WorldWideScience

Sample records for waste llw forms

  1. Waste-form development

    International Nuclear Information System (INIS)

    Neilson, R.M. Jr.; Colombo, P.

    1982-01-01

    Contemporary solidification agents are being investigated relative to their applications to major fuel cycle and non-fuel cycle low-level waste (LLW) streams. Work is being conducted to determine the range of conditions under which these solidification agents can be applied to specific LLW streams. These studies are directed primarily towards defining operating parameters for both improved solidification of problem wastes and solidification of new LLW streams generated from advanced volume reduction technologies. Work is being conducted to measure relevant waste form properties. These data will be compiled and evaluated to demonstrate compliance with waste form performance and shallow land burial acceptance criteria and transportation requirements

  2. Waste form development

    International Nuclear Information System (INIS)

    Neilson, R.M. Jr.; Colombo, P.

    1982-01-01

    In this program, contemporary solidification agents are being investigated relative to their applications to major fuel cycle and non-fuel cycle low-level waste (LLW) streams. Work is being conducted to determine the range of conditions under which these solidification agents can be applied to specific LLW streams. These studies are directed primarily towards defining operating parameters for both improved solidification of problem wastes and solidification of new LLW streams generated from advanced volume reduction technologies. Work is being conducted to measure relevant waste form properties. These data will be compiled and evaluated to demonstrate compliance with waste form performance and shallow land burial acceptance criteria and transportation requirements (both as they exist and as they are modified with time). 6 tables

  3. Low-Level Waste (LLW) forum meeting report

    International Nuclear Information System (INIS)

    1995-01-01

    The Low-Level Radioactive Waste Forum (LLW Forum) is an association of state and compact representatives, appointed by governors and compact commissions, established to facilitate state and compact implementation of the Low-Level Radioactive Waste Policy Act of 1980 and the Low-Level Radioactive Waste Policy Amendments Act of 1985 and to promote the objectives of low-level radioactive waste regional compacts. The LLW Forum provides an opportunity for state and compact officials to share information with one another and to exchange views with officials of federal agencies and other interested parties

  4. Low-Level Waste (LLW) forum meeting report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    The Low-Level Radioactive Waste Forum (LLW Forum) is an association of state and compact representatives, appointed by governors and compact commissions, established to facilitate state and compact implementation of the Low-Level Radioactive Waste Policy Act of 1980 and the Low-Level Radioactive Waste Policy Amendments Act of 1985 and to promote the objectives of low-level radioactive waste regional compacts. The LLW Forum provides an opportunity for state and compact officials to share information with one another and to exchange views with officials of federal agencies and other interested parties.

  5. LLW simmers as states scramble

    International Nuclear Information System (INIS)

    Malloy, M.

    1994-01-01

    Low-level radioactive waste disposal could be reaching a crisis point as states and private industry scramble to come up with permitted disposal facilities. Although not as notorious as high-level radioactive waste, the disposal of low-level radioactive wastes (LLW) is becoming more of concern -- some say nearing a crisis -- nationwide, because of the limited number of storage sites available. Most states have formed into groups called compacts, in which they jointly set up storage and disposal sites for their LLW. Most of the overall universe of LLW is generated and handled by the US Department of Energy. The remainder is produced and dealt with commercially. Commercial sources account for about one million cubic feet of LLW annually. LLW is defined as anything that is not the more potent, spent high-level nuclear fuel waste or radioactive waste from transuranic processes. Ninety to ninety-five percent of LLW is trash. The rest is either short-lived, or in a third category of both long- and short-lived LLW. That third category, while small, can still account for a high amount of curies of radioactivity

  6. Greater-than-Class C low-level radioactive waste characterization. Appendix E-2: Mixed GTCC LLW assessment

    International Nuclear Information System (INIS)

    Kirner, N.P.

    1994-09-01

    Mixed greater-than-Class C low-level radioactive waste (mixed GTCC LLW) is waste that combines two characteristics: it is radioactive, and it is hazardous. This report uses information compiled from Greater-Than-Class C Low-Level Radioactive Waste Characterization: Estimated Volumes, Radionuclide Activities, and Other Characteristics (DOE/LLW 1 14, Revision 1), and applies it to the question of how much and what types of mixed GTCC LLW are generated and are likely to require disposal in facilities jointly regulated by the DOE and the NRC. The report describes how to classify a RCRA hazardous waste, and then applies that classification process to the 41 GTCC LLW waste types identified in the DOE/LLW-114 (Revision 1). Of the 41 GTCC LLW categories identified, only six were identified in this study as potentially requiring regulation as hazardous waste under RCRA. These wastes can be combined into the following three groups: fuel-in decontamination resins, organic liquids, and process waste consisting of lead scrap/shielding from a sealed source manufacturer. For the base case, no mixed GTCC LLW is expected from nuclear utilities or sealed source licensees, whereas only 177 ml of mixed GTCC LLW are expected to be produced by other generators through the year 2035. This relatively small volume represents approximately 40% of the base case estimate for GTCC wastes from other generators. For these other generators, volume estimates for mixed GTCC LLW ranged from less than 1 m 3 to 187 m 3 , depending on assumptions and treatments applied to the wastes

  7. Packaging LLW and ILW

    International Nuclear Information System (INIS)

    Flowers, R.H.; Owen, R.G.

    1991-01-01

    Low level waste (LLW) accounts for 70-80% by volume of all radioactive wastes produced by the nuclear industry. It has low specific activity, negligible actinide content and requires little, if any, shielding to protect workers. Volume reduction for LLW of high volume but low density may be achieved by incineration and compaction as appropriate, before packaging for disposal by near surface burial. Intermediate level waste (ILW) is treated and packed to convert it into a stable form to minimize any release of activity and make handling easier. The matrix chosen for immobilization, usually cement, polymers or bitumen, depends on the nature of the waste and the acceptance criteria of the disposal facility. The special case of LLW and ILW which will arise from reactor decommissioning is discussed. Packaging methods adopted by individual countries are reviewed. The range of costs involved for packaging ILW is indicated. There is no international consensus on the performance required from packaged waste to ensure its suitability both for interim storage and final disposal. (UK)

  8. Feasibility study on equipment of LLW management business system

    International Nuclear Information System (INIS)

    Shimizu, Takafumi

    2010-01-01

    LLW from university and private company has been kept in their own nuclear facilities in Japan. RANDEC has been studying business system for the treatment and conditioning of LLW before disposal. Reference to proven waste treatment process used in Nuclear Power Plant, it was studied that the appropriate treatment process for the LLW from university and private company. The waste will be collected from the university and private company to a central treatment facility. After operations such as unpacking, classification, compression, incineration and others, the waste will be treated to waste form. Most equipment are adopted by the process technology used in Nuclear Power Plant. But some equipment such as measurement of radio activity and solidification of powder need to be studied for the treatment of LLW from university and private company. (author)

  9. Waste-Form Development Program. Annual progress report, October 1981-September 1982

    International Nuclear Information System (INIS)

    Neilson, R.M. Jr.; Colombo, P.

    1982-09-01

    Low-level wastes (LLW) at nuclear facilities have traditionally been solidified using portland cement (with and without additives). Urea-formaldehyde has been used for LLW solidification while bitumen (asphalt) and thermosetting polymers will be applied to domestic wastes in the near future. Operational difficulties have been observed with each of these solidification agents. Such difficulties include incompatibility with waste constitutents inhibiting solidification, premature setting, free standing water and fires. Some specific waste types have proven difficult to solidify with one or more of the contemporary agents. Similar problems are also anticipated for the solidification of new wastes, which are generated using advanced volume reduction technologies, and with the application of additional agents which may be introduced in the near future for the solidification of LLW. In the Waste Form Development program, contemporary solidification agents are being investigated relative to their potential applications to major fuel cycle and non-fuel cycle LLW streams. The range of conditions under which these solidification agents can be satisfactorily applied to specific LLW streams is being determined. These studies are primarily directed towards defining operating parameters for both improved solidification of problem wastes such as ion exchange resins, organic liquids and oils for which prevailing processes, as currently employed, appear to be inadequate, and solidification of new LLW streams including high solids content evaporator concentrates, dry solids, and incinerator ash generated from advanced volume reduction technologies. Solidified waste forms are tested and evaluated to demonstrate compliance with waste form performance and shallow land burial (SLB) acceptance criteria and transportation requirements (both as they currently exist and as they are anticipated to be modified with time)

  10. The Evolution of Low-Level Radioactive Waste (LLW) Disposal Practices at the Savannah River Site Coupled with Vigorous Stakeholder Interaction

    International Nuclear Information System (INIS)

    Goldston, W. T.; Wilhite, E. L.; Cook, J. R.; Sauls, V. W.

    2002-01-01

    Low-level radioactive waste (LLW) disposal practices at SRS evolved from trench disposal with little long-term performance basis to disposal in robust concrete vaults, again without modeling long-term performance. Now, based on an assessment of long-term performance of various waste forms and methods of disposal, the LLW disposal program allows for a ''smorgasbord'' of various disposal techniques and waste forms, all modeled to ensure long-term performance is understood. New disposal techniques include components-in-grout, compaction/volume reduction prior to disposal, and trench disposal of extremely low activity waste. Additionally, factoring partition coefficient (Kd) measurements based on waste forms has been factored into performance models. This paper will trace the development of the different disposal methods, and the extensive public communications effort that resulted in endorsement of the changes by the SRS Citizens Advisory Board

  11. Waste form development/test

    International Nuclear Information System (INIS)

    Kalb, P.D.; Colombo, P.

    1983-01-01

    The main objective of this study is to investigate new solidification agents relative to their potential application to wastes generated by advanced high volume reduction technologies, e.g., incinerator ash, dry solids, and ion exchange resins. Candidate materials selected for the solidification of these wastes include a modified sulfur cement and low-density polyethylene, neither of which are currently employed commerically for the solidification of low-level waste (LLW). As both the modified sulfur cement and the polyethylene are thermoplastic materials, a heated screw type extruder is utilized in the production of waste form samples for testing and evaluation. In this regard, work is being conducted to determine the range of conditions under which these solidification agents can be satisfactorily applied to the specific LLW streams and to provide information relevant to operating parameters and process control

  12. Trends of radioactive waste management policy and disposal of LLW/ILW in the UK

    International Nuclear Information System (INIS)

    Miyasaka, Yasuhiko

    2003-01-01

    In 1997, the UK program for the deep disposal of radioactive waste was stopped with the refusal by the Secretary of State for the Environment to allow Nuclear Industry Radioactive Waste Executive, Ltd. (Nirex) to go ahead with its plans for an underground Rock Characterization Facility (RCF) at Sellafield, seen as the precursor of an underground repository for LLW/ILW. Department of Environment, Food and Rural Affairs (DEFRA) and the Developed Administrations published a white paper 'Managing Radioactive Waste Safety' Proposal for developing a policy for managing solid radioactive waste in the UK on 12 September 2001. The paper set out five-stage program of action for reaching decisions until 2007. It suggests their view can be sought via opinion polls, the Internet, workshops, citizens, juries, consensus conferences, stakeholder, local authority and community groups and research panels. With the exception of a disposal facility associated with the operation of the Dounreay site on the north coast of Scotland, essentially all LLW in the UK is disposed of at the Drigg site, near Sellafield. The site has been in operation since 1959. Until 1988, disposals were solely in trenches, cut into the glacial tills underlying the site. In 1988, an engineered concrete vault was brought into operation and is currently in use. Drigg only has a finite capacity in the currently area and may be full by about 2050, hence new arrangements will have to examine. This report describes the trends of radioactive waste management policy and disposal of LLW/ILW in the UK. These include: NDA(Nuclear Decommissioning Authority) organization plan, Feb. 2003; Encapsulation of LLW/ILW and safe store for ILW; Summary of LLW repository at the Drigg site; Nirex concept for underground storage/disposal of LLW/ILW. This information and new approach of the safe management of radioactive waste in the UK will prove helpful to the planning for future management and disposal of LLW in Japan. (author)

  13. The cost of LLW disposal - Is it sound economics?

    International Nuclear Information System (INIS)

    Stelluto, Janis D.

    1992-01-01

    Low-level radioactive waste (LLW) management is a growth industry. Since 1980, when the LLW Policy Act was passed, regional and state LLW bureaucracies have grown, and LLW services and consulting businesses have prospered. Most states and federal agencies have LLW programs with increased regulation of LLW management. Costs of all these programs have soared as facilities for LLW disposal are proposed in sixteen, or more, locations in the country. LLW management costs have also increased as licensees implement comprehensive programs for volume reduction and waste form stabilization. Yet, the total cost of LLW management service is borne by nearly the same universe of payers as in 1980: taxpayers and radioactive materials licensees. Those costs are, in turn, passed on through taxes and consumer costs. Ultimately, everybody pays. Despite this investment, the LLW situation is adrift. New facilities have not been built, and existing facilities are closing or limiting access. LLW management has not advanced to a respected field of engineering and science. Nor does it include exceptional benefit and opportunity to host communities. A new focus is needed to allow an economically sound solution to emerge, one where the supply of LLW management and disposal fits the demand for service. (author)

  14. WRAP low level waste (LLW) glovebox operational test report

    Energy Technology Data Exchange (ETDEWEB)

    Kersten, J.K.

    1998-02-19

    The Low Level Waste (LLW) Process Gloveboxes are designed to: receive a 55 gallon drum in an 85 gallon overpack in the Entry glovebox (GBIOI); and open and sort the waste from the 55 gallon drum, place the waste back into drum and relid in the Sorting glovebox (GB 102). In addition, waste which requires further examination is transferred to the LLW RWM Glovebox via the Drath and Schraeder Bagiess Transfer Port (DO-07-201) or sent to the Sample Transfer Port (STC); crush the drum in the Supercompactor glovebox (GB 104); place the resulting puck (along with other pucks) into another 85 gallon overpack in the Exit glovebox (GB 105). The status of the waste items is tracked by the Data Management System (DMS) via the Plant Control System (PCS) barcode interface. As an item is moved from the entry glovebox to the exit glovebox, the Operator will track an items location using a barcode reader and enter any required data on the DMS console. The Operational Test Procedure (OTP) will perform evolution`s (described below) using the Plant Operating Procedures (POP) in order to verify that they are sufficient and accurate for controlled glovebox operation.

  15. WRAP low level waste (LLW) glovebox operational test report

    International Nuclear Information System (INIS)

    Kersten, J.K.

    1998-01-01

    The Low Level Waste (LLW) Process Gloveboxes are designed to: receive a 55 gallon drum in an 85 gallon overpack in the Entry glovebox (GBIOI); and open and sort the waste from the 55 gallon drum, place the waste back into drum and relid in the Sorting glovebox (GB 102). In addition, waste which requires further examination is transferred to the LLW RWM Glovebox via the Drath and Schraeder Bagiess Transfer Port (DO-07-201) or sent to the Sample Transfer Port (STC); crush the drum in the Supercompactor glovebox (GB 104); place the resulting puck (along with other pucks) into another 85 gallon overpack in the Exit glovebox (GB 105). The status of the waste items is tracked by the Data Management System (DMS) via the Plant Control System (PCS) barcode interface. As an item is moved from the entry glovebox to the exit glovebox, the Operator will track an items location using a barcode reader and enter any required data on the DMS console. The Operational Test Procedure (OTP) will perform evolution's (described below) using the Plant Operating Procedures (POP) in order to verify that they are sufficient and accurate for controlled glovebox operation

  16. LLW Forum meeting report

    International Nuclear Information System (INIS)

    1996-01-01

    This report summarizes the Low-Level Radioactive Waste Forum (LLW Forum) meeting on May 29 through May 31, 1996.The LLW Forum is an association of state and compact representatives, appointed by governors and compact commissions, established to facilitate state and compact implementation of the Low-Level Waste Policy Act of 1980 and the Low-Level Radioactive Waste Policy Amendments Act of 1985 and to promote the objectives of low-level radioactive waste regional compacts. The LLW forum provides an opportunity for state and compact officials to share information with one another and to exchange views with officials of federal agencies and other interested parties

  17. LLW Forum meeting report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-08-01

    This report summarizes the Low-Level Radioactive Waste Forum (LLW Forum) meeting on May 29 through May 31, 1996.The LLW Forum is an association of state and compact representatives, appointed by governors and compact commissions, established to facilitate state and compact implementation of the Low-Level Waste Policy Act of 1980 and the Low-Level Radioactive Waste Policy Amendments Act of 1985 and to promote the objectives of low-level radioactive waste regional compacts. The LLW forum provides an opportunity for state and compact officials to share information with one another and to exchange views with officials of federal agencies and other interested parties.

  18. Managing commercial low-level radioactive waste beyond 1992: Transportation planning for a LLW disposal facility

    International Nuclear Information System (INIS)

    Quinn, G.J.

    1992-01-01

    This technical bulletin presents information on the many activities and issues related to transportation of low-level radioactive waste (LLW) to allow interested States to investigate further those subjects for which proactive preparation will facilitate the development and operation of a LLW disposal facility. The activities related to transportation for a LLW disposal facility are discussed under the following headings: safety; legislation, regulations, and implementation guidance; operations-related transport (LLW and non-LLW traffic); construction traffic; economics; and public involvement

  19. LLW notes. Vol. 11, No. 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-02-01

    `LLW Notes` is distributed by Afton Associates, Inc. to Low-Level Radioactive Waste Forum Participants and other state and compact officials identified by those Participants to receive `LLW Notes`. The Low-Level Radioactive Waste Forum (LLW Forum) is an association of state and compact representatives, appointed by governors and compact commissions, established to facilitate state and compact implementation of the Low-Level Radioactive Waste Policy Act of 1980 and the Low-Level Radioactive Waste Policy Amendments Act of 1985 and to promote the objectives of low-level radioactive waste regional compacts. The LLW Forum provides an opportunity for state and compact officials to share information with one another and to exchange views with officials of federal agencies and other interested parties.

  20. LLW notes. Volume 11, No.8

    International Nuclear Information System (INIS)

    1996-12-01

    'LLW Notes' is distributed by Afton Associates, Inc. to Low-Level Radioactive Waste Forum Participants and other state, and compact officials identified by those Participants to receive 'LLW Notes'. The Low-Level Radioactive Waste Forum (LLW Forum) is an association of state and compact representatives, appointed by governors and compact commissions, established to facilitate state and compact implementation of the Low-Level Radioactive Waste Policy Act of 1980 and the Low-Level Radioactive Waste Policy Amendments Act of 1985 and to promote the objectives of low-level radioactive waste regional compacts. The LLW Forum provides an opportunity for state and compact officials to share information with one another and to exchange views with officials of federal agencies and other interested parties

  1. LLW notes. Vol. 11, No. 1

    International Nuclear Information System (INIS)

    1996-02-01

    'LLW Notes' is distributed by Afton Associates, Inc. to Low-Level Radioactive Waste Forum Participants and other state and compact officials identified by those Participants to receive 'LLW Notes'. The Low-Level Radioactive Waste Forum (LLW Forum) is an association of state and compact representatives, appointed by governors and compact commissions, established to facilitate state and compact implementation of the Low-Level Radioactive Waste Policy Act of 1980 and the Low-Level Radioactive Waste Policy Amendments Act of 1985 and to promote the objectives of low-level radioactive waste regional compacts. The LLW Forum provides an opportunity for state and compact officials to share information with one another and to exchange views with officials of federal agencies and other interested parties

  2. LLW notes, Vol. 11, No. 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    `LLW Notes` is distributed by Afton Associates, Inc. to Low-Level Radioactive Waste Forum Participants and other state, and compact officials identified by those Participants to receive LLW Notes. The Low-Level Radioactive Waste Forum (LLW Forum) is an association of state and compact representatives, appointed by governors and compact commissions, established to facilitate state and compact implementation of the Low-Level Radioactive Waste Policy Act of 1980 and the Low-Level Radioactive Waste Policy amendments Act of 1985 and to promote the objectives of low-level radioactive waste regional compacts. The LLW Forum provides an opportunity for state and compact officials to share information with one another and to exchange views with officials of federal agencies and other interested parties.

  3. LLW notes, Vol. 11, No. 2

    International Nuclear Information System (INIS)

    1996-03-01

    'LLW Notes' is distributed by Afton Associates, Inc. to Low-Level Radioactive Waste Forum Participants and other state, and compact officials identified by those Participants to receive LLW Notes. The Low-Level Radioactive Waste Forum (LLW Forum) is an association of state and compact representatives, appointed by governors and compact commissions, established to facilitate state and compact implementation of the Low-Level Radioactive Waste Policy Act of 1980 and the Low-Level Radioactive Waste Policy amendments Act of 1985 and to promote the objectives of low-level radioactive waste regional compacts. The LLW Forum provides an opportunity for state and compact officials to share information with one another and to exchange views with officials of federal agencies and other interested parties

  4. Alternative solidified forms for nuclear wastes

    International Nuclear Information System (INIS)

    McElroy, J.L.; Ross, W.A.

    1976-01-01

    Radioactive wastes will occur in various parts of the nuclear fuel cycle. These wastes have been classified in this paper as high-level waste, intermediate and low-level waste, cladding hulls, and residues. Solidification methods for each type of waste are discussed in a multiple barrier context of primary waste form, applicable coatings or films, matrix encapsulation, canister, engineered structures, and geological storage. The four major primary forms which have been most highly developed are glass for HLW, cement for ILW, organics for LLW, and metals for hulls

  5. LLW (Low-Level Waste) Notes, Volume 13, Number 1, February 1998

    International Nuclear Information System (INIS)

    1998-02-01

    LLW Notes is a newsletter distributed to Low-Level Radioactive Waste Forum Participants and other state and compact officials. The LLW Forum provides an opportunity for state and compact officials to share information with one another and to exchange views with officials of federal agencies and other interested parties. This issue focuses on the following topics: DOI approves Ward Valley permit application; Project evidentiary hearings begin in Texas; and Summary judgment motions in California breach of contract action

  6. LLW (Low-Level Waste) Notes, Volume 13, Number 1, February 1998

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-02-01

    LLW Notes is a newsletter distributed to Low-Level Radioactive Waste Forum Participants and other state and compact officials. The LLW Forum provides an opportunity for state and compact officials to share information with one another and to exchange views with officials of federal agencies and other interested parties. This issue focuses on the following topics: DOI approves Ward Valley permit application; Project evidentiary hearings begin in Texas; and Summary judgment motions in California breach of contract action.

  7. Updated Strategic Assessment of the U.S. NRC Low-Level Radioactive Waste (LLW) Program and the new WCS Commercial Disposal Facility for LLW

    Energy Technology Data Exchange (ETDEWEB)

    Kessel, David S.; Kim, Chang-Lak [KEPCO International Nuclear Graduate School, Ulsan (Korea, Republic of)

    2015-05-15

    The purpose of this paper is to review the updated NRC low level radioactive waste regulatory strategy and also present an update on a significant change in the LLW disposal landscape in the U.S., the opening of a new commercial disposal facility, the Texas Compact Waste Facility (CWF) in Andrews, Texas. Operational since spring of 2012, the CWF is owned and licensed by the state of Texas and operated by Waste Control Specialists LLC (WCS). The WCS facility in western Andrews County is the only commercial facility in the United States licensed to dispose of Class A, B and C LLW in the U.S. in the past 40 years. Based on the observation that other suitable sites have been identified such as the Clive, Utah site that meet (almost) all of these criteria it would appear that the first and last factors in our list are the most problematic and it will require a change in the public acceptance and the political posture of states to help solve the national issue of safe and cost-effective LLW disposal.

  8. Development of an accelerated leach test(s) for low-level waste forms

    International Nuclear Information System (INIS)

    Dougherty, D.R.; Fuhrmann, M.; Colombo, P.

    1986-01-01

    An accelerated leach test(s) is being developed to predict long-term leaching behavior of low-level radioactive waste (LLW) forms in their disposal environments. As necessary background, a literature survey of reported leaching mechanisms, available mathematical models and factors that affect leaching of LLW forms has been compiled. Mechanisms which have been identified include diffusion, dissolution, ion exchange, corrosion and surface effects. A computerized data base of LLW leaching data and mathematical models is being developed. The data is being used for model evaluation by curve fitting and statistical analysis according to standard procedures of statistical quality control. Long-term leach tests on portland cement, bitumen and vinyl ester-styrene (VES) polymer waste forms are underway which are designed to identify and evaluate factors that accelerate leaching without changing the mechanisms. Initial results on the effect of temperature on leachability indicate that the leach rates of cement and VES waste forms increase with increasing temperature, whereas, the leach rate of bitumen is little affected

  9. Treatability study of absorbent polymer waste form for mixed waste treatment

    International Nuclear Information System (INIS)

    Herrmann, S. D.; Lehto, M. A.; Stewart, N. A.; Croft, A. D.; Kern, P. W.

    2000-01-01

    A treatability study was performed to develop and characterize an absorbent polymer waste form for application to low level (LLW) and mixed low level (MLLW) aqueous wastes at Argonne National Laboratory-West (ANL-W). In this study absorbent polymers proved effective at immobilizing aqueous liquid wastes in order to meet Land Disposal Restrictions for subsurface waste disposal. Treatment of aqueous waste with absorbent polymers provides an alternative to liquid waste solidification via high-shear mixing with clays and cements. Significant advantages of absorbent polymer use over clays and cements include ease of operations and waste volume minimization. Absorbent polymers do not require high-shear mixing as do clays and cements. Granulated absorbent polymer is poured into aqueous solutions and forms a gel which passes the paint filter test as a non-liquid. Pouring versus mixing of a solidification agent not only eliminates the need for a mixing station, but also lessens exposure to personnel and the potential for spread of contamination from treatment of radioactive wastes. Waste minimization is achieved as significantly less mass addition and volume increase is required of and results from absorbent polymer use than that of clays and cements. Operational ease and waste minimization translate into overall cost savings for LLW and MLLW treatment

  10. WRAP low level waste restricted waste management (LLW RWM) glovebox acceptance test report

    International Nuclear Information System (INIS)

    Leist, K.J.

    1997-01-01

    On April 22, 1997, the Low Level Waste Restricted Waste Management (LLW RWM) glovebox was tested using acceptance test procedure 13027A-87. Mr. Robert L. Warmenhoven served as test director, Mr. Kendrick Leist acted as test operator and test witness, and Michael Lane provided miscellaneous software support. The primary focus of the glovebox acceptance test was to examine glovebox control system interlocks, operator Interface Unit (OIU) menus, alarms, and messages. Basic drum port and lift table control sequences were demonstrated. OIU menus, messages, and alarm sequences were examined, with few exceptions noted. Barcode testing was bypassed, due to the lack of installed equipment as well as the switch from basic reliance on fixed bar code readers to the enhanced use of portable bar code readers. Bar code testing was completed during performance of the LLW RWM OTP. Mechanical and control deficiencies were documented as Test Exceptions during performance of this Acceptance Test. These items are attached as Appendix A to this report

  11. Greater-than-Class C low-level radioactive waste characterization. Appendix E-3: GTCC LLW assumptions matrix

    International Nuclear Information System (INIS)

    1995-01-01

    This study identifies four categories of GTCC LLW: nuclear utility; sealed sources; DOE-held; and other generators. Within each category, inventory and projection data are modeled in three scenarios: (1) Unpackaged volume--this is the unpackaged volume of waste that would exceed Class C limits if the waste calculation methods in 10 CFR 61.55 were applied to the discrete items before concentration averaging methods were applied to the volume; (2) Not-concentration-averaged (NCA) packaged volume--this is the packaged volume of GTCC LLW assuming that no concentration averaging is allowed; and (3) After-concentration-averaging (ACA) packaged volume--this is the packaged volume of GTCC LLW, which, for regulatory or practical reasons, cannot be disposed of in a LLW disposal facility using allowable concentration averaging practices. Three cases are calculated for each of the volumes described above. These values are defined as the low, base, and high cases. The following tables explain the assumptions used to determine low, base, and high case estimates for each scenario, within each generator category. The appendices referred to in these tables are appendices to Greater-Than-Class C Low-Level Radioactive Waste Characterization: Estimated Volumes, Radionuclide Activities, and Other Characteristics (DOE/LLW-114, Revision 1)

  12. Low-level radioactive waste (LLW) management at the Nevada Test Site (NTS)

    International Nuclear Information System (INIS)

    Becker, B.D.; Gertz, C.P.; Clayton, W.A.; Crowe, B.M.

    1998-01-01

    In 1978, the Department of Energy, Nevada Operations Office (DOE/NV), established a managed LLW disposal project at the Nevada Test Site (NTS). Two, sites which were already accepting limited amounts of on-site generated waste for disposal and off-site generated Transuranic Waste for interim storage, were selected to house the disposal facilities. In those early days, these sites, located about 15 miles apart, afforded the DOE/NV the opportunity to use at least two technologies to manage its waste cost effectively. The Area 5 Radioactive Waste Management Site (RWMS) uses engineered shallow-land burial cells to dispose packaged waste while the Area 3 RWMS uses subsidence craters formed from underground testing of nuclear weapons for the disposal of packaged and unpackaged bulk waste. The paper describes the technical attributes of both Area 5 and Area 3 facilities, the acceptance process, the disposal processes, and present and future capacities of both sites

  13. Development of an accelerated leach test(s) for low-level waste forms

    International Nuclear Information System (INIS)

    Dougherty, D.R.; Fuhrmann, M.; Colombo, P.

    1985-01-01

    An accelerated leach test(s) is being developed to predict long-term leaching behavior of low-level radioactive waste (LLW) forms in their disposal environments. As necessary background, a literature survey of reported leaching mechanisms, available mathematical models and factors that affect leaching of LLW forms has been compiled. Mechanisms which have been identified include diffusion, dissolution, ion exchange, corrosion and surface effects. A computerized data base of LLW leaching data and mathematical models is being developed. The data is being used for model evaluation by curve fitting and statistical analysis according to standard procedures of statistical quality control. Long-term leach tests on portland cement, bitumen and vinyl ester-styrene (VES) polymer waste forms are underway which are designed to identify and evaluate factors that accelerate leaching without changing the mechanisms. Initial results on the effect of temperature on leachability indicate that the leach rates of cement and VES waste forms increase with increasing temperature, whereas, the leach rate of bitumen is little affected. 10 refs., 5 figs

  14. Implementation of Waste Tracking System for LLW and MLW

    International Nuclear Information System (INIS)

    Won, Y. S.; Lee, K. H.; Kim, H. J.; Lee, K. H.

    2010-01-01

    The real-time Waste Tracking System (WTS) has been implemented for the integrated management of LLW and MLW from the receiving time at the production area till the managing period after the shutdown of disposal site. The relevant information by each process on take-over and receiving plan, preliminary inspection, receiving, transportation, site inspection, disposal and shutdown is over all managed by WTS

  15. UK strategy for nuclear industry LLW - 16393

    International Nuclear Information System (INIS)

    Clark, Matthew; Fisher, Joanne

    2009-01-01

    In March 2007 the UK Government and devolved administrations (for Scotland, Wales and Northern Ireland, from here on referred to as 'Government') published their policy for the management of solid low level waste ('the Policy'). The Policy sets out a number of core principles for the management of low level waste (LLW) and charges the Nuclear Decommissioning Authority with developing a UK-wide strategy in the case of LLW from nuclear sites. The UK Nuclear Industry LLW Strategy has been developed within the framework of the principles set out in the policy. A key factor in the development of this strategy has been the strategic partnership the NDA shares with the Low Level Waste Repository near Drigg (LLWR), who now have a role in developing strategy as well as delivering an optimised waste management service at the LLWR. The strategy aims to support continued hazard reduction and decommissioning by ensuring uninterrupted capability and capacity for the management and disposal of LLW in the UK. The continued availability of a disposal route for LLW is considered vital by both the nuclear industry and non-nuclear industry low level waste producers. Given that the UK will generate significantly more low level waste (∼ 3.1 million m 3 ) than there is capacity at the LLWR (∼0.75 million m 3 ), developing alternative effective ways to manage LLW is critical. The waste management hierarchy is central to the strategy, which includes strategic goals at all levels of the hierarchy to improve its application across the industry. (authors)

  16. Overview of EPA's environmental standards for the land disposal of LLW and NARM waste - 1988

    International Nuclear Information System (INIS)

    Gruhlke, J.M.; Galpin, F.L.; Holcomb, W.F.

    1988-01-01

    The Environmental Protection Agency program to develop proposed generally applicable environmental standards for land disposal of low-level radioactive waste (LLW) and certain naturally occurring and accelerator-produced radioactive wastes has been completed. The elements of the proposed standards include the following: (a) exposure limits for predisposal management and storage operations, (b) criteria for other regulatory agencies to follow in specifying wastes that are below regulatory concern; (c) postdisposal exposure limits, (d) groundwater protection requirements, and (e) qualitative implementation requirements. In addition to covering those radioactive wastes subject to the Atomic Energy Act, the Agency also intends to propose a standard to require the disposal of high concentration, naturally occurring and accelerator-produced radioactive materials wastes exceeding 2 nCi/g, excluding a few consumer items, in regulated LLW disposal facilities

  17. Investigations with respect to pressure build-up in 200 l drums with supercompacted low level waste (LLW)

    International Nuclear Information System (INIS)

    Kroth, K.; Lammertz, H.

    1988-04-01

    In the drum storage facilities of various nuclear power stations, ballooning effects have recently been observed on a limited number of 200 l drums filled with hypercompacted mixed LLW. The ballooning of the drums lid and bottom is due to internal overpressure caused by gas formation in the waste. The internal drum pressures and the composition of the drum gases were measured on a considerable number of 200 l drums. Hydrogen, formed by chemical reactions between the waste components, was identified as the pressure generating gas. The reasons for the hydrogen formation were investigated on both real and simulated wastes. (orig.) [de

  18. LLW Notes, Volume 12, Number 3

    International Nuclear Information System (INIS)

    Norris, C.; Brown, H.; Colsant, J.; Lovinger, T.; Scheele, L.; Shaker, M.A.

    1997-03-01

    Contents include articles entitled: California DHS sues US Interior Department to compel land transfer; LLW Forum holds winter meeting; LLW Forum waste information working group meets; LLW Forum regulatory issues discussion group meets; Envirocare investigation transferred to feds; Host state TCC meets in Laughlin, Nevada; BLM to require new permit for California site testing; Federal agencies and committees; Pena sworn in as Energy Secretary, Grumbly departs DOE; U.S. Supreme Court tackles property rights issues; GAO to study DOI's actions; Congress scrutinizes FY '98 budget requests; and Senate committee passes high-level waste bill: Clinton threatens to veto

  19. WRAP low level waste (LLW) glovebox acceptance test report

    International Nuclear Information System (INIS)

    Leist, K.J.

    1998-01-01

    In June 28, 1997, the Low Level Waste (LLW) glovebox was tested using glovebox acceptance test procedure 13031A-85. The primary focus of the glovebox acceptance test was to examine control system interlocks, display menus, alarms, and operator messages. Limited mechanical testing involving the drum ports, hoists, drum lifter, compacted drum lifter, drum tipper, transfer car, conveyors, lidder/delidder device and the supercompactor were also conducted. As of November 24, 1997, 2 of the 131 test exceptions that affect the LLW glovebox remain open. These items will be tracked and closed via the WRAP Master Test Exception Database. As part of Test Exception resolution/closure the responsible individual closing the Test Exception performs a retest of the affected item(s) to ensure the identified deficiency is corrected, and, or to test items not previously available to support testing. Test Exceptions are provided as appendices to this report

  20. WRAP low level waste (LLW) glovebox acceptance test report

    Energy Technology Data Exchange (ETDEWEB)

    Leist, K.J.

    1998-02-17

    In June 28, 1997, the Low Level Waste (LLW) glovebox was tested using glovebox acceptance test procedure 13031A-85. The primary focus of the glovebox acceptance test was to examine control system interlocks, display menus, alarms, and operator messages. Limited mechanical testing involving the drum ports, hoists, drum lifter, compacted drum lifter, drum tipper, transfer car, conveyors, lidder/delidder device and the supercompactor were also conducted. As of November 24, 1997, 2 of the 131 test exceptions that affect the LLW glovebox remain open. These items will be tracked and closed via the WRAP Master Test Exception Database. As part of Test Exception resolution/closure the responsible individual closing the Test Exception performs a retest of the affected item(s) to ensure the identified deficiency is corrected, and, or to test items not previously available to support testing. Test Exceptions are provided as appendices to this report.

  1. DOE LLW classification rationale

    International Nuclear Information System (INIS)

    Flores, A.Y.

    1991-01-01

    This report was about the rationale which the US Department of Energy had with low-level radioactive waste (LLW) classification. It is based on the Nuclear Regulatory Commission's classification system. DOE site operators met to review the qualifications and characteristics of the classification systems. They evaluated performance objectives, developed waste classification tables, and compiled dose limits on the waste. A goal of the LLW classification system was to allow each disposal site the freedom to develop limits to radionuclide inventories and concentrations according to its own site-specific characteristics. This goal was achieved with the adoption of a performance objectives system based on a performance assessment, with site-specific environmental conditions and engineered disposal systems

  2. Ensuring robust decisions and deployable solutions in UK LLW management

    International Nuclear Information System (INIS)

    Clark, Matthew

    2014-01-01

    The Nuclear Decommissioning Authority (NDA) is responsible for the decommissioning and site restoration of civil nuclear liabilities in the UK. Our decommissioning programme will last over 100 years and generate approximately 3.8 million m3 of LLW, three quarters of which will be VLLW. As well as decommissioning sites, our estate includes operations, such as power generation at Wylfa and reprocessing and waste management at Sellafield. As a result we have a clear interest in effective and affordable management of low level waste. This is further enhanced by two important aspects: our role in developing and implementing strategy for the management of nuclear industry LLW in the UK and our ownership of the Low Level Waste Repository, a critical part of the UK's radioactive waste management infrastructure. Disposal capacity at LLWR is a precious resource; recognition of this fact has provided effective leverage to changing the way LLW is managed in the UK. In 2010 we published the UK Nuclear Industry LLW Strategy which comprised three main themes: the waste hierarchy; making the best use of existing LLW management assets; and, the need for new fit-for-purpose waste management routes. In order to preserve disposal capacity at LLWR we wanted to increase choice for organisations that manage LLW. Regulation of the LLW management has also had to keep pace with and enable this change. Increasing choice requires an increased focus on making robust, and not always easy, decisions. In the past, 'LLW' was simply consigned for disposal at LLWR, now LLW managers have to make decisions between clearance, exemption, reuse, recycling, incineration and disposal. Arguably, these decisions become more finely balanced at the lower end of the LLW spectrum. In the UK, a number of tools and sources of support are in place to help with this process, including: the National LLW Programme; good practice guidance (industry led) on assessing Best Available Techniques; and a

  3. Shipment of LLW by intercoastal maritime service

    International Nuclear Information System (INIS)

    Barbour, D.A.

    1985-01-01

    Transportation costs are a significant element of total waste disposal costs. In 1982, Nuclear Metals, Inc. (NMI) began a series of tests and investigations to examine the feasibility of using alternative modes for its low-level waste (LLW) shipments. NMI's investigations and experience have identified significant problems in transporting LLW by rail. Intercoastal maritime service, however, has been demonstrated as a safe and cost-effective way of transporting LLW from eastern seaboard generation sites to the repository at Beatty, Nevada. Intuition is an unreliable guide in this area. Waste managers need to periodically assess and compare combined transportation and burial costs for all site options to ensure that disposal operations are conducted in the most rational way

  4. LLW disposal, 1996 and beyond, an industry perspective

    International Nuclear Information System (INIS)

    Genoa, P.H.

    1996-01-01

    In this article the author reviews what has been done in the past 15 years in terms of opening sites for disposal of low-level radioactive wastes, and what seems to be on the horizon. He reviews process timelines, timelines from regional efforts, and timelines for LLW facilities. The author also looks at what types of changes have been made in the generation, control, and volume of LLW. He examines the pressures which have driven these changes, both from society and from cost control economics. The author tries to look at what government, waste generators, and the waste management industry should do to make progress toward adequate solutions to address the LLW disposal problems

  5. LLW Forum meeting report, May 7--9, 1997

    International Nuclear Information System (INIS)

    Norris, C.; Brown, H.; Lovinger, T.; Scheele, L.; Shaker, M.A.

    1997-05-01

    The Low-Level Radioactive Waste Forum met in Chicago, Illinois, on may 7--9, 1997. Twenty-three Forum Participants, Alternate Forum Participants, and meeting designees representing 20 compacts and states participated. A report on the meeting is given under the following subtitles: New developments in states and compacts; Upgrading an existing disposal facility; Revisions to DOE Order 5820 re DOE waste management; Conference of radiation control program directors: Recent and upcoming activities; National Conference of State Legislatures' (NCSL) low-level radioactive waste working group: Recent and upcoming activities; Executive session; LLW forum business session; Public involvement and risk communication: Success at West Valley, New York; DOE low-level waste management program; impact of the International Atomic Energy Agency's convention on waste; Panel discussion: The environmental justice concept--Past, present and future; New technologies for processing and disposal of LLRW; High-level and low-level radioactive waste: A dialogue on parallels and intersections; Draft agreement re uniform application of manifesting procedures; Regulatory issues focus; LLW forum October 1997 agenda planning; Resolutions; LLW forum regulatory issues discussion group meets; and Attendance

  6. ASSESSING EXPOSURE TO THE PUBLIC FROM LOW LEVEL RADIOACTIVE WASTE (LLW) TRANSPORTATION TO THE NEVADA TEST SITE

    International Nuclear Information System (INIS)

    Miller, J.J.; Campbell, S.; Church, B.W.; Shafer, D. S.; Gillespie, D.; Sedano, S.; Cebe, J.J.

    2003-01-01

    The United States (U.S.) Department of Energy (DOE) Nevada Test Site (NTS) is one of two regional sites where low-level radioactive waste (LLW) from approved DOE and U.S. DOD generators across the United States is disposed. In federal fiscal year (FY) 2002, over 57,000 cubic meters of waste was transported to and disposed at the NTS. DOE and U.S. Department of Transportation (DOT) regulations ensure that radiation exposure from truck shipments to members of the public is negligible. Nevertheless, particularly in rural communities along transportation routes in Utah and Nevada, there is perceived risk from members of the public about incremental exposure from LLW trucks, especially when ''Main Street'' and the LLW transportation route are the same. To better quantify the exposure to gamma radiation, a stationary monitoring array of four pressurized ion chambers (PICs) have been set up in a pullout just before LLW trucks reach the entrance to the NTS. The PICs are positioned at a distance of one meter from the sides of the truck trailer and at a height appropriate for the design of the trucks that will be used in FY2003 to haul LLW to the NTS. The use of four PICs (two on each side of the truck) is to minimize and to correct for non-uniformity where radiation levels from waste packages vary from side to side, and from front to back in the truck trailer. The PIC array is being calibrated by collecting readings from each PIC exposed to a known 137Cs source that was positioned at different locations on a flatbed stationed in the PIC array, along with taking secondary readings from other known sources. Continuous data collection using the PICs, with and without a truck in the array, is being used to develop background readings. In addition, acoustic sensors are positioned on each side of the PIC array to record when a large object (presumably a truck) enters the array. In FY2003, PIC surveys from as many incoming LLW trucks as possible will be made and survey data

  7. LLW Notes, Volume 9, Number 6. October 1994

    International Nuclear Information System (INIS)

    1994-10-01

    LLW Notes is distributed to Low-Level Radioactive Waste Forum Participants and other state and compact officials identified by those Participants to receive LLW Notes. The Low-Level Radioactive Waste Forum is an association of state and compact representatives appointed by governors and compact commissions, established to facilitate state and compact commission implementation of the Low- Level Radioactive Waste Policy Act of 1980 and the Low-Level Radioactive Waste Policy Amendments Act of 1985 and to promote the objectives of low-level radioactive waste regional compacts. The Forum provides an opportunity for states and compacts to share information with one another and to exchange views with officials of federal agencies and other interested parties

  8. LLW Notes, Volume 9, Number 6. October 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-10-01

    LLW Notes is distributed to Low-Level Radioactive Waste Forum Participants and other state and compact officials identified by those Participants to receive LLW Notes. The Low-Level Radioactive Waste Forum is an association of state and compact representatives appointed by governors and compact commissions, established to facilitate state and compact commission implementation of the Low- Level Radioactive Waste Policy Act of 1980 and the Low-Level Radioactive Waste Policy Amendments Act of 1985 and to promote the objectives of low-level radioactive waste regional compacts. The Forum provides an opportunity for states and compacts to share information with one another and to exchange views with officials of federal agencies and other interested parties.

  9. LLW Forum meeting report, October 26--27, 1994

    International Nuclear Information System (INIS)

    1994-01-01

    The Low-Level Radioactive Waste Forum (LLW Forum) is an association of state and compact representatives, appointed by governors and compact commissions, established to facilitate state and compact implementation of the Low-Level Radioactive Waste Policy Act of 1980 and the Low-Level Radioactive Waste Policy Amendments Act of 1985 and to promote the objectives of low-level radioactive waste regional compacts. The LLW Forum provides an opportunity for state and compact officials to share information with one another and to exchange views with officials of federal agencies and other interested parties. This report details activities of the meeting held October 26-27, 1994

  10. LLW Forum meeting report, October 26--27, 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    The Low-Level Radioactive Waste Forum (LLW Forum) is an association of state and compact representatives, appointed by governors and compact commissions, established to facilitate state and compact implementation of the Low-Level Radioactive Waste Policy Act of 1980 and the Low-Level Radioactive Waste Policy Amendments Act of 1985 and to promote the objectives of low-level radioactive waste regional compacts. The LLW Forum provides an opportunity for state and compact officials to share information with one another and to exchange views with officials of federal agencies and other interested parties. This report details activities of the meeting held October 26-27, 1994.

  11. LLW Forum meeting report, February 13--16, 1996

    International Nuclear Information System (INIS)

    1996-01-01

    The Low-Level Radioactive Waste Forum (LLW Forum) is an association of state and compact representatives, appointed by governors and compact commissions, established to facilitate state and compact implementation of the Low-Level Radioactive Waste Policy Act of 1980 and the Low-Level Radioactive Waste Policy Amendments Act of 1985 and to promote the objectives of low-level radioactive waste regional compacts. The LLW forum provides an opportunity for state and compact officials to share information with one another and to exchange views with officials of federal agencies and other interested parties. This report details activities at the meeting held February 13-16, 1996

  12. Immobilization and Waste Form Product Acceptance for Low Level and TRU Waste Forms

    International Nuclear Information System (INIS)

    Holtzscheiter, E.W.; Harbour, J.R.

    1998-05-01

    The Tanks Focus Area is supporting technology development in immobilization of both High Level (HLW) and Low Level (LLW) radioactive wastes. The HLW process development at Hanford and Idaho is patterned closely after that of the Savannah River (Defense Waste Processing Facility) and West Valley Sites (West Valley Demonstration Project). However, the development and options open to addressing Low Level Waste are diverse and often site specific. To start, it is important to understand the breadth of Low Level Wastes categories

  13. LLW Notes, vol. 9, no. 1. February/March 1994

    International Nuclear Information System (INIS)

    1994-03-01

    LLW Notes is published ten times each year and is distributed to Low- Level Radioactive Waste Forum Participants and other state and compact officials identified by those Participants to receive LLW Notes. The Low-Level Radioactive Waste Forum is an association of representatives of states and compacts established to facilitate state and compact commission implementation of the Low-Level Radioactive Waste Policy Amendments Act of 1985 and to promote the objectives of low-level radioactive waste regional compacts. The Forum provides an opportunity for states and compacts to share information with one another and to exchange views with officials of federal agencies

  14. Generation and release of radioactive gases in LLW disposal facilities

    Energy Technology Data Exchange (ETDEWEB)

    Yim, M.S. [Harvard School Public Health, Boston, MA (United States); Simonson, S.A. [Massachusetts Institute of Technology, Cambridge, MA (United States)

    1995-02-01

    The atmospheric release of radioactive gases from a generic engineered LLW disposal facility and its radiological impacts were examined. To quantify the generation of radioactive gases, detailed characterization of source inventory for carbon-14, tritium, iodine-129, krypton-85, and radon-222, was performed in terms of their activity concentrations; their distribution within different waste classes, waste forms and containers; and their subsequent availability for release in volatile or gaseous form. The generation of gases was investigated for the processes of microbial activity, radiolysis, and corrosion of waste containers and metallic components in wastes. The release of radionuclides within these gases to the atmosphere was analyzed under the influence of atmospheric pressure changes.

  15. LLW Notes, vol.9, no. 5. August/September 1994

    International Nuclear Information System (INIS)

    1994-09-01

    LLW Notes is distributed to Low-Level Radioactive Waste Forum Participants and other state and compact officials identified by those Participants to receive LLW Notes. The Low-Level Radioactive Waste Forum is an association of state and compact representatives appointed by governors and compact commissions, established to facilitate state and compact commission implementation of the Low- Level Radioactive Waste Policy Act of 1980 and the Low-Level Radioactive Waste Policy Amendments Act of 1985 and to promote the objectives of low-level radioactive waste regional compacts. The Forum provides an opportunity for states and compacts to share information with one another and to exchange views with officials of federal agencies and other interested parties

  16. LLW Notes, vol.9, no. 5. August/September 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-09-01

    LLW Notes is distributed to Low-Level Radioactive Waste Forum Participants and other state and compact officials identified by those Participants to receive LLW Notes. The Low-Level Radioactive Waste Forum is an association of state and compact representatives appointed by governors and compact commissions, established to facilitate state and compact commission implementation of the Low- Level Radioactive Waste Policy Act of 1980 and the Low-Level Radioactive Waste Policy Amendments Act of 1985 and to promote the objectives of low-level radioactive waste regional compacts. The Forum provides an opportunity for states and compacts to share information with one another and to exchange views with officials of federal agencies and other interested parties.

  17. LLW Forum meeting report, January 31--February 3, 1995

    International Nuclear Information System (INIS)

    1995-01-01

    The Low-Level Radioactive Waste Forum (LLW) is an association of state and compact representatives, appointed by governors and compact commissions, established to facilitate state and compact implementation of the Low-Level Radioactive Waste Policy Act of 1980 and the Low-Level Radioactive Waste Policy Amendments Act of 1985 and to promote the objectives of low-level radioactive waste regional compacts. The LLW Forum provides an opportunity for state and compact officials to share information with one another and to exchange views with officials of federal agencies and other interested parties. This report details activities of the meeting held January 31-February 3, 1995

  18. LLW Forum meeting report, January 31--February 3, 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    The Low-Level Radioactive Waste Forum (LLW) is an association of state and compact representatives, appointed by governors and compact commissions, established to facilitate state and compact implementation of the Low-Level Radioactive Waste Policy Act of 1980 and the Low-Level Radioactive Waste Policy Amendments Act of 1985 and to promote the objectives of low-level radioactive waste regional compacts. The LLW Forum provides an opportunity for state and compact officials to share information with one another and to exchange views with officials of federal agencies and other interested parties. This report details activities of the meeting held January 31-February 3, 1995.

  19. Guidance for closure of existing DOE LLW disposal sites

    International Nuclear Information System (INIS)

    Blanchfield, L.

    1987-01-01

    During FY 1986, a closure guidance document was developed. The purpose of this document is to provide guidance in support of DOE Order 5820.2 to site operating contractors for the stabilization and closure of existing low-level waste (LLW) shallow land disposal sites at US Department of Energy (DOE) facilities. Guidance is provided to aid operators in placing existing LLW sites in a closed conditions, i.e., a condition in which a nonoperational site meets postclosure performance requirements and can be shown, within a high degree of confidence, to perform as anticipated in the future, under the most cost-effective maintenance approach. Guidance is based on the philosophy that closure should be planned and performed using a systems approach. Plans for FY 1987 call for revision of the document to incorporate more information on closure of LLW sites also containing radioactive mixed waste and/or transuranic waste. 4 references, 3 figures, 2 tables

  20. Removal of radioactive caesium from low level radioactive waste (LLW) streams using cobalt ferrocyanide impregnated organic anion exchanger

    Energy Technology Data Exchange (ETDEWEB)

    Valsala, T.P., E-mail: tpvalsala@yahoo.co.in [Waste Management Division, Bhabha Atomic Research Centre, Trombay 400 085 (India); Roy, S.C. [PREFRE Division, Bhabha Atomic Research Centre, Tarapur 401 502 (India); Shah, J.G. [Back End Technology Division, Bhabha Atomic Research Centre, Trombay 400 085 (India); Gabriel, J.; Raj, Kanwar [Waste Management Division, Bhabha Atomic Research Centre, Trombay 400 085 (India); Venugopal, V. [Radiochemistry Division, Bhabha Atomic Research Centre, Trombay 400 085 (India)

    2009-07-30

    The volumes of low level waste (LLW) generated during the operation of nuclear reactor are very high and require a concentration step before suitable matrix fixation. The volume reduction (concentration) is achieved either by co-precipitating technique or by the use of highly selective sorbents and ion exchange materials. The present study details the preparation of cobalt ferrocyanide impregnated into anion exchange resin and its evaluation with respect to removal of Cs in LLW streams both in column mode and batch mode operations. The Kd values of the prepared exchanger materials were found to be very good in actual reactor LLW solutions also. It was observed that the exchanger performed very well in the pH range of 3-9. A batch size of 6 g l{sup -1} of the exchanger was enough to give satisfactory decontamination for Cs in actual reactor LLW streams. The lab scale and pilot plant scale performance of the exchanger material in both batch mode and column mode operations was very good.

  1. LLW Notes, volume 9, No. 7. November and December 1994

    International Nuclear Information System (INIS)

    1994-12-01

    LLW Notes is distributed to Low-Level Radioactive Waste Forum Participants and other state and compact officials identified by those Participants to receive LLW Notes. The Low-Level Radioactive Waste Forum is an association of state and compact representatives appointed by governors and compact commissions, established to facilitate state and compact commission implementation of the Low- Level Radioactive Waste Policy Act of 1980 and the Low-Level Radioactive Waste Policy Amendments Act of 1985 and to promote the objectives of low-level radioactive waste regional compacts. The Forum provides an opportunity for states and compacts to share information with one another and to exchange views with officials of federal agencies and other interested parties

  2. LLW Notes, volume 9, No. 7. November and December 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-01

    LLW Notes is distributed to Low-Level Radioactive Waste Forum Participants and other state and compact officials identified by those Participants to receive LLW Notes. The Low-Level Radioactive Waste Forum is an association of state and compact representatives appointed by governors and compact commissions, established to facilitate state and compact commission implementation of the Low- Level Radioactive Waste Policy Act of 1980 and the Low-Level Radioactive Waste Policy Amendments Act of 1985 and to promote the objectives of low-level radioactive waste regional compacts. The Forum provides an opportunity for states and compacts to share information with one another and to exchange views with officials of federal agencies and other interested parties.

  3. Comments on EPA's LLW preproposal

    International Nuclear Information System (INIS)

    Littleton, B.K.; Weinstock, L.

    1995-01-01

    The Environmental Protection Agency (EPA) is currently developing standards for the management, storage, and disposal of Low-Level Radioactive Waste (LLW). The Atomic Energy Act delegated EPA, among other provisions, the authority to establish generally applicable standards for the disposal of radioactive waste to ensure that the public and the environment are adequately protected from potential radiation impacts. As an initial effort to open communications on a standard for LLW, the Agency developed a preproposal draft (Preproposal Draft of 40 CFR Part 193 - 30 Nov 94) and circulated it to interested parties for review and comment. The extended comment period ended April 12, 1995. A summary of the comments received and analyzed to date follows. After all comments have been analyzed, the rule will undergo an Agency clearance process and be sent to the Office of Management and Budget for review. After that review, the formal process of publication of the proposed rule in the Federal Register and the formal public comment period will begin

  4. Thermal denitration and mineralization of waste constituents

    Energy Technology Data Exchange (ETDEWEB)

    Nenni, J.A.; Boardman, R.D.

    1997-08-01

    In order to produce a quality grout from LLW using hydraulic cements, proper conditioning of the waste is essential for complete cement curing. Several technologies were investigated as options for conditions. Since the LLW is dilute, removal of all, or most, of the water will significantly reduce the final waste volume. Neutralization of the LLW is also desirable since acidic liquids to not allow cement to cure properly. The nitrate compounds are very soluble and easily leached from solid waste forms; therefore, denitration is desirable. Thermal and chemical denitration technologies have the advantages of water removal, neutralization, and denitration. The inclusion of additives during thermal treatment were investigated as a method of forming insoluable waste conditions.

  5. Thermal denitration and mineralization of waste constituents

    International Nuclear Information System (INIS)

    Nenni, J.A.; Boardman, R.D.

    1997-01-01

    In order to produce a quality grout from LLW using hydraulic cements, proper conditioning of the waste is essential for complete cement curing. Several technologies were investigated as options for conditions. Since the LLW is dilute, removal of all, or most, of the water will significantly reduce the final waste volume. Neutralization of the LLW is also desirable since acidic liquids to not allow cement to cure properly. The nitrate compounds are very soluble and easily leached from solid waste forms; therefore, denitration is desirable. Thermal and chemical denitration technologies have the advantages of water removal, neutralization, and denitration. The inclusion of additives during thermal treatment were investigated as a method of forming insoluable waste conditions

  6. Development of the advanced package system for miscellaneous LLW

    International Nuclear Information System (INIS)

    Miyamoto, K.

    1991-01-01

    Miscellaneous LLW (low-level radioactive miscellaneous solid wastes) such as parts of machines, pieces of piping, HEPA filter, incineration ashes from nuclear power plants will be disposed in shallow land after stuffing into 200 liter steel drums. The package system of these miscellaneous LLW is required to contain such radionuclides as 14 C, 137 Cs and etc. for a few hundred years. The advanced package system for miscellaneous LLW has been developed. This package system is composed of steel drums with resin mortar inner liner and non shrinkage fills with high flowability. Resin mortar liners have stronger water permeability resistance and higher compressive strength than other cement mortars. Strong water permeability resistance of resin mortar liners prevent underground water from infiltration into fills and solid wastes. On the other hand, as the high flowabilities and non shrinkage of this fills give very low gross void fraction of the package system and have strong adsorption ability of radionuclides. In addition, steel drums with resin mortar inner liners have merits in their high density, uniformity and simplicity in manufacturing. Consequently, this package system is promising candidate barrier for the containment of radionuclides from miscellaneous LLW. (J.P.N.)

  7. Economy may be harmed by lack of LLW disposal

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    A study released by Organizations United for Responsible Low-Level Radioactive Waste Solutions warns that the substantial benefits of using radioactive materials are threatened by the lack of a low-level waste (LLW) disposal facility. The main point of the study is the threat to the American economy posed by insufficient facilities for disposal of the 1.7 billion ft 3 of LLW produced by the use of radioactive materials every year only 34.8 percent of which comes from nuclear power plants. open-quotes Thirty years of experience have provided the technical knowledge to design waste disposal facilities that protect the public and environment. But an impending lack of adequate disposal facilities jeopardizes our continued use of radioactive materials,close quotes according to the study

  8. Development of methodology to evaluate microbially influenced degradation of cement-solidified low-level radioactive waste forms

    International Nuclear Information System (INIS)

    Rogers, R.D.; Hamilton, M.A.; Veeh, R.H.; McConnell, J.W.

    1994-01-01

    Because of its apparent structural integrity, cement has been widely used in the United States as a binder to solidify Class B and C low-level radioactive waste (LLW). However, the resulting cement preparations are susceptible to failure due to the actions of stress and environment. An environmentally mediated process that could affect cement stability is the action of naturally occurring microorganisms. The US Nuclear Regulatory Commission (NRC), recognizing this eventuality, stated that the effects of microbial action on waste form integrity must be addressed. This paper provides present results from an ongoing program that addresses the effects of microbially influenced degradation (MID) on cement-solidified LLW. Data are provided on the development of an evaluation method using acid-producing bacteria. Results are from work with one type of these bacteria, the sulfur-oxidizing Thiobacillus. This work involved the use of a system in which laboratory- and vendor-manufactured, simulated waste forms were exposed on an intermittent basis to media containing thiobacilli. Testing demonstrated that MID has the potential to severely compromise the structural integrity of ion-exchange resin and evaporator-bottoms waste that is solidified with cement. In addition, it was found that a significant percentage of calcium and other elements were leached from the treated waste forms. Also, the surface pH of the treated specimens decreased to below 2. These conditions apparently contributed to the physical deterioration of simulated waste forms after 60 days of exposure to the thiobacilli

  9. DBMS: a tool for managing LLW data

    International Nuclear Information System (INIS)

    Vlajcic, P.

    1984-01-01

    As part of the DOE's National Low-Level Radioactive Waste Management Program, a Data Base Management System (DBMS) has been developed by EG and G Idaho, lead contractor for the national LLW management program, in cooperation with the DOE and the Southern States Energy Board, a regional research group sponsored by 17 states. Basically, DBMS offers states free use of a powerful central computer (located in Idaho) for the storage, processing, and retrieval of LLW data, and the capability to forecast their handling, treatment, transport, and disposal needs

  10. The Yami's opposition to the Lanyu LLW storage installation

    International Nuclear Information System (INIS)

    Li, K.K.; Chang, S.Y.

    1993-01-01

    Since 1982, the solidified low-level radioactive wastes (LLW) in Taiwan, regardless of the origins, have been sent to Lanyu for interim storage. Lanyu is a small island located 80 kilometers southeast of Taiwan. Its unique Polynesian cultural characteristics make it an attractive tourist spot. Dissatisfaction of being the commonly neglected powerless minority, in addition to the political claims from the outside environmental activists made the majority of the Lanyu residents oppose the operation of the storage facility. Approximately 80,000 drums of these wastes have been sent to Lanyu. Although the radiological monitoring results demonstrated that the current operation causes negligible impact on the environment. Accounting for the fast changing social and political situations in Taiwan today, without a good public acceptance program for both sides, the continuous operation of the Lanyu LLW storage facility until the year 2002, at which time the LLW disposal facility will be commissioned, could be in limbo

  11. 'Strategy is a commodity, implementation is an art' - 2 years of implementation of the UK national LLW strategy

    International Nuclear Information System (INIS)

    Cassidy, Helen; Rossiter, David

    2013-01-01

    The Low Level Waste Repository (LLWR) is the primary facility for disposal of Low Level Waste (LLW) in the United Kingdom (UK), serving the UK nuclear industry and a diverse range of other sectors. Management of LLW in the UK historically was dominated by disposal to the LLWR. The value of the LLWR as a national asset was recognised by the 2007 UK Governmental Policy on management of solid LLW. At this time, analysis of the projected future demand for disposal at LLWR against facility capacity was undertaken identifying a credible risk that the capacity of LLWR would be insufficient to meet future demand if existing waste management practices were perpetuated. To mitigate this risk a National Strategy for the management of LLW in the UK was developed by the Nuclear Decommissioning Authority (NDA), partnered with LLW Repository Ltd. (the organisation established in 2008 to manage the LLWR on behalf of NDA). This strategy was published in 2010 and identified three mechanisms for protection of the capacity of LLWR - application of the Waste Hierarchy by waste producers; optimised use of existing assets for LLW management; and opening of new waste treatment and disposal routes to enable diversion of waste away from the LLWR. (authors)

  12. LLW Notes: Volume 10, Number 7

    International Nuclear Information System (INIS)

    Norris, C.

    1995-10-01

    The Low-Level Radioactive Waste Forum is an association of state and compact representatives, appointed by governors and compact commissions, established to facilitate state and compact implementation of the Low-Level Radioactive Waste Policy Act of 1980 and the Low-Level Radioactive Waste Policy Amendments Act of 1985 and to promote the objectives of low-level radioactive waste regional compacts. The LLW Forum provides an opportunity for state and compact officials to share information with one another and to exchange views with officials of federal agencies and other interested parties

  13. LLW notes: Volume 10, Number 5

    International Nuclear Information System (INIS)

    1995-07-01

    The Low-Level Radioactive Waste Forum is an association of state and compact representatives, appointed by governors and compact commissions, established to facilitate state and compact implementation of the Low-Level Radioactive Waste Policy Act of 1980 and the Low-Level Radioactive Waste Policy Amendments Act of 1985 and to promote the objectives of low-level radioactive waste regional compacts. The LLW Forum provides an opportunity for state and compact officials to share information with one another and to exchange views with officials of federal agencies and other interested parties

  14. LLW Notes: Volume 10, Number 3

    International Nuclear Information System (INIS)

    1995-04-01

    The Low-Level Radioactive Waste Forum is an association of state and compact representatives, appointed by governors and compact commissions, established to facilitate state and compact implementation of the Low-Level Radioactive Waste Policy Act of 1980 and the Low-Level Radioactive Waste Policy Amendments Act of 1985 and to promote the objectives of low-level radioactive waste regional compacts. The LLW Forum provides an opportunity for state and compact officials to share information with one another and to exchange views with officials of federal agencies and other interested parties

  15. LLW Notes: Volume 10, Number 4

    International Nuclear Information System (INIS)

    1995-06-01

    The Low-Level Radioactive Waste Forum is an association of state and compact representatives, appointed by governors and compact commissions, established to facilitate state and compact implementation of the Low-Level Radioactive Waste Policy Act of 1980 and the Low-Level Radioactive Waste Policy Amendments Act of 1985 and to promote the objectives of low-level radioactive waste regional compacts. The LLW Forum provides an opportunity for state and compact officials to share information with one another and to exchange views with officials of federal agencies and other interested parties

  16. LLW Notes: Volume 10, Number 8

    International Nuclear Information System (INIS)

    Norris, C.

    1995-01-01

    The Low-Level Radioactive Waste Forum is an association of state and compact representatives, appointed by governors and compact commissions, established to facilitate state and compact implementation of the Low-Level Radioactive Waste Policy Act of 1980 and the Low-Level Radioactive Waste Policy Amendments Act of 1985 and to promote the objectives of low-level radioactive waste regional compacts. The LLW Forum provides an opportunity for state and compact officials to share information with one another and to exchange views with officials of federal agencies and other interested parties

  17. LLW notes: Volume 10, Number 6

    International Nuclear Information System (INIS)

    Norris, C.

    1995-09-01

    The Low-Level Radioactive Waste Forum is an association of state and compact representatives, appointed by governors and compact commissions, established to facilitate state and compact implementation of the Low-Level Radioactive Waste Policy Act of 1980 and the Low-Level Radioactive Waste Policy Amendments Act of 1985 and to promote the objectives of low-level radioactive waste regional compacts. The LLW Forum provides an opportunity for state and compact officials to share information with one another and to exchange views with officials of federal agencies and other interested parties

  18. LLW Notes: Volume 10, Number 7

    Energy Technology Data Exchange (ETDEWEB)

    Norris, C. [ed.] [Afton Associates, Inc., Washington, DC (United States)

    1995-10-01

    The Low-Level Radioactive Waste Forum is an association of state and compact representatives, appointed by governors and compact commissions, established to facilitate state and compact implementation of the Low-Level Radioactive Waste Policy Act of 1980 and the Low-Level Radioactive Waste Policy Amendments Act of 1985 and to promote the objectives of low-level radioactive waste regional compacts. The LLW Forum provides an opportunity for state and compact officials to share information with one another and to exchange views with officials of federal agencies and other interested parties.

