became an essential criterion. This paper aimed to investigate the strategic implication achieved between higher education institution groupings. Questionnaire survey was conducted and completed by 129 institutions in Malaysia. The significance of strategic implication variables was identified through ranking analysis. An ANOVA analysis was conducted to identify the variation in effectiveness level of the overall strategic impacts across higher education institution groups. The findings revealed that the significant differences in effectiveness level of overall strategic impact occurred between the perception of private university and college. The implication of the results was discussed with regard to strategic impacts of solid waste recycling which is useful in the strategic planning of institutions’ recycling initiatives.

  11. Environmental aspects of commercial radioactive waste management

    Energy Technology Data Exchange (ETDEWEB)

    1979-05-01

    Environmental effects (including accidents) associated with facility construction, operation, decommissioning, and transportation in the management of commercially generated radioactive waste were analyzed for plants and systems assuming a light water power reactor scenario that produces about 10,000 GWe-yr through the year 2050. The following alternative fuel cycle modes or cases that generate post-fission wastes requiring management were analyzed: a once-through option, a fuel reprocessing option for uranium and plutonium recycle, and a fuel reprocessing option for uranium-only recycle. Volume 1 comprises five chapters: introduction; summary of findings; approach to assessment of environmental effects from radioactive waste management; environmental effects related to radioactive management in a once-through fuel cycle; and environmental effects of radioactive waste management associated with an LWR fuel reprocessing plant. (LK)

  12. Radioactive waste management in member states

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    The objective of this part of the report is to present a brief overview of key issues in radioactive waste management on a nation-by-nation basis. Member State representatives were asked to address nine questions in no more than three or four pages. Hence, by design, the presentations are not comprehensive. Even so, the information set out here should provide the reader valuable insights into the nature of problems associated with radioactive waste management. The materials may also be used as a ready reference for specific information about radioactive waste management in individual Member States as well as for comparative purposes. (author).

  13. Mine Waste Disposal and Managements

    Energy Technology Data Exchange (ETDEWEB)

    Cheong, Young-Wook; Min, Jeong-Sik; Kwon, Kwang-Soo [Korea Institute of Geology Mining and Materials, Taejon (KR)] (and others)

    1999-12-01

    This research project deals with: Analysis and characterization of mine waste piles or tailings impoundment abandoned in mining areas; Survey of mining environmental pollution from mine waste impounds; Modelling of pollutants in groundwater around tailings impoundment; Demonstration of acid rock drainage from coal mine waste rock piles and experiment of seeding on waste rock surface; Development of a liner using tailings. Most of mine wastes are deposited on natural ground without artificial liners and capping for preventing contamination of groundwater around mine waste piles or containments. In case of some mine waste piles or containments, pollutants have been released to the environment, and several constituents in drainage exceed the limit of discharge from landfill site. Metals found in drainage exist in exchangeable fraction in waste rock and tailings. This means that if when it rains to mine waste containments, mine wastes can be pollutant to the environment by release of acidity and metals. As a result of simulation for hydraulic potentials and groundwater flow paths within the tailings, the simulated travel paths correlated well with the observed contaminant distribution. The plum disperse, both longitudinal and transverse dimensions, with time. Therefore liner system is a very important component in tailings containment system. As experimental results of liner development using tailings, tailings mixed with some portion of resin or cement may be used for liner because tailings with some additives have a very low hydraulic conductivity. (author). 39 refs.

  14. Hanford Site Waste Management Units Report

    Energy Technology Data Exchange (ETDEWEB)

    Shearer, Jeffrey P. [Hanford Site (HNF), Richland, WA (United States)

    2014-02-19

    The Hanford Site Waste Management Units Report (HSWMUR) has been created to meet the requirements of the Tri-Party Agreement (TPA) Action Plan, Section 3.5, which states: “The Hanford Site Waste Management Units Report shall be generated, in a format agreed upon by the Parties, as a calendar year report and issued annually by the DOE by the end of February of each year, and posted electronically for regulator and public access. This report shall reflect all changes made in waste management unit status during the previous year.” This February 2013 version of the HSWMUR contains a comprehensive inventory of the 3438 sites and 569 subsites in the Waste Information Data System (WIDS). The information for each site contains a description of each unit and the waste it contains, where applicable. The WIDS database provides additional information concerning the sites contained in this report and is maintained with daily changes to these sites.

  15. Hanford Site Waste Management Units Report

    Energy Technology Data Exchange (ETDEWEB)

    Shearer, Jeffrey P. [Hanford Site (HNF), Richland, WA (United States)

    2012-02-29

    The Hanford Site Waste Management Units Report (HSWMUR) has been created to meet the requirements of the Tri-Party Agreement (TPA) Action Plan, Section 3.5, which states: “The Hanford Site Waste Management Units Report shall be generated, in a format agreed upon by the Parties, as a calendar year report and issued annually by the DOE by the end of February of each year, and posted electronically for regulator and public access. This report shall reflect all changes made in waste management unit status during the previous year.” This February 2012 version of the HSWMUR contains a comprehensive inventory of the 3389 sites and 540 subsites in the Waste Information Data System (WIDS). The information for each site contains a description of each unit and the waste it contains, where applicable. The WIDS database provides additional information concerning the sites contained in this report and is maintained with daily changes to these sites.

  16. Hanford Site Waste Management Units Report

    Energy Technology Data Exchange (ETDEWEB)

    Shearer, Jeffrey P. [Hanford Site (HNF), Richland, WA (United States)

    2013-02-13

    The Hanford Site Waste Management Units Report (HSWMUR) has been created to meet the requirements of the Tri-Party Agreement (TPA) Action Plan, Section 3.5, which states: “The Hanford Site Waste Management Units Report shall be generated, in a format agreed upon by the Parties, as a calendar year report and issued annually by the DOE by the end of February of each year, and posted electronically for regulator and public access. This report shall reflect all changes made in waste management unit status during the previous year.” This February 2013 version of the HSWMUR contains a comprehensive inventory of the 3427 sites and 564 subsites in the Waste Information Data System (WIDS). The information for each site contains a description of each unit and the waste it contains, where applicable. The WIDS database provides additional information concerning the sites contained in this report and is maintained with daily changes to these sites.

  17. LCA Modeling of Waste Management Scenarios

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund; Simion, F.; Tonini, Davide

    2011-01-01

    Lifecycle assessment (LCA) modeling provides a quantitative statement about resource issues and environmental issues in waste management useful in evaluating alternative management systems and in mapping where major loads and savings take place within existing systems. Chapter 3.1 describes...... the concepts behind LCA modeling and Chapter 3.2 gives an overview of existing models and shows examples of their application. A recent comprehensive review of publicly available LCA studies (WRAP, 2006) concluded that, on a material basis, LCA modeling in general confirms the validity of the waste hierarchy...... and exchange with the energy systems, a comparison of results was hampered on a system level. In addition, differences in waste composition may affect the LCA results. This chapter provides results of LCA modeling of 40 waste management scenarios handling the same municipal waste (MSW) and using different...

  18. Analysis and Measures to Improve Waste Management in Schools

    Directory of Open Access Journals (Sweden)

    Elena Cristina Rada

    2016-08-01

    Full Text Available Assessing waste production in schools highlights the contribution of school children and school staff to the total amount of waste generated in a region, as well as any poor practices of recycling (the so-called separate collection of waste in schools by the students, which could be improved through educational activities. Educating young people regarding the importance of environmental issues is essential, since instilling the right behavior in school children is also beneficial to the behavior of their families. The way waste management was carried out in different schools in Trento (northern Italy was analyzed: a primary school, a secondary school, and three high schools were taken as cases of study. The possible influence of the age of the students and of the various activities carried out within the schools on the different behaviors in separating waste was also evaluated. The results showed that the production of waste did not only depend on the size of the institutes and on the number of occupants, but, especially, on the type of activities carried out in addition to the ordinary classes and on the habits of both pupils and staff. In the light of the results obtained, some corrective measures were proposed to schools, aimed at increasing the awareness of the importance of the right behavior in waste management by students and the application of good practices of recycling.

  19. Managing America`s solid waste

    Energy Technology Data Exchange (ETDEWEB)

    1998-03-02

    This report presents an historical overview of the federal role in municipal solid waste management from 1965 to approximately 1995. Attention is focuses on the federal role in safeguarding public health, protecting the environment, and wisely using material and energy resources. It is hoped that this report will provide important background for future municipal solid waste research and development initiatives.

  20. Municipal Solid Waste - Sustainable Materials Management

    Science.gov (United States)

    The MSW DST was initially developed in the 1990s and has evolved over the years to better account for changes in waste management practices, waste composition, and improvements in decision support tool design and functionality. The most recent version of the tool is publicly ava...

  1. Alternative approaches for better municipal solid waste management in Mumbai, India.

    Science.gov (United States)

    Rathi, Sarika

    2006-01-01

    Waste is an unavoidable by product of human activities. Economic development, urbanization and improving living standards in cities, have led to an increase in the quantity and complexity of generated waste. Rapid growth of population and industrialization degrades the urban environment and places serious stress on natural resources, which undermines equitable and sustainable development. Inefficient management and disposal of solid waste is an obvious cause of degradation of the environment in most cities of the developing world. Municipal corporations of the developing countries are not able to handle increasing quantities of waste, which results in uncollected waste on roads and in other public places. There is a need to work towards a sustainable waste management system, which requires environmental, institutional, financial, economic and social sustainability. This study explores alternative approaches to municipal solid waste (MSW) management and estimates the cost of waste management in Mumbai, India. Two alternatives considered in the paper are community participation and public private partnership in waste management. Data for the present study are from various non-governmental organizations (NGOs) and from the private sector involved in waste management in Mumbai. Mathematical models are used to estimate the cost per ton of waste management for both of the alternatives, which are compared with the cost of waste management by Municipal Corporation of Greater Mumbai (MCGM). It is found that the cost per ton of waste management is Rs. 1518 (35 US dollars) with community participation; Rs. 1797 (41 US dollars) with public private partnership (PPP); and Rs. 1908 (44 US dollars) when only MCGM handles the waste. Hence, community participation in waste management is the least cost option and there is a strong case for comprehensively involving community participation in waste management.

  2. A federalist strategy for nuclear waste management.

    Science.gov (United States)

    Lee, K N

    1980-05-16

    The federal government plans to rely on a policy of "consultation and concurrence" with state governments in developing nuclear waste repositories. The weaknesses of the concurrence approach are analyzed, and an alternative institutional framework for locating a waste repository is proposed: a siting jury that provides representation for state and local interests, while maintaining a high level of technical review. The proposal could be tested in the siting of away-from-reactor storage facilities for spent nuclear fuel.

  3. Radioactive waste management in the former USSR

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, D.J.

    1992-06-01

    Radioactive waste materials--and the methods being used to treat, process, store, transport, and dispose of them--have come under increased scrutiny over last decade, both nationally and internationally. Nuclear waste practices in the former Soviet Union, arguably the world's largest nuclear waste management system, are of obvious interest and may affect practices in other countries. In addition, poor waste management practices are causing increasing technical, political, and economic problems for the Soviet Union, and this will undoubtedly influence future strategies. this report was prepared as part of a continuing effort to gain a better understanding of the radioactive waste management program in the former Soviet Union. the scope of this study covers all publicly known radioactive waste management activities in the former Soviet Union as of April 1992, and is based on a review of a wide variety of literature sources, including documents, meeting presentations, and data base searches of worldwide press releases. The study focuses primarily on nuclear waste management activities in the former Soviet Union, but relevant background information on nuclear reactors is also provided in appendixes.

  4. Integrating Total Quality Management (TQM) and hazardous waste management

    Energy Technology Data Exchange (ETDEWEB)

    Kirk, Nancy [Colorado State Univ., Fort Collins, CO (United States)

    1993-11-01

    The Resource Conservation and Recovery Act (RCRA) of 1976 and its subsequent amendments have had a dramatic impact on hazardous waste management for business and industry. The complexity of this law and the penalties for noncompliance have made it one of the most challenging regulatory programs undertaken by the Environmental Protection Agency (EPA). The fundamentals of RCRA include ``cradle to grave`` management of hazardous waste, covering generators, transporters, and treatment, storage, and disposal facilities. The regulations also address extensive definitions and listing/identification mechanisms for hazardous waste along with a tracking system. Treatment is favored over disposal and emphasis is on ``front-end`` treatment such as waste minimization and pollution prevention. A study of large corporations such as Xerox, 3M, and Dow Chemical, as well as the public sector, has shown that well known and successful hazardous waste management programs emphasize pollution prevention and employment of techniques such as proactive environmental management, environmentally conscious manufacturing, and source reduction. Nearly all successful hazardous waste programs include some aspects of Total Quality Management, which begins with a strong commitment from top management. Hazardous waste management at the Rocky Flats Plant is further complicated by the dominance of ``mixed waste`` at the facility. The mixed waste stems from the original mission of the facility, which was production of nuclear weapons components for the Department of Energy (DOE). A Quality Assurance Program based on the criterion in DOE Order 5700.6C has been implemented at Rocky Flats. All of the elements of the Quality Assurance Program play a role in hazardous waste management. Perhaps one of the biggest waste management problems facing the Rocky Flats Plant is cleaning up contamination from a forty year mission which focused on production of nuclear weapon components.

  5. Challenges of solid waste management and environmental ...

    African Journals Online (AJOL)

    Challenges of solid waste management and environmental sanitation in Ibadan North Local government, Oyo State, ... Open Access DOWNLOAD FULL TEXT ... Data were collected using In-Depth Interviews and Key Informant Interviews.

  6. Fossil energy waste management. Technology status report

    Energy Technology Data Exchange (ETDEWEB)

    Bossart, S.J.; Newman, D.A.

    1995-02-01

    This report describes the current status and recent accomplishments of the Fossil Energy Waste Management (FE WM) projects sponsored by the Morgantown Energy Technology Center (METC) of the US Department of Energy (DOE). The primary goal of the Waste Management Program is to identify and develop optimal strategies to manage solid by-products from advanced coal technologies for the purpose of ensuring the competitiveness of advanced coal technologies as a future energy source. The projects in the Fossil Energy Waste Management Program are divided into three types of activities: Waste Characterization, Disposal Technologies, and Utilization Technologies. This technology status report includes a discussion on barriers to increased use of coal by-products. Also, the major technical and nontechnical challenges currently being addressed by the FE WM program are discussed. A bibliography of 96 citations and a list of project contacts is included if the reader is interested in obtaining additional information about the FE WM program.

  7. Integrated study for automobile wastes management and ...

    African Journals Online (AJOL)

    Administrator

    poor waste management is causing serious ecological and public health concerns. Analytical ... searching for mechanic specialists, to prevent motorists from falling .... long term exposure to toxicity. ...... Plant extracts arsenic from polluted soil;.

  8. Public policy issues in nuclear waste management

    Energy Technology Data Exchange (ETDEWEB)

    Nealey, S.M.; Radford, L.M.

    1978-10-01

    This document aims to raise issues and to analyze them, not resolve them. The issues were: temporal equity, geographic and socioeconomic equity, implementation of a nuclear waste management system, and public involvement.

  9. Public policy issues in nuclear waste management

    Energy Technology Data Exchange (ETDEWEB)

    Nealey, S.M.; Radford, L.M.

    1978-10-01

    This document aims to raise issues and to analyze them, not resolve them. The issues were: temporal equity, geographic and socioeconomic equity, implementation of a nuclear waste management system, and public involvement.

  10. Greenhouse gas accounting and waste management

    DEFF Research Database (Denmark)

    Gentil, Emmanuel; Christensen, Thomas Højlund; Aoustin, E.

    2009-01-01

    for reporting basic technology-related data regarding GHG issues including a clear distinction between direct emissions from waste management technologies, indirect upstream (use of energy and materials) and indirect downstream (production of energy, delivery of secondary materials) activities.......Accounting of emissions of greenhouse gas (GHG) is a major focus within waste management. This paper analyses and compares the four main types of GHG accounting in waste management including their special features and approaches: the national accounting, with reference to the Intergovernmental...... Panel on Climate Change (IPCC), the corporate level, as part of the annual reporting on environmental issues and social responsibility, life-cycle assessment (LCA), as an environmental basis for assessing waste management systems and technologies, and finally, the carbon trading methodology, and more...

  11. MANAGEMENT OF RADIOACTIVE WASTES IN CHINA

    Institute of Scientific and Technical Information of China (English)

    潘自强

    1994-01-01

    The policy and principles on management of radioactive wastes are stipulated.Cement solidification and bituminization unit has come into trial run.Solid radioactive waste is stored in tentative storage vault built in each of nuclear facilities.Seventeen storages associated with applications of nuclear technology and radioisotopes have been built for provinces.Disposal of low and intermediate level radioactive wastes pursues the policy of “regional disposal”.Four repositories have been planned to be built in northwest.southwest,south and east China respectively.A program for treatment and disposal of high level radioactive waste has been made.

  12. Mixed Waste Focus Area program management plan

    Energy Technology Data Exchange (ETDEWEB)

    Beitel, G.A.

    1996-10-01

    This plan describes the program management principles and functions to be implemented in the Mixed Waste Focus Area (MWFA). The mission of the MWFA is to provide acceptable technologies that enable implementation of mixed waste treatment systems developed in partnership with end-users, stakeholders, tribal governments and regulators. The MWFA will develop, demonstrate and deliver implementable technologies for treatment of mixed waste within the DOE Complex. Treatment refers to all post waste-generation activities including sampling and analysis, characterization, storage, processing, packaging, transportation and disposal.

  13. Sustainable waste management through end-of-waste criteria development.

    Science.gov (United States)

    Zorpas, Antonis A

    2016-04-01

    The Waste Framework Directive 2000/98 (WFD) contains specific requirements to define end-of-waste criteria (EWC). The main goal of EWC is to remove and eliminate the administrative loads of waste legislation for safe and high-quality waste materials, thereby facilitating and assisting recycling. The target is to produce effective with high quality of recyclables materials, promoting product standardization and quality and safety assurance, and improving harmonization and legal certainty in the recyclable material markets. At the same time, those objectives aim to develop a plan in order to improve the development and wider use of environmental technologies, which reduce pressure on environment and at the same time address the three dimensions of the Lisbon strategy: growth, jobs and environment. This paper presents the importance of EWC, and the approach of setting EWC as EWC affect several management systems as well as sustainable and clean technologies.

  14. Office of Civilian Radioactive Waste Management annual report to Congress

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1989-12-01

    This sixth Annual Report to Congress by the Office of Civilian Radioactive Waste Management (OCRWM) describes activities and expenditures of the Office during fiscal year 1988. An epilogue chapter reports significant events from the end of the fiscal year on September 30, 1988 through March 1989. The Nuclear Waste Policy Amendments Act (NWPA) of 1987 made significant changes to the NWPA relating to repository siting and monitored retrievable storage and added new provisions for the establishment of several institutional entities with which OCRWM will interact. Therefore, a dominant theme throughout this report is the implementation of the policy focus and specific provisions of the Amendments Act. 50 refs., 8 figs., 4 tabs.

  15. Alternatives for Future Waste Management in Denmark

    DEFF Research Database (Denmark)

    Møller Andersen, Frits; Cimpan, Ciprian; Dall, Ole

    The TOPWASTE project has addressed the challenges of planning robust solutions for future waste management. The purpose was to identify economic and environmentally optimal solutions ‐ taking into account different scenarios for the development of the surrounding systems, such as the energy system....... During the project, four decision support tools were developed:1. Frida ‐ The EPA's tool for forecasting future waste generation 2. OptiWaste ‐ a new tool for economic optimisation of investments and operation of the combined waste and energy system3. KISS ‐ a new lifecycle based model with focus...... on comparison of greenhouse gas emissions associated with different waste management alternatives 4. A new tool for techno‐economic modelling of central sorting plants. The project has furthermore contributed with method development on evaluation of critical resources as well as analyses of economic...

  16. Knowledge Management in Academic Institutions

    Science.gov (United States)

    Adhikari, Dev Raj

    2010-01-01

    Purpose: The purpose of this paper is to present a concept of knowledge among the campus chiefs and other university leaders to make them aware of how important knowledge management (KM) is to achieve quality education criteria. Design/methodology/approach: The approach of the article is basically conceptual and descriptive. The article was…

  17. Greenhouse gas accounting and waste management.

    Science.gov (United States)

    Gentil, Emmanuel; Christensen, Thomas H; Aoustin, Emmanuelle

    2009-11-01

    Accounting of emissions of greenhouse gas (GHG) is a major focus within waste management. This paper analyses and compares the four main types of GHG accounting in waste management including their special features and approaches: the national accounting, with reference to the Intergovernmental Panel on Climate Change (IPCC), the corporate level, as part of the annual reporting on environmental issues and social responsibility, life-cycle assessment (LCA), as an environmental basis for assessing waste management systems and technologies, and finally, the carbon trading methodology, and more specifically, the clean development mechanism (CDM) methodology, introduced to support cost-effective reduction in GHG emissions. These types of GHG accounting, in principle, have a common starting point in technical data on GHG emissions from specific waste technologies and plants, but the limited availability of data and, moreover, the different scopes of the accounting lead to many ways of quantifying emissions and producing the accounts. The importance of transparency in GHG accounting is emphasised regarding waste type, waste composition, time period considered, GHGs included, global warming potential (GWP) assigned to the GHGs, counting of biogenic carbon dioxide, choice of system boundaries, interactions with the energy system, and generic emissions factors. In order to enhance transparency and consistency, a format called the upstream-operating-downstream framework (UOD) is proposed for reporting basic technology-related data regarding GHG issues including a clear distinction between direct emissions from waste management technologies, indirect upstream (use of energy and materials) and indirect downstream (production of energy, delivery of secondary materials) activities.

  18. Urban waste management and the mobile challenge.

    Science.gov (United States)

    Mavropoulos, Antonis; Tsakona, Maria; Anthouli, Aida

    2015-04-01

    Digital evolution and mobile developments are carving a new era that affects human behaviour and global governance. Interconnectivity and flow of information through various types of modern means create new opportunities for cooperation and ways to work. Waste management could not stay unaffected by these changes. New potentials are arising for the sector, offering a novel field for innovation, changing the way waste practices are applied. In this framework, mobile products and apps can become valuable tools for authorities, companies, civilians and other stakeholders, integrating these technologies in the battle for environmental protection, recycling, etc. This article examines the unexplored challenges of mobile apps to deliver sustainable waste management with emphasis on recycling and waste prevention performance, especially for emerging developing countries. It presents the opportunities that are involved in using mobile apps to improve both the systemic performance of a specific waste management system and the individual behaviour of the users. Furthermore, the article reviews the most important relevant literature and summarises the key findings of the recent research on mobile apps and human behaviour. Useful conclusions are drawn for both the content and the format of the mobile apps required for recycling and waste prevention. Finally, the article presents the most characteristic mobile apps that are already in place in the waste management sector. © The Author(s) 2015.

  19. 76 FR 76677 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste; Proposed Exclusion

    Science.gov (United States)

    2011-12-08

    ....: EPA-R08-RCRA-2011-0823; FRL-9502-4] Hazardous Waste Management System; Identification and Listing of... industrial solid waste. If finalized, the EPA would conclude that ConocoPhillips' petitioned waste is... subject to Federal RCRA delisting, to manage industrial waste. II. Background A. What is a listed waste...

  20. Water Institutions and Management in Cape Verde

    Directory of Open Access Journals (Sweden)

    Miguel Suarez Bosa

    2015-05-01

    Full Text Available The water-management model used in Cape Verde for irrigation water is a singular one involving both public and private institutions. The institutional framework adopted since independence (1975 includes influences of both Portuguese colonial occupation and African culture. Water is a common-pool resource, which can take the form of communal, private or state property, or not be subject to any form of ownership. Thus, this case study enables us to compare theories about managing. From a neo-liberal point of view, the common administration of resources of this kind is inefficient, but for one school of the institutional theory, solutions can come “from within”; in other words, from user groups themselves, who can co-operate, once they have defined commitments. Research based on surveys and interviews with private sector administrators leads to the conclusion that user association management is successful, whereas, individual management can lead to squandering.

  1. Process Management Practices In Healthcare Institutions

    Directory of Open Access Journals (Sweden)

    Şükrü Kılıç

    2015-09-01

    Full Text Available Healthcare institutions differ from other service businesses by their “matrix organizational structure” and “error-free output” requirement. However, the processes stay the same for all organizational activities at different levels. One of the post-modern management approach is to focus on basis of necessary processes and fundamental organizational changes. This case study aims to initially explain the characteristics of healthcare institutions and the basic conceptual properties of process and process management. Then the effect of the “management throughprocesses approach” over organization will be discussed. Finally; process management at healthcare institutions, scope of health care and examples of the other post-modern approaches will be examined with their outputs

  2. Adopting SCRUM Agile Project Management for Managing Academic Institutions

    Directory of Open Access Journals (Sweden)

    Abdullah Basahel

    2015-01-01

    Full Text Available Managing academic institutions can be challenging and different than managing other organizations. This is because the staffs are highly qualified and may even be at the same and sometimes even higher academic level than their managers. An autocratic style of leadership may lead to tensions and be problematic for the organization. Therefore, a more democratic approach is required. SCRUM is an agile project management method, mainly used in IT domain. SCRUM teams have no manager and rely on the team to control its members. This paper will attempt to illustrate, how the SCRUM methodology can be used to manage an academic institution.

  3. Remote waste handling and feed preparation for Mixed Waste Management

    Energy Technology Data Exchange (ETDEWEB)

    Couture, S.A.; Merrill, R.D. [Lawrence Livermore National Lab., CA (United States); Densley, P.J. [Science Applications International Corp., (United States)

    1995-05-01

    The Mixed Waste Management Facility (MWMF) at the Lawrence Livermore National Laboratory (LLNL) will serve as a national testbed to demonstrate mature mixed waste handling and treatment technologies in a complete front-end to back-end --facility (1). Remote operations, modular processing units and telerobotics for initial waste characterization, sorting and feed preparation have been demonstrated at the bench scale and have been selected for demonstration in MWMF. The goal of the Feed Preparation design team was to design and deploy a robust system that meets the initial waste preparation flexibility and productivity needs while providing a smooth upgrade path to incorporate technology advances as they occur. The selection of telerobotics for remote handling in MWMF was made based on a number of factors -- personnel protection, waste generation, maturity, cost, flexibility and extendibility. Modular processing units were selected to enable processing flexibility and facilitate reconfiguration as new treatment processes or waste streams are brought on line for demonstration. Modularity will be achieved through standard interfaces for mechanical attachment as well as process utilities, feeds and effluents. This will facilitate reconfiguration of contaminated systems without drilling, cutting or welding of contaminated materials and with a minimum of operator contact. Modular interfaces also provide a standard connection and disconnection method that can be engineered to allow convenient remote operation.

  4. Radioactive waste management in Austria

    Directory of Open Access Journals (Sweden)

    Neubauer Josef

    2004-01-01

    Full Text Available At the Austrian Research Centers Seibersdorf, there are several facilities in stalled for treatment of waste of low and intermediate radioactivity level (radwaste. A separate company within Centers, Nuclear Engineering Seibersdorf, has been formed recently, acting as a centralized facility for treatment, conditioning and storing of such waste within the country. The relevant treatment technology is applied depending on the waste category. In total about 6900 m3 of solid waste of low and intermediate radioactivity level originating from Austria was treated in the period between 1976 and 2002. Presently, there exists no final repository for radwaste in Austria. A study is under way to identify the structure for a long term storage facility.

  5. Mine waste disposal and managements

    Energy Technology Data Exchange (ETDEWEB)

    Cheong, Young Wook; Min, Jeong Sik; Kwon, Kwang Soo; Kim, Ok Hwan; Kim, In Kee; Song, Won Kyong; Lee, Hyun Joo [Korea Institute of Geology Mining and Materials, Taejon (Korea)

    1998-12-01

    Acid Rock Drainage (ARD) is the product formed by the atmospheric oxidation of the relatively common pyrite and pyrrhotite. Waste rock dumps and tailings containing sulfide mineral have been reported at toxic materials producing ARD. Mining in sulphide bearing rock is one of activity which may lead to generation and release of ARD. ARD has had some major detrimental affects on mining areas. The purpose of this study was carried out to develop disposal method for preventing contamination of water and soil environment by waste rocks dump and tailings, which could discharge the acid drainage with high level of metals. Scope of this study was as following: environmental impacts by mine wastes, geochemical characteristics such as metal speciation, acid potential and paste pH of mine wastes, interpretation of occurrence of ARD underneath tailings impoundment, analysis of slope stability of tailings dam etc. The following procedures were used as part of ARD evaluation and prediction to determine the nature and quantities of soluble constituents that may be washed from mine wastes under natural precipitation: analysis of water and mine wastes, Acid-Base accounting, sequential extraction technique and measurement of lime requirement etc. In addition, computer modelling was applied for interpretation of slope stability od tailings dam. (author). 44 refs., 33 tabs., 86 figs.

  6. 1993 baseline solid waste management system description

    Energy Technology Data Exchange (ETDEWEB)

    Armacost, L.L.; Fowler, R.A.; Konynenbelt, H.S.

    1994-02-01

    Pacific Northwest Laboratory has prepared this report under the direction of Westinghouse Hanford Company. The report provides an integrated description of the system planned for managing Hanford`s solid low-level waste, low-level mixed waste, transuranic waste, and transuranic mixed waste. The primary purpose of this document is to illustrate a collective view of the key functions planned at the Hanford Site to handle existing waste inventories, as well as solid wastes that will be generated in the future. By viewing this system as a whole rather than as individual projects, key facility interactions and requirements are identified and a better understanding of the overall system may be gained. The system is described so as to form a basis for modeling the system at various levels of detail. Model results provide insight into issues such as facility capacity requirements, alternative system operating strategies, and impacts of system changes (ie., startup dates). This description of the planned Hanford solid waste processing system: defines a baseline system configuration; identifies the entering waste streams to be managed within the system; identifies basic system functions and waste flows; and highlights system constraints. This system description will evolve and be revised as issues are resolved, planning decisions are made, additional data are collected, and assumptions are tested and changed. Out of necessity, this document will also be revised and updated so that a documented system description, which reflects current system planning, is always available for use by engineers and managers. It does not provide any results generated from the many alternatives that will be modeled in the course of analyzing solid waste disposal options; such results will be provided in separate documents.

  7. Nuclear waste management. Quarterly progress report, January-March 1980

    Energy Technology Data Exchange (ETDEWEB)

    Platt, A.M.; Powell, J.A. (comps.)

    1980-06-01

    Reported are: high-level waste immobilization, alternative waste forms, nuclear waste materials characterization, TRU waste immobilization, TRU waste decontamination, krypton solidification, thermal outgassing, iodine-129 fixation, unsaturated zone transport, well-logging instrumentation development, mobile organic complexes of fission products, waste management system and safety studies, assessment of effectiveness of geologic isolation systems, waste/rock interactions, engineered barriers, criteria for defining waste isolation, and spent fuel and pool component integrity. (DLC)

  8. Energy aspects of solid waste management: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    1990-01-01

    The Eighteenth Annual Illinois Energy Conference entitled Energy Aspects of Solid Waste Management'' was held in Chicago, Illinois on October 29--30, 1990. The conference program was developed by a planning committee that drew upon Illinois energy and environmental specialists from the major sectors including energy industries, environmental organizations, research universities, utility companies, federal, state and local government agencies, and public interest groups. Within this framework, the committee identified a number of key topic areas surrounding solid waste management in Illinois which were the focus of the conference. These issues included: review of the main components of the solid waste cycle in the Midwest and what the relative impact of waste reduction, recycling, incineration and land disposal might be on Illinois' and the Midwest's solid waste management program. Investigation of special programs in the Midwest dealing with sewage sludge, combustion residuals and medical/infectious wastes. Review of the status of existing landfills in Illinois and the Midwest and an examination of the current plans for siting of new land disposal systems. Review of the status of incinerators and waste-to-energy systems in Illinois and the Midwest, as well as an update on activities to maximize methane production from landfills in the Midwest.

  9. Energy aspects of solid waste management: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    1990-12-31

    The Eighteenth Annual Illinois Energy Conference entitled ``Energy Aspects of Solid Waste Management`` was held in Chicago, Illinois on October 29--30, 1990. The conference program was developed by a planning committee that drew upon Illinois energy and environmental specialists from the major sectors including energy industries, environmental organizations, research universities, utility companies, federal, state and local government agencies, and public interest groups. Within this framework, the committee identified a number of key topic areas surrounding solid waste management in Illinois which were the focus of the conference. These issues included: review of the main components of the solid waste cycle in the Midwest and what the relative impact of waste reduction, recycling, incineration and land disposal might be on Illinois` and the Midwest`s solid waste management program. Investigation of special programs in the Midwest dealing with sewage sludge, combustion residuals and medical/infectious wastes. Review of the status of existing landfills in Illinois and the Midwest and an examination of the current plans for siting of new land disposal systems. Review of the status of incinerators and waste-to-energy systems in Illinois and the Midwest, as well as an update on activities to maximize methane production from landfills in the Midwest.

  10. Sustainable wood waste management in Nigeria

    Directory of Open Access Journals (Sweden)

    Owoyemi Jacob Mayowa

    2016-09-01

    Full Text Available Wood industries produce large volumes of residues which must be utilized, marketed or properly disposed of. Heaps of wood residues are common features in wood industries throughout the year. In Nigeria, this residue is generally regarded as waste and this has led to open burning practices, dumping in water bodies or dumping in an open area which constitutes environmental pollution. Sawmills in Nigeria generated over 1,000,000 m3 of wood waste in 2010 while about 5000 m3 of waste was generated in plywood mills. Nigeria generates about 1.8 million tons of sawdust annually and 5.2 million tons of wood wastes. The impact of improper disposal of waste wood on the environment affects both the aquatic and terrestrial ecosystems. Also burning of waste wood releases greenhouse gases into the atmosphere causing various health issues. Reuse/recycling of these wood residues in Nigeria will reduce the pressure on our ever decreasing forests, reduce environmental pollution, create wealth and employment. The literature available on this subject was reviewed and this article, therefore, focuses on the various methods of wood waste disposal and its utilization in Nigerian wood industries, the effects of wood waste on the environment as well as on human health and the benefits of proper wood waste management practices.

  11. Waste Management Program. Technical progress report, October-December 1982

    Energy Technology Data Exchange (ETDEWEB)

    None

    1983-07-01

    This quarterly report provides current information on operations and development programs for the management of radioactive wastes from operation of the Savannah River Plant and offplant participants. The studies on environmental and safety assessments, in situ storage or disposal, waste from development and characterization, process and equipment development, and low-level waste management are a part of the Long-Term Waste Management Technology Program. The following studies are reported for the SR Interim Waste Operations Program: surveillance and maintenance, waste concentration, low-level effluent waste, tank replacement/waste transfer, and solid waste storage and related activities.

  12. Process Management Practices In Healthcare Institutions

    OpenAIRE

    Şükrü Kılıç; Cumhur Aydınlı

    2015-01-01

    Healthcare institutions differ from other service businesses by their “matrix organizational structure” and “error-free output” requirement. However, the processes stay the same for all organizational activities at different levels. One of the post-modern management approach is to focus on basis of necessary processes and fundamental organizational changes. This case study aims to initially explain the characteristics of healthcare institutions and the ba...

  13. WASTE MANAGEMENT AT SRS - MAKING IT HAPPEN

    Energy Technology Data Exchange (ETDEWEB)

    Heenan, T. F.; Kelly, S.

    2002-02-25

    The past five years have witnessed a remarkable transition in the pace and scope of waste management activities at SRS. At the start of the new M&O contract in 1996, little was being done with the waste generated at the site apart from storing it in readiness for future treatment and disposal. Large volumes of legacy waste, particularly TRU and Low Level Waste, had accumulated over many years of operation of the site's nuclear facilities, and the backlog was increasing. WSRC proposed the use of the talents of the ''best in class'' partners for the new contract which, together with a more commercial approach, was expected to deliver more results without a concomitant increase in cost. This paper charts the successes in the Solid Waste arena and analyzes the basis for success.

  14. GREEN MARKETING ROLE IN WASTE MANAGEMENT

    Directory of Open Access Journals (Sweden)

    Corina Anamaria IOAN

    2014-12-01

    Full Text Available This study have exploratory character, aiming to conduct an analysis of the terminology used in the ecomarketing, and the way to approach green- marketing and waste collection activities in Romania. Aside from ecological waste management process and we consider the economic component of sustainable development, supported component of the legal aspects related to the subject. In other words, in this paper we intend to analyze in terms of terminology, legal and environmental policies but the most important aspects of waste management in companies in Romania. The importance of the study is on both the analysis corroborated information relating to waste collection in Romania, and the SWOT analysis performed on the present situation in Romania.

