WorldWideScience

Sample records for waste liquors production

  1. Toxic waste liquor disposal

    International Nuclear Information System (INIS)

    Burton, W.R.

    1985-01-01

    Toxic waste liquors, especially radio active liquors, are disposed in a sub-zone by feeding down a bore hole a first liquid, then a buffer liquid (e.g. water), then the toxic liquors. Pressure variations are applied to the sub-zone to mix the first liquid and liquors to form gels or solids which inhibit further mixing and form a barrier between the sub-zone and the natural waters in the environment of the sub-zone. In another example the location of the sub-zone is selected so that the environement reacts with the liquors to produce a barrier around the zone. Blind bore holes are used to monitor the sub-zone profile. Materials may be added to the liquor to enhance barrier formation. (author)

  2. Detoxification of acidic biorefinery waste liquor for production of high value amino acid.

    Science.gov (United States)

    Christopher, Meera; Anusree, Murali; Mathew, Anil K; Nampoothiri, K Madhavan; Sukumaran, Rajeev Kumar; Pandey, Ashok

    2016-08-01

    The current study evaluates the detoxification of acid pretreatment liquor (APL) using adsorbent (ADS 400 & ADS 800) or ion-exchange (A-27MP & A-72MP) resins and its potential for amino acid production. The APL is generated as a by-product from the pretreatment of lignocellulosic biomass and is rich monomeric sugars as well as sugar degradation products (fermentation inhibitors) such as furfural and hydroxymethyl furfural (HMF). Of the four resins compared, ADS 800 removed approximately 85% and 60% of furfural and HMF, respectively. ADS 800 could be reused for up to six cycles after regeneration without losing its adsorption properties. The study was further extended by assessing the fermentability of detoxified APL for l-lysine production using wild and mutant strains of Corynebacterium glutamicum. The detoxified APL was superior to APL for l-lysine production. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Feasibility of disposing waste glyphosate neutralization liquor with cement rotary kiln

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Y.; Bao, Y.B.; Cai, X.L.; Chen, C.H. [College of Materials Science and Engineering, Nanjing Tech University, Nanjing 210009 (China); State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 210009 (China); Ye, X.C., E-mail: yexuchu@njtech.edu.cn [College of Materials Science and Engineering, Nanjing Tech University, Nanjing 210009 (China); State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 210009 (China)

    2014-08-15

    Highlights: • The waste neutralization liquor was injected directly into the kiln system. • No obvious effect on the quality of cement clinker. • The disposing method was a zero-discharge process. • The waste liquor can be used as an alternative fuel to reduce the coal consumption. - Abstract: The waste neutralization liquor generated during the glyphosate production using glycine-dimethylphosphit process is a severe pollution problem due to its high salinity and organic components. The cement rotary kiln was proposed as a zero discharge strategy of disposal. In this work, the waste liquor was calcinated and the mineralogical phases of residue were characterized by scanning electron microscope (SEM) and X-ray diffraction (XRD). The mineralogical phases and the strength of cement clinker were characterized to evaluate the influence to the products. The burnability of cement raw meal added with waste liquor and the calorific value of waste liquor were tested to evaluate the influence to the thermal state of the kiln system. The results showed that after the addition of this liquor, the differences of the main phases and the strength of cement clinker were negligible, the burnability of raw meal was improved; and the calorific value of this liquor was 6140 J/g, which made it could be considered as an alternative fuel during the actual production.

  4. Feasibility of disposing waste glyphosate neutralization liquor with cement rotary kiln

    International Nuclear Information System (INIS)

    Bai, Y.; Bao, Y.B.; Cai, X.L.; Chen, C.H.; Ye, X.C.

    2014-01-01

    Highlights: • The waste neutralization liquor was injected directly into the kiln system. • No obvious effect on the quality of cement clinker. • The disposing method was a zero-discharge process. • The waste liquor can be used as an alternative fuel to reduce the coal consumption. - Abstract: The waste neutralization liquor generated during the glyphosate production using glycine-dimethylphosphit process is a severe pollution problem due to its high salinity and organic components. The cement rotary kiln was proposed as a zero discharge strategy of disposal. In this work, the waste liquor was calcinated and the mineralogical phases of residue were characterized by scanning electron microscope (SEM) and X-ray diffraction (XRD). The mineralogical phases and the strength of cement clinker were characterized to evaluate the influence to the products. The burnability of cement raw meal added with waste liquor and the calorific value of waste liquor were tested to evaluate the influence to the thermal state of the kiln system. The results showed that after the addition of this liquor, the differences of the main phases and the strength of cement clinker were negligible, the burnability of raw meal was improved; and the calorific value of this liquor was 6140 J/g, which made it could be considered as an alternative fuel during the actual production

  5. Efficiency of 72h- fermented corn waste liquor as a potential source for

    African Journals Online (AJOL)

    okafor

    tests. Equal concentrations of the LAB isolates at their determined peak ... Key Words: Probiotics, Lactic acid bacteria, Fermentation, Corn waste-liquor. ... diary products, decaying plants, intestinal tract and mucous membranes of animals and ...

  6. Clear Liquor Scrubbing with Anhydrite Production

    International Nuclear Information System (INIS)

    Hargrove, O. W.; Carey, T. R.; Lowell, P. S.; Meserole, F. B.; Rhudy, R. G.; Feeley, Thomas J.

    1997-01-01

    The objective of this project to develop an advanced flue gas desulfurization (FGD) process that has decreased capital and operating costs, higher SO 2 removal efficiency, and better by-product solids quality than existing, commercially available technology. A clear liquor process (which uses a scrubbing liquid with no solids) will be used to accomplish this objective rather than a slurry liquor process (which contains solids). This clear liquor scrubbing (CLS) project is focused on three research areas: (1) Development of a clear liquor scrubbing process that uses a clear solution to remove SO 2 from flue gas and can be operated under inhibited-oxidation conditions; (2) Development of an anhydrite process that converts precipitated calcium sulfite to anhydrous calcium sulfate (anhydrite); and (3) Development of an alkali/humidification process to remove HCl from flue gas upstream of the FGD system. The anhydrite process also can be retrofit into existing FGD systems to produce a valuable by-product as an alternative to gypsum. This fits well into another of FETC's PRDA objectives of developing an advanced byproduct recovery subsystem capable of transforming SO 2 into a useable byproduct or high-volume valuable commodities of interest. This paper describes the proposed processes, outlines the test approach, and preliminary Phase I test results

  7. Utilization of Candida berkhout strains in the production of yeasts and ethyl alcohol from sulfite waste liquor and molasses

    Energy Technology Data Exchange (ETDEWEB)

    Karczewska, H

    1962-01-01

    A single strain of Candida tropicalis was used to produce EtOH and fodder yeast from pasteurized, neutralized sulfite liquor containing 3.5% reducing substances and supplemented with NH/sub 3/ and P salts, or from molasses containing 150 g sucrose per l. After 48 hours sugar utilization by Candida was 87.7% and EtOH yield 56.1%; Saccharomyces cerevisiae gave 94.8 and 64.6 to 65.2%, respectively. After 72 hours sugar utilization and EtOH yield by Candida was 94.9 and 60.4% respectively.

  8. Efficient exfoliation of layered materials by waste liquor

    Science.gov (United States)

    Ding, Jiheng; Zhao, Hongran; Zheng, Yan; Wang, Qiaolei; Chen, Hao; Dou, Huimin; Yu, Haibin

    2018-03-01

    Based on their unique material properties, two-dimensional (2D) nanomaterials such as graphene, molybdenum disulfide (MoS2), and boron nitride (BN) have been attracting increased research interest. The potential of 2D materials, in the form of nanoplatelets that are used as new materials, will be important to both nanomaterials and advanced materials. Water is usually considered to be the ideal dispersed medium, and the essential hydrophobicity and limitations to mass production of 2D nanoplatelets have become quite serious obstacles to their usage in various fields. In this paper, pulping black liquor was used as dispersant, with high concentration of lignin to get single- and few-layered nanoplatelets. The whole process required only the high-shear mixing of 2D layered materials and pulping waste liquor. This method was not only simple and efficient but also environmentally friendly and resource-recycling. Moreover, the fabricated single- or few-layered nanoplatelets possessed good solubility in aqueous solution due to their edge functionalization, and could be well dispersed in water at concentrations (10 mg ml-1 for graphene, 6.3 mg ml-1 for MoS2, and 6.0 mg ml-1 for BN) which were much higher than that of other methods. The dispersions of graphene, MoS2, and BN nanosheets were highly stable over several months, which allowed us to easily prepare graphene, MoS2, and BN films through simple vacuum filtration or spraying. These results indicated that pulping black liquor can be used as a material or reagent, and the mass production of 2D material is possible in a simple and fast method.

  9. Xylitol production from waste xylose mother liquor containing miscellaneous sugars and inhibitors: one-pot biotransformation by Candida tropicalis and recombinant Bacillus subtilis.

    Science.gov (United States)

    Wang, Hengwei; Li, Lijuan; Zhang, Lebin; An, Jin; Cheng, Hairong; Deng, Zixin

    2016-05-16

    The process of industrial xylitol production is a massive source of organic pollutants, such as waste xylose mother liquor (WXML), a viscous reddish-brown liquid. Currently, WXML is difficult to reuse due to its miscellaneous low-cost sugars, high content of inhibitors and complex composition. WXML, as an organic pollutant of hemicellulosic hydrolysates, accumulates and has become an issue of industrial concern in China. Previous studies have focused only on the catalysis of xylose in the hydrolysates into xylitol using one strain, without considering the removal of other miscellaneous sugars, thus creating an obstacle to subsequent large-scale purification. In the present study, we aimed to develop a simple one-pot biotransformation to produce high-purity xylitol from WXML to improve its economic value. In the present study, we developed a procedure to produce xylitol from WXML, which combines detoxification, biotransformation and removal of by-product sugars (purification) in one bioreactor using two complementary strains, Candida tropicalis X828 and Bacillus subtilis Bs12. At the first stage of micro-aerobic biotransformation, the yeast cells were allowed to grow and metabolized glucose and the inhibitors furfural and hydroxymethyl furfural (HMF), and converted xylose into xylitol. At the second stage of aerobic biotransformation, B. subtilis Bs12 was activated and depleted the by-product sugars. The one-pot process was successfully scaled up from shake flasks to 5, 150 L and 30 m(3) bioreactors. Approximately 95 g/L of pure xylitol could be obtained from the medium containing 400 g/L of WXML at a yield of 0.75 g/g xylose consumed, and the by-product sugars glucose, L-arabinose and galactose were depleted simultaneously. Our results demonstrate that the one-pot procedure is a viable option for the industrial application of WXML to produce value-added chemicals. The integration of complementary strains in the biotransformation of hemicellulosic hydrolysates is

  10. Methylated liquor treatment process in caffeine production

    Science.gov (United States)

    Zhou, Junbo; Yang, Mingyang; Huang, Wenjia; Cui, Shenglu; Gao, Liping

    2018-02-01

    The caffeine production process produces a large amount of sodium methyl sulphate in the methylated mother liquor. In order to recycle this part of ingredient, we use the mother liquid of Shijiazhuang Xin Nuowei Pharmaceutical Co., Ltd. as the object of study, the use of “nanofiltration (NF) - Dish Type Reverse Osmosis (DTRO) “combination of membrane technology for desalination and concentration. The experimental results show that the concentration of sodium sulfate in the nanofiltration solution is 0.37 g • L -1, the rejection rate is 98%, and the concentration of sodium methyl sulfate in DTRO concentrated solution is 453.80 g • L -1, which meets the requirements of the enterprise.

  11. Removal of boron (B) from waste liquors.

    Science.gov (United States)

    Jiang, J Q; Xu, Y; Simon, J; Quill, K; Shettle, K

    2006-01-01

    This paper explores the use of electrocoagulation to remove boron from waste effluent in comparison with alum coagulation. In treating model test wastes, greater boron removals were achieved with electrocoagulation at low doses than conventional alum coagulation when reaction was undertaken for the same conditions (pH 8.5, and initial boron concentration was 500 mg/L). Al electrocoagulation can achieve good boron removal performance (68.3%) at a dose of 2.1 (as molar ratio of Al:B, and for current density of 62.1 A/m2), while alum coagulation can only achieve the maximum boron removal of 56% at a dose of 2.4. Also, Al electrocoagulation can remove 15-20% more boron than alum coagulation for the same dose compared in the treatment of both model test wastes and industry effluent. The estimation of running costs shows that to achieve 75% boron removal from industry waste effluent, i.e. removing 150 g of boron from 1 m3 of effluent, electrocoagulation was 6.2 times cheaper than alum coagulation. The economic advantage of electrocoagulation in the treatment of boron-containing waste effluent is thus significant.

  12. Chemical by-products from spent sulfite liquors

    Energy Technology Data Exchange (ETDEWEB)

    Whitmore, Jr, L M; Wiley, A J

    1958-01-01

    Current practices for recovering sugars, lignosulfonates, ethanol and feed yeast and product uses are reviewed. A process for separating sugars is described in which the sulfite liquor is spray dried and refluxed with acetone containing a concentrated H/sub 2/SO/sub 4/ catalyst, and the di-acetone sugar derivatives are filtered or centrifuged from the acetone insolubles. Recovery of guaiacyl and syringyl derivatives from the lignosulfonate portion of the liquor is discussed.

  13. Value Addition to Sulfate Waste Pickle Liquor of Steel Industry Using Hydrometallurgical Processes

    Science.gov (United States)

    Agrawal, Archana; Sahu, K. K.

    2009-12-01

    The solvent extraction of concentrated acid was investigated from sulfate waste pickle liquors using Cyanex 923 (trialkylphosphine oxide (TRPO); manufactured by Cytec Industries Inc., Woodland Park, NJ; provided by Cyanamid Canada Inc. (Markham, Canada)) as an extractant. The effect of various parameters was studied such as extractant concentration, organic-to-aqueous phase ratio, temperature. and retention time on acid extraction from the waste pickle liquor to the organic phase, After the saturation of the organic phase with sulfuric acid, stripping studies were performed to back-extract the pure acid into the aqueous phase. The raffinate of the solvent extraction process that contains both ferrous and ferric iron as well as trace impurities was subjected to oxidation and hydrothermal treatment to precipitate iron with a well-defined pseudo-cubic morphology and a high coercivity value that renders it suitable for high-grade ferrite production.

  14. D-Xylose from waste liquors of a viscose process

    Energy Technology Data Exchange (ETDEWEB)

    Hashimoto, T; Mimura, M

    1977-12-14

    D-Xylose was prepared in good yields by neutralizing alkali waste liquors containing hemicellulose (I) with inorganic acids, dialyzing to remove salts hydrolyzing with acids, fermenting to decompose hexose, decolorizing, concentrating to < 15% sugars, treating with alcohols to precipitate oligosugars, removing the precipitate, and crystalizing. Thus, 1 kg waste liquor containing 27 g I was neutralized with 5% HCl, dialyzed at 15/sup 0/ for 48 h with parchment paper, concentrated at 40/sup 0/ to give a 500 g solution containing 7% H/sub 2/SO/sub 4/, boiled for 3 h, neutralized with BaCO/sub 3/, mixed with 10 g yeast at pH 5.4 to 5.8 (filtrate) fermented at 35/sup 0/ for 12 h, filtered, decolorized, concentrated at 40/sup 0/ to > 80 g mixed with EtOH to give a precipitate, filtered, concentrated to 17 g syrup, and mixed with AcOH to obtain 7.2 g D-Xylose.

  15. Exploring the antioxidant potential of lignin isolated from black liquor of oil palm waste.

    Science.gov (United States)

    Bhat, Rajeev; Khalil, H P S A; Karim, A A

    2009-09-01

    This study was conducted to evaluate the potential antioxidant activity of lignin obtained from black liquor, a hazardous waste product generated during the extraction of palm oil. Antioxidant potential of the extracted lignin was evaluated by dissolving the extracted samples in 2 different solvent systems, namely, 2-methoxy ethanol and DMSO. Results revealed high percent inhibition of the 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical in the lignin sample dissolved in 2-methoxy ethanol over DMSO (concentration range of 1-100 microg/ml). Lignin extracted in 2-methoxy ethanol exhibited higher inhibition percentage (at 50 microg/ml, 84.2%), whereas a concentration of 100 microg/ml was found to be effective in the case of the DMSO solvent (69.8%). Fourier transform infrared (FTIR) spectrometry revealed that the functional groups from the extracted lignin and commercial lignin were highly similar, indicating the purity of the lignin extracted from black liquor. These results provide a strong basis for further applications of lignin in the food industry and also illustrate an eco-friendly approach to utilize oil palm black liquor.

  16. Hydrogen production by supercritical water gasification of alkaline black liquor

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Changqing; Guo, Liejin; Chen, Yunan; Lu, Youjun [Xi' an Jiatong Univ. (China)

    2010-07-01

    Black liquor was gasified continuously in supercritical water successfully and the main gaseous products were H{sub 2}, CO{sub 2} and CH{sub 4} with little amount of CO, C{sub 2}H{sub 4} and C{sub 2}H{sub 6}. The increase of the temperature and the decrease of the flow rate and black liquor concentration enhanced SCWG of black liquor. The change of the system pressure had limited influence on the gasification effect. The maximal COD removal efficiency of 88.69 % was obtained at the temperature of 600 C. The pH values of the aqueous residue were all decreased to the range of 6.4{proportional_to}8 while the pH value of cooling effluence below 360 C increased to about 11 and the sodium content was much higher than that in the aqueous residue. The reaction rate for COD degradation in supercritical water was obtained by assuming pseudo first order reaction. And the activation energy and pre-exponential for COD removal in SCWG were 74.38kJ/mol and 1.11 x 10{sup 4} s{sup -1} respectively. (orig.)

  17. The denitration of simulated fast reactor highly active liquor waste

    International Nuclear Information System (INIS)

    Saum, C.J.; Ford, L.H.; Blatts, N.

    1981-01-01

    A short series of tests have been made with simulated HAL containing representative concentrations of palladium and phosphate ion. The information obtained has been confirmed in a small scale continuous denitration plant. These cases of four stirred pot reactors arranged in cascade. One possible advantage of this plant would be the low mean acidity in the first stage compared to the feed material which would limit to some extent the violence of the reaction. This would lead to a lower rate of gas evolution and may permit operation even with liquors where foaming is a problem. (DG)

  18. Neutralization of red mud with pickling waste liquor using Taguchi's design of experimental methodology.

    Science.gov (United States)

    Rai, Suchita; Wasewar, Kailas L; Lataye, Dilip H; Mishra, Rajshekhar S; Puttewar, Suresh P; Chaddha, Mukesh J; Mahindiran, P; Mukhopadhyay, Jyoti

    2012-09-01

    'Red mud' or 'bauxite residue', a waste generated from alumina refinery is highly alkaline in nature with a pH of 10.5-12.5. Red mud poses serious environmental problems such as alkali seepage in ground water and alkaline dust generation. One of the options to make red mud less hazardous and environmentally benign is its neutralization with acid or an acidic waste. Hence, in the present study, neutralization of alkaline red mud was carried out using a highly acidic waste (pickling waste liquor). Pickling waste liquor is a mixture of strong acids used for descaling or cleaning the surfaces in steel making industry. The aim of the study was to look into the feasibility of neutralization process of the two wastes using Taguchi's design of experimental methodology. This would make both the wastes less hazardous and safe for disposal. The effect of slurry solids, volume of pickling liquor, stirring time and temperature on the neutralization process were investigated. The analysis of variance (ANOVA) shows that the volume of the pickling liquor is the most significant parameter followed by quantity of red mud with 69.18% and 18.48% contribution each respectively. Under the optimized parameters, pH value of 7 can be achieved by mixing the two wastes. About 25-30% of the total soda from the red mud is being neutralized and alkalinity is getting reduced by 80-85%. Mineralogy and morphology of the neutralized red mud have also been studied. The data presented will be useful in view of environmental concern of red mud disposal.

  19. Magnox Swarf Storage Silo Liquor Effluent Management -Sellafield Site, Cumbria, UK - Legacy radioactive waste storage - 59271

    International Nuclear Information System (INIS)

    Le Clere, Stephen

    2012-01-01

    The Sellafield Magnox Swarf Storage Silo (MSSS) was constructed to provide an underwater storage facility for irradiated magnox cladding metal Swarf, as well as miscellaneous beta-gamma waste from several sources. Liquid effluent arisings from hazard reduction activities at this facility represent the toughest effluent treatment challenge within the company's Legacy Ponds and Silos portfolio. The key requirement for hazard reduction has generated many substantial challenges as the facility is readied for decommissioning. This has demanded the production of carefully thought out strategies for managing, and overcoming, the key difficulties to be encountered as hazard reduction progresses. The complexity associated with preparing for waste retrievals from the Magnox Swarf Storage Silo, has also generated the demand for a mix of creativity and perseverance to meet the challenges and make progress. Challenging the status quo and willingness to accept change is not easy and the road to overall hazard reduction for the high hazard MSSS facility will demand the skills and investment of individuals, teams, and entire facility work-forces. The first steps on this road have been taken with the successful introduction of liquor management operations, however much more is yet to be achieved. Clear communication, investing in stakeholder management, perseverance in the face of difficulty and a structured yet flexible programme delivery approach, will ensure the continued success of tackling the complex challenges of treating liquid effluent from a legacy fuel storage silo at the Sellafield Site. (authors)

  20. Investigating the potential of thermophilic species for ethanol production from industrial spent sulfite liquor

    Directory of Open Access Journals (Sweden)

    Michaela Weissgram

    2015-10-01

    Full Text Available Thermophilic microorganisms hold a great potential for bioethanol production on waste biomass, due to their ability to utilize pentoses and hexoses alike. However, to date hardly any data on thermophiles growing directly on industrial substrates like spent sulfite liquor (SSL are available. This contribution investigates the ability of Thermoanaerobacter species to utilize the main sugars in the used SSL (mannose, glucose and xylose and the effect of process parameters (pH, temperature and sugar concentration on their growth. Based on these results the strain T. mathranii was chosen for further studies. The ability of T. mathranii to grow directly on SSL was investigated and the effect of several inhibiting substances on growth was elucidated. Furthermore it was tested whether pretreatment with activated charcoal can increase the fermentability of SSL. The fermentations were evaluated based on yields and specific rates. It could be shown that T. mathranii was able to ferment all sugars in the investigated softwood SSL and fermented diluted, untreated SSL (up to 2.7% (w/w dry matter. Pretreatment with activated charcoal could slightly reduce the amount of phenols in the substrate and thus facilitate growth and ethanol production on higher SSL concentrations (up to 4.7% (w/v dry matter. Ethanol yields of 0.29-0.44 Cmmol of ethanol per Cmmol sugar were obtained on untreated and pretreated spent sulfite liquor, respectively. These results on an industrial substrate strengthen the claim that thermophilic microorganisms might be the optimal candidates for forest biorefinery.

  1. Cost estimate for the production of ethanol from spent sulphite liquors and wood residues

    International Nuclear Information System (INIS)

    Nguyen, Q.

    1990-03-01

    A Lotus 1-2-3 spreadsheet model for estimating the production cost of 95 wt % ethanol from spent sulfite liquors (SSL) and from a wood hydrolysis front-end is described. The most economically attractive process is the fermentation of softwood SSL (SSSL) by the yeast Saccharomyces cerevisiae, yielding a production cost estimate of $0.47/liter. The cost of producing ethanol from cellulosic waste (clarifier sludge) via acid hydrolysis is approximately $0.55/liter, still below the market price of ca $0.60/liter for industrial ethanol. Neither the fermentation of hardwood SSL nor the conversion of sawdust to ethanol, using current technology, are economically viable. However, these processes can become commercially viable if acetic acid-tolerant xylose-fermenting yeasts can be found. 17 refs., 12 figs., 16 tabs

  2. The effect of alkali on the product distribution from black liquor conversion under supercritical water.

    Science.gov (United States)

    Hawangchu, Y; Atong, D; Sricharoenchaikul, V

    2017-07-01

    Lignin in chemical pulping waste, or black liquor (BL), can be converted into various products via supercritical water gasification (SCWG). However, the inherited alkaline contents from the pulping chemicals may affect the product yields and properties. In this research, the influence of the residual alkali on the product distribution via SCWG of soda BL and kraft BL was evaluated. The SCWG was performed in a batch quartz reactor for 10 min at various temperatures (673, 773 and 873 K) and pressures (250, 300 and 400 bar). The highest hydrogen (H 2 ) production occurred at 873 K for the soda BL. The water-gas shift reaction with sodium ions played an important part in the H 2 production, while only small amounts of methane and carbon monoxide were detected. Hydrocarbons, carboxylic acids and esters were the dominant substrates in the liquid products, which denoted the potential of this method for bond cleaving of the lignin macromolecule. As a result, BL, which typically contains alkali salt, was an appropriate feedstock for the SCWG reaction to produce renewable fuel. This method not only has a positive influence on the generation of value added products from highly corrosive waste but also helps avoid some technical problems commonly encountered with direct firing in a recovery boiler.

  3. Evaluating the Intoxicating Degree of Liquor Products with Combinations of Fusel Alcohols, Acids, and Esters

    Directory of Open Access Journals (Sweden)

    Jia Xie

    2018-05-01

    Full Text Available To investigate the effects of fusel alcohols on the intoxicating degree of liquor products, formulated liquors (FLs were prepared by blending 1-propanol, isobutanol, and isoamyl alcohol with ethanol, organic acids, and corresponding ethyl esters to simulate the formula of traditional Chinese liquors. The prepared FLs were submitted for evaluation of their intoxicating degree (ID. The results showed that the fusel alcohols had a biphasic effect on the IDs of the FLs, depending on the comprehensive coordination of the characteristic minor components. The importance of the suitable ratio of alcohols/acids/esters (RAAE on the IDs was also revealed. Under an optimal ratio level, the fusel alcohols exhibited negligible effects on the IDs of the FLs. Moreover, the ratio of isoamyl alcohol to isobutanol (IA/IB showed a strong positive correlation to the IDs of the FLs. This study lays a foundation for the potential application in producing low-ID liquor.

  4. Evaluating the Intoxicating Degree of Liquor Products with Combinations of Fusel Alcohols, Acids, and Esters.

    Science.gov (United States)

    Xie, Jia; Tian, Xiao-Fei; He, Song-Gui; Wei, Yun-Lu; Peng, Bin; Wu, Zhen-Qiang

    2018-05-23

    To investigate the effects of fusel alcohols on the intoxicating degree of liquor products, formulated liquors (FLs) were prepared by blending 1-propanol, isobutanol, and isoamyl alcohol with ethanol, organic acids, and corresponding ethyl esters to simulate the formula of traditional Chinese liquors. The prepared FLs were submitted for evaluation of their intoxicating degree (ID). The results showed that the fusel alcohols had a biphasic effect on the IDs of the FLs, depending on the comprehensive coordination of the characteristic minor components. The importance of the suitable ratio of alcohols/acids/esters (RAAE) on the IDs was also revealed. Under an optimal ratio level, the fusel alcohols exhibited negligible effects on the IDs of the FLs. Moreover, the ratio of isoamyl alcohol to isobutanol (IA/IB) showed a strong positive correlation to the IDs of the FLs. This study lays a foundation for the potential application in producing low-ID liquor.

  5. Synthetic gas production from dry black liquor gasification process using direct causticization with CO2 capture

    International Nuclear Information System (INIS)

    Naqvi, Muhammad; Yan, Jinyue; Dahlquist, Erik

    2012-01-01

    Highlights: ► We study synthetic gas production from dry black liquor gasification system. ► Direct causticization eliminates energy intensive lime kiln reducing biomass use. ► Results show large SNG production potential at significant energy efficiency (58%). ► Substantial CO 2 capture potential plus CO 2 reductions from natural gas replacement. ► Significant transport fuel replacement especially in Sweden and Europe. -- Abstract: Synthetic natural gas (SNG) production from dry black liquor gasification (DBLG) system is an attractive option to reduce CO 2 emissions replacing natural gas. This article evaluates the energy conversion performance of SNG production from oxygen blown circulating fluidized bed (CFB) black liquor gasification process with direct causticization by investigating system integration with a reference pulp mill producing 1000 air dried tonnes (ADt) of pulp per day. The direct causticization process eliminates use of energy intensive lime kiln that is a main component required in the conventional black liquor recovery cycle with the recovery boiler. The paper has estimated SNG production potential, the process energy ratio of black liquor (BL) conversion to SNG, and quantified the potential CO 2 abatement. Based on reference pulp mill capacity, the results indicate a large potential of SNG production (about 162 MW) from black liquor but at a cost of additional biomass import (36.7 MW) to compensate the total energy deficit. The process shows cold gas energy efficiency of about 58% considering black liquor and biomass import as major energy inputs. About 700 ktonnes per year of CO 2 abatement i.e. both possible CO 2 capture and CO 2 offset from bio-fuel use replacing natural gas, is estimated. Moreover, the SNG production offers a significant fuel replacement in transport sector especially in countries with large pulp and paper industry e.g. in Sweden, about 72% of motor gasoline and 40% of total motor fuel could be replaced.

  6. Comparison of pulp-mill-integrated hydrogen production from gasified black liquor with stand-alone production from gasified biomass

    International Nuclear Information System (INIS)

    Andersson, E.; Harvey, S.

    2007-01-01

    When gasified black liquor is used for hydrogen production, significant amounts of biomass must be imported. This paper compares two alternative options for producing hydrogen from biomass: (A) pulp-mill-integrated hydrogen production from gasified back liquor; and (B) stand-alone production of hydrogen from gasified biomass. The comparison assumes that the same amount of biomass that is imported in Alternative A is supplied to a stand-alone hydrogen production plant and that the gasified black liquor in Alternative B is used in a black liquor gasification combined cycle (BLGCC) CHP unit. The comparison is based upon equal amounts of black liquor fed to the gasifier, and identical steam and power requirements for the pulp mill. The two systems are compared on the basis of total CO 2 emission consequences, based upon different assumptions for the reference energy system that reflect different societal CO 2 emissions reduction target levels. Ambitions targets are expected to lead to a more CO 2 -lean reference energy system, in which case hydrogen production from gasified black liquor (Alternative A) is best from a CO 2 emissions' perspective, whereas with high CO 2 emissions associated with electricity production, hydrogen from gasified biomass and electricity from gasified black liquor (Alternative B) is preferable. (author)

  7. Investigation of boron extraction process with aid magnesium hydroxide from mother liquor of boron production

    International Nuclear Information System (INIS)

    Balapanova, B.S.; Zhajmina, R.E.; Serazetdinov, D.Z.

    1988-01-01

    Conditions of boron - magnesium concentrate preparation from mother liquor by coprecipitation of borate - ions by magnesium hydroxide are investigated. It is shown that boron - magnesium concentrate and products of its heat treatment at 100 - 500 deg C in water are dissolved partially, and in ammonium citrate - practically completely. Suppositions are made on the composition of the product prepared, on the the structure of its crystal lattice and the processes taking place in it during heat treatment. The conclusion is made on the perspectiveness of processing of mother liquor of boron industry for boron - magnesium concentrate

  8. The Readership of Liquor Ads Employing Appeals to Affiliation, Achievement, and Product-Attributes.

    Science.gov (United States)

    Reid, Leonard N.; And Others

    A study examined whether advertising appeals based on product affiliation, achievement, and attributes would account for differences in male readership of liquor advertisements. The investigation focused on the relationship between the content of alcholic beverage advertisements and attention engagement, the first state in consumer information…

  9. Succinic acid production from xylose mother liquor by recombinant Escherichia coli strain.

    Science.gov (United States)

    Wang, Honghui; Pan, Jiachuan; Wang, Jing; Wang, Nan; Zhang, Jie; Li, Qiang; Wang, Dan; Zhou, Xiaohua

    2014-11-02

    Succinic acid (1,4-butanedioic acid) is identified as one of important building-block chemicals. Xylose mother liquor is an abundant industrial residue in xylitol biorefining industry. In this study, xylose mother liquor was utilized to produce succinic acid by recombinant Escherichia coli strain SD121, and the response surface methodology was used to optimize the fermentation media. The optimal conditions of succinic acid fermentation were as follows: 82.62 g L -1 total initial sugars, 42.27 g L -1 MgCO 3 and 17.84 g L -1 yeast extract. The maximum production of succinic acid was 52.09 ± 0.21 g L -1 after 84 h with a yield of 0.63 ± 0.03 g g -1 total sugar, approaching the predicted value (53.18 g L -1 ). It was 1.78-fold of the production of that obtained with the basic medium. This was the first report on succinic acid production from xylose mother liquor by recombinant E. coli strains with media optimization using response surface methodology. This work suggested that the xylose mother liquor could be an alternative substrate for the economical production of succinic acid by recombinant E. coli strains.

  10. THE PRODUCTION OF ORANGE PRESS LIQUOR SPIRIT: TECHNICAL AND ECONOMIC ASPECTS

    Directory of Open Access Journals (Sweden)

    J. O. FERREIRA

    2008-10-01

    Full Text Available

    The orange juice industry produces, at the end of the residue extraction, a by-product called orange press liquor. Considering its high content of soluble solids and the large volume of the liquor produced in Brazilian orange juice plants, an earlier study was conducted on the technical viability of using orange press liquor as raw material for a new distilled beverage, with promising results. With a view to increasing efficiency and possibly attracting investments in the growing international market for new and exotic beverages, the aim of the present study was to optimize the orange press liquor spirit process and to evaluate the economic aspects of its production. The results showed that this process can yield a good quality beverage, comparable to the sugar cane spirit cachaça and other similar products, as well as having economic advantages and potential for immediate further growth, without extra investment costs.

  11. Utilization of black liquor as concrete admixture and set retarder aid

    OpenAIRE

    El-Mekkawi, Samar A.; Ismail, Ibrahim M.; El-Attar, Mohammed M.; Fahmy, Alaa A.; Mohammed, Samia S.

    2011-01-01

    The utilization of black liquor, produced by the pulp and paper industry in Egypt, as a workability aid and set retarder admixture has been investigated. This approach may help eliminate the environmentally polluting black liquor waste. It also provides a low cost by-product, which can be widely used in the construction industry. The properties of black liquor and its performance on concrete at two different ratios of water to cement have been studied. The results revealed that black liquor f...

  12. Two Stage Anaerobic Reactor Design and Treatment To Produce Biogas From Mixed Liquor of Vegetable Waste

    Science.gov (United States)

    Budiastuti, H.; Ghozali, M.; Wicaksono, H. K.; Hadiansyah, R.

    2018-01-01

    Municipal solid waste has become a common challenged problem to be solved for developing countries including Indonesia. Municipal solid waste generating is always bigger than its treatment to reduce affect of environmental pollution. This research tries to contribute to provide an alternative solution to treat municipal solid waste to produce biogas. Vegetable waste was obtained from Gedebage Market, Bandung and starter as a source of anaerobic microorganisms was cow dung obtained from a cow farm in Lembang. A two stage anaerobic reactor was designed and built to treat the vegetable waste in a batch run. The capacity of each reactor is 20 liters but its active volume in each reactor is 15 liters. Reactor 1 (R1) was fed up with mixture of filtered blended vegetable waste and water at ratio of 1:1 whereas Reactor 2 (R2) was filled with filtered mixed liquor of cow dung and water at ratio of 1:1. Both mixtures were left overnight before use. Into R1 it was added EM-4 at concentration of 10%. pH in R1 was maintained at 5 - 6.5 whereas pH in R1 was maintained at 6.5 - 7.5. Temperature of reactors was not maintained to imitate the real environmental temperature. Parameters taken during experiment were pH, temperature, COD, MLVSS, and composition of biogas. The performance of reactor built was shown from COD efficiencies reduction obtained of about 60% both in R1 and R2, pH average in R1 of 4.5 ± 1 and R2 of 7 ± 0.6, average temperature in both reactors of 25 ± 2°C. About 1L gas produced was obtained during the last 6 days of experiment in which CH4 obtained was 8.951 ppm and CO2 of 1.087 ppm. The maximum increase of MLVSS in R1 reached 156% and R2 reached 89%.

  13. Bio-refinery system of DME or CH4 production from black liquor gasification in pulp mills.

    Science.gov (United States)

    Naqvi, M; Yan, J; Fröling, M

    2010-02-01

    There is great interest in developing black liquor gasification technology over recent years for efficient recovery of bio-based residues in chemical pulp mills. Two potential technologies of producing dimethyl ether (DME) and methane (CH(4)) as alternative fuels from black liquor gasification integrated with the pulp mill have been studied and compared in this paper. System performance is evaluated based on: (i) comparison with the reference pulp mill, (ii) fuel to product efficiency (FTPE) and (iii) biofuel production potential (BPP). The comparison with the reference mill shows that black liquor to biofuel route will add a highly significant new revenue stream to the pulp industry. The results indicate a large potential of DME and CH(4) production globally in terms of black liquor availability. BPP and FTPE of CH(4) production is higher than DME due to more optimized integration with the pulping process and elimination of evaporation unit in the pulp mill.

  14. Potential of Black Liquor of Potassium Hydroxide to Pretreat Corn Stover for Biomethane Production

    Directory of Open Access Journals (Sweden)

    Muhammad Abdul Hanan Siddhu

    2016-04-01

    Full Text Available Reducing the pretreatment cost of lignocellulosic biomass by utilizing alkali to alter its recalcitrant nature is an effective method for biofuel production. In this experiment, 1.5% KOH solution and its black liquor (spent liquor of KOH (BL were applied to pretreat corn stover (CS at a temperature of 20 °C to enhance the digestibility for anaerobic digestion (AD. Results showed no significant difference in weighted average methane content on the basis of experimental methane and biogas yields between BL-treated and original KOH-treated CS after AD. The BL process significantly increased the overall methane yield by 52.4% compared with untreated CS (135.2 mL/gVS, whereas no significant difference between the overall methane yields of 1.5% KOH-treated and BL-treated CS was observed. In addition, the BL process significantly saved water and KOH consumption, by 56.2% and 57.4%, respectively, compared with the 1.5% KOH pretreatment. Overall methane production was well explained by the modified Gompertz model. The physiochemical changes to CS after BL pretreatment were confirmed by SEM, FTIR, and XRD analyses. Our findings collectively suggest that recycling and reuse of KOH black liquor might be an efficient method for lignocellulosic biomass treatment and have the capability to reduce input costs in future AD processes.

  15. Recycling of Dilute Deacetylation Black Liquor to Enable Efficient Recovery and Reuse of Spent Chemicals and Biomass Pretreatment Waste

    Directory of Open Access Journals (Sweden)

    Xiaowen Chen

    2018-06-01

    Full Text Available Deacetylation/dilute alkaline pretreatment followed by mechanical refining (DMR has been proven as an effective process for biomass sugar liberation without severe chemical modification to lignin. Previous research has been focused on optimizing deacetylation conditions, reducing energy consumptions in mechanical refining, and improving sugar yields and titers in enzymatic hydrolysis. To successfully commercialize this process, another critical challenge is to develop a robust process to balance water usage, recover spent chemicals, and utilize waste carbons from the dilute deacetylation waste liquor. In this work, a new process modification and strategy is pioneered to recycle and reuse the weak black liquor (WBL in order to reduce water, chemical, and energy usage while increasing both inorganic and organic contents in the WBLto facilitate downstream processing. Results suggest that the accumulation did not lower acetyl and lignin removal in alkaline pretreatment, resulting in comparable sugar yields in enzymatic hydrolysis. Sodium and potassium were found to be the two most important inorganic compounds in the recycled WBL. Moreover, the accumulated sodium and phenolic compounds did not inhibit the downstream ethanol fermentation processes. Finally, techno-economic analysis (TEA showed a decrease in the minimum ethanol selling price (MESP by ~5 to 15 cents per gallon of ethanol resulting from the inclusion of the recycling of weak black liquor when compared to a conventional non-recycling process.

  16. Processing of spent pickling liquor formed during treatment of titanium products

    Science.gov (United States)

    Bykovsky, N. A.; Rahman, P. A.; Puchkova, L. N.; Fanakova, N. N.

    2017-10-01

    The article presents the research findings on processing of spent acid pickling liquor (SAPL) formed during etching of titanium products. The processing includes neutralizing the SAPL with alkali, filtering, drying and calcining the titanium hydroxide precipitate as well as electrochemical processing of the filtrate in an ion-exchange membrane cell. The proposed SAPL processing procedure allows obtaining titanium dioxide, sodium hydroxide and a mixture of acids. Titanium dioxide can be used in paint-and-varnish industry. The alkali can be used in neutralizing the SAPL. A mixture of acids is suitable for use in etching process of titanium products.

  17. Xylitol production from xylose mother liquor: a novel strategy that combines the use of recombinant Bacillus subtilis and Candida maltosa

    Science.gov (United States)

    2011-01-01

    Background Xylose mother liquor has high concentrations of xylose (35%-40%) as well as other sugars such as L-arabinose (10%-15%), galactose (8%-10%), glucose (8%-10%), and other minor sugars. Due to the complexity of this mother liquor, further isolation of xylose by simple method is not possible. In China, more than 50,000 metric tons of xylose mother liquor was produced in 2009, and the management of sugars like xylose that present in the low-cost liquor is a problem. Results We designed a novel strategy in which Bacillus subtilis and Candida maltosa were combined and used to convert xylose in this mother liquor to xylitol, a product of higher value. First, the xylose mother liquor was detoxified with the yeast C. maltosa to remove furfural and 5-hydromethylfurfural (HMF), which are inhibitors of B. subtilis growth. The glucose present in the mother liquor was also depleted by this yeast, which was an added advantage because glucose causes carbon catabolite repression in B. subtilis. This detoxification treatment resulted in an inhibitor-free mother liquor, and the C. maltosa cells could be reused as biocatalysts at a later stage to reduce xylose to xylitol. In the second step, a recombinant B. subtilis strain with a disrupted xylose isomerase gene was constructed. The detoxified xylose mother liquor was used as the medium for recombinant B. subtilis cultivation, and this led to L-arabinose depletion and xylose enrichment of the medium. In the third step, the xylose was further reduced to xylitol by C. maltosa cells, and crystallized xylitol was obtained from this yeast transformation medium. C. maltosa transformation of the xylose-enriched medium resulted in xylitol with 4.25 g L-1·h-1 volumetric productivity and 0.85 g xylitol/g xylose specific productivity. Conclusion In this study, we developed a biological method for the purification of xylose from xylose mother liquor and subsequent preparation of xylitol by C. maltosa-mediated biohydrogenation of xylose

  18. Xylitol production from xylose mother liquor: a novel strategy that combines the use of recombinant Bacillus subtilis and Candida maltosa

    Directory of Open Access Journals (Sweden)

    Jiang Mingguo

    2011-02-01

    Full Text Available Abstract Background Xylose mother liquor has high concentrations of xylose (35%-40% as well as other sugars such as L-arabinose (10%-15%, galactose (8%-10%, glucose (8%-10%, and other minor sugars. Due to the complexity of this mother liquor, further isolation of xylose by simple method is not possible. In China, more than 50,000 metric tons of xylose mother liquor was produced in 2009, and the management of sugars like xylose that present in the low-cost liquor is a problem. Results We designed a novel strategy in which Bacillus subtilis and Candida maltosa were combined and used to convert xylose in this mother liquor to xylitol, a product of higher value. First, the xylose mother liquor was detoxified with the yeast C. maltosa to remove furfural and 5-hydromethylfurfural (HMF, which are inhibitors of B. subtilis growth. The glucose present in the mother liquor was also depleted by this yeast, which was an added advantage because glucose causes carbon catabolite repression in B. subtilis. This detoxification treatment resulted in an inhibitor-free mother liquor, and the C. maltosa cells could be reused as biocatalysts at a later stage to reduce xylose to xylitol. In the second step, a recombinant B. subtilis strain with a disrupted xylose isomerase gene was constructed. The detoxified xylose mother liquor was used as the medium for recombinant B. subtilis cultivation, and this led to L-arabinose depletion and xylose enrichment of the medium. In the third step, the xylose was further reduced to xylitol by C. maltosa cells, and crystallized xylitol was obtained from this yeast transformation medium. C. maltosa transformation of the xylose-enriched medium resulted in xylitol with 4.25 g L-1·h-1 volumetric productivity and 0.85 g xylitol/g xylose specific productivity. Conclusion In this study, we developed a biological method for the purification of xylose from xylose mother liquor and subsequent preparation of xylitol by C. maltosa

  19. Production of red pigments by Monascus ruber in culture media containing corn steep liquor

    Directory of Open Access Journals (Sweden)

    P. S. Hamano

    2006-12-01

    Full Text Available The production of red pigments by Monascus ruber was evaluated utilizing complex culture media composed of glucose or sucrose (10 g/L, corn steep liquor (5 or 10 g/L and monosodium glutamate (0, 5.0, 7.6, 11.4 or 15.2 g/L. Medium containing 10 g/L glucose, 5 g/L corn steep liquor and 7.6 g/L monosodium glutamate resulted the highest values of extracellular red pigment absorbance (20.7 U and productivity (0.35 U/h. This medium also produced better results than using semi-synthetic medium with analytical grade reagents (12.4 U and 0.21 U/h. The cell growth was similar in both media (X @ 6.5 g/L, indicating that the capacity of the cells to produce red pigments was higher in complex culture media. In addition, in the complex culture medium, less of the intracellular red pigments accumulated than in semi-synthetic medium (9.1% and 30%, respectively.

  20. Biobutanol production by Clostridium acetobutylicum using xylose recovered from birch Kraft black liquor.

    Science.gov (United States)

    Kudahettige-Nilsson, Rasika L; Helmerius, Jonas; Nilsson, Robert T; Sjöblom, Magnus; Hodge, David B; Rova, Ulrika

    2015-01-01

    Acetone-butanol-ethanol (ABE) fermentation was studied using acid-hydrolyzed xylan recovered from hardwood Kraft black liquor by CO2 acidification as the only carbon source. Detoxification of hydrolyzate using activated carbon was conducted to evaluate the impact of inhibitor removal and fermentation. Xylose hydrolysis yields as high as 18.4% were demonstrated at the highest severity hydrolysis condition. Detoxification using active carbon was effective for removal of both phenolics (76-81%) and HMF (38-52%). Batch fermentation of the hydrolyzate and semi-defined P2 media resulted in a total solvent yield of 0.12-0.13g/g and 0.34g/g, corresponding to a butanol concentration of 1.8-2.1g/L and 7.3g/L respectively. This work is the first study of a process for the production of a biologically-derived biofuel from hemicelluloses solubilized during Kraft pulping and demonstrates the feasibility of utilizing xylan recovered directly from industrial Kraft pulping liquors as a feedstock for biological production of biofuels such as butanol. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  1. Development of bioelectrochemical systems using various biogas fermenter effluents as inocula and municipal waste liquor as adapting substrate.

