WorldWideScience

Sample records for waste lllw system

  1. Liquid low-level waste (LLLW) solidification at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Schultz, R.M.; Monk, T.H.; duMont, S.P.; Helms, R.E.; Keigan, M.V.; Morris, M.I.

    1987-01-01

    In general, the presentation describes the disposal of liquid, low-level (radioactive) waste (LLLW) by the hydrofracture process at Oak Ridge National Laboratory until 1984, when it was shut down due to regulatory concerns and operational anomalies. As a result of this, about 400,000 gallons of concentrated LLLW and 50,000 gallons of transuranic waste-bearing sludges have accumulated in the active, double-contained tank system which is reaching its operational capacity. A major initiative to develop an alternative means of LLLW treatment and disposal was begun about two years ago. This presentation summarizes the implementation strategy of the most likely process options. The strategy is being developed in two phases; a near-term flowsheet and a long-term or reference flowsheet. First, reliable and fully demonstrated commercial, cement solidification systems are being assessed for execution of an initial 50,000 gallon campaign in 1988. Second, development is under way to determine viable sludge separation, LLLW decontamination and solidification alternatives. A flowsheet analysis and cost study is being conducted by a consultant to ensure proper consideration of process developments at other sites. It is estimated that, depending upon funding requirements, it could take up to six years to implement the reference flowsheet

  2. Characterization of selected waste tanks from the active LLLW system

    International Nuclear Information System (INIS)

    Keller, J.M.; Giaquinto, J.M.; Griest, W.H.

    1996-08-01

    From September 1989 through January of 1990, there was a major effort to sample and analyze the Active Liquid-Low Level Waste (LLLW) tanks at ORNL which include the Melton Valley Storage Tanks (MVST) and the Bethel Valley Evaporator Service Tanks (BVEST). The purpose of this report is to summarize additional analytical data collected from some of the active waste tanks from November 1993 through February 1996. The analytical data for this report was collected for several unrelated projects which had different data requirements. The overall analyte list was similar for these projects and the level of quality assurance was the same for all work reported. the new data includes isotopic ratios for uranium and plutonium and an evaluation of the denature ratios to address criticality concerns. Also, radionuclides not previously measured in these waste tanks, including 99Tc and 237Np, are provided in this report

  3. Preliminary analysis of the ORNL Liquid Low-Level Waste system

    International Nuclear Information System (INIS)

    Abraham, T.J.; DePaoli, S.M.; Robinson, S.M.; Walker, A.B.

    1994-08-01

    The objective of this report is to summarize the status of the Liquid Low-Level Waste (LLLW) Systems Analysis project. The focus of this project has been to collect and tabulate data concerning the LLLW system, analyze the current LLLW system operation, and develop the information necessary for the development of long-term treatment options for the LLLW generated at ORNL. The data used in this report were collected through a survey of Oak Ridge National Laboratory (ORNL) literature, various letter reports, and a survey of all current LLLW generators. These data are also being compiled in a user friendly database for ORNL-wide distribution. The database will allow the quick retrieval of all information collected on the ORNL LLLW system and will greatly benefit any LLLW analysis effort. This report summarizes the results for the analyses performed to date on the LLLW system

  4. Liquid low level waste management expert system

    International Nuclear Information System (INIS)

    Ferrada, J.J.; Abraham, T.J.; Jackson, J.R.

    1991-01-01

    An expert system has been developed as part of a new initiative for the Oak Ridge National Laboratory (ORNL) systems analysis program. This expert system will aid in prioritizing radioactive waste streams for treatment and disposal by evaluating the severity and treatability of the problem, as well as the final waste form. The objectives of the expert system development included: (1) collecting information on process treatment technologies for liquid low-level waste (LLLW) that can be incorporated in the knowledge base of the expert system, and (2) producing a prototype that suggests processes and disposal technologies for the ORNL LLLW system. 4 refs., 9 figs

  5. Design assessment for Melton Valley liquid low-level waste collection and transfer system upgrade project at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1994-10-01

    This project is designed for collecting liquid low level waste (LLLW) from generating points inside the Radioisotope Engineering and Development Center (Buildings 7920 and 7930) facility and transferring this waste to the Collection Tank (F-1800) in the new Monitoring and Control Station (MCS) facility. The LLLW is transferred to the MCS in a new, underground, jacketed, stainless steel piping system. The LLLW will then be transferred from Tank F-1800 through a new, underground, jacketed, stainless steel piping system that connects the existing Bethel Valley LLLW Collection System and the Evaporator Facility Service Tanks. The interface for the two systems will be at the existing Interconnecting Pipe Line (ICPL) Valve Box adjacent to the Nonradiological Wastewater Treatment Plant. The project scope consists of the following systems: (1) Building 7920 LLLW Collection System; (2) Building 7930 LLLW Collection System; (3) LLLW Underground Transfer System to MCS; (4) MCS Building (including all equipment contained therein); (5) LLLW Underground Transfer System to ICPL Valve Box; and (6) Leak detection system for jacketed piping systems (3) and (5)

  6. Detailed leak detection test plan and schedule for the Oak Ridge National Laboratory LLLW active pipelines

    International Nuclear Information System (INIS)

    Douglas, D.G.; Starr, J.W.; Juliano, T.M.; Maresca, J.W. Jr.

    1993-09-01

    This document provides a detailed leak detection test plan and schedule for leak testing many of the pipelines that comprise the active portion of the liquid low-level waste (LLLW) system at the Oak Ridge National Laboratory (ORNL). This plan was prepared in response to the requirements of the Federal Facility Agreement (FFA) between the US Department of Energy (DOE) and two other agencies, the US Environmental Protection Agency (EPA) and the Tennessee Department of Environment and Conservation (TDEC). The LLLW system is an interconnected complex of tanks and pipelines. The FFA distinguishes four categories of tank and pipeline systems within this complex: new systems (Category A), doubly contained systems (Category B), singly contained systems (Category C), and inactive systems (Category D). The FFA specifically requires leak testing of the Category C systems. This plan and schedule addresses leak testing of the Category C pipelines and those doubly contained pipelines that do not fully meet the requirements for secondary containment as listed in the FFA

  7. Seismic evaluation of existing liquid low level waste system at the Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Hammond, C.R.; Holmes, R.M.; Kincaid, J.H.; Singhal, M.K.; Stockdale, B.I.; Walls, J.C.; Webb, D.S.

    1993-01-01

    The existing liquid low level waste (LLLW) system at the Oak Ridge National Laboratory is used to collect, neutralize, concentrate, and store the radioactive and toxic waste from various sources at the Laboratory. The waste solutions are discharged from source facilities to individual collection tanks, transferred by underground piping to an evaporator facility for concentration, and pumped through the underground piping to storage in underground tanks. The existing LLLW system was installed in the 1950s with several system additions up to the present. The worst-case accident postulated is an earthquake of sufficient magnitude to rupture the tanks and/or piping so as to damage the containment integrity to the surrounding soil and environment. The objective of an analysis of the system is to provide a level of confidence in the seismic resistance of the LLLW system to withstand the postulated earthquake

  8. Detailed leak detection test plan and schedule for the Oak Ridge National Laboratory LLLW active tanks

    International Nuclear Information System (INIS)

    Douglas, D.G.; Maresca, J.W. Jr.

    1993-03-01

    This document provides a detailed leak detection test plan and schedule for leak testing many of the tanks that comprise the active portion of the liquid low-level waste (LLLW) system at the Oak Ridge National Laboratory (ORNL). This plan was prepared in response to the requirements of the Federal Facility Agreement (FFA) between the US Department of Energy (DOE) and two other agencies, the US Environmental Protection Agency (EPA) and the Tennessee Department of Environment and Conservation (TDEC)

  9. Expert system for liquid low-level waste management

    International Nuclear Information System (INIS)

    Ferrada, J.J.

    1992-01-01

    An expert system prototype has been developed to support system analysis activities at the Oak Ridge National Laboratory (ORNL) for waste management tasks. This expert system will aid in prioritizing radioactive waste streams for treatment and disposal by evaluating the severity and treatability of the problem as well as the final waste form. The objectives of the expert system development included: (1) collecting information on process treatment technologies for liquid low-level waste (LLLW) that can be incorporated in the knowledge base of the expert system, and (2) producing a prototype that suggests processes and disposal technologies for the ORNL LLLW system. The concept under which the expert system has been designed is integration of knowledge. There are many sources of knowledge (data bases, text files, simulation programs, etc.) that an expert would regularly consult in order to solve a problem of liquid waste management. The expert would normally know how to extract the information from these different sources of knowledge. The general scope of this project would be to include as much pertinent information as possible within the boundaries of the expert system. As a result, the user, who may not be an expert in every aspect of liquid waste management, may be able to apply the content of the information to a specific waste problem. This paper gives the methodological steps to develop the expert system under this general framework

  10. On-Site Decontamination System for Liquid Low Level Radioactive Waste - 13010

    Energy Technology Data Exchange (ETDEWEB)

    OSMANLIOGLU, Ahmet Erdal [Cekmece Nuclear Research and Training Center, Kucukcekmece Istanbul (Turkey)

    2013-07-01

    This study is based on an evaluation of purification methods for liquid low-level radioactive waste (LLLW) by using natural zeolite. Generally the volume of liquid low-level waste is relatively large and the specific activity is rather low when compared to other radioactive waste types. In this study, a pilot scale column was used with natural zeolite as an ion exchanger media. Decontamination and minimization of LLLW especially at the generation site decrease operational cost in waste management operations. Portable pilot scale column was constructed for decontamination of LLW on site. Effect of temperature on the radionuclide adsorption of the zeolite was determined to optimize the waste solution temperature for the plant scale operations. In addition, effect of pH on the radionuclide uptake of the zeolite column was determined to optimize the waste solution pH for the plant scale operations. The advantages of this method used for the processing of LLLW are discussed in this paper. (authors)

  11. Implementation plan for liquid low-level radioactive waste tank systems at Oak Ridge National Laboratory under the Federal Facility Agreement, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1995-06-01

    This document is an annual revision of the plans and schedules for implementing the Federal Facility Agreement (FFA) compliance program, originally submitted in ES/ER-17 ampersand D1, Federal Facility Agreement Plans and Schedules for Liquid Low-Level Radioactive Waste Tank Systems at Oak Ridge National Laboratory, Oak Ridge, Tennessee. This document summarizes the progress that has been made to date in implementing the plans and schedules for meeting the FFA commitments for the Liquid Low-Level Waste (LLLW) System at Oak Ridge National Laboratory (ORNL). Information presented in this document provides a comprehensive summary to facilitate understanding of the FFA compliance program for LLLW tank systems and to present plans and schedules associated with remediation, through the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) process, of LLLW tank systems that have been removed from service. ORNL has a comprehensive program underway to upgrade the LLLW system as necessary to meet the FFA requirements. The tank systems that are removed from service are being investigated and remediated through the CERCLA process. Waste and risk characterizations have been submitted. Additional data will be prepared and submitted to EPA/TDEC as tanks are taken out of service and as required by the remedial investigation/feasibility study (RI/FS) process. Chapter 1 provides general background information and philosophies that lead to the plans and schedules that appear in Chapters 2 through 5

  12. Implementation Plan for Liquid Low-Level Radioactive Waste tank systems at Oak Ridge National Laboratory under the Federal Facility Agreement, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1994-09-01

    This document summarizes the progress that has been made to date in implementing the plans and schedules for meeting the Federal Facility Agreement (FFA) commitments for the Liquid Low-Level Waste (LLLW) System at Oak Ridge National Laboratory (ORNL). These commitments were initially submitted in ES/ER-17 ampersand Dl, Federal Facility Agreement Plans and Schedules for Liquid Low-Level Radioactive Waste Tank Systems at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Information presented in this document provides a comprehensive summary to facilitate understanding of the FFA compliance program for LLLW tank systems and to present plans and schedules associated with remediation, through the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) process, of LLLW tank systems that have been removed from service. ORNL has a comprehensive program underway to upgrade the LLLW system as necessary to meet the FFA requirements. The tank systems that are removed from service are being investigated and remediated through the CERCLA process. Waste and risk characterizations have been submitted. Additional data will be prepared and submitted to EPA/TDEC as tanks are taken out of service and as required by the remedial investigation/feasibility study (RI/FS) process. The plans and schedules for implementing the FFA compliance program that were submitted in ES/ER-17 ampersand Dl, Federal Facility Agreement Plans and Schedules for Liquid Low-Level Radioactive Waste tanks Systems at Oak Ridge National Laboratory, Oak Ridge, Tennessee, are updated in this document. Chapter 1 provides general background information and philosophies that lead to the plans and schedules that appear in Chaps. 2 through 5

  13. Implementation of environmental compliance for operating radioactive liquid waste systems at the Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Hooyman, J.H.

    1993-01-01

    This paper addresses methods being implemented at the Oak Ridge National Laboratory (ORNL) to continue operating while achieving compliance with new standards for liquid low level waste (LLLW) underground storage tank systems. The Superfund Amendment and Reauthorization Act (SARA) of the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) required that the Department of Energy (DOE) execute a Federal Facility Agreement (FFA) with the Environmental Protection Agency (EPA) within 6 months of listing of the ORNL on the National Priorities List. An FFA for ORNL became effective January 1, 1992 among the EPA, DOE, and the Tennessee Department of Environment and Conservation (TDEC). The objective of the FFA as it relates to these tank systems is to ensure that structural integrity, containment, leak detection capability, and LLLW source control are maintained until final remedial action. The FFA requires that leaking LLLW tank systems be immediately removed from service, and that active tank systems be doubly contained, cathodically protected, and have leak detection capability. LLLW tank systems that do not meet requirements are to be either upgraded or replaced, but can remain in service if they do not leak in the interim

  14. Federal Facility Agreement plans and schedules for liquid low-level radioactive waste tank systems at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1992-03-01

    Although the Federal Facility Agreement (FFA) addresses the entire Oak Ridge Reservation, specific requirements are set forth for the liquid low-level radioactive waste (LLLW) storage tanks and their associated piping and equipment, tank systems, at ORNL. The stated objected of the FFA as it relates to these tank systems is to ensure that structural integrity, containment and detection of releases, and source control are maintained pending final remedial action at the site. The FFA requires that leaking LLLW tank systems be immediately removed from service. It also requires the LLLW tank systems that do not meet the design and performance requirements established for secondary containment and leak detection be either upgraded or replaced. The FFA establishes a procedural framework for implementing the environmental laws. For the LLLW tank systems, this framework requires the specified plans and schedules be submitted to EPA and TDEC for approval within 60 days, or in some cases, within 90 days, of the effective date of the agreement

  15. Implementation plan for Liquid Low-Level Radioactive Waste Tank Systems at Oak Ridge National Laboratory under the Federal Facility Agreement, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1994-06-01

    Plans and schedules for meeting the Federal Facility Agreement (FFA) commitments for the Liquid Low-Level Waste (LLLW) System at Oak Ridge National Laboratory (ORNL) were initially submitted in ES/ER-17 ampersand D1, Federal Facility Agreement Plans and Schedules for Liquid Low-Level Radioactive Waste Tank Systems at Oak Ridge National Laboratory, Oak Ridge, Tennessee. The information presented in the current document summarizes the progress that has been made to date and provides a comprehensive summary to facilitate understanding of the FFA compliance program for LLLW tank systems and to present the plans and schedules associated with the remediation, through the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) process, of LLLW tank systems that have been removed from service. A comprehensive program is under way at ORNL to upgrade the LLLW system as necessary to meet the FFA requirements. The tank systems that are removed from service are being investigated and remediated through the CERCLA process. Waste and risk characterizations have been submitted. Additional data will be submitted to the US Environmental Protection Agency and the Tennessee Department of Environment and Conservation (EPA/TDEC) as tanks are taken out of service and as required by the remedial investigation/feasibility study (RI/FS) process. The plans and schedules for implementing the FFA compliance program that were originally submitted in ES/ER-17 ampersand D 1, Federal Facility Agreement Plans and Schedules for Liquid Low-Level Radioactive Waste tanks Systems at Oak Ridge National Laboratory, Oak Ridge, Tennessee, are updated in the present document. Chapter I provides general background information and philosophies that lead to the plans and schedules that appear in Chaps. 2 through 5

  16. Selection of an interim upgrade strategy for the Process Waste Treatment Plant at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Kent, T.E.; Villiers-Fisher, J.F.; Harrington, F.E.

    1991-01-01

    The principal aim of current changes in the liquid waste handling systems at the Oak Ridge National Laboratory (ORNL) is to reduce liquid low-level waste (LLLW) volumes and to meet increasingly stringent discharge regulations. Proposed improvements at the facility's Process Waste Treatment Plant (PWTP) will have a significant impact on the amount of LLLW generated at ORNL. These improvements will also be important for ensuring that the plant operates under the reduced discharge limits for radionuclides imposed by Department of Energy (DOE) Order 5400.5. Construction of a new PWTP that will completely decouple the process waste and LLLW systems is being proposed. Because of the time required to fund and construct a new PWTP, the existing plant must be improved to reduce waste generation, to expand capacity, and to comply with the lower discharge limits. The economic evaluation performed in this study guided the decision to upgrade the PWTP by improving the existing softening/ion-exchange system for 90 Sr removal and adding a zeolite system for 137 Cs removal. This strategy will reduce LLLW produced at the PWTP by as much as 70% and increase the amount of solid waste produced by about 30%. Disposal costs are expected to decrease by over 50%. 17 refs., 10 figs., 2 tabs

  17. Implementation plan for liquid low-level radioactive waste tank systems for fiscal year 1995 at Oak Ridge National Laboratory under the Federal Facility Agreement, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1995-06-01

    This document is the third annual revision of the plans and schedules for implementing the Federal Facility Agreement (FFA) compliance program, originally submitted in 1992 as ES/ER-17 ampersand D1, Federal Facility Agreement Plans and Schedules for Liquid Low-Level Radioactive Waste Tank Systems at Oak Ridge National Laboratory, Oak Ridge, Tennessee. This document summarizes the progress that has been made to date in implementing the plans and schedules for meeting the FFA commitments for the Liquid Low-Level Waste (LLLW) System at Oak Ridge National Laboratory (ORNL). Information presented in this document provides a comprehensive summary to facilitate understanding of the FFA compliance program for LLLW tank systems and to present plans and schedules associated with remediation, through the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) process, of LLLW tank systems that have been removed from service. ORNL has a comprehensive program underway to upgrade the LLLW System as necessary to meet the FFA requirements. The tank systems that are removed from service are being investigated and remediated through the CERCLA process. Waste and risk characterizations have been submitted. Additional data will be prepared and submitted to EPA/TDEC as tanks are taken out of service and as required by the remedial investigation/feasibility study (RI/FS) process. Chapter 1 provides general background information and philosophies that led to the plans and schedules that appear in Chaps. 2 through 5

  18. Leak testing plan for the Oak Ridge National Laboratory liquid low- level waste system (active tanks)

    International Nuclear Information System (INIS)

    Douglas, D.G.; Wise, R.F.; Starr, J.W.; Maresca, J.W. Jr.

    1992-06-01

    A leak testing plan for a portion of the Liquid Low-Level Waste (LLLW) system at the Oak Ridge National Laboratory (ORNL) is provided in the two volumes that form this document. This plan was prepared in response to the requirements of the Federal Facilities Agreement (FFA) between the US Department of Energy and two other agencies, the US Environmental Protection Agency (EPA) and the Tennessee Department of Environment and Conservation (TDEC). The effective date of this agreement was 1 January 1992. The LLLW system is an interconnected complex of tanks and pipelines. The FFA distinguishes four different categories of tank and pipeline systems within this complex: new systems (Category A), doubly contained systems (Category B), singly contained systems (Category C), and inactive systems (Category D). The FFA's specific requirements for leak testing of the Category C systems is addressed in this plan. The plan also addresses leak testing of the Category B portions of the LLLW system. Leak testing of the Category B components was brought into the plan to supplement the secondary containment design demonstration effort that is under way for these components

  19. Status of the ORNL liquid low-level waste management upgrades

    International Nuclear Information System (INIS)

    Robinson, S.M.; Kent, T.E.; DePaoli, S.M.

    1995-08-01

    The strategy for management of the Oak Ridge National Laboratory's (ORNL's) radioactively contaminated liquid waste was reviewed. The latest information on waste characterization, regulations, US Department of Energy (DOE) budget guidance, and research and development programs was evaluated to determine how the strategy should be revised. Few changes are needed to update the strategy to reflect new waste characterization, research, and regulatory information. However, recent budget guidance from DOE indicates that minimum funding will not be sufficient to accomplish original objectives to upgrade the liquid low-level waste (LLLW) system to be in compliance with the Federal Facilities Agreement compliance, provide long-term LLLW treatment capability, and minimize Environmental Safety ampersand Health risks. Options are presented that might allow the ORNL LLLW system to continue operations temporarily but significantly reduce its capabilities to handle emergency situations, provide treatment for new waste streams, and accommodate waste from the Environmental Restoration Program and from decontamination and decommissioning of surplus facilities. These options are also likely to increase worker radiation exposure, risk of environmental insult, and generation of solid waste for on-site and off-site disposal/storage beyond existing facility capacities. The strategy will be fully developed after receiving additional guidance. The proposed budget limitations are too severe to allow ORNL to meet regulatory requirements or continue operations long term

  20. Melton Valley liquid low-level radioactive waste storage tanks evaluation

    International Nuclear Information System (INIS)

    1995-06-01

    The Melton Valley Liquid Low-Level Radioactive Waste Storage Tanks (MVSTs) store the evaporator concentrates from the Liquid Low-Level Radioactive Waste (LLLW) System at the Oak Ridge National Laboratory (ORNL). The eight stainless steel tanks contain approximately 375,000 gallons of liquid and sludge waste. These are some of the newer, better-designed tanks in the LLLW System. They have been evaluated and found by the US Environmental Protection Agency (EPA) and the Tennessee Department of Environment and Conservation to comply with all Federal Facility Agreement requirements for double containment. The operations and maintenance aspects of the tanks were also reviewed by the Defense Nuclear Facilities Safety Board (DNFSB) in September 1994. This document also contains an assessment of the risk to the public and ORNL workers from a leak in one of the MVSTs. Two primary scenarios were investigated: (1) exposure of the public to radiation from drinking Clinch River water contaminated by leaked LLLW, and (2) exposure of on-site workers to radiation by inhaling air contaminated by leaked LLLW. The estimated frequency of a leak from one of the MVSTs is about 8 x 10 -4 events per year, or about once in 1200 years (with a 95% confidence level). If a leak were to occur, the dose to a worker from inhalation would be about 2.3 x 10 -1 mrem (with a 95% confidence level). The dose to a member of the public through the drinking water pathway is estimated to be about 7 x 10 -1 mrem (with a 95% confidence level). By comparison with EPA Safe Drinking Water regulations, the allowable lifetime radiation dose is about 300 mrem. Thus, a postulated LLLW leak from the MVSTs would not add appreciably to an individual's lifetime radiation dose

  1. Results of sampling the contents of the liquid low-level waste evaporator feed tank W-22 at ORNL

    International Nuclear Information System (INIS)

    Sears, M.B.

    1996-09-01

    This report summarizes the results of the fall 1994 sampling of the contents of the liquid low- level waste (LLLW) tank W-22 at the Oak Ridge National Laboratory (ORNL). Tank W-22 is the central collection and holding tank for LLLW at ORNL before the waste is transferred to the evaporators. Samples of the tank liquid and sludge were analyzed to determine (1) the major chemical constituents, (2) the principal radionuclides, (3) the metals listed on the U.S. Environmental Protection Agency (EPA) Contract Laboratory Program Inorganic Target Analyte List, (4) organic compounds, and (5) some physical properties. The organic chemical characterization consisted of the determinations of the EPA Contract Laboratory Program Target Compound List semivolatile compounds, pesticides, and polychlorinated biphenyls (PCBs). Water-soluble volatile organic compounds were also determined. Information provided in this report forms part of the technical basis in support of (1) waste management for the active LLLW system and (2) planning for the treatment and disposal of the waste

  2. Update of the management strategy for Oak Ridge National Laboratory Liquid Low-Level Waste

    International Nuclear Information System (INIS)

    Robinson, S.M.; Abraham, T.J.; DePaoli, S.M.; Walker, A.B.

    1995-04-01

    The strategy for management of the Oak Ridge National Laboratory's (ORNL) radioactively contaminated liquid waste was reviewed in 1991. The latest information available through the end of 1990 on waste characterization, regulations, US Department of Energy (DOE) budget guidance, and research and development programs was evaluated to determine how the strategy should be revised. Few changes are needed to update the strategy to reflect new waste characterization, research, and regulatory information. However, recent budget guidance from DOE indicates that minimum funding will not be sufficient to accomplish original objectives to upgrade the liquid low-level waste (LLLW) system to comply with the Federal Facilities Agreement, provide long-term LLLW treatment capability, and minimize environmental, safety, and health risks. Options are presented that might allow the ORNL LLLW system to continue operations temporarily, but they would significantly reduce its capabilities to handle emergency situations, provide treatment for new waste streams, and accommodate waste from the Environmental Restoration Program and from decontamination and decommissioning of surplus facilities. These options are also likely to increase worker radiation exposure, risk of environmental insult, and generation of solid waste for on-site and off-site disposal/storage beyond existing facility capacities. The strategy will be fully developed after receipt of additional guidance. The proposed budget limitations are too severe to allow ORNL to meet regulatory requirements or continue operations long term

  3. Contingency plan for the Oak Ridge National Laboratory liquid low-level waste system

    International Nuclear Information System (INIS)

    DePaoli, S.M.; Ferrada, J.J.; Abraham, T.J.; Brown, C.H.; Lin, K.H.

    1989-12-01

    Oak Ridge National Laboratory (ORNL) is one of the major Department of Energy (DOE) facilities that performs various research and development (R ampersand D) activities. Liquid low-level waste (LLLW) is generated in the course of this work. The primary objective of this task is to develop specific plans of action to be implemented, in the event that the storage space for the LLLW concentrate should approach the minimum value in the operational flexibility range or a problem should develop concerning storage space available for dilute LLLW. This report considers contingency plans/options in the light of six different scenarios, including ''normal operation'' and five others. Evaluation and prioritization of the options were carried out separately for each case. Brief discussions of these scenarios and contingency plans/options are presented. 20 refs., 14 figs., 14 tabs

  4. Integration of Environmental Restoration and Waste Management Activities for a More Cost-Effective Tank Remediation Program Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    Brill, A.; Clark, R.; Stewart, R.

    1998-01-01

    This paper presents plans and strategies for remediation of the liquid low-level radioactive waste (LLLW) tanks that have been removed from service (also known as inactive tanks) at Oak Ridge National Laboratory (ORNL), Oak Ridge, Tennessee. Much of the LLLW system at ORNL was installed more than 50 years ago. The overall objective of the Inactive Tank Program is to remediate all LLLW tanks that have been removed from service to the extent practicable in accordance with the regulatory requirements

  5. 1996 structural integrity assessments for the Category C Liquid Low-Level Waste Tank Systems at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1996-09-01

    This document provides a report of the efforts made to satisfy the Federal Facility Agreement for the structural integrity certification of ten Category C Liquid Low Level Waste (LLLW) tank systems on the Oak Ridge Reservation in Oak Ridge, Tennessee. Within this document, each Category C tank system is described including the associated pipeline segments evaluated as a part of those tank systems. A separate structural integrity assessment was conducted for each of the LLLW Tank Systems, four of which are located in Melton Valley, and six of which are located in Bethel Valley. The results of the structural integrity assessments are reported herein. The assessments are based on (1) a review of available tank design drawings, (2) a qualitative assessment of corrosion on the tank and pipelines, and primarily (3) leak testing program results

  6. 1996 structural integrity assessments for the Category C Liquid Low-Level Waste Tank Systems at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-09-01

    This document provides a report of the efforts made to satisfy the Federal Facility Agreement for the structural integrity certification of ten Category C Liquid Low Level Waste (LLLW) tank systems on the Oak Ridge Reservation in Oak Ridge, Tennessee. Within this document, each Category C tank system is described including the associated pipeline segments evaluated as a part of those tank systems. A separate structural integrity assessment was conducted for each of the LLLW Tank Systems, four of which are located in Melton Valley, and six of which are located in Bethel Valley. The results of the structural integrity assessments are reported herein. The assessments are based on (1) a review of available tank design drawings, (2) a qualitative assessment of corrosion on the tank and pipelines, and primarily (3) leak testing program results.

  7. Selection of liquid-level monitoring method for the Oak Ridge National Laboratory inactive liquid low-level waste tanks, remedial investigation/feasibility study

    International Nuclear Information System (INIS)

    1994-11-01

    Several of the inactive liquid low-level waste (LLLW) tanks at Oak Ridge National Laboratory contain residual wastes in liquid or solid (sludge) form or both. A plan of action has been developed to ensure that potential environmental impacts from the waste remaining in the inactive LLLW tank systems are minimized. This document describes the evaluation and selection of a methodology for monitoring the level of the liquid in inactive LLLW tanks. Criteria are established for comparison of existing level monitoring and leak testing methods; a preferred method is selected and a decision methodology for monitoring the level of the liquid in the tanks is presented for implementation. The methodology selected can be used to continuously monitor the tanks pending disposition of the wastes for treatment and disposal. Tanks that are empty, are scheduled to be emptied in the near future, or have liquid contents that are very low risk to the environment were not considered to be candidates for installing level monitoring. Tanks requiring new monitoring equipment were provided with conductivity probes; tanks with existing level monitoring instrumentation were not modified. The resulting data will be analyzed to determine inactive LLLW tank liquid level trends as a function of time

  8. Waste Characterization Data Manual for the inactive liquid low-level waste tank systems at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1993-06-01

    This Waste Characterization Data Manual contains the results of an analysis of the contents of liquid low-level waste (LLLW) tanks that have been removed from service in accordance with the requirements of the Oak Ridge National Laboratory (ORNL) Federal Facility Agreement (FFA), Section IX.G.1. Section IX.G.1 of the FFA requires waste characterizations be conducted and provided to EPA and TDEC for all LLLW tanks that are removed from service. These waste characterizations shall include the results of sampling and analysis of the tank contents, including wastes, liquids, and sludges. This manual was first issued as ORNL/ER-80 in June 1992. The waste characterization data were extracted from ORNL reports that described tank sampling and analysis conducted in 1988 for 32 out-of-service tanks. This revision of the manual contains waste characterization data for 54 tanks, including the 32 tanks from the 1988 sampling campaign (Sects. 2.1 through 2.32) and the 22 additional tanks from a subsequent sampling campaign in 1992 and 1993 (Sects. 2.33 through 2.54). Data are presented from analyses of volatile organic compounds, semivolatile organic compounds, polychlorinated biphenyls (PCBs), pesticides, radiochemical compounds, and inorganic compounds. As additional data resulting from analyses of out-of-service tank samples become available, they will be added to this manual

  9. Level trend analysis summary report for Oak Ridge National Laboratory inactive liquid low-level waste tanks

    International Nuclear Information System (INIS)

    1994-09-01

    Oak Ridge National Laboratory facilities have produced liquid low-level waste (LLLW) that is radioactive and/or hazardous. Storage tanks have been used to collect and store these wastes. Most of the collection system, including the tanks, is located below the ground surface. Many of the systems have been removed from service (i.e., are not inactive) but contain residual amounts of waste liquid and sludges. A plan of action has been developed by DOE to ensure that environmental impacts from the waste remaining in the inactive tanks system are minimized. The Federal Facility Agreement (FFA) does not require any type of testing or monitoring for the inactive LLLW tanks that are removed from service but does require waste characterization of tanks contents, risk characterization of tanks removed from service, and remediation of the inactive tanks and their contents. This report is form information only and is not required by the FFA. It includes a description of the methodology and results of level trend analyses for the Category D tanks listed in the FFA that currently belong to the Environmental Restoration Program

  10. Immobilization of low and intermediate level radioactive liquid wastes using some industrial by-product materials

    International Nuclear Information System (INIS)

    Sami, N.M.; EI-Dessouky, M.I.; Abou EI-Nour, F.H.; Abdel-Khalik, M.

    2006-01-01

    Immobilization of low and intermediate level.radioactive liquid wastes in different matrices: ordinary Portland cement and cement mixed with some industrial byproduct: by-pass kiln cement dust, blast furnace slag and ceramic sludge was studied. The effect of these industrial by-product materials on the compressive strength, water immersion, radiation effect and teachability were investigated. The obtained results showed that, these industrial by-product improve the cement pastes where they increase the compressive strength, decrease the leaching rate for radioactive cesium-137 and cobalt-60 ions through the solidified waste forms and increase resistance for y-radiation. It is found that, solidified waste forms of intermediate level liquid waste (ILLW) had high compressive strength values more than those obtained from low level liquid waste (LLLW). The compressive strength increased after immersion in different leachant for one and three months for samples with LLLW higher than those obtained for ILLW. The cumulative fractions released of cesium-137 and cobalt-60 of solidified waste forms of LLLW was lower than those obtained for ILLW

  11. The emergency avoidance solidification campaign of liquid low-level waste at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Myrick, T.E.; Helms, R.E.; Scanlan, T.F.; Schultz, R.M.; Scott, C.B.; Williams, L.C.; Homan, F.J.; Keigan, M.V.; Monk, T.H.; Morrow, R.W.; Van Hoesen, S.D.; du Mont, S.P.

    1992-01-01

    Since the beginning of nuclear research and development activities at the Oak Ridge National Laboratory (ORNL) in 1943, the generation, collection, treatment, storage, and disposal of the liquid low-level waste (LLLW) stream has been an integral part of ORNL's waste management operations. This waste stream, consisting principally of a high nitrate (4.5 molar), high pH (pH 13--14) mixture of reactor, hot cell, and research laboratory liquid radioactive wastes (<5 Ci/gal), has been treated and disposed of in a variety of ways over the years. Most recently, the hydrofracture technology had been used for deep-well disposal of a grout mix of LLLW, cement, fly ash, and other additives. In 1984, this disposal technique was discontinued due to regulatory permitting issues and the need for extensive facility modifications for future operations. With loss of this disposal capability and the continued generation of LLLW by ORNL research activities, the limited tank storage capacity was rapidly being depleted

  12. Project management plan for Waste Area Grouping 5 Old Hydrofracture Facility tanks contents removal at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1998-06-01

    On January 1, 1992, the US Department of Energy (DOE), the US Environmental Protection Agency (EPA) Region IV, and the Tennessee Department of Environment and Conservation (TDEC) signed a Federal Facility Agreement (FFA) concerning the Oak Ridge Reservation. The FFA requires that inactive liquid low-level (radioactive) waste (LLLW) tanks at Oak Ridge National Laboratory (ORNL) be remediated in accordance with requirements of the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). This revision is to update the schedule and designation of responsibilities for the Old Hydrofracture Facility (OHF) tanks contents removal project. The scope of this project is to transfer inventory from the five inactive LLLW tanks at the OHF into the active LLLW system

  13. Laboratory development of methods for centralized treatment of liquid low-level waste at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Arnold, W.D.; Bostick, D.T.; Burgess, M.W.; Taylor, P.A.; Perona, J.J.; Kent, T.E.

    1994-10-01

    Improved centralized treatment methods are needed in the management of liquid low-level waste (LLLW) at Oak Ridge National Laboratory (ORNL). LLLW, which usually contains radioactive contaminants at concentrations up to millicurie-per-liter levels, has accumulated in underground storage tanks for over 10 years and has reached a volume of over 350,000 gal. These wastes have been collected since 1984 and are a complex mixture of wastes from past nuclear energy research activities. The waste is a highly alkaline 4-5 M NaNO 3 solution with smaller amounts of other salts. This type of waste will continue to be generated as a consequence of future ORNL research programs. Future LLLW (referred to as newly generated LLLW or NGLLLW) is expected to a highly alkaline solution of sodium carbonate and sodium hydroxide with a smaller concentration of sodium nitrate. New treatment facilities are needed to improve the manner in which these wastes are managed. These facilities must be capable of separating and reducing the volume of radioactive contaminants to small stable waste forms. Treated liquids must meet criteria for either discharge to the environment or solidification for onsite disposal. Laboratory testing was performed using simulated waste solutions prepared using the available characterization information as a basis. Testing was conducted to evaluate various methods for selective removal of the major contaminants. The major contaminants requiring removal from Melton Valley Storage Tank liquids are 90 Sr and 137 Cs. Principal contaminants in NGLLLW are 9O Sr, 137 Cs, and 106 Ru. Strontium removal testing began with literature studies and scoping tests with several ion-exchange materials and sorbents

  14. FY 1995 separation studies for liquid low-level waste treatment at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Bostick, D.T.; Arnold, W.D.; Burgess, M.W.

    1995-01-01

    During FY 1995, studies were continued to develop improved methods for centralized treatment of liquid low-level waste (LLLW) at Oak Ridge National Laboratory (ORNL). Focus in this reporting period was on (1) identifying the parameters that affect the selective removal of 90 Sr and 137 Cs, two of the principal radioactive contaminants expected in the waste; (2) validating the effectiveness of the treatment methods by testing an ac Melton Valley Storage Tank (MVST) supernate; (3) evaluating the optimum solid/liquid separation techniques for the waste; (4) identifying potential treatment methods for removal of technetium from LLLW; and (5) identifying potential methods for stabilizing the high-activity secondary solid wastes generated by the treatment

  15. Risk-based prioritization for the interim remediation of inactive low-level liquid radioactive waste underground storage tanks at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    Chidambariah, V.; Travis, C.C.; Trabalka, J.R.; Thomas, J.K.

    1992-09-01

    The paper presents a risk-based approach for rapid prioritization of low-level liquid radioactive waste underground storage tanks (LLLW USTs), for possible interim corrective measures and/or ultimate closure. The ranking of LLLW USTs is needed to ensure that tanks with the greatest potential for adverse impact on the environment and human health receive top priority for further evaluation and remediation. Wastes from the LLLW USTs at Oak Ridge National Laboratory were pumped out when the tanks were removed from service. The residual liquids and sludge contain a mixture of radionuclides and chemicals. Contaminants of concern that were identified in the liquid phase of the inactive LLLW USTs include the radionuclides 90 Sr, 137 Cs, and 233 U and the chemicals carbon tetrachloride, trichloroethane, tetrachloroethene, methyl ethyl ketone, mercury, lead, and chromium. The risk-based approach for prioritization of the LLLW USTs is based upon three major criteria: (1) leaking characteristics of the tank, (2) location of the tanks, and (3) toxic potential of the tank contents. Leaking characteristics of LLLW USTs will aid in establishing the potential for the release of contaminants to environmental media. In this study, only the liquid phase was assumed to be released to the environment. Scoring criteria for release potential of LLLW USTs was determined after consideration of the magnitude of any known leaks and the tank type for those that are not known to leak

  16. Characterization of the C1 and C2 waste tanks located in the BVEST system at ORNL

    International Nuclear Information System (INIS)

    Keller, J.M.; Giaquinto, J.M.

    1998-02-01

    There was a major effort to sample and analyze the Active Liquid Low-Level Waste (LLLW) tanks at ORNL which include the Melton Valley Storage Tanks (MVST) and the Bethel Valley Evaporator Service Tanks (BVEST). The characterization data summarized in this report was needed to address waste processing options, address concerns dealing with the performance assessment (PA) data for the Waste Isolation Pilot Plant (WIPP), evaluate the waste characteristics with respect to the waste acceptance criteria (WAC) for WIPP and Nevada Test Site (NTS), address criticality concerns, and meet DOT requirements for transporting the waste. This report discusses the analytical characterization data for the supernatant and sludge in the BVEST waste tanks C-1 and C-2. The isotopic data presented in this report supports the position that fissile isotopes of uranium ( 233 U and 235 U) and plutonium ( 239 Pu and 241 Pu) were denatured as required by the administrative controls stated in the ORNL LLLW waste acceptance criteria (WAC). In general, the sludge in tanks C1 and C2 was found to be hazardous based on RCRA characteristics and the transuranic alpha activity was well above the 100 nCi/g limit for TRU waste. Additional characteristics of the C1 and C2 sludge inventory relative to the WIPP WAC limits for fissile gram equivalent, plutonium equivalent activity, and thermal power from decay heat were estimated from the data in this report and found to be far below the upper boundary for any of the remote-handled transuranic waste (RH-TRU) requirements for disposal of the waste in WIPP

  17. Removal of cesium from aluminum decladding wastes generated in irradiated target processing using a fixed-bed column of resorcinol-formaldehyde resin

    International Nuclear Information System (INIS)

    Brunson, R.R.; Williams, D.F.; Bond, W.D.; Benker, D.E.; Chattin, F.R.; Collins, E.D.

    1994-09-01

    The removal of cesium (Cs) from a low-level liquid waste (LLLW) with a cation-exchange column was demonstrated using a resorcinol-formaldehyde (RF) resin. The RF resin was developed at the Westinghouse Savannah River Laboratory (SRL) and is highly specific for the removal of Cs from an alkaline waste of high sodium content. It was determined that the RF resin would be suitable for removing Cs, the largest gamma radiation contributor, from the LLLW generated at the Radiochemical Engineering Development Center located at the Oak Ridge National Laboratory. Presently, the disposal of the LLLW is limited due to the amount of Cs contained in the waste. Cesium removal from the waste solution offers immediate benefits by conserving valuable tank space and would allow cask shipments of the treated waste should the present Laboratory pipelines become unavailable in the future. Preliminary laboratory tests of the RF resins, supplied from two different sources, were used to design a full-scale cation-exchange column for the removal of Cs from a Mark 42 SRL fuel element dejacketing waste solution. The in-cell tests reproduced the preliminary bench-scale test results. The initial Cs breakthrough range was 85--92 column volumes (CV). The resin capacity for Cs was found to be ∼0.35 meq per gram of resin. A 1.5-liter resin bed loaded a combined ∼1,300 Ci of 134 Cs and 137 Cs. A distribution coefficient of ∼110 CV was determined, based on a 50% Cs breakthrough point. The kinetics of the system was studied by examining the rate parameters; however, it was decided that several more tests would be necessary to define the mass transfer characteristics of the system

  18. Treatment of contaminated wastewater at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Robinson, S.M.; Kent, T.E.; Arnold, W.D.

    1993-01-01

    Oak Ridge National Laboratory (ORNL), an energy research and radioisotope production facility, operates two centralized liquid waste treatment systems, one for liquid low-level waste (LLLW) system and the other for process waste (PW). New regulatory and waste minimization requirements have led ORNL to consider zeolite ion exchangers for removing cesium and strontium from LLLW and PW streams for their economic advantages, selective molecular sieve properties, and ease of disposal. Natural and synthetic zeolites have been compared with inorganic and organic ion exchangers for these applications

  19. Waste characterization data manual for the inactive liquid low-level waste tank systems at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1992-06-01

    This Waste Characterization Data Manual contains the results of an analysis of the contents of liquid low-level waste (LLLW) tanks that have been removed from service in accordance with the requirements of the Oak Ridge Reservation (ORR) Federal Facility Agreement (FFA), Sect. IX.G.1. This manual contains the results of sampling activities that were conducted at the Oak Ridge National Laboratory in 1988. Thirty-three tanks were sampled and analyzed at that time. Sampling of the remaining inactive tanks is currently underway, and data from these tanks will be added to this manual as they become available. Data are presented from analysis of volatile organic compounds, semivolatile organic compounds, polychlorinated biphenyls, radiochemical compounds, and inorganic compounds

  20. Waste characterization data manual for the inactive liquid low-level waste tank systems at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    1992-06-01

    This Waste Characterization Data Manual contains the results of an analysis of the contents of liquid low-level waste (LLLW) tanks that have been removed from service in accordance with the requirements of the Oak Ridge Reservation (ORR) Federal Facility Agreement (FFA), Sect. IX.G.1. This manual contains the results of sampling activities that were conducted at the Oak Ridge National Laboratory in 1988. Thirty-three tanks were sampled and analyzed at that time. Sampling of the remaining inactive tanks is currently underway, and data from these tanks will be added to this manual as they become available. Data are presented from analysis of volatile organic compounds, semivolatile organic compounds, polychlorinated biphenyls, radiochemical compounds, and inorganic compounds.

  1. Waste characterization data manual for the inactive liquid low-level waste tank systems at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Environmental Restoration Program

    Energy Technology Data Exchange (ETDEWEB)

    1992-06-01

    This Waste Characterization Data Manual contains the results of an analysis of the contents of liquid low-level waste (LLLW) tanks that have been removed from service in accordance with the requirements of the Oak Ridge Reservation (ORR) Federal Facility Agreement (FFA), Sect. IX.G.1. This manual contains the results of sampling activities that were conducted at the Oak Ridge National Laboratory in 1988. Thirty-three tanks were sampled and analyzed at that time. Sampling of the remaining inactive tanks is currently underway, and data from these tanks will be added to this manual as they become available. Data are presented from analysis of volatile organic compounds, semivolatile organic compounds, polychlorinated biphenyls, radiochemical compounds, and inorganic compounds.

  2. Cost comparison for REDC pretreatment project

    International Nuclear Information System (INIS)

    Robinson, S.M.; Homan, F.J.

    1997-06-01

    This analysis has been prepared to support the planned expenditure to provide the Radiochemical Engineering Development Center (REDC) with the capability to pretreat their liquid low-level waste (LLLW) before discharging it to the Oak Ridge National Laboratory (ORNL) LLLW system. Pretreatment will remove most of the radioactivity, particularly the transuranic isotopes and Cs-137 from the waste to be discharged. This will render the supernates that accumulate in the storage tanks low-activity Class B low-level wastes rather than high-activity Class B or Class C wastes. The sludges will be Class C rather than remote-handled transuranic (RH-TRU) wastes. When REDC wastes are commingled with other ORNL LLLW, the present-worth treatment and transport costs are higher by a factor of 1.3 for the no-pretreatment cases. This result is consistent with data from similar studies conducted at other sites. Based on the information presented in this analysis, the recommendation is to proceed with REDC treatment projects

  3. Characterization of the BVEST waste tanks located at ORNL

    International Nuclear Information System (INIS)

    Keller, J.M.; Giaquinto, J.M.; Meeks, A.M.

    1997-01-01

    During the fall of 1996 there was a major effort to sample and analyze the Active Liquid Low-Level Waste (LLLW) tanks at ORNL which include the Melton Valley Storage Tanks (MVST) and the Bethel Valley Evaporator Service Tanks (BVEST). The characterization data summarized in this report was needed to address waste processing options, address concerns dealing with the performance assessment (PA) data for the Waste Isolation Pilot Plant (WIPP), evaluate the waste characteristics with respect to the waste acceptance criteria (WAC) for WIPP and Nevada Test Site (NTS), address criticality concerns, and meet DOT requirements for transporting the waste. This report discusses the analytical characterization data for the supernatant and sludge in the BVEST waste tanks W-21, W-22, and W-23. The isotopic data presented in this report supports the position that fissile isotopes of uranium and plutonium were denatured as required by the administrative controls stated in the ORNL LLLW waste acceptance criteria (WAC). In general, the BVEST sludge was found to be hazardous based on RCRA characteristics and the transuranic alpha activity was well above the 100 nCi/g limit for TRU waste. The characteristics of the BVEST sludge relative to the WIPP WAC limits for fissile gram equivalent, plutonium equivalent activity, and thermal power from decay heat were estimated from the data in this report and found to be far below the upper boundary for any of the remote-handled transuranic waste (RH-TRU) requirements for disposal of the waste in WIPP

  4. Liquid and Gaseous Waste Operations Department annual operating report, CY 1992

    Energy Technology Data Exchange (ETDEWEB)

    Gillespie, M.A.; Maddox, J.J.; Scott, C.B.

    1993-03-01

    A total of 6.05 x 10{sup 7} gal of liquid waste was decontaminated by the Process Waste Treatment Plant (PWTP) ion exchange system during CY 1992. This averaged to 115 gpm throughout the year. When necessary, a wastewater sidestream of 50--80 gpm was treated through the use of a natural zeolite treatment system. An additional 8.00 x 10{sup 6} gal (average of 15 gpm throughout the year) were treated by the zeolite system. Therefore, the average total flow treated at the PWTP for CY 1992 was 130 gpm. In mid-June, the zeolite system was repiped to allow it the capability to treat the ion exchange system`s discharge due to rising Cs problems in the wastewater. While being used to treat the ion exchange system`s discharge, it cannot treat a sidestream of wastewater. During the year, the regeneration of the cation exchange resins resulted in the generation of 7.83 x 10{sup 3} gal of liquid low-level waste (LLLW) concentrate and 1.15 x 10{sup 4} gal of LLLW evaporator feed. The head-end softening process (precipitation/clarification) generated 604 drums (4.40 x 10{sup 3} ft{sup 3}) of solid low-level waste sludge. The zeolite treatment system generated approximately 8.40 x 10{sup 2} ft{sup 3} of spent zeolite resin, which was turned over to the Solid Waste Operations Department for disposal. See Table 1 for a monthly summary of activities at the PWTP. Figures 1, 2, 3, and 4 show a comparison of operations at the PWTP in 1992 with previous years. Figure 5 shows a comparison of annual rainfall at Oak Ridge National Laboratory (ORNL) since 1987. A total of 1.55 x 10{sup 8} gal of liquid waste (average of 294 gpm throughout the year) was treated at the Nonradiological Wastewater Treatment Plant (NRWTP). Of this amount, 1.40 x 10{sup 7} gal were treated by the precipitation/clarification process for removal of heavy metals. Twenty-five boxes (1.60 x 10{sup 3} ft{sup 3}) of solid sludge generated by the precipitation/clarification process were removed from the filter press room.

  5. Liquid and Gaseous Waste Operations Department annual operating report, CY 1992

    Energy Technology Data Exchange (ETDEWEB)

    Gillespie, M.A.; Maddox, J.J.; Scott, C.B.

    1993-03-01

    A total of 6.05 x 10[sup 7] gal of liquid waste was decontaminated by the Process Waste Treatment Plant (PWTP) ion exchange system during CY 1992. This averaged to 115 gpm throughout the year. When necessary, a wastewater sidestream of 50--80 gpm was treated through the use of a natural zeolite treatment system. An additional 8.00 x 10[sup 6] gal (average of 15 gpm throughout the year) were treated by the zeolite system. Therefore, the average total flow treated at the PWTP for CY 1992 was 130 gpm. In mid-June, the zeolite system was repiped to allow it the capability to treat the ion exchange system's discharge due to rising Cs problems in the wastewater. While being used to treat the ion exchange system's discharge, it cannot treat a sidestream of wastewater. During the year, the regeneration of the cation exchange resins resulted in the generation of 7.83 x 10[sup 3] gal of liquid low-level waste (LLLW) concentrate and 1.15 x 10[sup 4] gal of LLLW evaporator feed. The head-end softening process (precipitation/clarification) generated 604 drums (4.40 x 10[sup 3] ft[sup 3]) of solid low-level waste sludge. The zeolite treatment system generated approximately 8.40 x 10[sup 2] ft[sup 3] of spent zeolite resin, which was turned over to the Solid Waste Operations Department for disposal. See Table 1 for a monthly summary of activities at the PWTP. Figures 1, 2, 3, and 4 show a comparison of operations at the PWTP in 1992 with previous years. Figure 5 shows a comparison of annual rainfall at Oak Ridge National Laboratory (ORNL) since 1987. A total of 1.55 x 10[sup 8] gal of liquid waste (average of 294 gpm throughout the year) was treated at the Nonradiological Wastewater Treatment Plant (NRWTP). Of this amount, 1.40 x 10[sup 7] gal were treated by the precipitation/clarification process for removal of heavy metals. Twenty-five boxes (1.60 x 10[sup 3] ft[sup 3]) of solid sludge generated by the precipitation/clarification process were removed from the filter

  6. Liquid and Gaseous Waste Operations Department annual operating report, CY 1992

    International Nuclear Information System (INIS)

    Gillespie, M.A.; Maddox, J.J.; Scott, C.B.

    1993-03-01

    A total of 6.05 x 10 7 gal of liquid waste was decontaminated by the Process Waste Treatment Plant (PWTP) ion exchange system during CY 1992. This averaged to 115 gpm throughout the year. When necessary, a wastewater sidestream of 50--80 gpm was treated through the use of a natural zeolite treatment system. An additional 8.00 x 10 6 gal (average of 15 gpm throughout the year) were treated by the zeolite system. Therefore, the average total flow treated at the PWTP for CY 1992 was 130 gpm. In mid-June, the zeolite system was repiped to allow it the capability to treat the ion exchange system's discharge due to rising Cs problems in the wastewater. While being used to treat the ion exchange system's discharge, it cannot treat a sidestream of wastewater. During the year, the regeneration of the cation exchange resins resulted in the generation of 7.83 x 10 3 gal of liquid low-level waste (LLLW) concentrate and 1.15 x 10 4 gal of LLLW evaporator feed. The head-end softening process (precipitation/clarification) generated 604 drums (4.40 x 10 3 ft 3 ) of solid low-level waste sludge. The zeolite treatment system generated approximately 8.40 x 10 2 ft 3 of spent zeolite resin, which was turned over to the Solid Waste Operations Department for disposal. See Table 1 for a monthly summary of activities at the PWTP. Figures 1, 2, 3, and 4 show a comparison of operations at the PWTP in 1992 with previous years. Figure 5 shows a comparison of annual rainfall at Oak Ridge National Laboratory (ORNL) since 1987. A total of 1.55 x 10 8 gal of liquid waste (average of 294 gpm throughout the year) was treated at the Nonradiological Wastewater Treatment Plant (NRWTP). Of this amount, 1.40 x 10 7 gal were treated by the precipitation/clarification process for removal of heavy metals. Twenty-five boxes (1.60 x 10 3 ft 3 ) of solid sludge generated by the precipitation/clarification process were removed from the filter press room

  7. Structural integrity assessments for the category C liquid low-level waste tank systems at the Oak Ridge National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    This document provides a report of the efforts made to satisfy the Federal Facility Agreement (FFA) for the structural integrity certification of 14 Category C Liquid Low Level Waste (LLLW) Tank Systems on the Oak Ridge Reservation (ORR) in Oak Ridge, Tennessee. Within this document, each tank system is described including the associated pipeline segments evaluated as a part of those tank systems. A separate structural integrity assessment was conducted for each of the LLLW Tank Systems, four of which are located in Melton Valley, and ten of which are located in Bethel Valley. The results of the structural integrity assessments are reported herein. The assessments are based on (1) a review of available tank design drawings, (2) a qualitative assessment of corrosion on the tank and pipelines, and primarily, and (3) leak testing program results. Design plans and specifications were reviewed for a general description of the tanks and associated pipelines. Information of primary significance included tank age, material of construction, tank design and construction specifications. Design plans were also reviewed for the layouts and materials of pipeline constructions, and ages of pipelines. Next, a generic corrosion assessment was conducted for each tank system. Information was gathered, when available, related to the historical use of the tank and the likely contents. The corrosion assessments included a qualitative evaluation of the walls of each tank and pipelines associated with each tank, as well as the welds and joints of the systems. A general discussion of the stainless steel types encountered is included in Section 4.0 of this report. The potential for soils to have caused corrosion is also evaluated within the sections on the individual tank systems.

  8. Implementation plan for liquid low-level radioactive waste systems under the FFA for Fiscal years 1996 and 1997 at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1996-10-01

    The Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) requires a Federal Facility Agreement (FFA) for federal facilities placed on the National Priorities List. The Oak Ridge Reservation was placed on that list on December 21, 1989, and the agreement was signed in November 1991 by the Department of Energy Oak Ridge Operations Office (DOE-ORO), the U.S. Environmental Protection Agency (EPA)-Region IV, and the Tennessee Department of Environment and Conservation (TDEC). The effective date of the FFA was January 1, 1992. Section IX and Appendix F of the agreement impose design and operating requirements on the Oak Ridge National Laboratory (ORNL) liquid low-level radioactive waste (LLLW) tank systems and identify several plans, schedules, and assessments that must be submitted to EPA/TDEC for review of approval. The issue of ES/ER-17 ampersand D1 Federal Facility Agreement Plans and Schedules for Liquid Low-Level Radioactive Waste Tank Systems at Oak Ridge National Laboratory, Oak Ridge, Tennessee in March 1992 transmitted to EPA/TDEC those plans and schedules that were required within 60 to 90 days of the FFA effective date. This document updates the plans, schedules, and strategy for achieving compliance with the FFA as presented in ES/ER-17 ampersand D I and summarizes the progress that has been made to date. This document supersedes all updates of ES/ER- 17 ampersand D 1. Chapter 1 describes the history and operation of the ORNL LLLW System and the objectives of the FFA. Chapters 2 through 5 contain the updated plans and schedules for meeting FFA requirements. This document will continue to be periodically reassessed and refined to reflect newly developed information and progress

  9. Implementation plan for liquid low-level radioactive waste systems under the FFA for Fiscal years 1996 and 1997 at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-10-01

    The Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) requires a Federal Facility Agreement (FFA) for federal facilities placed on the National Priorities List. The Oak Ridge Reservation was placed on that list on December 21, 1989, and the agreement was signed in November 1991 by the Department of Energy Oak Ridge Operations Office (DOE-ORO), the U.S. Environmental Protection Agency (EPA)-Region IV, and the Tennessee Department of Environment and Conservation (TDEC). The effective date of the FFA was January 1, 1992. Section IX and Appendix F of the agreement impose design and operating requirements on the Oak Ridge National Laboratory (ORNL) liquid low-level radioactive waste (LLLW) tank systems and identify several plans, schedules, and assessments that must be submitted to EPA/TDEC for review of approval. The issue of ES/ER-17&D1 Federal Facility Agreement Plans and Schedules for Liquid Low-Level Radioactive Waste Tank Systems at Oak Ridge National Laboratory, Oak Ridge, Tennessee in March 1992 transmitted to EPA/TDEC those plans and schedules that were required within 60 to 90 days of the FFA effective date. This document updates the plans, schedules, and strategy for achieving compliance with the FFA as presented in ES/ER-17&D I and summarizes the progress that has been made to date. This document supersedes all updates of ES/ER- 17&D 1. Chapter 1 describes the history and operation of the ORNL LLLW System and the objectives of the FFA. Chapters 2 through 5 contain the updated plans and schedules for meeting FFA requirements. This document will continue to be periodically reassessed and refined to reflect newly developed information and progress.

  10. Implementation of environmental compliance for operating radioactive liquid waste systems at the Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Hooyman, J.H.; Robinson, S.M.

    1992-01-01

    This paper addresses methods being implemented at the Oak Ridge National Laboratory (ORNL) to continue operating while achieving compliance with new standards for liquid low level waste (LLLW) underground storage tank systems. The Superfund Amendment and Reauthorization Act (SARA) of the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) required that the Department of Energy (DOE) execute a Federal Facility Agreement (FFA) with the Environmental Protection Agency (EPA) within 6 months of listing of the ORNL on the National Priorities List. An FFA for ORNL became effective January 1, 1992 among the EPA, DOE, and the Tennessee Department of Environment and Conservation (TDEC). The agreement ensures that environmental impacts resulting from operations at the Oak Ridge Reservation are investigated and remediated to protect the public health, welfare, and environment

  11. The management of radioactive wastes in China

    International Nuclear Information System (INIS)

    Teng Lijun

    2001-01-01

    Full text: This paper wants to introduce the management of radioactive wastes in China. The Management System. The management system of radioactive waste consists of the institutional system and the regulatory system. During the recent 30 years, more than 50 national standards and trades standards have been issued, will be published, or are being prepared, covering essentially all the process of wastes management. State Environmental Protection Administration (SEPA) is in charge of not only the environmental protection view but also nuclear safety surveillance of radioactive waste management, especially in the aspect of HLW disposal. China Atomic Energy Authority (CAEA) is a centralized management of the government responsible. China National Nuclear Corp. (CNNC) is responsible for the management work of radioactive wastes within its system, implementing national policies on wastes management, and siting, construction and operation of LILW repositories and HLW deep geological repository. The Policies of Radioactive Waste Management. The LILW for temporary storage shall be solidified as early as possible. Regional repository for disposal of low-and intermediate-level wastes shall be built. HLW is Centralized disposal in geological repository. The radioactive wastes and waste radioisotope sources must be collected to the signified place (facilities) for a relatively centralized management in each province, The Accompanying Mineral radioactive wastes can be stored in the tailing dumps or connected to the storage place for a temporal storage, then transported to the nearby tailing dumps of installation or tailing dumps of mineral-accompanying waste for an eventual storage. Activities in the Wastes Management Radioactive wastes treatment and conditioning Since 1970, the study on the HLLW vitrification has been initiated. In 1990, a cold test bench for the vitrification (BVPM), introduced from Germany, was completed in Sichuan Province. As for the LILW, the cementation

  12. Risk evaluation of embedded, single-walled liquid low-level waste piping at Oak Ridge National Laboratory. ESD Publication 4315

    International Nuclear Information System (INIS)

    1994-10-01

    Four categories of liquid low-level radioactive waste (LLLW) systems are defined in the Federal Facility Agreement (FFA) for the Oak Ridge Reservation (ORR). Categories A and B are new and fully compliant existing systems, respectively: Category C is singly contained and must be removed from service, and Category D is inactive. The FFA requires that secondary containment and leak detection be provided for all Category A and B piping in the LLLW System at Oak Ridge National Laboratory (ORNL); however, as noted in the D2 revision of the secondary containment design demonstration report (DOE 1994), some sections of single-walled embedded piping in Category B underground vaults at three ORNL facilities do not meet this requirement. A risk evaluation was performed in order compare the potential radiation dose to a member of the public that could result from a postulated leak in the single-walled pipes with projected radiation exposure to the workers who would modify the piping to meet FFA requirements. The risk to human health from replacing segments of embedded, single-walled piping in the LLW system is higher than the risk of leaving the piping as it is

  13. Annual status report on Federal Facility Agreement compliance for the Liquid Low-Level Waste tank systems at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    1994-09-01

    This annual report summarizes the status of Federal Facility Agreement (FFA) compliance activities at Oak Ridge National Laboratory (ORNL) and describes the progress made over the past fiscal year. In fiscal 1994, ORNL issued the final submittal of the risk characterization data for the inactive tanks, the secondary containment design demonstration report for Category B piping, and the FFA Implementation Plan. In addition, two new LLLW tanks serving Building 2026 and the Transported Waste Receiving Facility were installed; leak testing was initiated for all active, singly contained tanks and piping; sources of inflow to inactive tanks were investigated and diversion to process waste was begun; and the W-12 tank system was repaired and a request to allow its temporary use was approved by EPA/TDEC. Programmatic improvements were also made during the year: a system for improved communication of FFA plans and activities was implemented in October 1993, a survey was conducted to ensure that all inactive drains are identified and sealed, and two meetings of the ORNL FFA Technical Advisory Group were held

  14. Sampling and analysis of inactive radioactive waste tanks W-17, W-18, WC-5, WC-6, WC-8, and WC-11 through WC-14 at ORNL

    Energy Technology Data Exchange (ETDEWEB)

    Sears, M.B.; Giaquinto, J.M.; Griest, W.H.; Pack, R.T.; Ross, T.; Schenley, R.L.