  19. LLW notes: Volume 10, Number 5

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-01

    The Low-Level Radioactive Waste Forum is an association of state and compact representatives, appointed by governors and compact commissions, established to facilitate state and compact implementation of the Low-Level Radioactive Waste Policy Act of 1980 and the Low-Level Radioactive Waste Policy Amendments Act of 1985 and to promote the objectives of low-level radioactive waste regional compacts. The LLW Forum provides an opportunity for state and compact officials to share information with one another and to exchange views with officials of federal agencies and other interested parties.

  20. LLW Notes: Volume 10, Number 4

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-06-01

    The Low-Level Radioactive Waste Forum is an association of state and compact representatives, appointed by governors and compact commissions, established to facilitate state and compact implementation of the Low-Level Radioactive Waste Policy Act of 1980 and the Low-Level Radioactive Waste Policy Amendments Act of 1985 and to promote the objectives of low-level radioactive waste regional compacts. The LLW Forum provides an opportunity for state and compact officials to share information with one another and to exchange views with officials of federal agencies and other interested parties.

  1. LLW notes: Volume 10, Number 6

    Energy Technology Data Exchange (ETDEWEB)

    Norris, C. [ed.] [Afton Associates, Inc., Washington, DC (United States)

    1995-09-01

    The Low-Level Radioactive Waste Forum is an association of state and compact representatives, appointed by governors and compact commissions, established to facilitate state and compact implementation of the Low-Level Radioactive Waste Policy Act of 1980 and the Low-Level Radioactive Waste Policy Amendments Act of 1985 and to promote the objectives of low-level radioactive waste regional compacts. The LLW Forum provides an opportunity for state and compact officials to share information with one another and to exchange views with officials of federal agencies and other interested parties.

  2. Development of a plan for a national LLW information management system based on data acquired from a uniform manifest

    International Nuclear Information System (INIS)

    Gingerich, R.; Shimer, R.P.

    1986-01-01

    The Western Governors' Association (WGA), with funding from the Department of Energy's (DOE) National Low-Level Radioactive Waste Management Program, has completed an 18-month national project to develop a plan for a national low-level waste (LLW) information management system based on data from a uniform manifest for shipments of LLW. Under the plan, waste generators would fill out a manifest for a shipment just as they do currently, but they would use a nationally standard form. Shortly after a shipment arrives at a disposal facility or a processor, data from the manifest would be entered into the Program's Low-Level Waste Information Management System (LLWIMS). The data would be available via computer to state, compact and federal officials. This paper provides an overview of the plan for implementing and operating a national information management system linked to manifest data. It reports on the progress that has been made toward implementing the system and outlines the work that remains to be done. Finally, the paper examines the crucial role the system will play in the development of an acceptable system for managing the nation's LLW, particularly in the post-1986 transition period

  3. Test Plan: Phase 1, Hanford LLW melter tests, GTS Duratek, Inc

    International Nuclear Information System (INIS)

    Eaton, W.C.

    1995-01-01

    This document provides a test plan for the conduct of vitrification testing by a vendor in support of the Hanford Tank Waste Remediation System (TWRS) Low-Level Waste (LLW) Vitrification Program. The vendor providing this test plan and conducting the work detailed within it [one of seven selected for glass melter testing under Purchase Order MMI-SVV-384215] is GTS Duratek, Inc., Columbia, Maryland. The GTS Duratek project manager for this work is J. Ruller. This test plan is for Phase I activities described in the above Purchase Order. Test conduct includes melting of glass with Hanford LLW Double-Shell Slurry Feed waste simulant in a DuraMelter trademark vitrification system

  4. Microbial degradation of low-level radioactive waste. Final report

    International Nuclear Information System (INIS)

    Rogers, R.D.; Hamilton, M.A.; Veeh, R.H.; McConnell, J.W. Jr.

    1996-06-01

    The Nuclear Regulatory Commission stipulates in 10 CFR 61 that disposed low-level radioactive waste (LLW) be stabilized. To provide guidance to disposal vendors and nuclear station waste generators for implementing those requirements, the NRC developed the Technical Position on Waste Form, Revision 1. That document details a specified set of recommended testing procedures and criteria, including several tests for determining the biodegradation properties of waste forms. Information has been presented by a number of researchers, which indicated that those tests may be inappropriate for examining microbial degradation of cement-solidified LLW. Cement has been widely used to solidify LLW; however, the resulting waste forms are sometimes susceptible to failure due to the actions of waste constituents, stress, and environment. The purpose of this research program was to develop modified microbial degradation test procedures that would be more appropriate than the existing procedures for evaluation of the effects of microbiologically influenced chemical attack on cement-solidified LLW. The procedures that have been developed in this work are presented and discussed. Groups of microorganisms indigenous to LLW disposal sites were employed that can metabolically convert organic and inorganic substrates into organic and mineral acids. Such acids aggressively react with cement and can ultimately lead to structural failure. Results on the application of mechanisms inherent in microbially influenced degradation of cement-based material are the focus of this final report. Data-validated evidence of the potential for microbially influenced deterioration of cement-solidified LLW and subsequent release of radionuclides developed during this study are presented

  5. Greater-than-Class C low-level radioactive waste characterization: Estimated volumes, radionuclide activities, and other characteristics

    International Nuclear Information System (INIS)

    Hulse, R.A.

    1991-08-01

    Planning for storage or disposal of greater-than-Class C low-level radioactive waste (GTCC LLW) requires characterization of that waste to estimate volumes, radionuclide activities, and waste forms. Data from existing literature, disposal records, and original research were used to estimate the characteristics and project volumes and radionuclide activities to the year 2035. GTCC LLW is categorized as: nuclear utilities waste, sealed sources waste, DOE-held potential GTCC LLW; and, other generator waste. It has been determined that the largest volume of those wastes, approximately 57%, is generated by nuclear power plants. The Other Generator waste category contributes approximately 10% of the total GTCC LLW volume projected to the year 2035. Waste held by the Department of Energy, which is potential GTCC LLW, accounts for nearly 33% of all waste projected to the year 2035; however, no disposal determination has been made for that waste. Sealed sources are less than 0.2% of the total projected volume of GTCC LLW

  6. Progress on management business system of LLW generated from research and industrial nuclear facilities

    International Nuclear Information System (INIS)

    Izumida, Tatsuo

    2014-01-01

    RANDEC has been studying a management business system of LLW (Low Level Waste) generated from research and industrial facilities since 2008. To examine economical problems, the income and expenditure of LLW treatment business was simulated. As a result, raising method of the funds which is required in preparatory stage of LLW treatment business is an obvious issue to carry out as public utility works. (author)

  7. Models and criteria for LLW disposal performance

    International Nuclear Information System (INIS)

    Smith, C.F.; Cohen, J.J.

    1980-12-01

    A primary objective of the Low Level Waste (LLW) Management Program is to assure that public health is protected. Predictive modeling, to some extent, will play a role in meeting this objective. This paper considers the requirements and limitations of predictive modeling in providing useful inputs to waste mangement decision making. In addition, criteria development needs and the relation between criteria and models are discussed

  8. Models and criteria for LLW disposal performance

    International Nuclear Information System (INIS)

    Smith, C.F.; Cohen, J.J.

    1980-01-01

    A primary objective of the Low Level Waste (LLW) Management Program is to assure that public health is protected. Predictive modeling, to some extent, will play a role in meeting this objective. This paper considers the requirements and limitations of predictive modeling in providing useful inputs to waste management decision making. In addition, criteria development needs and the relation between criteria and models are discussed

  9. Microbially influenced degradation of cement-solidified low-level radioactive waste forms

    International Nuclear Information System (INIS)

    Rogers, R.D.; Hamilton, M.A.; Veeh, R.H.; McConnell, J.W. Jr.

    1996-01-01

    Because of its apparent structural integrity, cement has been widely used in the United States as a binder to solidify Class B and C low-level radioactive waste (LLW). However, the resulting cement preparations are susceptible to failure due to the actions of stress and environment. This paper contains information on three groups of microoganisms that are associated with the degradation of cement materials: sulfur-oxidizing bacteria (Thiobacillus), nitrifying bacteria (Nitrosomonas and Nitrobacter), and heterotrophic bacteria, which produce organic acids. Preliminary work using laboratory- and vendor-manufactured, simulated waste forms exposed to thiobacilli has shown that microbiologically influenced degradation has the potential to severely compromise the structural integrity of ion-exchange resin and evaporator-bottoms waste that is solidified with cement. In addition, it was found that a significant percentage of calcium was leached from the treated waste forms. Also, the surface pH of the treated specimens was decreased to below 2. These conditions apparently contributed to the physical deterioration of simulated waste forms after 30 to 60 days of exposure

  10. Scenario sensitivity analyses performed on the PRESTO-EPA LLW risk assessment models

    International Nuclear Information System (INIS)

    Bandrowski, M.S.

    1988-01-01

    The US Environmental Protection Agency (EPA) is currently developing standards for the land disposal of low-level radioactive waste. As part of the standard development, EPA has performed risk assessments using the PRESTO-EPA codes. A program of sensitivity analysis was conducted on the PRESTO-EPA codes, consisting of single parameter sensitivity analysis and scenario sensitivity analysis. The results of the single parameter sensitivity analysis were discussed at the 1987 DOE LLW Management Conference. Specific scenario sensitivity analyses have been completed and evaluated. Scenario assumptions that were analyzed include: site location, disposal method, form of waste, waste volume, analysis time horizon, critical radionuclides, use of buffer zones, and global health effects

  11. How a developing country is facing LLW disposal problem

    International Nuclear Information System (INIS)

    Huang, C.C.; Shao, Y.T.; Tsai, C.M.

    1993-01-01

    Taiwan is a small island which measures about 36,000 square kilometers with over 70% mountainous area. Today over 90% of low-level radioactive waste (LLW) is produced from six nuclear power units operated by the Taiwan Power Company (Taipower or TPC). The rest of the country's LLW is produced from medical, agricultural, industrial, educational and research programs. Due to the fact that over 90% of Taiwan's LLW is produced by Taipower, Taipower was designated by the Government to dispose of LLW for entire country. This paper will focus on the planning and implementation of the first phase. Through area screening and potential site evaluation, candidate sites will be selected based on currently available information and sites investigation. At the same time, the disposal methods will be evaluated in terms of safety, cost, and Taiwan's generic conditions of climate, geology, and topography. The conceptual design of the disposal method(s) will then be developed. Also, during site investigation, preliminary designs will be made

  12. Development of DUST: A computer code that calculates release rates from a LLW disposal unit

    International Nuclear Information System (INIS)

    Sullivan, T.M.

    1992-01-01

    Performance assessment of a Low-Level Waste (LLW) disposal facility begins with an estimation of the rate at which radionuclides migrate out of the facility (i.e., the disposal unit source term). The major physical processes that influence the source term are water flow, container degradation, waste form leaching, and radionuclide transport. A computer code, DUST (Disposal Unit Source Term) has been developed which incorporates these processes in a unified manner. The DUST code improves upon existing codes as it has the capability to model multiple container failure times, multiple waste form release properties, and radionuclide specific transport properties. Verification studies performed on the code are discussed

  13. Microbial degradation of low-level radioactive waste

    International Nuclear Information System (INIS)

    Rogers, R.D.; Hamilton, M.A.; Veeh, R.H.; McConnell, J.W. Jr.

    1994-04-01

    The Nuclear Regulatory Commission stipulates that disposed low-level radioactive waste (LLW) be stabilized. Because of apparent ease of use and normal structural integrity, cement has been widely used as a binder to solidify LLW. However, the resulting waste forms are sometimes susceptible to failure due to the actions of waste constituents, stress, and environment. This report reviews laboratory efforts that are being developed to address the effects of microbiologically influenced chemical attack on cement-solidified LLW. Groups of microorganisms are being employed that are capable of metabolically converting organic and inorganic substrates into organic and mineral acids. Such acids aggressively react with cement and can ultimately lead to structural failure. Results on the application of mechanisms inherent in microbially influenced degradation of cement-based material are the focus of this report. Sufficient data-validated evidence of the potential for microbially influenced deterioration of cement-solidified LLW has been developed during the course of this study. These data support the continued development of appropriate tests necessary to determine the resistance of cement-solidified LLW to microbially induced degradation that could impact the stability of the waste form. They also justify the continued effort of enumeration of the conditions necessary to support the microbiological growth and population expansion

  14. Development of test methods for quality control of LLW and MLW in cement or polymers (Parts 1 and 2). Task 3. Characterization of radioactive waste forms. A series of final reports (1985-1989) no. 39

    International Nuclear Information System (INIS)

    Angelis, G. de; Marchetti, A.; Balzamo, S.

    1992-01-01

    This report is divided into two parts. In the first part, the qualification of samples arising from the cementation of low (LLW) and intermediate level ( MLW) radioactive wastes is studied. In particular, bead ion exchange resins, filter sludges, BWR evaporator concentrates and decontamination solutions have been taken into account. The properties of the final waste forms have been compared with the ones of laboratory scale samples. The qualification of the solidified wastes was performed according to the requirements of the Italian Regulatory Body. Particular attention is devoted to mechanical and thermal properties, biodegradability and behaviour versus water. In the second part, the influence of different parameters on the leaching of Cesium from cemented BWR evaporator concentrates (sulfates) is tested. In particular the influence of the variation of temperature, initial concentration of the tracer, renewal and chemical composition of the leachant, size of the sample, has been tested. 20 refs., 68 figs., 21 tabs

  15. Quality checking of radioactive and hazardous waste

    International Nuclear Information System (INIS)

    Billington, D.M.; Burgoyne, S.M.J.; Dale, C.J.

    1992-01-01

    This report describes the work of the HMIP Waste Quality Checking Laboratory (WQCL) for the period September 1989 -August 1991. The WQCL has conducted research and development of procedures for the receipt, sampling and analysis of low level solid radioactive waste (LLW), intermediate level radioactive waste (ILW) and hazardous chemical waste (HW). Operational facilities have been commissioned for quality checking both LLW and HW. Waste quality checking has been completed on LLW packages seized from the UK waste disposal route by HMIP Inspectors. Packages have ranged in size from the 200 litre steel drum to half-height ISO freight container. Development work was continued on methods of sample extraction and radio-chemical analysis for cement encapsulated ILW in the form of magnox, graphite and stainless steel. This work was undertaken on non-radioactive simulants. (author)

  16. Secondary Low-Level Waste Treatment Strategy Analysis

    International Nuclear Information System (INIS)

    D.M. LaRue

    1999-01-01

    The objective of this analysis is to identify and review potential options for processing and disposing of the secondary low-level waste (LLW) that will be generated through operation of the Monitored Geologic Repository (MGR). An estimate of annual secondary LLW is generated utilizing the mechanism established in ''Secondary Waste Treatment Analysis'' (Reference 8.1) and ''Secondary Low-Level Waste Generation Rate Analysis'' (Reference 8.5). The secondary LLW quantities are based on the spent fuel and high-level waste (HLW) arrival schedule as defined in the ''Controlled Design Assumptions Document'' (CDA) (Reference 8.6). This analysis presents estimates of the quantities of LLW in its various forms. A review of applicable laws, codes, and standards is discussed, and a synopsis of those applicable laws, codes, and standards and their impacts on potential processing and disposal options is presented. The analysis identifies viable processing/disposal options in light of the existing laws, codes, and standards, and then evaluates these options in regard to: (1) Process and equipment requirements; (2) LLW disposal volumes; and (3) Facility requirements

  17. Methods for verifying compliance with low-level radioactive waste acceptance criteria

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-09-01

    This report summarizes the methods that are currently employed and those that can be used to verify compliance with low-level radioactive waste (LLW) disposal facility waste acceptance criteria (WAC). This report presents the applicable regulations representing the Federal, State, and site-specific criteria for accepting LLW. Typical LLW generators are summarized, along with descriptions of their waste streams and final waste forms. General procedures and methods used by the LLW generators to verify compliance with the disposal facility WAC are presented. The report was written to provide an understanding of how a regulator could verify compliance with a LLW disposal facility`s WAC. A comprehensive study of the methodology used to verify waste generator compliance with the disposal facility WAC is presented in this report. The study involved compiling the relevant regulations to define the WAC, reviewing regulatory agency inspection programs, and summarizing waste verification technology and equipment. The results of the study indicate that waste generators conduct verification programs that include packaging, classification, characterization, and stabilization elements. The current LLW disposal facilities perform waste verification steps on incoming shipments. A model inspection and verification program, which includes an emphasis on the generator`s waste application documentation of their waste verification program, is recommended. The disposal facility verification procedures primarily involve the use of portable radiological survey instrumentation. The actual verification of generator compliance to the LLW disposal facility WAC is performed through a combination of incoming shipment checks and generator site audits.

  18. Methods for verifying compliance with low-level radioactive waste acceptance criteria

    International Nuclear Information System (INIS)

    1993-09-01

    This report summarizes the methods that are currently employed and those that can be used to verify compliance with low-level radioactive waste (LLW) disposal facility waste acceptance criteria (WAC). This report presents the applicable regulations representing the Federal, State, and site-specific criteria for accepting LLW. Typical LLW generators are summarized, along with descriptions of their waste streams and final waste forms. General procedures and methods used by the LLW generators to verify compliance with the disposal facility WAC are presented. The report was written to provide an understanding of how a regulator could verify compliance with a LLW disposal facility's WAC. A comprehensive study of the methodology used to verify waste generator compliance with the disposal facility WAC is presented in this report. The study involved compiling the relevant regulations to define the WAC, reviewing regulatory agency inspection programs, and summarizing waste verification technology and equipment. The results of the study indicate that waste generators conduct verification programs that include packaging, classification, characterization, and stabilization elements. The current LLW disposal facilities perform waste verification steps on incoming shipments. A model inspection and verification program, which includes an emphasis on the generator's waste application documentation of their waste verification program, is recommended. The disposal facility verification procedures primarily involve the use of portable radiological survey instrumentation. The actual verification of generator compliance to the LLW disposal facility WAC is performed through a combination of incoming shipment checks and generator site audits

  19. LLW Dumpster study: Task 009

    International Nuclear Information System (INIS)

    Frye, J.A.

    1989-08-01

    Over a span of several years, the public has reported visible leakage emanating from ten cubic yard Dumpsters used to transport Low Level Radioactive Wastes (LLW) from LANL generation sites to the disposal site at TA-54, Area G. The purpose of this study was to: Investigate probable causes of leakages, Inspect existing Dumpsters in the fields Propose immediate short-range solutions to the problem, and Propose long-range solutions based on predicted future requirements. Field investigations indicated that LLW is handled carefully and professional at the individual generation sites and again during pick-up delivery, and disposal at TA-54. It was also apparent, however, that Dumpsters not designed for LLW service are used to store this radioactive material for extended time periods while being subjected to the full range of Northern New Mexico weather conditions. All Dumpsters inspected had 1/8 in to 2 in gaps in their closures (loading doors and discharge ramps) through which driving rain or melting snow could easily enter. Seven Dumpsters were located outside secure areas. No cases of actual contamination were discovered, only the appearance of contamination i.e. the dripping of collected rainwater or melting ice and snow from Dumpsters being transported over public roads

  20. Greater-than-Class C low-level waste characterization technical review process

    Energy Technology Data Exchange (ETDEWEB)

    Hutchison, D.; Magleby, M.

    1990-01-01

    Existing volume projections of greater-than-Class C low-level waste (GTCC LLW) vary significantly. The Department of Energy (DOE) National Low-Level Waste Management Program (NLLWMP) has undertaken activities to develop a best estimate of GTCC LLW volumes and activities for use as the planning basis. Initial information about the generation of GTCC LLW was obtained through a DOE Energy Information Administration survey. That information, combined with information from other related literature, formed the basis of a computer model, which projects potential GTCC LLW. This paper describes uncertainties in existing GTCC LLW characterization and volume projections data and describes the technical review process that is being used to assist in projections of GTCC LLW expected for storage and disposal. 8 refs., 2 tabs.

  1. Greater-than-Class C low-level waste characterization technical review process

    International Nuclear Information System (INIS)

    Hutchison, D.; Magleby, M.

    1990-01-01

    Existing volume projections of greater-than-Class C low-level waste (GTCC LLW) vary significantly. The Department of Energy (DOE) National Low-Level Waste Management Program (NLLWMP) has undertaken activities to develop a best estimate of GTCC LLW volumes and activities for use as the planning basis. Initial information about the generation of GTCC LLW was obtained through a DOE Energy Information Administration survey. That information, combined with information from other related literature, formed the basis of a computer model, which projects potential GTCC LLW. This paper describes uncertainties in existing GTCC LLW characterization and volume projections data and describes the technical review process that is being used to assist in projections of GTCC LLW expected for storage and disposal. 8 refs., 2 tabs

  2. Use of a Shielded High Resolution Gamma Spectrometry System to Segregate LLW from Contact Handleable ILW Containing Plutonium - 13046

    Energy Technology Data Exchange (ETDEWEB)

    Lester, Rosemary; Wilkins, Colin [Canberra UK Ltd, Unit 1 B528.1, Harwell Science Campus, Oxfordshire OX11 0DF (United Kingdom); Chard, Patrick [Canberra UK Ltd, Forss Business and Technology park, Thurso, Caithness KW14 7UZ (United Kingdom); Jaederstroem, Henrik; LeBlanc, Paul; Mowry, Rick [Canberra Industries, Inc., 800 Research Parkway, Meriden, Connecticut, 06450 (United States); MacDonald, Sanders; Gunn, William [Dounreay Site Restoration Limited, Dounreay, Thurso, Caithness, KW14 7TZ (United Kingdom)

    2013-07-01

    Dounreay Site Restoration Limited (DSRL) have a number of drums of solid waste that may contain Plutonium Contaminated Material. These are currently categorised as Contact Handleable Intermediate Level Waste (CHILW). A significant fraction of these drums potentially contain waste that is in the Low Level Waste (LLW) category. A Canberra Q2 shielded high resolution gamma spectrometry system is being used to quantify the total activity of drums that are potentially in the LLW category in order to segregate those that do contain LLW from CHILW drums and thus to minimise the total volume of waste in the higher category. Am-241 is being used as an indicator of the presence of plutonium in the waste from its strong 59.54 keV gamma-ray; a knowledge of the different waste streams from which the material originates allows a pessimistic waste 'fingerprint' to be used in order to determine an upper limit to the activities of the weak and non-gamma-emitting plutonium and associated radionuclides. This paper describes the main features of the high resolution gamma spectrometry system being used by DSRL to perform the segregation of CHILW and LLW and how it was configured and calibrated using the Canberra In-Situ Object Counting System (ISOCS). It also describes how potential LLW drums are selected for assay and how the system uses the existing waste stream fingerprint information to determine a reliable upper limit for the total activity present in each measured drum. Results from the initial on-site commissioning trials and the first measurements of waste drums using the new monitor are presented. (authors)

  3. Integration of U.S. Department of Energy (DOE) contractor installations for the purpose of optimizing treatment, storage, and disposal of low-level radioactive waste (LLW)

    International Nuclear Information System (INIS)

    Lucas, M.; Gnoose, J.; Coony, M.; Martin, E.; Piscitella, R.

    1998-02-01

    The US Department of Energy (DOE) manages a multibillion dollar environmental management (EM) program. In June 1996, the Assistant Secretary of Energy for EM issued a memorandum with guidance and a vision for a ten year planning process for the EM Program. The purpose of this process, which became known as the Accelerated Cleanup: Focus on 2006, is to make step changes within the DOE complex regarding the approach for making meaningful environmental cleanup progress. To augment the process, Assistant Secretary requested the site contractors to engage in an effort to identify and evaluate integration alternatives for EM waste stream treatment, storage, and disposal (TSD) that would parallel the 2006 Plan. In October 1996, ten DOE contractor installations began the task of identifying alternative opportunities for low level radioactive waste (LLW). Cost effective, efficient solutions were necessary to meet all requirements associated with storing, characterizing, treating, packaging, transporting, and disposing of LLW while protecting the workers' health and safety, and minimizing impacts to the environment. To develop these solutions, a systems engineering approach was used to establish the baseline requirements, to develop alternatives, and to evaluate the alternatives. Key assumptions were that unique disposal capabilities exist within the DOE that must be maintained; private sector disposal capability for some LLW may not continue to exist into the foreseeable future; and decisions made by the LLW Team must be made on a system or complex wide basis to fully realize the potential cost and schedule benefits. This integration effort promoted more accurate waste volume estimates and forecasts; enhanced recognition of existing treatment, storage, and disposal capabilities and capacities; and improved identification of cost savings across the complex

  4. Microbial degradation of low-level radioactive waste. Volume 2, Annual report for FY 1994

    International Nuclear Information System (INIS)

    Rogers, R.D.; Hamilton, M.A.; Veeh, R.H.; McConnell, J.W. Jr.

    1995-08-01

    The Nuclear Regulatory Commission stipulates in 10 CFR 61 that disposed low-level radioactive waste (LLW) be stabilized. To provide guidance to disposal vendors and nuclear station waste generators for implementing those requirements, the NRC developed the Technical Position on Waste Form, Revision 1. That document details a specified set of recommended testing procedures and criteria, including several tests for determining the biodegradation properties of waste forms. Cement has been widely used to solidify LLW; however, the resulting waste forms are sometimes susceptible to failure due to the actions of waste constituents, stress, and environment. The purpose of this research program is to develop modified microbial degradation test procedures that will be more appropriate than the existing procedures for evaluating the effects of microbiologically influenced chemical attack on cement-solidified LLW. Groups of microorganisms indigenous to LLW disposal sites are being employed that can metabolically convert organic and inorganic substrates into organic and mineral acids. Such acids aggressively react with cement and can ultimately lead to structural failure. Results over the past year on the application of mechanisms inherent in microbially influenced degradation of cement-based material are the focus of the annual report. Data-validated evidence of the potential for microbially influenced deterioration of cement-solidified LLW and subsequent release of radionuclides has been developed during this study

  5. Low-level radioactive waste research program plan

    International Nuclear Information System (INIS)

    O'Donnell, E.; Lambert, J.

    1989-11-01

    The Waste Management Branch, Division of Engineering, Office of Nuclear Regulatory Research, has developed a strategy for conducting research on issues of concern to the US Nuclear Regulatory Commission (NRC) in its efforts to ensure safe disposal of low-level radioactive waste (LLW). The resulting LLW research program plan provides an integrated framework for planning the LLW research program to ensure that the program and its products are responsive and timely for use in NRC's LLW regulatory program. The plan discusses technical and scientific issues and uncertainties associated with the disposal of LLW, presents programmatic goals and objectives for resolving them, establishes a long-term strategy for conducting the confirmatory and investigative research needed to meet these goals and objectives, and includes schedules and milestones for completing the research. Areas identified for investigation include waste form and other material concerns, failure mechanisms and radionuclide releases, engineered barrier performance, site characterization and monitoring, and performance assessment. The plan proposes projects that (1) analyze and test actual LLW and solidified LLW under laboratory and field conditions to determine leach rates and radionuclide releases, (2) examine the short- and long-term performance of concrete-enhanced LLW burial structures and high-integrity containers, and (3) attempt to predict water movement and contaminant transport through low permeability saturated media and unsaturated porous media. 4 figs., 3 tabs

  6. Analysis of low-level wastes. Review of hazardous waste regulations and identification of radioactive mixed wastes. Final report

    International Nuclear Information System (INIS)

    Bowerman, B.S.; Kempf, C.R.; MacKenzie, D.R.; Siskind, B.; Piciulo, P.L.

    1985-12-01

    Regulations governing the management and disposal of hazardous wastes have been promulgated by the US Environmental Protection Agency under authority of the Resource Conservation and Recovery Act. These were reviewed and compared with the available information on the properties and characteristics of low-level radioactive wastes (LLW). In addition, a survey was carried out to establish a data base on the nature and composition of LLW in order to determine whether some LLW streams could also be considered hazardous as defined in 40 CFR Part 261. For the survey, an attempt was made to obtain data on the greatest volume of LLW; hence, as many large LLW generators as possible were contacted. The list of 238 generators contacted was based on information obtained from NRC and other sources. The data base was compiled from completed questionnaires which were returned by 97 reactor and non-reactor facilities. The waste volumes reported by these respondents corresponded to approximately 29% of all LLW disposed of in 1984. The analysis of the survey results indicated that three broad categories of LLW may be radioactive mixed wastes. They include: waste containing organic liquids, disposed of by all types of generators; wastes containing lead metal, i.e., discarded shielding or lead containers; wastes containing chromates, i.e., nuclear power plant process wastes where chromates are used as corrosion inhibitors. Certain wastes, specific to particular generators, were identified as potential mixed wastes as well. 8 figs., 48 tabs

  7. Taking the UK's national LLW programme from strategy development to implementation - 59059

    International Nuclear Information System (INIS)

    Rossiter, David; O'Donnell, Rachel

    2012-01-01

    In 2008 UK Nuclear Waste Management Ltd (UKNWM) became the Parent Body Organisation (PBO) at the Low Level Waste Repository (LLWR) in the UK. LLWR is the primary disposal facility for the UK's LLW, supporting a wide range of industries across the nuclear power generation, reprocessing, defence, health care, education, and oil and gas sectors. One of the key tasks following the appointment of the new PBO was to work with the Nuclear Decommissioning Authority (NDA) to develop a national strategy for LLW generated in the UK, predominantly in the NDA estate. The new National Strategy for LLW was required to address the gap between the forecast waste arisings and predicted capacity at LLWR. The National Strategy for LLW Management was published in August 2010 following an 18 month development period. The main focus of the strategy is on three areas: - Application of the waste management hierarchy to extend the life of LLWR and ensure waste is managed in a risk-based, fit-for-purpose manner - Making best use of existing assets such as transport, packaging, treatment and disposal facilities - Opening up new fit-for-purpose waste management routes to divert waste away from LLWR Developing a robust strategy is vital to provide strategic direction to Government, waste producers, regulators, and stakeholders. Once the strategy is developed and approved, the key challenge is then to implement the strategy on a national scale in an efficient and cost-effective manner that delivers maximum value for money to the UK taxpayer. As well as developing the strategy, LLWR has been actively working to develop the enablers to implement the strategy. Since the publication of the strategy in August 2010 LLWR has been re-organised to reflect the shift in focus, from strategy development to implementation and delivery of the strategy. New resources have been brought in with international waste management experience to help integrate delivery with waste producers. This paper covers the

  8. LLW Forum meeting report, July 20--22, 1994

    International Nuclear Information System (INIS)

    1994-01-01

    The Low-Level Radioactive Waste Forum (LLW Forum) is an association of state and compact representative, appointed by governors and compact commissions, established to facilitate state and compact commission implementation of the Low-Level radioactive Waste Policy Act of 1980 and the Low-Level Radioactive Waste Policy Amendments act of 1985 and to promote the objectives of low-level radioactive waste regional compacts. The forum provides an opportunity for states and compacts to share information with one another and to exchange views with officials of federal agencies. This report details activities of the meeting held July 20-22, 1994

  9. Greater-than-Class C low-level radioactive waste characterization: Estimated volumes, radionuclide activities, and other characteristics. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    1994-09-01

    The Department of Energy`s (DOE`s) planning for the disposal of greater-than-Class C low-level radioactive waste (GTCC LLW) requires characterization of the waste. This report estimates volumes, radionuclide activities, and waste forms of GTCC LLW to the year 2035. It groups the waste into four categories, representative of the type of generator or holder of the waste: Nuclear Utilities, Sealed Sources, DOE-Held, and Other Generator. GTCC LLW includes activated metals (activation hardware from reactor operation and decommissioning), process wastes (i.e., resins, filters, etc.), sealed sources, and other wastes routinely generated by users of radioactive material. Estimates reflect the possible effect that packaging and concentration averaging may have on the total volume of GTCC LLW. Possible GTCC mixed LLW is also addressed. Nuclear utilities will probably generate the largest future volume of GTCC LLW with 65--83% of the total volume. The other generators will generate 17--23% of the waste volume, while GTCC sealed sources are expected to contribute 1--12%. A legal review of DOE`s obligations indicates that the current DOE-Held wastes described in this report will not require management as GTCC LLW because of the contractual circumstances under which they were accepted for storage. This report concludes that the volume of GTCC LLW should not pose a significant management problem from a scientific or technical standpoint. The projected volume is small enough to indicate that a dedicated GTCC LLW disposal facility may not be justified. Instead, co-disposal with other waste types is being considered as an option.

  10. Greater-than-Class C low-level radioactive waste characterization: Estimated volumes, radionuclide activities, and other characteristics. Revision 1

    International Nuclear Information System (INIS)

    1994-09-01

    The Department of Energy's (DOE's) planning for the disposal of greater-than-Class C low-level radioactive waste (GTCC LLW) requires characterization of the waste. This report estimates volumes, radionuclide activities, and waste forms of GTCC LLW to the year 2035. It groups the waste into four categories, representative of the type of generator or holder of the waste: Nuclear Utilities, Sealed Sources, DOE-Held, and Other Generator. GTCC LLW includes activated metals (activation hardware from reactor operation and decommissioning), process wastes (i.e., resins, filters, etc.), sealed sources, and other wastes routinely generated by users of radioactive material. Estimates reflect the possible effect that packaging and concentration averaging may have on the total volume of GTCC LLW. Possible GTCC mixed LLW is also addressed. Nuclear utilities will probably generate the largest future volume of GTCC LLW with 65--83% of the total volume. The other generators will generate 17--23% of the waste volume, while GTCC sealed sources are expected to contribute 1--12%. A legal review of DOE's obligations indicates that the current DOE-Held wastes described in this report will not require management as GTCC LLW because of the contractual circumstances under which they were accepted for storage. This report concludes that the volume of GTCC LLW should not pose a significant management problem from a scientific or technical standpoint. The projected volume is small enough to indicate that a dedicated GTCC LLW disposal facility may not be justified. Instead, co-disposal with other waste types is being considered as an option

  11. Packaged low-level waste verification system

    International Nuclear Information System (INIS)

    Tuite, K.T.; Winberg, M.; Flores, A.Y.; Killian, E.W.; McIsaac, C.V.

    1996-01-01

    Currently, states and low-level radioactive waste (LLW) disposal site operators have no method of independently verifying the radionuclide content of packaged LLW that arrive at disposal sites for disposal. At this time, disposal sites rely on LLW generator shipping manifests and accompanying records to insure that LLW received meets the waste acceptance criteria. An independent verification system would provide a method of checking generator LLW characterization methods and help ensure that LLW disposed of at disposal facilities meets requirements. The Mobile Low-Level Waste Verification System (MLLWVS) provides the equipment, software, and methods to enable the independent verification of LLW shipping records to insure that disposal site waste acceptance criteria are being met. The MLLWVS system was developed under a cost share subcontract between WMG, Inc., and Lockheed Martin Idaho Technologies through the Department of Energy's National Low-Level Waste Management Program at the Idaho National Engineering Laboratory (INEL)

  12. Long-range low-level waste management needs

    International Nuclear Information System (INIS)

    Gloyna, E.F.

    1980-01-01

    In all waste management considerations, it is necessary to establish the waste source; characterize the waste components; determine treatability; evaluate specific details that comprise a systems approach to overall waste management; and implement practical collection, packaging, storage disposal and monitoring technology. This paper evaluates management considerations by defining the source and magnitude of low-level wastes (LLW), relating LLW disposal, defining principles of LLW burial, and listing LLW burial considerations. 17 refs

  13. LLW Forum meeting report, April 18--19, 1991

    International Nuclear Information System (INIS)

    1991-01-01

    The Low-Level Radioactive Waste Forum is an association of representatives of states and compacts established to facilitate state and compact commission implementation of the Low-Level Radioactive Waste Policy Act of 1980 and the Low-Level Radioactive Waste Policy Amendments Act of 1985 and to promote the objectives of low-level radioactive waste regional compacts. The Forum provides an opportunity for states and compacts to share information with one another and to exchange views with officials of federal agencies. LLW Forum participants include representatives from regional compacts, designated host states, unaffiliated states, and states with currently- operating low-level radioactive waste facilities. This quarterly meeting was held on April 18-19, 1991

  14. LLW Forum meeting report, October 20--22, 1997

    International Nuclear Information System (INIS)

    Norris, C.; Brown, H.; Lovinger, T.; Scheele, L.; Shaker, M.A.

    1997-10-01

    The Low-Level Radioactive Waste Forum met in Annapolis, Maryland, on October 20--22, 1997. Twenty-six Forum Participants, Alternate Forum Participants, and meeting designees representing 22 compacts and states participated. A report on the meeting is given under the following subtitles: New developments in states and compacts; Discussion with NRC Commissioner McGaffigan; Regulatory issues session; Executive session; LLW forum business session; DOE low-level waste management program; Transportation of radioactive waste; Environmental equity: Title VI; Congressional studies on Ward Valley Site; Implementation of DOE's strategy for waste management; Relicensing Envirocare; Draft agreement for uniform application of manifesting procedures; CRCPD report; Panel: Future of low-level radioactive waste management; Agenda planning: February 1998; Resolutions; and Attendance

  15. Clean option: An alternative strategy for Hanford Tank Waste Remediation. Volume 2, Detailed description of first example flowsheet

    Energy Technology Data Exchange (ETDEWEB)

    Swanson, J.L.

    1993-09-01

    Disposal of high-level tank wastes at the Hanford Site is currently envisioned to divide the waste between two principal waste forms: glass for the high-level waste (HLW) and grout for the low-level waste (LLW). The draft flow diagram shown in Figure 1.1 was developed as part of the current planning process for the Tank Waste Remediation System (TWRS), which is evaluating options for tank cleanup. The TWRS has been established by the US Department of Energy (DOE) to safely manage the Hanford tank wastes. It includes tank safety and waste disposal issues, as well as the waste pretreatment and waste minimization issues that are involved in the ``clean option`` discussed in this report. This report describes the results of a study led by Pacific Northwest Laboratory to determine if a more aggressive separations scheme could be devised which could mitigate concerns over the quantity of the HLW and the toxicity of the LLW produced by the reference system. This aggressive scheme, which would meet NRC Class A restrictions (10 CFR 61), would fit within the overall concept depicted in Figure 1.1; it would perform additional and/or modified operations in the areas identified as interim storage, pretreatment, and LLW concentration. Additional benefits of this scheme might result from using HLW and LLW disposal forms other than glass and grout, but such departures from the reference case are not included at this time. The evaluation of this aggressive separations scheme addressed institutional issues such as: radioactivity remaining in the Hanford Site LLW grout, volume of HLW glass that must be shipped offsite, and disposition of appropriate waste constituents to nonwaste forms.

  16. LLW Forum meeting report, April 25--27, 1994

    International Nuclear Information System (INIS)

    1994-01-01

    The Low-Level radioactive Waste Forum is an association of representatives of states and compacts established to facilitate state and compact commission implementation of the Low-Level Radioactive Waste Policy Act of 1980 and the Low-Level Radioactive Waste Policy Amendments Act of 1985 and to promote the objectives of low-level radioactive waste regional compacts. The Forum provides an opportunity for states and compacts to share information with one another and to exchange views with officials of federal agencies. LLW Forum participants include representatives from regional compacts, designated host states, unaffiliated states, and states with currently-operating low-level radioactive waste facilities. This quarterly meeting was held April 25-27, 1994 and activities during the first quarter of 1994 are detailed

  17. LLW Forum meeting report, April 25--27, 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    The Low-Level radioactive Waste Forum is an association of representatives of states and compacts established to facilitate state and compact commission implementation of the Low-Level Radioactive Waste Policy Act of 1980 and the Low-Level Radioactive Waste Policy Amendments Act of 1985 and to promote the objectives of low-level radioactive waste regional compacts. The Forum provides an opportunity for states and compacts to share information with one another and to exchange views with officials of federal agencies. LLW Forum participants include representatives from regional compacts, designated host states, unaffiliated states, and states with currently-operating low-level radioactive waste facilities. This quarterly meeting was held April 25-27, 1994 and activities during the first quarter of 1994 are detailed..

  18. Low-level tank waste simulant data base

    International Nuclear Information System (INIS)

    Lokken, R.O.

    1996-04-01

    The majority of defense wastes generated from reprocessing spent N- Reactor fuel at Hanford are stored in underground Double-shell Tanks (DST) and in older Single-Shell Tanks (SST) in the form of liquids, slurries, sludges, and salt cakes. The tank waste remediation System (TWRS) Program has the responsibility of safely managing and immobilizing these tank wastes for disposal. This report discusses three principle topics: the need for and basis for selecting target or reference LLW simulants, tanks waste analyses and simulants that have been defined, developed, and used for the GDP and activities in support of preparing and characterizing simulants for the current LLW vitrification project. The procedures and the data that were generated to characterized the LLW vitrification simulants were reported and are presented in this report. The final section of this report addresses the applicability of the data to the current program and presents recommendations for additional data needs including characterization and simulant compositional variability studies

  19. Public Acceptance of Low-Level Waste Disposal Critical to the Nuclear Renaissance

    International Nuclear Information System (INIS)

    Sonny Goldston, W.T.

    2009-01-01

    The disposal of various Low-Level Waste (LLW) forms projected to result from the operation of a pilot or large scale Advanced Fuel Cycle Initiative Programs' (formally known as Global Nuclear Energy Partnership (GNEP)) reprocessing and vitrification plants requires the DOE LLW program and regulatory structure to be utilized in its present form due to the limited availability of Nuclear Regulatory Commission licensed commercial LLW disposal facilities to handle wastes with radionuclide concentrations that are greater than Nuclear Regulatory Commission (NRC) Class A limits. This paper will describe the LLW forms and the regulatory structures and facilities available to dispose of this waste. Then the paper discusses the necessity of an excellent public involvement program to ensure the success of an effective technical solution. All of the decisions associated with the management of these wastes are of interest to the public and successful program implementation would be impossible without including the public up-front in the program formulation. Serious problems can result if program decisions are made without public involvement, and if the public is informed after key decisions are made. This paper will describe the regulatory and public involvement program and their effects on the decisions concerning the disposal of Low-Level Radioactive Waste (LLW) at the Savannah River Site (SRS). An extensive public communications effort resulted in endorsement of changes in disposal practices by the SRS Citizens Advisory Board that was critical to the success of the program. A recommendation will be made to install a public involvement program that is similar to the SRS Citizens Advisory Board in order to ensure the success of the AFCI programs in view of the limited availability to handle the wastes from the program and the public acceptance of change that will be required. (authors)

  20. A Novel and Cost Effective Approach to the Decommissioning and Decontamination of Legacy Glove Boxes - Minimizing TRU Waste and Maximizing LLW Waste - 13634

    Energy Technology Data Exchange (ETDEWEB)

    Pancake, Daniel; Rock, Cynthia M.; Creed, Richard [Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439 (United States); Donohoue, Tom; Martin, E. Ray; Mason, John A. [ANTECH Corporation 9050 Marshall Court, Westminster, CO, 80031 (United States); Norton, Christopher J.; Crosby, Daniel [Environmental Alternatives, Inc., 149 Emerald Street, Suite R, Keene, NH 03431 (United States); Nachtman, Thomas J. [InstaCote, Inc., 160 C. Lavoy Road, Erie, MI, 48133 (United States)

    2013-07-01

    This paper describes the process of decommissioning two gloveboxes at the Argonne National Laboratory (ANL) that were employed for work with plutonium and other radioactive materials. The decommissioning process involved an initial phase of clearing tools and materials from the glove boxes and disconnecting them from the laboratory infrastructure. The removed materials, assessed as Transuranic (TRU) waste, were packaged into 55 gallon (200 litre) drums and prepared for ultimate disposal at the Waste Isolation Pilot Plant (WIPP) at Carlsbad New Mexico. The boxes were then sampled to determine the radioactive contents by means of smears that were counted with alpha and beta detectors to determine the residual surface contamination, especially in terms of alpha particle emitters that are an indicator of TRU activity. Paint chip samples were also collected and sent for laboratory analysis in order to ascertain the radioactive contamination contributing to the TRU activity as a fixed contamination. The investigations predicted that it may be feasible to reduce the residual surface contamination and render the glovebox structure low level waste (LLW) for disposal. In order to reduce the TRU activity a comprehensive decontamination process was initiated using chemical compounds that are particularly effective for lifting and dissolving radionuclides that adhere to the inner surfaces of the gloveboxes. The result of the decontamination process was a reduction in the TRU surface activity on the inner surfaces of the gloveboxes by four orders of magnitude in terms of disintegrations per unit area (DPA). The next phase of the process involved a comprehensive assay of the gloveboxes using a combination of passive neutron and gamma ray scintillation detectors and a shielded and collimated high purity Germanium (HPGe) gamma ray detector. The HPGe detector was used to obtain gamma ray spectra for a variety of measurement positions within the glovebox. The spectra were used to

  1. A Novel and Cost Effective Approach to the Decommissioning and Decontamination of Legacy Glove Boxes - Minimizing TRU Waste and Maximizing LLW Waste - 13634

    International Nuclear Information System (INIS)

    Pancake, Daniel; Rock, Cynthia M.; Creed, Richard; Donohoue, Tom; Martin, E. Ray; Mason, John A.; Norton, Christopher J.; Crosby, Daniel; Nachtman, Thomas J.

    2013-01-01

    This paper describes the process of decommissioning two gloveboxes at the Argonne National Laboratory (ANL) that were employed for work with plutonium and other radioactive materials. The decommissioning process involved an initial phase of clearing tools and materials from the glove boxes and disconnecting them from the laboratory infrastructure. The removed materials, assessed as Transuranic (TRU) waste, were packaged into 55 gallon (200 litre) drums and prepared for ultimate disposal at the Waste Isolation Pilot Plant (WIPP) at Carlsbad New Mexico. The boxes were then sampled to determine the radioactive contents by means of smears that were counted with alpha and beta detectors to determine the residual surface contamination, especially in terms of alpha particle emitters that are an indicator of TRU activity. Paint chip samples were also collected and sent for laboratory analysis in order to ascertain the radioactive contamination contributing to the TRU activity as a fixed contamination. The investigations predicted that it may be feasible to reduce the residual surface contamination and render the glovebox structure low level waste (LLW) for disposal. In order to reduce the TRU activity a comprehensive decontamination process was initiated using chemical compounds that are particularly effective for lifting and dissolving radionuclides that adhere to the inner surfaces of the gloveboxes. The result of the decontamination process was a reduction in the TRU surface activity on the inner surfaces of the gloveboxes by four orders of magnitude in terms of disintegrations per unit area (DPA). The next phase of the process involved a comprehensive assay of the gloveboxes using a combination of passive neutron and gamma ray scintillation detectors and a shielded and collimated high purity Germanium (HPGe) gamma ray detector. The HPGe detector was used to obtain gamma ray spectra for a variety of measurement positions within the glovebox. The spectra were used to

  2. Economic analysis of alternative LLW disposal methods

    International Nuclear Information System (INIS)

    Foutes, C.E.

    1987-01-01

    The Environmental Protection Agency (EPA) has evaluated the costs and benefits of alternative disposal technologies as part of its program to develop generally applicable environmental standards for the land disposal of low-level radioactive waste (LLW). Costs, population health effects and Critical Population Group (CPG) exposures resulting from alternative waste treatment and disposal methods were developed and input into the analysis. The cost-effectiveness analysis took into account a number of waste streams, hydrogeologic and climatic region settings, and waste treatment and disposal methods. Total costs of each level of a standard included costs for packaging, processing, transportation, and burial of waste. Benefits are defined in terms of reductions in the general population health risk (expected fatal cancers and genetic effects) evaluated over 10,000 years. A cost-effectiveness ratio, was calculated for each alternative standard. This paper describes the alternatives considered and preliminary results of the cost-effectiveness analysis

  3. Intruder scenarios for site-specific waste classification

    International Nuclear Information System (INIS)

    Kennedy, W.E. Jr.

    1988-01-01

    The US Department of Energy (DOE) is currently revising its low-level radioactive waste (LLW) management requirements and guidelines for waste generated at its facilities that support defense missions. Specifically, draft DOE 5820.2A, Chapter 3, describes the purpose, policy, and requirements necessary for the management of defense LLW. The draft DOE policy calls for DOE LLW operations to be managed to protect the health and safety of the public, preserve the environment, and ensure that no remedial action will be necessary after termination of operations. The requirements and guidelines apply to radioactive wastes but are also intended to apply to mixed hazardous and radioactive wastes as defined in draft DOE 5400.5, Hazardous and Radioactive Mixed Waste. The basic approach used by DOE is to establish overall performance objectives in terms of ground-water protection and public radiation dose limits and to require site-specific performance assessments to determine compliance. As a result of these performance assessments, each site shall develop waste acceptance criteria that define the allowable quantities and concentrations of specific radioisotopes. Additional limitations on waste disposal design, waste form, and waste treatment shall also be developed on a site-specific basis. As a key step in the site-specific performance assessments, an evaluation must be conducted of potential radiation doses to intruders who may inadvertently move onto a closed DOE LLW disposal site after loss of institutional controls must be conducted. This paper describes the types of intruder scenarios that should be considered when performing this step of the site-specific performance assessment

  4. Investigations of potential below regulatory concern (de minimus) wastes

    International Nuclear Information System (INIS)

    Gruhlke, J.M.; Galpin, F.L.

    1983-01-01

    Low-level radioactive waste (LLW) includes a wide variety of waste types. Many organizations are contemplating the merits of declaring certain LLW as de minimus. The concept of de minimus has considerable support, as evidenced by the comments on NRC's rulemaking for 10 CFR Part 61, Licensing Requirements for Land Disposal of Radioactive Waste. Practical and philosophical considerations lend weight to the further investigation of the de minimus concept for LLW. The Environmental Protection Agency (EPA) recognizes the interest and efforts in the concept of de minimus. Because the term de minimus may imply a lack of concern for the risks of disposal, we use the term Below Regulatory Concern (BRC). EPA has developed technical information, cost data, and a methodology for selecting promising candidate waste streams. The NRC's breakdown of LLW, as provided in the supporting documentation for 10 CFR Part 51, serves as a starting point for evaluating individual waste streams. Waste streams may then be ranked on the basis of individual dose, population health impact, and cost/benefit. A set of waste streams consistently ranks near the top in all categories and deserves further analysis. This screening is the initial step in an overall effort to develop a basis for determining the appropriateness and form of generic BRC criteria. 14 references, 8 tables

  5. Current status of sea transport of nuclear fuel materials and LLW in Japan

    International Nuclear Information System (INIS)

    Kitagawa, Hiroshi; Akiyama, Hideo

    2000-01-01

    Along with the basic policy of the nuclear fuel cycle of Japan, many fuel cycle facilities have been already constructed in Rokkasho-Mura, Aomori prefecture, such as the uranium enrichment plant, the low level waste disposal center and the receiving pool of the spent nuclear fuels for reprocessing. These facilities belong to the Japan Nuclear Fuel Limited. (JNFL). Domestic sea transport of the spent nuclear fuels (SF) has been carried out since 1977 to the Tokai Reprocessing Plant, and the first sea transport of the SF to the fuel cycle facility in Rokkasho-Mura was done in Oct, 1998 using a new exclusive ship 'Rokuei-Maru'. Sea transport of the low level radioactive wastes (LLW) has been carried out since 1992 to the Rokkasho LLW Disposal Center, and about 130,000 LLW drams were transported from the nuclear power plant sites. These sea transport have demonstrated the safety of the transport of the nuclear fuel cycle materials. It is hoped that the safe sea transport of the nuclear fuel materials will contribute to the more progress of the nuclear fuel cycle activities of Japan. (author)

  6. Implementation of a geological disposal facility (GDF) in the UK by the NDA Radioactive Waste Management Directorate (RWMD): the potential for interaction between the co-located ILW/LLW and HLW/SF components of a GDF - 16306

    International Nuclear Information System (INIS)

    Towler, George; Hicks, Tim; Watson, Sarah; Norris, Simon

    2009-01-01

    In June 2008 the UK government published a 'White Paper' as part of the 'Managing Radioactive Waste Safety' (MRWS) programme to provide a framework for managing higher activity radioactive wastes in the long-term through geological disposal. The White Paper identifies that there are benefits to disposing all of the UK's higher activity wastes (Low and Intermediate Level Waste (LLW and ILW), High Level Waste (HLW), Spent Fuel (SF), Uranium (U) and Plutonium (Pu)) at the same site, and this is currently the preferred option. It also notes that research will be required to support the detailed design and safety assessment in relation to any potentially detrimental interactions between the different modules. Different disposal system designs and associated Engineered Barrier Systems (EBS) will be required for these different waste types, i.e. ILW/LLW and HLW/SF. If declared as waste U would be disposed as ILW and Pu as HLW/SF. The Geological Disposal Facility (GDF) would therefore comprise two co-located modules (respectively for ILW/LLW and HLW/SF). This paper presents an overview of a study undertaken to assess the implications of co-location by identifying the key Thermo-Hydro-Mechanical-Chemical (THMC) interactions that might occur during both the operational and post-closure phases, and their consequences for GDF design, performance and safety. The MRWS programme is currently seeking expressions of interest from communities to host a GDF. Therefore, the study was required to consider a wide range of potential GDF host rocks and consistent, conceptual disposal system designs. Two example disposal concepts (i.e. combinations of host rock, GDF design including wasteform and layout, etc.) were carried forward for detailed assessment and a third for qualitative analysis. Dimensional and 1D analyses were used to identify the key interactions, and 3D models were used to investigate selected interactions in more detail. The results of this study show that it is possible

  7. Strategic environmental assessment for UK LLW management - 16392

    International Nuclear Information System (INIS)

    Craze, Andrew; Clark, Matthew; Davis, Pete

    2009-01-01

    NDA is delivering a Strategic Environmental Assessment (SEA) to underpin the UK Nuclear Industry Low Level Waste Strategy. The purpose of this assessment is embed sustainability issues into our decision making and to fulfill our requirements under the European Union's Strategic Environmental Assessment (SEA) Directive (2004/42/EU) and transposing UK Regulations, and to underpin the development of the strategy. The outputs of the SEA have provided input into particular aspects of the strategy, leading to a more robust and better informed result. Development of options to be assessed under the SEA has looked at a number of factors, including: - what the strategy is aiming to achieve - expectation from stakeholders as to what should be addressed - consideration of tactical approaches to implementation of the strategy in addition to high level strategic issues - links to other projects and programmes (for example the Environmental Safety Case for the Low Level Waste Repository. The SEA aims to provide a robust assessment of the environmental and sustainability impacts of alternative strategies for providing continued capability and capacity for the management and disposal of LLW in the UK. The assessment also considers other, more tactical, issues around implementation of the strategy, for example: issues around the location of LLW management facilities; the environmental impacts of alternative waste treatment options (metal recycling etc); considerations of alternative approaches to the classification of radioactive waste and opportunities that would result. Critical to the development of the SEA has been the involvement of statutory and non-statutory stakeholders, who have informed both the output and the approach taken. (authors)

  8. SITE GENERATED RADIOLOGICAL WASTE HANDLING SYSTEM DESCRIPTION DOCUMENT

    Energy Technology Data Exchange (ETDEWEB)

    S. C. Khamankar

    2000-06-20

    The Site Generated Radiological Waste Handling System handles radioactive waste products that are generated at the geologic repository operations area. The waste is collected, treated if required, packaged for shipment, and shipped to a disposal site. Waste streams include low-level waste (LLW) in solid and liquid forms, as-well-as mixed waste that contains hazardous and radioactive constituents. Liquid LLW is segregated into two streams, non-recyclable and recyclable. The non-recyclable stream may contain detergents or other non-hazardous cleaning agents and is packaged for shipment. The recyclable stream is treated to recycle a large portion of the water while the remaining concentrated waste is packaged for shipment; this greatly reduces the volume of waste requiring disposal. There will be no liquid LLW discharge. Solid LLW consists of wet solids such as ion exchange resins and filter cartridges, as-well-as dry active waste such as tools, protective clothing, and poly bags. Solids will be sorted, volume reduced, and packaged for shipment. The generation of mixed waste at the Monitored Geologic Repository (MGR) is not planned; however, if it does come into existence, it will be collected and packaged for disposal at its point of occurrence, temporarily staged, then shipped to government-approved off-site facilities for disposal. The Site Generated Radiological Waste Handling System has equipment located in both the Waste Treatment Building (WTB) and in the Waste Handling Building (WHB). All types of liquid and solid LLW are processed in the WTB, while wet solid waste from the Pool Water Treatment and Cooling System is packaged where received in the WHB. There is no installed hardware for mixed waste. The Site Generated Radiological Waste Handling System receives waste from locations where water is used for decontamination functions. In most cases the water is piped back to the WTB for processing. The WTB and WHB provide staging areas for storing and shipping LLW

  9. SITE GENERATED RADIOLOGICAL WASTE HANDLING SYSTEM DESCRIPTION DOCUMENT

    International Nuclear Information System (INIS)

    S. C. Khamankar

    2000-01-01

    The Site Generated Radiological Waste Handling System handles radioactive waste products that are generated at the geologic repository operations area. The waste is collected, treated if required, packaged for shipment, and shipped to a disposal site. Waste streams include low-level waste (LLW) in solid and liquid forms, as-well-as mixed waste that contains hazardous and radioactive constituents. Liquid LLW is segregated into two streams, non-recyclable and recyclable. The non-recyclable stream may contain detergents or other non-hazardous cleaning agents and is packaged for shipment. The recyclable stream is treated to recycle a large portion of the water while the remaining concentrated waste is packaged for shipment; this greatly reduces the volume of waste requiring disposal. There will be no liquid LLW discharge. Solid LLW consists of wet solids such as ion exchange resins and filter cartridges, as-well-as dry active waste such as tools, protective clothing, and poly bags. Solids will be sorted, volume reduced, and packaged for shipment. The generation of mixed waste at the Monitored Geologic Repository (MGR) is not planned; however, if it does come into existence, it will be collected and packaged for disposal at its point of occurrence, temporarily staged, then shipped to government-approved off-site facilities for disposal. The Site Generated Radiological Waste Handling System has equipment located in both the Waste Treatment Building (WTB) and in the Waste Handling Building (WHB). All types of liquid and solid LLW are processed in the WTB, while wet solid waste from the Pool Water Treatment and Cooling System is packaged where received in the WHB. There is no installed hardware for mixed waste. The Site Generated Radiological Waste Handling System receives waste from locations where water is used for decontamination functions. In most cases the water is piped back to the WTB for processing. The WTB and WHB provide staging areas for storing and shipping LLW

  10. An overview of commercial low-level radioactive waste disposal technology

    International Nuclear Information System (INIS)

    Plummer, T.L.; Morreale, B.J.

    1991-01-01

    The primary objective of low-level radioactive (LLW) waste management is to safely dispose of LLW while protecting the health of the public and the quality of the environment. LLW in the United States is generated through both Department of Energy (DOE) and commercial activities. In this paper, waste from commercial activities will be referred to as ''commercial LLW.'' The DOE waste will not be discussed in this paper. Commercial LLW is waste that is generated by Nuclear Regulatory Commission (NRC) designated licensees or Agreement States. Commercial LLW is generated by nuclear power reactors, hospitals, universities, and manufacturers. This paper will give an overview of the current disposal technologies planned by selected States' for disposing of their LLW and the processes by which those selections were made. 3 refs

  11. Development of threshold guidance: National Low-Level Radioactive Waste Management Program

    International Nuclear Information System (INIS)

    1986-09-01

    The current study has been conducted to provide DOE with a technical basis for the development of threshold guidance. The objective of the study was to develop the necessary background information and recommendations to assist the DOE in implementing the threshold limit concept for the disposal of DOE wastes at DOE facilities. The nature of low-level radioactive waste (LLW) varies greatly in both form and radionuclide content. While some low-level waste streams can contain substantial quantities of radioactive constituents, a potentially significant fraction of low-level waste is contaminated either very slightly or not at all. There is a strong likelihood that managing wastes with extremely low levels of radioactivity as nonradioactive waste would pose no significant safety problems and could result in substantial cost savings relative to its handling as LLW. Since all materials, including waste products, contain some radioactivity, it is necessary to distinguish between those wastes that would require disposal as LLW and those that have sufficiently low levels of radiological content to be managed according to their nonradiological properties. 131 refs., 9 figs., 24 tabs

  12. Preliminary low-level waste feed definition guidance - LLW pretreatment interface

    International Nuclear Information System (INIS)

    Shade, J.W.; Connor, J.M.; Hendrickson, D.W.; Powell, W.J.; Watrous, R.A.

    1995-02-01

    The document describes limits for key constituents in the LLW feed, and the bases for these limits. The potential variability in the stream is then estimated and compared to the limits. Approaches for accomodating uncertainty in feed inventory, processing strategies, and process design (melter and disposal system) are discussed. Finally, regulatory constraints are briefly addressed

  13. Preliminary fee methodology for recovering GTCC-LLW management costs

    International Nuclear Information System (INIS)

    Clark, L.L.

    1990-06-01

    The US Department of Energy (DOE) is currently planning a fee to recover costs of managing Greater-Than-Class-C Low-Level Waste (GTCC-LLW). A cash flow basis will be used for fee calculations to ensure recovery of all applicable program costs. Positive cash flows are revenues received from waste generators. Negative cash flows are program expenses for storage, transportation, treatment, and disposal of the wastes and for program development, evaluation, and administration. Program balances are the net result of positive and negative cash flows each year. The methodology calculates fees that will recovery all program expenses taking into account cost inflation. 3 refs., 1 tab

  14. Nuclear waste management policy in France

    International Nuclear Information System (INIS)

    Lefevre, J.F.

    1983-01-01

    The object of the nuclear waste management policy in France has always been to protect the worker and the public from unacceptable risks. The means and the structures developed to reach this objective, however, have evolved with time. One fact has come out ever more clearly over the years: Nuclear waste problems cannot be considered in a piecemeal fashion. The French nuclear waste management structure and policy aim at just this global approach. Responsibilities have been distributed between the main partners: the waste producers and conditioners, the research teams, the safety authorities, and the long-term waste manager, National Radioactive Waste Management Agency. The main technical options adopted for waste forms are embedding in hydraulic binders, bitumen, or thermosetting resins for low-level waste (LLW) and medium-level waste (MLW), and vitrification for high-level, liquid wastes. One shallow land disposal site for LLW and MLW has been in operation since 1969, the Centre of La Manche. Alpha-bearing and high-level waste will be disposed of by deep geological storage, possibly in granite formations. Further RandD aims mainly at improving present-day practices, developing more durable, long-term, alpha-bearing waste for all solid waste forms and going into all aspects of deep geological disposal characterization

  15. Low-level radioactive waste disposal technologies used outside the United States

    International Nuclear Information System (INIS)

    Templeton, K.J.; Mitchell, S.J.; Molton, P.M.; Leigh, I.W.

    1994-01-01

    Low-level radioactive waste (LLW) disposal technologies are an integral part of the waste management process. In the United States, commercial LLW disposal is the responsibility of the State or groups of States (compact regions). The United States defines LLW as all radioactive waste that is not classified as spent nuclear fuel, high- level radioactive waste, transuranic waste, or by-product material as defined in Section II(e)(2) of the Atomic Energy Act. LLW may contain some long-lived components in very low concentrations. Countries outside the United States, however, may define LLW differently and may use different disposal technologies. This paper outlines the LLW disposal technologies that are planned or being used in Canada, China, Finland, France, Germany, Japan, Sweden, Taiwan, and the United Kingdom (UK)

  16. Estimating heel retrieval costs for underground storage tank waste at Hanford. Draft

    International Nuclear Information System (INIS)

    DeMuth, S.

    1996-01-01

    Approximately 100 million gallons (∼400,000 m 3 ) of existing U.S. Department of Energy (DOE) owned radioactive waste stored in underground tanks can not be disposed of as low-level waste (LLW). The current plan for disposal of UST waste which can not be disposed of as LLW is immobilization as glass and permanent storage in an underground repository. Disposal of LLW generally can be done sub-surface at the point of origin. Consequently, LLW is significantly less expensive to dispose of than that requiring an underground repository. Due to the lower cost for LLW disposal, it is advantageous to separate the 100 million gallons of waste into a small volume of high-level waste (HLW) and a large volume of LLW

  17. Permitting plan for the immobilized low-activity waste project

    International Nuclear Information System (INIS)

    Deffenbaugh, M.L.

    1997-01-01

    This document addresses the environmental permitting requirements for the transportation and interim storage of the Immobilized Low-Activity Waste (ILAW) produced during Phase 1 of the Hanford Site privatization effort. Tri-Party Agreement (TPA) Milestone M-90 establishes a new major milestone, and associated interim milestones and target dates, governing acquisition and/or modification of facilities necessary for: (1) interim storage and disposal of Tank Waste Remediation Systems (TWRS) immobilized low-activity tank waste (ILAW) and (2) interim storage of TWRS immobilized HLW (IHLW) and other canistered high-level waste forms. Low-activity waste (LAW), low-level waste (LLW), and high-level waste (HLW) are defined by the TWRS, Hanford Site, Richland, Washington, Final Environmental Impact Statement (EIS) DOE/EIS-0189, August 1996 (TWRS, Final EIS). By definition, HLW requires permanent isolation in a deep geologic repository. Also by definition, LAW is ''the waste that remains after separating from high-level waste as much of the radioactivity as is practicable that when solidified may be disposed of as LLW in a near-surface facility according to the NRC regulations.'' It is planned to store/dispose of (ILAW) inside four empty vaults of the five that were originally constructed for the Group Program. Additional disposal facilities will be constructed to accommodate immobilized LLW packages produced after the Grout Vaults are filled. The specifications for performance of the low-activity vitrified waste form have been established with strong consideration of risk to the public. The specifications for glass waste form performance are being closely coordinated with analysis of risk. RL has pursued discussions with the NRC for a determination of the classification of the Hanford Site's low-activity tank waste fraction. There is no known RL action to change law with respect to onsite disposal of waste

  18. Alternative techniques for low-level waste shallow land burial

    International Nuclear Information System (INIS)

    Levin, G.B.; Mezga, L.J.

    1983-01-01

    Experience to date relative to the shallow land burial of low-level radioactive waste (LLW) indicates that the physical stability of the disposal unit and the hydrologic isolation of the waste are the two most important factors in assuring disposal site performance. Disposal unit stability can be ensured by providing stable waste packages and waste forms, compacting backfill material, and filling the void spaces between the packages. Hydrologic isolation can be achieved though a combination of proper site selection, subsurface drainage controls, internal trench drainage systems, and immobilization of the waste. A generalized design of a LLW disposal site that would provide the desired long-term isolation of the waste is discussed. While this design will be more costly than current practices, it will provide additional confidence in predicted and reliability and actual site performance

  19. Evaluation of potential mixed wastes containing lead, chromium, or used oil

    International Nuclear Information System (INIS)

    Siskind, B.; MacKenzie, D.R.; Bowerman, B.S.; Kempf, C.R.; Piciulo, P.L.