    Science.gov (United States)

    Bakonyi, Péter; Koók, László; Keller, Enikő; Bélafi-Bakó, Katalin; Rózsenberszki, Tamás; Saratale, Ganesh Dattatraya; Nguyen, Dinh Duc; Banu, J Rajesh; Nemestóthy, Nándor

    2018-07-01

    The purpose of this research was to improve microbial fuel cell (MFC) performance - treating landfill-derived waste liquor - by applying effluents of various biogas fermenters as inocula. It turned out that the differences of initial microbial community profiles notably influenced the efficiency of MFCs. In fact, the adaptation time (during 3 weeks of operation) has varied significantly, depending on the source of inoculum and accordingly, the obtainable cumulative energy yields were also greatly affected (65% enhancement in case of municipal wastewater sludge inoculum compared to sugar factory waste sludge inoculum). Hence, it could be concluded that the capacity of MFCs to utilize the complex feedstock was heavily dependent on biological factors such as the origin/history of inoculum, the microbial composition as well as proper acclimation period. Therefore, these parameters should be of primary concerns for adequate process design to efficiently generate electricity with microbial fuel cells. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Bioflocculation production from lower-molecular fatty acids as a novel strategy for utilization of sludge digestion liquor.

    Science.gov (United States)

    Fujita, M; Ike, M; Jang, J H; Kim, S M; Hirao, T

    2001-01-01

    We propose the bioproduction of a bioflocculant from lower-molecular fatty acids as an innovative strategy for utilizing waste sludge digestion liquor. Fundamental studies on the production, characterization and application of a novel bioflocculant were performed. Citrobactersp. TKF04 was screened out of 1,564 natural isolates as a bacterial strain capable of a bioflocculant from acetic and propionic acids. TKF04 produced the bioflocculant during the logarithmic growth in the batch cultivation, and it could be recovered from the culture supernatant by ethanol precipitation. The fed-batch cultivation with feeding of acetic acid: ammonium 10;1 (mole) to maintain pH 8.5 led to the hyper-production of the bioflocculant. The bioflocculant was found to be effective for flocculating a kaolin suspension, when added at a final concentration of 1-10 mg/l, over a wide range of pHs (2-8) and temperatures (3-95 degrees C), while the addition of cations was not required. It could flocculate a variety of inorganic and organic suspended particles including kaolin, diatomite, bentonite, activated carbon, soil and activated sludge. These indicated that the bioflocculant possesses flocculating activity comparable or superior to that of synthetic flocculants. The bioflocculation was identified as a chitosan-like biopolymer.

  3. Spent sulfite liquor developments

    Energy Technology Data Exchange (ETDEWEB)

    Black, H H

    1958-01-01

    A review of methods of utilizing spent sulfite liquor, including evaporation and burning, fermentation to produce yeast or alcohol, production of vanillin and lignosulfonates, and use as a roadbinder.

  4. Fermentation kinetics for xylitol production by a Pichia stipitis D-xylulokinase mutant previously grown in spent sulfite liquor

    Science.gov (United States)

    Rita C.L.B. Rodrigues; Chenfeng Lu; Bernice Liu; Thomas W. Jeffries

    2008-01-01

    Spent sulfite pulping liquor (SSL) contains lignin, which is present as lignosulfonate, and hemicelluloses that are present as hydrolyzed carbohydrates. To reduce the biological oxygen demand of SSL associated with dissolved sugars, we studied the capacity of Pichia stipitis FPL-YS30 (xyl3[delta]) to convert these sugars into useful products. FPL-YS30 produces a...

  5. Understanding the growth of the bio-struvite production Brevibacterium antiquum in sludge liquors.

    Science.gov (United States)

    Simoes, Francisco; Vale, Peter; Stephenson, Tom; Soares, Ana

    2017-12-21

    Biological struvite (bio-struvite) production through biomineralization has been suggested as an alternative to chemically derived struvite production to recover phosphorus from wastewater streams. In this study, statistical experimental design techniques were used to find the optimal growth rate (μ) of Brevibacterium antiquum in sludge liquors. Acetate, oleic acid, NaCl, NH 4 -N, and Ca 2+ were shown to affect the growth rate of B. antiquum. The growth rate reached 3.44 1/d when the bacteria were supplemented with 3.0% w/v NaCl and 1124 mg chemical oxygen demand/L as acetate. However, NaCl was found to hinder the biomineralization of bio-struvite. A two-stage experiment demonstrated that bio-struvite was produced in the presence of acetate. Bio-struvite production was confirmed with X-ray spectroscopy and crystal morphology (prismatic, tabular, and twinned crystal habit) through electron microscope analysis. The bio-struvite production was estimated by measuring phosphate content of the recovered precipitates, reaching 9.6 mg P/L as bio-struvite. Overall, these results demonstrated the optimal conditions required to achieve high growth rates as well as bio-struvite production with B. antiquum. The results obtained in this study could be used to develop a process to grow B. antiquum in wastewater streams in mixed cultures and recover phosphorus-rich products such as struvite.

  6. Modeling of Nitrous Oxide Production from Nitritation Reactors Treating Real Anaerobic Digestion Liquor.

    Science.gov (United States)

    Wang, Qilin; Ni, Bing-Jie; Lemaire, Romain; Hao, Xiaodi; Yuan, Zhiguo

    2016-04-29

    In this work, a mathematical model including both ammonium oxidizing bacteria (AOB) and heterotrophic bacteria (HB) is constructed to predict N2O production from the nitritation systems receiving the real anaerobic digestion liquor. This is for the first time that N2O production from such systems was modeled considering both AOB and HB. The model was calibrated and validated using experimental data from both lab- and pilot-scale nitritation reactors. The model predictions matched the dynamic N2O, ammonium, nitrite and chemical oxygen demand data well, supporting the capability of the model. Modeling results indicated that HB are the dominant contributor to N2O production in the above systems with the dissolved oxygen (DO) concentration of 0.5-1.0 mg O2/L, accounting for approximately 75% of N2O production. The modeling results also suggested that the contribution of HB to N2O production decreased with the increasing DO concentrations, from 75% at DO = 0.5 mg O2/L to 25% at DO = 7.0 mg O2/L, with a corresponding increase of the AOB contribution (from 25% to 75%). Similar to HB, the total N2O production rate also decreased dramatically from 0.65 to 0.25 mg N/L/h when DO concentration increased from 0.5 to 7.0 mg O2/L.

  7. Methane from waste containing paper

    Energy Technology Data Exchange (ETDEWEB)

    1981-12-24

    Waste solids containing paper are biologically treated in a system by: fermentation with lactobacilli, separation of the solids, ion exchange of the supernatant from the separation, anaerobic digestion of the ion-exchanged liquor, separation of a liquor from the fermentation, and digestion of the liquor. Thus, a municipal waste containing paper and water was inoculated with Aspergillus niger and lactobacilli for 2 days; the mixture was anaerobically treated and centrifuged; the clear liquor was ion exchanged; and the solid waste was filter pressed. The filter cake was treated with Trichoderma nigricaus and filtered. The filtrate and the ion-exchanged liquor were digested for CH/sub 4/ production.

  8. Optimization of polyhydroxybutyrate production by Bacillus sp. CFR 256 with corn steep liquor as a nitrogen source

    OpenAIRE

    Vijayendra, S. V. N.; Rastogi, N. K.; Shamala, T. R.; Anil Kumar, P. K.; Kshama, L.; Joshi, G. J.

    2007-01-01

    Polyhydroxyalkanotes (PHAs), the eco-friendly biopolymers produced by many bacteria, are gaining importance in curtailing the environmental pollution by replacing the non-biodegradable plastics derived from petroleum. The present study was carried out to economize the polyhydroxybutyrate (PHB) production by optimizing the fermentation medium using corn steep liquor (CSL), a by-product of starch processing industry, as a cheap nitrogen source, by Bacillus sp. CFR 256. Response surface methodol...

  9. Bio-refinery system of DME or CH4 production from black liquor gasification in pulp mills

    Energy Technology Data Exchange (ETDEWEB)

    Raza, M.; Jinyue Yan (Dept. of Chemical Engineering and Technology/Energy Processes, Royal Institute of Technology, Stockholm (Sweden)). e-mail: rnaqvi@kth.se; Froeling, Morgan (Dept. of Chemical and Biological Engineering, Chalmers Univ. of Technology, Goeteborg (Sweden))

    2009-07-01

    The consumption of fossil fuels is rapidly increasing and there is an urgent need to develop technologies for renewable fuel production not only as alternatives but also as additional fuels. Efficient polygeneration of transportation fuels with heat and electricity is one of the innovative technologies which have potential to replace fossil fuels and mitigate climate change. Two potential technologies of producing dimethyl ether (DME) and methane (CH4) as alternative fuels integrated with black liquor gasification have been studied and compared in this paper. System performance is evaluated based on: (i) Comparison with the reference pulp mill, (ii) Fuel to product efficiency (FTPE) and (iii) Biofuel Production Potential (BPP). The comparison with the reference mill shows that black liquor to biofuel route will add a highly significant new revenue stream to the pulp industry. The results indicate a large potential of DME and CH4 production globally in terms of black liquor availability. BPP and FTPE of CH4 production is higher than DME due to more optimized integration with the pulping process and elimination of evaporation unit in the pulp mill

  10. Fractionation and characterization of saccharides and lignin components in wood prehydrolysis liquor from dissolving pulp production.

    Science.gov (United States)

    Wang, Zhaojiang; Wang, Xiaojun; Jiang, Jungang; Fu, Yingjuan; Qin, Menghua

    2015-08-01

    Saccharides and lignin components in prehydrolysis liquor (PHL) from kraft-based dissolving pulp production was characterized after being fractionated using membrane filtration. The results showed that the membrane filtration provided a method for organics fractionation with considerable recovery rate, but exhibited some disadvantages. Besides the limited ability in purifying oligosaccharides (OS) due to the overlaps of molecular weight distribution with lignin components, the membrane filtration could not improve the homogeneity of OS as indicated by the analysis of chemical compositions and the degree of polymerization (DP), which may be ascribed to the linear conformation of OS. The characterization of lignin components indicated a great potential for polymer industry because of the remarkable content of phenolic hydroxyl groups (PhOH), especially for low molecular weight (LMW) fraction. It was concluded the organics in PHL provided streams of value-added chemicals. However, the practical significance thereof can be realized and maximized only when they are successfully and completely fractionated. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Fenton process combined with coagulation for the treatment of black liquor from bioethanol wastewater

    Science.gov (United States)

    Muryanto, Muryanto; Hanifah, Ummu; Amriani, Feni; Ibadurrahman, Ahmad Faiz; Sari, Ajeng Arum

    2017-11-01

    High amounts of black liquor are generated from bioethanol production by using oil palm empty fruit bunches. The black liquor is waste from alkaline pretreatment, it contains high amount of an alkaline solution (NaOH). The black liquor wastewater was highly contaminated with organic materials, and quite toxic for aquatic ecosystems if discharged directly into waters. This study aimed to determine ability of Fenton process combined with coagulation to treat black liquor. The addition 5% of polyaluminium chloride (PAC) could decolorized black liquor, degraded lignin, and produced sludge 70.64%, 68.28%, and 2.76 gram, respectively. Decolorization of black liquor was in line with degradation of black liquor because lignin is the main compound in black liquor. SEM images after addition of PAC of 5% indicated fragmentation of structure. Fenton reagent consist of 0.7 M FeSO4+ 3M H2O2 has able to decolorize black liquor, degrade lignin, and produce sludge 51.67% and 25.44%, and 0.44 gram, respectively. It was concluded that black liquor wastewater from bioethanol can be treated by using Fenton process combined with coagulation. However, these methods still need improvement to obtain the higher degradation rate, and coagulation sludge needs further consideration.

  12. System analysis of dry black liquor gasification based synthetic gas production comparing oxygen and air blown gasification systems

    International Nuclear Information System (INIS)

    Naqvi, Muhammad; Yan, Jinyue; Dahlquist, Erik

    2013-01-01

    Highlights: ► Circulating fluidized bed system for black liquor gasification with direct causticization. ► Effects of gasifying medium i.e. oxygen or air, on gasification are studied. ► Direct causticization eliminates energy intensive limekiln reducing biomass use. ► Results show 10% higher SNG production from O 2 blown system than air blown system. ► SNG production is higher in O 2 blown system than air blown system. - Abstract: The black liquor gasification based bio-fuel production at chemical pulp mill is an attractive option to replace conventional recovery boilers increasing system energy efficiency. The present paper studies circulating fluidized bed system with direct causticization using TiO 2 for the gasification of the black liquor to the synthesis gas. The advantage of using direct causticization is the elimination of energy-intensive lime kiln which is an integral part of the conventional black liquor recovery system. The study evaluates the effects of gasifying medium i.e. oxygen or air, on the fluidized bed gasification system, the synthesis gas composition, and the downstream processes for the synthesis gas conversion to the synthetic natural gas (SNG). The results showed higher synthetic natural gas production potential with about 10% higher energy efficiency using oxygen blown gasification system than the air blown system. From the pulp mill integration perspective, the material and energy balance results in better integration of air blown system than the oxygen blown system, e.g. less steam required to be generated in the power boiler, less electricity import, and less additional biomass requirement. However, the air blown system still requires a significant amount of energy in terms of the synthesis gas handling and gas upgrading using the nitrogen rejection system

  13. Co-gasification of black liquor and pyrolysis oil: Evaluation of blend ratios and methanol production capacities

    International Nuclear Information System (INIS)

    Andersson, Jim; Furusjö, Erik; Wetterlund, Elisabeth; Lundgren, Joakim; Landälv, Ingvar

    2016-01-01

    Highlights: • Biomethanol from co-gasified black liquor and pyrolysis oil at different capacities. • Enables higher biofuel production for given available amount of black liquor. • Opportunity for cost efficient black liquor gasification also in small pulp mills. • The methanol can be cost competitive to 2nd generation ethanol and fossil fuels. • Fewer pulp mills would need to be converted to meet given biofuel demand. - Abstract: The main aim of this study is to investigate integrated methanol production via co-gasification of black liquor (BL) and pyrolysis oil (PO), at Swedish pulp mills. The objectives are to evaluate techno-economically different blends ratios for different pulp mill capacities. Furthermore, the future methanol production potential in Sweden and overall system consequences of large-scale implementation of PO/BL co-gasification are also assessed. It is concluded that gasification of pure BL and PO/BL blends up to 50% results in significantly lower production costs than what can be achieved by gasification of unblended PO. Co-gasification with 20–50% oil addition would be the most advantageous solution based on IRR for integrated biofuel plants in small pulp mills (200 kADt/y), whilst pure black liquor gasification (BLG) will be the most advantageous alternative for larger pulp mills. For pulp mill sizes between 300 and 600 kADt/y, it is also concluded that a feasible methanol production can be achieved at a methanol market price below 100 €/MW h, for production capacities ranging between 0.9 and 1.6 TW h/y for pure BLG, and between 1.2 and 6.5 TW h/y for PO/BL co-gasification. This study also shows that by introducing PO/BL co-gasification, fewer pulp mills would need to be converted to biofuel plants than with pure BLG, to meet a certain biofuel demand for a region. Due to the technical as well as organizational complexity of the integration this may prove beneficial, and could also potentially lower the total investment

  14. IMPACT OF FURFURAL ON THE SUGAR ANALYSIS OF PRE-HYDROLYSIS LIQUOR OF KRAFT-BASED DISSOLVING PULP PRODUCTION PROCESS USING THE HPAEC TECHNIQUE

    Directory of Open Access Journals (Sweden)

    Abrar Saeed

    2011-03-01

    Full Text Available High performance anion-exchange chromatography with pulse ampero-metric detector (HPAEC-PAD is a reliable method to systematically determine the sugar contents in pulp and paper waste streams, including bleaching and extraction liquors. We used the same method to determine the sugar content of industrially produced pre-hydrolysis liquor (PHL from a kraft-based dissolving pulp production process. The analysis showed that the traditional method cannot be applied for sugar analysis, and an improvement on the method was required. In fact, the presence of furfural in the PHL sample was the reason for the required modification. It was noted that the removal of furfural via evaporation could improve the reliability of the HPAEC technique for sugar assessments. If the concentration of furfural was higher than 0.045% (wt. in the PHL, the error introduced in the sugar analysis was profound. Also, the industrially produced PHL contained more furfural than the laboratory produced PHL under the same hydrolysis conditions. Consequently, the concentration of furfural in the PHL should be taken into account for sugar analysis using the HPAEC technique.

  15. Production of ethoxylated fatty acids derived from Jatropha non-edible oil as a nonionic fat-liquoring agent.

    Science.gov (United States)

    El-Shattory, Y; Abo-Elwafa, Ghada A; Aly, Saadia M; Nashy, El-Shahat H A

    2012-01-01

    Natural fatty derivatives (oleochemicals) have been used as intermediate materials in several industries replacing the harmful and expensive petrochemicals. Fatty ethoxylates are one of these natural fatty derivatives. In the present work Jatropha fatty acids were derived from the non edible Jatropha oil and used as the fat source precursor. The ethoxylation process was carried out on the derived fatty acids using a conventional cheap catalyst (K₂CO₃) in order to obtain economically and naturally valuable non-ionic surfactants. Ethoxylation reaction was proceeded using ethylene oxide gas in the presence of 1 or 2% K₂CO₃ catalyst at 120 and 145°C for 5, 8 and 12 hours. The prepared products were evaluated for their chemical and physical properties as well as its application as non- ionic fat-liquoring agents in leather industry. The obtained results showed that the number of ethylene oxide groups introduced in the fatty acids as well as their EO% increased as the temperature and time of the reaction increased. The highest ethoxylation number was obtained at 145°C for 8 hr. Also, the prepared ethoxylated products were found to be effective fat-liquors with high HLB values giving stable oil in water emulsions. The fat-liquored leather led to an improvement in its mechanical properties such as tensile strength and elongation at break. In addition, a significant enhancement in the texture of the treated leather by the prepared fat-liquors as indicated from the scanning electron microscope (SEM) images was observed.

  16. Production of Bacterial Cellulose by Gluconacetobacter hansenii Using Corn Steep Liquor As Nutrient Sources

    Directory of Open Access Journals (Sweden)

    Andrea F. S. Costa

    2017-10-01

    Full Text Available Cellulose is mainly produced by plants, although many bacteria, especially those belonging to the genus Gluconacetobacter, produce a very peculiar form of cellulose with mechanical and structural properties that can be exploited in numerous applications. However, the production cost of bacterial cellulose (BC is very high to the use of expensive culture media, poor yields, downstream processing, and operating costs. Thus, the purpose of this work was to evaluate the use of industrial residues as nutrients for the production of BC by Gluconacetobacter hansenii UCP1619. BC pellicles were synthesized using the Hestrin–Schramm (HS medium and alternative media formulated with different carbon (sugarcane molasses and acetylated glucose and nitrogen sources [yeast extract, peptone, and corn steep liquor (CSL]. A jeans laundry was also tested. None of the tested sources (beside CSL worked as carbon and nutrient substitute. The alternative medium formulated with 1.5% glucose and 2.5% CSL led to the highest yield in terms of dry and hydrated mass. The BC mass produced in the alternative culture medium corresponded to 73% of that achieved with the HS culture medium. The BC pellicles demonstrated a high concentration of microfibrils and nanofibrils forming a homogenous, compact, and three-dimensional structure. The biopolymer produced in the alternative medium had greater thermal stability, as degradation began at 240°C, while degradation of the biopolymer produced in the HS medium began at 195°C. Both biopolymers exhibited high crystallinity. The mechanical tensile test revealed the maximum breaking strength and the elongation of the break of hydrated and dry pellicles. The dry BC film supported up to 48 MPa of the breaking strength and exhibited greater than 96.98% stiffness in comparison with the hydrated film. The dry film supported up to 48 MPa of the breaking strength and exhibited greater than 96.98% stiffness in comparison with the hydrated film

  17. Waste management: products and services

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    A number of products and services related to radioactive waste management are described. These include: a portable cement solidification system for waste immobilization; spent fuel storage racks; storage and transport flasks; an on-site low-level waste storage facility; supercompactors; a mobile waste retrieval and encapsulation plant; underwater crushers; fuel assembly disposal; gaseous waste management; environmental restoration and waste management services; a waste treatment consultancy. (UK)

  18. Separation and Recovery of Precious Metals from Leach Liquors of Spent Electronic Wastes by Solvent Extraction

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Thi Hong; Wang, Lingyun; Lee, Man Seung [Mokpo National University, Mokpo (Korea, Republic of)

    2017-04-15

    Solvent extraction was employed to recover precious metals (Au (III), Pd (II) and Pt (IV)) from the leach solution of spent electronic wastes containing Cu (II), Cr (III) and Fe (III). First, pure Fe (III) and Au (III) were recovered by simultaneous extraction with Cyanex 923 followed by selective stripping with HCl and Na{sub 2}S{sub 2}O{sub 3}. Second, Pt (IV), Pd (II) and Cu (II) were extracted by Alamine 336 from the raffinate. After the removal of Cu (II) by stripping with weak HCl, Pd (II) and Pt (IV) were separately stripped by controlling the concentration of thiourea in the mixture with HCl. A process flow sheet for the separation of precious metals was proposed.

  19. Optimization of polyhydroxybutyrate production by Bacillus sp. CFR 256 with corn steep liquor as a nitrogen source.

    Science.gov (United States)

    Vijayendra, S V N; Rastogi, N K; Shamala, T R; Anil Kumar, P K; Kshama, L; Joshi, G J

    2007-06-01

    Polyhydroxyalkanotes (PHAs), the eco-friendly biopolymers produced by many bacteria, are gaining importance in curtailing the environmental pollution by replacing the non-biodegradable plastics derived from petroleum. The present study was carried out to economize the polyhydroxybutyrate (PHB) production by optimizing the fermentation medium using corn steep liquor (CSL), a by-product of starch processing industry, as a cheap nitrogen source, by Bacillus sp. CFR 256. Response surface methodology (RSM) was used to optimize the fermentation medium using the variables such as corn steep liquor (5-25 g l(-1)), Na(2)HPO(4) 2H(2)O (2.2-6.2 g l(-1)), KH(2)PO(4) (0.5-2.5 g l(-1)), sucrose (5-55 g l(-1)) and inoculum concentration (1-25 ml l(-1)). Central composite rotatable design (CCRD) experiments were carried out to study the complex interactions of the variables.The optimum conditions for maximum PHB production were (g l(-1)): CSL-25, Na(2)HPO(4) 2H(2)O-2.2, KH(2)PO(4) - 0.5, sucrose - 55 and inoculum - 10 (ml l(-1)). After 72 h of fermentation, the amount of PHA produced was 8.20 g l(-1) (51.20% of dry cell biomass). It is the first report on optimization of fermentation medium using CSL as a nitrogen source, for PHB production by Bacillus sp.

  20. Prokaryotic communities in pit mud from different-aged cellars used for the production of Chinese strong-flavored liquor.

    Science.gov (United States)

    Tao, Yong; Li, Jiabao; Rui, Junpeng; Xu, Zhancheng; Zhou, Yan; Hu, Xiaohong; Wang, Xiang; Liu, Menghua; Li, Daping; Li, Xiangzhen

    2014-04-01

    Chinese strong-flavored liquor (CSFL) accounts for more than 70% of all Chinese liquor production. Microbes in pit mud play key roles in the fermentation cellar for the CSFL production. However, microbial diversity, community structure, and cellar-age-related changes in pit mud are poorly understood. Here, we investigated the prokaryotic community structure and diversity in pit-mud samples with different cellar ages (1, 10, 25, and 50 years) using the pyrosequencing technique. Results indicated that prokaryotic diversity increased with cellar age until the age reached 25 years and that prokaryotic community structure changed significantly between three cellar ages (1, 10, and 25 years). Significant correlations between prokaryotic communities and environmental variables (pH, NH4(+), lactic acid, butyric acid, and caproic acid) were observed. Overall, our study results suggested that the long-term brewing operation shapes unique prokaryotic community structure and diversity as well as pit-mud chemistry. We have proposed a three-phase model to characterize the changes of pit-mud prokaryotic communities. (i) Phase I is an initial domestication period. Pit mud is characterized by abundant Lactobacillus and high lactic acid and low pH levels. (ii) Phase II is a transition period. While Lactobacillus abundance decreases dramatically, that of Bacteroidetes and methanogens increases. (iii) Phase III is a relative mature period. The prokaryotic community shows the highest diversity and capability to produce more caproic acid as a precursor for synthesis of ethyl caproate, the main flavor component in CSFL. This research provides scientific evidence to support the practical experience that old fermentation cellars produce high-quality liquor.

  1. Prokaryotic diversity and biochemical properties in aging artificial pit mud used for the production of Chinese strong flavor liquor.

    Science.gov (United States)

    Sun, Zhongke; Chen, Can; Hou, Xiaoge; Zhang, Jie; Tian, Fengshou; Li, Chengwei

    2017-10-01

    At present, artificial pit mud (APM) is widely used in Chinese liquor-making industry and plays a particular role in the production of Chinese strong flavor liquor (CSFL). However, APM frequently ages during fermentation, thus becoming unsuitable for sustainable use due to its low-quality. The reasons behind, and results of, APM aging during the production of CSFL are not yet understood. Sequencing the V4 region of the 16S rRNA gene shows that prokaryotic diversity is significantly decreased (Shannon's diversity index, P  aging APM. On the phylum level, the increase of Firmicutes and decrease of Proteobacteria are the main consequences of APM aging during the production of CSFL. The counting of cultivatable bacteria confirmed that there was a large increase in Lactobacilli and aerobic spore-forming bacteria in aging low-quality APM (more than twofold). Unexpectedly, the total number of caproic acid-producing bacteria, mainly Clostridia , did not change significantly between the two kinds of APM. Furthermore, biochemical analysis indicates that the pH and the levels of NH 4 + and K + are decreased in aging low-quality APM ( P  aging can be controlled potentially by adjustment of environmental factors and/or supplementation of diminished or missed microorganisms.

  2. Energy conversion performance of black liquor gasification to hydrogen production using direct causticization with CO(2) capture.

    Science.gov (United States)

    Naqvi, M; Yan, J; Dahlquist, E

    2012-04-01

    This paper estimates potential hydrogen production via dry black liquor gasification system with direct causticization integrated with a reference pulp mill. The advantage of using direct causticization is elimination of energy intensive lime kiln. Pressure swing adsorption is integrated in the carbon capture process for hydrogen upgrading. The energy conversion performance of the integrated system is compared with other bio-fuel alternatives and evaluated based on system performance indicators. The results indicated a significant hydrogen production potential (about 141MW) with an energy ratio of about 0.74 from the reference black liquor capacity (about 243.5MW) and extra biomass import (about 50MW) to compensate total energy deficit. About 867,000tonnes of CO(2) abatement per year is estimated i.e. combining CO(2) capture and CO(2) offset from hydrogen replacing motor gasoline. The hydrogen production offers a substantial motor fuel replacement especially in regions with large pulp and paper industry e.g. about 63% of domestic gasoline replacement in Sweden. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Production of metallurgical cokes from some Turkish lignites using sulphite liquor binders

    Energy Technology Data Exchange (ETDEWEB)

    Yanik, J.; Saglam, M.; Yuksel, M. (Ege University, Izmir (Turkey). Dept. of Chemistry)

    1990-04-01

    Soma and Tuncbilek lignites were briquetted at 80{degree}C under 0-100 MPa, using varying amounts of sulphite liquor binders. The briquettes were then carbonized at 950{degree}C, and the resulting formed cokes were examined. The effects of the type and concentration of binders, and of the briquetting pressure, on the strength and porosity of the formcokes were investigated. As a result of these experiments, optimal briquetting conditions were established. It was also stated that formcokes made from both Turkish lignite samples under optimal briquetting conditions could be used for metallurgical purposes, particularly in non-ferrous metallurgy. 17 refs., 1 fig., 4 tabs.

  4. Engineering study: disposition of terminal liquors for interim storage

    International Nuclear Information System (INIS)

    Metz, W.P.; Ogren, W.E.

    1975-02-01

    Eight alternative processes were chosen as being technologically feasible within the time frame dictated by budgeting procedures and terminal liquor availability. Solidified waste products acceptable for single-shell tank storage were assumed to be placed in available single-shell tanks. Double-shell tanks were used only for the more mobile terminal liquors or semi-solid mush products. The mush, chemical neutralization, and clay in-tank processes offer potential savings of tens of millions of dollars over double-shell tank storage of terminal liquors. In order to achieve this cost savings, the process development and demonstration must be completed prior to the beginning of double-shell tank construction (Dec. 1976) expected to be funded from a fiscal year 1977 line item. Budgeting for these additional double-shell tanks must proceed since the processing options discussed here are not yet available and may not prove to be available at the required time. This study indicates the following topics for additional study: Process technology development to achieve interim storage of terminal liquor products receives the greatest emphasis as a means of reducing capital expenditures. Interim storage product criteria, waste inventory, and conversion to final form require definition to allow comparison of the alternatives for disposition of terminal liquors. The pseudotechnical nature of product acceptability criteria is important to the evaluation of the partial neutralization and aluminum removal alternatives. More accurate estimates of terminal liquor quantity and composition are required to give a sound technical basis for choosing the appropriate processing alternative. Retrieval and reprocessing operations may affect the comparisons presented by this study

  5. Comparison of buffalo rumen liquor and buffalo faeces as inoculum for the in vitro gas production technique

    Directory of Open Access Journals (Sweden)

    V. Piccolo

    2010-01-01

    Full Text Available The in vitro gas production technique (IVGPT, Theodorou et al., 1994 requires a rumen liquor (RL inoculum, as the other methods utilising a microbial fermentation approach to feedstuff evaluation. However, the RL is collected either from animals fitted with rumen cannula or at slaughtering. This raises a number of practical, economical and ethical problems, thus several studies have been carried out to test alternative inocula. To this aim faeces (FA have been demonstrated to have high potentiality for the Tilley and Terry (1963 technique (El Saher et al., 1987; Akther et al., 1999; Cone et al., 2002. Mauricio et al. (2001, evaluating the forages fermentative characteristics by IVGPT, found lower potential gas production and longer lag times for bovine FA compared to RL as inoculum. Aim of present paper was to compare buffalo RL and FA as inoculum for IVGPT.

  6. Immobilisation of MTR waste in cement (product evaluation)

    International Nuclear Information System (INIS)

    Howard, C.G.; Lee, D.J.

    1988-01-01

    The enriched uranium/aluminium fuel used in Material Testing Reactors is reprocessed at Dounreay Nuclear Power Development Establishment (DNE). The main chemical component of the liquid waste produced by this process is acid deficient aluminium nitrate. The primary objective of this project is to find a suitable process for changing the highly mobile radioactive waste into an inert stable solid. Work carried out on the development of the immobilisation process showed that a conditioning stage (neutralisation) is required to make the acid waste compatible with cement. Small scale experiments showed that adding Ordinary Portland Cement blended with ground granulated Blast Furnace Slag to Simulant MTR Liquor produces an acceptable product. The process has been demonstrated at full scale (200 litres) and the products have been subjected to an extensive programme of destructive and non-destructive testing. (author)

  7. Effect of Corn Steep Liquor (CSL and Cassava Wastewater (CW on Chitin and Chitosan Production by Cunninghamella elegans and Their Physicochemical Characteristics and Cytotoxicity

    Directory of Open Access Journals (Sweden)

    Lúcia Raquel Ramos Berger

    2014-02-01

    Full Text Available Microbiological processes were used for chitin and chitosan production with Cunninghamella elegans UCP/WFCC 0542 grown in different concentrations of two agro-industrial wastes, corn steep liquor (CSL and cassava wastewater (CW established using a 22 full factorial design. The polysaccharides were extracted by alkali-acid treatment and characterized by infrared spectroscopy, viscosity, thermal analysis, elemental analysis, scanning electron microscopy and X-ray diffraction. The cytotoxicity of chitosan was evaluated for signs of vascular change on the chorioallantoic membrane of chicken eggs. The highest biomass (9.93 g/L was obtained in trial 3 (5% CW, 8% CSL, the greatest chitin and chitosan yields were 89.39 mg/g and 57.82 mg/g, respectively, and both were obtained in trial 2 (10% CW, 4% CSL. Chitin and chitosan showed a degree of deacetylation of 40.98% and 88.24%, and a crystalline index of 35.80% and 23.82%, respectively, and chitosan showed low molecular weight (LMW 5.2 × 103 Da. Chitin and chitosan can be considered non-irritating, due to the fact they do not promote vascular change. It was demonstrated that CSL and CW are effective renewable agroindustrial alternative substrates for the production of chitin and chitosan.

  8. Size effects on acid bisulfite pretreatment efficiency: multiple product yields in spent liquor and enzymatic digestibility of pretreated solids

    Science.gov (United States)

    Yalan Liu; Jinwu Wang; Michael P. Wolcott

    2017-01-01

    Currently, feedstock size effects on chemical pretreatment performance were not clear due to the complexity of the pretreatment process and multiple evaluation standards such as the sugar recovery in spent liquor or enzymatic digestibility. In this study, we evaluated the size effects by various ways: the sugar recovery and coproduct yields in spent liquor, the...

  9. AVLIS production plant waste management plan

    International Nuclear Information System (INIS)

    1984-01-01

    Following the executive summary, this document contains the following: (1) waste management facilities design objectives; (2) AVLIS production plant wastes; (3) waste management design criteria; (4) waste management plan description; and (5) waste management plan implementation. 17 figures, 18 tables

  10. Biodegradation of phenolic waste liquors in stirred-tank, packed-bed, and fluidized-bed bioreactors

    Energy Technology Data Exchange (ETDEWEB)

    Holladay, D W; Hancher, G W; Chilcote, D D; Scott, C D

    1978-11-01

    The biological degradation of phenolic scrub liquors similar to those that arise in coal conversion processes was studied for symbiotic bacterial populations contained in a continuously stirred tank bioreactor, a three-phase packed-bed bioreactor, and a three-phase, fluidized-bed bioreactor. The conversions of phenol compounds were comparable in the three-phase, packed-bed bioreactor and the continuously stirred tank bioreactor; however, the packed-bed bioreactor degradation rates were as much as twice those in the continuously stirred tank bioreactor, and packed-bed bioreactor retention times were as low as one- tenth those of the continuously stirred tank bioreactors (minimum time was 12 hours).

  11. Utilization of black liquor as concrete admixture and set retarder aid

    Directory of Open Access Journals (Sweden)

    Samar A. El-Mekkawi

    2011-04-01

    Full Text Available The utilization of black liquor, produced by the pulp and paper industry in Egypt, as a workability aid and set retarder admixture has been investigated. This approach may help eliminate the environmentally polluting black liquor waste. It also provides a low cost by-product, which can be widely used in the construction industry. The properties of black liquor and its performance on concrete at two different ratios of water to cement have been studied. The results revealed that black liquor from rice straw pulp increases concrete workability, improves compaction, and reduces honeycombing. Moreover, it retards the initial and final set time and enhances uniform compaction. The effect of incorporating small portions of silica fume has been investigated. The ageing effect of this material over a period of one year, to determine its safe storage period, has been studied. Finally, this admixture was found to comply with the relevant Egyptian standards.

  12. Transport of Zn (II by TDDA-Polypropylene Supported Liquid Membranes and Recovery from Waste Discharge Liquor of Galvanizing Plant of Zn (II

    Directory of Open Access Journals (Sweden)

    Hanif Ur Rehman

    2017-01-01

    Full Text Available The facilitated passage of Zn (II across flat sheet supported liquid membrane saturated with TDDA (tri-n-dodecylamine in xylene membrane phase has been investigated. The effect of acid and metal ion concentration in the feed solution, the carrier concentration in membrane phase, stripping agent concentration in stripping phase, and coions on the extraction of Zn (II was investigated. The stoichiometry of the extracted species, that is, complex, was investigated on slope analysis method and it was found that the complex (LH2·Zn(Cl2 is responsible for transport of Zn (II. A mathematical model was developed for transport of Zn (II, and the predicted results strongly agree with experimental ones. The mechanism of transport was determined by coupled coion transport mechanism with H+ and Cl− coupled ions. The optimized SLM was effectively used for elimination of Zn (II from waste discharge liquor of galvanizing plant of Zn (II.

  13. Evaluation of anaerobic digestion processes for short sludge-age waste activated sludge combined with anammox treatment of digestate liquor.

    Science.gov (United States)

    Ge, Huoqing; Batstone, Damien; Keller, Jurg

    2016-01-01

    The need to reduce energy input and enhance energy recovery from wastewater is driving renewed interest in high-rate activated sludge treatment (i.e. short hydraulic and solids retention times (HRT and SRT, respectively)). This process generates short SRT activated sludge stream, which should be highly degradable. However, the evaluation of anaerobic digestion of short SRT sludge has been limited. This paper assesses anaerobic digestion of short SRT sludge digestion derived from meat processing wastewater under thermophilic and mesophilic conditions. The thermophilic digestion system (55°C) achieved 60 and 68% volatile solids destruction at 8 day and 10 day HRT, respectively, compared with 50% in the mesophilic digestion system (35°C, 10 day HRT). The digestion effluents from the thermophilic (8-10 day HRT) and mesophilic systems were stable, as assessed by residual methane potentials. The ammonia rich sludge dewatering liquor was effectively treated by a batch anammox process, which exhibited comparable nitrogen removal rate as the tests using a control synthetic ammonia solution, indicating that the dewatering liquor did not have inhibiting/toxic effects on the anammox activity.

  14. Preparation and characterization of PTFE coating in new polymer quartz piezoelectric crystal sensor for testing liquor products

    International Nuclear Information System (INIS)

    Gu Yu; Li Qiang

    2015-01-01

    A new method was developed based on the electron beam vacuum dispersion (EBVD) technology to prepare the PTFE polymer coating of the new polymer quartz piezoelectric crystal sensor for testing liquor products. The new method was applied in the new EBVD equipment which we designed. A real-time system monitoring the polymer coating’s thickness was designed for the new EBVD equipment according to the quartz crystal microbalance (QCM) principle, playing an important role in preparing stable and uniform PTFE polymer coatings of the same thickness. 30 pieces of PTFE polymer coatings on the surface of the quartz crystal basis were prepared with the PTFE polymer ultrafine powder (purity ≥ 99.99%) as the starting material. We obtained 30 pieces of new PTFE polymer sensors. By using scanning electron microscopy (SEM), the structure of the PTFE polymer coating’s column clusters was studied. One sample from the 30 pieces of new PTFE polymer sensors was analysed by SEM in four scales, i.e., 400×, 1000×, 10000×, and 25000×. It was shown that under the condition of high bias voltage and low bias current, uniformly PTFE polymer coating could be achieved, which indicates that the new EBVD equipment is suitable for mass production of stable and uniform polymer coating. (paper)

  15. Product control of radioactive waste

    International Nuclear Information System (INIS)

    Warnecke, E.; Giller, H.

    1989-09-01

    The aim of the seminar was to give a survey of product quality control and to find out whether the producers/conditioners of waste set and fulfil requirements for the quality of the waste. The program included the following main areas: Random sample tests; Container tests; Process qualification and inspection, and Inspections of waste from fuel element reprocessing abroad. In other lectures, there are reports on measures for producers of waste for guaranteeing the final storage requirements, on quality assurance measurements in the conditioning of waste from large research establishments and from fuel element manufacture. The calling up of waste containers and the documentation of waste data is also introduced. (orig./HP) [de

  16. Uses for waste diary products

    Energy Technology Data Exchange (ETDEWEB)

    Burgiss, K J

    1980-06-01

    Processing methods of waste dairy products are described. The major waste dairy product is whey, which is said to account for 20% of the total volume of milk processed. Individual methods of whey processing include the manufacture of lactose, whey demineralization in the preparation of babyfood, whey protein recovery by ultrafiltration and alcohol production. Two new techniques, lactose hydrolysis to increase the sweetness of lactose and reverse osmosis for concentration are also mentioned.

  17. Conversion of tannery waste to uesful products

    Energy Technology Data Exchange (ETDEWEB)

    Muralidhara, H.S.; Maggin, B.; Phipps, H.

    1982-03-01

    The purpose of this study was to evaluate the technical performance and cost effectiveness of a low temperature pyrolysis process which uses dry leather tanning wastes to provide energy and chrome tanning liquor for reuse in tanneries. Presently, leather waste is disposed of in landfills, resulting not only in a considerable loss of potential energy (estimated to be 633 TJ annually), but an even more significant loss of chromium (estimated to be 8.2 Gg annually). The pyrolysis process is shown to be technically feasible, economically viable, and can alleviate a leather waste management problem that is becoming increasingly more difficult to handle because of more stringent environmental chrome waste disposal requirements. Tanneries can save an estimated $7 million to $8 million annually by employing this pyrolysis process to conserve energy and chrome in dry tanning wastes. (Refs. 10).

  18. Fermentation Kinetics for Xylitol Production by a Pichia stipitis d-Xylulokinase Mutant Previously Grown in Spent Sulfite Liquor

    Science.gov (United States)

    Rodrigues, Rita C. L. B.; Lu, Chenfeng; Lin, Bernice; Jeffries, Thomas W.

    Spent sulfite pulping liquor (SSL) contains lignin, which is present as lignosulfonate, and hemicelluloses that are present as hydrolyzed carbohydrates. To reduce the biological oxygen demand of SSL associated with dissolved sugars, we studied the capacity of Pichia stipitis FPL-YS30 (xyl3Δ) to convert these sugars into useful products. FPL-YS30 produces a negligible amount of ethanol while converting xylose into xylitol. This work describes the xylose fermentation kinetics of yeast strain P.stipitis FPL-YS30. Yeast was grown in rich medium supplemented with different carbon sources: glucose, xylose, or ammonia-base SSL. The SSL and glucose-acclimatized cells showed similar maximum specific growth rates (0.146 h-1). The highest xylose consumption at the beginning of the fermentation process occurred using cells precultivated in xylose, which showed relatively high specific activity of glucose-6-phosphate dehydrogenase (EC 1.1.1.49). However, the maximum specific rates of xylose consumption (0.19 gxylose/gcel h) and xylitol production (0.059 gxylitol/gcel h) were obtained with cells acclimatized in glucose, in which the ratio between xylose reductase (EC 1.1.1.21) and xylitol dehydrogenase (EC 1.1.1.9) was kept at higher level (0.82). In this case, xylitol production (31.6 g/l) was 19 and 8% higher than in SSL and xylose-acclimatized cells, respectively. Maximum glycerol (6.26 g/l) and arabitol (0.206 g/l) production were obtained using SSL and xylose-acclimatized cells, respectively. The medium composition used for the yeast precultivation directly reflected their xylose fermentation performance. The SSL could be used as a carbon source for cell production. However, the inoculum condition to obtain a high cell concentration in SSL needs to be optimized.

  19. Alcohol production from pineapple waste

    Energy Technology Data Exchange (ETDEWEB)

    Ban-Koffi, L. (Ministry of Scientific Research, Abidjan (CI). Ivorian Center of Technological Research); Han, Y.W. (USDA, Southern Regional Research Center, New Orleans, LA (US))

    1990-09-01

    Saccharomyces cerevisiae and Zymomonas mobilis were grown on pineapple waste and their alcohol production characteristics compared. The pineapple waste consisted of 19% cellulose, 22% hemi-cellulose, 5% lignin and 53% cell soluble matters but concentration of soluble sugars, which included 5.2% sucrose, 3.1% glucose and 3.4% fructose, was relatively low and pretreatment of the substrate was needed. Pretreatment of pineapple waste with cellulase and hemi-cellulase and then fermentation with S. cerevisiae or Z. mobilis produced about 8% ethanol from pineapple waste in 48 h. (author).

  20. Passengers waste production during flights.

    Science.gov (United States)

    Tofalli, Niki; Loizia, Pantelitsa; Zorpas, Antonis A

    2017-12-20

    We assume that during flights the amount of waste that is produced is limited. However, daily, approximately 8000 commercial airplanes fly above Europe's airspace while at the same time, more than 17,000 commercial flights exist in the entire world. Using primary data from airlines, which use the Larnaca's International Airport (LIA) in Cyprus, we have tried to understand why wastes are produced during a typical flight such as food waste, paper, and plastics, as well as how passengers affect the production of those wastes. The compositional analysis took place on 27 flights of 4 different airlines which used LIA as final destination. The evaluation indicated that the passenger's habits and ethics, and the policy of each airline produced different kinds of waste during the flights and especially food waste (FW). Furthermore, it was observed that the only waste management strategy that exists in place in the airport is the collection and the transportation of all those wastes from aircrafts and from the airport in the central unit for further treatment. Hence, this research indicated extremely difficulties to implement any specific waste minimization, or prevention practice or other sorting methods during the flights due to the limited time of the most flights (less than 3 h), the limited available space within the aircrafts, and the strictly safety roles that exist during the flights.

  1. Utilization of spent sulfite liquor carbohydrates

    Energy Technology Data Exchange (ETDEWEB)

    Wiley, A J; Whitmore, L M; Boggs, Jr, L A

    1959-01-01

    Possible utilization of the sugars in spent sulfite liquor in the manufacture of ethanol, torula food yeast, and other fermentation products, and in the production of sugar derivatives, such as the diacetone derivatives, is discussed.

  2. Polyhydroxyalkanoate (PHA) production from waste.

    Science.gov (United States)

    Rhu, D H; Lee, W H; Kim, J Y; Choi, E

    2003-01-01

    PHA (polyhydroxyalkanoate) production was attempted with SBRs from food waste. Seed microbes were collected from a sewage treatment plant with a biological nutrient removal process, and acclimated with synthetic substrate prior to the application of the fermented food waste. Laboratory SBRs were used to produce PHA with limited oxygen and nutrients. The maximum content of 51% PHA was obtained with an anaerobic/aerobic cycle with P limitation, and the yield was estimated to be about 0.05 gPHA(produced)/gCOD(applied) or 25 kg PHA/dry ton of food waste, assuming more than 40% of the PHA contents were recoverable. PHB/PHA ratios were 0.74 to 0.77 due to the higher acetate concentrations. Economical analysis seemed to suggest the PHA produced from the food waste could be an alternative material to produce the biodegradable plastic to be used for the collection bags for solid waste.

  3. Mutagenesis Strategies for the Enhancement of Glucose Oxidase Production from Corn Steep Liquor

    International Nuclear Information System (INIS)

    Khalaf, M.A.

    2007-01-01

    During screening of the twenty eight Aspergillus and Penicillium species for GOD production, only A. niger (84) was observed to release high extra (3.15 U ml -1 ) and intracellular (9.30 U mg -l ) GOD activity. Conidia of A. niger S4 were subjected to mutagenesis with UV radiation, nitrous acid, and sodium azide, as a single or combined treatments, and GOD activity was detected with the diffusion plate method. Out of 27 over producing mutants tested in shaken flasks, UVNA54 mutant strain showed the highest level of GOD activity (171 %, higher than the wild type). Using CSL at concentration 25 ml rl as the sol nutrient source, the enzyme activity was increased to 5.16 U ml -1 and 22.40 U mg -1 for extra and intracellular, respectively. Viable cell numbers of Pseudomonas and Salmonella spp. decreased as the concentration of the produced enzyme increased from 1 to 3 U ml -1

  4. Sulfite liquor components as a starting raw material in the production of single-cell protein. [Paecilomyces varioti

    Energy Technology Data Exchange (ETDEWEB)

    Smailagic, M; Nadazdin, M; Dzinic, M; Pavlovic, D

    1980-01-01

    Sulfite liquor from beech cellulose manufacture was steam- treated, adjusted to 8.5% solids, and fermented by Paecilomyces varioti. At a residence time of approximately 4 hours, 9.7 g protein feed/kg was obtained. The condensate after dehydration of the feed could be reused for fermentation because of a low BOD value and the absence of acetic and formic acids.

  5. Quality control of radioactive waste products

    International Nuclear Information System (INIS)

    Martens, B.R.; Warnecke, E.; Odoj, R.