  15. Environmental evaluation of plastic waste management scenarios

    DEFF Research Database (Denmark)

    Rigamonti, L.; Grosso, M.; Møller, Jacob

    2014-01-01

    The management of the plastic fraction is one of the most debated issues in the discussion on integrated municipal solid waste systems. Both material and energy recovery can be performed on such a waste stream, and different separate collection schemes can be implemented. The aim of the paper...... is to contribute to the debate, based on the analysis of different plastic waste recovery routes. Five scenarios were defined and modelled with a life cycle assessment approach using the EASEWASTE model. In the baseline scenario (P0) the plastic is treated as residual waste and routed partly to incineration...... with energy recovery and partly to mechanical biological treatment. A range of potential improvements in plastic management is introduced in the other four scenarios (P1–P4). P1 includes a source separation of clean plastic fractions for material recycling, whereas P2 a source separation of mixed plastic...

  16. How Wastes Influence Quality Management

    Directory of Open Access Journals (Sweden)

    Gratiela Dana BOCA

    2011-06-01

    Full Text Available Companies are often surprised to learn that only a fraction of their activities actually add value for their customers. A primary cause of waste is information deficits – employees simply lack the knowledge they need to do their jobs efficiently and effectively. This leads employees to waste valuable time and motion searching, waiting, retrieving, reworking or just plain future action. Companies are able to respond to changing customer desires with high variety, high quality, low cost, and with very fast throughput times. Eliminating waste along entire value streams, instead of at isolated points, creates processes that need less human effort, less space, less capital, and less time to make products and services at far less costs and with much fewer defects, compared with traditional business systems. Companies are able to respond to changing customer desires with high variety, high quality, low cost, and with very fast throughput times.

  17. Northeast Waste Management Alliance (NEWMA). Annual report FY 1993

    Energy Technology Data Exchange (ETDEWEB)

    Goland, A.N.; Kaplan, E.

    1993-11-01

    Funding was provided to Brookhaven National Laboratory in the fourth quarter of FY93 to establish a regional alliance as defined by Dr. Clyde Frank during his visit to BNL on March 7, 1993. In collaboration with the Long Island Research Institute (LIRI), BNL developed a business plan for the Northeast Waste Management Alliance (NEWMA). Concurrently, informal discussions were initiated with representatives of the waste management industry, and meetings were held with local and state regulatory and governmental personnel to obtain their enthusiasm and involvement. A subcontract to LIRI was written to enable it to formalize interactions with companies offering new waste management technologies selected for their dual value to the DOE and local governments in the Northeast. LIRI was founded to develop and coordinate economic growth via introduction of new technologies. As a not-for-profit institution it is in an ideal position to manage the development of NEWMA through ready access to venture capital and strong interactions with the business community, universities, and BNL. Another subcontract was written with a professor at SUNY/Stony Brook to perform an evaluation of new pyrolitic processes, some of which may be appropriate for development by NEWMA. Independent endorsement of the business plan recently by another organization, GETF, with broad knowledge of DOE/EM-50 objectives, provides a further incentive for moving rapidly to implement the NEWMA strategy. This report describes progress made during the last quarter of FY93.

  18. Electronics waste management: Indian practices and guidelines

    Energy Technology Data Exchange (ETDEWEB)

    Bandyopadhyay, Amitava [Department of Chemical Engineering. University of Calcutta, 92, A.P.C.Road. Kolkata 700 009 (India)

    2010-07-01

    Electronic waste or e-waste or waste electrical and electronic equipment (WEEE) is a popular, informal name for discarded electrical and electronic equipment (EEE) with all of their peripherals at their end-of-life. WEEE constitutes 8% of municipal waste and is one of the fastest growing waste streams. The fraction of precious and other metals in e-waste is over 60%, while pollutants comprise a meager 2.70%. Given the volume of WEEE generated containing toxic materials, it emerges as a risk to the society. Considering the high toxicity of these pollutants especially when burned or recycled in uncontrolled environments, the Basel Convention has identified e-waste as hazardous, and developed a framework for controls on transboundary movement of such waste. In contrast, WEEE can offer a tremendous business opportunity if it would treat in proper manner. The management of the WEEE has thus become a global challenge in today's world. Several nations across the globe have implemented or are about to implement WEEE regulations based on the principle of Extended Producer Responsibility (EPR). Both existing and proposed solutions are implemented with various degrees of centralization. Practical implementations however, can give rise to absurd organizational outcomes. In the light of these findings, the present paper deals with the Indian initiatives on the WEEE management keeping pace with the international scenario. Initially, this paper aims to draw an overview on the basics of WEEE. Next, the international legislative practices followed by Indian initiatives intended to help manage these growing quantities of this waste stream are discussed.

  19. Electronics waste management: Indian practices and guidelines

    Directory of Open Access Journals (Sweden)

    Amitava Bandyopadhyay

    2010-09-01

    Full Text Available Electronic waste or e-waste or waste electrical and electronic equipment (WEEE is a popular, informal name for discarded electrical and electronic equipment (EEE with all of their peripherals at their end-of-life. WEEE constitutes 8% of municipal waste and is one of the fastest growing waste streams. The fraction of precious and other metals in e-waste is over 60%, while pollutants comprise a meager 2.70%. Given the volume of WEEE generated containing toxic materials, it emerges as a risk to the society. Considering the high toxicity of these pollutants especially when burned or recycled in uncontrolled environments, the Basel Convention has identified e-waste as hazardous, and developed a framework for controls on transboundary movement of such waste. In contrast, WEEE can offer a tremendous business opportunity if it would treat in proper manner. The management of the WEEE has thus become a global challenge in today’s world. Several nations across the globe have implemented or are about to implement WEEE regulations based on the principle of Extended Producer Responsibility (EPR. Both existing and proposed solutions are implemented with various degrees of centralization. Practical implementations however, can give rise to absurd organizational outcomes. In the light of these findings, the present paper deals with the Indian initiatives on the WEEE management keeping pace with the international scenario. Initially, this paper aims to draw an overview on the basics of WEEE. Next, the international legislative practices followed by Indian initiatives intended to help manage these growing quantities of this waste stream are discussed.

  20. Sustainable Materials Management: Non-Hazardous Materials and Waste Management Hierarchy

    Science.gov (United States)

    EPA developed the non-hazardous materials and waste management hierarchy in recognition that no single waste management approach is suitable for managing all materials and waste streams in all circumstances.

  1. Guide to radioactive waste management literature

    Energy Technology Data Exchange (ETDEWEB)

    Houser, B.L.; Holoway, C.F.; Madewell, D.G.

    1977-10-01

    Increased public concern about radioactive waste management has called attention to this aspect of the nuclear fuel cycle. Socio-economic planning and technical development are being undertaken to assure that such wastes will be managed safely. This Guide to Radioactive Waste Management Literature has been compiled to serve scientists, engineers, administrators, legislators, and private citizens by directing them to sources of information on various aspects of the subject. References were selected from about 6000 documents on waste management in the computerized information centers in Oak Ridge. The documents were selected, examined, indexed, and abstracted between 1966-1976 by several knowledgeable indexers, principally at the Nuclear Safety Information Center. The selected references were further indexed and classified into 12 categories. Each category is discussed in enough detail to give some understandng of present technology in various phases of waste management and some appreciation of the attendant issues and problems. The bibliographic part of this guide exists in computerized form in the Health Physics Information System and is available through the Oak Ridge Information Center Complex for searching from remote terminals.

  2. Radioactive waste management in a hospital.

    Science.gov (United States)

    Khan, Shoukat; Syed, At; Ahmad, Reyaz; Rather, Tanveer A; Ajaz, M; Jan, Fa

    2010-01-01

    Most of the tertiary care hospitals use radioisotopes for diagnostic and therapeutic applications. Safe disposal of the radioactive waste is a vital component of the overall management of the hospital waste. An important objective in radioactive waste management is to ensure that the radiation exposure to an individual (Public, Radiation worker, Patient) and the environment does not exceed the prescribed safe limits. Disposal of Radioactive waste in public domain is undertaken in accordance with the Atomic Energy (Safe disposal of radioactive waste) rules of 1987 promulgated by the Indian Central Government Atomic Energy Act 1962. Any prospective plan of a hospital that intends using radioisotopes for diagnostic and therapeutic procedures needs to have sufficient infrastructural and manpower resources to keep its ambient radiation levels within specified safe limits. Regular monitoring of hospital area and radiation workers is mandatory to assess the quality of radiation safety. Records should be maintained to identify the quality and quantity of radioactive waste generated and the mode of its disposal. Radiation Safety officer plays a key role in the waste disposal operations.

  3. ORION - A Global Approach to Waste Management.

    Science.gov (United States)

    Heinzelmann, Elsbeth

    2015-01-01

    In the ORION project supported by the European Commission, 20 partners work together to manage organic waste from agro-food industries. The goal is to develop a small, automatic and user-friendly digestion machine to facilitate the domestic on-site treatment of a wide range of organic waste from around 100 and up to 5000 tonnes per year at low cost and with limited maintenance. Simon Crelier at the HES-SO Valais/Wallis is part of the network.

  4. Integrated waste and water management system

    Science.gov (United States)

    Murray, R. W.; Sauer, R. L.

    1986-01-01

    The performance requirements of the NASA Space Station have prompted a reexamination of a previously developed integrated waste and water management system that used distillation and catalytic oxydation to purify waste water, and microbial digestion and incineration for waste solids disposal. This system successfully operated continuously for 206 days, for a 4-man equivalent load of urine, feces, wash water, condensate, and trash. Attention is given to synergisms that could be established with other life support systems, in the cases of thermal integration, design commonality, and novel technologies.

  5. Integrated waste and water management system

    Science.gov (United States)

    Murray, R. W.; Sauer, R. L.

    1986-01-01

    The performance requirements of the NASA Space Station have prompted a reexamination of a previously developed integrated waste and water management system that used distillation and catalytic oxydation to purify waste water, and microbial digestion and incineration for waste solids disposal. This system successfully operated continuously for 206 days, for a 4-man equivalent load of urine, feces, wash water, condensate, and trash. Attention is given to synergisms that could be established with other life support systems, in the cases of thermal integration, design commonality, and novel technologies.

  6. Progress in long-lived radioactive waste management and disposal at the waste isolation pilot plant

    Energy Technology Data Exchange (ETDEWEB)

    Triay, I.R.; Matthews, M.L. [U.S. Dept. of Energy Carlsbad Field Office, New Mexico (United States); Eriksson, L.G. [GRAM, Inc., Albuquerque, NM (United States)

    2001-07-01

    The Salado Formation is buried more than 350 m beneath the sands and cacti of the Chihuahuan Desert and hosts the Waste Isolation Pilot Plant (WIPP) deep geological repository at a depth of approximately 650 m. Since the WIPP repository is at least 10 years ahead of any other repository development for long-lived radioactive waste, other radioactive waste management organizations and institutions could benefit both scientifically and politically from sharing the lessons learned at WIPP. Benefits would include using existing expertise and facilities to cost-effectively address and solve program-specific issues and to train staff. The characteristics of the WIPP repository and infrastructure are described in this paper. (author)

  7. Long-term nuclear waste management: Present status and alternatives

    Science.gov (United States)

    Schapira, J. P.

    1989-08-01

    Long-term nuclear waste management deals with the final and irreversible stage of waste disposal, on surface and in deep geological formations (according to the waste type), when institutional surveillance is over. There are presently two main options available to deal with the wastes generated by spent nuclear fuel unloaded from reactors and containing most of the radiotoxicity produced all along the nuclear fuel cycle. Since the end of Word War II, spent-fuel reprocessing technology has gone through three different stages, ending up with considerable technical achievements and large investments (construction of large facilities, UP3 in France and THORP in the UK). However, having to face spent-fuel risings and lack of reprocessing capacities, since the mid-seventies some countries are considering the possibility of direct spent-fuel disposal without reprocessing. These two options are discussed in terms of long-term waste management. Because of the types of waste conditioning and packaging adopted with present reprocessing technology, in that case long-term safety, after a few centuries, relies completely on the geological barriers. On the other hand, long-term safety with the second option is based essentially on the retention properties of uranium oxide with respect to actinides. Finally, alternatives such as chemical partitioning of minor actinides followed by their transmutation, either in reactors or using high-energy particle accelerators, are under discussion. Apart from the standard reprocessing (after a cooling period of 3-5 years), all the other options called for a long period (50 years) of interim storage, preventing the adoption of irreversible, costly and not well proved waste management solutions, and leaving time to develop and assess these alternative methods.

  8. Waste Management Planning System – Factors Influencing Waste Composition in Lithuania

    OpenAIRE

    Davidavičienė, Vida; Janeliūnienė, Rasma; Liberytė, Ginta

    2012-01-01

    Rapid changes in the field of information technologies, growing production and consumption forced by economic growth lead to growth of waste causing the new challenges to waste management. All these fields are widely analyzed by scientists as separate scientific, technological, environmental or economic problems as well as integrated questions. Waste management is analyzed comprehensively and systematically as well as individual questions of waste generation, waste forecasting, waste storage,...

  9. Integrated Resource Planning for Urban Waste Management

    Directory of Open Access Journals (Sweden)

    Damien Giurco

    2015-01-01

    Full Text Available The waste hierarchy currently dominates waste management planning in Australia. It is effective in helping planners consider options from waste avoidance or “reduction” through to providing infrastructure for landfill or other “disposal”. However, it is inadequate for guiding context-specific decisions regarding sustainable waste management and resource recovery, including the ability for stakeholders to compare a range of options on an equal footing whilst considering their various sustainability impacts and trade-offs. This paper outlines the potential use of Integrated Resource Planning (IRP as a decision-making approach for the urban waste sector, illustrated using an Australian case study. IRP is well established in both the water and energy sectors in Australia and internationally. It has been used in long-term planning enabling decision-makers to consider the potential to reduce resource use through efficiency alongside options for new infrastructure. Its use in the waste sector could address a number of the current limitations experienced by providing a broader context-sensitive, adaptive, and stakeholder focused approach to planning not present in the waste hierarchy and commonly used cost benefit analysis. For both efficiency and new infrastructure options IRP could be useful in assisting governments to make decisions that are consistent with agreed objectives while addressing costs of alternative options and uncertainty regarding their environmental and social impacts. This paper highlights various international waste planning approaches, differences between the sectors where IRP has been used and gives a worked example of how IRP could be applied in the Australian urban waste sector.

  10. A review and overview of nuclear waste management

    Energy Technology Data Exchange (ETDEWEB)

    Murray, R.L.

    1984-12-31

    An understanding of the status and issues in the management of radioactive wastes is based on technical information on radioactivity, radiation, biological hazard of radiation exposure, radiation standards, and methods of protection. The fission process gives rise to radioactive fission products and neutron bombardment gives activation products. Radioactive wastes are classified according to source: defense, commercial, industrial, and institutional; and according to physical features: uranium mill tailings, high-level, transuranic, and low-level. The nuclear fuel cycle, which contributes a large fraction of annual radioactive waste, starts with uranium ore, includes nuclear reactor use for electrical power generation, and ends with ultimate disposal of residues. The relation of spent fuel storage and reprocessing is governed by technical, economic, and political considerations. Waste has been successfully solidified in glass and other forms and choices of the containers for the waste form are available. Methods of disposal of high-level waste that have been investigated are transmutation by neutron bombardment, shipment to Antartica, deep-hole insertion, subseabed placement, transfer by rocket to an orbit in space, and disposal in a mined cavity. The latter is the favored method. The choices of host geological media are salt, basalt, tuff, and granite.

  11. The food waste hierarchy as a framework for the management of food surplus and food waste

    OpenAIRE

    Papargyropoulou, E; Lozano, R.; Steinberger, JK; Wright, N; Ujang, ZB

    2014-01-01

    The unprecedented scale of food waste in global food supply chains is attracting increasing attention due to its environmental, social and economic impacts. Drawing on interviews with food waste specialists, this study construes the boundaries between food surplus and food waste, avoidable and unavoidable food waste, and between waste prevention and waste management. This study suggests that the first step towards a more sustainable resolution of the food waste issue is to adopt a sustainable...

  12. Solid waste management. Principles and practice

    Energy Technology Data Exchange (ETDEWEB)

    Chandrappa, Ramesha [Karnataka State Pollution Control Board, Biomedical Waste, Bangalore (India); Bhusan Das, Diganta [Loughborough Univ. of Technology (United Kingdom). Dept. of Chemical Engineering

    2012-11-01

    Solid waste was already a problem long before water and air pollution issues attracted public attention. Historically the problem associated with solid waste can be dated back to prehistoric days. Due to the invention of new products, technologies and services the quantity and quality of the waste have changed over the years. Waste characteristics not only depend on income, culture and geography but also on a society's economy and, situations like disasters that affect that economy. There was tremendous industrial activity in Europe during the industrial revolution. The twentieth century is recognized as the American Century and the twenty-first century is recognized as the Asian Century in which everyone wants to earn 'as much as possible'. After Asia the currently developing Africa could next take the center stage. With transitions in their economies many countries have also witnessed an explosion of waste quantities. Solid waste problems and approaches to tackling them vary from country to country. For example, while efforts are made to collect and dispose hospital waste through separate mechanisms in India it is burnt together with municipal solid waste in Sweden. While trans-boundary movement of waste has been addressed in numerous international agreements, it still reaches developing countries in many forms. While thousands of people depend on waste for their lively hood throughout the world, many others face problems due to poor waste management. In this context solid waste has not remained an issue to be tackled by the local urban bodies alone. It has become a subject of importance for engineers as well as doctors, psychologist, economists, and climate scientists and any others. There are huge changes in waste management in different parts of the world at different times in history. To address these issues, an effort has been made by the authors to combine their experience and bring together a new text book on the theory and practice of the

  13. Nuclear waste management quarterly progress report, April--June 1977

    Energy Technology Data Exchange (ETDEWEB)

    Platt, A.M. (comp.)

    1977-11-01

    Progress is reported in sections on decontamination and densification of chop-leach cladding residues, monitoring methods for effluents from waste solidification, TRU waste fixation studies, krypton solidification, /sup 14/C and /sup 129/I fixation, waste management system studies, waste isolation assessment, stored waste migration monitoring, properties of fission product organic complexes, and decontamination of metals. (JRD)

  14. 76 FR 4823 - Hazardous Waste Management System; Identifying and Listing Hazardous Waste Exclusion

    Science.gov (United States)

    2011-01-27

    ... AGENCY 40 CFR Part 261 Hazardous Waste Management System; Identifying and Listing Hazardous Waste... permitted, licensed, or registered by a State to manage industrial solid waste. The rule also imposes... per year from the list of hazardous wastes. The Agency has decided to grant the petition based on an...

  15. Safety Aspects in Radioactive Waste Management

    Directory of Open Access Journals (Sweden)

    Peter W. Brennecke

    2007-01-01

    Full Text Available In recent years, within the framework of national as well as international programmes, notable advances and considerable experience have been reached, particularly in minimising of the production of radioactive wastes, conditioning and disposal of short-lived, low and intermediate level waste, vitrification of fission product solutions on an industrial scale and engineered storage of long-lived high level wastes, i.e. vitrified waste and spent nuclear fuel. Based on such results, near-surface repositories have successfully been operated in many countries. In contrast to that, the disposal of high level radioactive waste is still a scientific and technical challenge in many countries using the nuclear power for the electricity generation. Siting, planning and construction of repositories for the high level wastes in geological formations are gradually advancing. The site selection, the evaluation of feasible sites as well as the development of safety cases and performance of site-specific safety assessments are essential in preparing the realization of such a repository. In addition to the scientific-technical areas, issues regarding economical, environmental, ethical and political aspects have been considered increasingly during the last years. Taking differences in the national approaches, practices and the constraints into account, it is to be recognised that future developments and decisions will have to be extended in order to include further important aspects and, finally, to enhance the acceptance and confidence in the safety-related planning work as well as in the proposed radioactive waste management and disposal solutions.

  16. Credit Institutions Management Evaluation using Quantitative Methods

    Directory of Open Access Journals (Sweden)

    Nicolae Dardac

    2006-02-01

    Full Text Available Credit institutions supervising mission by state authorities is mostly assimilated with systemic risk prevention. In present, the mission is orientated on analyzing the risk profile of the credit institutions, the mechanism and existing systems as management tools providing to bank rules the proper instruments to avoid and control specific bank risks. Rating systems are sophisticated measurement instruments which are capable to assure the above objectives, such as success in banking risk management. The management quality is one of the most important elements from the set of variables used in the quoting process in credit operations. Evaluation of this quality is – generally speaking – fundamented on quantitative appreciations which can induce subjectivism and heterogeneity in quotation. The problem can be solved by using, complementary, quantitative technics such us DEA (Data Envelopment Analysis.

  17. Sanitary Landfilling – A Key Component of Waste Management

    OpenAIRE

    Johann Fellner

    2013-01-01

    In many affluent countries waste management is experiencing a fast transition from landfilling to sophisticated recycling and waste to energy plants. Thus, landfilling of waste becomes less important in these countries. The present paper discusses whether a similar development will take place in transition economies, or waste management systems will mainly rely on landfilling in the near future. For this purpose, the current waste management practices and associated environmental impacts as w...

  18. Packaging wastes management; Gestion integral de los residuos de envases

    Energy Technology Data Exchange (ETDEWEB)

    Garcia Ramos, M.

    1996-12-01

    Packaging, having fulfilled their function, become waste and joint the flow of resure we generate every day. Packaging waste is a usable secondary raw material, provided that a suitable integrated management strategy is devised. This article highlights the Integrated Management Strategic Plan for Packaging Waste, following the priority guidelines established by the Community Directives on waste management: Reduction, re-use, Recycling, Energy Recovery and Final Elimination, and the European Directive 94/62/CE about packaging and packaging waste. (Author)

  19. Neutralized current acid waste consolidation management plan

    Energy Technology Data Exchange (ETDEWEB)

    Powell, W.J.; Brown, R.G.; Galbraith, J.; Jensen, C.; Place, D.E.; Reddick, G.W.; Zuroff, W. [Westinghouse Hanford Co., Richland, WA (United States); Brothers, A.J. [Pacific Northwest National Lab., Richland, WA (United States)

    1996-01-01

    The scope of this evaluation is to recommend a management plan for the high-heat tank waste, including neutralized current acid waste (NCAW) in AY and AZ Tank Farms, and tank C-106 waste. The movement of solids, liquids and salt cake in the designated tank farms is included. Decision analysis techniques were used to determine a recommended alternative. The recommended course of action was replacement of a 75-hp mixer pump in tank AY-102 and in-tank concentration of tank AZ-102 supernate. The alternative includes transfer fo tank C-106 sludge to tank AY-102, then transfer to tank AY-102 and tank C-106 sludge to tank AZ-101 using the new 75-hp mixer pump installed in tank AY-102. Tank AZ-101 becomes a storage tank for high-level waste (HLW) sludge, with the capacity to mix and transfer sludge as desired.

  20. Smart Garbage Monitoring System for Waste Management

    Directory of Open Access Journals (Sweden)

    Mohd Yusof Norfadzlia

    2017-01-01

    Full Text Available Piles of rubbish are one of the major problems faced by most people in Malaysia, especially those who live in flats, as the number of bins is limited and shared among all residents. It may cause pollutions, which may lead to sanitary issues and diseases. This project presents the development of a smart garbage monitoring system in order to measure waste level in the garbage bin in real-time and to alert the municipality, in particular cases, via SMS. The proposed system is consisted by the ultrasonic sensor to measure the waste level, the GSM module to send the SMS, and an Arduino Uno which controls the system operation. It supposes to generate and send the warning messages to the municipality via SMS when the waste bin is full or almost full, so the garbage can be collected immediately. Furthermore, it is expected to contribute to improving the efficiency of the solid waste disposal management.

  1. Outcome of 7-S, TQM technique for healthcare waste management.

    Science.gov (United States)

    Ullah, Junaid Habib; Ahmed, Rashid; Malik, Javed Iqbal; Khan, M Amanullah

    2011-12-01

    To assess the present waste management system of healthcare facilities (HCFs) attached with Shalamar Hospital, Lahore by applying the 7-S technique of Total Quality Management (TQM) and to find out the outcome after imparting training. Interventional quasi-experimental study. The Shalamar Hospital, Lahore, Punjab, Pakistan, November, 2009 to November, 2010. Mckinsey's 7-S, technique of TQM was applied to assess the 220 HCFs from Lahore, Gujranwala and Sheikhupura districts for segregation, collection, transportation and disposal (SCTD) of hospital waste. Direct interview method was applied. Trainings were provided in each institution. After one year action period, the status of four areas of concern was compared before and after training. The parameters studied were segregation, collection, transportation and disposal systems in the 220 HCFs. Each of these were further elaborated by strategy, structure, system, staff, skill, style and stakeholder/shared value factors. Standard error of difference of proportion was applied to assess significance using 95% confidence level. There was marked improvement in all these areas ranging from 20% to 77% following a training program of 3 months. In case of disposal of the waste strategy, structure and system an increase of 60%, 65% and 75% was observed after training. The 7-S technique played a vital role in assessing the hospital waste management system. Training for the healthcare workers played a significant role in healthcare facilities.

  2. Teaching Radioactive Waste Management in an Undergraduate Engineering Program - 13269

    Energy Technology Data Exchange (ETDEWEB)

    Ikeda, Brian M. [Faculty of Energy Systems and Nuclear Science, University of Ontario Institute of Technology, 2000 Simcoe Street North, Oshawa, Ontario L1H 7K4 (Canada)

    2013-07-01

    The University of Ontario Institute of Technology is Ontario's newest university and the only one in Canada that offers an accredited Bachelor of Nuclear Engineering (Honours) degree. The nuclear engineering program consists of 48 full-semester courses, including one on radioactive waste management. This is a design course that challenges young engineers to develop a fundamental understanding of how to manage the storage and disposal of various types and forms of radioactive waste, and to recognize the social consequences of their practices and decisions. Students are tasked with developing a major project based on an environmental assessment of a simple conceptual design for a waste disposal facility. They use collaborative learning and self-directed exploration to gain the requisite knowledge of the waste management system. The project constitutes 70% of their mark, but is broken down into several small components that include, an environmental assessment comprehensive study report, a technical review, a facility design, and a public defense of their proposal. Many aspects of the project mirror industry team project situations, including the various levels of participation. The success of the students is correlated with their engagement in the project, the highest final examination scores achieved by students with the strongest effort in the project. (authors)

  3. 40 CFR 60.55c - Waste management plan.

    Science.gov (United States)

    2010-07-01

    ... and recycling of paper, cardboard, plastics, glass, batteries, food waste, and metals (e.g., aluminum... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Waste management plan. 60.55c Section... Waste Incinerators for Which Construction is Commenced After June 20, 1996 § 60.55c Waste management...

  4. Nuclear waste management. Semiannual progress report, October 1982-March 1983

    Energy Technology Data Exchange (ETDEWEB)

    Chikalla, T.D.; Powell, J.A. (comps.)

    1983-06-01

    This document is one of a series of technical progress reports designed to report radioactive waste management programs at the Pacific Northwest Laboratory. Accomplishments in the following programs are reported: waste stabilization; Materials Characterization Center; waste isolation; low-level waste management; remedial action; and supporting studies.

  5. Integrated solid waste management of Minneapolis, Minnesota

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-11-01

    The subject document reports the results of an in-depth investigation of the fiscal year 1992 cost of the City of Minneapolis, Minnesota (Hennepin County) integrated municipal solid waste management (IMSWM) system, the energy consumed to operate the system, and the environmental performance requirements for each of the system`s waste-processing and disposal facilities. Actual data from records kept by participants is reported in this document. Every effort was made to minimize the use of assumptions, and no attempt is made to interpret the data reported. Analytical approaches are documented so that interested analysts may perform manipulation or further analysis of the data. As such, the report is a reference document for municipal solid waste (MSW) management professionals who are interested in the actual costs and energy consumption for a one-year period, of an operating IMSWM system.

  6. Tribal Waste Journal: What Is an Integrated Waste Management Plan: Issue 7

    Science.gov (United States)

    Integrated Waste Management Plans (IWMPs) may offer tribes an efficient and cost-effective way to reduce open dumping, effectively manage solid waste, and protect human health and the environment for this generation and the next.

  7. Radioactive waste management: a bibliography for the integrated data base program

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, C.A.

    1981-10-01

    This is the second in a series of literature references compiled on waste generation and treatment, characteristics, inventories, and costs. Documents were collected, abstracted, and indexed into a searchable information file, which was then sorted, indexed, and printed for this bibliography. This volume contains over 200 references to nuclear waste management, the majority of which are 1979-1980 publications. Each reference is categorized by waste origin (commercial, government, institutional, and foreign) and by subject area: (1) high-level waste, (2) low-level waste, (3) transuranic (TRU) waste, (4) airborne waste, (5) Remedial Action Program (formerly utilized sites, surplus facilities, and mill tailings), (6) isolation, (7) transportation, (8) spent fuel, (9) fuel cycle centers, and (10) general, nonspecific waste. Six indexes are provided to assist the user in locating documents of interest.

  8. Waste Information Management System-2012 - 12114

    Energy Technology Data Exchange (ETDEWEB)

    Upadhyay, H.; Quintero, W.; Shoffner, P.; Lagos, L.; Roelant, D. [Applied Research Center, Florida International University, 10555 West Flagler Street, Suite 2100, Miami, FL 33174 (United States)

    2012-07-01

    The Waste Information Management System (WIMS) -2012 was updated to support the Department of Energy (DOE) accelerated cleanup program. The schedule compression required close coordination and a comprehensive review and prioritization of the barriers that impeded treatment and disposition of the waste streams at each site. Many issues related to waste treatment and disposal were potential critical path issues under the accelerated schedule. In order to facilitate accelerated cleanup initiatives, waste managers at DOE field sites and at DOE Headquarters in Washington, D.C., needed timely waste forecast and transportation information regarding the volumes and types of radioactive waste that would be generated by DOE sites over the next 40 years. Each local DOE site historically collected, organized, and displayed waste forecast information in separate and unique systems. In order for interested parties to understand and view the complete DOE complex-wide picture, the radioactive waste and shipment information of each DOE site needed to be entered into a common application. The WIMS application was therefore created to serve as a common application to improve stakeholder comprehension and improve DOE radioactive waste treatment and disposal planning and scheduling. WIMS allows identification of total forecasted waste volumes, material classes, disposition sites, choke points, technological or regulatory barriers to treatment and disposal, along with forecasted waste transportation information by rail, truck and inter-modal shipments. The Applied Research Center (ARC) at Florida International University (FIU) in Miami, Florida, developed and deployed the web-based forecast and transportation system and is responsible for updating the radioactive waste forecast and transportation data on a regular basis to ensure the long-term viability and value of this system. WIMS continues to successfully accomplish the goals and objectives set forth by DOE for this project. It has

  9. Managing Materials and Wastes for Homeland Security Incidents

    Science.gov (United States)

    To provide information on waste management planning and preparedness before a homeland security incident, including preparing for the large amounts of waste that would need to be managed when an incident occurs, such as a large-scale natural disaster.

  10. Animal Waste Management Practices and Perceptions on Public ...

    African Journals Online (AJOL)

    Animal Waste Management Practices and Perceptions on Public and Environmental Health Risks. ... Huria: Journal of the Open University of Tanzania ... and public health risks associated with improper management of animal wastes in 66 ...

  11. Medical waste management at the University of Port Harcourt ...

    African Journals Online (AJOL)

    Medical waste management at the University of Port Harcourt Teaching Hospital. ... medical waste management and training in, and use of personal protective equipment. ... storage, treatment, and final disposal at the UPTH was inadequate.

  12. Waste management project technical baseline description

    Energy Technology Data Exchange (ETDEWEB)

    Sederburg, J.P.

    1997-08-13

    A systems engineering approach has been taken to describe the technical baseline under which the Waste Management Project is currently operating. The document contains a mission analysis, function analysis, requirement analysis, interface definitions, alternative analysis, system definition, documentation requirements, implementation definitions, and discussion of uncertainties facing the Project.

  13. International High Level Nuclear Waste Management

    Science.gov (United States)

    Dreschhoff, Gisela; And Others

    1974-01-01

    Discusses the radioactive waste management in Belgium, Canada, France, Germany, India, Italy, Japan, the United Kingdom, the United States, and the USSR. Indicates that scientists and statesmen should look beyond their own lifetimes into future centuries and millennia to conduct long-range plans essential to protection of future generations. (CC)

  14. Abstracts: NRC Waste Management Program reports

    Energy Technology Data Exchange (ETDEWEB)

    Heckman, R.A.; Minichino, C.

    1979-11-01

    This document consists of abstracts of all reports published by the Nuclear Regulatory Commission (NRC) Waste Management Program at Lawrence Livermore Laboratory (LLL). It will be updated at regular intervals. Reports are arranged in numerical order, within each category. Unless otherwise specified, authors are LLL scientists and engineers.

  15. General survey of solid-waste management

    Science.gov (United States)

    Reese, T. G.; Wadle, R. C.

    1974-01-01

    Potential ways of providing solid-waste management for a building complex serviced by a modular integrated utility system (MIUS) were explored. Literature surveys were conducted to investigate both conventional and unusual systems to serve this purpose. The advantages and disadvantages of the systems most compatible with MIUS are discussed.

  16. Solid Waste Management Planning--A Methodology

    Science.gov (United States)

    Theisen, Hilary M.; And Others

    1975-01-01

    This article presents a twofold solid waste management plan consisting of a basic design methodology and a decision-making methodology. The former provides a framework for the developing plan while the latter builds flexibility into the design so that there is a model for use during the planning process. (MA)

  17. Policy Instruments towards a Sustainable Waste Management

    Directory of Open Access Journals (Sweden)

    Tomas Forsfält

    2013-02-01

    Full Text Available The aim of this paper is to suggest and discuss policy instruments that could lead towards a more sustainable waste management. The paper is based on evaluations from a large scale multi-disciplinary Swedish research program. The evaluations focus on environmental and economic impacts as well as social acceptance. The focus is on the Swedish waste management system but the results should be relevant also for other countries. Through the assessments and lessons learned during the research program we conclude that several policy instruments can be effective and possible to implement. Particularly, we put forward the following policy instruments: “Information”; “Compulsory recycling of recyclable materials”; “Weight-based waste fee in combination with information and developed recycling systems”; “Mandatory labeling of products containing hazardous chemicals”, “Advertisements on request only and other waste minimization measures”; and “Differentiated VAT and subsidies for some services”. Compulsory recycling of recyclable materials is the policy instrument that has the largest potential for decreasing the environmental impacts with the configurations studied here. The effects of the other policy instruments studied may be more limited and they typically need to be implemented in combination in order to have more significant impacts. Furthermore, policy makers need to take into account market and international aspects when implementing new instruments. In the more long term perspective, the above set of policy instruments may also need to be complemented with more transformational policy instruments that can significantly decrease the generation of waste.

  18. Managing an Institutional Repository with CDS Invenio

    CERN Document Server

    Robinson, N; Simko, T

    2007-01-01

    CERN has long been committed to the free dissemination of scientific research results and theories. Towards this end, CERN's own institutional repository, the CERN Document Server (CDS) offers access to CERN works and to all related scholarly literature in the HEP domain. Hosting over 500 document collections containing more than 900,000 records, CDS provides access to anything from preprints and articles, to multimedia information such as photographs, movies, posters and brochures. The software that powers this service, CDS Invenio, is distributed freely under the GNU GPL and is currently used in approximately 15 institutions worldwide. In this paper, we discuss the use of CDS Invenio to manage a repository of scientific literature. We outline some of the issues faced during the lifecycle of a document from acquisition, processing and indexing to dissemination. In particular, we focus on the features and technology developed to meet the complexities of managing scientific information in the LHC era of large ...

  19. Public concerns and behaviours towards solid waste management in Italy.

    Science.gov (United States)

    Sessa, Alessandra; Di Giuseppe, Gabriella; Marinelli, Paolo; Angelillo, Italo F

    2010-12-01

    A self-administered questionnaire investigated knowledge, perceptions of the risks to health associated with solid waste management, and practices about waste management in a random sample of 1181 adults in Italy. Perceived risk of developing cancer due to solid waste burning was significantly higher in females, younger, with an educational level lower than university and who believed that improper waste management is linked to cancer. Respondents who had visited a physician at least once in the last year for fear of contracting a disease due to the non-correct waste management had an educational level lower than university, have modified dietary habits for fear of contracting disease due to improper waste management, believe that improper waste management is linked to allergies, perceive a higher risk of contracting infectious disease due to improper waste management and have participated in education/information activities on waste management. Those who more frequently perform with regularity differentiate household waste collection had a university educational level, perceived a higher risk of developing cancer due to solid waste burning, had received information about waste collection and did not need information about waste management. Educational programmes are needed to modify public concern about adverse health effects of domestic waste.