    1995-12-01

    The sampling and analysis of nine inactive liquid low-level waste (LLLW) tanks at the Oak Ridge National Laboratory (ORNL) are described-tanks W-17, W-18, WC-5, WC-6, WC-8, and WC-11 through WC-14. Samples of the waste tank liquids and sludges were analyzed to determine (1) the major chemical constituents, (2) the principal radionuclides, (3) metals listed on the US Environmental Protection Agency (EPA) Contract Laboratory Program Inorganic Target Analyte List, (4) organic compounds, and (5) some physical properties. The organic chemical characterization consisted of determinations of the EPA Contract Laboratory Program Target Compound List volatile and semivolatile compounds, pesticides, and polychlorinated biphenyis (PCBs). This report provides data (1) to meet requirements under the Federal Facility Agreement (FFA) for the Oak Ridge Reservation to characterize the contents of LLLW tanks which have been removed from service and (2) to support planning for the treatment and disposal of the wastes.

  15. Sampling and analysis of inactive radioactive waste tanks W-17, W-18, WC-5, WC-6, WC-8, and WC-11 through WC-14 at ORNL

    International Nuclear Information System (INIS)

    Sears, M.B.; Giaquinto, J.M.; Griest, W.H.; Pack, R.T.; Ross, T.; Schenley, R.L.

    1995-12-01

    The sampling and analysis of nine inactive liquid low-level waste (LLLW) tanks at the Oak Ridge National Laboratory (ORNL) are described-tanks W-17, W-18, WC-5, WC-6, WC-8, and WC-11 through WC-14. Samples of the waste tank liquids and sludges were analyzed to determine (1) the major chemical constituents, (2) the principal radionuclides, (3) metals listed on the US Environmental Protection Agency (EPA) Contract Laboratory Program Inorganic Target Analyte List, (4) organic compounds, and (5) some physical properties. The organic chemical characterization consisted of determinations of the EPA Contract Laboratory Program Target Compound List volatile and semivolatile compounds, pesticides, and polychlorinated biphenyis (PCBs). This report provides data (1) to meet requirements under the Federal Facility Agreement (FFA) for the Oak Ridge Reservation to characterize the contents of LLLW tanks which have been removed from service and (2) to support planning for the treatment and disposal of the wastes

  16. Federal Facility Agreement plans and schedules for liquid low-level radioactive waste tank systems at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1993-06-01

    The Superfund Amendments and Reauthorization Act of the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) requires a Federal Facility Agreement (FFA) for federal facilities placed on the National Priorities List. The Oak Ridge Reservation was placed on that list on December 21, 1989, and the agreement was signed in November 1991 by the Department of Energy Oak Ridge Field Office (DOE-OR), the US Environmental Protection Agency (EPA)-Region IV, and the Tennessee Department of Environment and Conservation (TDEC). The effective date of the FFA was January 1, 1992. Section 9 and Appendix F of the agreement impose design and operating requirements on the Oak Ridge National Laboratory (ORNL) liquid low-level radioactive waste (LLLW) tank systems and identify several plans, schedules, and assessments that must be submitted to EPA/TDEC for review or approval. The initial issue of this document in March 1992 transmitted to EPA/TDEC those plans and schedules that were required within 60 to 90 days of the FFA effective date. The current revision of this document updates the plans, schedules, and strategy for achieving compliance with the FFA, and it summarizes the progress that has been made over the past year. Chapter 1 describes the history and operation of the ORNL LLLW System, the objectives of the FFA, the organization that has been established to bring the system into compliance, and the plans for achieving compliance. Chapters 2 through 7 of this report contain the updated plans and schedules for meeting FFA requirements. This document will continue to be periodically reassessed and refined to reflect newly developed information and progress

  17. Project management plan for inactive tanks 3001-B, 3004-B, 3013, and T-30 at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Environmental Restoration Program

    International Nuclear Information System (INIS)

    1995-07-01

    *This document identifies the roles and responsibilities of the project team members and identifies the project scope, schedule, and cost reporting activities for a maintenance activity to remove and dispose of three inactive liquid low-level radioactive waste (LLLW) system tanks and to isolate and fill one LLLW tank with grout. Tanks 3001-B, 3004-B, and T-30 are located in concrete vaults and tank 3013 is buried directly in the soil. The maintenance project consists of cutting the existing pipes attached to the tanks; capping the piping to be left in place; removing the tanks and filling the vaults with grout for tanks 3001-B, 3004-B, and T-30; and filling tank 3013 with grout. Because the LLLW line serving tank 3001-B will be needed for discharging the 3001 canal demineralizer back flush and regeneration waste to tank WC-19, tank 3001-B will be replaced with a section of piping

  18. Development studies for the treatment of ORNL low-level liquid waste

    International Nuclear Information System (INIS)

    Campbell, D.O.; Lee, D.D.; Dillow, T.A.

    1991-11-01

    An experimental program is under way to investigate potential separation methods for application to specific problems relating to the management of low-level liquid wastes (LLLWs) at ORNL. This report summarizes experimental results that were acquired during fiscal year 1990 and have not been previously reported elsewhere. Measurements are presented for cesium and strontium removal from simulated high-salt waste compositions, using both inorganic ion- exchange sorbents and organic ion-exchange resins, and for one experiment with actual LLLW supernate solution from Melton Valley Storage Tank W-26, using inorganic sorbents. The purpose of the study was to acquire an extensive data base to support the development of flowsheets for decontamination of the LLLW currently stored at ORNL. Experimental measurements with inorganic ion exchangers focused on batch separations of cesium using several transition-metal hexacyanoferrate(2) compositions (ferrocyanides) and of strontium using titanium oxide-based sorbents. Cesium distribution coefficients in the range of 1 x 10 6 were generally observed with nickel and cobalt ferrocyanides at pH values ≤11, yielding DFs of about 100 with 100 ppm sorbent in a single-stage batch separation. Most organic ion-exchange resins are not very effective for cesium removal from such high salt concentrations, but a new resorcinol-based resin developed at the Savannah River Site was found to be considerably superior to any other such material tested. Several chelating resins were effective for removing strontium from the waste simulants. An ion-exchange column test successfully demonstrated the simultaneous removal of both cesium and strontium from a waste simulant solution

  19. A risk-based approach to prioritize underground storage tanks

    International Nuclear Information System (INIS)

    Chidambariah, V.; Travis, C.C.; Trabalka, J.R.; Thomas, J.K.

    1992-01-01

    The purpose of this paper is to present a risk-based approach for rapid prioritization of low level liquid radioactive waste underground storage tanks (LLLW USTs) for possible interim corrective measures and/or ultimate closure. The ranking of LLLW USTs is needed to ensure that tanks with the greatest potential for adverse impact on the environment and human health receive top priority for further evaluation and remediation. Wastes from the LLLW USTs at the Oak Ridge National Laboratory (ORNL) were pumped out at the time the tanks were removed from service. The residual liquids and sludge contain a mixture of radionuclides and chemicals. Contaminants of concern that were identified in the liquid phase of the inactive LLLW USTs include, the radionuclides, 9O Sr, 137 Cs and 233 U and the chemicals, carbon tetrachloride, trichloroethene, tetrachloroethene, methyl ethyl ketone, mercury, lead and chromium. The risk-based approach for prioritization of the LLLW USTs is based upon three major criteria: (1) leaking characteristics of the tank; (2) location of the tanks; and (3) toxic potential of the tank contents

  20. Out-of-tank evaporator demonstration. Final report

    International Nuclear Information System (INIS)

    Lucero, A.J.; Jennings, H.L.; VanEssen, D.C.

    1998-02-01

    The project reported here was conducted to demonstrate a skid-mounted, subatmospheric evaporator to concentrate liquid low-level waste (LLLW) stored in underground tanks at Oak Ridge National Laboratory (ORNL). This waste is similar to wastes stored at Hanford and Savannah River. A single-stage subatmospheric evaporator rated to produce 90 gallons of distillate per hour was procured from Delta Thermal, Inc., of Pensacola, Florida, and installed in an existing building. During the 8-day demonstration, 22,000 gal of LLLW was concentrated by 25% with the evaporator system. Decontamination factors achieved averaged 5 x 10 6 (i.e., the distillate contained five million times less Cesium 137 than the feed). Evaporator performance substantially exceeded design requirements and expectations based on bench-scale surrogate test data. Out-of tank evaporator demonstration operations successfully addressed the feasibility of hands-on maintenance. Demonstration activities indicate that: (1) skid-mounted, mobile equipment is a viable alternative for the treatment of ORNL LLLW, and (2) hands-on maintenance and decontamination for movement to another site is achievable. Cost analysis show that 10% of the demonstration costs will be immediately recovered by elimination of solidification and disposal costs. The entire cost of the demonstration can be recovered by processing the inventory of Melton Valley Storage Tank waste and/or sluice water prior to solidifications. An additional savings of approximately $200,000 per year can be obtained by processing newly generated waste through the system. The results indicate that this type of evaporator system should be considered for application across the DOE complex. 25 refs., 11 figs., 2 tabs

  1. Filtration of Oak Ridge National Laboratory simulated liquid low-level waste

    International Nuclear Information System (INIS)

    Fowler, V.L.; Hewitt, J.D.

    1989-08-01

    A method for disposal of Oak Ridge National Laboratory's (ORNL's) liquid low-level radioactive waste (LLLW) is being developed in which the material will be solidified in cement and stored in an aboveground engineered storage facility. The acceptability of the final waste form rests in part on the presence or absence of transuranic isotopes. Filtration methods to remove transuranic isotopes from the bulk liquid stored in the Melton Valley Storage Tanks (MVST) were investigated in this study. Initial batch studies using waste from MVST indicate that >99.9% of the transuranic isotopes can be removed from the bulk liquid by simple filtration. Bench-scale studies with a nonradioactive surrogate waste indicate that >99.5% of the suspended solids can be removed from the bulk liquid via inertial crossflow filtration. 4 refs., 3 figs., 11 tabs

  2. Wastewater Triad Project: Solid-Liquid Separator FY 2000 Deployment

    International Nuclear Information System (INIS)

    Walker, J.F.

    2001-01-01

    The Wastewater Triad Project (WTP) consists of three operational units: the cesium removal (CsR) system, the out-of-tank evaporator (OTE) system, and the solid/liquid separation (SLS) system. These systems were designed to reduce the volume and radioactivity of low-level liquid waste (LLLW) stored in the Melton Valley Storage Tanks (MVSTs) and are operated independently or in series in order to accomplish the treatment goals. Each is a modular, skid-mounted system that is self-contained, individually shielded, and designed to be decontaminated and removed once the project has been completed. The CsR and OTE systems are installed inside Building 7877; the SLS system is installed adjacent to the east side of the MVST 7830 vault cover. The CsR, which consists of ion-exchange equipment for removing 137 Cs from LLLW, was demonstrated in 1997. During the Cesium Removal Demonstration, 30,853 gal of radioactive supernate was processed and 1142 Ci of 137 Cs was removed from the supernate and loaded onto 70 gal of a crystalline silicotitanate sorbent manufactured by UOP, Inc. The OTE system is a subatmospheric single-stage evaporator system designed to concentrate LLLW to smaller volumes. It was previously demonstrated in 1996 and was operated in 1998 to process about 80,000 gal of LLLW. The SLS system was designed to filter and remove suspended solids from LLLW in order to minimize further accumulation of sludge in new storage tanks or to prevent fouling of CsR and OTE systems. The SLS was installed and demonstrated in 1999; ∼45,000 gal of radioactive supernate was processed during the demonstration

  3. Project management plan for Waste Area Grouping 5 Old Hydrofracture Facility tanks content removal at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1996-07-01

    The purpose of the Old Hydrofracture Facility (OHF) tanks content removal project is to transfer inventory from the five OHF tanks located in Waste Area Grouping (WAG) 5 at Oak Ridge National Laboratory (ORNL) to the Melton Valley Storage Tanks (MVST) liquid low-level (radioactive) waste (LLLW) storage facility, and remediate the remaining OHF tank shells. The major activities involved are identified in this document along with the organizations that will perform the required actions and their roles and responsibilities for managing the project

  4. Design assessment for the Melton Valley Storage Tanks capacity increase at Oak Ridge National Laboratory under the Federal Facility Agreement, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1995-11-01

    This project was initiated to find ways to increase storage capacity for the liquid low-level waste (LLLW) system at the Oak Ridge National Laboratory and satisfy the Federal Facility Agreement (FFA) requirement for the transfer of LLW from existing tank systems not in full FFA compliance

  5. In-situ radiation measurements of the C1 and C2 waste storage tank vault

    International Nuclear Information System (INIS)

    Yong, L.K.; Womble, P.C.; Weems, L.D.

    1996-09-01

    In August of 1996, the Applied Radiation Measurements Department (ARMD) of the Waste Management and Remedial Action Division (WMRAD) at Oak Ridge National Laboratory (ORNL) was tasked with characterizing the radiation fields in the C 1 and C 2 Liquid Low Level Waste (LLLW) tank vault located at ORNL. These in-situ measurements were made to provide data for evaluating the potential radiological conditions for personnel working in or around the vault during future planned activities. This report describes the locations where measurements were made, the types of radiation detection instruments used, the methods employed, the problems encountered and resolved, and discusses the results obtained

  6. Preliminary engineering report waste area grouping 5, Old Hydrofracture Facility Tanks content removal project, Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1996-06-01

    The Superfund Amendments and Reauthorization Act of the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) requires a Federal Facilities Agreement (FFA) for federal facilities placed on the National Priorities List. The Oak Ridge Reservation was placed on that list on December 21, 1989, and the agreement was signed in November 1991 by the U.S. Department of Energy (DOE) Oak Ridge Operations Office, the U.S. Environmental Protection Agency (EPA) Region IV, and the Tennessee Department of Environment and Conservation (TDEC). The effective date of the FFA is January 1, 1992. One objective of the FFA is to ensure that liquid low-level waste (LLLW) tanks that are removed from service are evaluated and remediated through the CERCLA process. Five inactive LLLW tanks, designated T-1, T-2, T-3, T-4, and T-9, located at the Old Hydrofracture (OHF) Facility in the Melton Valley area of Oak Ridge National Laboratory (ORNL) have been evaluated and are now entering the remediation phase. As a precursor to final remediation, this project will remove the current liquid and sludge contents of each of the five tanks (System Requirements Document, Appendix A). It was concluded in the Engineering Evaluation/Cost Analysis [EE/CA] for the Old Hydrofracture Facility Tanks (DOE 1996) that sluicing and pumping the contaminated liquid and sludge from the five OHF tanks was the preferred removal action. Evaluation indicated that this alternative meets the removal action objective and can be effective, implementable, and cost-effective. Sluicing and removing the tank contents was selected because this action uses (1) applicable experience, (2) the latest information about technologies and techniques for removing the wastes from the tanks, and (3) activities that are currently acceptable for storage of transuranic (TRU) mixed waste

  7. Waste reduction program at Oak Ridge National Laboratory during CY 1990

    International Nuclear Information System (INIS)

    Homan, M.D.; Kendrick, C.M.; Schultz, R.M.

    1991-03-01

    Oak Ridge National Laboratory is a multipurpose research and development facility owned and operated by the Department of Energy and managed under subcontract by Martin Marietta Energy Systems, Inc. ORNL's primary role is the support of energy technology through applied research and engineering development and scientific research in basic and physical sciences. ORNL also is a valuable resource in the quest to solve problems of national importance, such as nuclear and chemical waste management. In addition, ORNL produces useful radioactive and stable isotopes for medical and energy research that are unavailable from the private sector. These activities are conducted predominantly on small scales in over 900 individual R ampersand D laboratories at ORNL. Activities are diverse, variable, and frequently generate some type of waste material. In contrast to the typical production facility's few large-volume waste ''streams,'' ORNL has numerous small ones, including radioactive LLLW, liquid PW, solid radioactive waste (LLW and TRU waste), hazardous waste, industrial waste, and mixed waste (containing both hazardous and radioactive constituents). The wide diversity of waste complicates both management and compliance with reporting requirements that are designed to apply to production facilities. The reduction of all ORNL waste generation is an economically logical response to the rising costs and liabilities of waste management and disposal. Human health and the environment are best protected from all types of wastes by prevention of their generation from the start. At ORNL, efforts to minimize many wastes have been mandated by federal regulations and DOE, Energy Systems, and internal policies. Real progress has been achieved. As researchers become increasingly aware of the advantages of improving the efficiency of their procedures and as divisions launch systematic evaluations of activities with reduction potential, further reductions will be achieved. 24 refs., 8 figs

  8. Risk characterization data manual for Category D inactive liquid low-level waste tank systems at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1997-04-01

    This manual reports the results of a risk characterization of Category D inactive liquid low-level radioactive waste (LLLW) at the Oak Ridge National Laboratory (ORNL). The risk characterization is required by the Federal Facility Agreement between the Department of Energy-Oak Ridge Operations Office, the Environmental Protection Agency-Region IV, and the Tennessee Department of Environment and Conservation. The intent of the risk characterization is to determine relative priorities for assessment and remediation. When the scores for all tanks had been weighted and summed, the tanks were ranked in descending order on the basis of their total scores. The highest possible score for a tank is 30. The descending order represents the recommended priorities for evaluation: the higher the score, the higher the priority for evaluation

  9. Detailed Leak Detection Test Plan and schedule for the Oak Ridge National Laboratory liquid low-level waste active pipelines

    International Nuclear Information System (INIS)

    1994-08-01

    This document provides a detailed leak detection test plan and schedule for the pipelines that comprise the active, singly contained, portion of the liquid low-level waste (LLLW) system at the Oak Ridge National Laboratory (ORNL). This plan was prepared in response to the requirements of the Federal Facility Agreement for the Oak Ridge Reservation (FFA) between the U.S. Department of Energy (DOE), the U.S. Environmental Protection Agency (EPA) and the Tennessee Department of Environment and Conservation (TDEC). The LLLW system is an interconnected complex of tanks and pipelines. The FFA distinguishes four categories of tank and pipeline systems within this complex: new or replacement tank systems with secondary containment (Category A), existing tank systems with secondary containment (Category B), existing tank systems without secondary containment (Category C), and tank systems that have been removed from service (Category D). The FFA specifically requires that DOE demonstrate that the Category C systems are not leaking. This plan and schedule addresses testing of the Category C pipelines and the pipelines which are part of Category B tank systems that do not fully meet the requirements for secondary containment as listed in the FFA. A key feature of the plan is that it is based on the use of performance standards for the conduct of release detection testing, and on the use of methods whose performance has been evaluated and shown to meet those standards. Another feature of the plan is that it is based in part on relevant portions of current federal EPA regulations applicable to underground storage tanks and pipelines (UST systems) that store and transfer petroleum products and other hazardous substances. While the FFA does not require that the testing at ORNL follow these regulations, the regulations do provide industry- and regulator-accepted performance standards, as well as a schedule for repeated testing of UST components

  10. Detailed leak detection test plan and schedule for Oak Ridge National Laboratory liquid low-level waste active tanks

    International Nuclear Information System (INIS)

    1995-01-01

    This document provides a plan and schedule for leak testing a portion of the Liquid Low-Level Waste (LLLW) system at the Oak Ridge National Laboratory (ORNL), Oak Ridge, Tennessee. It is a concise version of a more general leak testing plan that was prepared in response to the requirements of the Federal Facility Agreement (FFA) for the Oak Ridge Reservation (ORR). This plan includes a schedule for the initial reporting of the leak test results from the various tanks that will be tested. The FFA distinguishes four categories of tank and pipeline systems: new systems (Category A), doubly contained systems (Category B), singly contained systems (Category C), and inactive systems (Category D). The FFA specifically requires leak testing of the Category C systems; there are 14 such tanks addressed in this plan, plus one tank (W-12) that has been temporarily returned to service based on EPA and TDEC concurrence. A schedule for testing these tanks is also included. The plan and schedule also addresses an additional 15 Category B tanks have been demonstrated to meet secondary containment requirements. While these 15 tanks are addressed in this plan for the sake of completeness, they have been removed from the leak testing program based on the design demonstrations that show secondary containment. It is noted that the general plan included 42 tanks. Since that report was issued, 26 of those tanks have passed secondary containment design demonstrations and subsequently have been removed from this leak testing plan. In addition, one tank (LA-104) has been removed from service. Accordingly, this document addresses 15 of the LLLW tanks in the system; plans for testing the pipelines will be described in a separate document

  11. Detailed leak detection test plan and schedule for Oak Ridge National Laboratory liquid low-level waste active tanks

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-01-01

    This document provides a plan and schedule for leak testing a portion of the Liquid Low-Level Waste (LLLW) system at the Oak Ridge National Laboratory (ORNL), Oak Ridge, Tennessee. It is a concise version of a more general leak testing plan that was prepared in response to the requirements of the Federal Facility Agreement (FFA) for the Oak Ridge Reservation (ORR). This plan includes a schedule for the initial reporting of the leak test results from the various tanks that will be tested. The FFA distinguishes four categories of tank and pipeline systems: new systems (Category A), doubly contained systems (Category B), singly contained systems (Category C), and inactive systems (Category D). The FFA specifically requires leak testing of the Category C systems; there are 14 such tanks addressed in this plan, plus one tank (W-12) that has been temporarily returned to service based on EPA and TDEC concurrence. A schedule for testing these tanks is also included. The plan and schedule also addresses an additional 15 Category B tanks have been demonstrated to meet secondary containment requirements. While these 15 tanks are addressed in this plan for the sake of completeness, they have been removed from the leak testing program based on the design demonstrations that show secondary containment. It is noted that the general plan included 42 tanks. Since that report was issued, 26 of those tanks have passed secondary containment design demonstrations and subsequently have been removed from this leak testing plan. In addition, one tank (LA-104) has been removed from service. Accordingly, this document addresses 15 of the LLLW tanks in the system; plans for testing the pipelines will be described in a separate document.

  12. Waste management plan for inactive LLLW tanks 3001-B, 3004-B, 3013, and T-30 at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Environmental Restoration Program

    International Nuclear Information System (INIS)

    1995-07-01

    This Project Waste Management Plan identifies the waste that is expected to be generated in connection with the removal and disposition of inactive liquid low-level radioactive waste tanks 3001-B, 3004-B, and T-30, and grouting of tank 3013 at the Oak Ridge National Laboratory and the isolation of these tanks' associated piping systems. The plan also identifies the organization, responsibilities, and administrative controls that will be followed to ensure proper handling of the waste

  13. Concentration of Melton Valley Storage Tank surrogates with a wiped film evaporator

    International Nuclear Information System (INIS)

    Boring, M.D.; Farr, L.L.; Fowler, V.L.; Hewitt, J.D.

    1994-08-01

    This report describes experiments to determine whether a wiped film evaporator (WFE) might be used to concentrate low-level liquid radioactive waste (LLLW). Solutions used in these studies were surrogates that contain no radionuclides. The compositions of the surrogates were based on one of Oak Ridge National Laboratory's (ORNL's) Melton Valley Storage Tanks (MVSTs). It was found that a WFE could be used to concentrate LLLW to varying degrees by manipulating various parameters. The parameters studied were rotor speed, process fluid feed temperature and feed rate, and evaporator temperature. Product consistency varied from an unsaturated liquid to a dry powder. Volume reductions up to 68% were achieved. System decontamination factors were consistently in the range of 10 4

  14. Evaporation studies on Oak Ridge National Laboratory liquid low-level waste

    Energy Technology Data Exchange (ETDEWEB)

    Fowler, V.L. [PAI Corp., Oak Ridge, TN (United States); Perona, J.J. [Oak Ridge National Lab., TN (United States)

    1993-03-01

    Evaporation studies were performed with Melton Valley storage tank liquid low-level radioactive waste concentrate and with surrogates (nonradioactive) to determine the feasibility of a proposed out-of-tank-evaporation project. Bench-scale tests indicated that volume reductions ranging from 30 to 55% could be attained. Vendor-site tests were conducted (with surrogate waste forms) using a bench-scale single-stage, low-pressure (subatmospheric), low-temperature (120 to 173{degree}F) evaporator similar to units in operation at several nuclear facilities. Vendor tests were successful; a 30% volume reduction was attained with no crystallization of solids and no foaming, as would be expected from a high pH solution. No fouling of the heat exchanger surfaces occurred during these tests. It is projected that 52,000 to 120,000 gal of water could be evaporated from the supernate stored in the Melton and Bethel Valley liquid low-level radioactive waste (LLLW) storage tanks with this type of evaporator.

  15. Risk characterization data manual for Category D inactive liquid low-level waste tank systems at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1993-09-01

    This manual reports the results of a risk characterization of Category D inactive liquid low-level radioactive waste (LLLW) underground storage tanks (Uses) at the Oak Ridge National Laboratory (ORNL). The risk characterization is required by the Federal Facility Agreement between the Department of Energy-Oak Ridge Operations Office, the Environmental Protection Agency-Region IV, and the Tennessee Department of Environment and Conservation. The intent of the risk characterization is to determine relative priorities for assessment and remediation. A total of 55 FFA Category D inactive LLLW tanks are discussed in this manual. Of the 39 tanks at ORNL that have been accepted into the Environmental Restoration (ER) Program, all have been sampled for preliminary characterization, except for 5 tanks that were found to be empty plus I that was found not to exist. The remaining 16 tanks are in the Waste Management (WM) Program. Twelve were sampled for preliminary characterization, and four were found empty. Each sampled tank was scored on a scale of I to 5 on the basis of three criteria: (1) leak characteristics, (2) location, and (3) toxicological characteristics of residual sludges and liquids. Each criterion was assigned a weighing factor based on perceived importance. The criterion score multiplied by the weighting factor equaled the tank's total score for that criterion. The three weighted criterion scores for each tank were then summed for a total score for that tank. When the scores for all tanks had been weighted and summed, the tanks were ranked in descending order on the basis of their total scores. The highest possible score for a tank is 30. The descending rank order represents the recommended priorities for evaluation: the higher the score, the higher the priority for evaluation. Of the 54 tanks sampled in the risk characterization, 23 tanks scored 16 or higher, 11 scored between 10 and 15, 5 scored between 4 and 9, and 15 scored 3 or less

  16. Risk characterization data manual for Category D inactive liquid low-level waste tank systems at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1993-07-01

    This manual reports the results of a risk characterization of Category D inactive liquid low-level radioactive waste (LLLW) underground storage tanks (USTs) at the Oak Ridge National Laboratory (ORNL). The risk characterization is required by the Federal Facility Agreement between the Department of Energy-Oak Ridge Operations Office, the Environmental Protection Agency-Region IV, and the Tennessee Department of Environment and Conservation. The intent of the risk characterization is to determine relative priorities for assessment and remediation. A total of 55 FFA Category D inactive LLLW tanks are discussed in this manual. Of the 39 tanks at ORNL that have been accepted into the Environmental Restoration (ER) Pregrain, all have been sampled for preliminary characterization, except for 5 tanks that were found to be empty plus 1 that was found not to exist. The remaining 16 tanks are in the Waste Management (WM) Program. Twelve were sampled for preliminary characterization, and four were found empty. Each sampled tank was scored on a scale of I to 5 on the basis of three criteria: (1) leak characteristics, (2) location, and (3) toxicological characteristics of residual sludges and liquids. Each criterion was assigned a weighing factor based on perceived importance. The criterion score multiplied by the weighting factor equaled the tank's total score for that criterion. The three weighted criterion scores for each tank were then summed for a total score for that tank. When the scores for all tanks had been weighted and summed, the tanks were ranked in descending order on the basis of their total scores. The highest possible score for a tank is 30. The descending rank order represents the recommended priorities for evaluation: the higher the score, the higher the priority for evaluation. Of the 54 tanks sampled in the risk characterization, 23 tanks scored 16 or higher, 11 scored between 10 and 15, 5 scored between 4 and 9, and 15 scored 3 or less

  17. Characterization of the MVST waste tanks located at ORNL

    Energy Technology Data Exchange (ETDEWEB)

    Keller, J.M.; Giaquinto, J.M.; Meeks, A.M.

    1996-12-01

    During the fall of 1996 there was a major effort to sample and analyze the Active Liquid Low-Level Waste (LLLW) tanks at ORNL which include the Melton Valley Storage Tanks (MVST) and the Bethel Valley Evaporator Service Tanks (BVEST). The characterization data summarized in this report was needed to address waste processing options, address concerns of the performance assessment (PA) data for the Waste Isolation Pilot Plant (WIPP), evaluate the characteristics with respect to the waste acceptance criteria (WAC) for WIPP and Nevada Test Site (NTS), address criticality concerns, and meet DOT requirements for transporting the waste. This report only discusses the analytical characterization data for the MVST waste tanks. The isotopic data presented in this report support the position that fissile isotopes of uranium and plutonium were ``denatured`` as required by administrative controls. In general, MVST sludge was found to be both hazardous by RCRA characteristics and the transuranic alpha activity was well about the limit for TRU waste. The characteristics of the MVST sludge relative to the WIPP WAC limits for fissile gram equivalent, plutonium equivalent activity, and thermal power from decay heat, were estimated from the data in this report and found to be far below the upper boundary for any of the remote-handled transuranic waste requirements for disposal of the waste in WIPP.

  18. Characterization of the MVST waste tanks located at ORNL

    International Nuclear Information System (INIS)

    Keller, J.M.; Giaquinto, J.M.; Meeks, A.M.

    1996-12-01

    During the fall of 1996 there was a major effort to sample and analyze the Active Liquid Low-Level Waste (LLLW) tanks at ORNL which include the Melton Valley Storage Tanks (MVST) and the Bethel Valley Evaporator Service Tanks (BVEST). The characterization data summarized in this report was needed to address waste processing options, address concerns of the performance assessment (PA) data for the Waste Isolation Pilot Plant (WIPP), evaluate the characteristics with respect to the waste acceptance criteria (WAC) for WIPP and Nevada Test Site (NTS), address criticality concerns, and meet DOT requirements for transporting the waste. This report only discusses the analytical characterization data for the MVST waste tanks. The isotopic data presented in this report support the position that fissile isotopes of uranium and plutonium were ''denatured'' as required by administrative controls. In general, MVST sludge was found to be both hazardous by RCRA characteristics and the transuranic alpha activity was well about the limit for TRU waste. The characteristics of the MVST sludge relative to the WIPP WAC limits for fissile gram equivalent, plutonium equivalent activity, and thermal power from decay heat, were estimated from the data in this report and found to be far below the upper boundary for any of the remote-handled transuranic waste requirements for disposal of the waste in WIPP

  19. Inactive tanks remediation program strategy and plans for Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1997-11-01

    This report presents plans and strategies for remediation of the liquid low-level waste (LLLW) tanks that have been removed from service (also known as inactive tanks) at Oak Ridge National Laboratory (ORNL) in Oak Ridge, Tennessee. These plans and strategies will be carried out by the Environmental Restoration Program's Inactive LLLW Tank Program at ORNL. The approach to remediation of each tank or tank farm must be adapted in response to the specific circumstances of individual tank sites. The approach will be tailored to accommodate feedback on lessons learned from previous tank remediation activities and will not be a rigid step-by-step approach that must be conducted identically for every tank system. However, the approach will follow a multistep decision process. The overall objective of the Inactive Tank Program is to remediate all LLLW tanks that have been removed from service to the extent practicable in accordance with the FFA requirements. The Inactive Tank Program will focus on the remediation of the tank residues and tank shell. This strategy is discussed in detail in this report

  20. Root cause analysis for waste area grouping 1, Batch I, Series 1 Tank T-30 project at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1996-08-01

    Four inactive liquid low-level waste (LLLW) tanks were scheduled for remedial actions as the Batch L Series I Tank Project during fiscal year (FY) 1995. These tanks are 3001-B, 3004-B, T-30, and 3013. The initial tank remediation project was conducted as a maintenance action. One project objective was to gain experience in remediation efforts (under maintenance actions) to assist in conducting remedial action projects for the 33 remaining inactive LLLW tanks. Batch I, Series 1 project activities resulted in the successful remediation of tanks 3001-B, 3004-B, and 3013. Tank T-30 remedial actions were halted as a result of information obtained during waste characterization activities. The conditions discovered on tank T-30 would not allow completion of tank removal and smelting as originally planned. A decision was made to conduct a root cause analysis of Tank T-30 events to identify and, where possible, correct weaknesses that, if uncorrected, could result in similar delays for completion of future inactive tank remediation projects. The objective of the analysis was to determine why a portion of expected project end results for Tank T-30 were not fully achieved. The root cause analysis evaluates project events and recommends beneficial improvements for application to future projects. This report presents the results of the Batch I, Series root cause analysis results and makes recommendations based on that analysis

  1. Design demonstrations for category B tank systems at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    1994-11-01

    This document presents design demonstrations conducted of liquid low-level waste (LLLW) storage tank systems located at the Oak Ridge National Laboratory (ORNL). Demonstration of the design of these tank systems has been stipulated by the Federal Facility Agreement (FFA) between the US Environmental Protection Agency (EPA)-Region IV; the Tennessee Department of Environment and Conservation (TDEC); and the DOE. The FFA establishes four categories of tanks. These are: Category A -- New or replacement tank systems with secondary containment; Category B -- Existing tank systems with secondary containment; Category C -- Existing tank systems without secondary containment; Category D -- Existing tank systems without secondary containment that are removed from service. This document provides a design demonstration of the secondary containment and ancillary equipment of 11 tank systems listed in the FFA as Category B. The design demonstration for each tank is presented.

  2. Design demonstrations for category B tank systems at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1994-11-01

    This document presents design demonstrations conducted of liquid low-level waste (LLLW) storage tank systems located at the Oak Ridge National Laboratory (ORNL). Demonstration of the design of these tank systems has been stipulated by the Federal Facility Agreement (FFA) between the US Environmental Protection Agency (EPA)-Region IV; the Tennessee Department of Environment and Conservation (TDEC); and the DOE. The FFA establishes four categories of tanks. These are: Category A -- New or replacement tank systems with secondary containment; Category B -- Existing tank systems with secondary containment; Category C -- Existing tank systems without secondary containment; Category D -- Existing tank systems without secondary containment that are removed from service. This document provides a design demonstration of the secondary containment and ancillary equipment of 11 tank systems listed in the FFA as Category B. The design demonstration for each tank is presented

  3. Inactive tanks remediation program strategy and plans for Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1997-03-01

    This report presents plans and strategies for remediation of the liquid low-level waste (LLLW) tanks that have been removed from service (also known as inactive tanks) at Oak Ridge National Laboratory (ORNL) in Oak Ridge, Tennessee. These plans and strategies will be carried out by the Environmental Restoration Program's Inactive LLLW Tank Program at ORNL. These tanks are defined as Category D tanks because they are existing tank systems without secondary containment that are removed from service. The approach to remediation of each tank or tank farm must be adapted in response to the specific circumstances of individual tank sites. The approach will be tailored to accommodate feedback on lessons learned from previous tank remediation activities and will not be a rigid step-by-step approach that must be conducted identically for every tank system. However, the approach will follow a multistep decision process. The overall objective of the Inactive Tank Program is to remediate all LLLW tanks that have been removed from service to the extent practicable in accordance with the FFA requirements. The Inactive Tank Program will focus on the remediation of the tank residues (i.e., contents after tank has been emptied) and tank shell. This strategy is discussed in detail in this report

  4. Design alternatives report for the cesium removal demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Walker, J.F. Jr.; Youngblood, E.L.

    1995-09-01

    The Cesium Removal Demonstration (CRD) project will use liquid low-level waste (LLLW) stored in the Oak Ridge National Laboratory Melton Valley Storage Tanks to demonstrate cesium removal from sodium nitrate-based supernates. This report presents the results of a conceptual design study to scope the alternatives for conducting the demonstration at ORNL. Factors considered included (1) sorbent alternatives, (2) facility alternatives, (3) process alternatives, (4) process disposal alternatives, and (5) relative cost comparisons. Recommendations included (1) that design of the CRD system move forward based on information obtained to date from tests with Savannah River Resin, (2) that the CRD system be designed so it could use crystalline silicotitanates (CST) if an engineered form of CST becomes available prior to the CRD, (3) that the system be designed without the capability for resin regeneration, (4) that the LLLW solidification facility be used for the demonstration (5) that vitrification of the loaded resins from the CRD be demonstrated at the Savannah River Site, and (6) that permanent disposal of the loaded and/or vitrified resin at the Nevada Test Site be pursued.

  5. Design alternatives report for the cesium removal demonstration

    International Nuclear Information System (INIS)

    Walker, J.F. Jr.; Youngblood, E.L.

    1995-09-01

    The Cesium Removal Demonstration (CRD) project will use liquid low-level waste (LLLW) stored in the Oak Ridge National Laboratory Melton Valley Storage Tanks to demonstrate cesium removal from sodium nitrate-based supernates. This report presents the results of a conceptual design study to scope the alternatives for conducting the demonstration at ORNL. Factors considered included (1) sorbent alternatives, (2) facility alternatives, (3) process alternatives, (4) process disposal alternatives, and (5) relative cost comparisons. Recommendations included (1) that design of the CRD system move forward based on information obtained to date from tests with Savannah River Resin, (2) that the CRD system be designed so it could use crystalline silicotitanates (CST) if an engineered form of CST becomes available prior to the CRD, (3) that the system be designed without the capability for resin regeneration, (4) that the LLLW solidification facility be used for the demonstration (5) that vitrification of the loaded resins from the CRD be demonstrated at the Savannah River Site, and (6) that permanent disposal of the loaded and/or vitrified resin at the Nevada Test Site be pursued

  6. WASTE TREATMENT BUILDING SYSTEM DESCRIPTION DOCUMENT

    Energy Technology Data Exchange (ETDEWEB)

    F. Habashi

    2000-06-22

    The Waste Treatment Building System provides the space, layout, structures, and embedded subsystems that support the processing of low-level liquid and solid radioactive waste generated within the Monitored Geologic Repository (MGR). The activities conducted in the Waste Treatment Building include sorting, volume reduction, and packaging of dry waste, and collecting, processing, solidification, and packaging of liquid waste. The Waste Treatment Building System is located on the surface within the protected area of the MGR. The Waste Treatment Building System helps maintain a suitable environment for the waste processing and protects the systems within the Waste Treatment Building (WTB) from most of the natural and induced environments. The WTB also confines contaminants and provides radiological protection to personnel. In addition to the waste processing operations, the Waste Treatment Building System provides space and layout for staging of packaged waste for shipment, industrial and radiological safety systems, control and monitoring of operations, safeguards and security systems, and fire protection, ventilation and utilities systems. The Waste Treatment Building System also provides the required space and layout for maintenance activities, tool storage, and administrative facilities. The Waste Treatment Building System integrates waste processing systems within its protective structure to support the throughput rates established for the MGR. The Waste Treatment Building System also provides shielding, layout, and other design features to help limit personnel radiation exposures to levels which are as low as is reasonably achievable (ALARA). The Waste Treatment Building System interfaces with the Site Generated Radiological Waste Handling System, and with other MGR systems that support the waste processing operations. The Waste Treatment Building System interfaces with the General Site Transportation System, Site Communications System, Site Water System, MGR

  7. WASTE TREATMENT BUILDING SYSTEM DESCRIPTION DOCUMENT

    International Nuclear Information System (INIS)

    Habashi, F.

    2000-01-01

    The Waste Treatment Building System provides the space, layout, structures, and embedded subsystems that support the processing of low-level liquid and solid radioactive waste generated within the Monitored Geologic Repository (MGR). The activities conducted in the Waste Treatment Building include sorting, volume reduction, and packaging of dry waste, and collecting, processing, solidification, and packaging of liquid waste. The Waste Treatment Building System is located on the surface within the protected area of the MGR. The Waste Treatment Building System helps maintain a suitable environment for the waste processing and protects the systems within the Waste Treatment Building (WTB) from most of the natural and induced environments. The WTB also confines contaminants and provides radiological protection to personnel. In addition to the waste processing operations, the Waste Treatment Building System provides space and layout for staging of packaged waste for shipment, industrial and radiological safety systems, control and monitoring of operations, safeguards and security systems, and fire protection, ventilation and utilities systems. The Waste Treatment Building System also provides the required space and layout for maintenance activities, tool storage, and administrative facilities. The Waste Treatment Building System integrates waste processing systems within its protective structure to support the throughput rates established for the MGR. The Waste Treatment Building System also provides shielding, layout, and other design features to help limit personnel radiation exposures to levels which are as low as is reasonably achievable (ALARA). The Waste Treatment Building System interfaces with the Site Generated Radiological Waste Handling System, and with other MGR systems that support the waste processing operations. The Waste Treatment Building System interfaces with the General Site Transportation System, Site Communications System, Site Water System, MGR

  8. Infectious waste feed system

    Science.gov (United States)

    Coulthard, E. James

    1994-01-01

    An infectious waste feed system for comminuting infectious waste and feeding the comminuted waste to a combustor automatically without the need for human intervention. The system includes a receptacle for accepting waste materials. Preferably, the receptacle includes a first and second compartment and a means for sealing the first and second compartments from the atmosphere. A shredder is disposed to comminute waste materials accepted in the receptacle to a predetermined size. A trough is disposed to receive the comminuted waste materials from the shredder. A feeding means is disposed within the trough and is movable in a first and second direction for feeding the comminuted waste materials to a combustor.

  9. Characterization of the Old Hydrofracture Facility (OHF) waste tanks located at ORNL

    International Nuclear Information System (INIS)

    Keller, J.M.; Giaquinto, J.M.; Meeks, A.M.

    1997-04-01

    The Old Hydrofracture Facility (OHF) is located in Melton Valley within Waste Area Grouping (WAG) 5 and includes five underground storage tanks (T1, T2, T3, T4, and T9) ranging from 13,000 to 25,000 gal. capacity. During the period of 1996--97 there was a major effort to re-sample and characterize the contents of these inactive waste tanks. The characterization data summarized in this report was needed to address waste processing options, examine concerns dealing with the performance assessment (PA) data for the Waste Isolation Pilot Plant (WIPP), evaluate the waste characteristics with respect to the waste acceptance criteria (WAC) for WIPP and Nevada Test Site (NTS), address criticality concerns, and to provide the data needed to meet DOT requirements for transporting the waste. This report discusses the analytical characterization data collected on both the supernatant and sludge samples taken from three different locations in each of the OHF tanks. The isotopic data presented in this report supports the position that fissile isotopes of uranium ( 233 U and 235 U) do not satisfy the denature ratios required by the administrative controls stated in the ORNL LLLW waste acceptance criteria (WAC). The fissile isotope of plutonium ( 239 Pu and 241 Pu) are diluted with thorium far above the WAC requirements. In general, the OHF sludge was found to be hazardous (RCRA) based on total metal content and the transuranic alpha activity was well above the 100 nCi/g limit for TRU waste. The characteristics of the OHF sludge relative to the WIPP WAC limits for fissile gram equivalent, plutonium equivalent activity, and thermal power from decay heat were estimated from the data in this report and found to be far below the upper boundary for any of the remote-handled transuranic waste (RH-TRU) requirements for disposal of the waste in WIPP

  10. Hanford Site Tank Waste Remediation System

    International Nuclear Information System (INIS)

    1993-05-01

    The US Department of Energy's (DOE) Hanford Site in southeastern Washington State has the most diverse and largest amount of highly radioactive waste of any site in the US. High-level radioactive waste has been stored in large underground tanks since 1944. A Tank Waste Remediation System Program has been established within the DOE to safely manage and immobilize these wastes in anticipation of permanent disposal in a geologic repository. The Hanford Site Tank Waste Remediation System Waste Management 1993 Symposium Papers and Viewgraphs covered the following topics: Hanford Site Tank Waste Remediation System Overview; Tank Waste Retrieval Issues and Options for their Resolution; Tank Waste Pretreatment - Issues, Alternatives and Strategies for Resolution; Low-Level Waste Disposal - Grout Issue and Alternative Waste Form Technology; A Strategy for Resolving High-Priority Hanford Site Radioactive Waste Storage Tank Safety Issues; Tank Waste Chemistry - A New Understanding of Waste Aging; Recent Results from Characterization of Ferrocyanide Wastes at the Hanford Site; Resolving the Safety Issue for Radioactive Waste Tanks with High Organic Content; Technology to Support Hanford Site Tank Waste Remediation System Objectives

  11. Implementation of SAP Waste Management System

    International Nuclear Information System (INIS)

    Frost, M.L.; LaBorde, C.M.; Nichols, C.D.

    2008-01-01

    The Y-12 National Security Complex (Y-12) assumed responsibility for newly generated waste on October 1, 2005. To ensure effective management and accountability of newly generated waste, Y-12 has opted to utilize SAP, Y-12's Enterprise Resource Planning (ERP) tool, to track low-level radioactive waste (LLW), mixed waste (MW), hazardous waste, and non-regulated waste from generation through acceptance and disposal. SAP Waste will include the functionality of the current waste tracking system and integrate with the applicable modules of SAP already in use. The functionality of two legacy systems, the Generator Entry System (GES) and the Waste Information Tracking System (WITS), and peripheral spreadsheets, databases, and e-mail/fax communications will be replaced by SAP Waste. Fundamentally, SAP Waste will promote waste acceptance for certification and disposal, not storage. SAP Waste will provide a one-time data entry location where waste generators can enter waste container information, track the status of their waste, and maintain documentation. A benefit of the new system is that it will provide a single data repository where Y-12's Waste Management organization can establish waste profiles, verify and validate data, maintain inventory control utilizing hand-held data transfer devices, schedule and ship waste, manage project accounting, and report on waste handling activities. This single data repository will facilitate the production of detailed waste generation reports for use in forecasting and budgeting, provide the data for required regulatory reports, and generate metrics to evaluate the performance of the Waste Management organization and its subcontractors. SAP Waste will replace the outdated and expensive legacy system, establish tools the site needs to manage newly generated waste, and optimize the use of the site's ERP tool for integration with related business processes while promoting disposition of waste. (authors)

  12. Hazardous Waste Manifest System

    Science.gov (United States)

    EPA’s hazardous waste manifest system is designed to track hazardous waste from the time it leaves the generator facility where it was produced, until it reaches the off-site waste management facility that will store, treat, or dispose of the waste.

  13. Composite waste analysis system

    International Nuclear Information System (INIS)

    Wachter, J.R.; Hagan, R.C.; Bonner, C.A.; Malcom, J.E.; Camp, K.L.

    1993-01-01

    Nondestructive analysis (NDA) of radioactive waste forms an integral component of nuclear materials accountability programs and waste characterization acceptance criterion. However, waste measurements are often complicated by unknown isotopic compositions and the potential for concealment of special nuclear materials in a manner that is transparent to gamma-ray measurement instruments. To overcome these complications, a new NDA measurement system has been developed to assay special nuclear material in both transuranic and low level waste from the same measurement platform. The system incorporates a NaI detector and customized commercial software routines to measure small quantities of radioactive material in low level waste. Transuranic waste analysis is performed with a coaxial HPGE detector and uses upgraded PC-based segmented gamma scanner software to assay containers up to 55 gal. in volume. Gamma-Ray isotopics analysis of both waste forms is also performed with this detector. Finally, a small neutron counter using specialized software is attached to the measurement platform to satisfy safeguards concerns related to nuclear materials that are not sensed by the gamma-ray instruments. This report describes important features and capabilities of the system and presents a series of test measurements that are to be performed to define system parameters

  14. LCA of Solid Waste Management Systems

    DEFF Research Database (Denmark)

    Bakas, Ioannis; Laurent, Alexis; Clavreul, Julie

    2018-01-01

    The chapter explores the application of LCA to solid waste management systems through the review of published studies on the subject. The environmental implications of choices involved in the modelling setup of waste management systems are increasingly in the spotlight, due to public health...... concerns and new legislation addressing the impacts from managing our waste. The application of LCA to solid waste management systems, sometimes called “waste LCA”, is distinctive in that system boundaries are rigorously defined to exclude all life cycle stages except from the end-of-life. Moreover...... LCA on solid waste systems....

  15. Waste Information Data System user guide

    International Nuclear Information System (INIS)

    Dietz, L.A.

    1996-09-01

    The Waste Information Data System (also known as the Environmental Sites Database) is a computerized system that provides a traceable source of information about environmental waste sites at the U.S. Department of Energy's Hanford Site in Richland, Washington. The system includes discovery, rejected, and accepted waste sites. The purpose of the system is to assist long-range waste management and environmental restoration planning by providing validated and reliable information about waste sites. The system is used to track site investigation, remediation, and closure-action activities

  16. Tank waste remediation system dangerous waste training plan

    International Nuclear Information System (INIS)

    POHTO, R.E.

    1999-01-01

    This document outlines the dangerous waste training program developed and implemented for all Treatment, Storage, and Disposal (TSD) Units operated by Lockheed Martin Hanford Corporation (LMHC) Tank Waste Remediation System (TWRS) in the Hanford 200 East, 200 West and 600 Areas and the <90 Day Accumulation Area at 209E. Operating TSD Units operated by TWRS are: the Double-Shell Tank (DST) System (including 204-AR Waste Transfer Building), the 600 Area Purgewater Storage and the Effluent Treatment Facility. TSD Units undergoing closure are: the Single-Shell Tank (SST) System, 207-A South Retention Basin, and the 216-B-63 Trench

  17. Intelligent Information System for Waste Management; Jaetehuollon aelykaes tietojaerjestelmae iWaste

    Energy Technology Data Exchange (ETDEWEB)

    Mustonen, T. [Kuopio Univ. (Finland)

    2003-07-01

    'iWaste' is a project for developing and testing intelligent computational methods for more comprehensive waste management. Important issues are automated reporting, optimisation of waste collection, forecasting of waste formation, data handling of waste disposal sites and simulation and modelling of regional waste management. The main objective of the project is to identify and analyse known sources of information and to link them to the existing information processing systems in the field of waste management. Additionally, the goal is to identify and test functional elements that could be developed further to software products and services. The results of the project can be categorized into three sectors. Firstly, the guidelines for a comprehensive information system in waste management will be created. This includes the requirement specifications of different parties, definitions for the data exchange interfaces and an architectural plan for software products capable of co-operative processing. Secondly, the central parts of the intelligent information system will be piloted using the research database collected in the early stage of the project. The main topics investigated are data quality, the use of Geographical Information Systems (GIS), automated reporting, optimisation of waste collection and forecasting of waste formation. Additionally, the pilot information system can be utilized in derivative projects to speed up the starting phases of them. This makes it possible to create persistent development of waste management information systems both academically and commercially. (orig.)

  18. Waste Acceptance System Requirements document (WASRD)

    International Nuclear Information System (INIS)

    1993-01-01

    This Waste Acceptance System Requirements document (WA-SRD) describes the functions to be performed and the technical requirements for a Waste Acceptance System for accepting spent nuclear fuel (SNF) and high-level radioactive waste (HLW) into the Civilian Radioactive Waste Management System (CRWMS). This revision of the WA-SRD addresses the requirements for the acceptance of HLW. This revision has been developed as a top priority document to permit DOE's Office of Environmental Restoration and Waste Management (EM) to commence waste qualification runs at the Savannah River Site's (SRS) Defense Waste Processing Facility (DWPF) in a timely manner. Additionally, this revision of the WA-SRD includes the requirements from the Physical System Requirements -- Accept Waste document for the acceptance of SNF. A subsequent revision will fully address requirements relative to the acceptance of SNF

  19. 1995 Baseline solid waste management system description

    International Nuclear Information System (INIS)

    Anderson, G.S.; Konynenbelt, H.S.

    1995-09-01

    This provides a detailed solid waste system description that documents the treatment, storage, and disposal (TSD) strategy for managing Hanford's solid low-level waste, low-level mixed waste, transuranic and transuranic mixed waste, and greater-than-Class III waste. This system description is intended for use by managers of the solid waste program, facility and system planners, as well as system modelers. The system description identifies the TSD facilities that constitute the solid waste system and defines these facilities' interfaces, schedules, and capacities. It also provides the strategy for treating each of the waste streams generated or received by the Hanford Site from generation or receipt through final destination

  20. Waste Information Management System with 2012-13 Waste Streams - 13095

    International Nuclear Information System (INIS)

    Upadhyay, H.; Quintero, W.; Lagos, L.; Shoffner, P.; Roelant, D.

    2013-01-01

    The Waste Information Management System (WIMS) 2012-13 was updated to support the Department of Energy (DOE) accelerated cleanup program. The schedule compression required close coordination and a comprehensive review and prioritization of the barriers that impeded treatment and disposition of the waste streams at each site. Many issues related to waste treatment and disposal were potential critical path issues under the accelerated schedule. In order to facilitate accelerated cleanup initiatives, waste managers at DOE field sites and at DOE Headquarters in Washington, D.C., needed timely waste forecast and transportation information regarding the volumes and types of radioactive waste that would be generated by DOE sites over the next 40 years. Each local DOE site historically collected, organized, and displayed waste forecast information in separate and unique systems. In order for interested parties to understand and view the complete DOE complex-wide picture, the radioactive waste and shipment information of each DOE site needed to be entered into a common application. The WIMS application was therefore created to serve as a common application to improve stakeholder comprehension and improve DOE radioactive waste treatment and disposal planning and scheduling. WIMS allows identification of total forecasted waste volumes, material classes, disposition sites, choke points, technological or regulatory barriers to treatment and disposal, along with forecasted waste transportation information by rail, truck and inter-modal shipments. The Applied Research Center (ARC) at Florida International University (FIU) in Miami, Florida, developed and deployed the web-based forecast and transportation system and is responsible for updating the radioactive waste forecast and transportation data on a regular basis to ensure the long-term viability and value of this system. (authors)

  1. Waste Information Management System with 2012-13 Waste Streams - 13095

    Energy Technology Data Exchange (ETDEWEB)

    Upadhyay, H.; Quintero, W.; Lagos, L.; Shoffner, P.; Roelant, D. [Applied Research Center, Florida International University, 10555 West Flagler Street, Suite 2100, Miami, FL 33174 (United States)

    2013-07-01

    The Waste Information Management System (WIMS) 2012-13 was updated to support the Department of Energy (DOE) accelerated cleanup program. The schedule compression required close coordination and a comprehensive review and prioritization of the barriers that impeded treatment and disposition of the waste streams at each site. Many issues related to waste treatment and disposal were potential critical path issues under the accelerated schedule. In order to facilitate accelerated cleanup initiatives, waste managers at DOE field sites and at DOE Headquarters in Washington, D.C., needed timely waste forecast and transportation information regarding the volumes and types of radioactive waste that would be generated by DOE sites over the next 40 years. Each local DOE site historically collected, organized, and displayed waste forecast information in separate and unique systems. In order for interested parties to understand and view the complete DOE complex-wide picture, the radioactive waste and shipment information of each DOE site needed to be entered into a common application. The WIMS application was therefore created to serve as a common application to improve stakeholder comprehension and improve DOE radioactive waste treatment and disposal planning and scheduling. WIMS allows identification of total forecasted waste volumes, material classes, disposition sites, choke points, technological or regulatory barriers to treatment and disposal, along with forecasted waste transportation information by rail, truck and inter-modal shipments. The Applied Research Center (ARC) at Florida International University (FIU) in Miami, Florida, developed and deployed the web-based forecast and transportation system and is responsible for updating the radioactive waste forecast and transportation data on a regular basis to ensure the long-term viability and value of this system. (authors)

  2. Waste management system alternatives for treatment of wastes from spent fuel reprocessing

    International Nuclear Information System (INIS)

    McKee, R.W.; Swanson, J.L.; Daling, P.M.

    1986-09-01

    This study was performed to help identify a preferred TRU waste treatment alternative for reprocessing wastes with respect to waste form performance in a geologic repository, near-term waste management system risks, and minimum waste management system costs. The results were intended for use in developing TRU waste acceptance requirements that may be needed to meet regulatory requirements for disposal of TRU wastes in a geologic repository. The waste management system components included in this analysis are waste treatment and packaging, transportation, and disposal. The major features of the TRU waste treatment alternatives examined here include: (1) packaging (as-produced) without treatment (PWOT); (2) compaction of hulls and other compactable wastes; (3) incineration of combustibles with cementation of the ash plus compaction of hulls and filters; (4) melting of hulls and failed equipment plus incineration of combustibles with vitrification of the ash along with the HLW; (5a) decontamination of hulls and failed equipment to produce LLW plus incineration and incorporation of ash and other inert wastes into HLW glass; and (5b) variation of this fifth treatment alternative in which the incineration ash is incorporated into a separate TRU waste glass. The six alternative processing system concepts provide progressively increasing levels of TRU waste consolidation and TRU waste form integrity. Vitrification of HLW and intermediate-level liquid wastes (ILLW) was assumed in all cases

  3. Transport concept of new waste management system (inner packaging system)

    International Nuclear Information System (INIS)

    Hakozaki, K.; Wada, R.

    2004-01-01

    Kobe Steel, Ltd. (KSL) and Transnuclear Tokyo (TNT) have jointly developed a new waste management system concept (called ''Inner packaging system'') for high dose rate wastes generated from nuclear power plants under cooperation with Tokyo Electric Power Company (TEPCO). The inner packaging system is designed as a total management system dedicated to the wastes from nuclear plants in Japan, covering from the wastes conditioning in power plants up to the disposal in final repository. This paper presents the new waste management system concept

  4. Decision and systems analysis for underground storage tank waste retrieval systems and tank waste remediation system

    International Nuclear Information System (INIS)

    Bitz, D.A.; Berry, D.L.; Jardine, L.J.

    1994-03-01

    Hanford's underground tanks (USTs) pose one of the most challenging hazardous and radioactive waste problems for the Department of Energy (DOE). Numerous schemes have been proposed for removing the waste from the USTs, but the technology options for doing this are largely unproven. To help assess the options, an Independent Review Group (IRG) was established to conduct a broad review of retrieval systems and the tank waste remediation system. The IRG consisted of the authors of this report

  5. Packaged low-level waste verification system

    Energy Technology Data Exchange (ETDEWEB)

    Tuite, K.; Winberg, M.R.; McIsaac, C.V. [Idaho National Engineering Lab., Idaho Falls, ID (United States)

    1995-12-31

    The Department of Energy through the National Low-Level Waste Management Program and WMG Inc. have entered into a joint development effort to design, build, and demonstrate the Packaged Low-Level Waste Verification System. Currently, states and low-level radioactive waste disposal site operators have no method to independently verify the radionuclide content of packaged low-level waste that arrives at disposal sites for disposition. At this time, the disposal site relies on the low-level waste generator shipping manifests and accompanying records to ensure that low-level waste received meets the site`s waste acceptance criteria. The subject invention provides the equipment, software, and methods to enable the independent verification of low-level waste shipping records to ensure that the site`s waste acceptance criteria are being met. The objective of the prototype system is to demonstrate a mobile system capable of independently verifying the content of packaged low-level waste.

  6. Development of vitrified waste storage system

    International Nuclear Information System (INIS)

    Namiki, S.; Tani, Y.

    1993-01-01

    The authors have developed the radioactive waste vitrification technology and the vitrified waste storage technology. Regarding the vitrified waste storage system development, the authors have completed the design of two types of storage systems. One is a forced convection air cooling system, and the other is a natural convection air cooling system. They have carried out experiments and heat transfer analysis, seismic analysis, vitrified waste dropping and radiation shielding, etc. In this paper, the following three subjects, are discussed: the cooling air flow experiment, the wind effect experiment on the cooling air flow pattern, using a wind tunnel apparatus and the structural integrity evaluation on the dropping vitrified waste

  7. WASTES: Waste System Transportation and Economic Simulation--Version 2:

    International Nuclear Information System (INIS)

    Sovers, R.A.; Shay, M.R.; Ouderkirk, S.J.; McNair, G.W.; Eagle, B.G.

    1988-02-01

    The Waste System Transportation and Economic Simulation (WASTES) Technical Reference Manual was written to describe and document the algorithms used within the WASTES model as implemented in Version 2.23. The manual will serve as a reference for users of the WASTES system. The intended audience for this manual are knowledgeable users of WASTES who have an interest in the underlying principles and algorithms used within the WASTES model. Each algorithm is described in nonprogrammers terminology, and the source and uncertainties of the constants in use by these algorithms are described. The manual also describes the general philosophy and rules used to: 1) determine the allocation and priority of spent fuel generation sources to facility destinations, 2) calculate transportation costs, and 3) estimate the cost of at-reactor ex-pool storage. A detailed description of the implementation of many of the algorithms is also included in the WASTES Programmers Reference Manual (Shay and Buxbaum 1986a). This manual is separated into sections based on the general usage of the algorithms being discussed. 8 refs., 14 figs., 2 tabs

  8. Design demonstrations for Category B tank systems at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1992-07-01

    This document presents design demonstrations conducted of liquid low-level waste (LLLW) storage tank systems located at the Oak Ridge National Laboratory (ORNL). ORNL has conducted research in energy related fields since 1943. The facilities used to conduct the research include nuclear reactors, chemical pilot plants, research laboratories, radioisotope production laboratories, and support facilities. These facilities have produced a variety of radioactive and/or hazardous wastes. These wastes have been stored and transported through an extensive network of piping and tankage. Demonstration of the design of these tank systems has been stipulated by the Federal Facility Agreement (FFA) between the US Environmental Protection Agency (EPA) - Region IV; the Tennessee Department of Environment and Conservation (TDEC); and the DOE. The FFA establishes four categories of tanks. These are: Category A -- New or Replacement Tank Systems with Secondary Containment; Category B -- Existing Tank Systems with Secondary Containment; Category C -- Existing Tank Systems without Secondary Containment; and Category D -- Existing Tank Systems without Secondary Containment that are; Removed from Service. This document provides a design demonstration of the secondary containment and ancillary equipment of 11 tank systems listed in the FFA as Category ''B.'' The design demonstration for each tank is presented in Section 2. The design demonstrations were developed using information obtained from the design drawings (as-built when available), construction specifications, and interviews with facility operators. The assessments assume that each tank system was constructed in accordance with the design drawings and construction specifications for that system unless specified otherwise. Each design demonstration addresses system conformance to the requirements of the FFA (Appendix F, Subsection C)

  9. Physical System Requirements: Transport Waste

    International Nuclear Information System (INIS)

    1992-04-01

    The Nuclear Waste Policy Act (NWPA) of 1982 assigned to the Department of Energy (DOE) the responsibility for managing the disposal of spent nuclear fuel and high-level radioactive waste and established the Office of Civilian Radioactive Waste Management (OCRWM) for that purpose. The Secretary of Energy, in his November 1989 report to Congress (DOE/RW-0247), announced three new initiatives for the conduct of the Civilian Radioactive Waste Management (CRWM) program. One of these initiatives was to establish improved management structure and procedures. In response, OCRWM performed a management study and the Director subsequently issued the Management Systems Improvement Strategy (MSIS) on August 10, 1990, calling for a rigorous implementation of systems engineering principles with a special emphasis on functional analysis. The functional analysis approach establishes a framework for integrating the program management efforts with the technical requirements analysis into a single, unified, and consistent program. This approach recognizes that just as the facilities and equipment comprising the physical waste management system must perform certain functions, so must certain programmatic and management functions be performed within the program in order to successfully bring the physical system into being. The objective of this document is to establish the essential functions, requirements, interfaces, and system architecture for the Transport Waste mission. Based upon the Nuclear Waste Policy Act, the mission of the Waste Transportation System is to transport SNF and/or HLW from the purchaser's/producer's facilities to, and between, NWMS facilities in a manner that protects the health and safety of the public and of workers and the quality of the environment makes effective use of financial and other resources, and to the fullest extent possible uses the private sector

  10. 1993 baseline solid waste management system description

    International Nuclear Information System (INIS)

    Armacost, L.L.; Fowler, R.A.; Konynenbelt, H.S.