    1986-01-01

    The variety of incoming untreated wastes, treatment methods, waste forms and containers requires a great variety of controlling methods and principles to be applied both during waste treatment and on the final product. The paper describes product control schemes and methods, sampling systems and transportable testing equipment for waste drums, and equipment for waste cementation using in-drum stirring and subsequent fixation of solid wastes in the flowable product. (DG) [de

  6. Immobilisation of MTR waste in cement (product evaluation). Final report. December 1987

    International Nuclear Information System (INIS)

    Howard, C.G.; Lee, D.J.

    1988-01-01

    The enriched uranium/aluminium fuel used in Material Testing Reactors is reprocessed at Dounreay Nuclear Power Development Establishment (DNE). The main chemical component of the liquid waste produced by this process is acid deficient aluminium nitrate. This is stored in stainless steel tanks at DNE. As a result of work carried out under the UKAEA radioactive waste management programme a decision was taken to immobilise the waste in cement. The programme had two main components, plant design and development of the cementation process. The plant for the cementation of MTR waste is under construction and will be commissioned in 1988/9. The primary objective of this project is to find a suitable process for changing the highly mobile radioactive waste into an inert stable solid. Work carried out on the development of the immobilisation process showed that a conditioning stage (neutralisation) is required to make the acid waste compatible with cement. Small scale experiments showed that adding Ordinary Portland Cement blended with ground granulated Blast Furnace Slag to Simulant MTR Liquor produces an acceptable product. The process has been demonstrated at full scale (200 litres) and the products have been subjected to an extensive programme of destructive and non-destructive testing. Specimens have been tested up to 1200 days after manufacture and show no significant signs of deterioration even when stored underwater or when subjected to freeze thaw cycling. Development work has also shown that the process can successfully immobilise simulant MTR liquor over a wide range of liquor concentrations. The programme therefore successfully produced a formulation that met all the requirements of both the process and product specification. (author)

  7. Ethanol production from a biomass mixture of furfural residues with green liquor-peroxide saccarified cassava liquid.

    Science.gov (United States)

    Ji, Li; Zheng, Tianran; Zhao, Pengxiang; Zhang, Weiming; Jiang, Jianxin

    2016-06-01

    As the most abundant renewable resources, lignocellulosic materials are ideal candidates as alternative feedstock for bioethanol production. Cassava residues (CR) are byproducts of the cassava starch industry which can be mixed with lignocellulosic materials for ethanol production. The presence of lignin in lignocellulosic substrates can inhibit saccharification by reducing the cellulase activity. Simultaneous saccharification and fermentation (SSF) of furfural residues (FR) pretreated with green liquor and hydrogen peroxide (GL-H2O2) with CR saccharification liquid was investigated. The final ethanol concentration, yield, initial rate, number of live yeast cells, and the dead yeast ratio were compared to evaluate the effectiveness of combining delignificated lignocellulosic substrates and starchy substrates for ethanol production. Our results indicate that 42.0 % of FR lignin removal was achieved on FR using of 0.06 g H2O2/g-substrate and 9 mL GL/g-substrate at 80 °C. The highest overall ethanol yield was 93.6 % of the theoretical. When the ratio of 0.06 g/g-H2O2-GL-pretreated FR to CR was 5:1, the ethanol concentration was the same with that ratio of untreated FR to CR of 1:1. Using 0.06 g/g-H2O2-GL-pretreated FR with CR at a ratio of 2:1 resulted in 51.9 g/L ethanol concentration. Moreover, FR pretreated with GL-H2O2 decreased the concentration of byproducts in SSF compared with that obtained in the previous study. The lignin in FR would inhibit enzyme activity and GL-H2O2 is an advantageous pretreatment method to treat FR and high intensity of FR pretreatment increased the final ethanol concentration. The efficiency of ethanol fermentation of was improved when delignification increased. GL-H2O2 is an advantageous pretreatment method to treat FR. As the pretreatment dosage of GL-H2O2 on FR increased, the proportion of lignocellulosic substrates was enhanced in the SSF of the substrate mixture of CR and FR as compared with untreated FR. Moreover, the

  8. Utilization of the waste products from the forest industry as raw materials for the production. [In Swedish

    Energy Technology Data Exchange (ETDEWEB)

    Kringstad, K

    1977-02-01

    The economic and marketing possibilitiesof industrial production of chemicals and/or proteins by utilizing waste liquor from processes at pulp mills or bark and needles was investigated. A survey of known processes for such production is given. The costs of producing several chemicals and proteins were estimated and compared with costs of producing these products via petrochemistry. The present as well as the future market of the different chemicals and of proteins were estimated. The present investigation was performed due to the rapidly increasing oil prices.

  9. Brewer’s spent grain and corn steep liquor as alternative culture medium substrates for proteinase production by Streptomyces malaysiensis AMT-3

    Science.gov (United States)

    do Nascimento, Rodrigo Pires; Junior, Nelson Alves; Coelho, Rosalie Reed Rodrigues

    2011-01-01

    Brewer’s spent grain and corn steep liquor or yeast extract were used as the sole organic forms for proteinase production by Streptomyces malaysiensis in submerged fermentation. The influence of the C and N concentrations, as well as the incubation periods, were assessed. Eight proteolytic bands were detected through gelatin-gel-electrophoresis in the various extracts obtained from the different media and after different incubation periods, with apparent molecular masses of 20, 35, 43, 50, 70, 100, 116 and 212 kDa. The results obtained suggest an opportunity for exploring this alternative strategy for proteinases production by actinomycetes, using BSG and CSL as economically feasible substrates. PMID:24031767

  10. Bio-refinery system in a pulp mill for methanol production with comparison of pressurized black liquor gasification and dry gasification using direct causticization

    International Nuclear Information System (INIS)

    Naqvi, Muhammad; Yan, Jinyue; Dahlquist, Erik

    2012-01-01

    Black liquor gasification (BLG) for bio-fuel or electricity production at the modern pulp mills is a field in continuous evolution and the efforts are considerably driven by the climate change, fuel security, and renewable energy. This paper evaluates and compares two BLG systems for methanol production: (i) oxygen blown pressurized thermal BLG; and (ii) dry BLG with direct causticization, which have been regarded as the most potential technology candidates for the future deployment. A key objective is to assess integration possibilities of BLG technologies with the reference Kraft pulp mill producing 1000 air dried tonnes (ADt) pulp/day replacing conventional recovery cycle. The study was performed to compare the systems’ performance in terms of potential methanol production, energy efficiency, and potential CO 2 reductions. The results indicate larger potential of black liquor conversion to methanol from the pressurized BLG system (about 77 million tonnes/year of methanol) than the dry BLG system (about 30 million tonnes/year of methanol) utilizing identical amount of black liquor available worldwide (220 million tDS/year). The potential CO 2 emissions reduction from the transport sector is substantially higher in pressurized BLG system (117 million tonnes/year CO 2 reductions) as compared to dry BLG system (45 million tonnes/year CO 2 reductions). However, the dry BLG system with direct causticization shows better results when considering consequences of additional biomass import. In addition, comparison of methanol production via BLG with other bio-refinery products, e.g. hydrogen, dimethyl ether (DME) and bio-methane, has also been discussed.

  11. Engineering study: disposition of terminal liquors for interim storage. [Eight alternative processes

    Energy Technology Data Exchange (ETDEWEB)

    Metz, W.P.; Ogren, W.E.

    1975-02-01

    Eight alternative processes were chosen as being technologically feasible within the time frame dictated by budgeting procedures and terminal liquor availability. Solidified waste products acceptable for single-shell tank storage were assumed to be placed in available single-shell tanks. Double-shell tanks were used only for the more mobile terminal liquors or semi-solid mush products. The mush, chemical neutralization, and clay in-tank processes offer potential savings of tens of millions of dollars over double-shell tank storage of terminal liquors. In order to achieve this cost savings, the process development and demonstration must be completed prior to the beginning of double-shell tank construction (Dec. 1976) expected to be funded from a fiscal year 1977 line item. Budgeting for these additional double-shell tanks must proceed since the processing options discussed here are not yet available and may not prove to be available at the required time. This study indicates the following topics for additional study: Process technology development to achieve interim storage of terminal liquor products receives the greatest emphasis as a means of reducing capital expenditures. Interim storage product criteria, waste inventory, and conversion to final form require definition to allow comparison of the alternatives for disposition of terminal liquors. The pseudotechnical nature of product acceptability criteria is important to the evaluation of the partial neutralization and aluminum removal alternatives. More accurate estimates of terminal liquor quantity and composition are required to give a sound technical basis for choosing the appropriate processing alternative. Retrieval and reprocessing operations may affect the comparisons presented by this study. (DLC)

  12. CONSTRUCTION MATERIALS FROM WASTE PRODUCTS

    Directory of Open Access Journals (Sweden)

    Тахира Далиевна Сидикова

    2016-02-01

    Full Text Available We have studied the physical and chemical processes occurring during the thermal treatment of ceramic masses on the basis of compositions of natural raw materials and waste processing facilities. The study of structures of ceramic samples species has shown different types of crystalline phases.The results have shown that the waste of Kaytashsky tungsten-molybdenum ores (KVMR may be used as the main raw material to develop new compositions for ceramic materials. The optimal compositions of ceramic tiles for the masses and technological parameters of obtaining sintered materials based on the compositions of kaolin fireclay KVMR have been developed.It has been found that the use of the waste of Kaytashskoy tungsten-molybdenum ore (KVMR in the composition of the ceramic material will expand the raw material base of ceramic production, reduce the roasting temperature and the cost of ceramic materials and products.

  13. Vanillin: Synthetic Flavoring from Spent Sulfite Liquor

    Science.gov (United States)

    Hocking, Martin B.

    1997-09-01

    Separation of the lignin component of wood from the cellulose presents an opportunity to access various interesting products from the lignin fragments. The lignin represents availability of a sizable renewable resource. Vanillin, or 3-methoxy-4-hydroxybenzaldehyde, is one of a series of related substituted aromatic flavor constituents, and represents one of the potentially profitable possibilities. Vanillin production from the lignin-containing waste liquor obtained from acid sulfite pulping of wood began in North America in the mid 1930's. By 1981 one plant at Thorold, Ontario produced 60% of the contemporary world supply of vanillin. The process also simultaneously decreased the organic loading of the aqueous waste streams of the pulping process. Today, however, whilst vanillin production from lignin is still practiced in Norway and a few other areas, all North American facilities using this process have closed, primarily for environmental reasons. New North American vanillin plants use petrochemical raw materials. An innovation is needed to help overcome the environmental problems of this process before vanillin production from lignin is likely to resume here. Current interest in the promotion of chemicals production from renewable raw materials reinforces the incentive to do this.

  14. Generation of PHB from Spent Sulfite Liquor Using Halophilic Microorganisms.

    Science.gov (United States)

    Weissgram, Michaela; Gstöttner, Janina; Lorantfy, Bettina; Tenhaken, Raimund; Herwig, Christoph; Weber, Hedda K

    2015-06-08

    Halophilic microorganisms thrive at elevated concentrations of sodium chloride up to saturation and are capable of growing on a wide variety of carbon sources like various organic acids, hexose and also pentose sugars. Hence, the biotechnological application of these microorganisms can cover many aspects, such as the treatment of hypersaline waste streams of different origin. Due to the fact that the high osmotic pressure of hypersaline environments reduces the risk of contamination, the capacity for cost-effective non-sterile cultivation can make extreme halophilic microorganisms potentially valuable organisms for biotechnological applications. In this contribution, the stepwise use of screening approaches, employing design of experiment (DoE) on model media and subsequently using industrial waste as substrate have been implemented to investigate the applicability of halophiles to generate PHB from the industrial waste stream spent sulfite liquor (SSL). The production of PHB on model media as well as dilutions of industrial substrate in a complex medium has been screened for by fluorescence microscopy using Nile Blue staining. Screening was used to investigate the ability of halophilic microorganisms to withstand the inhibiting substances of the waste stream without negatively affecting PHB production. It could be shown that neither single inhibiting substances nor a mixture thereof inhibited growth in the investigated range, hence, leaving the question on the inhibiting mechanisms open. However, it could be demonstrated that some haloarchaea and halophilic bacteria are able to produce PHB when cultivated on 3.3% w/w dry matter spent sulfite liquor, whereas H. halophila was even able to thrive on 6.6% w/w dry matter spent sulfite liquor and still produce PHB.

  15. Feed Materials Production Center Waste Management Plan

    International Nuclear Information System (INIS)

    Watts, R.E.; Allen, T.; Castle, S.A.; Hopper, J.P.; Oelrich, R.L.

    1986-01-01

    In the process of producing uranium metal products used in Department of Energy (DOE) defense programs at other DOE facilities, various types of wastes are generated at the Feed Materials Production Center (FMPC). Process wastes, both generated and stored, are discussed in the Waste Management Plan and include low-level radioactive waste (LLW), mixed hazardous/radioactive waste, and sanitary/industrial waste. Scrap metal waste and wastes requiring special remediation are also addressed in the Plan. The Waste Management Plan identifies the comprehensive programs developed to address safe storage and disposition of all wastes from past, present, and future operations at the FMPC. Waste streams discussed in this Plan are representative of the waste generated and waste types that concern worker and public health and safety. Budgets and schedules for implementation of waste disposition are also addressed. The waste streams receiving the largest amount of funding include LLW approved for shipment by DOE/ORO to the Nevada Test Site (NTS) (MgF 2 , slag leach filter cake, and neutralized raffinate); remedial action wastes (waste pits, K-65 silo waste); thorium; scrap metal (contaminated and noncontaminated ferrous and copper scrap); construction rubble and soil generated from decontamination and decommissioning of outdated facilities; and low-level wastes that will be handled through the Low-Level Waste Processing and Shipping System (LLWPSS). Waste Management milestones are also provided. The Waste Management Plan is divided into eight major sections: Introduction; Site Waste and Waste Generating Process; Strategy; Projects and Operations; Waste Stream Budgets; Milestones; Quality Assurance for Waste Management; and Environmental Monitoring Program

  16. Microbial production of hydrogen from starch-manufacturing wastes

    Energy Technology Data Exchange (ETDEWEB)

    Yokoi, H.; Maki, R.; Hirose, J.; Hayashi, S. [Miyazaki Univ. (Japan). Dept. of Applied Chemistry

    2002-05-01

    Effective hydrogen production from starch-manufacturing wastes by microorganisms was investigated. Continuous hydrogen production in high yield of 2.7 mol H{sub 2} mol{sup -1} glucose was attained by a mixed culture of Clostridium butyricum and Enterobacter aerogenes HO-39 in the starch waste medium consisting of sweet potato starch residue as a carbon source and corn steep liquor as a nitrogen source in a repeated batch culture. Rhodobacter sp. M-19 could produce hydrogen from the supernatant of the culture broth obtained in the repeated batch culture of C. butyricum and E. aerogenes HO-39. Hydrogen yield of 4.5 mol H{sub 2} mol{sup -1} glucose was obtained by culturing Rhodobacter sp. M-19 in the supernatant supplemented with 20{mu}gl{sup -1} Na{sub 2}MoO{sub 4} 2H{sub 2}O and 10mgl{sup -1} EDTA in a repeated batch culture with pH control at 7.5. Therefore, continuous hydrogen production with total hydrogen yield of 7.2 mol H{sub 2} mol{sup -1} glucose from the starch remaining in the starch residue was attained by the repeated batch culture with C. butyricum and E. aerogenes HO-39 and by the successive repeated batch culture with Rhodobacter sp. M-19. (Author)

  17. Removal of inhibitors from pre-hydrolysis liquor of kraft-based dissolving pulp production process using adsorption and flocculation processes.

    Science.gov (United States)

    Liu, Xin; Fatehi, Pedram; Ni, Yonghao

    2012-07-01

    A process for removing inhibitors from pre-hydrolysis liquor (PHL) of a kraft-based dissolving pulp production process by adsorption and flocculation, and the characteristics of this process were studied. In this process, industrially produced PHL was treated with unmodified and oxidized activated carbon as an absorbent and polydiallyldimethylammonium chloride (PDADMAC) as a flocculant. The overall removal of lignin and furfural in the developed process was 83.3% and 100%, respectively, while that of hemicelluloses was 32.7%. These results confirmed that the developed process can remove inhibitors from PHL prior to producing value-added products, e.g. ethanol and xylitol via fermentation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Refractive Index of Black and Green Liquors

    Directory of Open Access Journals (Sweden)

    E. A. Avramenko

    2015-01-01

    Full Text Available Lack of reliable data on the optical properties of black and green liquors complicates control of their composition in technological process of sulphate cellulose production. In this regard the paper presents measurement results of refraction index of black liquors n (k,t at concentration in solutions of bone-dry solids up to k = 70% and at temperatures t = 10-90 °C, as well as in green liquors n(C,t at the total alkalinity of C = 0-250 g/l and in the same temperature range. All samples of solutions of black and green liquors were provided by Segezha Pulp and Paper Mill and certified in factory laboratory. Measurements were taken by means of the laboratory Abbe refractometer (URL-1, digital refractometer "Expert pro", goniometer spectrometer GS-5, and ultra-violet spectrophotometer as well. The work also presents optical D density spectra in the ultra-violet region of the wavelengths for the samples of a green liquor and main mineral component to form it, i.e. Na2S (sodium sulphide. To calculate dispersion of n (λ in the visible spectral range, here a Lorentz single-oscillator model was used. The paper discusses study results of dispersive dependence of refraction index in green liquors with various concentration and chemical components of n (λ, C forming them at t = 20°C. Computing and experimental dependences of n (λ had not only good qualitative, but also quite satisfactory quantitative compliance. The work also describes main mineral components defining optical properties in these liquors. Given here data on concentration and temperature dependences of a refraction index in black n(k,t and green n(C,t liquors have been never published before. These data are of essential interest to control soda recovery technologies in manufacturing sulphate cellulose. The received results can be also used to tune and calibrate modern domestic and foreign industrial refractometers.

  19. Xylitol production from xylose mother liquor: a novel strategy that combines the use of recombinant Bacillus subtilis and Candida maltosa

    OpenAIRE

    Jiang Mingguo; Lv Jiyang; Wang Ben; Cheng Hairong; Lin Shuangjun; Deng Zixin

    2011-01-01

    Abstract Background Xylose mother liquor has high concentrations of xylose (35%-40%) as well as other sugars such as L-arabinose (10%-15%), galactose (8%-10%), glucose (8%-10%), and other minor sugars. Due to the complexity of this mother liquor, further isolation of xylose by simple method is not possible. In China, more than 50,000 metric tons of xylose mother liquor was produced in 2009, and the management of sugars like xylose that present in the low-cost liquor is a problem. Results We d...

  20. Production of succinic acid from sugarcane molasses supplemented with a mixture of corn steep liquor powder and peanut meal as nitrogen sources by Actinobacillus succinogenes.

    Science.gov (United States)

    Shen, N; Qin, Y; Wang, Q; Liao, S; Zhu, J; Zhu, Q; Mi, H; Adhikari, B; Wei, Y; Huang, R

    2015-06-01

    The potential of using corn steep liquor powder (CSLP), peanut meal (PM), soybean meal (SM), cotton meal (CM) and urea as the substitute of yeast extract (YE) as the nitrogen source was investigated for producing succinic acid (SA). Actinobacillus succinogenes GXAS137 was used as the fermenting bacterium and sugarcane molasses was used as the main substrate. None of these materials were able to produce SA as high as YE did. The CSLP could still be considered as a feasible and inexpensive alternate for YE as the yield of SA produced using CSLP was second only to the yield of SA obtained by YE. The use of CSLP-PM mixed formulation (CSLP to PM ratio = 2·6) as nitrogen source produced SA up to 59·2 g l(-1) with a productivity of 1·2 g l(-1) h(-1). A batch fermentation using a stirred bioreactor produced up to 60·7 g l(-1) of SA at the same formulation. Fed-batch fermentation that minimized the substrate inhibition produced 64·7 g l(-1) SA. These results suggest that sugarcane molasses supplemented with a mixture of CSLP and PM as the nitrogen source could be used to produce SA more economically using A. succinogenes. Significance and impact of the study: Succinic acid (SA) is commonly used as a platform chemical to produce a number of high value derivatives. Yeast extract (YE) is used as a nitrogen source to produce SA. The high cost of YE is currently the limiting factor for industrial production of SA. This study reports the use of a mixture of corn steep liquor powder (CSLP) and peanut meal (PM) as an inexpensive nitrogen source to substitute YE. The results showed that this CSLP-PM mixed formulation can be used as an effective and economic nitrogen source for the production of SA. © 2015 The Society for Applied Microbiology.

  1. Removal of sulfite liquor from digesters with partially diluted liquor

    Energy Technology Data Exchange (ETDEWEB)

    Leshchenko, I G; Sykol, V P

    1957-01-01

    The yield of reducing sugars was raised from 189 to 224 kg/ton of pulp by displacing the cooking liquor with diluted liquor. As the pressure during blow-off dropped to 3.5-3.0 atmosphere, weak sulfite liquor was added at the rate 120 cu m/hr. After 5-10 minutes the liquor was pumped from the digester to the ethanol plant.

  2. Systematization of by-product plant. (1) Development of on-line analyzers for treatment of gas liquor

    Energy Technology Data Exchange (ETDEWEB)

    Matsumura, Susumu; Taketomi, Hirofumi; Ohashi, Shigeru [Nippon Kokan K.K., Tokyo (Japan)

    1988-04-07

    As a part of systematization of absorption and refinery processing installation for coke oven gas, on-line analyzers for gas liquor treatment with activated sludge were developed and established. A T-NH{sub 3} analyzer using a potential difference titration method was equipped to control NH{sub 3} which had a bad influence upon activated sludge. The oxygen intake rate is measured with an activity measuring instrument in order to get the activity condition of bacteria. The SCN concentration of precipitator outlet solution is measured with an SCN(thiocyanogen) measuring instrument so that conditions of bacteria can be seized. An absorptiometry with ferric chloride is used to analyze it. For a COD measuring instrument, precipitator outlet solution is used and analysis with the JIS method is entirely automated. As a transparency measuring instrument, a color-difference colorimeter is used instead of the former instrument made of glass. According to the collected data, charged coal conditions, and operating conditions of coke oven, the process computer does the calculation for optimization and indicates operation control guidances to the operator. Automated on -line analyzers are useful to save a great deal of labor and contribute to the control and stabilization of operations. 9 figs., 1 tab.

  3. Bacterial decolorization and detoxification of black liquor from rayon grade pulp manufacturing paper industry and detection of their metabolic products.

    Science.gov (United States)

    Chandra, Ram; Abhishek, Amar; Sankhwar, Monica

    2011-06-01

    This study deals with the decolorization of black liquor (BL) by isolated potential bacterial consortium comprising Serratia marcescens (GU193982), Citrobacter sp. (HQ873619) and Klebsiella pneumoniae (GU193983). The decolorization of BL was studied by using the different nutritional as well as environmental parameters. In this study, result revealed that the ligninolytic activities were found to be growth associated and the developed bacterial consortium was efficient for the reduction of COD, BOD and color up to 83%, 74% and 85%, respectively. The HPLC analysis of degraded samples of BL has shown the reduction in peak area compared to control. Further, the GC-MS analysis showed that, most of the compounds detected in control were diminished after bacterial treatment while, formic acid hydrazide, 4-cyclohexane-1,2-dicarboxylic acid, carbamic acid, 1,2-benzenedicarboxylic acid and erythropentanoic acid were found as new metabolites. Further, the seed germination test using Phaseolus aureus has supported the detoxification of bacterial decolorized BL. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. DETERMINACIÓN DE FENOLES TOTALES EN DERIVADOS LÍGNICOS OBTENIDOS DEL “LICOR NEGRO” COMO ALTERNATIVA DE PRODUCCIÓN // DETERMINATION OF TOTAL PHENOL DERIVATIVES OBTAINED FROM LIGNIN "BLACK LIQUOR" AS ALTERNATIVE TO PRODUCTION

    Directory of Open Access Journals (Sweden)

    María José López Villalobos

    2015-06-01

    Full Text Available Lignin is an industrial waste being worthless in papermaking byproduct of black liquor obtained from the pulping process in some Venezuelan plants. The black liquor is obtained from the Kraft pulping process to extract lignin sulphite by acid precipitation and quantify the amount of total phenols in such lignin products used in this study. Spectrophotometry Molecular absorption in the UV-Visible and Infrared Spectroscopy (FTIR region were used to carry out these study techniques. The products obtained in the study had the same signs than commercial lignin (LA, along with the extracted lignin present little degradation HCl, confirmed by infrared spectra. Also, the amount of total phenols was quantified in derivative lignin obtained using the Folin-Ciocalteu. In the sulphite process extracted lignin with acetic acid derivative contains more phenols, and in the Kraft process, the derivative lignin extracted with fewer nitric acid present. The amount of total phenolics present in these derivatives are good for making antiseptics, detergents, nylon, resin and many industrial products. // RESUMEN La lignina es un subproducto del licor negro obtenido del proceso de despulpado en algunas plantas de Venezuela, siendo un desecho industrial que carece de valor en la fabricación de papel. En este estudio se utilizó el licor negro obtenido de los procesos de pulpado Kraft y Sulfito para extraer la lignina mediante precipitaciones ácidas y cuantificar la cantidad de fenoles totales en dichos productos lígnicos. Para llevar a cabo este estudio, se utilizaron las técnicas de Espectrofotometría de Absorción Molecular en la región UV-Visible y la Espectroscopia de Infrarrojo (FTIR. Los productos obtenidos en el estudio presentaron señales similares que la lignina comercial (LA, además la lignina extraída con HCl presentó poca degradación, corroborado por los espectros infrarrojos. Asimismo, se cuantificó la cantidad de fenoles totales en los

  5. Solidification of acidic liquid waste from 99Mo isotope production

    International Nuclear Information System (INIS)

    Parsons, G.J.

    2001-01-01

    results in the solidification of the deammoniated product in stainless steel vessels designed for long term storage. The process was developed and commissioned through sequential steps. Initial testing was conducted on natural uranium nitrate based solutions followed by similar solutions with increasing levels of trace activity derived from the stored waste. The process was commissioned on stored liquid waste in 1999 and is now a routine operation. Initial processing through the concentration phase has been successful in removing 82-95% of the original liquor volume at a throughput rate of generally 4-4.5 L/h. The ammonia content in the acid waste had arisen principally from the addition of ammonia bearing condensate from the molybdenum extraction and initial purification process. This practice of combining these two liquid wastes is no longer continued but has resulted in an inventory of historical acid waste containing small concentrations of ammonia. A deammoniation process was developed to treat batches of concentrate before solidification. This processing step has been successful in reducing NH 3 -N to less than 10ppm under controlled conditions. Nitrogen oxides (NOx gasses) are a product of this chemical process and off gas is treated through a catalytic converter. Solidification to date has resulted in a product of 0.6-2.3% of the original liquor volume (or 1.7- 5.7% of the original solution weight). The solidification takes place in thick- walled once-use stainless steel vessels. The vessel is heated in a thermic oil bath with slow continuous feed of deammoniated concentrate and withdrawal of condensate. This phase is slower with throughput rates of around 1L/h decreasing to less than 0.5L/h as processing continues. When the required amount has been added to the vessel it is further heated, resulting in a product which solidifies on cooling. When this process is complete the connections to the vessel are removed and the vessel ports plugged. The vessel is then

  6. Processing of basalt fiber production waste

    Science.gov (United States)

    Sevostyanov, V. S.; Shatalov, A. V.; Shatalov, V. A.; Golubeva, U. V.

    2018-03-01

    The production of mineral rock wool forms a large proportion of off-test waste products. In addition to the cost of their production, there are costs for processing and utilization, such as transportation, disposal and preservation. Besides, wastes have harmful effect on the environment. This necessitates research aimed to study the stress-related characteristics of materials, their recyclability and use in the production of heat-saving products.

  7. 21 CFR 163.111 - Chocolate liquor.

    Science.gov (United States)

    2010-04-01

    ... CONSUMPTION CACAO PRODUCTS Requirements for Specific Standardized Cacao Products § 163.111 Chocolate liquor... ingredients. The following safe and suitable ingredients may be used: (1) Cacao fat and cocoas (breakfast cocoa, cocoa, or lowfat cocoa); (2) Alkali ingredients. Ammonium, potassium, or sodium bicarbonate...

  8. Methane production from farm wastes

    Energy Technology Data Exchange (ETDEWEB)

    Martin-Leake, H

    1952-01-01

    The economics of scale which would justify the wider use of biogas are stressed. The collection of village waste and night soil to be used with other organic wastes in community systems is proposed. It is suggested that sugar cane trash and bagasse be stored, to be fermented with animal wastes and excess molasses at the sugar factory.

  9. Clarification of Orange Press Liquors by PVDF Hollow Fiber Membranes

    Directory of Open Access Journals (Sweden)

    Silvia Simone

    2016-01-01

    Full Text Available Press liquors are typical by-products of the citrus juice processing characterized by a high content of organic compounds and associated problems of environmental impact, which imply high treatment costs. However, these wastes contain a great number of health promoting substances, including fibers, carotenoids and phenolic compounds (mainly flavonoids, whose recovery against waste-destruction technologies is very attractive for new business opportunities. In this work, the clarification of orange press liquor by using microfiltration (MF membranes is studied as a preliminary step to obtain a permeate stream enriched in antioxidant compounds which can be further processed to produce extracts of nutraceutical and/or pharmaceutical interest. MF poly(vinylidene fluoride (PVDF hollow fibers were prepared by the dry/wet spinning technique. A series of fibers was produced from the same polymeric dope, in order to investigate the effect of selected spinning parameters, i.e., bore fluid composition and flowrate, on their properties. The morphology of the produced fibers was analyzed by Scanning Electron Microscopy (SEM. Fibers were further characterized for their mechanical properties, porosity, bubble point, pore size distribution and pure water permeability (PWP. Some of the produced fibers exhibited high permeability (pure water permeability ~530 L/m2·h·bar, coupled to good mechanical resistance and pore size in the range of MF membranes. These fibers were selected and used for the clarification of press liquor from orange peel processing. In optimized operating conditions, the selected fibers produced steady-state fluxes of about 41 L/m2·h with rejections towards polyphenols and total antioxidant activity of 4.1% and 1.4%, respectively.

  10. 27 CFR 31.42 - Restaurants serving liquors with meals.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Restaurants serving... Part Certain Organizations, Agencies, and Persons § 31.42 Restaurants serving liquors with meals. Proprietors of restaurants and other persons who serve liquors with meals to paying customers, even if no...

  11. Industrial vitamin B12 production by Pseudomonas denitrificans using maltose syrup and corn steep liquor as the cost-effective fermentation substrates.

    Science.gov (United States)

    Xia, Wei; Chen, Wei; Peng, Wei-Fu; Li, Kun-Tai

    2015-06-01

    The aerobic Pseudomonas denitrificans is widely used for industrial and commercial vitamin B12 fermentation, due to its higher productivity compared to the anaerobic vitamin B12-producing microorganisms. This paper aimed to develop a cost-effective fermentation medium for industrial vitamin B12 production by P. denitrificans in 120,000-l fermenter. It was found that maltose syrup (a low-cost syrup from corn starch by means of enzymatic or acid hydrolysis) and corn steep liquor (CSL, a by-product of starch industry) were greatly applicable to vitamin B12 production by P. denitrificans. Under the optimal fermentation medium performed by response surface methodology, 198.27 ± 4.60 mg/l of vitamin B12 yield was obtained in 120,000-l fermenter, which was close to the fermentation with the refined sucrose (198.80 mg/l) and was obviously higher than that obtained under beet molasses utilization (181.75 mg/l). Therefore, maltose syrups and CSL were the efficient and economical substrates for industrial vitamin B12 fermentation by P. denitrificans.

  12. REFRACTORY FOR BLACK LIQUOR GASIFIERS

    Energy Technology Data Exchange (ETDEWEB)

    William L. Headrick Jr; Musa Karakus; Jun Wei

    2005-03-01

    The University of Missouri-Rolla will identify materials that will permit the safe, reliable and economical operation of combined cycle gasifiers by the pulp and paper industry. The primary emphasis of this project will be to resolve the material problems encountered during the operation of low-pressure high-temperature (LPHT) and low-pressure low-temperature (LPLT) gasifiers while simultaneously understanding the materials barriers to the successful demonstration of high-pressure high-temperature (HPHT) black liquor gasifiers. This study will define the chemical, thermal and physical conditions in current and proposed gasifier designs and then modify existing materials and develop new materials to successfully meet the formidable material challenges. Resolving the material challenges of black liquor gasification combined cycle technology will provide energy, environmental, and economic benefits that include higher thermal efficiencies, up to three times greater electrical output per unit of fuel, and lower emissions. In the near term, adoption of this technology will allow the pulp and paper industry greater capital effectiveness and flexibility, as gasifiers are added to increase mill capacity. In the long term, combined-cycle gasification will lessen the industry's environmental impact while increasing its potential for energy production, allowing the production of all the mill's heat and power needs along with surplus electricity being returned to the grid. An added benefit will be the potential elimination of the possibility of smelt-water explosions, which constitute an important safety concern wherever conventional Tomlinson recovery boilers are operated. Developing cost-effective materials with improved performance in gasifier environments may be the best answer to the material challenges presented by black liquor gasification. Refractory materials may be selected/developed that either react with the gasifier environment to form protective

  13. Characterization of waste from nanoenabled products

    DEFF Research Database (Denmark)

    Heggelund, Laura Roverskov

    or particle number in the products. Overall, the most common product applications for ENMs are the “Health & Fitness” or “Home & Garden” sector, which was still the case, despite the increasing number of nanoproducts. The product inventories PEN CPI and The Nanodatabase are based on manufacturers’ claims...... and in a range of product applications (e.g. in cosmetics, textiles and food containers). By utilising The Nanodatabase product inventory, a method was developed for analysing the distribution of ENMs in waste, which involved the estimation of ENM fate in selected waste treatments based on their main matrix...... of nanoproducts available, the potential release of ENMs from these products would have to be understood to perform a risk assessment of these products. Since ENMs are considered possible contaminants of the solid waste, it is important to include nano-specific characterisation tests in waste characterisation...

  14. A combined acidification/PEO flocculation process to improve the lignin removal from the pre-hydrolysis liquor of kraft-based dissolving pulp production process.

    Science.gov (United States)

    Shi, Haiqiang; Fatehi, Pedram; Xiao, Huining; Ni, Yonghao

    2011-04-01

    The presence of lignin impairs the utilization of the hemicelluloses dissolved in the pre-hydrolysis liquor (PHL) of the kraft-based dissolving pulp production process. In this paper, a novel process was developed by combining the acidification and poly ethylene oxide (PEO) flocculation concepts to improve the lignin removal. The results showed that the lignin removal was improved by the addition of PEO to the acidified PHL, particularly at a low pH of 1.5. The main mechanisms involved are the lignin/PEO complex formation and the bridging of the formed complexes. This hypothesis was supported by the turbidity, FTIR and particle size measurements. Interestingly, the hemicelluloses removal from the acidification/PEO flocculation was marginal, which would be beneficial for the down-stream ethanol production from the PHL. Additionally, a process flow diagram was proposed that incorporates this new concept into the existing configuration of kraft-based dissolving pulp production process. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Waste fatty acid addition to black liquor to decrease tall oil soap solubility and increase skimming efficiency in kraft mills pulping mountain pine beetle-infested wood

    Energy Technology Data Exchange (ETDEWEB)

    Uloth, V.; Guy, E. [FPInnovations, Prince George, BC (Canada). PAPRICAN Div.; Shewchuk, D. [Cariboo Pulp and Paper, Quesnel, BC (Canada); Van Heek, R. [Aker Kvaerner, Vancouver, BC (Canada)

    2009-07-01

    This paper presented the results of tests conducted to determine if the addition of waste fatty acids from vegetable oil processing might decrease tall oil soap solubility in pine-beetle impacted wood from British Columbia (BC). The soap recovery and tall oil production at BC mills has fallen by 30 to 40 percent in recent years due to the pulping of high proportions of grey-stage beetle-impacted wood. Full-scale mill tests were conducted over a 4-day period. The study showed that the addition of tall oil fatty acids or waste fatty acids from vegetable oil processing could decrease tall oil soap solubility and increase the soup skimming efficiency in mills pulping a large percentage of grey stage beetle-infested wood. The addition of fatty acids increased tall oil soap skimming efficiency from 50.2 percent in the baseline tests to 71.8 percent based on the total soap available, and from 76.7 percent in the baseline tests to 87.5 percent based on insoluble soap only. The economic analyses indicated that waste fatty acid addition could be economical when natural gas and oil prices are high. 4 tabs., 9 figs.

  16. Product Control of Waste Products with New Coating Materials

    International Nuclear Information System (INIS)

    Krumbach, H.; Steinmetz, H.J.; Odoj, R.; Wartenberg, W.; Grunau, H.

    2009-01-01

    In Germany, with the shaft KONRAD a repository for low radioactive waste will be available at the earliest in the year 2013. The previously conditioned radioactive waste has to be suitable for a longer-term interim storage. They have to be treated in a way that they are chemically stable and that their integrity is guaranteed for a long time. That is why the waste product or the container is covered/ coated for special waste such as hygroscopic waste or waste that includes aluminium. The Product Control Group for radioactive waste (PKS) has to proof the suitability of the so-treated waste for the repository KONRAD on behalf of the Federal Office for Radiation Protection (BfS). This has to be done before the delivering. In this context the PKS also assesses the suitability of new coating materials for low radioactive waste products or containers and their correct technical application. The characteristics and the technical application of polyurethane coatings as well as the control of the so-coated waste for the disposal in the shaft KONRAD are described in this poster. The Poster shows the development stages of the coating and the filling. There are also shown the boundary conditions and the investigations of the Product Control Group for the use of the new coating material for radioactive waste. (authors)

  17. Biogas production from slaughterhouse wastes

    Energy Technology Data Exchange (ETDEWEB)

    Schmillen, K.; Spessert, B.

    1983-08-01

    Anaerobic digestion of slaughterhouse wastes can remove wastes and keep them out of the sewage. Furthermore it produces energy of high value. Therefore it is a benefit to public health, pollution control, the economy and management. Today some unsolved problems still impede the introduction of this new technology, thus requiring the construction of a prototype system as soon as possible.

  18. Disposable products in the hospital waste stream.

    OpenAIRE

    Gilden, D. J.; Scissors, K. N.; Reuler, J. B.

    1992-01-01

    Use of disposable products in hospitals continues to increase despite limited landfill space and dwindling natural resources. We analyzed the use and disposal patterns of disposable hospital products to identify means of reducing noninfectious, nonhazardous hospital waste. In a 385-bed private teaching hospital, the 20 disposable products of which the greatest amounts (by weight) were purchased, were identified, and total hospital waste was tabulated. Samples of trash from three areas were so...

  19. Daqu - a traditional Chinese liquor fermentation starter

    NARCIS (Netherlands)

    Zheng, X.; Rezaei Tabrizi, M.; Nout, M.J.R.; Han, B.

    2011-01-01

    Chinese liquor is one of the world's oldest distilled alcoholic beverages, and it is typically obtained with the use of Daqufermentation starters. Daqu is a saccharifying and fermenting agent, having a significant impact on the flavour of the product. Daqucan be categorized according to maximum

  20. Pectic oligosacharides from lemon peel wastes: production, purification, and chemical characterization.

    Science.gov (United States)

    Gómez, Belén; Gullón, Beatriz; Yáñez, Remedios; Parajó, Juan C; Alonso, Jose L

    2013-10-23

    Lemon peel wastes were extracted with water to remove free sugars and other soluble compounds, and the insoluble solid was employed as a substrate for the manufacture of pectin-derived oligosaccharides by processing with hot, compressed water. When water-extracted lemon peel wastes were treated with water at 160 °C, the oligomer concentration reached the maximum value (31 g/L). Autohydrolysis liquors were subjected to two membrane filtration stages (diafiltration followed by concentration), yielding a refined product containing about 98 wt % of oligomers at a global yield of 14 kg/100 kg oven-dry lemon peel. The concentrate contained oligogalacturonides (with DP in the range of 2-18) and arabinooligosaccharides (with DP in the range of 2-8).

  1. Beneficial utilization of nuclear waste products

    International Nuclear Information System (INIS)

    Dix, G.P.

    1975-01-01

    A sufficient supply of isotopes exists to conduct demonstrational experiments in the 1975-1980 time frame to stimulate a market for waste products. A large potential market exists for a number of waste products, measured in terms of billions of dollars. Actinide by-products can become a feed stock for producing other energy producing isotopes by neutron irradiation whose value may exceed that of the fission products. Commercial reprocessors will not invest in the extraction and separation of isotopes from the waste stream until a proven market has evolved. Economic studies must be performed to establish the trade-offs between the beneficial use or disposal of wastes. Fundamental to these studies are process economics, safety analyses applications studies, and market analyses, both domestic and foreign. Regardless of the degree of beneficial utilization of wastes, some residual material from wastes not utilized and spent by-products after utilization will have to undergo ultimate disposal. Isotopic waste products have the potential for solving a number of societal and national security problems and represent a unique source of energy and materials

  2. Prevention and minimization of waste production

    International Nuclear Information System (INIS)

    Noynaert, L.

    1998-01-01

    The main objective of the program Prevention and Minimization of Waste Production at the Belgian Nuclear Research Centre SCK/CEN is to contribute to reducing the volume and costs of nuclear waste. In addition, it aims to provide reliable data and models to the design engineers with a view to determining the final plant characteristics. Main activities in 1997 are described

  3. Copper-Sulfate Pentahydrate as a Product of the Waste Sulfuric Acid Solution Treatment

    OpenAIRE

    Marković, Radmila; Stevanović, Jasmina; Avramović, Ljiljana; Nedeljković, Dragutin; Jugović, Branimir; Stajić Trošić, Jasna; Gvozdenović, Milica M.

    2012-01-01

    The aim of this study is synthesis of copper-sulfate pentahydrate from the waste sulfuric acid solution-mother liquor generated during the regeneration process of copper bleed solution. Copper is removed from the mother liquor solution in the process of the electrolytic treatment using the insoluble lead anodes alloyed with 6 mass pct of antimony on the industrial-scale equipment. As the result of the decopperization process, copper is removed in the form of the cathode sludge and is precipit...