    1987-01-01

    This paper presents the results of follow-on studies conducted by Brookhaven National Laboratory (BNL) for the Nuclear Regulatory Commission (NRC) on certain kinds of low-level waste (LLW) which could also be classified as hazardous waste subject to regulation by the Environmental Protection Agency (EPA). Such LLW is termed ''mixed waste.'' Additional data have been collected and evaluated on two categories of potential mixed waste, namely LLW containing metallic lead and LLW containing chromium. Additionally, LLW with organic liquids, especially liquid scintillation wastes, are reviewed. In light of a proposed EPA rule to list used oil as hazardous waste, the potential mixed waste hazard of used oil contaminated with radionuclides is discussed. It is concluded that the EPA test for determining whether a solid waste exhibits the hazardous characteristic of extraction procedure toxicity does not adequately simulate the burial environment at LLW disposal sites, and in particular, does not adequately assess the potential for dissolution and transport of buried metallic lead. Also, although chromates are, in general, not a normal or routine constitutent in commercial LLW (with the possible exception of chemical decontamination wastes), light water reactors which do use chromates might find it beneficial to consider alternative corrosion inhibitors. In addition, it is noted that if used oil is listed by the EPA as hazardous waste, LLW oil may be managed by a scheme including one or more of the following processes: incineration, immobilization, sorption, aqueous extraction and glass furnace processing

  20. Development of multi-purpose containers for managing LLW/VLLW from D and D

    International Nuclear Information System (INIS)

    Lee, Jae Sol; Park, Jae Ho; Sung, Nak Hoon; Yang, Ge Hyung

    2016-01-01

    Radioactive waste container designs should comply with the requirements for safety (i.e., transportation, storage, disposal) and other criteria such as economics and technology. These criteria are also applicable to the future management of the large amount of LLW and VLLW to arise from decontamination and decommissioning (D and D) of nuclear power plants, which have different features compared to that of wastes from operation and maintenance (O and M). This paper proposes to develop a set of standard containers of multi-purpose usage for transportation, storage and disposal. The concepts of the containers were optimized for management of D and D wastes in consideration of national system for radioactive waste management, in particular the Gyeongju Repository and associated infrastructures. A set of prototype containers were designed and built : a soft bag for VLLW, two metallic containers for VLLW/LLW (a standard IP2 container for sea transport and ISO container for road transport). Safety analyses by simulation and tests of these designs show they are in compliance with the regulatory requirements. A further development of a container with concrete is foreseen for 2016

  1. Development of multi-purpose containers for managing LLW/VLLW from D and D

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jae Sol; Park, Jae Ho; Sung, Nak Hoon; Yang, Ge Hyung [KONES Corporation., Seoul (Korea, Republic of)

    2016-06-15

    Radioactive waste container designs should comply with the requirements for safety (i.e., transportation, storage, disposal) and other criteria such as economics and technology. These criteria are also applicable to the future management of the large amount of LLW and VLLW to arise from decontamination and decommissioning (D and D) of nuclear power plants, which have different features compared to that of wastes from operation and maintenance (O and M). This paper proposes to develop a set of standard containers of multi-purpose usage for transportation, storage and disposal. The concepts of the containers were optimized for management of D and D wastes in consideration of national system for radioactive waste management, in particular the Gyeongju Repository and associated infrastructures. A set of prototype containers were designed and built : a soft bag for VLLW, two metallic containers for VLLW/LLW (a standard IP2 container for sea transport and ISO container for road transport). Safety analyses by simulation and tests of these designs show they are in compliance with the regulatory requirements. A further development of a container with concrete is foreseen for 2016.

  2. Conceptual designs for waste quality checking facilities for low level and intermediate level radioactive wastes and hazardous waste

    International Nuclear Information System (INIS)

    Driver, S.; Griffiths, M.; Leonard, C.D.; Smith, D.L.G.

    1992-01-01

    This report summarises work carried out on the design of facilities for the quality checking of Intermediate and Low Level Radioactive Waste and Hazardous Waste. The procedures used for the quality checking of these categories of waste are summarised. Three building options are considered: a separate LLW facility, a combined facility for LLW and HW and a Waste Quality Checking Facility for the three categories of waste. Budget Cost Estimates for the three facilities are given based on 1991 prices. (author)

  3. Greater confinement disposal of radioactive wastes

    International Nuclear Information System (INIS)

    Trevorrow, L.E.; Gilbert, T.L.; Luner, C.; Merry-Libby, P.A.; Meshkov, N.K.; Yu, C.

    1985-01-01

    Low-level radioactive waste (LLW) includes a broad spectrum of different radionuclide concentrations, half-lives, and hazards. Standard shallow-land burial practice can provide adequate protection of public health and safety for most LLW. A small volume fraction (approx. 1%) containing most of the activity inventory (approx. 90%) requires specific measures known as greater-confinement disposal (GCD). Different site characteristics and different waste characteristics - such as high radionuclide concentrations, long radionuclide half-lives, high radionuclide mobility, and physical or chemical characteristics that present exceptional hazards - lead to different GCD facility design requirements. Facility design alternatives considered for GCD include the augered shaft, deep trench, engineered structure, hydrofracture, improved waste form, and high-integrity container. Selection of an appropriate design must also consider the interplay between basic risk limits for protection of public health and safety, performance characteristics and objectives, costs, waste-acceptance criteria, waste characteristics, and site characteristics

  4. PHYSICAL, CHEMICAL AND STRUCTURAL EVOLUTIION OF ZEOLITE-CONTAINING WASTE FORMS PRODUCED FROM METAKAOLINITE AND CALCINED SODUIM BEARING WASTE (HLW AND/OR LLW)

    International Nuclear Information System (INIS)

    Grutzeck, Michael W.

    2003-01-01

    Zeolites can adsorb liquids and gases, take part in catalytic reactions and serve as cation exchange media. They are commercially available as finely divided powders. Using zeolites to manage radioactive waste is not new, but a process by which zeolites can be made to act both as a host phase and a cementing agent is. It is notable that zeolites occur in nature as well consolidated/cemented deposits. The Romans used blocks of Neapolitan zeolitized tuff as a building material and some of these buildings are still standing. Zeolites are easy to synthesize from a wide range of both natural and man-made precursor materials. The method of making a ''hydroceramic'' is derived from a process in which metakaolinite (thermally dehydroxylated kaolinite) is slurried with a dilute sodium hydroxide (NaOH) solution and then reacted for hours to days at mildly elevated temperatures (60-200 C). The zeolites that form in solution are finely divided powders containing micrometer sized crystals. However, if the process is changed and only enough concentrated sodium hydroxide solution (e.g. 12 M) is added to the metakaolinite to give the mixture a putty-like consistency and the mixture is then cured under similar conditions, the mixture becomes a very hard ceramic-like material containing distinct tectosilicate crystallites (zeolites and feldspathoids) imbedded in an X-ray amorphous sodium aluminosilicate hydrate matrix. Due to the material's vitreous character, the composite has been called a hydroceramic. Similar to zeolite/feldspathoid powders, a hydroceramic is able to sequester cations and a wide range of salt molecules (e.g., nitrate, nitrite and sulfate) in lattice positions and within structural channels and voids thus rendering them ''insoluble'' and making them an ideal contingency waste form for solidifying radioactive waste. The obvious similarities between a hydroceramic waste form and a waste form based on solidified Portland-cement grout are superficial because their

  5. Economic analysis of alternative LLW disposal methods

    International Nuclear Information System (INIS)

    Foutes, C.E.; Queenan, C.J. III

    1987-01-01

    The Environmental Protection Agency (EPA) has evaluated the costs and benefits of alternative disposal technologies as part of its program to develop generally applicable environmental standards for the land disposal of low-level radioactive waste (LLW). Costs, population health effects and Critical Population Group (CPG) exposures resulting from alternative waste treatment and disposal methods were evaluated both in absolute terms and also relative to a base case (current practice). Incremental costs of the standard included costs for packaging, processing, transportation, and burial of waste. Benefits are defined in terms of reductions in the general population health risk (expected fatal cancers and genetic effects) evaluated over 10,000 years. A cost-effectiveness ratio, defined as the incremental cost per avoided health effect, was calculated for each alternative standard. The cost-effectiveness analysis took into account a number of waste streams, hydrogeologic and climatic region settings, and waste treatment and disposal methods. This paper describes the alternatives considered and preliminary results of the cost-effectiveness analysis. 15 references, 7 figures, 3 tables

  6. Separation, Concentration, and Immobilization of Technetium and Iodine from Alkaline Supernate Waste

    Energy Technology Data Exchange (ETDEWEB)

    James Harvey; Michael Gula

    1998-12-07

    Development of remediation technologies for the characterization, retrieval, treatment, concentration, and final disposal of radioactive and chemical tank waste stored within the Department of Energy (DOE) complex represents an enormous scientific and technological challenge. A combined total of over 90 million gallons of high-level waste (HLW) and low-level waste (LLW) are stored in 335 underground storage tanks at four different DOE sites. Roughly 98% of this waste is highly alkaline in nature and contains high concentrations of nitrate and nitrite salts along with lesser concentrations of other salts. The primary waste forms are sludge, saltcake, and liquid supernatant with the bulk of the radioactivity contained in the sludge, making it the largest source of HLW. The saltcake (liquid waste with most of the water removed) and liquid supernatant consist mainly of sodium nitrate and sodium hydroxide salts. The main radioactive constituent in the alkaline supernatant is cesium-137, but strontium-90, technetium-99, and transuranic nuclides are also present in varying concentrations. Reduction of the radioactivity below Nuclear Regulatory Commission (NRC) limits would allow the bulk of the waste to be disposed of as LLW. Because of the long half-life of technetium-99 (2.1 x 10 5 y) and the mobility of the pertechnetate ion (TcO 4 - ) in the environment, it is expected that technetium will have to be removed from the Hanford wastes prior to disposal as LLW. Also, for some of the wastes, some level of technetium removal will be required to meet LLW criteria for radioactive content. Therefore, DOE has identified a need to develop technologies for the separation and concentration of technetium-99 from LLW streams. Eichrom has responded to this DOE-identified need by demonstrating a complete flowsheet for the separation, concentration, and immobilization of technetium (and iodine) from alkaline supernatant waste.

  7. 77 FR 10401 - Low-Level Radioactive Waste Management Issues

    Science.gov (United States)

    2012-02-22

    ... part, the NRC staff will seek public feedback on the pros and cons of the four technical issues... near-surface LLW disposal technology, including shallow-land burial, engineered land disposal methods... developed based on the candidate site characteristics (waste package, waste form, disposal technology, cover...

  8. Certification Plan, low-level waste Hazardous Waste Handling Facility

    International Nuclear Information System (INIS)

    Albert, R.

    1992-01-01

    The purpose of this plan is to describe the organization and methodology for the certification of low-level radioactive waste (LLW) handled in the Hazardous Waste Handling Facility (HWHF) at Lawrence Berkeley Laboratory (LBL). This plan also incorporates the applicable elements of waste reduction, which include both up-front minimization and end-product treatment to reduce the volume and toxicity of the waste; segregation of the waste as it applies to certification; an executive summary of the Waste Management Quality Assurance Implementing Management Plan (QAIMP) for the HWHF and a list of the current and planned implementing procedures used in waste certification. This plan provides guidance from the HWHF to waste generators, waste handlers, and the Waste Certification Specialist to enable them to conduct their activities and carry out their responsibilities in a manner that complies with the requirements of WHC-WAC. Waste generators have the primary responsibility for the proper characterization of LLW. The Waste Certification Specialist verifies and certifies that LBL LLW is characterized, handled, and shipped in accordance with the requirements of WHC-WAC. Certification is the governing process in which LBL personnel conduct their waste generating and waste handling activities in such a manner that the Waste Certification Specialist can verify that the requirements of WHC-WAC are met

  9. Solid low level waste management guidelines: Final report

    International Nuclear Information System (INIS)

    Castagnacci, A.; Dalton, D.; Genoa, P.

    1994-11-01

    Since 1989, the nuclear industry has been moving in the direction of greater minimization of low level radioactive waste (LLW). This has been driven in part by increasing regulatory attention, but it also is in response to the desire on the part of nuclear utilities to be more cost efficient and to be environmentally responsive. Over the past half-dozen years, LLW disposal costs have increased dramatically. In addition, improvements in LLW volume reduction technologies have substantially reduced the volume of LLW that is disposed. At the same time, utilities are implementing aggressive source reduction programs and programs to reuse materials so as to extend the useful life of many materials. Thus, there has been a dramatic change in LLW economics and LLW management practices in just the past few years. This report was developed by utility nuclear experts to provide guidance to all utilities on mechanisms for integrating the program economics, advanced volume reduction techniques, and approaches to source reduction. Thus, utilizes will be able to use this report as a guide to optimizing their LLW program economics and minimizing LLW disposal volumes to the smallest reasonable fraction. This report discusses the implementation of these guidelines, management support, waste materials and waste inventory, radioactive tool and equipment management, protective clothing management, processing and volume reduction, solid LLW tracking, outage LLW management, and interim storage of LLW

  10. Facility status and progress of the INEL's WERF MLLW and LLW incinerator

    International Nuclear Information System (INIS)

    Conley, D.; Corrigan, S.

    1996-01-01

    The Idaho National Engineering Laboratory's (INEL) Waste Experimental Reduction Facility (WERF) incinerator began processing beta/gamma- emitting low-level waste (LLW) in September 1984. A Resource Conservation and Recovery Act (RCRA) trial burn for the WERF incinerator was conducted in 1986, and in 1989 WERF began processing (hazardous and low-level radioactive) waste known as mixed low-level waste (MLLW). On February 14, 1991 WERF operations were suspended to improve operating procedures and configuration management. On July 12, 1995, WERF initiated incineration of LLW; and on September 20, 1995 WERF resumed its primary mission of incinerating MLLW. MLLW incineration is proceeding under RCRA interim status. State of Idaho issuance of the Part B permit is one of the State's highest permitting priorities. The State of Idaho's Division of Environmental Quality is reviewing the permit application along with a revised trial burn plan that was also submitted with the application. The trial burn has been proposed to be performed in 1996 to demonstrate compliance with the current incinerator guidance. This paper describes the experiences and problems associated with WERF's operations, incineration of MLLW, and the RCRA Part B Permit Application. Some of the challenges that have been overcome include waste characterization, waste repackaging, repackaged waste storage, and implementation of RCRA interim status requirements. A number of challenges remain. They include revision of the RCRA Part B Permit Application and the Trial Burn Plan in response to comments from the state permit application reviewers as well as facility and equipment upgrades required to meet RCRA Permitted Status

  11. Low-level radioactive waste management at the Nevada Test Site - Current status

    International Nuclear Information System (INIS)

    Becker, B.D.; Crowe, B.M.; Gertz, C.P.; Clayton, W.A.

    1999-01-01

    The performance objectives of the Department of Energy's Low-Level Radioactive Waste (LLW) disposal facilities located at the Nevada Test Site transcend those of any other radioactive waste disposal site in the US. Situated at the southern end of the Great Basin, 800 feet above the water table, the Area 5 Radioactive Waste Management Site (RWMS) has utilized a combination of engineered shallow land disposal cells and deep augured shafts to dispose a variety of waste streams. These include high volume low-activity wastes, classified materials, and high-specific-activity special case wastes. Twenty miles north of Area 5 is the Area 3 RWMS. Here bulk LLW disposal takes place in subsidence craters formed from underground testing of nuclear weapons. Earliest records indicate that documented LLW disposal activities have occurred at the Area 5 and Area 3 RWMS's since 1961 and 1968, respectively. However, these activities have only been managed under a formal program since 1978. This paper describes the technical attributes of the facilities, present and future capacities and capabilities, and provides a description of the process from waste approval to final disposition. The paper also summarizes the current status of the waste disposal operations

  12. State implementation of the Low-Level Radioactive Waste Policy Amendments Act of 1985: Progress and issues

    International Nuclear Information System (INIS)

    Tait, T.D.

    1987-03-01

    The 1980 Low-Level Radioactive Waste Policy Act (Public Law 96-573) assigned each state the responsibility for providing disposal capacity for the low-level radioactive waste (LLW) generated within its borders, except for certain LLW generated by the activities of the federal government. The law also authorized and encouraged states to enter into interstate compacts to provide for the establishment and operation of regional LLW disposal facilities. The January 1986 enactment of Public Law 99-240, the Low-Level Radioactive Waste Policy Amendments Act of 1985 (LLRWPAA), resolved an impasse that had delayed congressional consent to seven interstate compacts formed for the regional disposal of LLW. The Act ensures that LLW generators will have continued access to the three existing commercial LLW disposal sites through 1992 as long as their states or regions are in compliance with milestones prescribed in the Act for development of new disposal facilities. Furthermore, the LLRWPAA assigned several responsibilities to the Department of Energy. The objective of the Low-Level Radioactive Waste Policy Amendments Act of 1985 is to ensure the development of an effective, safe, and environmentally acceptable nationwide system for the disposal of LLW by 1993. The Department of Energy is assisting the states and regions to achieve that objective and ensure that the system that is developed provides for the safe management and disposal of LLW at reasonable costs. Furthermore, the Department is working with the states and regions to ensure that while the new system is being developed, there are not disruptions in the current LLW management and disposal practices and that the public continues to receive the benefits of the industries that rely on nuclear materials to deliver their services

  13. INEL waste reduction: summary paper

    International Nuclear Information System (INIS)

    Rhoades, W.A.

    1987-01-01

    The Idaho National Engineering Laboratory (INEL) is a Department of Energy (DOE) facility located in southeastern Idaho. Located at the INEL are a Waste Experimental Reduction Facility (WERF) which processes low level radioactive waste (LLW) materials and a Radioactive Waste Management Complex (RWMC) which provides for disposal of radioactive waste materials. There are currently 9 active facilities (waste generators) at the INEL which produce an average total volume of about 5000 cubic meters of solid LLW annually. This boxed or bulk waste is ultimately disposed of at the RWMC Subsurface Disposal Area (SDA). The SDA is currently the only active LLW disposal site at the INEL, and the prospects for opening another shallow land burial disposal facility are uncertain. Therefore, it has become imperative that EG and G Idaho Waste Management Department make every reasonable effort to extend the disposal life of the SDA. Among Waste Management Department's principal efforts to extend the SDA disposal life are operation of the Waste Experimental Reduction Facility (WERF) and administration of the INEL Waste Reduction Program. The INEL Waste Reduction Program is charged with providing assistance to all INEL facilities in reducing LLW generation rates to the lowest practical levels while at the same time encouraging optimum utilization of the volume reduction capabilities of WERF. Both waste volume and waste generation reductions are discussed

  14. LLW disposal wasteform preparation in the UK: the role of high force compaction

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, L. F.; Fearnley, I. G. [British Nuclear Fuels Ltd., Sellafield (United Kingdom)

    1991-07-01

    British Nuclear Fuels plc (BNFL) owns and operates the principal UK solid low level radioactive waste (LLW) disposal site. The site is located at Drigg in West Cumbria some 6 km to the south east of BNFL's Sellafield reprocessing complex. Sellafield is the major UK generator of LLW, accounting for about 85% of estimated future arisings of raw (untreated, unpackaged) waste. Non-Sellafield consignors to the Drigg site include other BNFL production establishments, nuclear power stations, sites of UKAEA, Ministry of Defence facilities, hospitals, universities, radioisotope production sites and various other industrial organisations. In September 1987, BNFL announced a major upgrade of operations at the Drigg site aimed at improving management practices, the efficiency of space utilisation and enhancing the visual impact of disposal operations. During 1989 a review of plans for compaction and containerisation of Sellafield waste identified that residual voidage in ISO freight containers could be significant even after the introduction of compaction. Subsequent studies which examined a range of compaction and packaging options concluded that the preferred scheme centred on the use of high force compaction (HFC) of compactable waste, and grouting to take up readily accessible voidage in the wasteform. The paper describes the emergence of high force compaction as the preferred scheme for wasteform preparation and subsequent benefits against the background of the overall development of Low Level Waste disposal operations at Drigg.

  15. LLW disposal wasteform preparation in the UK: the role of high force compaction

    International Nuclear Information System (INIS)

    Johnson, L. F.; Fearnley, I. G.

    1991-01-01

    British Nuclear Fuels plc (BNFL) owns and operates the principal UK solid low level radioactive waste (LLW) disposal site. The site is located at Drigg in West Cumbria some 6 km to the south east of BNFL's Sellafield reprocessing complex. Sellafield is the major UK generator of LLW, accounting for about 85% of estimated future arisings of raw (untreated, unpackaged) waste. Non-Sellafield consignors to the Drigg site include other BNFL production establishments, nuclear power stations, sites of UKAEA, Ministry of Defence facilities, hospitals, universities, radioisotope production sites and various other industrial organisations. In September 1987, BNFL announced a major upgrade of operations at the Drigg site aimed at improving management practices, the efficiency of space utilisation and enhancing the visual impact of disposal operations. During 1989 a review of plans for compaction and containerisation of Sellafield waste identified that residual voidage in ISO freight containers could be significant even after the introduction of compaction. Subsequent studies which examined a range of compaction and packaging options concluded that the preferred scheme centred on the use of high force compaction (HFC) of compactable waste, and grouting to take up readily accessible voidage in the wasteform. The paper describes the emergence of high force compaction as the preferred scheme for wasteform preparation and subsequent benefits against the background of the overall development of Low Level Waste disposal operations at Drigg

  16. Greater-than-Class-C low-level radioactive waste management concepts

    International Nuclear Information System (INIS)

    Knecht, M.A.

    1988-01-01

    In 1986, Public Law 99-240, the Low-Level Radioactive Waste Policy Amendments Act of 1985 assigned to the Federal Government responsibility for the disposal of commercial greater-than-Class-C (GTCC) low-level radioactive waste (LLW). In 1987, DOE committed to Congress to accept GTCC LLW and provide storage and other waste management as necessary until disposal capacity is available. Current estimates are that about 6,000 m 3 of unpackaged GTCC LLW will be generated to the year 2020. Generators estimate that 100 m 3 of raw GTCC LLW might exceed planned storage capacity to the year 2020. This paper reports the activities of the National Low-Level Waste Program to manage GTCC low-level radioactive waste

  17. Lessons learned from international siting experiences of LLW Disposal facilities

    International Nuclear Information System (INIS)

    McCabe, G.H.

    1990-01-01

    This paper reports that the United States can gain insight into successfully siting low-level radioactive waste (LLW) disposal facilities by studying the process in other nations. Siting experiences in France and Sweden are compared to experiences in the United States. Three factors appear to making siting of LLW disposal facilities easier in France and Sweden than in the United States. First, the level of public trust in the government and the entities responsible for siting, developing, and operating a LLW disposal facility is much greater in France and Sweden than in the United States. Second, France and Sweden are much more dependent on nuclear power than is the United States. Third, French and Swedish citizens do not have the same access to the siting process (i.e., legal means to intervene) as do U.S. citizens. To compensate for these three factors, public officials responsible for siting a facility may need to better listen to the concerns of public interest groups and citizen advisory committees and amend their siting process accordingly and better share power and control with the public. If these two techniques are implemented earnestly by the states, siting efforts may be increasingly more successful in the United States

  18. The role of the national low level waste repository operator in delivering new solutions for the management of low level wastes in the UK - 16217

    International Nuclear Information System (INIS)

    Walkingshaw, Martin

    2009-01-01

    The UK National Low Level Waste Repository (LLWR) is located near to the village of Drigg in West Cumbria. It is the principal site for disposal of solid Low Level Radioactive Waste (LLW) in the United Kingdom. This paper describes the program of work currently being undertaken by the site's operators, (LLW Repository Ltd and its newly appointed Parent Body Organisation), to extend the life of the LLWR and reduce the overall cost of LLW management to the UK taxpayer. The current focus of this program is to prevent disposal capacity being taken up at LLWR by waste types which lend themselves to alternative treatment and/or disposition routes. The chosen approach enables consignors to segregate LLW at source into formats which allow further treatment for volume reduction or, (for wastes with lower levels of activity), consignment in the future to alternative disposal facilities. Segregated waste services are incorporated into LLW Disposal commercial agreements between the LLWR operator and waste consignors. (author)

  19. Impacts of hazardous waste regulation on low-level waste management

    International Nuclear Information System (INIS)

    Sharples, F.E.; Eyman, L.D.

    1987-01-01

    Since passage of the 1984 amendments to the Resource Conservation and Recovery Act (RCRA), major changes have occurred in the regulation of hazardous waste. The US Environmental Protection Agency (EPA) has also greatly modified its interpretation of how these regulations apply to wastes from federal facilities, including defense wastes from US Department of Energy (DOE) sites. As a result, the regulatory distinctions between low-level radioactive waste (LLW) and hazardous waste are becoming blurred. This paper discusses recent statutory and regulatory changes and how they might affect the management of LLW at DOE facilities. 6 references

  20. 77 FR 26991 - Low-Level Radioactive Waste Management Issues

    Science.gov (United States)

    2012-05-08

    ... parts. In the first part, the NRC staff will seek public feedback on the pros and cons of the four... (47 FR 57446). The rule applies to any near-surface LLW disposal technology. The regulations emphasize... site characteristics (waste package, waste form, disposal technology, cover technology and geo...

  1. LLW/Il conditioning for transportation, storage and disposal

    International Nuclear Information System (INIS)

    Pech, R.; Chevalier, Ph.

    2000-01-01

    In France, Sogefibre (Cogema subsidiary) has developed original containers adapted to the conditioning of LLW and ILW and assuring integrity of the waste form over long period of time. These containers have been designed according to the following criteria, derived from Andra's requirement for the surface disposal: Mechanical strength, resistance to microcracking, Radioactive containment and long life: 300 years minimum. Choice of formulation for the concrete as well as selection of raw materials have been optimised in this objective. Sizes and shapes of Fiber Reinforced Concrete Containers (FRCC) have been developed in relation with handling means of Cogema La Hague facilities for automatized operations. Experience gained after nearly 10 years and 40000 FRCC produced shows that choices have been right and properties of FRCC effectively useful. The paper also recalls mechanical and containment properties and the durability assessment recently updated thanks to results of computer modelling. Degradation phenomenon of the Blended Ternary Cement (clinker, slag, ash) used in FRCC is described and the model presented. (authors)

  2. Vitrification treatment options for disposal of greater-than-Class-C low-level waste in a deep geologic repository

    International Nuclear Information System (INIS)

    Fullmer, K.S.; Fish, L.W.; Fischer, D.K.

    1994-11-01

    The Department of Energy (DOE), in keeping with their responsibility under Public Law 99-240, the Low-Level Radioactive Waste Policy Amendments Act of 1985, is investigating several disposal options for greater-than-Class C low-level waste (GTCC LLW), including emplacement in a deep geologic repository. At the present time vitrification, namely borosilicate glass, is the standard waste form assumed for high-level waste accepted into the Civilian Radioactive Waste Management System. This report supports DOE's investigation of the deep geologic disposal option by comparing the vitrification treatments that are able to convert those GTCC LLWs that are inherently migratory into stable waste forms acceptable for disposal in a deep geologic repository. Eight vitrification treatments that utilize glass, glass ceramic, or basalt waste form matrices are identified. Six of these are discussed in detail, stating the advantages and limitations of each relative to their ability to immobilize GTCC LLW. The report concludes that the waste form most likely to provide the best composite of performance characteristics for GTCC process waste is Iron Enriched Basalt 4 (IEB4)

  3. Greater-than-Class C low-level radioactive waste characterization. Appendix E-4: Packaging factors for greater-than-Class C low-level radioactive waste

    International Nuclear Information System (INIS)

    Quinn, G.; Grant, P.; Winberg, M.; Williams, K.

    1994-09-01

    This report estimates packaging factors for several waste types that are potential greater-than-Class C (GTCC) low-level radioactive waste (LLW). The packaging factor is defined as the volume of a GTCC LLW disposal container divided by the as-generated or ''unpackaged'' volume of the waste loaded into the disposal container. Packaging factors reflect any processes that reduce or increase an original unpackaged volume of GTCC LLW, the volume inside a waste container not occupied by the waste, and the volume of the waste container itself. Three values are developed that represent (a) the base case or most likely value for a packaging factor, (b) a high case packaging factor that corresponds to the largest anticipated disposal volume of waste, and (c) a low case packaging factor for the smallest volume expected. GTCC LLW is placed in three categories for evaluation in this report: activated metals, sealed sources, and all other waste

  4. Development of a computerized data base for low-level waste leaching data

    International Nuclear Information System (INIS)

    Dougherty, D.R.; Colombo, P.

    1987-01-01

    A computerized data base (db) of low-level waste (LLW) leaching data is being compiled by Brookhaven National Laboratory under contract to the DOE Low-Level Waste Management Program. Although this db is being compiled as part of an effort to develop accelerated leach test procedures for LLW forms, other involved in LLW management may find it useful. The db is implemented on an IBM PC XT and is self-contained in that its data manipulation and analysis programs are not proprietary (i.e., need not be purchased). The db includes data from the Accelerated Leach Test(s) Program plus selected literature data, which have been selected based on criteria that include completeness of the experimental description and elucidation of leaching mechanisms. 6 references, 5 figures, 3 tables

  5. Low-level waste certification plan

    International Nuclear Information System (INIS)

    Greenhalph, W.O.

    1995-01-01

    This plan describes the organization and methodology for the certification of solid low-level waste (LLW) and mixed-waste (MW) generated at any of the facilities or major work activities of the Engineered Process Application (EPA) organization. The primary LLW and MW waste generating facility operated by EPA is the 377 Building. This plan does not cover the handling of hazardous or non-regulated waste, though they are mentioned at times for completeness

  6. Analysis of the low-level waste radionuclide inventory for the Radioactive Waste Management Complex performance assessment

    Energy Technology Data Exchange (ETDEWEB)

    Plansky, L.E.; Hoiland, S.A.

    1992-02-01

    This report summarizes the results of a study to improve the estimates of the radionuclides in the low-level radioactive waste (LLW) inventory which is buried in the Idaho National Engineering Laboratory (INEL) Radioactive Waste Management Complex (RWMC) Subsurface Disposal Area (SDA). The work is done to support the RWMC draft performance assessment (PA). Improved radionuclide inventory estimates are provided for the INEL LLW generators. Engineering, environmental assessment or other research areas may find use for the information in this report. It may also serve as a LLW inventory baseline for data quality assurance. The individual INEL LLW generators, their history and their activities are also described in detail.

  7. Analysis of the low-level waste radionuclide inventory for the Radioactive Waste Management Complex performance assessment

    International Nuclear Information System (INIS)

    Plansky, L.E.; Hoiland, S.A.

    1992-02-01

    This report summarizes the results of a study to improve the estimates of the radionuclides in the low-level radioactive waste (LLW) inventory which is buried in the Idaho National Engineering Laboratory (INEL) Radioactive Waste Management Complex (RWMC) Subsurface Disposal Area (SDA). The work is done to support the RWMC draft performance assessment (PA). Improved radionuclide inventory estimates are provided for the INEL LLW generators. Engineering, environmental assessment or other research areas may find use for the information in this report. It may also serve as a LLW inventory baseline for data quality assurance. The individual INEL LLW generators, their history and their activities are also described in detail

  8. PHYSICAL, CHEMICAL AND STRUCTURAL EVOLUTIION OF ZEOLITE-CONTAINING WASTE FORMS PRODUCED FROM METAKAOLINITE AND CALCINED SODUIM BEARING WASTE (HLW AND/OR LLW)

    International Nuclear Information System (INIS)

    Grutzeck, Michael W.

    2004-01-01

    Zeolites are extremely versatile. They can adsorb liquids and gases and serve as cation exchange media. They occur in nature as well cemented deposits. The Romans used blocks of zeolitized tuff as a building material. Using zeolites for the management of radioactive waste is not new, but a process by which the zeolites can be made to act as a cementing agent is. Zeolitic materials are relatively easy to synthesize from a wide range of both natural and man-made precursors. The process under study is derived from a well known method in which metakaolin (thermally dehydroxylated kaolin a mixture of kaolinite and smaller amounts of quartz and mica that has been heated to ∼700 C) is mixed with sodium hydroxide (NaOH) and water and reacted in slurry form (for a day or two) at mildly elevated temperatures. The zeolites form as finely divided powders containing micrometer ((micro)m) sized crystals. However, if the process is changed slightly and just enough concentrated sodium hydroxide solution is added to the metakaolinite to make a thick paste and then the paste is cured under mild hydrothermal conditions (60-200 C), the mixture forms a concrete-like ceramic material made up of distinct crystalline tectosilicate minerals (zeolites and feldspathoids) imbedded in an X-ray amorphous hydrated sodium aluminosilicate matrix. Due to its vitreous character we have chosen to call this composite a ''hydroceramic''. Similar to zeolite powders, a hydroceramic is able to sequester cations in both lattice positions and within the channels and voids present in its tectosilicate framework structure. It can also accommodate a wide range of salt molecules (e.g., sodium nitrate) within these same openings thus rendering them insoluble. Due to its fine crystallite size and cementing character, the matrix develops significant physical strength. The obvious similarities between a hydroceramic waste form and a waste form based on solidified Portland cement grout are only superficial because

  9. Waste Management at the Nevada Test Site Fiscal Year 2001 Current Status

    International Nuclear Information System (INIS)

    Becker, B.D.; Clayton, W.A.; Crowe, B.M.

    2002-01-01

    The performance objectives of the U. S. Department of Energy's National Nuclear Security Administration Nevada Operations Office (NNSA/NV) Low-level Radioactive Waste (LLW) disposal facilities located at the Nevada Test Site transcend those of any other radioactive waste disposal site in the United States. Situated at the southern end of the Great Basin, 244 meters (800 feet) above the water table, the Area 5 Radioactive Waste Management Site (RWMS) has utilized a combination of engineered shallow land disposal cells and deep augured shafts to dispose a variety of waste streams. These include high volume low-activity waste, classified radioactive material, and high-specific-activity special case waste. Fifteen miles north of Area 5 is the Area 3 RWMS. Here bulk LLW disposal takes place in subsidence craters formed from underground testing of nuclear weapons. Earliest records indicate that documented LLW disposal activities have occurred at the Area 5 and Area 3 RWMSs since 1961 and 1 968, respectively. However, these activities have only been managed under a formal program since 1978. This paper describes the technical attributes of the facilities, present and future capacities and capabilities, and provides a description of the process from waste approval to final disposition. The paper also summarizes the current status of the waste disposal operations

  10. Modeling the economics of LLW volume reduction

    International Nuclear Information System (INIS)

    Voth, M.H.; Witzig, W.F.

    1986-01-01

    Generators of low-level (radioactive) waste (LLW) are under pressure to implement volume reduction (VR) programs for political and economic reasons. Political reasons include the appearance of generating less waste or meeting quotas. Economic reasons include avoiding high disposal costs and associated surcharges. Volume reduction results in less total volume over which fixed disposal costs are allocated and therefore higher unit costs for disposal. As numerous small compacts are developed, this often overlooked effect becomes more pronounced. The described model presents two unique significant features. First, a feedback loop considers the impact of VR on disposal rates, and second, it appeals to logic without extensive knowledge of VR technology or computer modeling. The latter feature is especially useful in conveying information to students and nontechnical decision makers, demonstrating the impact of each of a complicated set of variables with reproducible results

  11. Low-level waste inventory, characteristics, generation, and facility assessment for treatment, storage, and disposal alternatives considered in the US Department of Energy waste management programmatic environmental impact statement

    Energy Technology Data Exchange (ETDEWEB)

    Goyette, M.L.; Dolak, D.A.

    1996-12-01

    This report provides technical support information for use in analyzing environmental impacts associated with U.S. Department of Energy (DOE) low-level radioactive waste (LLW) management alternatives in the Waste-Management (WM) Programmatic Environmental Impact Statement (PEIS). Waste loads treated and disposed of for each of the LLW alternatives considered in the DOE WM PEIS are presented. Waste loads are presented for DOE Waste Management (WM) wastes, which are generated from routine operations. Radioactivity concentrations and waste quantities for treatment and disposal under the different LLW alternatives are described for WM waste. 76 refs., 14 figs., 42 tabs.

  12. Nevada Test Site Waste Acceptance Criteria

    International Nuclear Information System (INIS)

    U. S. Department of Energy, National Nuclear Security Administration Nevada Site Office

    2005-01-01

    This document establishes the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO) waste acceptance criteria (WAC). The WAC provides the requirements, terms, and conditions under which the Nevada Test Site (NTS) will accept low-level radioactive (LLW) and mixed waste (MW) for disposal. It includes requirements for the generator waste certification program, characterization, traceability, waste form, packaging, and transfer. The criteria apply to radioactive waste received at the NTS Area 3 and Area 5 Radioactive Waste Management Complex (RWMC) for storage or disposal

  13. The establishment of computer codes for radiological assessment on LLW final disposal in Taiwan

    International Nuclear Information System (INIS)

    Yang, C.C.; Chen, H.T.; Shih, C.L.; Yeh, C.S.; Tsai, C.M.

    1988-01-01

    For final shallow land disposal of Low Level Waste (LLW) in Taiwan, an effort was initiated to establish the evaluation codes for the needs of environmental impact analysis. The objective of the computer code is to set up generic radiological standards for future evaluation on 10 CFR Part 61 Licensing Requirements for Land Disposal of Radioactive Wastes. In determining long-term influences resulting from radiological impacts of LLW at disposal sites there are at least three quantifiable impact measures selected for calculation: dose to members of the public (individual and population), occupational exposures and costs. The computer codes are from INTRUDE, INVERSI and INVERSW of NUREG-0782, OPTIONR and GRWATRR of NUREG-0945. They are both installed in FACOM-M200 and IBM PC/AT systems of Institute of Nuclear Energy Research (INER). The systematic analysis of the computer codes depends not only on the data bases supported by NUREG/CR-1759 - Data Base for Radioactive Waste Management, Volume 3, Impact Analysis Methodology Report but also the information collected from the different exposure scenarios and pathways. The sensitivity study is also performed to assure the long-term stability and security for needs of determining performance objectives

  14. Studies on disposal of low-level radioactive wastes in Turkey

    International Nuclear Information System (INIS)

    Uslu, I.; Fields, D.E.; Yalcintas, M.G.

    1989-08-01

    The Turkish Government is in the process of planning two nuclear reactors in Turkey. Studies have begun for improved control of low level wastes (LLW) in Turkey before establishment of these reactors. In this study, the PRESTO-II (Prediction of Radiation Exposures form Shallow Trench Operations) computer code is used to assess the risk associated with the shallow land disposal of low level waste (LLW) in various sites in Turkey. PRESTO-II is a computer code developed under the United States Environmental Protection Agency, Department of Energy and Nuclear Regulatory Commission funding to evaluate possible health effects from radioactive releases from shallow, radioactive waste disposal trenches and from areas contaminated with operational spillage. A preliminary simulation using the PRESTO-II computer code has been run for the site in Koteyli, Balikesir, Turkey. This example simulation was performed using the same radionuclide data set believed representative of the LLW disposal facility in Barnwell, South Carolina. Site environmental variables were selected to typify credible worst case exposure scenarios. Radionuclide inventories are primarily based on estimated waste composition rather than measured values. 9 refs., 4 figs., 1 tab

  15. Radioactive waste management complex low-level waste radiological composite analysis

    Energy Technology Data Exchange (ETDEWEB)

    McCarthy, J.M.; Becker, B.H.; Magnuson, S.O.; Keck, K.N.; Honeycutt, T.K.

    1998-05-01

    The composite analysis estimates the projected cumulative impacts to future members of the public from the disposal of low-level radioactive waste (LLW) at the Idaho National Engineering and Environmental Laboratory (INEEL) Radioactive Waste Management Complex (RWMC) and all other sources of radioactive contamination at the INEEL that could interact with the LLW disposal facility to affect the radiological dose. Based upon the composite analysis evaluation, waste buried in the Subsurface Disposal Area (SDA) at the RWMC is the only source at the INEEL that will significantly interact with the LLW facility. The source term used in the composite analysis consists of all historical SDA subsurface disposals of radionuclides as well as the authorized LLW subsurface disposal inventory and projected LLW subsurface disposal inventory. Exposure scenarios evaluated in the composite analysis include all the all-pathways and groundwater protection scenarios. The projected dose of 58 mrem/yr exceeds the composite analysis guidance dose constraint of 30 mrem/yr; therefore, an options analysis was conducted to determine the feasibility of reducing the projected annual dose. Three options for creating such a reduction were considered: (1) lowering infiltration of precipitation through the waste by providing a better cover, (2) maintaining control over the RWMC and portions of the INEEL indefinitely, and (3) extending the period of institutional control beyond the 100 years assumed in the composite analysis. Of the three options investigated, maintaining control over the RWMC and a small part of the present INEEL appears to be feasible and cost effective.

  16. Radioactive waste management complex low-level waste radiological composite analysis

    International Nuclear Information System (INIS)

    McCarthy, J.M.; Becker, B.H.; Magnuson, S.O.; Keck, K.N.; Honeycutt, T.K.

    1998-05-01

    The composite analysis estimates the projected cumulative impacts to future members of the public from the disposal of low-level radioactive waste (LLW) at the Idaho National Engineering and Environmental Laboratory (INEEL) Radioactive Waste Management Complex (RWMC) and all other sources of radioactive contamination at the INEEL that could interact with the LLW disposal facility to affect the radiological dose. Based upon the composite analysis evaluation, waste buried in the Subsurface Disposal Area (SDA) at the RWMC is the only source at the INEEL that will significantly interact with the LLW facility. The source term used in the composite analysis consists of all historical SDA subsurface disposals of radionuclides as well as the authorized LLW subsurface disposal inventory and projected LLW subsurface disposal inventory. Exposure scenarios evaluated in the composite analysis include all the all-pathways and groundwater protection scenarios. The projected dose of 58 mrem/yr exceeds the composite analysis guidance dose constraint of 30 mrem/yr; therefore, an options analysis was conducted to determine the feasibility of reducing the projected annual dose. Three options for creating such a reduction were considered: (1) lowering infiltration of precipitation through the waste by providing a better cover, (2) maintaining control over the RWMC and portions of the INEEL indefinitely, and (3) extending the period of institutional control beyond the 100 years assumed in the composite analysis. Of the three options investigated, maintaining control over the RWMC and a small part of the present INEEL appears to be feasible and cost effective

  17. Densified waste form and method for forming

    Science.gov (United States)

    Garino, Terry J.; Nenoff, Tina M.; Sava Gallis, Dorina Florentina

    2015-08-25

    Materials and methods of making densified waste forms for temperature sensitive waste material, such as nuclear waste, formed with low temperature processing using metallic powder that forms the matrix that encapsulates the temperature sensitive waste material. The densified waste form includes a temperature sensitive waste material in a physically densified matrix, the matrix is a compacted metallic powder. The method for forming the densified waste form includes mixing a metallic powder and a temperature sensitive waste material to form a waste form precursor. The waste form precursor is compacted with sufficient pressure to densify the waste precursor and encapsulate the temperature sensitive waste material in a physically densified matrix.

  18. Current status of low-level-waste-segregation technology

    International Nuclear Information System (INIS)

    Clark, D.E.; Colombo, P.; Sailor, V.L.

    1982-01-01

    The adoption of improved waste segregation practices by waste generators and burial sites will result in the improved disposal of low-level wastes (LLW) in the future. Many of the problems connected with this disposal mode are directly attributable to or aggravated by the indiscriminate mixing of various waste types in burial trenches. Thus, subsidence effects, contact with ground fluids, movement of radioactivity in the vapor phase, migration of radionuclides due to the presence of chelating agents or products of biological degradation, deleterious chemical reactions, and other problems have occurred. Regulations are currently being promulgated which will require waste segregation to a high degree at LLW burial sites. The state-of-the-art of LLW segregation technology and current practices in the USA have been surveyed at representative facilities. Favorable experience has been reported at various sites following the application of segregation controls. This paper reports on the state-of-the-art survey and addresses current and projected LLW segregation practices and their relationship to other waste management activities

  19. Determination of a radioactive waste classification system

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, J.J.; King, W.C.

    1978-03-01

    Several classification systems for radioactive wastes are reviewed and a system is developed that provides guidance on disposition of the waste. The system has three classes: high-level waste (HLW), which requires complete isolation from the biosphere for extended time periods; low-level waste (LLW), which requires containment for shorter periods; and innocuous waste (essentially nonradioactive), which may be disposed of by conventional means. The LLW/innocuous waste interface was not defined in this study. Reasonably conservative analytical scenarios were used to calculate that HLW/LLW interface level which would ensure compliance with the radiological exposure guidelines of 0.5 rem/y maximum exposure for a few isolated individuals and 0.005 rem/y for large population groups. The recommended HLW/LLW interface level for /sup 239/Pu or mixed transuranic waste is 1.0 ..mu..Ci/cm/sup 3/ of waste. Levels for other radionuclides are based upon a risk equivalent to this level. A cost-benefit analysis in accordance with as low as reasonably achievable (ALARA) and National Environmental Protection Act (NEPA) guidance indicates that further reduction of this HLW/LLL interface level would entail marginal costs greater than $10/sup 8/ per man-rem of dose avoided. The environmental effects considered were limited to those involving human exposure to radioactivity.

  20. Determination of a radioactive waste classification system

    International Nuclear Information System (INIS)

    Cohen, J.J.; King, W.C.

    1978-03-01

    Several classification systems for radioactive wastes are reviewed and a system is developed that provides guidance on disposition of the waste. The system has three classes: high-level waste (HLW), which requires complete isolation from the biosphere for extended time periods; low-level waste (LLW), which requires containment for shorter periods; and innocuous waste (essentially nonradioactive), which may be disposed of by conventional means. The LLW/innocuous waste interface was not defined in this study. Reasonably conservative analytical scenarios were used to calculate that HLW/LLW interface level which would ensure compliance with the radiological exposure guidelines of 0.5 rem/y maximum exposure for a few isolated individuals and 0.005 rem/y for large population groups. The recommended HLW/LLW interface level for 239 Pu or mixed transuranic waste is 1.0 μCi/cm 3 of waste. Levels for other radionuclides are based upon a risk equivalent to this level. A cost-benefit analysis in accordance with as low as reasonably achievable (ALARA) and National Environmental Protection Act (NEPA) guidance indicates that further reduction of this HLW/LLL interface level would entail marginal costs greater than $10 8 per man-rem of dose avoided. The environmental effects considered were limited to those involving human exposure to radioactivity

  1. Characterization of waste streams on the Oak Ridge Reservation

    International Nuclear Information System (INIS)

    Rivera, A.L.; Osborne-Lee, I.W.; Jackson, A.M.; Butcher, B.T. Jr.; Van Cleve, J.E. Jr.

    1987-01-01

    The Oak Ridge Reservation (ORR) plants generate solid low-level waste (LLW) that must be disposed of or stored on-site. The available disposal capacity of the current sites is projected to be fully utilized during the next decade. An LLW disposal strategy has been developed by the Low-Level Waste Disposal Development and Demonstration (LLWDDD) Program as a framework for bringing new, regulator-approved disposal capacity to the ORR. An increasing level of waste stream characterization will be needed to maintain the ability to effectively manage solid LLW by the facilities on the ORR under the new regulatory scenario. In this paper, current practices for solid LLW stream characterization, segregation, and certification are described. In addition, the waste stream characterization requirements for segregation and certification under the LLWDDD Program strategy are also examined. 6 refs., 3 figs., 4 tabs

  2. The chemistry, waste form development, and properties of the Nitrate to Ammonia and Ceramic (NAC) process

    International Nuclear Information System (INIS)

    Mattus, A.J.; Lee, D.D.; Youngblood, E.L.; Walker, J.F. Jr.; Tiegs, T.N.

    1994-01-01

    A process for the conversion of alkaline, aqueous nitrate wastes to ammonia gas at low temperature, based upon the use of the active metal reductant aluminum, has been developed at the Oak Ridge National Laboratory (ORNL). The process is also well suited for the removal of low-level waste (LLW) radioelements and hazardous metals which report to the solid, alumina-based by-product. ne chemistry of the interaction of aluminum powders with nitrate, and other waste stream metals is presented

  3. Waste minimization for commercial radioactive materials users generating low-level radioactive waste

    International Nuclear Information System (INIS)

    Fischer, D.K.; Gitt, M.; Williams, G.A.; Branch, S.; Otis, M.D.; McKenzie-Carter, M.A.; Schurman, D.L.

    1991-07-01

    The objective of this document is to provide a resource for all states and compact regions interested in promoting the minimization of low-level radioactive waste (LLW). This project was initiated by the Commonwealth of Massachusetts, and Massachusetts waste streams have been used as examples; however, the methods of analysis presented here are applicable to similar waste streams generated elsewhere. This document is a guide for states/compact regions to use in developing a system to evaluate and prioritize various waste minimization techniques in order to encourage individual radioactive materials users (LLW generators) to consider these techniques in their own independent evaluations. This review discusses the application of specific waste minimization techniques to waste streams characteristic of three categories of radioactive materials users: (1) industrial operations using radioactive materials in the manufacture of commercial products, (2) health care institutions, including hospitals and clinics, and (3) educational and research institutions. Massachusetts waste stream characterization data from key radioactive materials users in each category are used to illustrate the applicability of various minimization techniques. The utility group is not included because extensive information specific to this category of LLW generators is available in the literature

  4. Proceedings of the sixth annual Participants' Information Meeting DOE Low-Level Waste Management Program

    International Nuclear Information System (INIS)

    1984-12-01

    Sessions were held on disposal technology, characteristics and treatment of low-level waste, environmental aspects and performance prediction, predicting source terms for low-level wastes (LLW), performance assessment for LLW disposal facilities, and approaches to LLW facility siting and characteristics. Fifty-six papers were indexed separately

  5. Impacts of hazardous waste regulation on low-level waste management

    International Nuclear Information System (INIS)

    Sharples, F.E.; Eyman, L.D.

    1986-01-01

    The Hazardous and Solid Waste Amendments of 1984 have greatly expanded the universe of what, and who, is regulated under Resource Conservation and Recovery Act (RCRA). Handling requirements for hazardous waste are becoming increasingly more stringent, particularly where land disposal is concerned. DOE needs to begin actively pursuing strategies directed at keeping the management of LLW clearly separated from wastes that are legitimately regulated under RCRA. Such strategies would include instituting systemwide changes in internal management practices, establishing improved location standards for LLW disposal, and negotiating interagency compromise agreements to obtain variances from RCRA requirements where necessary and appropriate

  6. Waste management system functional requirements for Interim Waste Management Facilities (IWMFs) and technology demonstrations, LLWDDD [Low-Level Disposal Development and Demonstration] Program

    International Nuclear Information System (INIS)

    1988-03-01

    The purpose of this report is to build upon the preceding decisions and body of information to prepare draft system functional requirements for each classification of waste disposal currently proposed for Low-Level Waste Disposal Development Demonstration (LLWDDD) projects. Functional requirements identify specific information and data needs necessary to satisfy engineering design criteria/objectives for Interim Waste Management Facilities. This draft will suppor the alternatives evaluation process and will continue to evolve as strategy is implemented, regulatory limits are established, technical and economic uncertainties are resolved, and waste management plans are being implemented. This document will become the planning basis for the new generation of solid LLW management facilities on new sites on the Reservation. Eighteen (18) general system requirements are identified which are applicable to all four Low-Level Waste (LLW) disposal classifications. Each classification of LLW disposal is individually addressed with respect ot waste characteristics, site considerations, facility operations, facility closure/post-closure, intruder barriers, institutional control, and performance monitoring requirements. Three initial LLW disposal sites have been proposed as locations on the ORR for the first demonstrations

  7. Nevada Test Site Waste Acceptance Criteria (NTSWAC)

    Energy Technology Data Exchange (ETDEWEB)

    NNSA/NSO Waste Management Project

    2008-06-01

    This document establishes the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, Nevada Test Site Waste Acceptance Criteria (NTSWAC). The NTSWAC provides the requirements, terms, and conditions under which the Nevada Test Site will accept low-level radioactive (LLW) and LLW Mixed Waste (MW) for disposal.

  8. Nevada Test Site Waste Acceptance Criteria (NTSWAC)

    International Nuclear Information System (INIS)

    NNSA/NSO Waste Management Project

    2008-01-01

    This document establishes the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, Nevada Test Site Waste Acceptance Criteria (NTSWAC). The NTSWAC provides the requirements, terms, and conditions under which the Nevada Test Site will accept low-level radioactive (LLW) and LLW Mixed Waste (MW) for disposal

  9. Intermodal transportation of low-level radioactive waste to the Nevada Test Site

    International Nuclear Information System (INIS)

    1998-09-01

    The Nevada Test Site (NTS) presently serves as a disposal site for low-level radioactive waste (LLW) generated by DOE-approved generators. The environmental impacts resulting from the disposal of LLW at the NTS are discussed in the Final Environmental Impact Statement (EIS) for the Nevada Test Site Off-Site Locations in the State of Nevada (NTS EIS). During the formal NTS EIS scoping period, it became clear that transportation of LLW was an issue that required attention. Therefore, the Nevada Transportation Protocol Working Group (TPWG) was formed in 1995 to identify, prioritize, and understand local issues and concerns associated with the transportation of LLW to the NTS. Currently, generators of LLW ship their waste to the NTS by legal-weight truck. In 1995, the TPWG suggested the DOE could reduce transportation costs and enhance public safety by using rail transportation. The DOE announced, in October 1996, that they would study the potential for intermodal transportation of LLW to the NTS, by transferring the LLW containers from rail cars to trucks for movements to the NTS. The TPWG and DOE/NV prepared the NTS Intermodal Transportation Facility Site and Routing Evaluation Study to present basic data and analyses on alternative rail-to-truck transfer sites and related truck routes for LLW shipments to the NTS. This Environmental Assessment (EA) identifies the potential environmental impacts and transportation risks of using new intermodal transfer sites and truck routes or continuing current operations to accomplish the objectives of minimizing radiological risk, enhancing safety, and reducing cost. DOE/NV will use the results of the assessment to decide whether or not to encourage the LLW generators and their transportation contractors to change their current operations to accomplish these objectives

  10. Project Execution Plan for the Remote Handled Low-Level Waste Disposal Project

    Energy Technology Data Exchange (ETDEWEB)

    Danny Anderson

    2014-07-01

    As part of ongoing cleanup activities at the Idaho National Laboratory (INL), closure of the Radioactive Waste Management Complex (RWMC) is proceeding under the Comprehensive Environmental Response, Compensation, and Liability Act (42 USC 9601 et seq. 1980). INL-generated radioactive waste has been disposed of at RWMC since 1952. The Subsurface Disposal Area (SDA) at RWMC accepted the bulk of INL’s contact and remote-handled low-level waste (LLW) for disposal. Disposal of contact-handled LLW and remote-handled LLW ion-exchange resins from the Advanced Test Reactor in the open pit of the SDA ceased September 30, 2008. Disposal of remote-handled LLW in concrete disposal vaults at RWMC will continue until the facility is full or until it must be closed in preparation for final remediation of the SDA (approximately at the end of fiscal year FY 2017). The continuing nuclear mission of INL, associated ongoing and planned operations, and Naval spent fuel activities at the Naval Reactors Facility (NRF) require continued capability to appropriately dispose of contact and remote handled LLW. A programmatic analysis of disposal alternatives for contact and remote-handled LLW generated at INL was conducted by the INL contractor in Fiscal Year 2006; subsequent evaluations were completed in Fiscal Year 2007. The result of these analyses was a recommendation to the Department of Energy (DOE) that all contact-handled LLW generated after September 30, 2008, be disposed offsite, and that DOE proceed with a capital project to establish replacement remote-handled LLW disposal capability. An analysis of the alternatives for providing replacement remote-handled LLW disposal capability has been performed to support Critical Decision-1. The highest ranked alternative to provide this required capability has been determined to be the development of a new onsite remote-handled LLW disposal facility to replace the existing remote-handled LLW disposal vaults at the SDA. Several offsite DOE

  11. Evaluating Options for Disposal of Low-Level Waste at LANL

    International Nuclear Information System (INIS)

    Hargis, K.M.; French, S.B.; Boyance, J.A.

    2009-01-01

    Los Alamos National Laboratory (LANL) generates a wide range of waste types, including solid low-level radioactive waste (LLW), in conducting its national security mission and other science and technology activities. Although most of LANL's LLW has been disposed on-site, limitations on expansion, stakeholder concerns, and the potential for significant volumes from environmental remediation and decontamination and demolition (D and D) have led LANL to evaluate the feasibility of increasing off-site disposal. It appears that most of the LLW generated at LANL would meet the Waste Acceptance Criteria at the Nevada Test Site or available commercial LLW disposal sites. Some waste is considered to be problematic to transport to off-site disposal even though it could meet the off-site Waste Acceptance Criteria. Cost estimates for off-site disposal are being evaluated for comparison to estimated costs under the current plans for continued on-site disposal. An evaluation of risks associated with both on-site and off-site disposal will also be conducted. (authors)

  12. Mechanisms of long-term concrete degradation in LLW disposal facilities

    International Nuclear Information System (INIS)

    Rogers, V.C.

    1987-01-01

    Most low-level waste (LLW) disposal alternatives, except shallow land burial and improved shallow land burial, involve the use of concrete as an extra barrier for containment. Because concrete is a porous-type material, its moisture retention and transport properties can be characterized with parameters that are also used to characterize the geohydrologic properties of soils. Several processes can occur with the concrete to degrade it and to increase both the movement of water and contaminants through the disposal facility. The effect of these processes must be quantified in designing and estimating the long-term performance of disposal facilities. Modeling the long-term performance of LLW disposal technologies involves, first, estimating the degradation rate of the concrete in a particular facility configuration and environmental setting; second, calculating the water flow through the facility as a function of time; third, calculating the contaminant leaching usually by diffusion or dissolution mechanisms, and then coupling the facility water and contaminant outflow to a hydrogeological and environmental uptake model for environmental releases or doses

  13. Idaho Chemical Processing Plant low-level waste grout stabilization development program FY-96 status report

    International Nuclear Information System (INIS)

    Herbst, A.K.

    1996-09-01

    The general purpose of the Grout Stabilization Development Program is to solidify and stabilize the liquid low-level wastes (LLW) generated at the Idaho Chemical Processing Plant (ICPP). It is anticipated that LLW will be produced from the following: (1) chemical separation of the tank farm high-activity sodium-bearing waste; (2) retrieval, dissolution, and chemical separation of the aluminum, zirconium, and sodium calcines; (3) facility decontamination processes; and (4) process equipment waste. The main tasks completed this fiscal year as part of the program were chromium stabilization study for sodium-bearing waste and stabilization and solidification of LLW from aluminum and zirconium calcines. The projected LLW will be highly acidic and contain high amounts of nitrates. Both of these are detrimental to Portland cement chemistry; thus, methods to precondition the LLW and to cure the grout were explored. A thermal calcination process, called denitration, was developed to solidify the waste and destroy the nitrates. A three-way blend of Portland cement, blast furnace slag, and fly ash was successfully tested. Grout cubes were prepared at various waste loadings to maximize loading while meeting compressive strength and leach resistance requirements. For the sodium LLW, a 25% waste loading achieves a volume reduction of 3.5 and a compressive strength of 2,500 pounds per square inch while meeting leach, mix, and flow requirements. It was found that the sulfur in the slag reduces the chromium leach rate below regulatory limits. For the aluminum LLW, a 15% waste loading achieves a volume reduction of 8.5 and a compressive strength of 4,350 pounds per square inch while meeting leach requirements. Likewise for zirconium LLW, a 30% waste loading achieves a volume reduction of 8.3 and a compressive strength of 3,570 pounds per square inch

  14. Predisposal management of low and intermediate level radioactive waste. Safety guide

    International Nuclear Information System (INIS)

    2003-01-01

    Radioactive waste is generated in the generation of electricity in nuclear power reactors and in the use of radioactive material in industry, research and medicine. The importance of the safe management of radioactive waste for the protection of human health and the environment has long been recognized. The principles and requirements that govern the safety of the management of radioactive waste are presented in 'The Principles of Radioactive Waste Management', 'Legal and Governmental Infrastructure for Nuclear, Radiation, Radioactive Waste and Transport Safety' and 'Predisposal Management of Radioactive Waste, Including Decommissioning'. The objective of this Safety Guide is to provide regulatory bodies and the operators that generate and manage radioactive waste with recommendations on how to meet the principles and requirements established in Refs for the predisposal management of LLW. This Safety Guide deals with the safety issues associated with the predisposal management of LLW from nuclear fuel cycle facilities, large research and development installations and radioisotope production facilities. This includes all steps and activities in the management of waste, from its initial generation to its final acceptance at a waste disposal facility or the removal of regulatory control. The predisposal management of radioactive waste includes decommissioning. The term 'decommissioning' encompasses both the process of decommissioning a facility and the management of the waste that results (prior to its disposal). Recommendations on the process of decommissioning are provided in Refs. Recommendations on the management of the waste resulting from decommissioning are included in this Safety Guide. Although the mining and milling of uranium and thorium ores is part of the nuclear fuel cycle, the management of the operational waste (e.g. waste rock, tailings and effluent treatment waste) from these activities is not within the scope of this Safety Guide. The LLW that is

  15. Geochemical effects on the behavior of LLW radionuclides in soil/groundwater environments

    Energy Technology Data Exchange (ETDEWEB)

    Krupka, K.M.; Sterne, R.J. [Pacific Northwest Lab., Richland, WA (United States)

    1995-12-31

    Assessing the migration potential of radionuclides leached from low-level radioactive waste (LLW) and decommissioning sites necessitates information on the effects of sorption and precipitation on the concentrations of dissolved radionuclides. Such an assessment requires that the geochemical processes of aqueous speciation, complexation, oxidation/reduction, and ion exchange be taken into account. The Pacific Northwest National Laboratory (PNNL) is providing technical support to the U.S. Nuclear Regulatory Commission (NRC) for defining the solubility and sorption behavior of radionuclides in soil/ground-water environments associated with engineered cementitious LLW disposal systems and decommissioning sites. Geochemical modeling is being used to predict solubility limits for radionuclides under geochemical conditions associated with these environments. The solubility limits are being used as maximum concentration limits in performance assessment calculations describing the release of contaminants from waste sources. Available data were compiled regarding the sorption potential of radionuclides onto {open_quotes}fresh{close_quotes} cement/concrete where the expected pH of the cement pore waters will equal to or exceed 10. Based on information gleaned from the literature, a list of preferred minimum distribution coefficients (Kd`s) was developed for these radionuclides. The K{sub d} values are specific to the chemical environments associated with the evolution of the compositions of cement/concrete pore waters.

  16. Low-level radioactive waste facility siting in the Rocky Mountain compact region

    International Nuclear Information System (INIS)

    Whitman, M.

    1983-09-01

    The puprose of the Rocky Mountain Low-Level Radioactive Waste Compact is to develop a regional management system for low-level waste (LLW) generated in the six states eligible for membership: Arizona, Colorado, Nevada, New Mexico, Utah and Wyoming. Under the terms of the compact, any party state generating at least 20% of the region's waste becomes responsible for hosting a regional LLW management facility. However, the compact prescribes no system which the host state must follow to develop a facility, but rather calls on the state to fulfill its responsibility through reliance on its own laws and regulations. Few of the Rocky Mountain compact states have legislation dealing specifically with LLW facility siting. Authority for LLW facility siting is usually obtained from radiation control statutes and solid or hazardous waste statutes. A state-by-state analysis of the siting authorities of each of the Rock Mountain compact states as they pertain to LLW disposal facility siting is presented. Siting authority for LLW disposal facilities in the Rocky Mountain compact region runs from no authority, as in Wyoming, to general statutory authority for which regulations would have to be promulgated, as in Arizona and Nevada, to more detailed siting laws, as in Colorado and New Mexico. Barring an amendment to, or different interpretation of, the Utah Hazardous Waste Facility Siting Act, none of the Rocky Mountain States' LLW facility siting authorities preempt local veto authorities

  17. Taiwan industrial cooperation program technology transfer for low-level radioactive waste final disposal - phase I.

    Energy Technology Data Exchange (ETDEWEB)

    Knowlton, Robert G.; Cochran, John Russell; Arnold, Bill Walter; Jow, Hong-Nian; Mattie, Patrick D.; Schelling, Frank Joseph Jr. (; .)

    2007-01-01

    Sandia National Laboratories and the Institute of Nuclear Energy Research, Taiwan have collaborated in a technology transfer program related to low-level radioactive waste (LLW) disposal in Taiwan. Phase I of this program included regulatory analysis of LLW final disposal, development of LLW disposal performance assessment capabilities, and preliminary performance assessments of two potential disposal sites. Performance objectives were based on regulations in Taiwan and comparisons to those in the United States. Probabilistic performance assessment models were constructed based on limited site data using software including GoldSim, BLT-MS, FEHM, and HELP. These software codes provided the probabilistic framework, container degradation, waste-form leaching, groundwater flow, radionuclide transport, and cover infiltration simulation capabilities in the performance assessment. Preliminary performance assessment analyses were conducted for a near-surface disposal system and a mined cavern disposal system at two representative sites in Taiwan. Results of example calculations indicate peak simulated concentrations to a receptor within a few hundred years of LLW disposal, primarily from highly soluble, non-sorbing radionuclides.

  18. Evaluation of the MADAM waste measurement system

    Energy Technology Data Exchange (ETDEWEB)

    Foster, L.A.; Wachter, J.R.; Hagan, R.C.

    1995-03-01

    The Multiple Assay Dual Analysis Measurement (MADAM) system is a combined low-level and transuranic waste assay system. The system integrates commercially available Segmented Gamma Scanner (SGS) capability with a multienergy x-ray and gamma-ray analysis to measure these two waste forms. In addition, the system incorporates a small neutron slab detector to satisfy safeguards concerns and the capability for automated high-resolution gamma-ray analysis for isotope identification. Since delivery of the system to this facility, an evaluation of the waste measurement characteristics of the system has been conducted. A set of specially constructed NIST-traceable standards was fabricated for calibration and evaluation of the low-level waste (LLW) measurement system. The measurement characteristics of the LLW assay system were determined during the evaluation, including detection limits for all isotopes of interest, matrix attenuation effects, and detector response as a function of source position. Based on these studies, several modifications to the existing analysis algorithms have been performed, new correction factors for matrix attenuation have been devised, and measurement error estimates have been calculated and incorporated into the software.

  19. Evaluation of the MADAM waste measurement system

    International Nuclear Information System (INIS)

    Foster, L.A.; Wachter, J.R.; Hagan, R.C.

    1995-01-01

    The Multiple Assay Dual Analysis Measurement (MADAM) system is a combined low-level and transuranic waste assay system. The system integrates commercially available Segmented Gamma Scanner (SGS) capability with a multienergy x-ray and gamma-ray analysis to measure these two waste forms. In addition, the system incorporates a small neutron slab detector to satisfy safeguards concerns and the capability for automated high-resolution gamma-ray analysis for isotope identification. Since delivery of the system to this facility, an evaluation of the waste measurement characteristics of the system has been conducted. A set of specially constructed NIST-traceable standards was fabricated for calibration and evaluation of the low-level waste (LLW) measurement system. The measurement characteristics of the LLW assay system were determined during the evaluation, including detection limits for all isotopes of interest, matrix attenuation effects, and detector response as a function of source position. Based on these studies, several modifications to the existing analysis algorithms have been performed, new correction factors for matrix attenuation have been devised, and measurement error estimates have been calculated and incorporated into the software

  20. Low-level radioactive waste management: transitioning to off-site disposal at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Dorries, Alison M.