    1994-02-01

    Pacific Northwest Laboratory has prepared this report under the direction of Westinghouse Hanford Company. The report provides an integrated description of the system planned for managing Hanford's solid low-level waste, low-level mixed waste, transuranic waste, and transuranic mixed waste. The primary purpose of this document is to illustrate a collective view of the key functions planned at the Hanford Site to handle existing waste inventories, as well as solid wastes that will be generated in the future. By viewing this system as a whole rather than as individual projects, key facility interactions and requirements are identified and a better understanding of the overall system may be gained. The system is described so as to form a basis for modeling the system at various levels of detail. Model results provide insight into issues such as facility capacity requirements, alternative system operating strategies, and impacts of system changes (ie., startup dates). This description of the planned Hanford solid waste processing system: defines a baseline system configuration; identifies the entering waste streams to be managed within the system; identifies basic system functions and waste flows; and highlights system constraints. This system description will evolve and be revised as issues are resolved, planning decisions are made, additional data are collected, and assumptions are tested and changed. Out of necessity, this document will also be revised and updated so that a documented system description, which reflects current system planning, is always available for use by engineers and managers. It does not provide any results generated from the many alternatives that will be modeled in the course of analyzing solid waste disposal options; such results will be provided in separate documents

  11. Waste Feed Delivery Transfer System Analysis

    Energy Technology Data Exchange (ETDEWEB)

    JULYK, L.J.

    2000-05-05

    This document provides a documented basis for the required design pressure rating and pump pressure capacity of the Hanford Site waste-transfer system in support of the waste feed delivery to the privatization contractor for vitrification. The scope of the analysis includes the 200 East Area double-shell tank waste transfer pipeline system and the associated transfer system pumps for a11 Phase 1B and Phase 2 waste transfers from AN, AP, AW, AY, and A2 Tank Farms.

  12. Waste Feed Delivery Transfer System Analysis

    International Nuclear Information System (INIS)

    JULYK, L.J.

    2000-01-01

    This document provides a documented basis for the required design pressure rating and pump pressure capacity of the Hanford Site waste-transfer system in support of the waste feed delivery to the privatization contractor for vitrification. The scope of the analysis includes the 200 East Area double-shell tank waste transfer pipeline system and the associated transfer system pumps for a11 Phase 1B and Phase 2 waste transfers from AN, AP, AW, AY, and A2 Tank Farms

  13. Liquid waste treatment system. Final report

    International Nuclear Information System (INIS)

    Baker, M.N.; Houston, H.M.

    1999-01-01

    Pretreatment of high-level liquid radioactive waste (HLW) at the West Valley Demonstration Project (WVDP) involved three distinct processing operations: decontamination of liquid HLW in the Supernatant Treatment System (STS); volume reduction of decontaminated liquid in the Liquid Waste Treatment System (LWTS); and encapsulation of resulting concentrates into an approved cement waste form in the Cement Solidification System (CSS). Together, these systems and operations made up the Integrated Radwaste Treatment System (IRTS)

  14. Process equipment waste and process waste liquid collection systems

    International Nuclear Information System (INIS)

    1990-06-01

    The US DOE has prepared an environmental assessment for construction related to the Process Equipment Waste (PEW) and Process Waste Liquid (PWL) Collection System Tasks at the Idaho Chemical Processing Plant. This report describes and evaluates the environmental impacts of the proposed action (and alternatives). The purpose of the proposed action would be to ensure that the PEW and PWL collection systems, a series of enclosed process hazardous waste, and radioactive waste lines and associated equipment, would be brought into compliance with applicable State and Federal hazardous waste regulations. This would be accomplished primarily by rerouting the lines to stay within the buildings where the lined floors of the cells and corridors would provide secondary containment. Leak detection would be provided via instrumented collection sumps locate din the cells and corridors. Hazardous waste transfer lines that are routed outside buildings will be constructed using pipe-in-pipe techniques with leak detection instrumentation in the interstitial area. The need for the proposed action was identified when a DOE-sponsored Resource Conservation and Recovery Act (RCRA) compliance assessment of the ICPP facilities found that singly-contained waste lines ran buried in the soil under some of the original facilities. These lines carried wastes with a pH of less than 2.0, which were hazardous waste according to the RCRA standards. 20 refs., 7 figs., 1 tab

  15. Waste Management System Description Document (WMSD)

    International Nuclear Information System (INIS)

    1992-02-01

    This report is an appendix of the ''Waste Management Description Project, Revision 1''. This appendix is about the interim approach for the technical baseline of the waste management system. It describes the documentation and regulations of the waste management system requirements and description. (MB)

  16. Waste monitoring system for effluents

    International Nuclear Information System (INIS)

    Macdonald, J.M.; Gomez, B.; Trujillo, L.; Malcom, J.E.; Nekimken, H.; Pope, N.; Bibeau, R.

    1995-07-01

    The waste monitoring system in use at Los Alamos National Laboratory's Plutonium Facility, TA-55, is a computer-based system that proves real-time information on industrial effluents. Remote computers monitor discharge events and data moves from one system to another via a local area network. This report describes the history, system design, summary, instrumentation list, displays, trending screens, and layout of the waste monitoring system

  17. Miscellaneous data for the 1996--1997 sampling and analysis campaigns of the MVST, BVEST, and OHF tank complexes

    International Nuclear Information System (INIS)

    Giaquinto, J.M.; Keller, J.M.; Mills, T.P.

    1997-07-01

    Starting in 1996 and continuing into 1997, there were several major sampling and analysis campaigns undertaken to characterize the contents of the Active Liquid Low-Level Waste (LLLW) tanks located at ORNL and the Old Hydrofracture Facility (OHF) tanks located in Melton Valley within Waste Area Grouping (WAG) 5. The active LLLW tanks include the Melton Valley Storage Tanks (MVST) and the Bethel Valley Evaporator Service Tanks (BVEST). The characterization data obtained for these campaigns are summarized in three earlier ORNL technical reports. Included in these reports are data which addresses waste processing options, performance assessment (PA) for the Waste Isolation Pilot Plant (WIPP), criticality concerns, and DOT requirements for transporting the waste. Also, included is an evaluation of the waste's characteristics with respect to the waste acceptance criteria (WAC) for WIPP and Nevada Test Site (NTS). As part of these campaigns there were also other miscellaneous tests performed and data collected to address important engineering and remediation issues that were not included in the previous reports. These miscellaneous tests are summarized in this report and include (1) fusion preparations for total anion analysis on selected MVST, BVEST, and OHF sludges, (2) settling tests performed on the BVEST and OHF sludges, (3) dried density data for the MVST sludges, (4) particle size analysis on selected BVEST and OHF sludges, and (5) the analysis of hydroxylamine in the BVEST supernates and sludges. Also, the viscosity and flow curves for BVEST waste are restated in this report using apparent viscosity with further detail included about the flow characteristics that were observed

  18. Design demonstrations for the remaining 19 Category B tank systems at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1993-06-01

    This document presents design demonstrations conducted of liquid low-level waste (LLLW) storage tank systems located at the Oak Ridge National Laboratory (ORNL). ORNL has conducted research in energy related fields since 1943. The facilities used to conduct the research include nuclear reactors, chemical pilot plants, research laboratories, radioisotope production laboratories, and support facilities. These facilities have produced a variety of radioactive and/or hazardous wastes that have been transported and stored through an extensive network of piping and tankage. Demonstration of the design of these tank systems has been stipulated by the Federal Facility Agreement (FFA) between the EPA (United States Environmental Protection Agency)-Region IV; the Tennessee Department of Environment and Conservation (TDEC); and the DOE. The FFA establishes four categories of tank systems: Category A-New or Replacement Tank Systems with Secondary Containment; Category B-Existing Tank Systems with Secondary Containment; Category C-Existing Tank Systems Without Secondary Containment, and Category D-Existing Tank Systems Without Secondary Containment That are Removed from Service. This document provides a design demonstration of the secondary containment and ancillary equipment of 19 tank systems listed in the FFA as Category B. The design demonstration for each tank is presented in Section 2. The assessments assume that each tank system was constructed in accordance with the design drawings and construction specifications for that system unless specified otherwise. Each design demonstration addresses system conformance to the requirements of the FFA (Appendix F, Section C)

  19. Melton Valley Storage Tanks Capacity Increase Project, Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1995-04-01

    The US Department of Energy (DOE) proposes to construct and maintain additional storage capacity at Oak Ridge National Laboratory (ORNL), Oak Ridge, Tennessee, for liquid low-level radioactive waste (LLLW). New capacity would be provided by a facility partitioned into six individual tank vaults containing one 100,000 gallon LLLW storage tank each. The storage tanks would be located within the existing Melton Valley Storage Tank (MVST) facility. This action would require the extension of a potable water line approximately one mile from the High Flux Isotope Reactor (HFIR) area to the proposed site to provide the necessary potable water for the facility including fire protection. Alternatives considered include no-action, cease generation, storage at other ORR storage facilities, source treatment, pretreatment, and storage at other DOE facilities

  20. Hanford solid waste management system simulation

    International Nuclear Information System (INIS)

    Shaver, S.R.; Armacost, L.L.; Konynenbelt, H.S.; Wehrman, R.R.

    1994-12-01

    This paper describes systems analysis and simulation model development for a proposed solid waste management system at a U.S. Department of Energy Site. The proposed system will include a central storage facility, four treatment facilities, and three disposal sites. The material managed by this system will include radioactive, hazardous, and mixed radioactive and hazardous wastes. The objective of the modeling effort is to provide a means of evaluating throughput and capacity requirements for the proposed treatment, storage, and disposal facilities. The model is used to evaluate alternative system configurations and the effect on the alternatives of changing waste stream characteristics and receipt schedules. An iterative modeling and analysis approach is used that provides macro-level models early in the project and establishes credibility with the customer. The results from the analyses based on the macro models influence system design decisions and provide information that helps focus subsequent model development. Modeling and simulation of alternative system configurations and operating strategies yield a better understanding of the solid waste system requirements. The model effectively integrates information obtained through systems analysis and waste characterization to provide a consistent basis for system and facility planning

  1. Solid Waste Information Tracking System (SWITS), Backlog Waste Modifications, Software Requirements Specification (SRS)

    International Nuclear Information System (INIS)

    Clark, R.E.

    1995-01-01

    Purpose of this document is to define the system requirements necessary to improve computer support for the WHC backlog waste business process through enhancements to the backlog waste function of the SWITS system. This SRS document covers enhancements to the SWITS system to support changes to the existing Backlog Waste screens including new data elements, label changes, and new pop-up screens. The pop-ups will allow the user to flag the processes that a waste container must have performed on it, and will provide history tracking of changes to data. A new screen will also be provided allowing Acceptable Services to perform mass updates to specific data in Backlog Waste table. The SWITS Backlog Waste enhancements in this document will support the project goals in WHC-SD-WM-003 and its Revision 1 (Radioactive Solid Waste Tracking System Conceptual Definition) for the control, tracing, and inventory management of waste as the packages are generated and moved through final disposal (cradle-to-grave)

  2. Assessing waste management systems using reginalt software

    International Nuclear Information System (INIS)

    Meshkov, N.K.; Camasta, S.F.; Gilbert, T.L.

    1988-03-01

    A method for assessing management systems for low-level radioactive waste is being developed for US Department of Energy. The method is based on benefit-cost-risk analysis. Waste management is broken down into its component steps, which are generation, treatment, packaging, storage, transportation, and disposal. Several different alternatives available for each waste management step are described. A particular waste management system consists of a feasible combination of alternatives for each step. Selecting an optimal waste management system would generally proceed as follows: (1) qualitative considerations are used to narrow down the choice of waste management system alternatives to a manageable number; (2) the costs and risks for each of these system alternatives are evaluated; (3) the number of alternatives is further reduced by eliminating alternatives with similar risks but higher costs, or those with similar costs but higher risks; (4) a trade-off factor between cost and risk is chosen and used to compute the objective function (sum of the cost and risk); and (5) the selection of the optimal waste management system among the remaining alternatives is made by choosing the alternative with the smallest value for the objective function. The authors propose that the REGINALT software system, developed by EG and G Idaho, Inc., as an acid for managers of low-level commerical waste, be augmented for application to the managment of DOE-generated waste. Specific recommendations for modification of the REGINALT system are made. 51 refs., 3 figs., 2 tabs

  3. Decentralized Energy from Waste Systems

    Directory of Open Access Journals (Sweden)

    Blanca Antizar-Ladislao

    2010-01-01

    Full Text Available In the last five years or so, biofuels have been given notable consideration worldwide as an alternative to fossil fuels, due to their potential to reduce greenhouse gas emissions by partial replacement of oil as a transport fuel. The production of biofuels using a sustainable approach, should consider local production of biofuels, obtained from local feedstocks and adapted to the socio-economical and environmental characteristics of the particular region where they are developed. Thus, decentralized energy from waste systems will exploit local biomass to optimize their production and consumption. Waste streams such as agricultural and wood residues, municipal solid waste, vegetable oils, and algae residues can all be integrated in energy from waste systems. An integral optimization of decentralized energy from waste systems should not be based on the optimization of each single process, but the overall optimization of the whole process. This is by obtaining optimal energy and environmental benefits, as well as collateral beneficial co-products such as soil fertilizers which will result in a higher food crop production and carbon dioxide fixation which will abate climate change.

  4. Decentralized energy from waste systems

    International Nuclear Information System (INIS)

    Antizar-Ladislao, B.; Turrion-Gomez, J. L.

    2010-01-01

    In the last five years or so, biofuels have been given notable consideration worldwide as an alternative to fossil fuels, due to their potential to reduce greenhouse gas emissions by partial replacement of oil as a transport fuel. The production of biofuels using a sustainable approach, should consider local production of biofuels, obtained from local feedstocks and adapted to the socio-economical and environmental characteristics of the particular region where they are developed. Thus, decentralized energy from waste systems will exploit local biomass to optimize their production and consumption. Waste streams such as agricultural and wood residues, municipal solid waste, vegetable oils, and algae residues can all be integrated in energy from waste systems. An integral optimization of decentralized energy from waste systems should not be based on the optimization of each single process, but the overall optimization of the whole process. This is by obtaining optimal energy and environmental benefits, as well as collateral beneficial co-products such as soil fertilizers which will result in a higher food crop production and carbon dioxide fixation which will abate climate change. (author)

  5. Intelligent Information System for Waste Management; Jaetehuollon aelykaes tietojaerjestelmae - iWaste

    Energy Technology Data Exchange (ETDEWEB)

    Mustonen, T. [Kuopio Univ. (Finland); Isoaho, S. [Tampere Univ. (Finland)

    2004-07-01

    ''Waste'' - Intelligent Information System for Waste Management - is a joint project of the University of Kuopio and the Tampere University of Technology. The main objective of the project is to create a basis for more comprehensive utilisation and management of waste management data and for the development of database management systems. The results of the project are numerous. A study of the present state of data management in the field of waste management was carried out. The studied aspects were for example information needs of different actors and their requirements for the information quality, interfaces for information exchange between different actors, and the characteristics of the software products. During the second phase of the project, a hyper document describing waste management systems, and a software application for describing material flows and their management will be finalized. Also methodologies and practices for processing data into information, which is needed in the decision making process, will be developed. The developed methodologies include e.g. data mining techniques, and the practices include e.g. the prediction of waste generation and optimisation of waste collection and transport. (orig.)

  6. 76 FR 4823 - Hazardous Waste Management System; Identifying and Listing Hazardous Waste Exclusion

    Science.gov (United States)

    2011-01-27

    ... Waste Management System; Identifying and Listing Hazardous Waste Exclusion AGENCY: Environmental... hazardous wastes. The Agency has decided to grant the petition based on an evaluation of waste-specific... excludes the petitioned waste from the requirements of hazardous waste regulations under the Resource...

  7. Physical system requirements - Accept waste

    International Nuclear Information System (INIS)

    1992-08-01

    The Nuclear Waste Policy Act (NWPA) assigned to the Department of Energy (DOE) the responsibility for managing the disposal of spent nuclear fuel and high-level radioactive waste and established the Office of Civilian Radioactive Waste Management (OCRWM) for that purpose. The Secretary of Energy, in his November 1989 report to Congress (DOE/RW-0247), announced new initiatives for the conduct of the Civilian Radioactive Waste Management (CRWM) program. One of these initiatives was to establish improved management structure and procedures. In response, OCRWM performed a management study and the OCRWM Director subsequently issued the Management Systems improvement Strategy (MSIS) on August 10, 1990, calling for a rigorous implementation of systems engineering principles with a special emphasis on functional analysis. The functional analysis approach establishes a framework for integrating the program management efforts with the technical requirements analysis into a single, unified, and consistent program. This approach recognizes that just as the facilities and equipment comprising the physical waste management system must perform certain functions, so must certain programmatic and management functions be performed within the program in order to successfully bring the physical system into being. Thus, a comprehensive functional analysis effort has been undertaken which is intended to: Identify the functions that must be performed to fulfill the waste disposal mission; Identify the corresponding requirements imposed on each of the functions; and Identify the conceptual architecture that will be used to satisfy the requirements. The principal purpose of this requirements document is to present the results that were obtained from the conduct of a functional analysis effort for the Accept Waste mission

  8. Biogas-centred domestic waste recycling system

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, C L

    1983-04-01

    In fast developing suburban towns, there is an urgent need for an integrated system for waste recycling and energy and fertiliser supply on a single house basis. This is because even though toilet waste is handled by a septic tank-soak pit arrangement, kitchen and bathroom water and solid organic wastes have to be discharged outside the house. A biogas based domestic waste recycling system has been designed and constructed and has been successfully working. Some salient features of this plant are discussed here.

  9. Expert system for transuranic waste assay

    Energy Technology Data Exchange (ETDEWEB)

    Zoolalian, M.L.; Gibbs, A.; Kuhns, J.D.

    1989-01-01

    Transuranic wastes are generated at the Savannah River Site (SRS) as a result of routine production of nuclear materials. These wastes contain Pu-238 and Pu-239 and are placed into lined 55-gallon waste drums. The drums are placed on monitored storage pads pending shipment to the Waste Isolation Pilot Plant in New Mexico. A passive-active neutron (PAN) assay system is used to determine the mass of the radioactive material within the waste drums. Assay results are used to classify the wastes as either low-level or transuranic (TRU). During assays, the PAN assay system communicates with an IBM-AT computer. A Fortran computer program, called NEUT, controls and performs all data analyses. Unassisted, the NEUT program cannot adequately interpret assay results. To eliminate this limitation, an expert system shell was used to write a new algorithm, called the Transuranic Expert System (TRUX), to drive the NEUT program and add decision making capabilities for analysis of the assay results. The TRUX knowledge base was formulated by consulting with human experts in the field of neutron assay, by direct experimentation on the PAN assay system, and by observing operations on a daily basis. TRUX, with its improved ability to interpret assay results, has eliminated the need for close supervision by a human expert, allowing skilled technicians to operate the PAN assay system. 4 refs., 1 fig., 4 tabs.

  10. Expert system for transuranic waste assay

    International Nuclear Information System (INIS)

    Zoolalian, M.L.; Gibbs, A.; Kuhns, J.D.

    1989-01-01

    Transuranic wastes are generated at the Savannah River Site (SRS) as a result of routine production of nuclear materials. These wastes contain Pu-238 and Pu-239 and are placed into lined 55-gallon waste drums. The drums are placed on monitored storage pads pending shipment to the Waste Isolation Pilot Plant in New Mexico. A passive-active neutron (PAN) assay system is used to determine the mass of the radioactive material within the waste drums. Assay results are used to classify the wastes as either low-level or transuranic (TRU). During assays, the PAN assay system communicates with an IBM-AT computer. A Fortran computer program, called NEUT, controls and performs all data analyses. Unassisted, the NEUT program cannot adequately interpret assay results. To eliminate this limitation, an expert system shell was used to write a new algorithm, called the Transuranic Expert System (TRUX), to drive the NEUT program and add decision making capabilities for analysis of the assay results. The TRUX knowledge base was formulated by consulting with human experts in the field of neutron assay, by direct experimentation on the PAN assay system, and by observing operations on a daily basis. TRUX, with its improved ability to interpret assay results, has eliminated the need for close supervision by a human expert, allowing skilled technicians to operate the PAN assay system. 4 refs., 1 fig., 4 tabs

  11. Waste Information Management System-2012 - 12114

    Energy Technology Data Exchange (ETDEWEB)

    Upadhyay, H.; Quintero, W.; Shoffner, P.; Lagos, L.; Roelant, D. [Applied Research Center, Florida International University, 10555 West Flagler Street, Suite 2100, Miami, FL 33174 (United States)

    2012-07-01

    The Waste Information Management System (WIMS) -2012 was updated to support the Department of Energy (DOE) accelerated cleanup program. The schedule compression required close coordination and a comprehensive review and prioritization of the barriers that impeded treatment and disposition of the waste streams at each site. Many issues related to waste treatment and disposal were potential critical path issues under the accelerated schedule. In order to facilitate accelerated cleanup initiatives, waste managers at DOE field sites and at DOE Headquarters in Washington, D.C., needed timely waste forecast and transportation information regarding the volumes and types of radioactive waste that would be generated by DOE sites over the next 40 years. Each local DOE site historically collected, organized, and displayed waste forecast information in separate and unique systems. In order for interested parties to understand and view the complete DOE complex-wide picture, the radioactive waste and shipment information of each DOE site needed to be entered into a common application. The WIMS application was therefore created to serve as a common application to improve stakeholder comprehension and improve DOE radioactive waste treatment and disposal planning and scheduling. WIMS allows identification of total forecasted waste volumes, material classes, disposition sites, choke points, technological or regulatory barriers to treatment and disposal, along with forecasted waste transportation information by rail, truck and inter-modal shipments. The Applied Research Center (ARC) at Florida International University (FIU) in Miami, Florida, developed and deployed the web-based forecast and transportation system and is responsible for updating the radioactive waste forecast and transportation data on a regular basis to ensure the long-term viability and value of this system. WIMS continues to successfully accomplish the goals and objectives set forth by DOE for this project. It has

  12. System design description for Waste Information and Control System

    International Nuclear Information System (INIS)

    Harris, R.R.

    1994-01-01

    The Westinghouse Hanford Company (WHC) Hazardous Material Control Group (HMC) of the 222-S Laboratory has requested the development of a system to help resolve many of the difficulties associated with tracking and data collection of containers and drums of waste. This system has been identified as the Waste Information and Control System (WICS). WICS shall partially automate the procedure for acquisition, tracking and reporting of the container, drum, and waste data that is currently manually processed. The WICS project shall use handheld computer units (HCU) to collect laboratory data, a local database with an user friendly interface to import the laboratory data from the HCUs, and barcode technology with associated software and operational procedures. After the container, drum, and waste data has been collected and verified, WICS shall be manipulated to provide informal reports containing data required to properly document waste disposal. 8 refs, 82 figs, 69 tabs

  13. Analytical method of waste allocation in waste management systems: Concept, method and case study

    Energy Technology Data Exchange (ETDEWEB)

    Bergeron, Francis C., E-mail: francis.b.c@videotron.ca

    2017-01-15

    Waste is not a rejected item to dispose anymore but increasingly a secondary resource to exploit, influencing waste allocation among treatment operations in a waste management (WM) system. The aim of this methodological paper is to present a new method for the assessment of the WM system, the “analytical method of the waste allocation process” (AMWAP), based on the concept of the “waste allocation process” defined as the aggregation of all processes of apportioning waste among alternative waste treatment operations inside or outside the spatial borders of a WM system. AMWAP contains a conceptual framework and an analytical approach. The conceptual framework includes, firstly, a descriptive model that focuses on the description and classification of the WM system. It includes, secondly, an explanatory model that serves to explain and to predict the operation of the WM system. The analytical approach consists of a step-by-step analysis for the empirical implementation of the conceptual framework. With its multiple purposes, AMWAP provides an innovative and objective modular method to analyse a WM system which may be integrated in the framework of impact assessment methods and environmental systems analysis tools. Its originality comes from the interdisciplinary analysis of the WAP and to develop the conceptual framework. AMWAP is applied in the framework of an illustrative case study on the household WM system of Geneva (Switzerland). It demonstrates that this method provides an in-depth and contextual knowledge of WM. - Highlights: • The study presents a new analytical method based on the waste allocation process. • The method provides an in-depth and contextual knowledge of the waste management system. • The paper provides a reproducible procedure for professionals, experts and academics. • It may be integrated into impact assessment or environmental system analysis tools. • An illustrative case study is provided based on household waste

  14. Analytical method of waste allocation in waste management systems: Concept, method and case study

    International Nuclear Information System (INIS)

    Bergeron, Francis C.

    2017-01-01

    Waste is not a rejected item to dispose anymore but increasingly a secondary resource to exploit, influencing waste allocation among treatment operations in a waste management (WM) system. The aim of this methodological paper is to present a new method for the assessment of the WM system, the “analytical method of the waste allocation process” (AMWAP), based on the concept of the “waste allocation process” defined as the aggregation of all processes of apportioning waste among alternative waste treatment operations inside or outside the spatial borders of a WM system. AMWAP contains a conceptual framework and an analytical approach. The conceptual framework includes, firstly, a descriptive model that focuses on the description and classification of the WM system. It includes, secondly, an explanatory model that serves to explain and to predict the operation of the WM system. The analytical approach consists of a step-by-step analysis for the empirical implementation of the conceptual framework. With its multiple purposes, AMWAP provides an innovative and objective modular method to analyse a WM system which may be integrated in the framework of impact assessment methods and environmental systems analysis tools. Its originality comes from the interdisciplinary analysis of the WAP and to develop the conceptual framework. AMWAP is applied in the framework of an illustrative case study on the household WM system of Geneva (Switzerland). It demonstrates that this method provides an in-depth and contextual knowledge of WM. - Highlights: • The study presents a new analytical method based on the waste allocation process. • The method provides an in-depth and contextual knowledge of the waste management system. • The paper provides a reproducible procedure for professionals, experts and academics. • It may be integrated into impact assessment or environmental system analysis tools. • An illustrative case study is provided based on household waste

  15. SITE GENERATED RADIOLOGICAL WASTE HANDLING SYSTEM DESCRIPTION DOCUMENT

    Energy Technology Data Exchange (ETDEWEB)

    S. C. Khamankar

    2000-06-20

    The Site Generated Radiological Waste Handling System handles radioactive waste products that are generated at the geologic repository operations area. The waste is collected, treated if required, packaged for shipment, and shipped to a disposal site. Waste streams include low-level waste (LLW) in solid and liquid forms, as-well-as mixed waste that contains hazardous and radioactive constituents. Liquid LLW is segregated into two streams, non-recyclable and recyclable. The non-recyclable stream may contain detergents or other non-hazardous cleaning agents and is packaged for shipment. The recyclable stream is treated to recycle a large portion of the water while the remaining concentrated waste is packaged for shipment; this greatly reduces the volume of waste requiring disposal. There will be no liquid LLW discharge. Solid LLW consists of wet solids such as ion exchange resins and filter cartridges, as-well-as dry active waste such as tools, protective clothing, and poly bags. Solids will be sorted, volume reduced, and packaged for shipment. The generation of mixed waste at the Monitored Geologic Repository (MGR) is not planned; however, if it does come into existence, it will be collected and packaged for disposal at its point of occurrence, temporarily staged, then shipped to government-approved off-site facilities for disposal. The Site Generated Radiological Waste Handling System has equipment located in both the Waste Treatment Building (WTB) and in the Waste Handling Building (WHB). All types of liquid and solid LLW are processed in the WTB, while wet solid waste from the Pool Water Treatment and Cooling System is packaged where received in the WHB. There is no installed hardware for mixed waste. The Site Generated Radiological Waste Handling System receives waste from locations where water is used for decontamination functions. In most cases the water is piped back to the WTB for processing. The WTB and WHB provide staging areas for storing and shipping LLW

  16. SITE GENERATED RADIOLOGICAL WASTE HANDLING SYSTEM DESCRIPTION DOCUMENT

    International Nuclear Information System (INIS)

    S. C. Khamankar

    2000-01-01

    The Site Generated Radiological Waste Handling System handles radioactive waste products that are generated at the geologic repository operations area. The waste is collected, treated if required, packaged for shipment, and shipped to a disposal site. Waste streams include low-level waste (LLW) in solid and liquid forms, as-well-as mixed waste that contains hazardous and radioactive constituents. Liquid LLW is segregated into two streams, non-recyclable and recyclable. The non-recyclable stream may contain detergents or other non-hazardous cleaning agents and is packaged for shipment. The recyclable stream is treated to recycle a large portion of the water while the remaining concentrated waste is packaged for shipment; this greatly reduces the volume of waste requiring disposal. There will be no liquid LLW discharge. Solid LLW consists of wet solids such as ion exchange resins and filter cartridges, as-well-as dry active waste such as tools, protective clothing, and poly bags. Solids will be sorted, volume reduced, and packaged for shipment. The generation of mixed waste at the Monitored Geologic Repository (MGR) is not planned; however, if it does come into existence, it will be collected and packaged for disposal at its point of occurrence, temporarily staged, then shipped to government-approved off-site facilities for disposal. The Site Generated Radiological Waste Handling System has equipment located in both the Waste Treatment Building (WTB) and in the Waste Handling Building (WHB). All types of liquid and solid LLW are processed in the WTB, while wet solid waste from the Pool Water Treatment and Cooling System is packaged where received in the WHB. There is no installed hardware for mixed waste. The Site Generated Radiological Waste Handling System receives waste from locations where water is used for decontamination functions. In most cases the water is piped back to the WTB for processing. The WTB and WHB provide staging areas for storing and shipping LLW

  17. Packaged low-level waste verification system

    International Nuclear Information System (INIS)

    Tuite, K.T.; Winberg, M.; Flores, A.Y.; Killian, E.W.; McIsaac, C.V.

    1996-01-01

    Currently, states and low-level radioactive waste (LLW) disposal site operators have no method of independently verifying the radionuclide content of packaged LLW that arrive at disposal sites for disposal. At this time, disposal sites rely on LLW generator shipping manifests and accompanying records to insure that LLW received meets the waste acceptance criteria. An independent verification system would provide a method of checking generator LLW characterization methods and help ensure that LLW disposed of at disposal facilities meets requirements. The Mobile Low-Level Waste Verification System (MLLWVS) provides the equipment, software, and methods to enable the independent verification of LLW shipping records to insure that disposal site waste acceptance criteria are being met. The MLLWVS system was developed under a cost share subcontract between WMG, Inc., and Lockheed Martin Idaho Technologies through the Department of Energy's National Low-Level Waste Management Program at the Idaho National Engineering Laboratory (INEL)

  18. Multiple system modelling of waste management

    International Nuclear Information System (INIS)

    Eriksson, Ola; Bisaillon, Mattias

    2011-01-01

    Highlights: → Linking of models will provide a more complete, correct and credible picture of the systems. → The linking procedure is easy to perform and also leads to activation of project partners. → The simulation procedure is a bit more complicated and calls for the ability to run both models. - Abstract: Due to increased environmental awareness, planning and performance of waste management has become more and more complex. Therefore waste management has early been subject to different types of modelling. Another field with long experience of modelling and systems perspective is energy systems. The two modelling traditions have developed side by side, but so far there are very few attempts to combine them. Waste management systems can be linked together with energy systems through incineration plants. The models for waste management can be modelled on a quite detailed level whereas surrounding systems are modelled in a more simplistic way. This is a problem, as previous studies have shown that assumptions on the surrounding system often tend to be important for the conclusions. In this paper it is shown how two models, one for the district heating system (MARTES) and another one for the waste management system (ORWARE), can be linked together. The strengths and weaknesses with model linking are discussed when compared to simplistic assumptions on effects in the energy and waste management systems. It is concluded that the linking of models will provide a more complete, correct and credible picture of the consequences of different simultaneous changes in the systems. The linking procedure is easy to perform and also leads to activation of project partners. However, the simulation procedure is a bit more complicated and calls for the ability to run both models.

  19. WASTE HANDLING BUILDING FIRE PROTECTION SYSTEM DESCRIPTION DOCUMENT

    Energy Technology Data Exchange (ETDEWEB)

    J. D. Bigbee

    2000-06-21

    The Waste Handling Building Fire Protection System provides the capability to detect, control, and extinguish fires and/or mitigate explosions throughout the Waste Handling Building (WHB). Fire protection includes appropriate water-based and non-water-based suppression, as appropriate, and includes the distribution and delivery systems for the fire suppression agents. The Waste Handling Building Fire Protection System includes fire or explosion detection panel(s) controlling various detectors, system actuation, annunciators, equipment controls, and signal outputs. The system interfaces with the Waste Handling Building System for mounting of fire protection equipment and components, location of fire suppression equipment, suppression agent runoff, and locating fire rated barriers. The system interfaces with the Waste Handling Building System for adequate drainage and removal capabilities of liquid runoff resulting from fire protection discharges. The system interfaces with the Waste Handling Building Electrical Distribution System for power to operate, and with the Site Fire Protection System for fire protection water supply to automatic sprinklers, standpipes, and hose stations. The system interfaces with the Site Fire Protection System for fire signal transmission outside the WHB as needed to respond to a fire emergency, and with the Waste Handling Building Ventilation System to detect smoke and fire in specific areas, to protect building high-efficiency particulate air (HEPA) filters, and to control portions of the Waste Handling Building Ventilation System for smoke management and manual override capability. The system interfaces with the Monitored Geologic Repository (MGR) Operations Monitoring and Control System for annunciation, and condition status.

  20. WASTE HANDLING BUILDING FIRE PROTECTION SYSTEM DESCRIPTION DOCUMENT

    International Nuclear Information System (INIS)

    J. D. Bigbee

    2000-01-01

    The Waste Handling Building Fire Protection System provides the capability to detect, control, and extinguish fires and/or mitigate explosions throughout the Waste Handling Building (WHB). Fire protection includes appropriate water-based and non-water-based suppression, as appropriate, and includes the distribution and delivery systems for the fire suppression agents. The Waste Handling Building Fire Protection System includes fire or explosion detection panel(s) controlling various detectors, system actuation, annunciators, equipment controls, and signal outputs. The system interfaces with the Waste Handling Building System for mounting of fire protection equipment and components, location of fire suppression equipment, suppression agent runoff, and locating fire rated barriers. The system interfaces with the Waste Handling Building System for adequate drainage and removal capabilities of liquid runoff resulting from fire protection discharges. The system interfaces with the Waste Handling Building Electrical Distribution System for power to operate, and with the Site Fire Protection System for fire protection water supply to automatic sprinklers, standpipes, and hose stations. The system interfaces with the Site Fire Protection System for fire signal transmission outside the WHB as needed to respond to a fire emergency, and with the Waste Handling Building Ventilation System to detect smoke and fire in specific areas, to protect building high-efficiency particulate air (HEPA) filters, and to control portions of the Waste Handling Building Ventilation System for smoke management and manual override capability. The system interfaces with the Monitored Geologic Repository (MGR) Operations Monitoring and Control System for annunciation, and condition status

  1. Integrated waste and water management system

    Science.gov (United States)

    Murray, R. W.; Sauer, R. L.

    1986-01-01

    The performance requirements of the NASA Space Station have prompted a reexamination of a previously developed integrated waste and water management system that used distillation and catalytic oxydation to purify waste water, and microbial digestion and incineration for waste solids disposal. This system successfully operated continuously for 206 days, for a 4-man equivalent load of urine, feces, wash water, condensate, and trash. Attention is given to synergisms that could be established with other life support systems, in the cases of thermal integration, design commonality, and novel technologies.

  2. Integrating the radioactive waste management system into other management systems

    International Nuclear Information System (INIS)

    Silva, Ana Cristina Lourenco da; Nunes Neto, Carlos Antonio

    2007-01-01

    Radioactive waste management is to be included in the Integrated Management System (IMS) which pursues the continuous improvement of the company's quality, occupational safety and health, and environment protection processes. Radioactive waste management is based on the following aspects: optimization of human and material resources for execution of tasks, including the provision of a radiation protection supervisor to watch over the management of radioactive waste; improved documentation (management plan and procedures); optimization of operational levels for waste classification and release; maintenance of generation records and history through a database that facilitates traceability of information; implementation of radioactive waste segregation at source (source identification, monitoring and decontamination) activities intended to reduce the amount of radioactive waste; licensing of initial storage site for radioactive waste control and storage; employee awareness training on radioactive waste generation; identification and evaluation of emergency situations and response planning; implementation of preventive maintenance program for safety related items; development and application of new, advanced treatment methodologies or systems. These aspects are inherent in the concepts underlying quality management (establishment of administrative controls and performance indicators), environment protection (establishment of operational levels and controls for release), occupational health and safety (establishment of operational controls for exposure in emergency and routine situations and compliance with strict legal requirements and standards). It is noted that optimizing the addressed aspects of a radioactive waste management system further enhances the efficiency of the Integrated Management System for Quality, Environment, and Occupational Safety and Health. (author)

  3. Television systems for radioactive waste management

    International Nuclear Information System (INIS)

    Quartly, J.R.

    1989-01-01

    Radiation-tolerant television cameras, widely used for the inspection of nuclear plants, are now used for monitoring radioactive waste management processes. Two systems are described in this paper that differ in the methods of maintaining the camera equipment. At the British Nuclear Fuels plc (BNFL) Sellafield plant, a major capital investment program is under way that includes plants for spent-fuel reprocessing and radioactive waste management. The Windscale vitrification plant (WVP) will convert highly active liquid waste to a solid glass-like form. The WVP television system was based on in-cell cameras designed to be removable by remote-handling equipment. The plant to encapsulate medium active solid waste, encapsulation plant 1 (EP1) used through-wall and through-roof viewing systems with a glass viewing dome as the biological shield, allowing the camera and optics to be withdrawn to a safe area for maintenance. Both systems used novel techniques to obtain a record of the waste-processing operations. The WVP system used a microcomputer to overlay reference information onto the television picture and a motion detector to automatically trigger the video recording. The television system for EP1 included automatic character recognition to generate a computer data record of drum serial numbers

  4. Los Alamos Plutonium Facility Waste Management System

    International Nuclear Information System (INIS)

    Smith, K.; Montoya, A.; Wieneke, R.; Wulff, D.; Smith, C.; Gruetzmacher, K.

    1997-01-01

    This paper describes the new computer-based transuranic (TRU) Waste Management System (WMS) being implemented at the Plutonium Facility at Los Alamos National Laboratory (LANL). The Waste Management System is a distributed computer processing system stored in a Sybase database and accessed by a graphical user interface (GUI) written in Omnis7. It resides on the local area network at the Plutonium Facility and is accessible by authorized TRU waste originators, count room personnel, radiation protection technicians (RPTs), quality assurance personnel, and waste management personnel for data input and verification. Future goals include bringing outside groups like the LANL Waste Management Facility on-line to participate in this streamlined system. The WMS is changing the TRU paper trail into a computer trail, saving time and eliminating errors and inconsistencies in the process

  5. Transportable Vitrification System Demonstration on Mixed Waste

    International Nuclear Information System (INIS)

    Zamecnik, J.R.; Whitehouse, J.C.; Wilson, C.N.; Van Ryn, F.R.

    1998-01-01

    This paper describes preliminary results from the first demonstration of the Transportable Vitrification System (TVS) on actual mixed waste. The TVS is a fully integrated, transportable system for the treatment of mixed and low-level radioactive wastes. The demonstration was conducted at Oak Ridge's East Tennessee Technology Park (ETTP), formerly known as the K-25 site. The purpose of the demonstration was to show that mixed wastes could be vitrified safely on a 'field' scale using joule-heated melter technology and obtain information on system performance, waste form durability, air emissions, and costs

  6. Municipal solid waste management system: decision support through systems analysis

    OpenAIRE

    Pires, Ana Lúcia Lourenço

    2010-01-01

    Thesis submitted to the Universidade Nova de Lisboa, Faculdade de Ciências e Tecnologia for the degree of Doctor of Philosophy in Environmental Engineering The present study intends to show the development of systems analysis model applied to solid waste management system, applied into AMARSUL, a solid waste management system responsible for the management of municipal solid waste produced in Setúbal peninsula, Portugal. The model developed intended to promote sustainable decision making, ...

  7. The legal system of nuclear waste disposal

    International Nuclear Information System (INIS)

    Dauk, W.

    1983-01-01

    This doctoral thesis presents solutions to some of the legal problems encountered in the interpretation of the various laws and regulations governing nuclear waste disposal, and reveals the legal system supporting the variety of individual regulations. Proposals are made relating to modifications of problematic or not well defined provisions, in order to contribute to improved juridical security, or inambiguity in terms of law. The author also discusses the question of the constitutionality of the laws for nuclear waste disposal. Apart from the responsibility of private enterprise to contribute to safe treatment or recycling, within the framework of the integrated waste management concept, and apart from the Government's responsibility for interim or final storage of radioactive waste, there is a third possibility included in the legal system for waste management, namely voluntary measures taken by private enterprise for radioactive waste disposal. The licence to be applied for in accordance with section 3, sub-section (1) of the Radiation Protection Ordinance is interpreted to pertain to all measures of radioactive waste disposal, thus including final storage of radioactive waste by private companies. Although the terminology and systematic concept of nuclear waste disposal are difficult to understand, there is a functionable system of legal provisions contained therein. This system fits into the overall concept of laws governing technical safety and safety engineering. (orig./HSCH) [de

  8. Mobile waste inspection real time radiography system

    International Nuclear Information System (INIS)

    Vigil, J.; Taggart, D.; Betts, S.; Rael, C.; Martinez, F.; Mendez, J.

    1995-01-01

    The 450-KeV Mobile Real Time Radiography System was designed and purchased to inspect containers of radioactive waste produced at Los Alamos National Laboratory (LANL). The Mobile Real Time Radiography System has the capability of inspecting waste containers of various sizes from 5-gal. buckets to standard waste boxes (SWB, dimensions 54.5 in. x 71 in. x 37 in.). The fact that this unit is mobile makes it an attractive alternative to the costly road closures associated with moving waste from the waste generator to storage or disposal facilities

  9. Waste processing system for nuclear power plant

    International Nuclear Information System (INIS)

    Higashinakagawa, Emiko; Tezuka, Fuminobu; Maesawa, Yukishige; Irie, Hiromitsu; Daibu, Etsuji.

    1996-01-01

    The present invention concerns a waste processing system of a nuclear power plant, which can reduce the volume of a large amount of plastics without burying them. Among burnable wastes and plastic wastes to be discarded in the power plant located on the sea side, the plastic wastes are heated and converted into oils, and the burnable wastes are burnt using the oils as a fuel. The system is based on the finding that the presence of Na 2 O, K 2 O contained in the wastes catalytically improves the efficiency of thermal decomposition in a heating atmosphere, in the method of heating plastics and converting them into oils. (T.M.)

  10. DOE systems approach to a low-level waste management information system: summary paper

    International Nuclear Information System (INIS)

    Esparza, V.

    1987-01-01

    The LLWMP is performing an assessment of waste information systems currently in use at each DOE site for recording LLW data. The assessment is being conducted to determine what changes to the waste information systems, if any, are desirable to support implementation of this systems approach to LLW management. Recommendations will be made to DOE from this assessment and what would be involved to modify current DOE waste generator information practices to support an appropriately structured overall DOE LLW data systems. In support of reducing the uncertainty of decision-making, DOE has selected a systems approach to keep pace with an evolving regulatory climate to low-level waste. This approach considers the effects of each stage of the entire low-level waste management process. The proposed systems approach starts with the disposal side of the waste management system and progresses towards the waste generation side of the waste management system. Using this approach provides quantitative performance to be achieved. In addition, a systems approach also provides a method for selecting appropriate technology based on engineering models

  11. INEL test plan for evaluating waste assay systems

    International Nuclear Information System (INIS)

    Mandler, J.W.; Becker, G.K.; Harker, Y.D.; Menkhaus, D.E.; Clements, T.L. Jr.

    1996-09-01

    A test bed is being established at the Idaho National Engineering Laboratory (INEL) Radioactive Waste Management Complex (RWMC). These tests are currently focused on mobile or portable radioassay systems. Prior to disposal of TRU waste at the Waste Isolation Pilot Plant (WIPP), radioassay measurements must meet the quality assurance objectives of the TRU Waste Characterization Quality Assurance Program Plan. This test plan provides technology holders with the opportunity to assess radioassay system performance through a three-tiered test program that consists of: (a) evaluations using non-interfering matrices, (b) surrogate drums with contents that resemble the attributes of INEL-specific waste forms, and (c) real waste tests. Qualified sources containing a known mixture and range of radionuclides will be used for the non-interfering and surrogate waste tests. The results of these tests will provide technology holders with information concerning radioassay system performance and provide the INEL with data useful for making decisions concerning alternative or improved radioassay systems that could support disposal of waste at WIPP

  12. INEL test plan for evaluating waste assay systems

    Energy Technology Data Exchange (ETDEWEB)

    Mandler, J.W.; Becker, G.K.; Harker, Y.D.; Menkhaus, D.E.; Clements, T.L. Jr.

    1996-09-01

    A test bed is being established at the Idaho National Engineering Laboratory (INEL) Radioactive Waste Management Complex (RWMC). These tests are currently focused on mobile or portable radioassay systems. Prior to disposal of TRU waste at the Waste Isolation Pilot Plant (WIPP), radioassay measurements must meet the quality assurance objectives of the TRU Waste Characterization Quality Assurance Program Plan. This test plan provides technology holders with the opportunity to assess radioassay system performance through a three-tiered test program that consists of: (a) evaluations using non-interfering matrices, (b) surrogate drums with contents that resemble the attributes of INEL-specific waste forms, and (c) real waste tests. Qualified sources containing a known mixture and range of radionuclides will be used for the non-interfering and surrogate waste tests. The results of these tests will provide technology holders with information concerning radioassay system performance and provide the INEL with data useful for making decisions concerning alternative or improved radioassay systems that could support disposal of waste at WIPP.

  13. Potential future waste-to-energy systems

    OpenAIRE

    Thorin, Eva; Guziana, Bozena; Song, Han; Jääskeläinen, Ari; Szpadt, Ryszard; Vasilic, Dejan; Ahrens, Thorsten; Anne, Olga; Lõõnik, Jaan

    2012-01-01

    This report discusses potential future systems for waste-to-energy production in the Baltic Sea Region, and especially for the project REMOWE partner regions, the County of Västmanland in Sweden, Northern Savo in Finland, Lower Silesia in Poland, western part of Lithuania and Estonia. The waste-to-energy systems planned for in the partner regions are combustion of municipal solid waste (MSW) and solid recovered fuels from household and industry as well as anaerobic digestion of sewage sludge ...

  14. Tank waste remediation system retrieval and disposal mission waste feed delivery plan

    International Nuclear Information System (INIS)

    Potter, R.D.

    1998-01-01

    This document is a plan presenting the objectives, organization, and management and technical approaches for the Waste Feed Delivery (WFD) Program. This WFD Plan focuses on the Tank Waste Remediation System (TWRS) Project's Waste Retrieval and Disposal Mission

  15. Establishment of database system for management of KAERI wastes

    International Nuclear Information System (INIS)

    Shon, J. S.; Kim, K. J.; Ahn, S. J.

    2004-07-01

    Radioactive wastes generated by KAERI has various types, nuclides and characteristics. To manage and control these kinds of radioactive wastes, it comes to need systematic management of their records, efficient research and quick statistics. Getting information about radioactive waste generated and stored by KAERI is the basic factor to construct the rapid information system for national cooperation management of radioactive waste. In this study, Radioactive Waste Management Integration System (RAWMIS) was developed. It is is aimed at management of record of radioactive wastes, uplifting the efficiency of management and support WACID(Waste Comprehensive Integration Database System) which is a national radioactive waste integrated safety management system of Korea. The major information of RAWMIS supported by user's requirements is generation, gathering, transfer, treatment, and storage information for solid waste, liquid waste, gas waste and waste related to spent fuel. RAWMIS is composed of database, software (interface between user and database), and software for a manager and it was designed with Client/Server structure. RAWMIS will be a useful tool to analyze radioactive waste management and radiation safety management. Also, this system is developed to share information with associated companies. Moreover, it can be expected to support the technology of research and development for radioactive waste treatment

  16. Hanford 200 area (sanitary) waste water system

    International Nuclear Information System (INIS)

    Danch, D.A.; Gay, A.E.

    1994-09-01

    The US Department of Energy (DOE) Hanford Site is located in southeastern Washington State. The Hanford Site is approximately 1,450 sq. km (560 sq. mi) of semiarid land set aside for activities of the DOE. The reactor fuel processing and waste management facilities are located in the 200 Areas. Over the last 50 years at Hanford dicard of hazardous and sanitary waste water has resulted in billions of liters of waste water discharged to the ground. As part of the TPA, discharges of hazardous waste water to the ground and waters of Washington State are to be eliminated in 1995. Currently sanitary waste water from the 200 Area Plateau is handled with on-site septic tank and subsurface disposal systems, many of which were constructed in the 1940s and most do not meet current standards. Features unique to the proposed new sanitary waste water handling systems include: (1) cost effective operation of the treatment system as evaporative lagoons with state-of-the-art liner systems, and (2) routing collection lines to avoid historic contamination zones. The paper focuses on the challenges met in planning and designing the collection system

  17. Boiling water reactor liquid radioactive waste processing system

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    The standard sets forth minimum design, construction and performance requirements with due consideration for operation of the liquid radioactive waste processing system for boiling water reactor plants for routine operation including design basis fuel leakage and design basis occurrences. For the purpose of this standard, the liquid radioactive waste processing system begins at the interfaces with the reactor coolant pressure boundary, at the interface valve(s) in lines from other systems and at those sumps and floor drains provided for liquid waste with the potential of containing radioactive material. The system terminates at the point of controlled discharge to the environment, at the point of interface with the waste solidification system and at the point of recycle back to storage for reuse. The standard does not include the reactor coolant clean-up system, fuel pool clean-up system, sanitary waste system, any nonaqueous liquid system or controlled area storm drains

  18. Radioisotope waste processing systems

    International Nuclear Information System (INIS)

    Machida, Tadashi

    1978-01-01

    The Atomic Energy Safety Bureau established the policy entitled ''On Common Processing System of Radioactive Wastes'' consulting with the Liaison Committee of Radioactive Waste Processing. Japan Atomic Energy Research Institute (JAERI) and Japan Radioisotope Association (JRIA) had been discussing the problems required for the establishment of the common disposal facilities based on the above policy, and they started the organization in spring, 1978. It is a foundation borrowing equipments from JAERI though installing newly some of them not available from JAERI, and depending the fund on JRIA. The operation expenses will be borne by those who want to dispose the wastes produced. The staffs are sent out from JAERI and JRIA. For animal wastes contaminated with RI, formaldehyde dipping should be abolished, but drying and freezing procedures will be taken before they are burnt up in a newly planned exclusive furnace with disposing capacity of 50 kg/hour. To settle the problems of other wastes, enough understanding and cooperation of users are to be requested. (Kobatake, H.)

  19. Bar-code automated waste tracking system

    International Nuclear Information System (INIS)

    Hull, T.E.

    1994-10-01

    The Bar-Code Automated Waste Tracking System was designed to be a site-Specific program with a general purpose application for transportability to other facilities. The system is user-friendly, totally automated, and incorporates the use of a drive-up window that is close to the areas dealing in container preparation, delivery, pickup, and disposal. The system features ''stop-and-go'' operation rather than a long, tedious, error-prone manual entry. The system is designed for automation but allows operators to concentrate on proper handling of waste while maintaining manual entry of data as a backup. A large wall plaque filled with bar-code labels is used to input specific details about any movement of waste

  20. Thermal processing systems for TRU mixed waste

    International Nuclear Information System (INIS)

    Eddy, T.L.; Raivo, B.D.; Anderson, G.L.

    1992-01-01

    This paper presents preliminary ex situ thermal processing system concepts and related processing considerations for remediation of transuranic (TRU)-contaminated wastes (TRUW) buried at the Radioactive Waste Management Complex (RWMC) of the Idaho National Engineering Laboratory (INEL). Anticipated waste stream components and problems are considered. Thermal processing conditions required to obtain a high-integrity, low-leachability glass/ceramic final waste form are considered. Five practical thermal process system designs are compared. Thermal processing of mixed waste and soils with essentially no presorting and using incineration followed by high temperature melting is recommended. Applied research and development necessary for demonstration is also recommended

  1. 75 FR 58346 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste

    Science.gov (United States)

    2010-09-24

    ... Waste Management System; Identification and Listing of Hazardous Waste AGENCY: Environmental Protection... Chemical Company-Texas Operations (Eastman) to exclude (or delist) certain solid wastes generated by its Longview, Texas, facility from the lists of hazardous wastes. EPA used the Delisting Risk Assessment...

  2. Science, society, and America's nuclear waste: Unit 4, The waste management system

    International Nuclear Information System (INIS)

    1992-01-01

    This is unit 4 (The Waste Management System) in a four-unit secondary curriculum. It is intended to provide information about scientific and societal issues related to the management of spent nuclear fuel from generation of electricity at nuclear powerplants and high-level radioactive waste from US national defense activities. The curriculum, supporting classroom activities, and teaching materials present a brief discussion of energy and electricity generation, including that produced at nuclear powerplants; information on sources, amounts, location, and characteristics of spent nuclear fuel and high-level radioactive waste; sources, types and effects of radiation; US policy for managing and disposing of spent nuclear fuel and high-level radioactive waste and what other countries are doing; and the components of the nuclear waste management system

  3. Radioactive waste integrated management system

    International Nuclear Information System (INIS)

    Song, D. Y.; Choi, S. S.; Han, B. S.

    2003-01-01

    In this paper, we present an integrated management system for radioactive waste, which can keep watch on the whole transporting process of each drum from nuclear power plant temporary storage house to radioactive waste storage house remotely. Our approach use RFID(Radio Frequency Identification) system, which can recognize the data information without touch, GSP system, which can calculate the current position precisely using the accurate time and distance measured from satellites, and the spread spectrum technology CDMA, which is widely used in the area of mobile communication

  4. Radioactive waste integrated management system

    Energy Technology Data Exchange (ETDEWEB)

    Song, D Y; Choi, S S; Han, B S [Atomic Creative Technology, Taejon (Korea, Republic of)

    2003-10-01

    In this paper, we present an integrated management system for radioactive waste, which can keep watch on the whole transporting process of each drum from nuclear power plant temporary storage house to radioactive waste storage house remotely. Our approach use RFID(Radio Frequency Identification) system, which can recognize the data information without touch, GSP system, which can calculate the current position precisely using the accurate time and distance measured from satellites, and the spread spectrum technology CDMA, which is widely used in the area of mobile communication.

  5. Incineration systems for low level and mixed wastes

    International Nuclear Information System (INIS)

    Vavruska, J.

    1986-01-01

    A variety of technologies has emerged for incineration of combustible radioactive, hazardous, and mixed wastes. Evaluation and selection of an incineration system for a particular application from such a large field of options are often confusing. This paper presents several current incineration technologies applicable to Low Level Waste (LLW), hazardous waste, and mixed waste combustion treatment. The major technologies reviewed include controlled-air, rotary kiln, fluidized bed, and liquid injection. Coupled with any incineration technique is the need to select a compatible offgas effluent cleaning system. This paper also reviews the various methods of treating offgas emissions for acid vapor, particulates, organics, and radioactivity. Such effluent control systems include the two general types - wet and dry scrubbing with a closer look at quenching, inertial systems, fabric filtration, gas absorption, adsorption, and various other filtration techniques. Selection criteria for overall waste incineration systems are discussed as they relate to waste characterization

  6. Legal system of nuclear waste disposal. Das System der atomaren Entsorgungsregelung

    Energy Technology Data Exchange (ETDEWEB)

    Dauk, W

    1983-01-01

    This doctoral thesis presents solutions to some of the legal problems encountered in the interpretation of the various laws and regulations governing nuclear waste disposal, and reveals the legal system supporting the variety of individual regulations. Proposals are made relating to modifications of problematic or not well defined provisions, in order to contribute to improved juridical security, or inambiguity in terms of law. The author also discusses the question of the constitutionality of the laws for nuclear waste disposal. Apart from the responsibility of private enterprise to contribute to safe treatment or recycling, within the framework of the integrated waste management concept, and apart from the Government's responsibility for interim or final storage of radioactive waste, there is a third possibility included in the legal system for waste management, namely voluntary measures taken by private enterprise for radioactive waste disposal. The licence to be applied for in accordance with section 3, sub-section (1) of the Radiation Protection Ordinance is interpreted to pertain to all measures of radioactive waste disposal, thus including final storage of radioactive waste by private companies. Although the terminology and systematic concept of nuclear waste disposal are difficult to understand, there is a functionable system of legal provisions contained therein. This system fits into the overall concept of laws governing technical safety and safety engineering.

  7. Corrosion control for the Hanford site waste transfer system

    International Nuclear Information System (INIS)

    Haberman, J.H.

    1995-01-01

    Processing large volumes of spent reactor fuel and other related waste management activities produced radioactive wastes which have been stored in underground high-level waste storage tanks since the 1940s. The effluent waste streams from the processing facilities were stored underground in high-level waste storage tanks. The waste was transferred between storage tanks and from the tanks to waste processing facilities in a complex network of underground piping. The underground waste transfer system consists of process piping, catch tanks, lift tanks, diversion boxes, pump pits, valves, and jumpers. Corrosion of the process piping from contact with the soil is a primary concern. The other transfer system components are made of corrosion-resistant alloys or they are isolated from the underground environment and experience little degradation. Corrosion control of the underground transfer system is necessary to ensure that transfer routes will be available for future waste retrieval, processing,a nd disposal. Today, most waste transfer lines are protected by an active impressed-current cathodic protection (CP) system. The original system has been updated. Energization surveys and a recent base-line survey demonstrate that system operational goals are met

  8. 75 FR 11002 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste; Final Rule

    Science.gov (United States)

    2010-03-10

    ... Waste Management System; Identification and Listing of Hazardous Waste; Final Rule AGENCY: Environmental... and specific types of management of the petitioned waste, the quantities of waste generated, and waste... wastes. This final rule responds to a petition submitted by Valero to delist F037 waste. The F037 waste...

  9. Tank waste remediation system program plan

    International Nuclear Information System (INIS)

    Powell, R.W.

    1998-01-01

    This program plan establishes the framework for conduct of the Tank Waste Remediation System (TWRS) Project. The plan focuses on the TWRS Retrieval and Disposal Mission and is specifically intended to support the DOE mid-1998 Readiness to Proceed with Privatized Waste Treatment evaluation for establishing firm contracts for waste immobilization

  10. Tank waste remediation system program plan

    Energy Technology Data Exchange (ETDEWEB)

    Powell, R.W.

    1998-01-05

    This program plan establishes the framework for conduct of the Tank Waste Remediation System (TWRS) Project. The plan focuses on the TWRS Retrieval and Disposal Mission and is specifically intended to support the DOE mid-1998 Readiness to Proceed with Privatized Waste Treatment evaluation for establishing firm contracts for waste immobilization.

  11. Development of a comprehensive radioactive waste classification system

    International Nuclear Information System (INIS)

    Smith, C.F.; Cohen, J.J.

    1989-01-01

    Several previous studies have been conducted with the intent of developing a rational system for classification of radioactive wastes. Although none of the proposed systems has gained general acceptance, certain waste classes, specifically high-level waste and low-level waste suitable for shallow land burial have been essentially defined by regulation. Wastes which remain undefined include: those intermediate level wastes which require more restrictive controls than that provided by shallow land burial but not the high degree of isolation needed for high level wastes, and wastes below regulatory concern (BRC) which entail so low a radiological risk that they can be managed according to their nonradiological properties. This study has developed a framework within which the complete spectrum of radioactive wastes can be defined

  12. Science, society, and America's nuclear waste: Unit 4, The waste management system

    International Nuclear Information System (INIS)

    1992-01-01

    This is the teachers guide to unit 4, (The Waste Management System), of a four-unit secondary curriculum. It is intended to provide information about scientific and societal issues related to the management of spent nuclear fuel from generation of electricity at nuclear powerplants and high-level radioactive waste from US national defense activities. The curriculum, supporting classroom activities, and teaching materials present a brief discussion of energy and electricity generation, including that produced at nuclear powerplants; information on sources, amounts, location, and characteristics of spent nuclear fuel and high-level radioactive waste; sources, types and effects of radiation; US policy for managing and disposing of spent nuclear fuel and high-level radioactive waste and what other countries are doing; and the components of the nuclear waste management system

  13. 75 FR 57686 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste Amendment

    Science.gov (United States)

    2010-09-22

    ... Waste Management System; Identification and Listing of Hazardous Waste Amendment AGENCY: Environmental...) 260.20 and 260.22 allows facilities to demonstrate that a specific waste from a particular generating facility should not be regulated as a hazardous waste. Based on waste-specific information provided by the...

  14. Determination of a radioactive waste classification system

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, J.J.; King, W.C.

    1978-03-01

    Several classification systems for radioactive wastes are reviewed and a system is developed that provides guidance on disposition of the waste. The system has three classes: high-level waste (HLW), which requires complete isolation from the biosphere for extended time periods; low-level waste (LLW), which requires containment for shorter periods; and innocuous waste (essentially nonradioactive), which may be disposed of by conventional means. The LLW/innocuous waste interface was not defined in this study. Reasonably conservative analytical scenarios were used to calculate that HLW/LLW interface level which would ensure compliance with the radiological exposure guidelines of 0.5 rem/y maximum exposure for a few isolated individuals and 0.005 rem/y for large population groups. The recommended HLW/LLW interface level for /sup 239/Pu or mixed transuranic waste is 1.0 ..mu..Ci/cm/sup 3/ of waste. Levels for other radionuclides are based upon a risk equivalent to this level. A cost-benefit analysis in accordance with as low as reasonably achievable (ALARA) and National Environmental Protection Act (NEPA) guidance indicates that further reduction of this HLW/LLL interface level would entail marginal costs greater than $10/sup 8/ per man-rem of dose avoided. The environmental effects considered were limited to those involving human exposure to radioactivity.

  15. Determination of a radioactive waste classification system

    International Nuclear Information System (INIS)

    Cohen, J.J.; King, W.C.