  4. REFRACTORY FOR BLACK LIQUOR GASIFIERS

    Energy Technology Data Exchange (ETDEWEB)

    William L. Headrick Jr.; Alireza Rezaie

    2003-12-01

    The University of Missouri-Rolla will identify materials that will permit the safe, reliable and economical operation of combined cycle gasifiers by the pulp and paper industry. The primary emphasis of this project will be to resolve the materials problems encountered during the operation of low-pressure high-temperature (LFHT) and low-pressure low-temperature (LPLT) gasifiers while simultaneously understanding the materials barriers to the successful demonstration of high-pressure high-temperature (HPHT) black liquor gasifiers. This study will define the chemical, thermal and physical conditions in current and proposed gasifier designs and then modify existing materials and develop new materials to successfully meet the formidable material challenges. Resolving the material challenges of black liquor gasification combined cycle technology will provide energy, environmental, and economic benefits that include higher thermal efficiencies, up to three times greater electrical output per unit of fuel, and lower emissions. In the near term, adoption of this technology will allow the pulp and paper industry greater capital effectiveness and flexibility, as gasifiers are added to increase mill capacity. In the long term, combined-cycle gasification will lessen the industry's environmental impact while increasing its potential for energy production, allowing the production of all the mill's heat and power needs along with surplus electricity being returned to the grid. An added benefit will be the potential elimination of the possibility of smelt-water explosions, which constitute an important safety concern wherever conventional Tomlinson recovery boilers are operated. Developing cost-effective materials with improved performance in gasifier environments may be the best answer to the material challenges presented by black liquor gasification. Refractory materials may be selected/developed that either react with the gasifier environment to form protective

  5. Refractory for Black Liquor Gasifiers

    Energy Technology Data Exchange (ETDEWEB)

    William L. Headrick Jr; Alireza Rezaie

    2003-12-01

    The University of Missouri-Rolla will identify materials that will permit the safe, reliable and economical operation of combined cycle gasifiers by the pulp and paper industry. The primary emphasis of this project will be to resolve the materials problems encountered during the operation of low-pressure high-temperature (LFHT) and low-pressure low-temperature (LPLT) gasifiers while simultaneously understanding the materials barriers to the successful demonstration of high-pressure high-temperature (HPHT) black liquor gasifiers. This study will define the chemical, thermal and physical conditions in current and proposed gasifier designs and then modify existing materials and develop new materials to successfully meet the formidable material challenges. Resolving the material challenges of black liquor gasification combined cycle technology will provide energy, environmental, and economic benefits that include higher thermal efficiencies, up to three times greater electrical output per unit of fuel, and lower emissions. In the near term, adoption of this technology will allow the pulp and paper industry greater capital effectiveness and flexibility, as gasifiers are added to increase mill capacity. In the long term, combined-cycle gasification will lessen the industry's environmental impact while increasing its potential for energy production, allowing the production of all the mill's heat and power needs along with surplus electricity being returned to the grid. An added benefit will be the potential elimination of the possibility of smelt-water explosions, which constitute an important safety concern wherever conventional Tomlinson recovery boilers are operated. Developing cost-effective materials with improved performance in gasifier environments may be the best answer to the material challenges presented by black liquor gasification. Refractory materials may be selected/developed that either react with the gasifier environment to form protective

  6. Refractory for Black Liquor Gasifiers

    Energy Technology Data Exchange (ETDEWEB)

    William L. Headrick Jr; Alireza Rezaie; Xiaoting Liang; Musa Karakus; Jun Wei

    2005-12-01

    The University of Missouri-Rolla identified materials that permit the safe, reliable and economical operation of combined cycle gasifiers by the pulp and paper industry. The primary emphasis of this project was to resolve the material problems encountered during the operation of low-pressure high-temperature (LPHT) and low-pressure low-temperature (LPLT) gasifiers while simultaneously understanding the materials barriers to the successful demonstration of high-pressure high-temperature (HPHT) black liquor gasifiers. This study attempted to define the chemical, thermal and physical conditions in current and proposed gasifier designs and then modify existing materials and develop new materials to successfully meet the formidable material challenges. Resolving the material challenges of black liquor gasification combined cycle technology will provide energy, environmental, and economic benefits that include higher thermal efficiencies, up to three times greater electrical output per unit of fuel, and lower emissions. In the near term, adoption of this technology will allow the pulp and paper industry greater capital effectiveness and flexibility, as gasifiers are added to increase mill capacity. In the long term, combined-cycle gasification will lessen the industry's environmental impact while increasing its potential for energy production, allowing the production of all the mill's heat and power needs along with surplus electricity being returned to the grid. An added benefit will be the potential elimination of the possibility of smelt-water explosions, which constitute an important safety concern wherever conventional Tomlinson recovery boilers are operated. Developing cost-effective materials with improved performance in gasifier environments may be the best answer to the material challenges presented by black liquor gasification. Refractory materials were selected or developed that reacted with the gasifier environment to form protective surfaces in

  7. Refractory for Black Liquor Gasifiers

    Energy Technology Data Exchange (ETDEWEB)

    William L. Headrick Jr; Musa Karakus; Xiaoting Liang

    2005-10-01

    The University of Missouri-Rolla identified materials that permit the safe, reliable and economical operation of combined cycle gasifiers by the pulp and paper industry. The primary emphasis of this project was to resolve the material problems encountered during the operation of low-pressure high-temperature (LPHT) and low-pressure low-temperature (LPLT) gasifiers while simultaneously understanding the materials barriers to the successful demonstration of high-pressure high-temperature (HPHT) black liquor gasifiers. This study attempted to define the chemical, thermal and physical conditions in current and proposed gasifier designs and then modify existing materials and develop new materials to successfully meet the formidable material challenges. Resolving the material challenges of black liquor gasification combined cycle technology will provide energy, environmental, and economic benefits that include higher thermal efficiencies, up to three times greater electrical output per unit of fuel, and lower emissions. In the near term, adoption of this technology will allow the pulp and paper industry greater capital effectiveness and flexibility, as gasifiers are added to increase mill capacity. In the long term, combined-cycle gasification will lessen the industry's environmental impact while increasing its potential for energy production, allowing the production of all the mill's heat and power needs along with surplus electricity being returned to the grid. An added benefit will be the potential elimination of the possibility of smelt-water explosions, which constitute an important safety concern wherever conventional Tomlinson recovery boilers are operated. Developing cost-effective materials with improved performance in gasifier environments may be the best answer to the material challenges presented by black liquor gasification. Refractory materials were selected/developed that either react with the gasifier environment to form protective surfaces in

  8. Refractory for Black Liquor Gasifiers

    Energy Technology Data Exchange (ETDEWEB)

    William L. Headrick; Musa Karakus; Alireza Rezaie

    2004-03-30

    The University of Missouri-Rolla will identify materials that will permit the safe, reliable and economical operation of combined cycle gasifiers by the pulp and paper industry. The primary emphasis of this project will be to resolve the material problems encountered during the operation of low-pressure high-temperature (LPHT) and low-pressure low-temperature (LPLT) gasifiers while simultaneously understanding the materials barriers to the successful demonstration of high-pressure high-temperature (HPHT) black liquor gasifiers. This study will define the chemical, thermal and physical conditions in current and proposed gasifier designs and then modify existing materials and develop new materials to successfully meet the formidable material challenges. Resolving the material challenges of black liquor gasification combined cycle technology will provide energy, environmental, and economic benefits that include higher thermal efficiencies, up to three times greater electrical output per unit of fuel, and lower emissions. In the near term, adoption of this technology will allow the pulp and paper industry greater capital effectiveness and flexibility, as gasifiers are added to increase mill capacity. In the long term, combined-cycle gasification will lessen the industry's environmental impact while increasing its potential for energy production, allowing the production of all the mill's heat and power needs along with surplus electricity being returned to the grid. An added benefit will be the potential elimination of the possibility of smelt-water explosions, which constitute an important safety concern wherever conventional Tomlinson recovery boilers are operated. Developing cost-effective materials with improved performance in gasifier environments may be the best answer to the material challenges presented by black liquor gasification. Refractory materials may be selected/developed that either react with the gasifier environment to form protective

  9. REFRACTORY FOR BLACK LIQUOR GASIFIERS

    Energy Technology Data Exchange (ETDEWEB)

    William L. Headrick Jr; Musa Karakus; Xiaoting Liang; Alireza Rezaie

    2004-07-01

    The University of Missouri-Rolla will identify materials that will permit the safe, reliable and economical operation of combined cycle gasifiers by the pulp and paper industry. The primary emphasis of this project will be to resolve the material problems encountered during the operation of low-pressure high-temperature (LPHT) and low-pressure low-temperature (LPLT) gasifiers while simultaneously understanding the materials barriers to the successful demonstration of high-pressure high-temperature (HPHT) black liquor gasifiers. This study will define the chemical, thermal and physical conditions in current and proposed gasifier designs and then modify existing materials and develop new materials to successfully meet the formidable material challenges. Resolving the material challenges of black liquor gasification combined cycle technology will provide energy, environmental, and economic benefits that include higher thermal efficiencies, up to three times greater electrical output per unit of fuel, and lower emissions. In the near term, adoption of this technology will allow the pulp and paper industry greater capital effectiveness and flexibility, as gasifiers are added to increase mill capacity. In the long term, combined-cycle gasification will lessen the industry's environmental impact while increasing its potential for energy production, allowing the production of all the mill's heat and power needs along with surplus electricity being returned to the grid. An added benefit will be the potential elimination of the possibility of smelt-water explosions, which constitute an important safety concern wherever conventional Tomlinson recovery boilers are operated. Developing cost-effective materials with improved performance in gasifier environments may be the best answer to the material challenges presented by black liquor gasification. Refractory materials may be selected/developed that either react with the gasifier environment to form protective

  10. REFRACTORY FOR BLACK LIQUOR GASIFIERS

    Energy Technology Data Exchange (ETDEWEB)

    William L. Headrick Jr; Musa Karakus; Xiaoting Liang; Alireza Rezaie

    2004-10-01

    The University of Missouri-Rolla will identify materials that will permit the safe, reliable and economical operation of combined cycle gasifiers by the pulp and paper industry. The primary emphasis of this project will be to resolve the material problems encountered during the operation of low-pressure high-temperature (LPHT) and low-pressure low-temperature (LPLT) gasifiers while simultaneously understanding the materials barriers to the successful demonstration of high-pressure high-temperature (HPHT) black liquor gasifiers. This study will define the chemical, thermal and physical conditions in current and proposed gasifier designs and then modify existing materials and develop new materials to successfully meet the formidable material challenges. Resolving the material challenges of black liquor gasification combined cycle technology will provide energy, environmental, and economic benefits that include higher thermal efficiencies, up to three times greater electrical output per unit of fuel, and lower emissions. In the near term, adoption of this technology will allow the pulp and paper industry greater capital effectiveness and flexibility, as gasifiers are added to increase mill capacity. In the long term, combined-cycle gasification will lessen the industry's environmental impact while increasing its potential for energy production, allowing the production of all the mill's heat and power needs along with surplus electricity being returned to the grid. An added benefit will be the potential elimination of the possibility of smelt-water explosions, which constitute an important safety concern wherever conventional Tomlinson recovery boilers are operated. Developing cost-effective materials with improved performance in gasifier environments may be the best answer to the material challenges presented by black liquor gasification. Refractory materials may be selected/developed that either react with the gasifier environment to form protective

  11. REFRACTORY FOR BLACK LIQUOR GASIFIERS

    Energy Technology Data Exchange (ETDEWEB)

    William L. Headrick Jr; Musa Karakus; Xiaoting Liang; Jun Wei

    2005-01-01

    The University of Missouri-Rolla will identify materials that will permit the safe, reliable and economical operation of combined cycle gasifiers by the pulp and paper industry. The primary emphasis of this project will be to resolve the material problems encountered during the operation of low-pressure high-temperature (LPHT) and low-pressure low-temperature (LPLT) gasifiers while simultaneously understanding the materials barriers to the successful demonstration of high-pressure high-temperature (HPHT) black liquor gasifiers. This study will define the chemical, thermal and physical conditions in current and proposed gasifier designs and then modify existing materials and develop new materials to successfully meet the formidable material challenges. Resolving the material challenges of black liquor gasification combined cycle technology will provide energy, environmental, and economic benefits that include higher thermal efficiencies, up to three times greater electrical output per unit of fuel, and lower emissions. In the near term, adoption of this technology will allow the pulp and paper industry greater capital effectiveness and flexibility, as gasifiers are added to increase mill capacity. In the long term, combined-cycle gasification will lessen the industry's environmental impact while increasing its potential for energy production, allowing the production of all the mill's heat and power needs along with surplus electricity being returned to the grid. An added benefit will be the potential elimination of the possibility of smelt-water explosions, which constitute an important safety concern wherever conventional Tomlinson recovery boilers are operated. Developing cost-effective materials with improved performance in gasifier environments may be the best answer to the material challenges presented by black liquor gasification. Refractory materials may be selected/developed that either react with the gasifier environment to form protective

  12. REFRACTORY FOR BLACK LIQUOR GASIFIERS

    Energy Technology Data Exchange (ETDEWEB)

    William L. Headrick Jr; Musa Karakus; Xiaoting Liang; Jun Wei

    2005-04-01

    The University of Missouri-Rolla will identify materials that will permit the safe, reliable and economical operation of combined cycle gasifiers by the pulp and paper industry. The primary emphasis of this project will be to resolve the material problems encountered during the operation of low-pressure high-temperature (LPHT) and low-pressure low-temperature (LPLT) gasifiers while simultaneously understanding the materials barriers to the successful demonstration of high-pressure high-temperature (HPHT) black liquor gasifiers. This study will define the chemical, thermal and physical conditions in current and proposed gasifier designs and then modify existing materials and develop new materials to successfully meet the formidable material challenges. Resolving the material challenges of black liquor gasification combined cycle technology will provide energy, environmental, and economic benefits that include higher thermal efficiencies, up to three times greater electrical output per unit of fuel, and lower emissions. In the near term, adoption of this technology will allow the pulp and paper industry greater capital effectiveness and flexibility, as gasifiers are added to increase mill capacity. In the long term, combined-cycle gasification will lessen the industry's environmental impact while increasing its potential for energy production, allowing the production of all the mill's heat and power needs along with surplus electricity being returned to the grid. An added benefit will be the potential elimination of the possibility of smelt-water explosions, which constitute an important safety concern wherever conventional Tomlinson recovery boilers are operated. Developing cost-effective materials with improved performance in gasifier environments may be the best answer to the material challenges presented by black liquor gasification. Refractory materials may be selected/developed that either react with the gasifier environment to form protective

  13. REFRACTORY FOR BLACK LIQUOR GASIFIERS

    Energy Technology Data Exchange (ETDEWEB)

    William L. Headrick Jr; Musa Karakus; Xiaoting Liang

    2005-07-01

    The University of Missouri-Rolla will identify materials that will permit the safe, reliable and economical operation of combined cycle gasifiers by the pulp and paper industry. The primary emphasis of this project will be to resolve the material problems encountered during the operation of low-pressure high-temperature (LPHT) and low-pressure low-temperature (LPLT) gasifiers while simultaneously understanding the materials barriers to the successful demonstration of high-pressure high-temperature (HPHT) black liquor gasifiers. This study will define the chemical, thermal and physical conditions in current and proposed gasifier designs and then modify existing materials and develop new materials to successfully meet the formidable material challenges. Resolving the material challenges of black liquor gasification combined cycle technology will provide energy, environmental, and economic benefits that include higher thermal efficiencies, up to three times greater electrical output per unit of fuel, and lower emissions. In the near term, adoption of this technology will allow the pulp and paper industry greater capital effectiveness and flexibility, as gasifiers are added to increase mill capacity. In the long term, combined-cycle gasification will lessen the industry's environmental impact while increasing its potential for energy production, allowing the production of all the mill's heat and power needs along with surplus electricity being returned to the grid. An added benefit will be the potential elimination of the possibility of smelt-water explosions, which constitute an important safety concern wherever conventional Tomlinson recovery boilers are operated. Developing cost-effective materials with improved performance in gasifier environments may be the best answer to the material challenges presented by black liquor gasification. Refractory materials may be selected/developed that either react with the gasifier environment to form protective

  14. REFRACTORY FOR BLACK LIQUOR GASIFIERS

    Energy Technology Data Exchange (ETDEWEB)

    William L. Headrick Jr.; Alireza Rezaie

    2004-04-01

    The University of Missouri-Rolla will identify materials that will permit the safe, reliable and economical operation of combined cycle gasifiers by the pulp and paper industry. The primary emphasis of this project will be to resolve the materials problems encountered during the operation of low-pressure high-temperature (LPHT) and low-pressure low-temperature (LPLT) gasifiers while simultaneously understanding the materials barriers to the successful demonstration of high-pressure high-temperature (HPHT) black liquor gasifiers. This study will define the chemical, thermal and physical conditions in current and proposed gasifier designs and then modify existing materials and develop new materials to successfully meet the formidable material challenges. Resolving the material challenges of black liquor gasification combined cycle technology will provide energy, environmental, and economic benefits that include higher thermal efficiencies, up to three times greater electrical output per unit of fuel, and lower emissions. In the near term, adoption of this technology will allow the pulp and paper industry greater capital effectiveness and flexibility, as gasifiers are added to increase mill capacity. In the long term, combined-cycle gasification will lessen the industry's environmental impact while increasing its potential for energy production, allowing the production of all the mill's heat and power needs along with surplus electricity being returned to the grid. An added benefit will be the potential elimination of the possibility of smelt-water explosions, which constitute an important safety concern wherever conventional Tomlinson recovery boilers are operated. Developing cost-effective materials with improved performance in gasifier environments may be the best answer to the material challenges presented by black liquor gasification. Refractory materials may be selected/developed that either react with the gasifier environment to form protective

  15. Black Liquor Gasification with Motor Fuel Production - BLGMF II - A techno-economic feasibility study on catalytic Fischer-Tropsch synthesis for synthetic diesel production in comparison with methanol and DME as transport fuels

    Energy Technology Data Exchange (ETDEWEB)

    Ekbom, Tomas; Berglin, Niklas; Loegdberg, Sara [Nykomb Synergetics AB, Stockholm (Sweden)

    2005-06-15

    The present project presents additional results to the former BLGMF project, which investigate Black Liquor Gasification with Motor Fuels (BLGMF) production. The objectives were to investigate, based on the KAM 2 program Ecocyclic Pulp Mill (2,000 ADt/day of pulp) the feasibility of synthetic fuels production. Specifically the route to Fischer-Tropsch diesel fuels is investigated as comparison to earlier work on methanol/DME. As modern kraft pulp mills have a surplus of energy, they could become key suppliers of renewable fuels. It is thus of great interest to convert the spent cooking product 'black liquor' to an energy carrier of high value. The resulting biomass-to-fuel energy efficiency when only biomass is used as an external energy source was 43% for FTD or 65% for FT products compared with 66% for methanol and 67% for DME. The FTD calculation is considerably more complicated and based on assumptions, therefore the uncertainty is higher. Would the diesel be taken out with a T95% of 320 deg C the FTD efficiency would be 45%. FT synthesis also opens up a possibility to produce e.g. lube oils from waxes produced. The total net FT-products output equals 4115 barrels/day. The FTD production cost is calculated as the energy share of the total production cost and assumes an offset of naphtha covering its own costs, where it is essential that it finds a market. Assuming same petrol (methanol) and diesel (DME, FTD) costs for the consumer the payback time were 2.6, 2.9 and 3.4 years with an IRR of 40%, 45% and 30%, respectively. In conclusion, there are necessary resources and potential for large-scale methanol (or DME, FTD) production and substantial economic incentive for making plant investments and achieving competitive product revenues.

  16. Study of cupuassu liquor

    OpenAIRE

    Cohen, Kelly de Oliveira; Jackix, Marisa de Nazaré Hoelz

    2005-01-01

    O cupuaçu (Theobroma grandiflorum Schum), que é um fruto amazônico, vem conquistando a cada ano mais espaço no mercado nacional e internacional com a comercialização de sua polpa. Suas sementes, consideradas como subproduto, vem despertando interesse não só no mundo científico como pelas indústrias. Sabe-se que, a partir das sementes, pode-se obter produtos análogos aos oriundos das sementes de cacau, seguindo as mesmas etapas de processamento. Dentre esses produtos tem-se o liquor de cupuaçu...

  17. Refractory for Black Liquor Gasifiers

    Energy Technology Data Exchange (ETDEWEB)

    William L. Headrick Jr; Musa Karakus; Xiaoting Laing

    2005-10-01

    The University of Missouri-Rolla will identify materials that will permit the safe, reliable and economical operation of combined cycle gasifiers by the pulp and paper industry. The primary emphasis of this project will be to resolve the material problems encountered during the operation of low-pressure high-temperature (LPHT) and low-pressure low-temperature (LPLT) gasifiers while simultaneously understanding the materials barriers to the successful demonstration of high-pressure high-temperature (HPHT) black liquor gasifiers. This study will define the chemical, thermal and physical conditions in current and proposed gasifier designs and then modify existing materials and develop new materials to successfully meet the formidable material challenges. Resolving the material challenges of black liquor gasification combined cycle technology will provide energy, environmental, and economic benefits that include higher thermal efficiencies, up to three times greater electrical output per unit of fuel, and lower emissions. In the near term, adoption of this technology will allow the pulp and paper industry greater capital effectiveness and flexibility, as gasifiers are added to increase mill capacity. In the long term, combined-cycle gasification will lessen the industry's environmental impact while increasing its potential for energy production, allowing the production of all the mill's heat and power needs along with surplus electricity being returned to the grid. An added benefit will be the potential elimination of the possibility of smelt-water explosions, which constitute an important safety concern wherever conventional Tomlinson recovery boilers are operated. Developing cost-effective materials with improved performance in gasifier environments may be the best answer to the material challenges presented by black liquor gasification. Refractory materials may be selected/developed that either react with the gasifier environment to form protective

  18. OPTIMIZATION OF INULINASE PRODUCTION USING COPRA WASTE BY Kluyveromyces marxianus var. marxianus

    Directory of Open Access Journals (Sweden)

    M. DILIPKUMAR

    2010-12-01

    Full Text Available Kluyveromyces marxianus var. marxianus was found to secrete a large amount of extracellular inulinase in to the medium. The optimization of inulinase pro¬duction using copra waste as a carbon source was performed with statistical methodology based on experimental designs. The screening of eighteen nut¬rients for their influence on inulinase production was achieved using a Plackett––Burman design. Corn steep liquor, (NH42SO4, ZnSO47H2O, K2HPO4 and urea were selected based on their positive influence on inulinase production. The selected components were optimized using response surface methodology (RSM. The optimum conditions are: corn steep liquor – 0.0560 (g/gds, (NH42SO4 – 0.0084 (g/gds, ZnSO47H2O – 0.0254 (g/gds, K2HPO4 – 0.0037 (g/gds and urea - 0.02147 (g/gds. These conditions were validated experimentally which revealed an enhanced inulinase yield of 372 U/gds.

  19. Study on uranium loss during 'Iron-Gypsum Cake' precipitation from acid leach liquor of Jaduguda ore using factorially designed experiments

    International Nuclear Information System (INIS)

    Das, Amrita; Yadav, Manoj; Chatterjee, Ankur; Singh, A.K.; Hubli, R.C.

    2012-01-01

    Acid leaching process for uranium recovery from ore often generates considerable amounts of impurities into the solution. It is a challenge to separate the non-valuable impurities as manageable and stable waste products for final disposal, without losing the valuable constituents. The main impurities that come with the leach liquor are iron and sulfate. Their removal is essential for meeting the iron requirement in leaching circuit and also for making the effluent suitable for recycle. Factorial design analysis was applied to study of process variables for precipitation of iron and sulphate from leach liquor with composition using CaO as precipitation reagent

  20. Physical properties of highly active liquor containing molybdate solids

    International Nuclear Information System (INIS)

    Dunnett, B.; Ward, T.; Roberts, R.; Cheeseright, J.

    2016-01-01

    The reprocessing of irradiated nuclear fuel at Sellafield produces a nitric acid based Highly Active Liquor (HAL) waste. The liquor, containing fission products and process additives, is concentrated in an evaporator in order to reduce the volume and is then stored in Highly Active Storage Tanks (HASTs) prior to vitrification. Caesium phosphomolybdate (CPM) is precipitated during the evaporation process and can convert to zirconium molybdate (ZM) during storage. During Post Operational Clean Out (POCO) of the HASTs, it is expected that their highly active content will be reduced by repeated cycles of washing using nitric acid and other reagents. Initial washings are likely to have a chemical composition comparable to concentrated HAL, becoming more dilute during the wash-out process. It is expected that the wash-out process will also recover significant quantities of molybdate solids (ZM, CPM or a mixture) from the HASTs. In order to determine the processing challenges from such washings during POCO, the physical properties of varying concentrations of non-active HAL simulants containing molybdate solids have recently been measured by the UK's National Nuclear Laboratory. The following measurements are presented and discussed: Particle size distribution; Density; Settling behaviour of solids; Voidage of settled sediment beds; Viscosity; Yield stress; And influence of ZM morphology on physical properties. (authors)

  1. Physical properties of highly active liquor containing molybdate solids

    Energy Technology Data Exchange (ETDEWEB)

    Dunnett, B.; Ward, T.; Roberts, R. [National Nuclear Laboratory, Sellafield, Seascale, Cumbria, CA20 1PG (United Kingdom); Cheeseright, J. [Sellafield Ltd, Sellafield, Seascale, Cumbria, CA20 1PG (United Kingdom)

    2016-07-01

    The reprocessing of irradiated nuclear fuel at Sellafield produces a nitric acid based Highly Active Liquor (HAL) waste. The liquor, containing fission products and process additives, is concentrated in an evaporator in order to reduce the volume and is then stored in Highly Active Storage Tanks (HASTs) prior to vitrification. Caesium phosphomolybdate (CPM) is precipitated during the evaporation process and can convert to zirconium molybdate (ZM) during storage. During Post Operational Clean Out (POCO) of the HASTs, it is expected that their highly active content will be reduced by repeated cycles of washing using nitric acid and other reagents. Initial washings are likely to have a chemical composition comparable to concentrated HAL, becoming more dilute during the wash-out process. It is expected that the wash-out process will also recover significant quantities of molybdate solids (ZM, CPM or a mixture) from the HASTs. In order to determine the processing challenges from such washings during POCO, the physical properties of varying concentrations of non-active HAL simulants containing molybdate solids have recently been measured by the UK's National Nuclear Laboratory. The following measurements are presented and discussed: Particle size distribution; Density; Settling behaviour of solids; Voidage of settled sediment beds; Viscosity; Yield stress; And influence of ZM morphology on physical properties. (authors)

  2. Review: Utilization of Waste From Coffee Production

    Science.gov (United States)

    Blinová, Lenka; Sirotiak, Maroš; Bartošová, Alica; Soldán, Maroš

    2017-06-01

    Coffee is one of the most valuable primary products in the world trade, and also a central and popular part of our culture. However, coffees production generate a lot of coffee wastes and by-products, which, on the one hand, could be used for more applications (sorbent for the removal of heavy metals and dyes from aqueous solutions, production of fuel pellets or briquettes, substrate for biogas, bioethanol or biodiesel production, composting material, production of reusable cups, substrat for mushroom production, source of natural phenolic antioxidants etc.), but, on the other hand, it could be a source of severe contamination posing a serious environmental problem. In this paper, we present an overview of utilising the waste from coffee production.

  3. Productivity studies of the nuclear waste programme

    International Nuclear Information System (INIS)

    Lundberg, Haakan

    2002-08-01

    The Swedish Nuclear Inspectorate reviews and supplements the SKB proposal for cost estimations for the nuclear waste programme. These estimations are of great importance for the determination of annual fees to the Nuclear Waste Fund and guarantee amounts in accordance with the Financing Act. The majority of the Nuclear Waste Fund's assets are invested in real interest bonds, issued by the Swedish state. The average duration for the Nuclear Waste Fund investments was 12.8 years at the end of December 2001. From July 1, 2002 on the Nuclear waste Fund investments will consist of nominal and real bonds on the official market. The Fund is increased in line with the Consumer Price Index (KPI). If real costs within the nuclear waste programme increase at a faster rate than the KPI, there is a risk that the Nuclear Waste Fund will be 'under balanced'. SKI has developed a weighted index, the KBS-3-index, to compare the SKB cost re-estimate with. Productivity changes have however no impact on these indices. The KBS-3-index indicates that there might be a risk that the de facto, cost increases will exceed KPI. An improved productivity might however balance the cost escalations. Productivity is normally defined as production divided by the input of production factors. The production can be a quantity measurement or the value added. A common approach is calculation of the labour productivity. The productivity development within different industries in Sweden and in EU varies, and is not only positive. The so called DEA method is used for productivity and efficiency measurements in public and private operations. Efficiency evaluations based on known norms are not made with the DEA models. Instead the evaluation is performed in relation to an empirically based reference technology, a relative efficiency. A selection or an optimisation of output is difficult for the nuclear waste programme. It is not possible to change parts of the nuclear waste programme to something else

  4. Prevention and Minimization of Waste Production

    International Nuclear Information System (INIS)

    Noynaert, L.; Bruggeman, A.; Rahier, A.

    1998-01-01

    The general objectives of SCK-CEN's programme on the prevention and minimization of waste production are to contribute to reducing volumes and cost of radioactive waste. It also aims tro provide reliable data and models to the design engineers with a view to determining the final plant characteristics. In the long term, these objectives will be extended to other nuclear applications. Progress and achievements in 1997 are summarised

  5. Study on Effectiveness of Processed and Unprocessed Black Liquor pulps in improving the properties of PPC mortar, Concrete and SCC

    Science.gov (United States)

    Ananthkumar, M.; Sathyan, Dhanya; Prabha, B.

    2018-02-01

    The cost of construction materials is increasing day by day because of high demand, scarcity of raw materials and high price of energy. From the view point of energy saving and over consumption of resources, the use of alternative constituents in construction materials is now a global concern. From this, the extensive research and development works towards exploring new ingredients are required for producing sustainable and environment friendly construction materials. Bagasse pulp liquor is one such material that can be used as a chemical admixture which is obtained as a by-product of paper manufacturing process. Around 5 million tons of bagasse pulp is obtained throughout the world each year. since the material is a waste product from paper industry, this can be changed as a admixture by its effective use in concrete. In the present investigation black pulp liquor is added to fresh concrete in different dosages, the concrete is then tested for workability, compressive strength, flexural, split tensile strength and setting time. From results it is shown that 1% replacement of water with black pulp liquor increases the fresh properties of the concrete, 2% replacement of water with black pulp liquor increases the mechanical properties of the concrete and acts as a set retarder.

  6. Production of Fungal Glucoamylase for Glucose Production from Food Waste

    Directory of Open Access Journals (Sweden)

    Carol Sze Ki Lin

    2013-09-01

    Full Text Available The feasibility of using pastry waste as resource for glucoamylase (GA production via solid state fermentation (SSF was studied. The crude GA extract obtained was used for glucose production from mixed food waste. Our results showed that pastry waste could be used as a sole substrate for GA production. A maximal GA activity of 76.1 ± 6.1 U/mL was obtained at Day 10. The optimal pH and reaction temperature for the crude GA extract for hydrolysis were pH 5.5 and 55 °C, respectively. Under this condition, the half-life of the GA extract was 315.0 minutes with a deactivation constant (kd 2.20 × 10−3minutes−1. The application of the crude GA extract for mixed food waste hydrolysis and glucose production was successfully demonstrated. Approximately 53 g glucose was recovered from 100 g of mixed food waste in 1 h under the optimal digestion conditions, highlighting the potential of this approach as an alternative strategy for waste management and sustainable production of glucose applicable as carbon source in many biotechnological processes.

  7. Production of Fungal Glucoamylase for Glucose Production from Food Waste

    Science.gov (United States)

    Lam, Wan Chi; Pleissner, Daniel; Lin, Carol Sze Ki

    2013-01-01

    The feasibility of using pastry waste as resource for glucoamylase (GA) production via solid state fermentation (SSF) was studied. The crude GA extract obtained was used for glucose production from mixed food waste. Our results showed that pastry waste could be used as a sole substrate for GA production. A maximal GA activity of 76.1 ± 6.1 U/mL was obtained at Day 10. The optimal pH and reaction temperature for the crude GA extract for hydrolysis were pH 5.5 and 55 °C, respectively. Under this condition, the half-life of the GA extract was 315.0 minutes with a deactivation constant (kd) 2.20 × 10−3 minutes−1. The application of the crude GA extract for mixed food waste hydrolysis and glucose production was successfully demonstrated. Approximately 53 g glucose was recovered from 100 g of mixed food waste in 1 h under the optimal digestion conditions, highlighting the potential of this approach as an alternative strategy for waste management and sustainable production of glucose applicable as carbon source in many biotechnological processes. PMID:24970186

  8. Increasing polyhydroxyalkanoate (PHA) yields from Cupriavidus necator by using filtered digestate liquors.

    Science.gov (United States)

    Passanha, Pearl; Esteves, Sandra R; Kedia, Gopal; Dinsdale, Richard M; Guwy, Alan J

    2013-11-01

    The production of polyhydroxyalkanoates (PHAs) using digestate liquor as culture media is a novel application to extend the existing uses of digestates. In this study, two micro-filtered digestates (0.22 μm) were evaluated as a source of complex culture media for the production of PHA by Cupriavidus necator as compared to a conventional media. Culture media using a mixture of micro-filtered liquors from food waste and from wheat feed digesters showed a maximum PHA accumulation of 12.29 g/l PHA, with 90% cell dry weight and a yield of 0.48 g PHA/g VFA consumed, the highest reported to date for C. necator studies. From the analysis of the starting and residual media, it was concluded that ammonia, potassium, magnesium, sulfate and phosphate provided in the digestate liquors were vital for the initial growth of C. necator whereas copper, iron and nickel may have played a significant role in PHA accumulation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Enhancement of ethanol production from green liquor-ethanol-pretreated sugarcane bagasse by glucose-xylose cofermentation at high solid loadings with mixed Saccharomyces cerevisiae strains.

    Science.gov (United States)

    You, Yanzhi; Li, Pengfei; Lei, Fuhou; Xing, Yang; Jiang, Jianxin

    2017-01-01

    Efficient cofermentation of glucose and xylose is necessary for economically feasible bioethanol production from lignocellulosic biomass. Here, we demonstrate pretreatment of sugarcane bagasse (SCB) with green liquor (GL) combined with ethanol (GL-Ethanol) by adding different GL amounts. The common Saccharomyces cerevisiae (CSC) and thermophilic S. cerevisiae (TSC) strains were used and different yeast cell mass ratios (CSC to TSC) were compared. The simultaneous saccharification and cofermentation (SSF/SSCF) process was performed by 5-20% (w/v) dry substrate (DS) solid loadings to determine optimal conditions for the co-consumption of glucose and xylose. Compared to previous studies that tested fermentation of glucose using only the CSC, we obtained higher ethanol yield and concentration (92.80% and 23.22 g/L) with 1.5 mL GL/g-DS GL-Ethanol-pretreated SCB at 5% (w/v) solid loading and a CSC-to-TSC yeast cell mass ratio of 1:2 (w/w). Using 10% (w/v) solid loading under the same conditions, the ethanol concentration increased to 42.53 g/L but the ethanol yield decreased to 84.99%. In addition, an increase in the solid loading up to a certain point led to an increase in the ethanol concentration from 1.5 mL GL/g-DS-pretreated SCB. The highest ethanol concentration (68.24 g/L) was obtained with 15% (w/v) solid loading, using a CSC-to-TSC yeast cell mass ratio of 1:3 (w/w). GL-Ethanol pretreatment is a promising pretreatment method for improving both glucan and xylan conversion efficiencies of SCB. There was a competitive relationship between the two yeast strains, and the glucose and xylose utilization ability of the TSC was better than that of the CSC. Ethanol concentration was obviously increased at high solid loading, but the yield decreased as a result of an increase in the viscosity and inhibitor levels in the fermentation system. Finally, the SSCF of GL-Ethanol-pretreated SCB with mixed S. cerevisiae strains increased ethanol concentration and was an

  10. Methane production from fermentation of winery waste

    Energy Technology Data Exchange (ETDEWEB)

    Lo, K V; Liao, P H

    1986-01-01

    A laboratory-scale reactor receiving a mixture of screened dairy manure and winery waste was studied at 35 degrees C and a hydraulic retention time of 4 days. The maximum methane production rate of 8.14 liter CH/sub 4//liter/day was achieved at a loading rate of 7.78 g VS/liter/day (VS = volatile solids). The corresponding methane yield was 1.048 liter CH/sub 4//g VS added. Using a mixture of winery wastes and screened dairy manure as the feed material to anaerobic reactor resulted in a significant increase in total methane production compared to that from screened dairy manure alone. The biodegradation efficiency increased with the addition of winery wastes to screened dairy manure. 18 references.

  11. Cleaner production for solid waste management in leather industry ...

    African Journals Online (AJOL)

    Cleaner production for solid waste management in leather industry. ... From the processes, wastes are generated which include wastewater effluents, solid wastes, and hazardous wastes. In developing countries including Ethiopia, many ... The solid waste inventory of the factory has been carried out. The major problems ...

  12. PRODUCTION OF BIOETHANOL FROM AGRICULTURAL WASTE

    African Journals Online (AJOL)

    Braide W, Kanu I.A, Oranusi U.S and Adeleye S.A

    2016-05-01

    May 1, 2016 ... ethanol can be made from the named agricultural waste and the process is ..... of lignocellulosic materials for ethanol production: a review. Bioresour. ... [6] Martín, C., Klinke, H.B. and Thomsen, A.B. Wet oxidation as a ...

  13. Combustion oil production by direct liquefaction of the black liquor; Obtencao de oleo combustivel atraves da liquefacao direta de lixivia negra

    Energy Technology Data Exchange (ETDEWEB)

    Costa, J L.M. [Universidade Estadual de Maringa, PR (Brazil). Dept. de Quimica; Rodrigues, J A.R.; Schuchardt, U [Universidade Estadual de Campinas, SP (Brazil). Inst. de Quimica

    1985-12-31

    A large number of publications about the liquefaction of carbonaceous materials with carbon monoxide in water have appeared. As carbon monoxide reacts with water to form formate. We have decided to use this compound for the direct liquefaction of black liquor, obtained from the pulp and paper industry. The reactions were performed in a stainless steel autoclave of 1 litre using a ratio of water/black liquor/sodium formate of 69/29,5/1,5 %. The reaction conditions were varied between 200 and 300 deg C and 110 to 130 bar of inert gas. We obtained heavy oils of an average molecular weight around 500 in 90 to 100 % yield on a dry and ash-free basis. The calorific value of this oil was estimated in 38000 kJ/kg. (author). 12 refs., 2 figs., 7 tabs

  14. A feasible process for furfural production from the pre-hydrolysis liquor of corncob via biochar catalysts in a new biphasic system.

    Science.gov (United States)

    Deng, Aojie; Lin, Qixuan; Yan, Yuhuan; Li, Huiling; Ren, Junli; Liu, Chuanfu; Sun, Runcang

    2016-09-01

    A feasible approach was developed to produce furfural from the pre-hydrolysis liquor of corncob via biochar catalysts as the solid acid catalyst in a new biphasic system with dichloromethane (DCM) as the organic phase and the concentrated pre-hydrolysis liquor (CPHL) containing NaCl as the aqueous phase. The biochar catalyst possessing many acidity groups (SO3H, COOH and phenolic OH groups) was prepared by the carbonization and sulfonation process of the corncob hydrolyzed residue. The influence of the catalytic condition on furfural yield and selectivity was comparatively studied. It was found that 81.14% furfural yield and 83.0% furfural selectivity were obtained from CPHL containing 5wt% xylose using this biochar catalyst in the CPHL-NaCl/DCM biphasic system at 170°C for 60min. In addition, with the regeneration process, this catalyst displayed the high performance and excellent recyclability. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Potentialities of spinal liquor scanography

    International Nuclear Information System (INIS)

    Vlakhov, N.; Vylkanov, P.

    1986-01-01

    It is shown that spinal liquor scanography is a harmless and informative method for the examination of patients, permitting to detect injury foci for spinal cord tumours in 90% cases, for acute injuries of the vertebral column and spinal cord in 89.5% cases, for herniation of nucleus pulposus in 81% cases. The method of spinal liquor scanography can be used in neurology and neurosurgery to select the method of treatment and to evaluate its efficiency

  16. Mystery behind Chinese liquor fermentation

    OpenAIRE

    Jin, Guangyuan; Zhu, Yang; Xu, Yan

    2017-01-01

    Background Chinese liquor, a very popular fermented alcoholic beverage with thousands of years’ history in China, though its flavour formation and microbial process have only been partly explored, is facing the industrial challenge of modernisation and standardisation for food quality and safety as well as sustainability. Meanwhile, the hidden knowledge behind the complicated and somehow empirical solid-state fermentation process of Chinese liquor can enrich the food sector to improve our qua...

  17. Product specific emissions from municipal solid waste landfills

    DEFF Research Database (Denmark)

    Nielsen, Per Henning; Exner, Stephan; Jørgensen, Anne-Mette

    1998-01-01

    This paper presents and verifies the computer tool LCA-LAND for estimation of emissions from specific waste products disposed in municipal solid waste landfills in European countries for use in the inventory analysis of LCA. Examples of input data (e.g. distribution of the waste product...... in different countries, composition of the product and physical/chemical/biological properties of waste product components) and output data (e.g. estimated emissions to atmosphere and water) are given for a fictive waste product made of representative types of components (toluene, cellulose, polyvinylchloride...... (PVC), copper and chloride). Since waste products from different processes in the product system may be disposed at different landfills where they are mixed with waste originating outside the product system, the estimated emissions from specific waste products cannot be compared with measured emissions...

  18. Research on combustion of black-liquor drops

    International Nuclear Information System (INIS)

    Macek, A.

    1999-01-01

    Black liquor, the major by-product of the kraft process for production of pulp, is one of the most important industrial fuels. It is burned in recovery boilers in the form of large spray drops (mm), with the objective of simultaneous recovery of heat and chemicals (sodium and sulfur). Even though black-liquor combustion in boilers has been practised for over half a century, research efforts toward improvement of combustion efficiency and abatement of environmental emissions are much more recent. The present paper addresses a specific aspect of that research, namely, elucidation of processes which occur during combustion of black-liquor drops in boiler-gas streams. The paper (a) gives a brief description of the kraft process, (b) reviews the experimental and theoretical (modeling) research advances on combustion of kraft-liquor drops during the 1980s and 1990s, (c) re-examines the results of an earlier combustion study in which black-liquor drops were observed in free flight at temperatures near those in recovery boilers, and (d) recommends input for the modeling of in-flight combustion of kraft-liquor drops in recovery boilers. (author)

  19. 40 CFR 268.20 - Waste specific prohibitions-Dyes and/or pigments production wastes.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 26 2010-07-01 2010-07-01 false Waste specific prohibitions-Dyes and/or pigments production wastes. 268.20 Section 268.20 Protection of Environment ENVIRONMENTAL... Disposal § 268.20 Waste specific prohibitions—Dyes and/or pigments production wastes. (a) Effective August...

  20. Studies on inhibition characteristics of corn steep liquor and black sulphite liquor on corrosion of mild steel in acid media

    Energy Technology Data Exchange (ETDEWEB)

    Deb, P C; Mukherjea, R N

    1968-06-01

    The purpose of this study was to economically reduce the attack by acid on the parent metal, during the process of removing mill scale by acid pickling. Two inhibitors, by-products of the starch industry and pulp industry, were studied due to their cheapness and availability in India. The inhibition efficiency of the corn steep liquor and black sulfite liquor was found to be below that of thiourea. For example, in 6.2% (w/w) H/sub 2/SO/sub 4/ (at 50/sup 0/C), an inhibition efficiency of 90.5% and 84.5% is reached for inhibitor concentrations of 10 g per liter in the case of corn steep liquor and black sulfite liquor, respectively, while a concentration of 0.25 g per liter of thiourea was required to reach an inhibition efficiency of 98.6%.

  1. Pyrolysis and auto-gasification of black liquor in presence of ZnO: An integrated process for Zn/ZnO nanostructure production and bioenergy generation

    International Nuclear Information System (INIS)

    Maciel, A.V.; Job, A.E.; Mussel, W.N.; Pasa, V.M.D.

    2012-01-01

    This study presents a new process for valorisation of black liquor into gases that are used to reduce ZnO and promote zinc nanosheet synthesis, besides energy generation. During the black liquor pyrolysis and auto-gasification, gases evolve, especially carbon monoxide, and promote ZnO reduction with Zn (v) release. The metal is condensed yielding zinc nanosheets, with partial surface re-oxidation in presence of carbon dioxide. The process was investigated at the micro scale using thermal analyses (TG/DTG/DTA) and the gases evolved were analysed by FTIR spectroscopy (TG/FTIR). The process was also studied in laboratory scale using a tubular electric furnace. The black liquor/ZnO mixture was placed at the quartz tube and the sample was heated to 900 °C at 10 °C/min, and the temperature was held at 900 °C for 1 h. The nanostructures growth was catalyst-free, without pressure reduction or a template, at temperatures lower than those required in the classical carbothermal reduction of ZnO with fossil carbon. The nanostructures were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS) and infrared spectroscopy (FTIR). One mechanism was presented in an attempt to explain the synthesis of Zn/ZnO nanosheets that are crystalline. This green and innovative process has potential use at the industry due to its operational conditions, low costs and technological importance of Zn and ZnO nanostructures. -- Graphical abstract: Display Omitted Highlights: ► Black liquor and ZnO mixture were submitted to a heat treatment until 900 °C. ► The black liquor suffered pyrolysis and auto-gasification. ► ZnO is reduced by CO yielding Zn v , that is condensed generating Zn/ZnO nanosheets. ► The nanostructures are characterized and a mechanism of reactions is presented. ► The new process can produce energy and nanostructures in large scale.

  2. Revaluation of Waste Yeast from Beer Production

    Directory of Open Access Journals (Sweden)

    Nicoleta Suruceanu

    2013-11-01

    Full Text Available Brewing yeast is an important waste product from beer production. The valorification of slurry yeast mainly consists of separation of vitamins and important nitrogen compounds. The hops compounds, one of the most important raw materials in beer technology are removed beforehand valorification. The prenylflavonoids compounds from hops are important bioactive compounds that can be revaluation with proper technology. Revaluation of prenylflavonoids from waste yeast into dietary supplement, identification and quantification of xanthohumol by HPLC method. Waste yeast from brewery pilot plant of USAMV Cluj Napoca it was dried by atomization and the powder was analyzed on xanthohumol content by HPLC method. For quantification a calibration curve it was used. The process of drying by atomisation lead to a powder product. It was used malt dextrin powder for stabilisation. The final product it was encapsulated. The xanthohumol content of powdered yeast it was 1.94 µg/ml. In conclusion the slurry yeast from beer production it is an important source of prenylflavonoids compounds.

  3. Polyurethane Production from Waste Bale Fibers

    Directory of Open Access Journals (Sweden)

    İbrahim BİLİCİ

    2017-12-01

    Full Text Available Nowadays, the methods of eliminating the pollution from wastes of the materials produced as much as the production methods are important. This requires efficiently use of sources economical and ecologically. Polyester based polymers, which is one of the most important consumed plastic materials in the world, have lots of number of recycling methods. Basically it is called chemical and physical recycling. Chemical recycle methods include glycolysis, aminolysis, methanolysis, hydrolysis and etc.. In this study aromatic polyester polyols produced from bale fiber wastes via glycolysis method. Zinc Acetate used as a catalysts and diethylene glycol used for the glycolysis reaction and moiety of glycol investigated as an experimental parameter. Polyurethane material produced via obtained polyol and TDI (Toluene di Isocyanate reaction. Obtained polyurethane material investigated via FTIR and TGA and compared with the commercial polyurethane. As a result, it has been decided that glycolysis is usable and applicable method for the waste bale fibers.

  4. Quartzite mining waste for adhesive mortar production

    International Nuclear Information System (INIS)

    Dias, L.S.; Mol, R.M.R.; Silva, K.D.C.; Campos, P.A.M.; Mendes, J.C.; Peixoto, R.A.F.

    2016-01-01

    The construction sector is responsible for a high consumption of natural resources. Moreover, the mining industry generates and discard waste improperly in the environment aggravating environmental problems. In order to reduce the natural sand extraction and provide the environmentally correct disposal of mining waste, this work proposes the use of quartzite mining waste to replace natural sand for the production of adhesive mortars. The quartzite mining tailings was chemically characterized using X-ray fluorescence, and morphologically by optical microscopy. In sequence, the mortars were subjected to characterization tests in the fresh state as consistency index, slip, water retention, entrained air content, bulk density and Squeeze Flow. The results were satisfactory, indicating the viability of this material as fine aggregate in total replacement of natural aggregate, allowing the reduction of environmental impacts. (author)

  5. HPLC mapping of second generation ethanol production with lignocelluloses wastes and diluted sulfuric hydrolysis

    Directory of Open Access Journals (Sweden)

    Diogo José Horst

    2014-09-01

    Full Text Available Wood wastes are potential material for second generation ethanol production within the concept of residual forest bio-refinery. Current paper reports on ethanol production employing an HPLC method for monitoring the chemical content dispersed in the hydrolysate liquor after fermented. The proton-exchange technique was the analytical method employed. Twelve types of wood chips were used as biomass, including Hymenolobium petraeum, Tabebuia cassinoides, Myroxylon peruiferum, Nectandra lanceolata, Ocotea catharinensis, Cedrelinga catenaeformis, Cedrela fissilis Vell, Ocotea porosa, Laurus nobilis, Balfourodendron riedelianum, Pinus Elliotti and Brosimum spp. The influence of diluted sulfuric hydrolysis on the yeast Saccharomyces cerevisiae during the fermentation assay was also investigated. Standard compounds mapped in the analysis comprised fructose, lactic acid, acetic acid, glycerol, glucose and ethanol. The yeast showed ethanol productivity between 0.75 and 1.91 g L-1 h-1, respectively, without the addition of supplementary nutrients or detoxification. The use of these materials for the bioconversion of cellulose into ethanol has been proved. Current analysis contributes towards the production of biofuels by wastes recovery and by process monitoring and optimization.

  6. The Effect of Iron Salt on Anaerobic Digestion and Phosphate Release to Sludge Liquor

    Directory of Open Access Journals (Sweden)

    Svetlana Ofverstrom

    2011-12-01

    Full Text Available Iron salts are used at wastewater treatment plants (WWTPs for several reasons: for removing chemical phosphorus, preventing from struvite formation and reducing the content of hydrogen sulfide (H2S in biogas. Anaerobic digestion is a common scheme for sludge treatment due to producing biogas that could be used as biofuel. Laboratory analysis has been carried out using anaerobic digestion model W8 (Armfield Ltd, UK to investigate any possible effect of adding FeCl3 on the anaerobic digestion of primary sludge (PS and waste activated sludge (WAS mixture as well as on releasing phosphates to digested sludge liquor. The obtained results showed that FeCl3 negatively impacted the anaerobic digestion process by reducing the volume of produced biogas. Fe-dosed sludge (max produced 30% less biogas. Biogas production from un-dosed and Fe-dosed sludge (min was similar to the average of 1.20 L/gVSfed. Biogas composition was not measured during the conducted experiments. Phosphorus content in sludge liquor increased at an average of 38% when digesting sludge without ferric chloride dosing. On the contrary, phosphate content in sludge liquor from digested Fe-dosed sludge decreased by approx. 80%.

  7. Wastes and by-products - alternatives for agricultural use

    International Nuclear Information System (INIS)

    Boles, J.L.; Craft, D.J.; Parker, B.R.

    1994-01-01

    Top address a growing national problem with generation of wastes and by-products, TVA has been involved for several years with developing and commercializing environmentally responsible practices for eliminating, minimizing, or utilizing various wastes/by-products. In many cases, reducing waste generation is impractical, but the wastes/by-products can be converted into other environmentally sound products. In some instances, conversion of safe, value-added agricultural products in the best or only practical alternative. TVA is currently involved with a diversity of projects converting wastes/by-products into safe, economical, and agriculturally beneficial products. Environmental improvement projects have involved poultry litter, cellulosic wastes, used battery acid, ammonium sulfate fines, lead smelting effluents, deep-welled sulfuric acid/ammonium bisulfate solutions, wood ash, waste magnesium ammonium sulfate slurry from recording tape production, and ammunition plant waste sodium nitrate/ammonium nitrate streams

  8. Plywood production wastes to energy

    Science.gov (United States)

    Lyubov, V. K.; Popov, A. N.