  20. Public involvement in radioactive waste management decisions

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-04-01

    Current repository siting efforts focus on Yucca Mountain, Nevada, where DOE`s Office of Civilian Radioactive Waste Management (OCRWM) is conducting exploratory studies to determine if the site is suitable. The state of Nevada has resisted these efforts: it has denied permits, brought suit against DOE, and publicly denounced the federal government`s decision to study Yucca Mountain. The state`s opposition reflects public opinion in Nevada, and has considerably slowed DOE`s progress in studying the site. The Yucca Mountain controversy demonstrates the importance of understanding public attitudes and their potential influence as DOE develops a program to manage radioactive waste. The strength and nature of Nevada`s opposition -- its ability to thwart if not outright derail DOE`s activities -- indicate a need to develop alternative methods for making decisions that affect the public. This report analyzes public participation as a key component of this openness, one that provides a means of garnering acceptance of, or reducing public opposition to, DOE`s radioactive waste management activities, including facility siting and transportation. The first section, Public Perceptions: Attitudes, Trust, and Theory, reviews the risk-perception literature to identify how the public perceives the risks associated with radioactivity. DOE and the Public discusses DOE`s low level of credibility among the general public as the product, in part, of the department`s past actions. This section looks at the three components of the radioactive waste management program -- disposal, storage, and transportation -- and the different ways DOE has approached the problem of public confidence in each case. Midwestern Radioactive Waste Management Histories focuses on selected Midwestern facility-siting and transportation activities involving radioactive materials.

  1. 75 FR 51434 - Hazardous and Solid Waste Management System; Identification and Listing of Special Wastes...

    Science.gov (United States)

    2010-08-20

    ... No. EPA-HQ-RCRA-2009-0640. Mail: Send your comments to the Hazardous and Solid Waste Management... Delivery: Deliver two copies of your comments to the Hazardous and Solid Waste Management System... electronically in http://www.regulations.gov or in hard copy at the Hazardous and Solid Waste Management...

  2. Plasma reactor waste management systems

    Science.gov (United States)

    Ness, Robert O., Jr.; Rindt, John R.; Ness, Sumitra R.

    1992-01-01

    The University of North Dakota is developing a plasma reactor system for use in closed-loop processing that includes biological, materials, manufacturing, and waste processing. Direct-current, high-frequency, or microwave discharges will be used to produce plasmas for the treatment of materials. The plasma reactors offer several advantages over other systems, including low operating temperatures, low operating pressures, mechanical simplicity, and relatively safe operation. Human fecal material, sunflowers, oats, soybeans, and plastic were oxidized in a batch plasma reactor. Over 98 percent of the organic material was converted to gaseous products. The solids were then analyzed and a large amount of water and acid-soluble materials were detected. These materials could possibly be used as nutrients for biological systems.

  3. Proceedings of conference on public policy issues in nuclear waste management

    Energy Technology Data Exchange (ETDEWEB)

    1976-01-01

    This conference was designed to provide a public forum in which to identify and discuss the legal, institutional, social, environmental, and other public policy issues relating to nuclear waste management. This volume is a comprehensive synthesis of the speeches, papers, and discussions during the plenary and luncheon sessions. Preliminary goals are proposed for nuclear waste management. Separate abstracts were prepared for the ten papers. (DLC)

  4. The land management paradigm for institutional development

    DEFF Research Database (Denmark)

    2006-01-01

    Land management is the process by which the resources of land are put into good effect. Land management encompasses all activities associated with the management of land that are required to achieve sustainable development. The concept of land includes properties and natural resources and thereby...... encompasses the total natural and built environment. Land Administration Systems (LAS) are institutional frameworks complicated by the tasks they must perform, by national cultural, political and judicial settings, and by technology. This paper facilitates an overall understanding of the land management......, responsibilities, restrictions and risks in relation to land in support of sustainable development. The model is designed for developed economies but allows incremental adoption of the model by countries at transitional stages of economic development. The model reflects drivers of globalisation and technology...

  5. Northeast Waste Management Enterprise (NEWME) 1996 annual/final report

    Energy Technology Data Exchange (ETDEWEB)

    Goland, A.; Kaplan, E. [Brookhaven National Lab., Upton, NY (United States); Palmedo, P. Wortman, J. [Long Island Research Institute, Nesconset, NY (United States)

    1997-10-01

    The Northeast Waste Management Enterprise was created in response to Dr. Clyde Frank`s vision of a new partnership between research, industrial, and financial sectors, with the goal of speeding development and use (particularly at U.S. Department of Energy [DOE] facilities) of environmental remediation technologies. It was anticipated that this partnership would also strengthen the international competitiveness of the U.S. environmental industry. Brookhaven National Laboratory`s (BNL) response to Dr. Frank was a proposal to create the Northeast Waste Management Alliance, later renamed the Northeast Waste Management Enterprise (NEWME). Recognizing the need to supplement its own technical expertise with acumen in business, financial management, and venture capital development, BNL joined forces with the Long Island Research Institute (LIRI). Since its inception at the end of FY 1993, NEWME has achieved several significant accomplishments in pursuing its original business and strategic plans. However, its successes have been constrained by a fundamental mismatch between the time scales required for technology commercialization, and the immediate need for available environmental technologies of those involved with ongoing environmental remediations at DOE facilities.

  6. FINANCIAL PERFORMANCE IN CREDIT INSTITUTION MANAGEMENT

    Directory of Open Access Journals (Sweden)

    IOV DANIELA RODICA

    2014-05-01

    Full Text Available Information concerning financial performance is one of the objectives of the annual financial statements of credit institutions. The main source containing this information is profit and loss statement. A correct and complete information can not be limited to this annual report. Understanding the concept of financial performance requires a holistic approach of the entity. An overview of information on financial performance will be achieved by coordinating information about the profit of the entity, rates of return, cash flows, financing cost and risk. For the economic and financial analysis we often use to separate financial equilibrium indicators of outcome indicators and management indicators. The study upon the financial performance may be based on the income statement, balance sheet and explanatory notes. It may use tools such as: income, interest rates, rates of return, rates of structure, liquidity and solvency rates, rotation rates, cash flows, debt coverage rates and more. Management of banking assets, liabilities and bank risk management must be assembled into a whole. In an uncertain environment, continuously changing, under conditions of the economic and financial crisis, the binomial profitability - risk is increasingly difficult to manage. Under these conditions, the boundary between courage and unconsciousness is also more fragile. On the other hand, the prudence, mandatory rules could be understood as some constraint measures on bank management, that may adversely affect the financial performance of the credit institution.

  7. 77 FR 23751 - Certain Food Waste Disposers and Components and Packaging Thereof; Institution of Investigation...

    Science.gov (United States)

    2012-04-20

    ... COMMISSION Certain Food Waste Disposers and Components and Packaging Thereof; Institution of Investigation... importation, and the sale within the United States after importation of certain food waste disposers and... sale within the United States after importation of certain food waste disposers and components...

  8. Monitoring of the process of composting of kitchen waste in an institutional scale worm farm.

    Science.gov (United States)

    Kristiana, R; Nair, J; Anda, M; Mathew, K

    2005-01-01

    Vermicomposting provides an alternative method of managing waste that is ecofriendly and cost-effective. The Environmental Technology Centre (ETC) at Murdoch University and St. John of God Hospital (SJOG) signed a Memorandum of Understanding (MOU) to install a vermiculture system in SJOG to treat some of the organic waste generated by the on site kitchen facility. This is an effort made by SJOG to reduce the amount of organic waste sent to landfill each year and to treat the waste on site as part of a recycling/reuse program. The study is aimed at scientifically monitoring vermicomposting process and to understand the optimum management requirements to improve the operation of an institutional scale worm farm. In addition, an experiment was conducted to investigate the suitability of bedding materials: horse manure, cow manure, peat coir, and natural bedding (vermicast). The species of earthworms used in this experiment were Red (Lumbricus rubellus), Tiger (Eisenia fetida), and Blue (Lumbricus excavatus). The pH, temperature, worm population and quality of castings were tested in different beds. Results indicated that vermicast was the best bedding for vermicomposting, and there were no significant difference between the performances of the other three beds. However, it can be concluded that the bedding material of horse manure, cow manure, and peat coir were successfully established well within the experimental period of eight weeks, and cow manure with the lowest C:N ratio produced the best quality bedding. As using vermicast for the initial bedding creates a very high capital cost these organic substrates provide cost-effective alternative. Therefore they would be quite appropriate to initiate an institutional scale worm farm.

  9. 45 CFR 671.13 - Waste management for the USAP.

    Science.gov (United States)

    2010-10-01

    ... otherwise taken into account in existing management plans for ships): (1) Current and planned waste management arrangements, including final disposal; (2) Current and planned arrangement for assessing the environmental effects of waste and waste management; (3) Other efforts to minimize environmental effects of...

  10. Earning management in Brazilian financial institutions

    Directory of Open Access Journals (Sweden)

    Adriana Bruscato Bortoluzzo

    2016-06-01

    Full Text Available ABSTRACT The present study aims to study earnings management in a significant sample of 123 banks in the Brazilian market between 2001 and 2012. Given the important role that banks play in a country's economy, it is important to understand that there are discretionary factors involved in the reporting of a financial institution's profitability. Credit provisioning guidelines for Brazilian financial institutions are described in Resolution 2682/99 of the National Monetary Council (Conselho Monetário Nacional. Because of the discretion allowed in this resolution, loan loss provision is used as instrument of earnings management, which is not an illegal practice, but this behavior does affect the risk perception of agents and analysts, and they should be aware of it and understand it. We found that credit provisioning is used as an earnings management mechanism to smooth the net income of Brazilian financial institutions. Brazilian banks tend to avoid not only negative net income pre-loan loss provisions and taxes, but also negative net income pre-loan loss provisions and taxes in relation to the previous period. Contrary to the previous studies, it is not clear if banks avoid lower net income pre-loan loss provisions and taxes than a given peer group.

  11. Managing Radioactive Waste. Problems and Challenges in a Globalizing World

    Energy Technology Data Exchange (ETDEWEB)

    2010-09-15

    Many countries are at a crossroads in terms of maintaining their energy supply. The existing resources of fossil fuels are dwindling, and global warming makes their use increasingly problematic. Nuclear power is now often regarded inevitable for future sustainability, energy security, and economic prosperity. There are, however, still unsolved problems regarding nuclear power. The fact that no country has established a final waste repository for spent nuclear fuel throws fundamental doubt on nuclear energy expansion. Also, the processes of globalization have transformed the nuclear industry towards increased privatization, concentration, and internationalization. This leads to uncertainties regarding the responsibility for nuclear waste management. In these circumstances is it of greatest importance that scholars from different disciplines, as well as policy makers and practitioners within the field, meet to share experiences. This conference had the general objective of producing knowledge about the challenges caused by global developmental trends, and what the management of nuclear waste implies for contemporary and future social development. Over 100 persons attended the conferences. Papers available at the conference site have been separately indexed. Several contributions were also made as PP-presentation, which are available at the site, among others the Keynote Speeches: Waiting for the Nuclear Renaissance: Exploring the Nexus of Expansion and Disposal in Europe (Jane Dawson); Applying the Risk Governance Framework: Institutional Requirements for Dealing with Nuclear Waste (Ortwin Renn); Learning to Listen: The Long Road to Legitimating Radioactive Waste Management Policies (Frans Berkhout); The Nuclear Waste Debate is Irrational but We Need Not Panic (Frank von Hippel). The conference was divided into the following sessions: Session A: Political characteristics matters; Session B: Radioactivity, geology, society. On a problem definition of HLW-management

  12. Quarterly Briefing Book on Environmental and Waste Management Activities

    Energy Technology Data Exchange (ETDEWEB)

    Brown, M.C.

    1991-06-01

    The purpose of the Quarterly Briefing Book on Environmental and Waste Management Activities is to provide managers and senior staff at the US Department of Energy-Richland Operations Office and its contractors with timely and concise information on Hanford Site environmental and waste management activities. Each edition updates the information on the topics in the previous edition, deletes those determined not to be of current interest, and adds new topics to keep up to date with changing environmental and waste management requirements and issues. Section A covers current waste management and environmental restoration issues. In Section B are writeups on national or site-wide environmental and waste management topics. Section C has writeups on program- and waste-specific environmental and waste management topics. Section D provides information on waste sites and inventories on the site. 15 figs., 4 tabs.

  13. Setting priorities for waste management strategies in developing countries.

    Science.gov (United States)

    Brunner, Paul H; Fellner, Johann

    2007-06-01

    This study aimed to determine whether the waste management systems, that are presently applied in affluent countries are appropriate solutions for waste management in less developed regions. For this purpose, three cities (Vienna, Damascus and Dhaka) which differ greatly in their gross domestic product and waste management were compared. The criteria for evaluation were economic parameters, and indicators as to whether the goals of waste management (protection of human health and the environment, the conservation of resources) were reached. Based on case studies, it was found that for regions spending 1-10 Euro capita(-1) year(-1) for waste management, the 'waste hierarchy' of prevention, recycling and disposal is not an appropriate strategy. In such regions, the improvement of disposal systems (complete collection, upgrading to sanitary landfilling) is the most cost-effective method to reach the objectives of solid waste management. Concepts that are widely applied in developed countries such as incineration and mechanical waste treatment are not suitable methods to reach waste management goals in countries where people cannot spend more than 10 Euro per person for the collection, treatment and disposal of their waste. It is recommended that each region first determines its economic capacity for waste management and then designs its waste management system according to this capacity and the goals of waste management.

  14. Solid waste management complex site development plan

    Energy Technology Data Exchange (ETDEWEB)

    Greager, T.M.

    1994-09-30

    The main purpose of this Solid Waste Management Complex Site Development Plan is to optimize the location of future solid waste treatment and storage facilities and the infrastructure required to support them. An overall site plan is recommended. Further, a series of layouts are included that depict site conditions as facilities are constructed at the SWMC site. In this respect the report serves not only as the siting basis for future projects, but provides siting guidance for Project W-112, as well. The plan is intended to function as a template for expected growth of the site over the next 30 years so that future facilities and infrastructure will be properly integrated.

  15. Solid waste management complex site development plan

    Energy Technology Data Exchange (ETDEWEB)

    Greager, T.M.

    1994-09-30

    The main purpose of this Solid Waste Management Complex Site Development Plan is to optimize the location of future solid waste treatment and storage facilities and the infrastructure required to support them. An overall site plan is recommended. Further, a series of layouts are included that depict site conditions as facilities are constructed at the SWMC site. In this respect the report serves not only as the siting basis for future projects, but provides siting guidance for Project W-112, as well. The plan is intended to function as a template for expected growth of the site over the next 30 years so that future facilities and infrastructure will be properly integrated.

  16. Summary of non-US national and international radioactive waste management programs 1981

    Energy Technology Data Exchange (ETDEWEB)

    Harmon, K.M.; Kelman, J.A.

    1981-06-01

    Many nations and international agencies are working to develop improved technology and industrial capability for neuclear fuel cycle and waste management operations. The effort in some countries is limited to research in university laboratories on treating low-level waste from reactor plant operations. In other countries, national nuclear research institutes are engaged in major programs in all phases of the fuel cycle and waste management, and there is a national effort to commercialize fuel cycle operations. Since late 1976, staff members of Pacific Northwest Laboratory have been working under US Department of Energy sponsorship to assemble and consolidate openly available information on foreign and international nuclear waste management programs and technology. This report summarizes the information collected on the status of fuel cycle and waste management programs in selected countries making major efforts in these fields as of the end of May 1981.

  17. Summary of non-US national and international radioactive waste management programs 1980

    Energy Technology Data Exchange (ETDEWEB)

    Harmon, K.M.; Kelman, J.A.; Stout, L.A.; Hsieh, K.A.

    1980-03-01

    Many nations and international agencies are working to develop improved technology and industrial capability for nuclear fuel cycle and waste management operations. The effort in some countries is limited to research in university laboratories on treating low-level waste from reactor plant operations. In other countries, national nuclear research institutes are engaged in major programs in all phases of the fuel cycle and waste management, and there is a national effort to commercialize fuel cycle operations. Since late 1976, staff members of Pacific Northwest Laboratory have been working under US Department of Energy sponsorship to assemble and consolidate openly available information on foreign and international nuclear waste management programs and technology. This report summarizes the information collected on the status of fuel cycle and waste management programs in selected countries making major efforts in these fields as of the end of January 1980.

  18. Radioactive waste management in the USSR: A review of unclassified sources. Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, D.J.

    1991-03-01

    The Soviet Union does not currently have an overall radioactive waste management program or national laws that define objectives, procedures, and standards, although such a law is being developed, according to the Soviets. Occupational health and safety does not appear to receive major attention as it does in Western nations. In addition, construction practices that would be considered marginal in Western facilities show up in Soviet nuclear power and waste management operations. The issues involved with radioactive waste management and environmental restoration are being investigated at several large Soviet institutes; however, there is little apparent interdisciplinary integration between them, or interaction with the USSR Academy of Sciences. It is expected that a consensus on technical solutions will be achieved, but it may be slow in coming, especially for final disposal of high-level radioactive wastes and environmental restoration of contaminated areas. Meanwhile, many treatment, solidification, and disposal options for radioactive waste management are being investigated by the Soviets.

  19. Radioactive waste management in the USSR: A review of unclassified sources

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, D.J.

    1991-03-01

    The Soviet Union does not currently have an overall radioactive waste management program or national laws that define objectives, procedures, and standards, although such a law is being developed, according to the Soviets. Occupational health and safety does not appear to receive major attention as it does in Western nations. In addition, construction practices that would be considered marginal in Western facilities show up in Soviet nuclear power and waste management operations. The issues involved with radioactive waste management and environmental restoration are being investigated at several large Soviet institutes; however, there is little apparent interdisciplinary integration between them, or interaction with the USSR Academy of Sciences. It is expected that a consensus on technical solutions will be achieved, but it may be slow in coming, especially for final disposal of high-level radioactive wastes and environmental restoration of contaminated areas. Meanwhile, many treatment, solidification, and disposal options for radioactive waste management are being investigated by the Soviets.

  20. On Integrity Constraints for a Waste Management Information System

    OpenAIRE

    Schreiber, D. (Dominik)

    1994-01-01

    There is a waste problem in nearly every country. A model of a waste generating system and an efficient waste management information system are the first steps to control this problem. Some countries have already enacted laws which force communities and enterprises to report annually the amounts of wastes produced. For example, the German federal state, Lower Saxony, enacted such a law in 1992. This YSSP-Project deals with a case study on the development of a waste management information syst...

  1. The determination of waste generation and composition as an essential tool to improve the waste management plan of a university.

    Science.gov (United States)

    Gallardo, A; Edo-Alcón, N; Carlos, M; Renau, M

    2016-07-01

    When many people work in organized institutions or enterprises, those institutions or enterprises become big meeting places that also have energy, water and resources necessities. One of these necessities is the correct management of the waste that is daily produced by these communities. Universities are a good example of institution where every day a great amount of people go to work or to study. But independently of their task, they use the different services at the University such as cafeterias, canteens, and photocopy and as a result of their activity a cleaning service is also needed. All these activities generate an environmental impact. Nowadays, many Universities have accepted the challenge to minimize this impact applying several measures. One of the impacts to be reduced is the waste generation. The first step to implement measures to implement a waste management plan at a University is to know the composition, the amount and the distribution of the waste generated in its facilities. As the waste composition and generation depend among other things on the climate, these variables should be analysed over one year. This research work estimates the waste generation and composition of a Spanish University, the Universitat Jaume I, during a school year. To achieve this challenge, all the waste streams generated at the University have been identified and quantified emphasizing on those which are not controlled. Furthermore, several statistical analyses have been carried out to know if the season of the year or the day of the week affect waste generation and composition. All this information will allow the University authorities to propose a set of minimization measures to enhance the current management.

  2. [Nationwide survey on radioactive waste management related to positron emission tomography in Japan].

    Science.gov (United States)

    Nagaoka, Hiroaki; Watanabe, Hiroshi; Yamaguchi, Ichiro; Fujibuchi, Toshioh; Kida, Tetsuo; Tanaka, Shinji

    2009-12-20

    A clearance system for medical radioactive solid waste has not yet been implemented in Japan. Since 2004 new regulations have allowed institutions using positron emission tomography(PET)to handle totally decayed radioactive waste as non-radioactive waste after decay-in-storage. It was expected that this new regulation would mediate the installation of clearance systems in Japan. In order to assess the current situation of radiation safety management in PET institutions, we conducted a nationwide survey. The study design was a cross-sectional descriptive study conducted by questionnaire. The subjects of this survey were all the PET institutions in Japan. Among 224 institutes, 128 institutes are equipped with cyclotrons and 96 institutes are not. The number of returned questionnaires was 138. Among institutes that are using delivered radiopharmaceuticals, 80% treat their waste as non-radioactive according to the new regulation. The impact of new regulations for reducing radioactive waste in PET institutes without a cyclotron was estimated at about $400 thousand per year. The main concern of medical institutes was assessment of the contamination caused by by-products of radioactive nuclides generated in target water during the operation of a cyclotron. It was thought that a rational rule based on scientific risk management should be established because these by-products of radioactive nuclides are negligible for radiation safety. New regulation has had a good influence on medical PET institutes, and it is expected that a clearance system for medical radioactive waste will be introduced in the near future, following these recent experiences in PET institutes.

  3. Waste Management with Earth Observation Technologies

    Science.gov (United States)

    Margarit, Gerard; Tabasco, A.

    2010-05-01

    The range of applications where Earth Observation (EO) can be useful has been notably increased due to the maturity reached in the adopted technology and techniques. In most of the cases, EO provides a manner to remotely monitor particular variables and parameters with a more efficient usage of the available resources. Typical examples are environmental (forest, marine, resources…) monitoring, precision farming, security and surveillance (land, maritime…) and risk / disaster management (subsidence, volcanoes…). In this context, this paper presents a methodology to monitor waste disposal sites with EO. In particular, the explored technology is Interferometric Synthetic Aperture Radar (InSAR), which applies the interferometric concept to SAR images. SAR is an advanced radar concept able to acquire 2D coherent microwave reflectivity images for large scenes (tens of thousands kilometres) with fine resolution (Digital Elevation Models (DEM) that provide key information about the tri-dimensional configuration of a scene, that is, a height map of the scene. In practice, this represents an alternative way to obtain the same information than in-situ altimetry can provide. In the case of waste management, InSAR has been used to evaluate the potentiality of EO to monitor the disposed volume along a specific range of time. This activity has been developed in collaboration with the Agència de Resídus de Catalunya (ARC) (The Waste Agency of Catalonia), Spain, in the framework of a pilot project. The motivation comes from the new law promoted by the regional Government that taxes the volume of disposed waste. This law put ARC in duty to control that the real volume matches the numbers provided by the waste processing firms so that they can not commit illegal actions. Right now, this task is performed with in-situ altimetry. But despite of the accurate results, this option is completely inefficient and limits the numbers of polls that can be generated and the number of

  4. Waste management of ENM-containing solid waste in Europe

    DEFF Research Database (Denmark)

    Heggelund, Laura Roverskov; Boldrin, Alessio; Hansen, Steffen Foss

    2015-01-01

    Little research has been done to determine emissions of engineered nanomaterials (ENM) from currently available nano-enabled consumer products. While ENM release is expected to occur throughout the life cycle of the products, this study focuses on the product end-of-life (EOL) phase. We used the ....... The results of this study may be used for the environmental and human health risk assessment of nanowaste, and to assist future regulatory and management decisions.......Little research has been done to determine emissions of engineered nanomaterials (ENM) from currently available nano-enabled consumer products. While ENM release is expected to occur throughout the life cycle of the products, this study focuses on the product end-of-life (EOL) phase. We used...... the Danish nanoproduct inventory (www.nanodb.dk) to get a general understanding of the fate of ENM during waste management in the European context. This was done by: 1. assigning individual products to an appropriate waste material fraction, 2. identifying the ENM in each fraction, 3. comparing identified...

  5. Environmental impacts of waste management in the hospitality industry: Creating a waste management plan for Bergvik Kartano

    OpenAIRE

    Adigwe, Christopher

    2014-01-01

    Many hospitality industries find it difficult to control or manage solid wastes, such as food, containers, paper, cardboard and scrap metals, which are waste generated on a daily basis depending on the industry. Most hospitality industries tend to lag behind when it comes to the collection of waste. Only a fraction of the¬¬ waste collected receives proper disposal. When waste is not collected sufficiently and the disposal is inappropriate the waste can accumulate and cause water, land and air...

  6. The Waste Management in Romania. A Case Study: WMS Implementation

    Directory of Open Access Journals (Sweden)

    OROIAN I.

    2009-12-01

    Full Text Available The present study aims to discuss issues related to the degree of implementation of national waste managementstrategy by emphasizing progress in waste management at national level in three years after its development. In 2004,Romania has developed national policy documents as Waste Management Strategy and National Waste ManagementPlan (WMS, WMSP based on the ”waste hierarchy”. In the four years after the initiation of this process resultsdemonstrate the advantages of using this system in ensuring a sustainable solution to eliminate pollution from waste.Also, the amount of waste recovered at the start of the period - 2004, occupies a proportion of 5.08% of total while inthe end of 2007, the degree of recovery reached 7%. Concerning waste disposal, this was achieved by storage. Thereason is the lack of incinerators for thermal treatment of waste. Traditional collection of household and similar waste inthe mixture, is the most common, accounting for a share of about 97%.

  7. Management of offshore wastes in the United States.

    Energy Technology Data Exchange (ETDEWEB)

    Veil, J. A.

    1998-10-22

    During the process of finding and producing oil and gas in the offshore environment operators generate a variety of liquid and solid wastes. Some of these wastes are directly related to exploration and production activities (e.g., drilling wastes, produced water, treatment workover, and completion fluids) while other types of wastes are associated with human occupation of the offshore platforms (e.g., sanitary and domestic wastes, trash). Still other types of wastes can be considered generic industrial wastes (e.g., scrap metal and wood, wastes paints and chemicals, sand blasting residues). Finally, the offshore platforms themselves can be considered waste materials when their useful life span has been reached. Generally, offshore wastes are managed in one of three ways--onsite discharge, injection, or transportation to shore. This paper describes the regulatory requirements imposed by the government and the approaches used by offshore operators to manage and dispose of wastes in the US.

  8. Preliminary study for the management of construction and demolition waste.

    Science.gov (United States)

    Kourmpanis, B; Papadopoulos, A; Moustakas, K; Stylianou, M; Haralambous, K J; Loizidou, M

    2008-06-01

    This paper refers to the management of the construction and demolition (C&D) waste since, according to the EU Waste Strategy, C&D waste is considered to be one of the priority waste streams and appropriate actions need to be taken with respect to its effective management. Initially, the paper presents the state-of-the-art of the problem of C&D waste, including the amount and composition of C&D waste in EU countries, differences in the characteristics of this waste stream depending on its origin, as well as collection and management practices that are applied. A methodology is described for the estimation of the quantities of the waste stream under examination, since in most cases quantitative primary data is not available. Next, the fundamentals for the development of an integrated scheme for the management of C&D waste are presented and discussed, such as appropriate demolition procedures and location of waste management (off-site waste management, on-site waste management, direct on-site recovery, centralized on-site recovery). Finally, taking into consideration all relevant parameters, alternative systems that could be applied for the management of the C&D waste are suggested.

  9. Mine Waste Characterization, Management and Remediation

    Directory of Open Access Journals (Sweden)

    Karen A. Hudson-Edwards

    2015-01-01

    Full Text Available Mining is a vital part of the Global economy, but the extraction of metals, metalloids, and other mineral products generates vast quantities of liquid and solid waste. Currently the volume is estimated at several thousand million tons per annum, but is increasing exponentially as demand and exploitation of lower-grade deposits increases. The high concentrations of potentially toxic elements in these wastes can pose risks to ecosystems and humans, but these risks can be mitigated by implementing appropriate management or remediation schemes. Although there are a large number of such schemes available, there is still a need to research the processes, products, and effectiveness of implementation, as well as the nature of the mine wastes themselves. This Special Issue is aimed at bringing together studies in the areas of mine waste characterization, management, and remediation, to review the current state of knowledge and to develop improvements in current schemes. Fourteen manuscripts are published for this Special Issue, and these are summarized below.[...

  10. Resource Recovery and Reuse in Organic Solid Waste Management

    NARCIS (Netherlands)

    Lens, P.N.L.; Hamelers, H.V.M.; Hoitink, H.; Bidlingmaier, W.

    2004-01-01

    Uncontrolled spreading of waste materials leads to health problems and environmental damage. To prevent these problems a waste management infrastructure has been set to collect and dispose of the waste, based on a hierarchy of three principles: waste prevention, recycling/reuse, and final disposal.

  11. Resource Recovery and Reuse in Organic Solid Waste Management

    NARCIS (Netherlands)

    Lens, P.N.L.; Hamelers, H.V.M.; Hoitink, H.; Bidlingmaier, W.

    2004-01-01

    Uncontrolled spreading of waste materials leads to health problems and environmental damage. To prevent these problems a waste management infrastructure has been set to collect and dispose of the waste, based on a hierarchy of three principles: waste prevention, recycling/reuse, and final disposal.

  12. Best Practice of Construction Waste Management and Minimization

    OpenAIRE

    Khor Jie Cheng; Md Azree Othuman Mydin

    2014-01-01

    Material management is an important issue as seen in construction waste management. Best practice of material management is accompanied by various benefits which are acknowledged by several studies. The site layout has particular effects on both materials and their waste through effective waste management practice. Ignoring the benefits of material management could result in a daily reduction in productivity of up to 40% by material wastage. Thus, the benefits of effectiv...

  13. 2002 Report to Congress: Evaluating the Consensus Best Practices Developed through the Howard Hughes Medical Institute’s Collaborative Hazardous Waste Management Demonstration Project

    Science.gov (United States)

    This report discusses a collaborative project initiated by the Howard Hughes Medical Institute (HHMI) to establish and evaluate a performance-based approach to management of hazardous wastes in the laboratories of academic research institutions.

  14. Waste Management in Industrial Construction: Investigating Contributions from Industrial Ecology

    Directory of Open Access Journals (Sweden)

    Larissa A. R. U. Freitas

    2017-07-01

    Full Text Available The need for effective construction waste management is growing in importance, due to the increasing generation of construction waste and to its adverse impacts on the environment. However, despite the numerous studies on construction waste management, recovery of construction waste through Industrial Symbiosis and the adoption of other inter-firm practices, comprised within Industrial Ecology field of study, have not been fully explored. The present research aims to investigate Industrial Ecology contributions to waste management in industrial construction. The waste management strategies adopted in two industrial construction projects in Brazil are analyzed. The main waste streams generated are identified, recycling and landfilling diversion rates are presented and waste recovery through Industrial Symbiosis is discussed. A SWOT analysis was carried out. Results demonstrate that 9% of the waste produced in one of the projects was recovered through Industrial Symbiosis, while in the other project, waste recovery through Industrial Symbiosis achieved the rate of 30%. These data reveal Industrial Symbiosis’ potential to reduce landfilling of industrial construction wastes, contributing to waste recovery in construction. In addition, results show that industrial construction projects can benefit from the following synergies common in Industrial Ecology place-based approaches: centralized waste management service, shared waste management infrastructure and administrative simplification.

  15. Managing conscientious objection in health care institutions.

    Science.gov (United States)

    Wicclair, Mark R

    2014-09-01

    It is argued that the primary aim of institutional management is to protect the moral integrity of health professionals without significantly compromising other important values and interests. Institutional policies are recommended as a means to promote fair, consistent, and transparent management of conscience-based refusals. It is further recommended that those policies include the following four requirements: (1) Conscience-based refusals will be accommodated only if a requested accommodation will not impede a patient's/surrogate's timely access to information, counseling, and referral. (2) Conscience-based refusals will be accommodated only if a requested accommodation will not impede a patient's timely access to health care services offered within the institution. (3) Conscience-based refusals will be accommodated only if the accommodation will not impose excessive burdens on colleagues, supervisors, department heads, other administrators, or the institution. (4) Whenever feasible, health professionals should provide advance notification to department heads or supervisors. Formal review may not be required in all cases, but when it is appropriate, several recommendations are offered about standards and the review process. A key recommendation is that when reviewing an objector's reasons, contrary to what some have proposed, it is not appropriate to adopt an adversarial approach modelled on military review boards' assessments of requests for conscientious objector status. According to the approach recommended, the primary function of reviews of objectors' reasons is to engage them in a process of reflecting on the nature and depth of their objections, with the objective of facilitating moral clarity on the part of objectors rather than enabling department heads, supervisors, or ethics committees to determine whether conscientious objections are sufficiently genuine.

  16. Integrated solid waste management of Seattle, Washington

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-11-01

    The subject document reports the results of an in-depth investigation of the fiscal year 1992 cost of the City of Seattle, Washington, integrated municipal solid waste management (IMSWM) system, the energy consumed to operate the system, and the environmental performance requirements for each of the system`s waste-processing and disposal facilities. Actual data from records kept by participants is reported in this document. Every effort was made to minimize the use of assumptions, and no attempt is made to interpret the data reported. Analytical approaches are documented so that interested analysts may perform manipulation or further analysis of the data. As such, the report is a reference document for MSW management professionals who are interested in the actual costs and energy consumption for a one-year period, of an operating IMSWM systems.

  17. Integrated solid waste management of Sevierville, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-11-01

    The subject document reports the results of an in-depth investigation of the fiscal year 1992 cost of the City of Sevierville, Tennessee integrated municipal solid waste management (IMSWM) system, the energy consumed to operate the system, and the environmental performance requirements for each of the system`s waste-processing and disposal facilities. Actual data from records kept by participants is reported in this document. Every effort was made to minimize the use of assumptions, and no attempt is made to interpret the data reported. Analytical approaches are documented so that interested analysts may perform manipulation or further analysis of the data. As such, the report is a reference document for MSW management professionals who are interested in the actual costs and energy consumption for a one-year period, of an operating IMSWM systems.

  18. Waste Isolation Pilot Plant, Land Management Plan

    Energy Technology Data Exchange (ETDEWEB)

    1993-12-01

    To reflect the requirement of section 4 of the Wastes Isolation Pilot Plant Land Withdrawal Act (the Act) (Public Law 102-579), this land management plan has been written for the withdrawal area consistent with the Federal Land Policy and Management Act of 1976. The objective of this document, per the Act, is to describe the plan for the use of the withdrawn land until the end of the decommissioning phase. The plan identifies resource values within the withdrawal area and promotes the concept of multiple-use management. The plan also provides opportunity for participation in the land use planning process by the public and local, State, and Federal agencies. Chapter 1, Introduction, provides the reader with the purpose of this land management plan as well as an overview of the Waste Isolation Pilot Plant. Chapter 2, Affected Environment, is a brief description of the existing resources within the withdrawal area. Chapter 3, Management Objectives and Planned Actions, describes the land management objectives and actions taken to accomplish these objectives.

  19. Mixed Waste Management Facility Groundwater Monitoring Report

    Energy Technology Data Exchange (ETDEWEB)

    Chase, J.

    1998-03-01

    During fourth quarter 1997, eleven constituents exceeded final Primary Drinking Water Standards (PDWS) in groundwater samples from downgradient monitoring wells at the Mixed Waste Management Facility. No constituents exceeded final PDWS in samples from upgradient monitoring wells. As in previous quarters, tritium and trichloroethylene were the most widespread elevated constituents. The groundwater flow directions and rates in the three hydrostratigraphic units were similar to those of previous quarters.

  20. Waste management outlook for mountain regions: Sources and solutions.

    Science.gov (United States)

    Semernya, Larisa; Ramola, Aditi; Alfthan, Björn; Giacovelli, Claudia

    2017-09-01

    Following the release of the global waste management outlook in 2015, the United Nations Environment Programme (UN Environment), through its International Environmental Technology Centre, is elaborating a series of region-specific and thematic waste management outlooks that provide policy recommendations and solutions based on current practices in developing and developed countries. The Waste Management Outlook for Mountain Regions is the first report in this series. Mountain regions present unique challenges to waste management; while remoteness is often associated with costly and difficult transport of waste, the potential impact of waste pollutants is higher owing to the steep terrain and rivers transporting waste downstream. The Outlook shows that waste management in mountain regions is a cross-sectoral issue of global concern that deserves immediate attention. Noting that there is no 'one solution fits all', there is a need for a more landscape-type specific and regional research on waste management, the enhancement of policy and regulatory frameworks, and increased stakeholder engagement and awareness to achieve sustainable waste management in mountain areas. This short communication provides an overview of the key findings of the Outlook and highlights aspects that need further research. These are grouped per source of waste: Mountain communities, tourism, and mining. Issues such as waste crime, plastic pollution, and the linkages between exposure to natural disasters and waste are also presented.