    1978-03-01

    Several classification systems for radioactive wastes are reviewed and a system is developed that provides guidance on disposition of the waste. The system has three classes: high-level waste (HLW), which requires complete isolation from the biosphere for extended time periods; low-level waste (LLW), which requires containment for shorter periods; and innocuous waste (essentially nonradioactive), which may be disposed of by conventional means. The LLW/innocuous waste interface was not defined in this study. Reasonably conservative analytical scenarios were used to calculate that HLW/LLW interface level which would ensure compliance with the radiological exposure guidelines of 0.5 rem/y maximum exposure for a few isolated individuals and 0.005 rem/y for large population groups. The recommended HLW/LLW interface level for 239 Pu or mixed transuranic waste is 1.0 μCi/cm 3 of waste. Levels for other radionuclides are based upon a risk equivalent to this level. A cost-benefit analysis in accordance with as low as reasonably achievable (ALARA) and National Environmental Protection Act (NEPA) guidance indicates that further reduction of this HLW/LLL interface level would entail marginal costs greater than $10 8 per man-rem of dose avoided. The environmental effects considered were limited to those involving human exposure to radioactivity

  16. Double-shell tank system dangerous waste permit application

    International Nuclear Information System (INIS)

    1991-06-01

    This Double-Shell Tank System Dangerous Waste Permit Application should be read in conjunction with the 242-A Evaporator Dangerous Waste Permit Application and the Liquid Effluent Retention Facility Dangerous Waste Permit Application, also submitted on June 28, 1991. Information contained in the Double-Shell Tank System permit application is referenced in the other two permit applications. The Double-Shell Tank System stores and treats mixed waste received from a variety of sources on the Hanford Site. The 242-A Evaporator treats liquid mixed waste received from the double-shell tanks. The 242-A Evaporator returns a mixed-waste slurry to the double-shell tanks and generates the dilute mixed-waste stream stored in the Liquid Effluent Retention Facility. This report contains information on the following topics: Facility Description and General Provisions; Waste Characteristics; Process Information; Groundwater Monitoring; Procedures to Prevent Hazards; Contingency Plan; Personnel Training; Exposure Information Report; Waste Minimization Plan; Closure and Postclosure Requirements; Reporting and Recordkeeping; other Relevant Laws; and Certification. 150 refs., 141 figs., 118 tabs

  17. The Integrated Waste Tracking Systems (IWTS) - A Comprehensive Waste Management Tool

    International Nuclear Information System (INIS)

    Robert S. Anderson

    2005-01-01

    The US Department of Energy (DOE) Idaho National Laboratory (INL) site located near Idaho Falls, ID USA, has developed a comprehensive waste management and tracking tool that integrates multiple operational activities with characterization data from waste declaration through final waste disposition. The Integrated Waste Tracking System (IWTS) provides information necessary to help facility personnel properly manage their waste and demonstrate a wide range of legal and regulatory compliance. As a client?server database system, the IWTS is a proven tracking, characterization, compliance, and reporting tool that meets the needs of both operations and management while providing a high level of flexibility. This paper describes some of the history involved with the development and current use of IWTS as a comprehensive waste management tool as well as a discussion of IWTS deployments performed by the INL for outside clients. Waste management spans a wide range of activities including: work group interactions, regulatory compliance management, reporting, procedure management, and similar activities. The IWTS documents these activities and performs tasks in a computer-automated environment. Waste characterization data, container characterization data, shipments, waste processing, disposals, reporting, and limit compliance checks are just a few of the items that IWTS documents and performs to help waste management personnel perform their jobs. Throughout most hazardous and radioactive waste generating, storage and disposal sites, waste management is performed by many different groups of people in many facilities. Several organizations administer their areas of waste management using their own procedures and documentation independent of other organizations. Files are kept, some of which are treated as quality records, others not as stringent. Quality records maintain a history of: changes performed after approval, the reason for the change(s), and a record of whom and when

  18. 76 FR 16534 - Hazardous Waste Management System Identification and Listing of Hazardous Waste; Final Exclusion

    Science.gov (United States)

    2011-03-24

    ... Waste Management System Identification and Listing of Hazardous Waste; Final Exclusion AGENCY...) on a one-time basis from the lists of hazardous waste, a certain solid waste generated at its Mt... waste is [[Page 16535

  19. Alpha low-level stored waste systems design study

    Energy Technology Data Exchange (ETDEWEB)

    Feizollahi, F.; Teheranian, B. (Morrison Knudson Corp., San Francisco, CA (United States). Environmental Services Div.); Quapp, W.J. (EG and G Idaho, Inc., Idaho Falls, ID (United States))

    1992-08-01

    The Stored Waste System Design Study (SWSDS), commissioned by the Waste Technology Development Department at the Idaho National Engineering Laboratory (INEL), examines relative life-cycle costs associated with three system concepts for processing the alpha low-level waste (alpha-LLW) stored at the Radioactive Waste Management Complex's Transuranic Storage Area at the INEL. The three system concepts are incineration/melting; thermal treatment/solidification; and sort, treat, and repackage. The SWSDS identifies system functional and operational requirements and assesses implementability; effectiveness; cost; and demonstration, testing, and evaluation (DT E) requirements for each of the three concepts.

  20. Alpha low-level stored waste systems design study

    Energy Technology Data Exchange (ETDEWEB)

    Feizollahi, F.; Teheranian, B. [Morrison Knudson Corp., San Francisco, CA (United States). Environmental Services Div.; Quapp, W.J. [EG and G Idaho, Inc., Idaho Falls, ID (United States)

    1992-08-01

    The Stored Waste System Design Study (SWSDS), commissioned by the Waste Technology Development Department at the Idaho National Engineering Laboratory (INEL), examines relative life-cycle costs associated with three system concepts for processing the alpha low-level waste (alpha-LLW) stored at the Radioactive Waste Management Complex`s Transuranic Storage Area at the INEL. The three system concepts are incineration/melting; thermal treatment/solidification; and sort, treat, and repackage. The SWSDS identifies system functional and operational requirements and assesses implementability; effectiveness; cost; and demonstration, testing, and evaluation (DT&E) requirements for each of the three concepts.

  1. Alpha low-level stored waste systems design study

    International Nuclear Information System (INIS)

    Feizollahi, F.; Teheranian, B.

    1992-08-01

    The Stored Waste System Design Study (SWSDS), commissioned by the Waste Technology Development Department at the Idaho National Engineering Laboratory (INEL), examines relative life-cycle costs associated with three system concepts for processing the alpha low-level waste (alpha-LLW) stored at the Radioactive Waste Management Complex's Transuranic Storage Area at the INEL. The three system concepts are incineration/melting; thermal treatment/solidification; and sort, treat, and repackage. The SWSDS identifies system functional and operational requirements and assesses implementability; effectiveness; cost; and demonstration, testing, and evaluation (DT ampersand E) requirements for each of the three concepts

  2. Environmental assessment of solid waste systems and technologies: EASEWASTE

    DEFF Research Database (Denmark)

    Kirkeby, Janus Torsten; Birgisdottir, Harpa; Hansen, Trine Lund

    2006-01-01

    A new model has been developed for evaluating the overall resource consumption and environmental impacts of municipal solid waste management systems by the use of life cycle assessment. The model is named EASEWASTE (Environmental Assessment of Solid Waste Systems and Technologies) and is able...... may not always be the most environmentally friendly. The EASEWASTE model can identify the most environmentally sustainable solution, which may differ among waste materials and regions and can add valuable information about environmental achievements from each process in a solid waste management system....... to compare different waste management strategies, waste treatment methods and waste process technologies. The potential environmental impacts can be traced back to the most important processes and waste fractions that contribute to the relevant impacts. A model like EASEWASTE can be used by waste planners...

  3. Evaluation of the MADAM waste measurement system

    Energy Technology Data Exchange (ETDEWEB)

    Foster, L.A.; Wachter, J.R.; Hagan, R.C.

    1995-03-01

    The Multiple Assay Dual Analysis Measurement (MADAM) system is a combined low-level and transuranic waste assay system. The system integrates commercially available Segmented Gamma Scanner (SGS) capability with a multienergy x-ray and gamma-ray analysis to measure these two waste forms. In addition, the system incorporates a small neutron slab detector to satisfy safeguards concerns and the capability for automated high-resolution gamma-ray analysis for isotope identification. Since delivery of the system to this facility, an evaluation of the waste measurement characteristics of the system has been conducted. A set of specially constructed NIST-traceable standards was fabricated for calibration and evaluation of the low-level waste (LLW) measurement system. The measurement characteristics of the LLW assay system were determined during the evaluation, including detection limits for all isotopes of interest, matrix attenuation effects, and detector response as a function of source position. Based on these studies, several modifications to the existing analysis algorithms have been performed, new correction factors for matrix attenuation have been devised, and measurement error estimates have been calculated and incorporated into the software.

  4. Evaluation of the MADAM waste measurement system

    International Nuclear Information System (INIS)

    Foster, L.A.; Wachter, J.R.; Hagan, R.C.

    1995-01-01

    The Multiple Assay Dual Analysis Measurement (MADAM) system is a combined low-level and transuranic waste assay system. The system integrates commercially available Segmented Gamma Scanner (SGS) capability with a multienergy x-ray and gamma-ray analysis to measure these two waste forms. In addition, the system incorporates a small neutron slab detector to satisfy safeguards concerns and the capability for automated high-resolution gamma-ray analysis for isotope identification. Since delivery of the system to this facility, an evaluation of the waste measurement characteristics of the system has been conducted. A set of specially constructed NIST-traceable standards was fabricated for calibration and evaluation of the low-level waste (LLW) measurement system. The measurement characteristics of the LLW assay system were determined during the evaluation, including detection limits for all isotopes of interest, matrix attenuation effects, and detector response as a function of source position. Based on these studies, several modifications to the existing analysis algorithms have been performed, new correction factors for matrix attenuation have been devised, and measurement error estimates have been calculated and incorporated into the software

  5. Evolution of a Waste Information System

    International Nuclear Information System (INIS)

    Speed, D.

    2009-01-01

    Managing information has become a pervasive task in our society and business activities. This is especially true in the arena of government facilities and nuclear materials. Accomplishing the required tasks is not sufficient in the new millennium; plans are made, reviewed and approved, specifications for materials are developed, materials are procured and delivered, inspected, invoices are audited and paid. Activities are conducted to procedures with embedded quality checks and a final turn-over inspection is performed. In order to make the most efficient use of our human capital, we turn to machines to assist us in managing the information flood. How best to address this task? This is new territory - there was no prior art at this level. The challenge is to exercise an appropriate level of control, and at the same time, add value. The key to accomplishing this goal is having a good team with a carefully engineered processes applying an appropriate level of automation. At the Waste Isolation Pilot Plant (WIPP), information is managed about the facility, its performance (environmental monitoring), mining operations, facility services, cyber security, human resources, business processes, and waste information. This paper addresses experience gained with the management of waste information over the first decade of operation. The WIPP Waste Information System (WWIS) was created to fill both a gatekeeper function to screen waste for disposal at Waste Isolation Pilot Plant (WIPP) and the official record of the properties of the waste contained in the WIPP transuranic waste repository. The WWIS has been a very successful system as the monitor of waste acceptance criteria and data integrity; it is an integral part of the success of the WIPP operation. The WWIS is now in its thirteenth year of operation. This period has included close regulatory scrutiny as a part of determining facility readiness for initial waste acceptance, and more than 40 significant software revisions

  6. Expert system technology for nondestructive waste assay

    International Nuclear Information System (INIS)

    Becker, G.K.; Determan, J.C.

    1998-01-01

    Nondestructive assay waste characterization data generated for use in the National TRU Program must be of known and demonstrable quality. Each measurement is required to receive an independent technical review by a qualified expert. An expert system prototype has been developed to automate waste NDA data review of a passive/active neutron drum counter system. The expert system is designed to yield a confidence rating regarding measurement validity. Expert system rules are derived from data in a process involving data clustering, fuzzy logic, and genetic algorithms. Expert system performance is assessed against confidence assignments elicited from waste NDA domain experts. Performance levels varied for the active, passive shielded, and passive system assay modes of the drum counter system, ranging from 78% to 94% correct classifications

  7. An expert system framework for nondestructive waste assay

    International Nuclear Information System (INIS)

    Becker, G.K.

    1996-01-01

    Management and disposition of transuranic (RU) waste forms necessitates determining entrained RU and associated radioactive material quantities as per National RU Waste Characterization Program requirements. Technical justification and demonstration of a given NDA method used to determine RU mass and uncertainty in accordance with program quality assurance is difficult for many waste forms. Difficulties are typically founded in waste NDA methods that employ standards compensation and/or employment of simplifying assumptions on waste form configurations. Capability to determine and justify RU mass and mass uncertainty can be enhanced through integration of waste container data/information using expert system and empirical data-driven techniques with conventional data acquisition and analysis. Presented is a preliminary expert system framework that integrates the waste form data base, alogrithmic techniques, statistical analyses, expert domain knowledge bases, and empirical artificial intelligence modules into a cohesive system. The framework design and bases in addition to module development activities are discussed

  8. Development of a Radioactive Waste Assay System

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Duck Won; Song, Myung Jae; Shin, Sang Woon; Sung, Kee Bang; Ko, Dae Hach [Korea Electric Power Research Institute, Taejon (Korea, Republic of); Kim, Kil Jeong; Park, Jong Mook; Jee, Kwang Yoong [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1996-12-31

    Nuclear Act of Korea requires the manifest of low and intermediate level radioactive waste generated at nuclear power plants prior to disposal sites.Individual history records of the radioactive waste should be contained the information about the activity of nuclides in the drum, total activity, weight, the type of waste. A fully automated nuclide analysis assay system, non-destructive analysis and evaluation system of the radioactive waste, was developed through this research project. For the nuclides that could not be analysis directly by MCA, the activities of the representative {gamma}-emitters(Cs-137, Co-60) contained in the drum were measured by using that system. Then scaling factors were used to calculate the activities of {alpha}, {beta}-emitters. Furthermore, this system can automatically mark the analysis results onto the drum surface. An automated drum handling system developed through this research project can reduce the radiation exposure to workers. (author). 41 refs., figs.

  9. The Integrated Waste Tracking Systems (IWTS) - A Comprehensive Waste Management Tool

    Energy Technology Data Exchange (ETDEWEB)

    Robert S. Anderson

    2005-09-01

    The US Department of Energy (DOE) Idaho National Laboratory (INL) site located near Idaho Falls, ID USA, has developed a comprehensive waste management and tracking tool that integrates multiple operational activities with characterization data from waste declaration through final waste disposition. The Integrated Waste Tracking System (IWTS) provides information necessary to help facility personnel properly manage their waste and demonstrate a wide range of legal and regulatory compliance. As a client?server database system, the IWTS is a proven tracking, characterization, compliance, and reporting tool that meets the needs of both operations and management while providing a high level of flexibility. This paper describes some of the history involved with the development and current use of IWTS as a comprehensive waste management tool as well as a discussion of IWTS deployments performed by the INL for outside clients. Waste management spans a wide range of activities including: work group interactions, regulatory compliance management, reporting, procedure management, and similar activities. The IWTS documents these activities and performs tasks in a computer-automated environment. Waste characterization data, container characterization data, shipments, waste processing, disposals, reporting, and limit compliance checks are just a few of the items that IWTS documents and performs to help waste management personnel perform their jobs. Throughout most hazardous and radioactive waste generating, storage and disposal sites, waste management is performed by many different groups of people in many facilities. Several organizations administer their areas of waste management using their own procedures and documentation independent of other organizations. Files are kept, some of which are treated as quality records, others not as stringent. Quality records maintain a history of: changes performed after approval, the reason for the change(s), and a record of whom and when

  10. Performance assessment for underground radioactive waste disposal systems

    International Nuclear Information System (INIS)

    1985-01-01

    A waste disposal system comprises a number of subsystems and components. The performance of most systems can be demonstrated only indirectly because of the long period that would be required to test them. This report gives special attention to performance assessment of subsystems within the total waste disposal system, and is an extension of an IAEA report on Safety Assessment for the Underground Disposal of Radioactive Wastes

  11. Improved liquid waste processing system of PWR plant

    International Nuclear Information System (INIS)

    Suehiro, Kazuyasu

    1977-01-01

    Mitsubishi Heavy Industries, Ltd. has engaged in the improvement and enhancement of waste-processing facilities for PWR power stations, and recently established the improved processing system. With this system, it becomes possible to contain radioactive waste gas semi-permanently within plants and to recycle waste liquid after the treatment, thus to make the release of radioactive wastes practically zero. The improved system has the following features, namely the recycling system is adopted, drain is separated and each separated drain is treated by specialized process, the reboiler type evaporator and the reverse osmosis equipment are used, and the leakless construction is adopted for the equipments. The radioactive liquid wastes in PWR power stations are classified into coolant drain, drain from general equipments, chemical drain and cleaning water. The outline of the improved processing system and the newly developed equipments such as the reboiler type evaporator and the reverse osmosis equipment are explained. With the evaporator, the concentration rate of waste liquid can be raised to about three times, and foaming waste can be treated efficiently. The decontamination performance is excellent. The reverse osmosis treatment is stable and reliable method, and is useful for the treatment of cleaning water. It is also effective for concentrating treatment. The unmanned automatic operation is possible. (Kako, I.)

  12. Waste collection systems for recyclables

    DEFF Research Database (Denmark)

    Larsen, Anna Warberg; Merrild, Hanna Kristina; Møller, Jacob

    2010-01-01

    and technical limitations are respected, and what will the environmental and economic consequences be? This was investigated in a case study of a municipal waste management system. Five scenarios with alternative collection systems for recyclables (paper, glass, metal and plastic packaging) were assessed...... and treatment of waste were reduced with increasing recycling, mainly because the high cost for incineration was avoided. However, solutions for mitigation of air pollution caused by increased collection and transport should be sought. (C) 2009 Elsevier Ltd. All rights reserved....

  13. Waste package performance allocation system study report

    International Nuclear Information System (INIS)

    Memory, R.D.

    1994-01-01

    The Waste Package Performance Allocation system study was performed in order to provide a technical basis for the selection of the waste package period of substantially complete containment and its resultant contribution to the overall total system performance. This study began with a reference case based on the current Mined Geologic Disposal System (MGDS) baseline design and added a number of alternative designs. The waste package designs were selected from the designs being considered in detail during Advanced Conceptual Design (ACD). The waste packages considered were multi-barrier packages with a 0.95 cm Alloy 825 inner barrier and a 10, 20, or 45 cm thick carbon steel outer barrier. The waste package capacities varied from 6 to 12 to 21 Pressurized Water Reactor (PWR) fuel assemblies. The vertical borehole and in-drift emplacement modes were also considered, as were thermal loadings of 25, 57, and 114 kW/acre. The repository cost analysis indicated that the 21 PWR in-drift emplacement mode option with the 10 cm and 20 cm outer barrier thicknesses are the least expensive and that the 12 PWR in-drift case has approximately the same cost as the 6 PWR vertical borehole. It was also found that the cost increase from the 10 cm outer barrier waste package to the 20 cm waste package was less per centimeter than the increase from the 20 cm outer barrier waste package to the 45 cm outer barrier waste package. However, the repository cost was nearly linear with the outer barrier thickness for the 21 PWR in-drift case. Finally, corrosion rate estimates are provided and the relationship of repository cost versus waste package lifetime is discussed as is cumulative radionuclide release from the waste package and to the accessible environment for time periods of 10,000 years and 100,000 years

  14. Systems analysis support to the waste management technology center

    International Nuclear Information System (INIS)

    Rivera, A.L.; Osborne-Lee, I.W.; DePaoli, S.M.

    1988-01-01

    This paper describes a systems analysis concept being developed in support of waste management planning and analysis activities for Martin Marietta Energy Systems, Inc. (Energy Systems), sites. This integrated systems model serves as a focus for the accumulation and documentation of technical and economic information from current waste management practices, improved operations projects, remedial actions, and new system development activities. The approach is generic and could be applied to a larger group of sites. This integrated model is a source of technical support to waste management groups in the Energy Systems complex for integrated waste management planning and related technology assessment activities. This problem-solving methodology for low-level waste (LLW) management is being developed through the Waste Management Technology Center (WMTC) for the Low-Level Waste Disposal, Development, and Demonstration (LLWDDD) Program. In support of long-range planning activities, this capability will include the development of management support tools such as specialized systems models, data bases, and information systems. These management support tools will provide continuing support in the identification and definition of technical and economic uncertainties to be addressed by technology demonstration programs. Technical planning activities and current efforts in the development of this system analysis capability for the LLWDDD Program are presented in this paper

  15. Waste Management Systems Requirements and Descriptions (SRD)

    International Nuclear Information System (INIS)

    Conner, C.W.

    1986-01-01

    The Department of Energy (DOE), Office of Civilian Radioactive Waste Management (OCRWM) is responsible for the development of a system for the management of high-level radioactive waste and spent fuel in accordance with the Nuclear Waste Policy Act of 1982. The Waste Management system requirements and description document is the program-level technical baseline document. The requirements include the functions that must be performed in order to achieve the system mission and performance criteria for those functions. This document covers only the functional requirements of the system; it does not cover programmatic or procedural requirements pertaining to the processes of designing, siting and licensing. The requirements are largely based on the Nuclear Waste Policy Act of 1982, Environmental Protection Agency standards, Nuclear Regulatory Commission regulations, and DOE orders and guidance. However, nothing in this document should be construed as to relieve the DOE or its contractors from their responsibilities to comply with applicable statutes, regulations, and standards. This document also provides a brief description of the system being developed to meet the requirements. In addition to the described ''authorized system,'' a system description is provided for an ''improved-performance system'' which would include a monitored retrievable storage (MRS) facility. In the event that an MRS facility is approved by Congress, the improved-performance system will become the reference system. Neither system description includes Federal Interim Storage (FIS) capabilities. Should the need for FIS be identified, it will be included as an additional system element. The descriptions are focused on the interfaces between the system elements, rather than on the detail of the system elements themselves

  16. Characterization optimization for the National TRU waste system

    International Nuclear Information System (INIS)

    Basabilvazo, George T.; Countiss, S.; Moody, D.C.; Jennings, S.G.; Lott, S.A.

    2002-01-01

    On March 26, 1999, the Waste Isolation Pilot Plant (WIPP) received its first shipment of transuranic (TRU) waste. On November 26, 1999, the Hazardous Waste Facility Permit (HWFP) to receive mixed TRU waste at WIPP became effective. Having achieved these two milestones, facilitating and supporting the characterization, transportation, and disposal of TRU waste became the major challenges for the National TRU Waste Program. Significant challenges still remain in the scientific, engineering, regulatory, and political areas that need to be addressed. The National TRU Waste System Optimization Project has been established to identify, develop, and implement cost-effective system optimization strategies that address those significant challenges. Fundamental to these challenges is the balancing and prioritization of potential regulatory changes with potential technological solutions. This paper describes some of the efforts to optimize (to make as functional as possible) characterization activities for TRU waste.

  17. Influence of system considerations on waste form design

    International Nuclear Information System (INIS)

    Bauer, A.A.; Matthews, S.C.; Peterson, R.W.

    1979-01-01

    The design of waste forms is constrained by waste management system considerations imposed during generation, treatment, packaging, transportation, storage, and isolation. In the isolation phase, the waste form provides one of the barriers to release in a multibarrier system that includes the natural geologic and hydrologic barriers as well as other engineered barriers

  18. The RS-485 communication system design of the waste steel radioactivity detector system

    International Nuclear Information System (INIS)

    Zhang Yongli

    2014-01-01

    The importance and schematic structure of the waste steel radioactivity detector system is given firstly in this paper, and then the RS-485 communication system design including the circuit and program of the waste steel radioactivity detector system is provided. The test result of RS-485 communication system is also introduced, that shows the design completely meets the requirements of the waste steel radioactivity detector system. (author)

  19. Radioactive waste incineration system cold demonstration test

    Energy Technology Data Exchange (ETDEWEB)

    Hozumi, Masahiro; Takaoku, Yoshinobu; Koyama, Shigeru; Nagae, Madoka; Seike, Yasuhiko; Yamanaka, Yasuhiro; Shibata, Kenji; Manabe, Kyoichi

    1984-12-01

    To demonstrate Waste Incineration System (WIS) which our company has been licensed by Combustion Engineering Inc., USA we installed a demonstration test plant in our Hiratsuka Research Laboratory and started the demonstration test on January 1984. One of the characteristics of this system is to be able to process many kinds of wastes with only one system, and to get high volume reduction factors. In our test plant, we processed paper, cloth, wood, polyethylene sheets as the samples of solid combustible wastes and spent ion exchange resins with incineration and processed condensed liquid wastes with spray drying. We have got good performances and enough Decontamination Factor (DF) data for the dust control equipment. In this paper, we introduce this demonstration test plant and report the test results up to date. (author).

  20. Performance assessment of nuclear waste isolation systems

    International Nuclear Information System (INIS)

    Lee, W.L.

    1984-01-01

    A number of concepts have been proposed for the isolation of highly radioactive wastes, and it will be necessary to demonstrate the safety of such systems. In many countries including the U.S., the waste isolation system of choice is deep mined geologic repositories. Because of the complex nature of the multiple isolation barriers afforded by mined geologic disposal systems, and the long isolation periods involved, this demonstration can only be indirect. In recent years this indirect demonstration, mostly through mathematical modeling, is called performance assessment. Performance Assessment can be defined to mean the development, testing, and application of a series of mathematical models and computer codes which traces the movement of radionuclides from a waste isolation system to the biosphere and any resultant dose to man. In modeling such a repository system, it is often convenient to divide it into a number of subsystems, there may be several different processes that need to be modeled, individually and interactively. For instance, this waste package will probably consist of a waste form such as borosilicate glass containing the radioisotopes, a canister, an overpack material such as steel or copper, and a buffer material such as bentonite. The processes to be modeled at the waste package scale include radioisotope inventory and decay, thermal radiation, radiolysis effects, corrosion, leading and fluid flow. In tracing radionuclide transport through rock, the processes of importance are probably groundwater flow, and sorption and retardation of radionuclide movement

  1. Waste Information Management System with Integrated Transportation Forecast Data

    International Nuclear Information System (INIS)

    Upadhyay, H.; Quintero, W.; Shoffner, P.; Lagos, L.

    2009-01-01

    The Waste Information Management System with Integrated Transportation Forecast Data was developed to support the Department of Energy (DOE) mandated accelerated cleanup program. The schedule compression required close coordination and a comprehensive review and prioritization of the barriers that impeded treatment and disposition of the waste streams at each site. Many issues related to site waste treatment and disposal were potential critical path issues under the accelerated schedules. In order to facilitate accelerated cleanup initiatives, waste managers at DOE field sites and at DOE Headquarters in Washington, D.C., needed timely waste forecast and transportation information regarding the volumes and types of waste that would be generated by the DOE sites over the next 40 years. Each local DOE site has historically collected, organized, and displayed site waste forecast information in separate and unique systems. However, waste and shipment information from all sites needed a common application to allow interested parties to understand and view the complete complex-wide picture. The Waste Information Management System with Integrated Transportation Forecast Data allows identification of total forecasted waste volumes, material classes, disposition sites, choke points, technological or regulatory barriers to treatment and disposal, along with forecasted waste transportation information by rail, truck and inter-modal shipments. The Applied Research Center (ARC) at Florida International University (FIU) in Miami, Florida, has deployed the web-based forecast and transportation system and is responsible for updating the waste forecast and transportation data on a regular basis to ensure the long-term viability and value of this system. (authors)

  2. Tank waste remediation system: An update

    International Nuclear Information System (INIS)

    Alumkal, W.T.; Babad, H.; Dunford, G.L.; Honeyman, J.O.; Wodrich, D.D.

    1995-02-01

    The US Department of Energy's Hanford Site, located in southeastern Washington State, contains the largest amount and the most diverse collection of highly radioactive waste in the US. High-level radioactive waste has been stored at the Hanford Site in large, underground tanks since 1944. Approximately 217,000 M 3 (57 Mgal) of caustic liquids, slurries, saltcakes, and sludges have accumulated in 177 tanks. In addition, significant amounts of 90 Sr and 137 Cs were removed from the tank waste, converted to salts, doubly encapsulated in metal containers, and stored in water basins. The Tank Waste Remediation System Program was established by the US Department of Energy in 1991 to safely manage and immobilize these wastes in anticipation of permanent disposal of the high-level waste fraction in a geologic repository. Since 1991, significant progress has been made in resolving waste tank safety issues, upgrading Tank Farm facilities and operations, and developing a new strategy for retrieving, treating, and immobilizing the waste for disposal

  3. Hazardous waste systems analysis at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Urioste, J.

    1997-01-01

    Los Alamos National Laboratory produces routine and non-routine hazardous waste as a by-product of mission operations. Hazardous waste commonly generated at the Laboratory includes many types of laboratory research chemicals, solvents, acids, bases, carcinogens, compressed gases, metals, and other solid waste contaminated with hazardous waste. The Los Alamos National Laboratory Environmental Stewardship Office has established a Hazardous Waste Minimization Coordinator to specifically focus on routine and non-routine RCRA, TSCA, and other administratively controlled wastes. In this process, the Waste Minimization Coordinator has developed and implemented a systems approach to define waste streams, estimate waste management costs and develop plans to implement avoidance practices, and develop projects to reduce or eliminate the waste streams at the Laboratory. The paper describes this systems approach

  4. Defense High Level Waste Disposal Container System Description Document

    International Nuclear Information System (INIS)

    2000-01-01

    The Defense High Level Waste Disposal Container System supports the confinement and isolation of waste within the Engineered Barrier System of the Monitored Geologic Repository (MGR). Disposal containers are loaded and sealed in the surface waste handling facilities, transferred to the underground through the accesses using a rail mounted transporter, and emplaced in emplacement drifts. The defense high level waste (HLW) disposal container provides long-term confinement of the commercial HLW and defense HLW (including immobilized plutonium waste forms (IPWF)) placed within disposable canisters, and withstands the loading, transfer, emplacement, and retrieval loads and environments. U.S. Department of Energy (DOE)-owned spent nuclear fuel (SNF) in disposable canisters may also be placed in a defense HLW disposal container along with commercial HLW waste forms, which is known as 'co-disposal'. The Defense High Level Waste Disposal Container System provides containment of waste for a designated period of time, and limits radionuclide release. The disposal container/waste package maintains the waste in a designated configuration, withstands maximum handling and rockfall loads, limits the individual canister temperatures after emplacement, resists corrosion in the expected handling and repository environments, and provides containment of waste in the event of an accident. Defense HLW disposal containers for HLW disposal will hold up to five HLW canisters. Defense HLW disposal containers for co-disposal will hold up to five HLW canisters arranged in a ring and one DOE SNF canister in the ring. Defense HLW disposal containers also will hold two Multi-Canister Overpacks (MCOs) and two HLW canisters in one disposal container. The disposal container will include outer and inner cylinders, outer and inner cylinder lids, and may include a canister guide. An exterior label will provide a means by which to identify the disposal container and its contents. Different materials

  5. A nationwide low-level waste management system

    International Nuclear Information System (INIS)

    1985-01-01

    The National Governors' Association, in conjunction with the Department of Energy's National Low-Level Waste Management Program, invited various representatives of states, regions, and federal agencies to comment on their perceptions of what major features would constitute a nationwide low-level waste management system. Three meetings were conducted and this report summarizes results of those meetings. The Low-Level Radioactive Waste Policy Act of 1980 placed primary responsibility on the states for disposal of low-level waste. Although initial efforts of states have been directed toward establishing compacts, it is evident that a successful long term system requires significant cooperation and communication among states, regions, federal agencies, and Congress

  6. Gaseous radioactive waste processing system

    International Nuclear Information System (INIS)

    Onizawa, Hideo.

    1976-01-01

    Object: To prevent explosion of hydrogen gas within gaseous radioactive waste by removing the hydrogen gas by means of a hydrogen absorber. Structure: A coolant extracted from a reactor cooling system is sprayed by nozzle into a gaseous phase (hydrogen) portion within a tank, thus causing slipping of radioactive rare gas. The gaseous radioactive waste rich in hydrogen, which is purged in the tank, is forced by a waste gas compressor into a hydrogen occlusion device. The hydrogen occlusion device is filled with hydrogen occluding agents such as Mg, Mg-Ni alloy, V-Nb alloy, La-Ni alloy and so forth, and hydrogen in the waste gas is removed through reaction to produce hydrogen metal. The gaseous radioactive waste, which is deprived of hydrogen and reduced in volume, is stored in an attenuation tank. The hydrogen stored in the hydrogen absorber is released and used again as purge gas. (Horiuchi, T.)

  7. SUGERE - a unified system for waste management

    International Nuclear Information System (INIS)

    Silva, Eliane Magalhaes Pereira da; Vasconcelos, Vanderley de; Senne Junior, Murillo; Jordao, Elizabete

    2005-01-01

    Generation and disposal of wastes has been responsible for many economical, ecological and public health problems. In order to manage hazardous wastes in an environment friendly manner, many technical and administrative procedures should be implemented, including prevention, control of generation, and final disposal. A software named SUGERE - a unified system for waste management - is being developed. It is an easy to use tool that integrates all the steps involved in hazardous and radioactive waste management. This system is intended to help generators, transporters and owners of treatment, storage and disposal facilities to manage hazardous and radioactive wastes, by assuring compliance with environmental laws and consumer requirements. This paper presents the current status of the SUGERE software, developed using Borland Delphi package. The nuclear industry is used as a reference for developing this work. (author)

  8. Progress and challenges to the global waste management system.

    Science.gov (United States)

    Singh, Jagdeep; Laurenti, Rafael; Sinha, Rajib; Frostell, Björn

    2014-09-01

    Rapid economic growth, urbanization and increasing population have caused (materially intensive) resource consumption to increase, and consequently the release of large amounts of waste to the environment. From a global perspective, current waste and resource management lacks a holistic approach covering the whole chain of product design, raw material extraction, production, consumption, recycling and waste management. In this article, progress and different sustainability challenges facing the global waste management system are presented and discussed. The study leads to the conclusion that the current, rather isolated efforts, in different systems for waste management, waste reduction and resource management are indeed not sufficient in a long term sustainability perspective. In the future, to manage resources and wastes sustainably, waste management requires a more systems-oriented approach that addresses the root causes for the problems. A specific issue to address is the development of improved feedback information (statistics) on how waste generation is linked to consumption. © The Author(s) 2014.

  9. A comparative study on per capita waste generation according to a waste collecting system in Korea.

    Science.gov (United States)

    Oh, Jung Hwan; Lee, Eui-Jong; Oh, Jeong Ik; Kim, Jong-Oh; Jang, Am

    2016-04-01

    As cities are becoming increasingly aware of problems related to conventional mobile collection systems, automated pipeline-based vacuum collection (AVAC) systems have been introduced in some densely populated urban areas. The reasons are that in addition to cost savings, AVAC systems can be efficient, hygienic, and environmentally friendly. Despite difficulties in making direct comparisons of municipal waste between a conventional mobile collection system and an AVAC system, it is meaningful to measure the quantities in each of these collection methods either in total or on a per capita generation of waste (PCGW, g/(day*capita)) basis. Thus, the aim of this study was to assess the difference in per capita generation of household waste according to the different waste collection methods in Korea. Observations on household waste show that there were considerable differences according to waste collection methods. The value of per capita generation of food waste (PCGF) indicates that a person in a city using AVAC produces 60 % of PCGF (109.58 g/(day*capita)), on average, compared with that of a truck system (173.10 g/(day*capita)) as well as 23 %p less moisture component than that with trucks. The value of per capita generation of general waste (PCGG) in a city with an AVAC system showed 147.73 g/(day*capita), which is 20 % less than that with trucks delivered (185 g/(day*capita)). However, general waste sampled from AVAC showed a 35 %p increased moisture content versus truck delivery.

  10. Waste Management Information System (WMIS) User Guide

    International Nuclear Information System (INIS)

    Broz, R.E.

    2008-01-01

    This document provides the user of the Waste Management Information System (WMIS) instructions on how to use the WMIS software. WMIS allows users to initiate, track, and close waste packages. The modular design supports integration and utilization of data through the various stages of waste management. The phases of the waste management work process include generation, designation, packaging, container management, procurement, storage, treatment, transportation, and disposal

  11. Waste Management Information System (WMIS) User Guide

    Energy Technology Data Exchange (ETDEWEB)

    R. E. Broz

    2008-12-22

    This document provides the user of the Waste Management Information System (WMIS) instructions on how to use the WMIS software. WMIS allows users to initiate, track, and close waste packages. The modular design supports integration and utilization of data throuh the various stages of waste management. The phases of the waste management work process include generation, designation, packaging, container management, procurement, storage, treatment, transportation, and disposal.

  12. Methodology for assessing performance of waste management systems

    International Nuclear Information System (INIS)

    Meshkov, N.K.; Herzenberg, C.L.; Camasta, S.F.

    1988-01-01

    The newly revised draft DOE Order 5820.2, Chapter 3, requires that DOE low-level waste shall be managed on a systematic basis using the most appropriate combination of waste generation reduction, segregation, treatment, and disposal practices so that the radioactive components are contained and the overall cost effectiveness is minimized. This order expects each site to prepare and maintain an overall waste management systems performance assessment supporting the combination of waste management practices used in generation reduction segregation, treatment, packaging, storage, and disposal. A document prepared by EG and G Idaho, Inc. for the Department of Energy called Guidance for Conduct of Waste Management Systems Performance Assessment is specifically intended to provide the approach necessary to meet the systems performance assessment requirement of DOE Order 5820.2, Chapter 3, and other applicable state regulations dealing with LLW (low-level radioactive wastes). Methods and procedures are needed for assessing the performance of a waste management system. This report addresses this need. The purpose of the methodology provided in this report is to select the optimal way to manage particular sets of waste streams from generation to disposal in a safe and cost-effective manner, and thereby assist the DOE LLW mangers in complying with the DOE Order 5820.2, Chapter 3, and the associated guidance document

  13. Solid municipal waste management: Systems and reference technologies

    International Nuclear Information System (INIS)

    Ciancio, G.; Mura, A.

    1993-03-01

    The management of solid municipal wastes comprises simple methods such as dumping into suitably controlled waste disposal sites, and more complex solutions, which can include waste segregation, some form of materials and/or energy recovery, and the use of combined cycle combustion systems. All these methods, however, require environmental protection systems with custom designed techniques, equipment and safeguards. This paper reviews the technical-economic aspects of different pollution control options currently available to meet the specific requirements of various waste management alternatives

  14. Waste system optimization - can diameter selection

    International Nuclear Information System (INIS)

    Ashline, R.C.

    1983-08-01

    The purpose of the waste system optimization study is to define in terms of cost incentives the preferred waste package for HLW which has been converted to glass at a commercial reprocessing plant. The Waste Management Economic Model (WMEM) was employed to analyze the effect of varying important design parameters on the overall net present cost of waste handling. The parameters found to have the greatest effect on the calculated overall net present cost were can diameter, repository type (salt, basalt/bentonite, or welded tuff), allowable areal heat loading, and the repository availability date. The overall net present of a waste handling option is calculated over a 20-year operating period. It includes the total capital and operating costs associated with high-level and intermediate-level liquid waste storage, liquid waste solidification, hulls storage and compaction, and general process trash handling. It also includes the cask leasing and transportation costs associated with each waste type and the waste repository disposal costs. The waste repository disposal costs used in WMEM for this analysis were obtained from Battelle Pacific Northwest Laboratories and thir RECON model. 2 figures, 2 tables

  15. WASTES II: Waste System Transportation and Economic Simulation. Version II. User's guide

    International Nuclear Information System (INIS)

    Shay, M.R.; Buxbaum, M.E.

    1986-02-01

    The WASTES II model was developed to provide detailed analyses beyond the capabilities of other available models. WASTES uses discrete event simulation techniques to model the generation of commercial spent nuclear fuel, the buildup of spent fuel inventories within the system, and the transportation requirements for the movement of radioactive waste throughout the system. The model is written in FORTRAN 77 as an extension to the SLAM commercial simulation language package. In addition to the pool storage and dry storage located at the reactors, the WASTES model provides a choice of up to ten other storage facilities of four different types. The simulation performed by WASTES may be controlled by a combination of source- and/or destination-controlled transfers that are requested by the code user. The user supplies shipping cask characteristics for truck or rail shipment casks. As part of the facility description, the user specifies which casks the facility can use. Shipments within the system can be user specified to occur optimally, or proximally. Optimized shipping can be used when exactly two destination facilities of the same facility type are open for receipt of fuel. Optimized shipping selects source/destination pairs so that the total shipping distance or total shipping costs in a given year are minimized when both facilities are fully utilized. Proximity shipping sequentially fills the closest facility to the source according to the shipment priorities without regard for the total annual shipments. This results in sub-optimal routing of waste material but can be used to approximate an optimal shipping strategy when more than two facilities of the same type are available to receive waste. WASTES is currently able to analyze each of the commercial spent fuel logistics scenarios specified in the 1985 DOE Mission Plan

  16. Waste heat recovery system

    International Nuclear Information System (INIS)

    Phi Wah Tooi

    2010-01-01

    Full text: The Konzen in-house designed anaerobic digester system for the POME (Palm Oil Mill Effluent) treatment process is one of the registered Clean Development Mechanism (CDM) projects in Malaysia. It is an organic wastewater treatment process which achieves excellent co-benefits objectives through the prevention of water pollution and reduction of greenhouse gas emissions, which is estimated to be 40,000 to 50,000 t-CO 2 per year. The anaerobic digester was designed in mesophile mode with temperature ranging from 37 degree Celsius to 45 degree Celsius. A microorganisms growth is optimum under moderately warm temperature conditions. The operating temperature of the anaerobic digester needs to be maintained constantly. There are two waste heat recovery systems designed to make the treatment process self-sustaining. The heat recovered will be utilised as a clean energy source to heat up the anaerobic digester indirectly. The first design for the waste heat recovery system utilises heat generated from the flue gas of the biogas flaring system. A stainless steel water tank with an internal water layer is installed at the top level of the flare stack. The circulating water is heated by the methane enriched biogas combustion process. The second design utilizes heat generated during the compression process for the biogas compressor operation. The compressed biogas needs to be cooled before being recycled back into the digester tank for mixing purposes. Both the waste heat recovery systems use a design which applies a common water circulation loop and hot water tank to effectively become a closed loop. The hot water tank will perform both storage and temperature buffer functions. The hot water is then used to heat up recycled sludge from 30 degree Celsius to 45 degree Celsius with the maximum temperature setting at 50 degree Celsius. The recycled sludge line temperature will be measured and monitored by a temperature sensor and transmitter, which will activate the

  17. 75 FR 61356 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste; Correction

    Science.gov (United States)

    2010-10-05

    ... Waste Management System; Identification and Listing of Hazardous Waste; Correction AGENCY: Environmental... thermal desorber residual solids with Hazardous Waste Numbers: F037, F038, K048, K049, K050, and K051. In... and correcting it in Table 1 of appendix IX to part 261--Waste Excluded Under Sec. Sec. 260.20 and 260...

  18. Design demonstrations for the remaining 19 Category B tank systems at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1995-01-01

    This document presents design demonstrations conducted of liquid low-level waste (LLLW) storage tank systems located at the Oak Ridge National Laboratory (ORNL). Demonstration of the design of these tank systems has been stipulated by the Federal Facility Agreement (FFA) between the US Environmental Protection Agency (EPA)--Region IV; the Tennessee Department of Environment and Conservation (TDEC); and the DOE. The FFA establishes four categories of tank systems: Category A--New or Replacement Tank Systems with Secondary Containment; Category B--Existing Tank Systems with Secondary Containment; Category C--Existing Tank Systems Without Secondary Containment; and Category D--Existing Tank Systems Without Secondary Containment That are Removed from Service. This document provides a design demonstration of the secondary containment and ancillary equipment of 19 tank systems listed in the FFA as Category B. Three tank systems originally designated as Category B have been redesignated as Category C and one tank system originally designated as Category B has been redesignated as Category D. The design demonstration for each tank is presented in Section 2. The design demonstrations were developed using information obtained from the design drawings (as-built when available), construction specifications, and interviews with facility operators. The assessments assume that each tank system was constructed in accordance with the design drawings and construction specifications for that system unless specified otherwise. Each design demonstration addresses system conformance to the requirements of the FFA

  19. Study of Thorium Phosphate Diphosphate (TPD) formation in nitric medium for the decontamination of high activity actinides bearing effluents

    International Nuclear Information System (INIS)

    Rousselle, Jerome

    2004-01-01

    Considering several activities in the nuclear industry and research, several low-level liquids wastes (LLLW) containing actinides in nitric medium must be decontaminated before being released in the environment. These liquid wastes mainly contain significant amounts of uranium(VI), neptunium(V) and plutonium(IV). In this work, two chemical ways were studied to decontaminate LLLW then to incorporate simultaneously uranium, neptunium and plutonium in the Thorium Phosphate Diphosphate (TPD). Both ways started from a nitric solution containing thorium and the actinides considered, present at their lower stable oxidation state. The first way consisted in the initial precipitation of actinide and thorium mixed oxalate. After drying the mixture containing the powder and phosphoric acid under dried argon, a poly-phase system was obtained. It was mainly composed by a thorium-actinide oxalate-phosphate. This mixture was transformed into a TPDAn solid solution (An = U, Np and/or Pu) by heating treatment at 1200 deg. C under inert atmosphere. The second way consisted in the precipitation of a precursor of TPD, identified as the Thorium Phosphate Hydrogen Phosphate loaded with the actinides considered. The gel initially formed by mixing concentrated phosphoric acid solution with the nitric actinide solution was heated at 90 - 160 deg. C in a closed PTFE container for several weeks. It led to the TPDAn solid solutions after heating at 1100 deg. C in air or under inert argon. The efficiency of both processes was evaluated through the determination of the decontamination for each actinide considered. Considering the encouraging results obtained for both kinds of processes, some complementary studies are now required before performing the effective decontamination of real Low-Level Liquid Waste using one of the methods proposed. (author) [fr

  20. Identification of the recommended waste management systems and system development schedules: Regional Management Plan

    International Nuclear Information System (INIS)

    1986-01-01

    This report describes the evaluations of alternatives for low-level waste treatment and disposal leading to the selection of four disposal methods and two treatment alternatives (including the alternative of only continuing current methods of waste treatment used by the waste generators) that were used to form candidate waste management systems. The subsequent evaluation of waste management systems and schedules for the development of the regional waste management system under four different scenarios are also included. The report also describes the consequences to the member states and their waste generators of the four scenarios and presents insights into preferred courses of action that arise from the scheduling exercise. 13 refs., 14 figs., 2 tabs

  1. Automated system for handling tritiated mixed waste

    International Nuclear Information System (INIS)

    Dennison, D.K.; Merrill, R.D.; Reitz, T.C.

    1995-03-01

    Lawrence Livermore National Laboratory (LLNL) is developing a semi system for handling, characterizing, processing, sorting, and repackaging hazardous wastes containing tritium. The system combines an IBM-developed gantry robot with a special glove box enclosure designed to protect operators and minimize the potential release of tritium to the atmosphere. All hazardous waste handling and processing will be performed remotely, using the robot in a teleoperational mode for one-of-a-kind functions and in an autonomous mode for repetitive operations. Initially, this system will be used in conjunction with a portable gas system designed to capture any gaseous-phase tritium released into the glove box. This paper presents the objectives of this development program, provides background related to LLNL's robotics and waste handling program, describes the major system components, outlines system operation, and discusses current status and plans

  2. Development of waste water reuse water system for power plants

    Energy Technology Data Exchange (ETDEWEB)

    Park, K K; Kim, D H; Weon, D Y; Yoon, S W; Song, H R [Korea Electric Power Research Institute, Taejeon (Korea, Republic of)

    1998-12-31

    1. Status of waste water discharge at power plants 2. Present status of waste water reuse at power plants 3. Scheme of waste water reuse at power plants 4. Standardization of optimum system for waste water reuse at power plants 5. Establishment of low cost zero discharge system for waste water 6. Waste water treatment technology of chemical cleaning. (author). 132 figs., 72 tabs.

  3. Development of waste water reuse water system for power plants

    Energy Technology Data Exchange (ETDEWEB)

    Park, K.K.; Kim, D.H.; Weon, D.Y.; Yoon, S.W.; Song, H.R. [Korea Electric Power Research Institute, Taejeon (Korea, Republic of)

    1997-12-31

    1. Status of waste water discharge at power plants 2. Present status of waste water reuse at power plants 3. Scheme of waste water reuse at power plants 4. Standardization of optimum system for waste water reuse at power plants 5. Establishment of low cost zero discharge system for waste water 6. Waste water treatment technology of chemical cleaning. (author). 132 figs., 72 tabs.

  4. Test plan for buried waste containment system materials

    International Nuclear Information System (INIS)

    Weidner, J.; Shaw, P.

    1997-03-01

    The objectives of the FY 1997 barrier material work at the Idaho National Engineering and Environmental Laboratory are to (1) select a waste barrier material and verify that it is compatible with the Buried Waste Containment System Process, and (2) determine if, and how, the Buried Waste Containment System emplacement process affects the material properties and performance (on proof of principle scale). This test plan describes a set of measurements and procedures used to validate a waste barrier material for the Buried Waste Containment System. A latex modified proprietary cement manufactured by CTS Cement Manufacturing Company will be tested. Emplacement properties required for the Buried Waste Containment System process are: slump between 8 and 10 in., set time between 15 and 30 minutes, compressive strength at set of 20 psi minimum, and set temperature less than 100 degrees C. Durability properties include resistance to degradation from carbonate, sulfate, and waste-site soil leachates. A set of baseline barrier material properties will be determined to provide a data base for comparison with the barrier materials when tested in the field. The measurements include permeability, petrographic analysis to determine separation and/or segregation of mix components, and a set of mechanical properties. The measurements will be repeated on specimens from the field test material. The data will be used to determine if the Buried Waste Containment System equipment changes the material. The emplacement properties will be determined using standard laboratory procedures and instruments. Durability of the barrier material will be evaluated by determining the effect of carbonate, sulfate, and waste-site soil leachates on the compressive strength of the barrier material. The baseline properties will be determined using standard ASTM procedures. 9 refs., 1 fig., 2 tabs

  5. Environmental-benefit analysis of two urban waste collection systems

    International Nuclear Information System (INIS)

    Aranda Usón, Alfonso; Ferreira, Germán; Zambrana Vásquez, David; Zabalza Bribián, Ignacio; Llera Sastresa, Eva

    2013-01-01

    Sustainable transportation infrastructure and travel policies aim to optimise the use of transportation systems to achieve economic and related social and environmental goals. To this end, a novel methodology based on life cycle assessment (LCA) has been developed in this study, with the aim of quantifying, in terms of CO 2 emissions equivalent, the impact associated with different alternatives of waste collection systems in different urban typologies. This new approach is focussed on saving energy and raw materials and reducing the environmental impact associated with the waste collection system in urban areas, as well as allowing the design and planning of the best available technologies and most environment-friendly management. The methodology considers a large variety of variables from the point of view of sustainable urban transport such as the location and size of the urban area, the amount of solid waste generated, the level of social awareness on waste separation procedures, the distance between houses and waste collection points and the distance from the latter to the possible recovery plants and/or landfills, taking into account the material and energy recovery ratio within an integrated waste management system. As a case study, two different waste collection systems have been evaluated with this methodology in the ecocity Valdespartera located in Zaragoza, Spain, consisting of approximately 10,000 homes: (i) a system based on traditional truck transportation and manual collection, and (ii) a stationary vacuum waste collection system. Results show that, when operating at loads close to 100%, the stationary collection system has the best environmental performance in comparison with the conventional system. In contrast, when operating at load factors around 13% the environmental benefits in terms of net CO 2 -eq. emissions for the stationary collection system are around 60% lower in comparison with the conventional one. - Highlights: • A comprehensive

  6. Environmental-benefit analysis of two urban waste collection systems

    Energy Technology Data Exchange (ETDEWEB)

    Aranda Usón, Alfonso, E-mail: alaranda@unizar.es; Ferreira, Germán; Zambrana Vásquez, David; Zabalza Bribián, Ignacio; Llera Sastresa, Eva

    2013-10-01

    Sustainable transportation infrastructure and travel policies aim to optimise the use of transportation systems to achieve economic and related social and environmental goals. To this end, a novel methodology based on life cycle assessment (LCA) has been developed in this study, with the aim of quantifying, in terms of CO{sub 2} emissions equivalent, the impact associated with different alternatives of waste collection systems in different urban typologies. This new approach is focussed on saving energy and raw materials and reducing the environmental impact associated with the waste collection system in urban areas, as well as allowing the design and planning of the best available technologies and most environment-friendly management. The methodology considers a large variety of variables from the point of view of sustainable urban transport such as the location and size of the urban area, the amount of solid waste generated, the level of social awareness on waste separation procedures, the distance between houses and waste collection points and the distance from the latter to the possible recovery plants and/or landfills, taking into account the material and energy recovery ratio within an integrated waste management system. As a case study, two different waste collection systems have been evaluated with this methodology in the ecocity Valdespartera located in Zaragoza, Spain, consisting of approximately 10,000 homes: (i) a system based on traditional truck transportation and manual collection, and (ii) a stationary vacuum waste collection system. Results show that, when operating at loads close to 100%, the stationary collection system has the best environmental performance in comparison with the conventional system. In contrast, when operating at load factors around 13% the environmental benefits in terms of net CO{sub 2}-eq. emissions for the stationary collection system are around 60% lower in comparison with the conventional one. - Highlights: • A

  7. Status of Pantex Plant Waste Management Project/program control system

    International Nuclear Information System (INIS)

    Price, Wesley J.; Matthews, William L.

    1992-01-01

    During a December 1990 Waste Management Program Review held in Albuquerque, New Mexico, the Waste Management and Operational Surety Division (WMOSD) introduced the project control system to be used for the Waste Management (WM) Operations Program. The system was entitled 'TRAC-WM' (Tracking and Control for Waste Management). The stated objective for this system was to establish a frame work for planning, managing, and controlling work within the WM program. As a result Mason and Hanger (the operating contractor at the Pantex Plant) initiated the development of a computerized waste management project tracking system. (author)

  8. 75 FR 73972 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste; Removal of...

    Science.gov (United States)

    2010-11-30

    ... Waste Management System; Identification and Listing of Hazardous Waste; Removal of Direct Final.... Lists of Subjects in 40 CFR Part 261 Environmental Protection, Hazardous waste, Recycling, Reporting and... follows: PART 261--IDENTIFICATION AND LISTING OF HAZARDOUS WASTE 0 1. The authority citation for part 261...

  9. Application bar-code system for solid radioactive waste management

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Y. H.; Kim, T. K.; Kang, I. S.; Cho, H. S.; Son, J. S. [KAERI, Taejon (Korea, Republic of)

    2004-07-01

    Solid radioactive wastes are generated from the post-irradiated fuel examination facility, the irradiated material examination facility, the research reactor, and the laboratories at KAERI. A bar-code system for a solid radioactive waste management of a research organization became necessary while developing the RAWMIS(Radioactive Waste Management Integration System) which it can generate personal history management for efficient management of a waste, documents, all kinds of statistics. This paper introduces an input and output application program design to do to database with data in the results and a stream process of a treatment that analyzed the waste occurrence present situation and data by bar-code system.

  10. 75 FR 60632 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste; Direct Final Rule

    Science.gov (United States)

    2010-10-01

    ... Waste Management System; Identification and Listing of Hazardous Waste; Direct Final Rule AGENCY... management and treatment of several F- and K-waste codes. These waste codes are F037, F038, K048, K049, K051... released from the waste, plausible and specific types of management of the petitioned waste, the quantities...

  11. Domain Specific Language for Modeling Waste Management Systems

    DEFF Research Database (Denmark)

    Zarrin, Bahram

    environmental technologies i.e. solid waste management systems. Flow-based programming is used to support concurrent execution of the processes, and provides a model-integration language for composing processes from homogeneous or heterogeneous domains. And a domain-specific language is used to define atomic......In order to develop sustainable waste management systems with considering life cycle perspective, scientists and domain experts in environmental science require readily applicable tools for modeling and evaluating the life cycle impacts of the waste management systems. Practice has proved...... a domain specific language for modeling of waste-management systems on the basis of our framework. We evaluate the language by providing a set of case studies. The contributions of this thesis are; addressing separation of concerns in Flow-based programming and providing the formal specification of its...

  12. 75 FR 60689 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste; Proposed Rule

    Science.gov (United States)

    2010-10-01

    ... Waste Management System; Identification and Listing of Hazardous Waste; Proposed Rule AGENCY... exclude (or delist) a certain solid waste generated by its Beaumont, Texas, facility from the lists of hazardous wastes. EPA used the Delisting Risk Assessment Software (DRAS) Version 3.0 in the evaluation of...

  13. Waste inventory record keeping systems (WIRKS) for the management and disposal of radioactive waste

    International Nuclear Information System (INIS)

    2001-06-01

    This report is intended to serve Member States planning to develop or implement radioactive waste disposal programmes and to discuss possible ways for compiling and managing information about the inventories in their radioactive waste repositories, which includes low and intermediate level waste (short lived and long lived) and high level radioactive waste. This report identifies generic information that may be recorded in a Waste Inventory Record Keeping System (WIRKS), as identified by consultants and based on their collective expertise in radioactive waste management. The report provides examples of WIRKS implementation in some countries

  14. Environmental-benefit analysis of two urban waste collection systems.

    Science.gov (United States)

    Aranda Usón, Alfonso; Ferreira, Germán; Zambrana Vásquez, David; Zabalza Bribián, Ignacio; Llera Sastresa, Eva

    2013-10-01

    Sustainable transportation infrastructure and travel policies aim to optimise the use of transportation systems to achieve economic and related social and environmental goals. To this end, a novel methodology based on life cycle assessment (LCA) has been developed in this study, with the aim of quantifying, in terms of CO2 emissions equivalent, the impact associated with different alternatives of waste collection systems in different urban typologies. This new approach is focussed on saving energy and raw materials and reducing the environmental impact associated with the waste collection system in urban areas, as well as allowing the design and planning of the best available technologies and most environment-friendly management. The methodology considers a large variety of variables from the point of view of sustainable urban transport such as the location and size of the urban area, the amount of solid waste generated, the level of social awareness on waste separation procedures, the distance between houses and waste collection points and the distance from the latter to the possible recovery plants and/or landfills, taking into account the material and energy recovery ratio within an integrated waste management system. As a case study, two different waste collection systems have been evaluated with this methodology in the ecocity Valdespartera located in Zaragoza, Spain, consisting of approximately 10,000 homes: (i) a system based on traditional truck transportation and manual collection, and (ii) a stationary vacuum waste collection system. Results show that, when operating at loads close to 100%, the stationary collection system has the best environmental performance in comparison with the conventional system. In contrast, when operating at load factors around 13% the environmental benefits in terms of net CO2-eq. emissions for the stationary collection system are around 60% lower in comparison with the conventional one. Copyright © 2013 Elsevier B.V. All

  15. 76 FR 59960 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste; Withdrawal of...

    Science.gov (United States)

    2011-09-28

    ... Waste Management System; Identification and Listing of Hazardous Waste; Withdrawal of proposed rule... Permitting Division, Corrective Action and Waste Minimization Section (6PD-C), 1445 Ross Avenue, Dallas, TX... petition. A new petition will be required for this waste stream. List of Subjects in 40 CFR Part 261...

  16. 76 FR 5110 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste; Proposed Rule

    Science.gov (United States)

    2011-01-28

    ... will dispose of the leachate at a publicly owned treatment works or at an industrial waste disposal... classification of listed waste pursuant to Sec. Sec. 261.31 and 261.32. Specifically, in its petition, Gulf West... Waste Management System; Identification and Listing of Hazardous Waste; Proposed Rule AGENCY...

  17. Goals for a waste management system: a task force report

    International Nuclear Information System (INIS)

    Bishop, W.

    1976-01-01

    This task force set out in a holistic way to study societal concerns regarding nuclear waste management, and to seek places where the technology interacts with our social system. The procedures involved in the goals for safe waste management are outlined and the organizations needed to carry them out are considered. The task force concluded that the needs for disposing of the present waste should not dictate the nature of the systems to be designed for the future wastes, and that budgetary considerations should not slow down the waste management in the second time frame (wastes no longer being produced). Other desirable goals, such as independence of waste management system regarding the stability of social institutions, are also discussed

  18. 300 Area waste acid treatment system closure plan

    International Nuclear Information System (INIS)

    LUKE, S.N.

    1999-01-01

    The Hanford Facility Dangerous Waste Permit Application is considered to be a single application organized into a General Information Portion (document number DOERL-91-28) and a Unit-Specific Portion. The scope of the Unit-Specific Portion includes closure plan documentation submitted for individual, treatment, storage, and/or disposal units undergoing closure, such as the 300 Area Waste Acid Treatment System. Documentation contained in the General Information Portion is broader in nature and could be used by multiple treatment, storage, and/or disposal units (e.g., the glossary provided in the General Information Portion). Whenever appropriate, 300 Area Waste Acid Treatment System documentation makes cross-reference to the General Information Portion, rather than duplicating text. This 300 Area Waste Acid Treatment System Closure Plan (Revision 2) includes a Hanford Facility Dangerous Waste Permit Application, Part A, Form 3. Information provided in this closure plan is current as of April 1999

  19. 300 Area waste acid treatment system closure plan

    Energy Technology Data Exchange (ETDEWEB)

    LUKE, S.N.

    1999-05-17

    The Hanford Facility Dangerous Waste Permit Application is considered to be a single application organized into a General Information Portion (document number DOERL-91-28) and a Unit-Specific Portion. The scope of the Unit-Specific Portion includes closure plan documentation submitted for individual, treatment, storage, and/or disposal units undergoing closure, such as the 300 Area Waste Acid Treatment System. Documentation contained in the General Information Portion is broader in nature and could be used by multiple treatment, storage, and/or disposal units (e.g., the glossary provided in the General Information Portion). Whenever appropriate, 300 Area Waste Acid Treatment System documentation makes cross-reference to the General Information Portion, rather than duplicating text. This 300 Area Waste Acid Treatment System Closure Plan (Revision 2) includes a Hanford Facility Dangerous Waste Permit Application, Part A, Form 3. Information provided in this closure plan is current as of April 1999.

  20. Waste removal systems and recycling participation in residential environments

    DEFF Research Database (Denmark)

    Thøgersen, John

    2002-01-01

    Systems for the removal of waste are important although often overlooked elements of any residential environment. It is an old insight that when these systems are ineffective (and this is globally and historically the rule rather than the exception), human living conditions and often even human...... health are severely impaired (Pieters, 1989). More recently, resource waste and environmental hazards from waste have given rise to public and political concern as well, even when disposal systems are well managed. This concern has led to efforts to divert solid waste away from disposal and towards some...

  1. Plastic solidification system for radioactive waste

    International Nuclear Information System (INIS)

    Kani, Jiro; Irie, Hiromitsu; Obu, Etsuji; Nakayama, Yasuyuki; Matsuura, Hiroyuki.