    2017-11-01

    Wood and by-products of its processing are a renewable energy source with carbon neutral and may be used in solving energy problems. ZAO «Arkhangelsk plywood factory» installed and put into operation the boiler with capacity of 22 MW (saturated steam of 1.2 MPa) to reduce the cost of thermal energy, the impact of environmental factors on stability of the company’s development and for reduction of harmful emissions into the environment. Fuel for boiler is the mixture consists of chip plywood, birch bark, wood sanding dust (WSD) and sawdust of the plywood processing. The components of the fuel mixture significantly differ in thermotechnical characteristics and technological parameters but especially in size composition. Particle dimensions in the fuel mixture differ by more than a thousand times which makes it «unique» and very difficult to ensure the effective and non-explosive use. WSD and sawdust from line of cutting of plywood are small fraction material and relate to IV group of explosion. Criterion of explosive for them has great values (КfWSD=10.85 Кfsaw=9.66). Boiler’s furnace equipped with reciprocating grate where implemented a three-stage scheme of combustion. For a comprehensive survey of the effectiveness of installed equipment was analyzed the design features of the boiler, defined the components of thermal balance, studied nitrogen oxide emissions, carbon and particulate matter with the determination of soot emissions. Amount of solid particles depending on their shape and size was analyzed.

  9. Estudo do liquor de cupuaçu Study of cupuassu liquor

    Directory of Open Access Journals (Sweden)

    Kelly de Oliveira Cohen

    2005-03-01

    Full Text Available O cupuaçu (Theobroma grandiflorum Schum, que é um fruto amazônico, vem conquistando a cada ano mais espaço no mercado nacional e internacional com a comercialização de sua polpa. Suas sementes, consideradas como subproduto, vem despertando interesse não só no mundo científico como pelas indústrias. Sabe-se que, a partir das sementes, pode-se obter produtos análogos aos oriundos das sementes de cacau, seguindo as mesmas etapas de processamento. Dentre esses produtos tem-se o liquor de cupuaçu, semelhante ao liquor de cacau que é um dos ingredientes da formulação do chocolate. Este trabalho teve como objetivo o estudo da obtenção e caracterização física, química e físico-química do liquor de cupuaçu. Obteve-se três amostras de liquor de cupuaçu, cada qual partindo de lotes diferentes de fermentação. Foram avaliados a composição centesimal e o comportamento reológico. O liquor de cupuaçu apresentou alto teor de lipídios (63,93 a 66,51% e alto valor calórico (677,35 a 691,17kcal/100g. O teor de proteínas variou de 8,95 a 10,31%. A viscosidade plástica de Casson diminuiu com o aumento de temperatura. A distribuição do tamanho das partículas influenciou nas diferenças de viscosidades entre as amostras, havendo maior redução de viscosidade plástica com o aumento da temperatura nas amostras que apresentaram maior diâmetro de partículas. A gordura de cupuaçu apresentou comportamento newtoniano à 40ºC.Cupuassu (Theobroma grandiflorum Schum is an amazon fruit, that each year is conquering more space in national and international market with the commercialization of its pulp. Its seeds, considered as subproducts, are arousing interest not only in the scientific world but also in the industry. It's known that from those seeds, it can be obtained analogous products as those cocoa seeds, following the same stages of processing. Among those products there is the cupuassu liquor, similar to cocoa liquor that is one

  10. Upgrading of naringinase production by gamma irradiated Aspergillus niger uilizing agro-industrial processing wastes

    International Nuclear Information System (INIS)

    El-Batal, A.I.; Swailam, H.M.H.

    2003-01-01

    Naringinase-producing microorganisms were isolated locally from some citrus fruits and soil using a culture enrichment technique, and they were tested for their enzyme producing ability in shake flask cultures. Among the tested microorganisms, aspergillus niger-AH3 proved to be the most potent active isolate which gave 92.1 UMl -1 of naringinase activity in fermentation medium. Optimization effects of various fermentation medium constituents of agro-industrial processing wastes as substrates for naringinase production were studied. Of substrates used, corn steep liquor, soya bean meal, jojoba seed meal and bitter orange seed powder were the best for naringinase production .Maximum enzyme titer (145.5 Uml -1 ) was obtained in the optimized fermentation medium supplemented with 0.5% CaCo 3 after 120 h of incubation. The highly potent ten enhanced isolates which were selected after treatment with gamma irradiation, had significantly elevated titers of naringinase activity compared with the parental wild strain A. niger-AH3. Enhanced isolate A. niger-AH3. γ20 derived from 2.0 kGy treated groups is exhibiting the highest enzyme activity 1.5 folds higher than parental strain. This suggests that a process for efficient utilization of the agro-industrial processing wastes in economical production of naringinase in large quantities which would be suitable for debittering process in the citrus fruit juice industry

  11. Performance of Ceriporiopsis sp. in the Treatment of Black Liquor Wastewater

    OpenAIRE

    Sari, Ajeng Arum

    2016-01-01

    High amounts of black liquor wastewater are generated from bioethanol production by using oil palm empty fruit bunches. It contains an alkaline solution (NaOH), so it is quite toxic for aquatic ecosystems if discharged directly into waters. Black liquor has been treated by coagulation method, and it still needs additional treatment. This study aimed to determine degradation of black liquor wastewater by selected white-rot fungi (WRF). Five different strains of WRF have been tested for their a...

  12. PRODUCTION OF BIOETHANOL FROM AGRICULTURAL WASTE

    Directory of Open Access Journals (Sweden)

    W. Braide

    2016-05-01

    Full Text Available This study investigates the potential of ethanol production from agro wastes. Agro waste from sugarcane Saccharum officinarum (sugarcane baggasse, sugarcane bark and maize plant Zea mays (corncob, corn stalk, corn husk was subjected to a pretreatment process using acid hydrolysis was applied to remove lignin which acts as physical barrier to cellulolytic enzymes. Ethanolic fermentation was done using Saccharomyces cerevisiae for 5days and the ethanol yield, specific gravity, pH and total reducing sugar were also determined. From the results, the specific gravity, sugar content and pH decreased over time while the Sugarcane baggasse, Sugarcane bark, Cornstalk, Corncob and Cornhusk gave maximum percentage ethanol yield of 6.72, 6.23, 6.17, 4.17 and 3.45 respectively at 72hrs Fermentation. Maximum yields of ethanol were obtained at pH 3.60, 3.82, 4.00, 3.64 and 3.65. These findings show/prove that ethanol can be made from the named agricultural waste and the process is recommended as a means of generating wealth from waste.

  13. Radioactive waste products 2002 (RADWAP 2002). Proceedings

    International Nuclear Information System (INIS)

    Odoj, R.; Baier, J.; Brennecke, P.; Kuehn, K.

    2003-01-01

    The 4 th International Seminar on Radioactive Waste Products was organised by the Forschungszentrum Juelich in co-operation with the Bundesamt fuer Strahlenschutz and the European Commission. On behalf of the Bundesamt, I would like to welcome all participants of this scientific-technical meeting. I very much appreciate the participation not only of numerous German scientists, engineers and technicians as well as governmental and industrial representatives, but would particularly express my gratitude for the participation of many colleagues from abroad. Radioactive waste management and disposal is a worldwide issue and international co-operation to support national programmes is therefore much appreciated. The international organisations provide, among other things, guidance to member countries on safe, economic and environmentally acceptable solutions for radioactive waste disposal. On a national basis respective programmes are developed, modified or successfully realized. Nevertheless, the challenge of radioactive waste management and disposal is no longer a scientific and technical exclusivity. The importance of ethical and social aspects, the dialogue with the public and transparency in decision-making processes increase more and more. Thus, when addressing safety-related key questions one needs to be as open as possible on scientific-technical aspects and to consider the involvement of the public requiring a clear, open-minded and transparent communication. (orig.)

  14. Production of metal waste forms from spent fuel treatment

    International Nuclear Information System (INIS)

    Westphal, B.R.; Keiser, D.D.; Rigg, R.H.; Laug, D.V.

    1995-01-01

    Treatment of spent nuclear fuel at Argonne National Laboratory consists of a pyroprocessing scheme in which the development of suitable waste forms is being advanced. Of the two waste forms being proposed, metal and mineral, the production of the metal waste form utilizes induction melting to stabilize the waste product. Alloying of metallic nuclear materials by induction melting has long been an Argonne strength and thus, the transition to metallic waste processing seems compatible. A test program is being initiated to coalesce the production of the metal waste forms with current induction melting capabilities

  15. Potential useful products from solid wastes.

    Science.gov (United States)

    Golueke, C G; Diaz, L F

    1991-10-01

    Wastes have been aptly defined as "items, i.e. resources, that have been discarded because their possessors no longer have an apparent use for them". Accordingly, "wastes" have a significance only in relation to the items and those who have discarded them. The discarded items now are resources awaiting reclamation. Reclamation usually involves either salvage or conversion--or in modern terminology, "reuse" or "recycling". Reclamation for reuse consists in refurbishing or other upgrading without significantly altering original form and composition. Examples of wastes amenable to reuse are containers (bottles, etc.), cartons and repairable tires. With "recycling" (i.e. conservation), the discarded items are processed such that they become raw material, i.e. resources in the manufacture of "new" products. The variety of processes is wide, ranging from simply physical (grinding) through thermal (melting, gasification, combustion), to biological (composting, biogasification, hydrolysis, microbial protein production). In the paper, reuse and recycling (conversion) are evaluated in terms of advantages and disadvantages (limitations) and their respective technologies are described and discussed in detail.

  16. DWPF waste glass Product Composition Control System

    International Nuclear Information System (INIS)

    Brown, K.G.; Postles, R.L.

    1992-01-01

    The Defense Waste Processing Facility (DWPF) will be used to blend aqueous radwaste (PHA) with solid radwaste (Sludge) in a waste receipt vessel (the SRAT). The resulting SRAT material is transferred to the SME an there blended with ground glass (Frit) to produce a batch of melter feed slurry. The SME material is passed to a hold tank (the MFT) which is used to continuously feed the DWPF melter. The melter. The melter produces a molten glass wasteform which is poured into stainless steel canisters for cooling and, ultimately, shipment to and storage in a geologic repository. The Product Composition Control System (PCCS) is the system intended to ensure that the melt will be processible and that the glass wasteform will be acceptable. This document provides a description of this system

  17. Biogas production from solid pineapple waste

    Energy Technology Data Exchange (ETDEWEB)

    Tanticharoen, M.; Bhumiratana, S.; Tientanacom, S.; Pengsobha, L.

    1984-01-01

    Solid pineapple waste composed of shell and core was used as substrate in anaerobic fermentation producing CH4. The experiments were carried out using four 30-L vessels and no mixing, a 200-L plug-flow reactor, and a 5-cubic m stirred tank. Because of high acidity of the substrate, the loading rate is as low as 2.5 g dry solid added/L-day. The average gas yield is 0.3-0.5 L/g dry substrate. A pretreatment of wet solid with sludge effluent prior loading to the digester resulted in better stability of the biodigester than without pretreatment. These studies showed that loading rate can be much higher than those previously used. The 2-stage process was tested to determine a conversion efficiency of high loading and at much shorter reactor retention times. The results of the entire program indicated that biogas production from cannery pineapple waste is technically feasible.

  18. Treatment of black liquor from the papermaking industry by acidification and reuse.

    Science.gov (United States)

    Yang, Wen-Bo; Mu, Huan-Zhen; Huang, Yan-Chu

    2003-09-01

    Two different kinds of black liquor from the papermaking industry were treated by acidification and reuse. The experimental parameters and conditions were discussed in detail. The experimental results indicated that the treatment process mentioned in this article is an effective process for the treatment of black liquor from the papermaking industry. By the treatment, the solid materials in black liquor are transferred into two by-products and the other components are reused or evaporated. Thus, no wastewater except some condensation water would be discharged in pulping process and the problem of pollution of black liquor would be effectively solved.

  19. Antioxidant capacity of Kraft black liquor from the pulp and paper industry.

    Science.gov (United States)

    Perez-Perez, Elizabeth; Rodríguez-Malaver, Antonio J

    2005-07-01

    The effect of Kraft black liquor on the lipid peroxidation of rat homogenates was examined. The lipid peroxidation of homogenates from different organs (kidney, brain, lung, and liver) was induced by Fenton's reagent. The products of lipid peroxidation, lipid hydroperoxides and TBARS were measured by FOX method and TBA assay, respectively. It was found that black liquor significantly reduced the concentration of TBARS, but not the concentration of lipid hydroperoxides. This inhibition was directly proportional to the concentration of Kraft black liquor and the incubation temperature. Conclusively, the black liquor from pulp and paper industry exhibited an antioxidant activity.

  20. Immobilization of fission products in phosphate ceramic waste forms

    International Nuclear Information System (INIS)

    Singh, D.

    1996-01-01

    The goal of this project is to develop and demonstrate the feasibility of a novel low-temperature solidification/stabilization (S/S) technology for immobilizing waste streams containing fission products such as cesium, strontium, and technetium in a chemically bonded phosphate ceramic. This technology can immobilize partitioned tank wastes and decontaminate waste streams containing volatile fission products

  1. 77 FR 12293 - PCBs Bulk Product v. Remediation Waste

    Science.gov (United States)

    2012-02-29

    .... Remediation Waste AGENCY: Environmental Protection Agency (EPA). ACTION: Request for Public Comment. SUMMARY... biphenyl (PCB) disposal regulations regarding PCB bulk product and PCB remediation waste. The proposed... regarding PCB bulk product and PCB remediation waste under regulations promulgated at 40 CFR part 761. The...

  2. Waste acceptance product specifications for vitrified high-level waste forms

    International Nuclear Information System (INIS)

    Applewhite-Ramsey, A.; Sproull, J.F.

    1993-01-01

    The Nuclear Waste Policy Act of 1982 mandated that all high-level waste (HLW) be sent to a federal geologic repository for permanent disposal. DOE published the Environmental Assessment in 1982 which identified borosilicate glass as the chosen HLW form. 1 In 1985 the Department of Energy instituted a Waste Acceptance Process to assure that DWPF glass waste forms would be acceptable to such a repository. This assurance was important since production of waste forms will precede repository construction and licensing. As part of this Waste Acceptance Process, the DOE Office of Civilian Radioactive Waste Management (RW) formed the Waste Acceptance Committee (WAC). The WAC included representatives from the candidate repository sites, the waste producing sites and DOE. The WAC was responsible for developing the Waste Acceptance Preliminary Specifications (WAPS) which defined the requirements the waste forms must meet to be compatible with the candidate repository geologies

  3. Biodiesel production using waste frying oil

    International Nuclear Information System (INIS)

    Charpe, Trupti W.; Rathod, Virendra K.

    2011-01-01

    Research highlights: → Waste sunflower frying oil is successfully converted to biodiesel using lipase as catalyst. → Various process parameters that affects the conversion of transesterification reaction such as temperature, enzyme concentration, methanol: oil ratio and solvent are optimized. → Inhibitory effect of methanol on lipase is reduced by adding methanol in three stages. → Polar solvents like n-hexane and n-heptane increases the conversion of tranesterification reaction. - Abstract: Waste sunflower frying oil is used in biodiesel production by transesterification using an enzyme as a catalyst in a batch reactor. Various microbial lipases have been used in transesterification reaction to select an optimum lipase. The effects of various parameters such as temperature, methanol:oil ratio, enzyme concentration and solvent on the conversion of methyl ester have been studied. The Pseudomonas fluorescens enzyme yielded the highest conversion. Using the P. fluorescens enzyme, the optimum conditions included a temperature of 45 deg. C, an enzyme concentration of 5% and a methanol:oil molar ratio 3:1. To avoid an inhibitory effect, the addition of methanol was performed in three stages. The conversion obtained after 24 h of reaction increased from 55.8% to 63.84% because of the stage-wise addition of methanol. The addition of a non-polar solvent result in a higher conversion compared to polar solvents. Transesterification of waste sunflower frying oil under the optimum conditions and single-stage methanol addition was compared to the refined sunflower oil.

  4. Mystery behind Chinese liquor fermentation

    NARCIS (Netherlands)

    Jin, Guangyuan; Zhu, Yang; Xu, Yan

    2017-01-01

    Background Chinese liquor, a very popular fermented alcoholic beverage with thousands of years’ history in China, though its flavour formation and microbial process have only been partly explored, is facing the industrial challenge of modernisation and standardisation for food quality and safety as

  5. Hydrogen production from municipal solid waste

    Energy Technology Data Exchange (ETDEWEB)

    Wallman, P.H.; Richardson, J.H.; Thorsness, C.B. [and others

    1996-06-28

    We have modified a Municipal Solid Waste (MSW) hydrothermal pretreatment pilot plant for batch operation and blowdown of the treated batch to low pressure. We have also assembled a slurry shearing pilot plant for particle size reduction. Waste paper and a mixture of waste paper/polyethylene plastic have been run in the pilot plant with a treatment temperature of 275{degrees}C. The pilot-plant products have been used for laboratory studies at LLNL. The hydrothermal/shearing pilot plants have produced acceptable slurries for gasification tests from a waste paper feedstock. Work is currently underway with combined paper/plastic feedstocks. When the assembly of the Research Gasification Unit at Texaco (feed capacity approximately 3/4-ton/day) is complete (4th quarter of FY96), gasification test runs will commence. Laboratory work on slurry samples during FY96 has provided correlations between slurry viscosity and hydrothermal treatment temperature, degree of shearing, and the presence of surfactants and admixed plastics. To date, pumpable slurries obtained from an MSW surrogate mixture of treated paper and plastic have shown heating values in the range 13-15 MJ/kg. Our process modeling has quantified the relationship between slurry heating value and hydrogen yield. LLNL has also performed a preliminary cost analysis of the process with the slurry heating value and the MSW tipping fee as parameters. This analysis has shown that the overall process with a 15 MJ/kg slurry gasifier feed can compete with coal-derived hydrogen with the assumption that the tipping fee is of the order $50/ton.

  6. Fuel Pellets Production from Biodiesel Waste

    Directory of Open Access Journals (Sweden)

    Kawalin Chaiyaomporn

    2010-01-01

    Full Text Available This research palm fiber and palm shell were used as raw materials to produce pelletised fuel, and waste glycerol were used as adhesive to reduce biodiesel production waste. The aim of this research is to find optimum ratio of raw material (ratio of palm fiber and palm shell, raw material size distribution, adhesive temperature, and ratio of ingredients (ratio of raw material, waste glycerol, and water. The optimum ratio of pelletized fuel made only by palm fiber was 50:10:40; palm fiber, water, and waste glycerol respectively. In the best practice condition; particle size was smaller than 2 mm, adhesive glycerol was heated. From the explained optimum ratio and ingredient, pelletizing ratio was 62.6%, specific density was 982.2 kg/m3, heating value was 22.5 MJ/kg, moisture content was 5.9194%, volatile matter was 88.2573%, fix carbon content was 1.5894%, and ash content was 4.2339% which was higher than the standard. Mixing palm shell into palm fiber raw material reduced ash content of the pellets. The optimum raw material ratio, which minimizes ash content, was 80 to 20 palm fiber and palm shell respectively. Adding palm shell reduced ash content to be 2.5247% which was higher than pelletized fuel standard but followed cubed fuel standard. At this raw material ratio, pelletizing ratio was 70.5%, specific density was 774.8 kg/m3, heating value was 19.71 MJ/kg, moisture content was 9.8137%, volatile matter was 86.2259%, fix carbon content was 1.4356%, and compressive force was 4.83 N. Pelletized fuel cost at optimum condition was 1.14 baht/kg.

  7. Cleaner production: Minimizing hazardous waste in Indonesia

    Energy Technology Data Exchange (ETDEWEB)

    Bratasida, D.L. [BAPEDAL, Jakarta (Indonesia)

    1996-12-31

    In the second long-term development plan, industry plays a significant role in economic growth. In Indonesia, industries grow very fast; such fast growth can adversely effect the environment. Exploitation of assets can mean depletion of natural resources and energy, which, if incorrectly managed, can endanger human life and the environment. The inefficient use of natural resources will accelerate their exhaustion and generate pollution, resulting in environmental damage and threats to economic development and human well being. In recent years, changes in the approach used to control pollution have been necessary because of the increasing seriousness of the problems. Initial environmental management strategies were based on a carrying capacity approach; the natural assimilative capacity accommodated the pollution load that was applied. The environmental management strategies adopted later included technologies applied to the end of the discharge point (so-called {open_quotes}end-of-pipe{close_quotes} treatments). Until now, environmental management strategies focused on end-of-pipe approaches that control pollutants after they are generated. These approaches concentrate on waste treatment and disposal to control pollution and environmental degradation. However, as industry develops, waste volumes continue to increase, thereby creating further environmental problems. In addition, the wastes produced tend to have more complex characteristics and are potentially more difficult to treat for a reasonable cost. There are often technical and financial obstacles to regulatory compliance if waste treatment is relied on as the only means of achieving environmental objectives. Consequently, the reactive end-of-pipe treatment approach has been changed to a proactive cleaner production approach. This approach is based on the concept of sustainable development and is designed to prevent pollution as well as to protect natural resources and the quality of the environment.

  8. Waste acceptance product specifications for vitrified high-level waste forms

    International Nuclear Information System (INIS)

    Applewhite-Ramsey, A.; Sproull, J.F.

    1994-01-01

    The Department of Energy (DOE) Office of Environmental Restoration and Waste Management (EM) has developed Waste Acceptance Product Specifications (EM-WAPS). The EM-WAPS will be the basis for defining product acceptance criteria compatible with the requirements of the Civilian Radioactive Waste Management System (CRWMS). The relationship between the EM-WAPS and the CRWMS Systems Requirements document (WA-SRD) will be discussed. The impact of the EM-WAPS on the Savannah River Sit (SRS) Defense Waste Processing Facility's (DWPF) Waste Acceptance Program, Waste Qualification Run planning, and startup schedule will also be reported. 14 refs., 2 tabs

  9. Yeast community associated with the solid state fermentation of traditional Chinese Maotai-flavor liquor.

    Science.gov (United States)

    Wu, Qun; Chen, Liangqiang; Xu, Yan

    2013-09-02

    Yeasts are the most important group of microorganisms contributing to liquor quality in the solid-state fermentation process of Chinese Maotai-flavor liquor. There occurred a complex yeast community structure during this process, including stages of Daqu (the starter) making, stacking fermentation on the ground and liquor fermentation in the pits. In the Daqu making stage, few yeast strains accumulated. However, the stacking fermentation stage accumulated nine yeast species with different physio-biochemical characteristics. But only four species kept dominant until liquor fermentation, which were Zygosaccharomyces bailii, Saccharomyces cerevisiae, Pichia membranifaciens, and Schizosaccharomyces pombe, implying their important functions in liquor making. The four species tended to inhabit in different locations of the stack and pits during stacking and liquor fermentation, due to the condition heterogeneity of the solid-state fermentation, including the different fermentation temperature profiles and oxygen density in different locations. Moreover, yeast population was much larger in the upper layer than that in the middle and bottom layers in liquor fermentation, which was in accordance with the profile of reducing sugar consumption and ethanol production. This was a systematical investigation of yeast community structure dynamics in the Maotai-flavor liquor fermentation process. It would be of help to understand the fermentative mechanism in solid-state fermentation for Maotai-flavor liquor. © 2013.

  10. Use of sulfide-containing liquors for removing mercury from flue gases

    Science.gov (United States)

    Nolan, Paul S.; Downs, William; Bailey, Ralph T.; Vecci, Stanley J.

    2006-05-02

    A method and apparatus for reducing and removing mercury in industrial gases, such as a flue gas, produced by the combustion of fossil fuels, such as coal, adds sulfide ions to the flue gas as it passes through a scrubber. Ideally, the source of these sulfide ions may include at least one of: sulfidic waste water, kraft caustic liquor, kraft carbonate liquor, potassium sulfide, sodium sulfide, and thioacetamide. The sulfide ion source is introduced into the scrubbing liquor as an aqueous sulfide species. The scrubber may be either a wet or dry scrubber for flue gas desulfurization systems.

  11. Baseline Glass Development for Combined Fission Products Waste Streams

    International Nuclear Information System (INIS)

    Crum, Jarrod V.; Billings, Amanda Y.; Lang, Jesse B.; Marra, James C.; Rodriguez, Carmen P.; Ryan, Joseph V.; Vienna, John D.

    2009-01-01

    Borosilicate glass was selected as the baseline technology for immobilization of the Cs/Sr/Ba/Rb (Cs), lanthanide (Ln) and transition metal fission product (TM) waste steams as part of a cost benefit analysis study.(1) Vitrification of the combined waste streams have several advantages, minimization of the number of waste forms, a proven technology, and similarity to waste forms currently accepted for repository disposal. A joint study was undertaken by Pacific Northwest National Laboratory (PNNL) and Savannah River National Laboratory (SRNL) to develop acceptable glasses for the combined Cs + Ln + TM waste streams (Option 1) and Cs + Ln combined waste streams (Option 2) generated by the AFCI UREX+ set of processes. This study is aimed to develop baseline glasses for both combined waste stream options and identify key waste components and their impact on waste loading. The elemental compositions of the four-corners study were used along with the available separations data to determine the effect of burnup, decay, and separations variability on estimated waste stream compositions.(2-5) Two different components/scenarios were identified that could limit waste loading of the combined Cs + LN + TM waste streams, where as the combined Cs + LN waste stream has no single component that is perceived to limit waste loading. Combined Cs + LN waste stream in a glass waste form will most likely be limited by heat due to the high activity of Cs and Sr isotopes.

  12. Preliminary assessment of nine waste-form products/processes for immobilizing transuranic wastes

    International Nuclear Information System (INIS)

    Crisler, L.R.

    1980-09-01

    Nine waste-form processes for reduction of the present and projected Transuranic (TRU) waste inventory to an immobilized product have been evaluated. Product formulations, selected properties, preparation methods, technology status, problem areas needing resolution and location of current research development being pursued in the United States are discussed for each process. No definitive utility ranking is attempted due to the early stage of product/process development for TRU waste containing products and the uncertainties in the state of current knowledge of TRU waste feed compositional and quantitative makeup. Of the nine waste form products/processes included in this discussion, bitumen and cements (encapsulation agents) demonstrate the degree of flexibility necessary to immobilize the wide composition range present in the TRU waste inventory. A demonstrated process called Slagging Pyrolysis Incineration converts a varied compositional feed (municipal wastes) to a ''basalt'' like product. This process/product appears to have potential for TRU waste immobilization. The remaining waste forms (borosilicate glass, high-silica glass, glass ceramics, ''SYNROC B'' and cermets) have potential for immobilizing a smaller fraction of the TRU waste inventory than the above discussed waste forms

  13. A process for producing lignin and volatile compounds from hydrolysis liquor.

    Science.gov (United States)

    Khazraie, Tooran; Zhang, Yiqian; Tarasov, Dmitry; Gao, Weijue; Price, Jacquelyn; DeMartini, Nikolai; Hupa, Leena; Fatehi, Pedram

    2017-01-01

    Hot water hydrolysis process is commercially applied for treating wood chips prior to pulping or wood pellet production, while it produces hydrolysis liquor as a by-product. Since the hydrolysis liquor is dilute, the production of value-added materials from it would be challenging. In this study, acidification was proposed as a viable method to extract (1) furfural and acetic acid from hot water hydrolysis liquor and (2) lignin compounds from the liquor. The thermal properties of the precipitates made from the acidification of hydrolysis liquor confirmed the volatile characteristics of precipitates. Membrane dialysis was effective in removing inorganic salts associated with lignin compounds. The purified lignin compounds had a glass transition temperature (Tg) of 180-190 °C, and were thermally stable. The results confirmed that lignin compounds present in hot water hydrolysis liquor had different characteristics. The acidification of hydrolysis liquor primarily removed the volatile compounds from hydrolysis liquor. Based on these results, a process for producing purified lignin and precipitates of volatile compounds was proposed.

  14. High-Level waste process and product data annotated bibliography

    International Nuclear Information System (INIS)

    Stegen, G.E.

    1996-01-01

    The objective of this document is to provide information on available issued documents that will assist interested parties in finding available data on high-level waste and transuranic waste feed compositions, properties, behavior in candidate processing operations, and behavior on candidate product glasses made from those wastes. This initial compilation is only a partial list of available references

  15. Exergetic comparison of food waste valorization in industrial bread production

    NARCIS (Netherlands)

    Zisopoulos, F.K.; Moejes, S.N.; Rossier Miranda, F.J.; Goot, van der A.J.; Boom, R.M.

    2015-01-01

    This study compares the thermodynamic performance of three industrial bread production chains: one that generates food waste, one that avoids food waste generation, and one that reworks food waste to produce new bread. The chemical exergy flows were found to be much larger than the physical exergy

  16. Equilibrium Temperature Profiles within Fission Product Waste Forms

    Energy Technology Data Exchange (ETDEWEB)

    Kaminski, Michael D. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-10-01

    We studied waste form strategies for advanced fuel cycle schemes. Several options were considered for three waste streams with the following fission products: cesium and strontium, transition metals, and lanthanides. These three waste streams may be combined or disposed separately. The decay of several isotopes will generate heat that must be accommodated by the waste form, and this heat will affect the waste loadings. To help make an informed decision on the best option, we present computational data on the equilibrium temperature of glass waste forms containing a combination of these three streams.

  17. Carrot Loss during Primary Production : Field Waste and Pack House Waste.

    OpenAIRE

    Bond, Rebekka

    2016-01-01

    Background: it has been suggested that roughly one-third of all food produced for human consumption is lost or wasted globally. The reduction of loss and waste is seen as an important societal issue with considerable ethical, ecological and economic implications. Fruit and vegetables have the highest wastage rates of any food products; (45 %). And a big part of this waste occurs during production, but empirical data on loss during primary production is limited. Carrots are an important hortic...

  18. The waste minimization program at the Feed Materials Production Center

    International Nuclear Information System (INIS)

    Blasdel, J.E.; Crotzer, M.E.; Gardner, R.L.; Kato, T.R.; Spradlin, C.N.

    1987-01-01

    A waste minimization program is being implemented at the Feed Materials Production Center to reduce the generation of uranium-contaminated wastes and to comply with existing and forthcoming regulations. Procedures and plans are described which deal with process and non-process trash, contaminated wood and metals, used metal drums, and major process wastes such as contaminated magnesium fluoride and neutralized raffinate. Waste minimization techniques used include segregation, source reduction, volume reduction, material substitution and waste/product recycle. The importance of training, communication, and incentives is also covered. 5 refs., 11 figs

  19. Urine: Waste product or biologically active tissue?

    Science.gov (United States)

    2018-03-01

    Historically, urine has been viewed primarily as a waste product with little biological role in the overall health of an individual. Increasingly, data suggest that urine plays a role in human health beyond waste excretion. For example, urine might act as an irritant and contribute to symptoms through interaction with-and potential compromise of-the urothelium. To explore the concept that urine may be a vehicle for agents with potential or occult bioactivity and to discuss existing evidence and novel research questions that may yield insight into such a role, the National Institute of Diabetes and Digestive and Kidney Disease invited experts in the fields of comparative evolutionary physiology, basic science, nephrology, urology, pediatrics, metabolomics, and proteomics (among others) to a Urinology Think Tank meeting on February 9, 2015. This report reflects ideas that evolved from this meeting and current literature, including the concept of urine quality, the biological, chemical, and physical characteristics of urine, including the microbiota, cells, exosomes, pH, metabolites, proteins, and specific gravity (among others). Additionally, the manuscript presents speculative, and hopefully testable, ideas about the functional roles of urine constituents in health and disease. Moving forward, there are several questions that need further understanding and pursuit. There were suggestions to consider actively using various animal models and their biological specimens to elaborate on basic mechanistic information regarding human bladder dysfunction. Published 2018. This article is a U.S. Government work and is in the public domain in the USA.

  20. Use of waste materials for biodiesel production

    Energy Technology Data Exchange (ETDEWEB)

    Vitiello, R.; Tesser, R.; Di Serio, M.; Santacesaria, E. [Napoli Univ. (Italy). Dipt. di Scienze Chimiche; Buonerba, A.; Grassi, A. [Salerno Univ. (Italy). Dipt. di Chimica e Biologia

    2012-07-01

    Waste raw materials obtained by several sources of both food and agro industries could be considered for biofuel production. In the last years, this topic has growing in interest. At this purpose, our research, has been focused on the development of new technologies to obtain biodiesel from the mentioned wastes feedstock. In particular from oleins, that are mixtures of free fatty acids (FFAs) and triglycerides. Therefore, we are studying the way to produce biodiesel in two steps: an esterification reaction of FFAs with glycerol and a transesterification with methanol of the whole mixture. The esterification of FFAs with glycerol has the advantage of using a relatively high temperature favouring the stripping of water formed during the esterification. In this way esterification equilibrium is shifted to the right. Then, the mixture of mono-, di- and triglycerides, obtained by esterification with glycerol, can be submitted to transesterification with methanol, in the usual way, to produce biodiesel Catalysts promoting esterification, normally, are mineral acids or heterogeneous Bronsted acid catalysts. At this purpose, the classical sulphonated polystyrene acid resins cannot be used at temperature greater than 120 C. Therefore, a new class of sulfonated polymers, with enhanced temperature resistance, has been developed by selective and quantitative sulfonation of olefinic butadiene units in multiblock copolymers syndiotactic polystyrene-co-1,4-cis-polybutadiene. This catalytic system has been successfully tested in the above mentioned esterification reaction and compared to classic commercial strong acid catalysts like Amberlyst {sup registered}, Nafion {sup registered} and sulfuric acid. (orig.)

  1. Production of hydroxyapatite from waste mussel shells

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Mark I; Barakat, Haneen; Patterson, Darrell Alec, E-mail: mark.jones@auckland.ac.nz [Department Chemical and Materials Engineering, University of Auckland, New Zealand Private Bag 92019, Auckland Mail Centre, Auckland, 1142 (New Zealand)

    2011-10-29

    This work describes the formation of Hydroxyaptite, Ca{sub 10}(PO{sub 4}){sub 6}(OH){sub 2}, from waste mussel shells from the New Zealand aquaculture industry. The raw shells are first calcined to produce lime (CaO) and then reacted in a purpose built reactor to form the Hydroxyapatite (HA) in a low temperature batch process. The calcination was studied in terms of the effects of temperature, heating rate, holding time, nitrogen flow rate and particle size. The crystals formed in the batch reactor were characterized by X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Energy Dispersive Spectroscopy (EDS) and X-Ray Photoelectron Spectroscopy (XPS). Optimised conditions in the calcination stage resulted in powder with around 95% conversion to lime. The as-produced HA showed poor crystallinity and the presence of impurities, although both of these features were improved by a suitable post heat treatment process. The post treated material showed good crystallinity and was comparable to commercially produced material. Preliminary biocompatibility experiments showed that the HA stimulated cell growth and promoted mineralization. The production of HA from mussel shells in a room temperature, ambient pressure process is not only a sustainable use of waste material, but also from an industrial point of view the process has considerable potential for reducing costs associated with both starting materials and energy.

  2. Arsenic in industrial waste water from copper production technological process

    OpenAIRE

    Biljana Jovanović; Milana Popović

    2013-01-01

    Investigation of arsenic in industrial waste water is of a great importance for environment. Discharge of untreated waste water from a copper production process results in serious pollution of surface water, which directly affects flora and fauna, as well as humans. There is a need for efficient and environmentally acceptable treament of waste waters containing heavy metals and arsenic. The paper presents an analyisis of the waste water from The Copper Smelter which is discharged into the Bor...

  3. Product specific emissions from municipal solid waste landfills

    DEFF Research Database (Denmark)

    Nielsen, Per Henning; Hauschild, Michael Zwicky

    1998-01-01

    For the inventory analysis of environmental impacts associated with products in LCA there is a great need for estimates of emissions from waste products disposed at municipal solid waste landfills (product specific emissions). Since product specific emissions can not be calculated or measured...... directly at the landfills, they must be estimated by modelling of landfill processes. This paper presents a landfill model based on a large number of assumptions and approximations concerning landfill properties, waste product properties and characteristics of various kinds of environmental protection...... systems (e.g. landfill gas combustion units and leachate treatment units). The model is useful for estimation of emissions from waste products disposed in landfills and it has been made operational in the computer tool LCA-LAND presented in a following paper. In the model, waste products are subdivided...

  4. Sulphate removal from uraniferous liquors

    International Nuclear Information System (INIS)

    Berger, B.

    1983-01-01

    A process for the recovery of uranium from liquor resulting from the attack of sulphur containing uraniferous ores by an alkaline solution of sodium carbonate and/or sodium bicarbonate is claimed. An ion exchange resin is used to separate the uranium from the solution of sodium carbonate and/or bicarbonate and sodium sulphate. The ion exchange resin is then eluted with a solution of ammonium carbonate and/or bicarbonate to provide an eluate containing ammonium uranyl tricarbonate, ammonium carbonate and/or bicarbonate and ammonium sulphate. The eluate is heated to boiling to convert the ammonium uranyl tricarbonate to ammonium uranate and/or diuranate. Ammonia, carbon dioxide and water vapor are released. The precipitated ammonium uranate and/or diuranate is separated from the remaining liquor and calcined to give uranium trioxide

  5. Processes for production of alternative waste forms

    International Nuclear Information System (INIS)

    Ross, W.A.; Rusin, J.M.; McElroy, J.L.

    1979-01-01

    During the past 20 years, numerous waste forms and processes have been proposed for solidification of high-level radioactive wastes (HLW). The number has increased significantly during the past 3 to 4 years. At least five factors must be considered in selecting the waste form and process method: 1) processing flexibility, 2) waste loading, 3) canister size and stability, 4) waste form inertness and stability, and 5) processing complexity. This paper describes various waste form processes and operations, and a simple system is proposed for making comparisons. This system suggests that one goal for processes would be to reduce the number of process steps, thereby providing less complex processing systems

  6. On the technical development to minimize the quantity of solid wastes in a uranium conversion

    International Nuclear Information System (INIS)

    Otomura, Keiichiro; Ogura, Yoshikazu; Fujisaki, Sakae

    1987-01-01

    We have developed the new process of treating the waste liquor from a uranium conversion at Ningyo Toge Works PNC, Japan. This process consists of neutralizing precipitation, solid liquid separation, distillation and adsorption. At a neutralizing precipitation step a magnesium oxide is added in the waste liquor containing uranium and fluorine. Most of the uranium and fluorine in the waste liquor precipitate as magnesium compounds. A sulfuric acid is added to the precipitate separated by a filter to dissolve. The resulting solution is then distilled to recover a hydrofluoric acid as a distillate. Uranium is recovered from a residue by an anion exchange method. The recoverd fluorine and uranium are recycled to the main process of conversion. The filtrate separated at the precipitation step is then passed through adsorbing columns. The residual fluorine and uranium in the filtrate were adsorbed and removed by the chelating resine which selectively adsorb the uranium and fluorine. After that the treated waste liquor is discharged out of the plant. This process has merits of being able to minimize the quantity of solid waste in comparison with the conventional process and to recover uranium and fluorine. This process can also be applied to uranium reconversion process from uranium hexafluoride to uranium oxide and to uranium metal production process, which produce the same kind of waste liquor. (author)

  7. Characterization of Chinese liquor aroma components during aging process and liquor age discrimination using gas chromatography combined with multivariable statistics

    Science.gov (United States)

    Xu, M. L.; Yu, Y.; Ramaswamy, H. S.; Zhu, S. M.

    2017-01-01

    Chinese liquor aroma components were characterized during the aging process using gas chromatography (GC). Principal component and cluster analysis (PCA, CA) were used to discriminate the Chinese liquor age which has a great economic value. Of a total of 21 major aroma components identified and quantified, 13 components which included several acids, alcohols, esters, aldehydes and furans decreased significantly in the first year of aging, maintained the same levels (p > 0.05) for next three years and decreased again (p counterfeit and defective products.

  8. Production of bio ethanol from waste potatoes

    Science.gov (United States)

    Jaber Noufal, Mohamad; Li, Baizhan; Maalla, Zena Ali

    2017-03-01

    In this research, production of ethanol from waste potatoes fermentation was studied using Saccharomyces cerevisiae. Potato Flour prepared from potato tubers after cooking and drying at 85°C. A homogenous slurry of potato flour prepared in water at solid-liquid ratio 1:10. Liquefaction of potato starch slurry was done with α-amylase at 80°C for 40 min followed by saccharification process which was done with glucoamylase at 65°C for two hr. Fermentation of hydrolysate with Saccharomyces cerevisiae at 35°C for two days resulted in the production of 33 g/l ethanol. The following parameters have been analysed: temperature, time of fermentation and pH. It found that Saccharification process is affected by enzyme Amylase 300 concentration and concentration of 1000μl/100ml gives the efficient effect of the process. The best temperature for fermentation process was found to be about 35°C. Also, it noticed that ethanol production increased as a time of fermentation increased but after 48 hr further growth in fermentation time did not have an appreciable effect. Finally, the optimal value of pH for fermentation process was about 5 to 6.

  9. Waste valorization by biotechnological conversion into added value products.

    Science.gov (United States)

    Liguori, Rossana; Amore, Antonella; Faraco, Vincenza

    2013-07-01

    Fossil fuel reserves depletion, global warming, unrelenting population growth, and costly and problematic waste recycling call for renewable resources of energy and consumer products. As an alternative to the 100 % oil economy, production processes based on biomass can be developed. Huge amounts of lignocellulosic wastes are yearly produced all around the world. They include agricultural residues, food farming wastes, "green-grocer's wastes," tree pruning residues, and organic and paper fraction of urban solid wastes. The common ways currently adopted for disposal of these wastes present environmental and economic disadvantages. As an alternative, processes for adding value to wastes producing high added products should be developed, that is the upgrading concept: adding value to wastes by production of a product with desired reproducible properties, having economic and ecological advantages. A wide range of high added value products, such as enzymes, biofuels, organic acids, biopolymers, bioelectricity, and molecules for food and pharmaceutical industries, can be obtained by upgrading solid wastes. The most recent advancements of their production by biotechnological processes are overviewed in this manuscript.

  10. Extended Producer Responsibility and Product Stewardship for Tobacco Product Waste.

    Science.gov (United States)

    Curtis, Clifton; Collins, Susan; Cunningham, Shea; Stigler, Paula; Novotny, Thomas E

    2014-09-01

    This paper reviews several environmental principles, including Extended Producer Responsibility (EPR), Product Stewardship (PS), the Polluter Pays Principle (PPP), and the Precautionary Principle, as they may apply to tobacco product waste (TPW). The review addresses specific criteria that apply in deciding whether a particular toxic product should adhere to these principles; presents three case studies of similar approaches to other toxic and/or environmentally harmful products; and describes 10 possible interventions or policy actions that may help prevent, reduce, and mitigate the effects of TPW. EPR promotes total lifecycle environmental improvements, placing economic, physical, and informational responsibilities onto the tobacco industry, while PS complements EPR, but with responsibility shared by all parties involved in the tobacco product lifecycle. Both principles focus on toxic source reduction, post-consumer take-back, and final disposal of consumer products. These principles when applied to TPW have the potential to substantially decrease the environmental and public health harms of cigarette butts and other TPW throughout the world. TPW is the most commonly littered item picked up during environmental, urban, and coastal cleanups globally.

  11. [Influence of impurities on waste plastics pyrolysis: products and emissions].

    Science.gov (United States)

    Zhao, Lei; Wang, Zhong-Hui; Chen, De-Zhen; Ma, Xiao-Bo; Luan, Jian

    2012-01-01

    The study is aimed to evaluate the impact of impurities like food waste, paper, textile and especially soil on the pyrolysis of waste plastics. For this purpose, emissions, gas and liquid products from pyrolysis of waste plastics and impurities were studied, as well as the transfer of element N, Cl, S from the substrates to the pyrolysis products. It was found that the presence of food waste would reduce the heat value of pyrolysis oil to 27 MJ/kg and increase the moisture in the liquid products, therefore the food residue should be removed from waste plastics; and the soil, enhance the waste plastics' pyrolysis by improving the quality of gas and oil products. The presence of food residue, textile and paper leaded to higher gas emissions.

  12. Exploitation of Food Industry Waste for High-Value Products.

    Science.gov (United States)

    Ravindran, Rajeev; Jaiswal, Amit K

    2016-01-01

    A growing global population leads to an increasing demand for food production and the processing industry associated with it and consequently the generation of large amounts of food waste. This problem is intensified due to slow progress in the development of effective waste management strategies and measures for the proper treatment and disposal of waste. Food waste is a reservoir of complex carbohydrates, proteins, lipids, and nutraceuticals and can form the raw materials for commercially important metabolites. The current legislation on food waste treatment prioritises the prevention of waste generation and least emphasises disposal. Recent valorisation studies for food supply chain waste opens avenues to the production of biofuels, enzymes, bioactive compounds, biodegradable plastics, and nanoparticles among many other molecules. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Waste Management Strategies for Production of Mo-99

    Energy Technology Data Exchange (ETDEWEB)

    Cozzi, A. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Johnson, F. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-01-31

    Production of Mo-99 for medical isotope use is being investigated using dissolved low enriched uranium (LEU) fissioned using an accelerator driven process. With the production and separation of Mo-99, a low level waste stream will be generated. Since the production facility is a commercial endeavor, waste disposition paths normally available for federally generated radioactive waste may not be available. Disposal sites for commercially generated low level waste are available, and consideration to the waste acceptance criteria (WAC) of the disposal site should be integral in flowsheet development for the Mo-99 production. Pending implementation of the “Uranium Lease and Take-Back Program for Irradiation for Production of Molybdenum-99 for Medical Use” as directed by the American Medical Isotopes Production Act of 2012, there are limited options for disposing of the waste generated by the production of Mo-99 using an accelerator. The commission of a trade study to assist in the determination of the most favorable balance of production throughput and waste management should be undertaken. The use of a waste broker during initial operations of a facility has several benefits that can offset the cost associated with using a subcontractor. As the facility matures, the development of in-house capabilities can be expanded to incrementally reduce the dependence on a subcontractor.

  14. Discrimination of Chinese Sauce liquor using FT-IR and two-dimensional correlation IR spectroscopy

    Science.gov (United States)

    Sun, Su-Qin; Li, Chang-Wen; Wei, Ji-Ping; Zhou, Qun; Noda, Isao

    2006-11-01

    We applied the three-step IR macro-fingerprint identification method to obtain the IR characteristic fingerprints of so-called Chinese Sauce liquor (Moutai liquor and Kinsly liquor) and a counterfeit Moutai. These fingerprints can be used for the identification and discrimination of similar liquor products. The comparison of their conventional IR spectra, as the first step of identification, shows that the primary difference in Sauce liquor is the intensity of characteristic peaks at 1592 and 1225 cm -1. The comparison of the second derivative IR spectra, as the second step of identification, shows that the characteristic absorption in 1400-1800 cm -1 is substantially different. The comparison of 2D-IR correlation spectra, as the third and final step of identification, can discriminate the liquors from another direction. Furthermore, the method was successfully applied to the discrimination of a counterfeit Moutai from the genuine Sauce liquor. The success of the three-step IR macro-fingerprint identification to provide a rapid and effective method for the identification of Chinese liquor suggests the potential extension of this technique to the identification and discrimination of other wine and spirits, as well.