  1. Radioactive waste management complex low-level waste radiological composite analysis

    Energy Technology Data Exchange (ETDEWEB)

    McCarthy, J.M.; Becker, B.H.; Magnuson, S.O.; Keck, K.N.; Honeycutt, T.K.

    1998-05-01

    The composite analysis estimates the projected cumulative impacts to future members of the public from the disposal of low-level radioactive waste (LLW) at the Idaho National Engineering and Environmental Laboratory (INEEL) Radioactive Waste Management Complex (RWMC) and all other sources of radioactive contamination at the INEEL that could interact with the LLW disposal facility to affect the radiological dose. Based upon the composite analysis evaluation, waste buried in the Subsurface Disposal Area (SDA) at the RWMC is the only source at the INEEL that will significantly interact with the LLW facility. The source term used in the composite analysis consists of all historical SDA subsurface disposals of radionuclides as well as the authorized LLW subsurface disposal inventory and projected LLW subsurface disposal inventory. Exposure scenarios evaluated in the composite analysis include all the all-pathways and groundwater protection scenarios. The projected dose of 58 mrem/yr exceeds the composite analysis guidance dose constraint of 30 mrem/yr; therefore, an options analysis was conducted to determine the feasibility of reducing the projected annual dose. Three options for creating such a reduction were considered: (1) lowering infiltration of precipitation through the waste by providing a better cover, (2) maintaining control over the RWMC and portions of the INEEL indefinitely, and (3) extending the period of institutional control beyond the 100 years assumed in the composite analysis. Of the three options investigated, maintaining control over the RWMC and a small part of the present INEEL appears to be feasible and cost effective.

  2. Oak Ridge National Laboratory Waste Management Plan. Rev. 1

    Energy Technology Data Exchange (ETDEWEB)

    None

    1991-12-01

    The goal of the Oak Ridge National Laboratory (ORNL) Waste Management Program is the protection of workers, the public, and the environment. A vital aspect of this goal is to comply with all applicable state, federal, and DOE requirements. Waste management requirements for DOE radioactive wastes are detailed in DOE Order 5820.2A, and the ORNL Waste Management Program encompasses all elements of this order. The requirements of this DOE order and other appropriate DOE orders, along with applicable Tennessee Department of Environment and Conservation (TDEC) and US Environmental Protection Agency (EPA) rules and regulations, provide the principal source of regulatory guidance for waste management operations at ORNL. The objective of the Oak Ridge National Laboratory Waste Management Plan is to compile and to consolidate information annually on how the ORNL Waste Management is to compile and to consolidate information annually on how the ORNL Waste Management Program is conducted, which waste management facilities are being used to manage wastes, what forces are acting to change current waste management systems, what activities are planned for the forthcoming fiscal year (FY), and how all of the activities are documented.

  3. Waste management system alternatives for treatment of wastes from spent fuel reprocessing

    Energy Technology Data Exchange (ETDEWEB)

    McKee, R.W.; Swanson, J.L.; Daling, P.M.; Clark, L.L.; Craig, R.A.; Nesbitt, J.F.; McCarthy, D.; Franklin, A.L.; Hazelton, R.F.; Lundgren, R.A.

    1986-09-01

    This study was performed to help identify a preferred TRU waste treatment alternative for reprocessing wastes with respect to waste form performance in a geologic repository, near-term waste management system risks, and minimum waste management system costs. The results were intended for use in developing TRU waste acceptance requirements that may be needed to meet regulatory requirements for disposal of TRU wastes in a geologic repository. The waste management system components included in this analysis are waste treatment and packaging, transportation, and disposal. The major features of the TRU waste treatment alternatives examined here include: (1) packaging (as-produced) without treatment (PWOT); (2) compaction of hulls and other compactable wastes; (3) incineration of combustibles with cementation of the ash plus compaction of hulls and filters; (4) melting of hulls and failed equipment plus incineration of combustibles with vitrification of the ash along with the HLW; (5a) decontamination of hulls and failed equipment to produce LLW plus incineration and incorporation of ash and other inert wastes into HLW glass; and (5b) variation of this fifth treatment alternative in which the incineration ash is incorporated into a separate TRU waste glass. The six alternative processing system concepts provide progressively increasing levels of TRU waste consolidation and TRU waste form integrity. Vitrification of HLW and intermediate-level liquid wastes (ILLW) was assumed in all cases.

  4. PLANNING OF INTEGRATED/SUSTAINABLE SOLID WASTE MANAGEMENT (ISWM – MODEL OF INTEGRATED SOLID WASTE MANAGEMENT IN REPUBLIKA SRPSKA/B&H

    Directory of Open Access Journals (Sweden)

    Milan Topić

    2015-11-01

    Full Text Available Municipal solid waste management (MSWM has become an important issue for countries around the world. The challenges are particularly notable in developing and transitional countries reflected mainly in inappropriate management, underdeveloped technology, an unfavorable economic situation and the lack of environmental awareness, causing a tremendous environmental impact. Today, various models are applied to analyze solid waste management systems from the regional to the municipal levels. Understanding the mechanisms and factors that currently drive the development of waste management is a crucial step for moving forward and planning sustainable waste management systems. The main objective of this paper is to apply the ISWM model, which is based on the Life-Cycle approach and follows the analytical framework methodology, to the research region. The transdisciplinary research framework was empirically tested and subsequently applied in the region Republika Srpska. Using the benchmark methodology, based on environmental, institutional and economical sustainability, the waste management is summarized in assessment profile. The results of the conducted analyses and the application of the developed model can be used further as a basis for the proposal of further strategic, political and managerial changes and support decision makers and stakeholders to handle waste in a cost-efficient and environmentally sound way

  5. 77 FR 26991 - Low-Level Radioactive Waste Management Issues

    Science.gov (United States)

    2012-05-08

    ... REGULATORY COMMISSION 10 CFR Part 61 RIN 3150-AI92 Low-Level Radioactive Waste Management Issues AGENCY... to the regulatory framework for the management of commercial low-level radioactive waste (LLW). The... Regulations (10 CFR) Part 61, ``Licensing Requirements for Land Disposal of Radioactive Waste.'' These...

  6. 77 FR 10401 - Low-Level Radioactive Waste Management Issues

    Science.gov (United States)

    2012-02-22

    ...; ] NUCLEAR REGULATORY COMMISSION 10 CFR Part 61 RIN-3150-AI92 Low-Level Radioactive Waste Management Issues... possible revisions to the regulatory framework for the management of commercial low-level radioactive waste... Disposal of Radioactive Waste.'' These regulations were published in the Federal Register on December 27...

  7. Certain hospital waste management practices in Isfahan, Iran

    Directory of Open Access Journals (Sweden)

    Ali Ferdowsi

    2012-01-01

    Conclusions: This study may create awareness regarding the magnitude of the problem of waste management in hospitals of Isfahan and may stimulate interests for systematic control efforts for hospital waste disposal. Hospital waste management cannot succeed without documented plans, certain equipment, defined staff trainings, and periodic evaluations.

  8. Comparative analysis of solid waste management in 20 cities

    NARCIS (Netherlands)

    Wilson, D.C.; Rodic-Wiersma, L.; Scheinberg, A.; Velis, C.A.; Alabaster, G.

    2012-01-01

    This paper uses the ‘lens’ of integrated and sustainable waste management (ISWM) to analyse the new data set compiled on 20 cities in six continents for the UN-Habitat flagship publication Solid Waste Management in the World’s Cities. The comparative analysis looks first at waste generation rates

  9. 40 CFR 60.35e - Waste management guidelines.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Waste management guidelines. 60.35e... (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Emission Guidelines and Compliance Times for Hospital/Medical/Infectious Waste Incinerators § 60.35e Waste management guidelines. For approval, a...

  10. E-waste: Environmental Problems and Current Management

    Directory of Open Access Journals (Sweden)

    D. Aktsoglou

    2010-01-01

    Full Text Available In this paper the environmental problems related with the discarded electronic appliances, known as e-waste, are reviewed.Moreover, the current and the future production of e-waste, the potential environmental problems associated with theirdisposal and management practices are discussed whereas the existing e-waste management schemes in Greece and othercountries (Japan, Switzerland are also quoted.

  11. Fish waste management by conversion into heterotrophic bacteria biomass

    NARCIS (Netherlands)

    Schneider, O.

    2006-01-01

    Just as all other types of animal production, aquaculture produces waste. This waste can be managed outside the production system, comparable to terrestrial husbandry systems. However, particularly recirculation aquaculture systems (RAS) are suited to manage waste within the system. In this case, pr

  12. Targeted improvement of radioactive waste management in Ukraine; Zielgerichtete Verbesserung des Managements radioaktiver Abfaelle in der Ukraine

    Energy Technology Data Exchange (ETDEWEB)

    Jung, H.G.; Koever, M. [NUKEM Technologies GmbH, Alzenau (Germany)

    2013-01-15

    Fifteen nuclear generating units in Ukraine contribute more than 50 % to the country's electricity production. However, the management of radioactive waste arisings in all categories does not keep pace with this development. Both in nuclear power plants and in the interim and final storage required, waste management has not yet been developed far enough. At the present time, the radioactive waste arising in plant operation is conditioned either insufficiently or incompletely. It is stored on the sites of nuclear power plants. Adequate storage facilities are available only to a limited extent. An effective, comprehensive strategy of downstream management of that waste is missing. As a consequence, potential temporary shutdowns of reactors could jeopardize the power supply situation of the entire country. The situation is aggravated further by more radioactive waste coming from the Chernobyl nuclear power station and from other sources. The nuclear power plants currently in operation are by far the biggest waste producers today. To allow Ukraine to fall back on Western expert knowledge in managing its radioactive waste, NUKEM Technologies GmbH has been commissioned to support the competent Ukrainian institutions in building up a targeted, comprehensive and effective waste management structure. (orig.)

  13. Importance of waste composition for Life Cycle Assessment of waste management solutions

    DEFF Research Database (Denmark)

    Bisinella, Valentina; Götze, Ramona; Conradsen, Knut

    2017-01-01

    The composition of waste materials has fundamental influence on environmental emissions associated with waste treatment, recycling and disposal, and may play an important role also for the Life Cycle Assessment (LCA) of waste management solutions. However, very few assessments include effects...... of the waste composition and waste LCAs often rely on poorly justified data from secondary sources. This study systematically quantifiesy the influence and uncertainty on LCA results associated with selection of waste composition data. Three archetypal waste management scenarios were modelled with the waste...... LCA model EASETECH based on detailed waste composition data from the literature. The influence from waste composition data on the LCA results was quantified with a step-wise Global Sensitivity Analysis (GSA) approach involving contribution, sensitivity, uncertainty and discernibility analyses...

  14. Assessing the management of healthcare waste in Hawassa city, Ethiopia.

    Science.gov (United States)

    Israel Deneke Haylamicheal; Mohamed Aqiel Dalvie; Biruck Desalegn Yirsaw; Hanibale Atsbeha Zegeye

    2011-08-01

    Inadequate management of healthcare waste is a serious concern in many developing countries due to the risks posed to human health and the environment. This study aimed to evaluate healthcare waste management in Hawassa city, Ethiopia. The study was conducted in nine healthcare facilities (HCFs) including hospitals (four), health centres (two) and higher clinics (three) in two phases, first to assess the waste management aspect and second to determine daily waste generation rate. The result showed that the median quantity of waste generated at the facilities was 3.46 kg bed(-1) day(-1) (range: 1.48-8.19 kg bed(-1) day(-1)). The quantity of waste per day generated at a HCF increased as occupancy increased (p waste generated at government HCFs was more than at private HCFs (p waste (20-63.1%) generated at the different HCFs was much higher than the WHO recommendation (10-25%). There was no waste segregation in most HCFs and only one used a complete color coding system. Solid waste and wastewater were stored, transported, treated and disposed inappropriately at all HCFs. Needle-stick injuries were prevalent in 25-100% of waste handlers employed at these HCFs. Additionally, low levels of training and awareness of waste legislation was prevalent amongst staff. The study showed that management of healthcare waste at HCFs to be poor. Waste management practices need to be improved through improved legislation and enforcement, and training of staff in the healthcare facilities in Hawassa.

  15. Mine waste management legislation. Gold mining areas in Romania

    Science.gov (United States)

    Maftei, Raluca-Mihaela; Filipciuc, Constantina; Tudor, Elena

    2014-05-01

    Problems in the post-mining regions of Eastern Europe range from degraded land and landscapes, huge insecure dumps, surface cracks, soil pollution, lowering groundwater table, deforestation, and damaged cultural potentials to socio economic problems like unemployment or population decline. There is no common prescription for tackling the development of post-mining regions after mine closure nor is there a common definition of good practices or policy in this field. Key words : waste management, legislation, EU Directive, post mining Rosia Montana is a common oh 16 villages; one of them is also called Rosia Montana, a traditional mining Community, located in the Apuseni Mountains in the North-Western Romania. Beneath part of the village area lays one of the largest gold and silver deposits in Europe. In the Rosia Montana area mining had begun ever since the height of the Roman Empire. While the modern approach to mining demands careful remediation of environmental impacts, historically disused mines in this region have been abandoned, leaving widespread environmental damage. General legislative framework Strict regulations and procedures govern modern mining activity, including mitigation of all environmental impacts. Precious metals exploitation is put under GO no. 190/2000 re-published in 2004. The institutional framework was established and organized based on specific regulations, being represented by the following bodies: • The Ministry of Economy and Commerce (MEC), a public institution which develops the Government policy in the mining area, also provides the management of the public property in the mineral resources area; • The National Agency for the development and implementation of the mining Regions Reconstruction Programs (NAD), responsible with promotion of social mitigation measures and actions; • The Office for Industry Privatization, within the Education Ministry, responsible with privatization of companies under the CEM; • The National

  16. Report: integrated industrial waste management systems in China.

    Science.gov (United States)

    Zhang, Wenxin; Roberts, Peter

    2007-06-01

    Various models of urban sustainable development have been introduced in recent years and some of these such as integrated waste management have been proved to be of particular value. Integrated industrial waste management systems include all the administrative, financial, legal, planning and engineering functions involved in solutions to the problems of industrial waste. Even though the pace of the improvement made to China's industrial waste management capacity is impressive, China has been unable to keep up with the increasing demand for waste management. This paper will evaluate the application of integrated industrial waste management systems in promoting urban sustainable development in the context of three case study cities in China (positive case, average case and negative case) by identifying and accessing the factors that affect the success or failure of integrated industrial waste management systems.

  17. Stock flow diagram analysis on solid waste management in Malaysia

    Science.gov (United States)

    Zulkipli, Faridah; Nopiah, Zulkifli Mohd; Basri, Noor Ezlin Ahmad; Kie, Cheng Jack

    2016-10-01

    The effectiveness on solid waste management is a major importance to societies. Numerous generation of solid waste from our daily activities has risked for our communities. These due to rapid population grow and advance in economic development. Moreover, the complexity of solid waste management is inherently involved large scale, diverse and element of uncertainties that must assist stakeholders with deviating objectives. In this paper, we proposed a system dynamics simulation by developing a stock flow diagram to illustrate the solid waste generation process and waste recycle process. The analysis highlights the impact on increasing the number of population toward the amount of solid waste generated and the amount of recycled waste. The results show an increment in the number of population as well as the amount of recycled waste will decrease the amount of waste generated. It is positively represent the achievement of government aim to minimize the amount of waste to be disposed by year 2020.

  18. Nuclear waste management. Quarterly progress report, April-June 1981

    Energy Technology Data Exchange (ETDEWEB)

    Chikalla, T.D.; Powell, J.A.

    1981-09-01

    Reports and summaries are presented for the following: high-level waste process development; alternative waste forms; TMI zeolite vitrification demonstration program; nuclear waste materials characterization center; TRU waste immobilization; TRU waste decontamination; krypton implantation; thermal outgassing; iodine-129 fixation; NWVP off-gas analysis; monitoring and physical characterization of unsaturated zone transport; well-logging instrumentation development; verification instrument development; mobility of organic complexes of radionuclides in soils; handbook of methods to decrease the generation of low-level waste; waste management system studies; waste management safety studies; assessment of effectiveness of geologic isolation systems; waste/rock interactions technology program; high-level waste form preparation; development of backfill materials; development of structural engineered barriers; disposal charge analysis; and analysis of spent fuel policy implementation.

  19. Hospital waste management in developing countries: A mini review.

    Science.gov (United States)

    Ali, Mustafa; Wang, Wenping; Chaudhry, Nawaz; Geng, Yong

    2017-06-01

    Health care activities can generate different kinds of hazardous wastes. Mismanagement of these wastes can result in environmental and occupational health risks. Developing countries are resource-constrained when it comes to safe management of hospital wastes. This study summarizes the main issues faced in hospital waste management in developing countries. A review of the existing literature suggests that regulations and legislations focusing on hospital waste management are recent accomplishments in many of these countries. Implementation of these rules varies from one hospital to another. Moreover, wide variations exist in waste generation rates within as well as across these countries. This is mainly attributable to a lack of an agreement on the definitions and the methodology among the researchers to measure such wastes. Furthermore, hospitals in these countries suffer from poor waste segregation, collection, storage, transportation and disposal practices, which can lead to occupational and environmental risks. Knowledge and awareness regarding proper waste management remain low in the absence of training for hospital staff. Moreover, hospital sanitary workers, and scavengers, operate without the provision of safety equipment or immunization. Unsegregated waste is illegally recycled, leading to further safety risks. Overall, hospital waste management in developing countries faces several challenges. Sustainable waste management practices can go a long way in reducing the harmful effects of hospital wastes.

  20. Integrated solid waste management of Springfield, Massachusetts

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-11-01

    The subject document reports the results of an in-depth investigation of the fiscal year 1993 cost of the city of Springfield, Massachusetts, integrated municipal solid waste management (IMSWM) system, the energy consumed to operate the system, and the environmental performance requirements for each of the system`s waste-processing and disposal facilities. The document reports actual data from records kept by participants. Every effort was made to minimize the use of assumptions, and no attempt is made to interpret the data reported. Analytical approaches are documented so that interested analysts may perform manipulation or further analysis of the data. As such, the report is a reference document for Municipal Solid Waste management professionals who are interested in the actual costs and energy consumption, for a 1-year period, of an operating IMSWM system. The report is organized into two main parts. The first part is the executive summary and case study portion of the report. The executive summary provides a basic description of the study area and selected economic and energy information. Within the case study are detailed descriptions of each component operating during the study period; the quantities of solid waste collected, processed, and marketed within the study boundaries; the cost of managing MSW in Springfield; an energy usage analysis; a review of federal, state, and local environmental requirement compliance; a reference section; and a glossary of terms. The second part of the report focuses on a more detailed discourse on the above topics. In addition, the methodology used to determine the economic costs and energy consumption of the system components is found in the second portion of this report. The methodology created for this project will be helpful for those professionals who wish to break out the costs of their own integrated systems.

  1. Issues for small businesses with waste management.

    Science.gov (United States)

    Redmond, Janice; Walker, Elizabeth; Wang, Calvin

    2008-07-01

    Participation by small and medium enterprise (SME) in corporate social responsibility issues has been found to be lacking. This is a critical issue, as individually SMEs may have little impact on the environment but their collective footprint is significant. The management style and ethical stance of the owner-manager affects business decision making and therefore has a direct impact on the environmental actions of the business. Although adoption of environmental practices to create competitive advantage has been advocated, many businesses see implementation as a cost which cannot be transferred to their customers. After a brief review of pertinent literature this paper reports on an exploratory investigation into the issue. Results show that whereas owner-managers of small enterprises express concern regarding the environment, this does not then translate into better waste management practices.

  2. The Perception of the Langkawi Community on Solid Waste Management

    Directory of Open Access Journals (Sweden)

    Noor Khafazilah Abdullah

    2014-08-01

    Full Text Available The process of disposing solid wastes should be systematic and efficient. Various pollution may occur if solid wastes are not properly disposed. Pollution would not only affect the naturalenvironment but also exposed the community to various diseases. Therefore the community should be given exposure to practice efficient solid waste disposalfor their own benefits.Given the signficance of proper waste disposal issues for tourism locations, this study investigated the management of solid waste disposal at the renown Langkawi Island. The focus was on the understanding and awareness of the community of the locals, business people and tourists on the island.The findings indicated that thecommunity inPulau Langkawi was aware of the importance of efficient solid waste management. Yet, theirpractices differed in terms of propriety or impropriety of the method in the perspectives of solid waste management. These practices were found to be influenced by their level of knowledge on waste management issues and their educational background.

  3. feasibility study on solid waste management in port harcourt ...

    African Journals Online (AJOL)

    user

    system is still being used instead of the integrated solid waste management system (1SWMS) and that about 75% of the ..... passengers from dropping off their waste via the window, which ... application of geographical information system in.

  4. E-waste: Environmental Problems and Current Management

    National Research Council Canada - National Science Library

    D. Aktsoglou; K. Angelakoglou; G. Gaidajis

    2010-01-01

    ..., are reviewed.Moreover, the current and the future production of e-waste, the potential environmental problems associated with theirdisposal and management practices are discussed whereas the existing e-waste...

  5. Sustainable Management of Domestic Solid Wastes in Developing ...

    African Journals Online (AJOL)

    Sustainable Management of Domestic Solid Wastes in Developing Countries: ... of wastes and assess the environmental concerns of the community and their ... The urban community was concerned about health and environmental effects of ...

  6. Arsenic: A Roadblock to Potential Animal Waste Management Solutions

    National Research Council Canada - National Science Library

    Keeve E. Nachman; Jay P. Graham; Lance B. Price; Ellen K. Silbergeld

    2005-01-01

    .... The presence of inorganic arsenic in incinerator ash and pelletized waste sold as fertilizer creates opportunities for population exposures that did not previously exist. The removal of arsenic from animal feed is a critical step toward safe poultry waste management.

  7. Role of Waste Management in Wealth Creation in Nigeria ...

    African Journals Online (AJOL)

    Role of Waste Management in Wealth Creation in Nigeria- Evidences From Lagos ... and how waste recycling affects the creation of small or large business ventures ... in the processes as this would help to create business for entrepreneurs.

  8. BASIS OF RATIONAL MUNICIPAL WASTE MANAGEMENT IN RURAL FARMSTEADS

    Directory of Open Access Journals (Sweden)

    Hanna Bauman-Kaszubska

    2016-06-01

    Full Text Available The paper presents the most important problems of waste management in rural areas against the background of formal and legal requirements. It also includes quantitative and qualitative characteristics of waste generated in rural homesteads. Quantitative characterization was based on literature data and the results of the author’s own research, within which an indicator of the accumulation of waste in selected regions of Mazowieckie and Świętokrzyskie was determined. Accurate knowledge of the characteristics of the waste and its variation is the basis for planning and development of waste management. The collected data show clear evidence of a significant increase in both the rate of volume and weight, which depends on many factors, eg. the type of building, season etc. In addition, the basic principles of proper model of waste management, selective waste collection guidelines and principles of best practice of waste management in rural areas were presented.

  9. Supporting Indicators for the Successful Solid Waste Management Based on Community at Rawajati, South Jakarta

    Directory of Open Access Journals (Sweden)

    Muhammad Furqan

    2013-12-01

    Full Text Available Community-based waste management is one of the strategies that can be used to overcome the problems of garbage that exist today. However, community-based waste management system could not be implemented as a whole in Indonesia and sometimes some areas are trying to do community-based waste management do not work well and is not sustainable. The purpose of this study was to determine the indicators of success in supporting community-based waste management in Urban Rawajati RW III, South Jakarta. The method of analysis used in this study using quantitative descriptive analysis, and discriminant analysis are useful for describing indicators supporting the success and sustainability of community-based waste management in RW III. Supporting indicators of success in community-based waste RW III, Sub Rawajati divided into 2 main indicators and supporting indicators. The main indicator of success is the use of RW III inorganic waste, the amount of participation, ownership and use of grinding machine home composter are classified into two major variables, namely the participation of society and shape the technology, while the supporting indicators are classified into three variables, namely institutional agreements, operational management and management financially.

  10. Facilitating the improved management of waste in South Africa through a national waste information system.

    Science.gov (United States)

    Godfrey, Linda

    2008-01-01

    Developing a waste information system (WIS) for a country is more than just about collecting routine data on waste; it is about facilitating the improved management of waste by providing timely, reliable information to the relevant role-players. It is a means of supporting the waste governance challenges facing South Africa - challenges ranging from strategic waste management issues at national government to basic operational challenges at local government. The paper addresses two hypotheses. The first is that the identified needs of government can provide a platform from which to design a national WIS framework for a developing country such as South Africa, and the second is that the needs for waste information reflect greater, currently unfulfilled challenges in the sustainable management of waste. Through a participatory needs analysis process, it is shown that waste information is needed by the three spheres of government, to support amongst others, informed planning and decision-making, compliance monitoring and enforcement, community participation through public access to information, human, infrastructure and financial resource management and policy development. These needs for waste information correspond closely with key waste management challenges currently facing the country. A shift in governments approach to waste, in line with national and international policy, is evident from identified current and future waste information needs. However, the need for information on landfilling remains entrenched within government, possibly due to the poor compliance of landfill sites in South Africa and the problems around the illegal disposal of both general and hazardous waste.

  11. Biomedical solid waste management in an Indian hospital: a case study.

    Science.gov (United States)

    Patil, Gayathri V; Pokhrel, Kamala

    2005-01-01

    The objectives of this study were: (i) to assess the waste handling and treatment system of hospital bio-medical solid waste and its mandatory compliance with Regulatory Notifications for Bio-medical Waste (Management and Handling) Rules, 1998, under the Environment (Protection Act 1986), Ministry of Environment and Forestry, Govt. of India, at the chosen KLE Society's J. N. Hospital and Medical Research Center, Belgaum, India and (ii) to quantitatively estimate the amount of non-infectious and infectious waste generated in different wards/sections. During the study, it was observed that: (i) the personnel working under the occupier (who has control over the institution to take all steps to ensure biomedical waste is handled without any adverse effects to human health and the environment) were trained to take adequate precautionary measures in handling these bio-hazardous waste materials, (ii) the process of segregation, collection, transport, storage and final disposal of infectious waste was done in compliance with the Standard Procedures, (iii) the final disposal was by incineration in accordance to EPA Rules 1998, (iv) the non-infectious waste was collected separately in different containers and treated as general waste, and (v) on an average about 520 kg of non-infectious and 101 kg of infectious waste is generated per day (about 2.31 kg per day per bed, gross weight comprising both infectious and non-infectious waste). This hospital also extends its facility to the neighboring clinics and hospitals by treating their produced waste for incineration.

  12. Assessing The Current Status Of Solid Waste Management Of Gondar Town Ethiopia

    Directory of Open Access Journals (Sweden)

    Mohammed Gedefaw

    2015-08-01

    Full Text Available Abstract Ethiopia is facing rapid urbanization leading to overcrowding and the development of slums and informal settlements with poor waste management practices. Urban dwellers generally consume more resources than rural dwellers and so generate huge quantities of solid wastes. This study is focused on the overall assessment of the existing MSWM service of Gondar town. The overall objective of this study was assessing the current solid waste management service of Gondar town. Both primary and secondary sources were used to achieve the objectives. The analysis of this study was carried out using both qualitative and quantitative techniques. The findings of this study revealed that the present system of MSWM in Gondar town entirely relied on the municipality which provided the full range of waste collection transportation and disposal service. But the provision of this service is not kept in pace with the town solid waste generation. Based on the findings of this study the town households dominantly produced biodegradable solid wastes with generation rate of 0.21kgpersonday. This made the daily total solid waste generation of households to be 8140Kg. Together with other four solid waste sources the total daily solid waste generation of the town is about 11660 kg. So that MSWM of the town is found in very low status and spatial coverage. This poor status of MSWM is also intensified by three critical factors i.e poor institutional structure and capacity of Sanitation and beautification limited participation and contribution of stakeholders and poor households solid waste management practices. This study concluded that there should be sustainable solid waste management systems reuse recycle composting and incineration through awareness creation and training improvement of SB institutional structure and capacity and implementation of integrated MSWM approach which recognizes and comprises all stakeholders in the town.

  13. Municipal solid waste management in Cartago province

    Directory of Open Access Journals (Sweden)

    Silvia M. Soto-Córdoba

    2014-03-01

    Full Text Available This paper resumes the principals results obtained by the grant EUROPEAID/126635/M/ACT/CR”, that was realized by FUNDATEC, and whose bene­ficiary was the “Federación de Municipalidades de Cartago, Costa Rica”, the Project received a funding of 74,920 euros. We work with all the Municipalities of the Cartago Province. In addition, we show the results of the interviews of social actors, visits to the recycle sites, visits of municipalities, during the years 2010, 2011 and 2012, and the review of literature. We describe the actual situation of the management of solid waste in Cartago, determinate the gene­ration rates by person and identified the principal landfill disposes, the recycle companies and deter­minate the main problems associated with the solid waste. It is hope that the information presented here, pro­vides the basis for the future construction of plans of municipal solid waste management, and for the capacitation of community organization in the pro­vince of Cartago.

  14. Systems approaches to integrated solid waste management in developing countries

    Energy Technology Data Exchange (ETDEWEB)

    Marshall, Rachael E., E-mail: rmarsh01@uoguelph.ca [School of Engineering, University of Guelph, Albert A. Thornbrough Building, Guelph, ON, Canada N1G 2W1 (Canada); Farahbakhsh, Khosrow, E-mail: khosrowf@uoguelph.ca [School of Engineering, University of Guelph, Albert A. Thornbrough Building, Guelph, ON, Canada N1G 2W1 (Canada)

    2013-04-15

    Highlights: ► Five drivers led developed countries to current solid waste management paradigm. ► Many unique factors challenge developing country solid waste management. ► Limited transferability of developed country approaches to developing countries. ► High uncertainties and decision stakes call for post-normal approaches. ► Systems thinking needed for multi-scale, self-organizing eco-social waste systems. - Abstract: Solid waste management (SWM) has become an issue of increasing global concern as urban populations continue to rise and consumption patterns change. The health and environmental implications associated with SWM are mounting in urgency, particularly in the context of developing countries. While systems analyses largely targeting well-defined, engineered systems have been used to help SWM agencies in industrialized countries since the 1960s, collection and removal dominate the SWM sector in developing countries. This review contrasts the history and current paradigms of SWM practices and policies in industrialized countries with the current challenges and complexities faced in developing country SWM. In industrialized countries, public health, environment, resource scarcity, climate change, and public awareness and participation have acted as SWM drivers towards the current paradigm of integrated SWM. However, urbanization, inequality, and economic growth; cultural and socio-economic aspects; policy, governance, and institutional issues; and international influences have complicated SWM in developing countries. This has limited the applicability of approaches that were successful along the SWM development trajectories of industrialized countries. This review demonstrates the importance of founding new SWM approaches for developing country contexts in post-normal science and complex, adaptive systems thinking.

  15. E-waste management as a global challenge (introductory chapter)

    OpenAIRE

    Mihai, Florin-Constatin; Gnoni, Maria-Grazia

    2016-01-01

    International audience; Waste Electrical and Electronic Equipment management (E-waste or WEEE) is a crucial issue in the solid waste management sector with global interconnections between well-developed, transitional and developing countries. Consumption society and addiction to technology dictate the daily life in high and middle-income countries where population consumes large amounts of EEE products (electrical and electronic equipment) which sooner become e-waste. This fraction is a fast-...

  16. Waste Management Program. Technical progress report, July-December, 1984

    Energy Technology Data Exchange (ETDEWEB)

    None

    1986-10-01

    This report provides information on operations and development programs for the management of radioactive wastes from operation of the Savannah River Plant and offplant participants. The studies on environmental and safety assessments, other support, in situ storage or disposal, waste form development and characterization, process and equipment development, and the Defense Waste Processing Facility are a part of the Long-Term Waste Management Technology Program. The following studies are reported for the SR Interim Waste Operations: tank farm operation, inspection program, burial ground operations, and waste transfer/tank replacement.

  17. Stakeholder involvement in Swedish nuclear waste management

    Energy Technology Data Exchange (ETDEWEB)

    Elam, Mark; Sundqvist, Goeran [Goeteborg Univ. (Sweden). Section for Science and Technology Studies

    2006-09-15

    This report concerning Swedish nuclear waste management has been produced as part of a cross national research project: CARL - A Social Science Research Project into the Effects of Stakeholder involvement on Decision-Making in Radioactive Waste Management. Besides Sweden, the participating countries are Belgium, Canada, Finland, Slovenia and United Kingdom. A social science research team, working for three years, is in the first phase conducting research in their own countries in order to produce 6 country reports. During the next years the focus will shift to comparisons of stakeholder involvement practices in the participating countries. The report addresses current practices of Swedish nuclear waste management and their historical development. The main focus is on past, current and emerging patterns of stakeholder involvement in the siting of a deep repository for the final disposal of Sweden's spent nuclear fuel. The general questions attended to in the report are: Who are the main stakeholders, and how have they emerged and gained recognition as such? What are the issues currently subject to stakeholder involvement and how have these been decided upon? How is stakeholder involvement organized locally and nationally and how has this changed over time? How has stakeholder involvement gained acceptance as an activity of value in the siting of major waste facilities? The report have attempted to show the development of stakeholder involvement in the siting of a final repository for Sweden's spent nuclear fuel as resembling something other than a straightforward linear process of improvement and refinement. Stakeholder involvement has developed, over the past 15 years or so, into something more like a patchwork of different shapes and forms. Some of the forces that may well contribute to the further elaboration of the patchwork of stakeholder involvement have been pointed out, contingently modifying once more its overall colour and orientation. Questions

  18. Twelfth annual US DOE low-level waste management conference

    Energy Technology Data Exchange (ETDEWEB)

    1990-01-01

    The papers in this document comprise the proceedings of the Department of Energy's Twelfth Annual Low-Level Radioactive Waste Management Conference, which was held in Chicago, Illinois, on August 28 and 29, 1990. General subjects addressed during the conference included: mixed waste, low-level radioactive waste tracking and transportation, public involvement, performance assessment, waste stabilization, financial assurance, waste minimization, licensing and environmental documentation, below-regulatory-concern waste, low-level radioactive waste temporary storage, current challenges, and challenges beyond 1990.

  19. EASEWASTE-life cycle modeling capabilities for waste management technologies

    DEFF Research Database (Denmark)

    Bhander, Gurbakhash Singh; Christensen, Thomas Højlund; Hauschild, Michael Zwicky

    2010-01-01

    Background, Aims and Scope The management of municipal solid waste and the associated environmental impacts are subject of growing attention in industrialized countries. EU has recently strongly emphasized the role of LCA in its waste and resource strategies. The development of sustainable solid...... waste management systems applying a life-cycle perspective requires readily understandable tools for modelling the life cycle impacts of waste management systems. The aim of the paper is to demonstrate the structure, functionalities and LCA modelling capabilities of the PC-based life cycle oriented...... waste management model EASEWASTE, developed at the Technical University of Denmark specifically to meet the needs of the waste system developer with the objective to evaluate the environmental performance of the various elements of existing or proposed solid waste management systems. Materials...

  20. Environmental remediation and waste management information systems

    Energy Technology Data Exchange (ETDEWEB)

    Harrington, M.W.; Harlan, C.P.

    1993-12-31

    The purpose of this paper is to document a few of the many environmental information systems that currently exist worldwide. The paper is not meant to be a comprehensive list; merely a discussion of a few of the more technical environmental database systems that are available. Regulatory databases such as US Environmental Protection Agency`s (EPA`s) RODS (Records of Decision System) database [EPA, 1993] and cost databases such as EPA`s CORA (Cost of Remedial Action) database [EPA, 1993] are not included in this paper. Section 2 describes several US Department of Energy (DOE) Environmental Restoration and Waste Management (EM) information systems and databases. Section 3 discusses several US EPA information systems on waste sites and technologies. Section 4 summarizes a few of the European Community environmental information systems, networks, and clearinghouses. And finally, Section 5 provides a brief overview of Geographical Information Systems. Section 6 contains the references, and the Appendices contain supporting information.

  1. Radioactive Waste Management Complex performance assessment: Draft

    Energy Technology Data Exchange (ETDEWEB)

    Case, M.J.; Maheras, S.J.; McKenzie-Carter, M.A.; Sussman, M.E.; Voilleque, P.

    1990-06-01

    A radiological performance assessment of the Radioactive Waste Management Complex at the Idaho National Engineering Laboratory was conducted to demonstrate compliance with appropriate radiological criteria of the US Department of Energy and the US Environmental Protection Agency for protection of the general public. The calculations involved modeling the transport of radionuclides from buried waste, to surface soil and subsurface media, and eventually to members of the general public via air, ground water, and food chain pathways. Projections of doses were made for both offsite receptors and individuals intruding onto the site after closure. In addition, uncertainty analyses were performed. Results of calculations made using nominal data indicate that the radiological doses will be below appropriate radiological criteria throughout operations and after closure of the facility. Recommendations were made for future performance assessment calculations.