    1979-01-01

    The establishment of a new solidification system is an important theme for recent radioactive-waste disposal systems. The conditions required of new systems are: (1) the volume of the solidified product to be reduced, and (2) the property of the solidified product to be superior to the conventional ones. In the plastic solidification system developed by Toshiba, the waste is first dried and then solidified with thermosetting resin. It has been confirmed that the property of the plastic solidified product is superior to that of the cement-or bitumen-solidified product. Investigation from various phases is being carried on for the application of this method to commercial plants. (author)

  2. Smart Garbage Monitoring System for Waste Management

    Directory of Open Access Journals (Sweden)

    Mohd Yusof Norfadzlia

    2017-01-01

    Full Text Available Piles of rubbish are one of the major problems faced by most people in Malaysia, especially those who live in flats, as the number of bins is limited and shared among all residents. It may cause pollutions, which may lead to sanitary issues and diseases. This project presents the development of a smart garbage monitoring system in order to measure waste level in the garbage bin in real-time and to alert the municipality, in particular cases, via SMS. The proposed system is consisted by the ultrasonic sensor to measure the waste level, the GSM module to send the SMS, and an Arduino Uno which controls the system operation. It supposes to generate and send the warning messages to the municipality via SMS when the waste bin is full or almost full, so the garbage can be collected immediately. Furthermore, it is expected to contribute to improving the efficiency of the solid waste disposal management.

  3. Waste feed delivery program systems engineering implementation plan

    International Nuclear Information System (INIS)

    O'Toole, S.M.; Hendel, B.J.

    1998-01-01

    This document defines the systems engineering processes and products planned by the Waste Feed Delivery Program to develop the necessary and sufficient systems to provide waste feed to the Privatization Contractor for Phase 1. It defines roles and responsibilities for the performance of the systems engineering processes and generation of products

  4. Method of controlling radioactive waste processing systems

    International Nuclear Information System (INIS)

    Mikawa, Hiroji; Sato, Takao.

    1981-01-01

    Purpose: To minimize the pellet production amount, maximize the working life of a solidifying device and maintaining the mechanical strength of pellets to a predetermined value irrespective of the type and the cycle of occurrence of the secondary waste in the secondary waste solidifying device for radioactive waste processing systems in nuclear power plants. Method: Forecasting periods for the type, production amount and radioactivity level of the secondary wastes are determined in input/output devices connected to a control system and resulted signals are sent to computing elements. The computing elements forecast the production amount of regenerated liquid wastes after predetermined days based on the running conditions of a condensate desalter and the production amounts of filter sludges and liquid resin wastes after predetermined days based on the liquid waste processing amount or the like in a processing device respectively. Then, the mass balance between the type and the amount of the secondary wastes presently stored in a tank are calculated and the composition and concentration for the processing liquid are set so as to obtain predetermined values for the strength of pellets that can be dried to solidify, the working life of the solidifying device itself and the radioactivity level of the pellets. Thereafter, the running conditions for the solidifying device are determined so as to maximize the working life of the solidifying device. (Horiuchi, T.)

  5. Systems approach to nuclear waste glass development

    International Nuclear Information System (INIS)

    Jantzen, C.M.

    1986-01-01

    Development of a host solid for the immobilization of nuclear waste has focused on various vitreous wasteforms. The systems approach requires that parameters affecting product performance and processing be considered simultaneously. Application of the systems approach indicates that borosilicate glasses are, overall, the most suitable glasses for the immobilization of nuclear waste. Phosphate glasses are highly durable; but the glass melts are highly corrosive and the glasses have poor thermal stability and low solubility for many waste components. High-silica glasses have good chemical durability, thermal stability, and mechanical stability, but the associated high melting temperatures increase volatilization of hazardous species in the waste. Borosilicate glasses are chemically durable and are stable both thermally and mechanically. The borosilicate melts are generally less corrosive than commercial glasses, and the melt temperature miimizes excessive volatility of hazardous species. Optimization of borosilicate waste glass formulations has led to their acceptance as the reference nuclear wasteform in the United States, United Kingdom, Belgium, Germany, France, Sweden, Switzerland, and Japan

  6. Tank waste remediation system high-level waste vitrification system development and testing requirements

    International Nuclear Information System (INIS)

    Calmus, R.B.

    1995-01-01

    This document provides the fiscal year (FY) 1995 recommended high-level waste melter system development and testing (D and T) requirements. The first phase of melter system testing (FY 1995) will focus on the feasibility of high-temperature operation of recommended high-level waste melter systems. These test requirements will be used to establish the basis for defining detailed testing work scope, cost, and schedules. This document includes a brief summary of the recommended technologies and technical issues associated with each technology. In addition, this document presents the key D and T activities and engineering evaluations to be performed for a particular technology or general melter system support feature. The strategy for testing in Phase 1 (FY 1995) is to pursue testing of the recommended high-temperature technologies, namely the high-temperature, ceramic-lined, joule-heated melter, referred to as the HTCM, and the high-frequency, cold-wall, induction-heated melter, referred to as the cold-crucible melter (CCM). This document provides a detailed description of the FY 1995 D and T needs and requirements relative to each of the high-temperature technologies

  7. Selecting the recommended waste management system for the midwest compact

    International Nuclear Information System (INIS)

    Sutherland, A.A.; Robertson, B.C.; Drobny, N.L.

    1987-01-01

    One of the early important steps in the evolution of a low-level waste Compact is the development of a Regional Management Plan. Part of the Regional Management Plan is a description of the waste management system that indicates what kinds of facilities that will be available within the compact's region. The facilities in the waste management system can include those for storage, treatment and disposal of low-level radioactive waste. The Regional Management Plan also describes the number of facilities that will be operated simultaneously. This paper outlines the development of the recommended waste management system for the Midwest Compact. It describes the way a data base on low-level radioactive waste from the Compact was collected and placed into a computerized data base management system, and how that data base was subsequently used to analyze various options for treatment and disposal of low-level radioactive waste within the Midwest Compact. The paper indicates the thought process that led to the definition of four recommended waste management systems. Six methods for reducing the volume of waste to be disposed of in the Midwest Compact were considered. Major attention was focused on the use of regional compaction or incineration facilities. Seven disposal technologies, all different from the shallow land burial currently practiced, were also considered for the waste management system. After evaluating the options available, the Compact Commissioners recommended four waste disposal technologies--above-ground vaults, below-ground vaults, concrete canisters placed above ground, and concrete canisters placed below ground--to the host state that will be chosen in 1987. The Commissioners did not recommend use of a regional waste treatment facility

  8. Using an information system to meet Hazardous Waste Management needs

    International Nuclear Information System (INIS)

    Stewart, J.J. Jr.; Howe, R.E.; Townsend, S.L.; Maloy, D.T.; Kochhar, R.K.

    1995-02-01

    Lawrence Livermore National Laboratory (LLNL) is a large quantity RCRA hazardous waste generator. LLNL also generates low level and transuranic radioactive waste that is managed in accordance with the Department of Energy (DOE) orders. The mixed low level and mixed transuranic waste generated must be managed to comply with both RCRA regulations and DOE orders. LLNL's hazardous and radioactive waste generation is comprised of 900 generators who contribute to nearly two hundred waste streams. LLNL has a permitted EPA treatment and storage (TSD) facility for handling RCRA hazardous waste that is operated by LLNL's Hazardous Waste Management (HWM) division. In HWM we have developed an information system, the Total Waste Management System (TWMS), to replace an inadequate ''cradle to grave'' tracking of all the waste types described above. The goals of this system are to facilitate the safe handling and storage of these hazardous wastes, provide compliance with the regulations and serve as an informational tool to help HWM manage and dispose of these wastes in a cost effective manner

  9. Hazardous waste minimization tracking system

    International Nuclear Information System (INIS)

    Railan, R.

    1994-01-01

    Under RCRA section 3002 9(b) and 3005f(h), hazardous waste generators and owners/operators of treatment, storage, and disposal facilities (TSDFs) are required to certify that they have a program in place to reduce the volume or quantity and toxicity of hazardous waste to the degree determined to be economically practicable. In many cases, there are environmental, as well as, economic benefits, for agencies that pursue pollution prevention options. Several state governments have already enacted waste minimization legislation (e.g., Massachusetts Toxic Use Reduction Act of 1989, and Oregon Toxic Use Reduction Act and Hazardous Waste Reduction Act, July 2, 1989). About twenty six other states have established legislation that will mandate some type of waste minimization program and/or facility planning. The need to address the HAZMIN (Hazardous Waste Minimization) Program at government agencies and private industries has prompted us to identify the importance of managing The HAZMIN Program, and tracking various aspects of the program, as well as the progress made in this area. The open-quotes WASTEclose quotes is a tracking system, which can be used and modified in maintaining the information related to Hazardous Waste Minimization Program, in a manageable fashion. This program maintains, modifies, and retrieves information related to hazardous waste minimization and recycling, and provides automated report generating capabilities. It has a built-in menu, which can be printed either in part or in full. There are instructions on preparing The Annual Waste Report, and The Annual Recycling Report. The program is very user friendly. This program is available in 3.5 inch or 5 1/4 inch floppy disks. A computer with 640K memory is required

  10. Engineering Systems for Waste Disposal to the Ocean

    OpenAIRE

    Brooks, Norman H.

    1981-01-01

    Successful waste-water and sludge disposal in -the ocean depends on designing an appropriate engineering system where the input is the waste and the output is the final water quality which is achieved in the vicinity of the disposal site. The principal variable components of this system are: source control (or pretreatment) of industrial wastes before discharge into municipal sewers; sewage treatment plants, including facilities for processing of sewage solids (sludge); outfall pipes and d...

  11. Maintenance study for W-340 Waste Retrieval System

    International Nuclear Information System (INIS)

    Christensen, C.; Conner, C.C.; Sekot, J.P.

    1994-05-01

    This study was performed to identify attributes and maintainability requirements for the Tank Waste Retrieval System (TWRS). The system will be developed for Westinghouse Hanford Company in Richland, Washington, as an integrated system to perform waste removal in Tank C-106 and, thus, demonstrate technologies for tank remediation that will satisfy requirements of the Tri-Party Agreement. The study examines attributes of the TWRS, scope of maintenance operations required for the TWRS, maintenance requirements, and potential methods of performing maintenance functions. Recommendations are provided for consideration in the development of both the conceptual design and performance specification, which will be used in procuring the W-340 Waste Retrieval System

  12. Tank waste remediation system baseline tank waste inventory estimates for fiscal year 1995

    International Nuclear Information System (INIS)

    Shelton, L.W.

    1996-01-01

    A set of tank-by-tank waste inventories is derived from historical waste models, flowsheet records, and analytical data to support the Tank Waste Remediation System flowsheet and retrieval sequence studies. Enabling assumptions and methodologies used to develop the inventories are discussed. These provisional inventories conform to previously established baseline inventories and are meant to serve as an interim basis until standardized inventory estimates are made available

  13. Tank Waste Remediation System optimized processing strategy

    International Nuclear Information System (INIS)

    Slaathaug, E.J.; Boldt, A.L.; Boomer, K.D.; Galbraith, J.D.; Leach, C.E.; Waldo, T.L.

    1996-03-01

    This report provides an alternative strategy evolved from the current Hanford Site Tank Waste Remediation System (TWRS) programmatic baseline for accomplishing the treatment and disposal of the Hanford Site tank wastes. This optimized processing strategy performs the major elements of the TWRS Program, but modifies the deployment of selected treatment technologies to reduce the program cost. The present program for development of waste retrieval, pretreatment, and vitrification technologies continues, but the optimized processing strategy reuses a single facility to accomplish the separations/low-activity waste (LAW) vitrification and the high-level waste (HLW) vitrification processes sequentially, thereby eliminating the need for a separate HLW vitrification facility

  14. Management of radioactive waste in Belgium: ONDRAF/NIRAS and Belgoprocess as major actors of the waste acceptance system

    International Nuclear Information System (INIS)

    Zaelen, Gunter van; Verheyen, Annick

    2007-01-01

    The management of radioactive waste in Belgium is undertaken by the national agency for radioactive waste and enriched fissile materials, ONDRAF/NIRAS, and its industrial partner Belgoprocess. ONDRAF/NIRAS has set up a management system designed to guarantee that the general public and the environment are protected against the potential hazards arising from radioactive waste. Belgoprocess is a private company, founded in 1984 and located in Dessel, Belgium. It is a subsidiary of ONDRAF/NIRAS and its activities focus on the safe processing and storage of radioactive waste. The management system of ONDRAF/NIRAS includes two aspects: a) an integrated system and b) an acceptance system. The integrated system covers all aspects of management ranging from the origin of waste to its transport, processing, interim storage and long-term management. The safety of radioactive waste management not only depends on the quality of the design and construction of the processing, temporary storage or disposal infrastructure, but also on the quality of the waste accepted by ONDRAF/NIRAS. In order to be manage d safely, both in the short and the long term, the waste transferred to ONDRAF/NIRAS must meet certain specific requirements. To that end, ONDRAF/NIRAS has developed an acceptance system. (authors)

  15. Waste management, waste resource facilities and waste conversion processes

    International Nuclear Information System (INIS)

    Demirbas, Ayhan

    2011-01-01

    In this study, waste management concept, waste management system, biomass and bio-waste resources, waste classification, and waste management methods have been reviewed. Waste management is the collection, transport, processing, recycling or disposal, and monitoring of waste materials. A typical waste management system comprises collection, transportation, pre-treatment, processing, and final abatement of residues. The waste management system consists of the whole set of activities related to handling, treating, disposing or recycling the waste materials. General classification of wastes is difficult. Some of the most common sources of wastes are as follows: domestic wastes, commercial wastes, ashes, animal wastes, biomedical wastes, construction wastes, industrial solid wastes, sewer, biodegradable wastes, non-biodegradable wastes, and hazardous wastes.

  16. Smart City Platform Development for an Automated Waste Collection System

    Directory of Open Access Journals (Sweden)

    Cicerone Laurentiu Popa

    2017-11-01

    Full Text Available Nowadays, governments and companies are looking for solutions to increase the collection level of various waste types by using new technologies and devices such as smart sensors, Internet of Things (IoT, cloud platforms etc. In order to fulfil this need, this paper presents solutions provided by a research project involving the design, development and implementation of fully automated waste collection systems with an increased usage degree, productivity and storage capacity. The paper will focus on the main results of this research project in turning the automated waste collection system into a smart system so that it can be easily integrated in any smart city infrastructure. For this purpose, the Internet of Things platform for the automated waste collection system provided by the project will allow real time monitoring and communication with central systems. Details about each module are sent to the central systems: various modules’ statuses (working, blocked, needs repairs or maintenance etc.; equipment status; storage systems status (allowing full reports for all waste types; the amount of waste for each module, allowing optimal discharging; route optimization for waste discharging etc. To do that, we describe here an IoT cloud solution integrating device connection, data processing, analytics and management.

  17. National high-level waste systems analysis report

    Energy Technology Data Exchange (ETDEWEB)

    Kristofferson, K.; Oholleran, T.P.; Powell, R.H.

    1995-09-01

    This report documents the assessment of budgetary impacts, constraints, and repository availability on the storage and treatment of high-level waste and on both existing and pending negotiated milestones. The impacts of the availabilities of various treatment systems on schedule and throughput at four Department of Energy sites are compared to repository readiness in order to determine the prudent application of resources. The information modeled for each of these sites is integrated with a single national model. The report suggests a high-level-waste model that offers a national perspective on all high-level waste treatment and storage systems managed by the Department of Energy.

  18. National high-level waste systems analysis report

    International Nuclear Information System (INIS)

    Kristofferson, K.; Oholleran, T.P.; Powell, R.H.

    1995-09-01

    This report documents the assessment of budgetary impacts, constraints, and repository availability on the storage and treatment of high-level waste and on both existing and pending negotiated milestones. The impacts of the availabilities of various treatment systems on schedule and throughput at four Department of Energy sites are compared to repository readiness in order to determine the prudent application of resources. The information modeled for each of these sites is integrated with a single national model. The report suggests a high-level-waste model that offers a national perspective on all high-level waste treatment and storage systems managed by the Department of Energy

  19. Radioactive liquid waste processing system

    International Nuclear Information System (INIS)

    Noda, Tetsuya; Kuramitsu, Kiminori; Ishii, Tomoharu.

    1997-01-01

    The present invention provides a system for processing radioactive liquid wastes containing laundry liquid wastes, shower drains or radioactive liquid wastes containing chemical oxygen demand (COD) ingredients and oil content generated from a nuclear power plant. Namely, a collecting tank collects radioactive liquid wastes. A filtering device is connected to the exit of the collective tank. A sump tank is connected to the exit of the filtering device. A powdery active carbon supplying device is connected to the collecting tank. A chemical fluid tank is connected to the collecting tank and the filtering device by way of chemical fluid injection lines. Backwarding pipelines connect a filtered water flowing exit of the filtering device and the collecting tank. The chemical solution is stored in the chemical solution tank. Then, radioactive materials in radioactive liquid wastes generated from a nuclear power plant are removed by the filtering device. The water quality standard specified in environmental influence reports can be satisfied. In the filtering device, when the filtering flow rate is reduced, the chemical fluid is supplied from the chemical fluid tank to the filtering device to recover the filtering flow rate. (I.S.)

  20. Molten metal technologies advance waste processing systems for liquid radioactive waste treatment for PWRs and BWRs

    International Nuclear Information System (INIS)

    Strand, Gary; Vance, Jene N.

    1997-01-01

    Molten Metal Technologies (MMT) has recently acquired a proprietary filtration process for specific use in radioactive liquid waste processing systems. The filtration system has been incorporated in to a PWR liquid radwaste system which is currently being designed for the ComEd Byron Nuclear Station. It has also been adopted as the prefiltration step up from of the two RO systems which were part of the VECTRA acquisition and which are currently installed in the ComEd Dresden and Lacily Nuclear Stations. The filtration process has been successfully pilot-tested at both Byron and Dresden and is currently being tested at LaSalle. The important features of the filtration process are the high removal efficiencies for particulates, including colloidal particles, and the low solid waste volume generation per gallon filtered which translates into very small annual solid waste volumes. This filtration process system has been coupled with the use of selective ion exchange media in the PWR processing system to reduce the solid waste volumes generated compared to the current processing methods and to reduce the curie quantities discharged to the environs. In the BWR processing system, this filtration method allows the coupling of an RO system to provide for recycling greater than 95% of the liquid radwaste back to the plant for reuse while significantly reducing the solid waste volumes and operating costs. This paper discusses the process system configurations for the MMT Advanced Waste Processing Systems for both PWRs and BWRs. In addition, the pilot test data and full-scale performance projections for the filtration system are discussed which demonstrate the important features of the filtration process

  1. Transaction Costs in Collective Waste Recovery Systems in the EU

    OpenAIRE

    Nozharov, Shteryo

    2018-01-01

    The study aims to identify the institutional flaws of the current EU waste management model by analysing the economic model of extended producer responsibility and collective waste management systems and to create a model for measuring the transaction costs borne by waste recovery organizations. The model was approbated by analysing the Bulgarian collective waste management systems that have been complying with the EU legislation for the last 10 years. The analysis focuses on waste oils becau...

  2. Transportation system (TRUPACT) for contact-handled transuranic wastes

    International Nuclear Information System (INIS)

    Romesberg, L.E.; Pope, R.B.; Burgoyne, R.M.

    1982-04-01

    Contact-handled transuranic defense waste is being, and will continue to be, moved between a number of locations in the United States. The DOE is sponsoring development of safe, efficient, licensable, and cost-effective transportation systems to handle this waste. The systems being developed have been named TRUPACT which stands for TRansUranic PACkage Transporter. The system will be compatible with Type A packagings used by waste generators, interim storage facilities, and repositories. TRUPACT is required to be a Type B packaging since larger than Type A quantities of some radionuclides (particularly plutonium) may be involved in the collection of Type A packagings. TRUPACT must provide structural and thermal protection to the waste in hypothetical accident environments specified in DOT regulations 49CFR173 and NRC regulations 10CFR71. Preliminary design of the systems has been completed and final design for a truck system is underway. The status of the development program is reviewed in this paper and the reference design is described. Tests that have been conducted are discussed and long-term program objectives are reviewed

  3. Optimization of use of waste in the future energy system

    International Nuclear Information System (INIS)

    Muenster, Marie; Meibom, Peter

    2011-01-01

    Alternative uses of waste for energy production become increasingly interesting when considered from two perspectives, that of waste management and the energy system perspective. This paper presents the results of an enquiry into the use of waste in a future energy system. The analysis was performed using the energy system analysis model, Balmorel. The study is focused on Germany and the Nordic countries and demonstrates the optimization of both investments and production within the energy systems. The results present cost optimization excluding taxation concerning the use of waste for energy production in Denmark in a 2025 scenario with 48% renewable energy. Investments in a range of waste conversion technologies are facilitated, including waste incineration, co-combustion with coal, anaerobic digestion, and gasification. The most economically feasible solutions are found to be incineration of mixed waste, anaerobic digestion of organic waste, and gasification of part of the potential RDF (refuse derived fuel) for CHP (combined heat and power) production, while the remaining part is co-combusted with coal. Co-combustion mainly takes place in new coal-fired power plants, allowing investments to increase in comparison with a situation where only investments in waste incineration are allowed. -- Highlights: → The analysis is based on hourly chronological time steps, thereby taking dynamic properties of the energy system into account. → The system analyzed includes both the heat and the electricity market, which is important when analyzing e.g. CHP technologies. → The surrounding countries, which form part of the same electricity market, are included in the analysis. → New innovative Waste-to-Energy production plants have been modeled to allow for a more efficient and flexible use of waste. → The analysis includes economical optimization of operation and of investments in production and transmission of both electricity and heat.

  4. 76 FR 55846 - Hazardous Waste Management System: Identification and Listing of Hazardous Waste: Carbon Dioxide...

    Science.gov (United States)

    2011-09-09

    ... carbon dioxide (CO 2 ) streams that are hazardous from the definition of hazardous waste, provided these... management under the Resource Conservation and Recovery Act (RCRA) to conditionally exclude carbon dioxide... 2050-AG60 Hazardous Waste Management System: Identification and Listing of Hazardous Waste: Carbon...

  5. Independent engineering review of the Hanford Waste Vitrification System

    International Nuclear Information System (INIS)

    1991-10-01

    The Hanford Waste Vitrification Plant (HWVP) was initiated in June 1987. The HWVP is an essential element of the plan to end present interim storage practices for defense wastes and to provide for permanent disposal. The project start was justified, in part, on efficient technology and design information transfer from the prototype Defense Waste Processing Facility (DWPF). Development of other serial Hanford Waste Vitrification System (HWVS) elements, such as the waste retrieval system for the double-shell tanks (DSTs), and the pretreatment system to reduce the waste volume converted into glass, also was required to accomplish permanent waste disposal. In July 1991, at the time of this review, the HWVP was in the Title 2 design phase. The objective of this technical assessment is to determine whether the status of the technology development and engineering practice is sufficient to provide reasonable assurance that the HWVP and the balance of the HWVS system will operate in an efficient and cost-effective manner. The criteria used to facilitate a judgment of potential successful operation are: vitrification of high-level radioactive waste from specified DSTs on a reasonably continuous basis; and glass produced with physical and chemical properties formally acknowledge as being acceptable for disposal in a repository for high-level radioactive waste. The criteria were proposed specifically for the Independent Engineering Review to focus that assessment effort. They are not represented as the criteria by which the Department will judge the prudence of the Project. 78 refs., 10 figs., 12 tabs

  6. Independent engineering review of the Hanford Waste Vitrification System

    Energy Technology Data Exchange (ETDEWEB)

    1991-10-01

    The Hanford Waste Vitrification Plant (HWVP) was initiated in June 1987. The HWVP is an essential element of the plan to end present interim storage practices for defense wastes and to provide for permanent disposal. The project start was justified, in part, on efficient technology and design information transfer from the prototype Defense Waste Processing Facility (DWPF). Development of other serial Hanford Waste Vitrification System (HWVS) elements, such as the waste retrieval system for the double-shell tanks (DSTs), and the pretreatment system to reduce the waste volume converted into glass, also was required to accomplish permanent waste disposal. In July 1991, at the time of this review, the HWVP was in the Title 2 design phase. The objective of this technical assessment is to determine whether the status of the technology development and engineering practice is sufficient to provide reasonable assurance that the HWVP and the balance of the HWVS system will operate in an efficient and cost-effective manner. The criteria used to facilitate a judgment of potential successful operation are: vitrification of high-level radioactive waste from specified DSTs on a reasonably continuous basis; and glass produced with physical and chemical properties formally acknowledge as being acceptable for disposal in a repository for high-level radioactive waste. The criteria were proposed specifically for the Independent Engineering Review to focus that assessment effort. They are not represented as the criteria by which the Department will judge the prudence of the Project. 78 refs., 10 figs., 12 tabs.

  7. Support for designing waste sorting systems: A mini review.

    Science.gov (United States)

    Rousta, Kamran; Ordoñez, Isabel; Bolton, Kim; Dahlén, Lisa

    2017-11-01

    This article presents a mini review of research aimed at understanding material recovery from municipal solid waste. It focuses on two areas, waste sorting behaviour and collection systems, so that research on the link between these areas could be identified and evaluated. The main results presented and the methods used in the articles are categorised and appraised. The mini review reveals that most of the work that offered design guidelines for waste management systems was based on optimising technical aspects only. In contrast, most of the work that focused on user involvement did not consider developing the technical aspects of the system, but was limited to studies of user behaviour. The only clear consensus among the articles that link user involvement with the technical system is that convenient waste collection infrastructure is crucial for supporting source separation. This mini review reveals that even though the connection between sorting behaviour and technical infrastructure has been explored and described in some articles, there is still a gap when using this knowledge to design waste sorting systems. Future research in this field would benefit from being multidisciplinary and from using complementary methods, so that holistic solutions for material recirculation can be identified. It would be beneficial to actively involve users when developing sorting infrastructures, to be sure to provide a waste management system that will be properly used by them.

  8. Cask system maintenance in the Federal Waste Management System

    International Nuclear Information System (INIS)

    Pope, R.B.; Rennich, M.J.; Medley, L.G.; Attaway, C.R.

    1991-01-01

    In early 1988, in support of the development of the transportation system for the Office of Civilian Radioactive Waste Management System (OCRWM), a feasibility study was undertaken to define a the concept for a stand-alone, ''green-field'' facility for maintaining the Federal Waste Management System (FWMS) casks. This study provided and initial layout facility design, an estimate of the construction costs, and an acquisition schedule for a Cask Maintenance Facility (CMF). It also helped to define the interfaces between the transportation system and the waste generators, the repository, and a Monitored Retrievable Storage (MRS) facility. The data, design, and estimated costs derived from the study have been organized for use in the total transportation system decision-making process. Most importantly, they also provide a foundation for continuing design and planning efforts. The feasibility study was based on an assumed stand-alone, ''green-field'' configuration. This design approach provides a comprehensive design evaluation, to guide the development of a cost estimate and to permit flexibility in locating the facility. The following sections provide background information on cask system maintenance, briefly summarizes some of the functional requirements that a CMF must satisfy, provides a physical description of the CMF, briefly discusses the cost and schedule estimates and then reviews the findings of the efforts undertaken since the feasibility study was completed. 15 refs., 3 figs

  9. Performance validation of commercially available mobile waste-assay systems: Preliminary report

    Energy Technology Data Exchange (ETDEWEB)

    Schanfein, M.; Bonner, C.; Maez, R. [Los Alamos National Lab., NM (United States)] [and others

    1997-11-01

    Prior to disposal, nuclear waste must be accurately characterized to identify and quantify the radioactive content to reduce the radioactive hazard to the public. Validation of the waste-assay systems` performance is critical for establishing the credibility of the assay results for storage and disposal purposes. Canberra Nuclear has evaluated regulations worldwide and identified standard, modular, neutron- and gamma-waste-assay systems that can be used to characterize a large portion of existing and newly generated transuranic (TRU) and low-level waste. Before making claims of guaranteeing any system`s performance for specific waste types, the standardized systems` performance be evaluated. 7 figs., 11 tabs.

  10. A multifunction radioactive waste monitoring system

    International Nuclear Information System (INIS)

    Edeline, J.C.; Libs, G.

    1991-01-01

    The monitoring of unknown radioactive transuranic wastes mixed with fission products (FP) needs several measuring technics: passive and active neutron methods, gamma rays spectrometry and, sometimes, emission tomography to localize the hot points in the waste packages. The goal is to achieve a whole system from the most up-dated electronics sub-assemblies to provide these characterization measurement at the lowest cost and in the simplest manner. The control of the different measurements is made by only one micro-processor and an unusual way of using the gamma spectrometry A.D.C. and multichannel analyser makes possible to control the neutron analogic electronics: neutron counter high-voltage supplies, amplifiers and discriminators; many of the gamma spectrometry sub-assemblies are also used for the gamma emission tomography. The different measurements are automated and different programs offer the possibility to choice the proper measurement methods for each item. The waste package handling apparatus is not included in the system but the control of such handling might be performed by the micro-computer. We describe the main parts and features of the system [fr

  11. Decontamination system study for the Tank Waste Retrieval System

    International Nuclear Information System (INIS)

    Reutzel, T.; Manhardt, J.

    1994-05-01

    This report summarizes the findings of the Idaho National Engineering Laboratory's decontamination study in support of the Tank Waste Retrieval System (TWRS) development program. Problems associated with waste stored in existing single shell tanks are discussed as well as the justification for the TWRS program. The TWRS requires a decontamination system. The subsystems of the TWRS are discussed, and a list of assumptions pertinent to the TWRS decontamination system were developed. This information was used to develop the functional and operational requirements of the TWRS decontamination system. The requirements were combined with a comprehensive review of currently available decontamination techniques to produced a set of evaluation criteria. The cleaning technologies and techniques were evaluated, and the CO 2 blasting decontamination technique was chosen as the best technology for the TWRS

  12. In Situ Modular Waste Retrieval and Treatment System

    International Nuclear Information System (INIS)

    Walker, M.S.

    1996-10-01

    As part of the Comprehensive Environmental Response, Compensation, and Liability Act process from remediation of Waste Area Grouping (WAG 6) at ORNL, a public meeting was held for the Proposed Plan. It was recognized that contaminant releases from WAG 6 posed minimal potential risk to the public and the environment. The US DOE in conjunction with the US EPA and the TDEC agreed to defer remedial action at WAG 6 until higher risk release sites were first remediated. This report presents the results of a conceptual design for an In Situ Modular Retrieval and Treatment System able to excavate, shred, and process buried waste on site, with minimum disturbance and distribution of dust and debris. the system would bring appropriate levels of treatment to the waste then encapsulate and leave it in place. The system would be applicable to areas in which waste was disposed in long trenches

  13. Ventilation System Strategy for a Prospective Korean Radioactive Waste Repository

    International Nuclear Information System (INIS)

    Kim, Jin; Kwon, Sang Ki

    2005-01-01

    In the stage of conceptual design for the construction and operation of the geologic repository for radioactive wastes, it is important to consider a repository ventilation system which serves the repository working environment, hygiene and safety of the public at large, and will allow safe maintenance like moisture content elimination in repository for the duration of the repositories life, construction/operation/closure, also allowing safe waste transportation and emplacement. This paper describes the possible ventilation system design criteria and requirements for the prospective Korean radioactive waste repositories with emphasis on the underground rock cavity disposal method in the both cases of low and medium-level and high-level wastes. It was found that the most important concept is separate ventilation systems for the construction (development) and waste emplacement (storage) activities. In addition, ventilation network system modeling, natural ventilation, ventilation monitoring systems and real time ventilation simulation, and fire simulation and emergency system in the repository are briefly discussed.

  14. Comparative environmental evaluation of construction waste management through different waste sorting systems in Hong Kong.

    Science.gov (United States)

    Hossain, Md Uzzal; Wu, Zezhou; Poon, Chi Sun

    2017-11-01

    This study aimed to compare the environmental performance of building construction waste management (CWM) systems in Hong Kong. Life cycle assessment (LCA) approach was applied to evaluate the performance of CWM systems holistically based on primary data collected from two real building construction sites and secondary data obtained from the literature. Different waste recovery rates were applied based on compositions and material flow to assess the influence on the environmental performance of CWM systems. The system boundary includes all stages of the life cycle of building construction waste (including transportation, sorting, public fill or landfill disposal, recovery and reuse, and transformation and valorization into secondary products). A substitutional LCA approach was applied for capturing the environmental gains due to the utilizations of recovered materials. The results showed that the CWM system by using off-site sorting and direct landfilling resulted in significant environmental impacts. However, a considerable net environmental benefit was observed through an on-site sorting system. For example, about 18-30kg CO 2 eq. greenhouse gases (GHGs) emission were induced for managing 1 t of construction waste through off-site sorting and direct landfilling, whereas significant GHGs emission could be potentially avoided (considered as a credit -126 to -182kg CO 2 eq.) for an on-site sorting system due to the higher recycling potential. Although the environmental benefits mainly depend on the waste compositions and their sortability, the analysis conducted in this study can serve as guidelines to design an effective and resource-efficient building CWM system. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Virtual model of an automated system for the storage of collected waste

    Directory of Open Access Journals (Sweden)

    Enciu George

    2017-01-01

    Full Text Available One of the problems identified in waste collection integrated systems is the storage space. The design process of an automated system for the storage of collected waste includes finding solutions for the optimal exploitation of the limited storage space, seen that the equipment for the loading, identification, transport and transfer of the waste covers most of the available space inside the integrated collection system. In the present paper a three-dimensional model of an automated storage system designed by the authors for a business partner is presented. The storage system can be used for the following types of waste: plastic and glass recipients, aluminium cans, paper, cardboard and WEEE (waste electrical and electronic equipment. Special attention has been given to the transfer subsystem, specific for the storage system, which should be able to transfer different types and shapes of waste. The described virtual model of the automated system for the storage of collected waste will be part of the virtual model of the entire integrated waste collection system as requested by the beneficiary.

  16. W-12 valve pit decontamination demonstration

    International Nuclear Information System (INIS)

    Benson, C.E.; Parfitt, J.E.; Patton, B.D.

    1995-12-01

    Waste tank W-12 is a tank in the ORNL Low-Level Liquid Waste (LLLW) system that collected waste from Building 3525. Because of a leaking flange in the discharge line from W-12 to the evaporator service tank (W-22) and continual inleakage into the tank from an unknown source, W-12 was removed from service to comply with the Federal Facilities Agreement requirement. The initial response was to decontaminate the valve pit between tank W-12 and the evaporator service tank (W-22) to determine if personnel could enter the pit to attempt repair of the leaking flange. Preventing the spread of radioactive contamination from the pit to the environment and to other waste systems was of concern during the decontamination. The drain in the pit goes to the process waste system; therefore, if high-level liquid waste were generated during decontamination activities, it would have to be removed from the pit by means other than the available liquid waste connection. Remote decontamination of W-12 was conducted using the General Mills manipulator bridge and telescoping trolley and REMOTEC RM-10 manipulator. The initial objective of repairing the leaking flange was not conducted because of the repair uncertainty and the unknown tank inleakage. Rather, new piping was installed to empty the W-12 tank that would bypass the valve pit and eliminate the need to repair the flange. The radiological surveys indicated that a substantial decontamination factor was achieved

  17. A systems engineering cost analysis capability for use in assessing nuclear waste management system cost performance

    International Nuclear Information System (INIS)

    Shay, M.R.

    1990-04-01

    The System Engineering Cost Analysis (SECA) capability has been developed by the System Integration Branch of the US Department of Energy's Office of Civilian Radioactive Waste Management for use in assessing the cost performance of alternative waste management system configurations. The SECA capability is designed to provide rapid cost estimates of the waste management system for a given operational scenario and to permit aggregate or detailed cost comparisons for alternative waste system configurations. This capability may be used as an integral part of the System Integration Modeling System (SIMS) or, with appropriate input defining a scenario, as a separate cost analysis model

  18. Comparing Waste-to-Energy technologies by applying energy system analysis

    DEFF Research Database (Denmark)

    Münster, Marie; Lund, Henrik

    2010-01-01

    Even when policies of waste prevention, re-use and recycling are prioritised a fraction of waste will still be left which can be used for energy recovery. This article asks the question: How to utilise waste for energy in the best way seen from an energy system perspective? Eight different Waste......-to-Energy technologies are compared with a focus on fuel efficiency, CO2 reductions and costs. The comparison is carried out by conducting detailed energy system analyses of the present as well as a potential future Danish energy system with a large share of combined heat and power as well as wind power. The study shows...... potential of using waste for the production of transport fuels. Biogas and thermal gasification technologies are hence interesting alternatives to waste incineration and it is recommended to support the use of biogas based on manure and organic waste. It is also recommended to support research...

  19. LCA comparison of container systems in municipal solid waste management

    International Nuclear Information System (INIS)

    Rives, Jesus; Rieradevall, Joan; Gabarrell, Xavier

    2010-01-01

    The planning and design of integrated municipal solid waste management (MSWM) systems requires accurate environmental impact evaluation of the systems and their components. This research assessed, quantified and compared the environmental impact of the first stage of the most used MSW container systems. The comparison was based on factors such as the volume of the containers, from small bins of 60-80 l to containers of 2400 l, and on the manufactured materials, steel and high-density polyethylene (HDPE). Also, some parameters such as frequency of collections, waste generation, filling percentage and waste container contents, were established to obtain comparable systems. The methodological framework of the analysis was the life cycle assessment (LCA), and the impact assessment method was based on CML 2 baseline 2000. Results indicated that, for the same volume, the collection systems that use HDPE waste containers had more of an impact than those using steel waste containers, in terms of abiotic depletion, global warming, ozone layer depletion, acidification, eutrophication, photochemical oxidation, human toxicity and terrestrial ecotoxicity. Besides, the collection systems using small HDPE bins (60 l or 80 l) had most impact while systems using big steel containers (2400 l) had less impact. Subsequent sensitivity analysis about the parameters established demonstrated that they could change the ultimate environmental impact of each waste container collection system, but that the comparative relationship between systems was similar.

  20. Shielding evaluation of the Thorium Lean Raffinate (TLR) waste treatment system at Waste Immobilisation Plant, Trombay

    International Nuclear Information System (INIS)

    Bhosale, Nitin A.; Deepa, A.K.; Jakhete, A.P.; Gopalakrishnan, R.K.; Prasad, S.K.; Gangadharan, Anand; Singh, Neelima

    2012-01-01

    Thoria rods irradiated in research reactors were reprocessed for 233 U recovery and resulted in 9 m 3 of acidic Th-bearing raffinate waste. A two step treatment system was planned to treat the raffinate waste. The first step was the generation of thorium lean raffinate waste (TLR) after separation of thorium and the second step was the separation of residual radioactivity and conditioning planned at WIP. The beta activity in the TLR waste is around 50 mCi/i having 137 Cs, 90 Sr and 125 Sb as its main constituents. Shielding calculations were carried out for the various stages of the treatment system at Area-61 of WIP, Trombay. Dose rate evaluations at each step of the treatment system were evaluated to keep the personnel exposure during campaign, ALARA. The work set the base for the shielding design of the treatment system and for the estimation of the man-rem budgeting during commissioning of the system

  1. Sustainable waste management via incineration system: an Islamic ...

    African Journals Online (AJOL)

    Sustainable waste management via incineration system: an Islamic outlook for conservation of the environment. ... Journal of Fundamental and Applied Sciences ... Abstract. This paper would firstly examine solid waste management currently ...

  2. Decontamination factors of ceramic filter in radioactive waste incineration system

    International Nuclear Information System (INIS)

    Kanbe, Hiromi; Mayuzumi, Masami; Ono, Tetsuo; Yoshiki, Shinya; Kouyama, Hiroaki; Nagae, Madoka; Sekiguchi, Ryosaku; Takaoku, Yoshinobu; Hozumi, Masahiro.

    1987-01-01

    A suspension-firing type radioactive waste incineration system is developed and cold demonstration testing of ceramic filters for the system are carried out. The incineration system, which is useful for a wide variety of waste materials, can serve to simplify the facilities and to reduce the costs for waste disposal. The incineration system can be used for drying-processing of concentrated waste liquids and disposal of flame resistant materials including ion exchange resins and rubber, as well as for ordinary combustible solid materials. An on-line backwash system is adopted to allow the ceramic filters to operate stably for a long period of time. For one-step filtering using the ceramic filter, the decontamination factor is greater than 10 5 for the processing of various wastes. In a practical situation, there exist vapor produced by the spray drier and the cladding in used ion exchange resin, which act to increase the decontamination performance of the ceramic filters to ensure safe operation. For the waste incineration system equipped with a waste gas processing apparatus consisting of a ceramic filter and HEPA filter, the overall decontamination factor is expected to be greater than 10 6 at portions down to the outlet of the ceramic filter and greater than 10 8 at portions down to the outlet of the HEPA filter. (Nogami, K.)

  3. Design compliance matrix waste sample container filling system for nested, fixed-depth sampling system

    International Nuclear Information System (INIS)

    BOGER, R.M.

    1999-01-01

    This design compliance matrix document provides specific design related functional characteristics, constraints, and requirements for the container filling system that is part of the nested, fixed-depth sampling system. This document addresses performance, external interfaces, ALARA, Authorization Basis, environmental and design code requirements for the container filling system. The container filling system will interface with the waste stream from the fluidic pumping channels of the nested, fixed-depth sampling system and will fill containers with waste that meet the Resource Conservation and Recovery Act (RCRA) criteria for waste that contains volatile and semi-volatile organic materials. The specifications for the nested, fixed-depth sampling system are described in a Level 2 Specification document (HNF-3483, Rev. 1). The basis for this design compliance matrix document is the Tank Waste Remediation System (TWRS) desk instructions for design Compliance matrix documents (PI-CP-008-00, Rev. 0)

  4. Reaction chemistry of nitrogen species in hydrothermal systems: Simple reactions, waste simulants, and actual wastes

    International Nuclear Information System (INIS)

    Dell'Orco, P.; Luan, L.; Proesmans, P.; Wilmanns, E.

    1995-01-01

    Results are presented from hydrothermal reaction systems containing organic components, nitrogen components, and an oxidant. Reaction chemistry observed in simple systems and in simple waste simulants is used to develop a model which presents global nitrogen chemistry in these reactive systems. The global reaction path suggested is then compared with results obtained for the treatment of an actual waste stream containing only C-N-0-H species

  5. Life cycle inventory and mass-balance of municipal food waste management systems: Decision support methods beyond the waste hierarchy.

    Science.gov (United States)

    Edwards, Joel; Othman, Maazuza; Crossin, Enda; Burn, Stewart

    2017-11-01

    When assessing the environmental and human health impact of a municipal food waste (FW) management system waste managers typically rely on the principles of the waste hierarchy; using metrics such as the mass or rate of waste that is 'prepared for recycling,' 'recovered for energy,' or 'sent to landfill.' These metrics measure the collection and sorting efficiency of a waste system but are incapable of determining the efficiency of a system to turn waste into a valuable resource. In this study a life cycle approach was employed using a system boundary that includes the entire waste service provision from collection to safe end-use or disposal. A life cycle inventory of seven waste management systems was calculated, including the first service wide inventory of FW management through kitchen in-sink disposal (food waste disposer). Results describe the mass, energy and water balance of each system along with key emissions profile. It was demonstrated that the energy balance can differ significantly from its' energy generation, exemplified by mechanical biological treatment, which was the best system for generating energy from waste but only 5 th best for net-energy generation. Furthermore, the energy balance of kitchen in-sink disposal was shown to be reduced because 31% of volatile solids were lost in pre-treatment. The study also confirmed that higher FW landfill diversion rates were critical for reducing many harmful emissions to air and water. Although, mass-balance analysis showed that the alternative end-use of the FW material may still contain high impact pollutants. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  6. Performance validation of commercially available mobile waste-assay systems: Preliminary report

    International Nuclear Information System (INIS)

    Schanfein, M.; Bonner, C.; Maez, R.

    1997-01-01

    Prior to disposal, nuclear waste must be accurately characterized to identify and quantify the radioactive content to reduce the radioactive hazard to the public. Validation of the waste-assay systems' performance is critical for establishing the credibility of the assay results for storage and disposal purposes. Canberra Nuclear has evaluated regulations worldwide and identified standard, modular, neutron- and gamma-waste-assay systems that can be used to characterize a large portion of existing and newly generated transuranic (TRU) and low-level waste. Before making claims of guaranteeing any system's performance for specific waste types, the standardized systems' performance be evaluated. 7 figs., 11 tabs

  7. Optimization-based design of waste heat recovery systems

    DEFF Research Database (Denmark)

    Cignitti, Stefano

    /or selected. This dissertation focuses on the chemical product and process systems used for waste heat recovery. Here, chemical products are working fluids, which are under continuous development and screening to fulfill regulatory environmental protection and safe operation requirements. Furthermore......, for the recovery of low-grade waste heat, new fluids and processes are needed to make the recovery technically and economically feasible. As the chemical product is influential in the design of the process system, the design of novel chemical products must be considered with the process system. Currently, state...... product and process system in terms of efficiency and sustainability. Today, some of the most important chemical product design problems are solvents and working fluids. Solvents are a vital part in the recovery of valuable resources in separation processes or waste water treatment. Working fluids...

  8. Transportation operations functions of the federal waste management system

    International Nuclear Information System (INIS)

    Shappert, L.B.; Klimas, M.J.

    1989-01-01

    This paper documents the functions that are necessary to operate the OCRWM transportation system. OCRWM's mission is to accept and transport spent fuel and high-level waste from waste generators to FWMS facilities. The emphasis is on transportation operations and assumes that all necessary facilities are in place and equipment designs and specifications are available to permit the system to operate properly. The information reported in this paper was developed for TOPO and is compatible with the draft revision of the Waste Management System Requirements and Description (SRD). 5 refs

  9. ATW system impact on high-level waste

    International Nuclear Information System (INIS)

    Arthur, E.D.

    1992-01-01

    This report discusses the Accelerator Transmutation of Waste (ATW) concept which aims at destruction of key long-lived radionuclides in high-level nuclear waste (HLW), both fission products and actinides. This focus makes it different from most other transmutation concepts which concentrate primarily on actinide burning. The ATW system uses an accelerator-driven, sub-critical assembly to create an intense thermal neutron environment for radionuclide transmutation. This feature allows rapid transmutation under low-inventory system conditions, which in turn, has a direct impact on the size of chemical separations and materials handling components of the system. Inventories in ATW are factors of eight to thirty times smaller than reactor systems of equivalent thermal power. Chemical separations systems are relatively small in scale and can be optimized to achieve high decontamination factors and minimized waste streams. The low-inventory feature also directly impacts material amounts remaining in the system at its end of life. In addition to its low-inventory operation, the accelerator-driven neutron source features of ATW are key to providing a sufficient level of neutrons to allow transmutation of long-lived fission products

  10. West Valley waste removal system study

    International Nuclear Information System (INIS)

    Janicek, G.P.

    1981-04-01

    This study addresses the specific task of removing high-level wastes from underground tanks at Western New York Nuclear Center and delivering them to an onsite waste solidification plant. It begins with a review of the design and construction features of the waste storage tanks pertinent to the waste removal task with particular emphasis on the unique and complex tank internals which severely complicate the task of removal. It follows with a review of tank cleaning techniques used and under study at both Hanford and Savannah River and previous studies proposing the use of these techniques at West Valley. It concludes from these reviews that existing techniques are not directly transferable to West Valley and that a new approach is required utilizing selected feature and attributes from existing methodology. The study also concludes, from an investigation of the constraints imposed by the processing facility, that waste removal will be intermittent, requiring batch transfer over the anticipated 3 years of processing operations. Based on these reviews and conclusions, the study proposes that the acid waste be processed first and that one of the 15,000-gallon acid tanks then be used for batch feeding the neutralized waste. The proposed system would employ commercially available pumping equipment to transfer the wastes from the batch tank to processing via existing process piping. A commercially available mixed-flow pump and eight turbine pumps would homogenize the neutralized waste in conjunction with eight custom-fabricated sluicers for periodic transfer to the batch tank

  11. A BIM-based system for demolition and renovation waste estimation and planning

    International Nuclear Information System (INIS)

    Cheng, Jack C.P.; Ma, Lauren Y.H.

    2013-01-01

    Highlights: ► We developed a waste estimation system leveraging the BIM technology. ► The system can calculate waste disposal charging fee and pick-up truck demand. ► We presented an example scenario demonstrating this system. ► Automatic, time-saving and wide applicability are the features of the system. - Abstract: Due to the rising worldwide awareness of green environment, both government and contractors have to consider effective construction and demolition (C and D) waste management practices. The last two decades have witnessed the growing importance of demolition and renovation (D and R) works and the growing amount of D and R waste disposed to landfills every day, especially in developed cities like Hong Kong. Quantitative waste prediction is crucial for waste management. It can enable contractors to pinpoint critical waste generation processes and to plan waste control strategies. In addition, waste estimation could also facilitate some government waste management policies, such as the waste disposal charging scheme in Hong Kong. Currently, tools that can accurately and conveniently estimate the amount of waste from construction, renovation, and demolition projects are lacking. In the light of this research gap, this paper presents a building information modeling (BIM) based system that we have developed for estimation and planning of D and R waste. BIM allows multi-disciplinary information to be superimposed within one digital building model. Our system can extract material and volume information through the BIM model and integrate the information for detailed waste estimation and planning. Waste recycling and reuse are also considered in our system. Extracted material information can be provided to recyclers before demolition or renovation to make recycling stage more cooperative and more efficient. Pick-up truck requirements and waste disposal charging fee for different waste facilities will also be predicted through our system. The results

  12. A BIM-based system for demolition and renovation waste estimation and planning

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Jack C.P., E-mail: cejcheng@ust.hk [Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology (Hong Kong); Ma, Lauren Y.H., E-mail: yingzi@ust.hk [Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology (Hong Kong)

    2013-06-15

    Highlights: ► We developed a waste estimation system leveraging the BIM technology. ► The system can calculate waste disposal charging fee and pick-up truck demand. ► We presented an example scenario demonstrating this system. ► Automatic, time-saving and wide applicability are the features of the system. - Abstract: Due to the rising worldwide awareness of green environment, both government and contractors have to consider effective construction and demolition (C and D) waste management practices. The last two decades have witnessed the growing importance of demolition and renovation (D and R) works and the growing amount of D and R waste disposed to landfills every day, especially in developed cities like Hong Kong. Quantitative waste prediction is crucial for waste management. It can enable contractors to pinpoint critical waste generation processes and to plan waste control strategies. In addition, waste estimation could also facilitate some government waste management policies, such as the waste disposal charging scheme in Hong Kong. Currently, tools that can accurately and conveniently estimate the amount of waste from construction, renovation, and demolition projects are lacking. In the light of this research gap, this paper presents a building information modeling (BIM) based system that we have developed for estimation and planning of D and R waste. BIM allows multi-disciplinary information to be superimposed within one digital building model. Our system can extract material and volume information through the BIM model and integrate the information for detailed waste estimation and planning. Waste recycling and reuse are also considered in our system. Extracted material information can be provided to recyclers before demolition or renovation to make recycling stage more cooperative and more efficient. Pick-up truck requirements and waste disposal charging fee for different waste facilities will also be predicted through our system. The results

  13. National high-level waste systems analysis plan

    International Nuclear Information System (INIS)

    Kristofferson, K.; Oholleran, T.P.; Powell, R.H.; Thiel, E.C.

    1995-05-01

    This document details the development of modeling capabilities that can provide a system-wide view of all US Department of Energy (DOE) high-level waste (HLW) treatment and storage systems. This model can assess the impact of budget constraints on storage and treatment system schedules and throughput. These impacts can then be assessed against existing and pending milestones to determine the impact to the overall HLW system. A nation-wide view of waste treatment availability will help project the time required to prepare HLW for disposal. The impacts of the availability of various treatment systems and throughput can be compared to repository readiness to determine the prudent application of resources or the need to renegotiate milestones

  14. Radioactive waste-Portland cement systems: I, radionuclide distribution

    International Nuclear Information System (INIS)

    Jantzen, C.M.; Glasser, F.P.; Lachowski, E.E.

    1984-01-01

    Crystal chemical stabilization of radioactive wastes can be achieved during clinkering of, or with, ordinary portland cement. Waste loadings of 20 to 30 wt% are achieved by dilute solid solution of waste ions into cementitious host lattices. Higher waste loadings result in compatible noncementitious radiophases. The cementitious phases hydrate without loss of compressive strength. Crystallochemical relationships predict that the radionuclide partitioning in the anhydrous clinkered phases will be maintained in the hydration products. These cementitious hydroxylated radiophases would be in internal equilibrium under anticipated repository conditions. The radionuclide distributions observed are described in the context of established phase equilibria for commercial waste cement systems, but are applicable to transuranic, medium- and low-level wastes

  15. The effect of the waste separation policy in municipal solid waste management using the system dynamic approach

    Directory of Open Access Journals (Sweden)

    Ahmad Jamshidi Zanjani

    2012-01-01

    Full Text Available Aims: In the present study, Vensim was used to simulate waste management system of Tehran, the capital of Iran, with the system dynamic approach. Materials and Methods: The environmental system dynamic modeling is one of the comprehensive simulation tools capable of simulating and analyzing complex systems. In this approach, the model is developed based on the existing realities and userâ€′comments. User participation to develop the model could increase the reliability of the results. Results: The simulation results revealed good conformity with the statistical data. Waste production prediction in the model with real data was more than 95%. Moreover, the effect of applying an encouraging policy for people to separate their waste was considered. The result indicated that applying a new policy, and the economic benefit through this policy would prevent getting a loan from the government after 20 years. Conclusions: It could be concluded that public participation in waste separation was an effective policy to help in the financial independence of the municipality in terms of urban waste management. Moreover, conformity between the simulation results and real data revealed an appropriate capability of the simulated model to predict Tehran waste generation.

  16. Full-scale testing of waste package inspection system

    International Nuclear Information System (INIS)

    Yagi, T.; Kuribayashi, H.; Moriya, Y.; Fujisawa, H.; Takebayashi, N.

    1989-01-01

    In land disposal of low-level radioactive waste (LLW) in Japan, it is legally required that the waste packages to be disposed of be inspected for conformance to applicable technical regulations prior to shipment from each existing power station. JGC has constructed a fully automatic waste package inspection system for the purpose of obtaining the required design data and proving the performance of the system. This system consists of three inspection units (for visual inspection, surface contamination/dose rate measurement and radioactivity/weight measurement), a labelling unit, a centralized control unit and a drum handling unit. The outstanding features of the system are as follows: The equipment and components are modularized and designed to be of the most compact size and the quality control functions are performed by an advanced centralized control system. The authors discuss how, as a result of the full-scale testing, it has been confirmed that this system satisfies all the performance requirements for the inspection of disposal packages

  17. Liquid radioactive waste processing system for pressurized water reactor plants

    International Nuclear Information System (INIS)

    Anon.

    1976-01-01

    This Standard sets forth design, construction, and performance requirements, with due consideration for operation, of the Liquid Radioactive Waste Processing System for pressurized water reactor plants for design basis inputs. For the purpose of this Standard, the Liquid Radioactive Waste Processing System begins at the interfaces with the reactor coolant pressure boundary and the interface valve(s) in lines from other systems, or at those sumps and floor drains provided for liquid waste with the potential of containing radioactive material; and it terminates at the point of controlled discharge to the environment, at the point of interface with the waste solidification system, and at the point of recycle back to storage for reuse

  18. Radioactive waste transportation systems analysis and program plan

    International Nuclear Information System (INIS)

    Shappert, L.B.; Joy, D.S.; Heiskell, M.M.

    1978-03-01

    The objective of the Transportation/Logistics Study is to ensure the availability of a viable system for transporting the wastes to a federal repository in 1985. In order to accomplish this objective, a systems analysis of waste transportation has been directed by ORNL to determine the problems that must be solved and to develop a program plan that identifies which problems must first be pursued. To facilitate this overall approach and to provide for short- and long-range waste management, logistics models have been developed to determine the transportation fleet requirements and costs. Results of the study are described in this report

  19. Rankine cycle waste heat recovery system

    Science.gov (United States)

    Ernst, Timothy C.; Nelson, Christopher R.

    2014-08-12

    This disclosure relates to a waste heat recovery (WHR) system and to a system and method for regulation of a fluid inventory in a condenser and a receiver of a Rankine cycle WHR system. Such regulation includes the ability to regulate the pressure in a WHR system to control cavitation and energy conversion.

  20. Defense High Level Waste Disposal Container System Description Document

    International Nuclear Information System (INIS)

    Pettit, N. E.

    2001-01-01

    The Defense High Level Waste Disposal Container System supports the confinement and isolation of waste within the Engineered Barrier System of the Monitored Geologic Repository (MGR). Disposal containers are loaded and sealed in the surface waste handling facilities, transferred to the underground through the accesses using a rail mounted transporter, and emplaced in emplacement drifts. The defense high level waste (HLW) disposal container provides long-term confinement of the commercial HLW and defense HLW (including immobilized plutonium waste forms [IPWF]) placed within disposable canisters, and withstands the loading, transfer, emplacement, and retrieval loads and environments. US Department of Energy (DOE)-owned spent nuclear fuel (SNF) in disposable canisters may also be placed in a defense HLW disposal container along with commercial HLW waste forms, which is known as co-disposal. The Defense High Level Waste Disposal Container System provides containment of waste for a designated period of time, and limits radionuclide release. The disposal container/waste package maintains the waste in a designated configuration, withstands maximum handling and rockfall loads, limits the individual canister temperatures after emplacement, resists corrosion in the expected handling and repository environments, and provides containment of waste in the event of an accident. Defense HLW disposal containers for HLW disposal will hold up to five HLW canisters. Defense HLW disposal containers for co-disposal will hold up to five HLW canisters arranged in a ring and one DOE SNF canister inserted in the center and/or one or more DOE SNF canisters displacing a HLW canister in the ring. Defense HLW disposal containers also will hold two Multi-Canister Overpacks (MCOs) and two HLW canisters in one disposal container. The disposal container will include outer and inner cylinders, outer and inner cylinder lids, and may include a canister guide. An exterior label will provide a means by

  1. Multibarrier system preventing migration of radionuclides from radioactive waste repository

    Directory of Open Access Journals (Sweden)

    Olszewska Wioleta

    2015-09-01

    Full Text Available Safety of radioactive waste repositories operation is associated with a multibarrier system designed and constructed to isolate and contain the waste from the biosphere. Each of radioactive waste repositories is equipped with system of barriers, which reduces the possibility of release of radionuclides from the storage site. Safety systems may differ from each other depending on the type of repository. They consist of the natural geological barrier provided by host rocks of the repository and its surroundings, and an engineered barrier system (EBS. The EBS may itself comprise a variety of sub-systems or components, such as waste forms, canisters, buffers, backfills, seals and plugs. The EBS plays a major role in providing the required disposal system performance. It is assumed that the metal canisters and system of barriers adequately isolate waste from the biosphere. The evaluation of the multibarrier system is carried out after detailed tests to determine its parameters, and after analysis including mathematical modeling of migration of contaminants. To provide an assurance of safety of radioactive waste repository multibarrier system, detailed long term safety assessments are developed. Usually they comprise modeling of EBS stability, corrosion rate and radionuclide migration in near field in geosphere and biosphere. The principal goal of radionuclide migration modeling is assessment of the radionuclides release paths and rate from the repository, radionuclides concentration in geosphere in time and human exposure to ionizing radiation

  2. OCRWM [Office of Civilian Radioactive Waste Management] System Engineering Management Plant (SEMP)

    International Nuclear Information System (INIS)

    1990-02-01

    The Nuclear Waste Policy Act of 1982 established the Office of Civilian Radioactive Waste Management (OCRWM) in the Department of Energy (DOE) to implement a program for the safe and permanent disposal of spent nuclear fuel and high-level radioactive waste. To achieve this objective, the OCRWM is developing an integrated waste-management system consisting of three elements: the transportation system, the monitored retrievable storage (MRS) facility, and the mined geologic disposal system (MGDS). The development of such a system requires management of many diverse disciplines that are involved in research, siting, design, licensing, and external interactions. The purpose of this Systems Engineering Management Plan (SEMP) is to prescribe how the systems-engineering process will be implemented in the development of the waste-management system. Systems engineering will be used by the OCRWM to manage, integrate, and document all aspects of the technical development of the waste-management system and its system elements to ensure that the requirements of the waste-management program are met. It will be applied to all technical activities of the OCRWM program. It will be used by the OCRWM (1) to specify the sequence of technical activities necessary to define the requirements the waste-management system must satisfy, (2) to develop the waste-management system, can be optimized to most effectively satisfy the requirements. Furthermore, systems engineering will be used in the management of Program activities at the program, program-element, and project levels by specifying procedures, studies, reviews, and documentation requirements. 9 refs., 1 fig

  3. Installing and Commissioning a New Radioactive Waste Tracking System - Lessons Learned

    Energy Technology Data Exchange (ETDEWEB)

    Robert S. Anderson; Miklos Garamszeghy; Fred Rodrigues; Ed Nicholls

    2005-05-01

    Ontario Power Generation (OPG) recognizes the importance of information management particularly with regards to its low and intermediate level waste program. Various computer based waste tracking systems have been used in OPG since the 1980s. These systems tracked the physical receipt, processing, storage, and inventory of the waste. As OPG moved towards long-term management (e.g. disposal), it was recognized that tracking of more detailed waste characterization information was important. This required either substantial modification of the existing system to include a waste characterization module or replacing it entirely with a new system. After a detailed review of available options, it was decided that the existing waste tracking application would be replaced with the Idaho National Laboratory’s (INL) Integrated Waste Tracking System (IWTS). Installing and commissioning a system which must receive historical operational waste management information (data) and provide new features, required much more attention than was originally considered. The operational readiness of IWTS required extensive vetting and preparation of historic data (which itself had been created from multiple databases in varied formats) to ensure a consistent format for import of some 30,000-container records, and merging and linking these container records to a waste stream based characterization database. This paper will discuss some of the strengths and weaknesses contributing to project success or hindrance so that others can understand and minimize the difficulties inherent in a project of this magnitude.

  4. Installing and Commissioning a New Radioactive Waste Tracking System - Lessons Learned

    International Nuclear Information System (INIS)

    Robert S. Anderson; Miklos Garamszeghy; Fred Rodrigues; Ed Nicholls

    2005-01-01

    Ontario Power Generation (OPG) recognizes the importance of information management particularly with regards to its low and intermediate level waste program. Various computer based waste tracking systems have been used in OPG since the 1980s. These systems tracked the physical receipt, processing, storage, and inventory of the waste. As OPG moved towards long-term management (e.g. disposal), it was recognized that tracking of more detailed waste characterization information was important. This required either substantial modification of the existing system to include a waste characterization module or replacing it entirely with a new system. After a detailed review of available options, it was decided that the existing waste tracking application would be replaced with the Idaho National Laboratory's (INL) Integrated Waste Tracking System (IWTS). Installing and commissioning a system which must receive historical operational waste management information (data) and provide new features, required much more attention than was originally considered. The operational readiness of IWTS required extensive vetting and preparation of historic data (which itself had been created from multiple databases in varied formats) to ensure a consistent format for import of some 30,000-container records, and merging and linking these container records to a waste stream based characterization database. This paper will discuss some of the strengths and weaknesses contributing to project success or hindrance so that others can understand and minimize the difficulties inherent in a project of this magnitude

  5. Functional specifications for a radioactive waste decision support system

    International Nuclear Information System (INIS)

    Westrom, G.B.; Kurrasch, E.R.; Carlton, R.E.; Vance, J.N.