    2010-01-01

    Facing the closure of nearly all on-site management and disposal capability for low-level radioactive waste (LLW), Los Alamos National Laboratory (LANL) is making ready to ship the majority of LLW off-site. In order to ship off-site, waste must meet the Treatment, Storage, and Disposal Facility's (TSDF) Waste Acceptance Criteria (WAC). In preparation, LANL's waste management organization must ensure LANL waste generators characterize and package waste compliantly and waste characterization documentation is complete and accurate. Key challenges that must be addressed to successfully make the shift to off-site disposal of LLW include improving the detail, accuracy, and quality of process knowledge (PK) and acceptable knowledge (AK) documentation, training waste generators and waste management staff on the higher standard of data quality and expectations, improved WAC compliance for off-site facilities, and enhanced quality assurance throughout the process. Certification of LANL generators will allow direct off-site shipping of LLW from their facilities.

  1. Underground storage tank integrated demonstration: Evaluation of pretreatment options for Hanford tank wastes

    International Nuclear Information System (INIS)

    Lumetta, G.J.; Wagner, M.J.; Colton, N.G.; Jones, E.O.

    1993-06-01

    Separation science plays a central role inn the pretreatment and disposal of nuclear wastes. The potential benefits of applying chemical separations in the pretreatment of the radioactive wastes stored at the various US Department of Energy sites cover both economic and environmental incentives. This is especially true at the Hanford Site, where the huge volume (>60 Mgal) of radioactive wastes stored in underground tanks could be partitioned into a very small volume of high-level waste (HLW) and a relatively large volume of low-level waste (LLW). The cost associated with vitrifying and disposing of just the HLW fraction in a geologic repository would be much less than those associated with vitrifying and disposing of all the wastes directly. Futhermore, the quality of the LLW form (e.g., grout) would be improved due to the lower inventory of radionuclides present in the LLW stream. In this report, we present the results of an evaluation of the pretreatment options for sludge taken from two different single-shell tanks at the Hanford Site-Tanks 241-B-110 and 241-U-110 (referred to as B-110 and U-110, respectively). The pretreatment options examined for these wastes included (1) leaching of transuranic (TRU) elements from the sludge, and (2) dissolution of the sludge followed by extraction of TRUs and 90 Sr. In addition, the TRU leaching approach was examined for a third tank waste type, neutralized cladding removal waste

  2. Delivering step change improvements to UK low level waste strategy - 16188

    International Nuclear Information System (INIS)

    Dean, Jason; Rossiter, David

    2009-01-01

    The UK Nuclear Industry continues to produce significant quantities of Low Level Waste (LLW) as decommissioning projects generating waste become more prevalent. Current infrastructure and projected increasing waste volumes will deliver a volumetric shortfall of storage capacity in the near future. Recently established as a standalone site licence company, the Low Level Waste Repository (LLWR) near Drigg, in West Cumbria (formerly operated and owned by British Nuclear Group) is tasked with managing the safe treatment and disposal of LLW in the UK, on behalf of the Nuclear Decommissioning Authority (NDA). The problem is complex involving many stakeholders with potentially different priorities. Previously, most nuclear waste generators operated independently with limited integration with other similar organisations. However, the current financial, programme and technical pressures require collaborative working to facilitate a step-change improvement in LLW management. Achieving this quickly is as much of a challenge as delivering robust cost effective technical solutions. NDA is working in partnership with LLWR to develop a LLW Strategy for the Nuclear Industry and has in parallel commissioned a number of studies by the National Nuclear Laboratory (NNL), looking at opportunities to share best practice. A National Strategy Group has been established to develop a working partnership between the Nuclear Decommissioning Authority, LLW Repository Ltd, Regulators, Stakeholders and LLW Consignors, promoting innovation, value for money, and robust implementation of the waste hierarchy (avoid-reduce-re-use-recycle). Additionally the LLWR supported by the NNL have undertaken a comprehensive strategic review of the UK's LLW management activities. Initial collaborative work has provided for the first time a detailed picture of the existing strategic baseline and identified significant national benefits from improving the way LLW is forecasted, characterised, segregated, and

  3. Waste minimization: A team approach at McGuire nuclear

    International Nuclear Information System (INIS)

    Poteat, E.L.

    1995-01-01

    The production of radioactive waste and its subsequent disposal is a costly proposition. Burial of low-level waste (LLW), if available at all, is expensive and getting more so. The availability of disposal options is often subject to the whims and vagaries of political forces that cannot be predicted, let alone controlled in any way by the members of the nuclear community. On-site storage is a limited and, quite often, an extremely difficult process to put into place. After LLW has been generated, various volume reduction techniques are available, but these can vary widely in cost and effectiveness. If and when new disposal sites are available, the waste acceptance criteria may be such that some or all of the volume reduction processes will not produce an acceptable final waste form. Consequently, the best thing to do is probably deceptively simple: Do not generate the waste in the first place. This is the philosophy that McGuire nuclear station operates under, and this paper discusses the team approach that has been developed to support this idea

  4. Design and operational considerations of United States commercial near-surface low-level radioactive waste disposal facilities

    International Nuclear Information System (INIS)

    Birk, S.M.

    1997-10-01

    In accordance with the Low-Level Radioactive Waste Policy Amendments Act of 1985, states are responsible for providing for disposal of commercially generated low-level radioactive waste (LLW) within their borders. LLW in the US is defined as all radioactive waste that is not classified as spent nuclear fuel, high-level radioactive waste, transuranic waste, or by-product material resulting from the extraction of uranium from ore. Commercial waste includes LLW generated by hospitals, universities, industry, pharmaceutical companies, and power utilities. LLW generated by the country''s defense operations is the responsibility of the Federal government and its agency, the Department of Energy. The commercial LLRW disposal sites discussed in this report are located near: Sheffield, Illinois (closed); Maxey Flats, Kentucky (closed); Beatty, Nevada (closed); West Valley, New York (closed); Barnwell, South Carolina (operating); Richland, Washington (operating); Ward Valley, California, (proposed); Sierra Blanca, Texas (proposed); Wake County, North Carolina (proposed); and Boyd County, Nebraska (proposed). While some comparisons between the sites described in this report are appropriate, this must be done with caution. In addition to differences in climate and geology between sites, LLW facilities in the past were not designed and operated to today''s standards. This report summarizes each site''s design and operational considerations for near-surface disposal of low-level radioactive waste. The report includes: a description of waste characteristics; design and operational features; post closure measures and plans; cost and duration of site characterization, construction, and operation; recent related R and D activities for LLW treatment and disposal; and the status of the LLW system in the US

  5. Safety analysis and inventory control of transuranic and low-level waste in common storage

    International Nuclear Information System (INIS)

    Porten, D.R.; Bonner, A.L.; Joyce, J.P.

    1993-01-01

    This paper describes a methodology developed For the inventory control of low-level waste (LLW) and transuranic (TRU) waste, when both are stored in the same location, and both contribute to an inventory constrained by safety considerations. Development of the method arose from the necessity to make safety analysis calculations for the addition of LLW, in quantities greater than existing inventory limits would allow when stored with TRU waste, in the Hanford Central Waste Complex (CWC)-Ensuring that the dose consequences of credible releases are maintained at low-hazard limits or less, was used to allow greater than Type A quantities of LLW into the CWC. Basically, what happens is the original limited amount of TRU allowed is reduced by some equivalent amount of LLW introduced. The total quantity of TRU, and LLW in excess of Type A quantities, must be administratively maintained via curie equivalency Factors to ensure operation as a low-hazard Facility. The ''equivalency'' between TRU and LLW proposed here is specific only to the CWC, but the methodology can be used for other specific applications, such as TRU and LLW storage or handling facilities where inventory limits must be enforced or where a simplified inventory system is required

  6. Radioactive waste management

    International Nuclear Information System (INIS)

    Tsoulfanidis, N.

    1991-01-01

    The management of radioactive waste is a very important part of the nuclear industry. The future of the nuclear power industry depends to a large extent on the successful solution of the perceived or real problems associated with the disposal of both low-level waste (LLW) and high-level waste (HLW). All the activities surrounding the management of radioactive waste are reviewed. The federal government and the individual states are working toward the implementation of the Nuclear Waste Policy Act and the Low-Level Waste Policy Act. The two congressional acts are reviewed and progress made as of early 1990 is presented. Spent-fuel storage and transportation are discussed in detail as are the concepts of repositories for HLW. The status of state compacts for LLW is also discussed. Finally, activities related to the decommissioning of nuclear facilities are also described

  7. Greater-than-Class-C Low-Level Waste Data Base user's manual

    International Nuclear Information System (INIS)

    1992-07-01

    The Greater-than-Class-C Low-level Waste (GTCC LLW) Data Base characterizes GTCC LLW using low, base, and high cases for three different scenarios: unpackaged, packaged, and concentration averages. The GTCC LLW Data Base can be used to project future volumes and radionuclide activities. This manual provides instructions for users of the GTCC LLW Data Base

  8. Low-level waste certification plan for the Lawrence Berkeley Laboratory Hazardous Waste Handling Facility. Revision 1

    International Nuclear Information System (INIS)

    1995-01-01

    The purpose of this plan is to describe the organization and methodology for the certification of low-level radioactive waste (LLW) handled in the Hazardous Waste Handling Facility (HWHF) at Lawrence Berkeley Laboratory (LBL). This plan is composed to meet the requirements found in the Westinghouse Hanford Company (WHC) Solid Waste Acceptance Criteria (WAC) and follows the suggested outline provided by WHC in the letter of April 26, 1990, to Dr. R.H. Thomas, Occupational Health Division, LBL. LLW is to be transferred to the WHC Hanford Site Central Waste Complex and Burial Grounds in Hanford, Washington

  9. Low-level waste certification plan for the Lawrence Berkeley Laboratory Hazardous Waste Handling Facility. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-01-10

    The purpose of this plan is to describe the organization and methodology for the certification of low-level radioactive waste (LLW) handled in the Hazardous Waste Handling Facility (HWHF) at Lawrence Berkeley Laboratory (LBL). This plan is composed to meet the requirements found in the Westinghouse Hanford Company (WHC) Solid Waste Acceptance Criteria (WAC) and follows the suggested outline provided by WHC in the letter of April 26, 1990, to Dr. R.H. Thomas, Occupational Health Division, LBL. LLW is to be transferred to the WHC Hanford Site Central Waste Complex and Burial Grounds in Hanford, Washington.

  10. A comparison of solidification media for the stabilization of low- level radioactive wastes

    International Nuclear Information System (INIS)

    Cowgill, M.G.

    1991-10-01

    When requirements exist to stabilize low-level radioactive waste (LLW) prior to disposal, efforts to achieve this stability often center on the mixing of the waste with a solidification medium. Although historically the medium of choice has been based on the use of portland cement as the binder material, several other options have been developed and subsequently implemented. These include thermoplastic polymers, thermosetting polymers and gypsum. No one medium has thus far been successful in providing stability to all forms of LLW. The characteristics and attributes of these different binder materials are reviewed and compared. The aspects examined include availability of information, limitations to use, sensitivity to process or waste chemistry changes, radionuclide retention ability, modeling of radionuclide release processes, ease and safety of use, and relative costs

  11. Low-level radioactive waste source terms for the 1992 integrated data base

    International Nuclear Information System (INIS)

    Loghry, S.L.; Kibbey, A.H.; Godbee, H.W.; Icenhour, A.S.; DePaoli, S.M.

    1995-01-01

    This technical manual presents updated generic source terms (i.e., unitized amounts and radionuclide compositions) which have been developed for use in the Integrated Data Base (IDB) Program of the U.S. Department of Energy (DOE). These source terms were used in the IDB annual report, Integrated Data Base for 1992: Spent Fuel and Radioactive Waste Inventories, Projections, and Characteristics, DOE/RW-0006, Rev. 8, October 1992. They are useful as a basis for projecting future amounts (volume and radioactivity) of low-level radioactive waste (LLW) shipped for disposal at commercial burial grounds or sent for storage at DOE solid-waste sites. Commercial fuel cycle LLW categories include boiling-water reactor, pressurized-water reactor, fuel fabrication, and uranium hexafluoride (UF 6 ) conversion. Commercial nonfuel cycle LLW includes institutional/industrial (I/I) waste. The LLW from DOE operations is category as uranium/thorium fission product, induced activity, tritium, alpha, and open-quotes otherclose quotes. Fuel cycle commercial LLW source terms are normalized on the basis of net electrical output [MW(e)-year], except for UF 6 conversion, which is normalized on the basis of heavy metal requirement [metric tons of initial heavy metal ]. The nonfuel cycle commercial LLW source term is normalized on the basis of volume (cubic meters) and radioactivity (curies) for each subclass within the I/I category. The DOE LLW is normalized in a manner similar to that for commercial I/I waste. The revised source terms are based on the best available historical data through 1992

  12. 77 FR 38789 - Notice of Availability of Draft Waste Incidental to Reprocessing Evaluation for the Concentrator...

    Science.gov (United States)

    2012-06-29

    ... disposal facility, either the Area 5 Radioactive Waste Management Site at DOE's Nevada National Security... offsite LLW disposal facility, either the NNSS Area 5 Radioactive Waste Management Site or the Waste... radioactive waste (HLW) and may be managed and disposed of offsite as low-level waste (LLW). DOE prepared the...

  13. Summary report, low-level radioactive waste management activities in the states and compacts. Vol. 4. No. 1

    International Nuclear Information System (INIS)

    1996-01-01

    'Low-Level Radioactive Waste Management Activities in the States and Compacts' is a supplement to 'LLW Notes' and is distributed periodically by Afton Associates, Inc. to state, compact and federal officials that receive 'LLW Notes'. The Low-Level Radioactive Waste Forum (LLW Forum) is an association of state and compact representatives, appointed by governors and compact commissions, established to facilitate state and compact implementation of the Low- Level Radioactive Waste Policy Act of 1980 and the Low-Level Radioactive Waste Policy Amendments Act of 1985 and to promote the objectives of low-level radioactive waste regional compacts. The LLW Forum provides an opportunity for state and compact officials to share information with one another and to exchange views with officials of federal agencies and other interested parties

  14. Summary report. Low-level radioactive waste management activities in the states and compacts. Volume 4, No. 2

    International Nuclear Information System (INIS)

    1996-08-01

    'Low-Level Radioactive Waste Management Activities in the States and Compacts' is a supplement to 'LLW Notes' and is distributed periodically by Afton Associates, Inc. to state, compact and federal officials that receive 'LLW Notes'. The Low-Level Radioactive Waste Forum (LLW Forum) is an association of state and compact representatives, appointed by governors and compact commissions, established to facilitate state and compact implementation of the Low- Level Radioactive Waste Policy Act of 1980 and the Low-Level Radioactive Waste Policy Amendments Act of 1985 and to promote the objectives of low-level radioactive waste regional compacts. The LLW Forum provides an opportunity for state and compact officials to share information with one another and to exchange views with officials of federal agencies and other interested parties

  15. Sources, amounts, and characteristics of low-level radioactive solid wastes

    International Nuclear Information System (INIS)

    Kibbey, A.H.; Godbee, H.W.

    1979-01-01

    Low-level radioactive solid wastes (LLW) are generated in the nuclear fuel cycle, national defense programs, institutional (especially medical/biological) applications, and other research and development activities. The estimated total accumulation of defense LLW, approx. 50.8 x 10 6 ft 3 (approx. 1.4 x 10 6 m 3 ), is roughly three times that estimated for commercial LLW, mill tailings excepted. All nuclear fuel cycle steps generate some LLW, but power plants are the chief source. From 1975 through 1977, reactor process stream cleanup generated approx. 1 x 10 6 (approx. 2.8 x 10 4 m 3 ) annually. Spent fuel storage (or reprocessing) and facility decontamination and decommissioning will become important LLW generators as the nuclear power industry matures. The LLW contains dry contaminated trash, much of which is combustible and/or compactible; discarded tools and equipment; wet filter sludges and ion-exchange resins; disposable filter cartridges; and solidified or sorbed liquids, including some organics. A distinguishing characteristic of LLW is a long-lived alpha-emitting transuranic content of 5 ft 3 (approx. 2.1 x 10 4 m 3 )/y. The majority of these wastes, > 6 x 10 5 ft 3 (> 1.7 x 10 4 m 3 ), was medical and academic wastes which usually contained isotopes with induced activities of less than or equal to 60-day half-life, neglecting 3 H and 14 C

  16. U.S. policy and current practices for blending low-level radioactive waste for disposal

    Energy Technology Data Exchange (ETDEWEB)

    Kessel, David S.; Kim, Chang Lak [KEPCO International Nuclear Graduate School, Ulsan (Korea, Republic of)

    2016-09-15

    In the near future, many countries, including the Republic of Korea, will face a significant increase in low level radioactive waste (LLW) from nuclear power plant decommissioning. The purpose of this paper is to look at blending as a method for enhancing disposal options for low-level radioactive waste from the decommissioning of nuclear reactors. The 2007 U.S. Nuclear Regulatory Commission strategic assessment of the status of the U.S. LLW program identified the need to move to a risk-informed and performance-based regulatory approach for managing LLW. The strategic assessment identified blending waste of varying radionuclide concentrations as a potential means of enhancing options for LLW disposal. The NRC's position is that concentration averaging or blending can be performed in a way that does not diminish the overall safety of LLW disposal. The revised regulatory requirements for blending LLW are presented in the revised NRC Branch Technical Position for Concentration Averaging and Encapsulation (CA BTP 2015). The changes to the CA BTP that are the most significant for NPP operation, maintenance and decommissioning are reviewed in this paper and a potential application is identified for decommissioning waste in Korea. By far the largest volume of LLW from NPPs will come from decommissioning rather than operation. The large volumes in decommissioning present an opportunity for significant gains in disposal efficiency from blending and concentration averaging. The application of concentration averaging waste from a reactor bio-shield is also presented.

  17. U.S. policy and current practices for blending low-level radioactive waste for disposal

    International Nuclear Information System (INIS)

    Kessel, David S.; Kim, Chang Lak

    2016-01-01

    In the near future, many countries, including the Republic of Korea, will face a significant increase in low level radioactive waste (LLW) from nuclear power plant decommissioning. The purpose of this paper is to look at blending as a method for enhancing disposal options for low-level radioactive waste from the decommissioning of nuclear reactors. The 2007 U.S. Nuclear Regulatory Commission strategic assessment of the status of the U.S. LLW program identified the need to move to a risk-informed and performance-based regulatory approach for managing LLW. The strategic assessment identified blending waste of varying radionuclide concentrations as a potential means of enhancing options for LLW disposal. The NRC's position is that concentration averaging or blending can be performed in a way that does not diminish the overall safety of LLW disposal. The revised regulatory requirements for blending LLW are presented in the revised NRC Branch Technical Position for Concentration Averaging and Encapsulation (CA BTP 2015). The changes to the CA BTP that are the most significant for NPP operation, maintenance and decommissioning are reviewed in this paper and a potential application is identified for decommissioning waste in Korea. By far the largest volume of LLW from NPPs will come from decommissioning rather than operation. The large volumes in decommissioning present an opportunity for significant gains in disposal efficiency from blending and concentration averaging. The application of concentration averaging waste from a reactor bio-shield is also presented

  18. New trends in the low-level waste management in Italy

    International Nuclear Information System (INIS)

    Costa, A.; Donato, A.

    1987-01-01

    The low level radioactive waste production per year in Italy is evaluated to be at the origin of the order of about 2500 cu.m.. The LLW management scheme in the past was based on a double approach, depending on the waste origin. The LLW from nuclear activities were stored on site under the responsibility of the producers, which had no real possibility to dispose off the LLW in the lack of authorized disposal sites. The management of the LLW coming from other activities (hospitals, university etc.) was left mainly to the sense of responsibility of the same producers which, under the local authorities authorization released case by case, were permitted by the existing regulations to store and sometimes to discharge the wastes, after a suitable decay period. In this context, the government charged the ENEA (Italian Committee for Nuclear and Alternative Energies Development), in the frame of the national energy plan, to overview and organize the whole matter. This paper describes the new trends adopted by ENEA for the LLW management

  19. WRAP Module 1 waste characterization plan

    International Nuclear Information System (INIS)

    Mayancsik, B.A.

    1995-01-01

    The purpose of this document is to present the characterization methodology for waste generated, processed, or otherwise the responsibility of the Waste Receiving and Processing (WRAP) Module 1 facility. The scope of this document includes all solid low level waste (LLW), transuranic (TRU), mixed waste (MW), and dangerous waste. This document is not meant to be all-inclusive of the waste processed or generated within WRAP Module 1, but to present a methodology for characterization. As other streams are identified, the method of characterization will be consistent with the other streams identified in this plan. The WRAP Module 1 facility is located in the 200 West Area of the Hanford Site. The facility's function is two-fold. The first is to verify/characterize, treat and repackage contact handled (CH) waste currently in retrievable storage in the LLW Burial Grounds, Hanford Central Waste Complex, and the Transuranic Storage and Assay Facility (TRUSAF). The second is to verify newly generated CH TRU waste and LLW, including MW. The WRAP Module 1 facility provides NDE and NDA of the waste for both drums and boxes. The NDE is used to identify the physical contents of the waste containers to support waste characterization and processing, verification, or certification. The NDA results determine the radioactive content and distribution of the waste

  20. Treatment of liquid radioactive waste: Evaporation

    International Nuclear Information System (INIS)

    Pfeiffer, R.

    1982-01-01

    About 10.000 m 3 of low active liquid waste (LLW) arise in the Nuclear Research Center Karlsruhe. Chemical contents of this liquid waste are generally not declared. Resulting from experiments carried out in the Center during the early sixties, the evaporator facility was built in 1968 for decontamination of LLW. The evaporators use vapor compression and concentrate recirculation in the evaporator sump by pumps. Since 1971 the medium active liquid waste (MLW) from the Karlsruhe Reprocessing Plant (WAK) was decontaminated in this evaporator facility, too. By this time the amount of low liquid waste (LLW) had been decontaminated without mentionable interruptions. Afterwards a lot of interruptions of operations occurred, mainly due to leakages of pumps, valves and pipes. There was also a very high radiation level for the operating personnel. As a consequence of this experience a new evaporator facility for decontamination of medium active liquid waste was built in 1974. This facility started operation in 1976. The evaporator has natural circulation and is heated by steam through a heat exchanger. (orig./RW)

  1. Interim Storage Facility for LLW of Decommissioning Nuclear Research Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Amato, S.; Ugolini, D.; Basile, F. [European Commission, Joint Research Centre, Nuclear Decommissioning and Facility Management Unit, TP 800, Via E. Fermi 2749, 21027 Ispra - VA (Italy)

    2009-06-15

    JRC-Ispra has initiated a Decommissioning and Waste Management (D and WM) Programme of all its nuclear facilities. In the frame of this programme, it has been decided to build an interim storage facility to host conditioned low level waste (LLW) that had been produced during the operation of JRC-Ispra nuclear research reactors and laboratories and that will be produced from their decommissioning. This paper presents the main characteristics of the facility. The storage ISFISF has a rectangular shape with uniform height and it is about 128 m long, 41 m wide and 9 m high. The entire surface affected by the facility, including screening area and access roads, is about 27.000 m{sup 2}. It is divided in three sectors, a central one, about 16 m long, for loading/unloading operations and operational services and two lateral sectors, each about 55 m long, for the conditioned LLW storage. Each storage sector is divided by a concrete wall in two transversal compartments. The ISFISF, whose operational lifetime is 50 years, is designed to host the conditioned LLW boxed in UNI CP-5.2 packages, 2,5 m long, 1.65 m wide, and 1,25 m high. The expected nominal inventory of waste is about 2100 packages, while the maximum storage is 2540 packages, thus a considerably large reserve capacity is available. The packages will be piled in stacks of maximum number of five. The LLW is going to be conditioned with a cement matrix. The maximum weight allowed for each package has been fixed at 16.000 kg. The total radioactivity inventory of waste to be hosted in the facility is about 30 TBq (mainly {beta}/{gamma} emitters). In order to satisfy the structural, seismic, and, most of all, radiological requirements, the external walls of the ISFISF are made of pre-fabricated panels, 32 cm thick, consisting of, from inside to outside, 20 cm of reinforced concrete, 7 cm of insulating material, and again 5 cm of reinforced concrete. For the same reason the roof is made with pre-fabricated panels in

  2. Potential co-disposal of greater-than-class C low-level radioactive waste with Department of Energy special case waste - greater-than-class C low-level waste management program

    International Nuclear Information System (INIS)

    Allred, W.E.

    1994-09-01

    This document evaluates the feasibility of co-disposing of greater-than-Class C low-level radioactive waste (GTCC LLW) with U.S. Department of Energy (DOE) special case waste (SCW). This document: (1) Discusses and evaluates key issues concerning co-disposal of GTCC LLW with SCW. This includes examining these issues in terms of regulatory concerns, technical feasibility, and economics; (2) Examines advantages and disadvantages of such co-disposal; and (3) Makes recommendations. Research and analysis of the issues presented in this report indicate that it would be technically and economically feasible to co-dispose of GTCC LLW with DOE SCW. However, a dilemma will likely arise in the current division of regulatory responsibilities between the U.S. Nuclear Regulatory Commission and DOE (i.e., current requirement for disposal of GTCC LLW in a facility licensed by the Nuclear Regulatory Commission). DOE SCW is currently not subject to this licensing requirement

  3. Practical Model of Cement Based Grout Mix Design, for Use into Low Level Radiation Waste Management

    Directory of Open Access Journals (Sweden)

    Radu Lidia

    2015-12-01

    Full Text Available The cement based grouts, as functional performance composite materials, are widely used for both immobilisation and encapsulation as well as for stabilization in the field of inorganic waste management. Also, to ensure that low level radioactive waste (LLW are contained for storage and ultimate disposal, they are encapsulated or immobilized in monolithic waste forms, with cement –based grouts.

  4. A59 waste repackaging database (AWARD)

    International Nuclear Information System (INIS)

    Keel, A.

    1993-06-01

    This paper sets out the requirements for AWARD (the A59 Waste Repackaging Database); a computer-based system to record LLW sorting and repacking information from the North Cave Line in A59. A solution will be developed on the basis of this document. AWARD will record and store details entered from waste sorting and LLW repackaging operations. This document will be used as the basis of the development of the host computer system. (Author)

  5. Differential diagnosis of pulmonary emphysema using the CT index: LL%w

    Energy Technology Data Exchange (ETDEWEB)

    Kitahara, Yoshinari; Takamoto, Masahiro; Maruyama, Masao; Tanaka, Yasushi; Ishibashi, Tuneo; Shinoda, Atsushi [Ohmuta National Hospital, Fukuoka (Japan)

    1989-06-01

    We measured the computed tomography (CT) index, LL%w, in 81 patients of chronic obstructive pulmonary disease (COPD) and asthma. In this study we defined LL%w as the mean value of the proportion of the low density area under -950 Hounsfield units in the six lung fields: upper, middle and lower lung fields bilaterally, at deep expiration. To examine the usefulness of LL%w in differentiating pulmomary emphysema (PE) from bronchial asthma (BA) and chronic bronchitis (CB), we excluded the overlapped cases of each disease. Mean value (+- standard deviation) of LL%w in PE was 24.6+-20.2% (n=40), whereas it was 0.5+-0.8% (n=27) in BA and 0.2+-0.3% (n=14) in CB respectively. There were clear statistically differences in the values of LL%w between clinically diagnosed emphysema and others. We considered that the value of LL%w within 1% would be observed nonspecifically, because the frequent existence of low density areas originated in bronchial tangents and/or motion artifacts mainly in the left lower lung field. Thus we judged that cases with over 1% of LL%w had abnormal CT findings. The relationship between clinically diagnosed emphysema and CT abnormality (LL%w > 1%) was significant in the analysis of the four-fold table. The CT sensitivity for diagnosing PE was 100%, the CT specificity was 87.8%, and CT accuracy was 93.8%. When cases of LL%w > 1% were shown in BA or CB, it would be better to consider the existence of complicated emphysema or the presence of air trapping or air spaces of any origin. We compared three groups (A', E', C') selected from groups BA, PE and CB, respectively. The groups consisted of patients showing almost the same mean values of FEV{sub 1.0}/VC(%). The value of the LL%w of E', selected from PE, also showed a significantly higher value than those from BA or CB. (J.P.N).

  6. Differential diagnosis of pulmonary emphysema using the CT index: LL%w

    International Nuclear Information System (INIS)

    Kitahara, Yoshinari; Takamoto, Masahiro; Maruyama, Masao; Tanaka, Yasushi; Ishibashi, Tuneo; Shinoda, Atsushi

    1989-01-01

    We measured the computed tomography (CT) index, LL%w, in 81 patients of chronic obstructive pulmonary disease (COPD) and asthma. In this study we defined LL%w as the mean value of the proportion of the low density area under -950 Hounsfield units in the six lung fields: upper, middle and lower lung fields bilaterally, at deep expiration. To examine the usefulness of LL%w in differentiating pulmomary emphysema (PE) from bronchial asthma (BA) and chronic bronchitis (CB), we excluded the overlapped cases of each disease. Mean value (± standard deviation) of LL%w in PE was 24.6±20.2% (n=40), whereas it was 0.5±0.8% (n=27) in BA and 0.2±0.3% (n=14) in CB respectively. There were clear statistically differences in the values of LL%w between clinically diagnosed emphysema and others. We considered that the value of LL%w within 1% would be observed nonspecifically, because the frequent existence of low density areas originated in bronchial tangents and/or motion artifacts mainly in the left lower lung field. Thus we judged that cases with over 1% of LL%w had abnormal CT findings. The relationship between clinically diagnosed emphysema and CT abnormality (LL%w > 1%) was significant in the analysis of the four-fold table. The CT sensitivity for diagnosing PE was 100%, the CT specificity was 87.8%, and CT accuracy was 93.8%. When cases of LL%w > 1% were shown in BA or CB, it would be better to consider the existence of complicated emphysema or the presence of air trapping or air spaces of any origin. We compared three groups (A', E', C') selected from groups BA, PE and CB, respectively. The groups consisted of patients showing almost the same mean values of FEV 1.0 /VC(%). The value of the LL%w of E', selected from PE, also showed a significantly higher value than those from BA or CB. (J.P.N)

  7. Comparison of low-level waste disposal programs of DOE and selected international countries

    International Nuclear Information System (INIS)

    Meagher, B.G.; Cole, L.T.

    1996-06-01

    The purpose of this report is to examine and compare the approaches and practices of selected countries for disposal of low-level radioactive waste (LLW) with those of the US Department of Energy (DOE). The report addresses the programs for disposing of wastes into engineered LLW disposal facilities and is not intended to address in-situ options and practices associated with environmental restoration activities or the management of mill tailings and mixed LLW. The countries chosen for comparison are France, Sweden, Canada, and the United Kingdom. The countries were selected as typical examples of the LLW programs which have evolved under differing technical constraints, regulatory requirements, and political/social systems. France was the first country to demonstrate use of engineered structure-type disposal facilities. The UK has been actively disposing of LLW since 1959. Sweden has been disposing of LLW since 1983 in an intermediate-depth disposal facility rather than a near-surface disposal facility. To date, Canada has been storing its LLW but will soon begin operation of Canada's first demonstration LLW disposal facility

  8. Treatment methods for radioactive mixed wastes in commercial low-level wastes: technical considerations

    International Nuclear Information System (INIS)

    MacKenzie, D.R.; Kempf, C.R.

    1986-01-01

    Treatment options for the management of three generic categories of radioactive mixed waste in commercial low-level wastes (LLW) have been identified and evaluated. These wastes were characterized as part of a BNL study in which LLW generators were surveyed for information on potential chemical hazards in their wastes. The general treatment options available for mixed wastes are destruction, immobilization, and reclamation. Solidification, absorption, incineration, acid digestion, wet-air oxidation, distillation, liquid-liquid wastes. Containment, segregation, decontamination, and solidification or containment of residues, have been considered for lead metal wastes which have themselves been contaminated and are not used for purposes of waste disposal shielding, packaging, or containment. For chromium-containing wastes, solidification, incineration, wet-air oxidation, acid digestion, and containment have been considered. For each of these wastes, the management option evaluation has included an assessment of testing appropriate to determine the effect of the option on both the radiological and potential chemical hazards present

  9. Treatment methods for radioactive mixed wastes in commercial low-level wastes: technical considerations

    Energy Technology Data Exchange (ETDEWEB)

    MacKenzie, D.R.; Kempf, C.R.

    1986-01-01

    Treatment options for the management of three generic categories of radioactive mixed waste in commercial low-level wastes (LLW) have been identified and evaluated. These wastes were characterized as part of a BNL study in which LLW generators were surveyed for information on potential chemical hazards in their wastes. The general treatment options available for mixed wastes are destruction, immobilization, and reclamation. Solidification, absorption, incineration, acid digestion, wet-air oxidation, distillation, liquid-liquid wastes. Containment, segregation, decontamination, and solidification or containment of residues, have been considered for lead metal wastes which have themselves been contaminated and are not used for purposes of waste disposal shielding, packaging, or containment. For chromium-containing wastes, solidification, incineration, wet-air oxidation, acid digestion, and containment have been considered. For each of these wastes, the management option evaluation has included an assessment of testing appropriate to determine the effect of the option on both the radiological and potential chemical hazards present.

  10. Innovative Disposal Practices at the Nevada Test Site to Meet Its Low-Level Waste Generators' Future Disposal Needs

    International Nuclear Information System (INIS)

    Di Sanza, E.F.; Carilli, J.T.

    2006-01-01

    Waste Acceptance Criteria. The disposal operations previously mentioned take place at the NTS in two disposal facilities. The isolation protection and overall performance of the two LLW disposal facilities at the NTS transcend those of any federal radioactive waste disposal site in the United States. The first of the two disposal sites is the Area 5 Radioactive Waste Management Site (RWMS) which is situated on alluvial fan deposits in the Frenchman Flat basin, approximately 770 feet (235 meters) above the water table. The Area 5 RWMS utilizes a combination of engineered shallow land disposal cells and deep augured shafts for the disposal of a variety of waste streams. Fifteen miles (24 kilometers) north of the Area 5 RWMS is the Area 3 RWMS located approximately 1,600 feet (488 meters) above the water table in Yucca Flat. Disposal activities at the Area 3 RWMS center around the placement of bulk LLW in subsidence craters formed from underground testing of nuclear weapons. Native alluvium soil is used to cover waste placed in the disposal cells at both facilities. In addition, information on the technical attributes, facility performance, updates on waste disposal volumes and capabilities, and current and future disposal site requirements will also be described. (authors)

  11. Treatment of low level radioactive liquid waste containing appreciable concentration of TBP degraded products.

    Science.gov (United States)

    Valsala, T P; Sonavane, M S; Kore, S G; Sonar, N L; De, Vaishali; Raghavendra, Y; Chattopadyaya, S; Dani, U; Kulkarni, Y; Changrani, R D

    2011-11-30

    The acidic and alkaline low level radioactive liquid waste (LLW) generated during the concentration of high level radioactive liquid waste (HLW) prior to vitrification and ion exchange treatment of intermediate level radioactive liquid waste (ILW), respectively are decontaminated by chemical co-precipitation before discharge to the environment. LLW stream generated from the ion exchange treatment of ILW contained high concentrations of carbonates, tributyl phosphate (TBP) degraded products and problematic radio nuclides like (106)Ru and (99)Tc. Presence of TBP degraded products was interfering with the co-precipitation process. In view of this a modified chemical treatment scheme was formulated for the treatment of this waste stream. By mixing the acidic LLW and alkaline LLW, the carbonates in the alkaline LLW were destroyed and the TBP degraded products got separated as a layer at the top of the vessel. By making use of the modified co-precipitation process the effluent stream (1-2 μCi/L) became dischargeable to the environment after appropriate dilution. Based on the lab scale studies about 250 m(3) of LLW was treated in the plant. The higher activity of the TBP degraded products separated was due to short lived (90)Y isotope. The cement waste product prepared using the TBP degraded product was having good chemical durability and compressive strength. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Waste inspection tomography (WIT)

    Energy Technology Data Exchange (ETDEWEB)

    Bernardi, R.T. [Bio-Imaging Research, Inc., Lincolnshire, IL (United States)

    1995-10-01

    Waste Inspection Tomography (WIT) provides mobile semi-trailer mounted nondestructive examination (NDE) and assay (NDA) for nuclear waste drum characterization. WIT uses various computed tomography (CT) methods for both NDE and NDA of nuclear waste drums. Low level waste (LLW), transuranic (TRU), and mixed radioactive waste can be inspected and characterized without opening the drums. With externally transmitted x-ray NDE techniques, WIT has the ability to identify high density waste materials like heavy metals, define drum contents in two- and three-dimensional space, quantify free liquid volumes through density and x-ray attenuation coefficient discrimination, and measure drum wall thickness. With waste emitting gamma-ray NDA techniques, WIT can locate gamma emitting radioactive sources in two- and three-dimensional space, identify gamma emitting, isotopic species, identify the external activity levels of emitting gamma-ray sources, correct for waste matrix attenuation, provide internal activity approximations, and provide the data needed for waste classification as LLW or TRU.

  13. Waste inspection tomography (WIT)

    International Nuclear Information System (INIS)

    Bernardi, R.T.

    1995-01-01

    Waste Inspection Tomography (WIT) provides mobile semi-trailer mounted nondestructive examination (NDE) and assay (NDA) for nuclear waste drum characterization. WIT uses various computed tomography (CT) methods for both NDE and NDA of nuclear waste drums. Low level waste (LLW), transuranic (TRU), and mixed radioactive waste can be inspected and characterized without opening the drums. With externally transmitted x-ray NDE techniques, WIT has the ability to identify high density waste materials like heavy metals, define drum contents in two- and three-dimensional space, quantify free liquid volumes through density and x-ray attenuation coefficient discrimination, and measure drum wall thickness. With waste emitting gamma-ray NDA techniques, WIT can locate gamma emitting radioactive sources in two- and three-dimensional space, identify gamma emitting, isotopic species, identify the external activity levels of emitting gamma-ray sources, correct for waste matrix attenuation, provide internal activity approximations, and provide the data needed for waste classification as LLW or TRU

  14. Waste segregation

    International Nuclear Information System (INIS)

    Clark, D.E.; Colombo, P.

    1982-01-01

    A scoping study has been undertaken to determine the state-of-the-art of waste segregation technology as applied to the management of low-level waste (LLW). Present-day waste segregation practices were surveyed through a review of the recent literature and by means of personal interviews with personnel at selected facilities. Among the nuclear establishments surveyed were Department of Energy (DOE) laboratories and plants, nuclear fuel cycle plants, public and private laboratories, institutions, industrial plants, and DOE and commercially operated shallow land burial sites. These survey data were used to analyze the relationship between waste segregation practices and waste treatment/disposal processes, to assess the developmental needs for improved segregation technology, and to evaluate the costs and benefits associated with the implementation of waste segregation controls. This task was planned for completion in FY 1981. It should be noted that LLW management practices are now undergoing rapid change such that the technology and requirements for waste segregation in the near future may differ significantly from those of the present day. 8 figures

  15. The Department of Energy's National Disposition Strategy for the Treatment and Disposal of Low Level and Mixed Low Level Waste

    International Nuclear Information System (INIS)

    Peterson, G.R.; Tonkay, D.W.

    2006-01-01

    The U.S. Department of Energy's (DOE) Environmental Management (EM) program is committed to the environmental remediation of DOE sites. This cleanup mission will continue to produce large amounts of Low Level Waste (LLW) and Mixed Low-Level Waste (MLLW). This paper reports on the development of the DOE LLW/MLLW National Disposition Strategy that maps the Department's long-range strategy to manage LLW and MLLW. Existing corporate LLW and MLLW data proved insufficient to develop this strategy. Therefore, new data requirements were developed in conjunction with waste managers. The paper will report on the results of this data collection effort, which will result in development of DOE LLW/MLLW disposition maps. (authors)

  16. Waste management facilities cost information for transportation of radioactive and hazardous materials

    International Nuclear Information System (INIS)

    Feizollahi, F.; Shropshire, D.; Burton, D.

    1995-06-01

    This report contains cost information on the U.S. Department of Energy (DOE) Complex waste streams that will be addressed by DOE in the programmatic environmental impact statement (PEIS) project. It describes the results of the task commissioned by DOE to develop cost information for transportation of radioactive and hazardous waste. It contains transportation costs for most types of DOE waste streams: low-level waste (LLW), mixed low-level waste (MLLW), alpha LLW and alpha MLLW, Greater-Than-Class C (GTCC) LLW and DOE equivalent waste, transuranic (TRU) waste, spent nuclear fuel (SNF), and hazardous waste. Unit rates for transportation of contact-handled ( 200 mrem/hr contact dose) radioactive waste are estimated. Land transportation of radioactive and hazardous waste is subject to regulations promulgated by DOE, the U.S. Department of Transportation (DOT), the U.S. Nuclear Regulatory Commission (NRC), and state and local agencies. The cost estimates in this report assume compliance with applicable regulations

  17. Waste management facilities cost information for transportation of radioactive and hazardous materials

    Energy Technology Data Exchange (ETDEWEB)

    Feizollahi, F.; Shropshire, D.; Burton, D.

    1995-06-01

    This report contains cost information on the U.S. Department of Energy (DOE) Complex waste streams that will be addressed by DOE in the programmatic environmental impact statement (PEIS) project. It describes the results of the task commissioned by DOE to develop cost information for transportation of radioactive and hazardous waste. It contains transportation costs for most types of DOE waste streams: low-level waste (LLW), mixed low-level waste (MLLW), alpha LLW and alpha MLLW, Greater-Than-Class C (GTCC) LLW and DOE equivalent waste, transuranic (TRU) waste, spent nuclear fuel (SNF), and hazardous waste. Unit rates for transportation of contact-handled (<200 mrem/hr contact dose) and remote-handled (>200 mrem/hr contact dose) radioactive waste are estimated. Land transportation of radioactive and hazardous waste is subject to regulations promulgated by DOE, the U.S. Department of Transportation (DOT), the U.S. Nuclear Regulatory Commission (NRC), and state and local agencies. The cost estimates in this report assume compliance with applicable regulations.

  18. Inventory and characteristics of current and projected low-level radioactive materials and waste in the United States

    International Nuclear Information System (INIS)

    Bisaria, A.; Bugos, R.G.; Pope, R.B.; Salmon, R.; Storch, S.N.; Lester, P.B.

    1994-01-01

    The Integrated Data Base (IDB), under US Department of Energy (DOE) funding and guidance, provides an annual update of compiled data on current and projected inventories and characteristics of DOE and commercially owned radioactive wastes. The data base addresses also the inventories of DOE and commercial spent fuel. These data are derived from reliable information from government sources, open literature, technical reports, and direct contacts. The radioactive materials considered are spent nuclear fuel, high-level waste (HLW), transuranic (TRU) waste, low-level waste (LLW), commercial uranium mill tailings, environmental restoration wastes, and mixed-LLW. This paper primarily focuses on LLW inventory and characterization

  19. Environmental assessment for the treatment of Class A low-level radioactive waste and mixed low-level waste generated by the West Valley Demonstration Project

    International Nuclear Information System (INIS)

    1995-11-01

    The U.S. Department of Energy (DOE) is currently evaluating low-level radioactive waste management alternatives at the West Valley Demonstration Project (WVDP) located on the Western New York Nuclear Service Center (WNYNSC) near West Valley, New York. The WVDP's mission is to vitrify high-level radioactive waste resulting from commercial fuel reprocessing operations that took place at the WNYNSC from 1966 to 1972. During the process of high-level waste vitrification, low-level radioactive waste (LLW) and mixed low-level waste (MILLW) will result and must be properly managed. It is estimated that the WVDP's LLW storage facilities will be filled to capacity in 1996. In order to provide sufficient safe storage of LLW until disposal options become available and partially fulfill requirements under the Federal Facilities Compliance Act (FFCA), the DOE is proposing to use U.S. Nuclear Regulatory Commission-licensed and permitted commercial facilities in Oak Ridge, Tennessee; Clive, Utah; and Houston, Texas to treat (volume-reduce) a limited amount of Class A LLW and MLLW generated from the WVDP. Alternatives for ultimate disposal of the West Valley LLW are currently being evaluated in an environmental impact statement. This proposed action is for a limited quantity of waste, over a limited period of time, and for treatment only; this proposal does not include disposal. The proposed action consists of sorting, repacking, and loading waste at the WVDP; transporting the waste for commercial treatment; and returning the residual waste to the WVDP for interim storage. For the purposes of this assessment, environmental impacts were quantified for a five-year operating period (1996 - 2001). Alternatives to the proposed action include no action, construction of additional on-site storage facilities, construction of a treatment facility at the WVDP comparable to commercial treatment, and off-site disposal at a commercial or DOE facility

  20. Commercial disposal options for Idaho National Engineering Laboratory low-level radioactive waste

    International Nuclear Information System (INIS)

    Porter, C.L.; Widmayer, D.A.

    1995-09-01

    The Idaho National Engineering Laboratory (INEL) is a Department of Energy (DOE)-owned, contractor-operated site. Significant quantities of low-level radioactive waste (LLW) have been generated and disposed of onsite at the Radioactive Waste Management Complex (RWMC). The INEL expects to continue generating LLW while performing its mission and as aging facilities are decommissioned. An on-going Performance Assessment process for the RWMC underscores the potential for reduced or limited LLW disposal capacity at the existing onsite facility. In order to properly manage the anticipated amount of LLW, the INEL is investigating various disposal options. These options include building a new facility, disposing the LLW at other DOE sites, using commercial disposal facilities, or seeking a combination of options. This evaluation reports on the feasibility of using commercial disposal facilities

  1. Waste minimization handbook, Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    Boing, L.E.; Coffey, M.J.

    1995-12-01

    This technical guide presents various methods used by industry to minimize low-level radioactive waste (LLW) generated during decommissioning and decontamination (D and D) activities. Such activities generate significant amounts of LLW during their operations. Waste minimization refers to any measure, procedure, or technique that reduces the amount of waste generated during a specific operation or project. Preventive waste minimization techniques implemented when a project is initiated can significantly reduce waste. Techniques implemented during decontamination activities reduce the cost of decommissioning. The application of waste minimization techniques is not limited to D and D activities; it is also useful during any phase of a facility`s life cycle. This compendium will be supplemented with a second volume of abstracts of hundreds of papers related to minimizing low-level nuclear waste. This second volume is expected to be released in late 1996.

  2. Waste minimization handbook, Volume 1

    International Nuclear Information System (INIS)

    Boing, L.E.; Coffey, M.J.

    1995-12-01

    This technical guide presents various methods used by industry to minimize low-level radioactive waste (LLW) generated during decommissioning and decontamination (D and D) activities. Such activities generate significant amounts of LLW during their operations. Waste minimization refers to any measure, procedure, or technique that reduces the amount of waste generated during a specific operation or project. Preventive waste minimization techniques implemented when a project is initiated can significantly reduce waste. Techniques implemented during decontamination activities reduce the cost of decommissioning. The application of waste minimization techniques is not limited to D and D activities; it is also useful during any phase of a facility's life cycle. This compendium will be supplemented with a second volume of abstracts of hundreds of papers related to minimizing low-level nuclear waste. This second volume is expected to be released in late 1996

  3. Assessment of waste characteristics and waste management practices for the Midwest compact region:

    International Nuclear Information System (INIS)

    Sutherland, A.A.

    1986-01-01

    To define that system and optimize its components, it is necessary to know various characteristics of the LLW generated in the Midwest Compact Region. It must have projections for the annual volumes from the states in the compact to determine the size and lifetimes of waste management facilities. Information on the different volumes of the region's LLW that fall into NRC waste classes will help determine volumes of waste that may need separate disposal. Eventually, licensing a LLW disposal facility will require source terms /emdash/ quantities and concentrations of nuclides placed in the facility /emdash/ in order to conduct performance assessments. To provide the information needed to make informed decisions about the nature and size of the Midwest region's low-level waste management system, information was gathered from a number of sources. The information was placed in a computer data base to preserve it and to facilitate extracton of combinations of data. This report describes how the information was assembled and the nature of the computerized data base. It also provides a baseline characterization of the low-level waste being generated and shipped for disposal from the Midwest region in the late 1980's. 10 refs., 7 figs., 13 tabs

  4. Integrated Data Base: Status and waste projections

    International Nuclear Information System (INIS)

    Klein, J.A.

    1990-01-01

    The Integrated Data Base (IDB) is the official US Department of Energy (DOE) data base for spent fuel and radioactive waste inventories and projections. DOE low-level waste (LLW) is just one of the many waste types that are documented with the IDB. Summary-level tables and figures are presented illustrating historical and projected volume changes of DOE LLW. This information is readily available through the annual IDB publication. Other presentation formats are also available to the DOE community through a request to the IDB Program. 4 refs., 6 figs., 5 tabs

  5. Package materials, waste form

    International Nuclear Information System (INIS)

    Anon.

    1980-01-01

    The schedules for waste package development for the various host rocks were presented. The waste form subtask activities were reviewed, with the papers focusing on high-level waste, transuranic waste, and spent fuel. The following ten papers were presented: (1) Waste Package Development Approach; (2) Borosilicate Glass as a Matrix for Savannah River Plant Waste; (3) Development of Alternative High-Level Waste Forms; (4) Overview of the Transuranic Waste Management Program; (5) Assessment of the Impacts of Spent Fuel Disassembly - Alternatives on the Nuclear Waste Isolation System; (6) Reactions of Spent Fuel and Reprocessing Waste Forms with Water in the Presence of Basalt; (7) Spent Fuel Stabilizer Screening Studies; (8) Chemical Interactions of Shale Rock, Prototype Waste Forms, and Prototype Canister Metals in a Simulated Wet Repository Environment; (9) Impact of Fission Gas and Volatiles on Spent Fuel During Geologic Disposal; and (10) Spent Fuel Assembly Decay Heat Measurement and Analysis

  6. Acceptance issues for large items and difficult waste

    International Nuclear Information System (INIS)

    Palmer, J.; Lock, Peter

    2002-01-01

    Peter Lock described some particular cases which had given rise to difficult acceptance issues at NIREX, ranging from large size items to the impacts of chemicals used during decontamination on the mobility of radionuclides in a disposal facility: The UK strategy for intermediate level and certain low level radioactive waste disposal is based on production of cementitious waste-forms packaged in a standard range of containers as follows: 500 litre Drum - the normal container for most operational ILW (0.8 m diameter x 1.2 m high); 3 m"3 Box - a larger container for solid wastes (1.72 m x 1.72 m plan x 1.2 m high); 3 m"3 Drum - a larger container for in-drum mixing and immobilisation of sludge waste-forms (1.72 m diameter x 1.2 m high); 4 m Box - for large items of waste, especially from decommissioning (4.0 m x 2.4 m plan x 2.2 m high); 2 m LLW Box - for higher-density wastes (2.0 m x 2.4 m plan x 2.2 m high). In addition the majority of LLW is packaged by supercompaction followed by grouting in modified ISO freight containers (6 m x 2.5 m x 2.5 m). Some wastes do not fit easily into this strategy. These wastes include: very large items, (too big for the 4 m box) which, if dealt with whole, pose transport and disposal problems. These items are discussed further in Section 2; waste whose characteristics make packaging difficult. Such wastes are described in more detail in Section 3

  7. Regulatory inspection practices for radioactive and non-radioactive waste management facilities

    International Nuclear Information System (INIS)

    Roy, Amitava

    2017-01-01

    Management of nuclear waste plays an important role in the nuclear energy programme of the country. India has adopted the Closed Fuel Cycle option, where the spent nuclear fuel is treated as a material of resource and the nuclear waste is wealth. Closed fuel cycle aims at recovery and recycle of valuable nuclear materials in to reactors as fuel and also separation of useful radio isotopes for the use in health care, agriculture and industry. India has taken a lead role in the waste management activities and has reached a level of maturity over a period of more than forty decades. The nuclear waste management primarily comprises of waste characterization, segregation, conditioning, treatment, immobilization of radionuclides in stable and solid matrices and interim retrievable storage of conditioned solid waste under surveillance. The waste generated in a nuclear facility is in the form of liquid and solid, and it's classification depends on the content of radioactivity. The liquid waste is characterized as Low level (LLW), Intermediate level (ILW) and High Level (HLW). The LLW is relatively large in volume and much lesser radioactive. The LLW is subjected to chemical precipitation using various chemicals based on the radionuclides present, followed by filtration, settling, ion exchange and cement fixation. The conditioning and treatment processes of ILW uses ion exchange, alkali hydrolysis for spent solvent, phase separation and immobilization in cement matrix. The High Level Waste (HLW), generated during spent fuel reprocessing and containing more than 99 percent of the total radioactivity is first subjected to volume reduction/concentration by evaporation and then vitrified in a meIter using borosilicate glass. Presently, Joule Heated Ceramic Meter is used in India for Vitrification process. Vitrified waste products (VWP) are stored for interim period in a multibarrier, air cooled facility under surveillance

  8. Leach studies of chelating agents and influence on radionuclide leaching from simulated LLW/ILW cement waste forms

    International Nuclear Information System (INIS)

    Vejmelka, P.; Koester, R.; Ferrara, D.; Wacks, M.E.

    1990-01-01

    Leach studies were performed on cemented waste forms containing sodium nitrate, trace amounts of cesium-137, and cobalt-60, and a chelating agent (ethylene diamine tetraacetic acid (EDTA), nitrilotriacetic acid (NTA), or citric acid). Leaching of the chelates was measured in water and the effect of the chelates on the release of the Cs-137 and Co-60 was studied. The time dependence of the release rate of the chelates is comparable but the chelate concentration in solution and the released fractions are different. EDTA shows the highest release rate followed by NTA and citrate. The release of the non complex forming cesium is not affected by the presence of the chelates. Independent from the strong complex formation of cobalt with EDTA, NTA, and citrate in the alkaline region the cobalt release is also not affected by the presence of the chelates. The high calcium content of the system decreases the stability of the Co complexes in the high pH region (12-13). Experiments were performed to determine the equilibrium concentration of the chelates between liquid and solid phases. The liquid phases were deionized water, saturated sodium chloride, 24 percent magnesium chloride and Q-brine. The equilibrium studies are based on the assumption that in time a stable final condition is to be established in the near field of the waste form in which each compound is at chemical equilibrium between the dissolved and the various solid phases. The total release may be assessed from the concentration in solution and flow rate out of the near field. The fraction of EDTA released from the cement ranged from 0.2 in the Q-brine to 0.5 in the saturated sodium chloride. The concentration of EDSA in solution was dependent on the original amount in the cement sample, but the released fraction was independent of the initial loading. Indicating, EDTA concentration is not affected by solubility limits. 11 refs., 3 figs., 2 tabs

  9. The incineration of low-level radioactive waste: A report for the Advisory Committee on Nuclear Waste

    International Nuclear Information System (INIS)

    Long, S.W.

    1990-06-01

    This report is a summary of the contemporary use of incineration technology as a method for volume reduction of LLW. It is intended primarily to serve as an overview of the technology for waste management professionals involved in the use or regulation of LLW incineration. It is also expected that organizations presently considering the use of incineration as part of their radioactive waste management programs will benefit by gaining a general knowledge of incinerator operating experience. Specific types of incineration technologies are addressed in this report, including designation of the kinds of wastes that can be processed, the magnitudes of volume reduction that are achievable in typical operation, and requirements for ash handling and off-gas filtering and scrubbing. A status listing of both US and foreign incinerators provides highlights of activities at government, industry, institutional, and commercial nuclear power plant sites. The Federal and State legislative structures for the regulation of LLW incineration are also described. 84 refs., 33 tabs

  10. Secondary Waste Cast Stone Waste Form Qualification Testing Plan

    Energy Technology Data Exchange (ETDEWEB)

    Westsik, Joseph H.; Serne, R. Jeffrey

    2012-09-26

    The Hanford Tank Waste Treatment and Immobilization Plant (WTP) is being constructed to treat the 56 million gallons of radioactive waste stored in 177 underground tanks at the Hanford Site. The WTP includes a pretreatment facility to separate the wastes into high-level waste (HLW) and low-activity waste (LAW) fractions for vitrification and disposal. The LAW will be converted to glass for final disposal at the Integrated Disposal Facility (IDF). Cast Stone – a cementitious waste form, has been selected for solidification of this secondary waste stream after treatment in the ETF. The secondary-waste Cast Stone waste form must be acceptable for disposal in the IDF. This secondary waste Cast Stone waste form qualification testing plan outlines the testing of the waste form and immobilization process to demonstrate that the Cast Stone waste form can comply with the disposal requirements. Specifications for the secondary-waste Cast Stone waste form have not been established. For this testing plan, Cast Stone specifications are derived from specifications for the immobilized LAW glass in the WTP contract, the waste acceptance criteria for the IDF, and the waste acceptance criteria in the IDF Permit issued by the State of Washington. This testing plan outlines the testing needed to demonstrate that the waste form can comply with these waste form specifications and acceptance criteria. The testing program must also demonstrate that the immobilization process can be controlled to consistently provide an acceptable waste form product. This testing plan also outlines the testing needed to provide the technical basis for understanding the long-term performance of the waste form in the disposal environment. These waste form performance data are needed to support performance assessment analyses of the long-term environmental impact of the secondary-waste Cast Stone waste form in the IDF

  11. Research and development of treatment techniques for LLW from decommissioning: Decontamination and volume reduction techniques

    International Nuclear Information System (INIS)

    Hirabayashi, T.; Kameo, Y.; Nakashio, N.

    2001-01-01

    For the purpose of reducing the amount and/or volume of low-level radioactive waste (LLW) arising from decommissioning of nuclear reactor, the Japan Atomic Energy Research Institute (JAERI) has been developing four decontamination techniques. They are: (a) Gas-carrying abrasive method, (b) In-situ remote electropolishing method for pipe system before dismantling, (c) Bead reaction - thermal shock method, and (d) Laser induced chemical method for components after dismantling. JAERI in developing techniques are also carrying out melting tests of metal and non-metal. Melting was confirmed to be effective in reducing the volume, homogenizing, and furthermore stabilizing non-metallic wastes. (author)

  12. Low-level wastes pathways at EDF

    International Nuclear Information System (INIS)

    Hilmoine, R.; Casseau, L.Ph.

    1999-01-01

    First, what are, for EDF, the main issues dealing with the future management of low level wastes (LLW) will be recalled; and followed by a description of what are the implications of implementing these management principles: areas zoning, set up of pathways, traceability of the wastes and associated controls. The origin of the wastes will then be described using both qualitative and quantitative approaches; the description will specifically address the spreading of wastes production in time. LLW management at EDF will then be envisaged: storage in a specific discharge, pathways for treatment and elimination of wastes with acceptable radiological impact and costs. The example of LLW oils will be developed: particularly as far as hypothesis and results concerning the radiological impacts are concerned. The choice of incineration will then be justified, however expected difficulties to implement it industrially will be pointed out. Other on going studies and their main results will be mentioned: the present time is a turning point on that issue between thought and action; to be on going dismantling must take into account the emerging principles and give rise to good communication. (author)

  13. State compacts and low-level waste

    International Nuclear Information System (INIS)

    Brown, H.

    1984-01-01

    In 1979, for the first time, low-level waste (LLW) was brought to the attention of policy makers in most states. For several decades, technical personnel had regulated and managed LLW, but elected officials and their staff had been largely ignorant of the origins and destination of low-level radioactive materials. Events in the fall of 1979 set in motion a sequence of events that has compelled the continuing attention of policy makers in every state in the nation. In December 1979, the Executive Committee of the National Governors' Association appointed an eight-member task force, chaired by Governor Bruce Babbitt of Arizona, to review low-level waste management and to formulate state policy by July 1980. The principal findings were as follows: 1. LLW could be managed most efficiently, both technically and politically, at the state level. 2. Each state should take responsibility for its own waste. 3. The creation of a regional waste management system by means of interstate compacts offered the best promise of creating new disposal capacity. 4. Regions should be allowed to exclude waste generated outside their borders after a specified date

  14. Secondary Waste Form Down-Selection Data Package—Fluidized Bed Steam Reforming Waste Form

    Energy Technology Data Exchange (ETDEWEB)

    Qafoku, Nikolla; Westsik, Joseph H.; Strachan, Denis M.; Valenta, Michelle M.; Pires, Richard P.

    2011-09-12

    The Hanford Site in southeast Washington State has 56 million gallons of radioactive and chemically hazardous wastes stored in 177 underground tanks (ORP 2010). The U.S. Department of Energy (DOE), Office of River Protection (ORP), through its contractors, is constructing the Hanford Tank Waste Treatment and Immobilization Plant (WTP) to convert the radioactive and hazardous wastes into stable glass waste forms for disposal. Within the WTP, the pretreatment facility will receive the retrieved waste from the tank farms and separate it into two treated process streams. These waste streams will be vitrified, and the resulting waste canisters will be sent to offsite (high-level waste [HLW]) and onsite (immobilized low-activity waste [ILAW]) repositories. As part of the pretreatment and ILAW processing, liquid secondary wastes will be generated that will be transferred to the Effluent Treatment Facility (ETF) on the Hanford Site for further treatment. These liquid secondary wastes will be converted to stable solid waste forms that will be disposed of in the Integrated Disposal Facility (IDF). To support the selection of a waste form for the liquid secondary wastes from WTP, Washington River Protection Solutions (WRPS) has initiated secondary waste form testing work at Pacific Northwest National Laboratory (PNNL). In anticipation of a down-selection process for a waste form for the Solidification Treatment Unit to be added to the ETF, PNNL is developing data packages to support that down-selection. The objective of the data packages is to identify, evaluate, and summarize the existing information on the four waste forms being considered for stabilizing and solidifying the liquid secondary wastes. At the Hanford Site, the FBSR process is being evaluated as a supplemental technology for treating and immobilizing Hanford LAW radioactive tank waste and for treating secondary wastes from the WTP pretreatment and LAW vitrification processes.

  15. TSA waste stream and final waste form composition

    International Nuclear Information System (INIS)

    Grandy, J.D.; Eddy, T.L.; Anderson, G.L.

    1993-01-01

    A final vitrified waste form composition, based upon the chemical compositions of the input waste streams, is recommended for the transuranic-contaminated waste stored at the Transuranic Storage Area of the Radioactive Waste Management Complex at the Idaho National Engineering Laboratory. The quantities of waste are large with a considerable uncertainty in the distribution of various waste materials. It is therefore impractical to mix the input waste streams into an ''average'' transuranic-contaminated waste. As a result, waste stream input to a melter could vary widely in composition, with the potential of affecting the composition and properties of the final waste form. This work examines the extent of the variation in the input waste streams, as well as the final waste form under conditions of adding different amounts of soil. Five prominent Rocky Flats Plant 740 waste streams are considered, as well as nonspecial metals and the ''average'' transuranic-contaminated waste streams. The metals waste stream is the most extreme variation and results indicate that if an average of approximately 60 wt% of the mixture is soil, the final waste form will be predominantly silica, alumina, alkaline earth oxides, and iron oxide. This composition will have consistent properties in the final waste form, including high leach resistance, irrespective of the variation in waste stream. For other waste streams, much less or no soil could be required to yield a leach resistant waste form but with varying properties

  16. Gas generation from low-level radioactive waste: Concerns for disposal

    International Nuclear Information System (INIS)

    Siskind, B.

    1992-01-01

    The Advisory Committee on Nuclear Waste (ACNW) has urged the Nuclear Regulatory Commission (NRC) to reexamine the topic of hydrogen gas generation from low-level radioactive waste (LLW) in closed spaces to ensure that the slow buildup of hydrogen from water-bearing wastes in sealed containers does not become a problem for long-term safe disposal. Brookhaven National Laboratory (BNL) has prepared a report, summarized in this paper, for the NRC to respond to these concerns. The paper discusses the range of values for G(H 2 ) reported for materials of relevance to LLW disposal; most of these values are in the range of 0.1 to 0.6. Most studies of radiolytic hydrogen generation indicate a leveling off of pressurization, probably because of chemical kinetics involving, in many cases, the radiolysis of water within the waste. Even if no leveling off occurs, realistic gas leakage rates (indicating poor closure by gaskets on drums and liners) will result in adequate relief of pressure for radiolytic gas generation from the majority of commercial sector LLW packages. Biodegradative gas generation, however, could pose a pressurization hazard even at realistic gas leakage rates. Recommendations include passive vents on LLW containers (as already specified for high integrity containers) and upper limits to the G values and/or the specific activity of the LLW

  17. Waste treatment

    International Nuclear Information System (INIS)

    Hutson, G.V.

    1996-01-01

    Numerous types of waste are produced by the nuclear industry ranging from high-level radioactive and heat-generating, HLW, to very low-level, LLW and usually very bulky wastes. These may be in solid, liquid or gaseous phases and require different treatments. Waste management practices have evolved within commercial and environmental constraints resulting in considerable reduction in discharges. (UK)

  18. Development of LLW and VLLW disposal business cost estimation system

    International Nuclear Information System (INIS)

    Koibuchi, Hiroko; Ishiguro, Hideharu; Matsuda, Kenji

    2004-01-01

    In order to undertake the LLW and VLLW disposal business, various examinations are carried out in RANDEC. Since it is important in undertaking this business to secure funds, a disposal cost must be calculated by way of trial. However, at present, there are many unknown factors such as the amount of wastes, a disposal schedule, the location of a disposal site, and so on, and the cost cannot be determined. Meanwhile, the cost depends on complicated relations among these factors. Then, a 'LLW and VLLW disposal business cost estimation system' has been developed to calculate the disposal cost easily. This system can calculate an annual balance of payments by using a construction and operation cost of disposal facilities, considering economic parameters of tax, inflation rate, interest rate and so on. And the system can calculate internal reserves to assign to next-stage upkeep of the disposal facilities after the disposal operation. A model of disposal site was designed based on assumption of some preconditions and a study was carried out to make a trial calculation by using the system. Moreover, it will be required to reduce construction cost by rationalizing the facility and to make flat an annual business spending by examining the business schedule. (author)

  19. Strategies, technologies, and economics for managing greater-than-class C waste

    International Nuclear Information System (INIS)

    Danna, J.G.; Baird, R.D.; Chau, T.K.

    1994-01-01

    The Low-Level Radioactive Waste Policy Amendments Act 0f 1985, Public Law 99-240, transferred responsibility for disposing of Greater-Than-Class C (GTCC) low-level radioactive waste (LLW) generated by commercial licensees from the states to the U.S. Department of Energy (DOE). Development of permanent disposal capacity for GTCC LLW requires the evaluation of potential disposal concepts in terms of technical feasibility, economics, and institutional concerns. Previous studies have identified 13 potential GTCC LLW disposal concepts and have characterized volumes and types of GTCC LLW. Data from these studies, along with newly developed data pertaining to concept designs and hypothetical sites, were used to evaluate each concept's technical feasibility. An evaluation of the cost effectiveness of the technically feasible disposal concepts was also conducted

  20. Low-level radioactive waste treatment systems in northern Europe

    International Nuclear Information System (INIS)

    Sjoeblom, R.