  2. Integrated solid waste management of Scottsdale, Arizona

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-11-01

    The subject document reports the results of an in-depth investigation of the fiscal year 1992 cost of the city of Scottsdale, Arizona, integrated municipal solid waste management (IMSWM) system, the energy consumed to operate the system, and the environmental performance requirements for each of the system`s waste-processing and disposal facilities. The document reports actual data from records kept by participants. Every effort was made to minimize the use of assumptions, and no attempt is made to interpret the data reported. Analytical approaches are documented so that interested analysts may per-form manipulation or further analysis of the data. As such, the report is a reference document for municipal solid waste (MSW) management professionals who are interested in the actual costs and energy consumption, for a 1-year period, of an operating IMSWM system. The report is organized into two main parts. The first part is the executive summary and case study portion of the report. The executive summary provides a basic description of the study area and selected economic and energy information. Within the case study are detailed descriptions of each component operating during the study period; the quantities of solid waste collected, processed, and marketed within the study boundaries; the cost of MSW in Scottsdale; an energy usage analysis; a review of federal, state, and local environmental requirement compliance; a reference section; and a glossary of terms. The second part of the report focuses on a more detailed discourse on the above topics. In addition, the methodology used to determine the economic costs and energy consumption of the system components is found in the second portion of this report. The methodology created for this project will be helpful for those professionals who wish to break out the costs of their own integrated systems.

  3. Korean Waste Management Law and Waste Disposal Forms.

    Science.gov (United States)

    1991-03-01

    Soil Treatment Tanks) 69 Article 8. (Interim Measures on Report of Recycler or Reuser of Industrial Waste) 69 Article 9. (Interim Measures on Permit...recycling and reuse (hereinafter referred to as a "recycler and reuser of industrial waste"), pursuant to Article 23.2. of the Law, shall submit a "Filing... reuser of industrial waste, pursuant to Article 45.2., shall submit a "Modification of Recycle or Reuse of Industrial Waste" (Form No. 17), to the

  4. From waste treatment to integrated resource management.

    Science.gov (United States)

    Wilsenach, J A; Maurer, M; Larsen, T A; van Loosdrecht, M C M

    2003-01-01

    Wastewater treatment was primarily implemented to enhance urban hygiene. Treatment methods were improved to ensure environmental protection by nutrient removal processes. In this way, energy is consumed and resources like potentially useful minerals and drinking water are disposed of. An integrated management of assets, including drinking water, surface water, energy and nutrients would be required to make wastewater management more sustainable. Exergy analysis provides a good method to quantify different resources, e.g. utilisable energy and nutrients. Dilution is never a solution for pollution. Waste streams should best be managed to prevent dilution of resources. Wastewater and sanitation are not intrinsically linked. Source separation technology seems to be the most promising concept to realise a major breakthrough in wastewater treatment. Research on unit processes, such as struvite recovery and treatment of ammonium rich streams, also shows promising results. In many cases, nutrient removal and recovery can be combined, with possibilities for a gradual change from one system to another.

  5. Concept of sustainable waste management in the city of Zagreb: Towards the implementation of circular economy approach.

    Science.gov (United States)

    Ribić, Bojan; Voća, Neven; Ilakovac, Branka

    2017-02-01

    Improvement of the current waste management is one of the main challenges for most municipalities in Croatia, mainly due to legal obligations set in different European Union (EU) directives regarding waste management, such as reduction of waste generation and landfilling, or increase of separately collected waste and recycling rates. This paper highlights the current waste management in the city of Zagreb by analyzing the waste generation, collection, and disposal scenario along with the regulatory and institutional framework. Since the present waste management system mainly depends upon landfilling, with the rate of separate waste collection and recycling far from being adequate, it is necessary to introduce a new system that will take into account the current situation in the city as well as the obligations imposed by the EU. Namely, in the coming years, the Waste Framework and Landfill Directives of the European Union will be a significant driver of change in waste management practices and governance of the city of Zagreb. At present, the yearly separate waste collection makes somewhat less than 5 kg per capita of various waste fractions, i.e., far below the average value for the (28) capital cities of the EU, which is 108 kg per capita. This is possible to achieve only by better and sustainable planning of future activities and facilities, taking into account of environmental, economic, and social aspects of waste management. This means that the city of Zagreb not only will have to invest in new infrastructure to meet the targets, but also will have to enhance public awareness in diverting this waste at the household level. The solution for the new waste management proposed in this paper will certainly be a way of implementing circular economy approach to current waste management practice in the city of Zagreb.

  6. Municipal Solid Waste Management in Phuntsholing City, Bhutan

    Directory of Open Access Journals (Sweden)

    Norbu

    2010-01-01

    Full Text Available Municipal solid waste problem is a major concern in major cities in Bhutan. Despite the lack of reliable data on both waste composition and quantity, no studies have been conducted to identify problems and alternatives to improve the current system. The study objectives are: 1 to determine solid waste composition and generation rate; and 2 to investigate current solid waste management system. Six waste samples were selected in Phuntsholing city from three designated collection spots and from three collection vehicles and analyzed for their composition. Waste generation rate was computed from waste collected by collection vehicles. The investigation was carried out through interviews with municipal authorities, existing document reviews, and field observations. The organic fraction of solid waste composition comprised about 71 percent. The waste generation rate was estimated to 0.40 kg/capita.day. The current management system is inefficient, and recommendations are given to improve the current situation.

  7. Hanford Site annual dangerous waste report: Volume 3, Part 1, Waste Management Facility report, dangerous waste

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    This report contains information on hazardous wastes at the Hanford Site. Information consists of shipment date, physical state, chemical nature, waste description, handling method and containment vessel, waste number, waste designation, and amount of waste.

  8. Bio-medical waste management in the U.T., Chandigarh.

    Science.gov (United States)

    Singh, Kamaljit; Arora, Shakti Kumar; Dhadwal, P J S; Singla, Ashwani; John, Siby

    2004-01-01

    Investigations were carried out to assess the generation and disposal of biomedical waste in the various medical establishments in the urban and rural areas of the U.T. Chandigarh. It was found that there were 474 medical establishments in the U.T., Chandigarh including Nursing Homes, Clinics, Dispensaries, Pathological labs., Hospitals, Veterinary Institutions and Animal houses. The total quantity of bio-medical waste generated in Chandigarh is 811.35 kg/day and the rate of generation of bio-medical waste varies from 0.06 kg/day/bed to 0.25 kg/day/bed. Though the major hospitals are equipped with incinerators, proper bio-medical waste management system is yet to be implemented. The medical establishments in the rural area and smaller ones in the urban area dispose off their bio-medical waste along with municipal solid waste and no waste management system exists. It is recommended that an integrated waste management plan using the three incinerators installed at the major hospitals can safely dispose off the total bio-medical waste generated in the city.

  9. Households willingness to pay for improved solid waste management

    Directory of Open Access Journals (Sweden)

    S. Akhtar

    2017-04-01

    Full Text Available Waste is a byproduct of human life. Nowadays, municipal solid waste is being produced in excessive amounts and in this way, both developing and developed countries are facing challenges regarding generation of waste. Economic development, urbanization and improved living standards in cities have contributed to increase in the amount and complexity of solid waste produced. The present study was conducted in the residential area of main Boulevard Gulberg, Lahore to determine the present methods and efficiency of current solid waste management facility and to estimate the willingness of the selected households to pay for the improvement of solid waste management through questionnaire survey. It was found that current Solid waste management system in the area is fair but needs more improvement in terms of improved collection efficiency and rates, recycling bins, and segregation of waste at storage. According to the questionnaire survey, majority of the respondents despite belonging to middle class incomes are willing to pay an amount less than USD 4.8 for the improvement of waste management facility in the area. The area lacks frequent collection of waste containers. Therefore, there is a need for upgradation of storage and collection facilities in terms of increase in collection efficiency and rates, introduction of recycling facility and segregation of waste at source. Waste storage and collection sites of the area should be monitored periodically and waste should be disposed of in a scientific manner in sanitary landfills.

  10. Waste management and enzymatic treatment of Municipal Solid Waste

    DEFF Research Database (Denmark)

    Jensen, Jacob Wagner

    content), 2) low ash and xenobiotic content, 3) high gas yield, 4) volume (produced), 5) dependable distribution and 6) low competition with other end-user technologies. MSW is a complex substrate comprising both degradable and non-degradable material being metal, plastic, glass, building waste etc...... simulating Danish household waste in composition and weight, 2) evaluating the performance of best enzyme candidates on original waste with and without additional additives, 3) measuring the biogas potential of liquefied waste and comparing the results with the biogas potential of untreated waste...

  11. Seroprevalence of hepatitis B and C viruses among medical waste handlers at Gondar town Health institutions, Northwest Ethiopia

    Directory of Open Access Journals (Sweden)

    Anagaw Belay

    2012-01-01

    Full Text Available Abstract Background Viral hepatitis is an inflammation of the liver due to viral infections and there are groups of viruses that affects the liver of which hepatitis B and C viruses are the causative agents of sever form of liver disease with high rate of mortality. Medical waste handlers who undergo collection, transportation, and disposal of medical wastes in the health institutions are at risk of exposure to acquire those infections which transmit mainly as a result of contaminated blood and other body fluids including injury with sharp instruments, splash to the eye or mucous membrane. This study aimed to determine the prevalence of hepatitis B and/or C viruses and associated risk factors among medical waste handlers. Results A cross-sectional study was conducted from April, 2011 to June, 2011 in government health institutions at Gondar town. Socio-demographic and possible risk factors data from medical waste handlers were collected using pre-tested and well structured questionnaires. Venous bloods were collected and the serums were tested for hepatitis B surface antigen and anti-hepatitis C antibody using rapid Immunochromatography assay. Data was entered and analyzed using SPSS software package (version16. Chi-square and Fisher exact tests were used to assess risk of association. A p-value of A total of 100 medical waste handlers and 100 non-clinical waste handlers were examined for HBV and HCV viruses. HBV was detected in 6 (6.0% and 1 (1.0% and HCV in 1 (1.0% and 0 (0.0% of medical waste handlers and non-clinical waste handlers, respectively. Significant differences were observed in the detection rates of HBV (OR = 6.3; X2 = 4.1; P = 0.04 and overall infection rate (HBV + HCV (OR = 7.5; X2 = 5.2; P: 0.02 in medical waste handlers when compared with non-clinical waste handlers. It was found that none of the observed risk factors significantly associated with rate of hepatitis infection compared to others. Conclusions Prevalence of HBV and

  12. Estimation of construction waste generation and management in Thailand.

    Science.gov (United States)

    Kofoworola, Oyeshola Femi; Gheewala, Shabbir H

    2009-02-01

    This study examines construction waste generation and management in Thailand. It is estimated that between 2002 and 2005, an average of 1.1 million tons of construction waste was generated per year in Thailand. This constitutes about 7.7% of the total amount of waste disposed in both landfills and open dumpsites annually during the same period. Although construction waste constitutes a major source of waste in terms of volume and weight, its management and recycling are yet to be effectively practiced in Thailand. Recently, the management of construction waste is being given attention due to its rapidly increasing unregulated dumping in undesignated areas, and recycling is being promoted as a method of managing this waste. If effectively implemented, its potential economic and social benefits are immense. It was estimated that between 70 and 4,000 jobs would have been created between 2002 and 2005, if all construction wastes in Thailand had been recycled. Additionally it would have contributed an average savings of about 3.0 x 10(5) GJ per year in the final energy consumed by the construction sector of the nation within the same period based on the recycling scenario analyzed. The current national integrated waste management plan could enhance the effective recycling of construction and demolition waste in Thailand when enforced. It is recommended that an inventory of all construction waste generated in the country be carried out in order to assess the feasibility of large scale recycling of construction and demolition waste.

  13. WESTERN RESEARCH INSTITUTE CONTAINED RECOVERY OF OILY WASTES (CROW) PROCESS - ITER

    Science.gov (United States)

    This report summarizes the findings of an evaluation of the Contained Recovery of Oily Wastes (CROW) technology developed by the Western Research Institute. The process involves the injection of heated water into the subsurface to mobilize oily wastes, which are removed from the ...

  14. WESTERN RESEARCH INSTITUTE CONTAINED RECOVERY OF OILY WASTES (CROW) PROCESS - ITER

    Science.gov (United States)

    This report summarizes the findings of an evaluation of the Contained Recovery of Oily Wastes (CROW) technology developed by the Western Research Institute. The process involves the injection of heated water into the subsurface to mobilize oily wastes, which are removed from the ...

  15. Planning of low-level radioactive waste management program

    Energy Technology Data Exchange (ETDEWEB)

    Yamashita, Teruo; Yoneya, Masayuki; Tanabe, Tsutomu; Koakutsu, Masayuki; Miyamoto, Yasuaki [Japan Nuclear Cycle Development Inst., Tokai, Ibaraki (Japan). Tokai Works

    2002-09-01

    In order to treat and dispose of the low-level radioactive waste generated from JNC sites safely and rationally, a comprehensive plan managing the generation, treatment, storage and disposal of waste, was formulated. The plan is called ''Low-Level Radioactive Waste Management Program''. Taking into consideration an institutionalization of disposal and based on an investigation of waste properties (type, amount, activity concentration), the appropriate treatment method for disposal was studied, and a fundamental plan for conducting the Low-Level Radioactive Waste Management Program was presented. To achieve disposal of low-level radioactive waste, concrete measures will be taken according to the Low-Level Radioactive Wastes Management Program. The plan will be improved suitably by the result of technical development, and will be reconsidered flexibly after institutionalization by the government. (author)

  16. Integral Chemical Waste Management in Laboratories

    OpenAIRE

    Loayza P., Jorge; Facultad de Química e Ingeniería Química - Universidad Nacional Mayor de San Marcos; Silva M., Marina; Facultad de Química e Ingeniería Química - Universidad Nacional Mayor de San Marcos; Galarreta D., Hugo; Facultad de Química e Ingeniería Química - Universidad Nacional Mayor de San Marcos

    2014-01-01

    The suitable management and handling of the chemical wastes origínatíng from laboratories allow the saving of reagents and materíals; as well as the reductíon of costs assocíated wíth their handling and final disposal. lt also prevents detriment to the health of the people who have to conduct an academic activity in the laboratory (professors, assistants and students) ora professíonal activity related to service consulting dealíng with chemical analyses (analysts, assistants and auxiliary per...

  17. Nuclear wastes management; Gestion des dechets nucleaires

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    This document is the proceedings of the debate that took place at the French Senate on April 13, 2005 about the long-term French policy of radioactive wastes management. The different points tackled during the debate concern: the 3 axes of research of the 1991 law, the public acceptance about the implementation of repositories, the regional economic impact, the cost and financing, the lack of experience feedback, the reversibility or irreversibility of the storage, the share of nuclear energy in the sustainable development policy, the European Pressurized Reactor (EPR) project, the privatization of Electricite de France (EdF) etc. (J.S.)

  18. Assessment of Solid Waste Management Strategies in Camarines Norte, Philippines

    OpenAIRE

    Maria Cristina C. Azuelo; Leah N. Barbado; Luz Menda L. Reyes

    2016-01-01

    The Ecological Solid Waste Management Act of 2000 or RA 9003 mandates the local government units to take initiatives in managing their daunting problems on ecological solid waste disposal. Consequently, compliance of Camarines Norte, Philippines on this mandate needs assessment to determine the existing solid waste management (SWM) strategies, the effectiveness and the possibility of adoption in each municipality. This study utilized the descriptive method using questionnaire as t...

  19. Bioorganic Municipal Waste Management to Deploy a Sustainable Solid Waste Disposal Practice in China

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The utilization of bioorganic municipal waste (BMW) is considered essentially for the further development of integrated waste management practice in China. Awareness and knowledge about the importance of BMW management and source separation of waste on household level, as a precondition for the implementation of an economically feasible integrated waste management infrastructure, were developed in Europe during the last decade. The Sino-German RRU-BMW Project is facilitating applied research investigations in 4 pilot areas in Shenyang to assess the population's behavior to develop the design criteria for appropriate process technologies and to provide the basis to adopt BMW management policy in China.

  20. Role of the South African Waste Information System in improving waste management

    CSIR Research Space (South Africa)

    Godfrey, L

    2010-09-01

    Full Text Available Piloting of the South African Waste Information System (SAWIS) provided an opportunity to research, whether the collection of data for a national waste information system could, through a process of learning, change the way that waste is managed...

  1. 75 FR 51678 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste; Final Exclusion

    Science.gov (United States)

    2010-08-23

    ...; Final Exclusion AGENCY: Environmental Protection Agency. ACTION: Final rule. SUMMARY: Environmental... Software (DRAS), EPA has concluded that the petitioned waste is not hazardous waste. This exclusion applies.... What are the limits of this exclusion? D. How will OxyChem manage the waste if it is delisted? E....

  2. 75 FR 57686 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste Amendment

    Science.gov (United States)

    2010-09-22

    ... than 1. The description of the waste is corrected from ``wastewater treatment plant (WWTP) sludge'' to..., 2010. The Hazardous and Solid Waste Amendments of 1984 amended section 3010 of the Resource... AGENCY 40 CFR Part 261 Hazardous Waste Management System; Identification and Listing of Hazardous...

  3. The weak link in waste management in tropical Asia? Solid waste collection in Bali

    NARCIS (Netherlands)

    MacRae, Graeme; Rodic-Wiersma, Ljiljana

    2015-01-01

    This article builds on earlier work that examined waste processing options on the island of Bali, which can be seen as a useful "laboratory" for the study of solid waste management (SWM) problems and solutions in tropical Asia. The research reported here examines the challenges of waste

  4. The weak link in waste management in tropical Asia? Solid waste collection in Bali

    NARCIS (Netherlands)

    MacRae, Graeme; Rodic-Wiersma, Ljiljana

    2015-01-01

    This article builds on earlier work that examined waste processing options on the island of Bali, which can be seen as a useful "laboratory" for the study of solid waste management (SWM) problems and solutions in tropical Asia. The research reported here examines the challenges of waste collectio

  5. Improving waste management through a process of learning: the South African waste information system

    CSIR Research Space (South Africa)

    Godfrey, L

    2011-05-01

    Full Text Available Piloting of the South African Waste Information System (SAWIS) provided an opportunity to research whether the collection of data for a national waste information system could, through a process of learning, change the way that waste is managed...

  6. 75 FR 41121 - Hazardous and Solid Waste Management System; Identification and Listing of Special Wastes...

    Science.gov (United States)

    2010-07-15

    ... AGENCY 40 CFR Parts 257, 261, 264, 265, 268, 271 and 302 RIN 2050-AE81 Hazardous and Solid Waste Management System; Identification and Listing of Special Wastes; Disposal of Coal Combustion Residuals From...), 3001, 3004, 3005, and 4004 of the Solid Waste Disposal Act of 1970, as amended by the...

  7. Torrefaction Processing for Human Solid Waste Management

    Science.gov (United States)

    Serio, Michael A.; Cosgrove, Joseph E.; Wójtowicz, Marek A.; Stapleton, Thomas J.; Nalette, Tim A.; Ewert, Michael K.; Lee, Jeffrey; Fisher, John

    2016-01-01

    This study involved a torrefaction (mild pyrolysis) processing approach that could be used to sterilize feces and produce a stable, odor-free solid product that can be stored or recycled, and also to simultaneously recover moisture. It was demonstrated that mild heating (200-250 C) in nitrogen or air was adequate for torrefaction of a fecal simulant and an analog of human solid waste (canine feces). The net result was a nearly undetectable odor (for the canine feces), complete recovery of moisture, some additional water production, a modest reduction of the dry solid mass, and the production of small amounts of gas and liquid. The liquid product is mainly water, with a small Total Organic Carbon content. The amount of solid vs gas plus liquid products can be controlled by adjusting the torrefaction conditions (final temperature, holding time), and the current work has shown that the benefits of torrefaction could be achieved in a low temperature range (waste containment and will reduce the energy consumption of the process. The solid product was a dry material that did not support bacterial growth and was hydrophobic relative to the starting material. In the case of canine feces, the solid product was a mechanically friable material that could be easily compacted to a significantly smaller volume (approx. 50%). The proposed Torrefaction Processing Unit (TPU) would be designed to be compatible with the Universal Waste Management System (UWMS), now under development by NASA. A stand-alone TPU could be used to treat the canister from the UWMS, along with other types of wet solid wastes, with either conventional or microwave heating. Over time, a more complete integration of the TPU and the UWMS could be achieved, but will require design changes in both units.

  8. INFORMAL AND FORMAL SECTORS PARTNERSHIP IN URBAN WASTE MANAGEMENT (Case Study: Non-Organic Waste Management in Semarang

    Directory of Open Access Journals (Sweden)

    Djoko Indrosaptono

    2014-01-01

    Full Text Available Normal 0 false false false IN X-NONE X-NONE The urban waste management is still crucial issues in most regions in Indonesia. Urban waste is considered as a cultural issue because of its impact on various life factors , especially in big cities such as Jakarta, Semarang, Surabaya, Bandung, Palembang and Medan. Currently, the average productivity of the urban waste is 0.5 kg / capita / day. If this is multiplied by number of people in some cities in Java and Bali, the total waste will reach about 100,000 tons / day. This number will still increase by increasing population growth. Therefore, the urban waste management is very important for cities in Indonesia, alhough currently not many cities applied the urban waste management system. Urban waste management in Indonesia is not merely caused by formal sector, but it is also supported by informal sector in reducing daily production waste up to 30%. The informal sector management is mainly conducted by sorting the waste to recycleable or not. The recycleable waste is then sold back to the mills to be converted to other valuable products. This reserach was aimed to evaluate the partnership between formal and informal sector in reduction of waste production in Semarang city through urban waste management system. The research about informal sector was conducted by communal interaction and qualitative analysis focusing at Semarang City especially at Old Town area. The research has provided substantive knowledge of informal sector partnerships and formal sector in urban waste management with case inorganic waste management in the city of Semarang through 3R (recycle, reuse and reduce knwoledge management. Basic knowledge of the structure / surface is characterized by empirical knowledge which was easily caught by the direct perspective of human. Middle knowledge could be adjusted to different loci

  9. Intelligent Information System for Waste Management; Jaetehuollon aelykaes tietojaerjestelmae iWaste

    Energy Technology Data Exchange (ETDEWEB)

    Mustonen, T. [Kuopio Univ. (Finland)

    2003-07-01

    'iWaste' is a project for developing and testing intelligent computational methods for more comprehensive waste management. Important issues are automated reporting, optimisation of waste collection, forecasting of waste formation, data handling of waste disposal sites and simulation and modelling of regional waste management. The main objective of the project is to identify and analyse known sources of information and to link them to the existing information processing systems in the field of waste management. Additionally, the goal is to identify and test functional elements that could be developed further to software products and services. The results of the project can be categorized into three sectors. Firstly, the guidelines for a comprehensive information system in waste management will be created. This includes the requirement specifications of different parties, definitions for the data exchange interfaces and an architectural plan for software products capable of co-operative processing. Secondly, the central parts of the intelligent information system will be piloted using the research database collected in the early stage of the project. The main topics investigated are data quality, the use of Geographical Information Systems (GIS), automated reporting, optimisation of waste collection and forecasting of waste formation. Additionally, the pilot information system can be utilized in derivative projects to speed up the starting phases of them. This makes it possible to create persistent development of waste management information systems both academically and commercially. (orig.)

  10. Characteristics and management of infectious industrial waste in Taiwan.

    Science.gov (United States)

    Huang, Mei-Chuan; Lin, Jim Juimin

    2008-11-01

    Infectious industrial waste management in Taiwan is based on the specific waste production unit. In other countries, management is based simply on whether the producer may lead to infectious disease. Thus, Taiwan has a more detailed classification of infectious waste. The advantage of this classification is that it is easy to identify the sources, while the disadvantage lies in the fact that it is not flexible and hence increases cost. This study presents an overview of current management practices for handling infectious industrial waste in Taiwan, and addresses the current waste disposal methods. The number of small clinics in Taiwan increased from 18,183 to 18,877 between 2003 and 2005. Analysis of the data between 2003 and 2005 showed that the majority of medical waste was general industrial waste, which accounted for 76.9%-79.4% of total medical waste. Infectious industrial waste accounted for 19.3%-21.9% of total medical waste. After the SARS event in Taiwan, the amount of infectious waste reached 19,350 tons in 2004, an increase over the previous year of 4000 tons. Waste minimization was a common consideration for all types of waste treatment. In this study, we summarize the percentage of plastic waste in flammable infectious industrial waste generated by medical units, which, in Taiwan was about 30%. The EPA and Taiwan Department of Health have actively promoted different recycling and waste reduction measures. However, the wide adoption of disposable materials made recycling and waste reduction difficult for some hospitals. It has been suggested that enhancing the education of and promoting communication between medical units and recycling industries must be implemented to prevent recyclable waste from entering the incinerator.

  11. Organizational and pedagogical factors of educational institution management

    OpenAIRE

    Temirov Dilshod Sheralievich

    2015-01-01

    Organizational and pedagogical factors affecting the implementation by the trainees of their right to education, as well as factors affecting the development of the educational institution as an organization, are of great importance for the management of an educational institution. The efficiency of development of the organizational and pedagogical management factors is associated with the social factors and socio-psychological methods of management.

  12. Global warming factor of municipal solid waste management in Europe

    DEFF Research Database (Denmark)

    Gentil, Emmanuel; Clavreul, Julie; Christensen, Thomas Højlund

    2009-01-01

    The global warming factor (GWF; CO2-eq. tonne—1 waste) performance of municipal waste management has been investigated for six representative European Member States: Denmark, France, Germany, Greece, Poland and the United Kingdom. The study integrated European waste statistical data for 2007...

  13. National Low-Level Waste Management Program Radionuclide Report Series

    Energy Technology Data Exchange (ETDEWEB)

    Rudin, M.J.; Garcia, R.S.

    1992-02-01

    This report, Volume 3 of the National Low-Level Radioactive Waste Management Program Radionuclide Report Series, discusses the radiological and chemical characteristics of carbon-14. The report also discusses waste streams that contain carbon-14, waste forms that contain carbon-14, and carbon-14 behavior in the environment and in the human body.

  14. National Low-Level Waste Management Program Radionuclide Report Series

    Energy Technology Data Exchange (ETDEWEB)

    Rudin, M.J.; Stanton, C.; Patterson, R.G.; Garcia, R.S.

    1992-02-01

    This report, Volume 2 of the National Low-Level Radioactive Waste Management Program Radionuclide Report Series, discusses radiological and chemical characteristics of technetium-99. This report also includes discussions about waste streams in which technetium-99 can be found, waste forms that contain technetium-99, and technetium-99's behavior in the environment and in the human body.

  15. National Low-Level Waste Management Program Radionuclide Report Series

    Energy Technology Data Exchange (ETDEWEB)

    Rudin, M.J.; Garcia, R.S.

    1992-02-01

    This report, Volume 4 of the National Low-Level Radioactive Waste Management Program Radionuclide Report Series, discusses radiological and chemical characteristics about iodine-129. This report also includes discussions about waste streams that contain iodine-129, waste forms that contain iodine-129, and iodine-129's behavior in the environment, as well as in the human body.

  16. Using Financial Incentives to Manage the Solid Waste Stream.

    Science.gov (United States)

    Spindler, Charles J.

    1991-01-01

    This paper reviews two approaches to solid waste stream management that encourage recycling in the beverage industry, a model categorizing public policies directed at diverting postconsumer waste from the waste system, and industry initiatives in the context of these policies. Preemptive and compelled partnerships represent innovations in…

  17. Nitty-Gritty Federalism: Managing Solid Waste. Teaching Strategy.

    Science.gov (United States)

    LaRocco, Joseph C.; Gregori, Harry E., Jr.

    1995-01-01

    Outlines the lesson plan that uses the issue of solid waste disposal to examine the relationship between local, state, and federal governments. Handouts include a quiz on solid waste management, an information sheet, and a simulation of a local problem. The simulation involves the location of a hazardous waste site. (MJP)

  18. Odor Control in Spacecraft Waste Management Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Spacecraft and lunar bases generate a variety of wastes containing water, including food wastes, feces, and brines. Disposal of these wastes, as well as recovery of...

  19. agricultural waste concept, generation, utilization and management

    African Journals Online (AJOL)

    user

    2016-10-04

    Oct 4, 2016 ... Agricultural wastes are non-product outputs of production and processing of agricultural products that may .... process of livestock wastes; the putrefaction process .... attitudes, and better approaches to agricultural waste.

  20. Solid Wastes Management of Yasuj Hospitals, Iran 2006

    Directory of Open Access Journals (Sweden)

    AR Raygan Shirazi

    2008-04-01

    Full Text Available ABSTRACT: Introduction & Objective: Unhygienic methods of colleting, storage, transportation and disposal of the hospital wastes results in serious hazards that can endanger the health and environment. These materials are classified as dangerous, and have to be collected and disposed based on special rules. Materials & Methods: In the present study we aimed to evaluate the quality of management of hospital wastes and to estimate the waste constituents in Yasuj hospitals. Density, constituents, methods of collecting, transportation and disposal of hospital wastes were evaluated in 3 consecutive days of every months of the year 2006. Results: Study showed that the daily production of solid wastes was 5.5 Kg per hospital bed and infected solid wastes were estimated to be 1.5 Kg per hospital bed. The total solid waste production was 1350 Kg per day which included 27.2 percent as infected solid wastes. Solid waste density was 160.7 Kg per cubic meter and its constituents were food wastes (19.753%, rubber (47.02%, paper (12.05%, glass (5.211%, metals (3.41% and bandages, gases, clothes, etc (12.556%. Conclusion: The findings suggest that the solid waste management of the studied hospitals is not satisfying and more attention must be paid to the critical issues, such as plans for reducing solid wastes, isolating infected solid wastes at the production site and using safe and updated methods of disposal of solid wastes.

  1. Waste management in Greenland: current situation and challenges

    DEFF Research Database (Denmark)

    Eisted, Rasmus; Christensen, Thomas Højlund

    2011-01-01

    Waste management in Greenland (56 000 inhabitants) is characterized by landfilling, incineration and export to Denmark of small quantities of metals and hazardous waste. The annual amount of waste is estimated to about 50 000 tons but actual data are scarce. Data on the waste composition is basic...... are small and equipped with only moderate flue gas cleaning technology. This report summarizes the current waste management situation in Greenland and identifies important challenges in improving the waste management.......Waste management in Greenland (56 000 inhabitants) is characterized by landfilling, incineration and export to Denmark of small quantities of metals and hazardous waste. The annual amount of waste is estimated to about 50 000 tons but actual data are scarce. Data on the waste composition...... is basically lacking. The scattered small towns and settlements, the climate and the long transport distances between towns and also to recycling industries abroad constitute a complex situation with respect to waste management. The landfills have no collection of gas and leachate and the incinerators...

  2. ANSTO`s radioactive waste management policy. Preliminary environmental review

    Energy Technology Data Exchange (ETDEWEB)

    Levins, D.M.; Airey, P.; Breadner, B.; Bull, P.; Camilleri, A.; Dimitrovski, L.; Gorman, T.; Harries, J.; Innes, R.; Jarquin, E.; Jay, G.; Ridal, A.; Smith, A.

    1996-05-01

    For over forty years, radioactive wastes have been generated by ANSTO (and its predecessor, the AAEC) from the operation of nuclear facilities, the production of radioisotopes for medical and industrial use, and from various research activities. the quantities and activities of radioactive waste currently at Lucas Heights are very small compared to many other nuclear facilities overseas, especially those in countries with nuclear power program. Nevertheless, in the absence of a repository for nuclear wastes in Australia and guidelines for waste conditioning, the waste inventory has been growing steadily. This report reviews the status of radioactive waste management at ANSTO, including spent fuel management, treatment of effluents and environmental monitoring. It gives details of: relevant legislative, regulatory and related requirements; sources and types of radioactive waste generated at ANSTO; waste quantities and activities (both cumulative and annual arisings); existing practices and procedures for waste management and environmental monitoring; recommended broad strategies for dealing with radioactive waste management issues. Detailed proposals on how the recommendations should be implemented is the subject of a companion internal document, the Radioactive Waste Management Action Plan 1996-2000 which provides details of the tasks to be undertaken, milestones and resource requirements. 44 refs., 2 tabs., 18 figs.

  3. International nuclear waste management fact book

    Energy Technology Data Exchange (ETDEWEB)

    Abrahms, C W; Patridge, M D; Widrig, J E

    1995-11-01

    The International Nuclear Waste Management Fact Book has been compiled to provide current data on fuel cycle and waste management facilities, R and D programs, and key personnel in 24 countries, including the US; four multinational agencies; and 20 nuclear societies. This document, which is in its second year of publication supersedes the previously issued International Nuclear Fuel Cycle Fact Book (PNL-3594), which appeared annually for 12 years. The content has been updated to reflect current information. The Fact Book is organized as follows: National summaries--a section for each country that summarizes nuclear policy, describes organizational relationships, and provides addresses and names of key personnel and information on facilities. International agencies--a section for each of the international agencies that has significant fuel cycle involvement and a list of nuclear societies. Glossary--a list of abbreviations/acronyms of organizations, facilities, and technical and other terms. The national summaries, in addition to the data described above, feature a small map for each country and some general information that is presented from the perspective of the Fact Book user in the US.

  4. Waste management/waste certification plan for the Oak Ridge National Laboratory Environmental Restoration Program

    Energy Technology Data Exchange (ETDEWEB)

    Clark, C. Jr.; Hunt-Davenport, L.D.; Cofer, G.H.

    1995-03-01

    This Waste Management/Waste Certification (C) Plan, written for the Environmental Restoration (ER) Program at Oak Ridge National Laboratory (ORNL), outlines the criteria and methodologies to be used in the management of waste generated during ORNL ER field activities. Other agreed upon methods may be used in the management of waste with consultation with ER and Waste Management Organization. The intent of this plan is to provide information for the minimization, handling, and disposal of waste generated by ER activities. This plan contains provisions for the safe and effective management of waste consistent with the U.S. Environmental Protection Agency`s (EPA`s) guidance. Components of this plan have been designed to protect the environment and the health and safety of workers and the public. It, therefore, stresses that investigation derived waste (IDW) and other waste be managed to ensure that (1) all efforts be made to minimize the amount of waste generated; (2) costs associated with sampling storage, analysis, transportation, and disposal are minimized; (3) the potential for public and worker exposure is not increased; and (4) additional contaminated areas are not created.

  5. Waste Management in the Circular Economy. The Case of Romania.

    Science.gov (United States)

    Iuga, Anca N.

    2016-11-01

    Applying the principles of sustainable development in Romania involves a new approach to ecological waste using basic concepts of circular economy to weigh accurately the proposed projects in this area taking into account existing environmental resources and zero waste objectives. The paper is focused on: quantitative and qualitative measures of waste prevention in Romania, the changing status of the waste by selling it as product, the mechanisms for paying for treatment and / or disposal which discourage waste generation and the use of financial resources obtained from secondary raw materials for the efficiency of waste management.

  6. Risk management in waste water treatment.

    Science.gov (United States)

    Wagner, M; Strube, I

    2005-01-01

    With the continuous restructuring of the water market due to liberalisation, privatisation and internationalisation processes, the requirements on waste water disposal companies have grown. Increasing competition requires a target-oriented and clearly structured procedure. At the same time it is necessary to meet the environment-relevant legal requirements and to design the processes to be environment-oriented. The implementation of risk management and the integration of such a management instrument in an existing system in addition to the use of modern technologies and procedures can help to make the operation of the waste water treatment safer and consequently strengthen market position. The risk management process consists of three phases, risk identification, risk analysis/risk assessment and risk handling, which are based on each other, as well as of the risk managing. To achieve an identification of the risks as complete as possible, a subdivision of the kind of risks (e.g. legal, financial, market, operational) is suggested. One possibility to assess risks is the portfolio method which offers clear representation. It allows a division of the risks into classes showing which areas need handling. The determination of the appropriate measures to handle a risk (e.g. avoidance, reduction, shift) is included in the concluding third phase. Different strategies can be applied here. On the one hand, the cause-oriented strategy, aiming at preventive measures which aim to reduce the probability of occurrence of a risk (e.g. creation of redundancy, systems with low susceptibility to malfunction). On the other hand, the effect-oriented strategy, aiming to minimise the level of damage in case of an undesired occurrence (e.g. use of alarm systems, insurance cover).