    1989-09-01

    It is generally recognized that decisions relative to the treatment, handling, transportation and disposal of low-level wastes produced in nuclear power plants involve a complex array of many inter-related elements or considerations. Complex decision processes can be aided through the use of computer-based expert systems which are based on the knowledge of experts and the inferencing of that knowledge to provide advice to an end-user. To determine the feasibility of developing and applying an expert system in nuclear plant low level waste operations, a Functional Specification for a Radwaste Decision Support System (RDSS) was developed. All areas of radwaste management, from the point of waste generation to the disposition of the waste in the final disposal location were considered for inclusion within the scope of the RDSS. 27 figs., 8 tabs

  6. Thermal processing system concepts and considerations for RWMC buried waste

    International Nuclear Information System (INIS)

    Eddy, T.L.; Kong, P.C.; Raivo, B.D.; Anderson, G.L.

    1992-02-01

    This report presents a preliminary determination of ex situ thermal processing system concepts and related processing considerations for application to remediation of transuranic (TRU)-contaminated buried wastes (TRUW) at the Radioactive Waste Management Complex (RWMC) of the Idaho National Engineering Laboratory (INEL). Beginning with top-level thermal treatment concepts and requirements identified in a previous Preliminary Systems Design Study (SDS), a more detailed consideration of the waste materials thermal processing problem is provided. Anticipated waste stream elements and problem characteristics are identified and considered. Final waste form performance criteria, requirements, and options are examined within the context of providing a high-integrity, low-leachability glass/ceramic, final waste form material. Thermal processing conditions required and capability of key systems components (equipment) to provide these material process conditions are considered. Information from closely related companion study reports on melter technology development needs assessment and INEL Iron-Enriched Basalt (IEB) research are considered. Five potentially practicable thermal process system design configuration concepts are defined and compared. A scenario for thermal processing of a mixed waste and soils stream with essentially no complex presorting and using a series process of incineration and high temperature melting is recommended. Recommendations for applied research and development necessary to further detail and demonstrate the final waste form, required thermal processes, and melter process equipment are provided

  7. Thermal processing system concepts and considerations for RWMC buried waste

    Energy Technology Data Exchange (ETDEWEB)

    Eddy, T.L.; Kong, P.C.; Raivo, B.D.; Anderson, G.L.

    1992-02-01

    This report presents a preliminary determination of ex situ thermal processing system concepts and related processing considerations for application to remediation of transuranic (TRU)-contaminated buried wastes (TRUW) at the Radioactive Waste Management Complex (RWMC) of the Idaho National Engineering Laboratory (INEL). Beginning with top-level thermal treatment concepts and requirements identified in a previous Preliminary Systems Design Study (SDS), a more detailed consideration of the waste materials thermal processing problem is provided. Anticipated waste stream elements and problem characteristics are identified and considered. Final waste form performance criteria, requirements, and options are examined within the context of providing a high-integrity, low-leachability glass/ceramic, final waste form material. Thermal processing conditions required and capability of key systems components (equipment) to provide these material process conditions are considered. Information from closely related companion study reports on melter technology development needs assessment and INEL Iron-Enriched Basalt (IEB) research are considered. Five potentially practicable thermal process system design configuration concepts are defined and compared. A scenario for thermal processing of a mixed waste and soils stream with essentially no complex presorting and using a series process of incineration and high temperature melting is recommended. Recommendations for applied research and development necessary to further detail and demonstrate the final waste form, required thermal processes, and melter process equipment are provided.

  8. Vehicle Radiation Monitoring Systems for Medical Waste Disposal - 12102

    Energy Technology Data Exchange (ETDEWEB)

    Kondrashov, Vladislav S.; Steranka, Steve A. [RadComm Systems Corp., 2931 Portland Dr., Oakville, ON L6H 5S4 (Canada)

    2012-07-01

    Hospitals often declare their waste as being 'non-radioactive'; however this material often has excessive levels of radiation caused either by an accident or lack of control. To ensure the best possible protection against the accidental receipt of radioactive materials and as a safety precaution for their employees, waste-handling companies have installed large-scale radiation portal monitors at their weigh scales or entry gates of the incinerator plant, waste transfer station, and/or landfill. Large-volume plastic scintillator-based systems can be used to monitor radiation levels at entry points to companies handling medical waste. The recent and intensive field tests together with the thousands of accumulated hours of actual real-life vehicle scanning have proven that the plastic scintillation based system is an appropriate radiation control instrument for waste management companies. The Real-Time background compensation algorithm is flexible with automatic adjustable coefficients that will response to rapidly changing environmental and weather conditions maintaining the preset alarm threshold levels. The Dose Rate correction algorithms further enhance the system's ability to meet the stringent requirements of the waste industries need for Dose Rate measurements. (authors)

  9. Tank Waste Remediation System Projects Document Control Plan

    International Nuclear Information System (INIS)

    Slater, G.D.; Halverson, T.G.

    1994-01-01

    The purpose of this Tank Waste Remediation System Projects Document Control Plan is to provide requirements and responsibilities for document control for the Hanford Waste Vitrification Plant (HWVP) Project and the Initial Pretreatment Module (IPM) Project

  10. LANDFILLS FOR NON-HAZARDOUS WASTE AND INERT WASTE AND THEIR OPERATION CYCLE IN NEW SYSTEM OF THE WASTE MANAGEMENT

    OpenAIRE

    Joanna Kunc

    2017-01-01

    Until 2012, the chief method of disposing of municipal waste in Poland was by storing it on non-hazardous and inert waste landfills. The introduction of a new waste management system as well as new formal and legal requirements have forced changes in key documents related to landfill installations such as processing permits, landfill operation instructions and management instructions. The operation cycle has been disturbed, reducing considerably their operation time and leading to a premature...

  11. Processing radioactive wastes using membrane (UF/HF/RO) systems

    International Nuclear Information System (INIS)

    Doyle, R.D.

    1988-01-01

    Over the years many technologies have been utilized to process low level radioactive waste streams generated by the nuclear industry, including: demineralization, evaporation, reverse osmosis and filtration. In the early 1980's interest was generated in membrane technologies and their application to radioactive wastes. This interest was generated based on the capabilities shown by membrane systems in non-radioactive environments and the promise that reverse osmosis systems showed in early testing with radioactive wastes. Membrane technologies have developed from the early development of reverse osmosis system to also include specifically designed membranes for ultrafiltration and hyperfiltration applications

  12. Intelligent information system for waste management; Jaetehuollon aelykaes tietojaerjestelmae

    Energy Technology Data Exchange (ETDEWEB)

    Nuortio, T. [Kuopio Univ. (Finland)

    2005-07-01

    'iWaste - Intelligent Information System for Waste Management' - was a joint project of the University of Kuopio and the Tampere University of Technology. The main objective of the project was to improve the management and use of waste management data. Also the project focused on the development of information management systems. The results of the project are numerous. A study of the present state of information management in the field of waste management was carried out. The studied aspects were for example information needs of different actors and their requirements for the information quality, communication requirements among different actors, and the characteristics and applications of the software products. The conceptual data model of waste management was developed and resulted as the hyper document for connecting waste and information management specialists, and for research and educational purposes. Also, this model can be used for the development of political regulation. Methodologies and models for processing data into information for decision making were developed. The methodologies and models include e.g. data mining techniques, prediction of waste generation and optimisation of waste pick-up and transport. (orig.)

  13. Optimized application of systems engineering to nuclear waste repository projects

    International Nuclear Information System (INIS)

    Miskimin, P.A.; Shepard, M.

    1986-01-01

    The purpose of this presentation is to describe a fully optimized application of systems engineering methods and philosophy to the management of a large nuclear waste repository project. Knowledge gained from actual experience with the use of the systems approach on two repository projects is incorporated in the material presented. The projects are currently evaluating the isolation performance of different geologic settings and are in different phases of maturity. Systems engineering methods were applied by the principal author at the Waste Isolation Pilot Plant (WIPP) in the form of a functional analysis. At the Basalt Waste Isolation Project (BWIP), the authors assisted the intergrating contractor with the development and application of systems engineering methods. Based on this experience and that acquired from other waste management projects, an optimized plan for applying systems engineering techniques was developed. The plan encompasses the following aspects: project organization, developing and defining requirements, assigning work responsibilities, evaluating system performance, quality assurance, controlling changes, enhancing licensability, optimizing project performance, and addressing regulatory issues. This information is presented in the form of a roadmap for the practical application of system engineering principles to a nuclear waste repository project

  14. Impact of decontamination on LWR radioactive waste treatment systems

    International Nuclear Information System (INIS)

    Hoenes, G.R.; Perrigo, L.D.; Divine, J.R.; Faust, L.G.

    1979-01-01

    Only at N-Reactor is there a means to accommodate radwaste produced during decontamination. The Dresden system is expected to be ready to accommodate such solutions by the summer of 1979. Solidification of the processed decontamination waste may be a significant problem. There is doubt that the materials in current radwaste treatment systems can handle chemicals from a concentrated process. The total storage volume, for concentrated decontamination, is not sufficient in existing radwaste treatment systems. Greater attention should be placed on designing reactors and radwaste treatment systems for decontamination. A means of handling waste material resulting from leaks in the primary system during the decontamination must be developed. On-site storage of solidified decontamination wastes may be a viable option, but license amendments will be necessary

  15. A plasma melting system for solid radioactive waste

    International Nuclear Information System (INIS)

    Higashi, Yasuo; Sugimoto, Masahiko; Fujitomi, Masashi; Noura, Tsuyoshi

    2003-01-01

    Kobe Steel has developed a plasma melting system for the volume reduction and stabilization of solid radioactive wastes such as concrete, insulation, filters, glass, sand etc. The main features of the system are as follows. (1) Non-transfer air plasma torches: 1.3 MW x 2 (2) Treatment capacity: 2 tons/batch (3) Waste feed: 200 liter drums (4) Tapping method: furnace tilting (5) Molten slag cooling: in the system's chambers. In this paper, an outline of the system and its first-run performance results are described. (author)

  16. Double-shell tank waste system assessment status and schedule

    International Nuclear Information System (INIS)

    Walter, E.J.

    1995-01-01

    The integrated program for completing the integrity assessments of the dangerous waste tank systems managed by the Tank Waste Remediation System (TWRS) Division of Westinghouse Hanford Company is presented in the Tank Waste Remediation System Tank System Integrity Assessments Program Plan, WHC-SD-AP017, Rev. 1. The program plan identified the assessment requirements and the general scope to which these requirements applied. Some of these assessment requirements have been met and others are either in process of completion or scheduled to be worked. To define the boundary of the double-shell tank (DST) system and the boundaries of the DST system components (or system parts) for the purpose of performing integrity assessment activities; To identify the planned activities to meet the assessment requirements for each component; Provide the status of the assessment activities; and Project a five year assessment activity schedule

  17. An operational waste minimization chargeback system at Sandia National Laboratories, New Mexico

    International Nuclear Information System (INIS)

    Horak, K.; Peek, D.W.; Stermer, D.; Dailleboust, L.; Reilly, H.

    1993-01-01

    Sandia National Laboratories, New Mexico, (SNL/NM) has made a commitment to achieve significant reductions in the amount of hazardous wastes generated throughout its operations. The success of the SNL/NM Waste Minimization/Pollution Prevention Program depends primarily on: (1) adequate program funding, and (2) comprehensive collection and dissemination of information pertaining to SNL/NM's waste. This paper describes the chargeback system that SNL/NM has chosen for funding the implementation of the Waste Minimization/Pollution Prevention program, as well as the waste reporting system that follows naturally from the chargeback system. Both the chargeback and reporting systems have been fully implemented. The details of implementation are discussed, including: the physical means by which waste is managed and data collected; the database systems which have been linked; the flow of data through both human hands and electronic systems; the quality assurance of that data; and the waste report format now in use. Also discussed are intended improvements in the system that are currently planned for the coming years

  18. Ventilation and air conditioning system in waste treatment and storage facilities

    International Nuclear Information System (INIS)

    Kinoshita, Hirotsugu; Sugawara, Kazushige.

    1987-01-01

    So far, the measures concerning the facilities for treating and storing radioactive wastes in nuclear fuel cycle in Japan were in the state which cannot be said to be sufficient. In order to cope with this situation, electric power companies constructed and operated radioactive waste concentration and volume reduction facilities, solid waste storing facilities for drums, high level solid waste storing facilities, spent fuel cask preserving facilities and so on successively in the premises of nuclear power stations, and for the wastes expected in future, the research and the construction plan of the facilities for treating and storing low, medium and high level wastes have been advanced. The ventilation and air conditioning system for these facilities is the important auxiliary system which has the mission of maintaining safe and pleasant environment in the facilities and lowering as far as possible the release of radioactive substances to outside. The outline of waste treatment and storage facilities is explained. The design condition, ventilation and air conditioning method, the features of respective waste treatment and storage facilities, and the problems for the future are described. Hereafter, mechanical ventilation system continues to be the main system, and filters become waste, while the exchange of filters is accompanied by the radiation exposure of workers. (Kako, I.)

  19. Development of an incineration system for radioactive waste

    International Nuclear Information System (INIS)

    Chrubasik, A.

    1989-01-01

    NUKEM GmbH (W. Germany) has developed and built some plants for treatment of radioactive waste. In cooperation with Karlsruhe Nuclear Research Center and on the basis of non-nuclear incineration plants, NUKEM has designed and built a new incineration plant for low level radioactive solid waste. The main features of the plant are improvement of the waste handling during feeding, very low particulate load downstream the incinerator and simple flue-gas cleaning system. This process is suitable for treatment of waste generated above all in nuclear power plants. (author)

  20. System for decision analysis support on complex waste management issues

    International Nuclear Information System (INIS)

    Shropshire, D.E.

    1997-01-01

    A software system called the Waste Flow Analysis has been developed and applied to complex environmental management processes for the United States Department of Energy (US DOE). The system can evaluate proposed methods of waste retrieval, treatment, storage, transportation, and disposal. Analysts can evaluate various scenarios to see the impacts to waste slows and schedules, costs, and health and safety risks. Decision analysis capabilities have been integrated into the system to help identify preferred alternatives based on a specific objectives may be to maximize the waste moved to final disposition during a given time period, minimize health risks, minimize costs, or combinations of objectives. The decision analysis capabilities can support evaluation of large and complex problems rapidly, and under conditions of variable uncertainty. The system is being used to evaluate environmental management strategies to safely disposition wastes in the next ten years and reduce the environmental legacy resulting from nuclear material production over the past forty years

  1. Progress on developing expert systems in waste management and disposal

    International Nuclear Information System (INIS)

    Rivera, A.L.; Ferrada, J.J.

    1990-01-01

    The concept of artificial intelligence (AI) represents a challenging opportunity in expanding the potential benefits from computer technology in waste management and disposal. The potential of this concept lies in facilitating the development of intelligent computer systems to help analysts, decision makers, and operators in waste and technology problem solving similar to the way that machines support the laborer. Because the knowledge of multiple human experts is an essential input in the many aspects of waste management and disposal, there are numerous opportunities for the development of expert systems using software products from AI. This paper presents systems analysis as an attractive framework for the development of intelligent computer systems of significance to waste management and disposal, and it provides an overview of limited prototype systems and the commercially available software used during prototype development activities

  2. Computerized waste-accountability shipping and packaging system

    International Nuclear Information System (INIS)

    Jackson, J.A.; Baston, M. Jr.; DeVer, E.A.

    1981-01-01

    The Waste Accountability, Shipping and Packaging System (WASP) is a real-time computerized system designed and implemented by Mound Facility to meet the stringent packaging and reporting requirements of radioactive waste being shipped to burial sites. The system stores packaging data and inspection results for each unit and prepares all necessary documents at the time of shipment. Shipping data specific for each burial site are automatically prepared on magnetic tape for transmission to the computing center at that site. WASP has enabled Mound Facility to effectively meet the requirements of the burial sites, diminishing the possibility of being rejected from a site because of noncompliance

  3. A BIM-based system for demolition and renovation waste estimation and planning.

    Science.gov (United States)

    Cheng, Jack C P; Ma, Lauren Y H

    2013-06-01

    Due to the rising worldwide awareness of green environment, both government and contractors have to consider effective construction and demolition (C&D) waste management practices. The last two decades have witnessed the growing importance of demolition and renovation (D&R) works and the growing amount of D&R waste disposed to landfills every day, especially in developed cities like Hong Kong. Quantitative waste prediction is crucial for waste management. It can enable contractors to pinpoint critical waste generation processes and to plan waste control strategies. In addition, waste estimation could also facilitate some government waste management policies, such as the waste disposal charging scheme in Hong Kong. Currently, tools that can accurately and conveniently estimate the amount of waste from construction, renovation, and demolition projects are lacking. In the light of this research gap, this paper presents a building information modeling (BIM) based system that we have developed for estimation and planning of D&R waste. BIM allows multi-disciplinary information to be superimposed within one digital building model. Our system can extract material and volume information through the BIM model and integrate the information for detailed waste estimation and planning. Waste recycling and reuse are also considered in our system. Extracted material information can be provided to recyclers before demolition or renovation to make recycling stage more cooperative and more efficient. Pick-up truck requirements and waste disposal charging fee for different waste facilities will also be predicted through our system. The results could provide alerts to contractors ahead of time at project planning stage. This paper also presents an example scenario with a 47-floor residential building in Hong Kong to demonstrate our D&R waste estimation and planning system. As the BIM technology has been increasingly adopted in the architectural, engineering and construction industry

  4. Survey of systems safety analysis methods and their application to nuclear waste management systems

    International Nuclear Information System (INIS)

    Pelto, P.J.; Winegardner, W.K.; Gallucci, R.H.V.

    1981-11-01

    This report reviews system safety analysis methods and examines their application to nuclear waste management systems. The safety analysis methods examined include expert opinion, maximum credible accident approach, design basis accidents approach, hazard indices, preliminary hazards analysis, failure modes and effects analysis, fault trees, event trees, cause-consequence diagrams, G0 methodology, Markov modeling, and a general category of consequence analysis models. Previous and ongoing studies on the safety of waste management systems are discussed along with their limitations and potential improvements. The major safety methods and waste management safety related studies are surveyed. This survey provides information on what safety methods are available, what waste management safety areas have been analyzed, and what are potential areas for future study

  5. Survey of systems safety analysis methods and their application to nuclear waste management systems

    Energy Technology Data Exchange (ETDEWEB)

    Pelto, P.J.; Winegardner, W.K.; Gallucci, R.H.V.

    1981-11-01

    This report reviews system safety analysis methods and examines their application to nuclear waste management systems. The safety analysis methods examined include expert opinion, maximum credible accident approach, design basis accidents approach, hazard indices, preliminary hazards analysis, failure modes and effects analysis, fault trees, event trees, cause-consequence diagrams, G0 methodology, Markov modeling, and a general category of consequence analysis models. Previous and ongoing studies on the safety of waste management systems are discussed along with their limitations and potential improvements. The major safety methods and waste management safety related studies are surveyed. This survey provides information on what safety methods are available, what waste management safety areas have been analyzed, and what are potential areas for future study.

  6. The utility of system-level RAM analysis and standards for the US nuclear waste management system

    International Nuclear Information System (INIS)

    Rod, S.R.; Adickes, M.D.; Paul, B.K.

    1992-03-01

    The Department of Energy (DOE) Office of Civilian Radioactive Waste Management (OCRWM) is responsible for developing a system to manage spent nuclear fuel and high-level radioactive waste in accordance with the Nuclear Waste Policy Act of 1982 and its subsequent amendments. Pacific Northwest Laboratory (PNL) is assisting OCRWM in its investigation of whether system-level reliability, availability, and maintainability (RAM) requirements are appropriate for the waste management system and, if they are, what appropriate form should be for such requirements. Results and recommendations are presented

  7. Joint optimisation of the future Danish waste and energy system

    DEFF Research Database (Denmark)

    Münster, Marie; Pizarro, Amalia Rosa; Salvucci, Raffaele

    2015-01-01

    in future scenarios with higher biomass consumption, where the average heat prices are higher. In both scenarios, biogas produced from organic waste is upgraded and fed into the natural gas grid and waste is incinerated rather than being centrally sorted in a material recovery facility.......In this article the impact of the future development of the energy system on the feasibility of waste treatment options is analysed. In the article two different optimization tools are used: a regional electricity model (Balmorel) and a national waste treatment and district heating model (Opti......Waste). When performing optimization by minimizing the socio-economic costs, into future energy systems with high wind power production, it proves feasible primarily to incinerate waste in large scale combined heat and power (CHP) plants, whereas more incineration takes place in decentralized CHP plants...

  8. Functions and requirements document, WESF decoupling project, low-level liquid waste system

    Energy Technology Data Exchange (ETDEWEB)

    Rasmussen, J.H., Fluor Daniel Hanford

    1997-02-27

    The Waste Encapsulation and Storage Facility (WESF) was constructed in 1974 to encapsulate and store cesium and strontium which were isolated at B Plant from underground storage tank waste. The WESF, Building 225-B, is attached physically to the west end of B Plant, Building 221-B, 200 East area. The WESF currently utilizes B Plant facilities for disposing liquid and solid waste streams. With the deactivation of B Plant, the WESF Decoupling Project will provide replacement systems allowing WESF to continue operations independently from B Plant. Four major systems have been identified to be replaced by the WESF Decoupling Project, including the following: Low Level Liquid Waste System, Solid Waste Handling System, Liquid Effluent Control System, and Deionized Water System.

  9. Perspectives on integrating the US radioactive waste disposal system

    International Nuclear Information System (INIS)

    Culler, F.L.; Croff, A.G.

    1990-01-01

    The waste management systems being developed and deployed by the DOE Office of Civilian Radioactive Waste Management (OCRWM) is large, complex, decentralized, and long term. As a result, a systems integration approach has been implemented by OCRWM. The fundamentals of systems integration and its application are examined in the context of the OCRWM program. This application is commendable, and some additional systems integration features are suggested to enhance its benefits. 6 refs., 1 fig

  10. Decontamination factor Improvement and Waste Reduction of Full-scaled Evaporation System for Liquid Radioactive Waste Treatment

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ki Tae; Ju, Young Jong; Seol, Jeung Gun; Cho, Nam Chan [KNF, Daejeon (Korea, Republic of); Ha, Dong Hwan; Kim, Yun Kwan [Jeontech Co., Suwon (Korea, Republic of)

    2016-05-15

    Liquid radioactive waste is produced from nuclear power plants, nuclear research centers, radiopharmaceuticals and nuclear fuel fabrication plants, etc. Ion-exchange, chemical precipitation, evaporation, filtration, liquid/solid extraction and centrifugal are applied to treat the liquid waste. Chemical precipitation requires low capital and operation cost. However, it produces large amount of secondary waste and has low DF (decontamination factor). Evaporation process removes variety of radionuclides in high DF. But, it also has problems in scaling and foaming [3, 4]. In this study, it is investigated that the effect of switching lime precipitation and centrifugal processes to evaporation system for improvement of removal efficiency and decrease of waste in full-scaled radioactive wastewater treatment plant. By swapping full-scaled wastewater treatment system from the centrifugal and the lime precipitation to the evaporator and the crystallizer in the nuclear fuel fabrication plant, it was possible to increase removal efficiency and to minimize waste productivity. Radioactivity concentration of effluent is decreased from 0.01 Bq/mL to ND level. Besides, waste production was reduced from 15 drums/yr to 2 drums/yr (87%).

  11. Cover and liner system designs for mixed-waste disposal

    International Nuclear Information System (INIS)

    MacGregor, A.

    1994-01-01

    Land disposal of mixed waste is subject to a variety of regulations and requirements. Landfills will continue to be a part of waste management plans at virtually all facilities. New landfills are planned to serve the ongoing needs of the national laboratories and US Department of Energy (DOE) facilities, and environmental restoration wastes will ultimately need to be disposed in these landfills. This paper reviews the basic objectives of mixed-waste disposal and summarizes key constraints facing planners and designers of these facilities. Possible objectives of cover systems include infiltration reduction; maximization of evapotranspiration; use of capillary barriers or low-permeability layers (or combinations of all these); lateral drainage transmission; plant, animal, and/or human intrusion control; vapor/gas control; and wind and water erosion control. Liner system objectives will be presented, and will be compared to the US Environmental Protection Agency-US Nuclear Regulatory Commission guidance for mixed-waste landfills. The measures to accomplish each objective will be reviewed. Then, the design of several existing or planned mixed-waste facilities (DOE and commercial) will be reviewed to illustrate the application of the various functional objectives. Key issues will include design life and performance period as compared/contrasted to postclosure care periods, the use (or avoidance) of geosynthetics or clays, intermediate or interim cover systems, and soil erosion protection in contrast to vegetative enhancement. Possible monitoring approaches to cover systems and landfill installations will be summarized as well

  12. The influence of institutions and organizations on urban waste collection systems: an analysis of waste collection system in Accra, Ghana (1985-2000).

    Science.gov (United States)

    Fobil, Julius N; Armah, Nathaniel A; Hogarh, Jonathan N; Carboo, Derick

    2008-01-01

    Urban waste collection system is a pivotal component of all waste management schemes around the world. Therefore, the efficient performance and the success of these schemes in urban pollution control rest on the ability of the collection systems to fully adapt to the prevailing cultural and social contexts within which they operate. Conceptually, institutions being the rules guiding the conduct of public service provision and routine social interactions, waste collection systems embedded in institutions can only realize their potentials if they fully evolve continuously to reflect evolving social and technical matrices underlying the cultures, organizations, institutions and social conditions they are designed to address. This paper is a product of an analysis of waste collection performance in Ghana under two different institutional and/or organizational regimes; from an initial entirely public sector dependence to a current mix of public-private sector participation drawing on actual planning data from 1985 to 2000. The analysis found that the overall performance of waste collection services in Ghana increased under the coupled system, with efficiency (in terms of total waste clearance and coverage of service provision) increasing rapidly with increased private-sector controls and levels of involvement, e.g. for solid waste, collection rate and disposal improved from 51% in 1998 to about 91% in the year 2000. However, such an increase in performance could not be sustained beyond 10 years of public-private partnerships. This analysis argues that the sustainability of improved waste collection efficiency is a function of the franchise and lease arrangements between private sector group on the one hand and public sector group (local authorities) on the other hand. The analysis therefore concludes that if such franchise and lease arrangements are not conceived out of an initial transparent process, such a provision could undermine the overall sustainability of

  13. Development of drying and pelletizing system for concentrated waste

    International Nuclear Information System (INIS)

    Horiuchi, Susumu; Saito, Toru; Hirano, Mikio; Kikuchi, Makoto; Takamura, Yoshiyuki.

    1980-01-01

    Volume reduction is strongly required for the radioactive liquid waste generated in nuclear power plants because its storing space has increased with the operating years of the plants, though it has temporarily been stored in drum cans within the plant sites after concentrated by evaporation. The drying and pelletizing system developed by Hitachi, Ltd. in cooperation with Tokyo Electric Power Co. aims at the final disposal by solidifying stored waste after drying, pulverizing, and pelletizing concentrated liquid waste, and storing it in tanks to reduce its radioactivity for the predetermined period. The outstanding features of the system are to be capable of realizing drastic volume reduction and of storing waste as the stable solid in the form flexibly adaptable to any disposing method. The system, to which the new concepts of pulverizing by drying and pelletizing concentrated liquid waste were applied, has been subjected to various fundamental tests and the demonstration tests in a pilot plant during the research and development for 7-years, consequently it was confirmed that the system can be used practically, and the data for designing the equipment for practical use were collected. The items to be considered in designing the equipment for practical use are also mentioned. (Wakatsuki, Y.)

  14. Building consensus in developing radioactive waste management systems

    International Nuclear Information System (INIS)

    Terrell, R.; Philpott, R.; Smith, S.L.; Gibson, J.

    1991-01-01

    To successfully develop radioactive waste management systems, national authorities must work to establish consensus on numerous complex issues among many affected and interested parties. This paper explores the meaning of consensus in waste management, with special attention to the different arenas in which consensus is established and how DOE can respond if consensus is withheld. Highlights of other national waste management programs are introduced to provide a broader perspective on consensus. It is suggested that the US waste management program has reached a point where Congress needs to act to reaffirm consensus on the direction of the US program

  15. Radioactive waste incineration system cold demonstration test, (2)

    Energy Technology Data Exchange (ETDEWEB)

    Hozumi, Masahiro; Seike, Yasuhiko; Takaoku, Yoshinobu; Yamanaka, Yasuhiro; Asahara, Masaharu; Katagiri, Keishi; Matsumoto, Kenji; Nagae, Madoka

    1985-12-01

    It is urgently necessary to solve the radioactive waste problem. As an effective means for the volume reduction of low-level radioactive wastes, an improved incineration system is greatly required. SHI's Waste Incineration (WIS) licensed by Combustion Engineering, Inc., has the significant advantage of processing a variety of wastes. We started a cold demonstration test in April, 1984 to verify the excellent performance of WIS. The test was successfully completed in September, 1985 with the record of more than 1000 hours of incineration testing time. In the present paper, we describe the test results during one and half years of test period.

  16. Waste management - an integral part of environmental management systems

    Energy Technology Data Exchange (ETDEWEB)

    Hamm, Ulrich

    1998-12-01

    To consider waste as a resource instead of an annoyance with which the management has to cope with, has become an unavoidable task for modern managers. The task the management has to take to secure competitiveness in an environment of rising complexity of production processes and further increasing legal requirements, is to manage waste as much as other recourses are managed. Waste has to be considered an aspect of planning and decision process just as business plans or logistics are. Main themes discussed in this publication comprise waste management, implementation of waste management as an integral part of environmental management systems, and management approach to waste - the results. 4 figs.

  17. Tank Farm Contractor Waste Remediation System and Utilization Plan

    International Nuclear Information System (INIS)

    KIRKBRIDE, R.A.

    1999-01-01

    The Tank Waste Remediation System Operation and Utilization Plan updates the operating scenario and plans for the delivery of feed to BNFL Inc., retrieval of waste from single-shell tanks, and the overall process flowsheets for Phases I and II of the privatization of the Tank Waste Remediation System. The plans and flowsheets are updated with the most recent tank-by-tank inventory and sludge washing data. Sensitivity cases were run to evaluate the impact or benefits of proposed changes to the BNFL Inc. contract and to evaluate a risk-based SST retrieval strategy

  18. National high-level waste systems analysis

    International Nuclear Information System (INIS)

    Kristofferson, K.; O'Holleran, T.P.

    1996-01-01

    Previously, no mechanism existed that provided a systematic, interrelated view or national perspective of all high-level waste treatment and storage systems that the US Department of Energy manages. The impacts of budgetary constraints and repository availability on storage and treatment must be assessed against existing and pending negotiated milestones for their impact on the overall HLW system. This assessment can give DOE a complex-wide view of the availability of waste treatment and help project the time required to prepare HLW for disposal. Facilities, throughputs, schedules, and milestones were modeled to ascertain the treatment and storage systems resource requirements at the Hanford Site, Savannah River Site, Idaho National Engineering Laboratory, and West Valley Demonstration Project. The impacts of various treatment system availabilities on schedule and throughput were compared to repository readiness to determine the prudent application of resources. To assess the various impacts, the model was exercised against a number of plausible scenarios as discussed in this paper

  19. Development of a test system for high level liquid waste partitioning

    Directory of Open Access Journals (Sweden)

    Duan Wu H.

    2015-01-01

    Full Text Available The partitioning and transmutation strategy has increasingly attracted interest for the safe treatment and disposal of high level liquid waste, in which the partitioning of high level liquid waste is one of the critical technical issues. An improved total partitioning process, including a tri-alkylphosphine oxide process for the removal of actinides, a crown ether strontium extraction process for the removal of strontium, and a calixcrown ether cesium extraction process for the removal of cesium, has been developed to treat Chinese high level liquid waste. A test system containing 72-stage 10-mm-diam annular centrifugal contactors, a remote sampling system, a rotor speed acquisition-monitoring system, a feeding system, and a video camera-surveillance system was successfully developed to carry out the hot test for verifying the improved total partitioning process. The test system has been successfully used in a 160 hour hot test using genuine high level liquid waste. During the hot test, the test system was stable, which demonstrated it was reliable for the hot test of the high level liquid waste partitioning.

  20. The management system for the disposal of radioactive waste. Safety guide

    International Nuclear Information System (INIS)

    2008-01-01

    The objective of this Safety Guide is to provide recommendations on developing and implementing management systems for all phases of facilities for the disposal of radioactive waste and related activities. It covers the management systems for managing the different stages of waste disposal facilities, such as siting, design and construction, operation (i.e. the activities, which can extend over several decades, involving receipt of the waste product in its final packaging (if it is to be disposed of in packaged form), waste emplacement in the waste disposal facility, backfilling and sealing, and any subsequent period prior to closure), closure and the period of institutional control (i.e. either active control - monitoring, surveillance and remediation; or passive control - restricted land use). The management systems apply to various types of disposal facility for different categories of radioactive waste, such as: near surface (for low level waste), geological (for low, intermediate and/or high level waste), boreholes (for sealed sources), surface impoundment (for mining and milling waste) and landfill (for very low level waste). It also covers management systems for related processes and activities, such as extended monitoring and surveillance during the period of active institutional control in the post-closure phase, safety and performance assessments and development of the safety case for the waste disposal facility and regulatory authorization (e.g. licensing). This Safety Guide is intended to be used by organizations that are directly involved in, or that regulate, the facilities and activities described in paras 1.15 and 1.16, and by the suppliers of nuclear safety related products that are required to meet some or all of the requirements established in IAEA Safety Standards Series No. GS-R-3 'The Management System for Facilities and Activities'. It will also be useful to legislators and to members of the public and other parties interested in the nuclear

  1. Study on the construction and operation for management system of municipal domestic wastes

    Institute of Scientific and Technical Information of China (English)

    Liu Wei; Wang Shuqiang; Chen Jingxin

    2006-01-01

    In recent years, the quantity of our country's municipal domestic wastes increase rapidly, but the waste disposal still has problems, such as the simple way of processing, wasting the resources, the serious environmental pollution and so on. By holding waste minimization as the center, the developed countries have formed perfect waste management system. Based on analyzing the status quo and problems of processing in our country, on the principle of benefit, scale,waste minimization, reclamation and hazard-free treatment, according to the recycling model of processing, the article has constructed our country's domestic wastes management system, proposed the measures of promoting the operation of system. It has realized the transformation of waste management system from terminal disposal to source reduction,achieved the goals, including domestic wastes categorizing and reclaiming, industrialization and non-pollution processing,and finally brought sustainable development for resources, environment, economy and society.

  2. Multi-isotopic gamma-ray assay system for alpha-contaminated waste

    International Nuclear Information System (INIS)

    Close, D.A.; Pratt, J.C.; Caldwell, J.T.; Kunz, W.E.; Schultz, F.J.; Haff, K.W.

    1983-01-01

    The capability of an existing segmented gamma-ray system is being expanded for the analysis of alpha-contaminated waste drums. A cursory assay of 114 transuranic waste drums of 208-l capacity has been made. Analysis of these data indicates a detection limit better than 100 nCi/g of waste for 237 Np/ 233 Pa, 239 Pu, 241 Am, 243 Am/ 239 Np, 60 Co, 125 Sb, 134 137 Cs, and 154 Eu. A pending Code of Federal Regulation (10CFR61) stipulates that the nuclear industry quantify not only its transuranic waste, but also certain beta- and gamma-ray-emitting fission products. An assay system based on gamma-ray spectroscopy is the only system that can meet this requirement for the fission products

  3. System for manufacturing ash products and energy from refuse waste

    Energy Technology Data Exchange (ETDEWEB)

    Sutin, G.L.; Mahoney, P.F.

    1996-01-04

    The present invention provides a system of manufacturing energy and ash products from solid waste. The system includes apparatus for receiving solid waste for processing, apparatus for shredding the received solid waste, apparatus for removing ferrous material from the shredded solid waste to create processed refuse fuel (PRF) and apparatus for efficiently combusting the PRF. A conveyor transfers the PRF to the combusting apparatus such that the density of the PRF is always controlled for continuous non-problematic flow. Apparatus for recovering residual combustion particulate from the combustion residual gases and for recovering solid ash residue provides the system with the ability to generate steam and electrical energy, and to recover for reuse and recycling valuable materials from the solid ash residue. (author) figs.

  4. 75 FR 71559 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste; Withdrawal of...

    Science.gov (United States)

    2010-11-24

    ... ENVIRONMENTAL PROTECTION AGENCY 40 CFR Part 261 [EPA-R06-RCRA-2010-0066; SW FRL-9231-4] Hazardous Waste Management System; Identification and Listing of Hazardous Waste; Withdrawal of Direct Final Exclusion AGENCY: Environmental Protection Agency (EPA). ACTION: Withdrawal of direct final exclusion...

  5. 75 FR 62040 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste; Proposed Exclusion

    Science.gov (United States)

    2010-10-07

    ... the lists of hazardous waste listed at 40 CFR 261.31, both past and currently generated sludge... water production waste treatment system. Once- through non-contact cooling water does not require... grease, sulfide, water content, corrosivity and ignitability. The sludge characterization included...

  6. Environmental safety of the disposal system for radioactive substance-contaminated wastes

    International Nuclear Information System (INIS)

    Oosako, Masahiro

    2012-01-01

    In accordance with the full-scale enforcement of 'The Act on Special Measures concerning the Handling of Radioactive Pollution' in 2012, the collective efforts of entire Japan for dealing with radioactive pollutants began. The most important item for dealing with radioactive pollution is to control radioactive substances that polluted the global environment and establish a contaminated waste treatment system for risk reduction. On the incineration system and landfill disposal system of radioactive waste, this paper arranges the scientific information up to now, and discusses the safety of the treatment / disposal systems of contaminated waste. As for 'The Act on Special Measures concerning the Handling of Radioactive Pollution,' this paper discusses the points of the Act and basic policy, roadmap for the installation of interim storage facilities, and enforcement regulations (Ordinance of the Ministry of the Environment). About the safety of waste treatment system, it discusses the safety level of technical standards at waste treatment facilities, safety of incineration facilities, and safety of landfill disposal sites. (O.A.)

  7. Tank-connected food waste disposer systems--current status and potential improvements.

    Science.gov (United States)

    Bernstad, A; Davidsson, A; Tsai, J; Persson, E; Bissmont, M; la Cour Jansen, J

    2013-01-01

    An unconventional system for separate collection of food waste was investigated through evaluation of three full-scale systems in the city of Malmö, Sweden. Ground food waste is led to a separate settling tank where food waste sludge is collected regularly with a tank-vehicle. These tank-connected systems can be seen as a promising method for separate collection of food waste from both households and restaurants. Ground food waste collected from these systems is rich in fat and has a high methane potential when compared to food waste collected in conventional bag systems. The content of heavy metals is low. The concentrations of N-tot and P-tot in sludge collected from sedimentation tanks were on average 46.2 and 3.9 g/kg TS, equalling an estimated 0.48 and 0.05 kg N-tot and P-tot respectively per year and household connected to the food waste disposer system. Detergents in low concentrations can result in increased degradation rates and biogas production, while higher concentrations can result in temporary inhibition of methane production. Concentrations of COD and fat in effluent from full-scale tanks reached an average of 1068 mg/l and 149 mg/l respectively over the five month long evaluation period. Hydrolysis of the ground material is initiated between sludge collection occasions (30 days). Older food waste sludge increases the degradation rate and the risks of fugitive emissions of methane from tanks between collection occasions. Increased particle size decreases hydrolysis rate and could thus decrease losses of carbon and nutrients in the sewerage system, but further studies in full-scale systems are needed to confirm this. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Transportable Vitrification System: Operational experience gained during vitrification of simulated mixed waste

    International Nuclear Information System (INIS)

    Whitehouse, J.C.; Burket, P.R.; Crowley, D.A.; Hansen, E.K.; Jantzen, C.M.; Smith, M.E.; Singer, R.P.; Young, S.R.; Zamecnik, J.R.; Overcamp, T.J.; Pence, I.W. Jr.

    1996-01-01

    The Transportable Vitrification System (TVS) is a large-scale, fully-integrated, transportable, vitrification system for the treatment of low-level nuclear and mixed wastes in the form of sludges, soils, incinerator ash, and similar waste streams. The TVS was built to demonstrate the vitrification of actual mixed waste at U. S. Department of Energy (DOE) sites. Currently, Westinghouse Savannah River Company (WSRC) is working with Lockheed Martin Energy Systems (LMES) to apply field scale vitrification to actual mixed waste at Oak Ridge Reservation's (ORR) K-25 Site. Prior to the application of the TVS to actual mixed waste it was tested on simulated K-25 B and C Pond waste at Clemson University. This paper describes the results of that testing and preparations for the demonstration on actual mixed waste

  9. Transportable vitrification system demonstration on mixed waste. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Zamecnik, J.R.; Whitehouse, J.C. [Westinghouse Savannah River Co., Aiken, SC (United States); Wilson, C.N. [Lockheed Martin Hanford Corp., Richland, WA (United States); Van Ryn, F.R. [Bechtel Jacobs Co., Oak Ridge, TN (United States)

    1998-04-22

    The Transportable Vitrification System (TVS) is a large scale, fully integrated, vitrification system for the treatment of low-level and mixed wastes in the form of sludges, soils, incinerator ash, and many other waste streams. It was demonstrated on surrogate waste at Clemson University and at the Oak Ridge Reservation (ORR) prior to treating actual mixed waste. Treatment of a combination of dried B and C Pond sludge and CNF sludge was successfully demonstrated at ORR in 1997. The demonstration produced 7,616 kg of glass from 7,328 kg of mixed wastes with a 60% reduction in volume. Glass formulations for the wastes treated were developed using a combination of laboratory crucible studies with the actual wastes and small melter studies at Clemson with both surrogate and actual wastes. Initial characterization of the B and C Pond sludge had not shown the presence of carbon or fluoride, which required a modified glass formulation be developed to maintain proper glass redox and viscosity. The CNF sludge challenges the glass formulations due to high levels of phosphate and iron. The demonstration was delayed several times by permitting problems, a glass leak, and electrical problems. The demonstration showed that the two wastes could be successfully vitrified, although the design glass production rate was not achieved. The glass produced met the Universal Treatment Standards and the emissions from the TVS were well within the allowable permit limits.

  10. Transportable vitrification system demonstration on mixed waste. Revision 1

    International Nuclear Information System (INIS)

    Zamecnik, J.R.; Whitehouse, J.C.; Wilson, C.N.; Van Ryn, F.R.

    1998-01-01

    The Transportable Vitrification System (TVS) is a large scale, fully integrated, vitrification system for the treatment of low-level and mixed wastes in the form of sludges, soils, incinerator ash, and many other waste streams. It was demonstrated on surrogate waste at Clemson University and at the Oak Ridge Reservation (ORR) prior to treating actual mixed waste. Treatment of a combination of dried B and C Pond sludge and CNF sludge was successfully demonstrated at ORR in 1997. The demonstration produced 7,616 kg of glass from 7,328 kg of mixed wastes with a 60% reduction in volume. Glass formulations for the wastes treated were developed using a combination of laboratory crucible studies with the actual wastes and small melter studies at Clemson with both surrogate and actual wastes. Initial characterization of the B and C Pond sludge had not shown the presence of carbon or fluoride, which required a modified glass formulation be developed to maintain proper glass redox and viscosity. The CNF sludge challenges the glass formulations due to high levels of phosphate and iron. The demonstration was delayed several times by permitting problems, a glass leak, and electrical problems. The demonstration showed that the two wastes could be successfully vitrified, although the design glass production rate was not achieved. The glass produced met the Universal Treatment Standards and the emissions from the TVS were well within the allowable permit limits

  11. Waste management system optimisation for Southern Italy with MARKAL model

    Energy Technology Data Exchange (ETDEWEB)

    Salvia, M.; Cosmi, C. [Istituto di Metodologie Avanzate di Analisi Ambientale, Consiglio Nazionale delle Ricerche, C. da S. Loja, 85050 (PZ) Tito Scalo (Italy); Macchiato, M. [Dipartimento di Scienze Fisiche, Universita Federico II, Via Cintia, 80126 Napoli (Italy); Mangiamele, L. [Dipartimento di Ingegneria e Fisica dell' Ambiente, Universita degli Studi della Basilicata, C. da Macchia Romana, 85100 Potenza (Italy)

    2002-01-01

    The MARKAL models generator was utilised to build up a comprehensive model of the anthropogenic activities system which points out the linkages between productive processes and waste disposal technologies. The aim of such a study is to determine the optimal configuration of the waste management system for the Basilicata region (Southern Italy), in order to support the definition of the regional waste management plan in compliance with the Italian laws. A sensitivity analysis was performed to evaluate the influence of landfilling fees on the choice of waste processing technologies, in order to foster waste management strategies which are environmentally sustainable, economically affordable and highly efficient. The results show the key role of separate collection and mechanical pre-treatments in the achievement of the legislative targets.

  12. Integrated software system for low level waste management

    International Nuclear Information System (INIS)

    Worku, G.

    1995-01-01

    In the continually changing and uncertain world of low level waste management, many generators in the US are faced with the prospect of having to store their waste on site for the indefinite future. This consequently increases the set of tasks performed by the generators in the areas of packaging, characterizing, classifying, screening (if a set of acceptance criteria applies), and managing the inventory for the duration of onsite storage. When disposal sites become available, it is expected that the work will require re-evaluating the waste packages, including possible re-processing, re-packaging, or re-classifying in preparation for shipment for disposal under the regulatory requirements of the time. In this day and age, when there is wide use of computers and computer literacy is at high levels, an important waste management tool would be an integrated software system that aids waste management personnel in conducting these tasks quickly and accurately. It has become evident that such an integrated radwaste management software system offers great benefits to radwaste generators both in the US and other countries. This paper discusses one such approach to integrated radwaste management utilizing some globally accepted radiological assessment software applications

  13. Radiation doses in alternative commercial high-level waste management systems

    International Nuclear Information System (INIS)

    Schneider, K.J.; Pelto, P.J.; Lavender, J.C.; Daling, P.M.; Fecht, B.A.

    1986-01-01

    In the commercial high-level waste management system, potential changes are being considered that will augment the benefits of an integral monitored retrievable storage (MRS) facility. The US Department of Energy (DOE) has recognized that alternative options could be implemented in the authorized waste management system (i.e., without an integral MRS facility) to potentially achieve some of the same beneficial effects of the integral MRS system. This paper summarizes those DOE-sponsored analyses related to radiation doses resulting from changes in the waste management system. This report presents generic analyses of aggregated radiation dose impacts to the public and occupational workers, of nine postulated changes in the operation of a spent-fuel management system without an MRS facility

  14. Life cycle cost estimation and systems analysis of Waste Management Facilities

    International Nuclear Information System (INIS)

    Shropshire, D.; Feizollahi, F.

    1995-01-01

    This paper presents general conclusions from application of a system cost analysis method developed by the United States Department of Energy (DOE), Waste Management Division (WM), Waste Management Facilities Costs Information (WMFCI) program. The WMFCI method has been used to assess the DOE complex-wide management of radioactive, hazardous, and mixed wastes. The Idaho Engineering Laboratory, along with its subcontractor Morrison Knudsen Corporation, has been responsible for developing and applying the WMFCI cost analysis method. The cost analyses are based on system planning level life-cycle costs. The costs for life-cycle waste management activities estimated by WMFCI range from bench-scale testing and developmental work needed to design and construct a facility, facility permitting and startup, operation and maintenance, to the final decontamination, decommissioning, and closure of the facility. For DOE complex-wide assessments, cost estimates have been developed at the treatment, storage, and disposal module level and rolled up for each DOE installation. Discussions include conclusions reached by studies covering complex-wide consolidation of treatment, storage, and disposal facilities, system cost modeling, system costs sensitivity, system cost optimization, and the integration of WM waste with the environmental restoration and decontamination and decommissioning secondary wastes

  15. System for handling and storing radioactive waste

    Science.gov (United States)

    Anderson, John K.; Lindemann, Paul E.

    1984-01-01

    A system and method for handling and storing spent reactor fuel and other solid radioactive waste, including canisters to contain the elements of solid waste, storage racks to hold a plurality of such canisters, storage bays to store these racks in isolation by means of shielded doors in the bays. This system also includes means for remotely positioning the racks in the bays and an access tunnel within which the remotely operated means is located to position a rack in a selected bay. The modular type of these bays will facilitate the construction of additional bays and access tunnel extension.

  16. Tank waste remediation system mission analysis report

    International Nuclear Information System (INIS)

    Acree, C.D.

    1998-01-01

    The Tank Waste Remediation System Mission Analysis Report identifies the initial states of the system and the desired final states of the system. The Mission Analysis Report identifies target measures of success appropriate to program-level accomplishments. It also identifies program-level requirements and major system boundaries and interfaces

  17. Acceptance test plan for the Waste Information Control System

    International Nuclear Information System (INIS)

    Flynn, D.F.

    1994-01-01

    This document describes the acceptance test plan for the WICS system. The Westinghouse Hanford Company (WHC) Hazardous Material Control Group (HMC) of the 222-S Laboratory has requested the development of a system to help resolve many of the difficulties associated with tracking and data collection of containers and drums of waste. This system has been identified as Waste Information and Control System (WICS). The request for developing and implementing WICS has been made to the Automation and Simulation Engineering Group (ASE)

  18. Integrated technologies for solid waste bin monitoring system.

    Science.gov (United States)

    Arebey, Maher; Hannan, M A; Basri, Hassan; Begum, R A; Abdullah, Huda

    2011-06-01

    The integration of communication technologies such as radio frequency identification (RFID), global positioning system (GPS), general packet radio system (GPRS), and geographic information system (GIS) with a camera are constructed for solid waste monitoring system. The aim is to improve the way of responding to customer's inquiry and emergency cases and estimate the solid waste amount without any involvement of the truck driver. The proposed system consists of RFID tag mounted on the bin, RFID reader as in truck, GPRS/GSM as web server, and GIS as map server, database server, and control server. The tracking devices mounted in the trucks collect location information in real time via the GPS. This information is transferred continuously through GPRS to a central database. The users are able to view the current location of each truck in the collection stage via a web-based application and thereby manage the fleet. The trucks positions and trash bin information are displayed on a digital map, which is made available by a map server. Thus, the solid waste of the bin and the truck are being monitored using the developed system.

  19. Environmental remediation and waste management information systems

    Energy Technology Data Exchange (ETDEWEB)

    Harrington, M.W.; Harlan, C.P.

    1993-12-31

    The purpose of this paper is to document a few of the many environmental information systems that currently exist worldwide. The paper is not meant to be a comprehensive list; merely a discussion of a few of the more technical environmental database systems that are available. Regulatory databases such as US Environmental Protection Agency`s (EPA`s) RODS (Records of Decision System) database [EPA, 1993] and cost databases such as EPA`s CORA (Cost of Remedial Action) database [EPA, 1993] are not included in this paper. Section 2 describes several US Department of Energy (DOE) Environmental Restoration and Waste Management (EM) information systems and databases. Section 3 discusses several US EPA information systems on waste sites and technologies. Section 4 summarizes a few of the European Community environmental information systems, networks, and clearinghouses. And finally, Section 5 provides a brief overview of Geographical Information Systems. Section 6 contains the references, and the Appendices contain supporting information.

  20. Environmental remediation and waste management information systems

    International Nuclear Information System (INIS)

    Harrington, M.W.; Harlan, C.P.

    1993-01-01

    The purpose of this paper is to document a few of the many environmental information systems that currently exist worldwide. The paper is not meant to be a comprehensive list; merely a discussion of a few of the more technical environmental database systems that are available. Regulatory databases such as US Environmental Protection Agency's (EPA's) RODS (Records of Decision System) database [EPA, 1993] and cost databases such as EPA's CORA (Cost of Remedial Action) database [EPA, 1993] are not included in this paper. Section 2 describes several US Department of Energy (DOE) Environmental Restoration and Waste Management (EM) information systems and databases. Section 3 discusses several US EPA information systems on waste sites and technologies. Section 4 summarizes a few of the European Community environmental information systems, networks, and clearinghouses. And finally, Section 5 provides a brief overview of Geographical Information Systems. Section 6 contains the references, and the Appendices contain supporting information

  1. Radioactive waste gas processing systems

    International Nuclear Information System (INIS)

    Kita, Kaoru; Minemoto, Masaki; Takezawa, Kazuaki.

    1981-01-01

    Purpose: To effectively separate and remove only hydrogen from hydrogen gas-containing radioactive waste gases produced from nuclear power plants without using large scaled facilities. Constitution: From hydrogen gas-enriched waste gases which contain radioactive rare gases (Kr, Xe) sent from the volume control tank of a chemical volume control system, only the hydrogen is separated in a hydrogen separator using palladium alloy membrane and rare gases are concentrated, volume-decreased and then stored. In this case, an activated carbon adsorption device is connected at its inlet to the radioactive gas outlet of the hydrogen separator and opened at its outlet to external atmosphere. In this system, while only the hydrogen gas permeates through the palladium alloy membrane, other gases are introduced, without permeation, into the activated carbon adsorption device. Then, the radioactive rare gases are decayed by the adsorption on the activated carbon and then released to the external atmosphere. (Furukawa, Y.)

  2. An Optimization Waste Load Allocation Model in River Systems

    Science.gov (United States)

    Amirpoor Daylami, A.; jarihani, A. A.; Aminisola, K.

    2012-04-01

    In many river systems, increasing of the waste discharge leads to increasing pollution of these water bodies. While the capacity of the river flow for pollution acceptance is limited and the ability of river to clean itself is restricted, the dischargers have to release their waste into the river after a primary pollution treatment process. Waste Load Allocation as a well-known water quality control strategy is used to determine the optimal pollutant removal at a number of point sources along the river. This paper aim at developing a new approach for treatment and management of wastewater inputs into the river systems, such that water quality standards in these receiving waters are met. In this study, inspired by the fact that cooperation among some single point source waste dischargers can lead to a more waste acceptance capacity and/or more optimum quality control in a river, an efficient approach was implemented to determine both primary waste water treatment levels and/or the best releasing points of the waste into the river. In this methodology, a genetic algorithm is used as an optimization tool to calculate optimal fraction removal levels of each one of single or shared discharger. Besides, a sub-model embedded to optimization model was used to simulate water quality of the river in each one of discharging scenarios based on the modified Streeter and Phelps quality equations. The practical application of the model is illustrated with a case study of the Gharesoo river system in west of Iran.

  3. Process development work plan for waste feed delivery system

    International Nuclear Information System (INIS)

    Papp, I.G.

    1998-01-01

    This work plan defines the process used to develop project definition for Waste Feed Delivery (WFD). Project definition provides the direction for development of definitive design media required for the ultimate implementation of operational processing hardware and software. Outlines for the major deliverables are attached as appendices. The implementation of hardware and software will accommodate requirements for safe retrieval and delivery of waste currently stored in Hanford's underground storage tanks. Operations and maintenance ensure the availability of systems, structures, and components for current and future planned operations within the boundary of the Tank Waste Remediation System (TWRS) authorization basis

  4. Reclamation of landfills and dumps of municipal solid waste in a energy efficient waste management system: methodology and practice

    Science.gov (United States)

    Orlova, Tatyana; Melnichuk, Aleksandr; Klimenko, Kseniya; Vitvitskaya, Valentina; Popovych, Valentina; Dunaieva, Ielizaveta; Terleev, Vitaly; Nikonorov, Aleksandr; Togo, Issa; Volkova, Yulia; Mirschel, Wilfried; Garmanov, Vitaly

    2017-10-01

    The article considers the methodological and practical aspects of reclamation of landfills and dumps of municipal solid waste in a waste management system. The general tendencies of system development in the context of elements of the international concept of waste hierarchy are analyzed. Statistics of the formation and burial of domestic waste indicate a strategic non-alternative to the rejection of landfill technologies in favor of environmentally, energy efficient and economically expedient ways of utilization of municipal waste as a world trend. Practical approaches to the study of territories on which there are dumps and landfills are considered to justify the design solutions for reclamation.

  5. Rover waste assay system

    International Nuclear Information System (INIS)

    Akers, D.W.; Stoots, C.M.; Kraft, N.C.; Marts, D.J.

    1997-01-01

    The Rover Waste Assay System (RWAS) is a nondestructive assay system designed for the rapid assay of highly-enriched 235 U contaminated piping, tank sections, and debris from the Rover nuclear rocket fuel processing facility at the Idaho Chemical Processing Plant. A scanning system translates a NaI(Tl) detector/collimator system over the structural components where both relative and calibrated measurements for 137 Cs are made. Uranium-235 concentrations are in operation and is sufficiently automated that most functions are performed by the computer system. These functions include system calibration, problem identification, collimator control, data analysis, and reporting. Calibration of the system was done through a combination of measurements on calibration standards and benchmarked modeling. A description of the system is presented along with the methods and uncertainties associated with the calibration and analysis of the system for components from the Rover facility. 4 refs., 2 figs., 4 tabs

  6. Specialized video systems for use in waste tanks

    International Nuclear Information System (INIS)

    Anderson, E.K.; Robinson, C.W.; Heckendorn, F.M.

    1992-01-01

    The Robotics Development Group at the Savannah River Site is developing a remote video system for use in underground radioactive waste storage tanks at the Savannah River Site, as a portion of its site support role. Viewing of the tank interiors and their associated annular spaces is an extremely valuable tool in assessing their condition and controlling their operation. Several specialized video systems have been built that provide remote viewing and lighting, including remotely controlled tank entry and exit. Positioning all control components away from the facility prevents the potential for personnel exposure to radiation and contamination. The SRS waste tanks are nominal 4.5 million liter (1.3 million gallon) underground tanks used to store liquid high level radioactive waste generated by the site, awaiting final disposal. The typical waste tank (Figure 1) is of flattened shape (i.e. wider than high). The tanks sit in a dry secondary containment pan. The annular space between the tank wall and the secondary containment wall is continuously monitored for liquid intrusion and periodically inspected and documented. The latter was historically accomplished with remote still photography. The video systems includes camera, zoom lens, camera positioner, and vertical deployment. The assembly enters through a 125 mm (5 in) diameter opening. A special attribute of the systems is they never get larger than the entry hole during camera aiming etc. and can always be retrieved. The latest systems are easily deployable to a remote setup point and can extend down vertically 15 meters (50ft). The systems are expected to be a valuable asset to tank operations

  7. Integrated process analysis of treatment systems for mixed low level waste

    International Nuclear Information System (INIS)

    Cooley, C.R.; Schwinkendorf, W.E.; Bechtold, T.E.

    1997-10-01

    Selection of technologies to be developed for treatment of DOE's mixed low level waste (MLLW) requires knowledge and understanding of the expected costs, schedules, risks, performance, and reliability of the total engineered systems that use these technologies. Thus, an integrated process analysis program was undertaken to identify the characteristics and needs of several thermal and nonthermal systems. For purposes of comparison, all systems were conceptually designed for a single facility processing the same amount of waste at the same rate. Thirty treatment systems were evaluated ranging from standard incineration to innovative thermal systems and innovative nonthermal chemical treatment. Treating 236 million pounds of waste in 20 years through a central treatment was found to be the least costly option with total life cycle cost ranging from $2.1 billion for a metal melting system to $3.9 billion for a nonthermal acid digestion system. Little cost difference exists among nonthermal systems or among thermal systems. Significant cost savings could be achieved by working towards maximum on line treatment time per year; vitrifying the final waste residue; decreasing front end characterization segregation and sizing requirements; using contaminated soil as the vitrifying agent; and delisting the final vitrified waste form from Resource Conservation and Recovery Act (RCRA) Land Disposal Restriction (LDR) requirements

  8. Test specifications for the waste information and control system

    International Nuclear Information System (INIS)

    Flynn, D.F.

    1994-01-01

    This document describes the test specifications for the testing of the WICS system. The Westinghouse Hanford Company (WHC) Hazardous Material Control Group (HMC) of the 222-S Laboratory has requested the development of a system to help resolve many of the difficulties associated with tracking and data collection of containers and drums of waste. This system has been identified as Waste Information and Control System (WICS). The request for developing and implementing WICS has been made to the Automation and Simulation Engineering Group (ASE)

  9. Tank waste remediation system mission analysis report

    International Nuclear Information System (INIS)

    Acree, C.D.

    1998-01-01

    This document describes and analyzes the technical requirements that the Tank Waste Remediation System (TWRS) must satisfy for the mission. This document further defines the technical requirements that TWRS must satisfy to supply feed to the private contractors' facilities and to store or dispose the immobilized waste following processing in these facilities. This document uses a two phased approach to the analysis to reflect the two-phased nature of the mission

  10. A roadmap for development of sustainable E-waste management system in India

    International Nuclear Information System (INIS)

    Wath, Sushant B.; Vaidya, Atul N.; Dutt, P.S.; Chakrabarti, Tapan

    2010-01-01

    The problem of E-waste has forced Environmental agencies of many countries to innovate, develop and adopt environmentally sound options and strategies for E-waste management, with a view to mitigate and control the ever growing threat of E-waste to the environment and human health. E-waste management is given the top priority in many developed countries, but in rapid developing countries like India, it is difficult to completely adopt or replicate the E-waste management system in developed countries due to many country specific issues viz. socio-economic conditions, lack of infrastructure, absence of appropriate legislations for E-waste, approach and commitments of the concerned, etc. This paper presents a review and assessment of the E-waste management system of developed as well as developing countries with a special emphasis on Switzerland, which is the first country in the world to have established and implemented a formal E-waste management system and has recycled 11 kg/capita of WEEE against the target of 4 kg/capita set by EU. And based on the discussions of various approaches, laws, legislations, practices of different countries, a road map for the development of sustainable and effective E-waste management system in India for ensuring environment, as well as, occupational safety and health, is proposed.

  11. Feasibility analysis of constant TRU feeding in waste transmutation system using accelerator-driven subcritical system

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kun Jai; Cho, Nam Zin; Jo, Chang Keun; Park, Chang Je; Kim, Do Sam; Park, Jeong Hwan [Korea Advanced Institute of Science and Technology, Taejon (Korea)

    1999-03-01

    It is probable that the issue of nuclear spent fuel and high-level waste can have negative impact on the future expansion of nuclear power programs. Accelerator-driven nuclear waste transmutation with constant composition TRU feeding which satisfies non-proliferation condition will help establish the long-range nuclear waste disposal strategy. In this study, current status of accelerator-driven transmutation of waste technology, and feasibility analysis of constant composition TRU feeding system were investigated. We ascertained that solid system using constant composition TRU is feasible with the the capability of transmutation. (author). 13 refs., 53 figs., 20 tabs.

  12. Uncertainty analysis of a nondestructive radioassay system for transuranic waste

    International Nuclear Information System (INIS)

    Harker, Y.D.; Blackwood, L.G.; Meachum, T.R.; Yoon, W.Y.