    1987-08-01

    In the United States, the use of low-level waste (LLW) treatment systems by low level waste generators can be expected to expand with increasing costs for disposal and continuing uncertainty over the availability of disposal space. This development increases the need for performance information and operational data and has prompted the US Department of Energy to commission several compilations of LLW systems experience. The present paper summarizes some of the know-how from Northern Europe where the incentive for LLW treatment and volume reduction is very high since deposition space has not been available for many years. 65 refs., 10 figs., 4 tabs

  1. Low-level radioactive waste vitrification: effect of Cs partitioning

    International Nuclear Information System (INIS)

    Horton, W.S.; Ougouag, A.M.

    1986-01-01

    The traditional Low-Level Radioactive Waste (LLW) immobilization options are cementation or bituminization. Either of these options could be followed by shallow-land burial (SLB) or above-ground disposal. These rather simple LLW procedures appeared to be readily available, to meet regulatory requirements, and to satisfy cost constraints. The authorization of State Compacts, the forced closure of half of the six SLB disposal facilities of the nation, and the escalation of transportation/disposal fees diminish the viability of these options. The synergetic combination of these factors led to a reassessment of traditional methods and to an investigation of other techniques. This paper analyzes the traditional LLW immobilization options, reviews the impact of the LLW stream composition on Low-Level Waste Vitrification (LLWV), then proposes and briefly discusses several techniques to control the volatile radionuclides in a Process Improved LLWV system (PILLWV)

  2. Treatment methods for radioactive mixed wastes in commercial low-level wastes - technical considerations

    International Nuclear Information System (INIS)

    MacKenzie, D.R.; Kempf, C.R.

    1986-01-01

    Treatment options for the management of three generic categories of radioactive mixed waste in commercial low-level wastes (LLW) have been identified and evaluated. These wastes were characterized as part of a BNL study in which LLW generators were surveyed for information on potential chemical hazards in their wastes. The general treatment options available for mixed wastes are destruction, immobilization, and reclamation. Solidification, absorption, incineration, acid digestion, wet-air oxidation, distillation, liquid-liquid solvent extraction, and specific chemical destruction techniques have been considered for organic liquid wastes. Containment, segregation, decontamination, and solidification or containment of residues, have been considered for lead metal wastes which have themselves been contaminated and are not used for purposes of waste disposal shielding, packaging, or containment. For chromium-containing wastes, solidification, incineration, wet-air oxidation, acid digestion, and containment have been considered. Fore each of these wastes, the management option evaluation has included an assessment of testing appropriate to determine the effect of the option on both the radiological and potential chemical hazards present

  3. Development of low-level radioactive waste disposal capacity in the United States - progress or stalemate?

    International Nuclear Information System (INIS)

    Devgun, J.S.; Larson, G.S.

    1995-01-01

    It has been fifteen years since responsibility for the disposal of commercially generated low-level radioactive waste (LLW) was shifted to the states by the United States Congress through the Low-Level Radioactive Waste Policy Act of 1980 (LLRWPA). In December 1985, Congress revisited the issue and enacted the Low-Level Radioactive Waste Policy Amendments Act of 1985 (LLRWPAA). No new disposal sites have opened yet, however, and it is now evident that disposal facility development is more complex, time-consuming, and controversial than originally anticipated. For a nation with a large nuclear power industry, the lack of availability of LLW disposal capacity coupled with a similar lack of high-level radioactive waste disposal capacity could adversely affect the future viability of the nuclear energy option. The U.S. nuclear power industry, with 109 operating reactors, generates about half of the LLW shipped to commercial disposal sites and faces dwindling access to waste disposal sites and escalating waste management costs. The other producers of LLW - industries, government (except the defense related research and production waste), academic institutions, and medical institutions that account for the remaining half of the commercial LLW - face the same storage and cost uncertainties. This paper will summarize the current status of U.S. low-level radioactive waste generation and the status of new disposal facility development efforts by the states. The paper will also examine the factors that have contributed to delays, the most frequently suggested alternatives, and the likelihood of change

  4. Development of low-level radioactive waste disposal capacity in the United States -- Progress or stalemate?

    International Nuclear Information System (INIS)

    Devgun, J.S.

    1995-01-01

    It has been fifteen years since responsibility for the disposal of commercially generated low-level radioactive waste (LLW) was shifted to the states by the United States Congress through the Low-Level Radioactive Waste Policy Act of 1980 (LLRWPA). In December 1985, Congress revisited the issue and enacted the Low-Level Radioactive Waste Policy Amendments Act of 1985 (LLRWPAA). No new disposal sites have opened yet, however, and it is now evident that disposal facility development is more complex, time-consuming, and controversial than originally anticipated. For a nation with a large nuclear power industry, the lack of availability of LLW disposal capacity coupled with a similar lack of high-level radioactive waste disposal capacity could adversely affect the future viability of the nuclear energy option. The US nuclear power industry, with 109 operating reactors, generates about half of the LLW shipped to commercial disposal sites and faces dwindling access to waste disposal sites and escalating waste management costs. The other producers of LLW -- industries, government (except the defense related research and production waste), academic institutions, and medical institutions that account for the remaining half of the commercial LLW -- face the same storage and cost uncertainties. This paper will summarize the current status of US low-level radioactive waste generation and the status of new disposal facility development efforts by the states. The paper will also examine the factors that have contributed to delays, the most frequently suggested alternatives, and the likelihood of change

  5. Chemistry of application of calcination/dissolution to the Hanford tank waste inventory

    International Nuclear Information System (INIS)

    Delegard, C.H.; Elcan, T.D.; Hey, B.E.

    1994-05-01

    Approximately 330,000 metric tons of sodium-rich radioactive waste originating from separation of plutonium from irradiated uranium fuel are stored in underground tanks at the Hanford Site in Washington State. Fractionation of the waste into low-level waste (LLW) and high-level waste (HLW) streams is envisioned via partial water dissolution and limited radionuclide extraction operations. Under optimum conditions, LLW would contain most of the chemical bulk while HLW would contain virtually all of the transuranic and fission product activity. Calcination at around 850 C, followed by water dissolution, has been proposed as an alternative initial treatment of Hanford Site waste to improve waste dissolution and the envisioned LLW/HLW split. Results of literature and laboratory studies are reported on the application of calcination/dissolution (C/D) to the fractionation of the Hanford Site tank waste inventory. Both simulated and genuine Hanford Site waste materials were used in the lab tests. To evaluation confirmed that C/D processing reduced the amount of several components from the waste. The C/D dissolutions of aluminum and chromium allow redistribution of these waste components from the HLW to the LLW fraction. Comparisons of simple water-washing with C/D processing of genuine Hanford Site waste are also reported based on material (radionuclide and chemical) distributions to solution and solid residue phases. The lab results show that C/D processing yielded superior dissolution of aluminum and chromium sludges compared to simple water dissolution. 57 refs., 26 figs., 18 tabs

  6. Chemistry of application of calcination/dissolution to the Hanford tank waste inventory

    Energy Technology Data Exchange (ETDEWEB)

    Delegard, C.H.; Elcan, T.D.; Hey, B.E.

    1994-05-01

    Approximately 330,000 metric tons of sodium-rich radioactive waste originating from separation of plutonium from irradiated uranium fuel are stored in underground tanks at the Hanford Site in Washington State. Fractionation of the waste into low-level waste (LLW) and high-level waste (HLW) streams is envisioned via partial water dissolution and limited radionuclide extraction operations. Under optimum conditions, LLW would contain most of the chemical bulk while HLW would contain virtually all of the transuranic and fission product activity. Calcination at around 850 C, followed by water dissolution, has been proposed as an alternative initial treatment of Hanford Site waste to improve waste dissolution and the envisioned LLW/HLW split. Results of literature and laboratory studies are reported on the application of calcination/dissolution (C/D) to the fractionation of the Hanford Site tank waste inventory. Both simulated and genuine Hanford Site waste materials were used in the lab tests. To evaluation confirmed that C/D processing reduced the amount of several components from the waste. The C/D dissolutions of aluminum and chromium allow redistribution of these waste components from the HLW to the LLW fraction. Comparisons of simple water-washing with C/D processing of genuine Hanford Site waste are also reported based on material (radionuclide and chemical) distributions to solution and solid residue phases. The lab results show that C/D processing yielded superior dissolution of aluminum and chromium sludges compared to simple water dissolution. 57 refs., 26 figs., 18 tabs.

  7. Influence of non-technical policies on choices of waste solidification technologies

    International Nuclear Information System (INIS)

    Trubatch, S.L.

    1987-01-01

    This paper describes and discusses non-technical policy considerations which may improperly influence decisions on the solidification of low-level radioactive wastes (''LLW''). These policy considerations are contained principally in several State and Federal statutes which regulate various aspects of LLW disposal. One policy consideration in particular, the unqualified bias in favor of volume reduction, is shown to present a substantial potential for leading to technically suboptimal decisions on the appropriate processes for solidifying LLW. To avoid the unintended skewing of technical decisions by non-technical policy considerations, certain current policies may need to be revised to ensure that the choices of waste treatment, including decisions on solidification, are based primarily on reasonable assurance of adequate protection of public health and safety. This goal may be realized in part by basing any disposal fee structure on more than just LLW volume to include consideration of the waste's activity and its difficulty of confinement

  8. Technical feasibility of retrieval within the UK repository concept for ILW/LLW

    International Nuclear Information System (INIS)

    McCall, A.; McKirdy, B.

    2000-01-01

    Nirex is developing a staged, reversible concept for the disposal of ILW and certain LLW in the UK. Within that concept, the retrievability strategy includes the option of keeping open the repository, for an extended period, after all waste has been emplaced. In examining the feasibility of such an approach, a number of key technical issues have been identified and options for addressing these issues have been established. This paper will describe the issues identified and the development of practical solutions for incorporating retrievability within the Nirex concept. (author)

  9. Melter system technology testing for Hanford Site low-level tank waste vitrification

    International Nuclear Information System (INIS)

    Wilson, C.N.

    1996-01-01

    Following revisions to the Tri-Party Agreement for Hanford Site cleanup, which specified vitrification for Complete melter feasibility and system operability immobilization of the low-level waste (LLW) tests, select reference melter(s), and establish reference derived from retrieval and pretreatment of the radioactive LLW glass formulation that meets complete systems defense wastes stored in 177 underground tanks, commercial requirements (June 1996). Available melter technologies were tested during 1994 to 1995 as part of a multiphase program to select reference Submit conceptual design and initiate definitive design technologies for the new LLW vitrification mission

  10. Low-level waste drum staging building at Weapons Engineering Tritium Facility, TA-16, Los Alamos National Laboratory, Los Alamos, New Mexico. Environmental Assessment

    International Nuclear Information System (INIS)

    1994-08-01

    The proposed action is to place a 3 meter (m) by 4.5 m (10 ft x 15 ft) prefabricated storage building (transportainer) adjacent to the existing Weapons Engineering Tritium Facility (WETF) at Technical Area (TA-) 16, Los Alamos National Laboratory (LANL), and to use the building as a staging site for sealed 55 galllon drums of noncompactible waste contaminated with low levels of tritium (LLW). Up to eight drums of waste would be accumulated before the waste is moved by LANL Waste Management personnel to the existing on-site LLW disposal area at TA-54. The drum staging building would be placed on a bermed asphalt pad, near other existing accumulation structures for office trash and compactible LLW. The no-action alternative is to continue storing drums of LLW in the WETF laboratories where they occupy valuable work space, hamper movement of personnel and equipment, and require waste management personnel to enter those laboratories in order to remove filled drums. No new waste would be generated by implementing the proposed action; no changes or increases in WETF operations or waste production rate are anticipated as a result of staging drums of LLW outside the main laboratory building. The site for the LLW drum staging building would not impact any sensitive areas. Tritium emissions from the drums of LLW were included within the source term for normal operations at the WETF; the cumulative impacts would not be increased

  11. Reverse osmosis: experience of cold commissioning trials in waste immobilisation plant, Trombay

    International Nuclear Information System (INIS)

    Anand, G.; Bose, Aditi; Verma, B.B.

    1999-01-01

    Industrial scale reverse osmosis plant for low level radioactive waste put up in Waste Immobilisation Plant (WIP), Trombay is the first of its kind in India. The performance test with inactive simulated waste is meeting the desired performance. The preliminary treatment of LLW stream at W.I.P., Trombay is proposed to be carried out with reverse osmosis membrane separation process. The design, recovery and rejection ratio of LLW is described

  12. Advanced technology for disposal of low-level radioactive/waste

    International Nuclear Information System (INIS)

    Anderson, R.T.

    1990-01-01

    New Low-Level Radioactive Waste (LLW) sites will be opened in this decade. These sites will replace the existing sites, and will be developed for waste generated at both commercial and governmental facilities. The design and operation of these facilities will include additional engineered provisions to further minimize the probability for any radioactive material release for upwards of 500 years following site closure. Chem-Nuclear Systems, Inc. (CNSI) has been selected by several state waste compacts to design, construct and operate new LLW disposal sites. These new sites will be located in Illinois, North Carolina and Pennsylvania. They will receive waste generated at commercial sites (power utilities, commercial processors, hospitals, etc.), with volumes ranging from 200,000 to 550,000 cubic feet per year. As currently planned, these facilities will be operational for from 20 to 50 years. The basis of the new designs is multiple engineered barriers which augments the natural features of the site and the solid form of the waste as shipped by the generator. The design concept is referred to as the Triple Safe concept, since it is composed of three distinct engineered barriers. This design has been adapted from disposal technology developed in France. This paper discusses aspects of the Triple Safe technology which CNSI is now developing for the new LLW sites. The designs, while not absolutely identical at each site, do have many common features. The author believes that these are representative of disposal technology to be used in the US in the 1990's and beyond. The current projection is that these sites will become operational in the 1993-97 time period

  13. Siting simulation for low-level waste disposal facilities

    International Nuclear Information System (INIS)

    Roop, R.D.; Rope, R.C.

    1985-01-01

    The Mock Site Licensing Demonstration Project has developed the Low-Level Radioactive Waste Siting Simulation, a role-playing exercise designed to facilitate the process of siting and licensing disposal facilities for low-level waste (LLW). This paper describes the development, content, and usefulness of the siting simulation. The simulation can be conducted at a workshop or conference, involves 14 or more participants, and requires about eight hours to complete. The simulation consists of two sessions; in the first, participants negotiate the selection of siting criteria, and in the second, a preferred disposal site is chosen from three candidate sites. The project has sponsored two workshops (in Boston, Massachusetts and Richmond, Virginia) in which the simulation has been conducted for persons concerned with LLW management issues. It is concluded that the simulation can be valuable as a tool for disseminating information about LLW management; a vehicle that can foster communication; and a step toward consensus building and conflict resolution. The DOE National Low-Level Waste Management Program is now making the siting simulation available for use by states, regional compacts, and other organizations involved in development of LLW disposal facilities

  14. Low-level waste institutional waste incinerator program

    International Nuclear Information System (INIS)

    Thompson, J.D.

    1980-04-01

    Literature surveyed indicated that institutional LLW is composed of organic solids and liquids, laboratory equipment and trash, and some pathological waste. Some toxic and hazardous chemicals are included in the variety of LLW generated in the nation's hospitals, universities, and research laboratories. Thus, the incinerator to be demonstrated in this program should be able to accept each of these types of materials as feedstock. Effluents from the DOE institutional incinerator demonstration should be such that all existing and proposed environmental standards be met. A design requirement was established to meet the most stringent flue gas standards. LLW incineration practice was reviewed in a survey of institutional LLW generators. Incinerator manufacturers were identified by the survey, and operational experience in incineration was noted for institutional users. Manufacturers identified in the survey were contacted and queried with regard to their ability to supply an incinerator with the desired capability. Special requirements for ash removal characteristics and hearth type were imposed on the selection. At the present time, an incinerator type, manufacturer, and model have been chosen for demonstration

  15. Performance assessment strategy for low-level waste disposal sites

    International Nuclear Information System (INIS)

    Starmer, R.J.; Deering, L.G.; Weber, M.F.

    1988-01-01

    This paper describes US Nuclear Regulatory Commission (NRC) staff views on predicting the performance of low-level radioactive waste disposal facilities. Under the Atomic Energy Act, as amended, and the Low Level Radioactive Waste Policy Act, as amended, the NRC and Agreement States license land disposal of low-level radioactive waste (LLW) using the requirements in 10 CFR Part 61 or comparable state requirements. The purpose of this paper is to briefly describe regulatory requirements for performance assessment in low-level waste licensing, a strategy for performance assessments to support license applications, and NRC staff licensing evaluation of performance assessments. NRC's current activities in developing a performance assessment methodology will provide an overall systems modeling approach for assessing the performance of LLW disposal facilities. NRC staff will use the methodology to evaluate performance assessments conducted by applicants for LLW disposal facilities. The methodology will be made available to states and other interested parties

  16. Comparison of modified sulfur cement and hydraulic cement for encapsulation of radioactive and mixed wastes

    International Nuclear Information System (INIS)

    Kalb, P.D.; Heiser, J.H. III; Colombo, P.

    1990-01-01

    The majority of solidification/stabilization systems for low-level radioactive waste (LLW) and mixed waste, both in the commercial sector and at Department of Energy (DOE) facilities, utilize hydraulic cement (such as portland cement) to encapsulate waste materials and yield a monolithic solid waste form for disposal. Because hydraulic cement requires a chemical hydration reaction for setting and hardening, it is subject to potential interactions between elements in the waste and binder that can retard or prevent solidification. A new and innovative process utilizing modified sulfur cement developed by the US Bureau of Mines has been applied at Brookhaven National Laboratory (BNL) for the encapsulation of many of these problem wastes. Modified sulfur cement is a thermoplastic material, and as such, it can be heated above its melting point, combined with dry waste products to form a homogeneous mixture, and cooled to form a monolithic solid product. Under sponsorship of the DOE, research and development efforts at BNL have successfully applied the modified sulfur cement process for treatment of a range of LLWs including sodium sulfate salts, boric acid salts, and incinerator bottom ash and for mixed waste contaminated incinerator fly ash. Process development studies were conducted to determine optimal waste loadings for each waste type. Property evaluation studies were conducted to test waste form behavior under disposal conditions by applying relevant performance testing criteria established by the Nuclear Regulatory Commission (for LLW) and the Environmental Protection Agency (for hazardous wastes). Based on both processing and performance considerations, significantly greater waste loadings were achieved using modified sulfur cement when compared with hydraulic cement. Technology demonstration of the modified sulfur cement encapsulation system using production-scale equipment is scheduled for FY 1991

  17. Transuranic waste management program waste form development

    International Nuclear Information System (INIS)

    Bennett, W.S.; Crisler, L.R.

    1981-01-01

    To ensure that all technology necessary for long term management of transuranic (TRU) wastes is available, the Department of Energy has established the Transuranic Waste Management Program. A principal focus of the program is development of waste forms that can accommodate the very diverse TRU waste inventory and meet geologic isolation criteria. The TRU Program is following two approaches. First, decontamination processes are being developed to allow removal of sufficient surface contamination to permit management of some of the waste as low level waste. The other approach is to develop processes which will allow immobilization by encapsulation of the solids or incorporate head end processes which will make the solids compatible with more typical waste form processes. The assessment of available data indicates that dewatered concretes, synthetic basalts, and borosilicate glass waste forms appear to be viable candidates for immobilization of large fractions of the TRU waste inventory in a geologic repository

  18. Segregation practices in the management of low-level radioactive wastes

    International Nuclear Information System (INIS)

    Clark, D.E.; Colombo, P.

    1981-10-01

    A scoping study has been undertaken to determine the state-of-the-art of waste segregation technology as applied to the management of low-level waste (LLW). Present-day waste segregation practices were surveyed through a review of the recent literature and by means of personal interviews with personnel at selected facilities. Among the nuclear establishments surveyed were Department of Energy (DOE) laboratories and plants, nuclear fuel cycle plants, public and private laboratories, institutions, industrial plants, and DOE and commercially operated shallow land burial sites. These survey data were used to analyze the relationship between waste segregation practices and waste treatment/disposal processes, to assess the developmental needs for improved segregation technology, and to evaluate the costs and benefits associated with the implementation of waste segregation controls. For improved processing and disposal of LLW, it is recommended that waste segregation be practiced wherever it is technically feasible and cost-effective to do so. It is noted that LLW management practices are now undergoing rapid change such that the technology and requirements for waste segregation in the near future may differ significantly from those of the present day

  19. Department of Energy low-level radioactive waste disposal concepts

    International Nuclear Information System (INIS)

    Ozaki, C.; Page, L.; Morreale, B.; Owens, C.

    1990-01-01

    The Department of Energy manages its low-level waste (LLW), regulated by DOE Order 5820.2A by using an overall systems approach. This systems approach provides an improved and consistent management system for all DOE LLW waste, from generation to disposal. This paper outlines six basic disposal concepts used in the systems approach, discusses issues associated with each of the concepts, and outlines both present and future disposal concepts used at six DOE sites

  20. Greater-than-Class C low-level radioactive waste characterization. Appendix A-2: Timing of greater-than-Class C low-level radioactive waste from nuclear power plants

    International Nuclear Information System (INIS)

    Steinke, W.F.

    1994-09-01

    Planning for the storage or disposal of greater-than-Class C low-level radioactive waste (GTCC LLW) requires characterization of that waste. Timing, or the date the waste will require storage or disposal, is an integral aspect of that planning. The majority of GTCC LLW is generated by nuclear power plants, and the length of time a reactor remains operational directly affects the amount of GTCC waste expected from that reactor. This report uses data from existing literature to develop high, base, and low case estimates for the number of plants expected to experience (a) early shutdown, (b) 40-year operation, or (c) life extension to 60-year operation. The discussion includes possible effects of advanced light water reactor technology on future GTCC LLW generation. However, the main focus of this study is timing for shutdown of current technology reactors that are under construction or operating

  1. Verifying generator waste certification: NTS waste characterization QA requirements

    International Nuclear Information System (INIS)

    Williams, R.E.; Brich, R.F.

    1988-01-01

    Waste management activities managed by the US Department of Energy (DOE) at the Nevada Test Site (NTS) include the disposal of low-level wastes (LLW) and mixed waste (MW), waste which is both radioactive and hazardous. A majority of the packaged LLW is received from offsite DOE generators. Interim status for receipt of MW at the NTS Area 5 Radioactive Waste Management Site (RWMS) was received from the state of Nevada in 1987. The RWMS Mixed Waste Management Facility (MWMF) is expected to be operational in 1988 for approved DOE MW generators. The Nevada Test Site Defense Waste Acceptance Criteria and Certification Requirements (NVO-185, Revision 5) delineates waste acceptance criteria for waste disposal at the NTS. Regulation of the hazardous component of mixed waste requires the implementation of US Environmental Protection Agency (EPA) requirements pursuant to the Resource Conservation and Recovery Act (RCRA). Waste generators must implement a waste certification program to provide assurance that the disposal site waste acceptance criteria are met. The DOE/Nevada Operations Office (NV) developed guidance for generator waste certification program plans. Periodic technical audits are conducted by DOE/NV to assess performance of the waste certification programs. The audit scope is patterned from the waste certification program plan guidance as it integrates and provides a common format for the applicable criteria. The criteria focus on items and activities critical to processing, characterizing, packaging, certifying, and shipping waste

  2. Liquid secondary waste: Waste form formulation and qualification

    Energy Technology Data Exchange (ETDEWEB)

    Cozzi, A. D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Dixon, K. L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Hill, K. A. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Nichols, R. L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-07-31

    The Hanford Site Effluent Treatment Facility (ETF) currently treats aqueous waste streams generated during site cleanup activities. When the Hanford Tank Waste Treatment and Immobilization Plant (WTP) begins operations, including Direct Feed Low Activity Waste (DFLAW) vitrification, a liquid secondary waste (LSW) stream from the WTP will need to be treated. The volume of effluent for treatment at the ETF will increase significantly. The powdered salt waste form produced by the ETF will be replaced by a stabilized solidified waste form for disposal in Hanford’s Integrated Disposal Facility (IDF). Washington River Protection Solutions is implementing a Secondary Liquid Waste Immobilization Technology Development Plan to address the technology needs for a waste form and solidification process to treat the increased volume of waste planned for disposal at the IDF. Waste form testing to support this plan is composed of work in the near term to provide data as input to a performance assessment (PA) for Hanford’s IDF. In 2015, three Hanford Liquid Secondary Waste simulants were developed based on existing and projected waste streams. Using these waste simulants, fourteen mixes of Hanford Liquid Secondary Waste were prepared and tested varying the waste simulant, the water-to-dry materials ratio, and the dry materials blend composition.1 In FY16, testing was performed using a simulant of the EMF process condensate blended with the caustic scrubber—from the Low Activity Waste (LAW) melter—, processed through the ETF. The initial EMF-16 simulant will be based on modeling efforts performed to determine the mass balance of the ETF for the DFLAW.2 The compressive strength of all of the mixes exceeded the target of 3.4 MPa (500 psi) to meet the requirements identified as potential IDF Waste Acceptance Criteria in Table 1 of the Secondary Liquid Waste Immobilization Technology Development Plan.3 The hydraulic properties of the waste forms tested (hydraulic conductivity

  3. Comparative waste forms study

    International Nuclear Information System (INIS)

    Wald, J.W.; Lokken, R.O.; Shade, J.W.; Rusin, J.M.

    1980-12-01

    A number of alternative process and waste form options exist for the immobilization of nuclear wastes. Although data exists on the characterization of these alternative waste forms, a straightforward comparison of product properties is difficult, due to the lack of standardized testing procedures. The characterization study described in this report involved the application of the same volatility, mechanical strength and leach tests to ten alternative waste forms, to assess product durability. Bulk property, phase analysis and microstructural examination of the simulated products, whose waste loading varied from 5% to 100% was also conducted. The specific waste forms investigated were as follows: Cold Pressed and Sintered PW-9 Calcine; Hot Pressed PW-9 Calcine; Hot Isostatic Pressed PW-9 Calcine; Cold Pressed and Sintered SPC-5B Supercalcine; Hot Isostatic pressed SPC-5B Supercalcine; Sintered PW-9 and 50% Glass Frit; Glass 76-68; Celsian Glass Ceramic; Type II Portland Cement and 10% PW-9 Calcine; and Type II Portland Cement and 10% SPC-5B Supercalcine. Bulk property data were used to calculate and compare the relative quantities of waste form volume produced at a spent fuel processing rate of 5 metric ton uranium/day. This quantity ranged from 3173 L/day (5280 Kg/day) for 10% SPC-5B supercalcine in cement to 83 L/day (294 Kg/day) for 100% calcine. Mechanical strength, volatility, and leach resistance tests provide data related to waste form durability. Glass, glass-ceramic and supercalcine ranked high in waste form durability where as the 100% PW-9 calcine ranked low. All other materials ranked between these two groupings

  4. Characteristics of low-level radioactive waste disposed during 1987--1989

    International Nuclear Information System (INIS)

    Roles, G.W.

    1990-12-01

    This report presents the volume, activity, and radionuclide distributions in low-level radioactive waste (LLW) disposed during 1987 through 1989 at the commercial disposal facilities located near Barnwell, SC, Richland, WA, and Beatty, NV. The report has been entirely assembled from descriptions of waste provided in LLW shipment manifests. Individual radionuclide distributions are listed as a function of waste class, of general industry, and of waste stream. In addition, information is presented about disposal of wastes containing chelating agents, about use of solidification media, about the distribution of radiation levels at the surfaces of waste containers, and about the distribution of waste container sizes. Considerably more information is presented about waste disposed at the Richland and Beatty disposal facilities than at the Barnwell disposal facility

  5. Characterization of low-level waste from the industrial sector, and near-term projection of waste volumes and types

    International Nuclear Information System (INIS)

    MacKenzie, D.R.

    1988-01-01

    A telephone survey of low-level waste generators has been carried out in order to make useful estimates of the volume and nature of the waste which the generators will be shipping for disposal when the compacts and states begin operating new disposal facilities. Emphasis of the survey was on the industrial sector, since there has been little information available on characteristics of industrial LLW. Ten large industrial generators shipping to Richland, ten shipping to Barnwell, and two whose wastes had previously been characterized by BNL were contacted. The waste volume shipped by these generators accounted for about two-thirds to three-quarters of the total industrial volume. Results are given in terms of the categories of LLW represented and of the chemical characteristics of the different wastes. Estimates by the respondents of their near-term waste volume projections are presented

  6. Characterization of low-level waste from the industrial sector, and near-term projection of waste volumes and types

    International Nuclear Information System (INIS)

    MacKenzie, D.R.

    1988-01-01

    A telephone survey of low-level waste generators has been carried out in order to make useful estimates of the volume and nature of the waste which the generators are shipping for disposal when the compacts and states begin operating new disposal facilities. Emphasis of the survey was on the industrial sector, since there has been little information available on characteristics of industrial LLW. Ten large industrial generators shipping to Richland, ten shipping to Barnwell, and two whose wastes had previously been characterized by BNL were contacted. The waste volume shipped by these generators accounted for about two-thirds to three-quarters of the total industrial volume. Results are given in terms of the categories of LLW represented and of the chemical characteristics of the different wastes. Estimates by the respondents of their near-term waste volume projections are presented

  7. Crystallization behavior of nuclear waste forms

    International Nuclear Information System (INIS)

    Rusin, J.M.; Lokken, R.O.; May, R.P.; Wald, J.W.

    1981-09-01

    Several waste form options have been or are being developed for the immobilization of high-level wastes. The final selection of a waste form must take into consideration both waste form product as well as process factors. Crystallization behavior has an important role in nuclear waste form technology. For glass or vitreous waste forms, crystallization is generally controlled to a minimum by appropriate glass formulation and heat treatment schedules. With glass ceramic waste forms, crystallization is essential to convert glass products to highly crystalline waste forms with a minimum residual glass content. In the case of ceramic waste forms, additives and controlled sintering schedules are used to contain the radionuclides in specific tailored crystalline phases

  8. Long-term storage of Greater-Than-Class C Low-Level Waste

    International Nuclear Information System (INIS)

    Magleby, M.T.

    1990-01-01

    Under Federal law, the Department of Energy (DOE) is responsible for safe disposal of Greater-Than-Class C Low-Level Waste (GTCC LLW) generated by licenses of the Nuclear Regulatory commission (NRC) or Agreement States. Such waste must be disposed of in a facility licensed by the NRC. It is unlikely that licensed disposal of GTCC LLW will be available prior to the year 2010. Pending availability of disposal capacity, DOE is assessing the need for collective, long-term storage of GTCC LLW. Potential risks to public health and safety caused by long-term storage of GTCC LLW at the place of generation will be evaluated to determine if alternative facilities are warranted. If warranted, several options will be investigated to determine the preferred alternative for long-term storage. These options include modification of an existing DOE facility, development of a new DOE facility, or development of a facility by the private sector with or without DOE support. Reasonable costs for long-term storage would be borne by the waste generators. 5 refs., 1 fig

  9. A process for establishing a financial assurance plan for LLW disposal facilities

    International Nuclear Information System (INIS)

    Smith, P.

    1993-04-01

    This document describes a process by which an effective financial assurance program can be developed for new low-level radioactive waste (LLW) disposal facilities. The report identifies examples of activities that might cause financial losses and the types of losses they might create, discusses mechanisms that could be used to quantify and ensure against the various types of potential losses identified and describes a decision process to formulate a financial assurance program that takes into account the characteristics of both the potential losses and available mechanisms. A sample application of the concepts described in the report is provided

  10. A process for establishing a financial assurance plan for LLW disposal facilities

    Energy Technology Data Exchange (ETDEWEB)

    Smith, P. [EG and G Idaho, Inc., Idaho Falls, ID (United States). National Low-Level Waste Management Program

    1993-04-01

    This document describes a process by which an effective financial assurance program can be developed for new low-level radioactive waste (LLW) disposal facilities. The report identifies examples of activities that might cause financial losses and the types of losses they might create, discusses mechanisms that could be used to quantify and ensure against the various types of potential losses identified and describes a decision process to formulate a financial assurance program that takes into account the characteristics of both the potential losses and available mechanisms. A sample application of the concepts described in the report is provided.

  11. DOE systems approach to a low-level waste management information system: summary paper

    International Nuclear Information System (INIS)

    Esparza, V.

    1987-01-01

    The LLWMP is performing an assessment of waste information systems currently in use at each DOE site for recording LLW data. The assessment is being conducted to determine what changes to the waste information systems, if any, are desirable to support implementation of this systems approach to LLW management. Recommendations will be made to DOE from this assessment and what would be involved to modify current DOE waste generator information practices to support an appropriately structured overall DOE LLW data systems. In support of reducing the uncertainty of decision-making, DOE has selected a systems approach to keep pace with an evolving regulatory climate to low-level waste. This approach considers the effects of each stage of the entire low-level waste management process. The proposed systems approach starts with the disposal side of the waste management system and progresses towards the waste generation side of the waste management system. Using this approach provides quantitative performance to be achieved. In addition, a systems approach also provides a method for selecting appropriate technology based on engineering models

  12. T-Rex system for operation in TRU, LLW, and hazardous zones

    International Nuclear Information System (INIS)

    Kline, H.M.; Andreycheck, T.P.; Beeson, B.K.

    1995-01-01

    T-Rex stands for Transuranic Storage Area Remote Excavator that is dedicated to the retrieval of above ground waste containers and overburden at the Radioactive Waste Management Complex (RWMC) located at the Idaho National Engineering Laboratory. There are a number of sites around the world containing (transuranic) (TRU), low level (LLW), and hazardous wastes that requires teleoperated, heavy lift manipulators with long reach and high precision to handle the materials stored there. Remote operation of equipment will reduce the risk to personnel to as-low-as-reasonably-achievable (ALARA) levels. The T-Rex is designed to fulfill this requirement at relatively low cost through the integration of a production front shovel excavator with a control system, local and remote operator control stations, a closed-circuit television system (CCTV), and multiple end effectors with quick changeout capability. This paper describes the conversion of an off-the-shelf excavator to a machine utilizing a modified hydraulic system, an integrated onboard remote control system, CCTV system, collision avoidance system, and a remote control station

  13. Greater-than-Class C low-level radioactive waste characterization. Appendix E-5: Impact of the 1993 NRC draft Branch Technical Position on concentration averaging of greater-than-Class C low-level radioactive waste

    International Nuclear Information System (INIS)

    Tuite, P.; Tuite, K.; Harris, G.

    1994-09-01

    This report evaluates the effects of concentration averaging practices on the disposal of greater-than-Class C low-level radioactive waste (GTCC LLW) generated by the nuclear utility industry and sealed sources. Using estimates of the number of waste components that individually exceed Class C limits, this report calculates the proportion that would be classified as GTCC LLW after applying concentration averaging; this proportion is called the concentration averaging factor. The report uses the guidance outlined in the 1993 Nuclear Regulatory Commission (NRC) draft Branch Technical Position on concentration averaging, as well as waste disposal experience at nuclear utilities, to calculate the concentration averaging factors for nuclear utility wastes. The report uses the 1993 NRC draft Branch Technical Position and the criteria from the Barnwell, South Carolina, LLW disposal site to calculate concentration averaging factors for sealed sources. The report addresses three waste groups: activated metals from light water reactors, process wastes from light-water reactors, and sealed sources. For each waste group, three concentration averaging cases are considered: high, base, and low. The base case, which is the most likely case to occur, assumes using the specific guidance given in the 1993 NRC draft Branch Technical Position on concentration averaging. To project future GTCC LLW generation, each waste category is assigned a concentration averaging factor for the high, base, and low cases

  14. T-Rex system for operation in TRU, LLW, and hazardous zones

    International Nuclear Information System (INIS)

    Kline, H.M.; Andreychek, T.P.; Beeson, B.K.

    1993-01-01

    There are a large number of sites around the world containing TRU (transuranic) waste, low level waste (LLW), and hazardous areas that require teleoperated, heavy lift manipulators with long reach and high precision to handle the materials stored there. Teleoperation of the equipment is required to reduce the risk to operating personnel to as-low-as-reasonably-achievable (ALARA) levels. The Transuranic Storage Area Remote Excavator system (T-Rex) is designed to fill this requirement at low cost through the integration of a production front shovel excavator with a control system, local and remote operator control stations, a closed-circuit television system (CCTV), multiple end effectors and a quick-change system. This paper describes the conversion of an off-the-shelf excavator with a hydraulic control system, the integration of an onboard remote control system, vision system, and the design of a remote control station

  15. Greater-than-Class C low-level radioactive waste characterization. Appendix D-3: Characterization of greater-than-Class C low-level radioactive waste from other generators

    International Nuclear Information System (INIS)

    Fish, L.W.

    1994-09-01

    The Other Generators category includes all greater-than-Class C low-level radioactive waste (GTCC LLW) that is not generated or held by nuclear utilities or sealed sources licensees or that is not stored at Department of Energy facilities. To determine the amount of waste within this category, 90 LLW generators were contacted; 13 fit the Other Generators category. Based on information received from the 13 identified Other Generators, the GTCC LLW Management Program was able to (a) characterize the nature of industries in this category, (b) estimate the 1993 inventory of Other Generator waste for high, base, and low cases, and (c) project inventories to the year 2035 for high, base, and low cases. Assumptions were applied to each of the case estimates to account for generators who may not have been identified in this study

  16. Management of low- and intermediate level waste in Sweden

    International Nuclear Information System (INIS)

    Carlsson, Jan

    1999-01-01

    This presentation describes how the management of radioactive waste is organised in Sweden, where Swedish law places the responsibility for such management with the waste generators. The four nuclear utilities have formed a joint company, the Swedish Nuclear Fuel and Waste Management Co., SKB, to handle the nuclear waste. The Swedish waste management system includes a final repository for short-lived low level waste (LLW) and intermediate level waste (ILW) and an interim storage facility for spent nuclear fuel and long-lived waste. Some very low-level, short-lived waste is disposed of in shallow-land repositories at the nuclear power stations. The final repository is situated in underground rock caverns close to the Forsmark nuclear power plant. The rock caverns have been excavated to a depth of more than 50 m beneath the Baltic Sea floor. LLW is compacted into bales or packaged in metal drums or cases that can be transported in standard freight containers. Radioactive materials used in other sectors such as hospitals are collected and packaged at Studsvik and later deposited in the deep repository. ILW is mixed with cement or bitumen and cast in cement or steel boxes or metal drums. The final repository has different chambers for different kinds of waste. The environmental impact of the repository is negligible. Because Sweden's nuclear power plants and the SKB facilities all are located on the coast, all the waste transport can be conducted by sea. The costs of managing and disposing of Sweden's nuclear waste are small compared to the price of electricity

  17. Nuclear biomedical and hospital waste management at the University of Brussels (VUB): optimization in the Belgian context

    International Nuclear Information System (INIS)

    Eggermont, G.; Covens, P.

    2002-01-01

    Low level nuclear waste (LLW) from biomedical research laboratories and from hospitals has specific characteristics, requiring a different management than the LLW from nuclear energy. Biomedical waste generally does not contain emitters and essentially consists of short-lived β/γ-emitters and a range of pure β-emitters, which are difficult to measure. Except for 3 H and 1 4C , the radionuclides found in biomedical waste have half-lives less then 100 days and hence do not require nuclear disposal. Limited quantities of accelerator activation products (mainly 6 5Z n and 6 0C o) and compact sealed sources of 6 0C o, 1 37C s, 2 26R a and 1 92I r form the only exceptions. National nuclear waste agencies typically do not have a specific policy for treatment and disposal of this type of LLW. In 2001 new price increases were announced for specific categories of this waste. They were implemented by NIRAS/ONDRAF early 2002. The major universities and academic hospitals expressed concern. The Health Council has considered the problem and has recently recommended to the authorities a set of measures to prevent non authorised liberation of this waste. Moreover non-nuclear waste companies have noticed a considerable growing inventory of radioactivity in incoming waste transports before treatment. A variety of radionuclides and activities were found in a diversity of origins from municipal waste over medical waste to industrial waste. Dismantling of accelerators and their shielding could add considerable amounts of waste. Due to the escalating costs and the lack of acceptance of near-surface disposal facilities, the university of Brussels (VUB) and its hospital, have developed a successful on-site waste decay storage program in collaboration with Canberra Europe, which is discussed hereafter

  18. Low level waste repositories

    International Nuclear Information System (INIS)

    Hill, P.R.H.; Wilson, M.A.

    1983-11-01

    Factors in selecting a site for low-level radioactive waste disposal are discussed. South Australia has used a former tailings dam in a remote, arid location as a llw repository. There are also low-level waste disposal procedures at the Olympic Dam copper/uranium project

  19. Management of radioactive wastes

    International Nuclear Information System (INIS)

    Hendee, W.R.

    1984-01-01

    The disposal of radioactive wastes is perhaps the most controversial and least understood aspect of the use of nuclear materials in generating electrical power, the investigation of biochemical processes through tracer kinetics, and the diagnosis and treatment of disease. In the siting of nuclear power facilities, the disposal of radioactive wastes is invariably posed as the ultimate unanswerable question. In the fall of 1979, biochemical and physiologic research employing radioactive tracers was threatened with a slowdown resulting from temporary closure of sites for disposal of low-level radioactive wastes (LLW). Radioactive pharmaceuticals used extensively for diagnosis and treatment of human disease have increased dramatically in price, partly as a result of the escalating cost of disposing of radioactive wastes created during production of the labeled pharmaceuticals. These problems have resulted in identification of the disposal of LLW as the most pressing issue in the entire scheme of management of hazardous wastes. How this issue as well as the separate issue of disposal of high-level radioactive wastes (HLW) are being addressed at both national and state levels is the subject of this chapter

  20. Waste management system alternatives for treatment of wastes from spent fuel reprocessing

    International Nuclear Information System (INIS)

    McKee, R.W.; Swanson, J.L.; Daling, P.M.

    1986-09-01

    This study was performed to help identify a preferred TRU waste treatment alternative for reprocessing wastes with respect to waste form performance in a geologic repository, near-term waste management system risks, and minimum waste management system costs. The results were intended for use in developing TRU waste acceptance requirements that may be needed to meet regulatory requirements for disposal of TRU wastes in a geologic repository. The waste management system components included in this analysis are waste treatment and packaging, transportation, and disposal. The major features of the TRU waste treatment alternatives examined here include: (1) packaging (as-produced) without treatment (PWOT); (2) compaction of hulls and other compactable wastes; (3) incineration of combustibles with cementation of the ash plus compaction of hulls and filters; (4) melting of hulls and failed equipment plus incineration of combustibles with vitrification of the ash along with the HLW; (5a) decontamination of hulls and failed equipment to produce LLW plus incineration and incorporation of ash and other inert wastes into HLW glass; and (5b) variation of this fifth treatment alternative in which the incineration ash is incorporated into a separate TRU waste glass. The six alternative processing system concepts provide progressively increasing levels of TRU waste consolidation and TRU waste form integrity. Vitrification of HLW and intermediate-level liquid wastes (ILLW) was assumed in all cases

  1. Issue briefs on low-level radioactive wastes

    International Nuclear Information System (INIS)

    1981-01-01

    This report contains 4 Issue Briefs on low-level radioactive wastes. They are entitled: Handling, Packaging, and Transportation, Economics of LLW Management, Public Participation and Siting, and Low Level Waste Management

  2. Planning and consultation procedures for low-level radioactive waste disposal: a comparative analysis of overseas experience

    International Nuclear Information System (INIS)

    Kemp, R.

    1989-03-01

    The results are presented of a study the purpose of which was to learn from experience in countries other than the UK, of planning and public consultation procedures associated with the establishment of low-level radioactive waste (LLW) disposal sites. Information on LLW developments in the United States, Canada, France, Holland, Switzerland, Sweden, and West Germany was sought. Particular regard was given to the efficacy of public consultation and negotiation procedures; the key aspects bearing on the public acceptability of LLW proposals; and the form and effect of any compensation mechanisms in operation. The main findings include: (i) Public acceptability of radioactive waste proposals depends upon a combination of basic understanding, trust, consultation and negotiation. (ii) There is no overall correct approach. (iii) The greatest success overseas appears to be linked to some combination of the following elements: authority and clarity in the exposition of radioactive waste management policy; the early involvement of local authority organisations in site selection; careful attention to the potential contribution of authoritative independent advisory groups; the development and nurturing of local liaison committees to establish good communications at the local level; careful consideration of means of devolving some power to local authority level for safety reassurance; and the development of an incremental, openly negotiated approach to compensation. (author)

  3. Liquid secondary waste. Waste form formulation and qualification

    Energy Technology Data Exchange (ETDEWEB)

    Cozzi, A. D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Dixon, K. L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Hill, K. A. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); King, W. D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Nichols, R. L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-03-01

    The Hanford Site Effluent Treatment Facility (ETF) currently treats aqueous waste streams generated during Site cleanup activities. When the Hanford Tank Waste Treatment and Immobilization Plant (WTP) begins operations, a liquid secondary waste (LSW) stream from the WTP will need to be treated. The volume of effluent for treatment at the ETF will increase significantly. Washington River Protection Solutions is implementing a Secondary Liquid Waste Immobilization Technology Development Plan to address the technology needs for a waste form and solidification process to treat the increased volume of waste planned for disposal at the Integrated Disposal Facility IDF). Waste form testing to support this plan is composed of work in the near term to demonstrate the waste form will provide data as input to a performance assessment (PA) for Hanford’s IDF.

  4. Advanced methods for incineration of solid, burnable LLW and melting for recycling of scrap metals

    International Nuclear Information System (INIS)

    Krause, G.; Lorenzen, J.; Lindberg, M.; Olsson, L.; Wirendal, B.

    2003-01-01

    Radioactive contaminated waste is a great cost factor for nuclear power plants and other nuclear industry. On the deregulated electricity market the price on produced kWh is an important competition tool. Therefore the waste minimisation and volume reduction has given highest priority by many power producers in the process to achieve savings and hence low production cost. Studsvik RadWaste AB in Nykoeping, Sweden, is a company specialised in volume reduction of LLW, as solid combustible waste and as scrap metal for melting and recycling. The treatment facility in Sweden offers this kind of services - together with segmentation and decontamination when necessary - for several customers from Europe, Japan and USA. In addition to these treatment services a whole spectrum of services like transportation, measurement and safeguard, site assistance, industrial cleaning and decontamination in connection with demolition at site is offered from the Studsvik company. (orig.)

  5. Collective bads: The case of low-level radioactive waste compacts

    International Nuclear Information System (INIS)

    McGinnis, M.V.

    1994-01-01

    In low-level radioactive waste (LLW) compact development, policy gridlock and intergovernmental conflict between states has been the norm. In addition to the not-in-my-backyard (NIMBY) phenomenon, LLW compacts must content with myriad political and ethical dilemmas endemic to a particular collective bad. This paper characterizes the epistemology of collective bads, and reviews how LLW compacts deal with such bads. In addition, using data from survey questionnaires and interviews, this paper assesses the cooperative nature of LLW compacts in terms of their levels of regional autonomy, regional efficacy, allocation of costs and benefits, and their technocentric orientation

  6. Environmental assessment for the construction, operation, and decommissioning of the Waste Segregation Facility at the Savannah River Site

    International Nuclear Information System (INIS)

    1998-01-01

    This Environmental Assessment (EA) has been prepared by the Department of Energy (DOE) to assess the potential environmental impacts associated with the construction, operation and decontamination and decommissioning (D ampersand D) of the Waste Segregation Facility (WSF) for the sorting, shredding, and compaction of low-level radioactive waste (LLW) at the Savannah River Site (SRS) located near Aiken, South Carolina. The LLW to be processed consists of two waste streams: legacy waste which is currently stored in E-Area Vaults of SRS and new waste generated from continuing operations. The proposed action is to construct, operate, and D ampersand D a facility to process low-activity job-control and equipment waste for volume reduction. The LLW would be processed to make more efficient use of low-level waste disposal capacity (E-Area Vaults) or to meet the waste acceptance criteria for treatment at the Consolidated Incineration Facility (CIF) at SRS

  7. A59 waste repackaging database (AWARD)

    International Nuclear Information System (INIS)

    Keel, A.

    1993-06-01

    This document describes the data structures to be implemented to provide the A59 Waste Repackaging Database (AWARD); a Computer System for the in-cave Bertha waste sorting and LLW repackaging operations in A59. (Author)

  8. Mixed Waste Focus Area - Waste form initiative

    International Nuclear Information System (INIS)

    Nakaoka, R.; Waters, R.; Pohl, P.; Roach, J.

    1998-01-01

    The mission of the US Department of Energy's (DOE) Mixed Waste Focus Area (MWFA) is to provide acceptable technologies that enable implementation of mixed waste treatment systems which are developed in partnership with end-users, stakeholders, tribal governments, and regulators. To accomplish this mission, a technical baseline was established in 1996 and revised in 1997. The technical baseline forms the basis for determining which technology development activities will be supported by the MWFA. The primary attribute of the technical baseline is a set of prioritized technical deficiencies or roadblocks related to implementation of mixed waste treatment systems. The Waste Form Initiative (WFI) was established to address an identified technical deficiency related to waste form performance. The primary goal of the WFI was to ensure that the mixed low-level waste (MLLW) treatment technologies being developed, currently used, or planned for use by DOE would produce final waste forms that meet the waste acceptance criteria (WAC) of the existing and/or planned MLLW disposal facilities. The WFI was limited to an evaluation of the disposal requirements for the radioactive component of MLLW. Disposal requirements for the hazardous component are dictated by the Resource Conservation and Recovery Act (RCRA), and were not addressed. This paper summarizes the technical basis, strategy, and results of the activities performed as part of the WFI

  9. Waste Management Facilities Cost Information for transportation of radioactive and hazardous materials. Revision 1

    International Nuclear Information System (INIS)

    Feizollahi, F.; Shropshire, D.; Burton, D.

    1994-09-01

    This report contains transportation costs for most types of DOE waste streams: low-level waste (LLW), mixed low-level waste (MLLW), alpha LLW and alpha MLLW, greater-than-Class C (GTCC) LLW and DOE equivalent waste, transuranic waste (TRU), spent nuclear fuel (SNF), and hazardous waste. Unit rates for transportation of contact-handled ( 200 mrem/hr contact dose) radioactive waste have been estimated previously, and a summary has been included in earlier WMFCI reports. In order to have a single source for obtaining transportation cost for all radioactive waste, the transportation costs for the contact- and remote-handled wastes are repeated in this report. Land transportation of radioactive and hazardous waste is subject to regulations promulgated by DOE, the US Department of Transportation (DOT), the US Nuclear Regulatory Commission (NRC), and state and local agencies. The cost estimates in this report assume compliance with applicable regulations. It should be noted that the trend is toward greater restrictions on transportation of radioactive waste (e.g., truck or rail car speed, shipping route, security escort, and personnel training requirements), which may have a significant impact on future costs

  10. Implementation and responsibility for waste disposal : AEC sets up frameworks

    International Nuclear Information System (INIS)

    Anon.

    1985-01-01

    The Atomic Energy Commission approved the report ''measures for treatment and disposal of radioactive waste'' made by its advisory committee; which clarifies where the legal responsibility lies in relation to the waste treatment and disposal. In principle, the waste producers, i.e. the electric power companies should be responsible for the treatment and disposal of low-level radioactive waste and the Government for regulation of the safety of waste management. Then, in connection with a LLW ultimate storage facility planned in Aomori Prefecture, the waste disposal company may be responsible for safety of the LLW management. The disposal of high-level radioactive waste is the responsibility of the Government, the waste producer being responsible for the cost. Contents are the following: organization and responsibility for treatment and disposal of radioactive waste; concept of disposal of TRU waste. (Mori, K.)

  11. Review of private sector and Department of Energy treatment, storage, and disposal capabilities for low-level and mixed low-level waste

    Energy Technology Data Exchange (ETDEWEB)

    Willson, R.A.; Ball, L.W.; Mousseau, J.D.; Piper, R.B.

    1996-03-01

    Private sector capacity for treatment, storage, and disposal (TSD) of various categories of radioactive waste has been researched and reviewed for the Idaho National Engineering Laboratory (INEL) by Lockheed Idaho Technologies Company, the primary contractor for the INEL. The purpose of this document is to provide assistance to the INEL and other US Department of Energy (DOE) sites in determining if private sector capabilities exist for those waste streams that currently cannot be handled either on site or within the DOE complex. The survey of private sector vendors was limited to vendors currently capable of, or expected within the next five years to be able to perform one or more of the following services: low-level waste (LLW) volume reduction, storage, or disposal; mixed LLW treatment, storage, or disposal; alpha-contaminated mixed LLW treatment; LLW decontamination for recycling, reclamation, or reuse; laundering of radioactively-contaminated laundry and/or respirators; mixed LLW treatability studies; mixed LLW treatment technology development. Section 2.0 of this report will identify the approach used to modify vendor information from previous revisions of this report. It will also illustrate the methodology used to identify any additional companies. Section 3.0 will identify, by service, specific vendor capabilities and capacities. Because this document will be used to identify private sector vendors that may be able to handle DOE LLW and mixed LLW streams, it was decided that current DOE capabilities should also be identified. This would encourage cooperation between DOE sites and the various states and, in some instances, may result in a more cost-effective alternative to privatization. The DOE complex has approximately 35 sites that generate the majority of both LLW and mixed LLW. Section 4.0 will identify these sites by Operations Office, and their associated LLW and mixed LLW TSD units.

  12. Review of private sector and Department of Energy treatment, storage, and disposal capabilities for low-level and mixed low-level waste

    International Nuclear Information System (INIS)

    Willson, R.A.; Ball, L.W.; Mousseau, J.D.; Piper, R.B.

    1996-03-01

    Private sector capacity for treatment, storage, and disposal (TSD) of various categories of radioactive waste has been researched and reviewed for the Idaho National Engineering Laboratory (INEL) by Lockheed Idaho Technologies Company, the primary contractor for the INEL. The purpose of this document is to provide assistance to the INEL and other US Department of Energy (DOE) sites in determining if private sector capabilities exist for those waste streams that currently cannot be handled either on site or within the DOE complex. The survey of private sector vendors was limited to vendors currently capable of, or expected within the next five years to be able to perform one or more of the following services: low-level waste (LLW) volume reduction, storage, or disposal; mixed LLW treatment, storage, or disposal; alpha-contaminated mixed LLW treatment; LLW decontamination for recycling, reclamation, or reuse; laundering of radioactively-contaminated laundry and/or respirators; mixed LLW treatability studies; mixed LLW treatment technology development. Section 2.0 of this report will identify the approach used to modify vendor information from previous revisions of this report. It will also illustrate the methodology used to identify any additional companies. Section 3.0 will identify, by service, specific vendor capabilities and capacities. Because this document will be used to identify private sector vendors that may be able to handle DOE LLW and mixed LLW streams, it was decided that current DOE capabilities should also be identified. This would encourage cooperation between DOE sites and the various states and, in some instances, may result in a more cost-effective alternative to privatization. The DOE complex has approximately 35 sites that generate the majority of both LLW and mixed LLW. Section 4.0 will identify these sites by Operations Office, and their associated LLW and mixed LLW TSD units

  13. Information systems to support low-level waste management: perspective from the State of Illinois

    International Nuclear Information System (INIS)

    Willaford, D.M.

    1987-01-01

    The Illinois Department of Nuclear Safety (IDNS) is required by state law to develop a comprehensive regulatory system for low-level radioactive waste (LLW) management. Reliable, extensive information about LLW in Illinois is needed to plan and implement such a regulatory program. IDNS annually surveys, by mail and follow-up phone calls, approximately 260 LLW generators in Illinois. This information is being supplemented by a more detailed characterization of waste streams. Additional information needed for IDNS's regulatory program includes data on components of a waste disposal facility (e.g., concrete performance), site and performance computer models for various kinds of sites and for alternative waste disposal facility designs. In the future, all states will need more information than has been historically the case, given the changes in management and disposal systems and the increased role of the states

  14. Remote-Handled Low-Level Waste Disposal Project Code of Record

    Energy Technology Data Exchange (ETDEWEB)

    S.L. Austad, P.E.; L.E. Guillen, P.E.; C. W. McKnight, P.E.; D. S. Ferguson, P.E.

    2012-06-01

    The Remote-Handled Low-Level Waste (LLW) Disposal Project addresses an anticipated shortfall in remote-handled LLW disposal capability following cessation of operations at the existing facility, which will continue until it is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). Development of a new onsite disposal facility will provide necessary remote-handled LLW disposal capability and will ensure continuity of operations that generate remote-handled LLW. This report documents the Code of Record for design of a new LLW disposal capability. The report is owned by the Design Authority, who can authorize revisions and exceptions. This report will be retained for the lifetime of the facility.

  15. Remote-Handled Low-Level Waste Disposal Project Code of Record

    Energy Technology Data Exchange (ETDEWEB)

    S.L. Austad, P.E.; L.E. Guillen, P.E.; C. W. McKnight, P.E.; D. S. Ferguson, P.E.

    2014-06-01

    The Remote-Handled Low-Level Waste (LLW) Disposal Project addresses an anticipated shortfall in remote-handled LLW disposal capability following cessation of operations at the existing facility, which will continue until it is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). Development of a new onsite disposal facility will provide necessary remote-handled LLW disposal capability and will ensure continuity of operations that generate remote-handled LLW. This report documents the Code of Record for design of a new LLW disposal capability. The report is owned by the Design Authority, who can authorize revisions and exceptions. This report will be retained for the lifetime of the facility.

  16. Remote-Handled Low-Level Waste Disposal Project Code of Record

    Energy Technology Data Exchange (ETDEWEB)

    Austad, S. L. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Guillen, L. E. [Idaho National Lab. (INL), Idaho Falls, ID (United States); McKnight, C. W. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Ferguson, D. S. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-04-01

    The Remote-Handled Low-Level Waste (LLW) Disposal Project addresses an anticipated shortfall in remote-handled LLW disposal capability following cessation of operations at the existing facility, which will continue until it is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). Development of a new onsite disposal facility will provide necessary remote-handled LLW disposal capability and will ensure continuity of operations that generate remote-handled LLW. This report documents the Code of Record for design of a new LLW disposal capability. The report is owned by the Design Authority, who can authorize revisions and exceptions. This report will be retained for the lifetime of the facility.

  17. Oak Ridge Low Level Waste Management Task Force summary

    International Nuclear Information System (INIS)

    Van Hoesen, S.D.

    1985-01-01

    New facilities are required in the next five years to manage low level radioactive wastes (LLW) produced on the Oak Ridge Reservation (ORR). The Central Waste Disposal Facility (CWDF) was planned to provide the needed additional facilities beginning in late 1985. The CWDF was planned as a shallow land burial facility to dispose of non-stabilized LLW. However, comments on the CWDF Draft Environmental Impact Statement (DEIS) received from the State of Tennessee, the Environmental Protection Agency, and the Nuclear Regulatory Commission identified major issues related to the treatment of alternatives as required by the National Environmental Policy Act, and the potential for unacceptable groundwater contamination resulting from shallow land burial of non-stabilized waste. A series of initial and detailed evaluations are being conducted to develop the basic environmental performance and cost information needed to compare several LLW management approaches and arrive at a proposed system for development. The evaluations are targeted for completion by October

  18. The Legal and Policy Framework for Waste Disposition - Legal and policy framework for low level waste treatment and disposal

    International Nuclear Information System (INIS)

    Leech, Jonathan

    2014-01-01

    UK policy and strategy for the management of LLW has changed significantly in recent years, not least through development and implementation of the 'UK Strategy for the Management of Solid Low Level Radioactive Waste from the Nuclear Industry' as part of the UK Nuclear Decommissioning Authority's mission. This has influenced all aspects of LLW management in the UK, including metals recycling and VLLW disposal. The paper will outline the legal context for these changes in the UK and highlight how international conventions and legal frameworks have influenced these developments. In particular, the paper will look at the following important influences on choices for recycling and disposal of LLW and VLLW. - The Paris and Brussels Conventions on third party liabilities for nuclear damage; - on-going work to implement the 2004 Protocols to those conventions, including the impact on disposal sites and proposals to exclude VLLW disposal sites from liabilities regimes; - The Revised Waste Framework Directive and Waste Hierarchy; - Relevant European pollution prevention and control legislation and Best Available Techniques. (author)

  19. Operating experience of a mobile waste shredding system

    International Nuclear Information System (INIS)

    McGrath, R.N.; Volodzko, M.; Naughton, M.D.

    1985-01-01

    The disposal of low-level radioactive waste (LLW) in the United States has become a significant problem challenging the commercial nuclear power industry. Over the past several years, there have been major changes in various aspects of LLW generation, shipment and disposal. These changes have been characterized by legislative uncertainty, more stringent regulations and increasing restrictions on shipments imposed by disposal sites and regulatory requirements. These effects have strongly impacted the current nationwide disposal system for LLW, and the industry is faced with higher shipping and disposal costs, on-site storage and soon, in some cases, no availability LLW disposal sites. The industry is responding to this problem by scrutinizing and improving the way in which LLW is managed on-site. Conventional and advanced volume reduction (VR) radwaste treatment systems are receiving more attention with both short- and long-term solutions being considered

  20. 1980 state-by-state assessment of low-level radioactive wastes shipped to commercial disposal sites

    International Nuclear Information System (INIS)

    1982-06-01

    Information is presented on the volumes, curie values, sources, and disposal of low-level radioactive wastes (LLW) in each state. The wastes are segmented into 2 broad categories - institutional/industrial and commercial power reactor wastes. The volumes and curie values were obtained from the commercial site operators. The percentage of LLW disposed of at each of the 3 operating disposal sites located at Barnwell, SC, Beatty, NV, and Richland, WA are included

  1. Managing California's low-level waste: state policy and waste generators

    International Nuclear Information System (INIS)

    Pasternak, A.D.; Cramer, E.N.

    1985-01-01

    Since 1982, public and private organizations in California that use radioactive materials and generate low-level radioactive waste have worked together through the California Radioactive Materials Management Forum (CRMMF) to assure the continued safe disposal of low-level waste (LLW). The forum's corporate and institutional members include electric utilities, universities, hospitals, industries, professional societies, and firms engaged in biological research and the manufacture of radiopharmaceuticals. In addition, over 200 individuals are members. The objectives of CRMMF are: (a) establishing a disposal facility for LLW in California and (b) maintaining access to the existing disposal sites in Washington, Nevada, and South Carolina until a California site is licensed and operating. This paper describes the forum's programs in the areas of legislation, litigation, and public information that contribute to the achievement of these objectives

  2. Performance evaluation and operational experience with a semi-automatic monitor for the radiological characterization of low-level wastes

    International Nuclear Information System (INIS)

    Davey, E.C.; Csullog, G.W.

    1987-03-01

    Chalk River Nuclear Laboratories (CRNL) have undertaken a Waste Disposal Project to co-ordinate the transition from the current practice of interim storage to permanent disposal for low-level radioactive wastes (LLW). The strategy of the project is to classify and segregate waste segments according to their hazardous radioactive lifetimes and to emplace them in disposal facilities engineered to isolate and contain them. To support this strategy, a waste characterization program was set up to estimate the volume and radioisotope inventories of the wastes managed by CRNL. A key element of the program is the demonstration of a non-invasive measurement technique for the isotope-specific characterization of solid LLW. This paper describes the approach taken at CRNL for the non-invasive assay of LLW and the field performance and early operational experience with a waste characterization monitor to be used in a waste processing facility

  3. Performance evaluation and operational experience with a semi-automatic monitor for the radiological characterization of low-level wastes

    International Nuclear Information System (INIS)

    Davey, E.C.; Csullog, G.W.

    1987-01-01

    Chalk River Nuclear Laboratories (CRNL) have undertaken a Waste Disposal Project to co-ordinate the transition from the current practice of interim storage to permanent disposal for low-level radioactive wastes (LLW). The strategy of the project is to classify and segregate waste segments according to their hazardous radioactive lifetimes and to emplace them in disposal facilities engineered to isolate and contain them. To support this strategy, a waste characterization program was set up to estimate the volume and radioisotope inventories of the wastes managed by CRNL. A key element of the program is the demonstration of a non-invasive measurement technique for the isotope-specific characterization of solid LLW. This paper describes the approach taken at CRNL for the non-invasive assay of LLW and the field performance and early operational experience with a waste characterization monitor to be used in a waste processing facility

  4. Hanford Waste Vitrification Plant: Preliminary description of waste form and canister

    International Nuclear Information System (INIS)

    Mitchell, D.E.

    1986-01-01

    In July 1985, the US Department of Energy's Office of Civilian Radioactive Waste Management established the Waste Acceptance Process as the means by which defense high-level waste producers, such as the Hanford Waste Vitrification Plant, will develop waste acceptance requirements with the candidate geologic repositories. A complete description of the Waste Acceptance Process is contained in the Preliminary Hanford Waste Vitrification Plant Waste Form Qualification Plan. The Waste Acceptance Process defines three documents that high-level waste producers must prepare as a part of the process of assuming that a high-level waste product will be acceptable for disposal in a geologic repository. These documents are the Description of Waste Form and Canister, Waste Compliance Plan, and Waste Qualification Report. This document is the Hanford Waste Vitrification Plant Preliminary Description of Waste Form and Canister for disposal of Neutralized Current Acid Waste. The Waste Acceptance Specifications for the Hanford Waste Vitrification Plant have not yet been developed, therefore, this document has been structured to corresponds to the Waste Acceptance Preliminary Specifications for the Defense Waste Processing Facility High-Level Waste Form. Not all of the information required by these specifications is appropriate for inclusion in this Preliminary Description of Waste Form and Canister. Rather, this description is limited to information that describes the physical and chemical characteristics of the expected high-level waste form. The content of the document covers three major areas: waste form characteristics, canister characteristics, and canistered waste form characteristics. This information will be used by the candidate geologic repository projects as the basis for preliminary repository design activities and waste form testing. Periodic revisions are expected as the Waste Acceptance Process progresses

  5. The SGHWR decommissioning project-waste strategy

    International Nuclear Information System (INIS)

    Graham, G.; Napper, M.

    1999-01-01

    Every facility must reach a stage in the decommissioning process where low-level waste (LLW) becomes the major factor in the decommissioning costs, therefore a cost-effective strategy for dealing with the waste must be sought. This paper describes the waste management strategy process that was carried out at the steam generating heavy water reactor (SGHWR) at Winfrith in Dorset. Obviously, each facility will have its own specific radiological problems, with its own unique fingerprint, which will have to be addressed, and, therefore, the optimum waste management strategy will differ for each facility. However, from the work done at SGHWR, it can be seen that it is possible to formulate a structured approach for dealing with LLW which meets the requirements of all stake holders, is safe, technically acceptable, cost-effective, and, furthermore, is equally applicable to other plants. (author)

  6. Waste acceptance product specifications for vitrified high-level waste forms

    International Nuclear Information System (INIS)

    Applewhite-Ramsey, A.; Sproull, J.F.