  15. Arsenic in industrial waste water from copper production technological process

    Directory of Open Access Journals (Sweden)

    Biljana Jovanović

    2013-12-01

    Full Text Available Investigation of arsenic in industrial waste water is of a great importance for environment. Discharge of untreated waste water from a copper production process results in serious pollution of surface water, which directly affects flora and fauna, as well as humans. There is a need for efficient and environmentally acceptable treament of waste waters containing heavy metals and arsenic. The paper presents an analyisis of the waste water from The Copper Smelter which is discharged into the Bor river. The expected arsenic content in treated waste water after using HDS procedure is also presented.

  16. The management of steel industry by-products and waste

    Energy Technology Data Exchange (ETDEWEB)

    1987-01-01

    The report considers the management of solid and semi-solid wastes that are reused or disposed of outside steelworks. Headings are: introduction; ironmaking slags (including generation, properties, processing, uses and disposal); (steelmaking slag from hot metal pretreatment, and primary and secondary steelmaking); ironmaking dust and sludges; steelmaking dust and sludges; millscale and sludge from continuous casting and rolling mills; treatment and handling of used oils and greases; refractory waste from refining of metallurgical furnaces and vessels; by-products, waste and wastewater arising from coke oven batteries; treatment of stainless steel waste; characterisation of waste by leaching tests; dumping technology; and conclusions.

  17. Systems and methods of storing combustion waste products

    Science.gov (United States)

    Chen, Shen-En; Wang, Peng; Miao, Xiexing; Feng, Qiyan; Zhu, Qianlin

    2016-04-12

    In one aspect, methods of storing one or more combustion waste products are described herein. Combustion waste products stored by a method described herein can include solid combustion waste products such as coal ash and/or gaseous combustion products such as carbon dioxide. In some embodiments, a method of storing carbon dioxide comprises providing a carbon dioxide storage medium comprising porous concrete having a macroporous and microporous pore structure and flowing carbon dioxide captured from a combustion flue gas source into the pore structure of the porous concrete.

  18. Advancement of High Temperature Black Liquor Gasification Technology

    Energy Technology Data Exchange (ETDEWEB)

    Craig Brown; Ingvar Landalv; Ragnar Stare; Jerry Yuan; Nikolai DeMartini; Nasser Ashgriz

    2008-03-31

    Weyerhaeuser operates the world's only commercial high-temperature black liquor gasifier at its pulp mill in New Bern, NC. The unit was started-up in December 1996 and currently processes about 15% of the mill's black liquor. Weyerhaeuser, Chemrec AB (the gasifier technology developer), and the U.S. Department of Energy recognized that the long-term, continuous operation of the New Bern gasifier offered a unique opportunity to advance the state of high temperature black liquor gasification toward the commercial-scale pressurized O2-blown gasification technology needed as a foundation for the Forest Products Bio-Refinery of the future. Weyerhaeuser along with its subcontracting partners submitted a proposal in response to the 2004 joint USDOE and USDA solicitation - 'Biomass Research and Development Initiative'. The Weyerhaeuser project 'Advancement of High Temperature Black Liquor Gasification' was awarded USDOE Cooperative Agreement DE-FC26-04NT42259 in November 2004. The overall goal of the DOE sponsored project was to utilize the Chemrec{trademark} black liquor gasification facility at New Bern as a test bed for advancing the development status of molten phase black liquor gasification. In particular, project tasks were directed at improvements to process performance and reliability. The effort featured the development and validation of advanced CFD modeling tools and the application of these tools to direct burner technology modifications. The project also focused on gaining a fundamental understanding and developing practical solutions to address condensate and green liquor scaling issues, and process integration issues related to gasifier dregs and product gas scrubbing. The Project was conducted in two phases with a review point between the phases. Weyerhaeuser pulled together a team of collaborators to undertake these tasks. Chemrec AB, the technology supplier, was intimately involved in most tasks, and focused primarily on the

  19. Food waste and food processing waste for biohydrogen production: a review.

    Science.gov (United States)

    Yasin, Nazlina Haiza Mohd; Mumtaz, Tabassum; Hassan, Mohd Ali; Abd Rahman, Nor'Aini

    2013-11-30

    Food waste and food processing wastes which are abundant in nature and rich in carbon content can be attractive renewable substrates for sustainable biohydrogen production due to wide economic prospects in industries. Many studies utilizing common food wastes such as dining hall or restaurant waste and wastes generated from food processing industries have shown good percentages of hydrogen in gas composition, production yield and rate. The carbon composition in food waste also plays a crucial role in determining high biohydrogen yield. Physicochemical factors such as pre-treatment to seed culture, pH, temperature (mesophilic/thermophilic) and etc. are also important to ensure the dominance of hydrogen-producing bacteria in dark fermentation. This review demonstrates the potential of food waste and food processing waste for biohydrogen production and provides a brief overview of several physicochemical factors that affect biohydrogen production in dark fermentation. The economic viability of biohydrogen production from food waste is also discussed. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Causticizing for Black Liquor Gasifiers

    Energy Technology Data Exchange (ETDEWEB)

    Scott Sinquefeld; James Cantrell; Xiaoyan Zeng; Alan Ball; Jeff Empie

    2009-01-07

    The cost-benefit outlook of black liquor gasification (BLG) could be greatly improved if the smelt causticization step could be achieved in situ during the gasification step. Or, at a minimum, the increase in causticizing load associated with BLG could be mitigated. A number of chemistries have been proven successful during black liquor combustion. In this project, three in situ causticizing processes (titanate, manganate, and borate) were evaluated under conditions suitable for high temperature entrained flow BLG, and low temperature steam reforming of black liquor. The evaluation included both thermodynamic modeling and lab experimentation. Titanate and manganate were tested for complete direct causticizing (to thus eliminate the lime cycle), and borates were evaluated for partial causticizing (to mitigate the load increase associated with BLG). Criteria included high carbonate conversion, corresponding hydroxide recovery upon hydrolysis, non process element (NPE) removal, and economics. Of the six cases (three chemistries at two BLG conditions), only two were found to be industrially viable: titanates for complete causticizing during high temperature BLG, and borates for partial causticizing during high temperature BLG. These two cases were evaluated for integration into a gasification-based recovery island. The Larsen [28] BLG cost-benefit study was used as a reference case for economic forecasting (i.e. a 1500 tpd pulp mill using BLG and upgrading the lime cycle). By comparison, using the titanate direct causticizing process yielded a net present value (NPV) of $25M over the NPV of BLG with conventional lime cycle. Using the existing lime cycle plus borate autocausticizing for extra capacity yielded a NPV of $16M.

  1. Towards zero waste production in the minerals and metals sector

    Science.gov (United States)

    Rankin, William J.

    The production of mineral and metal commodities results in large quantities of wastes (solid, liquid and gaseous) at each stage of value-adding — from mining to manufacturing. Waste production (both consumer and non-consumer) is a major contributor to environmental degradation. Approaches to waste management in the minerals industry are largely `after the event'. These have moved progressively from foul-and-flee to dilute-and-disperse to end end-of-pipe treatments. There is now a need to move to approaches which aim to reduce or eliminate waste production at source. Modern waste management strategies include the application of cleaner production principles, the use of wastes as raw materials, the reengineering of process flowsheets to minimise waste production, and use of industrial symbioses through industrial ecology to convert wastes into useful by-products. This paper examines how these can be adopted by the minerals industry, with some recent examples. The financial, technical, systemic and regulatory drivers and barriers are also examined.

  2. Utilization of agricultural waste in power production

    Energy Technology Data Exchange (ETDEWEB)

    Clausen, J.C. [ELSAMPROJEKT A/S, Fredericia (Denmark); Rasmussen, I. [MIDTKRAFT Power Co., Aarhus (Denmark)

    1993-12-31

    It is a goal of the Danish energy policy for the last decade to reduce energy consumption and to introduce fuels for power production with less CO{sub 2} emission than coal. This measure has caused a considerable effort by the Danish utilities to develop technologies that reduce CO{sub 2} emissions without causing heavy cost increases of power. Agricultural waste in the form of surplus straw is available in an amount equivalent to 20% of the annual coal imports to Denmark. Straw firing is difficult due to its significant contents of alkaline components. Consequently, its utilization presupposes the development of new technologies. The biomass development program is concentrated on two ways which are (1) co-firing of existing coal fired power station with a modest amount of straw and (2) development of CFB technology that allows a high share of biomass as well as coal only. These options were tested in a coal fired 70 MW spreader stoker unit and a 125 MW PF unit. Approx. 4000 t of straw were burned. Additional tests will be launched this autumn, burning 35,000 t of straw at rates up to 20% straw. The CFB option is pursued from the platform of a 80 MWth unit, operational early `92. This plant burns a mix of 50% straw and 50% coal and consumes annually 70.000 t of straw. Future development is aiming towards CFBs of 250 MW(e), burning in excess of 50% biomass.

  3. Enhancement of Biogas Production from Bakery Waste by Pseudomonas aeruginosa

    OpenAIRE

    S. Potivichayanon; T. Sungmon; W. Chaikongmao; S. Kamvanin

    2011-01-01

    Production of biogas from bakery waste was enhanced by additional bacterial cell. This study was divided into 2 steps. First step, grease waste from bakery industry-s grease trap was initially degraded by Pseudomonas aeruginosa. The concentration of byproduct, especially glycerol, was determined and found that glycerol concentration increased from 12.83% to 48.10%. Secondary step, 3 biodigesters were set up in 3 different substrates: non-degraded waste as substrate in fir...

  4. Vacuum evaporator-crystallizer process development for Hanford defense waste

    International Nuclear Information System (INIS)

    Tanaka, K.H.

    1978-04-01

    One of the major programs in the Department of Energy (DOE) waste management operations at Hanford is the volume reduction and solidification of Hanford Defense Residual Liquor (HDRL) wastes. These wastes are neutralized radioactive wastes that have been concentrated and stored in single-shell underground tanks. Two production vacuum evaporator-crystallizers were built and are operating to reduce the liquid volume and solidify these wastes. The process involves evaporating water under vacuum and thus concentrating and crystallizing the salt waste. The high caustic residual liquor is composed primarily of nitrate, nitrite, aluminate, and carbonate salts. Past evaporator-crystallizer operation was limited to crystallizing nitrate, nitrite, and carbonate salts. These salts formed a drainable salt cake that was acceptable for storage in the original single-shell tanks. The need for additional volume reduction and further concentration necessitated this process development work. Further concentration forms aluminate salts which pose unique processing problems. The aluminate salts are very fine crystals, non-drainable, and suitable only for storage in new double-shell tanks where the fluid waste can be continuously monitored. A pilot scale vacuum evaporator-crystallizer system was built and operated by Rockwell Hanford Operations to support flowsheet development for the production evaporator-crystallizers. The process developed was the concentration of residual liquor to form aluminate salts. The pilot plant tests demonstrated that residual liquors with high aluminum concentrations could be concentrated and handled in a vacuum evaporator-crystallizer system. The dense slurry with high solids content and concentrated liquor was successfully pumped in the insulated heated piping system. The most frequent problem encountered in the pilot plant was the failure of mechanical pump seals due to the abrasive slurry

  5. Characterization of wastes from fission 99 Mo production

    International Nuclear Information System (INIS)

    Endo, L.S.; Dellamano, J.C.

    1992-07-01

    This work is a preliminary study on waste-streams generated in a fission 99 Mo production plant, their characterization and quantification. The study is based on a plant whose 99 Mo production process is the alkaline dissolution of U-target. The target is made of 1 g of enriched 235 U, therefore most of radionuclides present in the waste-streams are fission products. All the radionuclides inventories were estimated based on ORIGEN-2 Code. The characterization was done as a primary stage for the establishment of waste management plan, which should be subject for further study. (author)

  6. Elimination of Phenol and Color from Pulping Black Liquor Using Electrocoagulation Process

    OpenAIRE

    Nahid Rastegarfar; Rabi Behrouz; Nader Bahramifar

    2013-01-01

    There are many non-wood lignocelluloses resources such as wheat, rice straw and other agriculture by- products with appropriate feature for pulp production in Iran. The most major deterrent to their use is presence of pulping black liquor that due to lignin of lignocelluloses solution contains significant amounts of color and phenol compounds. The aim of this paper was investigation of the ability to remove phenol and color as the most important organic pollutants from back liquor of agri-bas...

  7. Eco-efficient waste glass recycling: Integrated waste management and green product development through LCA

    International Nuclear Information System (INIS)

    Blengini, Gian Andrea; Busto, Mirko; Fantoni, Moris; Fino, Debora

    2012-01-01

    Highlights: ► A new eco-efficient recycling route for post-consumer waste glass was implemented. ► Integrated waste management and industrial production are crucial to green products. ► Most of the waste glass rejects are sent back to the glass industry. ► Recovered co-products give more environmental gains than does avoided landfill. ► Energy intensive recycling must be limited to waste that cannot be closed-loop recycled. - Abstract: As part of the EU Life + NOVEDI project, a new eco-efficient recycling route has been implemented to maximise resources and energy recovery from post-consumer waste glass, through integrated waste management and industrial production. Life cycle assessment (LCA) has been used to identify engineering solutions to sustainability during the development of green building products. The new process and the related LCA are framed within a meaningful case of industrial symbiosis, where multiple waste streams are utilised in a multi-output industrial process. The input is a mix of rejected waste glass from conventional container glass recycling and waste special glass such as monitor glass, bulbs and glass fibres. The green building product is a recycled foam glass (RFG) to be used in high efficiency thermally insulating and lightweight concrete. The environmental gains have been contrasted against induced impacts and improvements have been proposed. Recovered co-products, such as glass fragments/powders, plastics and metals, correspond to environmental gains that are higher than those related to landfill avoidance, whereas the latter is cancelled due to increased transportation distances. In accordance to an eco-efficiency principle, it has been highlighted that recourse to highly energy intensive recycling should be limited to waste that cannot be closed-loop recycled.

  8. Design of special facility for liquor irradiation

    International Nuclear Information System (INIS)

    Yao Shibin; Chen Zigen

    1989-01-01

    The design principle, physical scheme, technological process, construction and safety features of a special facility used for irradiating liquors is briefly described. 0.925 x 10 15 Bq cobalt source is used and the irradiation capacity for liquors approaches 10 t per day. The facility bears advantages of simple in construction, easy to operate, safe, reliable and efficient in source utilization

  9. Biogas production from livestock waste anaerobic digesters: evaluation and optimization

    Science.gov (United States)

    Livestock wastes can serve as the feedstock for biogas production (mainly methane) that could be used as alternative energy source. The green energy derived from animal wastes is considered to be carbon neutral and offsetting those generated from fossil fuels. However, feedstocks from livestock re...

  10. Concrete block production from construction and demolition waste in Tanzania

    NARCIS (Netherlands)

    Sabai, M.M.; Cox, M.G.D.M.; Mato, R.R.A.M.; Egmond - de Wilde De Ligny, van E.L.C.; Lichtenberg, J.J.N.

    2013-01-01

    In Tanzania, construction and demolition (C&D) waste is not recycled and knowledge on how it can be recycled especially into valuable products like building materials are still limited. This study aimed at investigating the possibility of recycling the C&D waste (mainly cementitious rubble) into

  11. Liquor circulation disturbance after subarachnoid haemorrhages - comparative pneumoencephalography and liquor scintigraphic investigations

    International Nuclear Information System (INIS)

    Menzel, J.; Georgi, P.; Krastel, A.; Deutsches Krebsforschungszentrum, Heidelberg

    1976-01-01

    Haemorrhages into the subarachnoid space often lead to instant blocking of the liquor circulation pathways with an acute increase of the intracranial pressure and acute venticular enlargement. These liquor circulation disturbances may be diagnosed by liquor scintiscanning as well as by pneumoencephalography. 165 patients were examined by both methods. The following results were obtained: liquor circulation disturbances after subarachnoid bleeding are frequent, they should be expected in 33% of all cases after spontaneous subarachnoid haemorrhages and in 68% of the cases after traumatic subarachnoid haemorrhages. The most severe form of liquor circulation distrubance may also be diagnosed by liquor scintiscanning as well as by pneumoencephalography. Liquor scintiscanning is the more exact method in cases with transitory ventricular reflux, while lumbar pneumoencephalography, in this series, is the method of choice when it comes to documenting the extent of the hydrocephalus. (GSE) [de

  12. Hanford Immobilized Low-Activity Waste Product Acceptance Test Plan

    International Nuclear Information System (INIS)

    Peeler, D.

    1999-01-01

    'The Hanford Site has been used to produce nuclear materials for the U.S. Department of Energy (DOE) and its predecessors. A large inventory of radioactive and mixed waste, largely generated during Pu production, exists in 177 underground single- and double-shell tanks. These wastes are to be retrieved and separated into low-activity waste (LAW) and high-level waste (HLW) fractions. The DOE is proceeding with an approach to privatize the treatment and immobilization of Handord''s LAW and HLW.'

  13. Hanford Immobilized Low-Activity Waste Product Acceptance Test Plan

    Energy Technology Data Exchange (ETDEWEB)

    Peeler, D.

    1999-06-22

    'The Hanford Site has been used to produce nuclear materials for the U.S. Department of Energy (DOE) and its predecessors. A large inventory of radioactive and mixed waste, largely generated during Pu production, exists in 177 underground single- and double-shell tanks. These wastes are to be retrieved and separated into low-activity waste (LAW) and high-level waste (HLW) fractions. The DOE is proceeding with an approach to privatize the treatment and immobilization of Handord''s LAW and HLW.'

  14. Electric Energy production through Municipal solid wastes

    International Nuclear Information System (INIS)

    Agorio Comas, M.; Chediak Nunez, M.; Galan Prado, A.

    2010-01-01

    The main objective in this investment Project is to improve the integral management of urban solid waste in the city of Salto, Uruguay, obtaining favorable results for the environment and society, contributing moreover in Sustainable Development.First of all, it is recommended the remediation of the current Open air Municipal dumping site. Simultaneously with the Remediation process, a controlled dumping site with daily covers of the compacted solid waste has been designed, as a transition methodology with a lifetime of 3 years approximately.In addition to this, two sanitary landfills are designed wits29h a total lifetime of 7 years, for the operation after the controlled dumping site is closed. There is also a leachate treatment system to process the effluents of the landfills. In order to optimize the use of the landfills, is proposed the simultaneous implementation of a Separated Urban Solid Waste Collection System (SisRReVa). This consist in separating the Valuable Waste (VW) from wet or organic solid waste in origin (home, stores,etc)and collecting it separately.The VW are separated by type (paper, board, glass, plastic and metal) in a Valuable Waste Classification Plant. This plant is designed to process the VW generated in Salto and collected by the SisRReVa for about ten years from now on. (Author)

  15. Managing plastic waste in East Africa: Niche innovations in plastic production and solid waste

    NARCIS (Netherlands)

    Ombis, L.O.; Vliet, van B.J.M.; Mol, A.P.J.

    2015-01-01

    This paper assesses the uptake of environmental innovation practices to cope with plastic waste in Kenyan urban centres at the interface of solid waste management and plastic production systems. The Multi Level Perspective on Technological Transitions is used to evaluate 7 innovation pathways of

  16. Method of processing solidification product of radioactive waste

    International Nuclear Information System (INIS)

    Daime, Fumiyoshi.

    1988-01-01

    Purpose: To improve the long-time stability of solidification products by providing solidification products with liquid tightness, gas tightness, abrasion resistance, etc., of the products in the course of the solidification for the treatment of radioactive wastes. Method: The surface of solidification products prepared by mixing solidifying agents with powder or pellets is entirely covered with high molecular polymer such as epoxy resin. The epoxy resin has excellent properties such as radiation-resistance, heat resistance, water proofness and chemical resistance, as well as have satisfactory mechanical properties. This can completely isolate the solidification products of radioactive wastes from the surrounding atmosphere. (Yoshino, Y.)

  17. studies on biogas production from fruits and vegetable waste 115

    African Journals Online (AJOL)

    DR. AMINU

    results of the study on biogas production from fruits and vegetables waste materials and their effect on plants when used as fertilizer (Using digested and undigested sludge). It has been ... as fuel or fertilizer, offers several benefits such as, the.

  18. Development of ethanol production from cooking oil glycerol waste ...

    African Journals Online (AJOL)

    Tuoyo Aghomotsegin

    2016-10-12

    Oct 12, 2016 ... glycerol waste by mutant Enterobacter aerogenes ... wild type strain was altered for enhancing ethanol production using UV irradiation and chemical method. .... microbial medium analytical methods were of laboratory and.

  19. Method of processing liquid waste containing fission product

    International Nuclear Information System (INIS)

    Funabashi, Kiyomi; Kawamura, Fumio; Matsuda, Masami; Komori, Itaru; Miura, Eiichi.

    1988-01-01

    Purpose: To prepare solidification products of low surface dose by removing cesium which is main radioactive nuclides from re-processing plants. Method: Liquid wastes containing a great amount of fission products are generated accompanying the reprocessing for spent nuclear fuels. After pH adjustment, the liquid wastes are sent to a concentrator to concentrate the dissolved ingredients. The concentrated liquid wastes are pumped to an adsorption tower in which radioactive cesium contributing much to the surface dose is removed. Then, the liquid wastes are sent by way of a surge tank to a mixing tank, in which they are mixed under stirring with solidifying agents such as cements. Then, the mixture is filled in a drum-can and solidified. According to this invention, since radioactive cesium is removed before solidification, it is possible to prepare solidification products at low surface dose and facilitate the handling of the solidification products. (Horiuchi, T.)

  20. Radiolytic gas production from concrete containing Savannah River Plant waste

    International Nuclear Information System (INIS)

    Bibler, N.E.

    1978-01-01

    To determine the extent of gas production from radiolysis of concrete containing radioactive Savannah River Plant waste, samples of concrete and simulated waste were irradiated by 60 Co gamma rays and 244 Cm alpha particles. Gamma radiolysis simulated radiolysis by beta particles from fission products in the waste. Alpha radiolysis indicated the effect of alpha particles from transuranic isotopes in the waste. With gamma radiolysis, hydrogen was the only significant product; hydrogen reached a steady-state pressure that increased with increasing radiation intensity. Hydrogen was produced faster, and a higher steady-state pressure resulted when an organic set retarder was present. Oxygen that was sealed with the wastes was depleted. Gamma radiolysis also produced nitrous oxide gas when nitrate or nitrite was present in the concrete. With alpha radiolysis, hydrogen and oxygen were produced. Hydrogen did not reach a steady-state pressure at 137 Cs and 90 Sr), hydrogen will reach a steady-state pressure of 8 to 28 psi, and oxygen will be partially consumed. These predictions were confirmed by measurement of gas produced over a short time in a container of concrete and actual SRP waste. The tests with simulated waste also indicated that nitrous oxide may form, but because of the low nitrate or nitrite content of the waste, the maximum pressure of nitrous oxide after 300 years will be 238 Pu and 239 Pu will predominate; the hydrogen and oxygen pressures will increase to >200 psi

  1. Generation of Hydrogen, Lignin and Sodium Hydroxide from Pulping Black Liquor by Electrolysis

    Directory of Open Access Journals (Sweden)

    Guangzai Nong

    2015-12-01

    Full Text Available Black liquor is generated in Kraft pulping of wood or non-wood raw material in pulp mills, and regarded as a renewable resource. The objective of this paper was to develop an effective means to remove the water pollutants by recovery of both lignin and sodium hydroxide from black liquor, based on electrolysis. The treatment of a 1000 mL of black liquor (122 g/L solid contents consumed 345.6 kJ of electric energy, and led to the generation of 30.7 g of sodium hydroxide, 0.82 g of hydrogen gas and 52.1 g of biomass solids. Therefore, the recovery ratios of elemental sodium and biomass solids are 80.4% and 76%, respectively. Treating black liquor by electrolysis is an environmentally friendly technology that can, in particular, be an alternative process in addressing the environmental issues of pulping waste liquor to the small-scale mills without black liquor recovery.

  2. Combustion properties of kraft black liquors; Ligniinifraktion vaikutus mustalipeaen poltto-ominaisuuksiin

    Energy Technology Data Exchange (ETDEWEB)

    Alen, R.; Rantanen, K.; Ekman, J.; Malkavaara, P. [Jyvaeskylae Univ. (Finland)

    1996-12-01

    The aim of this investigation was to find relationships between the structure of the dissolved lignin and the combustion properties (pyrolysis time, char burning time, and swelling) of softwood and hardwood kraft black liquors. In this conjunction, pine and birch chips, as well as their two mixtures (the mass ratios of pine chips to birch chips were 80:20 and 60:40), were delignified by conventional kraft pulping. In each cook series, a liquor sample was withdrawn at certain time intervals to obtain liquor samples with different chemical composition. The black liquors obtained were analyzed with respect to the content of lignin and `lignin monomers`, but also the molecular-mass distribution and the mass average molecular mass of lignin were made. In addition, the dissolved lignin was characterized by NMR spectroscopy and elemental analysis. Further data on the chemical structures of lignin in black liquors were obtained by identifying various degradation products formed from this material during oxidative (CuO oxidation) and pyrolytic treatments. Several correlations between the `structural parameters` of the dissolved lignin and the combustion properties of black liquor were found. These correlations were significant especially in the case of pine cook. The results revealed many findings which are, together with the earlier data, useful for a better understanding of the thermochemical behavior of different kraft black liquors during combustion in a recovery furnace. (author)

  3. New microbial resource: microbial diversity, function and dynamics in Chinese liquor starter.

    Science.gov (United States)

    Huang, Yuhong; Yi, Zhuolin; Jin, Yanling; Zhao, Yonggui; He, Kaize; Liu, Dayu; Zhao, Dong; He, Hui; Luo, Huibo; Zhang, Wenxue; Fang, Yang; Zhao, Hai

    2017-11-06

    Traditional Chinese liquor (Baijiu) solid state fermentation technology has lasted for several thousand years. The microbial communities that enrich in liquor starter are important for fermentation. However, the microbial communities are still under-characterized. In this study, 454 pyrosequencing technology was applied to comprehensively analyze the microbial diversity, function and dynamics of two most-consumed liquor starters (Jiang- and Nong-flavor) during production. In total, 315 and 83 bacterial genera and 72 and 47 fungal genera were identified in Jiang- and Nong-flavor liquor starter, respectively. The relatively high diversity was observed when the temperature increased to 70 and 62 °C for Jiang- and Nong-flavor liquor starter, respectively. Some thermophilic fungi have already been isolated. Microbial communities that might contribute to ethanol fermentation, saccharification and flavor development were identified and shown to be core communities in correlation-based network analysis. The predictively functional profile of bacterial communities showed significant difference in energy, carbohydrate and amino acid metabolism and the degradation of aromatic compounds between the two kinds of liquor starters. Here we report these liquor starters as a new functionally microbial resource, which can be used for discovering thermophilic and aerobic enzymes and for food and feed preservation.

  4. Consumption and production waste: another externality of tobacco use.

    Science.gov (United States)

    Novotny, T E; Zhao, F

    1999-01-01

    To describe the waste produced by and environmental implications of individual cigarette consumption (filter tips, packages, and cartons) and tobacco manufacturing. All available articles and reports published since 1970 related to cigarette consumption and production waste were reviewed. Global cigarette consumption data were used to estimate cigarette butt and packaging waste quantities. Data from the Center for Marine Conservation's International Coastal Cleanup Project were used to describe some environmental impacts of tobacco-related trash. Data from the United States Environmental Protection Agency's (EPA's) Toxics Release Inventory and reported global cigarette consumption totals were used to estimate waste production from cigarette manufacturing. In 1995, an estimated 5.535 trillion cigarettes (27,675 million cartons and 276,753 million packages) were sold by the tobacco industry globally. Some of the wastes from these products were properly deposited, but a large amount of tobacco consumption waste ends up in the environment. Some is recovered during environmental clean-up days. For the past eight years (1990-1997), cigarette butts have been the leading item found during the International Coastal Cleanup Project; they accounted for 19.1% of all items collected in 1997. The tobacco manufacturing process produces liquid, solid, and airborne waste. Among those wastes, some materials, including nicotine, are designated by the EPA as Toxics Release Inventory (TRI) chemicals. These are possible environmental health hazards. In 1995, the global tobacco industry produced an estimated 2262 million kilograms of manufacturing waste and 209 million kilograms of chemical waste. In addition, total nicotine waste produced in the manufacture of reduced nicotine cigarettes was estimated at 300 million kilograms. Laws against littering relative to cigarette butts could be better enforced. Additional taxes might be levied on cigarette products that would then be directed to

  5. Glass Ceramic Waste Forms for Combined CS+LN+TM Fission Products Waste Streams

    International Nuclear Information System (INIS)

    Crum, Jarrod V.; Turo, Laura A.; Riley, Brian J.; Tang, Ming; Kossoy, Anna; Sickafus, Kurt E.

    2010-01-01

    In this study, glass ceramics were explored as an alternative waste form for glass, the current baseline, to be used for immobilizing alkaline/alkaline earth + lanthanide (CS+LN) or CS+LN+transition metal (TM) fission-product waste streams generated by a uranium extraction (UREX+) aqueous separations type process. Results from past work on a glass waste form for the combined CS+LN waste streams showed that as waste loading increased, large fractions of crystalline phases precipitated upon slow cooling.(1) The crystalline phases had no noticeable impact on the waste form performance by the 7-day product consistency test (PCT). These results point towards the development of a glass ceramic waste form for treating CS+LN or CS+LN+TM combined waste streams. Three main benefits for exploring glass ceramics are: (1) Glass ceramics offer increased solubility of troublesome components in crystalline phases as compared to glass, leading to increased waste loading; (2) The crystalline network formed in the glass ceramic results in higher heat tolerance than glass; and (3) These glass ceramics are designed to be processed by the same melter technology as the current baseline glass waste form. It will only require adding controlled canister cooling for crystallization into a glass ceramic waste form. Highly annealed waste form (essentially crack free) with up to 50X lower surface area than a typical High-Level Waste (HLW) glass canister. Lower surface area translates directly into increased durability. This was the first full year of exploring glass ceramics for the Option 1 and 2 combined waste stream options. This work has shown that dramatic increases in waste loading are achievable by designing a glass ceramic waste form as an alternative to glass. Table S1 shows the upper limits for heat, waste loading (based on solubility), and the decay time needed before treatment can occur for glass and glass ceramic waste forms. The improvements are significant for both combined waste

  6. Glass Ceramic Waste Forms for Combined CS+LN+TM Fission Products Waste Streams

    Energy Technology Data Exchange (ETDEWEB)

    Crum, Jarrod V.; Turo, Laura A.; Riley, Brian J.; Tang, Ming; Kossoy, Anna; Sickafus, Kurt E.

    2010-09-23

    In this study, glass ceramics were explored as an alternative waste form for glass, the current baseline, to be used for immobilizing alkaline/alkaline earth + lanthanide (CS+LN) or CS+LN+transition metal (TM) fission-product waste streams generated by a uranium extraction (UREX+) aqueous separations type process. Results from past work on a glass waste form for the combined CS+LN waste streams showed that as waste loading increased, large fractions of crystalline phases precipitated upon slow cooling.[1] The crystalline phases had no noticeable impact on the waste form performance by the 7-day product consistency test (PCT). These results point towards the development of a glass ceramic waste form for treating CS+LN or CS+LN+TM combined waste streams. Three main benefits for exploring glass ceramics are: (1) Glass ceramics offer increased solubility of troublesome components in crystalline phases as compared to glass, leading to increased waste loading; (2) The crystalline network formed in the glass ceramic results in higher heat tolerance than glass; and (3) These glass ceramics are designed to be processed by the same melter technology as the current baseline glass waste form. It will only require adding controlled canister cooling for crystallization into a glass ceramic waste form. Highly annealed waste form (essentially crack free) with up to 50X lower surface area than a typical High-Level Waste (HLW) glass canister. Lower surface area translates directly into increased durability. This was the first full year of exploring glass ceramics for the Option 1 and 2 combined waste stream options. This work has shown that dramatic increases in waste loading are achievable by designing a glass ceramic waste form as an alternative to glass. Table S1 shows the upper limits for heat, waste loading (based on solubility), and the decay time needed before treatment can occur for glass and glass ceramic waste forms. The improvements are significant for both combined waste

  7. Eco-friendly synthesis for MCM-41 nanoporous materials using the non-reacted reagents in mother liquor.

    Science.gov (United States)

    Ng, Eng-Poh; Goh, Jia-Yi; Ling, Tau Chuan; Mukti, Rino R

    2013-03-04

    Nanoporous materials such as Mobil composite material number 41 (MCM-41) are attractive for applications such as catalysis, adsorption, supports, and carriers. Green synthesis of MCM-41 is particularly appealing because the chemical reagents are useful and valuable. We report on the eco-friendly synthesis of MCM-41 nanoporous materials via multi-cycle approach by re-using the non-reacted reagents in supernatant as mother liquor after separating the solid product. This approach was achieved via minimal requirement of chemical compensation where additional fresh reactants were added into the mother liquor followed by pH adjustment after each cycle of synthesis. The solid product of each successive batch was collected and characterized while the non-reacted reagents in supernatant can be recovered and re-used to produce subsequent cycle of MCM-41. The multi-cycle synthesis is demonstrated up to three times in this research. This approach suggests a low cost and eco-friendly synthesis of nanoporous material since less waste is discarded after the product has been collected, and in addition, product yield can be maintained at the high level.

  8. 78 FR 4431 - Santee Sioux Nation-Title XXI-Alcohol, Chapter 1.-Santee Sioux Nation Liquor Control Ordinance

    Science.gov (United States)

    2013-01-22

    ... the sale and distribution of liquor and beer products on all properties within the limits of the... accommodations for the sale of liquor by the glass and for consumption on the premises. 3. ``Beer'' means any alcoholic beverage obtained by the alcoholic fermentation of an infusion or decoction of pure hops, or pure...

  9. Coffee husk waste for fermentation production of mosquitocidal bacteria.

    Science.gov (United States)

    Poopathi, Subbiah; Abidha, S

    2011-12-01

    Coffee husk waste (CHW) discarded as bio-organic waste, from coffee industries, is rich in carbohydrates. The current study emphasizes the management of solid waste from agro-industrial residues for the production of biopesticides (Bacillus sphaericus, and B. thuringiensis subsp. israelensis), to control disease transmitting mosquito vectors. An experimental culture medium was prepared by extracting the filtrates from coffee husk. A conventional culture medium (NYSM) also was prepared. The studies revealed that the quantity of mosquitocidal toxins produced from CHW is at par with NYSM. The bacteria produced in these media, were bioassayed against mosquito vectors (Culex quinquefasciatus, Anopheles stephensi, and Aedes aegypti) and it was found that the toxic effect was statistically comparable. Cost-effective analysis have revealed that, production of biopesticides from CHW is highly economical. Therefore, the utilization of CHW provides dual benefits of effective utilization of environmental waste and efficient production of mosquitocidal toxins.

  10. Projected Salt Waste Production from a Commercial Pyroprocessing Facility

    Directory of Open Access Journals (Sweden)

    Michael F. Simpson

    2013-01-01

    Full Text Available Pyroprocessing of used nuclear fuel inevitably produces salt waste from electrorefining and/or oxide reduction unit operations. Various process design characteristics can affect the actual mass of such waste produced. This paper examines both oxide and metal fuel treatment, estimates the amount of salt waste generated, and assesses potential benefit of process options to mitigate the generation of salt waste. For reference purposes, a facility is considered in which 100 MT/year of fuel is processed. Salt waste estimates range from 8 to 20 MT/year from considering numerous scenarios. It appears that some benefit may be derived from advanced processes for separating fission products from molten salt waste, but the degree of improvement is limited. Waste form production is also considered but appears to be economically unfavorable. Direct disposal of salt into a salt basin type repository is found to be the most promising with respect to minimizing the impact of waste generation on the economic feasibility and sustainability of pyroprocessing.

  11. Inspection method for solidification product of radioactive waste and method of preparing solidification product of radiation waste

    International Nuclear Information System (INIS)

    Izumida, Tatsuo; Tamada, Shin; Matsuda, Masami; Kamata, Shoji; Kikuchi, Makoto.

    1993-01-01

    A powerful X-ray generation device using an electron-ray accelerator is used for inspecting presence or absence of inner voids in solidification products of radioactive wastes during or after solidification. By installing the X-ray CT system and the radioactive waste solidifying facility together, CT imaging for solidification products is conducted in a not-yet cured state of solidifying materials during or just after the injection. If a defect that deteriorates the durability of the solidification products should be detected, the solidification products are repaired, for example, by applying vibrations to the not-yet cured solidification products. Thus, since voids or cracks in the radioactive wastes solidification products, which were difficult to be measured so far, can be measured in a short period of time accurately thereby enabling to judge adaptability to the disposal standards, inspection cost for the radioactive waste solidification product can be saved remarkably. Further, the inside of the radioactive waste solidification products can be evaluated correctly and visually, so that safety in the ground disposal storage of the radioactive solidification products can be improved remarkably. (N.H.)

  12. Aroma characteristics of Moutai-flavour liquor produced with Bacillus licheniformis by solid-state fermentation.

    Science.gov (United States)

    Zhang, R; Wu, Q; Xu, Y

    2013-07-01

    The potential of Bacillus licheniformis as a starter culture for aroma concentration improvement in the fermentation of Chinese Moutai-flavour liquor was elucidated. The volatile compounds produced by B. licheniformis were identified by GC-MS, in which C4 compounds, pyrazines, volatile acids, aromatic and phenolic compounds were the main ingredients. The strains B. licheniformis (MT-6 and MT-15) produced more volatile compound concentrations, mainly C4 compounds, than the type strain of B. licheniformis (ATCC 14580) at the fermentation temperature of 55°C. Meanwhile, more volatile compound concentrations were produced by B. licheniformis in solid-state fermentation than in submerged state fermentation. Thus, the strains MT-6 and MT-15 were used as the Bacillus starter culture for investigating Moutai-flavour liquor production. The distilled liquor inoculated with Bacillus starter culture was significantly different from the liquor without inoculum. This was particularly evident in the fore-run part of the distilled sample which was inoculated with Bacillus starter culture, where volatile compounds greatly increased compared to the control. Furthermore, the distilled liquor with Bacillus starter culture showed improved results in sensory appraisals. These results indicated that B. licheniformis was one of the main species influencing the aroma characteristics of Moutai-flavour liquor. This is the first report of an investigation into the effect of Bacillus starter cultures on the flavour features of Moutai-flavour liquor, which verified that Bacillus licheniformis can enhance aroma concentration in Moutai-flavour liquor. Bacillus starter culture brought C4 compounds, pyrazines, volatile acids, aromatic and phenolic compounds to the liquor, which gave a better result in sensory appraisals. © 2013 The Society for Applied Microbiology.

  13. Production of iron from metallurgical waste

    Science.gov (United States)

    Hendrickson, David W; Iwasaki, Iwao

    2013-09-17

    A method of recovering metallic iron from iron-bearing metallurgical waste in steelmaking comprising steps of providing an iron-bearing metallurgical waste containing more than 55% by weight FeO and FeO equivalent and a particle size of at least 80% less than 10 mesh, mixing the iron-bearing metallurgical waste with a carbonaceous material to form a reducible mixture where the carbonaceous material is between 80 and 110% of the stoichiometric amount needed to reduce the iron-bearing waste to metallic iron, and as needed additions to provide a silica content between 0.8 and 8% by weight and a ratio of CaO/SiO.sub.2 between 1.4 and 1.8, forming agglomerates of the reducible mixture over a hearth material layer to protect the hearth, heating the agglomerates to a higher temperature above the melting point of iron to form nodules of metallic iron and slag material from the agglomerates by melting.

  14. Radioactive waste products - suitability for final disposal

    International Nuclear Information System (INIS)

    Merz, E.; Odoj, R.; Warnecke, E.

    1985-06-01

    48 papers were read at the conference. Separate records are available for all of them. The main problem in radioactive waste disposal was the long-term sealing to prevent pollution of the biosphere. Problems of conditioning, acceptance, and safety measures were discussed. Final disposal models and repositories were presented. (PW) [de

  15. Bio-hydrogen production from renewable organic wastes

    Energy Technology Data Exchange (ETDEWEB)

    Shihwu Sung

    2004-04-30

    Methane fermentation has been in practice over a century for the stabilization of high strength organic waste/wastewater. Although methanogenesis is a well established process and methane--the end-product of methanogenesis is a useful energy source; it is a low value end product with relatively less energy content (about 56 kJ energy/g CH{sub 4}). Besides, methane and its combustion by-product are powerful greenhouse gases, and responsible for global climate change. So there is a pressing need to explore alternative environmental technologies that not only stabilize the waste/wastewater but also generate benign high value end products. From this perspective, anaerobic bioconversion of organic wastes to hydrogen gas is an attractive option that achieves both goals. From energy security stand point, generation of hydrogen energy from renewable organic waste/wastewater could substitute non-renewable fossil fuels, over two-third of which is imported from politically unstable countries. Thus, biological hydrogen production from renewable organic waste through dark fermentation represents a critically important area of bioenergy production. This study evaluated both process engineering and microbial physiology of biohydrogen production.

  16. Productive efficiency of public and private solid waste logistics and its implications for waste management policy

    Directory of Open Access Journals (Sweden)

    Daisuke Ichinose

    2013-03-01

    Full Text Available This paper measures the productive efficiency of municipal solid waste (MSW logistics by applying data envelopment analysis (DEA to cross-sectional data of prefectures in Japan. Either through public operations or by outsourcing to private waste collection operators, prefectural governments possess the fundamental authority over waste processing operations in Japan. Therefore, we estimate a multi-input multi-output production efficiency at the prefectural level via DEA, employing several different model settings. Our data classify the MSW into household solid waste (HSW and business solid waste (BSW collected by both private and public operators as separate outputs, while the numbers of trucks and workers used by private and public operators are used as inputs. The results consistently show that geographical characteristics, such as the number of inhabited remote islands, are relatively more dominant factors for determining inefficiency. While the implication that a minimum efficient scale is not achieved in these small islands is in line with the literature suggesting that waste logistics has increasing returns at the municipal level, our results indicate that waste collection efficiency in Japan is well described by CRS technology at the prefectural level. The results also show that prefectures with higher private-sector participation, measured in terms of HSW collection, are more efficient, whereas a higher private–labor ratio negatively affects efficiency. We also provide evidence that prefectures with inefficient MSW logistics have a higher tendency of suffering from the illegal dumping of industrial waste.

  17. WASTE-FREE PRODUCTION TECHNOLOGY OF DRY MASHED POTATOES

    Directory of Open Access Journals (Sweden)

    G. V. Kalashnikov

    2015-01-01

    Full Text Available Summary. According to data on norms of consumption of vegetable production of scientific research institute of Food of the Russian Academy of Medical Science, potatoes win first place with norm of 120 kg a year on the person. In this regard much attention is paid to processing of potatoes that allows to prolong the term of its validity, and also to reduce the capacity of storages and to reduce transport transportations as 1 kg of a dry potatoes produсt is equivalent 7-8 kg of fresh potatoes. Thus industrial processing of potatoes on dry mashed potatoes allows to reduce losses of potatoes at storage and transportation, there is a possibility of enrichment of products vitamins and other useful components, its nutrition value remains better, conditions for complex processing of raw materials with full recycling and creations of stocks of products from potatoes on a crop failure case are created. Dry mashed potatoes are a product of long storage. On the basis of studying of the production technology of mashed potatoes the analysis of technological processes as sources of creation of waste, and the directions of recovery of secondary raw materials for complex waste-free technology of processing of potatoes are defined is provided. The waste-free technological scheme of processing of potatoes and production of dry instant mashed potatoes on the basis of dehydration and moisture thermal treatment a component providing recovery of secondary carbohydrate content raw materials in the form of waste of the main production is developed. The main stages of production of dry instant mashed potatoes are described. It is offered the technological scheme of a production line of mashed potatoes on the basis of waste-free technology. Advantages of the offered waste-free production technology of dry instant mashed potatoes with processing of secondary starch-containing raw materials are given.

  18. Continuous biohydrogen production from waste bread by anaerobic sludge.

    Science.gov (United States)

    Han, Wei; Huang, Jingang; Zhao, Hongting; Li, Yongfeng

    2016-07-01

    In this study, continuous biohydrogen production from waste bread by anaerobic sludge was performed. The waste bread was first hydrolyzed by the crude enzymes which were generated by Aspergillus awamori and Aspergillus oryzae via solid-state fermentation. It was observed that 49.78g/L glucose and 284.12mg/L free amino nitrogen could be produced with waste bread mass ratio of 15% (w/v). The waste bread hydrolysate was then used for biohydrogen production by anaerobic sludge in a continuous stirred tank reactor (CSTR). The optimal hydrogen production rate of 7.4L/(Ld) was achieved at chemical oxygen demand (COD) of 6000mg/L. According to the results obtained from this study, 1g waste bread could generate 0.332g glucose which could be further utilized to produce 109.5mL hydrogen. This is the first study which reports continuous biohydrogen production from waste bread by anaerobic sludge. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Assessment of application of selected waste for production of biogas

    Science.gov (United States)

    Pawlita-Posmyk, Monika; Wzorek, Małgorzata

    2017-10-01

    Recently, the idea of biogas production has become a popular topic in Poland. Biogas is a valuable source of renewable energy with a potential application in electricity and heat production. Numerous types of technological solutions of biogas production are closely linked to the availability of substrates in the area, as well as their quantity and their properties. The paper presents the assessment of application in biogas production selected wastes such as communal and household sewage sludge and waste from a paper production in Opole region (Poland). The annual productions of methane, biogas and electricity were estimated. Chosen physico-chemical properties important in fermentation process were taken into consideration in the assessment. The highest value of potential energy was obtained using waste from the paper industry but the most appropriate parameters for this process has sewage sludge from the municipal sewage treatment plant. The use of sewage sludge from domestic and municipal sewage and waste from the paper industry creates the opportunity to reduce the amount of waste materials.

  20. Production of Bioethanol from Waste Potato

    Directory of Open Access Journals (Sweden)

    Merve Duruyurek

    2015-02-01

    Full Text Available Using primary energy sources in World as fossil fuels, causes air pollution and climate change. Because of these reasons, people looking for renewable energy suppliers which has less carbondioxide and less pollution. Carbon in biofuels is producing from photosynthesis. For this, burning biofuels don’t increase carbondioxide in atmosphere. Scientists predict that plants with high carbonhydrate and protein contents are 21. centuries biofuels. Potatoes are producing over 280 million in whole world and Turkey is 6th potato producer. Turkey produces 5250000 tonne of potatoes. Approximately 20% of potatoes are waste in Niğde. Our study aimed to produce bioethanol from Solanum tuberosum by using the yeast Saccharomyces cerevisiae. As a result renewable energy sources can be produced from natural wastes.

  1. OPTIMIZATION OF THE TECHNOLOGICAL PROCESS OF THE FERROCHROME PRODUCTION OUT OF WASTE OF TANNING PRODUCTION

    Directory of Open Access Journals (Sweden)

    O. S. Komarov

    2004-01-01

    Full Text Available The article touches upon the solving of the actual problem — production in conditions of Belarus of ferrochrome of the leather production wastes, that allows to solve several technological problems and to reduse import of expensive ferroallows.