    1996-01-01

    Radioassay of transuranic waste in 207 liter drums currently stored at the Idaho National Engineering Laboratory is achieved using a Passive Active Neutron (PAN) nondestructive assay system. In order to meet data quality assurance requirements for shipping and eventual permanent storage of these drums at the Waste Isolation Pilot Plant in Carlsbad, New Mexico, the total uncertainty of the PAN system measurements must be assessed. In particular, the uncertainty calculations are required to include the effects of variations in waste matrix parameters and related variables on the final measurement results. Because of the complexities involved in introducing waste matrix parameter effects into the uncertainty calculations, standard methods of analysis (e.g., experimentation followed by propagation of errors) could not be implemented. Instead, a modified statistical sampling and verification approach was developed. In this modified approach the total performance of the PAN system is simulated using computer models of the assay system and the resultant output is compared with the known input to assess the total uncertainty. This paper describes the simulation process and illustrates its application to waste comprised of weapons grade plutonium-contaminated graphite molds

  13. Comparative assessment of the environmental impact of wastes from electricity generation systems

    International Nuclear Information System (INIS)

    Torres, C.; Smith, G.M.; Linsley, G.; Hossain, S.

    1994-01-01

    The paper describes an outline methodology for assessing and comparing the environmental impact arising from management of the wastes from nuclear and other electricity generation systems. The assessment framework is applicable to wastes from all generation systems, including nuclear, fossil and renewable fuel systems, and can also be applied to the management of mixed hazardous waste. The major energy technologies in terms of waste production can be classified according to three major categories of fuels: fossil, nuclear and renewable. The emphasis in this description is on nuclear utility low-level and mixed wastes and waste streams. The methodology may be used to support the project on Data Bases and Methodologies for Comparative Assessment of Different Energy Sources for Electricity Generation (DECADES project, (2)) which is being developed by the International Atomic Energy Agency in collaboration with other international agencies. The DECADES project has the overall objective to improve the abilities for comparative assessment of energy chains for electricity generation. The objective of a methodology such as that described here is to ensure that waste management aspects are included effectively in comparative assessments of energy systems. This paper discusses the waste strams arising from nuclear power plants

  14. Greening MSW management systems by saving footprint: The contribution of the waste transportation.

    Science.gov (United States)

    Peri, G; Ferrante, P; La Gennusa, M; Pianello, C; Rizzo, G

    2018-05-03

    Municipal solid waste (MSW) management constitutes a highly challenging issue to cope with in order of moving towards more sustainable urban policies. Despite new Standards call for recycling and reusing materials contained in the urban waste, several municipalities still use landfilling as a waste disposal method. Other than the environmental pressure exerted by these plants, waste transportation from the collection points to the landfill needs a specific attention to correctly assess the whole burden of the waste management systems. In this paper, the Ecological Footprint (EF) indicator is applied to the actual MSW of the city of Palermo (Sicily). Results show that the effects produced by the involved transportation vehicles are not negligible, compared to those generated by the other segments of the waste management system. This issue is further deepened by analysing the role of transportation in an upgraded waste management system that is represented by the newly designed waste management plan of Palermo. The computed saved ecological footprint is used here for suitably comparing the environmental performances of the MSW system in both scenarios. Finally, the suitability of the EF method to address not only complete waste management plans but also single segments of the waste management system, is also discussed. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Design and construction of the low-level liquid waste treatment system

    International Nuclear Information System (INIS)

    Baker, M.N.; Mateer, W.E.; Metzler, G.H.; Reeves, S.R.; Rickettson, D.J.

    1989-03-01

    This report describes the design and construction of the Low-Level Liquid Waste Treatment System (LWTS). The LWTS is part of a system that will prepare High-Level Radioactive Waste for solidification in glass. This preparation includes removal of water and salts from the stored waste. The topics addressed are: the design objective to reuse the Process Building to contain LWTS, the special considerations that arise when building a new system inside a decontaminated facility, interface to existing plant systems, phased construction, and construction testing. 8 refs., 24 figs

  16. Material Considerations for the Navy Shipboard Waste Destruction System

    National Research Council Canada - National Science Library

    Shifler, David

    1997-01-01

    Compliance with MARPOL environmental regulations has required the design of a waste management system to reduce the volume of solid shipboard waste and treat it so that it is safe to carry aboard ship. The U.S...

  17. Waste management strategy for nuclear fusion power systems from a regulatory perspective

    Energy Technology Data Exchange (ETDEWEB)

    Heckman, R.A.

    1977-12-06

    A waste management strategy for future nuclear fusion power systems is developed using existing regulatory methodology. The first step is the development of a reference fuel cycle. Next, the waste streams from such a facility are identified. Then a waste management system is defined to safely handle and dispose of these wastes. The future regulator must identify the decisions necessary to establish waste management performance criteria. The data base and methodologies necessary to make these decisions must then be developed. Safe management of nuclear fusion wastes is not only a technological challenge, but encompasses significant social, political, and ethical questions as well.

  18. Waste management strategy for nuclear fusion power systems from a regulatory perspective

    International Nuclear Information System (INIS)

    Heckman, R.A.

    1977-01-01

    A waste management strategy for future nuclear fusion power systems is developed using existing regulatory methodology. The first step is the development of a reference fuel cycle. Next, the waste streams from such a facility are identified. Then a waste management system is defined to safely handle and dispose of these wastes. The future regulator must identify the decisions necessary to establish waste management performance criteria. The data base and methodologies necessary to make these decisions must then be developed. Safe management of nuclear fusion wastes is not only a technological challenge, but encompasses significant social, political, and ethical questions as well

  19. A multi-echelon supply chain model for municipal solid waste management system

    International Nuclear Information System (INIS)

    Zhang, Yimei; Huang, Guo He; He, Li

    2014-01-01

    In this paper, a multi-echelon multi-period solid waste management system (MSWM) was developed by inoculating with multi-echelon supply chain. Waste managers, suppliers, industries and distributors could be engaged in joint strategic planning and operational execution. The principal of MSWM system is interactive planning of transportation and inventory for each organization in waste collection, delivery and disposal. An efficient inventory management plan for MSWM would lead to optimized productivity levels under available capacities (e.g., transportation and operational capacities). The applicability of the proposed system was illustrated by a case with three cities, one distribution and two waste disposal facilities. Solutions of the decision variable values under different significant levels indicate a consistent trend. With an increased significant level, the total generated waste would be decreased, and the total transported waste through distribution center to waste to energy and landfill would be decreased as well

  20. A multi-echelon supply chain model for municipal solid waste management system

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yimei, E-mail: yimei.zhang1@gmail.com [Energy and Environmental Research Academy, North China Electric Power University, Beijing 102206 (China); Huang, Guo He [Environmental Systems Engineering Program, Faculty of Engineering and Applied Science, University of Regina, Regina, Saskatchewan S4S 0A2 (Canada); He, Li [Energy and Environmental Research Academy, North China Electric Power University, Beijing 102206 (China)

    2014-02-15

    In this paper, a multi-echelon multi-period solid waste management system (MSWM) was developed by inoculating with multi-echelon supply chain. Waste managers, suppliers, industries and distributors could be engaged in joint strategic planning and operational execution. The principal of MSWM system is interactive planning of transportation and inventory for each organization in waste collection, delivery and disposal. An efficient inventory management plan for MSWM would lead to optimized productivity levels under available capacities (e.g., transportation and operational capacities). The applicability of the proposed system was illustrated by a case with three cities, one distribution and two waste disposal facilities. Solutions of the decision variable values under different significant levels indicate a consistent trend. With an increased significant level, the total generated waste would be decreased, and the total transported waste through distribution center to waste to energy and landfill would be decreased as well.

  1. Solid Waste Processing Center Primary Opening Cells Systems, Equipment and Tools

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, Sharon A.; Baker, Carl P.; Mullen, O Dennis; Valdez, Patrick LJ

    2006-04-17

    This document addresses the remote systems and design integration aspects of the development of the Solid Waste Processing Center (SWPC), a facility to remotely open, sort, size reduce, and repackage mixed low-level waste (MLLW) and transuranic (TRU)/TRU mixed waste that is either contact-handled (CH) waste in large containers or remote-handled (RH) waste in various-sized packages.

  2. Tank waste remediation system characterization project quality policies. Revision 1

    International Nuclear Information System (INIS)

    Trimble, D.J.

    1995-01-01

    These Quality Policies (QPs) describe the Quality Management System of the Tank Waste Characterization Project (hereafter referred to as the Characterization Project), Tank Waste Remediation System (TWRS), Westinghouse Hanford Company (WHC). The Quality Policies and quality requirements described herein are binding on all Characterization Project organizations. To achieve quality, the Characterization Project management team shall implement this Characterization Project Quality Management System

  3. The Hanford Site Tank Waste Remediation System: An update

    International Nuclear Information System (INIS)

    Alumkal, W.T.; Babad, H.; Harmon, H.D.; Wodrich, D.D.

    1994-01-01

    The U.S. Department of Energy's Hanford Site, located in southeastern Washington State, has the most diverse and largest amount of highly radioactive waste in the United States. High-level radioactive waste has been stored in large underground tanks since 1944. Approximately 230,000 m 3 (61 Mgal) of caustic liquids, slurries, saltcakes, and sludges have 137 Cs accumulated in 177 tanks. In addition, significant amounts of 90 Sr and were removed from the tank waste, converted to salts, doubly encapsulated in metal containers., and stored in water basins. A Tank Waste Remediation System Program was established by the U.S. Department of Energy in 1991 to safely manage and immobilize these wastes in anticipation of permanent disposal of the high-level waste fraction in a geologic repository. Since 1991, progress has been made resolving waste tank safety issues, upgrading Tank Farm facilities and operations, and developing a new strategy for retrieving, treating, and immobilizing the waste for disposal

  4. Life cycle assessment of a packaging waste recycling system in Portugal

    International Nuclear Information System (INIS)

    Ferreira, S.; Cabral, M.; Cruz, N.F. da; Simões, P.; Marques, R.C.

    2014-01-01

    Highlights: • We modeled a real packaging waste recycling system. • The analysis was performed using the life cycle assessment methodology. • The 2010 situation was compared with scenarios where the materials were not recycled. • The “Baseline” scenario seems to be more beneficial to the environment. - Abstract: Life Cycle Assessment (LCA) has been used to assess the environmental impacts associated with an activity or product life cycle. It has also been applied to assess the environmental performance related to waste management activities. This study analyses the packaging waste management system of a local public authority in Portugal. The operations of selective and refuse collection, sorting, recycling, landfilling and incineration of packaging waste were considered. The packaging waste management system in operation in 2010, which we called “Baseline” scenario, was compared with two hypothetical scenarios where all the packaging waste that was selectively collected in 2010 would undergo the refuse collection system and would be sent directly to incineration (called “Incineration” scenario) or to landfill (“Landfill” scenario). Overall, the results show that the “Baseline” scenario is more environmentally sound than the hypothetical scenarios

  5. Life cycle assessment of a packaging waste recycling system in Portugal

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, S.; Cabral, M. [CEG-IST, ULisboa, Av. Rovisco Pais, 1049-001 Lisbon (Portugal); Cruz, N.F. da, E-mail: nunocruz@tecnico.ulisboa.pt [IST, ULisboa, Av. Rovisco Pais, 1049-001 Lisbon (Portugal); Simões, P. [IST, ULisboa, Av. Rovisco Pais, 1049-001 Lisbon (Portugal); Marques, R.C. [CESUR, IST, ULisboa, Av. Rovisco Pais, 1049-001 Lisbon (Portugal)

    2014-09-15

    Highlights: • We modeled a real packaging waste recycling system. • The analysis was performed using the life cycle assessment methodology. • The 2010 situation was compared with scenarios where the materials were not recycled. • The “Baseline” scenario seems to be more beneficial to the environment. - Abstract: Life Cycle Assessment (LCA) has been used to assess the environmental impacts associated with an activity or product life cycle. It has also been applied to assess the environmental performance related to waste management activities. This study analyses the packaging waste management system of a local public authority in Portugal. The operations of selective and refuse collection, sorting, recycling, landfilling and incineration of packaging waste were considered. The packaging waste management system in operation in 2010, which we called “Baseline” scenario, was compared with two hypothetical scenarios where all the packaging waste that was selectively collected in 2010 would undergo the refuse collection system and would be sent directly to incineration (called “Incineration” scenario) or to landfill (“Landfill” scenario). Overall, the results show that the “Baseline” scenario is more environmentally sound than the hypothetical scenarios.

  6. Quantifying uncertainty in LCA-modelling of waste management systems

    DEFF Research Database (Denmark)

    Clavreul, Julie; Guyonnet, D.; Christensen, Thomas Højlund

    2012-01-01

    Uncertainty analysis in LCA studies has been subject to major progress over the last years. In the context of waste management, various methods have been implemented but a systematic method for uncertainty analysis of waste-LCA studies is lacking. The objective of this paper is (1) to present...... the sources of uncertainty specifically inherent to waste-LCA studies, (2) to select and apply several methods for uncertainty analysis and (3) to develop a general framework for quantitative uncertainty assessment of LCA of waste management systems. The suggested method is a sequence of four steps combining...

  7. Multi agent gathering waste system

    Directory of Open Access Journals (Sweden)

    Álvaro LOZANO MURCIEGO

    2016-07-01

    Full Text Available Along this paper, we present a new multi agent-based system to gather waste on cities and villages. We have developed a low cost wireless sensor prototype to measure the volume level of the containers. Furthermore a route system is developed to optimize the routes of the trucks and a mobile application has been developed to help drivers in their working days. In order to evaluate and validate the proposed system a practical case study in a real city environment is modeled using open data available and with the purpose of identifying limitations of the system.

  8. Systems approach to waste management in developing countries

    International Nuclear Information System (INIS)

    Johnson, E. R.

    1991-01-01

    A systems engineering approach to the development of waste management facilities is described which may prove to be useful for developing countries. Basically the approach involves a determination of performance objectives, the functions necessary to achieve the objectives, the constraints involved, and the basic facility requirements necessary to accomplish the functions. The foregoing provides the basis for developing a set of descriptions and associated requirements for the overall system as well as for elements of the system at different hierarchical levels. These in turn provide the basis for initiation of design and subsequently construction of the facilities involved. The operation of the approach is illustrated for a hypothetical low level waste processing system

  9. DOE Office of Civilian Radioactive Waste Management (OCRWM) system studies digest

    International Nuclear Information System (INIS)

    McLeod, N.B.; Nguyen, T.D.; Drexelius, R.; McKee, R.W.

    1992-06-01

    The Department of Energy (DOE) Office of Civilian Radioactive Waste Management (OCRWM) has sponsored system studies to support the evaluation of alternative configurations and operations for the Civilian Radioactive Waste Management System (CRWMS) and the development of system requirements and design specifications. These studies are generally directed toward evaluating the impacts of alternatives to the monitored retrievable storage (MRS) and fuel rod consolidation, waste form and characteristics sequences, cask and canister concepts, allocation of waste acceptance rights, and system throughput rates. The objectives of this document are: To present major system issues and related system element issues in a structured manner; to discuss key results of major system studies and explain the basis for certain current system assumptions; to summarize the scope and results of completed system studies that are still relevant at the time this document is published; and to provide the background needed for identifying and prioritizing system issues to be resolved. Consistent with the objectives, the document does not include low-level subsystem studies addressing system element issues that do not interact with overall system issues. The document is expected to be updated as major new system studies are completed and significant new results are available

  10. Rover waste assay system

    Energy Technology Data Exchange (ETDEWEB)

    Akers, D.W.; Stoots, C.M.; Kraft, N.C.; Marts, D.J. [Idaho National Engineering Lab., Idaho Falls, ID (United States)

    1997-11-01

    The Rover Waste Assay System (RWAS) is a nondestructive assay system designed for the rapid assay of highly-enriched {sup 235}U contaminated piping, tank sections, and debris from the Rover nuclear rocket fuel processing facility at the Idaho Chemical Processing Plant. A scanning system translates a NaI(Tl) detector/collimator system over the structural components where both relative and calibrated measurements for {sup 137}Cs are made. Uranium-235 concentrations are in operation and is sufficiently automated that most functions are performed by the computer system. These functions include system calibration, problem identification, collimator control, data analysis, and reporting. Calibration of the system was done through a combination of measurements on calibration standards and benchmarked modeling. A description of the system is presented along with the methods and uncertainties associated with the calibration and analysis of the system for components from the Rover facility. 4 refs., 2 figs., 4 tabs.

  11. An assessment of the current municipal solid waste management system in Lahore, Pakistan.

    Science.gov (United States)

    Masood, Maryam; Barlow, Claire Y; Wilson, David C

    2014-09-01

    The current status of solid waste management in Lahore, a metropolitan city of Pakistan, is reviewed in this article using an existing approach, the UN-Habitat city profile. This involves a systematic quantitative and qualitative assessment of physical components and governance features of the current waste management system. A material flow diagram (MFD) is developed, which allows visualisation of the current waste management system with all related inputs and outputs. This study shows that in the current system, waste collection and transportation is the main focus, however the collection coverage is only about 68%. There is no controlled or even semi-controlled waste disposal facility in Lahore. There is no official recycling system in the city. It is estimated that currently ~27% of waste by weight is being recycled through the informal sector. Making use of the organic content of the waste, a composting facility is operative in the city, producing 47,230 tonnes year(-1) of organic compost. Lahore does not perform very well in governance features. Inclusivity of users and providers of the waste management system is low in the city, as not all stakeholders are consulted in the decision making processes. Waste management costs US$20 per tonne of waste, where the main focus is only on waste collection, and the current user fees are much lower than the actual costs. This study recommends that recycling should be promoted by increasing public awareness and integrating the informal sector to make the current system sustainable and financially viable. © The Author(s) 2014.

  12. WASTE HEAT RECOVERY IN HEAT PUMP SYSTEMS: SOLUTION TO REDUCE GLOBAL WARMING

    Directory of Open Access Journals (Sweden)

    Y. Baradey

    2015-11-01

    Full Text Available Energy conversion technologies, where waste heat recovery systems are included, have received significant attention in recent years due to reasons that include depletion of fossil fuel, increasing oil prices, changes in climatic conditions, and global warming. For low temperature applications, there are many sources of thermal waste heat, and several recovery systems and potential useful applications have been proposed by researchers [1-4]. In addition, many types of equipment are used to recover waste thermal energy from different systems at low, medium, and high temperature applications, such as heat exchangers, waste heat recovery boiler, thermo-electric generators, and recuperators. In this paper, the focus is on waste heat recovery from air conditioners, and an efficient application of these energy resources. Integration of solar energy with heat pump technologies and major factors that affect the feasibility of heat recovery systems have been studied and reviewed as well. KEYWORDS: waste heat recovery; heat pump.

  13. Waste flow analysis and life cycle assessment of integrated waste management systems as planning tools: Application to optimise the system of the City of Bologna.

    Science.gov (United States)

    Tunesi, Simonetta; Baroni, Sergio; Boarini, Sandro

    2016-09-01

    The results of this case study are used to argue that waste management planning should follow a detailed process, adequately confronting the complexity of the waste management problems and the specificity of each urban area and of regional/national situations. To support the development or completion of integrated waste management systems, this article proposes a planning method based on: (1) the detailed analysis of waste flows and (2) the application of a life cycle assessment to compare alternative scenarios and optimise solutions. The evolution of the City of Bologna waste management system is used to show how this approach can be applied to assess which elements improve environmental performance. The assessment of the contribution of each waste management phase in the Bologna integrated waste management system has proven that the changes applied from 2013 to 2017 result in a significant improvement of the environmental performance mainly as a consequence of the optimised integration between materials and energy recovery: Global Warming Potential at 100 years (GWP100) diminishes from 21,949 to -11,169 t CO2-eq y(-1) and abiotic resources depletion from -403 to -520 t antimony-eq. y(-1) This study analyses at great detail the collection phase. Outcomes provide specific operational recommendations to policy makers, showing the: (a) relevance of the choice of the materials forming the bags for 'door to door' collection (for non-recycled low-density polyethylene bags 22 kg CO2-eq (tonne of waste)(-1)); (b) relatively low environmental impacts associated with underground tanks (3.9 kg CO2-eq (tonne of waste)(-1)); (c) relatively low impact of big street containers with respect to plastic bags (2.6 kg CO2-eq. (tonne of waste)(-1)). © The Author(s) 2016.

  14. Progress in waste package and engineered barrier system performance assessment and design

    International Nuclear Information System (INIS)

    Van Luik, A.; Stahl, D.; Harrison, D.

    1993-01-01

    As part of the U.S. Department of Energy's evaluation of site suitability for a potential high-level radioactive waste repository, long-term interactions between the engineered barrier system and the site must be determined. This requires a waste-package/engineered-system design, a description of the environment around the emplacement zone, and models that simulate operative processes describing these engineered/natural systems interactions. Candidate designs are being evaluated, including a more robust, multi-barrier waste package, and a drift emplacement mode. Tools for evaluating designs, and emplacement mode are the currently available waste-package/engineered-system performance assessment codes development for the project. For assessments that support site suitability, environmental impact, or licensing decisions, more capable codes are needed. Code capability requirements are being written, and existing codes are to be evaluated against those requirements. Recommendations are being made to focus waste-packaging/engineered-system code-development

  15. Spanish high level radioactive waste management system issues

    International Nuclear Information System (INIS)

    Espejo, J.M.; Beceiro, A.R.

    1992-01-01

    The Empresa Nacional de Residuos Radiactivos, S.A. (ENRESA) has been limited liability company to be responsible for the management of all kind of radioactive wastes in Spain. This paper provides an overview of the strategy and main lines of action stated in the third General Radioactive Waste Plan, currently in force, for the management of spent nuclear fuel and high - level wastes, as well as an outline of the main related projects, either being developed or foreseen. Aspects concerning the organizational structure, the economic and financing system and the international cooperation are also included

  16. System and method for determining the net output torque from a waste heat recovery system

    Science.gov (United States)

    Tricaud, Christophe; Ernst, Timothy C.; Zigan, James A.

    2016-12-13

    The disclosure provides a waste heat recovery system with a system and method for calculation of the net output torque from the waste heat recovery system. The calculation uses inputs from existing pressure and speed sensors to create a virtual pump torque sensor and a virtual expander torque sensor, and uses these sensors to provide an accurate net torque output from the WHR system.

  17. Modeling the design and operations of the federal radioactive waste management system

    International Nuclear Information System (INIS)

    Joy, D.S.; Nehls, J.W. Jr.; Harrison, I.G.; Miller, C.; Vogel, L.W.; Martin, J.D.; Capone, R.L.; Dougherty, L.

    1989-04-01

    Many configuration, transportation and operating alternatives are available to the Office of Civilian Radioactive Waste Management (OCRWM) in the design and operation of the Federal Radioactive Waste Management System (FWMS). Each alternative has different potential impacts on system throughput, efficiency and the thermal and radiological characteristics of the waste to be shipped, stored and emplaced. A need therefore exists for a quantitative means of assessing the ramifications of alternative system designs and operating strategies. We developed the Systems integration Operations/Logistics Model (SOLMOD). That model is used to replicate a user-specified system configuration and simulate the operation of that system -- from waste pickup at reactors to emplacement in a repository -- under a variety of operating strategies. The model can thus be used to assess system performance with or without Monitored Retrievable Storage (MRS), with or without consolidation at the repository, with varying shipping cask availability and so forth. This simulation capability is also intended to provide a tool for examining the impact of facility and equipment capacity and redundancy on overall waste processing capacity and system performance. SOLMOD can measure the impacts on system performance of certain operating contingencies. It can be used to test effects on transportation and waste pickup schedules resulting from a shut-down of one or more hot cells in the waste handling building at the repository or MRS. Simulation can also be used to study operating procedures and rules such as fuel pickup schedules, general freight vs. dedicated freight. 3 refs., 2 figs., 2 tabs

  18. A multi-echelon supply chain model for municipal solid waste management system.

    Science.gov (United States)

    Zhang, Yimei; Huang, Guo He; He, Li

    2014-02-01

    In this paper, a multi-echelon multi-period solid waste management system (MSWM) was developed by inoculating with multi-echelon supply chain. Waste managers, suppliers, industries and distributors could be engaged in joint strategic planning and operational execution. The principal of MSWM system is interactive planning of transportation and inventory for each organization in waste collection, delivery and disposal. An efficient inventory management plan for MSWM would lead to optimized productivity levels under available capacities (e.g., transportation and operational capacities). The applicability of the proposed system was illustrated by a case with three cities, one distribution and two waste disposal facilities. Solutions of the decision variable values under different significant levels indicate a consistent trend. With an increased significant level, the total generated waste would be decreased, and the total transported waste through distribution center to waste to energy and landfill would be decreased as well. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. DWPF waste glass Product Composition Control System

    International Nuclear Information System (INIS)

    Brown, K.G.; Postles, R.L.

    1992-01-01

    The Defense Waste Processing Facility (DWPF) will be used to blend aqueous radwaste (PHA) with solid radwaste (Sludge) in a waste receipt vessel (the SRAT). The resulting SRAT material is transferred to the SME an there blended with ground glass (Frit) to produce a batch of melter feed slurry. The SME material is passed to a hold tank (the MFT) which is used to continuously feed the DWPF melter. The melter. The melter produces a molten glass wasteform which is poured into stainless steel canisters for cooling and, ultimately, shipment to and storage in a geologic repository. The Product Composition Control System (PCCS) is the system intended to ensure that the melt will be processible and that the glass wasteform will be acceptable. This document provides a description of this system

  20. Integrated data management system for radioactive waste and spent fuel in Korea

    International Nuclear Information System (INIS)

    Shin, Young Ho

    2001-03-01

    An integrated data management system for the safe management of radioactive waste and spent fuel in Korea is developed to collect basic information, provide the framework for national regulation, and improve national competition and efficiency in the management of radioactive waste and spent fuel. This system can also provide public access to information such as a statistical graphs and integrated data from various waste generators to meet increased public needs and interests. So through the system, the five principles (independence, openness, clearance, efficiency and reliance) of safety regulation can be realized, and public understanding and reliance on the safety of spent fuel and radioactive waste management can be promoted by providing reliable information, it can ensure an openness within the international nuclear community and efficiently support international agreements among contracting parties by operating safe and efficient management of spent fuel and radioactive waste (IAEA joint convention on the safety of spent fuel management and on the safety of radioactive waste management), the system can compensate for the imperfections in safe regulation of radioactive waste and spent fuel management related to waste generation, storage and disposal, and make it possible to holistic control and finally re-organize the basic framework of KINS's intermediate and long term research organization and trends, regarding waste management policy is to integrate safe management and unit safe disposal. For this objectives, benchmark study was performed on similar data base system worldwide and data specification with major input/output data during the first phase of this project

  1. Integrated data management system for radioactive waste and spent fuel in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Park, Yong Taek [Korea Power Engineering Co., Inc., Yongin (Korea, Republic of)

    2002-05-15

    An integrated data management system for the safe management of radioactive waste and spent fuel in Korea is developed to collect basic information, provide the framework for national regulation and improve national competition and efficiency in the management of radioactive waste and spent fuel. This system can also provide public access to information such as a statistical graphs and integrated data from various waste generators to meet increased public needs and interests. Through the system, the five principles(independence, openness, clearance, efficiency and reliance) of safety regulation can be realized and public understanding and reliance on the safety of spent fuel and radioactive waste management can be promoted. By providing reliable information and openness within the international nuclear community can be ensured and efficient support of international agreements among contracting parties can be ensured. By operating safe and efficient management of spent fuel and radioactive waste (IAEA joint convention on the safety of spent fuel management and on the safety of radioactive waste management), the system can compensate for the imperfections in safe regulation of radioactive waste and spent fuel management related to waste generation, storage and disposal, and make it possible for holistic control and reorganization of the basic framework of KINS's intermediate and long term research organization and trends, regarding waste management policy so as to integrate safe management and unit safe disposal. To meet this objectives, design of the database system structure and the study of input/output data validation and verification methodology was performed during the second phase of this project.

  2. Tank waste remediation system configuration management plan

    International Nuclear Information System (INIS)

    Vann, J.M.

    1998-01-01

    The configuration management program for the Tank Waste Remediation System (TWRS) Project Mission supports management of the project baseline by providing the mechanisms to identify, document, and control the functional and physical characteristics of the products. This document is one of the tools used to develop and control the mission and work. It is an integrated approach for control of technical, cost, schedule, and administrative information necessary to manage the configurations for the TWRS Project Mission. Configuration management focuses on five principal activities: configuration management system management, configuration identification, configuration status accounting, change control, and configuration management assessments. TWRS Project personnel must execute work in a controlled fashion. Work must be performed by verbatim use of authorized and released technical information and documentation. Application of configuration management will be consistently applied across all TWRS Project activities and assessed accordingly. The Project Hanford Management Contract (PHMC) configuration management requirements are prescribed in HNF-MP-013, Configuration Management Plan (FDH 1997a). This TWRS Configuration Management Plan (CMP) implements those requirements and supersedes the Tank Waste Remediation System Configuration Management Program Plan described in Vann, 1996. HNF-SD-WM-CM-014, Tank Waste Remediation System Configuration Management Implementation Plan (Vann, 1997) will be revised to implement the requirements of this plan. This plan provides the responsibilities, actions and tools necessary to implement the requirements as defined in the above referenced documents

  3. Enviro-geotechnical considerations in waste containment system design and analysis

    International Nuclear Information System (INIS)

    Fang, H.Y.; Daniels, J.L.; Inyang, H.I.

    1997-01-01

    The effectiveness of waste control facilities hinges on careful evaluation of the overall planning, analysis and design of the entire system prior to construction. At present, most work is focused on the waste controlling system itself, with little attention given to the local environmental factors surrounding the facility sites. Containment materials including geomembranes, geotextiles and clay amended soils have received intense scrutiny. This paper, however, focuses on three relatively important issues relating to the characterization of the surrounding geomedia. Leakage through naturally occurring low-permeability soil layers, shrinkages swelling, cracking and effects of dynamic loads on system components are often responsible for a waste containment breach. In this paper, these mechanisms and their synergistic effects are explained in terms of the particle energy field theory. It is hoped that this additional information may assist the designer to be aware or take precaution to design safer future waste control facilities

  4. Function analysis for waste information systems

    International Nuclear Information System (INIS)

    Sexton, J.L.; Neal, C.T.; Heath, T.C.; Starling, C.D.

    1996-04-01

    This study has a two-fold purpose. It seeks to identify the functional requirements of a waste tracking information system and to find feasible alternatives for meeting those requirements on the Oak Ridge Reservation (ORR) and the Portsmouth (PORTS) and Paducah (PGDP) facilities; identify options that offer potential cost savings to the US government and also show opportunities for improved efficiency and effectiveness in managing waste information; and, finally, to recommend a practical course of action that can be immediately initiated. In addition to identifying relevant requirements, it also identifies any existing requirements that are currently not being completely met. Another aim of this study is to carry out preliminary benchmarking by contacting representative companies about their strategic directions in waste information. The information obtained from representatives of these organizations is contained in an appendix to the document; a full benchmarking effort, however, is beyond the intended scope of this study

  5. High-Level Waste System Process Interface Description

    International Nuclear Information System (INIS)

    D'Entremont, P.D.

    1999-01-01

    The High-Level Waste System is a set of six different processes interconnected by pipelines. These processes function as one large treatment plant that receives, stores, and treats high-level wastes from various generators at SRS and converts them into forms suitable for final disposal. The three major forms are borosilicate glass, which will be eventually disposed of in a Federal Repository, Saltstone to be buried on site, and treated water effluent that is released to the environment

  6. Feasibility of waste transmutation using accelerator-driven IRIS subcritical system

    International Nuclear Information System (INIS)

    Petroviae, B.; Carelli, M.; Paramonov, D.

    2001-01-01

    Waste transmutation is considered for reducing radio-toxicity of nuclear waste generated in power reactors. Accelerator driven subcritical systems (ADS) offer certain advantages over the use of nuclear reactors. Transmutation of fission products (e.g. 99 Tc) generally requires thermal neutron spectrum, while for actinides fast spectrum provides better performance. Proposed solutions to this problem include a multi-strata approach as well as a multi-zone (thermal/fast-spectrum) single systems. In this paper we examine the feasibility of employing a dual-spectrum two-zone accelerator-driven IRIS subcritical for waste transmutation. (author)

  7. Environmental Systems Analysis of Waste Management : Prospects of Hydrogen Production from Waste for use in FCVs

    OpenAIRE

    Assefa, Getachew

    2000-01-01

    ORWARE, an evolving systems analysis based computer model is used to assess the performance of different waste management options from a life cycle perspective. The present version of the model consists of different submodels for transport, treatment, and disposal of different types of liquid and solid wastes and recycling of materials. Flows between submodels are described by a vector of several substances of different relevance to the system. The model calculates emissions to water a...

  8. Energy Systems Analysis of Waste to Energy Technologies by use of EnergyPLAN

    DEFF Research Database (Denmark)

    Münster, Marie

    Even when policies of waste prevention, re-use and recycling are prioritised, a fraction of waste will still be left which can be used for energy recovery. This report asks the question: How to utilise waste for energy in the best way seen from an energy system perspective? Eight different Waste......-to-Energy technologies are compared with a focus on fuel efficiency, CO2 reductions and costs. The comparison is made by conducting detailed energy system analyses of the present system as well as a potential future Danish energy system with a large share of combined heat and power and wind power. The study shows...... the potential of using waste for the production of transport fuels such as upgraded biogas and petrol made from syngas. Biogas and thermal gasification technologies are interesting alternatives to waste incineration and it is recommended to support the use of biogas based on manure and organic waste. It is also...

  9. Comparison of costs for three hypothetical alternative kitchen waste management systems.

    Science.gov (United States)

    Schiettecatte, Wim; Tize, Ronald; De Wever, Heleen

    2014-11-01

    Urban water and waste management continues to be a major challenge, with the Earth's population projected to rise to 9 billion by 2050, with 70% of this population expected to live in cities. A combined treatment of wastewater and the organic fraction of municipal solid waste offers opportunities for improved environmental protection and energy recovery, but the collection and transport of organic wastes must be cost effective. This study compares three alternative kitchen waste collection and transportation systems for a virtual modern urban area with 300,000 residents and a population density of 10,000 persons per square kilometre. Door-to-door collection, being the standard practice in modern urban centres, remains the most economically advantageous at a cost of 263 euros per tonne of kitchen waste. Important drawbacks are the difficult logistics, increased city traffic, air and noise pollution. The quieter, cleaner and more hygienic vacuum transport of kitchen waste comes with a higher cost of 367 euros per tonne, mainly resulting from a higher initial investment cost for the system installation. The third option includes the well-known use of under-sink food waste disposers (often called garbage grinders) that are connected to the kitchen's wastewater piping system, with a total yearly cost of 392 euros per tonne. Important advantages with this system are the clean operation and the current availability of a city-wide sewage conveyance pipeline system. Further research is recommended, for instance the application of a life cycle assessment approach, to more fully compare the advantages and disadvantages of each option. © The Author(s) 2014.

  10. Development of a safe TRU transportation system (STRUTS) for DOE's TRU waste

    International Nuclear Information System (INIS)

    Edling, D.A.; Hopkins, D.R.; Walls, H.C.

    1978-01-01

    Transportation, the link between TRU waste generation and WIPP (Waste Isolation Pilot Project) and a vital link in the overall TRU waste management program, must be addressed. The program must have many facets: ensuring public and carrier acceptance, formation of a functional and current transportation data base, systems integration, maximum utilization of existing technology, and effective implementation and integration of the transport system into current and planned operational systems

  11. A comprehensive centralized control system for radiation waste treatment facility

    International Nuclear Information System (INIS)

    Kong Jinsong

    2014-01-01

    A comprehensive centralized control system is designed for the radiation waste treatment facility that lacking of coordinated operational mechanism for the radiation waste treatment. The centralized control and alarm linkage of various systems is implemented to ensure effectively the safety of nuclear facility and materials, improve the integral control ability through advanced informatization ways. (author)

  12. Reduction of waste arising as an option for improvement of waste management systems at NPPs with WWER type reactors

    International Nuclear Information System (INIS)

    Dultchenko, A.; Mikolaitchouk, H.

    1995-01-01

    After the USSR breakdown Ukraine inherited five NPPs with 12 WWER type reactor units and 4 RBMK type reactor units and no selected disposal site for NPP operational waste and just a few waste treatment facilities which had not been licensed or certified and could not be considered as complying safety requirements and NPP needs. At the same time the lack of competent designer organizations in Ukraine and the overall economical situation including the payment crisis resulted in significant delays in the development of radioactive waste management infrastructure and brought to the foreground a reduction of waste arisings and implementation of waste recycling technologies. In order to evaluate efficiency of waste management systems at Ukrainian NPPs in comparison with current practices at western NPPs and fix main deficiencies and optimum upgrading measures the comparative analyses of waste management systems at Ukrainian NPPs was initiated within the R and D program supported by the Ukrainian State Committee for Nuclear and Radiation Safety (UkrSCNRS). In carrying out the analyses the results of IAEA Technical Assistance Regional project on Advice on Waste Management at WWER type Reactors were used. Taking into account an influence of the Chernobyl accident consequences on the waste management system of Chernobyl NPP the case of Chernobyl NPP was set apart and cannot be considered typical so the authors confine their analysis to the WWER type reactors. For the purposes of comparison the related information about Kozlodui, Paks, Loviisa and Russian NPPs provided under the above-mentioned IAEA Regional Project was used

  13. Influence of radiation on the system liquid radioactive wastes: geologic formation

    International Nuclear Information System (INIS)

    Spitsyn, V.I.; Balukova, V.D.; Kabakchi, S.A.; Medvedeva, M.L.

    1979-01-01

    Introduction of liquid radioactive wastes into deep strata-collectors results in a number of physical-chemical processes: precipitation, dissolution, complex formation, sorption, etc. The area occupied by the injected waste and changes in the nature of the liquid phase depend primarily on radiolysis processes in the heterogeneous system of liquid waste-stratal material occurring at elevated temperatures and pressures. Experiments that simulate actual conditions of temperature, pressure and high radiation levels on this system have been performed. Results are presented for radiolytic gas formation and for changes in the liquid phase and sorption capacity of stratal minerals. It is shown that the temperature increase in the stratum-collector significantly enhances waste decomposition processes, promotes sorption of radionuclides and decreases the mobility of the waste in the formation

  14. System Planning With The Hanford Waste Operations Simulator

    International Nuclear Information System (INIS)

    Crawford, T.W.; Certa, P.J.; Wells, M.N.

    2010-01-01

    At the U. S. Department of Energy's Hanford Site in southeastern Washington State, 216 million liters (57 million gallons) of nuclear waste is currently stored in aging underground tanks, threatening the Columbia River. The River Protection Project (RPP), a fully integrated system of waste storage, retrieval, treatment, and disposal facilities, is in varying stages of design, construction, operation, and future planning. These facilities face many overlapping technical, regulatory, and financial hurdles to achieve site cleanup and closure. Program execution is ongoing, but completion is currently expected to take approximately 40 more years. Strategic planning for the treatment of Hanford tank waste is by nature a multi-faceted, complex and iterative process. To help manage the planning, a report referred to as the RPP System Plan is prepared to provide a basis for aligning the program scope with the cost and schedule, from upper-tier contracts to individual facility operating plans. The Hanford Tank Waste Operations Simulator (HTWOS), a dynamic flowsheet simulation and mass balance computer model, is used to simulate the current planned RPP mission, evaluate the impacts of changes to the mission, and assist in planning near-term facility operations. Development of additional modeling tools, including an operations research model and a cost model, will further improve long-term planning confidence. The most recent RPP System Plan, Revision 4, was published in September 2009.

  15. The Nuclear Waste Fund Inquiry. Financing of nuclear waste management in Sweden and Finland and the cost control system in Sweden

    International Nuclear Information System (INIS)

    1994-01-01

    The report describes the Finnish system for financing nuclear waste management, and compares it to the swedish one. It gives an analysis of the economic effects for the waste management financing of an early shut-down of a nuclear power plant, and of a change to a new system for financing the waste management, more like the Finnish one. Finally the cost for the Swedish nuclear waste management, as estimated by SKB, is scrutinized. 25 refs

  16. Comparative techniques for nuclear fuel cycle waste management systems

    International Nuclear Information System (INIS)

    Pelto, P.J.; Voss, J.W.

    1979-09-01

    A safety assessment approach for the evaluation of predisposal waste management systems is described and applied to selected facilities in the light water reactor (LWR) once-through fuel cycle and a potential coprocessed UO 2 -PuO 2 fuel cycle. This approach includes a scoping analysis on pretreatment waste streams and a more detailed analysis on proposed waste management processes. The primary evaluation parameters used in this study include radiation exposures to the public from radionuclide releases from normal operations and potential accidents, occupational radiation exposure from normal operations, and capital and operating costs. On an overall basis, the waste management aspects of the two fuel cycles examined are quite similar. On an individual facility basis, the fuel coprocessing plant has the largest waste management impact

  17. Hazard ranking systems for chemical wastes and chemical waste sites

    International Nuclear Information System (INIS)

    Waters, R.D.; Parker, F.L.; Crutcher, M.R.

    1991-01-01

    Hazardous materials and substances have always existed in the environment. Mankind has evolved to live with some degree of exposure to toxic materials. Until recently the risk has been from natural toxins or natural background radiation. While rapid technological advances over the past few decades have improved the lifestyle of our society, they have also dramatically increased the availability, volume and types of synthetic and natural hazardous materials. Many of their effects are as yet uncertain. Products and manufacturing by-products that no longer serve a useful purpose are deemed wastes. For some waste products land disposal will always be their ultimate fate. Hazardous substances are often included in the waste products. One needs to classify wastes by degree of hazard (risk). Risk (degree of probability of loss) is usually defined for risk assessment as probability of an occurrence times the consequences of the occurrence. Perhaps even more important than the definition of risk is the choice of a risk management strategy. The choice of strategy will be strongly influenced by the decision criteria used. Those decision criteria could be utility (the greatest happiness of the greatest number), rights or technology based or some combination of the three. It is necessary to make such choices about the definition of risks and criteria for management. It is clear that these are social (i.e., political) and value choices and science has little to say on this matter. This is another example of what Alvin Weinberg has named Transcience where the subject matter is scientific and technical but the choices are social, political and moral. This paper shall deal only with the scientific and technical aspects of the hazardous waste problem to create a hazardous substances classification system

  18. Consolidation and Centralization of Waste Operations Business Systems - 12319

    Energy Technology Data Exchange (ETDEWEB)

    Newton, D. Dean [Oak Ridge Operations, Oak Ridge, TN 37830 (United States)

    2012-07-01

    This abstract provides a comprehensive plan supporting the continued development and integration of all waste operations and waste management business systems. These include existing systems such as ATMS (Automated Transportation Management System), RadCalc, RFITS (Radio Frequency Identification Transportation System) Programs as well as incorporating key components of existing government developed waste management systems and COTS (Computer Off The Shelf) applications in order to deliver a truly integrated waste tracking and management business system. Some of these existing systems to be integrated include IWTS at Idaho National Lab, WIMS at Sandia National Lab and others. The aggregation of data and consolidation into a single comprehensive business system delivers best practices in lifecycle waste management processes to be delivered across the Department of Energy facilities. This concept exists to reduce operational costs to the federal government by combining key business systems into a centralized enterprise application following the methodology that as contractors change, the tools they use to manage DOE's assets do not. IWITS is one efficient representation of a sound architecture currently supporting multiple DOE sites from a waste management solution. The integration of ATMS, RadCalc and RFITS and the concept like IWITS into a single solution for DOE contractors will result in significant savings and increased efficiencies for DOE. Building continuity and solving collective problems can only be achieved through mass collaboration, resulting in an online community that DOE contractors and subcontractors access common applications, allowing for the collection of business intelligence at an unprecedented level. This is a fundamental shift from a solely 'for profit' business model to a 'for purpose' business model. To the conventional-minded, putting values before profit is an unfamiliar and unnatural way for a contractor to operate

  19. Development of an automated system for the decentral fractioning of municipal wastes

    Directory of Open Access Journals (Sweden)

    Heiko Vesper

    2012-03-01

    Full Text Available Background: There is a growing problem of the increasing amount of unsorted municipal wastes with the resulting consequences for the environment. The aim of this study was to present a new solutions of the system for the decentral fractioning of municipal wastes, which enable simplification and improvement of the process together with the reduction of total costs. Methods: The description of  the problem of the increasing amount of unsorted municipal wastes with the resulting consequences for the environment as well as an alternative solution for the decentral fractioning of such wastes was presented. The influence onto the environment as well as the efficiency of the costly mechanical sorting of wastes was queried. The nowadays used principles of sorted and unsorted waste disposal were elucidated and their advantages and disadvantages evaluated. Results and conclusions: Based on this evaluation an innovative and future oriented development of an automated system for the decentral fractioning of municipal wastes was presented. The new developed systems aim at the achievement of an easier, less costly and environment-friendlier process for the disposal of municipal wastes from apartment buildings.

  20. Spanish high level radioactive waste management system issues

    International Nuclear Information System (INIS)

    Ulibarri, A.; Veganzones, A.

    1993-01-01

    The Empresa Nacional de Residuous Radiactivos, S.A. (ENRESA) was set up in 1984 as a state-owned limited liability company to be responsible for the management of all kinds of radioactive wastes in Spain. This paper provides an overview of the strategy and main lines of action stated in the third General Radioactive Waste Plan, currently in force, for the management of spent nuclear fuel and high-level wastes, as well as an outline of the main related projects, either being developed or foreseen. Aspects concerning the organizational structure, the economic and financing system and the international co-operational are also included

  1. Development of a laundry waste treatment system

    Energy Technology Data Exchange (ETDEWEB)

    Kikuchi, M; Sugimoto, Y; Yusa, H; Ebara, K [Hitachi Ltd., Ibaraki (Japan). Hitachi Research Lab.; Takeshima, M [Hitachi Ltd., Ibaraki (Japan). Hitachi Works

    1977-12-01

    Fundamental and pilot plant experiments developed a laundry waste treatment system for nuclear power plants, consisting of a reverse osmosis unit for removal of radioactive materials and pre-concentration, and an evaporator for the final concentration. A sponge ball cleaning method was employed for the reverse osmosis unit and a heat-resistant antifoam reagent for the evaporator. The pilot plant test, using simulated wastes, showed a decontamination factor of above 10/sup 3/ and a volume reduction ratio of 10/sup -3/.

  2. National information network and database system of hazardous waste management in China

    Energy Technology Data Exchange (ETDEWEB)

    Ma Hongchang [National Environmental Protection Agency, Beijing (China)

    1996-12-31

    Industries in China generate large volumes of hazardous waste, which makes it essential for the nation to pay more attention to hazardous waste management. National laws and regulations, waste surveys, and manifest tracking and permission systems have been initiated. Some centralized hazardous waste disposal facilities are under construction. China`s National Environmental Protection Agency (NEPA) has also obtained valuable information on hazardous waste management from developed countries. To effectively share this information with local environmental protection bureaus, NEPA developed a national information network and database system for hazardous waste management. This information network will have such functions as information collection, inquiry, and connection. The long-term objective is to establish and develop a national and local hazardous waste management information network. This network will significantly help decision makers and researchers because it will be easy to obtain information (e.g., experiences of developed countries in hazardous waste management) to enhance hazardous waste management in China. The information network consists of five parts: technology consulting, import-export management, regulation inquiry, waste survey, and literature inquiry.

  3. Human factors, system safety, and systems engineering in the transportation of U.S. high-level waste

    International Nuclear Information System (INIS)

    Price, D.L.; Chu, S.C.

    1993-01-01

    The U.S. Nuclear Waste Technical Review Board is an independent agency charged with evaluating the technical and scientific validity of the U.S. Department of Energy's program to manage the disposal of spent fuel and defense high-level waste. The Board has continued to emphasize the importance of using a true system approach in designing the waste management system. The Board has recommended the application of basic design disciplines such as human factors, system safety, and systems engineering. A top-level system study needs to be undertaken that focuses on minimizing handling. The analysis must be well done, in a timely manner, and without the inclusion in the analysis of arbitrary and artificial constraints. (author)

  4. MRS [monitored retrievable storage] Systems Study Task 1 report: Waste management system reliability analysis

    International Nuclear Information System (INIS)

    Clark, L.L.; Myers, R.S.

    1989-04-01

    This is one of nine studies undertaken by contractors to the US Department of Energy (DOE), Office of Civilian Radioactive Waste Management (OCRWM), to provide a technical basis for re-evaluating the role of a monitored retrievable storage (MRS) facility. The study evaluates the relative reliabilities of systems with and without an MRS facility using current facility design bases. The principal finding of this report is that the MRS system has several operational advantages that enhance system reliability. These are: (1) the MRS system is likely to encounter fewer technical issues, (2) the MRS would assure adequate system surface storage capacity to accommodate repository construction and startup delays of up to five years or longer if the Nuclear Waste Policy Amendments Act (NWPAA) were amended, (3) the system with an MRS has two federal acceptance facilities with parallel transportation routing and surface storage capacity, and (4) the MRS system would allow continued waste acceptance for up to a year after a major disruption of emplacement operations at the repository

  5. Ranking system for mixed radioactive and hazardous waste sites

    International Nuclear Information System (INIS)

    Hawley, K.A.; Napier, B.A.

    1985-01-01

    The Environmental Protection Agency's Hazard Ranking System (HRS) is a simplified management decision tool that provides a common basis for evaluating a multitude of hazardous waste sites. A deficiency in the HRS for application to Department of Energy mixed radioactive and hazardous waste sites is its inability to explicitly handle radioactive material. A modification to the basic HRS to add the capability to consider radioactivity is described. The HRS considers the exposure routes of direct contact, fire/explosion, atmospheric release, surface-water release, and ground-water release. Each exposure route is further divided into release, route, containment, waste, and target characteristics. To maintain the basic HRS structure, only the waste characteristics section of each exposure route was modified. A ranking system was developed, using radiation dose pathway analysis, to group radionuclides by dose factors. For mixed waste sites, the ranking factor derived for radionuclides is compared with the ranking factor obtained for hazardous chemicals and the most restrictive is used in the overall ranking. The modified HRS has the advantages of being compatible with the original HRS, has reasonable information requirements, and provides scientifically defensible conclusions. 17 references, 2 figures, 6 tables

  6. Learn about the Hazardous Waste Electronic Manifest System (e-Manifest)

    Science.gov (United States)

    This webpage provides information on EPA's work toward developing a hazardous waste electronic manifest system. Information on the Hazardous Waste Electronic Manifest Establishment Act, progress on the project and frequent questions are available.

  7. Advanced Mixed Waste Treatment Project melter system preliminary design technical review meeting

    Energy Technology Data Exchange (ETDEWEB)

    Eddy, T.L.; Raivo, B.D.; Soelberg, N.R.; Wiersholm, O.

    1995-02-01

    The Idaho National Engineering Laboratory Advanced Mixed Waste Treatment Project sponsored a plasma are melter technical design review meeting to evaluate high-temperature melter system configurations for processing heterogeneous alpha-contaminated low-level radioactive waste (ALLW). Thermal processing experts representing Department of Energy contractors, the Environmental Protection Agency, and private sector companies participated in the review. The participants discussed issues and evaluated alternative configurations for three areas of the melter system design: plasma torch melters and graphite arc melters, offgas treatment options, and overall system configuration considerations. The Technical Advisory Committee for the review concluded that graphite arc melters are preferred over plasma torch melters for processing ALLW. Initiating involvement of stakeholders was considered essential at this stage of the design. For the offgas treatment system, the advisory committee raised the question whether to a use wet-dry or a dry-wet system. The committee recommended that the waste stream characterization, feed preparation, and the control system are essential design tasks for the high-temperature melter treatment system. The participants strongly recommended that a complete melter treatment system be assembled to conduct tests with nonradioactive surrogate waste material. A nonradioactive test bed would allow for inexpensive design and operational changes prior to assembling a system for radioactive waste treatment operations.

  8. Advanced Mixed Waste Treatment Project melter system preliminary design technical review meeting

    International Nuclear Information System (INIS)

    Eddy, T.L.; Raivo, B.D.; Soelberg, N.R.; Wiersholm, O.

    1995-02-01

    The Idaho National Engineering Laboratory Advanced Mixed Waste Treatment Project sponsored a plasma are melter technical design review meeting to evaluate high-temperature melter system configurations for processing heterogeneous alpha-contaminated low-level radioactive waste (ALLW). Thermal processing experts representing Department of Energy contractors, the Environmental Protection Agency, and private sector companies participated in the review. The participants discussed issues and evaluated alternative configurations for three areas of the melter system design: plasma torch melters and graphite arc melters, offgas treatment options, and overall system configuration considerations. The Technical Advisory Committee for the review concluded that graphite arc melters are preferred over plasma torch melters for processing ALLW. Initiating involvement of stakeholders was considered essential at this stage of the design. For the offgas treatment system, the advisory committee raised the question whether to a use wet-dry or a dry-wet system. The committee recommended that the waste stream characterization, feed preparation, and the control system are essential design tasks for the high-temperature melter treatment system. The participants strongly recommended that a complete melter treatment system be assembled to conduct tests with nonradioactive surrogate waste material. A nonradioactive test bed would allow for inexpensive design and operational changes prior to assembling a system for radioactive waste treatment operations

  9. Energy systems analysis of waste to energy technologies by use of EnergyPLAN

    Energy Technology Data Exchange (ETDEWEB)

    Muenster, M.

    2009-04-15

    Even when policies of waste prevention, re-use and recycling are prioritised, a fraction of waste will still be left which can be used for energy recovery. This report asks the question: How to utilise waste for energy in the best way seen from an energy system perspective? Eight different Waste-to-Energy technologies are compared with a focus on fuel efficiency, CO{sub 2} reductions and costs. The comparison is made by conducting detailed energy system analyses of the present system as well as a potential future Danish energy system with a large share of combined heat and power and wind power. The study shows the potential of using waste for the production of transport fuels such as upgraded biogas and petrol made from syngas. Biogas and thermal gasification technologies are interesting alternatives to waste incineration and it is recommended to support the use of biogas based on manure and organic waste. It is also recommended to support research into gasification of waste without the addition of coal and biomass. Together, the two solutions may contribute to an alternate use of one third of the waste which is currently incinerated. The remaining fractions should still be incinerated with priority given to combined heat and power plants with high electrical efficiencies. (author)

  10. The Challenges of Creating a Real-Time Data Management System for TRU-Mixed Waste at the Advanced Mixed Waste Treatment Plant

    International Nuclear Information System (INIS)

    Paff, S. W; Doody, S.

    2003-01-01

    This paper discusses the challenges associated with creating a data management system for waste tracking at the Advanced Mixed Waste Treatment Plant (AMWTP) at the Idaho National Engineering Lab (INEEL). The waste tracking system combines data from plant automation systems and decision points. The primary purpose of the system is to provide information to enable the plant operators and engineers to assess the risks associated with each container and determine the best method of treating it. It is also used to track the transuranic (TRU) waste containers as they move throughout the various processes at the plant. And finally, the goal of the system is to support paperless shipments of the waste to the Waste Isolation Pilot Plant (WIPP). This paper describes the approach, methodologies, the underlying design of the database, and the challenges of creating the Data Management System (DMS) prior to completion of design and construction of a major plant. The system was built utilizing an Oracle database platform, and Oracle Forms 6i in client-server mode. The underlying data architecture is container-centric, with separate tables and objects for each type of analysis used to characterize the waste, including real-time radiography (RTR), non-destructive assay (NDA), head-space gas sampling and analysis (HSGS), visual examination (VE) and coring. The use of separate tables facilitated the construction of automatic interfaces with the analysis instruments that enabled direct data capture. Movements are tracked using a location system describing each waste container's current location and a history table tracking the container's movement history. The movement system is designed to interface both with radio-frequency bar-code devices and the plant's integrated control system (ICS). Collections of containers or information, such as batches, were created across the various types of analyses, which enabled a single, cohesive approach to be developed for verification and

  11. ASSESSMENT OF ENERGY SAVING IN WASTE RECYCLING USING SYSTEM DYNAMICS

    Directory of Open Access Journals (Sweden)

    Eugênio de Oliveira Simonetto

    2013-06-01

    Full Text Available Recycling is a topic of great importance in integrated waste management, evidence of this is verified in the National Policy of Solid Waste, decreed in 2010, where it is considered one of the priorities. In this article is presented a computer simulation model, since their development until its validation, which aims to support environmental managers in their decisions regarding the definition and / or maintenance of solid waste policies recycling, as well as evaluating the benefits of process in the environment (in this article we evaluated the energy savings. For the model development was considered: the rate of natural population growth (births and deaths, percentage of solid waste recycled (for each type of material, gravimetric composition of the material in the total waste generated, the amount of waste generated per inhabitant and energy savings caused by each distinct type of material. Through the model results generated, end users (environmental managers thereof may, for example, set incentives to reduce the total generation of solid waste, produce campaigns enhancing reuse and recycling and to assess the relative benefits of energy savings caused by recycling. Model validation was through analysis of future scenarios for a given municipality in southern Brazil. For modeling and system validation was used Vensim from Ventana Systems.

  12. Development of high-frequency induction melting system for radioactive solid wastes

    International Nuclear Information System (INIS)

    Kawaguchi, Ichiro; Yamazaki, Seichiro; Takahashi, Noriaki; Kugai, Katsutoshi; Yokozawa, Minoru

    2004-01-01

    Kawasaki Heavy Industries, Ltd. developed an active insulation (AI) method radiofrequency melting system as a new melting treatment system of radioactive solid wastes and proved production of waste satisfied the treatment performances and burying by repeating many practical melting tests. The melting vessel uses a low-priced ceramic canister with nonelectrical conductivity, which is able to treat wastes with large amount of inorganic substances. The wastes melted in the canister is taken out the canister itself from radiofrequency melting reactor and solidified after cooling. The cool canister is stored in 2001 metal drum filling up a gap with mortal for laying underground. New radiofrequency melting reactor, 1/3 scale melting test, estimation of scale effects, melting tests for practical use and the total system are explained. (S.Y.)

  13. System Description for Tank 241-AZ-101 Waste Retrieval Data Acquisition System

    International Nuclear Information System (INIS)

    ROMERO, S.G.

    2000-01-01

    The proposed activity provides the description of the Data Acquisition System for Tank 241-AZ-101. This description is documented in HNF-5572, Tank 241-AZ-101 Waste Retrieval Data Acquisition System (DAS). This activity supports the planned mixer pump tests for Tank 241-AZ-101. Tank 241-AZ-101 has been selected for the first full-scale demonstration of a mixer pump system. The tank currently holds over 960,000 gallons of neutralized current acid waste, including approximately 12.7 inches of settling solids (sludge) at the bottom of the tank. As described in Addendum 4 of the FSAR (LMHC 2000a), two 300 HP mixer pumps with associated measurement and monitoring equipment have been installed in Tank 241-AZ-101. The purpose of the Tank 241-AZ-101 retrieval system Data Acquisition System (DAS) is to provide monitoring and data acquisition of key parameters in order to confirm the effectiveness of the mixer pumps utilized for suspending solids in the tank. The suspension of solids in Tank 241-AZ-101 is necessary for pretreatment of the neutralized current acid waste and eventual disposal as glass via the Hanford Waste Vitrification Plant. HNF-5572 provides a basic description of the Tank 241-AZ-101 retrieval system DAS, including the field instrumentation and application software. The DAS is provided to fulfill requirements for data collection and monitoring. This document is not an operations procedure or is it intended to describe the mixing operation. This USQ screening provides evaluation of HNF-5572 (Revision 1) including the changes as documented on ECN 654001. The changes include (1) add information on historical trending and data backup, (2) modify DAS I/O list in Appendix E to reflect actual conditions in the field, and (3) delete IP address in Appendix F per Lockheed Martin Services, Inc. request

  14. Application of geographic information systems to waste minimization efforts at the national laboratories

    International Nuclear Information System (INIS)

    Lyttle, T.W.; Smith, D.M.; Burns, M.; Weinrach, J.B.

    1993-01-01

    At Los Alamos National Laboratory (LANL), facility waste streams tend to be small but highly diverse. Initial characterization of such waste streams is often difficult in part due to a lack of tools to assist the generators themselves in completing such assessments. A methodology has been developed at LANL to allow process knowledgeable field personnel to develop baseline waste generation assessments and to evaluate potential waste minimization technology. This Process Waste Assessment (PWA) system is an application constructed within the Process Modeling System and currently being integrated with the InFoCAD Geographic Information System (GIS). The Process Modeling System (PMS) is an object-oriented, mass balance-based, discrete-event simulation framework written using the Common Lisp Object System (CLOS). Analytical capabilities supported within the PWA system include: complete mass balance specifications, historical characterization of selected waste stream and generation of facility profiles for materials consumption, resource utilization and worker exposure. Development activities include integration with the LANL facilities management Geographic Information System (GIS) and provisions for a Best Available Technologies (BAT) database. The environments used to develop these assessment tools will be discussed in addition to a review of initial implementation results

  15. System design for retrieval of solidified high-level wastes at Hanford

    International Nuclear Information System (INIS)

    Wallskog, H.A.

    1977-01-01

    A Waste Retrieval System has been conceptually designed as a step in the process toward the demonstration of the capability to retrieve the projected 36,000,000 gallons of radioactive salt cake and sludge wastes from underground storage tanks at Hanford. This functionally complete, totally remotely operable system consists of a large mobile platform containing all of the tools and equipment necessary to recover, remove and package the wastes for transfer to an onsite processing facility

  16. Changing needs in a waste information management system: A disposer's viewpoint

    International Nuclear Information System (INIS)

    Fauver, S.L.

    1987-01-01

    An enhanced radioactive waste management information system (RWMIS) is currently under development to accommodate more specific reporting requirements. Radioactive waste management project (RWMP) has recently completed a draft revision of its Operational Radioactive Defense Waste Management Plan for the Nevada Test Site which identifies NTS waste acceptance criteria and revised data requirements for waste generators. Emphasis shifts to the characterization of individual waste packages. RWMP proposes that the waste generator number individual waste packages in a manner which identifies the generator, waste stream, container type, and method of treatment or stabilization. A listing of radionuclides and concentrations will be required, as well as physical and chemical data specific to each waste package. Analytical methods and techniques used for waste package characterization must be detailed by each generator in their quality assurance plan which is reviewed by DOE Nevada Operations Office

  17. Report of safety of the characterizing system of radioactive waste

    International Nuclear Information System (INIS)

    Angeles C, A.; Jimenez D, J.; Reyes L, J.

    1998-09-01

    Report of safety of the system of radioactive waste of the ININ: Installation, participant personnel, selection of the place, description of the installation, equipment. Proposed activities: operations with radioactive material, calibration in energy, calibration in efficiency, types of waste. Maintenance: handling of radioactive waste, physical safety. Organization: radiological protection, armor-plating, personal dosemeter, risks and emergency plan, environmental impact, medical exams. (Author)

  18. The system for waste management

    International Nuclear Information System (INIS)

    Hennelly, E.J.

    1987-01-01

    The author views the system for the management of high level radioactive waste as having five major components science and technology, domestic politics, international programs, regulation and institutions, and the ever changing rules and public perceptions. A system failure will usually occur because of the failure to communicate and not because of inadequate scientific data or engineering skills. For effective communication to occur the participants need to understand each other. The author will focus on this issue as a major theme of this presentation

  19. Major Components of the National TRU Waste System Optimization Project

    International Nuclear Information System (INIS)

    Moody, D.C.; Bennington, B.; Sharif, F.