    1993-01-01

    The Nuclear Waste Policy Act of 1982 mandated that all high-level waste (HLW) be sent to a federal geologic repository for permanent disposal. DOE published the Environmental Assessment in 1982 which identified borosilicate glass as the chosen HLW form. 1 In 1985 the Department of Energy instituted a Waste Acceptance Process to assure that DWPF glass waste forms would be acceptable to such a repository. This assurance was important since production of waste forms will precede repository construction and licensing. As part of this Waste Acceptance Process, the DOE Office of Civilian Radioactive Waste Management (RW) formed the Waste Acceptance Committee (WAC). The WAC included representatives from the candidate repository sites, the waste producing sites and DOE. The WAC was responsible for developing the Waste Acceptance Preliminary Specifications (WAPS) which defined the requirements the waste forms must meet to be compatible with the candidate repository geologies

  7. Preliminary Hanford Waste Vitrification Plan Waste Form Qualification Plan

    International Nuclear Information System (INIS)

    Nelson, J.L.

    1987-09-01

    This Waste Form Qualification Plan describes the waste form qualification activities that will be followed during the design and operation of the Hanford Waste Vitrification Plant to ensure that the vitrified Hanford defense high-level wastes will meet the acceptance requirements of the candidate geologic repositories for nuclear waste. This plan is based on the defense waste processing facility requirements. The content of this plan is based on the assumption that the Hanford Waste Vitrification Plant high-level waste form will be disposed of in one of the geologic repository projects. Proposed legislation currently under consideration by Congress may change or delay the repository site selection process. The impacts of this change will be assessed as details of the new legislation become available. The Plan describes activities, schedules, and programmatic interfaces. The Waste Form Qualification Plan is updated regularly to incorporate Hanford Waste Vitrification Plant-specific waste acceptance requirements and to serve as a controlled baseline plan from which changes in related programs can be incorporated. 10 refs., 5 figs., 5 tabs

  8. Immobilisation of Higher Activity Wastes from Nuclear Reactor Production of 99Mo

    Directory of Open Access Journals (Sweden)

    Martin W. A. Stewart

    2013-01-01

    Full Text Available A variety of intermediate- and low-level liquid and solid wastes are produced from reactor production of 99Mo using UAl alloy or UO2 targets and in principle can be collectively or individually converted into waste forms. At ANSTO, we have legacy acidic uranyl-nitrate-rich intermediate level waste (ILW from the latter, and an alkaline liquid ILW, a U-rich filter cake, plus a shorter lived liquid stream that rapidly decays to low-level waste (LLW standards, from the former. The options considered consist of cementitious products, glasses, glass-ceramics, or ceramics produced by vitrification or hot isostatic pressing for intermediate-level wastes. This paper discusses the progress in waste form development and processing to treat ANSTO’s ILW streams arising from 99Mo. The various waste forms and the reason for the process option chosen will be reviewed. We also address the concerns over adapting our chosen process for use in a hot-cell environment.

  9. Assessment of greater-than-Class C waste at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Shuman, R.; Jennrich, E.A.; Merrell, G.B.

    1991-02-01

    Department of Energy (DOE) Order 5820.2A regulates the onsite disposal of low-level radioactive waste (LLW) at all DOE facilities. Among its stipulations, the Order states that ''Disposition of wastes designated as greater-than-Class C, as defined in 10 CFR 61.55 must be handled as special cases. Disposal systems for such waste must be justified by a specific performance assessment.'' Los Alamos National Laboratory (LANL) personnel have undertaken a review and performance assessment of LLW disposal at its Area-G disposal facility, which is described in this report

  10. Low-level radioactive waste disposal operations at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Stanford, A.R.

    1997-01-01

    Los Alamos National Laboratory (LANL) generates Low-Level Radioactive Waste (LLW) from various activities: research and development, sampling and storage of TRU wastes, decommissioning and decontamination of facilities, and from LANL's major role in stockpile stewardship. The Laboratory has its own active LLW disposal facility located at Technical Area 54, Area G. This paper will identify the current operations of the facility and the issues pertaining to operating a disposal facility in today's compliance and cost-effective environment

  11. Does the choice of reactor affect public acceptance of wastes?

    International Nuclear Information System (INIS)

    Inhaber, H.

    1993-01-01

    A prime goal of this conference is to suggest future reactor types that would produce greater public acceptability. Presumably the wastes generated by these cycles would, because of lesser amounts or activities, engender fewer disputes over policy than in the past. However, the world-wide arguments over low-level wastes (LLW) suggest this intent is not likely to be achieved. While the activity of these wastes is a tiny fraction of high-level wastes (HLW), the controversies over the former, in Korea, the US and elsewhere, have been as great as for the latter. There is no linear relationship between activity and political desirability. What is needed is a new approach to disposing of and siting all nuclear wastes: LLW, mixed and HLW

  12. Basic approach to the disposal of low level radioactive waste generated from nuclear reactors containing comparatively high radioactivity

    International Nuclear Information System (INIS)

    Moriyama, Yoshinori

    1998-01-01

    Low level radioactive wastes (LLW) generated from nuclear reactors are classified into three categories: LLW containing comparatively high radioactivity; low level radioactive waste; very low level radioactive waste. Spent control rods, part of ion exchange resin and parts of core internals are examples of LLW containing comparatively high radioactivity. The Advisory Committee of Atomic Energy Commission published the report 'Basic Approach to the Disposal of LLW from Nuclear Reactors Containing Comparatively High Radioactivity' in October 1998. The main points of the proposed concept of disposal are as follows: dispose of underground deep enough not be disturb common land use (e.g. 50 to 100 m deep); dispose of underground where radionuclides migrate very slowly; dispose of with artificial engineered barrier which has the same function as the concrete pit; control human activities such as land use of disposal site for a few hundreds years. (author)

  13. Preliminary Disposal Analysis for Selected Accelerator Production of Tritium Waste Streams

    International Nuclear Information System (INIS)

    Ades, M.J.; England, J.L.

    1998-06-01

    A preliminary analysis was performed for two selected Accelerator Production of Tritium (APT) generated mixed and low-level waste streams to determine if one mixed low-level waste (MLLW) stream that includes the Mixed Waste Lead (MWL) can be disposed of at the Nevada Test Site (NTS) and at the Hanford Site and if one low-level radioactive waste (LLW) stream, that includes the Tungsten waste stream (TWS) generated by the Tungsten Neutron Source modules and used in the Target/Blanket cavity vessel, can be disposed of in the LLW Vaults at the Savannah River Plant (SRP). The preliminary disposal analysis that the radionuclide concentrations of the two selected APT waste streams are not in full compliance with the Waste Acceptance Criteria (WAC) and the Performance Assessment (PA) radionuclide limits of the disposal sites considered

  14. Stabilization Using Phosphate Bonded Ceramics. Salt Containing Mixed Waste Treatment. Mixed Waste Focus Area. OST Reference No. 117

    International Nuclear Information System (INIS)

    1999-01-01

    Throughout the Department of Energy (DOE) complex there are large inventories of homogeneous mixed waste solids, such as wastewater treatment residues, fly ashes, and sludges that contain relatively high concentrations (greater than 15% by weight) of salts. The inherent solubility of salts (e.g., nitrates, chlorides, and sulfates) makes traditional treatment of these waste streams difficult, expensive, and challenging. One alternative is low-temperature stabilization by chemically bonded phosphate ceramics (CBPCs). The process involves reacting magnesium oxide with monopotassium phosphate with the salt waste to produce a dense monolith. The ceramic makes a strong environmental barrier, and the metals are converted to insoluble, low-leaching phosphate salts. The process has been tested on a variety of surrogates and actual mixed waste streams, including soils, wastewater, flyashes, and crushed debris. It has also been demonstrated at scales ranging from 5 to 55 gallons. In some applications, the CBPC technology provides higher waste loadings and a more durable salt waste form than the baseline method of cementitious grouting. Waste form test specimens were subjected to a variety of performance tests. Results of waste form performance testing concluded that CBPC forms made with salt wastes meet or exceed both RCRA and recommended Nuclear Regulatory Commission (NRC) low-level waste (LLW) disposal criteria. Application of a polymer coating to the CBPC may decrease the leaching of salt anions, but continued waste form evaluations are needed to fully assess the deteriorating effects of this leaching, if any, over time.

  15. Pathway analysis for alternate low-level waste disposal methods

    International Nuclear Information System (INIS)

    Rao, R.R.; Kozak, M.W.; McCord, J.T.; Olague, N.E.

    1992-01-01

    The purpose of this paper is to evaluate a complete set of environmental pathways for disposal options and conditions that the Nuclear Regulatory Commission (NRC) may analyze for a low-level radioactive waste (LLW) license application. The regulations pertaining In the past, shallow-land burial has been used for the disposal of low-level radioactive waste. However, with the advent of the State Compact system of LLW disposal, many alternative technologies may be used. The alternative LLW disposal facilities include below- ground vault, tumulus, above-ground vault, shaft, and mine disposal This paper will form the foundation of an update of the previously developed Sandia National Laboratories (SNL)/NRC LLW performance assessment methodology. Based on the pathway assessment for alternative disposal methods, a determination will be made about whether the current methodology can satisfactorily analyze the pathways and phenomena likely to be important for the full range of potential disposal options. We have attempted to be conservative in keeping pathways in the lists that may usually be of marginal importance. In this way we can build confidence that we have spanned the range of cases likely to be encountered at a real site. Results of the pathway assessment indicate that disposal methods can be categorized in groupings based on their depth of disposal. For the deep disposal options of shaft and mine disposal, the key pathways are identical. The shallow disposal options, such as tumulus, shallow-land, and below-ground vault disposal also may be grouped together from a pathway analysis perspective. Above-ground vault disposal cannot be grouped with any of the other disposal options. The pathway analysis shows a definite trend concerning depth of disposal. The above-ground option has the largest number of significant pathways. As the waste becomes more isolated, the number of significant pathways is reduced. Similar to shallow-land burial, it was found that for all

  16. Demonstration tests for low level radioactive waste packaging safety

    International Nuclear Information System (INIS)

    Nagano, I.; Shimura, S.; Miki, T.; Tamamura, T.; Kunitomi, K.

    1993-01-01

    The transport packaging for low level radioactive waste (so-called the LLW packaging) has been developed to be utilized for transportation of LLW in 200 liter-drums from Japanese nuclear power stations to the LLW Disposal Center at Rokkashomura in Aomori Prefecture. Transportation is expected to start from December in 1992. We will explain the brief history of the development, technical features and specifications as well as two kinds of safety demonstration tests, namely one is '1.2 meter free drop test' and the other is 'ISO container standard test'. (J.P.N.)

  17. Alternative concepts for Low-Level Radioactive Waste Disposal: Conceptual design report

    International Nuclear Information System (INIS)

    1987-06-01

    This conceptual design report is provided by the Department of Energy's Nuclear Energy Low-Level Waste Management Program to assist states and compact regions in developing new low-level radioactive waste (LLW) disposal facilities in accordance with the Low-Level Radioactive Waste Policy Amendment Act of 1985. The report provides conceptual designs and evaluations of six widely considered concepts for LLW disposal. These are shallow land disposal (SLD), intermediate depth disposal (IDD), below-ground vaults (BGV), above-ground vaults (AGV), modular concrete canister disposal (MCCD), earth-mounded concrete bunker (EMCB). 40 refs., 45 figs., 77 tabs

  18. Low-level radioactive waste from nuclear power generating stations: Characterization, classification and assessment of activated metals and waste streams

    International Nuclear Information System (INIS)

    Thomas, V.W.; Robertson, D.E.; Thomas, C.W.

    1993-02-01

    Since the enactment of 10 CFR Part 61, additional difficult-to-measure long-lived radionuclides, not specified in Tables 1 2 of Part 61, have been identified (e.g., 108m Ag, 93 Mo, 36 Cl, 10 Be, 113m Cd, 121m Sn, 126 Sn, 93m Nb) that may be of concern in certain types of waste. These nuclides are primarily associated with activated metal and perhaps other nuclear power low-level waste (LLW) being sent to disposal facilities. The concentration of a radionuclide in waste materials is normally determined by direct measurement or by indirect calculational methods, such as using a scaling factor to relate inferred concentration of a difficult-to-measure radionuclide to another that is easily measured. The total disposal site inventory of certain difficult-to-measure radionuclides (e.g., 14 C, 129 I, and 99 Tc) often control the total quantities of radioactive waste permitted in LLW burial facilities. Overly conservative scaling factors based on lower limits of detection (LLD), often used in the nuclear power industry to estimate these controlling nuclides, could lead to premature closure of a disposal facility. Samples of LLW (Class B and C activated metals [AM] and other waste streams) are being collected from operating nuclear power stations and analyzed for radionuclides covered in 10 CFR Part 61 and the additional difficult-to-measure radionuclides. This analysis will enhance the NRC's understanding of the distribution and projected quantities of radionuclides within AM and LLW streams from commercial nuclear power stations. This research will also provide radiological characterization of AM specimens for others to use in leach-rate and lysimeter experiments to determine nuclide releases and subsequent movement in natural soil environments

  19. Review of high-level waste form properties

    International Nuclear Information System (INIS)

    Rusin, J.M.

    1980-12-01

    This report is a review of waste form options for the immobilization of high-level-liquid wastes from the nuclear fuel cycle. This review covers the status of international research and development on waste forms as of May 1979. Although the emphasis in this report is on waste form properties, process parameters are discussed where they may affect final waste form properties. A summary table is provided listing properties of various nuclear waste form options. It is concluded that proposed waste forms have properties falling within a relatively narrow range. In regard to crystalline versus glass waste forms, the conclusion is that either glass of crystalline materials can be shown to have some advantage when a single property is considered; however, at this date no single waste form offers optimum properties over the entire range of characteristics investigated. A long-term effort has been applied to the development of glass and calcine waste forms. Several additional waste forms have enough promise to warrant continued research and development to bring their state of development up to that of glass and calcine. Synthetic minerals, the multibarrier approach with coated particles in a metal matrix, and high pressure-high temperature ceramics offer potential advantages and need further study. Although this report discusses waste form properties, the total waste management system should be considered in the final selection of a waste form option. Canister design, canister materials, overpacks, engineered barriers, and repository characteristics, as well as the waste form, affect the overall performance of a waste management system. These parameters were not considered in this comparison

  20. 1st Quarter Transportation Report FY 2015: Radioactive Waste Shipments to and from the Nevada National Security Site (NNSS)

    Energy Technology Data Exchange (ETDEWEB)

    Gregory, Louis [National Security Technologies, LLC, Las Vegas, NV (United States)

    2015-02-20

    This report satisfies the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Field Office (NNSA/NFO) commitment to prepare a quarterly summary report of radioactive waste shipments to and from the Nevada National Security Site (NNSS) Radioactive Waste Management Complex (RWMC) at Area 5. There were no shipments sent for offsite treatment and returned to the NNSS this quarter. This report summarizes the 1st quarter of Fiscal Year (FY) 2015 low-level radioactive waste (LLW) and mixed low-level radioactive waste (MLLW) shipments. Tabular summaries are provided which include the following: Sources of and carriers for LLW and MLLW shipments to and from the NNSS; Number and external volume of LLW and MLLW shipments; Highway routes used by carriers; and Incident/accident data applicable to LLW and MLLW shipments. In this report shipments are accounted for upon arrival at the NNSS, while disposal volumes are accounted for upon waste burial. The disposal volumes presented in this report include minor volumes of non-radioactive classified waste/material that were approved for disposal (non-radioactive classified or nonradioactive classified hazardous). Volume reports showing cubic feet generated using the Low-Level Waste Information System may vary slightly due to rounding conventions for volumetric conversions from cubic meters to cubic feet.

  1. US Department of Energy National Solid Waste Information Management System (NSWIMS): Annual report for calendar year 1987

    Energy Technology Data Exchange (ETDEWEB)

    Scott, W.L.

    1988-07-01

    The Solid Waste Information Management System (SWIMS) is the database used to gather information for the US Department of Energy (DOE) on DOE and Department of Defense solid low-level radioactive waste (LLW). The National SWIMS Annual Report (NSWIMS) provides officials of the DOE with management information on the entire DOE/defense solid LLW cycle. The acronym for the annual report, NSWIMS, signifies that an improved format has been developed to make this document a more useful tool for assessing solid LLW management performance. Part I provides a composite summary of the DOE/defense solid LLW management. It includes data related to waste generation, forecasting, treatment, and disposal. Part II contains SWIMS computer-supplied information with discussions of the data presented, standardized and simplified data tables, and revised figures. All data are presented without interpretation and are potentially useful to users for evaluating trends, identifying possible problem areas, and defining future implications. 33 figs., 29 tabs.

  2. Physical, Chemical and Structural Evolution of Zeolite-Containing Waste Forms Produced from Metakaolinite and Calcined Sodium Bearing Waste (HLW and/or LLW)

    International Nuclear Information System (INIS)

    Grutzeck, Michael W.

    2005-01-01

    Zeolites are extremely versatile. They can adsorb liquids and gases and serve as cation exchange media. They occur in nature as well cemented deposits. The ancient Romans used blocks of zeolitized tuff as a building material. Using zeolites for the management of radioactive waste is not a new idea, but a process by which the zeolites can be made to act as a cementing agent is. Zeolitic materials are relatively easy to synthesize from a wide range of both natural and man-made substances. The process under study is derived from a well known method in which metakaolin (an impure thermally dehydroxylated kaolinite heated to ∼700 C containing traces of quartz and mica) is mixed with sodium hydroxide (NaOH) and reacted in slurry form (for a day or two) at mildly elevated temperatures. The zeolites form as finely divided powders containing micrometer ((micro)m) sized crystals. However, if the process is changed slightly and only just enough concentrated sodium hydroxide solution is added to the metakaolinite to make a thick crumbly paste and then the paste is compacted and cured under mild hydrothermal conditions (60-200 C), the mixture will form a hard ceramic-like material containing distinct crystalline tectosilicate minerals (zeolites and feldspathoids) imbedded in an X-ray amorphous hydrated sodium aluminosilicate matrix. Due to its lack of porosity and vitreous appearance we have chosen to call this composite a ''hydroceramic''

  3. Radionuclide Retention in Concrete Waste Forms

    Energy Technology Data Exchange (ETDEWEB)

    Mattigod, Shas V.; Bovaird, Chase C.; Wellman, Dawn M.; Wood, Marcus I.

    2010-09-30

    Assessing long-term performance of Category 3 waste cement grouts for radionuclide encasement requires knowledge of the radionuclide-cement interactions and mechanisms of retention (i.e., sorption or precipitation); the mechanism of contaminant release; the significance of contaminant release pathways; how waste form performance is affected by the full range of environmental conditions within the disposal facility; the process of waste form aging under conditions that are representative of processes occurring in response to changing environmental conditions within the disposal facility; the effect of waste form aging on chemical, physical, and radiological properties; and the associated impact on contaminant release. This knowledge will enable accurate prediction of radionuclide fate when the waste forms come in contact with groundwater. The information presented in the report provides data that 1) quantify radionuclide retention within concrete waste form materials similar to those used to encapsulate waste in the Low-Level Waste Burial Grounds (LLBG); 2) measure the effect of concrete waste form properties likely to influence radionuclide migration; and 3) quantify the stability of uranium-bearing solid phases of limited solubility in concrete.

  4. Time to bypass the UK's stagnant waste programme

    International Nuclear Information System (INIS)

    Burton, W.R.; Haslam, C.J.

    1995-01-01

    It is envisaged that a big expansion of nuclear power will be required in the United Kingdom to meet the demand for electric power after gas supplies run out. However, an acceptable scheme for the disposal of all kinds of radioactive waste must be demonstrated before such an expansion is contemplated. Alternatives to the plans being developed by UK Nirex for the burial of low and intermediate level wastes (LLW and ILW) are advanced. The movement of groundwater which could carry radioactivity from an underground repository back to the land surface or into the sea is the main safety issue associated with burying nuclear waste. The water movement would be induced by the head of water from surrounding hillsides or by convection in water warmed by heat-emitting high level waste (HLW). By taking advantage of the coastal situation of both Sellafield and Dounreay, the two UK sites where waste is likely to be buried, these effects can be countered. Drained trench burial with a saline groundwater underpass created by drawing in seawater, is suggested for LLW and some short-lived ILW. A stagnant saline zone, again created from drawn in sea water, is proposed for deep disposal of ILW with a ''flyover'' to drain down surrounding hills. The disposal of HLW in liquid form in nitric acid solution at even deeper levels also making use of a stagnant saline zone is also discussed. (UK)

  5. Final waste classification and waste form technical position papers

    International Nuclear Information System (INIS)

    1983-05-01

    The waste classification technical position paper describes overall procedures acceptable to NRC staff which may be used by licensees to determine the presence and concentrations of the radionuclides listed in section 61.55, and thereby classifying waste for near-surface disposal. This technical position paper also provides guidance on the types of information which should be included in shipment manifests accompanying waste shipments to near-surface disposal facilities. The technical position paper on waste form provides guidance to waste generators on test methods and results acceptable to NRC staff for implementing the 10 CFR Part 61 waste form requirements. It can be used as an acceptable approach for demonstrating compliance with the 10 CFR Part 61 waste structural stability criteria. This technical position paper includes guidance on processing waste into an acceptable stable form, designing acceptable high-integrity containers, packaging cartridge filters, and minimizing radiation effects on organic ion-exchange resins. The guidance in the waste form technical position paper may be used by licensees as the basis for qualifying process control programs to meet the waste form stability requirements, including tests which can be used to demonstrate resistance to degradation arising from the effects of compression, moisture, microbial activity, radiation, and chemical changes. Generic test data (e.g., topical reports prepared by vendors who market solidification technology) may be used for process control program qualification where such generic data is applicable to the particular types of waste generated by a licensee

  6. Research needs in cement-based waste forms

    International Nuclear Information System (INIS)

    McDaniel, E.W.; Spence, R.D.; Tallent, O.K.

    1990-01-01

    Cement-based waste forms are one of the most widely used waste disposal options, yet definitive knowledge of the fate of the waste species inside the waste form is lacking. A fundamental understanding of the chemistry and microstructure of the waste forms would lead to a better understanding of the mass transfer of the waste species, more confidence in predicting and extrapolating waste form performance, and design of better waste forms. Better and cheaper leach tests would lead to quicker and more cost effective screening of waste form alternatives. In addition, assessment of durability may be important to predicting waste form performance in the field. It should be noted that the research needs discussed in this report are from the perspective of investigators working in applied waste management areas, while the proposed investigations are fundamental or basic. Details as to experimental methods and tools to be used in achieving the objectives of the proposed are research beyond the scope of this paper and are better filled in by others. In broad terms, the research topics discussed are correlation of cement-based waste form physical properties to performance, waste-form fundamental chemistry and microstructure, and product performance testing

  7. Comparative assessment of TRU waste forms and processes. Volume I. Waste form and process evaluations

    International Nuclear Information System (INIS)

    Ross, W.A.; Lokken, R.O.; May, R.P.; Roberts, F.P.; Timmerman, C.L.; Treat, R.L.; Westsik, J.H. Jr.

    1982-09-01

    This study provides an assesses seven waste forms and eight processes for immobilizing transuranic (TRU) wastes. The waste forms considered are cast cement, cold-pressed cement, FUETAP (formed under elevated temperature and pressure) cement, borosilicate glass, aluminosilicate glass, basalt glass-ceramic, and cold-pressed and sintered silicate ceramic. The waste-immobilization processes considered are in-can glass melting, joule-heated glass melting, glass marble forming, cement casting, cement cold-pressing, FUETAP cement processing, ceramic cold-pressing and sintering, basalt glass-ceramic processing. Properties considered included gas generation, chemical durability, mechanical strength, thermal stability, and radiation stability. The ceramic products demonstrated the best properties, except for plutonium release during leaching. The glass and ceramic products had similar properties. The cement products generally had poorer properties than the other forms, except for plutonium release during leaching. Calculations of the Pu release indicated that the waste forms met the proposed NRC release rate limit of 1 part in 10 5 per year in most test conditions. The cast-cement process had the lowest processing cost, followed closely by the cold-pressed and FUETAP cement processes. Joule-heated glass melting had the lower cost of the glass processes. In-can melting in a high-quality canister had the highest cost, and cold-pressed and sintered ceramic the second highest. Labor and canister costs for in-can melting were identified. The major contributor to costs of disposing of TRU wastes in a defense waste repository is waste processing costs. Repository costs could become the dominant cost for disposing of TRU wastes in a commercial repository. It is recommended that cast and FUETAP cement and borosilicate glass waste-form systems be considered. 13 figures, 16 tables

  8. Defining mixed low-level radioactive and hazardous waste

    International Nuclear Information System (INIS)

    Weber, M.F.

    1987-01-01

    During the last several months, staffs of the US Nuclear Regulatory Commission (NRC) and the US Environmental Protection Agency (EPA) have been developing a working definition of Mixed Low-Level Radioactive and Hazardous Waste (Mixed LLW). Such wastes are currently being regulated by NRC under authority of the Atomic Energy Act (AEA), as amended, and by EPA under the Resource Conservation and Recovery Act (RCRA), as amended. Development of the definition is one component of a comprehensive program to resolve differences between the regulatory programs of the two agencies pertaining to the regulation of the management and disposal of Mixed LLW. Although the definition is still undergoing legal and policy reviews in both agencies, this paper presents the current working definition, discusses a methodology that may be used by NRC licensees to identify Mixed LLW, and provides responses to anticipated questions from licensees about the definition. 3 references, 1 figure

  9. Ceramic and glass radioactive waste forms

    Energy Technology Data Exchange (ETDEWEB)

    Readey, D.W.; Cooley, C.R. (comps.)

    1977-01-01

    This report contains 14 individual presentations and 6 group reports on the subject of glass and polycrystalline ceramic radioactive waste forms. It was the general consensus that the information available on glass as a waste form provided a good basis for planning on the use of glass as an initial waste form, that crystalline ceramic forms could also be good waste forms if much more development work were completed, and that prediction of the chemical and physical stability of the waste form far into the future would be much improved if the basic synergistic effects of low temperature, radiation and long times were better understood. Continuing development of the polycrystalline ceramic forms was recommended. It was concluded that the leach rate of radioactive species from the waste form is an important criterion for evaluating its suitability, particularly for the time period before solidified waste is permanently placed in the geologic isolation of a Federal repository. Separate abstracts were prepared for 12 of the individual papers; the remaining two were previously abstracted.

  10. Complex-wide review of DOE's Low-Level Waste Management ES ampersand H vulnerabilities. Volume I. Final report

    International Nuclear Information System (INIS)

    1996-05-01

    The Department of Energy (DOE) conducted a comprehensive complex-wide review of its management of low-level waste (LLW) and the radioactive component of mixed low-level waste (MLLW). This review was conducted in response to a recommendation from the Defense Nuclear Facilities Safety Board (DNFSB) which was established and authorized by Congress to oversee DOE. The DNFSB's recommendation concerning conformance with safety standards at DOE LLW sites was issued on September 8, 1994 and is referred to as Recommendation 94-2. DOE's Implementation Plan for its response to Recommendation 94-2 was submitted to the DNFSB on March 31, 1995. The DNFSB recommended that a complex-wide review of DOE's LLW management be initiated. The goal of the complex-wide review of DOE's LLW management system was to identify both programmatic and physical vulnerabilities that could lead to unnecessary radiation exposure of workers or the public or unnecessary releases of radioactive materials to the environment. Additionally, the DNFSB stated that an objective of the complex-wide review should be to establish the dimensions of the DOE LLW problem and support the identification of corrective actions to address safe disposition of past, present, and future volumes of LLW. The complex-wide review involved an evaluation of LLW management activities at 38 DOE facilities at 36 sites that actively manage LLW and MLLW

  11. Draft low level waste technical summary

    International Nuclear Information System (INIS)

    Powell, W.J.; Benar, C.J.; Certa, P.J.; Eiholzer, C.R.; Kruger, A.A.; Norman, E.C.; Mitchell, D.E.; Penwell, D.E.; Reidel, S.P.; Shade, J.W.

    1995-09-01

    The purpose of this document is to present an outline of the Hanford Site Low-Level Waste (LLW) disposal program, what it has accomplished, what is being done, and where the program is headed. This document may be used to provide background information to personnel new to the LLW management/disposal field and to those individuals needing more information or background on an area in LLW for which they are not familiar. This document should be appropriate for outside groups that may want to learn about the program without immediately becoming immersed in the details. This document is not a program or systems engineering baseline report, and personnel should refer to more current baseline documentation for critical information

  12. Nevada National Security Site Waste Acceptance Criteria

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2013-06-01

    This document establishes the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Field Office (NNSA/NFO), Nevada National Security Site Waste Acceptance Criteria (NNSSWAC). The NNSSWAC provides the requirements, terms, and conditions under which the Nevada National Security Site (NNSS) will accept the following: • DOE hazardous and non-hazardous non-radioactive classified waste • DOE low-level radioactive waste (LLW) • DOE mixed low-level waste (MLLW) • U.S. Department of Defense (DOD) classified waste The LLW and MLLW listed above may also be classified waste. Classified waste is the only waste accepted for disposal that may be non-radioactive and shall be required to meet the waste acceptance criteria for radioactive waste as specified in this document. Classified waste may be sent to the NNSS as classified matter. Section 3.1.18 provides the requirements that must be met for permanent burial of classified matter. The NNSA/NFO and support contractors are available to assist the generator in understanding or interpreting this document. For assistance, please call the NNSA/NFO Environmental Management Operations (EMO) at (702) 295-7063, and the call will be directed to the appropriate contact.

  13. Nevada National Security Site Waste Acceptance Criteria

    International Nuclear Information System (INIS)

    2013-01-01

    This document establishes the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Field Office (NNSA/NFO), Nevada National Security Site Waste Acceptance Criteria (NNSSWAC). The NNSSWAC provides the requirements, terms, and conditions under which the Nevada National Security Site (NNSS) will accept the following: DOE hazardous and non-hazardous non-radioactive classified waste; DOE low-level radioactive waste (LLW); DOE mixed low-level waste (MLLW); and, U.S. Department of Defense (DOD) classified waste. The LLW and MLLW listed above may also be classified waste. Classified waste is the only waste accepted for disposal that may be non-radioactive and shall be required to meet the waste acceptance criteria for radioactive waste as specified in this document. Classified waste may be sent to the NNSS as classified matter. Section 3.1.18 provides the requirements that must be met for permanent burial of classified matter. The NNSA/NFO and support contractors are available to assist the generator in understanding or interpreting this document. For assistance, please call the NNSA/NFO Environmental Management Operations (EMO) at (702) 295-7063, and the call will be directed to the appropriate contact.

  14. Final waste management programmatic environmental impact statement for managing treatment, storage, and disposal of radioactive and hazardous waste. Summary

    International Nuclear Information System (INIS)

    1997-05-01

    This Waste Management Programmatic Environmental Impact Statement (WM PEIS) is a nationwide study examining the environmental impacts of managing five types of radioactive and hazardous wastes generated by past and future nuclear defense and research activities at a variety of sites located around the United States. The five waste types are low-level mixed waste (LLMW), low-level waste (LLW), transuranic waste (TRUW), high-level waste (HLW), and hazardous waste (HW)

  15. Department of Energy treatment capabilities for greater-than-Class C low-level radioactive waste

    International Nuclear Information System (INIS)

    Morrell, D.K.; Fischer, D.K.

    1995-01-01

    This report provides brief profiles for 26 low-level and high-level waste treatment capabilities available at the Idaho National Engineering Laboratory (INEL), Lawrence Livermore National Laboratory (LLNL), Los Alamos National Laboratory (LANL), Oak Ridge National Laboratory (ORNL), Pacific Northwest Laboratory (PNL), Rocky Flats Plant (RFP), Savannah River Site (SRS), and West Valley Demonstration Plant (WVDP). Six of the treatments have potential use for greater-than-Class C low-level waste (GTCC LLW). They include: (a) the glass ceramic process and (b) the Waste Experimental Reduction Facility incinerator at INEL; (c) the Super Compaction and Repackaging Facility and (d) microwave melting solidification at RFP; (e) the vitrification plant at SRS; and (f) the vitrification plant at WVDP. No individual treatment has the capability to treat all GTCC LLW streams. It is recommended that complete physical and chemical characterizations be performed for each GTCC waste stream, to permit using multiple treatments for GTCC LLW

  16. Synroc tailored waste forms for actinide immobilization

    Energy Technology Data Exchange (ETDEWEB)

    Gregg, Daniel J.; Vance, Eric R. [Australian Nuclear Science and Technology Organisation, Kirrawee (Australia). ANSTOsynroc, Inst. of Materials Engineering

    2017-07-01

    Since the end of the 1970s, Synroc at the Australian Nuclear Science and Technology Organisation (ANSTO) has evolved from a focus on titanate ceramics directed at PUREX waste to a platform waste treatment technology to fabricate tailored glass-ceramic and ceramic waste forms for different types of actinide, high- and intermediate level wastes. The particular emphasis for Synroc is on wastes which are problematic for glass matrices or existing vitrification process technologies. In particular, nuclear wastes containing actinides, notably plutonium, pose a unique set of requirements for a waste form, which Synroc ceramic and glass-ceramic waste forms can be tailored to meet. Key aspects to waste form design include maximising the waste loading, producing a chemically durable product, maintaining flexibility to accommodate waste variations, a proliferation resistance to prevent theft and diversion, and appropriate process technology to produce waste forms that meet requirements for actinide waste streams. Synroc waste forms incorporate the actinides within mineral phases, producing products which are much more durable in water than baseline borosilicate glasses. Further, Synroc waste forms can incorporate neutron absorbers and {sup 238}U which provide criticality control both during processing and whilst within the repository. Synroc waste forms offer proliferation resistance advantages over baseline borosilicate glasses as it is much more difficult to retrieve the actinide and they can reduce the radiation dose to workers compared to borosilicate glasses. Major research and development into Synroc at ANSTO over the past 40 years has included the development of waste forms for excess weapons plutonium immobilization in collaboration with the US and for impure plutonium residues in collaboration with the UK, as examples. With a waste loading of 40-50 wt.%, Synroc would also be considered a strong candidate as an engineered waste form for used nuclear fuel and highly

  17. Managing Greater-Than-Class C low-level radioactive waste: A strategic plan

    International Nuclear Information System (INIS)

    1990-04-01

    This strategic plan describes the DOE goals, objectives, and strategy for fulfilling its responsibility to dispose of Greater-Than-Class C low-level radioactive waste (GTCC LLW), in accordance with the requirements of Section 3(b) of the Low-Level Radioactive Waste Policy Amendments Act of 1985, Public Law 99-240. The strategy for fulfilling this responsibility consists of three sequential tasks: interim storage of limited quantities of GTCC LLW at currently operating DOE facilities on an as-needed basis; general acceptance of GTCC LLW for storage in a DOE dedicated facility pending disposal; and disposal in a facility licensed by the Nuclear Regulatory Commission (NRC). The objectives, assumptions, and strategies for each of these tasks are presented in this plan

  18. Commercial low-level radioactive waste management

    International Nuclear Information System (INIS)

    Coleman, J.A.

    1982-01-01

    The goals, objectives and activities of the Department of Energy's Low-Level Radioactive Waste Management program are reviewed. The goal of the overall Program is to support development of an acceptable, nationwide, near surface waste disposal system by 1986. The commercial LLW program has two major functions: (1) application of the technology improvements for waste handling, treatment and disposal, and (2) assistance to states as they carry out their responsibilities under the Low-Level Radioactive Waste Policy Act of 1980. The priorities for the commercial side of the Low-Level Waste Management Program have been established to meet one goal: to support development of an effective commercial management system by 1986. The first priority is being given to supporting state efforts in forming the institutional structures needed to manage the system. The second priority is the state and industry role in transferring and demonstrating treatment and disposal technologies

  19. 3rd Quarter Transportation Report FY 2014: Radioactive Waste Shipments to and from the Nevada National Security Site (NNSS)

    International Nuclear Information System (INIS)

    Gregory, Louis

    2014-01-01

    This report satisfies the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Field Office (NNSA/NFO) commitment to prepare a quarterly summary report of radioactive waste shipments to the Nevada National Security Site (NNSS) Radioactive Waste Management Complex (RWMC) at Area 5. There were no shipments sent for offsite treatment and returned to the NNSS this quarter. This report summarizes the 3rd quarter of Fiscal Year (FY) 2014 low-level radioactive waste (LLW) and mixed low-level radioactive waste (MLLW) shipments. This report also includes annual summaries for FY 2014 in Tables 4 and 5. Tabular summaries are provided which include the following: Sources of and carriers for LLW and MLLW shipments to and from the NNSS; Number and external volume of LLW and MLLW shipments; Highway routes used by carriers; and Incident/accident data applicable to LLW and MLLW shipments. In this report shipments are accounted for upon arrival at the NNSS, while disposal volumes are accounted for upon waste burial. The disposal volumes presented in this report do not include minor volumes of non-radioactive materials that were approved for disposal. Volume reports showing cubic feet generated using the Low-Level Waste Information System may vary slightly due to differing rounding conventions.

  20. Plans for managing greater-than-glass C low-level waste

    International Nuclear Information System (INIS)

    Newberry, W.F.; Coleman, J.A.

    1990-01-01

    Low-level waste is defined in the Low-Level Radioactive Waste Policy Amendments Act of 1985 (Title I, Public Law 99-240) as radioactive waste that is neither high-level radioactive waste, spent nuclear fuel, nor by-product material (mill tailings). This paper presents proposed plans for the Department of Energy to fulfill its responsibility to dispose of GTCC LLW under the 1985 law, and to ensure that safe options are available for long-term management of such, pending the availability of disposal capacity. In the absence of a concentration-based definition for high-level waste, there currently is no upper bound for the concentration of radionuclides in low-level waste. DOE's plans for managing and disposing of GTCC LLW are generally consistent with a report issued by the Congressional Office of Technology Assessment in October 1988, An Evaluation of Options for Managing Greater-than-Class C Low-Level Radioactive Waste

  1. Control of water infiltration into near surface LLW disposal units

    International Nuclear Information System (INIS)

    Schulz, R.K.; Ridky, R.W.; O'Donnell, E.

    1992-10-01

    The project objective is to assess means for controlling waste infiltration through waste disposal unit covers in humid regions. Experimental work is being performed in large scale lysimeters (70inch x 45inch x lOinch) at Beltsville, MD and results of the assessment are applicable to disposal of LLW, uranium mill tailings, hazardous waste, and sanitary landfills. Three concepts are under investigation: (1) resistive layer barrier, (2) conductive layer barrier, and bioengineering water management. The resistive layer barrier consists of compacted earth (clay). The conductive layer barrier is a special case of the capillary barrier and it requires a flow layer (e.g. fine sandy loam) over a capillary break. As long as unsaturated conditions am maintained water is conducted by the flow layer to below the waste. This barrier is most efficient at low flow rates and is thus best placed below a resistive layer barrier. Such a combination of the resistive layer over the conductive layer barrier promises to be highly effective provided there is no appreciable subsidence. Bioengineering water management is a surface cover that is designed to accommodate subsidence. It consists of impermeable panels which enhance run-off and limit infiltration. Vegetation is planted in narrow openings between panels to transpire water from below the panels. TWs system has successfully dewatered two lysimeters thus demonstrating that this procedure could be used for remedial action (''drying out'') existing water-logged disposal sites at low cost

  2. Operation for Rokkasho Low Level Radioactive Waste Disposal Center

    International Nuclear Information System (INIS)

    Kamizono, Hideki

    2008-01-01

    The Rokkasho Low Level Radioactive Waste (LLW) Disposal Center is located in Oishitai, Rokkasho-mura, Kamikitagun, of Aomori Prefecture. This district is situated in the southern part of Shimohita Peninsula in the northeastern corner of the prefecture, which lies at the northern tip of Honshu, Japan's main island. The Rokkasho LLW Disposal Center deals with only LLW generated by operating of nuclear power plants. The No.1 and No.2 disposal facility are now in operation. The disposal facilities in operation have a total dispose capacity of 80,000m 3 (equivalent to 400,000 drums). Our final business scope is to dispose of radioactive waste corresponding to 600,000 m 3 (equivalent to 3000,000 drums). For No.1 disposal facility, we have been disposing of homogeneous waste, including condensed liquid waste, spent resin, solidified with cement and asphalt, etc. For No.2 disposal facility, we can bury a solid waste solidified with mortar, such as activated metals and plastics, etc. Using an improved construction technology for an artificial barrier, the concrete pits in No.2 disposal facility could be constructed more economical and spacious than that of No.1. Both No.1 and No.2 facility will be able to bury about 200,000 waste packages (drums) each corresponding to 40,000 m 3 . As of March 17, 2008, Approximately 200,00 waste drums summing up No.1 and No.2 disposal facility have been received from Nuclear power plants and buried. (author)

  3. Spent Fuel and Waste Management Technology Development Program. Annual progress report

    Energy Technology Data Exchange (ETDEWEB)

    Bryant, J.W.

    1994-01-01

    This report provides information on the progress of activities during fiscal year 1993 in the Spent Fuel and Waste Management Technology Development Program (SF&WMTDP) at the Idaho Chemical Processing Plant (ICPP). As a new program, efforts are just getting underway toward addressing major issues related to the fuel and waste stored at the ICPP. The SF&WMTDP has the following principal objectives: Investigate direct dispositioning of spent fuel, striving for one acceptable waste form; determine the best treatment process(es) for liquid and calcine wastes to minimize the volume of high level radioactive waste (HLW) and low level waste (LLW); demonstrate the integrated operability and maintainability of selected treatment and immobilization processes; and assure that implementation of the selected waste treatment process is environmentally acceptable, ensures public and worker safety, and is economically feasible.

  4. Radioisotope Characterization of HB Line Low Activity Waste

    International Nuclear Information System (INIS)

    Snyder, S.J.

    1999-01-01

    The purpose of this document is to provide a physical, chemical, hazardous and radiological characterization of Low-Level Waste (LLW) generated in HB-Line as required by the 1S Manual, Savannah River Site Waste Acceptance Criteria Manual

  5. Standardized waste form test methods

    International Nuclear Information System (INIS)

    Slate, S.C.

    1984-01-01

    The Materials Characterization Center (MCC) is developing standard tests to characterize nuclear waste forms. Development of the first thirteen tests was originally initiated to provide data to compare different high-level waste (HLW) forms and to characterize their basic performance. The current status of the first thirteen MCC tests and some sample test results are presented: the radiation stability tests (MCC-6 and 12) and the tensile-strength test (MCC-11) are approved; the static leach tests (MCC-1, 2, and 3) are being reviewed for full approval; the thermal stability (MCC-7) and microstructure evaluation (MCC-13) methods are being considered for the first time; and the flowing leach test methods (MCC-4 and 5), the gas generation methods (MCC-8 and 9), and the brittle fracture method (MCC-10) are indefinitely delayed. Sample static leach test data on the ARM-1 approved reference material are presented. Established tests and proposed new tests will be used to meet new testing needs. For waste form production, tests on stability and composition measurement are needed to provide data to ensure waste form quality. In transporation, data are needed to evaluate the effects of accidents on canisterized waste forms. The new MCC-15 accident test method and some data are presented. Compliance testing needs required by the recent draft repository waste acceptance specifications are described. These specifications will control waste form contents, processing, and performance

  6. Standardized waste form test methods

    International Nuclear Information System (INIS)

    Slate, S.C.

    1984-11-01

    The Materials Characterization Center (MCC) is developing standard tests to characterize nuclear waste forms. Development of the first thirteen tests was originally initiated to provide data to compare different high-level waste (HLW) forms and to characterize their basic performance. The current status of the first thirteen MCC tests and some sample test results is presented: The radiation stability tests (MCC-6 and 12) and the tensile-strength test (MCC-11) are approved; the static leach tests (MCC-1, 2, and 3) are being reviewed for full approval; the thermal stability (MCC-7) and microstructure evaluation (MCC-13) methods are being considered for the first time; and the flowing leach tests methods (MCC-4 and 5), the gas generation methods (MCC-8 and 9), and the brittle fracture method (MCC-10) are indefinitely delayed. Sample static leach test data on the ARM-1 approved reference material are presented. Established tests and proposed new tests will be used to meet new testing needs. For waste form production, tests on stability and composition measurement are needed to provide data to ensure waste form quality. In transportation, data are needed to evaluate the effects of accidents on canisterized waste forms. The new MCC-15 accident test method and some data are presented. Compliance testing needs required by the recent draft repository waste acceptance specifications are described. These specifications will control waste form contents, processing, and performance. 2 references, 2 figures

  7. A Comprehensive Solution for Managing TRU and LLW From Generation to Final Disposition - 13205

    Energy Technology Data Exchange (ETDEWEB)

    Tozer, Justin C.; Sanchez, Edwina G.; Dorries, Alison M. [Los Alamos National Laboratory, Los Alamos, NM 87544 (United States)

    2013-07-01

    A LANL multi-disciplinary team faced the challenge of building and delivering a waste information system capable of managing radioactive, hazardous, and industrial waste from cradle to grave. The result is the Waste Compliance and Tracking System (WCATS) a flexible, adaptive system that has allowed LANL to consolidate its legacy applications into one system, and leverage the advantages of managing all waste types within a single scalable enterprise application. Key functionality required for robust waste operations, include: waste characterization, waste identification, transportation, inventory management, waste processing, and disposal. In order to maintain data quality, field operations such as waste identification, surveillance checklists, wall-to-wall inventory assessments, waste transfers, shipment pickup and receipt, and simple consolidation operations are captured by the operator or technician using mobile computers. Work flow is managed via end-user defined work paths, to ensure that unit operations are performed in the correct order. Regulatory compliance reports and algorithms are provided to support typical U.S. EPA, DOT, NRC, and DOE requirements, including the EPA hazardous waste manifest, NRC LLW manifest, DOE nuclear material at risk, RCRA TSDF inventory rules, and so forth. The WCATS application has allowed LANL to migrate and consolidate its disparate legacy applications. The design and implementation is generalized so that facility owners can customize the user interface, setup facilities and unit operations (i.e., treatment, storage, disposal, characterization, and administrative), define inventory compliance rules, and establish custom work flow requirements. (authors)

  8. A Comprehensive Solution for Managing TRU and LLW From Generation to Final Disposition - 13205

    International Nuclear Information System (INIS)

    Tozer, Justin C.; Sanchez, Edwina G.; Dorries, Alison M.

    2013-01-01

    A LANL multi-disciplinary team faced the challenge of building and delivering a waste information system capable of managing radioactive, hazardous, and industrial waste from cradle to grave. The result is the Waste Compliance and Tracking System (WCATS) a flexible, adaptive system that has allowed LANL to consolidate its legacy applications into one system, and leverage the advantages of managing all waste types within a single scalable enterprise application. Key functionality required for robust waste operations, include: waste characterization, waste identification, transportation, inventory management, waste processing, and disposal. In order to maintain data quality, field operations such as waste identification, surveillance checklists, wall-to-wall inventory assessments, waste transfers, shipment pickup and receipt, and simple consolidation operations are captured by the operator or technician using mobile computers. Work flow is managed via end-user defined work paths, to ensure that unit operations are performed in the correct order. Regulatory compliance reports and algorithms are provided to support typical U.S. EPA, DOT, NRC, and DOE requirements, including the EPA hazardous waste manifest, NRC LLW manifest, DOE nuclear material at risk, RCRA TSDF inventory rules, and so forth. The WCATS application has allowed LANL to migrate and consolidate its disparate legacy applications. The design and implementation is generalized so that facility owners can customize the user interface, setup facilities and unit operations (i.e., treatment, storage, disposal, characterization, and administrative), define inventory compliance rules, and establish custom work flow requirements. (authors)

  9. Microbial-influenced cement degradation: Literature review

    International Nuclear Information System (INIS)

    Rogers, R.D.; Hamilton, M.A.; McConnell, J.W. Jr.

    1993-03-01

    The Nuclear Regulatory Commission stipulates that disposed low-level radioactive waste (LLW) be stabilized. Because of apparent ease of use and normal structural integrity, cement has been widely used as a binder to solidify LLW. However, the resulting waste forms are sometimes susceptible to failure due to the actions of waste constituents, stress, and environment. This report reviews literature which addresses the effect of microbiologically influenced chemical attack on cement-solidified LLW. Groups of microorganisms are identified, which are capable of metabolically converting organic and inorganic substrates into organic and mineral acids. Such acids aggressively react with concrete and can ultimately lead to structural failure. Mechanisms inherent in microbial-influenced degradation of cement-based material are the focus of this report. This report provides sufficient evidence of the potential for microbial-influenced deterioration of cement-solidified LLW to justify the enumeration of the conditions necessary to support the microbiological growth and population expansion, as well as the development of appropriate tests necessary to determine the resistance of cement-solidified LLW to microbiological-induced degradation that could impact the stability of the waste form

  10. ANSTO's waste forms for the 31. century

    International Nuclear Information System (INIS)

    Vance, E.R.; Begg, B. D.; Day, R. A.; Moricca, S.; Perera, D. S.; Stewart, M. W. A.; Carter, M. L.; McGlinn, P. J.; Smith, K. L.; Walls, P. A.; Robina, M. La

    2004-01-01

    ANSTO waste form development for high-level radioactive waste is directed towards practical applications, particularly problematic niche wastes that do not readily lend themselves to direct vitrification. Integration of waste form chemistry and processing method is emphasised. Some longstanding misconceptions about titanate ceramics are dealt with. We have a range of titanate-bearing waste form products aimed at immobilisation of tank wastes and sludges, actinide-rich wastes, INEEL calcines and Na-bearing liquid wastes, Al-rich wastes arising from reprocessing of Al-clad fuels, Mo-rich wastes arising from reprocessing of U-Mo fuels, partitioned Cs-rich wastes, and 99 Tc. Waste form production techniques cover hot isostatic and uniaxial pressing, sintering, and cold-crucible melting, and these are strongly integrated into waste form design. Speciation and leach resistance of Cs and alkalis in cementitious products and geo-polymers are being studied. Recently we have embarked on studies of candidate inert matrix fuels for Pu burning. We also have a considerable program directed at basic understanding of the waste forms in regard to crystal chemistry, dissolution behaviour in aqueous media, radiation damage effects and optimum processing techniques. (authors)

  11. ANSTO's waste forms for the 31. century

    Energy Technology Data Exchange (ETDEWEB)

    Vance, E R; Begg, B D; Day, R A; Moricca, S; Perera, D S; Stewart, M W. A.; Carter, M L; McGlinn, P J; Smith, K L; Walls, P A; Robina, M La

    2004-07-01

    ANSTO waste form development for high-level radioactive waste is directed towards practical applications, particularly problematic niche wastes that do not readily lend themselves to direct vitrification. Integration of waste form chemistry and processing method is emphasised. Some longstanding misconceptions about titanate ceramics are dealt with. We have a range of titanate-bearing waste form products aimed at immobilisation of tank wastes and sludges, actinide-rich wastes, INEEL calcines and Na-bearing liquid wastes, Al-rich wastes arising from reprocessing of Al-clad fuels, Mo-rich wastes arising from reprocessing of U-Mo fuels, partitioned Cs-rich wastes, and {sup 99}Tc. Waste form production techniques cover hot isostatic and uniaxial pressing, sintering, and cold-crucible melting, and these are strongly integrated into waste form design. Speciation and leach resistance of Cs and alkalis in cementitious products and geo-polymers are being studied. Recently we have embarked on studies of candidate inert matrix fuels for Pu burning. We also have a considerable program directed at basic understanding of the waste forms in regard to crystal chemistry, dissolution behaviour in aqueous media, radiation damage effects and optimum processing techniques. (authors)

  12. Disposal of low-level and mixed low-level radioactive waste during 1990

    International Nuclear Information System (INIS)

    1993-08-01

    Isotopic inventories and other data are presented for low-level radioactive waste (LLW) and mixed LLW disposed (and occasionally stored) during calendar year 1990 at commercial disposal facilities and Department of Energy (DOE) sites. Detailed isotopic information is presented for the three commercial disposal facilities located near Barnwell, SC, Richland, WA, and Beatty, NV. Less information is presented for the Envirocare disposal facility located near Clive, UT, and for LLW stored during 1990 at the West Valley site. DOE disposal information is included for the Savannah River Site (including the saltstone facility), Nevada Test Site, Los Alamos National Laboratory, Idaho National Engineering Laboratory, Hanford Site, Y-12 Site, and Oak Ridge National Laboratory. Summary information is presented about stored DOE LLW. Suggestions are made about improving LLW disposal data

  13. Combined Waste Form Cost Trade Study

    International Nuclear Information System (INIS)

    Gombert, Dirk; Piet, Steve; Trickel, Timothy; Carter, Joe; Vienna, John; Ebert, Bill; Matthern, Gretchen

    2008-01-01

    A new generation of aqueous nuclear fuel reprocessing, now in development under the auspices of the DOE Office of Nuclear Energy (NE), separates fuel into several fractions, thereby partitioning the wastes into groups of common chemistry. This technology advance enables development of waste management strategies that were not conceivable with simple PUREX reprocessing. Conventional wisdom suggests minimizing high level waste (HLW) volume is desirable, but logical extrapolation of this concept suggests that at some point the cost of reducing volume further will reach a point of diminishing return and may cease to be cost-effective. This report summarizes an evaluation considering three groupings of wastes in terms of cost-benefit for the reprocessing system. Internationally, the typical waste form for HLW from the PUREX process is borosilicate glass containing waste elements as oxides. Unfortunately several fission products (primarily Mo and the noble metals Ru, Rh, Pd) have limited solubility in glass, yielding relatively low waste loading, producing more glass, and greater disposal costs. Advanced separations allow matching the waste form to waste stream chemistry, allowing the disposal system to achieve more optimum waste loading with improved performance. Metals can be segregated from oxides and each can be stabilized in forms to minimize the HLW volume for repository disposal. Thus, a more efficient waste management system making the most effective use of advanced waste forms and disposal design for each waste is enabled by advanced separations and how the waste streams are combined. This trade-study was designed to juxtapose a combined waste form baseline waste treatment scheme with two options and to evaluate the cost-benefit using available data from the conceptual design studies supported by DOE-NE

  14. Stainless steel-zirconium alloy waste forms

    International Nuclear Information System (INIS)

    McDeavitt, S.M.; Abraham, D.P.; Keiser, D.D. Jr.; Park, J.Y.

    1996-01-01

    An electrometallurgical treatment process has been developed by Argonne National Laboratory to convert various types of spent nuclear fuels into stable storage forms and waste forms for repository disposal. The first application of this process will be to treat spent fuel alloys from the Experimental Breeder Reactor-II. Three distinct product streams emanate from the electrorefining process: (1) refined uranium; (2) fission products and actinides extracted from the electrolyte salt that are processed into a mineral waste form; and (3) metallic wastes left behind at the completion of the electrorefining step. The third product stream (i.e., the metal waste stream) is the subject of this paper. The metal waste stream contains components of the chopped spent fuel that are unaffected by the electrorefining process because of their electrochemically ''noble'' nature; this includes the cladding hulls, noble metal fission products (NMFP), and, in specific cases, zirconium from metal fuel alloys. The selected method for the consolidation and stabilization of the metal waste stream is melting and casting into a uniform, corrosion-resistant alloy. The waste form casting process will be carried out in a controlled-atmosphere furnace at high temperatures with a molten salt flux. Spent fuels with both stainless steel and Zircaloy cladding are being evaluated for treatment; thus, stainless steel-rich and Zircaloy-rich waste forms are being developed. Although the primary disposition option for the actinides is the mineral waste form, the concept of incorporating the TRU-bearing product into the metal waste form has enough potential to warrant investigation

  15. Overview of Nevada Test Site Radioactive and Mixed Waste Disposal Operations

    International Nuclear Information System (INIS)

    Carilli, J.T.; Krenzien, S.K.; Geisinger, R.G.; Gordon, S.J.; Quinn, B.

    2009-01-01

    The U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office Environmental Management Program is responsible for carrying out the disposal of on-site and off-site generated low-level radioactive waste (LLW) and low-level radioactive mixed waste (MW) at the Nevada Test Site (NTS). Core elements of this mission are ensuring safe and cost-effective disposal while protecting workers, the public, and the environment. This paper focuses on the impacts of new policies, processes, and opportunities at the NTS related to LLW and MW. Covered topics include: the first year of direct funding for NTS waste disposal operations; zero tolerance policy for non-compliant packages; the suspension of mixed waste disposal; waste acceptance changes; DOE Consolidated Audit Program (DOECAP) auditing; the 92-Acre Area closure plan; new eligibility requirements for generators; and operational successes with unusual waste streams

  16. IGNEOUS INTRUSION IMPACTS ON WASTE PACKAGES AND WASTE FORMS

    International Nuclear Information System (INIS)

    Bernot, P.

    2004-01-01

    The purpose of this model report is to assess the potential impacts of igneous intrusion on waste packages and waste forms in the emplacement drifts at the Yucca Mountain Repository. The models are based on conceptual models and includes an assessment of deleterious dynamic, thermal, hydrologic, and chemical impacts. The models described in this report constitute the waste package and waste form impacts submodel of the Total System Performance Assessment for the License Application (TSPA-LA) model assessing the impacts of a hypothetical igneous intrusion event on the repository total system performance. This submodel is carried out in accordance with Technical Work Plan for Waste Form Degradation Modeling, Testing, and Analyses in Support of LA (BSC 2004 [DIRS:167796]) and Total System Performance Assessment-License Application Methods and Approaches (BSC 2003 [DIRS: 166296]). The technical work plan was prepared in accordance with AP-2.27Q, Planning for Science Activities. Any deviations from the technical work plan are documented in the following sections as they occur. The TSPA-LA approach to implementing the models for waste package and waste form response during igneous intrusion is based on identification of damage zones. Zone 1 includes all emplacement drifts intruded by the basalt dike, and Zone 2 includes all other emplacement drifts in the repository that are not in Zone 1. This model report will document the following model assessments: (1) Mechanical and thermal impacts of basalt magma intrusion on the invert, waste packages and waste forms of the intersected emplacement drifts of Zone 1. (2) Temperature and pressure trends of basaltic magma intrusion intersecting Zone 1 and their potential effects on waste packages and waste forms in Zone 2 emplacement drifts. (3) Deleterious volatile gases, exsolving from the intruded basalt magma and their potential effects on waste packages of Zone 2 emplacement drifts. (4) Post-intrusive physical

  17. Defining a metal-based waste form for IFR pyroprocessing wastes

    International Nuclear Information System (INIS)

    McDeavitt, S.M.; Park, J.Y.; Ackerman, J.P.

    1994-01-01

    Pyrochemical electrorefining to recover actinides from metal nuclear fuel is a key element of the Integral Fast Reactor (IFR) fuel cycle. The process separates the radioactive fission products from the long-lived actinides in a molten LiCl-KCl salt, and it generates a lower waste volume with significantly less long-term toxicity as compared to spent nuclear fuel. The process waste forms include a mineral-based waste form that will contain fission products removed from an electrolyte salt and a metal-based waste form that will contain metallic fission products and the fuel cladding and process materials. Two concepts for the metal-based waste form are being investigated: (1) encapsulating the metal constituents in a Cu-Al alloy and (2) alloying the metal constituents into a uniform stainless steel-based waste form. Results are given from our recent studies of these two concepts

  18. Liquid Secondary Waste Grout Formulation and Waste Form Qualification

    Energy Technology Data Exchange (ETDEWEB)

    Um, Wooyong [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Williams, B. D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Snyder, Michelle M. V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Wang, Guohui [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-05-23

    This report describes the results from liquid secondary waste (LSW) grout formulation and waste form qualification tests performed at Pacific Northwest National Laboratory (PNNL) for Washington River Protection Solutions (WRPS) to evaluate new formulations for preparing a grout waste form with high-sulfate secondary waste simulants and the release of key constituents from these grout monoliths. Specific objectives of the LSW grout formulation and waste form qualification tests described in this report focused on five activities: 1.preparing new formulations for the LSW grout waste form with high-sulfate LSW simulants and solid characterization of the cured LSW grout waste form; 2.conducting the U.S. Environmental Protection Agency (EPA) Method 1313 leach test (EPA 2012) on the grout prepared with the new formulations, which solidify sulfate-rich Hanford Tank Waste Treatment and Immobilization Plant (WTP) off-gas condensate secondary waste simulant, using deionized water (DIW); 3.conducting the EPA Method 1315 leach tests (EPA 2013) on the grout monoliths made with the new dry blend formulations and three LSW simulants (242-A evaporator condensate, Environmental Restoration Disposal Facility (ERDF) leachate, and WTP off-gas condensate) using two leachants, DIW and simulated Hanford Integrated Disposal Facility (IDF) Site vadose zone pore water (VZPW); 4.estimating the 99Tc desorption Kd (distribution coefficient) values for 99Tc transport in oxidizing conditions to support the IDF performance assessment (PA); 5.estimating the solubility of 99Tc(IV)-bearing solid phases for 99Tc transport in reducing conditions to support the IDF PA.

  19. Planning and consultation procedures for low-level radioactive waste disposal

    International Nuclear Information System (INIS)

    Kemp, R.

    1989-03-01

    This Report is the result of a year-long study funded by UK Nirex Ltd. between 1986 and 1987. The central purpose was to learn from overseas experience of planning and public consultation procedures associated with the establishment of low-level radioactive waste (LLW) disposal sites. The most recent information on LLW developments in the United States, Canada, France, Holland, Switzerland, Sweden, and West Germany was sought, particularly in regard to: (1) the efficacy of public consultation and negotiation procedures, focusing in particular on the perceived problems, successes and areas for improvement; (2) the key aspects bearing on the public acceptability of LLW proposals; and (3) the form and effect of any compensation mechanisms in operation. The greatest success overseas appears to be linked to some combination of the following elements: authority and clarity in the exposition of the direction of radioactive waste management policy, backed up by authoritative and independent analysis; the early involvement of local authority (county council/regional authority) organisations in the site selection process; careful attention to the potential contribution of authoritative independent advisory groups on both technical and procedural/site selection matters; the development and nurturing of local liaison committees to establish good communications at the local level; careful consideration of means of devolving some power to local authority level for safety reassurance, for example, in relation to site inspections and safety monitoring; the development of an incremental, openly negotiated approach to compensation. (author)

  20. High-level waste-form-product performance evaluation

    International Nuclear Information System (INIS)

    Bernadzikowski, T.A.; Allender, J.S.; Stone, J.A.; Gordon, D.E.; Gould, T.H. Jr.; Westberry, C.F. III.

    1982-01-01

    Seven candidate waste forms were evaluated for immobilization and geologic disposal of high-level radioactive wastes. The waste forms were compared on the basis of leach resistance, mechanical stability, and waste loading. All forms performed well at leaching temperatures of 40, 90, and 150 0 C. Ceramic forms ranked highest, followed by glasses, a metal matrix form, and concrete. 11 tables

  1. IMPROVEMENTS IN CONTAINER MANAGEMENT OF TRANSURANIC (TRU) AND LOW LEVEL RADIOACTIVE WASTE STORED AT THE CENTRAL WASTE COMPLEX (CWC) AT HANFORD

    International Nuclear Information System (INIS)

    UYTIOCO EM

    2007-01-01

    The Central Waste Complex (CWC) is the interim storage facility for Resource Conservation and Recovery Act (RCRA) mixed waste, transuranic waste, transuranic mixed waste, low-level and low-level mixed radioactive waste at the Department of Energy's (DOE'S) Hanford Site. The majority of the waste stored at the facility is retrieved from the low-level burial grounds in the 200 West Area at the Site, with minor quantities of newly generated waste from on-site and off-site waste generators. The CWC comprises 18 storage buildings that house 13,000 containers. Each waste container within the facility is scanned into its location by building, module, tier and position and the information is stored in a site-wide database. As waste is retrieved from the burial grounds, a preliminary non-destructive assay is performed to determine if the waste is transuranic (TRU) or low-level waste (LLW) and subsequently shipped to the CWC. In general, the TRU and LLW waste containers are stored in separate locations within the CWC, but the final disposition of each waste container is not known upon receipt. The final disposition of each waste container is determined by the appropriate program as process knowledge is applied and characterization data becomes available. Waste containers are stored within the CWC based on their physical chemical and radiological hazards. Further segregation within each building is done by container size (55-gallon, 85-gallon, Standard Waste Box) and waste stream. Due to this waste storage scheme, assembling waste containers for shipment out of the CWC has been time consuming and labor intensive. Qualitatively, the ratio of containers moved to containers in the outgoing shipment has been excessively high, which correlates to additional worker exposure, shipment delays, and operational inefficiencies. These inefficiencies impacted the LLW Program's ability to meet commitments established by the Tri-Party Agreement, an agreement between the State of Washington

  2. Waste Management Facilities Cost Information report for Greater-Than-Class C and DOE equivalent special case waste

    Energy Technology Data Exchange (ETDEWEB)

    Feizollahi, F.; Shropshire, D.

    1993-07-01

    This Waste Management Facility Cost Information (WMFCI) report for Greater-Than-Class C low-level waste (GTCC LLW) and DOE equivalent special case waste contains preconceptual designs and planning level life-cycle cost (PLCC) estimates for treatment, storage, and disposal facilities needed for management of GTCC LLW and DOE equivalent waste. The report contains information on 16 facilities (referred to as cost modules). These facilities are treatment facility front-end and back-end support functions (administration support, and receiving, preparation, and shipping cost modules); seven treatment concepts (incineration, metal melting, shredding/compaction, solidification, vitrification, metal sizing and decontamination, and wet/air oxidation cost modules); two storage concepts (enclosed vault and silo); disposal facility front-end functions (disposal receiving and inspection cost module); and four disposal concepts (shallow-land, engineered shallow-land, intermediate depth, and deep geological cost modules). Data in this report allow the user to develop PLCC estimates for various waste management options. A procedure to guide the U.S. Department of Energy (DOE) and its contractor personnel in the use of estimating data is also included in this report.

  3. Waste Management Facilities Cost Information report for Greater-Than-Class C and DOE equivalent special case waste

    International Nuclear Information System (INIS)

    Feizollahi, F.; Shropshire, D.

    1993-07-01

    This Waste Management Facility Cost Information (WMFCI) report for Greater-Than-Class C low-level waste (GTCC LLW) and DOE equivalent special case waste contains preconceptual designs and planning level life-cycle cost (PLCC) estimates for treatment, storage, and disposal facilities needed for management of GTCC LLW and DOE equivalent waste. The report contains information on 16 facilities (referred to as cost modules). These facilities are treatment facility front-end and back-end support functions (administration support, and receiving, preparation, and shipping cost modules); seven treatment concepts (incineration, metal melting, shredding/compaction, solidification, vitrification, metal sizing and decontamination, and wet/air oxidation cost modules); two storage concepts (enclosed vault and silo); disposal facility front-end functions (disposal receiving and inspection cost module); and four disposal concepts (shallow-land, engineered shallow-land, intermediate depth, and deep geological cost modules). Data in this report allow the user to develop PLCC estimates for various waste management options. A procedure to guide the U.S. Department of Energy (DOE) and its contractor personnel in the use of estimating data is also included in this report

  4. Updated Liquid Secondary Waste Grout Formulation and Preliminary Waste Form Qualification

    Energy Technology Data Exchange (ETDEWEB)

    Saslow, Sarah A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Um, Wooyong [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Russell, Renee L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Wang, Guohui [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Asmussen, Robert M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Sahajpal, Rahul [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2017-07-01

    This report describes the results from liquid secondary waste grout (LSWG) formulation and cementitious waste form qualification tests performed by Pacific Northwest National Laboratory (PNNL) for Washington River Protection Solutions, LLC (WRPS). New formulations for preparing a cementitious waste form from a high-sulfate liquid secondary waste stream simulant, developed for Effluent Management Facility (EMF) process condensates merged with low activity waste (LAW) caustic scrubber, and the release of key constituents (e.g. 99Tc and 129I) from these monoliths were evaluated. This work supports a technology development program to address the technology needs for Hanford Site Effluent Treatment Facility (ETF) liquid secondary waste (LSW) solidification and supports future Direct Feed Low-Activity Waste (DFLAW) operations. High-priority activities included simulant development, LSWG formulation, and waste form qualification. The work contained within this report relates to waste form development and testing and does not directly support the 2017 integrated disposal facility (IDF) performance assessment (PA). However, this work contains valuable information for use in PA maintenance past FY17, and for future waste form development efforts. The provided data should be used by (i) cementitious waste form scientists to further understanding of cementitious dissolution behavior, (ii) IDF PA modelers who use quantified constituent leachability, effective diffusivity, and partitioning coefficients to advance PA modeling efforts, and (iii) the U.S. Department of Energy (DOE) contractors and decision makers as they assess the IDF PA program. The results obtained help fill existing data gaps, support final selection of a LSWG waste form, and improve the technical defensibility of long-term waste form performance estimates.