  7. A SWOT Analysis on the Waste Management Problem in Romania in 2010

    Directory of Open Access Journals (Sweden)

    Elena ENACHE

    2010-03-01

    Full Text Available From human activities are resulting huge amounts of waste, with different types of impact: lands changing, visual discomfort, air pollution, surface water pollution, soil fertility changes etc. Romania, a European Union member state, faces in turn with annual generation of significant quantities of waste, which cause problems of storage, recycling, reappraisal or their destruction. Romania has to involve - without exception - all institutions and each and every citizen in this action and to spend whatever is needed to get a clean and bright face. We present below a SWOT analysis on waste management in our country at the beginning of the year 2010.

  8. DOE guidelines for management of radioactive waste - historical perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Kluk, A.F. [Dept. of Energy, Germantown, MD (United States); Neal, R.M. [Scientech, Inc., Germantown, MD (United States)

    1996-12-31

    From the beginning of the Manhattan Project in 1942 through the signing of the Atomic Energy Act (AEA) in 1946 and its reenactment in 1954, new policies and techniques began to evolve for managing waste produced in the manufacture of nuclear weapons. Even in the early days of war-time urgency, public health and safety were the major considerations in managing waste from this new technology. The Atomic Energy Commission (AEC), which took over from the Manhattan Engineer District (MED) in 1947, established initial waste category management guidelines (high level waste stored in tanks, solid low level waste disposed of primarily in trenches, and liquid waste released to ponds, cribs, and pits) based on the management concepts developed by the MED. The AEC and its successor agencies managed radioactive waste in a manner consistent with existing industrial health and safety requirements of that era. With the formation of the Department of Energy (DOE) in September 1977, techniques and internal requirements were already in place or being established that, in some cases, were more protective of human health and the environment than existing legislation and environmental standards. With the transition to environmental cleanup of former DOE weapons production facilities, new and revised guidelines were created to address hazardous and radioactive mixed waste, waste minimization, and recycling. This paper reviews the waste management guidelines as they have evolved from the MED through the resent time.

  9. The Mixed Waste Management Facility. Preliminary design review

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    This document presents information about the Mixed Waste Management Facility. Topics discussed include: cost and schedule baseline for the completion of the project; evaluation of alternative options; transportation of radioactive wastes to the facility; capital risk associated with incineration; radioactive waste processing; scaling of the pilot-scale system; waste streams to be processed; molten salt oxidation; feed preparation; initial operation to demonstrate selected technologies; floorplans; baseline revisions; preliminary design baseline; cost reduction; and project mission and milestones.

  10. Nuclear waste management. Quarterly progress report, July-September 1979

    Energy Technology Data Exchange (ETDEWEB)

    Platt, A.M.; Powell, J.A.

    1979-11-01

    Research is reported on: decontamination and densification of chop-leach cladding residues, monitoring of effluents from waste solidification, TRU waste mobilization, Kr solidification, /sup 14/C and /sup 129/I fixation, waste management system and safety studies, waste isolation safety assessment, logging systems for shallow land burial, unsaturated zone transport, mobile organic complexes of fission products, electropolishing for surface decontamination of metals, and decontamination and decommissioning of Hanford facilities. (DLC)

  11. The Mixed Waste Management Facility. Preliminary design review

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    This document presents information about the Mixed Waste Management Facility. Topics discussed include: cost and schedule baseline for the completion of the project; evaluation of alternative options; transportation of radioactive wastes to the facility; capital risk associated with incineration; radioactive waste processing; scaling of the pilot-scale system; waste streams to be processed; molten salt oxidation; feed preparation; initial operation to demonstrate selected technologies; floorplans; baseline revisions; preliminary design baseline; cost reduction; and project mission and milestones.

  12. A field research on residential solid waste management in Beijing

    OpenAIRE

    Pei, Lin

    2016-01-01

    As the biggest municipal solid waste generator all over the world, China has been facing unprecedented waste crisis since last decade (WorldBank, 2005). Especially in urban areas, rapid growing waste amount has led to pressing problems in environmental, economical and social aspects to municipal government and residents. Under this circumstance, Bei- jing, as the second biggest city in China, has adopted multiple approaches and allocated enormous resources to improve local waste management sy...

  13. Challenges in packaging waste management in the fast food industry

    Energy Technology Data Exchange (ETDEWEB)

    Aarnio, Teija [Digita Oy, P.O. Box 135, FI-00521 Helsinki (Finland); Haemaelaeinen, Anne [Department of Energy and Environmental Technology, Lappeenranta University of Technology, P.O. Box 20, FI-53851 Lappeenranta (Finland)

    2008-02-15

    The recovery of solid waste is required by waste legislation, and also by the public. In some industries, however, waste is mostly disposed of in landfills despite of its high recoverability. Practical experiences show that the fast food industry is one example of these industries. A majority of the solid waste generated in the fast food industry is packaging waste, which is highly recoverable. The main research problem of this study was to find out the means of promoting the recovery of packaging waste generated in the fast food industry. Additionally, the goal of this article was to widen academic understanding on packaging waste management in the fast food industry, as the subject has not gained large academic interest previously. The study showed that the theoretical recovery rate of packaging waste in the fast food industry is high, 93% of the total annual amount, while the actual recovery rate is only 29% of the total annual amount. The total recovery potential of packaging waste is 64% of the total annual amount. The achievable recovery potential, 33% of the total annual amount, could be recovered, but is not mainly because of non-working waste management practices. The theoretical recovery potential of 31% of the total annual amount of packaging waste cannot be recovered by the existing solid waste infrastructure because of the obscure status of commercial waste, the improper operation of producer organisations, and the municipal autonomy. The research indicated that it is possible to reach the achievable recovery potential in the existing solid waste infrastructure through new waste management practices, which are designed and operated according to waste producers' needs and demands. The theoretical recovery potential can be reached by increasing the consistency of the solid waste infrastructure through governmental action. (author)

  14. From waste to sustainable materials management: Three case studies of the transition journey.

    Science.gov (United States)

    Silva, Angie; Rosano, Michele; Stocker, Laura; Gorissen, Leen

    2017-03-01

    Waste policy is increasingly moving on from the 'prevention of waste' to a 'sustainable materials policy' focused agenda recognising individual wastes as a resource. In order to comparatively analyse policy developments in enhanced waste management, three case studies were selected; San Francisco's Zero Waste Program, Flanders's Sustainable Materials Management Initiative and Japan's Sound Material-Cycle Society Plan. These case studies were chosen as an opportunity to investigate the variety of leading approaches, governance structures, and enhanced waste policy outcomes, emerging globally. This paper concludes that the current transitional state of waste management across the world, is only in the first leg of the journey towards Circular Economy closed loop production models of waste as a resource material. It is suggested that further development in government policy, planning and behaviour change is required. A focus on material policy and incorporating multiple front runners across industry and knowledge institutions are offered as potential directions in the movement away from end-pipe land-fill solutions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Food Waste to Energy: An Overview of Sustainable Approaches for Food Waste Management and Nutrient Recycling.

    Science.gov (United States)

    Paritosh, Kunwar; Kushwaha, Sandeep K; Yadav, Monika; Pareek, Nidhi; Chawade, Aakash; Vivekanand, Vivekanand

    2017-01-01

    Food wastage and its accumulation are becoming a critical problem around the globe due to continuous increase of the world population. The exponential growth in food waste is imposing serious threats to our society like environmental pollution, health risk, and scarcity of dumping land. There is an urgent need to take appropriate measures to reduce food waste burden by adopting standard management practices. Currently, various kinds of approaches are investigated in waste food processing and management for societal benefits and applications. Anaerobic digestion approach has appeared as one of the most ecofriendly and promising solutions for food wastes management, energy, and nutrient production, which can contribute to world's ever-increasing energy requirements. Here, we have briefly described and explored the different aspects of anaerobic biodegrading approaches for food waste, effects of cosubstrates, effect of environmental factors, contribution of microbial population, and available computational resources for food waste management researches.

  16. Food Waste to Energy: An Overview of Sustainable Approaches for Food Waste Management and Nutrient Recycling

    Directory of Open Access Journals (Sweden)

    Kunwar Paritosh

    2017-01-01

    Full Text Available Food wastage and its accumulation are becoming a critical problem around the globe due to continuous increase of the world population. The exponential growth in food waste is imposing serious threats to our society like environmental pollution, health risk, and scarcity of dumping land. There is an urgent need to take appropriate measures to reduce food waste burden by adopting standard management practices. Currently, various kinds of approaches are investigated in waste food processing and management for societal benefits and applications. Anaerobic digestion approach has appeared as one of the most ecofriendly and promising solutions for food wastes management, energy, and nutrient production, which can contribute to world’s ever-increasing energy requirements. Here, we have briefly described and explored the different aspects of anaerobic biodegrading approaches for food waste, effects of cosubstrates, effect of environmental factors, contribution of microbial population, and available computational resources for food waste management researches.

  17. Food Waste to Energy: An Overview of Sustainable Approaches for Food Waste Management and Nutrient Recycling

    Science.gov (United States)

    Paritosh, Kunwar; Kushwaha, Sandeep K.; Yadav, Monika; Pareek, Nidhi; Chawade, Aakash

    2017-01-01

    Food wastage and its accumulation are becoming a critical problem around the globe due to continuous increase of the world population. The exponential growth in food waste is imposing serious threats to our society like environmental pollution, health risk, and scarcity of dumping land. There is an urgent need to take appropriate measures to reduce food waste burden by adopting standard management practices. Currently, various kinds of approaches are investigated in waste food processing and management for societal benefits and applications. Anaerobic digestion approach has appeared as one of the most ecofriendly and promising solutions for food wastes management, energy, and nutrient production, which can contribute to world's ever-increasing energy requirements. Here, we have briefly described and explored the different aspects of anaerobic biodegrading approaches for food waste, effects of cosubstrates, effect of environmental factors, contribution of microbial population, and available computational resources for food waste management researches.

  18. Sustainability of Solid Waste Management System in Urban Areas of Pakistan: Stakeholders Perspective

    Directory of Open Access Journals (Sweden)

    Shoaib Muhammad

    2017-03-01

    Full Text Available Sustainability of solid waste management system in Pakistan like other developing countries is a growing challenge. Stakeholders are vital for the successful running of solid waste management system and timely inclusion of stakeholders’ perspective can contribute to attain sustainability of solid waste management system. Therefore, stakeholders’ subjectivities and perspectives towards the sustainability of solid waste management system were studied in this research program. . Five components of the sustainable solid waste management system, that is, Technical, Environmental, Economic, Social and Institutional, were considered based on literature review. Nature of these components being part of an integrated system makes the system multicriteria. Relative importance of these components leading to define priorities for planning and execution of such system is the need for planning, development, and running of such systems. To acquire these priorities based on stakeholders input the stakeholders were classified into two major categories i.e. Technical and Social. A survey was undertaken in which the afore-mentioned stakeholders were asked to provide their input in the form of a pair wise comparison among the various components of the sustainable solid waste management system (SSWM. Analytical Hierarchy Process, a Multi Criteria Decision Analysis (MCDA tool was used to quantify the relative importance of various components of SSWM. Environmental component of the sustainability came out to be the top priority of the stakeholders as it was given the highest weight by the stakeholders

  19. Best Practice of Construction Waste Management and Minimization

    Directory of Open Access Journals (Sweden)

    Khor Jie Cheng

    2014-07-01

    Full Text Available Material management is an important issue as seen in construction waste management. Best practice of material management is accompanied by various benefits which are acknowledged by several studies. The site layout has particular effects on both materials and their waste through effective waste management practice. Ignoring the benefits of material management could result in a daily reduction in productivity of up to 40% by material wastage. Thus, the benefits of effective material management must be well comprehended for the sake of waste minimization. Another convincing fact about waste is that poor site management accounts for the largest factor of waste generation. Hence the site condition is very crucial in developing effective material management. Factors contributing to the efficiency of material management process are effective logistical management and supply chain management. The logistics system must be performing as schedule so that materials are wisely managed on-site without encountering presence of excessive materials. As materials management is closely related to logistics in construction projects, there will be delay in construction projects when materials are not delivered to site as scheduled. The management must be effective in terms of delivery, off-loading, storage, handling, on-site transportation and on-site utilization of materials.

  20. Solid waste management in the hospitality industry: a review.

    Science.gov (United States)

    Pirani, Sanaa I; Arafat, Hassan A

    2014-12-15

    Solid waste management is a key aspect of the environmental management of establishments belonging to the hospitality sector. In this study, we reviewed literature in this area, examining the current status of waste management for the hospitality sector, in general, with a focus on food waste management in particular. We specifically examined the for-profit subdivision of the hospitality sector, comprising primarily of hotels and restaurants. An account is given of the causes of the different types of waste encountered in this sector and what strategies may be used to reduce them. These strategies are further highlighted in terms of initiatives and practices which are already being implemented around the world to facilitate sustainable waste management. We also recommended a general waste management procedure to be followed by properties of the hospitality sector and described how waste mapping, an innovative yet simple strategy, can significantly reduce the waste generation of a hotel. Generally, we found that not many scholarly publications are available in this area of research. More studies need to be carried out on the implementation of sustainable waste management for the hospitality industry in different parts of the world and the challenges and opportunities involved. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. GREENHOUSE GASES REDUCTION THROUGH WASTE MANAGEMENT IN CROATIA

    Directory of Open Access Journals (Sweden)

    Aleksandra Anić Vučinić

    2010-01-01

    Full Text Available The climate change policy is one of the key factors in the achievement of sustainable development in the Republic of Croatia. Control and mitigation of green house gases is correlated with all economy activities. Waste management is one of the main tasks of environmental protection in Croatia. The Waste Management Strategy of the Republic of Croatia and the Waste Management Plan in the Republic of Croatia define the concept of waste management hierarchy and direct and indirect measures as criteria for sustainable waste management establishment. The main constituent of this system is avoiding and minimizing waste, as well as increasing the recycling and recovery level of waste and land fill gas, which also represent green house gases mitigation measures. The Waste Management Plan consists of several direct and indirect measures for green house gases emission reduction and their implementation also affects the green house gases emissions. The contribution of the methane emission from land fills amounts to about 2% of the total green house gases emissions in Croatia. The climate change control and mitigation measures as an integral part of waste management sector strategies represent the measures of achieving the national objectives to wards green house gases emission reduction which Croatia has accepted in the frame work of the Kyoto Protocol.

  2. Disaster Waste Management in Malaysia: Significant Issues, Policies & Strategies

    Directory of Open Access Journals (Sweden)

    Yusof Nor Syazwani

    2016-01-01

    Full Text Available Disaster Waste Management in Malaysia is still at the early stage of its research. Disaster can create large volumes of debris and waste and mismanagement of disaster waste can affect both the response and long term recovery of disaster affected area. The government of Malaysia is taking serious about this issue. This paper is aim to explore the issues, policies and strategies regarding disaster waste management in Malaysia. The objectives were to investigate the extent of disaster waste effects on the environment and to provide a basis from which the needs of waste management could be evaluated in disaster management guidelines. Qualitative method of data collection has been adopted in this study. The respondent are among the local authority and organization that involved in managing wastes. The finding shows that many of the policies regarding waste management in Malaysia has not been well implemented. The purpose of this paper is expected to improve the method of managing disaster waste in Malaysia.

  3. Waste to Energy: A Green Paradigm in Solid Waste Management

    Directory of Open Access Journals (Sweden)

    Mohamad Danish Anis

    2015-12-01

    Full Text Available The current annual generation of municipal solid waste in India is estimated to be around 42 million tones which will rise rapidly with population growth, urbanization and improving living standards of people. The municipal solid waste (MSW generation ranges from 0.25 to 0.66 kg/person/day with an average of 0.45 kg/person/day. In addition, large quantities of solid and liquid wastes are generated by industries. Most of the wastes generated find their way into land and water bodies. Without proper treatment, these wastes emit gases like Methane (CH4, Carbon Dioxide (CO2 etc, resulting in bad odor, emission of green house gases and increase in air and water pollution. This problem can be significantly mitigated through adoption of environment-friendly waste-to-energy technologies for the treatment and processing of wastes before disposal. It will not only reduce the quantity of wastes but also generate substantial quantity of energy. India at present is the world’s fifth biggest energy consumer and is predicted to surpass Japan and Russia to take the third place by 2030. Indian economy has shown a robust growth of around 8% in recent years and is trying to sustain this growth in order to reach goals of poverty alleviation. To achieve the required level of growth, India will need to at least triple its primary energy supply and quintuple its electrical capacity. This will force India, which already imports a majority of its oil, to look beyond its borders for energy resources. In India waste-to-energy has a potential of generating 1700 MW per person and this is scheduled to increase when more types of waste would be encompassed. At present hardly 50 MW power is being generated through waste-to-energy options. Waste combustion provides integrated solutions to the problems of the modern era by: recovering otherwise lost energy and thereby reducing our use of precious natural resources; by cutting down our emissions of greenhouse gases; and by both

  4. Waste management and enzymatic treatment of Municipal Solid Waste

    DEFF Research Database (Denmark)

    Jensen, Jacob Wagner

    The work carried out during the Ph.D. project is part of the Danish Energy Authority funded research project called PSO REnescience and is focussed on studying the enzymatic hydrolysis and liquefaction of waste biomass. The purpose of studying the liquefaction of waste biomass is uniform slurry...... generation for subsequent biogas production. Municipal solid waste (MSW) is produced in large amounts every year in the developed part of the world. The household waste composition varies between geographical areas and between seasons. However the overall content of organic and degradable material is rather...... content), 2) low ash and xenobiotic content, 3) high gas yield, 4) volume (produced), 5) dependable distribution and 6) low competition with other end-user technologies. MSW is a complex substrate comprising both degradable and non-degradable material being metal, plastic, glass, building waste etc...

  5. Implementation of spatial smart waste management system in malaysia

    Science.gov (United States)

    Omar, M. F.; Termizi, A. A. A.; Zainal, D.; Wahap, N. A.; Ismail, N. M.; Ahmad, N.

    2016-06-01

    One of the challenges to innovate and create an IoT -enabled solution is in monitoring and management of the environment. Waste collection utilizing the Internet of Things (IoT) with the technology of smart wireless sensors will able to gather fill-level data from waste containers hence providing a waste monitoring solution that brings up savings in waste collection costs. One of the challenges to the local authority is how to monitor the works of contractor effective and efficiently in waste management. This paper will propose to the local authority the implementation of smart waste management in Malaysia to improve the city management and to provide better services to the public towards smart city applications.

  6. Generation and management of waste electric vehicle batteries in China.

    Science.gov (United States)

    Xu, ChengJian; Zhang, Wenxuan; He, Wenzhi; Li, Guangming; Huang, Juwen; Zhu, Haochen

    2017-08-12

    With the increasing adoption of EVs (electric vehicles), a large number of waste EV LIBs (electric vehicle lithium-ion batteries) were generated in China. Statistics showed generation of waste EV LIBs in 2016 reached approximately 10,000 tons, and the amount of them would be growing rapidly in the future. In view of the deleterious effects of waste EV LIBs on the environment and the valuable energy storage capacity or materials that can be reused in them, China has started emphasizing the management, reuse, and recycling of them. This paper presented the generation trend of waste EV LIBs and focused on interrelated management development and experience in China. Based on the situation of waste EV LIBs management in China, existing problems were analyzed and summarized. Some recommendations were made for decision-making organs to use as valuable references to improve the management of waste EV LIBs and promote the sustainable development of EVs.

  7. A legislator`s guide to municipal solid waste management

    Energy Technology Data Exchange (ETDEWEB)

    Starkey, D; Hill, K

    1996-08-01

    The purpose of this guide is to allow individual state legislators to gain a better understanding of municipal solid waste (MSW) management issues in general, and examine the applicability of these concerns to their state. This guide incorporates a discussion of MSW management issues and a comprehensive overview of the components of an integrated solid waste management system. Major MSW topics discussed include current management issues affecting states, federal activities, and state laws and local activities. Solid waste characteristics and management approaches are also detailed.

  8. hospital waste management as primary healthcare ce ste ...

    African Journals Online (AJOL)

    User

    2014-04-02

    Apr 2, 2014 ... 2CENTRE FOR DISASTER RISK MANAGEMENT. 3DEPARTMENT OF ..... had knowledge of healthcare waste management plan. These 2 parameters .... Environmental Engineering Program, School of environment ...

  9. Hanford long-term high-level waste management program

    Energy Technology Data Exchange (ETDEWEB)

    Wodrich, D.D.

    1976-06-24

    An overview of the Hanford Long-Term High-Level Waste Management Program is presented. Four topics are discussed: first, the kinds and quantities of waste that will exist and are included in this program; second, how the plan is structured to solve this problem; third, the alternative waste management methods being considered; and fourth, the technology program that is in progress to carry out this plan. (LK)

  10. Roman Administration for Waste Management and Habitat Protection

    Directory of Open Access Journals (Sweden)

    José Luis Zamora

    2017-01-01

    Full Text Available From an environmental perspective, problems usually arising in large cities are often related to waste, due to a large group of residencies and business establishments in a small space. Rome is no exception; hence it has historically been concerned about hygiene and the management and disposal of urban waste, which continues to present day, generating numerous problems. This paper will address some of the vicissitudes related with waste management.

  11. Environmental evaluation of waste management scenarios - significance of the boundaries

    NARCIS (Netherlands)

    Ghinea, C.; Petraru, M.; Bressers, Johannes T.A.; Gavrilescu, M.

    2012-01-01

    Life cycle concept was applied to analyse and assess some municipal solid waste (MSW) management scenarios in terms of environmental impacts, particularised for Iasi city, Romania, where approximately 380 kg/cap/yr of waste are generated. Currently, the management processes include temporary storage

  12. An Investigation into Waste Management Practices in Nigeria (A ...

    African Journals Online (AJOL)

    PROF. OLIVER OSUAGWA

    West African Journal of Industrial & Academic Research Vol.12 No.1 December 2014 112 ... problem in the environment due to lack Basic facilities:- This paper investigate the waste management problems and the various .... to Waste Management System in Nigeria City centre ..... cleaning fluid (Solvents) or pesticides,.

  13. Environmental evaluation of waste management scenarios - significance of the boundaries

    NARCIS (Netherlands)

    Ghinea, C.; Petraru, M.; Bressers, Johannes T.A.; Gavrilescu, M.

    2012-01-01

    Life cycle concept was applied to analyse and assess some municipal solid waste (MSW) management scenarios in terms of environmental impacts, particularised for Iasi city, Romania, where approximately 380 kg/cap/yr of waste are generated. Currently, the management processes include temporary

  14. Intelligent information system for waste management; Jaetehuollon aelykaes tietojaerjestelmae

    Energy Technology Data Exchange (ETDEWEB)

    Nuortio, T. [Kuopio Univ. (Finland)

    2005-07-01

    'iWaste - Intelligent Information System for Waste Management' - was a joint project of the University of Kuopio and the Tampere University of Technology. The main objective of the project was to improve the management and use of waste management data. Also the project focused on the development of information management systems. The results of the project are numerous. A study of the present state of information management in the field of waste management was carried out. The studied aspects were for example information needs of different actors and their requirements for the information quality, communication requirements among different actors, and the characteristics and applications of the software products. The conceptual data model of waste management was developed and resulted as the hyper document for connecting waste and information management specialists, and for research and educational purposes. Also, this model can be used for the development of political regulation. Methodologies and models for processing data into information for decision making were developed. The methodologies and models include e.g. data mining techniques, prediction of waste generation and optimisation of waste pick-up and transport. (orig.)

  15. Toolkit - South Africa's good waste management practices: lessons learned

    CSIR Research Space (South Africa)

    Afrika, M

    2010-02-01

    Full Text Available practices are to be found. This paper reports on the development of a Toolkit for municipal waste management service delivery, based on some of the good waste management practices currently implemented in different municipalities across all the categories...

  16. Environmental evaluation of waste management scenarios - significance of the boundaries

    NARCIS (Netherlands)

    Ghinea, C.; Petraru, M.; Bressers, J.T.A.; Gavrilescu, M.

    2012-01-01

    Life cycle concept was applied to analyse and assess some municipal solid waste (MSW) management scenarios in terms of environmental impacts, particularised for Iasi city, Romania, where approximately 380 kg/cap/yr of waste are generated. Currently, the management processes include temporary storage

  17. Biomedical waste in laboratory medicine: audit and management.

    Science.gov (United States)

    Chitnis, V; Vaidya, K; Chitnis, D S

    2005-01-01

    Pathology, microbiology, blood bank and other diagnostic laboratories generate sizable amount of biomedical waste (BMW). The audit of the BMW is required for planning proper strategies. The audit in our laboratory revealed 8 kgs anatomical waste, 600 kgs microbiology waste, 220 kgs waste sharps, 15 kgs soiled waste, 111 kgs solid waste, 480 litres liquid waste along with 33,000 litres per month liquid waste generated from labware washing and laboratory cleaning and 162 litres of chemical waste per month. Section wise details are described in the text. Needle sharps are collected in puncture proof containers and the needles autoclaved before sending to needle pit. The glass forms the major sharp category and is disinfected with hypochlorite before washing/recycling. All microbiology waste along with containers/plates/tubes are autoclaved before recycling/disposal. The problem of formalin fixed anatomical waste as histology specimens is pointed out. The formalin containing tissues cannot be sent for incineration for the fear of toxic gas release and the guidelines by the Biomedical waste rule makers need to be amended for the issue. The discarded/infected blood units in blood bank need to be autoclaved before disposal since chemical treatments are difficult or inefficient. The liquid waste management needs more attention and effluent treatment facility needs to be viewed seriously for hospital in general. The segregation of waste at source is the key step and reduction, reuse and recycling should be considered in proper perspectives.

  18. Biomedical waste in laboratory medicine: Audit and management

    Directory of Open Access Journals (Sweden)

    Chitnis V

    2005-01-01

    Full Text Available Pathology, microbiology, blood bank and other diagnostic laboratories generate sizable amount of biomedical waste (BMW. The audit of the BMW is required for planning proper strategies. The audit in our laboratory revealed 8 kgs anatomical waste, 600 kgs microbiology waste, 220 kgs waste sharps, 15 kgs soiled waste, 111 kgs solid waste, 480 litres liquid waste along with 33000 litres per month liquid waste generated from labware washing and laboratory cleaning and 162 litres of chemical waste per month. Section wise details are described in the text. Needle sharps are collected in puncture proof containers and the needles autoclaved before sending to needle pit. The glass forms the major sharp category and is disinfected with hypochlorite before washing/recycling. All microbiology waste along with containers/plates/tubes are autoclaved before recycling/disposal. The problem of formalin fixed anatomical waste as histology specimens is pointed out. The formalin containing tissues cannot be sent for incineration for the fear of toxic gas release and the guidelines by the Biomedical waste rule makers need to be amended for the issue. The discarded/infected blood units in blood bank need to be autoclaved before disposal since chemical treatments are difficult or inefficient. The liquid waste management needs more attention and effluent treatment facility needs to be viewed seriously for hospital in general. The segregation of waste at source is the key step and reduction, reuse and recycling should be considered in proper perspectives.

  19. Sandia National Laboratories, California Waste Management Program annual report.

    Energy Technology Data Exchange (ETDEWEB)

    Brynildson, Mark E.

    2010-02-01

    The annual program report provides detailed information about all aspects of the Sandia National Laboratories, California (SNL/CA) Waste Management Program. It functions as supporting documentation to the SNL/CA Environmental Management System Program Manual. This annual program report describes the activities undertaken during the past year, and activities planned in future years to implement the Waste Management (WM) Program, one of six programs that supports environmental management at SNL/CA.

  20. Earning public trust and confidence: Requisites for managing radioactive wastes. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1993-11-01

    The Task Force on Radioactive Waste Management was created in April 1991 by former Secretary James D. Watkins, who asked the group to analyze the critical institutional question of how the Department of Energy (DOE) might strengthen public trust and confidence in the civilian radioactive waste management program. The panel met eight times over a period of 27 months and heard formal presentations from nearly 100 representatives of state and local governments, non-governmental organizations, and senior DOE Headquarters and Field Office managers. The group also commissioned a variety of studies from independent experts, contracted with the National Academy of Sciences and the National Academy of Public Administration to hold workshops on designing and leading trust-evoking organizations, and carried out one survey of parties affected by the Department`s radioactive waste management activities and a second one of DOE employees and contractors.

  1. Involving the citizens. Radioactive waste management and the EU

    Energy Technology Data Exchange (ETDEWEB)

    Ferraro, Gianluca [European Commission Joint Research Centre, Petten (Netherlands)

    2014-11-15

    The European Union (EU) has been often criticized for its democratic deficit, which has been studied in the academic literature at multiple levels: in the polity (macro-level), the institutions (meso-level) and the policies (micro-level) of the EU. The paper presents counterarguments in favour of the democratic nature of the EU and focuses on the micro-level, particularly the process of implementation of EU policies. Policy implementation and the democratic involvement of citizens are discussed with regard to radioactive waste management and the Directive 2011/70/EURATOM. The Directive's clause on transparency and the recent development of a centre of knowledge for public participation in energy policy implementation by the European Commission (EC) are expression of the democratic nature of the EU and provide further counterarguments to the claim of democratic deficit.

  2. Institutional management of core facilities during challenging financial times.

    Science.gov (United States)

    Haley, Rand

    2011-12-01

    The economic downturn is likely to have lasting effects on institutions of higher education, prioritizing proactive institutional leadership and planning. Although by design, core research facilities are more efficient and effective than supporting individual pieces of research equipment, cores can have significant underlying financial requirements and challenges. This paper explores several possible institutional approaches to managing core facilities during challenging financial times.

  3. Institutional Management and Engagement with the Knowledge Society

    Science.gov (United States)

    Goddard, John

    2005-01-01

    The article will argue that external engagement with business and the community poses major challenges for the institutional management of Higher Education Institutions (HEIs). The world outside of academia, in business, central and local government, health, welfare and the cultural and community sectors increasingly expect an institutional as…

  4. Outsourced Investment Management: An Overview for Institutional Decision-Makers

    Science.gov (United States)

    Griswold, John S.; Jarvis, William F.

    2013-01-01

    Outsourcing of investment management is a growing trend among institutional investors. With a broad range of institutions using or exploring the outsourced chief investment officer (OCIO) model, portfolio size is no longer the determining factor driving the outsourcing decision. For all but the largest institutional investors--those with deep…

  5. A Management Framework for Municipal Solid Waste Systems and Its Application to Food Waste Prevention

    Directory of Open Access Journals (Sweden)

    Krista L. Thyberg

    2015-08-01

    Full Text Available Waste management is a complex task involving numerous waste fractions, a range of technological treatment options, and many outputs that are circulated back into society. A systematic, interdisciplinary systems management framework was developed to facilitate the planning, implementation, and maintenance of sustainable waste systems. It aims not to replace existing decision-making approaches, but rather to enable their integration to allow for inclusion of overall sustainability concerns and address the complexity of solid waste management. The framework defines key considerations for system design, steps for performance monitoring, and approaches for facilitating continual system improvements. It was developed by critically examining the literature to determine what aspects of a management framework would be most effective at improving systems management for complex waste systems. The framework was applied to food waste management as a theoretical case study to exemplify how it can serve as a systems management tool for complex waste systems, as well as address obstacles typically faced in the field. Its benefits include the integration of existing waste system assessment models; the inclusion of environmental, economic, and social priorities; efficient performance monitoring; and a structure to continually define, review, and improve systems. This framework may have broader implications for addressing sustainability in other disciplines.

  6. Research challenges in municipal solid waste logistics management.

    Science.gov (United States)

    Bing, Xiaoyun; Bloemhof, Jacqueline M; Ramos, Tania Rodrigues Pereira; Barbosa-Povoa, Ana Paula; Wong, Chee Yew; van der Vorst, Jack G A J

    2016-02-01

    During the last two decades, EU legislation has put increasing pressure on member countries to achieve specified recycling targets for municipal household waste. These targets can be obtained in various ways choosing collection methods, separation methods, decentral or central logistic systems, etc. This paper compares municipal solid waste (MSW) management practices in various EU countries to identify the characteristics and key issues from a waste management and reverse logistics point of view. Further, we investigate literature on modelling municipal solid waste logistics in general. Comparing issues addressed in literature with the identified issues in practice result in a research agenda for modelling municipal solid waste logistics in Europe. We conclude that waste recycling is a multi-disciplinary problem that needs to be considered at different decision levels simultaneously. A holistic view and taking into account the characteristics of different waste types are necessary when modelling a reverse supply chain for MSW recycling.

  7. Site investigation on medical waste management practices in northern Jordan.

    Science.gov (United States)

    Abdulla, Fayez; Abu Qdais, Hani; Rabi, Atallah

    2008-01-01

    This study investigated the medical waste management practices used by hospitals in northern Jordan. A comprehensive inspection survey was conducted for all 21 hospitals located in the study area. Field visits were conducted to provide information on the different medical waste management aspects. The results reported here focus on the level of medical waste segregation, treatment and disposal options practiced in the study area hospitals. The total number of beds in the hospitals was 2296, and the anticipated quantity of medical waste generated by these hospitals was about 1400 kg/day. The most frequently used treatment practice for solid medical waste was incineration. Of these hospitals, only 48% had incinerators, and none of these incinerators met the Ministry of Health (MoH) regulations. As for the liquid medical waste, the survey results indicated that 57% of surveyed hospitals were discharging it into the municipal sewer system, while the remaining hospitals were collecting their liquid waste in septic tanks. The results indicated that the medical waste generation rate ranges from approximately 0.5 to 2.2 kg/bed day, which is comprised of 90% of infectious waste and 10% sharps. The results also showed that segregation of various medical waste types in the hospitals has not been conducted properly. The study revealed the need for training and capacity building programs of all employees involved in the medical waste management.

  8. Sustainable Materials Management (SMM) WasteWise Data

    Science.gov (United States)

    EPA??s WasteWise encourages organizations and businesses to achieve sustainability in their practices and reduce select industrial wastes. WasteWise is part of EPA??s sustainable materials management efforts, which promote the use and reuse of materials more productively over their entire lifecycles. All U.S. businesses, governments and nonprofit organizations can join WasteWise as a partner, endorser or both. Current participants range from small local governments and nonprofit organizations to large multinational corporations. Partners demonstrate how they reduce waste, practice environmental stewardship and incorporate sustainable materials management into their waste-handling processes. Endorsers promote enrollment in WasteWise as part of a comprehensive approach to help their stakeholders realize the economic benefits to reducing waste. WasteWise helps organizations reduce their impact on global climate change through waste reduction. Every stage of a product's life cycle??extraction, manufacturing, distribution, use and disposal??indirectly or directly contributes to the concentration of greenhouse gases (GHGs) in the atmosphere and affects the global climate. WasteWise is part of EPA's larger SMM program (https://www.epa.gov/smm). Sustainable Materials Management (SMM) is a systemic approach to using and reusing materials more productively over their entire lifecycles. It represents a change in how our society thinks about the use of natural resources

  9. Radioactive waste management approaches for developed countries

    Energy Technology Data Exchange (ETDEWEB)

    Patricia Paviet-Hartmann; Anthony Hechanova; Catherine Riddle

    2013-07-01

    Nuclear power has demonstrated over the last 30 years its capacity to produce base-load electricity at a low, predictable and stable cost due to the very low economic dependence on the price of uranium. However the management of used nuclear fuel remains the “Achilles’ Heel” of this energy source since the storage of used nuclear fuel is increasing as evidenced by the following number with 2,000 tons of UNF produced each year by the 104 US nuclear reactor units which equates to a total of 62,000 spent fuel assemblies stored in dry cask and 88,000 stored in pools. Two options adopted by several countries will be presented. The first one adopted by Europe, Japan and Russia consists of recycling the used nuclear fuel after irradiation in a nuclear reactor. Ninety six percent of uranium and plutonium contained in the spent fuel could be reused to produce electricity and are worth recycling. The separation of uranium and plutonium from the wastes is realized through the industrial PUREX process so that they can be recycled for re-use in a nuclear reactor as a mixed oxide (MOX) fuel. The second option undertaken by Finland, Sweden and the United States implies the direct disposal of used nuclear fuel into a geologic formation. One has to remind that only 30% of the worldwide used nuclear fuel are currently recycled, the larger part being stored (70% in pool) waiting for scientific or political decisions. A third option is emerging with a closed fuel cycle which will improve the global sustainability of nuclear energy. This option will not only decrease the volume amount of nuclear waste but also the long-term radiotoxicity of the final waste, as well as improving the long-term safety and the heat-loading of the final repository. At the present time, numerous countries are focusing on the R&D recycling activities of the ultimate waste composed of fission products and minor actinides (americium and curium). Several new chemical extraction processes, such as TRUSPEAK

  10. Radioactive waste management approaches for developed countries

    Energy Technology Data Exchange (ETDEWEB)

    Patricia Paviet-Hartmann; Anthony Hechanova; Catherine Riddle

    2013-07-01

    Nuclear power has demonstrated over the last 30 years its capacity to produce base-load electricity at a low, predictable and stable cost due to the very low economic dependence on the price of uranium. However the management of used nuclear fuel remains the “Achilles’ Heel” of this energy source since the storage of used nuclear fuel is increasing as evidenced by the following number with 2,000 tons of UNF produced each year by the 104 US nuclear reactor units which equates to a total of 62,000 spent fuel assemblies stored in dry cask and 88,000 stored in pools. Two options adopted by several countries will be presented. The first one adopted by Europe, Japan and Russia consists of recycling the used nuclear fuel after irradiation in a nuclear reactor. Ninety six percent of uranium and plutonium contained in the spent fuel could be reused to produce electricity and are worth recycling. The separation of uranium and plutonium from the wastes is realized through the industrial PUREX process so that they can be recycled for re-use in a nuclear reactor as a mixed oxide (MOX) fuel. The second option undertaken by Finland, Sweden and the United States implies the direct disposal of used nuclear fuel into a geologic formation. One has to remind that only 30% of the worldwide used nuclear fuel are currently recycled, the larger part being stored (70% in pool) waiting for scientific or political decisions. A third option is emerging with a closed fuel cycle which will improve the global sustainability of nuclear energy. This option will not only decrease the volume amount of nuclear waste but also the long-term radiotoxicity of the final waste, as well as improving the long-term safety and the heat-loading of the final repository. At the present time, numerous countries are focusing on the R&D recycling activities of the ultimate waste composed of fission products and minor actinides (americium and curium). Several new chemical extraction processes, such as TRUSPEAK

  11. 40 CFR 60.3010 - What is a waste management plan?