    2002-01-01

    The National Transuranic (TRU) Program (NTP) is being optimized to allow for disposing of the legacy TRU waste at least 10 years earlier than originally planned. This acceleration will save the nation an estimated $713. The Department of Energy's (DOE'S) Carlsbad Field Office (CBFO) has initiated the National TRU Waste System Optimization Project to propose, and upon approvaI, implement activities that produce significant cost saving by improving efficiency, thereby accelerating the rate of TRU waste disposal without compromising safety. In its role as NTP agent of change, the National TRU Waste System Optimization Project (the Project) (1) interacts closely with all NTP activities. Three of the major components of the Project are the Central Characterization Project (CCP), the Central Confirmation Facility (CCF), and the MobiIe/Modular Deployment Program.

  20. SWEPP PAN assay system uncertainty analysis: Passive mode measurements of graphite waste

    International Nuclear Information System (INIS)

    Blackwood, L.G.; Harker, Y.D.; Meachum, T.R.; Yoon, Woo Y.

    1997-07-01

    The Idaho National Engineering and Environmental Laboratory is being used as a temporary storage facility for transuranic waste generated by the U.S. Nuclear Weapons program at the Rocky Flats Plant (RFP) in Golden, Colorado. Currently, there is a large effort in progress to prepare to ship this waste to the Waste Isolation Pilot Plant (WIPP) in Carlsbad, New Mexico. In order to meet the TRU Waste Characterization Quality Assurance Program Plan nondestructive assay compliance requirements and quality assurance objectives, it is necessary to determine the total uncertainty of the radioassay results produced by the Stored Waste Examination Pilot Plant (SWEPP) Passive Active Neutron (PAN) radioassay system. To this end a modified statistical sampling and verification approach has been developed to determine the total uncertainty of a PAN measurement. In this approach the total performance of the PAN nondestructive assay system is simulated using computer models of the assay system and the resultant output is compared with the known input to assess the total uncertainty. This paper is one of a series of reports quantifying the results of the uncertainty analysis of the PAN system measurements for specific waste types and measurement modes. In particular this report covers passive mode measurements of weapons grade plutonium-contaminated graphite molds contained in 208 liter drums (waste code 300). The validity of the simulation approach is verified by comparing simulated output against results from measurements using known plutonium sources and a surrogate graphite waste form drum. For actual graphite waste form conditions, a set of 50 cases covering a statistical sampling of the conditions exhibited in graphite wastes was compiled using a Latin hypercube statistical sampling approach

  1. Waste Isolation Pilot Plant Dry Bin-Scale Integrated Systems Checkout Plan

    International Nuclear Information System (INIS)

    1991-04-01

    In order to determine the long-term performance of the Waste Isolation Pilot Plant (WIPP) disposal system, in accordance with the requirements of the US Environmental Protection Agency (EPA) Standard 40 CFR 191, Subpart B, Sections 13 and 15, two performance assessment tests will be conducted. The tests are titled WIPP Bin-Scale Contact Handled (CH) Transuranic (TRU) Waste Tests and WIPP In Situ Alcove CH TRU Waste Tests. These tests are designed to measure the gas generation characteristics of CH TRU waste. Much of the waste will be specially prepared to provide data for a better understanding of the interactions due to differing degradation modes, waste forms, and repository environmental affects. The bin-scale test is designed to emplace nominally 146 bins. The majority of the bins will contain various forms of waste. Eight bins will be used as reference bins and will contain no waste. This checkout plan exercises the systems, operating procedures, and training readiness of personnel to safely carry out those specifically dedicated activities associated with conducting the bin-scale test plan for dry bins only. The plan does not address the entire WIPP facility readiness state. 18 refs., 6 figs., 3 tabs

  2. Structure of automated system for tracking the formation and burial of radioactive wastes

    International Nuclear Information System (INIS)

    Kozlov, A.A.

    1993-01-01

    Intermediate- and low-activity wastes are formed when radionuclides are used in science, industry, agriculture, and medicine. A centralized system, including territorial specialized complexes and radioactive-waste burial sites (RWBS), has been created for collection, processing, and long-term storage. At this time, however, the records kept of wastes for long-term storage and assessment of their preparation for burial do not come up to current scientific and technical requirements at most RWBSs in Russia. It is necessary, therefore, to create an automated tracking system. Earlier studies, considered the design of a system for monitoring and recording the handling of sources of ionizing radiation, which are the most hazardous part of the wastes. The novel proposed automated system incorporates distinctive functional elements and makes for higher quality waste processing and efficient data exchange. It performs such functions as recording the wastes earmarked for burial, processing, and long-term storage, and where they are stored in the RWBS; ensuring an optimum cycle of collection, transportation, processing, and long-term storage of wastes; recording planned monitored levels of discharges and ejections of substances at the RWBSs; recording the wastes delivered for storage and stored on RWBSs; making calculations, including an estimate of the costs of transport, processing, and storage of wastes for each enterprise, with allowance for penalties; classifying wastes according to processing methods and determining the optimum operating regime and technological facilities; identifying the parameters of wastes delivered for processing and burial; and predicting the deliveries of wastes to RWBSs, planning the construction of new special storage facilities and containers for temporary and long-term storage of wastes

  3. Waste assay measurement integration system user interface

    International Nuclear Information System (INIS)

    Mousseau, K.C.; Hempstead, A.R.; Becker, G.K.

    1995-01-01

    The Waste Assay Measurement Integration System (WAMIS) is being developed to improve confidence in and lower the uncertainty of waste characterization data. There are two major components to the WAMIS: a data access and visualization component and a data interpretation component. The intent of the access and visualization software is to provide simultaneous access to all data sources that describe the contents of any particular container of waste. The visualization software also allows the user to display data at any level from raw to reduced output. Depending on user type, the software displays a menuing hierarchy, related to level of access, that allows the user to observe only those data sources s/he has been authorized to view. Access levels include system administrator, physicist, QA representative, shift operations supervisor, and data entry. Data sources are displayed in separate windows and presently include (1) real-time radiography video, (2) gamma spectra, (3) passive and active neutron, (4) radionuclide mass estimates, (5) total alpha activity (Ci), (6) container attributes, (7) thermal power (w), and (8) mass ratio estimates for americium, plutonium, and uranium isotopes. The data interpretation component is in the early phases of design, but will include artificial intelligence, expert system, and neural network techniques. The system is being developed on a Pentium PC using Microsoft Visual C++. Future generations of WAMIS will be UNIX based and will incorporate more generically radiographic/tomographic, gamma spectroscopic/tomographics, neutron, and prompt gamma measurements

  4. The application of advanced remote systems technology to future waste handling facilities: Waste Systems Data and Development Program

    International Nuclear Information System (INIS)

    Kring, C.T.; Herndon, J.N.; Meacham, S.A.

    1987-01-01

    The Consolidated Fuel Reprocessing Program (CFRP) at the Oak Ridge National Laboratory (ORNL) has been advancing the technology in remote handling and remote maintenance of in-cell systems planned for future US nuclear fuel reprocessing plants. Much of the experience and technology developed over the past decade in this endeavor are directly applicable to the in-cell systems being considered for the facilities of the Federal Waste Management System (FWMS). The ORNL developments are based on the application of teleoperated force-reflecting servomanipulators controlled by an operator completely removed from the hazardous environment. These developments address the nonrepetitive nature of remote maintenance in the unstructured environments encountered in a waste handling facility. Employing technological advancements in dexterous manipulators, as well as basic design guidelines that have been developed for remotely maintained equipment and processes, can increase operation and maintenance system capabilities, thereby allowing the attainment of two FWMS major objectives: decreasing plant personnel radiation exposure and increasing plant availability by decreasing the mean-time-to-repair in-cell maintenance and process equipment. 5 refs., 7 figs

  5. Development of MHI's induction melting system for low level radio active solid waste treatment

    International Nuclear Information System (INIS)

    Murakami, Tadashi; Hashiba, Kenji; Fukui, Hiroshi; Sato, Akio; Minemoto, Masaki

    1999-01-01

    Mitsubishi Heavy Industries, Ltd., (MHI) has developed melting facilities that reduce radioactive waste volume. The system uses a high-frequency induction to separately melt nonmetallic waste in SUS containers and metallic waste. Use of system extends refractory life. To validate system feasibility, major components were tested with the following results: (1) Two 200-liter drum cans of molten solid waste are produced per work day, (2) Radioactivity in molten solid was homogeneous with a coefficient of variation ≤10%, clarifying residue properties, (3) The radioactive decontamination factor of off-gas facilities --DF=Activity to system/Activity at the system exit --exceeded 10 7 . We confirmed system to fill the requirements for molten solid waste and have the merit of high volume-reduction and long-life refractory. (author)

  6. ERM 593 Applied Project_Guidance for Reviewing and Approving a Waste Stream Profile in the Waste Compliance and Tracking System_Final_05-05-15

    Energy Technology Data Exchange (ETDEWEB)

    Elicio, Andy U. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-05-05

    My ERM 593 applied project will provide guidance for the Los Alamos National Laboratory Waste Stream Profile reviewer (i.e. RCRA reviewer) in regards to Reviewing and Approving a Waste Stream Profile in the Waste Compliance and Tracking System. The Waste Compliance and Tracking system is called WCATS. WCATS is a web-based application that “supports the generation, characterization, processing and shipment of LANL radioactive, hazardous, and industrial waste.” The LANL generator must characterize their waste via electronically by filling out a waste stream profile (WSP) in WCATS. Once this process is completed, the designated waste management coordinator (WMC) will perform a review of the waste stream profile to ensure the generator has completed their waste stream characterization in accordance with applicable state, federal and LANL directives particularly P930-1, “LANL Waste Acceptance Criteria,” and the “Waste Compliance and Tracking System User's Manual, MAN-5004, R2,” as applicable. My guidance/applied project will describe the purpose, scope, acronyms, definitions, responsibilities, assumptions and guidance for the WSP reviewer as it pertains to each panel and subpanel of a waste stream profile.

  7. System for disposing of radioactive waste

    International Nuclear Information System (INIS)

    Gablin, K.A.; Hansen, L.J.

    1980-01-01

    A system is disclosed for disposing of radioactive mixed liquid and particulate waste material from nuclear reactors by solidifying the liquid components into a free standing hardened mass with a syrup of partially polymerized particles of urea formaldehyde in water and a liquid curing agent

  8. Redesign and modernization of radioactive waste administration systems in Ukraine

    Energy Technology Data Exchange (ETDEWEB)

    Nieder-Westermann, Gerald H.; Walther, Thorsten; Krone, Juergen [DBE Technology GmbH, Peine (Germany)

    2016-06-15

    The European Commission (EC) has undertaken a series of projects to render assistance to Ukraine in modernizing and redesigning the Ukrainian approach to the administration, management and ultimately disposal of all forms of radioactive waste, including waste associated with the Chornobyl accident as well as waste generated as part of the Ukrainian energy infrastructure and from industrial and medical applications. One of the most recently completed projects focused on modernizing Ukraine's management and administrative systems responsible for the disposal of radioactive waste.

  9. Redesign and modernization of radioactive waste administration systems in Ukraine

    International Nuclear Information System (INIS)

    Nieder-Westermann, Gerald H.; Walther, Thorsten; Krone, Juergen

    2016-01-01

    The European Commission (EC) has undertaken a series of projects to render assistance to Ukraine in modernizing and redesigning the Ukrainian approach to the administration, management and ultimately disposal of all forms of radioactive waste, including waste associated with the Chornobyl accident as well as waste generated as part of the Ukrainian energy infrastructure and from industrial and medical applications. One of the most recently completed projects focused on modernizing Ukraine's management and administrative systems responsible for the disposal of radioactive waste.

  10. Advanced Off-Gas Control System Design For Radioactive And Mixed Waste Treatment

    International Nuclear Information System (INIS)

    Nick Soelberg

    2005-01-01

    Treatment of radioactive and mixed wastes is often required to destroy or immobilize hazardous constituents, reduce waste volume, and convert the waste to a form suitable for final disposal. These kinds of treatments usually evolve off-gas. Air emission regulations have become increasingly stringent in recent years. Mixed waste thermal treatment in the United States is now generally regulated under the Hazardous Waste Combustor (HWC) Maximum Achievable Control Technology (MACT) standards. These standards impose unprecedented requirements for operation, monitoring and control, and emissions control. Off-gas control technologies and system designs that were satisfactorily proven in mixed waste operation prior to the implementation of new regulatory standards are in some cases no longer suitable in new mixed waste treatment system designs. Some mixed waste treatment facilities have been shut down rather than have excessively restrictive feed rate limits or facility upgrades to comply with the new standards. New mixed waste treatment facilities in the U. S. are being designed to operate in compliance with the HWC MACT standards. Activities have been underway for the past 10 years at the INL and elsewhere to identify, develop, demonstrate, and design technologies for enabling HWC MACT compliance for mixed waste treatment facilities. Some specific off-gas control technologies and system designs have been identified and tested to show that even the stringent HWC MACT standards can be met, while minimizing treatment facility size and cost

  11. Safety analysis report for the North Tank Farm, Tank W-11, and the Gunite and Associated Tanks -- Treatability Study, Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    Platfoot, J.H.

    1997-02-01

    The North Tank Farm (NTF) tanks consist of eight underground storage tanks which have been removed from service because of age and changes in liquid waste system needs and requirements. Tank W-11, which was constructed in 1943, has been removed from service, and contains several hundred gallons of liquid low-level waste (LLLW). The Gunite and Associated Tanks (GAAT) Treatability Study involves the demonstration of sludge removal techniques and equipment for use in other waste storage tanks throughout the Department of Energy (DOE) complex. The hazards associated with the NTF, Tank W-11, and the Treatability Study are identified in hazard identification table in Appendixes A, B, and C. The hazards identified for the NTF, Tank W-11, and the Treatability Study were analyzed in the preliminary hazards analyses (PHA) included as Appendices D and E. The PHA identifies potential accident scenarios and qualitatively estimates the consequences. Because of the limited quantities of materials present in the tanks and the types of energy sources that may result in release of the materials, none of the accidents identified are anticipated to result in significant adverse health effects to on-site or off-site personnel

  12. Understanding uncertainty propagation in life cycle assessments of waste management systems

    DEFF Research Database (Denmark)

    Bisinella, Valentina; Conradsen, Knut; Christensen, Thomas Højlund

    2015-01-01

    Uncertainty analysis in Life Cycle Assessments (LCAs) of waste management systems often results obscure and complex, with key parameters rarely determined on a case-by-case basis. The paper shows an application of a simplified approach to uncertainty coupled with a Global Sensitivity Analysis (GSA......) perspective on three alternative waste management systems for Danish single-family household waste. The approach provides a fast and systematic method to select the most important parameters in the LCAs, understand their propagation and contribution to uncertainty....

  13. Research and development of improved type radioactive waste volume reduction system

    International Nuclear Information System (INIS)

    Okamoto, Masahiro; Watanabe, Yoshifumi; Yamaoka, Katsuaki; Masaki, Tetsuo; Akagawa, Yoshihiro; Murakami, Tadashi; Miyake, Takashi.

    1985-01-01

    Development and research had been conducted since 1978 on an improved type radioactive waste volume reduction system incorporating calcining and incinerating fluidized bed type furnaces. This system can dispose of concentrated liquid wastes, combustible solid wastes, spent ion exchange resins and so forth by calcination or incineration to turn them into reduced-volume products. Recently a pilot test facility has constructed and tests has been conducted to demonstrate actual performance. Representative results of pilot tests are reported in this paper. (author)

  14. Design features of a full-scale high-level waste vitrification system

    International Nuclear Information System (INIS)

    Siemens, D.H.; Bonner, W.F.

    1976-08-01

    A system has been designed and is currently under construction for vitrification of commercial high-level waste. The process consists of a spray calciner coupled to an in-can melter. Due to the high radiation levels expected, this equipment is designed for totally remote operation and maintenance. The in-cell arrangement of this equipment has been developed cooperatively with a nuclear fuel reprocessor. The system will be demonstrated both full scale with nonradioactive simulated waste and pilot scale with actual high-level waste

  15. Solid Waste Information Management System (SWIMS) data summary, fiscal year 1982

    International Nuclear Information System (INIS)

    Watanabe, T.

    1983-06-01

    The Solid Waste Information Management System (SWIMS) is a Department of Energy (DOE) information system for radioactive solid waste. This document is a summary of the FY 1982 data and the forecast data for FY 1983 reported by DOE sites. Detailed data are included in the appendices. The SWIMS data base contains data on the solid transuranic and solid low-level waste generated, buried, or stored at DOE sites. The burial and storage data include the period from site initiation through FY 1982

  16. The role of cement to be expected in radioactive waste disposal system

    International Nuclear Information System (INIS)

    Tanaka, Satoru; Nagasaki, Shinya; Ohe, Toshiaki

    1997-01-01

    Based on the present states of cement in radioactive waste disposal system, its roles and functions to be further expected were discussed diming at safety evaluation of wastes. In the present waste disposal system, cement has two important roles as the structural materials for the system and as the barrier materials for protecting from various radiations. In order to enhance the durability of those materials, it is needed to improve them in respects of acid resistance and repression of the reactions with radioactive wastes. Generally development of cracks in concrete structures is inevitable and the repairs become necessary in old structures. Therefore, it is desirable that cement for a disposal system has self-diagnostic and self-repairing abilities to keep the efficiency for a long period. The compressive strength of ordinary high-strength concrete is around 50-60 Nmm -2 . However, it is needed to further increase the strength to decrease the amount of hardening materials and the width of concrete vessel for wastes. In addition, it is desirable to develop new techniques to recycle concrete wastes involving radioactive materials at ultra-low levels. (M.N.)

  17. Controlled Ecological Life Support Systems (CELSS) physiochemical waste management systems evaluation

    Science.gov (United States)

    Oleson, M.; Slavin, T.; Liening, F.; Olson, R. L.

    1986-01-01

    Parametric data for six waste management subsystems considered for use on the Space Station are compared, i.e.: (1) dry incineration; (2) wet oxidation; (3) supercritical water oxidation; (4) vapor compression distillation; (5) thermoelectric integrated membrane evaporation system; and (6) vapor phase catalytic ammonia removal. The parameters selected for comparison are on-orbit weight and volume, resupply and return to Earth logistics, power consumption, and heat rejection. Trades studies are performed on subsystem parameters derived from the most recent literature. The Boeing Engineering Trade Study (BETS), an environmental control and life support system (ECLSS) trade study computer program developed by Boeing Aerospace Company, is used to properly size the subsystems under study. The six waste treatment subsystems modeled in this program are sized to process the wastes for a 90-day Space Station mission with an 8-person crew, and an emergency supply period of 28 days. The resulting subsystem parameters are compared not only on an individual subsystem level but also as part of an integrated ECLSS.

  18. Tank Waste Remediation System decisions and risk assessment

    International Nuclear Information System (INIS)

    Johnson, M.E.

    1994-09-01

    The Tank Waste Remediation System (TWRS) mission is to store, treat, and immobilize the highly radioactive Hanford Site tank wastes and encapsulated cesium and strontium materials in an environmentally sound, safe, and cost effective manner. Additionally, the TWRS conducts, as part of this mission, resolution of safety issues associated with the wastes within the 177 underground radioactive waste tanks. Systems engineering principles are being applied to determine the functions and establish requirements necessary for accomplishing the TWRS mission (DOE 1994 draft). This systematic evaluation of the TWRS program has identified key decisions that must be executed to establish mission scope, determine requirements, or select a technical solution for accomplishing identified functions and requirements. Key decisions identified through the systematic evaluation of the TWRS mission are presented in this document. Potential alternative solutions to each decision are discussed. After-discussion and evaluation of each decision with effected stakeholder groups, the US Department of Energy (DOE) will select a solution from the identified alternatives for implementation. In order to proceed with the development and execution of the tank waste remediation program, the DOE has adopted a planning basis for several of these decisions, until a formal basis is established. The planning bases adopted by the DOE is continuing to be discussed with stakeholder groups to establish consensus for proceeding with proposed actions. Technical and programmatic risks associated with the planning basis adopted by the DOE are discussed

  19. Alternatives generation and analysis for phase I intermediate waste feed staging system design requirements

    Energy Technology Data Exchange (ETDEWEB)

    Britton, M.D.

    1996-10-02

    This document provides; a decision analysis summary; problem statement; constraints, requirements, and assumptions; decision criteria; intermediate waste feed staging system options and alternatives generation and screening; intermediate waste feed staging system design concepts; intermediate waste feed staging system alternative evaluation and analysis; and open issues and actions.

  20. A National system for the Management of Non-nuclear Radioactive Waste in Sweden

    International Nuclear Information System (INIS)

    Lindhe, J. C.

    2004-01-01

    The Swedish government in May 2002 set up a non-standing committee for non-nuclear radioactive waste. The objective was to suggest a national system for the management of all types of non-nuclear radioactive waste with special consideration to the principle of polluter pays and the responsibility of the producers. The committee delivered its recommendations to the government at the end of last year. Funding for future costs for nuclear waste management and final storage is collected in a state governed funding system. For non-nuclear waste, however, there are no means today to secure the funding. If a company goes bankrupt and leaves radioactive waste behind it might be up to the taxpayers to pay for its safe management. This is due to the fact that the cost for the waste is paid at the time one wants to dispose of it and it is usually the last owner of a product etc. that has to pay. Sometimes the price comes as a surprise and the owner might not have the money available. Thus the waste might be kept longer than otherwise and might even end up as orphan waste. To solve this dilemma the committee recommends a funding system in parallel with the system for the nuclear waste. The cost for the waste should be paid up front before the waste has been created. E.g. when a customer buys a product the cost for the future waste management would be included in the price and he will not have to pay for this the day he disposes the product by returning it to the producer or leaves it to a waste-collecting organisation. It should be the responsibility of the producer (manufacturer, importer or re-seller) to guarantee the funding for the waste management. In summary the non-nuclear radioactive waste is divided into three main groups: waste from products, waste from practices and other waste. Waste from products includes household products as well as products used in research, industry and hospitals etc. For this category it is easy to identify a producer who imports or

  1. Electronic archive system for the management of historic radioactive waste

    International Nuclear Information System (INIS)

    Calin, M. R.; Garlea, C.; Petre, A. R.; Serbina, L.

    2005-01-01

    The development of nuclear activities in Magurele, Ilfov, during the last decades has led to the accumulation of an important quantity of radioactive waste. In addition to this, there is also a large number of former radioactive sources, now shut and removed from use, currently stored at IFIN-HH. This project deals with the discharge of historic waste storages belonging to the following nuclear units: - the WWR-S nuclear reactor - (the main reactor hall, the pump hall, the hot cells and annexes); - C.P.R. - used filters storage; - S.T.D.R. - storage for both historic radioactive waste and used filters; - shut sources in the storehouses in the 'Texas Bunker' building and annexes. For a modern management, including a proper system of quality insurance, an archiving system became needed. The electronic archive is based on several informational streams: the activity of storing historic radioactive waste; - the activity of locating historic radioactive waste; - the radiological descriptions of the storehouses and their influence areas; - the determination of the waste's composition. So as to reach these objectives, information regarding the following is necessary: the storehouse's inventory, the historic radioactive waste's characteristics and proprieties, the neighbors of this facility, the way in which the environment and the personnel involved in the operations are being influenced, the preparing of discharge operations, semblances. The data base conceived to tackle the problems of data related to nuclear waste management has been programmed in Microsoft Access (Microsoft Office). (authors)

  2. Control Decisions for Flammable Gas Hazards in Waste Transfer Systems

    International Nuclear Information System (INIS)

    KRIPPS, L.J.

    2000-01-01

    This report describes the control decisions for flammable gas hazards in waste transfer systems (i.e., waste transfer piping and waste transfer-associated structures) made at control decision meetings on November 30, 1999a and April 19, 2000, and their basis. These control decisions, and the analyses that support them, will be documented in an amendment to the Final Safety Analysis Report (FSAR) (CHG 2000a) and Technical Safety Requirements (TSR) (CHG 2000b) to close the Flammable Gas Unreviewed Safety Question (USQ) (Bacon 1996 and Wagoner 1996). Following the Contractor Tier I review of the FSAR and TSR amendment, it will be submitted to the US. Department of Energy (DOE), Office of River Protection (ORP) for review and approval. The control decision meeting on November 30, 1999 to address flammable gas hazards in waste transfer systems followed the control decision process and the criteria for control decisions described in Section 3.3.1.5 of the FSAR. The control decision meeting agenda, attendance list, and introductory and background presentations are included in Attachments 1 through 4. The control decision discussions on existing and other possible controls for flammable gas hazards in waste transfer systems and the basis for selecting or not selecting specific controls are summarized in this report

  3. Tank waste remediation system systems engineering management plan

    International Nuclear Information System (INIS)

    Peck, L.G.

    1998-01-01

    This Systems Engineering Management Plan (SEMP) describes the Tank Waste Remediation System (TWRS) implementation of the US Department of Energy (DOE) systems engineering policy provided in 97-IMSD-193. The SEMP defines the products, process, organization, and procedures used by the TWRS Project to implement the policy. The SEMP will be used as the basis for tailoring the systems engineering applications to the development of the physical systems and processes necessary to achieve the desired end states of the program. It is a living document that will be revised as necessary to reflect changes in systems engineering guidance as the program evolves. The US Department of Energy-Headquarters has issued program management guidance, DOE Order 430. 1, Life Cycle Asset Management, and associated Good Practice Guides that include substantial systems engineering guidance

  4. Waste Feed Delivery System Phase 1 Preliminary RAM Analysis

    International Nuclear Information System (INIS)

    DYKES, A.A.

    2000-01-01

    This report presents the updated results of the preliminary reliability, availability, and maintainability (RAM) analysis of selected waste feed delivery (WFD) operations to be performed by the Tank Farm Contractor (TFC) during Phase I activities in support of the Waste Treatment and Immobilization Plant (WTP). For planning purposes, waste feed tanks are being divided into five classes in accordance with the type of waste in each tank and the activities required to retrieve, qualify, and transfer waste feed. This report reflects the baseline design and operating concept, as of the beginning of Fiscal Year 2000, for the delivery of feed from three of these classes, represented by source tanks 241-AN-102, 241-AZ-101 and 241-AN-105. The preliminary RAM analysis quantifies the potential schedule delay associated with operations and maintenance (OBM) field activities needed to accomplish these operations. The RAM analysis is preliminary because the system design, process definition, and activity planning are in a state of evolution. The results are being used to support the continuing development of an O and M Concept tailored to the unique requirements of the WFD Program, which is being documented in various volumes of the Waste Feed Delivery Technical Basis (Carlson. 1999, Rasmussen 1999, and Orme 2000). The waste feed provided to the WTP must: (1) meet limits for chemical and radioactive constituents based on pre-established compositional envelopes (i.e., feed quality); (2) be in acceptable quantities within a prescribed sequence to meet feed quantities; and (3) meet schedule requirements (i.e., feed timing). In the absence of new criteria related to acceptable schedule performance due to the termination of the TWRS Privatization Contract, the original criteria from the Tank Waste Remediation System (77443s) Privatization Contract (DOE 1998) will continue to be used for this analysis

  5. Evaluation of thermal hydraulics characteristics of natural cooling low level radioactive waste storage system

    International Nuclear Information System (INIS)

    Yoshii, Toshihiro; Iwaki, Chikako; Ikeda, Tatsumi; Ikeda, Hiroshi; Koyama, Tomonori; Usui, Nobuhiko; Watanabe, Hisao; Masaki, Yoshikazu

    2012-01-01

    It is necessary to design a low level radioactive waste storage system so that the decay heat of radioactive waste does not breach the structural safety limit. Currently, this waste storage system is designed as a natural cooling system, which continuously cools the radioactive waste without an active device. It consists simply of a storage pit for radioactive waste and air inlet and outlet ducts. The radioactive waste is cooled by natural convective air flow, which is generated by the buoyancy of heated air due to the decay heat of radioactive waste. It is important to clarify the flow characteristics in the systems in order to evaluate the cooling performance. The air mass flow rate through the system is determined by the balance between the natural convective flow force and pressure loss within the system. Therefore, the pressure drop and flow pattern in the waste storage pit are important flow characteristics. In this study, the pressure drop and air temperature distribution, greatly influenced by the flow pattern in the pit, were measured using a 1/5 scale model and compared with the results obtained from CFD. Flow network analysis, which is a simple model that simulates the flow by nodes and junctions, was conducted and its validity was confirmed by experimental results and CFD. (author)

  6. US Department of Energy Mixed Waste Integrated Program performance systems analysis

    International Nuclear Information System (INIS)

    Ferrada, J.J.; Berry, J.B.

    1994-01-01

    The primary goal of this project is to support decision making for the U.S. Department of Energy (DOE)/EM-50 Mixed Waste Integrated Program (MWIP) and the Mixed Low-Level Waste Program. A systems approach to the assessment of enhanced waste form(s) production will be employed including, coordination and configuration management of activities in specific technology development tasks. The purpose of this paper is to describe the development and application of a methodology for implementing a performance systems analysis on mixed waste treatment process technologies. The second section describes a conventional approach to process systems analysis followed by a methodology to estimate uncertainties when analyzing innovative technologies. Principles from these methodologies have been used to develop a performance systems analysis for MWIP. The third section describes the systems analysis tools. The fourth section explains how the performance systems analysis will be used to analyze MWIP process alternatives. The fifth and sixth sections summarize this paper and describe future work for this project. Baseline treatment process technologies (i.e., commercially available technologies) and waste management strategies are evaluated systematically using the ASPEN PLUS program applications developed by the DOE Mixed Waste Treatment Project (MWTP). Alternatives to the baseline (i.e., technologies developed by DOE's Office of Technology Development) are analyzed using FLOW, a user-friendly program developed at Oak Ridge National Laboratory (ORNL). Currently, this program is capable of calculating rough order-of-magnitude mass and energy balances to assess the performance of the alternative technologies as compared to the baseline process. In the future, FLOW will be capable of communicating information to the ASPEN PLUS program

  7. Lawrence Livermore National Laboratory low-level waste systems performance assessment

    International Nuclear Information System (INIS)

    1990-11-01

    This Low-Level Radioactive Waste (LLW) Systems Performance Assessment (PA) presents a systematic analysis of the potential risks posed by the Lawrence Livermore National Laboratory (LLNL) waste management system. Potential risks to the public and environment are compared to established performance objectives as required by DOE Order 5820.2A. The report determines the associated maximum individual committed effective dose equivalent (CEDE) to a member of the public from LLW and mixed waste. A maximum annual CEDE of 0.01 mrem could result from routine radioactive liquid effluents. A maximum annual CEDE of 0.003 mrem could result from routine radioactive gaseous effluents. No other pathways for radiation exposure of the public indicated detectable levels of exposure. The dose rate, monitoring, and waste acceptance performance objectives were found to be adequately addressed by the LLNL Program. 88 refs., 3 figs., 17 tabs

  8. Radioactive waste treatment system for Tsuruga Nuclear Power Station

    International Nuclear Information System (INIS)

    Taniguchi, Takashi; Takeshima, Masaki; Saito, Toru; Kikkawa, Ryozo

    1978-01-01

    The augmentation of the radioactive waste treatment system in the Tsuruga Nuclear Power Station was planned in 1973, and this enlarged facility was completed in June, 1977. The object of this augmentation is to increase the storage capacity for wastes and to enlarge the treating capacity utilizing the newly installed facility. The operating experience in the facility having been already constructed was fed back for the engineering of this new facility. This new facility contains the newly developed vacuum forced circulation type concentrator, the exclusive storage pool for solid wastes, etc. At the design stage of this new system, the pilot plant test of slurry transportation and the corrosion test of long hours were carried out as the research and developmental works for the confirmation of correct design condition. The measures for augmenting this radioactive waste treatment system are the installation of a long time storage tank with the capacity of 350 m 3 , the sit bunker facility and the drum storage as the storage facility, and the vacuum forced circulation type concentrator with the circulating flow rate more than 200 times as much as the treating flow rate and vacuum level of 0.255 ata. The augmented system is shown with the flow sheet of whole waste disposal system. The flow sheet of the concentrator is separately shown, and the relating research and developmental works, for example, the test of the cause of corrosion, the surface finishing test, the material test, the blockage test for heat transfer tubes and the inhibiter test, are explained with the test results. The ion exchange resin is transported by air and water as the slurry state, and the long distance transport of about 250 m is required in this new system. As clogging has to be avoided in this transportation, the experimental work was conducted to obtain the flow characteristics of slurry, and the test result is outlined. (Nakai, Y.)

  9. Documentation of currently operating low-level radioactive waste treatment systems: Shredder/compactor report

    International Nuclear Information System (INIS)

    1987-04-01

    The report documents a volume reduction waste treatment system for dry active waste, a shredder/compactor, and includes specifics on system selection, system descriptions, and detailed system performance data from three operational nuclear power plants. Data gathered from the plants have shown the ability to increase the density (thereby reducing the volume) of dry active waste to /approximately/50 pounds per cubic foot when using shredder/compactors and/approximately/80 to 100 pounds per cubic foot for shredder/high pressure compactors depending on reactor type and plant specific waste characteristics. An economic evaluation of various alternative volume reduction systems for dry active waste is also presented. The report presents a method on calculating the associated costs and paybacks achieved using various volume reduction alternatives. A 10 year cost (operating expenses and capital outlay for equipment) for a shredder/high pressure compactor is 1.85 million dollars for a BWR as compared to /approximately/3 million for a conventional drum compactor. The resulting payback for the shredder/compactor is as low as 1.7 years. The report provides generators of low level waste additional information to understand the nuances of shredder/compactor systems to select a system which best suits their individual needs. 4 refs., 6 figs., 10 tabs

  10. Implementation of a unified system for waste management

    International Nuclear Information System (INIS)

    Silva, Eliane Magalhaes Pereira da

    2006-08-01

    The process of generation and disposal of wastes has been responsible for many economical, ecological and public health problems, although the importance of its safe management for the protection of human health and the environment has long been recognized. In order to manage the hazardous wastes in an environmentally-friendly manner, many technical and administrative procedures should be implemented, from prevention and control of waste generation to a final disposal. The nuclear area personnel have a long and successful experience in all administrative and operational activities involved in the handling, treatment, conditioning, transport, storage and disposal of radioactive waste. Thus, this knowledge can be considered in the development of a unified methodology for managing all kinds of hazardous waste. The main purpose of the present work is to develop and implement a methodology, primarily to institutions that generate small amounts of waste of different compositions, on the predisposal activities management. This methodology was developed to provide a facilitator tool that should be applied by expert users. To simplify and automatize its application, a software, named SUGERE - a unified system for waste management, was developed in a Windows R environment using a Borland Delphi R package. The nuclear industry was used as a reference for developing this work and many examples of this area standards and procedures are implemented. (author)

  11. Operatibility test procedure for the Waste Information and Control System

    International Nuclear Information System (INIS)

    Flynn, D.F.

    1994-01-01

    This document describes the operability test procedure for the WICS. The Westinghouse Hanford Company (WHC) Hazardous Material Control Group (HMC) of the 222-S Laboratory has requested the development of a system to help resolve many of the difficulties associated with tracking and data collection of containers and drums of waste. This system has been identified as Waste Information and Control System (WICS). The request for developing and implementing WICS has been made to the Automation and Simulation Engineering Group (ASE)

  12. A systems study of the waste management system in Gothenburg. Part of the project: Thermal and biological waste treatment in a systems perspective; Systemstudie Avfall i Goeteborg. Delprojekt i Termisk och biologisk avfallsbehandling i ett systemperspektiv

    Energy Technology Data Exchange (ETDEWEB)

    Bisaillon, Mattias; Sundberg, Johan; Haraldsson, Maarten; Norrman Eriksson, Ola

    2010-07-01

    The purpose of the project A system study of waste management in Gothenburg is to evaluate new waste treatment options for municipal and industrial waste from a system perspective. The project has been carried out as a part of the project Thermal and biological waste treatment in a systems perspective - WR21. The focus is set to the waste and district heating system in Gothenburg. The project has been running for 2,5 years with an active group consisting of persons from Renova, Kretsloppskontoret, Goeteborg Energi, Gryaab and Profu. The work on development of models and of methods of handling strategic questions within the field has gone back and forth within the group. This report focuses on presenting the final results from the project, which means that the process in which we've excluded several treatment options and scenarios are only briefly described

  13. Mobile concrete solidification systems for power reactor waste

    International Nuclear Information System (INIS)

    Tchemitcheff, E.; Bordas, Y.

    1990-01-01

    In late 1988 SGN received an order from Electricite de France (EDF) for the construction of a mobile concrete solidification system to process secondary system resins generated by the P'4 and N4 series PWR power plants in France. This order was placed in view of SGN's experience with low- and medium-level radioactive waste treatment and conditioning over a period of almost 20 years. In addition to the construction of fixed waste processing facilities using more conventional technologies, SGN has been involved in application of the mobile system concept to the bituminization process in the United States, which led to the construction and commissioning of two transportable systems in collaboration with its American licensee US Ecology. It has also conducted large-scale R ampersand D on LLW/MLW concrete solidification, particularly for ion exchange resins. 5 figs

  14. Environmental and Economic Assessment of Swedish Municipal Solid Waste Management in a Systems Perspective

    International Nuclear Information System (INIS)

    Eriksson, Ola

    2003-01-01

    Waste management is something that affects most people. The waste amounts are still increasing, but the waste treatment is changing towards recycling and integrated solutions. In Sweden producers' responsibility for different products, a tax and bans on deposition of waste at landfills implicates a reorganisation of the municipal solid waste management. Plans are made for new incineration plants, which leads to that waste combustion comes to play a role in the reorganisation of the Swedish energy system as well. The energy system is supposed to adapt to governmental decisions on decommission of nuclear plants and decreased use of fossil fuels. Waste from private households consists of hazardous waste, scrap waste, waste electronics and wastes that to a large extent are generated in the kitchen. The latter type has been studied in this thesis, except for newsprint, glass- and metal packages that by source separation haven't ended up in the waste bin. Besides the remaining amount of the above mentioned fractions, the waste consists of food waste, paper, cardboard- and plastic packages and inert material. About 80-90 % of this mixed household waste is combustible, and the major part of that is also possible to recycle. Several systems analyses of municipal solid waste management have been performed. Deposition at landfill has been compared to energy recovery, recycling of material (plastic and cardboard) and recycling of nutrients (in food waste). Environmental impact, fuel consumption and costs are calculated for the entire lifecycle from the households, until the waste is treated and the by-products have been taken care of. To stop deposition at landfills is the most important measure to take as to decrease the environmental impact from landfills, and instead use the waste as a resource, thereby substituting production from virgin resources (avoiding resource extraction and emissions). The best alternative to landfilling is incineration, but also material recycling

  15. Environmental and Economic Assessment of Swedish Municipal Solid Waste Management in a Systems Perspective

    Energy Technology Data Exchange (ETDEWEB)

    Eriksson, Ola

    2003-04-01

    Waste management is something that affects most people. The waste amounts are still increasing, but the waste treatment is changing towards recycling and integrated solutions. In Sweden producers' responsibility for different products, a tax and bans on deposition of waste at landfills implicates a reorganisation of the municipal solid waste management. Plans are made for new incineration plants, which leads to that waste combustion comes to play a role in the reorganisation of the Swedish energy system as well. The energy system is supposed to adapt to governmental decisions on decommission of nuclear plants and decreased use of fossil fuels. Waste from private households consists of hazardous waste, scrap waste, waste electronics and wastes that to a large extent are generated in the kitchen. The latter type has been studied in this thesis, except for newsprint, glass- and metal packages that by source separation haven't ended up in the waste bin. Besides the remaining amount of the above mentioned fractions, the waste consists of food waste, paper, cardboard- and plastic packages and inert material. About 80-90 % of this mixed household waste is combustible, and the major part of that is also possible to recycle. Several systems analyses of municipal solid waste management have been performed. Deposition at landfill has been compared to energy recovery, recycling of material (plastic and cardboard) and recycling of nutrients (in food waste). Environmental impact, fuel consumption and costs are calculated for the entire lifecycle from the households, until the waste is treated and the by-products have been taken care of. To stop deposition at landfills is the most important measure to take as to decrease the environmental impact from landfills, and instead use the waste as a resource, thereby substituting production from virgin resources (avoiding resource extraction and emissions). The best alternative to landfilling is incineration, but also material

  16. Tank Waste Remediation System tank waste pretreatment and vitrification process development testing requirements assessment

    International Nuclear Information System (INIS)

    Howden, G.F.

    1994-01-01

    A multi-faceted study was initiated in November 1993 to provide assurance that needed testing capabilities, facilities, and support infrastructure (sampling systems, casks, transportation systems, permits, etc.) would be available when needed for process and equipment development to support pretreatment and vitrification facility design and construction schedules. This first major report provides a snapshot of the known testing needs for pretreatment, low-level waste (LLW) and high-level waste (HLW) vitrification, and documents the results of a series of preliminary studies and workshops to define the issues needing resolution by cold or hot testing. Identified in this report are more than 140 Hanford Site tank waste pretreatment and LLW/HLW vitrification technology issues that can only be resolved by testing. The report also broadly characterizes the level of testing needed to resolve each issue. A second report will provide a strategy(ies) for ensuring timely test capability. Later reports will assess the capabilities of existing facilities to support needed testing and will recommend siting of the tests together with needed facility and infrastructure upgrades or additions

  17. Tank Waste Remediation System tank waste pretreatment and vitrification process development testing requirements assessment

    Energy Technology Data Exchange (ETDEWEB)

    Howden, G.F.

    1994-10-24

    A multi-faceted study was initiated in November 1993 to provide assurance that needed testing capabilities, facilities, and support infrastructure (sampling systems, casks, transportation systems, permits, etc.) would be available when needed for process and equipment development to support pretreatment and vitrification facility design and construction schedules. This first major report provides a snapshot of the known testing needs for pretreatment, low-level waste (LLW) and high-level waste (HLW) vitrification, and documents the results of a series of preliminary studies and workshops to define the issues needing resolution by cold or hot testing. Identified in this report are more than 140 Hanford Site tank waste pretreatment and LLW/HLW vitrification technology issues that can only be resolved by testing. The report also broadly characterizes the level of testing needed to resolve each issue. A second report will provide a strategy(ies) for ensuring timely test capability. Later reports will assess the capabilities of existing facilities to support needed testing and will recommend siting of the tests together with needed facility and infrastructure upgrades or additions.

  18. Simultaneous Hydrogen Generation and Waste Acid Neutralization in a Reverse Electrodialysis System

    KAUST Repository

    Hatzell, Marta C.; Zhu, Xiuping; Logan, Bruce E.

    2014-01-01

    power and hydrogen gas using waste heat-derived solutions, but high electrode overpotentials limit system performance. We show here that an ammonium bicarbonate (AmB) RED system can achieve simultaneous waste acid neutralization and in situ hydrogen

  19. Greenhouse gas emission mitigation relevant to changes in municipal solid waste management system.

    Science.gov (United States)

    Pikoń, Krzysztof; Gaska, Krzysztof

    2010-07-01

    Standard methods for assessing the environmental impact of waste management systems are needed to underpin the development and implementation of sustainable waste management practice. Life cycle assessment (LCA) is a tool for comprehensively ensuring such assessment and covers all impacts associated with waste management. LCA is often called "from cradle to grave" analysis. This paper integrates information on the greenhouse gas (GHG) implications of various management options for some of the most common materials in municipal solid waste (MSW). Different waste treatment options for MSW were studied in a system analysis. Different combinations of recycling (cardboard, plastics, glass, metals), biological treatment (composting), and incineration as well as land-filling were studied. The index of environmental burden in the global warming impact category was calculated. The calculations are based on LCA methodology. All emissions taking place in the whole life cycle system were taken into account. The analysis included "own emissions," or emissions from the system at all stages of the life cycle, and "linked emissions," or emissions from other sources linked with the system in an indirect way. Avoided emissions caused by recycling and energy recovery were included in the analysis. Displaced emissions of GHGs originate from the substitution of energy or materials derived from waste for alternative sources. The complex analysis of the environmental impact of municipal waste management systems before and after application of changes in MSW systems according to European Union regulations is presented in this paper. The evaluation is made for MSW systems in Poland.

  20. The German quality system for waste repositories

    International Nuclear Information System (INIS)

    Beckmerhagen, I.; Berg, H.P.; Brennecke, P.

    1993-01-01

    The Bundesamt fuer Strahlenschutz (BfS)--Federal Office for Radiation protection--has to guarantee that the requirements resulting from different regulations concerning planning, design, construction, operation and decommissioning of a waste repository are fulfilled. In addition, the results of the safety assessments lead to nuclear-specific requirements on the design of the plant as well as to requirements on the radioactive waste packages intended to be disposed of. Therefore, the implementation of a quality assurance (QA) and quality control (QC) system is an essential task in order to ensure that the designed quality is achieved so that the necessary precaution against damage is taken. In this paper, a detailed description of QA and QC to be applied to the planned Konrad repository as well as the basic principles and the present status of the waste package QC are indicated and discussed

  1. Removing radio-active wastes from nuclear power stations by the STEAG system

    International Nuclear Information System (INIS)

    Baatz, H.

    1978-01-01

    The mobile STEAG System for conditioning radio-active wastes from nuclear power stations represents a particularly safe and economic method of removing them in present day conditions. Cementation by the FAFNIR System is used for the greater part of the waste, the liquid concentrate (evaporator concentrate and filter slurry). For the special case of the medium active resin balls from the primary circuits, embedding in plastic by the FAMA process has proved to be the only available successful process so far. The highly active solid waste from the reactor core is decomposed by the MOSAIK System, is packed in transportable and storable containers and is removed from the fuel element storage pond. The systems are so safe that faults or interruptions of power station operation due to faults in removing radio-active wastes can be excluded. (orig.) [de

  2. Application of systems engineering to determine performance requirements for repository waste packages

    International Nuclear Information System (INIS)

    Aitken, E.A.; Stimmell, G.L.

    1987-01-01

    The waste package for a nuclear waste repository in salt must contribute substantially to the performance objectives defined by the Salt Repository Project (SRP) general requirements document governing disposal of high-level waste. The waste package is one of the engineered barriers providing containment. In establishing the performance requirements for a project focused on design and fabrication of the waste package, the systems engineering methodology has been used to translate the hierarchy requirements for the repository system to specific performance requirements for design and fabrication of the waste package, a subsystem of the repository. This activity is ongoing and requires a methodology that provides traceability and is capable of iteration as baseline requirements are refined or changed. The purpose of this summary is to describe the methodology being used and the way it can be applied to similar activities in the nuclear industry

  3. The validation of waste assay systems during active test at Rokkasho Reprocessing Plant

    International Nuclear Information System (INIS)

    Tamura, Takayuki; Miura, Yasushi; Iwamoto, Tomonori

    2007-01-01

    In order to implement accurate material accountancy at Rokkasho Reprocessing Plant (RRP) as a large scale reprocessing plant, it is necessary to introduce accurate measurement systems not only for mainstream material, but also appropriate measurement systems for solid waste materials. In this sense, the generated wastes by the active test operation have been measured with the Non-Destructive Assay Systems, such as Rokkasho Hulls Measurement System (RHMS) and Waste Crate Assay System (WCAS) for accountancy. This paper describes the experience of the NDA operation and the evaluation results for accountancy. (author)

  4. Management systems improvement strategy for the Office of Civilian Radioactive Waste Management

    International Nuclear Information System (INIS)

    Shelor, D.E.

    1991-01-01

    To achieve the goal of permanent disposal of spent nuclear fuel and high-level radioactive waste, the US DOE's Office of Civilian Radioactive Waste Management (OCRWM) is implementing a Management Systems Improvement Strategy (MSIS). This MSIS is structured around the systems engineering approach that separates the program mission into system and programmatic functions. OCRWM believes that this strategy will significantly improve the program and provide the framework needed to ensure successful implementation of the activities necessary to fulfill the mandate of the Nuclear Waste Policy Act, as amended

  5. A literature-based preliminary characterization of risks in the nuclear waste management system

    International Nuclear Information System (INIS)

    Daling, P.M.; Rhoads, R.E.; Van Luik, A.E.

    1990-04-01

    The objectives of this study were to (1) review the literature containing information on risks in the nuclear waste management system and (2) use this information to develop preliminary estimates of the potential magnitudes of these risks. Information was collected on a broad range of risk categories to assist the US Department of Energy (DOE) in communicating information about the risks in the waste management system. The study, which was completed prior to passage of the Nuclear Waste Policy Amendments Act of 1987, examined all of the portions of the nuclear waste management system envisioned by the DOE in the 1985 ''Mission Plant for the Civilian Radioactive Waste Management Program.'' As such, there may be statements in this paper that are not consistent with current DOE positions. The scope of this paper includes the repository, the integral Monitored Retrievable Storage (MRS) facility, and the transportation system that supports the repository and the MRS facility. Based on the results of this analysis, it is concluded that the radiological risks in the waste management system are small relative to nonradiological risks and relative to the risks of exposure to natural background radiation. 6 refs., 2 figs., 2 tabs

  6. The Swedish system for funding of nuclear waste management

    International Nuclear Information System (INIS)

    Hedman, Tommy; Westerlind, Magnus

    2003-01-01

    Nuclear activities in Sweden goes back to early 1950's. Research and development on spent fuel disposal in Sweden started in earnest with the report of the AKA-commission 1976, which outlined a complete system for the management of spent fuel and associated waste, including how to handle the costs. Components of the system, mentioned in the AKA-report, such as a sea transportation (MS Sigyn), a central spent fuel storage facility (CLAB) and a final repository for operational waste (SFR) have since been constructed and taken in operation. The research and planning for the additional facilities needed for a complete system is in an advanced stage. A nuclear waste fund has also been created, based on a special fee on nuclear power production. During the 1970's the nuclear power utilities established their own internal funds for future waste management expenses. These funds were transferred to the government-run financing system established in 1981 when the Swedish parliament passed the Act on the Financing of Future Expenses for Spent Nuclear Fuel etc. The fees to be paid into the Fund are to be based on the assumption that each reactor generates electricity for 25 years. These fees, plus the interest on the money already deposited in the Fund, must meet all expenses for handling spent fuel, dismantling facilities and for dealing with radioactive decommissioning waste. A guarantee shall compensate for the eventuality of a nuclear power plant being closed before the end of the 25-year earning period. The type of guarantee must be available until all nuclear waste has been placed in a repository and must cover contingencies for the waste programme. This guarantee will be used if expenses for future nuclear waste management become higher than expected, if these expenses have to be met earlier than expected, or if the actual amount in the Fund is lower than was estimated. The process of yearly cost calculations, review and determination of fees and guarantees is well

  7. Integrated waste management system costs in a MPC system

    International Nuclear Information System (INIS)

    Supko, E.M.

    1995-01-01

    The impact on system costs of including a centralized interim storage facility as part of an integrated waste management system based on multi-purpose canister (MPC) technology was assessed in analyses by Energy Resources International, Inc. A system cost savings of $1 to $2 billion occurs if the Department of Energy begins spent fuel acceptance in 1998 at a centralized interim storage facility. That is, the savings associated with decreased utility spent fuel management costs will be greater than the cost of constructing and operating a centralized interim storage facility

  8. Methods for assessing the sustainability of integrated municipal waste management and energy supply systems

    Energy Technology Data Exchange (ETDEWEB)

    Luoranen, M.

    2009-07-01

    The general striving to bring down the number of municipal landfills and to increase the reuse and recycling of waste-derived materials across the EU supports the debates concerning the feasibility and rationality of waste management systems. Substantial decrease in the volume and mass of landfill-disposed waste flows can be achieved by directing suitable waste fractions to energy recovery. Global fossil energy supplies are becoming more and more valuable and expensive energy sources for the mankind, and efforts to save fossil fuels have been made. Waste-derived fuels offer one potential partial solution to two different problems. First, waste that cannot be feasibly re-used or recycled is utilized in the energy conversion process according to EU's Waste Hierarchy. Second, fossil fuels can be saved for other purposes than energy, mainly as transport fuels. This thesis presents the principles of assessing the most sustainable system solution for an integrated municipal waste management and energy system. The assessment process includes: Formation of a SISMan (Simple Integrated System Management) model of an integrated system including mass, energy and financial flows, and formation of a MEFLO (Mass, Energy, Financial, Legislational, Other decisionsupport data) decision matrix according to the selected decision criteria, including essential and optional decision criteria. The methods are described and theoretical examples of the utilization of the methods are presented in the thesis. The assessment process involves the selection of different system alternatives (process alternatives for treatment of different waste fractions) and comparison between the alternatives. The first of the two novelty values of the utilization of the presented methods is the perspective selected for the formation of the SISMan model. Normally waste management and energy systems are operated separately according to the targets and principles set for each system. In the thesis the waste

  9. Life cycle assessment of waste management systems: Assessing technical externalities

    DEFF Research Database (Denmark)

    Brogaard, Line Kai-Sørensen

    The life cycle assessment (LCA) of a waste management system relies on many internal characteristics such as pollution control systems and recovery efficiencies. It also relies on technical externalities supporting the waste management system in terms of capital goods and energy and material...... for the primary and secondary production of materials, 366 datasets were gathered. The materials in focus were: paper, newsprint, cardboard, corrugated board, glass, aluminium, steel and plastics (HDPE, LDPE, LLDPE, PET, PS, PVC). Only one quarter of these data concerned secondary production, thus underlining...

  10. Solid waste management of Jakarta : Indonesia an environmental systems perspective

    OpenAIRE

    Trisyanti, Dini

    2004-01-01

    Solid waste management has been one of the critical issues in Jakarta, Indonesia.With enormous amounts of generated waste per day and limited supportinginfrastructure, the city has faced serious threat of environmental deterioration andhealth hazard. It relies on one sanitary landfill only, whose capacity is currently beingexceeded, leading to excessive amounts of solid wastes left untreated in the city. An assessment with a system perspective was carried out, aiming to examine thecomplexity ...

  11. Assuring data quality for use in waste management system trade-off studies

    International Nuclear Information System (INIS)

    Shay, M.R.; Stiles, D.L.

    1990-04-01

    The US Department of Energy's (DOE) Office of Civilian Radioactive Waste Management (OCRWM) has responsibility for constructing and operating facilities to accept and dispose of high-level nuclear waste generated by commercial and defense reactors. The Office of Systems Integration and Regulation within OCRWM has sponsored the development of a suite of computer models to be used in analyzing various possible alternatives for the configuration and operation of the federal high-level radioactive waste management system. This suite of models and their associated databases is referred to as the Systems Integration Modeling System (SIMS). As part of SIMS, Battelle Pacific Northwest Laboratories has developed the Systems Engineering Cost Analysis Capability (SECAC), which, working in conjunction with one or more logistics models, provides cost estimates at various levels of detail for the complete Federal Waste Management System (FWMS). The SECAC has been designed as a flexible tool for use in estimating the cost of alternative operating modes, different waste acceptance priorities and alternative designs that may be proposed for the FWMS components. A relatively large amount of data must be compiled and managed to fully represent these possible alternative FWMS configurations and operating strategies. A systems engineering approach has been implemented to ensure the integrity of this large cost data library throughout the evolution of the capability. 4 refs

  12. ETHEL's systems and facilities for safe management of tritiated wastes

    International Nuclear Information System (INIS)

    Mannone, F.; Dworschak, H.; Vassallo, G.

    1992-01-01

    The European Tritium Handling Experimental Laboratory (ETHEL) is a new tritium facility at the Commission of the European Community's Joint Research Centre, Ispra Site. The laboratory, destined to handle multigram amounts of tritium for safety related R and D purposes, is foreseen to start radioactive operations in late 1992. The general operation and maintenance of laboratory systems and future experiments will generate tritiated wastes in gaseous, liquid and solid forms. The management of such wastes under safe working conditions is a stringent laboratory requirement aimed at minimizing the risk of unacceptable tritium exposures to workers and the general public. This paper describes the main systems and facilities installed in ETHEL for the safe management of tritiated wastes

  13. Solid Waste Information and Tracking System (SWITS) Software Requirements Specification

    International Nuclear Information System (INIS)

    MAY, D.L.

    2000-01-01

    This document is the primary document establishing requirements for the Solid Waste Information and Tracking System (SWITS) as it is converted to a client-server architecture. The purpose is to provide the customer and the performing organizations with the requirements for the SWITS in the new environment. This Software Requirement Specification (SRS) describes the system requirements for the SWITS Project, and follows the PHMC Engineering Requirements, HNF-PRO-1819, and Computer Software Qualify Assurance Requirements, HNF-PRO-309, policies. This SRS includes sections on general description, specific requirements, references, appendices, and index. The SWITS system defined in this document stores information about the solid waste inventory on the Hanford site. Waste is tracked as it is generated, analyzed, shipped, stored, and treated. In addition to inventory reports a number of reports for regulatory agencies are produced

  14. Solid Waste Information and Tracking System (SWITS) Software Requirements Specification

    Energy Technology Data Exchange (ETDEWEB)

    MAY, D.L.

    2000-03-22

    This document is the primary document establishing requirements for the Solid Waste Information and Tracking System (SWITS) as it is converted to a client-server architecture. The purpose is to provide the customer and the performing organizations with the requirements for the SWITS in the new environment. This Software Requirement Specification (SRS) describes the system requirements for the SWITS Project, and follows the PHMC Engineering Requirements, HNF-PRO-1819, and Computer Software Qualify Assurance Requirements, HNF-PRO-309, policies. This SRS includes sections on general description, specific requirements, references, appendices, and index. The SWITS system defined in this document stores information about the solid waste inventory on the Hanford site. Waste is tracked as it is generated, analyzed, shipped, stored, and treated. In addition to inventory reports a number of reports for regulatory agencies are produced.

  15. Comparative Risk Analysis for Metropolitan Solid Waste Management Systems

    Science.gov (United States)

    Chang, Ni-Bin; Wang, S. F.

    1996-01-01

    Conventional solid waste management planning usually focuses on economic optimization, in which the related environmental impacts or risks are rarely considered. The purpose of this paper is to illustrate the methodology of how optimization concepts and techniques can be applied to structure and solve risk management problems such that the impacts of air pollution, leachate, traffic congestion, and noise increments can be regulated in the iong-term planning of metropolitan solid waste management systems. Management alternatives are sequentially evaluated by adding several environmental risk control constraints stepwise in an attempt to improve the management strategies and reduce the risk impacts in the long run. Statistics associated with those risk control mechanisms are presented as well. Siting, routing, and financial decision making in such solid waste management systems can also be achieved with respect to various resource limitations and disposal requirements.

  16. Carbon balance in bioregenerative life support systems: Some effects of system closure, waste management, and crop harvest index

    Science.gov (United States)

    Wheeler, Raymond M.

    In Advanced Life Support (ALS) systems with bioregenerative components, plant photosynthesis would be used to produce O2 and food, while removing CO2. Much of the plant biomass would be inedible and hence must be considered in waste management. This waste could be oxidized (e.g., incinerated or aerobically digested) to resupply CO2 to the plants, but this would not be needed unless the system were highly closed with regard to food. For example, in a partially closed system where some of the food is grown and some is imported, CO2 from oxidized waste when combined with crew and microbial respiration could exceed the CO2 removal capability of the plants. Moreover, it would consume some O2 produced from photosynthesis that could have been used by the crew. For partially closed systems it would be more appropriate to store or find other uses for the inedible biomass and excess carbon, such as generating soils or growing woody plants (e.g., dwarf fruit trees). Regardless of system closure, high harvest crops (i.e., crops with a high edible to total biomass ratio) would increase food production per unit area and O2 yields for systems where waste biomass is oxidized to recycle CO2. Such interlinking effects between the plants and waste treatment strategies point out the importance of oxidizing only that amount of waste needed to optimize system performance.

  17. How it is possible to build a national system for decommissioning waste management without site nor waste liberation: the case of France

    International Nuclear Information System (INIS)

    Averous, Jeremie; Chapalain, Estelle

    2003-01-01

    Past experience in decommissioning in France has shown that a national system has to be put in place to deal with decommissioning, waste elimination and site cleaning up activities in order to allow a consistent, safe, transparent and industrially applicable management of these matters. A system founded on successive lines of defence has been put into enforcement, which does not involve any site nor waste liberation, as it is considered that the criteria associated are always prone to discussion and contradiction. This system is based on the following concepts: - 'nuclear waste', waste prone to have been contaminated or activated, is segregated from 'conventional waste' using a system involving successive lines of defence, and hence, building a very high level of confidence that no 'nuclear waste' will be eliminated without control in conventional waste eliminators or recycling facilities; - 'nuclear waste' is eliminated in dedicated facilities or repositories, or in conventional facilities under the condition of a special authorization based on a radiological impact study and a public inquiry; - a global safety evaluation of the nuclear site is conducted after decommissioning in order to define possible use restrictions. In all cases, minimum restrictions will be put into enforcement in urbanization plans to ensure sufficient precaution when planning future uses of the ground or the building. This paper describes this global system in detail and shows that its inherent consistency allows it to be easily applicable by operators while achieving a high level of safety and confidence. It is now widely accepted by stakeholders. The French Nuclear Safety Authority is now working to apply this methodology more widely to other nuclear practices like the waste management from medical, research and industrial activities, or from past or remediation activities. (authors)

  18. Solid waste information and tracking system server conversion project management plan

    International Nuclear Information System (INIS)

    MAY, D.L.

    1999-01-01

    The Project Management Plan governing the conversion of Solid Waste Information and Tracking System (SWITS) to a client-server architecture. The Solid Waste Information and Tracking System Project Management Plan (PMP) describes the background, planning and management of the SWITS conversion. Requirements and specification documentation needed for the SWITS conversion will be released as supporting documents

  19. Tank waste remediation system retrieval and disposal mission initial updated baseline summary

    International Nuclear Information System (INIS)

    Swita, W.R.

    1998-01-01

    This document provides a summary of the proposed Tank Waste Remediation System Retrieval and Disposal Mission Initial Updated Baseline (scope, schedule, and cost) developed to demonstrate the Tank Waste Remediation System contractor's Readiness-to-Proceed in support of the Phase 1B mission

  20. Application of geographic information systems to waste minimization efforts at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Lyttle, T.W.; Smith, D.M.; Burns, M.; Weinrach, J.B.

    1993-01-01

    At Los Alamos National Laboratory (LANL), facility waste streams tend to be small but highly diverse. Initial characterization of such waste streams is often difficult in part due to a lack of tools to assist the generators themselves in completing such assessments. A methodology has been developed at LANL to allow process knowledgeable field personnel to develop baseline waste generation assessments and to evaluate potential waste minimization technology. This Process Waste Assessment (PWA) system is an application constructed within the Process Modeling System and currently being integrated with the InFoCAD Geographic Information System (GIS) . The Process Modeling System (PMS) is an object-oriented, mass balance-based, discrete-event simulation framework written using the Common Lisp Object System (CLOS) . Analytical capabilities supported within the PWA system include: complete mass balance specifications, historical characterization of selected waste streams and generation of facility profiles for materials consumption, resource utilization and worker exposure. Development activities include integration with the LANL facilities management Geographic Information System (GIS) and provisions for a Best Available Technologies (BAT) database. The environments used to develop these assessment tools will be discussed in addition to a review of initial implementation results