  5. Special waste-form lysimeters: Arid

    International Nuclear Information System (INIS)

    Jones, T.L.; Serne, R.J.

    1987-08-01

    The release of contaminant from solidified low-level waste forms is being studied in a field lysimeter facility at the Hanford Site in southeastern Washington State. Duplicate samples of five different waste forms have been buried in 10 lysimeters since March 1984. Waste-form samples represent three different waste streams and four solidification agents (masonry cement, Portland III cement, Dow polymer /sup (a)/, and bitumen). Most precipitation at the Hanford Site arrives as winter snow; this contributes to a strong seasonal pattern in water storage and drainage observed in the lysimeters. The result is an annual range in the volumetric soil water content from 11% in late winter to 7% in the late summer and early fall, as well as annual changes in pore water velocities from approximately 1 cm/wk in early spring to less than 0.05 cm/wk in early fall. Measurable quantities of tritium and cobalt-60 are being collected in lysimeter drainage water. Approximately 30% of the original tritium inventory has been leached from two lysimeters originally containing tritium. Cobalt-60 is present in all waste forms; it is being collected in the leachate from five lysimeters. The total amount released varies, but in each case it is less than 0.1% of the original cobalt inventory of the waste sample. Nonradioactive constituents contained in the waste form, such as sodium, boron, and sulfate, are also being leached

  6. Development of a multimedia radionuclide exposure model for low-level waste management

    International Nuclear Information System (INIS)

    Onishi, Y.; Whelan, G.; Skaggs, R.L.

    1982-03-01

    A method is being developed for assessing exposures of the air, water, and plants to low-level waste (LLW) as a part of an overall development effort of a LLW site evaluation methodology. The assessment methodology will predict LLW exposure levels in the environment by simulating dominant mechanisms of LLW migration and fate. The methodology consists of a series of physics-based models with proven histories of success; the models interact with each other to simulate LLW transport in the ecosystem. A scaled-down version of the methodology was developed first by combining the terrestrial ecological model, BIOTRAN; the overland transport model, ARM; the instream hydrodynamic model, DKWAV; and the instream sediment-contaminant transport model, TODAM (a one-dimensional version of SERATRA). The methodology was used to simulate the migration of 239 Pu from a shallow-land disposal site (known as Area C) located near the head of South Mortandad Canyon on the LANL site in New Mexico. The scenario assumed that 239 Pu would be deposited on the land surface through the natural processes of plant growth, LLW uptake, dryfall, and litter decomposition. Runoff events would then transport 239 Pu to and in the canyon. The model provided sets of simulated LLW levels in soil, water and terrestrial plants in the region surrounding the site under a specified land-use and a waste management option. Over a 100-yr simulation period, only an extremely small quantity (6 x 10 -9 times the original concentration) of buried 239 Pu was taken up by plants and deposited on the land surface. Only a small fraction (approximately 1%) of that contamination was further removed by soil erosion from the site and carried to the canyon, where it remained. Hence, the study reveals that the environment around Area C has integrity high enough to curtail LLW migration under recreational land use

  7. Health Physics and Waste Minimization Best Practices benchmarking study

    International Nuclear Information System (INIS)

    Levin, V.

    1995-01-01

    The Health Physics and Waste Minimization Best Practices project examines the usefulness of benchmarking as a tool for identifying health physics and waste minimization best practices for low-level solid radioactive waste (LLW) in the U.S. Department of Energy (DOE) complex. The goal of the project is to identify best practices from the nuclear power industry that will reduce the amount of LLW going to disposal in a cost-effective manner. An increase in worker efficiency and productivity is a secondary goal. These practices must be adaptable for implementation in the DOE complex. Once best practices are identified, ranked, and funded for implementation, a pilot implementation will be done at the Chemistry and Metallurgy Research (CMR) building at Los Alamos National Laboratory

  8. A U-bearing composite waste form for electrochemical processing wastes

    Energy Technology Data Exchange (ETDEWEB)

    Chen, X.; Ebert, W. L.; Indacochea, J. E.

    2018-04-01

    Metallic/ceramic composite waste forms are being developed to immobilize combined metallic and oxide waste streams generated during electrochemical recycling of used nuclear fuel. Composites were made for corrosion testing by reacting HT9 steel to represent fuel cladding, Zr and Mo to simulate metallic fuel waste, and a mixture of ZrO2, Nd2O3, and UO2 to represent oxide wastes. More than half of the added UO2 was reduced to metal and formed Fe-Zr-U intermetallics and most of the remaining UO2 and all of the Nd2O3 reacted to form zirconates. Fe-Cr-Mo intermetallics were also formed. Microstructure characterization of the intermetallic and ceramic phases that were generated and tests conducted to evaluate their corrosion behaviors indicate composite waste forms can accommodate both metallic and oxidized waste streams in durable host phases. (c) 2018 Elsevier B.V. All rights reserved.

  9. Life-Cycle Cost and Risk Analysis of Alternative Configurations for Shipping Low-Level Radioactive Waste to the Nevada Test Site

    International Nuclear Information System (INIS)

    PM Daling; SB Ross; BM Biwer

    1999-01-01

    The Nevada Test Site (NTS) is a major receiver of low-level radioactive waste (LLW) for disposal. Currently, all LLW received at NTS is shipped by truck. The trucks use highway routes to NTS that pass through the Las Vegas Valley and over Hoover Dam, which is a concern of local stakeholder groups in the State of Nevada. Rail service offers the opportunity to reduce transportation risks and costs, according to the Waste Management Programmatic Environmental Impact Statement (WM-PEIS). However, NTS and some DOE LLW generator sites are not served with direct rail service so intermodal transport is under consideration. Intermodal transport involves transport via two modes, in this case truck and rail, from the generator sites to NTS. LLW shipping containers would be transferred between trucks and railcars at intermodal transfer points near the LLW generator sites, NTS, or both. An Environmental Assessment (EA)for Intermodal Transportation of Low-Level Radioactive Waste to the Nevada Test Site (referred to as the NTSIntermodal -M) has been prepared to determine whether there are environmental impacts to alterations to the current truck routing or use of intermodal facilities within the State of Nevada. However, an analysis of the potential impacts outside the State of Nevada are not addressed in the NTS Intermodal EA. This study examines the rest of the transportation network between LLW generator sites and the NTS and evaluates the costs, risks, and feasibility of integrating intermodal shipments into the LLW transportation system. This study evaluates alternative transportation system configurations for NTS approved and potential generators based on complex-wide LLW load information. Technical judgments relative to the availability of DOE LLW generators to ship from their sites by rail were developed. Public and worker risk and life-cycle cost components are quantified. The study identifies and evaluates alternative scenarios that increase the use of rail (intermodal

  10. Life-Cycle Cost and Risk Analysis of Alternative Configurations for Shipping Low-Level Radioactive Waste to the Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    PM Daling; SB Ross; BM Biwer

    1999-12-17

    The Nevada Test Site (NTS) is a major receiver of low-level radioactive waste (LLW) for disposal. Currently, all LLW received at NTS is shipped by truck. The trucks use highway routes to NTS that pass through the Las Vegas Valley and over Hoover Dam, which is a concern of local stakeholder groups in the State of Nevada. Rail service offers the opportunity to reduce transportation risks and costs, according to the Waste Management Programmatic Environmental Impact Statement (WM-PEIS). However, NTS and some DOE LLW generator sites are not served with direct rail service so intermodal transport is under consideration. Intermodal transport involves transport via two modes, in this case truck and rail, from the generator sites to NTS. LLW shipping containers would be transferred between trucks and railcars at intermodal transfer points near the LLW generator sites, NTS, or both. An Environmental Assessment (EA)for Intermodal Transportation of Low-Level Radioactive Waste to the Nevada Test Site (referred to as the NTSIntermodal -M) has been prepared to determine whether there are environmental impacts to alterations to the current truck routing or use of intermodal facilities within the State of Nevada. However, an analysis of the potential impacts outside the State of Nevada are not addressed in the NTS Intermodal EA. This study examines the rest of the transportation network between LLW generator sites and the NTS and evaluates the costs, risks, and feasibility of integrating intermodal shipments into the LLW transportation system. This study evaluates alternative transportation system configurations for NTS approved and potential generators based on complex-wide LLW load information. Technical judgments relative to the availability of DOE LLW generators to ship from their sites by rail were developed. Public and worker risk and life-cycle cost components are quantified. The study identifies and evaluates alternative scenarios that increase the use of rail (intermodal

  11. Study on the establishment of technical standards of radioactive wastes (annual report)

    International Nuclear Information System (INIS)

    Kim, Jhin Wung; Hwang, Y. S.; Kim, S. H.; Yoo, J. H.; Lee, I. H.; Yang, H. B.; Rhim, J. K.

    1997-03-01

    From 1989, KAERI and KINS have worked together to set up national regulations to safely manage radioactive wastes. This year project covers 3 items : 1) post-closure surveillance criteria and closure criteria for disposal of LLW wastes, 2) standard format and contents of safety analysis report for spent fuel interim storage, and 3) review of existing regulations. Results from detailed research shall be used to set up the MOST notices on the safe management of radioactive wastes. Even though this project has been stopped after the national rearrangement on the management of LLW, KINS which jointly has studied this project shall independently study it in the future. (author)

  12. Low-level-waste-treatment handbook

    International Nuclear Information System (INIS)

    Clinton, S.D.; Goeller, H.E.; Holladay, D.W.; Donaldson, T.L.

    1982-01-01

    The initial draft of the Low-Level Waste Treatment Handbook has been prepared and submitted to the DOE Low-Level Waste Management Program for review and comment. A revised draft is scheduled to be delivered to DOE Headquarters in December 1982. The Handbook is designed to be useful to all individuals and groups concerned with low-level wastes. It is one of several volumes that will ultimately comprise a Low-Level Waste Technology Handbook. The objective of the Low-Level Waste Treatment Handbook is to present an overview of current practices related to the segregation, classification, volume reduction, solidification, handling, packaging, and transportation of LLW for disposal in a shallow land burial facility. The Handbook is intended to serve as a guide to individuals interested in the treatment and handling of low-level radioactive waste. The Handbook will not explicitly tell the user how to design and operate LLW treatment facilities, but rather will identify (1) kinds of information required to evaluate the options, (2) methods that may be used to evaluate these options, and (3) limitations associated with the selection of the treatment options. The focus of the Handbook is providing guidance on how to do waste treatment for disposal by shallow land burial

  13. Survey of concrete waste forms

    International Nuclear Information System (INIS)

    Moore, J.G.

    1981-01-01

    The incorporation of radioactive waste in cement has been widely studied for many years. It has been routinely used at nuclear research and production sites for some types of nuclear waste for almost three decades and at power reactor plants for nearly two decades. Cement has many favorable characteristics that have contributed to its popularity. It is a readily available material and has not required complex and/or expensive equipment to solidify radioactive waste. The resulting solid products are noncombustible, strong, radiation resistant, and have reasonable chemical and thermal stability. As knowledge increased on the possible dangers from radioactive waste, requirements for waste fixation became more stringent. A brief survey of some of the research efforts used to extend and improve cementitious waste hosts to meet these requirements is given in this paper. Selected data are presented from the rather extensive study of the applicability of concrete as a waste form for Savannah River defense waste and the use of polymer impregnation to reduce the leachability and improve the durability of such waste forms. Hot-pressed concretes that were developed as prospective host solids for high-level wastes are described. Highlights are given from two decades of research on cementitious waste forms at Oak Ridge National Laboratory. The development of the hydrofracture process for the disposal of all locally generated radioactive waste led to a process for the disposal of I-129 and to the current research on the German in-situ solidification process for medium-level waste and the Oak Ridge FUETAP process for all classes of waste including commercial and defense high-level wastes. Finally, some of the more recent ORNL concepts are presented for the use of cement in the disposal of inorganic and biological sludges, waste inorganic salts, trash, and krypton

  14. Waste Inspection Tomography (WIT)

    International Nuclear Information System (INIS)

    Bernardi, R.T.

    1995-01-01

    Waste Inspection Tomography (WIT) provides mobile semi-trailer mounted nondestructive examination (NDE) and assay (NDA) for nuclear waste drum characterization. WIT uses various computed tomography (CT) methods for both NDE and NDA of nuclear waste drums. Low level waste (LLW), transuranic (TRU), and mixed radioactive waste can be inspected and characterized without opening the drums. With externally transmitted x-ray NDE techniques, WIT has the ability to identify high density waste materials like heavy metals, define drum contents in two- and three-dimensional space, quantify free liquid volumes through density and x-ray attenuation coefficient discrimination, and measure drum wall thickness. With waste emitting gamma-ray NDA techniques, WIT can locate gamma emitting radioactive sources in two- and three-dimensional space, identify gamma emitting isotopic species, identify the external activity levels of emitting gamma-ray sources, correct for waste matrix attenuation, provide internal activity approximations, and provide the data needed for waste classification as LLW or TRU. The mobile feature of WIT allows inspection technologies to be brought to the nuclear waste drum storage site without the need to relocate drums for safe, rapid, and cost-effective characterization of regulated nuclear waste. The combination of these WIT characterization modalities provides the inspector with an unprecedented ability to non-invasively characterize the regulated contents of waste drums as large as 110 gallons, weighing up to 1,600 pounds. Any objects that fit within these size and weight restrictions can also be inspected on WIT, such as smaller waste bags and drums that are five and thirty-five gallons

  15. Experimental data and analysis to support the design of an ion-exchange process for the treatment of Hanford tank waste supernatant liquids

    International Nuclear Information System (INIS)

    Kurath, D.E.; Bray, L.A.; Brooks, K.P.; Brown, G.N.; Bryan, S.A.; Carlson, C.D.; Carson, K.J.; DesChane, J.R.; Elovich, R.J.; Kim, A.Y.

    1994-12-01

    Hanford's 177 underground storage tanks contain a mixture of sludge, salt cake, and alkaline supernatant liquids. Disposal options for these wastes are high-level waste (HLW) glass for disposal in a repository or low-level waste (LLW) glass for onsite disposal. Systems-engineering studies show that economic and environmental considerations preclude disposal of these wastes without further treatment. Difficulties inherent in transportation and disposal of relatively large volumes of HLW make it impossible to vitrify all of the tank waste as HLW. Potential environmental impacts make direct disposal of all of the tank waste as LLW glass unacceptable. Although the pretreatment and disposal requirements are still being defined, most pretreatment scenarios include retrieval of the aqueous liquids, dissolution of the salt cakes, and washing of the sludges to remove soluble components. Most of the cesium is expected to be in the aqueous liquids, which are the focus of this report on cesium removal by ion exchange. The main objectives of the ion-exchange process are removing cesium from the bulk of the tank waste (i.e., decontamination) and concentrating the separated cesium for vitrification. Because exact requirements for removal of 137 Cs have not yet been defined, a range of removal requirements will be considered. This study addresses requirements to achieve 137 Cs levels in LLW glass between (1) the Nuclear Regulatory Commission (NRC) Class C (10 CFR 61) limit of 4600 Ci/m 3 and (2) 1/10th of the NRC Class A limit of 1 Ci/m 3 i.e., 0.1/m 3 . The required degrees of separation of cesium from other waste components is a complex function involving interactions between the design of the vitrification process, waste form considerations, and other HLW stream components that are to be vitrified

  16. Low-level radioactive waste performance assessments: Source term modeling

    International Nuclear Information System (INIS)

    Icenhour, A.S.; Godbee, H.W.; Miller, L.F.

    1995-01-01

    Low-level radioactive wastes (LLW) generated by government and commercial operations need to be isolated from the environment for at least 300 to 500 yr. Most existing sites for the storage or disposal of LLW employ the shallow-land burial approach. However, the U.S. Department of Energy currently emphasizes the use of engineered systems (e.g., packaging, concrete and metal barriers, and water collection systems). Future commercial LLW disposal sites may include such systems to mitigate radionuclide transport through the biosphere. Performance assessments must be conducted for LUW disposal facilities. These studies include comprehensive evaluations of radionuclide migration from the waste package, through the vadose zone, and within the water table. Atmospheric transport mechanisms are also studied. Figure I illustrates the performance assessment process. Estimates of the release of radionuclides from the waste packages (i.e., source terms) are used for subsequent hydrogeologic calculations required by a performance assessment. Computer models are typically used to describe the complex interactions of water with LLW and to determine the transport of radionuclides. Several commonly used computer programs for evaluating source terms include GWSCREEN, BLT (Breach-Leach-Transport), DUST (Disposal Unit Source Term), BARRIER (Ref. 5), as well as SOURCE1 and SOURCE2 (which are used in this study). The SOURCE1 and SOURCE2 codes were prepared by Rogers and Associates Engineering Corporation for the Oak Ridge National Laboratory (ORNL). SOURCE1 is designed for tumulus-type facilities, and SOURCE2 is tailored for silo, well-in-silo, and trench-type disposal facilities. This paper focuses on the source term for ORNL disposal facilities, and it describes improved computational methods for determining radionuclide transport from waste packages

  17. Overview of mixed waste issues

    International Nuclear Information System (INIS)

    Piciulo, P.L.; Bowerman, B.S.; Kempf, C.R.; MacKenzie, D.R.; Siskind, B.

    1986-01-01

    Based on BNL's study it was concluded that there are LLWs which contain chemically hazardous components. Scintillation liquids may be considered an EPA listed hazardous waste and are, therefore, potential mixed wastes. Since November, 1985 no operating LLW disposal site will accept these wastes for disposal. Unless such wastes contain de minimis quantities of radionuclides, they cannot be disposed of at an EPA an EPA permitted site. Currently generators of LSC wastes can ship de minimis wastes to be burned at commercial facilities. Oil wastes will also eventually be an EPA listed waste and thus will have to be considered a potential radioactive mixed wasted unless NRC establishes de minimis levels of radionuclides below which oils can be managed as hazardous wastes. Regarding wastes containing lead metal there is some question as to the extent of the hazard posed by lead disposed in a LLW burial trench. Chromium-containing wastes would have to be tested to determine whether they are potential mixed wastes. There may be other wastes that are mixed wastes; the responsibility for determining this rests with the waste generator. It is believed that there are management options for handling potential mixed wastes but there is no regulatory guidance. BNL has identified and evaluated a variety of treatment options for the management of potential radioactive mixed wastes. The findings of that study showed that application of a management option with the purpose of addressing EPA concern can, at the same time, address stabilization and volume reduction concerns of NRC

  18. Social and institutional evaluation report for Greater-Than-Class C Low-Level Radioactive Waste Disposal

    International Nuclear Information System (INIS)

    Anderson, T.L.; Lewis, B.E.; Turner, K.H.; Rozelle, M.A.

    1993-10-01

    This report identifies and characterizes social and institutional issues that would be relevant to the siting, licensing, construction, closure, and postclosure of a Greater-Than-Class-C low-level radioactive waste (GTCC LLW) disposal facility. A historical perspective of high-level radioactive waste (HLW) and LLW disposal programs is provided as an overview of radioactive waste disposal and to support the recommendations and conclusions in the report. A characterization of each issue is provided to establish the basis for further evaluations. Where applicable, the regulatory requirements of 10 CFR 60 and 61 are incorporated in the issue characterizations. The issues are used to compare surface, intermediate depth, and deep geologic disposal alternatives. The evaluation establishes that social and institutional issues do not significantly discriminate among the disposal alternatives. Recommendations are provided for methods by which the issues could be considered throughout the lifecycle of a GTCC LLW disposal program

  19. Social and institutional evaluation report for Greater-Than-Class C Low-Level Radioactive Waste Disposal

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, T.L.; Lewis, B.E.; Turner, K.H.; Rozelle, M.A. [Dames and Moore, Denver, CO (United States)

    1993-10-01

    This report identifies and characterizes social and institutional issues that would be relevant to the siting, licensing, construction, closure, and postclosure of a Greater-Than-Class-C low-level radioactive waste (GTCC LLW) disposal facility. A historical perspective of high-level radioactive waste (HLW) and LLW disposal programs is provided as an overview of radioactive waste disposal and to support the recommendations and conclusions in the report. A characterization of each issue is provided to establish the basis for further evaluations. Where applicable, the regulatory requirements of 10 CFR 60 and 61 are incorporated in the issue characterizations. The issues are used to compare surface, intermediate depth, and deep geologic disposal alternatives. The evaluation establishes that social and institutional issues do not significantly discriminate among the disposal alternatives. Recommendations are provided for methods by which the issues could be considered throughout the lifecycle of a GTCC LLW disposal program.

  20. Final environmental assessment for off-site transportation of low-level waste from four California sites under the management of the U.S. Department of Energy Oakland Operations Office

    International Nuclear Information System (INIS)

    1997-10-01

    The Department of Energy Oakland Operations Office (DOE/OAK) manages sites within California that generate Low Level Waste (LLW) in the course or routine site operations. It is the preference of the DOE to dispose of LLW at federally owned and DOE-operated disposal facilities; however, in some circumstances DOE Headquarters has determined that disposal at commercial facilities is appropriate, as long as the facility meets all regulatory requirements for the acceptance and disposal of LLW, including the passage of a DOE audit to determine the adequacy of the disposal site. The DOE would like to ship LLW from four DOE/OAK sites in California which generate LLW, to NRC-licensed commercial nuclear waste disposal facilities such as Envirocare in Clive, Utah and Chem Nuclear in Barnwell, South Carolina. Transportation impacts for shipment of LLW and MLLW from DOE Oakland sites to other DOE sites was included in the impacts identified in the Department's Waste Management Programmatic Environmental Impact Statement (WM-PEIS), published in May, 1997, and determined to be low. The low impacts for shipment to commercial sites identified herein is consistent with the WM-PEIS results

  1. Legislator's guide to low-level radioactive waste management

    International Nuclear Information System (INIS)

    Jordan, J.M.; Melson, L.G.

    1981-05-01

    The purpose of the guide is to provide state legislators and their staff with information on low-level radioactive waste management, issues of special concern to the states, and policy options. During 1979, producers of low-level radioactive wastes (LLW) faced a crisis. Two of the three commercial disposal sites were temporarily closed and some LLW producers were running short on storage space. For hospitals, clinics, research organizations, and some industries, this meant potential curtailment of activities that produced these materials. Commercial nuclear reactors were not as hard hit during the crisis because they have larger storage areas. The two sites at Beatty, Nevada, and Hanford, Washington, reopened and the immediate crisis was averted. However, the longer term problem of shortage of disposal capacity was just beginning to be recognized. States should be concerned with this problem for several reasons. First, all states produce LLW although the volumes differ among states. Second, states have the responsibility to protect the public health and welfare of their citizens. Third, states may be given the authority to regulate LLW disposal if they enter into agreements with the federal government (Agreement States Program), and 26 states have that authority. Fourth, because of the long-term monitoring and surveillance necessary at a disposal site, states rather than private industry will be held responsible for ensuring that the disposal site is performing safely. Finally, Congress established a policy in 1980 that each state is responsible for the safe disposal of LLW generated within its borders. This policy also includes provisions that could lead to excluding states from using disposal facilities unless they have entered into regional agreements with other states. Two primary options exist for a state: developing its own disposal facility for LLW generated within its borders or joining with other states to develop a regional disposal facility

  2. Development of iron phosphate ceramic waste form to immobilize radioactive waste solution

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jongkwon [Division of Advanced Nuclear Engineering, Pohang University of Science and Technology (POSTECH), San 31, Hyoja-Dong, Pohang (Korea, Republic of); Um, Wooyong, E-mail: wooyong.um@pnnl.gov [Division of Advanced Nuclear Engineering, Pohang University of Science and Technology (POSTECH), San 31, Hyoja-Dong, Pohang (Korea, Republic of); Pacific Northwest National Laboratory, Richland, WA 99354 (United States); Choung, Sungwook [Division of Advanced Nuclear Engineering, Pohang University of Science and Technology (POSTECH), San 31, Hyoja-Dong, Pohang (Korea, Republic of)

    2014-09-15

    The objective of this research was to develop an iron phosphate ceramic (IPC) waste form using converter slag obtained as a by-product of the steel industry as a source of iron instead of conventional iron oxide. Both synthetic off-gas scrubber solution containing technetium-99 (or Re as a surrogate) and LiCl–KCl eutectic salt, a final waste solution from pyrochemical processing of spent nuclear fuel, were used as radioactive waste streams. The IPC waste form was characterized for compressive strength, reduction capacity, chemical durability, and contaminant leachability. Compressive strengths of the IPC waste form prepared with different types of waste solutions were 16 MPa and 19 MPa for LiCl–KCl eutectic salt and the off-gas scrubber simulant, respectively, which meet the minimum compressive strength of 3.45 MPa (500 psi) for waste forms to be accepted into the radioactive waste repository. The reduction capacity of converter slag, a main dry ingredient used to prepare the IPC waste form, was 4136 meq/kg by the Ce(IV) method, which is much higher than those of the conventional Fe oxides used for the IPC waste form and the blast furnace slag materials. Average leachability indexes of Tc, Li, and K for the IPC waste form were higher than 6.0, and the IPC waste form demonstrated stable durability even after 63-day leaching. In addition, the Toxicity Characteristic Leach Procedure measurements of converter slag and the IPC waste form with LiCl–KCl eutectic salt met the universal treatment standard of the leachability limit for metals regulated by the Resource Conservation and Recovery Act. This study confirms the possibility of development of the IPC waste form using converter slag, showing its immobilization capability for radionuclides in both LiCl–KCl eutectic salt and off-gas scrubber solutions with significant cost savings.

  3. Treatment of mixed radioactive liquid wastes at Argonne National Laboratory

    International Nuclear Information System (INIS)

    Vandegrift, G.F.; Chamberlain, D.B.; Conner, C.

    1994-01-01

    Aqueous mixed waste at Argonne National Laboratory (ANL) is traditionally generated in small volumes with a wide variety of compositions. A cooperative effort at ANL between Waste Management (WM) and the Chemical Technology Division (CMT) was established, to develop, install, and implement a robust treatment operation to handle the majority of such wastes. For this treatment, toxic metals in mixed-waste solutions are precipitated in a semiautomated system using Ca(OH) 2 and, for some metals, Na 2 S additions. This step is followed by filtration to remove the precipitated solids. A filtration skid was built that contains several filter types which can be used, as appropriate, for a variety of suspended solids. When supernatant liquid is separated from the toxic-metal solids by decantation and filtration, it will be a low-level waste (LLW) rather than a mixed waste. After passing a Toxicity Characteristic Leaching Procedure (TCLP) test, the solids may also be treated as LLW

  4. Spatial and temporal distribution of risks associated with low-level radioactive waste disposal

    International Nuclear Information System (INIS)

    Thompson, P.B.

    1988-01-01

    The major purposes of this dissertation are to examine the economic tradeoffs which arise in the process of LLW disposal and to derive a framework within which the impact of these tradeoffs on LLW disposal policy can be analyzed. There are two distinct stages in the disposal of LLW - the transportation of the waste from sources to disposal sites and the disposal of the waste. The levels of costs and risks associated with these two stages depend on the number and location of disposal sites. Having more disposal sites results in lower transportation costs and risks but also in greater disposal costs and risks. The tradeoff between transportation costs and risks can also be viewed as a tradeoff between present and future risks. Therefore, an alteration in the spatial distribution of LLW disposal sites necessarily implies a change in the temporal distribution of risks. These tradeoffs are examined in this work through the use of a transportation model to which probabilistic radiation exposure constraints are added. Future (disposal) risks are discounted. The number and capacities of LLW disposal sites are varied in order to derive a series of system costs and corresponding expected cancers. This provides policy makers with a cost vs. cancers possibility function

  5. Conceptual design report for Central Waste Disposal Facility

    International Nuclear Information System (INIS)

    1984-01-01

    The permanent facilities are defined, and cost estimates are provided for the disposal of Low-Level Radioactive Wastes (LLW) at the Central Waste Disposal Facility (CWDF). The waste designated for the Central Waste Disposal Facility will be generated by the Y-12 Plant, the Oak Ridge Gaseous Diffusion Plant, and the Oak Ridge National Laboratory. The facility will be operated by ORNL for the Office of Defense Waste and By-Products Management of the Deparment of Energy. The CWDF will be located on the Department of Energy's Oak Ridge Reservation, west of Highway 95 and south of Bear Creek Road. The body of this Conceptual Design Report (CDR) describes the permanent facilities required for the operation of the CWDF. Initial facilities, trenches, and minimal operating equipment will be provided in earlier projects. The disposal of LLW will be by shallow land burial in engineered trenches. DOE Order 5820 was used as the performance standard for the proper disposal of radioactive waste. The permanent facilities are intended for beneficial occupancy during the first quarter of fiscal year 1989. 3 references, 9 figures, 7 tables

  6. The effect of vitrification technology on waste loading

    International Nuclear Information System (INIS)

    Hrma, P.R.; Smith, P.A.

    1994-08-01

    Radioactive wastes on the Hanford Site are going to be permanently disposed of by incorporation into a durable glass. These wastes will be separated into low and high-level portions, and then vitrified. The low-level waste (LLW) is water soluble. Its vitrifiable part (other than off-gas) contains approximately 80 wt% Na 2 O, the rest being Al 2 O 3 , P 2 O 5 , K 2 O, and minor components. The challenge is to formulate durable LLW glasses with as high Na 2 O content as possible by optimizing the additions of SiO 2 , Al 2 O 3 , B 2 O 3 , CaO, and ZrO 2 . This task will not be simple, considering the non-linear and interactive nature of glass properties as a function of composition. Once developed, the LLW glass, being similar in composition to commercial glasses, is unlikely to cause major processing problems, such as crystallization or molten salt segregation. For example, inexpensive LLW glass can be produced in a high-capacity Joule-heated melter with a cold cap to minimize volatilization. The high-level waste (HLW) consists of water-insoluble sludge (Fe 2 O 3 , Al 2 O 3 , ZrO 2 , Cr 2 O 3 , NiO, and others) and a substantial water-soluble residue (Na 2 O). Most of the water-insoluble components are refractory; i.e., their melting points are above the glass melting temperature. With regard to product acceptability, the maximum loading of Hanford HLW in the glass is limited by product durability, not by radiolytic heat generation. However, this maximum may not be achievable because of technological constraints imposed by melter feed rheology, frit properties, and glass melter limits. These restrictions are discussed in this paper. 38 refs

  7. Concepts and Technologies for Radioactive Waste Disposal in Rock Salt

    Directory of Open Access Journals (Sweden)

    Wernt Brewitz

    2007-01-01

    Full Text Available In Germany, rock salt was selected to host a repository for radioactive waste because of its excellent mechanical properties. During 12 years of practical disposal operation in the Asse mine and 25 years of disposal in the disused former salt mine Morsleben, it was demonstrated that low-level wastes (LLW and intermediate-level wastes (ILW can be safely handled and economically disposed of in salt repositories without a great technical effort. LLW drums were stacked in old mining chambers by loading vehicles or emplaced by means of the dumping technique. Generally, the remaining voids were backfilled by crushed salt or brown coal filter ash. ILW were lowered into inaccessible chambers through a borehole from a loading station above using a remote control.Additionally, an in-situ solidification of liquid LLW was applied in the Morsleben mine. Concepts and techniques for the disposal of heat generating high-level waste (HLW are advanced as well. The feasibility of both borehole and drift disposal concepts have been proved by about 30 years of testing in the Asse mine. Since 1980s, several full-scale in-situ tests were conducted for simulating the borehole emplacement of vitrified HLW canisters and the drift emplacement of spent fuel in Pollux casks. Since 1979, the Gorleben salt dome has been investigated to prove its suitability to host the national final repository for all types of radioactive waste. The “Concept Repository Gorleben” disposal concepts and techniques for LLW and ILW are widely based on the successful test operations performed at Asse. Full-scale experiments including the development and testing of adequate transport and emplacement systems for HLW, however, are still pending. General discussions on the retrievability and the reversibility are going on.

  8. A generalized definition for waste form durability

    International Nuclear Information System (INIS)

    Fanning, T. H.; Bauer, T. H.; Morris, E. E.; Wigeland, R. A.

    2002-01-01

    When evaluating waste form performance, the term ''durability'' often appears in casual discourse, but in the technical literature, the focus is often on waste form ''degradation'' in terms of mass lost per unit area per unit time. Waste form degradation plays a key role in developing models of the long-term performance in a repository environment, but other factors also influence waste form performance. These include waste form geometry; density, porosity, and cracking; the presence of cladding; in-package chemistry feedback; etc. The paper proposes a formal definition of waste form ''durability'' which accounts for these effects. Examples from simple systems as well as from complex models used in the Total System Performance Assessment of Yucca Mountain are provided. The application of ''durability'' in the selection of bounding models is also discussed

  9. Identifying industrial best practices for the waste minimization of low-level radioactive materials

    Energy Technology Data Exchange (ETDEWEB)

    Levin, V.

    1996-04-01

    In US DOE, changing circumstances are affecting the management and disposal of solid, low-level radioactive waste (LLW). From 1977 to 1991, the nuclear power industry achieved major reductions in solid waste disposal, and DOE is interested in applying those practices to reduce solid waste at DOE facilities. Project focus was to identify and document commercial nuclear industry best practices for radiological control programs supporting routine operations, outages, and decontamination and decommissioning activities. The project team (DOE facility and nuclear power industry representatives) defined a Work Control Process Model, collected nuclear power industry Best Practices, and made recommendations to minimize LLW at DOE facilities.

  10. Hanford Waste Vitrification Plant Project Waste Form Qualification Program Plan

    International Nuclear Information System (INIS)

    Randklev, E.H.

    1993-06-01

    The US Department of Energy has created a waste acceptance process to help guide the overall program for the disposal of high-level nuclear waste in a federal repository. This Waste Form Qualification Program Plan describes the hierarchy of strategies used by the Hanford Waste Vitrification Plant Project to satisfy the waste form qualification obligations of that waste acceptance process. A description of the functional relationship of the participants contributing to completing this objective is provided. The major activities, products, providers, and associated scheduling for implementing the strategies also are presented

  11. Developing a low-level radioactive waste disposal facility in Connecticut: Update on progress and new directions

    Energy Technology Data Exchange (ETDEWEB)

    Gingerich, R.E. [Connecticut Hazardous Waste Management Service, Hartford, CT (United States)

    1993-03-01

    Connecticut is a member of the Northeast Interstate Low-Level Radioactive Waste Management Compact (Northeast LLRW Compact). The other member of the Northeast LLRW Compact is New Jersey. The Northeast Interstate Low-Level Radioactive Waste Commission (Northeast Compact Commission), the Northeast LLRW Compact`s governing body, has designated both Connecticut and New Jersey as host states for disposal facilities. The Northeast Compact Commission has recommended that, for purposes of planning for each state`s facility, the siting agency for the state should use projected volumes and characteristics of the LLW generated in its own state. In 1987 Connecticut enacted legislation that assigns major responsibilities for developing a LLW disposal facility in Connecticut to the Connecticut Hazardous Waste Management Service (CHWMS). The CHWMS is required to: prepare and revise, as necessary, a LLW Management Plan for the state; select a site for a LLW disposal facility; select a disposal technology to be used at the site; select a firm to obtain the necessary approvals for the facility and to develop and operate it; and serve as the custodial agency for the facility. This paper discusses progress in developing a facility.

  12. Evaluation of Department of Energy-held potential Greater-Than-Class C Low-Level Radioactive Waste

    International Nuclear Information System (INIS)

    1992-03-01

    A number of commercial facilities have generated potential Greater-Than-Class C Low-Level Radioactive Waste (GTCC LLW), and through contractual arrangements with the US Department of Energy (DOE) and/or for health and safety reasons, the waste is being stored by DOE. A determination is required, considering specific circumstances under which DOE accepted the waste, whether disposal is a US Nuclear Regulatory Commission-licensed facility or by DOE in a nonlicensed facility is appropriate. This report presents the preliminary results of an assessment conducted by EG ampersand G Idaho, Inc. legal counsel and GTCC LLW Program staff

  13. Summary: special waste form lysimeters - arid program

    International Nuclear Information System (INIS)

    Skaggs, R.L.; Walter, M.B.

    1987-01-01

    The purpose of the Special Waste Form Lysimeters - Arid Program is to determine the performance of solidified commercial low-level waste forms using a field-scale lysimeter facility constructed for measuring the release and migration of radionuclides from the waste forms. The performance of these waste forms, as measured by radionuclide concentrations in lysimeter effluent, will be compared to that predicted by laboratory characterization of the waste forms. Waste forms being tested include nuclear power reactor waste streams that have been solidified in cement, Dow polymer, and bitumen. To conduct the field leaching experiments a lysimeter facility was built to measure leachate under actual environmental conditions. Field-scale samples of waste were buried in lysimeters equipped to measure water balance components, effluent radionuclide concentrations, and to a limited extent, radionuclide concentrations in lysimeter soil samples. The waste forms are being characterized by standard laboratory leach tests to obtain estimates of radionuclide release. These estimates will be compared to leach rates observed in the field. Adsorption studies are being conducted to determine the amount of contaminant available for transport after the release. Theoretical solubility calculations will also be performed to investigate whether common solid phases could be controlling radionuclide release. 4 references, 8 figures, 1 table

  14. Iodine waste form summary report (FY 2007)

    International Nuclear Information System (INIS)

    Krumhansl, James Lee; Nenoff, Tina Maria; McMahon, Kevin A.; Gao, Huizhen; Rajan, Ashwath Natech

    2007-01-01

    This new program at Sandia is focused on Iodine waste form development for GNEP cycle needs. Our research has a general theme of 'Waste Forms by Design' in which we are focused on silver loaded zeolite waste forms and related metal loaded zeolites that can be validated for chosen GNEP cycle designs. With that theme, we are interested in materials flexibility for iodine feed stream and sequestration material (in a sense, the ability to develop a universal material independent on the waste stream composition). We also are designing the flexibility to work in a variety of repository or storage scenarios. This is possible by studying the structure/property relationship of existing waste forms and optimizing them to our current needs. Furthermore, by understanding the properties of the waste and the storage forms we may be able to predict their long-term behavior and stability. Finally, we are working collaboratively with the Waste Form Development Campaign to ensure materials durability and stability testing

  15. The application of probabilistic risk assessment to a LLW incinerator

    International Nuclear Information System (INIS)

    Li, K.K.; Huang, F.T.

    1993-01-01

    The 100 Kg/hr low-level radioactive waste (LLW) incinerator and the 1,500 ton supercompactor are two main vehicles in the Taiwan Power Company's Volume Reduction Center. Since the hot test of the incinerator in mid 1990, various problems associated with the original design and operating procedures were encountered. During the early stages of putting an incinerator in service, the modification and fine-tuning of the system would help future reliable operations. The probabilistic risk assessment (PRA) method was introduced to evaluate the interaction between potential system failure and its environmental impact and further help diagnose the system defects initially. The draft Level 1 system analysis was completed and the event and fault trees were constructed. Qualitatively, this approach is useful for preventing the system failure from occurring. However, Levels 2 and 3 analysis can only be done when sufficient data become available in the future

  16. Processes for production of alternative waste forms

    International Nuclear Information System (INIS)

    Ross, W.A.; Rusin, J.M.; McElroy, J.L.

    1979-01-01

    During the past 20 years, numerous waste forms and processes have been proposed for solidification of high-level radioactive wastes (HLW). The number has increased significantly during the past 3 to 4 years. At least five factors must be considered in selecting the waste form and process method: 1) processing flexibility, 2) waste loading, 3) canister size and stability, 4) waste form inertness and stability, and 5) processing complexity. This paper describes various waste form processes and operations, and a simple system is proposed for making comparisons. This system suggests that one goal for processes would be to reduce the number of process steps, thereby providing less complex processing systems

  17. Transportation considerations related to waste forms and canisters for Defense TRU wastes

    International Nuclear Information System (INIS)

    Schneider, K.J.; Andrews, W.B.; Schreiber, A.M.; Rosenthal, L.J.; Odle, C.J.

    1981-09-01

    This report identifies and discusses the considerations imposed by transportation on waste forms and canisters for contact-handled, solid transuranic wastes from the US Department of Energy (DOE) activities. The report reviews (1) the existing raw waste forms and potential immobilized waste forms, (2) the existing and potential future DOE waste canisters and shipping containers, (3) regulations and regulatory trends for transporting commercial transuranic wastes on the ISA, (4) truck and rail carrier requirements and preferences for transporting the wastes, and (5) current and proposed Type B external packagings for transporting wastes

  18. Igneous Intrusion Impacts on Waste Packages and Waste Forms

    International Nuclear Information System (INIS)

    P. Bernot

    2004-01-01

    The purpose of this model report is to assess the potential impacts of igneous intrusion on waste packages and waste forms in the emplacement drifts at the Yucca Mountain Repository. The model is based on conceptual models and includes an assessment of deleterious dynamic, thermal, hydrologic, and chemical impacts. This constitutes the waste package and waste form impacts submodel of the Total System Performance Assessment for the License Application (TSPA-LA) model assessing the impacts of a hypothetical igneous intrusion event on the repository total system performance. This submodel is carried out in accordance with Technical Work Plan for Waste Form Degradation Modeling, Testing, and Analyses in Support of SR and LA (BSC 2003a) and Total System Performance Assessment-License Application Methods and Approaches (BSC 2002a). The technical work plan is governed by the procedures of AP-SIII.10Q, Models. Any deviations from the technical work plan are documented in the TSPA-LA approach to implementing the models for waste package and waste form response during igneous intrusion is based on identification of damage zones. Zone 1 includes all emplacement drifts intruded by the basalt dike, and Zone 2 includes all other emplacement drifts in the repository that are not in Zone 1. This model report will document the following model: (1) Impacts of magma intrusion on the components of engineered barrier system (e.g., drip shields and cladding) of emplacement drifts in Zone 1, and the fate of waste forms. (2) Impacts of conducting magma heat and diffusing magma gases on the drip shields, waste packages, and cladding in the Zone 2 emplacement drifts adjacent to the intruded drifts. (3) Impacts of intrusion on Zone 1 in-drift thermal and geochemical environments, including seepage hydrochemistry. The scope of this model only includes impacts to the components stated above, and does not include impacts to other engineered barrier system (EBS) components such as the invert and

  19. Igneous Intrusion Impacts on Waste Packages and Waste Forms

    Energy Technology Data Exchange (ETDEWEB)

    P. Bernot

    2004-08-16

    The purpose of this model report is to assess the potential impacts of igneous intrusion on waste packages and waste forms in the emplacement drifts at the Yucca Mountain Repository. The model is based on conceptual models and includes an assessment of deleterious dynamic, thermal, hydrologic, and chemical impacts. This constitutes the waste package and waste form impacts submodel of the Total System Performance Assessment for the License Application (TSPA-LA) model assessing the impacts of a hypothetical igneous intrusion event on the repository total system performance. This submodel is carried out in accordance with Technical Work Plan for Waste Form Degradation Modeling, Testing, and Analyses in Support of SR and LA (BSC 2003a) and Total System Performance Assessment-License Application Methods and Approaches (BSC 2002a). The technical work plan is governed by the procedures of AP-SIII.10Q, Models. Any deviations from the technical work plan are documented in the TSPA-LA approach to implementing the models for waste package and waste form response during igneous intrusion is based on identification of damage zones. Zone 1 includes all emplacement drifts intruded by the basalt dike, and Zone 2 includes all other emplacement drifts in the repository that are not in Zone 1. This model report will document the following model: (1) Impacts of magma intrusion on the components of engineered barrier system (e.g., drip shields and cladding) of emplacement drifts in Zone 1, and the fate of waste forms. (2) Impacts of conducting magma heat and diffusing magma gases on the drip shields, waste packages, and cladding in the Zone 2 emplacement drifts adjacent to the intruded drifts. (3) Impacts of intrusion on Zone 1 in-drift thermal and geochemical environments, including seepage hydrochemistry. The scope of this model only includes impacts to the components stated above, and does not include impacts to other engineered barrier system (EBS) components such as the invert and

  20. Lawrence Livermore National Laboratory low-level waste systems performance assessment

    International Nuclear Information System (INIS)

    1990-11-01

    This Low-Level Radioactive Waste (LLW) Systems Performance Assessment (PA) presents a systematic analysis of the potential risks posed by the Lawrence Livermore National Laboratory (LLNL) waste management system. Potential risks to the public and environment are compared to established performance objectives as required by DOE Order 5820.2A. The report determines the associated maximum individual committed effective dose equivalent (CEDE) to a member of the public from LLW and mixed waste. A maximum annual CEDE of 0.01 mrem could result from routine radioactive liquid effluents. A maximum annual CEDE of 0.003 mrem could result from routine radioactive gaseous effluents. No other pathways for radiation exposure of the public indicated detectable levels of exposure. The dose rate, monitoring, and waste acceptance performance objectives were found to be adequately addressed by the LLNL Program. 88 refs., 3 figs., 17 tabs

  1. Designing Advanced Ceramic Waste Forms for Electrochemical Processing Salt Waste

    International Nuclear Information System (INIS)

    Ebert, W. L.; Snyder, C. T.; Frank, Steven; Riley, Brian

    2016-01-01

    This report describes the scientific basis underlying the approach being followed to design and develop ''advanced'' glass-bonded sodalite ceramic waste form (ACWF) materials that can (1) accommodate higher salt waste loadings than the waste form developed in the 1990s for EBR-II waste salt and (2) provide greater flexibility for immobilizing extreme waste salt compositions. This is accomplished by using a binder glass having a much higher Na_2O content than glass compositions used previously to provide enough Na+ to react with all of the Cl- in the waste salt and generate the maximum amount of sodalite. The phase compositions and degradation behaviors of prototype ACWF products that were made using five new binder glass formulations and with 11-14 mass% representative LiCl/KCl-based salt waste were evaluated and compared with results of similar tests run with CWF products made using the original binder glass with 8 mass% of the same salt to demonstrate the approach and select a composition for further studies. About twice the amount of sodalite was generated in all ACWF materials and the microstructures and degradation behaviors confirmed our understanding of the reactions occurring during waste form production and the efficacy of the approach. However, the porosities of the resulting ACWF materials were higher than is desired. These results indicate the capacity of these ACWF waste forms to accommodate LiCl/KCl-based salt wastes becomes limited by porosity due to the low glass-to-sodalite volume ratio. Three of the new binder glass compositions were acceptable and there is no benefit to further increasing the Na content as initially planned. Instead, further studies are needed to develop and evaluate alternative production methods to decrease the porosity, such as by increasing the amount of binder glass in the formulation or by processing waste forms in a hot isostatic press. Increasing the amount of binder glass to eliminate porosity will decrease the waste

  2. Designing Advanced Ceramic Waste Forms for Electrochemical Processing Salt Waste

    Energy Technology Data Exchange (ETDEWEB)

    Ebert, W. L. [Argonne National Lab. (ANL), Argonne, IL (United States); Snyder, C. T. [Argonne National Lab. (ANL), Argonne, IL (United States); Frank, Steven [Argonne National Lab. (ANL), Argonne, IL (United States); Riley, Brian [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-03-01

    This report describes the scientific basis underlying the approach being followed to design and develop “advanced” glass-bonded sodalite ceramic waste form (ACWF) materials that can (1) accommodate higher salt waste loadings than the waste form developed in the 1990s for EBR-II waste salt and (2) provide greater flexibility for immobilizing extreme waste salt compositions. This is accomplished by using a binder glass having a much higher Na2O content than glass compositions used previously to provide enough Na+ to react with all of the Cl– in the waste salt and generate the maximum amount of sodalite. The phase compositions and degradation behaviors of prototype ACWF products that were made using five new binder glass formulations and with 11-14 mass% representative LiCl/KCl-based salt waste were evaluated and compared with results of similar tests run with CWF products made using the original binder glass with 8 mass% of the same salt to demonstrate the approach and select a composition for further studies. About twice the amount of sodalite was generated in all ACWF materials and the microstructures and degradation behaviors confirmed our understanding of the reactions occurring during waste form production and the efficacy of the approach. However, the porosities of the resulting ACWF materials were higher than is desired. These results indicate the capacity of these ACWF waste forms to accommodate LiCl/KCl-based salt wastes becomes limited by porosity due to the low glass-to-sodalite volume ratio. Three of the new binder glass compositions were acceptable and there is no benefit to further increasing the Na content as initially planned. Instead, further studies are needed to develop and evaluate alternative production methods to decrease the porosity, such as by increasing the amount of binder glass in the formulation or by processing waste forms in a hot isostatic press. Increasing the amount of binder glass to eliminate porosity will decrease

  3. Low-level radioactive waste disposal in the USA - Use of mill tailings impoundments as a new policy option

    International Nuclear Information System (INIS)

    Farrell, C.W.

    2006-01-01

    Disposal of low-level radioactive waste (LLW) in the United States is facing severe and immediate capacity limitations. Seemingly intractable regulatory and jurisdictional conflicts make establishment of new LLW disposal sites effectively impossible. Uranium mill tailings impoundments constructed at conventional uranium open-cast and underground mines could offer approximately 40 to 80+ million tons of disposal capacity for low activity radioactive waste. Such impoundments would provide an enhanced, high level of environmental and health and safety protection for the direct disposal of depleted uranium, special nuclear material, technologically-enhanced, naturally-occurring radioactive material (TENORM) and mixed waste. Many waste streams, such as TENORM and decommissioning rubble, will be high-volume, low activity materials and ideally suited for disposal in such structures. Materials in a given decay chain with a total activity from all radionuclides present of ∼820 Bq/g (2.22 x 10 -08 Ci/g) with no single radionuclide present in an activity greater than ∼104 Bq/g (2,800 pCi/g) should be acceptable for disposal. Materials of this type could be accepted without any site-specific dose modelling, so long as the total activity of the tailings impoundment not exceed its design capacity (generally 82 x 10 07 Bq/metric tonne) (0.020 Ci/short ton) and the cover design requirements to limit radon releases are satisfied. This paper provides background on US LLW disposal regulations, examines LLW disposal options under active consideration by the US Environmental Protection Agency and Department of Energy, develops generic waste acceptance criteria and identifies policy needs for federal and state governments to facilitate use of uranium mill tailings impoundments for LLW disposal. (author)

  4. Fee structures for low-level radioactive waste disposal

    International Nuclear Information System (INIS)

    Sutherland, A.A.; Baird, R.D.; Rogers, V.C.

    1988-01-01

    Some compacts and states require that the fee system at their new low-level waste (LLW) disposal facility be based on the volume and radioactive hazard of the wastes. The fee structure discussed in this paper includes many potential fee elements that could be used to recover the costs of disposal and at the same time influence the volume and nature of waste that arrives at the disposal facility. It includes a base fee which accounts for some of the underlying administrative costs of disposal, and a broad range of charges related to certain parameters of the waste, such as volume, radioactivity, etc. It also includes credits, such as credits for waste with short-lived radionuclides or superior waste forms. The fee structure presented should contain elements of interest to all states and compacts. While no single disposal facility is likely to incorporate all of the elements discussed here in its fee structure, the paper presents a fairly exhaustive list of factors worth considering

  5. Final Design Report for the RH LLW Disposal Facility (RDF) Project, Revision 3

    International Nuclear Information System (INIS)

    Austad, Stephanie Lee

    2015-01-01

    The RH LLW Disposal Facility (RDF) Project was designed by AREVA Federal Services (AFS) and the design process was managed by Battelle Energy Alliance (BEA) for the Department of Energy (DOE). The final design report for the RH LLW Disposal Facility Project is a compilation of the documents and deliverables included in the facility final design.

  6. Low-level waste program technical strategy

    International Nuclear Information System (INIS)

    Bledsoe, K.W.

    1994-01-01

    The Low-Level Waste Technical Strategy document describes the mechanisms which the Low-Level Waste Program Office plans to implement to achieve its mission. The mission is to manage the receipt, immobilization, packaging, storage/disposal and RCRA closure (of the site) of the low-level Hanford waste (pretreated tank wastes) in an environmentally sound, safe and cost-effective manner. The primary objective of the TWRS Low-level waste Program office is to vitrify the LLW fraction of the tank waste and dispose of it onsite

  7. Waste forms for plutonium disposition

    International Nuclear Information System (INIS)

    Johnson, S.G.; O'Holleran, T.P.; Frank, S.M.; Meyer, M.K.; Hanson, M.; Staples, B.A.; Knecht, D.A.; Kong, P.C.

    1997-01-01

    The field of plutonium disposition is varied and of much importance, since the Department of Energy has decided on the hybrid option for disposing of the weapons materials. This consists of either placing the Pu into mixed oxide fuel for reactors or placing the material into a stable waste form such as glass. The waste form used for Pu disposition should exhibit certain qualities: (1) provide for a suitable deterrent to guard against proliferation; (2) be of minimal volume, i.e., maximize the loading; and (3) be reasonably durable under repository-like conditions. This paper will discuss several Pu waste forms that display promising characteristics

  8. Management of Radioactive Wastes

    International Nuclear Information System (INIS)

    Tchokosa, P.

    2010-01-01

    Management of Radioactive Wastes is to protect workers and the public from the radiological risk associated with radioactive waste for the present and future. It application of the principles to the management of waste generated in a radioisotope uses in the industry. Any material that contains or is contaminated with radionuclides at concentrations or radioactivity levels greater than ‘exempt quantities’ established by the competent regulatory authorities and for which no further use is foreseen or intended. Origin of the Radioactive Waste includes Uranium and Thorium mining and milling, nuclear fuel cycle operations, Operation of Nuclear power station, Decontamination and decommissioning of nuclear facilities and Institutional uses of isotopes. There are types of radioactive waste: Low-level Waste (LLW) and High-level Waste. The Management Options for Radioactive Waste Depends on Form, Activity, Concentration and half-lives of the radioactive waste, Storage and disposal methods will vary according to the following; the radionuclides present, and their concentration, and radio toxicity. The contamination results basically from: Contact between radioactive materials and any surface especially during handling. And it may occur in the solid, liquid or gas state. Decontamination is any process that will either reduce or completely remove the amount of radionuclides from a contaminated surface

  9. Development of a computerized data base for low-level radioactive waste leaching data: Topical report

    International Nuclear Information System (INIS)

    Dougherty, D.R.; Colombo, P.

    1986-09-01

    This report documents the development of a computerized data base (db) of leaching data for solidified low-level radioactive waste (LLW) forms. Brookhaven National Lab performed this work under contract with the US Department of Energy's Low-Level Waste Management Program as part of an effort to develop an accelerated leach test(s) that can be used to predict leachabilities of LLW forms over long time periods, i.e., hundreds of years. The accelerated leach test(s) is (are) to be developed based on knowledge of leaching mechanisms and factors that affect leaching. Although developed specifically for the Accelerated Leach Test(s) Program, this db may be useful to others concerned with the management of low-level waste. The db is being developed to provide efficient data compilation and analysis capabilities. The data compiled in the db, which include data from the Accelerated Leach Test(s) Program and selected data from the literature, have been selected to elucidate leaching mechanisms and factors that affect leaching and are not meant to be a comprehensive compilation of leaching data. This report presents the data compilation aspect of the db. It does not present the programmatic results obtained from analysis of the data regarding leaching mechanisms and factors that affect leaching, which will be presented in reports from the Accelerated Leach Test(s) Program. 6 refs

  10. Engineering report of plasma vitrification of Hanford tank wastes

    International Nuclear Information System (INIS)

    Hendrickson, D.W.

    1995-01-01

    This document provides an analysis of vendor-derived testing and technology applicability to full scale glass production from Hanford tank wastes using plasma vitrification. The subject vendor testing and concept was applied in support of the Hanford LLW Vitrification Program, Tank Waste Remediation System

  11. Mixed low-level waste form evaluation

    International Nuclear Information System (INIS)

    Pohl, P.I.; Cheng, Wu-Ching; Wheeler, T.; Waters, R.D.

    1997-01-01

    A scoping level evaluation of polyethylene encapsulation and vitreous waste forms for safe storage of mixed low-level waste was performed. Maximum permissible radionuclide concentrations were estimated for 15 indicator radionuclides disposed of at the Hanford and Savannah River sites with respect to protection of the groundwater and inadvertent intruder pathways. Nominal performance improvements of polyethylene and glass waste forms relative to grout are reported. These improvements in maximum permissible radionuclide concentrations depend strongly on the radionuclide of concern and pathway. Recommendations for future research include improving the current understanding of the performance of polymer waste forms, particularly macroencapsulation. To provide context to these estimates, the concentrations of radionuclides in treated DOE waste should be compared with the results of this study to determine required performance

  12. DWPF waste form compliance plan (Draft Revision)

    International Nuclear Information System (INIS)

    Plodinec, M.J.; Marra, S.L.

    1991-01-01

    The Department of Energy currently has over 100 million liters of high-level radioactive waste in storage at the Savannah River Site (SRS). In the late 1970's, the Department of Energy recognized that there were significant safety and cost advantages associated with immobilizing the high-level waste in a stable solid form. Several alternative waste forms were evaluated in terms of product quality and reliability of fabrication. This evaluation led to a decision to build the Defense Waste Processing Facility (DWPF) at SRS to convert the easily dispersed liquid waste to borosilicate glass. In accordance with the NEPA (National Environmental Policy Act) process, an Environmental Impact Statement was prepared for the facility, as well as an Environmental Assessment of the alternative waste forms, and issuance of a Record of Decision (in December, 1982) on the waste form. The Department of Energy, recognizing that start-up of the DWPF would considerably precede licensing of a repository, instituted a Waste Acceptance Process to ensure that these canistered waste forms would be acceptable for eventual disposal at a federal repository. This report is a revision of the DWPF compliance plan

  13. Waste form development for a DC arc furnace

    Energy Technology Data Exchange (ETDEWEB)

    Feng, X.; Bloomer, P.E.; Chantaraprachoom, N.; Gong, M.; Lamar, D.A.

    1996-09-01

    A laboratory crucible study was conducted to develop waste forms to treat nonradioactive simulated {sup 238}Pu heterogeneous debris waste from Savannah River, metal waste from the Idaho National Engineering Laboratory (INEL), and nominal waste also from INEL using DC arc melting. The preliminary results showed that the different waste form compositions had vastly different responses for each processing effect. The reducing condition of DC arc melting had no significant effects on the durability of some waste forms while it decreased the waste form durability from 300 to 700% for other waste forms, which resulted in the failure of some TCLP tests. The right formulations of waste can benefit from devitrification and showed an increase in durability by 40%. Some formulations showed no devitrification effects while others decreased durability by 200%. Increased waste loading also affected waste form behavior, decreasing durability for one waste, increasing durability by 240% for another, and showing no effect for the third waste. All of these responses to the processing and composition variations were dictated by the fundamental glass chemistry and can be adjusted to achieve maximal waste loading, acceptable durability, and desired processing characteristics if each waste formulation is designed for the result according to the glass chemistry.

  14. Groundwater quality monitoring well installation for Waste Area Groupings 8 and 9 at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    Mortimore, J.A.; Ebers, M.L.

    1994-09-01

    This report documents the drilling and installation of nine groundwater quality monitoring (GQM) wells on the perimeter of Waste Area Grouping (WAG) 8 and two GQM wells on the perimeter of WAG 9. WAG 8 encompasses approximately 34 acres, most of which are located in Melton Valley. Irregular in shape, the site has two sinuous extensions from its northern end that contain the low-level radioactive waste (LLW) transfer lines. WAG 8 contains 22 solid waste management units (SWMUs) that can be divided into 4 groups. These groups include the High Flux Isotope Reactor/Transuranium Processing Facility waste collection basins, the LLW line leak sites, and the active LLW tanks. WAG 9 encompasses about 3 acres and is located west of the main portion of WAG 8 and south of Melton Valley Drive. WAG 9 contains four SWMUs. The wells in WAGs 8 and 9 were drilled and developed from June 1989 to March 1990. Monitoring wells were installed to characterize and assess the WAGs in accordance with applicable Department of Energy, state, and Environmental Protection Agency regulatory requirements. The purpose of the well installation program was to install GQM wells for groundwater characterization at WAGs 8 and 9. Data packages produced during installation activities by the ERCE hydrogeologists are an important product of the program. These packages document the well drilling, installation, and development activities and provide valuable data for well sampling and WAG characterization. The forms contained in the packages include predrilling and postdrilling checklists, drilling and construction logs, development and hydraulic conductivity records, and quality control-related documents

  15. Tank Waste Remediation System tank waste pretreatment and vitrification process development testing requirements assessment

    International Nuclear Information System (INIS)

    Howden, G.F.

    1994-01-01

    A multi-faceted study was initiated in November 1993 to provide assurance that needed testing capabilities, facilities, and support infrastructure (sampling systems, casks, transportation systems, permits, etc.) would be available when needed for process and equipment development to support pretreatment and vitrification facility design and construction schedules. This first major report provides a snapshot of the known testing needs for pretreatment, low-level waste (LLW) and high-level waste (HLW) vitrification, and documents the results of a series of preliminary studies and workshops to define the issues needing resolution by cold or hot testing. Identified in this report are more than 140 Hanford Site tank waste pretreatment and LLW/HLW vitrification technology issues that can only be resolved by testing. The report also broadly characterizes the level of testing needed to resolve each issue. A second report will provide a strategy(ies) for ensuring timely test capability. Later reports will assess the capabilities of existing facilities to support needed testing and will recommend siting of the tests together with needed facility and infrastructure upgrades or additions

  16. Tank Waste Remediation System tank waste pretreatment and vitrification process development testing requirements assessment

    Energy Technology Data Exchange (ETDEWEB)

    Howden, G.F.

    1994-10-24

    A multi-faceted study was initiated in November 1993 to provide assurance that needed testing capabilities, facilities, and support infrastructure (sampling systems, casks, transportation systems, permits, etc.) would be available when needed for process and equipment development to support pretreatment and vitrification facility design and construction schedules. This first major report provides a snapshot of the known testing needs for pretreatment, low-level waste (LLW) and high-level waste (HLW) vitrification, and documents the results of a series of preliminary studies and workshops to define the issues needing resolution by cold or hot testing. Identified in this report are more than 140 Hanford Site tank waste pretreatment and LLW/HLW vitrification technology issues that can only be resolved by testing. The report also broadly characterizes the level of testing needed to resolve each issue. A second report will provide a strategy(ies) for ensuring timely test capability. Later reports will assess the capabilities of existing facilities to support needed testing and will recommend siting of the tests together with needed facility and infrastructure upgrades or additions.

  17. 76 FR 10810 - Public Workshop to Discuss Low-Level Radioactive Waste Management

    Science.gov (United States)

    2011-02-28

    ... Radioactive Waste Management AGENCY: Nuclear Regulatory Commission. ACTION: Public Workshop and Request for... regulatory framework for the management of commercial low-level radioactive waste (LLW). The purpose of this...-level radioactive wastes that did not exist at the time part 61 was promulgated. The developments...

  18. Feed Materials Production Center Waste Management Plan

    International Nuclear Information System (INIS)

    Watts, R.E.; Allen, T.; Castle, S.A.; Hopper, J.P.; Oelrich, R.L.

    1986-01-01

    In the process of producing uranium metal products used in Department of Energy (DOE) defense programs at other DOE facilities, various types of wastes are generated at the Feed Materials Production Center (FMPC). Process wastes, both generated and stored, are discussed in the Waste Management Plan and include low-level radioactive waste (LLW), mixed hazardous/radioactive waste, and sanitary/industrial waste. Scrap metal waste and wastes requiring special remediation are also addressed in the Plan. The Waste Management Plan identifies the comprehensive programs developed to address safe storage and disposition of all wastes from past, present, and future operations at the FMPC. Waste streams discussed in this Plan are representative of the waste generated and waste types that concern worker and public health and safety. Budgets and schedules for implementation of waste disposition are also addressed. The waste streams receiving the largest amount of funding include LLW approved for shipment by DOE/ORO to the Nevada Test Site (NTS) (MgF 2 , slag leach filter cake, and neutralized raffinate); remedial action wastes (waste pits, K-65 silo waste); thorium; scrap metal (contaminated and noncontaminated ferrous and copper scrap); construction rubble and soil generated from decontamination and decommissioning of outdated facilities; and low-level wastes that will be handled through the Low-Level Waste Processing and Shipping System (LLWPSS). Waste Management milestones are also provided. The Waste Management Plan is divided into eight major sections: Introduction; Site Waste and Waste Generating Process; Strategy; Projects and Operations; Waste Stream Budgets; Milestones; Quality Assurance for Waste Management; and Environmental Monitoring Program

  19. Vectra GSI, Inc. low-level waste melter testing Phase 1 test report

    Energy Technology Data Exchange (ETDEWEB)

    Stegen, G.E.; Wilson, C.N.

    1996-02-21

    A multiphase program was initiated in 1994 to test commercially available melter technologies for the vitrification of the low-level waste (LLW) stream from defense wastes stored in underground tanks at the Hanford Site in southeastern Washington State. Vectra GSI, Inc. was one of seven vendors selected for Phase 1 of the melter demonstration tests using simulated LLW that were completed during fiscal year 1995. The attached report prepared by Vectra GSI, Inc. describes results of melter testing using slurry feed and dried feeds. Results of feed drying and prereaction tests using a fluid bed calciner and rotary dryer also are described.

  20. Vectra GSI, Inc. low-level waste melter testing Phase 1 test report

    International Nuclear Information System (INIS)

    Stegen, G.E.; Wilson, C.N.