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false What is a waste management plan? 60... Other Solid Waste Incineration Units That Commenced Construction On or Before December 9, 2004 Model Rule-Waste Management Plan § 60.3010 What is a waste management plan? A waste management plan is...

  12. 40 CFR 60.2620 - What is a waste management plan?

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false What is a waste management plan? 60... Commercial and Industrial Solid Waste Incineration Units that Commenced Construction On or Before November 30, 1999 Model Rule-Waste Management Plan § 60.2620 What is a waste management plan? A waste management...

  13. Strategic planning for waste management: A case study of Shiraz waste management

    Directory of Open Access Journals (Sweden)

    Ali Zangi Abadi

    2012-08-01

    Full Text Available These days, there are several reports indicating on reduction on renewable resources. On the other hand, there is an increase on the population, which increases production of garbage in the world. With limitation on governmental budget, there is growing concern on having efficient strategic planning for waste management. The proposed study of this paper performs a SWOT analysis to find all strength, weakness, opportunities as well as possible threats associated with waste management organization located in city of Shiraz, located in south west of Iran. Based on the results, appropriated locating strategies for burying garbage, training and increasing awareness regarding production and collection, attracting foreign investment in the field of recycling garbage, reconsidering environmental rules and burying garbage and its separation standards are the most important strategies.

  14. Status of waste tyres and management practice in Botswana.

    Science.gov (United States)

    Mmereki, Daniel; Machola, Bontle; Mokokwe, Kentlafetse

    2017-02-22

    Waste tyres (WTs) are becoming a significant environmental, economical and technological challenge due to their high contents of combustible composition and potential for valuable materials and energy resources. Fewer studies in developing and even developed countries have been carried out to assess the challenges regarding waste tyres management, and suggested the best alternative solutions for managing this waste stream. While developed countries made progress in waste tyres management needs by implementing more efficient innovative recovery and recycling methods, and restrictive regulations regarding the management of used tyres, in many developing countries the management of waste tyres has not received adequate interest, and the processing, treatment and disposal of waste tyre is still nascent. In recent years, worldwide, several methods for managing used tyres, including other principal alternatives for managing end-of-life tyres defined in the 4Rs, reduction, re-use, recovery and recycling have been adopted and applied to minimize serious threats to both the natural environment environment and human. The paper attempted to establish stakeholders' action that has the responsibility in waste tyre management in Botswana. This study also analyzed important aspects on waste tyres management in Botswana. A synthesis of approaches was employed in the present investigation to determine the factors influencing effective performance of waste tyres management practice in Botswana. Data for the present study was obtained using relevant published literature, scientific journals, other third sector sources, academic sources, and research derived from governments and other agencies and field observations. Group discussions with the participants and semi-structured interviews with professionals were carried out. The outcomes of this investigation are a wide-range outline concerning the participants that are important in waste tyres management, and a set of aspects affecting

  15. A system dynamics approach for hospital waste management.

    Science.gov (United States)

    Chaerul, Mochammad; Tanaka, Masaru; Shekdar, Ashok V

    2008-01-01

    Healthcare services provided by hospitals may generate some infectious wastes. Although a large percentage of hospital waste is classified as general waste, which has similar nature as that of municipal solid waste and, therefore, could be disposed in municipal landfills, a small portion of infectious waste has to be managed in the proper manner in order to minimize risk to public health. Many factors involved in the hospital waste management system often link to one another, which require a comprehensive analysis to determine the role of each factor in the system. In this paper, we present a hospital waste management model based on system dynamics to determine the interaction among factors in the system using a software package, Stella. A case study of the City of Jakarta, Indonesia is selected. The hospital waste generation is affected by various factors including the number of beds in the hospitals and the NIMBY (not in my back yard) syndrome. To minimize the risk to public health, we found that waste segregation, as well as infectious waste treatment prior to disposal, has to be conducted properly by the hospital management, especially when scavenging takes place in landfill sites in developing countries.

  16. Waste management in primary healthcare centres of Iran.

    Science.gov (United States)

    Mesdaghinia, Alireza; Naddafi, Kazem; Mahvi, Amir Hossein; Saeedi, Reza

    2009-06-01

    The waste management practices in primary healthcare centres of Iran were investigated in the present study. A total of 120 primary healthcare centres located across the country were selected using the cluster sampling method and the current situation of healthcare waste management was determined through field investigation. The quantities of solid waste and wastewater generation per outpatient were found to be 60 g outpatient(-1) day(-1) and 26 L outpatient(-1) day(-1), respectively. In all of the facilities, sharp objects were separated almost completely, but separation of other types of hazardous healthcare solid waste was only done in 25% of the centres. The separated hazardous solid waste materials were treated by incineration, temporary incineration and open burning methods in 32.5, 8.3 and 42.5% of the healthcare centres, respectively. In 16.7% of the centres the hazardous solid wastes were disposed of without any treatment. These results indicate that the management of waste materials in primary healthcare centres in Iran faced some problems. Staff training and awareness, separation of healthcare solid waste, establishment of the autoclave method for healthcare solid waste treatment and construction of septic tanks and disinfection units in the centres that were without access to a sewer system are the major measures that are suggested for improvement of the waste management practices.

  17. Solid waste management challenges for cities in developing countries.

    Science.gov (United States)

    Guerrero, Lilliana Abarca; Maas, Ger; Hogland, William

    2013-01-01

    Solid waste management is a challenge for the cities' authorities in developing countries mainly due to the increasing generation of waste, the burden posed on the municipal budget as a result of the high costs associated to its management, the lack of understanding over a diversity of factors that affect the different stages of waste management and linkages necessary to enable the entire handling system functioning. An analysis of literature on the work done and reported mainly in publications from 2005 to 2011, related to waste management in developing countries, showed that few articles give quantitative information. The analysis was conducted in two of the major scientific journals, Waste Management Journal and Waste Management and Research. The objective of this research was to determine the stakeholders' action/behavior that have a role in the waste management process and to analyze influential factors on the system, in more than thirty urban areas in 22 developing countries in 4 continents. A combination of methods was used in this study in order to assess the stakeholders and the factors influencing the performance of waste management in the cities. Data was collected from scientific literature, existing data bases, observations made during visits to urban areas, structured interviews with relevant professionals, exercises provided to participants in workshops and a questionnaire applied to stakeholders. Descriptive and inferential statistic methods were used to draw conclusions. The outcomes of the research are a comprehensive list of stakeholders that are relevant in the waste management systems and a set of factors that reveal the most important causes for the systems' failure. The information provided is very useful when planning, changing or implementing waste management systems in cities.

  18. Crime and Crime Management in Nigeria Tertiary Institutions

    Science.gov (United States)

    Adebanjo, Margaret Adewunmi

    2014-01-01

    This paper examines crime and its management in Nigerian tertiary institutions. Tertiary institutions today have become arenas for crime activities such as rape, cultism, murder, theft, internet fraud, drug abuse, and examination malpractices. This paper delves into what crime is, and its causes; and the positions of the law on crime management.…

  19. Institutional Research: The Key to Successful Enrollment Management.

    Science.gov (United States)

    Clagett, Craig A.

    Enrollment management includes the processes and activities that influence the size, shape, and characteristics of a student body by directing institutional efforts in marketing, recruitment, admissions, pricing, and financial aid. Institutional research plays an essential, if not the key, role in enrollment management. This report discusses the…

  20. Life cycle assessment of capital goods in waste management systems

    DEFF Research Database (Denmark)

    Brogaard, Line Kai-Sørensen; Christensen, Thomas Højlund

    2016-01-01

    The environmental importance of capital goods (trucks, buildings, equipment, etc.) was quantified by LCA modelling 1 tonne of waste treated in five different waste management scenarios. The scenarios involved a 240L collection bin, a 16m3 collection truck, a composting plant, an anaerobic digestion...... plant, an incinerator and a landfill site. The contribution of capital goods to the overall environmental aspects of managing the waste was significant but varied greatly depending on the technology and the impact category: Global Warming: 1-17%, Stratospheric Ozone Depletion: 2-90%, Ionising Radiation...... for treatment facilities than for the collection and transportation of waste and for the landfilling of waste. It is concluded that the environmental impacts of capital goods should always be included in the LCA modelling of waste management, unless the only impact category considered is Global Warming....

  1. Solid Waste Management with Emphasis on Environmental Aspect

    Science.gov (United States)

    Sinha, Navin Kr.; Choudhary, Binod Kumar; Shree, Shalini

    2011-12-01

    In this paper focus on Solid waste management. Its comprises of purposeful and systematic control of generation, storage, collection, transport, separations, processing, recycling, recovery and disposal of solid waste. Awareness of Four R's management & EMS support also for management Solid waste. Basel convention on the Control of transboundary movements of hazardous wastes and their Disposal usually known simply as the Basel Convention, is an international treaty that was designed to reduce the movements of hazardous waste between nations, and specifically to prevent transfer of hazardous waste from developed to less developed countries (LDCs). it came into force 5 May 1992. According to this "Substances or objects which are disposed of or are intended to be disposed of or are required to be disposed of by the provisions of national law"(UNEP).

  2. 8. Muenster waste management meeting. Proceedings; 8. Muensteraner Abfallwirtschaftstage. Tagungsband

    Energy Technology Data Exchange (ETDEWEB)

    Gallenkemper, B.; Bidlingmaier, W.; Doedens, H.; Stegmann, R. (eds.)

    2003-07-01

    The papers in this proceedings volume come in the following categories: Boundary conditions of the waste management sector; The field of tension between theory and practice of environmental policy; Power generation from waste; Mechanical-biological waste treatment systems and landfills; BMBF project ''Cost Reduction in Waste Management and Street Cleaning; Industrial safety and health hazards; Utilisation of compost and biomass; Current trends in the management of waste electrical appliances; Practical implementation of the Industrial Waste Ordinance (Gewerbeabfallverordnung); Obligatory refundable deposits on packaging materials. [German] Der Tagungsband enthaelt die Beitraege der Autoren, die unter folgenden Themenpunkten zusammengefasst werden: Abfallwirtschaftliche Rahmenbedingungen, Spannungsfeld umweltpolitische Anforderung und Praxis, zukuenftige Struktur der Entsorgungswirtschaft, energetische Verwertung von Abfaellen, MBA und Deponie, BMBF-Verbundprojekt: Kostenreduzierung in der Entsorgungslogistik und Strassenreinigung, Arbeitsschutz und Arbeitsbelastung, Kompost- und Biomassenutzung, Erfassung von Elektroaltgeraeten, Umsetzung der Gewerbeabfallverordnung, Pfandpflicht, Stadtbildpflege und Anti-Littering. (uke)

  3. Assessment for the management of NORM wastes in conventional hazardous and nonhazardous waste landfills

    Energy Technology Data Exchange (ETDEWEB)

    Mora, Juan C., E-mail: jc.mora@ciemat.es [Unit for Radiation Protection of the Public and the Environment (PRPYMA), CIEMAT, Avda. Complutense, 40, 28040 Madrid (Spain); Energy Engineering Department, Power Engineering, Nuclear Area, ETSII, UNED (Spain); Baeza, Antonio [LARUEX, Dpt. Applied Physics, Faculty of Veterinary Science, University of Extremadura, Avda. Universidad, s/n, 10071 Cáceres (Spain); Robles, Beatriz [Unit for Radiation Protection of the Public and the Environment (PRPYMA), CIEMAT, Avda. Complutense, 40, 28040 Madrid (Spain); Sanz, Javier [Energy Engineering Department, Power Engineering, Nuclear Area, ETSII, UNED (Spain)

    2016-06-05

    Highlights: • Before 2010 NORM waste is managed as non-radioactive, disposed in landfills. • After 2010 radiological impact of the management of NORM wastes must be assessed. • Quantities that can be disposed in hazardous or non-hazardous landfills are given. • Uncertainty analysis is included to provide consistency to the calculations. - Abstract: Naturally Occurring Radioactive Materials (NORM) wastes are generated in huge quantities in several industries and their management has been carried out under considerations of industrial non-radioactive wastes, before the concern on the radioactivity content was included in the legislation. Therefore these wastes were conditioned using conventional methods and the waste disposals were designed to isolate toxic elements from the environment for long periods of time. Spanish regulation for these conventional toxic waste disposals includes conditions that assure adequate isolation to minimize the impact of the wastes to the environment in present and future conditions. After 1996 the radiological impact of the management of NORM wastes is considered and all the aspects related with natural radiations and the radiological control regarding the management of residues from NORM industries were developed in the new regulation. One option to be assessed is the disposal of NORM wastes in hazardous and non-hazardous waste disposals, as was done before this new regulation. This work analyses the management of NORM wastes in these landfills to derive the masses that can be disposed without considerable radiological impact. Generic dose assessments were carried out under highly conservative hypothesis and a discussion on the uncertainty and variability sources was included to provide consistency to the calculations.

  4. Effluent Management Facility Evaporator Bottom-Waste Streams Formulation and Waste Form Qualification Testing

    Energy Technology Data Exchange (ETDEWEB)

    Saslow, Sarah A.; Um, Wooyong; Russell, Renee L.

    2017-08-02

    This report describes the results from grout formulation and cementitious waste form qualification testing performed by Pacific Northwest National Laboratory (PNNL) for Washington River Protection Solutions, LLC (WRPS). These results are part of a screening test that investigates three grout formulations proposed for wide-range treatment of different waste stream compositions expected for the Hanford Effluent Management Facility (EMF) evaporator bottom waste. This work supports the technical development need for alternative disposition paths for the EMF evaporator bottom wastes and future direct feed low-activity waste (DFLAW) operations at the Hanford Site. High-priority activities included simulant production, grout formulation, and cementitious waste form qualification testing. The work contained within this report relates to waste form development and testing, and does not directly support the 2017 Integrated Disposal Facility (IDF) performance assessment (PA). However, this work contains valuable information for use in PA maintenance past FY 2017 and future waste form development efforts. The provided results and data should be used by (1) cementitious waste form scientists to further the understanding of cementitious leach behavior of contaminants of concern (COCs), (2) decision makers interested in off-site waste form disposal, and (3) the U.S. Department of Energy, their Hanford Site contractors and stakeholders as they assess the IDF PA program at the Hanford Site. The results reported help fill existing data gaps, support final selection of a cementitious waste form for the EMF evaporator bottom waste, and improve the technical defensibility of long-term waste form risk estimates.

  5. Grid-connected integrated community energy system. Phase II, Stage 1, final report. Conceptual design: pyrolysis and waste management systems

    Energy Technology Data Exchange (ETDEWEB)

    1978-03-08

    The University of Minnesota is studying and planning a grid-connected integrated community energy system to include disposal of wastes from health centers and utilizing the heat generated. Following initial definition of the 7-county metropolitan region for which the solid waste management system is to be planned, information is then necessary about the nature of the waste generated within this region. Estimates of the quantities generated, generation rates, and properties of the waste to be collected and disposed of are required in order to determine the appropriate size and capacity of the system. These estimates are designated and subsequently referred to as ''system input''. Institutional information is also necessary in designing the planned system, to be compatible with existing institutional operations and procedures, or to offer a minimum amount of problems to the participating institution in the region. Initial considerations of health care institutions generating solid waste within the defined region are made on a comprehensive basis without any attempt to select out or include feasible candidate institutions, or institutional categories. As the study progresses, various criteria are used in selecting potential candidate institutional categories and institutions within the 7-county region as offering the most feasible solid waste system input to be successfully developed into a centralized program; however, it is hoped that such a system if developed could be maintained for the entire 7-county region, and remain comprehensive to the entire health care industry. (MCW)

  6. Hospital waste management in El-Beheira Governorate, Egypt.

    Science.gov (United States)

    Abd El-Salam, Magda Magdy

    2010-01-01

    This study investigated the hospital waste management practices used by eight randomly selected hospitals located in Damanhour City of El-Beheira Governorate and determined the total daily generation rate of their wastes. Physico-chemical characteristics of hospital wastes were determined according to standard methods. A survey was conducted using a questionnaire to collect information about the practices related to waste segregation, collection procedures, the type of temporary storage containers, on-site transport and central storage area, treatment of wastes, off-site transport, and final disposal options. This study indicated that the quantity of medical waste generated by these hospitals was 1.249tons/day. Almost two-thirds was waste similar to domestic waste. The remainder (38.9%) was considered to be hazardous waste. The survey results showed that segregation of all wastes was not conducted according to consistent rules and standards where some quantity of medical waste was disposed of with domestic wastes. The most frequently used treatment method for solid medical waste was incineration which is not accepted at the current time due to the risks associated with it. Only one of the hospitals was equipped with an incinerator which is devoid of any air pollution control system. Autoclaving was also used in only one of the selected hospitals. As for the liquid medical waste, the survey results indicated that nearly all of the surveyed hospitals were discharging it in the municipal sewerage system without any treatment. It was concluded that the inadequacies in the current hospital waste management practices in Damanhour City were mainly related to ineffective segregation at the source, inappropriate collection methods, unsafe storage of waste, insufficient financial and human resources for proper management, and poor control of waste disposal. The other issues that need to be considered are a lack of appropriate protective equipment and lack of training and

  7. Intelligent Information System for Waste Management; Jaetehuollon aelykaes tietojaerjestelmae - iWaste

    Energy Technology Data Exchange (ETDEWEB)

    Mustonen, T. [Kuopio Univ. (Finland); Isoaho, S. [Tampere Univ. (Finland)

    2004-07-01

    ''Waste'' - Intelligent Information System for Waste Management - is a joint project of the University of Kuopio and the Tampere University of Technology. The main objective of the project is to create a basis for more comprehensive utilisation and management of waste management data and for the development of database management systems. The results of the project are numerous. A study of the present state of data management in the field of waste management was carried out. The studied aspects were for example information needs of different actors and their requirements for the information quality, interfaces for information exchange between different actors, and the characteristics of the software products. During the second phase of the project, a hyper document describing waste management systems, and a software application for describing material flows and their management will be finalized. Also methodologies and practices for processing data into information, which is needed in the decision making process, will be developed. The developed methodologies include e.g. data mining techniques, and the practices include e.g. the prediction of waste generation and optimisation of waste collection and transport. (orig.)

  8. Life-cycle modelling of waste management in Europe: tools, climate change and waste prevention

    DEFF Research Database (Denmark)

    Gentil, Emmanuel

    of these models most importantly depend on the technical assumptions and parameters defining waste management technologies. Some of these technical assumptions have evolved significantly from the early models to the more recent ones. An important purpose of waste LCA models is to perform environmental assessments......Europe has a long history of waste management, where regulation, implementation and enforcement have been the main drivers for the development and diversification of waste management technologies since the late 70s. Despite strong engineering development to minimise impacts to human health...... disposal to resources management, requiring modelling tools, such as life-cycle assessment (LCA) models, for carrying out environmental assessment, because of the complexity of the systems. A review of the key waste LCA models was performed in the present PhD project and showed that the results...

  9. Assessment of the municipal solid waste management system in Accra, Ghana: A 'Wasteaware' benchmark indicator approach.

    Science.gov (United States)

    Oduro-Appiah, Kwaku; Scheinberg, Anne; Mensah, Anthony; Afful, Abraham; Boadu, Henry Kofi; de Vries, Nanne

    2017-09-01

    This article assesses the performance of the city of Accra, Ghana, in municipal solid waste management as defined by the integrated sustainable waste management framework. The article reports on a participatory process to socialise the Wasteaware benchmark indicators and apply them to an upgraded set of data and information. The process has engaged 24 key stakeholders for 9 months, to diagram the flow of materials and benchmark three physical components and three governance aspects of the city's municipal solid waste management system. The results indicate that Accra is well below some other lower middle-income cities regarding sustainable modernisation of solid waste services. Collection coverage and capture of 75% and 53%, respectively, are a disappointing result, despite (or perhaps because of) 20 years of formal private sector involvement in service delivery. A total of 62% of municipal solid waste continues to be disposed of in controlled landfills and the reported recycling rate of 5% indicates both a lack of good measurement and a lack of interest in diverting waste from disposal. Drains, illegal dumps and beaches are choked with discarded bottles and plastic packaging. The quality of collection, disposal and recycling score between low and medium on the Wasteaware indicators, and the scores for user inclusivity, financial sustainability and local institutional coherence are low. The analysis suggests that waste and recycling would improve through greater provider inclusivity, especially the recognition and integration of the informal sector, and interventions that respond to user needs for more inclusive decision-making.

  10. Sustainable waste management in the UK: the public health role.

    Science.gov (United States)

    Mohan, R; Spiby, J; Leonardi, G S; Robins, A; Jefferis, S

    2006-10-01

    This paper discusses waste management in the UK and its relationship with health. It aims to outline the role of health professionals in the promotion of waste management, and argues for a change in their role in waste management regulation to help make the process more sustainable. The most common definition of sustainable development is that by the Brundtland commission, i.e. "development that meets the needs of the present without compromising the ability of future generations to meet their own needs". Managing waste sites in a manner that minimises toxic impacts on the current and future generations is obviously a crucial part of this. Although the management of waste facilities is extremely complex, the Integrated Pollution Prevention and Control regime, which requires the input of public health professionals on the regulation of such sites, means that all waste management installations should now be operating in a fashion that minimises any toxicological risks to human health. However, the impacts upon climate change, resource use and health inequalities, as well as the effects of waste transportation, are currently not considered to be part of public health professionals' responsibilities when dealing with these sites. There is also no requirement for public health professionals to become involved in waste management planning issues. The fact that public health professionals are not involved in any of these issues makes it unlikely that the potential impacts upon health are being considered fully, and even more unlikely that waste management will become more sustainable. This paper aims to show that by only considering direct toxicological impacts, public health professionals are not fully addressing all the health issues and are not contributing towards sustainability. There is a need for a change in the way that health professionals deal with waste management issues.

  11. Fifteenth annual U.S. Department of Energy low-level radioactive waste management conference: Agenda and abstracts

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-12-31

    The goal of the conference was to give the opportunity to identify and discuss low-level radioactive waste management issues, share lessons learned, and hear about some of the latest advances in technology. Abstracts of the presentations are arranged into the following topical sections: (1) Performance Management Track: Performance assessment perspectives; Site characterization; Modeling and performance assessment; and Remediation; (2) Technical Track: Strategic planning; Tools and options; Characterization and validation; Treatment updates; Technology development; and Storage; (3) Institutional Track: Orders and regulatory issues; Waste management options; Legal, economic, and social issues; Public involvement; Siting process; and Low-level radioactive waste policy amendment acts.

  12. Municipal Solid Waste Management: Recycling, Resource Recovery, and Landfills. LC Science Tracer Bullet.

    Science.gov (United States)

    Meikle, Teresa, Comp.

    Municipal solid waste refers to waste materials generated by residential, commercial, and institutional sources, and consists predominantly of paper, glass, metals, plastics, and food and yard waste. Within the definition of the Solid Waste Disposal Act, municipal solid waste does not include sewage sludge or hazardous waste. The three main…

  13. Waste management service delivery to all

    CSIR Research Space (South Africa)

    Afrika, M

    2010-10-01

    Full Text Available One of the major challenges facing municipalities in South Africa is ensuring that all households within their areas of jurisdiction are provided with a basic level of waste service (DEAT, 2007). Huge waste service backlogs still exists...

  14. Quantifying uncertainty in LCA-modelling of waste management systems

    DEFF Research Database (Denmark)

    Clavreul, Julie; Guyonnet, D.; Christensen, Thomas Højlund

    2012-01-01

    Uncertainty analysis in LCA studies has been subject to major progress over the last years. In the context of waste management, various methods have been implemented but a systematic method for uncertainty analysis of waste-LCA studies is lacking. The objective of this paper is (1) to present...... the sources of uncertainty specifically inherent to waste-LCA studies, (2) to select and apply several methods for uncertainty analysis and (3) to develop a general framework for quantitative uncertainty assessment of LCA of waste management systems. The suggested method is a sequence of four steps combining...

  15. Solid waste generation and characterization in the University of Lagos for a sustainable waste management.

    Science.gov (United States)

    Adeniran, A E; Nubi, A T; Adelopo, A O

    2017-09-01

    Waste characterization is the first step to any successful waste management policy. In this paper, the characterization and the trend of solid waste generated in University of Lagos, Nigeria was carried out using ASTM D5231-92 and Resource Conservation Reservation Authority RCRA Waste Sampling Draft Technical Guidance methods. The recyclable potential of the waste is very high constituting about 75% of the total waste generated. The estimated average daily solid waste generation in Unilag Akoka campus was estimated to be 32.2tons. The solid waste characterization was found to be: polythene bags 24% (7.73tons/day), paper 15% (4.83tons/day), organic matters 15%, (4.83tons/day), plastic 9% (2.90tons/day), inert materials 8% (2.58tons/day), sanitary 7% (2.25tons/day), textile 7% (2.25tons/day), others 6% (1.93tons/day), leather 4% (1.29tons/day) metals 3% (0.97tons/day), glass 2% (0.64tons/day) and e-waste 0% (0.0tons/day). The volume and distribution of polythene bags generated on campus had a positive significant statistical correlation with the distribution of commercial and academic structures on campus. Waste management options to optimize reuse, recycling and reduce waste generation were discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Evaluating the Mexican Federal District's integrated solid waste management programme.

    Science.gov (United States)

    Wismer, Susan; Lopez de Alba Gomez, Adriana

    2011-05-01

    Generation of solid waste is a problem of great environmental significance in the Mexican Federal District. With an estimated daily generation of 12 500 tons, waste management is a priority for the district government. Integrated waste management programmes have been implemented in the Mexican Federal District in the past. They have failed. This research has examined the most recent initiative in an effort to discover the causes of failure, using a case study approach. In addition to identifying barriers to and opportunities for implementation of an effective integrated waste management system in the Federal District, this research recommends options for a newly proposed waste management system with the aim of achieving the objectives desired by the government, while aiding in the pursuit of sustainable development.

  17. Economic and employment potential in textile waste management of Faisalabad.

    Science.gov (United States)

    Noman, Muhammad; Batool, Syeda Adila; Chaudhary, Muhammad Nawaz

    2013-05-01

    The aim of this study is to characterize the waste from the textile industry, to identify the sources and types of waste generation and to find out the economic and employment potential in this sector. Textile waste, its management, and the economic and employment potential in this sector are unrevealed facts in developing countries such as Pakistan. The textile industry is ranked first in export earning in Pakistan. Textile export of yarn and cloth from Faisalabad is US$3 billion per year. On average 161 325 people are employed in the textile sector in Faisalabad, of which 11 860 are involved in solid waste handling and management. The textile industries generate solid wastes such as fibre, metal, plastic and paper waste. A total of 794 209 kg day(-1) (289 886 285 kg year(-1)) solid waste is produced from this sector and purchased by cotton waste junkshop owners at US$125 027 day(-1) (US$45 634 855 year(-1)). Only pre-consumer textile waste is considered. Interestingly no waste is sent to landfill. The waste is first segregated into different categories/ types by hand and then weighed. Cotton waste is sold to brick kilns where it is used as an alternative fuel as it is cheaper than wood/coal. Iron scrap is sold in the junk market from where it is resold to recycling industries. Paper waste is recycled, minimizing the virgin material used for producing new paper products. Iron and plastic drums are returned to the chemical industries for refilling, thus decreasing the cost of dyes and decreasing the demand for new drums. Cutting rags are used for making different things such as ropes and underlay, it is also shredded and used as fillings for pillows and mattresses, thus improving waste management, reducing cost and minimizing the need for virgin material. As no system of quality control and no monitoring of subsequent products exist there is a need to carry out quality control and monitoring.

  18. Management of immunization solid wastes in Kano State, Nigeria.

    Science.gov (United States)

    Oke, I A

    2008-12-01

    Inadequate management of waste generated from injection activities can have a negative impact on the community and environment. In this paper, a report on immunization wastes management in Kano State (Nigeria) is presented. Eight local governments were selected randomly and surveyed by the author. Solid wastes generated during the Expanded Programme on Immunization were characterised using two different methods: one by weighing the waste and the other by estimating the volume. Empirical data was obtained on immunization waste generation, segregation, storage, collection, transportation, and disposal; and waste management practices were assessed. The study revealed that immunization offices were accommodated in either in local government buildings, primary health centres or community health care centres. All of the stations demonstrated a high priority for segregation of the infectious wastes. It can be deduced from the data obtained that infectious waste ranged from 67.6% to 76.7% with an average of 70.1% by weight, and 36.0% to 46.1% with an average of 40.1% by volume. Non-infectious waste generated ranged from 23.3% to 32.5% with an average of 29.9% by weight and 53.9% to 64.0% with an average of 59.9% by volume. Out of non-infectious waste (NIFW) and infectious waste (IFW), 66.3% and 62.4% by weight were combustible and 33.7% and 37.6% were non-combustible respectively. An assessment of the treatment revealed that open pit burning and burial and small scale incineration were the common methods of disposal for immunization waste, and some immunization centres employed the services of the state or local government owned solid waste disposal board for final collection and disposal of their immunization waste at government approved sites.

  19. Waste management and quality assurance: Reasonable co-existence?

    Energy Technology Data Exchange (ETDEWEB)

    Bresson, J.F.

    1989-11-01

    Implementing Chapter 3, Low-Level Waste Management, of DOE Order 5820-2, ``Radioactive Waste Management`` has created a major change in the operating philosophy of DOE`s prime contractors. So has the decision of May 1, 1987, when it was made clear that EPA has regulatory authority over DOE`s mixed waste. Suddenly two additional items became clear. First, DOE and its contractors were going to learn more about composition of low-level and low-level mixed waste than ever before. Second, low-level waste management was about to become a more focused, formal program, complete with needs for: (1) waste form identification, (2) program documentation; and (3) assurance that DOE`s waste does in fact comply with applicable requirements. The importance of the above items is clearly emphasized by the inclusion of Data Quality Objectives in the Waste Acceptance Criteria section of DOE 5820-2 Chapter 3 guidance called Data Quality Objectives, (DQO). Simply put, the purpose of the DQO is to identify the quality (and quantity) of information necessary to convince a regulator or decision maker that enough is known about DOE`s low-level and low-level mixed waste to allow safe disposal. The main objectives of the DOE and EPA shallow land burial requirements are to: (1) generate, with documented evidence, waste forms which are chemically inert and immobile, such that the waste will not tend to move about in the disposal medium; (2) select a disposal medium which would not let the wastes move about anyway; and (3) build some barriers around the wastes as emplaced in burial grounds, to provide additional assurance that buried wastes will stay in place. Compliance with these requirements must be demonstrated by quality data which describes the entire series of compliance activities.

  20. Waste management and quality assurance: Reasonable co-existence?

    Energy Technology Data Exchange (ETDEWEB)

    Bresson, J.F.

    1989-11-01

    Implementing Chapter 3, Low-Level Waste Management, of DOE Order 5820-2, ``Radioactive Waste Management`` has created a major change in the operating philosophy of DOE`s prime contractors. So has the decision of May 1, 1987, when it was made clear that EPA has regulatory authority over DOE`s mixed waste. Suddenly two additional items became clear. First, DOE and its contractors were going to learn more about composition of low-level and low-level mixed waste than ever before. Second, low-level waste management was about to become a more focused, formal program, complete with needs for: (1) waste form identification, (2) program documentation; and (3) assurance that DOE`s waste does in fact comply with applicable requirements. The importance of the above items is clearly emphasized by the inclusion of Data Quality Objectives in the Waste Acceptance Criteria section of DOE 5820-2 Chapter 3 guidance called Data Quality Objectives, (DQO). Simply put, the purpose of the DQO is to identify the quality (and quantity) of information necessary to convince a regulator or decision maker that enough is known about DOE`s low-level and low-level mixed waste to allow safe disposal. The main objectives of the DOE and EPA shallow land burial requirements are to: (1) generate, with documented evidence, waste forms which are chemically inert and immobile, such that the waste will not tend to move about in the disposal medium; (2) select a disposal medium which would not let the wastes move about anyway; and (3) build some barriers around the wastes as emplaced in burial grounds, to provide additional assurance that buried wastes will stay in place. Compliance with these requirements must be demonstrated by quality data which describes the entire series of compliance activities.

  1. Revolutionary advances in medical waste management. The Sanitec system.

    Science.gov (United States)

    Edlich, Richard F; Borel, Lise; Jensen, H Gordon; Winters, Kathryne L; Long, William B; Gubler, K Dean; Buschbacher, Ralph M; Becker, Daniel G; Chang, Dillon E; Korngold, Jonathan; Chitwood, W Randolph; Lin, Kant Y; Nichter, Larry S; Berenson, Susan; Britt, L D; Tafel, John A

    2006-01-01

    It is the purpose of this collective review to provide a detailed outline of a revolutionary medical waste disposal system that should be used in all medical centers in the world to prevent pollution of our planet from medical waste. The Sanitec medical waste disposal system consists of the following seven components: (1) an all-weather steel enclosure of the waste management system, allowing it to be used inside or outside of the hospital center; (2) an automatic mechanical lift-and-load system that protects the workers from devastating back injuries; (3) a sophisticated shredding system designed for medical waste; (4) a series of air filters including the High Efficiency Particulate Air (HEPA) filter; (5) microwave disinfection of the medical waste material; (6) a waste compactor or dumpster; and (7) an onboard microprocessor. It must be emphasized that this waste management system can be used either inside or outside the hospital. From start to finish, the Sanitec Microwave Disinfection system is designed to provide process and engineering controls that assure complete disinfection and destruction, while minimizing the operator's exposure to risk. There are numerous technologic benefits to the Sanitec systems, including environmental, operational, physical, and disinfection efficiency as well as waste residue disinfection. Wastes treated through the Sanitec system are thoroughly disinfected, unrecognizable, and reduced in volume by approximately 80% (saving valuable landfill space and reducing hauling requirements and costs). They are acceptable in any municipal solid waste program. Sanitec's Zero Pollution Advantage is augmented by a complete range of services, including installation, startup, testing, training, maintenance, and repair, over the life of this system. The Sanitec waste management system has essentially been designed to provide the best overall solution to the customer, when that customer actually looks at the total cost of dealing with the

  2. Making waste management public (or falling back to sleep)

    Science.gov (United States)

    Lougheed, Scott; Rowe, R Kerry; Kuyvenhoven, Cassandra

    2014-01-01

    Human-produced waste is a major environmental concern, with communities considering various waste management practices, such as increased recycling, landfilling, incineration, and waste-to-energy technologies. This article is concerned with how and why publics assemble around waste management issues. In particular, we explore Noortje Marres and Bruno Latour’s theory that publics do not exist prior to issues but rather assemble around objects, and through these assemblages, objects become matters of concern that sometimes become political. The article addresses this theory of making things public through a study of a small city in Ontario, Canada, whose landfill is closed and waste diversion options are saturated, and that faces unsustainable costs in shipping its waste to the United States, China, and other regions. The city’s officials are undertaking a cost–benefit assessment to determine the efficacy of siting a new landfill or other waste management facility. We are interested in emphasizing the complexity of making (or not making) landfills public, by exploring an object in action, where members of the public may or may not assemble, waste may or may not be made into an issue, and waste is sufficiently routinized that it is not typically transformed from an object to an issue. We hope to demonstrate Latour’s third and fifth senses of politics best account for waste management’s trajectory as a persistent yet inconsistent matter of public concern. PMID:25051590

  3. An integrated approach of composting methodologies for solid waste management

    Directory of Open Access Journals (Sweden)

    K. Kumaresan

    2016-03-01

    Full Text Available Organic fraction of solid waste, which upon degradation produces foul smell and generates pathogens, if not properly managed. Composting is not a method of waste disposal but it is a method of waste recycling and used for agricultural purposes. An integrated approach of composting methodology was tested for municipal solid waste management. Solid waste first was composted and after 22 days, was further processed by vermicomposting. Samples were routinely taken for analysis of carbon, nitrogen, moisture content, pH and temperature to determine the quality of composting. Decrease in moisture content to 32.1 %, relative decrease in carbon and nitrogen content were also observed. Among the different types of treatment, municipal solid waste + activated sludge integration showed promising results, followed by vermicomposting municipal solid waste + activated sludge combination, compared to the combinations of dried activated sludge, municipal solid waste + activated sludge semisolid and municipal solid waste + sewage water. Thus, windrow composting followed by vermicomposting gave a better result than other methods. Thus this method would serve as a potential alternative for solid waste management.