  2. Production of furfural from timber wastes

    Energy Technology Data Exchange (ETDEWEB)

    Kulkevics, A.; Pugulis, J.; Daugavietis, M.; Sav' yalov, V.A.; Bucena, A. Ya.

    1980-01-01

    A pilot plant was designed for the manufacture of furfural (I) (with an output of 135 tons/y) from chipping and wood waste (containing greater than or equal to 30% bark) in the presence of H/sub 2/SO/sub 4/. The operating parameters of the pilot plant are discussed. I was obtained in 6.8 to 7.6% yield (as a percentage of dry wood.

  3. Heterotrophs are key contributors to nitrous oxide production in mixed liquor under low C-to-N ratios during nitrification - batch experiments and modelling

    DEFF Research Database (Denmark)

    Domingo Felez, Carlos; Pellicer i Nàcher, Carles; Petersen, Morten S.

    2017-01-01

    Nitrous oxide (N2O), a by-product of biological nitrogen removal during wastewater treatment, is produced by ammonia-oxidizing bacteria (AOB) and heterotrophic denitrifying bacteria (HB). Mathematical models are used to predict N2O emissions, often including AOB as the main N2O producer. Several...

  4. Transport volume in regions of the Czech Republic in relation to the production of waste

    OpenAIRE

    Pojkarová, Kateřina; Hruška, Roman

    2010-01-01

    The article deals with the transport volume in regions of the Czech Republic in relation to the production of waste. On the basis of waste statistics and transport statistics is researched the greatness of the relation between the transport volume and the production of waste in regions of the Czech Republic. The relation is illustrated graphically too. We have many kinds of waste which we can monitor. The most important kinds of waste are municipal waste, industrial waste, construction ...

  5. Pressurized pyrolysis and gasification behaviour of black liquor and biofuels

    Energy Technology Data Exchange (ETDEWEB)

    Whitty, K.; Backman, R.; Hupa, M. [Aabo Akademi, Turku (Finland)

    1996-12-01

    The objective of this project is to obtain basic experimental data on pyrolysis and gasification of various black liquors and biofuels at elevated pressures, and to model these processes. Liquor-to-liquor differences in conversion behavior of single liquor droplets during gasification at atmospheric pressure were investigated. The applicability of a rate equation developed for catalyzed gasification of carbon was investigated with regard to pressurized black liquor gasification. A neural network was developed to simulate the progression of char conversion during pressurized black liquor gasification. Pyrolysis of black liquor in a pressurized drop-tube furnace was investigated in collaboration with KTH in Stockholm. (author)

  6. Bioconversion of chicken wastes to value-added products

    Energy Technology Data Exchange (ETDEWEB)

    Barik, S; Forgacs, T; Isbister, J [ARCTECH, Inc., Alexandria, VA (United States)

    1991-01-01

    Increasing quantities of chicken waste concerns the poultry industry because of escalating disposal costs and the potential for environmental pollution. Biological conversion of these wastes to valuable products such as methane and/or chemical feed-stocks appears to be feasible. Biomethanation of chicken waste by a sewage sludge microbial consortium produced as much as 69 mol% methane in the gas phase. Acetic and propionic acids were the major acids produced during the bioconversion. Addition of chelating agents and other micro-nutrients enhanced methane production and shifted the ratios of intermediates accumulated. Preliminary data indicate that more than 60% of the chicken waste carbon was converted and that the nitrogen-rich residue may have potential as a soil additive. (author).

  7. Economic optimization of waste treatment and energy production in Denmark

    DEFF Research Database (Denmark)

    Münster, Marie; Ravn, Hans; Hedegaard, Karsten

    2013-01-01

    This article presents an optimization model that incorporates LCA methodology and captures important characteristics of waste management systems. The most attractive waste management options are in the model identified as part the optimization. The model renders it possible to apply different...... optimization objectives such as minimizing costs or greenhouse gas emissions or to prioritise several objectives given different weights. An illustrative case is analyzed, covering alternative treatments of 1 tonne residual household waste: incineration of the full amount or sorting out organic waste...... for biogas production for either CHP generation or as fuel in vehicles. The case study illustrates, that what is the optimal solution depends on the objective and assumptions regarding the background system – here illustrated with different assumptions regarding displaced electricity production. The article...

  8. Scheduling Production Orders, Taking into Account Delays and Waste

    Directory of Open Access Journals (Sweden)

    Dylewski Robert

    2014-09-01

    Full Text Available The article addresses the problem of determining the sequence of entering orders for production in a flexible manufacturing system implementing technological operations of cutting sheet metal. Adopting a specific ranking of production orders gives rise to the vector of delays and waste in the form of incompletely used sheets. A new method was postulated for determining the optimal sequence of orders in terms of two criteria: the total cost of delays and the amount of production waste. The examples illustrate the advantages of the proposed method compared with the popular heuristic principles.

  9. Process for reducing radioactive contamination in waste product gypsum

    International Nuclear Information System (INIS)

    Lange, P.H. Jr.

    1979-01-01

    A process is described for reducing the radioactive contamination in waste product gypsum in which waste product gypsum is reacted with a dilute sulfuric acid containing barium sulfate to form an acid slurry at an elevated temperature, the slurry is preferably cooled, the acid component is separated from the solid, and the resulting solid is separated into a fine fraction and a coarse fraction. The fine fraction predominates in barium sulfate and radioactive contamination. The coarse fraction predominates in a purified gypsum product of reduced radioactive contamination

  10. Eco-efficient waste glass recycling: Integrated waste management and green product development through LCA.

    Science.gov (United States)

    Blengini, Gian Andrea; Busto, Mirko; Fantoni, Moris; Fino, Debora

    2012-05-01

    As part of the EU Life + NOVEDI project, a new eco-efficient recycling route has been implemented to maximise resources and energy recovery from post-consumer waste glass, through integrated waste management and industrial production. Life cycle assessment (LCA) has been used to identify engineering solutions to sustainability during the development of green building products. The new process and the related LCA are framed within a meaningful case of industrial symbiosis, where multiple waste streams are utilised in a multi-output industrial process. The input is a mix of rejected waste glass from conventional container glass recycling and waste special glass such as monitor glass, bulbs and glass fibres. The green building product is a recycled foam glass (RFG) to be used in high efficiency thermally insulating and lightweight concrete. The environmental gains have been contrasted against induced impacts and improvements have been proposed. Recovered co-products, such as glass fragments/powders, plastics and metals, correspond to environmental gains that are higher than those related to landfill avoidance, whereas the latter is cancelled due to increased transportation distances. In accordance to an eco-efficiency principle, it has been highlighted that recourse to highly energy intensive recycling should be limited to waste that cannot be closed-loop recycled. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Survey of product quality control of radioactive waste

    International Nuclear Information System (INIS)

    Warnecke, E.

    1989-01-01

    The PTB has developed basic procedures with regard to deriving final storage conditions and product quality control. After this, requirements for radioactive waste are derived via safety analysers, in which information about the radioactive waste, the geological overall situation of the site and the layout of the final storage mine, in particular, are included as basic data. The final storage conditions are only determined with the awarding of the planning decision. Compliance with them can be proved by random sample tests on waste containers or via a qualification and inspection of the conditioning process. (DG) [de

  12. Effect of abdominal waste on biogas production from cow dung ...

    African Journals Online (AJOL)

    Studies have been carried out on the production of biogas from mixture of cow abdominal waste and its dung. The rate of biogas production and cumulative volume of the gas produced was compared with that of pure cow dung under the same experimental conditions. The result shows that the mixture of the cow abdominal ...

  13. Production of hydrogen from organic waste via hydrogen sulfide

    International Nuclear Information System (INIS)

    McMahon, M.; Davis, B.R.; Roy, A.; Daugulis, A.

    2007-01-01

    In this paper an integrated process is proposed that converts organic waste to hydrogen via hydrogen sulphide. The designed bioreactor has achieved high volumetric productivities comparable to methanogenic bioreactors. Proposed process has advantages of bio-methane production and is more resilient to process upset. Thermochemical conversion of hydrogen sulphide to hydrogen is exothermic and also requires smaller plant infrastructure

  14. Study of organic waste for production of hydrogen in reactor

    International Nuclear Information System (INIS)

    Guzmán Chinea, Jesús Manuel; Guzmán Marrero, Elizabeth; Pérez Ponce, Alejandro

    2015-01-01

    Biological processes have long been used for the treatment of organic waste makes, especially our study is based on the anaerobic process in reactors, using residual organic industry. Without excluding other non-industrial we have studied. Fundamental objectives treating organic waste is to reduce the pollutant load to the environment, another aim is to recover the waste recovering the energy contained in it. In this context, the biological hydrogen production from organic waste is an interesting alternative because it has low operating costs and raw material is being used as a residue in any way should be treated before final disposal. Hydrogen can be produced sustainable by anaerobic bacteria that grow in the dark with rich carbohydrate substrates giving as final products H 2 , CO 2 and volatile fatty acids. The whey byproduct from cheese production, has great potential to be used for the generation of hydrogen as it has a high carbohydrate content and a high organic load. The main advantages of using anaerobic processes in biological treatment of organic waste, are the low operating costs, low power consumption, the ability to degrade high organic loads, resistance biomass to stay long in the absence of substrate, without lose their metabolic activity, and low nutritional requirements and increase the performance of 0.9 mol H2 / mol lactose. (full text)Biological processes have long been used for the treatment of organic waste makes, especially our study is based on the anaerobic process in reactors, using residual organic industry. Without excluding other non-industrial we have studied. Fundamental objectives treating organic waste is to reduce the pollutant load to the environment, another aim is to recover the waste recovering the energy contained in it. In this context, the biological hydrogen production from organic waste is an interesting alternative because it has low operating costs and raw material is being used as a residue in any way should be treated

  15. Combustion of animal or vegetable based liquid waste products

    International Nuclear Information System (INIS)

    Wikman, Karin; Berg, Magnus

    2002-04-01

    In this project experiences from combustion of animal and vegetable based liquid waste products have been compiled. Legal aspects have also been taken into consideration and the potential for this type of fuel on the Swedish energy market has been evaluated. Today the supply of animal and vegetable based liquid waste products for energy production in Sweden is limited. The total production of animal based liquid fat is about 10,000 tonnes annually. The animal based liquid waste products origin mainly from the manufacturing of meat and bone meal. Since meat and bone meal has been banned from use in animal feeds it is possible that the amount of animal based liquid fat will decrease. The vegetable based liquid waste products that are produced in the processing of vegetable fats are today used mainly for internal energy production. This result in limited availability on the commercial market. The potential for import of animal and vegetable based liquid waste products is estimated to be relatively large since the production of this type of waste products is larger in many other countries compared to Sweden. Vegetable oils that are used as food or raw material in industries could also be imported for combustion, but this is not reasonable today since the energy prices are relatively low. Restrictions allow import of SRM exclusively from Denmark. This is today the only limit for increased imports of animal based liquid fat. The restrictions for handle and combustion of animal and vegetable based liquid waste products are partly unclear since this is covered in several regulations that are not easy to interpret. The new directive for combustion of waste (2000/76/EG) is valid for animal based waste products but not for cadaver or vegetable based waste products from provisions industries. This study has shown that more than 27,400 tonnes of animal based liquid waste products and about 6,000 tonnes of vegetable based liquid waste products were used for combustion in Sweden

  16. Management of radioactive waste from 99Mo production

    International Nuclear Information System (INIS)

    1998-11-01

    99m Tc used for labelling different pharmaceuticals is the most important radionuclide in nuclear medicine practice, and probably will continue to play this important role for the foreseeable future. 99m Tc is the short lived daughter product of the parent 99 Mo, which is mainly produced by the nuclear fission of 235 U. Recognizing the importance of the waste management issue associated with 99 Mo production the IAEA initiated preparation of this report to provide Member States and existing and potential producers of 99 Mo with practical approaches and the available information on the subject. Waste management in the context of this report encompasses all waste-related aspects, for example, handling, treatment, conditioning, storage, transport, and disposal. The document is organized in several chapters giving the following information: short description of the basic nuclear and physical properties of 99 Mo and 99m Tc; an overview of past, present and possible future production methods; characteristics of the various waste streams produced in the aforementioned processes; description of the necessary waste management practices needed to handle the relevant waste streams in a responsible and internationally-accepted manner; conclusion and recommendations

  17. The influence of slaughterhouse waste on fermentative H2 production from food waste: Preliminary results

    International Nuclear Information System (INIS)

    Boni, Maria Rosaria; Sbaffoni, Silvia; Tuccinardi, Letizia

    2013-01-01

    Highlights: • Co-digestion process finalized to bio-H 2 production was tested in batch tests. • Slaughterhouse waste (SHW) and food waste (FW) were co-digested in different proportions. • The presence of SHW affected the H 2 production from FW. • When SHW ranging between 50% and 70% the H 2 production is improved. • SHW percentages above 70%, led to a depletion in H 2 production. - Abstract: The aim of this study was to evaluate the influence of slaughterhouse waste (SHW; essentially the skin, fats, and meat waste of pork, poultry, and beef) in a fermentative co-digestion process for H 2 production from pre-selected organic waste taken from a refectory (food waste [FW]). Batch tests under mesophilic conditions were conducted in stirred reactors filled with different proportions of FW and SHW. The addition of 60% and 70% SHW to a mixture of SHW and FW improved H 2 production compared to that in FW only, reaching H 2 -production yields of 145 and 109 ml gVS 0 -1 , respectively, which are 1.5–2 times higher than that obtained with FW alone. Although the SHW ensured a more stable fermentative process due to its high buffering capacity, a depletion of H 2 production occurred when SHW fraction was higher than 70%. Above this percentage, the formation of foam and aggregated material created non-homogenous conditions of digestion. Additionally, the increasing amount of SHW in the reactors may lead to an accumulation of long chain fatty acids (LCFAs), which are potentially toxic for anaerobic microorganisms and may inhibit the normal evolution of the fermentative process

  18. Production of proteases from organic wastes by solid-state fermentation: downstream and zero waste strategies.

    Science.gov (United States)

    Marín, Maria; Artola, Adriana; Sánchez, Antoni

    2018-04-01

    Production of enzymes through solid-state fermentation (SSF) of agro-industrial wastes reports high productivity with low investment. The extraction of the final product from the solid waste and solid disposal represent the main cost of the process. In this work, the complete downstream processes of SSF of two industrial residues for the production of proteases, soy fibre (SF) and a mixture of hair and sludge (HS), were studied in terms of activity recovery, using different extraction parameters (extracting solvent, ratio solid: solvent and extraction mode). Activity after lyophilisation was tested. Solid waste valorisation after extraction was studied using respiration techniques and biogas production tests, as part of a zero waste strategy. Results showed a maximum extraction yield of 91% for SF and 121% for HS, both in agitated mode and distilled water as extraction agent. An average activity recovery of 95 ± 6 and 94 ± 6% for SF and HS, respectively, was obtained after lyophilisation and redissolution. To reduce the cost of extraction, a ratio 1:3 w : v solid-solvent in static mode is advised for SF, and 1:2 w : v extraction ratio in agitated mode for HS, both with distilled water as extracting agent. Both composting and anaerobic digestion are suitable techniques for valorisation of the waste material.

  19. Method for processing powdery radioactive wastes

    International Nuclear Information System (INIS)

    Yasumura, Keijiro; Matsuura, Hiroyuki; Tomita, Toshihide; Nakayama, Yasuyuki.

    1978-01-01

    Purpose: To solidify radioactive wastes with ease and safety at a high reaction speed but with no boiling by impregnating the radioactive wastes with chlorostyrene. Method: Beads-like dried ion exchange resin, powdery ion exchange resin, filter sludges, concentrated dried waste liquor or the like are mixed or impregnated with a chlorostyrene monomer dissolving therein a polymerization initiator such as methyl ethyl ketone peroxide and benzoyl peroxide. Mixed or impregnated products are polymerized to solid after a predetermined of time through curing reaction to produce solidified radioactive wastes. Since inflammable materials are used, this process has a high safety. About 70% wastes can be incorporated. The solidified products have a strength as high as 300 - 400 kg/cm 3 and are suitable to ocean disposal. The products have a greater radioactive resistance than other plastic solidification products. (Seki, T.)

  20. Glass-ceramics: Their production from wastes - a review

    Energy Technology Data Exchange (ETDEWEB)

    Rawlings, R.D.; Wu, J.P.; Boccaccini, A.R. [University of London, London (United Kingdom). Imperial College of Science & Technology, Dept. of Medicine

    2006-02-15

    Glass-ceramics are polycrystalline materials of fine microstructure that are produced by the controlled crystallisation (devitrification) of a glass. Numerous silicate based wastes, such as coal combustion ash, slag from steel production, fly ash and filter dusts from waste incinerators, mud from metal hydrometallurgy, different types of sludge as well as glass cullet or mixtures of them have been considered for the production of glass-ceramics. Developments of glass-ceramics from waste using different processing methods are described comprehensively in this review, covering R&D work carried out worldwide in the last 40 years. Properties and applications of the different glass-ceramics produced are discussed. The review reveals that considerable knowledge and expertise has been accumulated on the process of transformation of silicate waste into useful glass-ceramic products. These glass-ceramics are attractive as building materials for usage as construction and architectural components or for other specialised technical applications requiring a combination of suitable thermo-mechanical properties. Previous attempts to commercialise glass-ceramics from waste and to scale-up production for industrial exploitation are also discussed.

  1. Waste composting and proving fish for production the organic fertilizers

    Directory of Open Access Journals (Sweden)

    Fernanda San Martins Sanes

    2015-06-01

    Full Text Available The volumes of waste generated in the fishing activity are increasing due to the increase in demand for these products. This implies the need for fast processing and cycling of these materials. Thus, the aim of this study was to evaluate the use of waste generated in the fishing activity as a source of organic fertilizers in agricultural production systems familiar ecological basis. The experiment was conducted at the Experimental Station Cascade / Embrapa Temperate Climate was assessed throughout the composting process and the fermentation of fish waste, identifying the main points that enable the use of these fertilizers in farming systems ecological base. The composting process of rice husk revealed be incomplete during the experiment. The compound prepared with fish waste and exhausted bark of acacia presents itself as a good source of nutrients for crops, which may be suitable as organic fertilizer for production of ecologically-based systems. For liquid organic fertilizer, the conditions under which the experiment was conducted, it is concluded that the compound resulting from aerobic or anaerobic fermentation of fish waste, present themselves as a viable source of nutrients for productive systems of ecological base. However, further studies need to be conducted to better understanding and qualification of both processes.

  2. Production possibility frontier analysis of biodiesel from waste cooking oil

    International Nuclear Information System (INIS)

    Kagawa, Shigemi; Takezono, Kanako; Suh, Sangwon; Kudoh, Yuki

    2013-01-01

    This paper presents an assessment of the productive efficiency of an advanced biodiesel plant in Japan using Data Envelopment Analysis (DEA). The empirical analysis uses monthly input data (waste cooking oil, methanol, potassium hydroxide, power consumption, and the truck diesel fuel used for the procurement of waste cooking oil) and output data (biodiesel) of a biodiesel fuel plant for August 2008–July 2010. The results of this study show that the production activity with the lowest cost on the biodiesel production possibility frontier occurred in March 2010 (production activity used 1.41 kL of waste cooking oil, 0.18 kL of MeOH, 16.33 kg of KOH, and 5.45 kW h of power), and the unit production cost in that month was 18,517 yen/kL. Comparing this efficient production cost to the mean unit production cost on the production possibility frontier at 19,712 yen/kL, revealed that the cost of producing 1 kL of biodiesel could be reduced by as much as 1195 yen. We also find that the efficiency improvement will contribute to decreasing the cost ratio (cost per sale) of the biodiesel production by approximately 1% during the study period (24 months) between August 2008 and July 2010. - Highlights: ► This paper analyzes the productive efficiency of an advanced biodiesel plant using DEA. ► We examine the optimal production activities of biodiesel from waste cooking oil. ► Considering the production frontier, the unit cost of biodiesel could be reduced by 1195 yen. ► The efficiency improvement contributes to decreasing the cost ratio of the biodiesel by 1%

  3. Electricity production from municipal solid waste in Brazil.

    Science.gov (United States)

    Nordi, Guilherme Henrique; Palacios-Bereche, Reynaldo; Gallego, Antonio Garrido; Nebra, Silvia Azucena

    2017-07-01

    Brazil has an increasing production of municipal solid waste that, allied to the current waste management system, makes the search for alternatives of energy recovery essential. Thus, this work aims to study the incineration of municipal solid waste and the electricity production through steam cycles evaluating the influence of municipal solid waste composition. Several scenarios were studied, in which it was assumed that some fractions of municipal solid waste were removed previously. The municipal solid waste generated in Santo André city, São Paulo State, Brazil, was adopted for this study. Simulation results showed that the removal of organic matter and inert components impacts advantageously on the cycle performance, improving their parameters in some cases; in addition, there is the possibility of reusing the separated fractions. The separation of some recyclables, as plastic material, showed disadvantages by the reduction in the electricity generation potential owing to the high calorific value of plastics. Despite the high energy content of them, there are other possible considerations on this subject, because some plastics have a better recovery potential by recycling.

  4. Ceramic ware waste as coarse aggregate for structural concrete production.

    Science.gov (United States)

    García-González, Julia; Rodríguez-Robles, Desirée; Juan-Valdés, Andrés; Morán-Del Pozo, Julia M; Guerra-Romero, M Ignacio

    2015-01-01

    The manufacture of any kind of product inevitably entails the production of waste. The quantity of waste generated by the ceramic industry, a very important sector in Spain, is between 5% and 8% of the final output and it is therefore necessary to find an effective waste recovery method. The aim of the study reported in the present article was to seek a sustainable means of managing waste from the ceramic industry through the incorporation of this type of waste in the total replacement of conventional aggregate (gravel) used in structural concrete. Having verified that the recycled ceramic aggregates met all the technical requirements imposed by current Spanish legislation, established in the Code on Structural Concrete (EHE-08), then it is prepared a control concrete mix and the recycled concrete mix using 100% recycled ceramic aggregate instead of coarse natural aggregate. The concretes obtained were subjected to the appropriate tests in order to conduct a comparison of their mechanical properties. The results show that the concretes made using ceramic sanitary ware aggregate possessed the same mechanical properties as those made with conventional aggregate. It is therefore possible to conclude that the reuse of recycled ceramic aggregate to produce recycled concrete is a feasible alternative for the sustainable management of this waste.

  5. Old waste products - new requirements. Preparations for the later repository

    International Nuclear Information System (INIS)

    Graf, A.; Merx, H.

    2003-01-01

    For more than 30 years now, the Hauptabteilung Dekontaminationsbetriebe (HDB, Central Decontamination Department) of the Forschungszentrum Karlsruhe has been engaged in the management of radioactive wastes produced by the operation and decommissioning of research reactors and institutes of the Research Center, the Karlsruhe reprocessing plant, the European Institute for Transuranium Elements, and the Baden-Wuerttemberg state collection center. For this purpose, the wastes delivered to HDB have been conditioned at various facilities according to the requirements specified. These conditioning requirements, however, have changed in the course of time. In the past, only minimum declaration and conditioning requirements had to be fulfilled for the ASSE repository storage facility. Since 1994, the KONRAD repository storage conditions have been adopted. They comprise a variety of quality criteria. Judging from today, duration of interim storage until transfer to a repository storage facility will take another 30 years at least. In addition to the documentary qualification of the waste products, it is therefore required to take measures to ensure long-term safety of both the waste packages and their storage. This is why the HDB, in agreement with the supervisory authority, i.e. the Federal Radiation Protection Authority, and its experts, has decided to put the waste products into KONRAD containers in certified compliance with the repository storage conditions and to backfill these containers with concrete in accordance with approved procedures. Thus, waste packages suited for repository storage will be produced and corrosion processes and the possible release of radioactivity will be prevented. (orig.)

  6. Old waste products - new requirements. Preparations for the later repository

    Energy Technology Data Exchange (ETDEWEB)

    Graf, A.; Merx, H. [Forschungszentrum Karlsruhe GmbH Technik und Umwelt (Germany). Hauptabteilung Dekontaminationsbetriebe

    2003-07-01

    For more than 30 years now, the Hauptabteilung Dekontaminationsbetriebe (HDB, Central Decontamination Department) of the Forschungszentrum Karlsruhe has been engaged in the management of radioactive wastes produced by the operation and decommissioning of research reactors and institutes of the Research Center, the Karlsruhe reprocessing plant, the European Institute for Transuranium Elements, and the Baden-Wuerttemberg state collection center. For this purpose, the wastes delivered to HDB have been conditioned at various facilities according to the requirements specified. These conditioning requirements, however, have changed in the course of time. In the past, only minimum declaration and conditioning requirements had to be fulfilled for the ASSE repository storage facility. Since 1994, the KONRAD repository storage conditions have been adopted. They comprise a variety of quality criteria. Judging from today, duration of interim storage until transfer to a repository storage facility will take another 30 years at least. In addition to the documentary qualification of the waste products, it is therefore required to take measures to ensure long-term safety of both the waste packages and their storage. This is why the HDB, in agreement with the supervisory authority, i.e. the Federal Radiation Protection Authority, and its experts, has decided to put the waste products into KONRAD containers in certified compliance with the repository storage conditions and to backfill these containers with concrete in accordance with approved procedures. Thus, waste packages suited for repository storage will be produced and corrosion processes and the possible release of radioactivity will be prevented. (orig.)

  7. Ethanol, biomass and enzyme production for whey waste abatement

    Energy Technology Data Exchange (ETDEWEB)

    Maiorella, B L; Castillo, F J

    1984-08-01

    Methods of ethanol, biomass, and lactase production are evaluated for the treatment of whey waste. These processes can all reduce the whey BOD load of 35,000 ppm by at least 90%. Plant designs are evaluated at the scale of 25,000 l whey per day, corresponding to the output of a typical independent cheese factory. Ethanol production is the most practical of the alternatives evaluated and the waste treatment would add 7.3 US cents per kilogramme to the cost of cheese manufacture. 57 references.

  8. Innovative technologies of waste recycling with production of high performance products

    International Nuclear Information System (INIS)

    Gilmanshin, R; Azimov, Yu I; Gilmanshina, S I; Ferenets, A V; Galeeva, A I

    2015-01-01

    The innovative ways of recycling wastes as a tool for sustainable development are presented in the article. The technology of the production of a composite material based on the rubber fiber composite waste tire industry is presented. The results of experimental use of the products in the real conditions. The comparative characteristics of the composite material rubber fiber composite are given. The production technology of construction and repairing materials on the basis of foamed glass is presented. (paper)

  9. Innovative technologies of waste recycling with production of high performance products

    Science.gov (United States)

    Gilmanshin, R.; Ferenets, A. V.; Azimov, Yu I.; Galeeva, A. I.; Gilmanshina, S. I.

    2015-06-01

    The innovative ways of recycling wastes as a tool for sustainable development are presented in the article. The technology of the production of a composite material based on the rubber fiber composite waste tire industry is presented. The results of experimental use of the products in the real conditions. The comparative characteristics of the composite material rubber fiber composite are given. The production technology of construction and repairing materials on the basis of foamed glass is presented.

  10. System for manufacturing ash products and energy from refuse waste

    Energy Technology Data Exchange (ETDEWEB)

    Sutin, G.L.; Mahoney, P.F.

    1996-01-04

    The present invention provides a system of manufacturing energy and ash products from solid waste. The system includes apparatus for receiving solid waste for processing, apparatus for shredding the received solid waste, apparatus for removing ferrous material from the shredded solid waste to create processed refuse fuel (PRF) and apparatus for efficiently combusting the PRF. A conveyor transfers the PRF to the combusting apparatus such that the density of the PRF is always controlled for continuous non-problematic flow. Apparatus for recovering residual combustion particulate from the combustion residual gases and for recovering solid ash residue provides the system with the ability to generate steam and electrical energy, and to recover for reuse and recycling valuable materials from the solid ash residue. (author) figs.

  11. Production of Cellulosic Polymers from Agricultural Wastes

    Directory of Open Access Journals (Sweden)

    A. U. Israel

    2008-01-01

    Full Text Available Cellulosic polymers namely cellulose, di-and triacetate were produced from fourteen agricultural wastes; Branch and fiber after oil extraction from oil palm (Elais guineensis, raffia, piassava, bamboo pulp, bamboo bark from raphia palm (Raphia hookeri, stem and cob of maize plant (Zea mays, fruit fiber from coconut fruit (Cocos nucifera, sawdusts from cotton tree (Cossypium hirsutum, pear wood (Manilkara obovata, stem of Southern gamba green (Andropogon tectorus, sugarcane baggase (Saccharium officinarum and plantain stem (Musa paradisiaca. They were subjected to soda pulping and hypochlorite bleaching system. Results obtained show that pulp yield from these materials were: 70.00, 39.59, 55.40, 86.00, 84.60, 80.00, 40.84, 81.67, 35.70, 69.11, 4.54, 47.19, 31.70 and 52.44% respectively. The pulps were acetylated with acetic anhydride in ethanoic acid catalyzed by conc. H2SO4 to obtain cellulose derivatives (Cellulose diacetate and triacetate. The cellulose diacetate yields were 41.20, 17.85, 23.13, 20.80, 20.23, 20.00, 39.00, 44.00, 18.80, 20.75, 20.03, 41.20, 44.00, and 39.00% respectively while the results obtained as average of four determinations for cellulose triacetate yields were: 52.00, 51.00, 43.10, 46.60, 49.00, 35.00, 40.60, 54.00, 57.50, 62.52, 35.70. 52.00, 53.00 and 38.70% respectively for all the agricultural wastes utilized. The presence of these cellulose derivatives was confirmed by a solubility test in acetone and chloroform.

  12. Characterization of Green Liquor Dregs, Potentially Useful for Prevention of the Formation of Acid Rock Drainage

    Directory of Open Access Journals (Sweden)

    Maria Mäkitalo

    2014-04-01

    Full Text Available Using alternative materials such as residual products from other industries to mitigate the negative effects of acid rock drainage would simultaneously solve two environmental problems. The main residual product still landfilled by sulphate paper mills is the alkaline material green liquor dregs (GLD. A physical, mineralogical and chemical characterization of four batches of GLD was carried out to evaluate the potential to use it as a sealing layer in the construction of dry covers on sulphide-bearing mine waste. GLD has relatively low hydraulic conductivity (10−8 to 10−9 m/s, a high water retention capacity (WRC and small particle size. Whilst the chemical and mineralogical composition varied between the different batches, these variations were not reflected in properties such as hydraulic conductivity and WRC. Due to relatively low trace element concentrations, leaching of contaminants from the GLD is not a concern for the environment. However, GLD is a sticky material, difficult to apply on mine waste deposits and the shear strength is insufficient for engineering applications. Therefore, improving the mechanical properties is necessary. In addition, GLD has a high buffering capacity indicating that it could act as an alkaline barrier. Once engineering technicalities have been overcome, the long-term effectiveness of GLD should be studied, especially the effect of aging and how the sealing layer would be engineered in respect to topography and climatic conditions.

  13. Performance of novel sludge-bed anaerobic membrane bioreactor (SB-AnMBR) treating prehydrolysis liquor.

    Science.gov (United States)

    Kale, Mayur M; Singh, Kripa S

    2014-01-01

    The feasibility of a novel sludge-bed anaerobic membrane bioreactor (SB-AnMBR) configuration for treating a waste stream from a dissolving pulp production industry was evaluated. The waste stream, called prehydrolysis liquor (PHL), is generated after the wood chips are subjected to high temperature steam to remove unwanted hemicelluloses. The PHL with total chemical oxygen demand (COD) of approximately 100 g/L contained mainly sugars, furfural, lignin, and acetic acid. The SB-AnMBR was fed with the PHL at organic loading rates in a range of 0.8 to10 kg-COD/(m(3)·d). The COD removal efficiency of more than 85% and an average rate of methane production of 0.35 m(3)/(kg-COD·d) were observed at each loading rate. No detectable sugars or furfural were present in the treated effluent from SB-AnMBR. Lignin removal varied from 60 to 90%. Flat-sheet membranes performed well with one fouling event during first 400 days of operation.

  14. Recovery of Flavonoids from Orange Press Liquor by an Integrated Membrane Process

    Directory of Open Access Journals (Sweden)

    Alfredo Cassano

    2014-08-01

    Full Text Available Orange press liquor is a by-product generated by the citrus processing industry containing huge amounts of natural phenolic compounds with recognized antioxidant activity. In this work, an integrated membrane process for the recovery of flavonoids from orange press liquors was investigated on a laboratory scale. The liquor was previously clarified by ultrafiltration (UF in selected operating conditions by using hollow fiber polysulfone membranes. Then, the clarified liquor with a total soluble solids (TSS content of 10 g·100 g−1 was pre-concentrated by nanofiltration (NF up to 32 g TSS 100 g−1 by using a polyethersulfone spiral-wound membrane. A final concentration step, up to 47 g TSS 100 g−1, was performed by using an osmotic distillation (OD apparatus equipped with polypropylene hollow fiber membranes. Suspended solids were completely removed in the UF step producing a clarified liquor containing most part of the flavonoids of the original press liquor due to the low rejection of the UF membrane towards these compounds. Flavanones and anthocyanins were highly rejected by the NF membrane, producing a permeate stream with a TSS content of 4.5 g·100 g−1. An increasing of both the flavanones and anthocyanins concentration was observed in the NF retentate by increasing the volume reduction factor (VRF. The final concentration of flavonoids by OD produced a concentrated solution of interest for nutraceutical and pharmaceutical applications.

  15. Recovery of flavonoids from orange press liquor by an integrated membrane process.

    Science.gov (United States)

    Cassano, Alfredo; Conidi, Carmela; Ruby-Figueroa, René

    2014-08-11

    Orange press liquor is a by-product generated by the citrus processing industry containing huge amounts of natural phenolic compounds with recognized antioxidant activity. In this work, an integrated membrane process for the recovery of flavonoids from orange press liquors was investigated on a laboratory scale. The liquor was previously clarified by ultrafiltration (UF) in selected operating conditions by using hollow fiber polysulfone membranes. Then, the clarified liquor with a total soluble solids (TSS) content of 10 g·100 g-1 was pre-concentrated by nanofiltration (NF) up to 32 g TSS 100 g-1 by using a polyethersulfone spiral-wound membrane. A final concentration step, up to 47 g TSS 100 g-1, was performed by using an osmotic distillation (OD) apparatus equipped with polypropylene hollow fiber membranes. Suspended solids were completely removed in the UF step producing a clarified liquor containing most part of the flavonoids of the original press liquor due to the low rejection of the UF membrane towards these compounds. Flavanones and anthocyanins were highly rejected by the NF membrane, producing a permeate stream with a TSS content of 4.5 g·100 g-1. An increasing of both the flavanones and anthocyanins concentration was observed in the NF retentate by increasing the volume reduction factor (VRF). The final concentration of flavonoids by OD produced a concentrated solution of interest for nutraceutical and pharmaceutical applications.

  16. Enhancement of glycerol production by zygosaccharomyces ruxii using strawberry wastes

    International Nuclear Information System (INIS)

    Meleigy, S.A; Taha, S.M.A.

    2010-01-01

    Glycerol is important industrial product that can be produced using osmophilic yeasts. In this study a local isolate of osmophilic yeast, zygosaccharomyces ruxii, was used for glycerol production from strawberry waste. The effects of some important parameters including glucose and urea concentrations, incubation temperature, initial ph and gamma irradiation were investigated. The optimum conditions for maximum glycerol production (126.8 g/l)by z. ruxii were occurred at 31 degree C and initial ph 5 in the presence of 250 g/l glucose and 3 g/l urea in the production medium . Under these optimizing fermentation parameters, enhancement of glycerol production (130 g/l) were recorded when the inoculum of z. ruxii was exposed to 0.25 kGy. also, the present results showed reduction in BOD 5 levels of fermented strawberry waste.

  17. Enhanced fermentable sugar production from kitchen waste using various pretreatments.

    Science.gov (United States)

    Hafid, Halimatun Saadiah; Rahman, Nor'Aini Abdul; Md Shah, Umi Kalsom; Baharudin, Azhari Samsu

    2015-06-01

    The kitchen waste fraction in municipal solid waste contains high organic matter particularly carbohydrate that can contribute to fermentable sugar production for subsequent conversion to bioethanol. This study was carried out to evaluate the influence of single and combination pretreatments of kitchen waste by liquid hot water, mild acid pretreatment of hydrochloric acid (HCl) and sulphuric acid (H2SO4) and enzymatic hydrolysis (glucoamylase). The maximum total fermentable sugar produced after combination pretreatment by 1.5% HCl and glucoamylase consisted of 93.25 g/L glucose, 0.542 g/L sucrose, 0.348 g/L maltose, and 0.321 g/L fructose. The glucose released by the combination pretreatment method was 0.79 g glucose/g KW equivalent to 79% of glucose conversion. The effects of the pre-treatment on kitchen waste indicated that the highest solubilization was 40% by the combination method of 1.5% HCl and glucoamylase. The best combination pre-treatment gave concentrations of lactic acid, acetic acid, and propionic acid of 11.74 g/L, 6.77 g/L, and 1.02 g/L, respectively. The decrease of aliphatic absorbance bands of polysaccharides at 2851 and 2923 cm(-1) and the increase on structures of carbonyl absorbance bands at 1600 cm(-1) reflects the progress of the kitchen waste hydrolysis to fermentable sugars. Overall, 1.5% HCl and glucoamylase treatment was the most profitable process as the minimum selling price of glucose was USD 0.101/g kitchen waste. Therefore, the combination pretreatment method was proposed to enhance the production of fermentable sugar, particularly glucose from kitchen waste as the feedstock for bioethanol production. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Recovery of fission products from acidic waste solutions thereof

    International Nuclear Information System (INIS)

    Carlin, W.W.; Darlington, W.B.; Dubois, D.W.

    1975-01-01

    Fission products, e.g., palladium, ruthenium and technetium, are removed from aqueous, acidic waste solutions thereof. The acidic waste solution is electrolyzed in an electrolytic cell under controlled cathodic potential conditions and technetium, ruthenium, palladium and rhodium are deposited on the cathode. Metal deposit is removed from the cathode and dissolved in acid. Acid insoluble rhodium metal is recovered, dissolved by alkali metal bisulfate fusion and purified by electrolysis. In one embodiment, the solution formed by acid dissolution of the cathode metal deposit is treated with a strong oxidizing agent and distilled to separate technetium and ruthenium (as a distillate) from palladium. Technetium is separated from ruthenium by organic solvent extraction and then recovered, e.g., as an ammonium salt. Ruthenium is disposed of as waste by-product. Palladium is recovered by electrolysis of an acid solution thereof under controlled cathodic potential conditions. Further embodiments wherein alternate metal recovery sequences are used are described. (U.S.)

  19. Production and properties of solidified high-level waste

    International Nuclear Information System (INIS)

    Brodersen, K.

    1980-08-01

    Available information on production and properties of solidified high-level waste are presented. The review includes literature up to the end of 1979. The feasibility of production of various types of solidified high-level wast is investigated. The main emphasis is on borosilicate glass but other options are also mentioned. The expected long-term behaviour of the materials are discussed on the basis of available results from laboratory experiments. Examples of the use of the information in safety analysis of disposal in salt formations are given. The work has been made on behalf of the Danish utilities investigation of the possibilities of disposal of high-level waste in salt domes in Jutland. (author)

  20. Possibility of direct electricity production from waste canola oil

    Science.gov (United States)

    Włodarczyk, Paweł P.; Włodarczyk, Barbara; Kalinichenko, Antonina

    2017-10-01

    Powering high-efficiency devices, such as fuel cells, with waste products will allow for a broader development of renewable energy sources and utilisation of by- products. This publication presents the possibility of electrooxidation of the emulsion of waste rapeseed oil, prepared on the basis of the detergent Syntanol DS-10. The process of electrooxidation was carried out on platinum electrode in alkaline (KOH) and acidic (H2SO4) electrolyte, in the temperature range of 293-333 K. In each analysed case the process of electrooxidation took place. The maximum current density obtained was 7 mA cm-2. Thus, it has been shown that it is possible to generate electricity directly from the emulsion of the waste rapeseed oil.

  1. Possibility of direct electricity production from waste canola oil

    Directory of Open Access Journals (Sweden)

    Włodarczyk Paweł P.

    2017-01-01

    Full Text Available Powering high-efficiency devices, such as fuel cells, with waste products will allow for a broader development of renewable energy sources and utilisation of by- products. This publication presents the possibility of electrooxidation of the emulsion of waste rapeseed oil, prepared on the basis of the detergent Syntanol DS-10. The process of electrooxidation was carried out on platinum electrode in alkaline (KOH and acidic (H2SO4 electrolyte, in the temperature range of 293-333 K. In each analysed case the process of electrooxidation took place. The maximum current density obtained was 7 mA cm-2. Thus, it has been shown that it is possible to generate electricity directly from the emulsion of the waste rapeseed oil.

  2. Wastes from bioethanol and beer productions as substrates for l(+) lactic acid production - A comparative study.

    Science.gov (United States)

    Djukić-Vuković, Aleksandra; Mladenović, Dragana; Radosavljević, Miloš; Kocić-Tanackov, Sunčica; Pejin, Jelena; Mojović, Ljiljana

    2016-02-01

    Waste substrates from bioethanol and beer productions are cheap, abundant and renewable substrates for biorefinery production of lactic acid (LA) and variability in their chemical composition presents a challenge in their valorisation. Three types of waste substrates, wasted bread and wasted potato stillage from bioethanol production and brewers' spent grain hydrolysate from beer production were studied as substrates for the production of l(+) LA and probiotic biomass by Lactobacillus rhamnosus ATCC 7469. The correlation of the content of free alpha amino nitrogen and the production of LA was determined as a critical characteristic of the waste media for efficient LA production by L. rhamnosus on the substrates which contained equal amount of fermentable sugars. A maximal LA productivity of 1.54gL(-1)h(-1) was obtained on wasted bread stillage media, whilst maximal productivities achieved on the potato stillage and brewers' spent grain hydrolysate media were 1.28gL(-1)h(-1)and 0.48gL(-1)h(-1), respectively. A highest LA yield of 0.91gg(-1) was achieved on wasted bread stillage media, followed by the yield of 0.81gg(-1) on wasted potato stillage and 0.34gg(-1) on brewers' spent grain hydrolysate media. The kinetics of sugar consumption in the two stillage substrates were similar while the sugar conversion in brewers' spent grain hydrolysate was slower and less efficient due to significantly lower content of free alpha amino nitrogen. The lignocellulosic hydrolysate from beer production required additional supplementation with nitrogen. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Screening of Acetic Acid Bacteria from Pineapple Waste for Bacterial Cellulose Production using Sago Liquid Waste

    Directory of Open Access Journals (Sweden)

    Nur Arfa Yanti

    2017-12-01

    Full Text Available Bacterial cellulose is a biopolymer produced by fermentation process with the help of bacteria. It has numerous applications in industrial sector with its characteristic as a biodegradable and nontoxic compound in nature. The potential application of BC is limited by its production costs, because BC is produced from expensive culture media. The use of cheap carbon and nutrient sources such as sago liquid waste is an interesting strategy to overcome this limitation. The objective of this study was to obtain the AAB strain that capable to produce bacterial cellulose from sago liquid waste. Isolation of AAB strains was conducted using CARR media and the screening of BC production was performed on Hestrin-Schramm (HS media with glucose as a carbon source. The strains of AAB then were evaluated for their cellulose-producing capability using sago liquid waste as a substrate. Thirteen strains of AAB producing BC were isolated from pineapple waste (pineapple core and peel and seven of them were capable to produce BC using sago liquid waste substrate. One of the AAB strains produced a relatively high BC, i.e. isolate LKN6. The result of morphological and biochemical test was proven that the bacteria was Acetobacter xylinum. The result of this study showed that A. xylinum LKN6 can produce a high yield of BC, therefore this strain is potentially useful for its utilization as a starter in bacterial cellulose production

  4. 'The ones that turn up are the ones that are responsible': Key stakeholders perspectives on liquor accords.

    Science.gov (United States)

    Curtis, Ashlee; Miller, Peter; Droste, Nicolas; McFarlane, Emma; Martino, Florentine; Palmer, Darren

    2016-05-01

    Liquor accords were introduced as an intervention to reduce alcohol-related harm in and around licensed venues. There have been very few evaluations of the accords, made all the more difficult given the multitude of measures that are often implemented under their banner. This study provides perspectives on the effectiveness of the liquor accords from key stakeholders who were involved in the strategy. In-depth interviews were conducted with 97 key stakeholders as part of a larger study, of which 46 spoke about the effectiveness of liquor accords. Responses were analysed using thematic analysis. Stakeholders reported the greatest benefit of liquor accords to be their ability to improve communication. Many stakeholders recognised the need for mandatory attendance and discussed whether the accords are a waste of time of resources. Stakeholders did not generally view liquor accords as effective means of reducing alcohol-related harm. There was a lack of positive feedback about liquor accords provided by stakeholders, indicating a clear need to better understand the role of liquor accords, and what they aim to achieve. Responsive regulation theory suggests that the dual roles of communication and intervention are confused, leading to some of the inherent problems with accords. The role and aims of liquor accords need to be clearly defined. The findings suggest that separating the communication and regulatory functions from accords will lead to a clearer role for accords, and interventions and regulation might be better placed in the hands of regulators and enforcement. [Curtis A, Miller P, Droste N, McFarlane E, Martino F, Palmer D. 'The ones that turn up are the ones that are responsible': Key stakeholders perspectives on liquor accords. Drug Alcohol Rev 2016;35:273-279]. © 2016 Australasian Professional Society on Alcohol and other Drugs.

  5. COMPLEX PROCESSING OF CELLULOSE WASTE FROM POULTRY AND SUGAR PRODUCTION

    Directory of Open Access Journals (Sweden)

    E. V. Sklyadnev

    2015-01-01

    Full Text Available Summary.To solve the problem of disposing of huge volumes of cellulose waste from sugar production in the form of beet pulp and waste of poultry farms in the form of poultry manure is proposed to use the joint use of two methods of thermal processing of waste - pyrolysis and gasification. The possibility of using pyrolysis applied to the waste are confirmed by experimental results. Based on the results of laboratory studies of the properties of by-products resulting from the thermal processing of the feedstock, it is proposed complex processing to produce useful products, to be implemented in the form of marketable products, and the organization's own process energy utilization. Developed flow diagram of an integrated processing said waste comprises 3 sections, which successively carried out: pyrolytic decomposition of the feedstock to obtain a secondary product in the form of solid, liquid and gas fractions, the gasification of solids to obtain combustible gas and separating the liquid fraction by distillation to obtain valuable products. The main equipment in the first region is the pyrolysis reactor cascade condensers; the second section - gasifiers layers and stream type; the third - one or more distillation columns with the necessary strapping. Proper power supply installation is organized by the use of the heat produced during combustion of the synthesis gas for heating and gasification reactor. For the developed scheme presents calculations of the heat balance of the installation, supporting the energy efficiency of the proposed disposal process. Developments carried out in the framework of the project the winner of the Youth Prize Competition Government of Voronezh region to support youth programs in the 2014-2015.

  6. Forest products decomposition in municipal solid waste landfills

    International Nuclear Information System (INIS)

    Barlaz, Morton A.