    1996-01-01

    A multiphase program was initiated in 1994 to test commercially available melter technologies for the vitrification of the low-level waste (LLW) stream from defense wastes stored in underground tanks at the Hanford Site in southeastern Washington State. Vectra GSI, Inc. was one of seven vendors selected for Phase 1 of the melter demonstration tests using simulated LLW that were completed during fiscal year 1995. The attached report prepared by Vectra GSI, Inc. describes results of melter testing using slurry feed and dried feeds. Results of feed drying and prereaction tests using a fluid bed calciner and rotary dryer also are described

  1. Greater-than-Class C Low-Level Radioactive Waste Program 1992 baseline strategy

    International Nuclear Information System (INIS)

    1993-02-01

    This baseline strategy document describes Department of Energy (DOE) goals, objectives, and strategy for fulfilling its responsibility to dispose of greater-than-Class C low-level radioactive waste (GTCC LLW) according to the requirements of Section 3(b) of the Low-Level Radioactive Waste Policy Amendments Act of 1985, Public Law 99-240. This document describes the baseline strategy being employed at the end of FY 1992. The strategy for fulfilling the above responsibility consists of three tasks: interim storage of limited quantities of GTCC LLW at a currently operating DOE facility to eliminate a potential public health and safety threcceptance of GTCC LLW for storage in a DOE dedicated facility on an as-needed basis pending disposal; and disposal in a facility licensed by the Nuclear Regulatory Commission. The objectives, assumptions, and strategies for each of these tasks are presented in this plan

  2. Assessment of Reusing 14-Ton, Thin-Wall, Depleted UF6 Cylinders as LLW Disposal Containers

    International Nuclear Information System (INIS)

    O'Connor, D.G.; Poole, A.B.; Shelton, J.H.

    2000-01-01

    Approximately 700,000 MT of DUF 6 is stored, or will be produced under a current agreement with the USEC, at the Paducah site in Kentucky, Portsmouth site in Ohio, and ETTP site in Tennessee. On July 21, 1998, the 105th Congress approved Public Law 105-204, which directed that facilities be built at the Kentucky and Ohio sites to convert DUF 6 to a stable form for disposition. On July 6, 1999, the Department of Energy (DOE) issued the ''Final Plan for the Conversion of Depleted Uranium Hexafluoride as Required by Public Law 105-204'', in which DOE committed to develop a ''Depleted Uranium Hexafluoride Materials Use Roadmap''. On September 1,2000, DOE issued the ''Draft Depleted Uranium Hexafluoride Materials Use Roadmap'' (Roadmap), which provides alternate paths for the long-term storage, beneficial use, and eventual disposition of each product form and material that will result from the DUF 6 conversion activity. One of the paths being considered for DUF 6 cylinders is to reuse the empty cylinders as containers to transport and dispose of LLW, including the converted DU. The Roadmap provides results of the many alternate uses and disposal paths for conversion products and the empty DUF 6 storage cylinders. As a part of the Roadmap, evaluations were conducted of cost savings, technical maturity, barriers to implementation, and other impacts. Results of these evaluations indicate that using the DUF 6 j storage cylinders as LLW disposal containers could provide moderate cost savings due to the avoided cost of purchasing LLW packages and the avoided cost of disposing of the cylinders. No significant technical or institutional .issues were identified that.would make using cylinders as LLW packages less effective than other disposition paths. Over 58,000 cylinders have been used, or will be used, to store DUF 6 . Over 5 1,000 of those cylinders are 14TTW cylinders with a nominal wall thickness of 5/16-m (0.79 cm). These- 14TTW cylinders, which have a nominal diameter

  3. Environmental monitoring of subsurface low-level waste disposal facilities at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Ashwood, T.L.; Hicks, D.S.

    1992-01-01

    Oak Ridge National Laboratory (ORNL) generates low-level waste (LLW) as part of its research and isotope production activities. This waste is managed in accordance with US Department of Energy (DOE) Order 5820.2A. Solid LLW management includes disposal in above-ground, tumulus-type facilities as well as in various types of subsurface facilities. Since 1986, subsurface disposal has been conducted using various designs employing greater-confinement-disposal (GCD) techniques. The purpose of this paper is to present monitoring results that document the short-term performance of these GCD facilities

  4. Leaching behavior of phosphate-bonded ceramic waste forms

    International Nuclear Information System (INIS)

    Singh, D.; Wagh, A.S.; Jeong, S.Y.; Dorf, M.

    1996-04-01

    Over the last few years, Argonne National Laboratory has been developing room-temperature-setting chemically bonded phosphate ceramics for solidifying and stabilizing low-level mixed wastes. This technology is crucial for stabilizing waste streams that contain volatile species and off-gas secondary waste streams generated by high-temperature treatment of such wastes. We have developed a magnesium phosphate ceramic to treat mixed wastes such as ash, salts, and cement sludges. Waste forms of surrogate waste streams were fabricated by acid-base reactions between the mixtures of magnesium oxide powders and the wastes, and phosphoric acid or acid phosphate solutions. Dense and hard ceramic waste forms are produced in this process. The principal advantage of this technology is that the contaminants are immobilized by both chemical stabilization and subsequent microencapsulation of the reaction products. This paper reports the results of durability studies conducted on waste forms made with ash waste streams spiked with hazardous and radioactive surrogates. Standard leaching tests such as ANS 16.1 and TCLP were conducted on the final waste forms. Fates of the contaminants in the final waste forms were established by electron microscopy. In addition, stability of the waste forms in aqueous environments was evaluated with long-term water-immersion tests

  5. Technology, Safety and Costs of Decommissioning a Reference Low-Level Waste Burial Ground. Main Report

    International Nuclear Information System (INIS)

    Murphy, E. S.; Holter, G. M.

    1980-01-01

    Safety and cost information are developed for the conceptual decommissioning of commercial low-level waste (LLW) burial grounds. Two generic burial grounds, one located on an arid western site and the other located on a humid eastern site, are used as reference facilities for the study. The two burial grounds are assumed to have the same site capacity for waste, the same radioactive waste inventory, and similar trench characteristics and operating procedures. The climate, geology. and hydrology of the two sites are chosen to be typical of real western and eastern sites. Volume 1 (Main Report) contains background information and study results in summary form.

  6. Technology, Safety and Costs of Decommissioning a Reference Low-Level Waste Burial Ground. Main Report

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, E. S.; Holter, G. M.

    1980-06-01

    Safety and cost information are developed for the conceptual decommissioning of commercial low-level waste (LLW) burial grounds. Two generic burial grounds, one located on an arid western site and the other located on a humid eastern site, are used as reference facilities for the study. The two burial grounds are assumed to have the same site capacity for waste, the same radioactive waste inventory, and similar trench characteristics and operating procedures. The climate, geology. and hydrology of the two sites are chosen to be typical of real western and eastern sites. Volume 1 (Main Report) contains background information and study results in summary form.

  7. Review of high-level waste form properties. [146 bibliographies

    Energy Technology Data Exchange (ETDEWEB)

    Rusin, J.M.

    1980-12-01

    This report is a review of waste form options for the immobilization of high-level-liquid wastes from the nuclear fuel cycle. This review covers the status of international research and development on waste forms as of May 1979. Although the emphasis in this report is on waste form properties, process parameters are discussed where they may affect final waste form properties. A summary table is provided listing properties of various nuclear waste form options. It is concluded that proposed waste forms have properties falling within a relatively narrow range. In regard to crystalline versus glass waste forms, the conclusion is that either glass of crystalline materials can be shown to have some advantage when a single property is considered; however, at this date no single waste form offers optimum properties over the entire range of characteristics investigated. A long-term effort has been applied to the development of glass and calcine waste forms. Several additional waste forms have enough promise to warrant continued research and development to bring their state of development up to that of glass and calcine. Synthetic minerals, the multibarrier approach with coated particles in a metal matrix, and high pressure-high temperature ceramics offer potential advantages and need further study. Although this report discusses waste form properties, the total waste management system should be considered in the final selection of a waste form option. Canister design, canister materials, overpacks, engineered barriers, and repository characteristics, as well as the waste form, affect the overall performance of a waste management system. These parameters were not considered in this comparison.

  8. Development of solid radionuclide waste forms in the United States

    International Nuclear Information System (INIS)

    Crandall, J.L.

    1979-01-01

    New ways of reworking the wastes require a new classification in terms of the final waste forms. This paper surveys the candidate forms: encapsulation binders, in-place solidification waste forms, glass and ceramic waste forms, mineral waste forms, matrix waste forms, gaseous waste forms (fixation), and canisters and engineered barriers. Participants in the US-high-level waste form development program are listed. Requirements and selection of waste forms are also discussed. 26 references

  9. Glassy slags as novel waste forms for remediating mixed wastes with high metal contents

    International Nuclear Information System (INIS)

    Feng, X.; Wronkiewicz, D.J.; Bates, J.K.; Brown, N.R.; Buck, E.C.; Gong, M.; Ebert, W.L.

    1994-01-01

    Argonne National Laboratory (ANL) is developing a glassy slag final waste form for the remediation of low-level radioactive and mixed wastes with high metal contents. This waste form is composed of various crystalline and metal oxide phases embedded in a silicate glass phase. This work indicates that glassy slag shows promise as final waste form because (1) it has similar or better chemical durability than high-level nuclear waste (HLW) glasses, (2) it can incorporate large amounts of metal wastes, (3) it can incorporate waste streams having low contents of flux components (boron and alkalis), (4) it has less stringent processing requirements (e.g., viscosity and electric conductivity) than glass waste forms, (5) its production can require little or no purchased additives, which can result in greater reduction in waste volume and overall treatment costs. By using glassy slag waste forms, minimum additive waste stabilization approach can be applied to a much wider range of waste streams than those amenable only to glass waste forms

  10. Low Level Waste Disposal Geological Studies At Inshas Site. Vol. 3

    Energy Technology Data Exchange (ETDEWEB)

    Al-Gamal, S A; Emara, A S [National Center for Nuclear Safety and Radiation Control, Nasr City, Atomic Energy Authority, Cairo (Egypt); Shehata, M G [Petroleum Research Institute, Nasr City, Al-Zohour District, Cairo (Egypt)

    1996-03-01

    The general potential of some selected layers such as the Miocene sediments and the Oligocene basalts is evaluated for the disposal of low level waste, (LLW). In this work, it is aimed to quantify the effect of some key parameters that are though to influence the migration of radionuclides in these layers. Homogeneity-isotopy and engineering properties of selected potential layers at Inshas were examined. Land form stability and collapsible soil were studied. Basaltic lava flows of Oligocene age were thoroughly investigated using petrographic and petrologic techniques and its suitability as a potential host rock for a waste repository is evaluated. 8 figs., 2 tabs.

  11. Diffusion from cylindrical waste forms

    International Nuclear Information System (INIS)

    Thomas, G.F.

    1985-05-01

    The diffusion of a single component material from a finite cylindrical waste form, initially containing a uniform concentration of the material, is investigated. Under the condition that the cylinder is maintained in a well-stirred bath, expressions for the fractional inventory leached and the leach rate are derived with allowance for the possible permanent immobilization of the diffusant through its decay to a stable product and/or its irreversible reaction with the waste form matrix. The usefulness of the reported results in nuclear waste disposal applications is emphasized. The results reported herein are related to those previously derived at Oak Ridge National Laboratory by Bell and Nestor. A numerical scheme involving the partial decoupling of nested infinite summations and the use of rapidly converging rational approximants is recommended for the efficient implementation of the expressions derived to obtain reliable estimates of the bulk diffusion constant and the rate constant describing the diffusant-waste form interaction from laboratory data

  12. Alternative-waste-form evaluation for Savannah River Plant high-level waste

    International Nuclear Information System (INIS)

    Gould, T.H. Jr.; Crandall, J.L.

    1982-01-01

    Results of the waste form evaluation are summarized as: risks of human exposure are comparable and extremely small for either borosilicate glass or Synroc ceramic. Waste form properties are more than adequate for either form. The waste form decision can therefore be made on the basis of practicality and cost effectiveness. Synroc offers lower costs for transportation and emplacement. The borosilicate glass form offers the lowest total disposal cost, much simpler and less costly production, an established and proven process, lower future development costs, and an earlier startup of the DWPF

  13. Waste Acceptance Testing of Secondary Waste Forms: Cast Stone, Ceramicrete and DuraLith

    International Nuclear Information System (INIS)

    Mattigod, Shas V.; Westsik, Joseph H.; Chung, Chul-Woo; Lindberg, Michael J.; Parker, Kent E.

    2011-01-01

    To support the selection of a waste form for the liquid secondary wastes from WTP, Washington River Protection Solutions has initiated secondary-waste-form testing work at Pacific Northwest National Laboratory (PNNL). In anticipation of a down-selection process for a waste form for the Solidification Treatment Unit to be added to the ETF, PNNL is conducting tests on four candidate waste forms to evaluate their ability to meet potential waste acceptance criteria for immobilized secondary wastes that would be placed in the IDF. All three waste forms demonstrated compressive strengths above the minimum 3.45 MPa (500 psi) set as a target for cement-based waste forms. Further, none of the waste forms showed any significant degradation in compressive strength after undergoing thermal cycling (30 cycles in a 10 day period) between -40 C and 60 C or water immersion for 90 days. The three leach test methods are intended to measure the diffusion rates of contaminants from the waste forms. Results are reported in terms of diffusion coefficients and a leachability index (LI) calculated based on the diffusion coefficients. A smaller diffusion coefficient and a larger LI are desired. The NRC, in its Waste Form Technical Position (NRC 1991), provides recommendations and guidance regarding methods to demonstrate waste stability for land disposal of radioactive waste. Included is a recommendation to conduct leach tests using the ANS 16.1 method. The resulting leachability index (LI) should be greater than 6.0. For Hanford secondary wastes, the LI > 6.0 criterion applies to sodium leached from the waste form. For technetium and iodine, higher targets of LI > 9 for Tc and LI > 11 for iodine have been set based on early waste-disposal risk and performance assessment analyses. The results of these three leach tests conducted for a total time between 11days (ASTM C1308) to 90 days (ANS 16.1) showed: (1) Technetium diffusivity: ANSI/ANS 16.1, ASTM C1308, and EPA 1315 tests indicated that

  14. Waste Acceptance Testing of Secondary Waste Forms: Cast Stone, Ceramicrete and DuraLith

    Energy Technology Data Exchange (ETDEWEB)

    Mattigod, Shas V.; Westsik, Joseph H.; Chung, Chul-Woo; Lindberg, Michael J.; Parker, Kent E.

    2011-08-12

    To support the selection of a waste form for the liquid secondary wastes from WTP, Washington River Protection Solutions has initiated secondary-waste-form testing work at Pacific Northwest National Laboratory (PNNL). In anticipation of a down-selection process for a waste form for the Solidification Treatment Unit to be added to the ETF, PNNL is conducting tests on four candidate waste forms to evaluate their ability to meet potential waste acceptance criteria for immobilized secondary wastes that would be placed in the IDF. All three waste forms demonstrated compressive strengths above the minimum 3.45 MPa (500 psi) set as a target for cement-based waste forms. Further, none of the waste forms showed any significant degradation in compressive strength after undergoing thermal cycling (30 cycles in a 10 day period) between -40 C and 60 C or water immersion for 90 days. The three leach test methods are intended to measure the diffusion rates of contaminants from the waste forms. Results are reported in terms of diffusion coefficients and a leachability index (LI) calculated based on the diffusion coefficients. A smaller diffusion coefficient and a larger LI are desired. The NRC, in its Waste Form Technical Position (NRC 1991), provides recommendations and guidance regarding methods to demonstrate waste stability for land disposal of radioactive waste. Included is a recommendation to conduct leach tests using the ANS 16.1 method. The resulting leachability index (LI) should be greater than 6.0. For Hanford secondary wastes, the LI > 6.0 criterion applies to sodium leached from the waste form. For technetium and iodine, higher targets of LI > 9 for Tc and LI > 11 for iodine have been set based on early waste-disposal risk and performance assessment analyses. The results of these three leach tests conducted for a total time between 11days (ASTM C1308) to 90 days (ANS 16.1) showed: (1) Technetium diffusivity: ANSI/ANS 16.1, ASTM C1308, and EPA 1315 tests indicated that

  15. The management and disposal of radioactive waste

    International Nuclear Information System (INIS)

    Ginniff, M.E.; Blair, I.M.

    1986-01-01

    After an introduction on how radioactivity and radiation can cause damage, the three main types of radioactive wastes (high level (HLW), intermediate level (ILW) and low level (LLW)) are defined and the quantities of each produced, and current disposal method mentioned. The Nuclear Industry Radioactive Waste Executive (NIREX) was set up in 1982 to make proposals for the packaging, transportation and disposal of ILW and, if approved, to manage their implementation. NIREX has also taken over some aspects of the LLW disposal programme, and keeps an inventory of the radioactive waste in the country. The NIREX proposals are considered. For ILW this is that ILW should be immersed in a matrix of concrete, then stored in a repository, the design of which is discussed. The transportation of the concrete blocks is also mentioned. Possible sites for a suitable repository are discussed. Efforts are being made to gain public acceptance of these sites. (U.K.)

  16. Corrosion studies on PREPP waste form

    International Nuclear Information System (INIS)

    Welch, J.M.; Neilson, R.M. Jr.

    1984-05-01

    Deformation or Failure Test and Accelerated Corrosion Test procedures were conducted to investigate the effect of formulation variables on the corrosion of oversize waste in Process Experimental Pilot Plant (PREPP) concrete waste forms. The Deformation or Failure Test did not indicate substantial waste form swelling from corrosion. The presence or absence of corrosion inhibitor was the most significant factor relative to measured half-cell potentials identified in the Accelerated Corrosion Test. However, corrosion inhibitor was determined to be only marginally beneficial. While this study produced no evidence that corrosion is of sufficient magnitude to produce serious degradation of PREPP waste forms, the need for corrosion rate testing is suggested. 11 references, 4 figures, 8 tables

  17. Effluent Management Facility Evaporator Bottom-Waste Streams Formulation and Waste Form Qualification Testing

    Energy Technology Data Exchange (ETDEWEB)

    Saslow, Sarah A.; Um, Wooyong; Russell, Renee L.

    2017-08-02

    This report describes the results from grout formulation and cementitious waste form qualification testing performed by Pacific Northwest National Laboratory (PNNL) for Washington River Protection Solutions, LLC (WRPS). These results are part of a screening test that investigates three grout formulations proposed for wide-range treatment of different waste stream compositions expected for the Hanford Effluent Management Facility (EMF) evaporator bottom waste. This work supports the technical development need for alternative disposition paths for the EMF evaporator bottom wastes and future direct feed low-activity waste (DFLAW) operations at the Hanford Site. High-priority activities included simulant production, grout formulation, and cementitious waste form qualification testing. The work contained within this report relates to waste form development and testing, and does not directly support the 2017 Integrated Disposal Facility (IDF) performance assessment (PA). However, this work contains valuable information for use in PA maintenance past FY 2017 and future waste form development efforts. The provided results and data should be used by (1) cementitious waste form scientists to further the understanding of cementitious leach behavior of contaminants of concern (COCs), (2) decision makers interested in off-site waste form disposal, and (3) the U.S. Department of Energy, their Hanford Site contractors and stakeholders as they assess the IDF PA program at the Hanford Site. The results reported help fill existing data gaps, support final selection of a cementitious waste form for the EMF evaporator bottom waste, and improve the technical defensibility of long-term waste form risk estimates.

  18. Glass-Ceramic Waste Forms for Uranium and Plutonium Residues Wastes - 13164

    International Nuclear Information System (INIS)

    Stewart, Martin W.A.; Moricca, Sam A.; Zhang, Yingjie; Day, R. Arthur; Begg, Bruce D.; Scales, Charlie R.; Maddrell, Ewan R.; Hobbs, Jeff

    2013-01-01

    A program of work has been undertaken to treat plutonium-residues wastes at Sellafield. These have arisen from past fuel development work and are highly variable in both physical and chemical composition. The principal radiological elements present are U and Pu, with small amounts of Th. The waste packages contain Pu in amounts that are too low to be economically recycled as fuel and too high to be disposed of as lower level Pu contaminated material. NNL and ANSTO have developed full-ceramic and glass-ceramic waste forms in which hot-isostatic pressing is used as the consolidation step to safely immobilize the waste into a form suitable for long-term disposition. We discuss development work on the glass-ceramic developed for impure waste streams, in particular the effect of variations in the waste feed chemistry glass-ceramic. The waste chemistry was categorized into actinides, impurity cations, glass formers and anions. Variations of the relative amounts of these on the properties and chemistry of the waste form were investigated and the waste form was found to be largely unaffected by these changes. This work mainly discusses the initial trials with Th and U. Later trials with larger variations and work with Pu-doped samples further confirmed the flexibility of the glass-ceramic. (authors)

  19. Results of interagency effort to determine carbon-14 source term in low-level radioactive waste

    International Nuclear Information System (INIS)

    Gruhlke, J.M.; Meyer, G.L.; Neiheisel, J.

    1987-01-01

    A preliminary estimate of the risks from the shallow land disposal of low-level radioactive wastes by EPA in 1984-1985 indicated that Carbon-14 caused virtually all of the risk and that these risks were relatively high. Therefore, an informal interagency group, which included the US Department of Energy, US Geological Survey, US Nuclear Regulatory Commission, and US Environmental Protection Agency, formed in 1985 to obtain up-to-date information on the activity and chemical form of Carbon-14 in the different types of LLW and how Carbon-14 behaves after disposal. The EPA acted as a focal point for collating the information collected by all of the Agencies and will publish a report in Fall 1986 on the results of the Carbon-14 data collection effort. Of particular importance, the study showed that Carbon-14 activity in LLW was overestimated approximately 2000%. This paper summarizes results of the Carbon-14 data collection effort. 40 references, 1 figure, 3 tables

  20. Secondary waste form testing: ceramicrete phosphate bonded ceramics

    International Nuclear Information System (INIS)

    Singh, D.; Ganga, R.; Gaviria, J.; Yusufoglu, Y.

    2011-01-01

    The cleanup activities of the Hanford tank wastes require stabilization and solidification of the secondary waste streams generated from the processing of the tank wastes. The treatment of these tank wastes to produce glass waste forms will generate secondary wastes, including routine solid wastes and liquid process effluents. Liquid wastes may include process condensates and scrubber/off-gas treatment liquids from the thermal waste treatment. The current baseline for solidification of the secondary wastes is a cement-based waste form. However, alternative secondary waste forms are being considered. In this regard, Ceramicrete technology, developed at Argonne National Laboratory, is being explored as an option to solidify and stabilize the secondary wastes. The Ceramicrete process has been demonstrated on four secondary waste formulations: baseline, cluster 1, cluster 2, and mixed waste streams. Based on the recipes provided by Pacific Northwest National Laboratory, the four waste simulants were prepared in-house. Waste forms were fabricated with three filler materials: Class C fly ash, CaSiO 3 , and Class C fly ash + slag. Optimum waste loadings were as high as 20 wt.% for the fly ash and CaSiO 3 , and 15 wt.% for fly ash + slag filler. Waste forms for physical characterizations were fabricated with no additives, hazardous contaminants, and radionuclide surrogates. Physical property characterizations (density, compressive strength, and 90-day water immersion test) showed that the waste forms were stable and durable. Compressive strengths were >2,500 psi, and the strengths remained high after the 90-day water immersion test. Fly ash and CaSiO 3 filler waste forms appeared to be superior to the waste forms with fly ash + slag as a filler. Waste form weight loss was ∼5-14 wt.% over the 90-day immersion test. The majority of the weight loss occurred during the initial phase of the immersion test, indicative of washing off of residual unreacted binder components from

  1. Secondary waste form testing : ceramicrete phosphate bonded ceramics.

    Energy Technology Data Exchange (ETDEWEB)

    Singh, D.; Ganga, R.; Gaviria, J.; Yusufoglu, Y. (Nuclear Engineering Division); ( ES)

    2011-06-21

    The cleanup activities of the Hanford tank wastes require stabilization and solidification of the secondary waste streams generated from the processing of the tank wastes. The treatment of these tank wastes to produce glass waste forms will generate secondary wastes, including routine solid wastes and liquid process effluents. Liquid wastes may include process condensates and scrubber/off-gas treatment liquids from the thermal waste treatment. The current baseline for solidification of the secondary wastes is a cement-based waste form. However, alternative secondary waste forms are being considered. In this regard, Ceramicrete technology, developed at Argonne National Laboratory, is being explored as an option to solidify and stabilize the secondary wastes. The Ceramicrete process has been demonstrated on four secondary waste formulations: baseline, cluster 1, cluster 2, and mixed waste streams. Based on the recipes provided by Pacific Northwest National Laboratory, the four waste simulants were prepared in-house. Waste forms were fabricated with three filler materials: Class C fly ash, CaSiO{sub 3}, and Class C fly ash + slag. Optimum waste loadings were as high as 20 wt.% for the fly ash and CaSiO{sub 3}, and 15 wt.% for fly ash + slag filler. Waste forms for physical characterizations were fabricated with no additives, hazardous contaminants, and radionuclide surrogates. Physical property characterizations (density, compressive strength, and 90-day water immersion test) showed that the waste forms were stable and durable. Compressive strengths were >2,500 psi, and the strengths remained high after the 90-day water immersion test. Fly ash and CaSiO{sub 3} filler waste forms appeared to be superior to the waste forms with fly ash + slag as a filler. Waste form weight loss was {approx}5-14 wt.% over the 90-day immersion test. The majority of the weight loss occurred during the initial phase of the immersion test, indicative of washing off of residual unreacted

  2. Research and development on the melting test of low-level radioactive miscellaneous solid waste

    International Nuclear Information System (INIS)

    Nakashio, Nobuyuki; Hoshi, Akiko; Kameo, Yutaka; Nakashima, Mikio

    2007-02-01

    The Nuclear Science Research Institute of the Japan Atomic Energy Agency constructed the Advanced Volume Reduction Facilities (AVRF) in February 2003 for treatment of low-level radioactive miscellaneous solid waste (LLW). The waste volume reduction is carried out by a high-compaction process or melting processes in the AVRF. In advance of operating the melting process in the AVRF, melting tests of simulated LLW with RI tracers ( 60 Co, 137 Cs and 152 Eu) have been conducted by using the plasma melter in pilot scale. Viscosity of molten waste, chemical composition and physical properties of solidified products and distribution of the tracers in each product were investigated in various melting conditions. It was confirmed that the viscosity of molten waste was able to be controlled by adjusting chemical composition of molten waste. The RI tracer were almost uniformly distributed in the solidified products. The retention of 137 Cs depended on the basicity (CaO/SiO 2 ) of the solidified products. The solidified product possessed satisfactory compressive strength. In the case of basicity less than 0.8, the leachability of RI tracers from the solidified products was less than or equal to that of a high-level vitrified waste. In this review, experimental results of the melting tests were discussed in order to contribute to actual treatment of LLW in the AVRF. (author)

  3. A review of low-level radioactive waste compacts on a national level

    International Nuclear Information System (INIS)

    Brenneman, F.N.

    1985-01-01

    Since the 1950s, increased quantities of low-level radioactive waste (LLW) have been produced in the United States as a result of the use of radioactive materials in medical diagnoses and treatment, research, industrial processes, and electrical power generation by nuclear plants. With increasing volumes of commercially generated waste, the private sector was encouraged to develop LLW disposal facilities, to be licensed by the AEC or by AEC Agreement states. In 1962, the commercially operated Beaty, Nevada low-level waste facility was opened. During the ensuing nine years, five additional low-level waste disposal facilities opened, resulting, although not planned, in a regional distribution of such facilities. A number of technical and regulatory issues were raised over a period of two years by states and federal agencies, and, for the most part, were resolved. The NRC, DOE, and DOT reviewed and commented on the compacts throughout the drafting of compact language. Comments addressed the scope of the compacts (''management'' vs. ''disposal''), inspection of NRC licensees, regulatory roles of compact commissions, and regulatory requirements inconsistent with federal regulations, to name a few. Among those unresolved issues in some compacts is the definition of LLW, which varies among the compacts. Those in PL96-573 and the Nuclear Waste Policy Act of 1982 were both used, with and without variations. The definition of transuranic waste and those concentrations allowable at the disposal facilities are not uniform in the compacts

  4. Model for analyzing demand for low-level waste transport containers - regionalized and non-regionalized scenarios

    International Nuclear Information System (INIS)

    Nelson, A.J.; Rose, K.

    1982-01-01

    Certain types of low-level radioactive waste (LLW) must be shipped in expensive special containers. It is therefore desirable to keep container utilization high. There must be a stock of containers sufficient to ship waste in a timely fashion, but one does not want to have containers sitting idle a significant fraction of the time. A computerized discrete event network model has been developed and is described in this report. The model allows an analyst to determine the effects of varying the increase in LLW, establishment of regional disposal, etc. on requirements for shipping containers

  5. The incineration of absorbed liquid wastes in the INEL's [Idaho National Engineering Laboratory] WERF [Waste Experimental Reduction Facility] incinerator

    International Nuclear Information System (INIS)

    Steverson, E.M.; McFee, J.N.

    1987-01-01

    The concept of burning absorbed flammable liquids in boxes in the WERF incinerator was evaluated as a waste treatment method. The safety and feasibility of this procedure were evaluated in a series of tests. In the testing, the effect on incinerator operations of burning various quantities of absorbed flammable liquids was measured and compared to normal operations conducted on low-level radioactive waste (LLW). The test results indicated that the proposed procedure is safe and practical for use on a wide variety of solvents with quantities as high as one liter per box. No adverse or unacceptable operating conditions resulted from burning any of the solvents tested. Incineration of the solvents in this fashion was no different than burning LLW during normal incineration. 6 refs., 7 figs., 3 tabs

  6. Waste inventory, waste characteristics and waste repositories in Japan

    International Nuclear Information System (INIS)

    Shimooka, K.

    1997-01-01

    There are two types of repositories for the low level radioactive wastes in Japan. One is a trench type repository only for concrete debris generated from the dismantling of the research reactor. According to the safety assurance system, Japan Atomic Energy Research Institute (JAERI) has disposed of the concrete debris arose from the dismantling of the Japan Power Demonstration Reactor (JPDR). The other type is the concreted pit with engineered barriers. Rokkasho Low Level Radioactive Waste Disposal Center has this type of repository mainly for the power plant wastes. Japan Nuclear Fuel Ltd. (JNFL) established by electric power companies is the operator of the LLW disposal project. JNFL began the storage operation in 1992 and buried approximately 60,000 drums there. Two hundred thousand drums of uniformly solidified, waste may be buried ultimately. 4 refs, 3 tabs

  7. Radiation transport in high-level waste form

    International Nuclear Information System (INIS)

    Arakali, V.S.; Barnes, S.M.

    1992-01-01

    The waste form selected for vitrifying high-level nuclear waste stored in underground tanks at West Valley, NY is borosilicate glass. The maximum radiation level at the surface of a canister filled with the high-level waste form is prescribed by repository design criteria for handling and disposition of the vitrified waste. This paper presents an evaluation of the radiation transport characteristics for the vitreous waste form expected to be produced at West Valley and the resulting neutron and gamma dose rates. The maximum gamma and neutron dose rates are estimated to be less than 7500 R/h and 10 mRem/h respectively at the surface of a West Valley canister filled with borosilicate waste glass

  8. Preliminary assessment of nine waste-form products/processes for immobilizing transuranic wastes

    International Nuclear Information System (INIS)

    Crisler, L.R.

    1980-09-01

    Nine waste-form processes for reduction of the present and projected Transuranic (TRU) waste inventory to an immobilized product have been evaluated. Product formulations, selected properties, preparation methods, technology status, problem areas needing resolution and location of current research development being pursued in the United States are discussed for each process. No definitive utility ranking is attempted due to the early stage of product/process development for TRU waste containing products and the uncertainties in the state of current knowledge of TRU waste feed compositional and quantitative makeup. Of the nine waste form products/processes included in this discussion, bitumen and cements (encapsulation agents) demonstrate the degree of flexibility necessary to immobilize the wide composition range present in the TRU waste inventory. A demonstrated process called Slagging Pyrolysis Incineration converts a varied compositional feed (municipal wastes) to a ''basalt'' like product. This process/product appears to have potential for TRU waste immobilization. The remaining waste forms (borosilicate glass, high-silica glass, glass ceramics, ''SYNROC B'' and cermets) have potential for immobilizing a smaller fraction of the TRU waste inventory than the above discussed waste forms

  9. Design and construction of low level radioactive waste disposal facility at Rokkasho storage center

    International Nuclear Information System (INIS)

    Takahashi, K.; Itoh, H.; Iimura, H.; Shimoda, H.

    1992-01-01

    Japan Nuclear Fuel Industries Co., Inc. (JNFI) which has been established to dispose through burial the low-level radioactive waste (LLW) produced by nuclear power stations over the country is now constructing Rokkasho LLW Storage Center at Rokkasho Village,Aomori Prefecture. At this storage center JNFI plans to bury about 200,000m 3 , of LLW (equivalent to about one million drums each with a 200 liter capacity), and ultimately plans to bury about 600,000m 3 about 3 million drums of LLW. About the construction of the burial facilities for the first-stage LLW equivalent to 200,000 drums (each with a 200-liter capacity) we obtained the government's permit in November, 1990 and set out the construction work from the same month, which has since been promoted favorably. The facilities are scheduled to start operation from December, 1992. This paper gives an overview of at these facilities

  10. Changes in US commercial radioactive waste management and lessons learned in China

    International Nuclear Information System (INIS)

    Cai Tingsong; Yan Cangsheng

    2014-01-01

    The changes of commercial radioactive waste management in the US and the work done by the LLW generators in seeking new means to cost-effectively dispose these wastes without prejudicing future disposal options are introduced. Then the article concludes the lessons learned on radioactive waste management in China. (authors)

  11. National Institutes of Health: Mixed waste stream analysis

    International Nuclear Information System (INIS)

    Kirner, N.P.; Faison, G.P.; Johnson, D.R.

    1994-08-01

    The Low-Level Radioactive Waste Policy Amendments Act of 1985 requires that the US Department of Energy (DOE) provide technical assistance to host States, compact regions, and unaffiliated States to fulfill their responsibilities under the Act. The National Low-Level Waste Management Program (NLLWMP) operated for DOE by EG ampersand G Idaho, Inc. provides technical assistance in the development of new commercial low-level radioactive waste disposal capacity. The NLLWMP has been requested by the Appalachian Compact to help the biomedical community become better acquainted with its mixed waste streams, to help minimize the mixed waste streams generated by the biomedical community, and to provide applicable treatment technologies to those particular mixed waste streams. Mixed waste is waste that satisfies the definition of low-level radioactive waste (LLW) in the Low-Level Radioactive Waste Policy Act of 1980 (LLRWPA) and contains hazardous waste that either (a) is listed as a hazardous waste in Subpart D of 40 CFR 261, or (b) causes the LLW to exhibit any of the hazardous waste characteristics identified in 40 CFR 261. The purpose of this report is to clearly define and characterize the mixed waste streams generated by the biomedical community so that an identification can be made of the waste streams that can and cannot be minimized and treated by current options. An understanding of the processes and complexities of generation of mixed waste in the biomedical community may encourage more treatment and storage options to become available

  12. Status of waste form testing

    International Nuclear Information System (INIS)

    Lawroski, H.

    1984-01-01

    The promulgation of the amendment of 10 CFR Part 61 by the Nuclear Regulatory Commission of December 27, 1982 by Federal Register Notice with an effective date of December 27, 1983 established the criteria for licensing requirements, paragraph 60.56, contained the description to provide adequate stability of the site through the use of suitable waste forms. In May, 1983, the NRC published a final Branch Technical Position (BTP) paper on waste form. The position taken by the BTP was considerably more severe than indicated in 10 CFR Part 61. An extensive and expensive testing program was started in 1983. As an interim measure, the presently utilized solidification processes such as cement, Dow binder, Envirostone and bitumen, and the presently qualified High Integrity containers (HICs) were considered acceptable with the caveat that acceptable process control programs were being utilized. The NRC requested that topical reports for licenses be submitted. The topical reports were to contain test results to substantiate the acceptability of the waste forms. The test results to date show that the volume of wastes will have to increase to meet the position taken by the NRC in the BTP. This position will cause more waste to be generated which is contrary to the emphasis by states and others to reduce the volume of waste. The details of testing will be discussed in the paper to be presented

  13. GTS Duratek, phase I Hanford low-level waste melter tests: Final report

    International Nuclear Information System (INIS)

    Eaton, W.C.

    1995-01-01

    A multiphase program was initiated in 1994 to test commercially available melter technologies for the vitrification of the low-level waste (LLW) stream from defense waste stored in underground tanks at the Hanford Site in southeastern Washington State. Phase 1 of the melter demonstration tests using simulated LLW was completed during fiscal year 1995. This document is the final report on testing performed by GTS Duratek Inc. in Columbia, Maryland. GTS Duratek (one of the seven vendors selected) was chosen to demonstrate Joule heated melter technology under WHC subcontract number MMI-SVV-384215. The report contains description of the tests, observations, test data and some analysis of the data as it pertains to application of this technology for LLW vitrification. The document also contains summaries of the melter offgas reports issued as separate documents for the 100 kg melter (WHC-SD-WM-VI-028) and for the 1000 kg melter (WHC-SD-WM-VI-029)

  14. Comparative assessment of TRU waste forms and processes. Volume II. Waste form data, process descriptions, and costs

    International Nuclear Information System (INIS)

    Ross, W.A.; Lokken, R.O.; May, R.P.; Roberts, F.P.; Thornhill, R.E.; Timmerman, C.L.; Treat, R.L.; Westsik, J.H. Jr.

    1982-09-01

    This volume contains supporting information for the comparative assessment of the transuranic waste forms and processes summarized in Volume I. Detailed data on the characterization of the waste forms selected for the assessment, process descriptions, and cost information are provided. The purpose of this volume is to provide additional information that may be useful when using the data in Volume I and to provide greater detail on particular waste forms and processes. Volume II is divided into two sections and two appendixes. The first section provides information on the preparation of the waste form specimens used in this study and additional characterization data in support of that in Volume I. The second section includes detailed process descriptions for the eight processes evaluated. Appendix A lists the results of MCC-1 leach test and Appendix B lists additional cost data. 56 figures, 12 tables

  15. Development of new waste form for treatment and disposal of concentrated liquid radioactive waste

    International Nuclear Information System (INIS)

    Kwak, Kyung Kil; Ji, Young Yong

    2010-12-01

    The radioactive waste form should be meet the waste acceptance criteria of national regulation and disposal site specification. We carried out a characterization of rad waste form, especially the characteristics of radioactivity, mechanical and physical-chemical properties in various rad waste forms. But asphalt products is not acceptable waste form at disposal site. Thus we are change the product materials. We select the development of the new process or new materials. The asphalt process is treatment of concentrated liquid and spent-resin and that we decide the Development of new waste form for treatment and disposal of concentrated liquid radioactive waste

  16. Overview of commercial low-level radioactive waste disposal in the United States

    International Nuclear Information System (INIS)

    Smith, P.

    1994-01-01

    Disposal of commercial low-level radioactive waste (LLW) is a critical part of the national infrastructure needed to maintain the health of American businesses, universities, and hospitals. Currently only 19 States (located in the Northwest and Southeast) have access to operating disposal facilities; all other States are storing their LLW until they open new disposal facilities on their own or in concert with other States through regional compact agreements. In response to recommendations from the National Governors Association, Congress assigned the burden for LLW disposal to all States, first in 1980 through Public Law 96-573, the open-quotes Low-level Radioactive Waste Policy Actclose quotes, and again in 1986 through Public Law 99-240, the open-quotes Low-Level Radioactive Waste Policy Amendments Act of 1985close quotes. As directed by Congress, the Department of Energy provides technical assistance to States and compact regions with this task. After almost 14 years, nine compact regions have been ratified by Congress; California, Texas, North Carolina, and Nebraska have submitted license applications; California has issued an operating license; and the number of operating disposal facilities has decreased from three to two

  17. Preparation and leaching of radioactive INEL waste forms

    International Nuclear Information System (INIS)

    Schuman, R.P.; Welch, J.M.; Staples, B.A.

    1982-01-01

    The purpose of this study is to prepare and leach test ceramic and glass waste form specimens produced from actual transuranic waste sludges and high-level waste calcines, respectively. Description of wastes, specimen fabrication, leaching procedure, analysis of leachates and results are discussed. The conclusion is that radioactive waste stored at INEL can be readily incorporated in fused ceramic and glass forms. Initial leach testing results indicate that these forms show great promise for safe long-term containment of radioactive wastes

  18. Source term model evaluations for the low-level waste facility performance assessment

    Energy Technology Data Exchange (ETDEWEB)

    Yim, M.S.; Su, S.I. [North Carolina State Univ., Raleigh, NC (United States)

    1995-12-31

    The estimation of release of radionuclides from various waste forms to the bottom boundary of the waste disposal facility (source term) is one of the most important aspects of LLW facility performance assessment. In this work, several currently used source term models are comparatively evaluated for the release of carbon-14 based on a test case problem. The models compared include PRESTO-EPA-CPG, IMPACTS, DUST and NEFTRAN-II. Major differences in assumptions and approaches between the models are described and key parameters are identified through sensitivity analysis. The source term results from different models are compared and other concerns or suggestions are discussed.

  19. Review of available options for low level radioactive waste disposal

    International Nuclear Information System (INIS)

    1992-07-01

    The scope of this report includes: descriptions of the options available; identification of important elements in the selection process; discussion and assessment of the relevance of the various elements for the different options; cost data indicating the relative financial importance of different parts of the systems and the general cost level of a disposal facility. An overview of the types of wastes included in low level waste categories and an approach to the LLW management system is presented. A generic description of the disposal options available and the main activities involved in implementing the different options are described. Detailed descriptions and cost information on low level waste disposal facility concepts in a number of Member States are given. Conclusions from the report are summarized. In addition, this report provides a commentary on various aspects of land disposal, based on experience gained by IAEA Member States. The document is intended to complement other related IAEA publications on LLW management and disposal. It also demonstrates that alternatives solutions for the final disposal of LLW are available and can be safely operated but the choice of an appropriate solution must be a matter for national strategy taking into account local conditions. 18 refs, 16 figs, 1 tab

  20. Certification Plan, Radioactive Mixed Waste Hazardous Waste Handling Facility

    International Nuclear Information System (INIS)

    Albert, R.

    1992-01-01

    The purpose of this plan is to describe the organization and methodology for the certification of radioactive mixed waste (RMW) handled in the Hazardous Waste Handling Facility at Lawrence Berkeley Laboratory (LBL). RMW is low-level radioactive waste (LLW) or transuranic (TRU) waste that is co-contaminated with dangerous waste as defined in the Westinghouse Hanford Company (WHC) Solid Waste Acceptance Criteria (WAC) and the Washington State Dangerous Waste Regulations, 173-303-040 (18). This waste is to be transferred to the Hanford Site Central Waste Complex and Burial Grounds in Hanford, Washington. This plan incorporates the applicable elements of waste reduction, which include both up-front minimization and end-product treatment to reduce the volume and toxicity of the waste; segregation of the waste as it applies to certification; an executive summary of the Waste Management Quality Assurance Implementing Management Plan (QAIMP) for the HWHF (Section 4); and a list of the current and planned implementing procedures used in waste certification

  1. Research, development and experience of radioactive waste management in Japan

    International Nuclear Information System (INIS)

    Miyanaga, I.; Imai, K.; Araki, K.

    1983-01-01

    Research, development and experience of radioactive wastes are presented in this paper. A total of about 330,000 drums of conditioned radioactive wastes arising from nuclear power plants such as low- and intermediate-level wastes (LLW) have been stored on-site. LLW from research activities and alpha-contaminated wastes (α-wastes) from the PNC Post-Irradiation Examination Facility for Experimental FBR Spent Fuel and Material have also been conditioned and stored in JAERI. Pilot-scale plants have been developed by JAERI and Tokyo Electric Co. for both plastic immobilization and wet oxidation of organic wastes with Fe(II) - H 2 O 2 . For the treatment of α-wastes, techniques such as incineration, acid digestion, electroslag melting and solidification into ceramics have been developed and will be demonstrated in the PNC Pu-contaminated Waste Treatment Facility in 1983. The safety evaluation of LLW for ocean dumping has been carried out with high pressure leaching test apparatus by JAERI and in sea site tests including the recovery of cold samples. A test facility for shallow-land disposal will be constructed by 1983. About 120 tonnes of LWR spent fuels have been reprocessed at the PNC Reprocessing Plant at Tokai since 1977 and, as a result, approximately 110 m 3 of HLW have been generated and stored in tanks. R and D efforts on HLW management have been performed on the basis of the policy established by the Japan Atomic Energy Commission. Vitrification technology has been developed since 1976 in a combination of cold laboratory tests, cold engineering tests and hot laboratory tests. The Vitrification Pilot Plant is planned for construction in the late 1980s. Surveys of potential geological formations for disposal and the development of engineered barriers and of repository systems are under way in PNC

  2. Advancing towards commonsense regulation of mixed waste: Regulatory update

    International Nuclear Information System (INIS)

    Porter, C.L.

    1996-01-01

    The author previously presented the basis for regulating mixed waste according to the primary hazard (either chemical or radiological) in order to avoid the inefficient practice of open-quotes dual regulationclose quotes of mixed waste. In addition to covering the technical basis, recommendations were made on how to capitalize upon a window of opportunity for implementation of a open-quotes primary hazards approachclose quotes. Some of those recommendations have been pursued and the resulting advances on the regulatory front are exciting. This paper chronicles those pursuits, presents in capsule form the massive amount of data assembled, and summarizes the changing regulatory framework. The data supports the premise that disposal of stabilized mixed waste in a low-level radioactive waste (LLW) disposal facility is protective of human health and the environment. Based on that premise, proposed regulatory changes, if finalized, will eliminate much of the open-quotes dual regulationclose quotes of mixed waste

  3. LLW and ILW disposal

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    Summaries from the Nuclear Energy Agency of the OECD of the main programmes for low and intermediate level waste repositories in countries with the firmest timetables for their development are given in the form of a table and notes. An IAEA overview of low and intermediate level waste management practice in 26 countries is also tabulated. (author)

  4. The construction of solid waste form test facility

    International Nuclear Information System (INIS)

    Park, Hun Hwee; Kim, Joon Hyung; Lee, Byung Jik; Koo, Jun Mo; Kim, Jeong Guk; Jung, In Ha

    1990-03-01

    The solid waste form test facility (SWFTF) to test and/or evaluate the characteristics of waste forms, such as homogeniety, mechanical properties, thermal properties, waste resistance and leachability, have been constructed, and some equipments for testing actual waste forms has been purchased; radiocative monitoring system, glove box for the manipulator repair room, and uninteruppted power supply system, et al. Classifications of radioactive wastes, basic requirements and criteria to be considered during waste management were also reviewed. Some of the described items above have been standardized for the purpose of indigenigation. Therefore, safety assurance of waste forms, as well as increase in the range of participating of domestic companies in construction of further nuclear facilities could be obtained as results through constructing this facility. In the furture this facility is going to be utilized not only for the inspection of waste forms but also for the periodic decontamination for extending the life time of some expensive radiological equipments using remote handling techniques. (author)

  5. Design and operational considerations of United States commercial nea-surface low-level radioactive waste disposal facilities

    International Nuclear Information System (INIS)

    Birk, Sandra M.

    1997-01-01

    Low-level radioactive waste disposal standards and techniques in the United States have evolved significantly since the early 1960's. Six commercial LLW disposal facilities(Barnwell, Richland, Ward Valley, Sierra Blanca, Wake County and Boyd County) operated and proposed between 1962 and 1997. This report summarizes each site's design and operational considerations for near-surface disposal of low-level radioactive waste. These new standards and mitigating efforts at closed facilities (Sheffield, Maxey Flats, Beatty and West Valley) have helped to ensure that the public has been safely protected from LLW. 15 refs

  6. Closure Strategy for a Waste Disposal Facility with Multiple Waste Types and Regulatory Drivers at the Nevada Test Site - 8422

    International Nuclear Information System (INIS)

    D Wieland; V Yucel; L Desotell; G Shott; J Wrapp

    2008-01-01

    The U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO) plans to close the waste and classified material storage cells in the southeast quadrant of the Area 5 Radioactive Waste Management Site (RWMS), informally known as the '92-Acre Area', by 2011. The 25 shallow trenches and pits and the 13 Greater Confinement Disposal (GCD) borings contain various waste streams including low-level waste (LLW), low-level mixed waste (LLMW), transuranic (TRU), mixed transuranic (MTRU), and high specific activity LLW. The cells are managed under several regulatory and permit programs by the U.S. Department of Energy (DOE) and the Nevada Division of Environmental Protection (NDEP). Although the specific closure requirements for each cell vary, 37 closely spaced cells will be closed under a single integrated monolayer evapotranspirative (ET) final cover. One cell will be closed under a separate cover concurrently. The site setting and climate constrain transport pathways and are factors in the technical approach to closure and performance assessment. Successful implementation of the integrated closure plan requires excellent communication and coordination between NNSA/NSO and the regulators

  7. Glass Ceramic Waste Forms for Combined CS+LN+TM Fission Products Waste Streams

    International Nuclear Information System (INIS)

    Crum, Jarrod V.; Turo, Laura A.; Riley, Brian J.; Tang, Ming; Kossoy, Anna; Sickafus, Kurt E.

    2010-01-01

    In this study, glass ceramics were explored as an alternative waste form for glass, the current baseline, to be used for immobilizing alkaline/alkaline earth + lanthanide (CS+LN) or CS+LN+transition metal (TM) fission-product waste streams generated by a uranium extraction (UREX+) aqueous separations type process. Results from past work on a glass waste form for the combined CS+LN waste streams showed that as waste loading increased, large fractions of crystalline phases precipitated upon slow cooling.(1) The crystalline phases had no noticeable impact on the waste form performance by the 7-day product consistency test (PCT). These results point towards the development of a glass ceramic waste form for treating CS+LN or CS+LN+TM combined waste streams. Three main benefits for exploring glass ceramics are: (1) Glass ceramics offer increased solubility of troublesome components in crystalline phases as compared to glass, leading to increased waste loading; (2) The crystalline network formed in the glass ceramic results in higher heat tolerance than glass; and (3) These glass ceramics are designed to be processed by the same melter technology as the current baseline glass waste form. It will only require adding controlled canister cooling for crystallization into a glass ceramic waste form. Highly annealed waste form (essentially crack free) with up to 50X lower surface area than a typical High-Level Waste (HLW) glass canister. Lower surface area translates directly into increased durability. This was the first full year of exploring glass ceramics for the Option 1 and 2 combined waste stream options. This work has shown that dramatic increases in waste loading are achievable by designing a glass ceramic waste form as an alternative to glass. Table S1 shows the upper limits for heat, waste loading (based on solubility), and the decay time needed before treatment can occur for glass and glass ceramic waste forms. The improvements are significant for both combined waste

  8. Glass Ceramic Waste Forms for Combined CS+LN+TM Fission Products Waste Streams

    Energy Technology Data Exchange (ETDEWEB)

    Crum, Jarrod V.; Turo, Laura A.; Riley, Brian J.; Tang, Ming; Kossoy, Anna; Sickafus, Kurt E.

    2010-09-23

    In this study, glass ceramics were explored as an alternative waste form for glass, the current baseline, to be used for immobilizing alkaline/alkaline earth + lanthanide (CS+LN) or CS+LN+transition metal (TM) fission-product waste streams generated by a uranium extraction (UREX+) aqueous separations type process. Results from past work on a glass waste form for the combined CS+LN waste streams showed that as waste loading increased, large fractions of crystalline phases precipitated upon slow cooling.[1] The crystalline phases had no noticeable impact on the waste form performance by the 7-day product consistency test (PCT). These results point towards the development of a glass ceramic waste form for treating CS+LN or CS+LN+TM combined waste streams. Three main benefits for exploring glass ceramics are: (1) Glass ceramics offer increased solubility of troublesome components in crystalline phases as compared to glass, leading to increased waste loading; (2) The crystalline network formed in the glass ceramic results in higher heat tolerance than glass; and (3) These glass ceramics are designed to be processed by the same melter technology as the current baseline glass waste form. It will only require adding controlled canister cooling for crystallization into a glass ceramic waste form. Highly annealed waste form (essentially crack free) with up to 50X lower surface area than a typical High-Level Waste (HLW) glass canister. Lower surface area translates directly into increased durability. This was the first full year of exploring glass ceramics for the Option 1 and 2 combined waste stream options. This work has shown that dramatic increases in waste loading are achievable by designing a glass ceramic waste form as an alternative to glass. Table S1 shows the upper limits for heat, waste loading (based on solubility), and the decay time needed before treatment can occur for glass and glass ceramic waste forms. The improvements are significant for both combined waste

  9. Volume Reduction of Decommissioning Radioactive Burnable and Metal Wastes

    Energy Technology Data Exchange (ETDEWEB)

    Min, B. Y.; Lee, Y. J.; Yun, G. S.; Lee, K. W.; Moon, J. K. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Choi, Y. K.; Cho, J. H. [SunKwang Atomic Energy Safety Co., Seoul (Korea, Republic of)

    2014-10-15

    A large quantity of radioactive waste was generated during the decommissioning projects. For the purpose of the volume reduction and clearance for decommissioning wastes from decommissioning projects, the incineration and high melting technology has been selected for the decommissioning wastes treatment. The volume reduction of the combustible wastes through the incineration technologies has merits from the view point of a decrease in the amount of waste to be disposed of resulting in a reduction of the disposal cost. Incineration is generally accepted as a method of reducing the volume of radioactive waste. The incineration technology is an effective treatment method that contains hazardous chemicals as well as radioactive contamination. Incinerator burns waste at high temperature. Incineration of a mixture of chemically hazardous and radioactive materials, known as 'mixed waste,' has two principal goals: to reduce the volume and total chemical toxicity of the waste. Incineration itself does not destroy the metals or reduce the radioactivity of the waste. A proven melting technology is currently used for low-level waste (LLW) at several facilities worldwide. These facilities use melting as a means of processing LLW for unrestricted release of the metal or for recycling within the nuclear sector. About 16.4 tons of decommissioning combustible waste has been treated using Oxygen Enriched incineration. The incineration facility operated quite smoothly through the analysis major critical parameters of off-gas.

  10. Volume Reduction of Decommissioning Radioactive Burnable and Metal Wastes

    International Nuclear Information System (INIS)

    Min, B. Y.; Lee, Y. J.; Yun, G. S.; Lee, K. W.; Moon, J. K.; Choi, Y. K.; Cho, J. H.

    2014-01-01

    A large quantity of radioactive waste was generated during the decommissioning projects. For the purpose of the volume reduction and clearance for decommissioning wastes from decommissioning projects, the incineration and high melting technology has been selected for the decommissioning wastes treatment. The volume reduction of the combustible wastes through the incineration technologies has merits from the view point of a decrease in the amount of waste to be disposed of resulting in a reduction of the disposal cost. Incineration is generally accepted as a method of reducing the volume of radioactive waste. The incineration technology is an effective treatment method that contains hazardous chemicals as well as radioactive contamination. Incinerator burns waste at high temperature. Incineration of a mixture of chemically hazardous and radioactive materials, known as 'mixed waste,' has two principal goals: to reduce the volume and total chemical toxicity of the waste. Incineration itself does not destroy the metals or reduce the radioactivity of the waste. A proven melting technology is currently used for low-level waste (LLW) at several facilities worldwide. These facilities use melting as a means of processing LLW for unrestricted release of the metal or for recycling within the nuclear sector. About 16.4 tons of decommissioning combustible waste has been treated using Oxygen Enriched incineration. The incineration facility operated quite smoothly through the analysis major critical parameters of off-gas

  11. Radioactive-waste classification in the United States: history and current predicaments

    International Nuclear Information System (INIS)

    Lowenthal, M. D.

    1997-01-01

    Within the United States we have taken disposal to mean the permanent emplacement of waste in the earth in a manner such that, after a brief period of monitoring and active maintenance, institutional control could be abandoned without damaging human health and the environment. But several attempts at disposal (the AEC facilities mentioned in Section 2, and commercial facilities at Maxey Flats and West Valley), and even attempts at short-term management (such as Hanford), have fallen far short of the our hopes for disposal. Most of the problems arose out of insufficient restrictions on waste forms (the untreated hazardous chemicals), disposal facilities that by nature or poor design saw infiltration, or a combination that resulted in facilities that failed because the designs and the waste forms were incompatible. Lessons have been learned from experience and some of these problems have been addressed, but fundamentally the tension between top-down classes defined by the generator and bottom-up considerations based on the disposal environment has not been resolved, and the government has not effected integrated planning for management of nuclear materials in the country. There appears, for example, to be a continued disconnect between the designers of disposal facilities and the policy and decision makers. Performance assessments are generally carried out with a set of assumptions about the waste streams corresponding to the classes of waste designated for disposal at the site. Little consideration is given to problem wastes within known waste classes, such as spent fuel from research reactors. And as the wastes that do not fit, the so-called ''orphan wastes'' such as greater-than-class-C low-level waste (GTCC LLW), excess weapons-grade plutonium, and mixed waste, are redirected for co-disposal with other wastes, the waste stream changes. In the case of GTCC LLW, the waste forms will be radically different from those used in modeling of the high-level waste

  12. Electrochemical/Pyrometallurgical Waste Stream Processing and Waste Form Fabrication

    Energy Technology Data Exchange (ETDEWEB)

    Steven Frank; Hwan Seo Park; Yung Zun Cho; William Ebert; Brian Riley

    2015-07-01

    This report summarizes treatment and waste form options being evaluated for waste streams resulting from the electrochemical/pyrometallurgical (pyro ) processing of used oxide nuclear fuel. The technologies that are described are South Korean (Republic of Korea – ROK) and United States of America (US) ‘centric’ in the approach to treating pyroprocessing wastes and are based on the decade long collaborations between US and ROK researchers. Some of the general and advanced technologies described in this report will be demonstrated during the Integrated Recycle Test (IRT) to be conducted as a part of the Joint Fuel Cycle Study (JFCS) collaboration between US Department of Energy (DOE) and ROK national laboratories. The JFCS means to specifically address and evaluated the technological, economic, and safe guard issues associated with the treatment of used nuclear fuel by pyroprocessing. The IRT will involve the processing of commercial, used oxide fuel to recover uranium and transuranics. The recovered transuranics will then be fabricated into metallic fuel and irradiated to transmutate, or burn the transuranic elements to shorter lived radionuclides. In addition, the various process streams will be evaluated and tested for fission product removal, electrolytic salt recycle, minimization of actinide loss to waste streams and waste form fabrication and characterization. This report specifically addresses the production and testing of those waste forms to demonstrate their compatibility with treatment options and suitability for disposal.

  13. Equilibrium Temperature Profiles within Fission Product Waste Forms

    Energy Technology Data Exchange (ETDEWEB)

    Kaminski, Michael D. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-10-01

    We studied waste form strategies for advanced fuel cycle schemes. Several options were considered for three waste streams with the following fission products: cesium and strontium, transition metals, and lanthanides. These three waste streams may be combined or disposed separately. The decay of several isotopes will generate heat that must be accommodated by the waste form, and this heat will affect the waste loadings. To help make an informed decision on the best option, we present computational data on the equilibrium temperature of glass waste forms containing a combination of these three streams.

  14. Viscosity-based high temperature waste form compositions

    International Nuclear Information System (INIS)

    Reimann, G.A.

    1994-01-01

    High-temperature waste forms such as iron-enriched basalt are proposed to immobilize and stabilize a variety of low-level wastes stored at the Idaho National Engineering Laboratory. The combination of waste and soil anticipated for the waste form results in high SiO 2 + Al 2 O 3 producing a viscous melt in an arc furnace. Adding a flux such as CaO to adjust the basicity ratio (the molar ratio of basic to acid oxides) enables tapping the furnace without resorting to extreme temperatures, but adds to the waste volume. Improved characterization of wastes will permit adjusting the basicity ratio to between 0.7 and 1.0 by blending of wastes and/or changing the waste-soil ratio. This minimizes waste form volume. Also, lower pouring temperatures will decrease electrode and refractory attrition, reduce vaporization from the melt, and, with suitable flux, facilitate crystallization. Results of laboratory tests were favorable and pilot-scale melts are planned; however, samples have not yet been subjected to leach testing

  15. ANSTO's waste forms for the 31. century

    Energy Technology Data Exchange (ETDEWEB)

    Vance, E.R.; Begg, B. D.; Day, R. A.; Moricca, S.; Perera, D. S.; Stewart, M. W. A.; Carter, M. L.; McGlinn, P. J.; Smith, K. L.; Walls, P. A.; Robina, M. La

    2004-07-01

    ANSTO waste form development for high-level radioactive waste is directed towards practical applications, particularly problematic niche wastes that do not readily lend themselves to direct vitrification. Integration of waste form chemistry and processing method is emphasised. Some longstanding misconceptions about titanate ceramics are dealt with. We have a range of titanate-bearing waste form products aimed at immobilisation of tank wastes and sludges, actinide-rich wastes, INEEL calcines and Na-bearing liquid wastes, Al-rich wastes arising from reprocessing of Al-clad fuels, Mo-rich wastes arising from reprocessing of U-Mo fuels, partitioned Cs-rich wastes, and {sup 99}Tc. Waste form production techniques cover hot isostatic and uniaxial pressing, sintering, and cold-crucible melting, and these are strongly integrated into waste form design. Speciation and leach resistance of Cs and alkalis in cementitious products and geo-polymers are being studied. Recently we have embarked on studies of candidate inert matrix fuels for Pu burning. We also have a considerable program directed at basic understanding of the waste forms in regard to crystal chemistry, dissolution behaviour in aqueous media, radiation damage effects and optimum processing techniques. (authors)

  16. Greater-than-Class C low-level radioactive waste shipping package/container identification and requirements study. National Low-Level Waste Management Program

    Energy Technology Data Exchange (ETDEWEB)

    Tyacke, M.

    1993-08-01

    This report identifies a variety of shipping packages (also referred to as casks) and waste containers currently available or being developed that could be used for greater-than-Class C (GTCC) low-level waste (LLW). Since GTCC LLW varies greatly in size, shape, and activity levels, the casks and waste containers that could be used range in size from small, to accommodate a single sealed radiation source, to very large-capacity casks/canisters used to transport or dry-store highly radioactive spent fuel. In some cases, the waste containers may serve directly as shipping packages, while in other cases, the containers would need to be placed in a transport cask. For the purpose of this report, it is assumed that the generator is responsible for transporting the waste to a Department of Energy (DOE) storage, treatment, or disposal facility. Unless DOE establishes specific acceptance criteria, the receiving facility would need the capability to accept any of the casks and waste containers identified in this report. In identifying potential casks and waste containers, no consideration was given to their adequacy relative to handling, storage, treatment, and disposal. Those considerations must be addressed separately as the capabilities of the receiving facility and the handling requirements and operations are better understood.

  17. Evaluation of conditioned high-level waste forms

    International Nuclear Information System (INIS)

    Mendel, J.E.; Turcotte, R.P.; Chikalla, T.D.; Hench, L.L.

    1983-01-01

    The evaluation of conditioned high-level waste forms requires an understanding of radiation and thermal effects, mechanical properties, volatility, and chemical durability. As a result of nuclear waste research and development programs in many countries, a good understanding of these factors is available for borosilicate glass containing high-level waste. The IAEA through its coordinated research program has contributed to this understanding. Methods used in the evaluation of conditioned high-level waste forms are reviewed. In the US, this evaluation has been facilitated by the definition of standard test methods by the Materials Characterization Center (MCC), which was established by the Department of Energy (DOE) in 1979. The DOE has also established a 20-member Materials Review Board to peer-review the activities of the MCC. In addition to comparing waste forms, testing must be done to evaluate the behavior of waste forms in geologic repositories. Such testing is complex; accelerated tests are required to predict expected behavior for thousands of years. The tests must be multicomponent tests to ensure that all potential interactions between waste form, canister/overpack and corrosion products, backfill, intruding ground water and the repository rock, are accounted for. An overview of the status of such multicomponent testing is presented

  18. Evaluation of low-level radioactive waste characterization and classification programs of the West Valley Demonstration Project

    International Nuclear Information System (INIS)

    Taie, K.R.

    1994-01-01

    The West Valley Demonstration Project (WVDP) is preparing to upgrade their low-level radioactive waste (LLW) characterization and classification program. This thesis describes a survey study of three other DOE sites conducted in support of this effort. The LLW characterization/classification programs of Oak Ridge National Laboratory, Savannah River Site, and Idaho National Engineering Laboratory were critically evaluated. The evaluation was accomplished through tours of each site facility and personnel interviews. Comparative evaluation of the individual characterization/classification programs suggests the WVDP should purchase a real-time radiography unit and a passive/active neutron detection system, make additional mechanical modifications to the segmented gamma spectroscopy assay system, provide a separate building to house characterization equipment and perform assays away from waste storage, develop and document a new LLW characterization/classification methodology, and make use of the supercompactor owned by WVDP

  19. Review of radiation effects in solid-nuclear-waste forms

    International Nuclear Information System (INIS)

    Weber, W.J.

    1981-09-01

    Radiation effects on the stability of high-level nuclear waste (HLW) forms are an important consideration in the development of technology to immobilize high-level radioactive waste because such effects may significantly affect the containment of the radioactive waste. Since the required containment times are long (10 3 to 10 6 years), an understanding of the long-term cumulative effects of radiation damage on the waste forms is essential. Radiation damage of nuclear waste forms can result in changes in volume, leach rate, stored energy, structure/microstructure, and mechanical properties. Any one or combination of these changes might significantly affect the long-term stability of the nuclear waste forms. This report defines the general radiation damage problem in nuclear waste forms, describes the simulation techniques currently available for accelerated testing of nuclear waste forms, and reviews the available data on radiation effects in both glass and ceramic (primarily crystalline) waste forms. 76 references

  20. Secondary Waste Form Down Selection Data Package – Ceramicrete

    Energy Technology Data Exchange (ETDEWEB)

    Cantrell, Kirk J.; Westsik, Joseph H.

    2011-08-31

    As part of high-level waste pretreatment and immobilized low activity waste processing, liquid secondary wastes will be generated that will be transferred to the Effluent Treatment Facility on the Hanford Site for further treatment. These liquid secondary wastes will be converted to stable solid waste forms that will be disposed in the Integrated Disposal Facility. Currently, four waste forms are being considered for stabilization and solidification of the liquid secondary wastes. These waste forms are Cast Stone, Ceramicrete, DuraLith, and Fluidized Bed Steam Reformer. The preferred alternative will be down selected from these four waste forms. Pacific Northwest National Laboratory is developing data packages to support the down selection process. The objective of the data packages is to identify, evaluate, and summarize the existing information on the four waste forms being considered for stabilization and solidification of the liquid secondary wastes. The information included will be based on information available in the open literature and from data obtained from testing currently underway. This data package is for the Ceramicrete waste form. Ceramicrete is a relatively new engineering material developed at Argonne National Laboratory to treat radioactive and hazardous waste streams (e.g., Wagh 2004; Wagh et al. 1999a, 2003; Singh et al. 2000). This cement-like waste form can be used to treat solids, liquids, and sludges by chemical immobilization, microencapsulation, and/or macroencapsulation. The Ceramicrete technology is based on chemical reaction between phosphate anions and metal cations to form a strong, dense, durable, low porosity matrix that immobilizes hazardous and radioactive contaminants as insoluble phosphates and microencapsulates insoluble radioactive components and other constituents that do not form phosphates. Ceramicrete is a type of phosphate-bonded ceramic, which are also known as chemically bonded phosphate ceramics. The Ceramicrete