  4. The Knowledge Management Research of Agricultural Scientific Research Institution

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Based on the perception of knowledge management from experts specializing in different fields,and experts at home and abroad,the knowledge management of agricultural scientific research institution can build new platform,offer new approach for realization of explicit or tacit knowledge,and promote resilience and innovative ability of scientific research institution.The thesis has introduced functions of knowledge management research of agricultural science.First,it can transform the tacit knowledge into explicit knowledge.Second,it can make all the scientific personnel share knowledge.Third,it is beneficial to the development of prototype system of knowledge management.Fourth,it mainly researches the realization of knowledge management system.Fifth,it can manage the external knowledge via competitive intelligence.Sixth,it can foster talents of knowledge management for agricultural scientific research institution.Seventh,it offers the decision-making service for leaders to manage scientific program.The thesis also discusses the content of knowledge management of agricultural scientific research institution as follows:production and innovation of knowledge;attainment and organizing of knowledge;dissemination and share of knowledge;management of human resources and the construction and management of infrastructure.We have put forward corresponding countermeasures to further reinforce the knowledge management research of agricultural scientific research institution.

  5. Sustainable solutions for solid waste management in Southeast Asian countries.

    Science.gov (United States)

    Ngoc, Uyen Nguyen; Schnitzer, Hans

    2009-06-01

    Human activities generate waste and the amounts tend to increase as the demand for quality of life increases. Today's rate in the Southeast Asian Nations (ASEANs) is alarming, posing a challenge to governments regarding environmental pollution in the recent years. The expectation is that eventually waste treatment and waste prevention approaches will develop towards sustainable waste management solutions. This expectation is for instance reflected in the term 'zero emission systems'. The concept of zero emissions can be applied successfully with today's technical possibilities in the agro-based processing industry. First, the state-of-the-art of waste management in Southeast Asian countries will be outlined in this paper, followed by waste generation rates, sources, and composition, as well as future trends of waste. Further on, solutions for solid waste management will be reviewed in the discussions of sustainable waste management. The paper emphasizes the concept of waste prevention through utilization of all wastes as process inputs, leading to the possibility of creating an ecosystem in a loop of materials. Also, a case study, focusing on the citrus processing industry, is displayed to illustrate the application of the aggregated material input-output model in a widespread processing industry in ASEAN. The model can be shown as a closed cluster, which permits an identification of opportunities for reducing environmental impacts at the process level in the food processing industry. Throughout the discussion in this paper, the utilization of renewable energy and economic aspects are considered to adapt to environmental and economic issues and the aim of eco-efficiency. Additionally, the opportunities and constraints of waste management will be discussed.

  6. Municipal waste management in Sicily: practices and challenges.

    Science.gov (United States)

    Messineo, Antonio; Panno, Domenico

    2008-01-01

    There are numerous problems yet to be solved in waste management and although efforts towards waste recovery and recycling have been made, landfills are still the most common method used in the EU and many other industrialised countries. Thermal disposal, particularly incineration, is a tested and viable alternative. In 2004, only 11% of the annual waste production of Italy was incinerated. Sicily, with over five million inhabitants, is the second largest region in Italy where waste management is now a critical problem. The use of landfills can no longer be considered a satisfactory environmental solution; therefore, new methods have to be chosen and waste-to-energy plants could provide an answer. This paper gives details of municipal solid waste management in Sicily following a new Waste Management Plan. Four waste-to-energy plants will generate electricity through a steam cycle; the feedstock will become the residue after material recovery, which is calculated as 20-40% weight of the collected municipal solid waste.

  7. Office of Civilian Radioactive Waste Management annual report to Congress

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1990-12-01

    This seventh Annual Report to Congress by the Office of Civilian Radioactive Waste Management (OCRWM) describes activities and expenditures of the Office during fiscal years (FY) 1989 and 1990. In November 1989, OCRWM is responsible for disposing of the Nation`s spent nuclear fuel and high-level radioactive waste in a manner that protects the health and safety of the public and the quality of the environment. To direct the implementation of its mission, OCRWM has established the following objectives: (1) Safe and timely disposal: to establish as soon as practicable the ability to dispose of radioactive waste in a geologic repository licensed by the NRC. (2) Timely and adequate waste acceptance: to begin the operation of the waste management system as soon as practicable in order to obtain the system development and operational benefits that have been identified for the MRS facility. (3) Schedule confidence: to establish confidence in the schedule for waste acceptance and disposal such that the management of radioactive waste is not an obstacle to the nuclear energy option. (4) System flexibility: to ensure that the program has the flexibility necessary for adapting to future circumstances while fulfilling established commitments. To achieve these objectives, OCRWM is developing a waste management system consisting of a geologic repository for permanent disposed deep beneath the surface of the earth, a facility for MRS, and a system for transporting the waste.

  8. Evaluation of municipal solid waste management in egyptian rural areas.

    Science.gov (United States)

    El-Messery, Mamdouh A; Ismail, Gaber A; Arafa, Anwaar K

    2009-01-01

    A two years study was conducted to evaluate the solid waste management system in 143 villages representing the Egyptian rural areas. The study covers the legal responsibilities, service availability, environmental impacts, service providers, financial resources, private sector participation and the quality of collection services. According to UN reports more than 55% of Egyptian population lives in rural areas. A drastic change in the consumption pattern altered the quantity and quality of the generated solid wastes from these areas. Poor solid waste management systems are stigmata in most of the Egyptian rural areas. This causes several environmental and health problems. It has been found that solid waste collection services cover only 27% of the surveyed villages, while, the statistics show that 75% of the surveyed villages are formally covered. The service providers are local villager units, private contractors and civil community associations with a percentage share 71%, 24% and 5% respectively. The operated services among these sectors were 25%, 71% and 100% respectively. The share of private sector in solid waste management in rural areas is still very limited as a result of the poverty of these communities and the lack of recyclable materials in their solid waste. It has been found that direct throwing of solid waste on the banks of drains and canals as well as open dumping and uncontrolled burning of solid waste are the common practice in most of the Egyptian rural areas. The available land for landfill is not enough, pitiable designed, defectively constructed and unreliably operated. Although solid waste generated in rural areas has high organic contents, no composting plant was installed. Shortage in financial resources allocated for valorization of solid waste management in the Egyptian rural areas and lower collection fees are the main points of weakness which resulted in poor solid waste management systems. On the other hand, the farmer's participation

  9. Analysis of Management Practices in Lagos State Tertiary Institutions through Total Quality Management Structural Framework

    Science.gov (United States)

    AbdulAzeez, Abbas Tunde

    2016-01-01

    This research investigated total quality management practices and quality teacher education in public tertiary institutions in Lagos State. The study was therefore designed to analyse management practices in Lagos state tertiary institutions through total quality management structural framework. The selected public tertiary institutions in Lagos…

  10. Greater-Than-Class C Low-Level Radioactive Waste Transportation Strategy report and institutional plan

    Energy Technology Data Exchange (ETDEWEB)

    Schmitt, R.C.; Tyacke, M.J.

    1995-01-01

    This document contains two parts. Part I, Greater-Than-Class-C Low-Level Radioactive Waste Transportation Strategy, addresses the requirements, responsibilities, and strategy to transport and receive these wastes. The strategy covers (a) transportation packaging, which includes shipping casks and waste containers; (b) transportation operations relating to the five facilities involved in transportation, i.e., waste originator, interim storage, dedicated storage, treatment, and disposal; (c) system safety and risk analysis; (d) routes; (e) emergency preparedness and response; and (o safeguards and security. A summary of strategic actions is provided at the conclusion of Part 1. Part II, Institutional Plan for Greater-Than-Class C Low-Level Radioactive Waste Packaging and Transportation, addresses the assumptions, requirements, and institutional plan elements and actions. As documented in the Strategy and Institutional Plan, the most challenging issues facing the GTCC LLW Program shipping campaign are institutional issues closely related to the strategy. How the Program addresses those issues and demonstrates to the states, local governments, and private citizens that the shipments can and will be made safely will strongly affect the success or failure of the campaign.

  11. Discussions about safety criteria and guidelines for radioactive waste management.

    Science.gov (United States)

    Yamamoto, Masafumi

    2011-07-01

    In Japan, the clearance levels for uranium-bearing waste have been established by the Nuclear Safety Commission (NSC). The criteria for uranium-bearing waste disposal are also necessary; however, the NSC has not concluded the discussion on this subject. Meanwhile, the General Administrative Group of the Radiation Council has concluded the revision of its former recommendation 'Regulatory exemption dose for radioactive solid waste disposal', the dose criteria after the institutional control period for a repository. The Standardization Committee on Radiation Protection in the Japan Health Physics Society (The Committee) also has developed the relevant safety criteria and guidelines for existing exposure situations, which are potentially applicable to uranium-bearing waste disposal. A new working group established by The Committee was initially aimed at developing criteria and guidelines specifically for uranium-bearing waste disposal; however, the aim has been shifted to broader criteria applicable to any radioactive wastes.

  12. Applying historical ecology to natural resource management institutions

    DEFF Research Database (Denmark)

    Petty, Aaron M.; Isendahl, Christian; Brenkert-Smith, Hannah

    2015-01-01

    Understanding the linkages between social and ecological systems is key to developing sustainable natural resource management (NRM) institutions. Frequently, however, insufficient attention is paid to the historical development of NRM institutions. Instead, discussion largely focuses on models......, an understanding of history is essential to questions of the desirability and feasibility of institutional change where such shifts are required from an ecological, social, or economic perspective. We further propose that institutional conflict arises from the differing goals and motives of resource management...... of economic efficiency at the expense of the cultural, historical, and ecological contexts within which institutions develop. Here we use the research program of historical ecology to explore the development, maintenance, and change of two contemporary fire management institutions in northern Australia...

  13. Waste assaying and radiation monitoring equipment at the waste management centre of NPP Leningrad

    Directory of Open Access Journals (Sweden)

    Šokčić-Kostić Marina

    2006-01-01

    Full Text Available The waste accumulated in the past at the Nuclear Power Plant Leningrad has to be sorted and packed in an optimal way. In the area of waste treatment and management, the completeness and quality of direct monitoring are of the outmost importance for the validity of, and confidence in, both practicable waste management options and calculations of radiological impacts. Special monitoring systems are needed for this purpose. Consistent with the scale of work during the waste treatment procedures and the complexity of the plant data have to be collected from characteristic parts in various treatment stages. To combine all the information, a tracking procedure is needed during the waste treatment process to characterize the waste for interim and/or final disposal. RWE NUKEM GmbH has developed special customer-tailored systems which fulfill the specifications required by plant operation and by the authorities.

  14. Development of a Universal Waste Management System

    Science.gov (United States)

    Stapleton, Thomas J.; Baccus, Shelley; Broyan, James L., Jr.

    2013-01-01

    NASA is working with a number of commercial companies to develop the next low Earth orbit spacecraft. The hardware volume and weight constraints are similar to or greater than those of the Apollo era. This, coupled with the equally demanding cost challenge of the proposed commercial vehicles, causes much of the Environmental Control and Life Support System (ECLSS) designs to be reconsidered. The Waste Collection System (WCS) is within this group of ECLSS hardware. The development to support this new initiative is discussed within. A WCS concept - intended to be common for all the vehicle platforms currently on the drawing board - is being developed. The new concept, referred to as the Universal Waste Management System (UWMS), includes favorable features from previous designs while improving on other areas on previous Space Shuttle and the existing International Space Station (ISS) WCS hardware, as needed. The intent is to build a commode that requires less crew time, improved cleanliness, and a 75% reduction in volume and weight compared to the previous US ISS/Extended Duration Orbitor WCS developed in the 1990s. The UWMS is most similar to the ISS Development Test Objective (DTO) WCS design. It is understood that the most dramatic cost reduction opportunity occurs at the beginning of the design process. To realize this opportunity, the cost of each similar component between the UWMS and the DTO WCS was determined. The comparison outlined were the design changes that would result with the greatest impact. The changes resulted in simplifying the approach or eliminating components completely. This initial UWMS paper will describe the system layout approach and a few key features of major components. Future papers will describe the UWMS functionality, test results, and components as they are developed.

  15. Development of disposal technologies for radioactive waste generated from radioisotope users and research institutes

    Energy Technology Data Exchange (ETDEWEB)

    Sakai, Akihiro; Yoshimori, Michiro [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2001-12-01

    In order to safely dispose of a radioactive waste, which is generated from radioisotope users and research institutes, investigation of characteristics of the waste and conceptual design of disposal facility were carried out. As a result of investigating JAERI that the waste has mainly been stored, it became clear that radioactivities of 19 nuclides are important from the viewpoint of the safety of the disposal. And the result of the conceptual design of disposal facilities on the assumption of 3 kinds of sites, the differences on the safety could not be recognized in either case, though the installation depth to construct the facilities influenced the economical efficiency. (author)

  16. Institutional Frameworks for Management of Epizoonotic ...

    African Journals Online (AJOL)

    This paper presents a multi-country situational analysis on the institutional frameworks for ... Findings: There are many socio-cultural risk factors to epidemic prone ... Most countries lack personnel at the operational levels, and veterinary public ...

  17. Management of historical waste from research reactors: the Dutch experience

    Energy Technology Data Exchange (ETDEWEB)

    Van Heek, Aliki; Metz, Bert; Janssen, Bas; Groothuis, Ron [NRG, Petten (Netherlands)

    2013-07-01

    Most radioactive waste emerges as well-defined waste streams from operating power reactors. The management of this is an on-going practice, based on comprehensive (IAEA) guidelines. A special waste category however consists of the historical waste from research reactors, mostly originating from various experiments in the early years of the nuclear era. Removal of the waste from the research site, often required by law, raises challenges: the waste packages must fulfill the acceptance criteria from the receiving storage site as well as the criteria for nuclear transports. Often the aged waste containers do not fulfill today's requirements anymore, and their contents are not well documented. Therefore removal of historical waste requires advanced characterization, sorting, sustainable repackaging and sometimes conditioning of the waste. This paper describes the Dutch experience of a historical waste removal campaign from the Petten High Flux research reactor. The reactor is still in operation, but Dutch legislation asks for central storage of all radioactive waste at the COVRA site in Vlissingen since the availability of the high- and intermediate-level waste storage facility HABOG in 2004. In order to comply with COVRA's acceptance criteria, the complex and mixed inventory of intermediate and low level waste must be characterized and conditioned, identifying the relevant nuclides and their activities. Sorting and segregation of the waste in a Hot Cell offers the possibility to reduce the environmental footprint of the historical waste, by repackaging it into different classes of intermediate and low level waste. In this way, most of the waste volume can be separated into lower level categories not needing to be stored in the HABOG, but in the less demanding LOG facility for low-level waste instead. The characterization and sorting is done on the basis of a combination of gamma scanning with high energy resolution of the closed waste canister and low

  18. Municipal solid waste characterization and quantification as a measure towards effective waste management in Ghana

    DEFF Research Database (Denmark)

    Miezah, Kodwo; Obiri-Danso, Kwasi; Kádár, Zsófia

    2015-01-01

    Reliable national data on waste generation and composition that will inform effective planning on waste management in Ghana is absent. To help obtain this data on a regional basis, selected households in each region were recruited to obtain data on rate of waste generation, physical composition....... In the coastal zone, the organic waste fraction was highest but decreased through the forest zone towards the northern savanna. However, through the same zones towards the north, plastic waste rather increased in percentage fraction. Households did separate their waste effectively averaging 80%. However......, in terms of separating into the bin marked biodegradables, 84% effectiveness was obtained whiles 76% effectiveness for sorting into the bin labeled other waste was achieved....

  19. Development of integrated waste management options for irradiated graphite

    Directory of Open Access Journals (Sweden)

    Alan Wareing

    2017-08-01

    Full Text Available The European Treatment and Disposal of Irradiated Graphite and other Carbonaceous Waste project sought to develop best practices in the retrieval, treatment, and disposal of irradiated graphite including other irradiated carbonaceous waste such as structural material made of graphite, nongraphitized carbon bricks, and fuel coatings. Emphasis was given on legacy irradiated graphite, as this represents a significant inventory in respective national waste management programs. This paper provides an overview of the characteristics of graphite irradiated during its use, primarily as a moderator material, within nuclear reactors. It describes the potential techniques applicable to the retrieval, treatment, recycling/reuse, and disposal of these graphite wastes. Considering the lifecycle of nuclear graphite, from manufacture to final disposal, a number of waste management options have been developed. These options consider the techniques and technologies required to address each stage of the lifecycle, such as segregation, treatment, recycle, and ultimate disposal in a radioactive waste repository, providing a toolbox to aid operators and regulators to determine the most appropriate management strategy. It is noted that national waste management programs currently have, or are in the process of developing, respective approaches to irradiated graphite management. The output of the Treatment and Disposal of Irradiated Graphite and other Carbonaceous Waste project is intended to aid these considerations, rather than dictate them.

  20. Role of NGOs and CBOs in Waste Management

    Directory of Open Access Journals (Sweden)

    NN Nik Daud

    2012-05-01

    Full Text Available Background: Developing cities like Khulna, the third largest metropolitan city in Bangladesh, have now begun to confess the environmental and public health risks associated with uncontrolled dumping of solid wastes mainly due to the active participation of non-governmental organizations (NGOs and community-based organizations (CBOs in municipal solid waste (MSW management.Methods: A survey was conducted to observe the present scenarios of secondary disposal site (SDS, ultimate disposal site (UDS, composting plants, medical wastes management and NGOs and CBOs MSW management activities.Results: A total of 22 NGOs and CBOs are involved in MSW management in 31 wards of Khulna City Corporation. About 9 to 12% of total generated wastes are collected by door-to-door collection system provided by mainly NGOs and CBOs using 71 non-motorized rickshaw vans. A major portion of collected wastes is disposed to the nearest SDS by these organizations and then transferred to UDS or to private low-lying lands from there by the city authority. A small portion of organic wastes is going to the composting plants of NGOs.Conclusion: The participation of NGOs and CBOs has improved the overall MSW management system, especially waste collection process from sources and able to motivate the residents to store the waste properly and to keep clean the premises.

  1. Legal issues concerning oilfield waste management in Alberta

    Energy Technology Data Exchange (ETDEWEB)

    Gilmour, B.S. [Bennett Jones Verchere, Calgary, AB (Canada)

    1998-12-31

    The Alberta Energy and Utilities Board (EUB) is the regulatory authority with regard to oilfield wastes and oilfield waste management facilities. This presentation provided an overview of existing legislation and regulations in this area. Highlights of EUB Guide 58, and the application of the release of substances and contaminated sites provisions of the Environmental Protection and Enhancement Act (EPEA) regarding oilfield wastes and oilfield waste management facilities were also discussed. Generators, transporters and receivers of oilfield waste are potentially liable under the EPEA if oilfield wastes are released into the environment. Liabilities could imply clean-up orders, fines or penalties. The offences, penalties and enforcements of two acts, the Gas Conservation Act and the Environmental Protection and Enhancement Act, were compared.

  2. Solid waste management. Public power and monopoly or private market?

    Energy Technology Data Exchange (ETDEWEB)

    Basse, E.M. [Aarhus Univ., The Dept. Law, Aarhus (Denmark)

    1994-11-01

    In the article it is described that there is a growing recognition all over the World that environmental policies and regulation - especially regarding waste-should place far more emphasis on pollution prevention as a cross cutting strategy for reducing environmental risks and that long-term solutions in the waste management area are necessary. It is stated that the waste treatment policy on its way to establishing `sustainable development` must employ a rich mix of regulatory strategies involving use of new principles and new means. It is underlined in the article that many companies (also the publicly owned ones) have realized that it makes economic sense to avoid waste and that waste treatment services could be - and in some cases already are - good profitable business. In the future it is possible that there will be more of a bottom-up approach to the over-riding environmental policy goal of ensuring sustainable development by a more reasonable waste management strategy. (EG)

  3. Compostable cutlery and waste management: an LCA approach.

    Science.gov (United States)

    Razza, Francesco; Fieschi, Maurizio; Innocenti, Francesco Degli; Bastioli, Catia

    2009-04-01

    The use of disposable cutlery in fast food restaurants and canteens in the current management scenario generates mixed heterogeneous waste (containing food waste and non-compostable plastic cutlery). The waste is not recyclable and is disposed of in landfills or incinerated with or without energy recovery. Using biodegradable and compostable (B&C) plastic cutlery, an alternative management scenario is possible. The resulting mixed homogeneous waste (containing food waste and compostable plastic cutlery) can be recycled through organic recovery, i.e., composting. This LCA study, whose functional unit is "serving 1000 meals", shows that remarkable improvements can be obtained by shifting from the current scenario to the alternative scenario (based on B&C cutlery and final organic recovery of the total waste). The non-renewable energy consumption changes from 1490 to 128MJ (an overall 10-fold energy savings) and the CO(2) equivalents emission changes from 64 to 22 CO(2) eq. (an overall 3-fold GHG savings).

  4. Food Waste to Energy: An Overview of Sustainable Approaches for Food Waste Management and Nutrient Recycling

    OpenAIRE

    Kunwar Paritosh; Kushwaha, Sandeep K.; Monika Yadav; Nidhi Pareek; Aakash Chawade; Vivekanand Vivekanand

    2017-01-01

    Food wastage and its accumulation are becoming a critical problem around the globe due to continuous increase of the world population. The exponential growth in food waste is imposing serious threats to our society like environmental pollution, health risk, and scarcity of dumping land. There is an urgent need to take appropriate measures to reduce food waste burden by adopting standard management practices. Currently, various kinds of approaches are investigated in waste food processing and ...

  5. Management of New Production Reactor waste streams at Savannah River

    Energy Technology Data Exchange (ETDEWEB)

    McDonell, W.R.; Newman, J.L.

    1992-12-31

    To ensure the adequacy of available facilities, the disposition of the several waste types generated in support of a heavy-water NPR operation at the Savannah River Site were projected through waste- treatment and disposal facilities after the year 2000. Volumes of high-level, low-level radioactive, TRU, hazardous, mixed and non-radioactive waste were predicted for early assessments of environmental impacts and to provide a baseline for future waste-minimization initiatives. Life-cycle unit costs for disposal of the waste, adjusted to reflect waste management capabilities in the NPR operating time frame, were developed to evaluate the economic effectiveness of waste-minimization activities in the NPR program.

  6. Management of New Production Reactor waste streams at Savannah River

    Energy Technology Data Exchange (ETDEWEB)

    McDonell, W.R.; Newman, J.L.

    1992-01-01

    To ensure the adequacy of available facilities, the disposition of the several waste types generated in support of a heavy-water NPR operation at the Savannah River Site were projected through waste- treatment and disposal facilities after the year 2000. Volumes of high-level, low-level radioactive, TRU, hazardous, mixed and non-radioactive waste were predicted for early assessments of environmental impacts and to provide a baseline for future waste-minimization initiatives. Life-cycle unit costs for disposal of the waste, adjusted to reflect waste management capabilities in the NPR operating time frame, were developed to evaluate the economic effectiveness of waste-minimization activities in the NPR program.

  7. Life Cycle Costing Model for Solid Waste Management

    DEFF Research Database (Denmark)

    Martinez-Sanchez, Veronica; Astrup, Thomas Fruergaard

    2014-01-01

    To ensure sustainability of solid waste management, there is a need for cost assessment models which are consistent with environmental and social assessments. However, there is a current lack of standardized terminology and methodology to evaluate economic performances and this complicates...... LCC, e.g. waste generator, waste operator and public finances and the perspective often defines the systemboundaries of the study, e.g. waste operators often focus on her/his own cost, i.e. technology based,whereas waste generators and public finances often focus on the entire waste system, i.......e. system based. Figure 1 illustrates the proposed modeling framework that distinguishes between: a) budget cost, b) externality costs and 3) transfers and defines unit costs of each technology (per ton of input waste). Unitcosts are afterwards combined with a mass balance to calculate the technology cost...

  8. An environmental analysis for comparing waste management options and strategies.

    Science.gov (United States)

    Marchettini, N; Ridolfi, R; Rustici, M

    2007-01-01

    The debate on different waste management practices has become an issue of utmost importance as human activities have overloaded the assimilative capacity of the biosphere. Recent Italian law on solid waste management recommends an increase in material recycling and energy recovery, and only foresees landfill disposal for inert materials and residues from recovery and recycling. A correct waste management policy should be based on the principles of sustainable development, according to which our refuse is not simply regarded as something to eliminate but rather as a potential resource. This requires the creation of an integrated waste management plan that makes full use of all available technologies. In this context, eMergy analysis is applied to evaluate three different forms of waste treatment and construct an approach capable of assessing the whole strategy of waste management. The evaluation included how much investment is needed for each type of waste management and how much "utility" is extracted from wastes, through the use of two indicators: Environmental yield ratio (EYR) and Net eMergy. Our results show that landfill is the worst system in terms of eMergy costs and eMergy benefits. Composting is the most efficient system in recovering eMergy (highest EYR) from municipal solid waste (MSW) while incineration is capable of saving the greatest quantity of eMergy per gram of MSW (highest net eMergy). This analysis has made it possible to assess the sustainability and the efficiency of individual options but could also be used to assess a greater environmental strategy for waste management, considering a system that might include landfills, incineration, composting, etc.

  9. Domestic waste disposal practice and perceptions of private sector waste management in urban Accra

    Science.gov (United States)

    2014-01-01

    Background Waste poses a threat to public health and the environment if it is not stored, collected, and disposed of properly. The perception of waste as an unwanted material with no intrinsic value has dominated attitudes towards disposal. This study investigates the domestic waste practices, waste disposal, and perceptions about waste and health in an urban community. Methods The study utilised a mixed-method approach. A cross-sectional survey questionnaire and in-depth interview were used to collect data. A total of 364 household heads were interviewed in the survey and six key informants were interviewed with the in-depth interviews. Results The results of the study revealed that 93.1% of households disposed of food debris as waste and 77.8% disposed of plastic materials as waste. The study also showed that 61.0% of the households disposed of their waste at community bins or had waste picked up at their homes by private contractors. The remaining 39.0% disposed of their waste in gutters, streets, holes and nearby bushes. Of those who paid for the services of private contractors, 62.9% were not satisfied with the services because of their cost and irregular collection. About 83% of the respondents were aware that improper waste management contributes to disease causation; most of the respondents thought that improper waste management could lead to malaria and diarrhoea. There was a general perception that children should be responsible for transporting waste from the households to dumping sites. Conclusion Proper education of the public, the provision of more communal trash bins, and the collection of waste by private contractors could help prevent exposing the public in municipalities to diseases. PMID:25005728

  10. Coal waste management practices in the USA:an overview

    Institute of Scientific and Technical Information of China (English)

    Yoginder P. Chugh; Paul T. Behum

    2014-01-01

    This paper provides an overview of coal waste management practices with two case studies and an estimate of management cost in 2010 US dollars. Processing of as-mined coal typically results in considerable amount of coarse and fine coal processing wastes because of in-seam and out-of-seam dilution mining. Processing plant clean coal recovery values run typically 50%–80%. Trace metals and sulfur may be present in waste materials that may result in leachate water with corrosive charac-teristics. Water discharges may require special measures such as liner and collection systems, and treatment to neutralize acid drainage and/or water quality for trace elements. The potential for variations in coal waste production and quality depends upon mining or processing, plus the long-term methods of waste placement. The changes in waste generation rates and engineering properties of the coal waste during the life of the facility must be considered. Safe, economical and environmentally acceptable management of coal waste involves consideration of geology, soil and rock mechanics, hydrology, hydraulics, geochemistry, soil science, agronomy and environmental sciences. These support all aspects of the regulatory environment including the design and construction of earth and rock embankments and dams, as well as a wide variety of waste disposal structures. Development of impoundments is critical and require considerations of typical water-impounding dams and additional requirements of coal waste disposal impoundments. The primary purpose of a coal waste disposal facility is to dispose of unusable waste materials from mining. However, at some sites coal waste impoundments serve to provide water storage capacity for processing and flood attenuation.

  11. Environmental and economic analysis of management systems for biodegradable waste

    Energy Technology Data Exchange (ETDEWEB)

    Sonesson, U. [Department of Agricultural Engineering, Swedish University of Agricultural Sciences, P.O. Box 7033, S-750 07 Uppsala (Sweden); Bjoerklund, A. [Department of Chemical Engineering and Technology/Industrial Ecology, Royal Institute of Technology, S-100 44 Stockholm (Sweden); Carlsson, M. [Department of Economics, Swedish University of Agricultural Sciences, P.O. Box 7013, S-750 07 Uppsala (Sweden); Dalemo, M. [Swedish Institute of Agricultural Engineering, P.O. Box 7033, S-750 07 Uppsala (Sweden)

    2000-01-01

    The management system for solid and liquid organic waste affects the environment and surrounding technical systems in several ways. In order to decrease the environmental impact and resource use, biological waste treatment and alternative solutions for sewage treatment are often advocated. These alternatives include increased agricultural use of waste residuals. To analyse whether such proposed systems indicate improvements for the environment and its sustainability, systems analysis is a useful method. The changes in environmental impact and resource use is not only a result of changes in waste treatment methods, but also largely a result of changes in surrounding systems (energy and agriculture) caused by changes in waste management practices. In order to perform a systems analysis, a substance-flow simulation model, the organic waste research model (ORWARE), has been used. The results are evaluated by using methodology from life cycle assessment (LCA). An economic analysis was also performed on three of the studied scenarios. The management system for solid organic waste and sewage in the municipality of Uppsala, Sweden, was studied. Three scenarios for different treatments of solid waste were analysed: incineration with heat recovery, composting, and anaerobic digestion. These three scenarios included conventional sewage treatment. A fourth scenario reviewed was anaerobic digestion of solid waste, using urine-separating toilets and separate handling of the urine fraction. The results are only valid for the case study and under the assumptions made. In this case study anaerobic digestion result in the lowest environmental impact of all the solid waste management systems, but is costly. Economically, incineration with heat recovery is the cheapest way to treat solid waste. Composting gives environmental advantages compared to incineration methods, without significantly increased costs. Urine separation, which may be implemented together with any solid waste

  12. Nuclear Waste Management quarterly progress report, October--December 1976

    Energy Technology Data Exchange (ETDEWEB)

    Platt, A.M. (comp.)

    1977-04-01

    Research topics on which progress is reported include decontamination and densification of chop-leach cladding residues, monitoring of effluents from waste solidification, TRU waste fixation, krypton solidification, /sup 14/C and /sup 129/I fixation, waste management system studies, organic complexes of fission products, characterization of 300 Area burial grounds, electropolishing as a decontamination technique, and decommissioning of Hanford facilities. 11 tables, 18 figures. (DLC)

  13. Electronic Waste Management in India: A Stakeholder’s Perspective

    OpenAIRE

    Borthakur, Anwesha; Sinha, Kunal

    2013-01-01

    E-waste or Waste Electrical and Electronic Equipment (WEEE) illustrate discarded appliances that utilize electricity for their functioning. Today, the Indian market is engrossed with massive volumes of electrical and electronic goods and gadgets, having tremendously high domestic demand. Consequently, the amount of E-waste being generated in the country is flourishing at an alarming rate, although the management practices and policy initiatives of the same are still in an elementary stage. Th...

  14. Environment-friendly management of iron-bearing metallurgical waste

    OpenAIRE

    K. Nowacki; T. Lis; Kania, H.

    2017-01-01

    The main purpose of waste management should be reclamation of valuable raw materials and, consequently, protection of natural environment by reducing consumption of deposits and energy. The metallurgical industry generates considerable quantities of waste containing iron. This article addresses environment-friendly solutions for utilisation of such waste in the form of slime, sludge and dust. What has been discussed is the impact of the technologies proposed on natural environment.

  15. Electronic Waste Management in India: A Stakeholder’s Perspective

    OpenAIRE

    Borthakur, Anwesha; Sinha, Kunal

    2013-01-01

    E-waste or Waste Electrical and Electronic Equipment (WEEE) illustrate discarded appliances that utilize electricity for their functioning. Today, the Indian market is engrossed with massive volumes of electrical and electronic goods and gadgets, having tremendously high domestic demand. Consequently, the amount of E-waste being generated in the country is flourishing at an alarming rate, although the management practices and policy initiatives of the same are still in an elementary stage. Th...

  16. Rural waste management:challenges and issues in Romania

    OpenAIRE

    Apostol, Liviu; Mihai, Florin-Constantin

    2012-01-01

      Rural areas of the new EU Member States face serious problems in compliance of EU regulation on waste management. Firstly, the share of rural population is higher and it has lower living standards and secondly, the waste collection services are poorly-developed covering some rural regions. In this context, open dumping is used as an appropriate waste disposal solution generating complex pollution. This paper analyzes the disparities between Romanian counties regarding the rural pop...

  17. DOE model conference on waste management and environmental restoration

    Energy Technology Data Exchange (ETDEWEB)

    1990-01-01

    Reports dealing with current topics in waste management and environmental restoration were presented at this conference in six sessions. Session 1 covered the Hot Topics'' including regulations and risk assessment. Session 2 dealt with waste reduction and minimization; session 3 dealt with waste treatment and disposal. Session 4 covered site characterization and analysis. Environmental restoration and associated technologies wee discussed in session 5 and 6. Individual papers have been cataloged separately.

  18. 40 CFR 60.3012 - What should I include in my waste management plan?

    Science.gov (United States)

    2010-07-01

    ... Compliance Times for Other Solid Waste Incineration Units That Commenced Construction On or Before December 9, 2004 Model Rule-Waste Management Plan § 60.3012 What should I include in my waste management plan? A waste management plan must include consideration of the reduction or separation of waste-stream...

  19. Analysis of the solid waste management of Guacimo, Costa Rica

    OpenAIRE

    Campos-Rodríguez, Rooel; Soto-Córdoba, Silvia

    2014-01-01

    The aim of this paper its shows the results about the analysis of the solid waste management in the “Municipalidad of Guacimo” located in Limón, Costa Rica. The Municipalidad of Guacimo doesn’t have the basic records and enough information that is necessary for improve the management of the solid waste. Because of that, this investigation provides the inputs for begin to design the solid waste management for the Municipalidad of Guacimo. We search quotes bibliographic about the situation and ...

  20. The Integrated Waste Tracking Systems (IWTS) - A Comprehensive Waste Management Tool

    Energy Technology Data Exchange (ETDEWEB)

    Robert S. Anderson

    2005-09-01

    The US Department of Energy (DOE) Idaho National Laboratory (INL) site located near Idaho Falls, ID USA, has developed a comprehensive waste management and tracking tool that integrates multiple operational activities with characterization data from waste declaration through final waste disposition. The Integrated Waste Tracking System (IWTS) provides information necessary to help facility personnel properly manage their waste and demonstrate a wide range of legal and regulatory compliance. As a client?server database system, the IWTS is a proven tracking, characterization, compliance, and reporting tool that meets the needs of both operations and management while providing a high level of flexibility. This paper describes some of the history involved with the development and current use of IWTS as a comprehensive waste management tool as well as a discussion of IWTS deployments performed by the INL for outside clients. Waste management spans a wide range of activities including: work group interactions, regulatory compliance management, reporting, procedure management, and similar activities. The IWTS documents these activities and performs tasks in a computer-automated environment. Waste characterization data, container characterization data, shipments, waste processing, disposals, reporting, and limit compliance checks are just a few of the items that IWTS documents and performs to help waste management personnel perform their jobs. Throughout most hazardous and radioactive waste generating, storage and disposal sites, waste management is performed by many different groups of people in many facilities. Several organizations administer their areas of waste management using their own procedures and documentation independent of other organizations. Files are kept, some of which are treated as quality records, others not as stringent. Quality records maintain a history of: changes performed after approval, the reason for the change(s), and a record of whom and when