    2006-01-01

    Cellulose and hemicellulose are present in paper and wood products and are the dominant biodegradable polymers in municipal waste. While their conversion to methane in landfills is well documented, there is little information on the rate and extent of decomposition of individual waste components, particularly under field conditions. Such information is important for the landfill carbon balance as methane is a greenhouse gas that may be recovered and converted to a CO 2 -neutral source of energy, while non-degraded cellulose and hemicellulose are sequestered. This paper presents a critical review of research on the decomposition of cellulosic wastes in landfills and identifies additional work that is needed to quantify the ultimate extent of decomposition of individual waste components. Cellulose to lignin ratios as low as 0.01-0.02 have been measured for well decomposed refuse, with corresponding lignin concentrations of over 80% due to the depletion of cellulose and resulting enrichment of lignin. Only a few studies have even tried to address the decomposition of specific waste components at field-scale. Long-term controlled field experiments with supporting laboratory work will be required to measure the ultimate extent of decomposition of individual waste components

  7. PRODUCTION OF ELECTROTECHNICAL WIRE OF SCRAP AND COPPER WASTES

    Directory of Open Access Journals (Sweden)

    I. P. Volchok

    2006-01-01

    Full Text Available Chemical composition, structure and properties of copper upon base steps of wire production technology (melting of anode copper with using of scrap and waste, electrolitical refining, producing of rod by continuous casting, manufacture of electrotechnical wire and fibres is described.

  8. Waste incineration with production of clean and reliable energy

    Energy Technology Data Exchange (ETDEWEB)

    Pavlas, Martin; Tous, Michal; Klimek, Petr; Bebar, Ladislav [Brno University of Technology, Department of Process and Environmental Engineering (UPEI VUT Brno), Brno (Czech Republic)

    2011-08-15

    Discussion about utilization of waste for energy production (waste-to-energy, WTE) has moved on to next development phase. Waste fired power plants are discussed and investigated. These facilities focus on electricity production whereas heat supply is diminished and operations are not limited by insufficient heat demand. Present results of simulation prove that increase of net electrical efficiency above 20% for units processing 100 kt/year (the most common ones) is problematic and tightly bound with increased investments. Very low useful heat production in Rankine-cycle based cogeneration system with standard steam parameters leads to ineffective utilization of energy. This is documented in this article with the help of newly developed methodology based on primary energy savings evaluation. This approach is confronted with common method for energy recovery efficiency evaluation required by EU legislation (Energy Efficiency - R1 Criteria). New term highly-efficient WTE is proposed and condition under which is the incinerator classified as highly efficient are specified and analyzed. Once sole electricity production is compelled by limited local heat demand, application of non-conventional arrangements is highly beneficial to secure effective energy utilization. In the paper a system where municipal solid waste incinerator is integrated with combined gas-steam cycle is evaluated in the same manner. (orig.)

  9. Production of ethanol from Carica papaya (pawpaw) agro waste ...

    African Journals Online (AJOL)

    Owner

    sample was pulverised with a blender, packed in plastic container and stored in the freezer for subsequent analysis. Dried baker's yeast (Sacchromyces cerevisiae) is .... Production from Corn-cob Wastes and Grass-straw. Nig. J. Biotechnol. 6: 110 - 112. Akin-Osanaiye et al. 659. Association of Official Analytical Chemists ...

  10. Implementing Cleaner Technologies as a means of minimising waste production

    DEFF Research Database (Denmark)

    Wenzel, Henrik

    2002-01-01

    This article gives an overview of how Cleaner Production methods may contribute to minimising waste formation as well as showing energy and resource savings. It introduces the tools and procedures used when working in this field. It also illustrates the theoretical approach by using examples from...

  11. Dissolution test for low-activity waste product acceptance

    International Nuclear Information System (INIS)

    Ebert, W. L.

    1998-01-01

    We have measured the mean and standard deviation of the solution concentrations of B, Na, and Si attained in replicate dissolution tests conducted at temperatures of 20, 40, and 70 C, for durations of 3 and 7 days, and at glass/water mass ratios of 1:10 and 1:1. These and other tests were conducted to evaluate the adequacy of the test methods specified in privatization contracts and to develop a data base that can be used to evaluate the reliability of reported results for tests performed on the waste products. Tests were conducted with a glass that we formulated to be similar to low-activity waste products that will be produced during the remediation of Hanford tank wastes. Statistical analyses indicated that, while the mean concentrations of B, Na, and Si were affected by the values of test parameters, the standard deviation of replicate tests was not. The precision of the tests was determined primarily by uncertainties in the analysis of the test solutions. Replicate measurements of other glass properties that must be reported for Hanford low-activity waste products were measured to evaluate the possible adoption of the glass used in these tests as a standard test material for the product acceptance process

  12. Algae from waste for combined biodiesel and biogas production - ALDIGA

    Energy Technology Data Exchange (ETDEWEB)

    Arnold, M. [VTT Technical Research Centre of Finland, Espoo (Finland)], email: mona.arnold@vtt.fi

    2012-07-01

    The project's goal was to design and validate integrated concepts of utilising waste streams for algal biomass production. The developed sustainable processes should involve efficient utilisation of all side streams generated in addition to biodiesel and biogas. This included also material valorisation of residual algal biomass.

  13. Waste to wealth: Production of oxytetracycline using streptomyces ...

    African Journals Online (AJOL)

    The production of oxytetracycline by Streptomyces speibonae OXS1 in solid-state fermentation from cocoyam peels (household kitchen wastes of agricultural produce) was investigated. The proximate analyses of peels of the two cocoyam species showed that Colocasia esculenta had higher protein (1.39%) and fibre ...

  14. Opportunities, perspectives and limits in lactic acid production from waste and industrial by-products

    Directory of Open Access Journals (Sweden)

    Mladenović Dragana D.

    2016-01-01

    Full Text Available In line with the goals of sustainable development and environmental protection today great attention is directed towards new technologies for waste and industrial by-products utilization. Waste products represent potentially good raw material for production other valuable products, such as bioethanol, biogas, biodiesel, organic acids, enzymes, microbial biomass, etc. Since the first industrial production to the present, lactic acid has found wide application in food, cosmetic, pharmaceutical and chemical industries. In recent years, the demand for lactic acid has been increasing considerably owing to its potential use as a monomer for the production of poly-lactic acid (PLA polymers which are biodegradable and biocompatible with wide applications. Waste and industrial by-products such are whey, molasses, stillage, waste starch and lignocellulosic materials are a good source of fermentable sugars and many other substances of great importance for the growth of microorganisms, such as proteins, minerals and vitamins. Utilization of waste products for production of lactic acid could help to reduce the total cost of lactic acid production and except the economic viability of the process offers a solution of their disposal. Fermentation process depends on chemical and physical nature of feedstocks and the lactic acid producer. This review describes the characteristics, abilities and limits of microorganisms involved in lactic acid production, as well as the characteristics and types of waste products for lactic acid production. The fermentation methods that have been recently reported to improve lactic acid production are summarized and compared. In order to improve processes and productivity, fed-batch fermentation, fermentation with immobilized cell systems and mixed cultures and opportunities of open (non-sterilized fermentation have been investigated.

  15. Biohydrogen production using waste activated sludge disintegrated by gamma irradiation

    International Nuclear Information System (INIS)

    Yin, Yanan; Wang, Jianlong

    2015-01-01

    Highlights: • The waste activated sludge could be disintegrated by gamma irradiation. • The disintegrated sludge could be used for biohydrogen production. • Combined alkali-irradiation treatment achieved the highest solubilization of sludge. - Abstract: The biohydrogen production using the disintegrated and dissolved sludge by gamma irradiation was studied. The experimental results showed that gamma irradiation and irradiation combined with alkali pretreatment could disintegrate and dissolve waste activated sludge for biohydrogen production. The alkali-irradiation treatment of the sludge at pH = 12 and 20 kGy achieved the highest disintegration and dissolution, i.e., it could destroy the cell walls and release organic matters (such as soluble COD, polysaccharides and protein) into the solution. The disintegrated sludge could be used as a low-cost substrate for biohydrogen production

  16. PRODUCTION OF AN INSULATION MATERIAL FROM CARPET AND BORON WASTES

    Directory of Open Access Journals (Sweden)

    Yasin ERDOĞAN

    2016-12-01

    Full Text Available Buildings are large consumers of energy in all countries. In regions with harsh climatic conditions, a substantial share of energy goes to heat and cool buildings. This paper reports an investigation of the insulation materials made from mixing carpet wastes with a solution with added crude colemanite ore, one of boron minerals, and a solution with added colemanite wastes from a barrage. A new building insulation material was produced which is name, Halibor. Optimum mixing ratios were determined for mass production and the physical properties of the product were established. In addition, the material produced was compared with similar products used in buildings in terms of physical properties. As a result of the investigations, it was established that the product provides high heat and sound insulation and can be used easily in building and construction industry.

  17. BIOLOGICALLY ACTIVE SUBSTANCES OF SPIRIT PRODUCTION WASTE

    Directory of Open Access Journals (Sweden)

    A. S. Kayshev

    2014-01-01

    %. Proteins of Biobardins are inhomogeneous by their molecular mass and solubility in water and salt solutions. Both Biobardins are characterized by the mineral composition identical to the composition of relative distillers grains phase. During the experiments on animals practical nontoxicity and hepatotoxicity absence of Biobardins were established. Using prednisole stomach ulcers of rats as a model a signified gastroprotective influence of Biobardin BM was established. It was shown in a reduction of the number of ulcerative and hemorrhagic blennoses, secretory and proteolytic functions of stomach. Models of electroreduction, peroxide oxidation of lipids (POL of oleic acid, POL of egg yolk, and rats' hepatitis proved signified antioxidant activity of Biobardin UL which exceeds comparable substances by 8,3-30,1%; absence of fatty degeneration of rats' lever was shown under the influence of Biobardin UL. Composition of Biobardin BM and Biobardin UL pills as rational medicine form was justified and designed. Distillers grains processing allows reduction of industrial waste toxicity index – chemical consumption of oxygen (CCO by 74%, making distillers grains ecologically-friendly waste water.

  18. Copper-Sulfate Pentahydrate as a Product of the Waste Sulfuric Acid Solution Treatment

    Science.gov (United States)

    Marković, Radmila; Stevanović, Jasmina; Avramović, Ljiljana; Nedeljković, Dragutin; Jugović, Branimir; Stajić-Trošić, Jasna; Gvozdenović, Milica

    2012-12-01

    The aim of this study is synthesis of copper-sulfate pentahydrate from the waste sulfuric acid solution-mother liquor generated during the regeneration process of copper bleed solution. Copper is removed from the mother liquor solution in the process of the electrolytic treatment using the insoluble lead anodes alloyed with 6 mass pct of antimony on the industrial-scale equipment. As the result of the decopperization process, copper is removed in the form of the cathode sludge and is precipitated at the bottom of the electrolytic cell. By this procedure, the content of copper could be reduced to the 20 mass pct of the initial value. Chemical characterization of the sludge has shown that it contains about 90 mass pct of copper. During the decopperization process, the very strong poison, arsine, can be formed, and the process is in that case terminated. The copper leaching degree of 82 mass pct is obtained using H2SO4 aqueous solution with the oxygen addition during the cathode sludge chemical treatment at 80 °C ± 5 °C. Obtained copper salt satisfies the requirements of the Serbian Standard for Pesticide, SRPS H.P1. 058. Therefore, the treatment of waste sulfuric acid solutions is of great economic and environmental interest.

  19. Characteristics of solidified products containing radioactive molten salt waste.

    Science.gov (United States)

    Park, Hwan-Seo; Kim, In-Tae; Cho, Yong-Zun; Eun, Hee-Chul; Kim, Joon-Hyung

    2007-11-01

    The molten salt waste from a pyroprocess to recover uranium and transuranic elements is one of the problematic radioactive wastes to be solidified into a durable wasteform for its final disposal. By using a novel method, named as the GRSS (gel-route stabilization/solidification) method, a molten salt waste was treated to produce a unique wasteform. A borosilicate glass as a chemical binder dissolves the silicate compounds in the gel products to produce one amorphous phase while most of the phosphates are encapsulated by the vitrified phase. Also, Cs in the gel product is preferentially situated in the silicate phase, and it is vitrified into a glassy phase after a heat treatment. The Sr-containing phase is mainly phosphate compounds and encapsulated by the glassy phase. These phenomena could be identified by the static and dynamic leaching test that revealed a high leach resistance of radionuclides. The leach rates were about 10(-3) - 10(-2) g/m2 x day for Cs and 10(-4) - 10(-3) g/m2 x day for Sr, and the leached fractions of them were predicted to be 0.89% and 0.39% at 900 days, respectively. This paper describes the characteristics of a unique wasteform containing a molten salt waste and provides important information on a newly developed immobilization technology for salt wastes, the GRSS method.

  20. Pulp and paper from blue agave waste from tequila production.

    Science.gov (United States)

    Idarraga, G; Ramos, J; Zuñiga, V; Sahin, T; Young, R A

    1999-10-01

    Pulping of blue agave waste, from the production of tequila, was evaluated by both chemical and biomechanical pulping processes. Two conventional and two organosolv systems were used to pulp the agave waste under a standard set of conditions. The soda-ethanol process was superior in terms of delignification and pulp properties in comparison to the soda and ethanol organosolv processes for pulping of agave waste; however, the kraft process gave the best strength properties. In general, the strength of the agave waste pulps was rather poor in comparison to wood and other agro-based pulps; however, the tear strength was relatively high. This result is typical of poorly bonded sheets and may be due to the coarseness of the agave fibers and/or loss of hemicelluloses in the steaming process for the tequila production. Fungal treatment of the agave waste with Ceriporiopsis subvermispora reduced the energy consumption for mechanical refining but gave biomechanical pulps with inferior strength properties. The blue agave chemical pulps should be suitable for blending with softwood kraft pulps for publication grade paper.

  1. Wastes

    International Nuclear Information System (INIS)

    Bovard, Pierre

    The origin of the wastes (power stations, reprocessing, fission products) is determined and the control ensuring the innocuity with respect to man, public acceptance, availability, economics and cost are examined [fr

  2. Determination of radioactivity in petroleum products and wastes

    International Nuclear Information System (INIS)

    Hrichi, Hajer

    2009-01-01

    At this end engineering study, we determined the activities of gamma- emitting radionuclides belonging to the families of 238 U, 235 U, 232 Th and 40K in the petroleum products and wastes of the refinery S.T.I.R. The activities of radionuclides which exceed that of crude oil prove that it's a technologically enhanced natural radioactivity since several chemical products were injected during the refining process. (Author)

  3. Evaluation of Odor-Reducing Commercial Products for Animal Waste

    OpenAIRE

    Shukla, Shuchi S.

    1997-01-01

    Six odor-reducing commercial products were tested for their efficacy in reducing odors from dairy and swine wastes. A sensory panel method was utilized for odor evaluations, in which the panel played an important part. Comparisons between products were made for agitated and unagitated conditions and effect of storage time (three weeks in which experiments were performed). Cotton pieces tied to the mouth of the sample jars were useful in absorbing the odors. Odor-treated jars were observed and...

  4. Biodiesel Production from Waste Cooking Oil Using Hydrodinamic Cavitation

    OpenAIRE

    Muhammad Supardan; Satriana Satriana; Mahlinda Mahlinda

    2013-01-01

    The aim of this research was to study biodiesel production from low cost feedstock of waste cooking oil (WCO) using hydrodynamic cavitation apparatus. A two-step processes esterification process and transesterification process using hydrodynamic cavitation for the production of biodiesel from WCO is presented. The first step is acid-catalyzed esteri-fication process for reducing free fatty acid (FFA) content of WCO and followed by base-catalyzed transesterification process for converting WCO ...

  5. A novel cell factory for efficient production of ethanol from dairy waste

    DEFF Research Database (Denmark)

    Liu, Jianming; Dantoft, Shruti Harnal; Würtz, Anders

    2016-01-01

    of cheese whey or various processed forms thereof are generated. Because of their nutrient-rich nature, these substrates are particularly well suited as feedstocks for microbial production. We have generated a Lactococcus lactis strain which produces ethanol as its sole fermentation product from the lactose...... contained in residual whey permeate (RWP), by introducing lactose catabolism into a L. lactis strain CS4435 (MG1363 Δ(3) ldh, Δpta, ΔadhE, pCS4268), where the carbon flow has been directed toward ethanol instead of lactate. To achieve growth and ethanol production on RWP, we added corn steep liquor...

  6. Biogas production potential of sericulture waste

    Energy Technology Data Exchange (ETDEWEB)

    Rajasekaran, P

    1986-12-01

    A feasibility study was carried out in the laboratory to investigate the potentiality of silkworm larval litter alone or in combination with cattle manure as a feedstock material for biogas production. The maximum total gas output of 9556 ml over a six week batch digestion was observed in the silkworm larval litter alone treatment. However, maximum gas output of 2450 ml/g of total solids (TS) destroyed was obtained in the Cowdung biodigested along with silkworm larval litter. The percentage destruction (57.76 TS) and volatile solids (VS 79.5) were observed maximum in the silkworm larval litter alone treatment. The distribution of various physiological groups of organisms involved in this process were discussed. Experimental evidence suggests the possible utilization of silkworm larval litter for biogas production along with cattle manure. 16 references, 2 tables.

  7. The influence of slaughterhouse waste on fermentative H2 production from food waste: preliminary results.

    Science.gov (United States)

    Boni, Maria Rosaria; Sbaffoni, Silvia; Tuccinardi, Letizia

    2013-06-01

    The aim of this study was to evaluate the influence of slaughterhouse waste (SHW; essentially the skin, fats, and meat waste of pork, poultry, and beef) in a fermentative co-digestion process for H2 production from pre-selected organic waste taken from a refectory (food waste [FW]). Batch tests under mesophilic conditions were conducted in stirred reactors filled with different proportions of FW and SHW. The addition of 60% and 70% SHW to a mixture of SHW and FW improved H2 production compared to that in FW only, reaching H2-production yields of 145 and 109 ml g VS 0(-1), respectively, which are 1.5-2 times higher than that obtained with FW alone. Although the SHW ensured a more stable fermentative process due to its high buffering capacity, a depletion of H2 production occurred when SHW fraction was higher than 70%. Above this percentage, the formation of foam and aggregated material created non-homogenous conditions of digestion. Additionally, the increasing amount of SHW in the reactors may lead to an accumulation of long chain fatty acids (LCFAs), which are potentially toxic for anaerobic microorganisms and may inhibit the normal evolution of the fermentative process. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Production waste analysis using value stream mapping and waste assessment model in a handwritten batik industry

    Directory of Open Access Journals (Sweden)

    Marifa Putri Citra

    2018-01-01

    Full Text Available Batik is one of Indonesian cultural heritage that confirmed by United Nations of Educational, Scientific, and Cultural Organization (UNESCO on October 2009. This legal confirmation improves the number of batik industry from many regions based its local unique characteristic. The increasing number of batik SMEs in Indonesia requires a strategy that can create competitive advantage. This strategy can be done by reducing production waste. One of Indonesian batik SMEs is SME Batik CM located in Yogyakarta. There are several problems that occur in the industry, i.e. length of the production process, spots on Batik and excessive raw materials inventory. Based on that problems, this research is done by applying lean manufacturing concept using value stream mapping (VSM method to evaluate production wastes. Based on the result of the research, there are seven types of production waste: overproduction (9,62%, inventory (17,3%, defect (23,08%, motion (9,62%, transportation (9,62%, Over processing (9,62% and waiting (21,15%. Process improvement is done to reduce the highest waste, defect, using quality filter mapping (QFM.

  9. Biodiesel production using oil from fish canning industry wastes

    International Nuclear Information System (INIS)

    Costa, J.F.; Almeida, M.F.; Alvim-Ferraz, M.C.M.; Dias, J.M.

    2013-01-01

    Highlights: • A process was established to produce biodiesel from fish canning industry wastes. • Biodiesel production was enabled by an acid esterification pre-treatment. • Optimization studies showed that the best catalyst concentration was 1 wt.% H 2 SO 4 . • There was no advantage when a two-step alkali transesterification was employed. • Waste oil from olive oil bagasse could be used to improve fuel quality. - Abstract: The present study evaluated biodiesel production using oil extracted from fish canning industry wastes, focusing on pre-treatment and reaction conditions. Experimental planning was conducted to evaluate the influence of acid catalyst concentration (1–3 wt.% H 2 SO 4 ) in the esterification pre-treatment and the amount of methanolic solution (60–90 vol.%) used at the beginning of the further two-step alkali transesterification reaction. The use of a raw-material mixture, including waste oil obtained from olive oil bagasse, was also studied. The results from experimental planning showed that catalyst concentration mostly influenced product yield and quality, the best conditions being 1 wt.% catalyst and 60 vol.% of methanolic solution, to obtain a product yield of 73.9 wt.% and a product purity of 75.5 wt.%. Results from a one-step reaction under the selected conditions showed no advantage of performing a two-step alkali process. Although under the best conditions several of the biodiesel quality parameters were in agreement with standard specifications, a great variation was found in the biodiesel acid value, and oxidation stability and methyl ester content did not comply with biodiesel quality standards. Aiming to improve fuel quality, a mixture containing 80% waste olive oil and 20% of waste fish oil was evaluated. Using such mixture, biodiesel purity increased around 15%, being close to the standard requirements (96.5 wt.%), and the oxidation stability was in agreement with the biodiesel quality standard values (⩾6 h), which

  10. Catalytic dry reforming of waste plastics from different waste treatment plants for production of synthesis gases.

    Science.gov (United States)

    Saad, Juniza Md; Williams, Paul T

    2016-12-01

    Catalytic dry reforming of mixed waste plastics, from a range of different municipal, commercial and industrial sources, were processed in a two-stage fixed bed reactor. Pyrolysis of the plastics took place in the first stage and dry (CO 2 ) reforming of the evolved pyrolysis gases took place in the second stage in the presence of Ni/Al 2 O 3 and Ni-Co/Al 2 O 3 catalysts in order to improve the production of syngas from the dry reforming process. The results showed that the highest amount of syngas yield was obtained from the dry reforming of plastic waste from the agricultural industry with the Ni/Al 2 O 3 catalyst, producing 153.67mmol syngas g -1 waste . The addition of cobalt metal as a promoter to the Ni/Al 2 O 3 catalyst did not have a major influence on syngas yield. Overall, the catalytic-dry reforming of waste plastics from various waste treatment plants showed great potential towards the production of synthesis gases. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Experiences with waste incineration for energy production in Denmark

    DEFF Research Database (Denmark)

    Kirkeby, Janus; Grohnheit, Poul Erik; Møller Andersen, Frits

    The Bioenergy Department in SENER have requested assistance with planning for the deployment of bioenergy (Biomass, biogas and waste incineration) in Mexico and information on Danish experiences with developing policy initiatives promoting bioenergy. This introduction to the Danish experiences...... with waste incineration for energy production use is compiled as preparation for SENER’s potential visit to Denmark in 2014. This report was prepared 19 June, 2014 by COWI DTU System Analysis to Danish Energy Agency (DEA) as part of a frame contract agreement....

  12. Exergetic comparison of food waste valorization in industrial bread production

    International Nuclear Information System (INIS)

    Zisopoulos, Filippos K.; Moejes, Sanne N.; Rossier-Miranda, Francisco J.; Goot, Atze Jan van der; Boom, Remko M.

    2015-01-01

    This study compares the thermodynamic performance of three industrial bread production chains: one that generates food waste, one that avoids food waste generation, and one that reworks food waste to produce new bread. The chemical exergy flows were found to be much larger than the physical exergy consumed in all the industrial bread chains studied. The par-baked brown bun production chain had the best thermodynamic performance because of the highest rational exergetic efficiency (71.2%), the lowest specific exergy losses (5.4 MJ/kg brown bun), and the almost lowest cumulative exergy losses (4768 MJ/1000 kg of dough processed). However, recycling of bread waste is also exergetically efficient when the total fermented surplus is utilizable. Clearly, preventing material losses (i.e. utilizing raw materials maximally) improves the exergetic efficiency of industrial bread chains. In addition, most of the physical (non-material related) exergy losses occurred at the baking, cooling and freezing steps. Consequently, any additional improvement in industrial bread production should focus on the design of thermodynamically efficient baking and cooling processes, and on the use of technologies throughout the chain that consume the lowest possible physical exergy. - Highlights: • Preventing material losses is the best way to enhance the exergetic efficiency. • Most of the physical exergy losses occur at the baking, cooling and freezing steps. • Par-baking “saves” chemical exergy but consumes an equal amount of physical exergy

  13. Waste and product oils recover cash

    Energy Technology Data Exchange (ETDEWEB)

    Mason, R.

    1980-05-01

    Fram Industrial developed a method for removing contaminants from bilge water before dumping it overboard. Framarine separators use a patented arrangement of closely placed corrugated plates aligned horizontally to induce a sinusoidal laminar flow pattern in the oily-water mixture flowing through them, guaranteeing recovery of all droplets larger than 20 microns and a large portion of droplets as small as 7 microns will also be removed. Performance can be accurately predicted by computer whenever the contamination conditions can be defined. The systems and their performance are described. They are being used for pollution control, to recovery liquid products in process plant, and for hydro-metallurgy and other solids separation applications.

  14. Degradation of black liquor from bioethanol process using coagulation and Fenton-like methods

    Science.gov (United States)

    Muryanto, Muryanto; Sari, Ajeng Arum; Abimanyu, Haznan

    2017-01-01

    Black liquor is one of the main by-products of the pretreatment process in bioethanol production from oil palm empty fruit bunches. Black liquor wastewater releases black coloured effluent with high chemical oxygen demand (COD) and low dissolved oxygen (DO). It had a distinctive dark coloration, high alkalinity (pH=13), high organic content (COD > 50,000 ppm) and a high solid content (TSS > 5,000 ppm). Lignin destruction can be done by using high oxidation from OH radical system such as advanced oxidation processes (AOPs). Thereafter, the high concentration of COD, color, and TSS can be removed. The general aim of the present investigation was to determine degradation of black liquor wastewater by using a combined coagulation and Fenton-like methods. In this research, we use Poly Aluminum Chloride (PAC) as a coagulant and FeCl3.6H2O and H2O2 for Fenton-like's reagent. The process was conducted in jar test at 200 rpm for 30 minutes and after that slowly mixed for 2 hours and left for sedimentation 24 hours. 50 ml black liquor was added with variation dose of 1-5% PAC, and 10 % Fenton-like reagent. Hydroxyl radical was generated by the Fenton-like's reagent (ratio FeCl3.6H2O : H2O2 was varied). The highest decolorization of black liquor 70 % was obtained under 5% PAC coagulant. The pH of the wastewater was reduced from 13.00 to 8.07 after the addition of the coagulant. The decolorization of original black liquor was approximately 58% through the Fenton-like process. The combination of PAC and Fenton-like reagent has able to enhance the decolorization of black liquor up to 97%.

  15. Production of biodegradable plastic from agricultural wastes

    Directory of Open Access Journals (Sweden)

    N.A. Mostafa

    2018-05-01

    Full Text Available Agricultural residues management is considered to be a vital strategy in order to accomplish resource conservation and to maintain the quality of the environment. In recent years, biofibers have attracted increasing interest due to their wide applications in food packaging and in the biomedical sciences. These eco-friendly polymers reduce rapidly and replace the usage of the petroleum-based synthetic polymers due to their safety, low production costs, and biodegradability. This paper reports an efficient method for the production of the cellulose acetate biofiber from flax fibers and cotton linters. The used process satisfied a yield of 81% and 54% for flax fibers and cotton linters respectively (based on the weight of the cellulosic residue used. The structure of the produced bioplastic was confirmed by X-ray diffraction, FT-IR and gel permeation chromatography. Moreover, this new biopolymer is biodegradable and is not affected by acid or salt treatment but is alkali labile. A comparison test showed that the produced cellulose acetate was affected by acids to a lesser extent than polypropylene and polystyrene. Therefore, this new cellulose acetate bioplastics can be applied in both the food industry and medicine. Keywords: Cotton linters, Flax fibers, Cellulose acetate, Preparation, Characterization

  16. Metatranscriptomics Reveals the Functions and Enzyme Profiles of the Microbial Community in Chinese Nong-Flavor Liquor Starter

    Directory of Open Access Journals (Sweden)

    Yuhong Huang

    2017-09-01

    Full Text Available Chinese liquor is one of the world's best-known distilled spirits and is the largest spirit category by sales. The unique and traditional solid-state fermentation technology used to produce Chinese liquor has been in continuous use for several thousand years. The diverse and dynamic microbial community in a liquor starter is the main contributor to liquor brewing. However, little is known about the ecological distribution and functional importance of these community members. In this study, metatranscriptomics was used to comprehensively explore the active microbial community members and key transcripts with significant functions in the liquor starter production process. Fungi were found to be the most abundant and active community members. A total of 932 carbohydrate-active enzymes, including highly expressed auxiliary activity family 9 and 10 proteins, were identified at 62°C under aerobic conditions. Some potential thermostable enzymes were identified at 50, 62, and 25°C (mature stage. Increased content and overexpressed key enzymes involved in glycolysis and starch, pyruvate and ethanol metabolism were detected at 50 and 62°C. The key enzymes of the citrate cycle were up-regulated at 62°C, and their abundant derivatives are crucial for flavor generation. Here, the metabolism and functional enzymes of the active microbial communities in NF liquor starter were studied, which could pave the way to initiate improvements in liquor quality and to discover microbes that produce novel enzymes or high-value added products.

  17. USBI Booster Production Company's Hazardous Waste Management Program at the Kennedy Space Center, FL

    Science.gov (United States)

    Venuto, Charles

    1987-01-01

    In response to the hazardous-waste generating processes associated with the launch of the Space Shuttle, a hazardous waste management plan has been developed. It includes waste recycling, product substitution, waste treatment, and waste minimization at the source. Waste material resulting from the preparation of the nonmotor segments of the solid rocket boosters include waste paints (primer, topcoats), waste solvents (methylene chloride, freon, acetone, toluene), waste inorganic compounds (aluminum anodizing compound, fixer), and others. Ways in which these materials are contended with at the Kennedy Space Center are discussed.

  18. Long-term properties of bituminized waste products

    International Nuclear Information System (INIS)

    Snellman, M.; Valkiainen, M.

    1985-10-01

    This study is a survey of the factors of importance for the long term behaviour of bituminized ion exchange resins. Phenomena occurring in bituminized waste products affected by the treatment, storage and disposal are identified. Test methods have been developed for characterizing product properties, which are important for the long-term behaviour. The long-term properties of bituminized ion-exchange resins are studied in a repository environment with access of water equilibrated with concrete. In these circumstances the most important properties are related to the interactions of bituminized waste with the surrounding barriers. The most important phenomena are water uptake due to rehydration of the resins and subsequent swelling of the product

  19. Long-term properties of bituminized waste products

    International Nuclear Information System (INIS)

    Snellman, M.; Valkiainen, M.

    1985-10-01

    This study is a survey of the factors of importance for long term behaviour of bituminized ion exchange resins. Phenomena occurring in bituminized waste products affected by the treatment, storage and disposal are identified. Test methods have been developed for characterizing product properties, which are important for the long-term behaviour. The long-term properties of bituminized ion-exchange resins are studied in a repository environment with access of water equilibrated with concrete. In these circumstances the most important properties are ralated to the interactions of bituminized waste with the surrounding barriers. The most important phenomena are water uptake due to rehydration of the resins and subsequent swelling of the product. (author)

  20. Tobacco Product Waste: An Environmental Approach to Reduce Tobacco Consumption.

    Science.gov (United States)

    Novotny, Thomas E; Slaughter, Elli

    2014-01-01

    Cigarette butts and other tobacco product wastes (TPW) are the most common items picked up in urban and beach cleanups worldwide. TPW contains all the toxins, nicotine, and carcinogens found in tobacco products, along with the plastic nonbiodegradable filter attached to almost all cigarettes sold in the United States and in most countries worldwide. Toxicity studies suggest that compounds leached from cigarette butts in salt and fresh water are toxic to aquatic micro-organisms and test fish. Toxic chemicals have also been identified in roadside TPW. With as much as two-thirds of all smoked cigarettes (numbering in the trillions globally) being discarded into the environment each year, it is critical to consider the potential toxicity and remediation of these waste products. This article reviews reports on the toxicity of TPW and recommends several policy approaches to mitigation of this ubiquitous environmental blight.

  1. PRODUCTION OF NEW BIOMASS/WASTE-CONTAINING SOLID FUELS

    Energy Technology Data Exchange (ETDEWEB)

    David J. Akers; Glenn A. Shirey; Zalman Zitron; Charles Q. Maney

    2001-04-20

    CQ Inc. and its team members (ALSTOM Power Inc., Bliss Industries, McFadden Machine Company, and industry advisors from coal-burning utilities, equipment manufacturers, and the pellet fuels industry) addressed the objectives of the Department of Energy and industry to produce economical, new solid fuels from coal, biomass, and waste materials that reduce emissions from coal-fired boilers. This project builds on the team's commercial experience in composite fuels for energy production. The electric utility industry is interested in the use of biomass and wastes as fuel to reduce both emissions and fuel costs. In addition to these benefits, utilities also recognize the business advantage of consuming the waste byproducts of customers both to retain customers and to improve the public image of the industry. Unfortunately, biomass and waste byproducts can be troublesome fuels because of low bulk density, high moisture content, variable composition, handling and feeding problems, and inadequate information about combustion and emissions characteristics. Current methods of co-firing biomass and wastes either use a separate fuel receiving, storage, and boiler feed system, or mass burn the biomass by simply mixing it with coal on the storage pile. For biomass or biomass-containing composite fuels to be extensively used in the U.S., especially in the steam market, a lower cost method of producing these fuels must be developed that includes both moisture reduction and pelletization or agglomeration for necessary fuel density and ease of handling. Further, this method of fuel production must be applicable to a variety of combinations of biomass, wastes, and coal; economically competitive with current fuels; and provide environmental benefits compared with coal. Notable accomplishments from the work performed in Phase I of this project include the development of three standard fuel formulations from mixtures of coal fines, biomass, and waste materials that can be used in

  2. Recycling of waste engine oil for diesel production.

    Science.gov (United States)

    Maceiras, R; Alfonsín, V; Morales, F J

    2017-02-01

    The aim of this work was to recycle waste engine oil until converting it into reusable product, diesel fuel. The waste oil was treated using pyrolytic distillation. The effect of two additives (sodium hydroxide and sodium carbonate) in the purification of the obtained fuel was also studied. Moreover, the influence of the number of distillations were analysed. Some thermal and physicochemical properties (density, viscosity, colour, turbidity, acidity value, distillation curves, cetane number, corrosiveness to Cu, water content, flash point and hydrocarbons) were determined to analyse the quality of the obtained fuel. The best results were obtained with 2% of sodium carbonate and two successive distillations. The obtained results showed that pyrolytic distillation of waste engine oil is an excellent way to produce diesel fuel to be used in engines. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Chemical pretreatment of lignocellulosic agroindustrial waste for methane production.

    Science.gov (United States)

    Pellera, Frantseska-Maria; Gidarakos, Evangelos

    2018-01-01

    This study investigates the effect of different chemical pretreatments on the solubilization and the degradability of different solid agroindustrial waste, namely winery waste, cotton gin waste, olive pomace and juice industry waste. Eight different reagents were investigated, i.e. sodium hydroxide (NaOH), sodium bicarbonate (NaHCO 3 ), sodium chloride (NaCl), citric acid (H 3 Cit), acetic acid (AcOH), hydrogen peroxide (H 2 O 2 ), acetone (Me 2 CO) and ethanol (EtOH), under three condition sets resulting in treatments of varying intensity, depending on process duration, reagent dosage and temperature. Results indicated that chemical pretreatment under more severe conditions is more effective on the solubilization of lignocellulosic substrates, such as those of the present study and among the investigated reagents, H 3 Cit, H 2 O 2 and EtOH appeared to be the most effective to this regard. At the same time, although chemical pretreatment in general did not improve the methane potential of the substrates, moderate to high severity conditions were found to generally be the most satisfactory in terms of methane production from pretreated materials. In fact, moderate severity treatments using EtOH for winery waste, H 3 Cit for olive pomace and H 2 O 2 for juice industry waste and a high severity treatment with EtOH for cotton gin waste, resulted in maximum specific methane yield values. Ultimately, the impact of pretreatment parameters on the different substrates seems to be dependent on their characteristics, in combination with the specific mode of action of each reagent. The overall energy balance of such a system could probably be improved by using lower operating powers and higher solid to liquid ratios. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Composition, production rate and characterization of Greek dental solid waste.

    Science.gov (United States)

    Mandalidis, Alexandros; Topalidis, Antonios; Voudrias, Evangelos A; Iosifidis, Nikolaos

    2018-05-01

    The overall objective of this work is to determine the composition, characterization and production rate of Greek dental solid waste (DSW). This information is important to design and cost management systems for DSW, for safety and health considerations and for assessing environmental impact. A total of 141 kg of DSW produced by a total of 2542 patients in 20 dental practices from Xanthi, Greece was collected, manually separated and weighed over a period of four working weeks. The waste was separated in 19 sub fractions, which were classified in 2 major categories, according to Greek regulations: Domestic-type waste comprising 8% and hazardous waste comprising 92% by weight of total DSW. The latter was further classified in infectious waste, toxic waste and mixed type waste (infectious and toxic together), accounting for 88.5%, 3.5% and 0.03% of total DSW by weight, respectively. The overall unit production rates (mean ± standard error of the mean) were 381 ± 15 g/practice/d and 53.3 ± 1.4 g/patient/d for total DSW, 337 ± 14 g/practice/d and 46.6 ± 1.2 g/patient/d for total infectious DSW, 13.4 ± 0.7 g/practice/d and 2.1 ± 0.1 g/patient/d for total toxic DSW and 30.4 ± 2.5 g/practice/d and 4.6 ± 0.4 g/patient/d for domestic-type waste. Daily DSW production was correlated with daily number of patients and regression correlations were produced. DSW was subject to laboratory characterization in terms of bulk density, calorific value, moisture, ash and volatile solids content. Measured calorific values were compared to predictions from empirical models. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Tracing waste to the source along the product life cycle

    International Nuclear Information System (INIS)

    Maina, S.M.

    2008-01-01

    It is currently evident that the environment is ailing. We are exposed to many human activities that are devastating to the environment and societies. Since the time the report, Our Common Future, from the UN World Commission on environment and Development (WCED) identified the problem in 1987, its effects are currently a reality. The report sought to recapture the spirit of the United Nations Conference on the Human environment. It placed environmental issues firmly on the political agenda. It also aimed to discuss the environment and development as a single issue. In it is advanced the view that, many countries with poor environmental governance systems are likely to have have conflicts and poor laws protecting the environment. This paper looks at this problem from an ethical perspective. Effects of lack of eco-ethics are numerous. Burning refuse affecting air quality, lack of space for dumping solid waste, the increasing cost of waste disposal and hazards to ground water. In Kenya, the situation of solid waste is a source of concern. In this paper a view is advanced that the problem starts with the product designer. In Kenya designers use flawed design process ignoring the ethical responsibility towards environment, leading to waste accumulation around Nairobi. The uncollected or illegally dumped wastes constitute a disaster for human health and causes environmental degradation (author)

  6. Overview of biomass and waste fuel resources for power production

    International Nuclear Information System (INIS)

    Easterly, J.L.; Burnham, M.

    1993-01-01

    This paper provides an overview of issues and opportunities associated with the use of biomass for electric power generation. Important physical characteristics of biomass and waste fuels are summarized, including comparisons with conventional fossil fuels, primarily coal. The paper also provides an overview of the current use of biomass and waste fuels for electric power generation. Biomass and waste fuels are currently used for approximately 9,800 megawatts (MW) of electric generating capacity, including about 6,100 MW of capacity fueled by wood/wood waste and about 2,200 MW of capacity fueled with municipal solid waste. Perspectives on the future availability of biomass fuels (including energy crops) are addressed, as well as projected levels of market penetration for biomass power. By the year 2010, there is a potential for 22,000 MW, to as much as 70,000 MW of biomass-powered electric generating capacity in the U.S. Given the range of benefits offered by biomass, including reduced sulfur emissions, reduced greenhouse gas emissions, job creation, rural revitalization impacts, and new incentives under the Energy Policy Act of 1992, the potential use of biomass for power production could significantly expand in the future

  7. Biohydrogen production by anaerobic fermentation of waste. Final project report

    Energy Technology Data Exchange (ETDEWEB)

    Karakashev, D.; Angelidaki, I.

    2009-01-15

    The objective of this project was to investigate and increase dark fermentative hydrogen production from organic wastes by optimizing important process parameters (reactor type, pH, temperature, organic loading, retention time, inoculation strategy, microbial composition). Labscale experiments were carried out at the Department of Environmental Engineering, Technical University of Denmark. A two steps process for hydrogen production in the first step and methane production in the second step in serial connected fully mixed reactors was developed and could successfully convert organic matter to approx. 20-25 % hydrogen and 15-80 % to methane. Sparging with methane produced in the second stage could significantly increase the hydrogen production. Additionally it was shown that upflow anaerobic sludge blanket (UASB) reactor system was very promising for high effective biohydrogen production from glucose at 70 deg C. Glucose-fed biofilm reactors filled with plastic carriers demonstrated high efficient extreme thermophilic biohydrogen production with mixed cultures. Repeated batch cultivations via exposure of the cultures to increased concentrations of household solid waste was found to be most useful method to enhance hydrogen production rate and reduce lag phase of extreme thermophilic fermentation process. Low level of pH (5.5) at 3-day HRT was enough to inhibit completely the methanogenesis and resulted in stable extreme thermophilic hydrogen production. Homoacetogenisis was proven to be an alternative competitor to biohydrogen production from organic acids under thermophilic (55 deg. C) conditions. With respect to microbiology, 16S rRNA targeted oligonucleotide probes were designed to monitor the spatial distribution of hydrogen producing bacteria in sludge and granules from anaerobic reactors. An extreme thermophilic (70 deg. C), strict anaerobic, mixed microbial culture with high hydrogen producing potential was enriched from digested household waste. Culture

  8. Industrial waste treatment and application in rubber production

    Science.gov (United States)

    Pugacheva, I. N.; Popova, L. V.; Repin, P. S.; Molokanova, L. V.

    2018-03-01

    The paper provides for the relevance of various industrial waste treatment and application, as well as their secondary commercialization. It considers treatment of secondary polymer materials turning to additives applied in rubber production, in particular, in production of conveyor and V-type belts used in mechanical engineering. It is found that oligomers obtained from petroleum by-products can be used as an impregnating compound for fiber materials. Such adhesive treatment prior to introduction of impregnating compounds into elastomeric materials improves adhesion and complements performance of obtained composites.

  9. Hydrocarbon composition products of the catalytic recycling plastics waste

    Directory of Open Access Journals (Sweden)

    Zhaksyntay Kairbekov

    2013-09-01

    Full Text Available The paper represents the IR spectroscopy results of the hydrocarbon composition of products, which is obtained from catalytic processing of plastic wastes. The optimal conditions for the hydrogenation with to producny liquid of products are identified.  These liquid products are enriched with aromatics, paraffinic- naphthenic and unsaturated hydrocarbons. The main characteristics of the distillates received by hydrogenation of plastics (as density, refractive index, iodine number, pour point, cloud point, filtering, sulfur content,  fractional and composition of the hydrocarbon group.

  10. Single particle studies of black liquor gasification under pressurized conditions

    Energy Technology Data Exchange (ETDEWEB)

    Whitty, K; Backman, R; Hupa, M; Backman, P; Ek, P; Hulden, S T; Kullberg, M; Sorvari, V

    1997-10-01

    The purpose of this project is to provide experimental data relevant to pressurized black liquor gasification concepts. Specifically, the following two goals will be achieved: Data on swelling, char yields and component release during pressurized pyrolysis of small samples of black liquor will be obtained. The reactivity and physical behavior of single black liquor droplets during simultaneous pyrolysis and gasification will be investigated. The structure and composition of black liquor char during formation and conversion will be studied. (orig.)

  11. Production of a High-Level Waste Glass from Hanford Waste Samples

    International Nuclear Information System (INIS)

    Crawford, C.L.; Farrara, D.M.; Ha, B.C.; Bibler, N.E.

    1998-09-01

    The HLW glass was produced from a HLW sludge slurry (Envelope D Waste), eluate waste streams containing high levels of Cs-137 and Tc-99, solids containing both Sr-90 and transuranics (TRU), and glass-forming chemicals. The eluates and Sr-90/TRU solids were obtained from ion-exchange and precipitation pretreatments, respectively, of other Hanford supernate samples (Envelopes A, B and C Waste). The glass was vitrified by mixing the different waste streams with glass-forming chemicals in platinum/gold crucibles and heating the mixture to 1150 degree C. Resulting glass analyses indicated that the HLW glass waste form composition was close to the target composition. The targeted waste loading of Envelope D sludge solids in the HLW glass was 30.7 wt percent, exclusive of Na and Si oxides. Condensate samples from the off-gas condenser and off-gas dry-ice trap indicated that very little of the radionuclides were volatilized during vitrification. Microstructure analysis of the HLW glass using Scanning Electron Microscopy (SEM) and Energy Dispersive X-Ray Analysis (EDAX) showed what appeared to be iron spinel in the HLW glass. Further X-Ray Diffraction (XRD) analysis confirmed the presence of nickel spinel trevorite (NiFe2O4). These crystals did not degrade the leaching characteristics of the glass. The HLW glass waste form passed leach tests that included a standard 90 degree C Product Consistency Test (PCT) and a modified version of the United States Environmental Protection Agency Toxicity Characteristic Leaching Procedure (TCLP)

  12. Immobilization of fission products in phosphate ceramic waste forms

    Energy Technology Data Exchange (ETDEWEB)

    Singh, D.; Wagh, A. [Argonne National Lab., IL (United States)

    1997-10-01

    Chemically bonded phosphate ceramics (CBPCs) have several advantages that make them ideal candidates for containing radioactive and hazardous wastes. In general, phosphates have high solid-solution capacities for incorporating radionuclides, as evidenced by several phosphates (e.g., monazites and apatites) that are natural analogs of radioactive and rare-earth elements. The phosphates have high radiation stability, are refractory, and will not degrade in the presence of internal heating by fission products. Dense and hard CBPCs can be fabricated inexpensively and at low temperature by acid-base reactions between an inorganic oxide/hydroxide powder and either phosphoric acid or an acid-phosphate solution. The resulting phosphates are extremely insoluble in aqueous media and have excellent long-term durability. CBPCs offer the dual stabilization mechanisms of chemical fixation and physical encapsulation, resulting in superior waste forms. The goal of this task is develop and demonstrate the feasibility of CBPCs for S/S of wastes containing fission products. The focus of this work is to develop a low-temperature CBPC immobilization system for eluted {sup 99}Tc wastes from sorption processes.

  13. Urban solid waste in the production of Lafoensia pacari seedlings

    Directory of Open Access Journals (Sweden)

    Alan H. M. de Abreu

    Full Text Available ABSTRACT This study aimed to verify the potential of urban solid wastes as substrate for production of seedlings of Lafoensia pacari. Five treatments were tested, four with solid wastes and one standard substrate, namely: sewage sludge from Alegria Wastewater Treatment Plant (WTP; sewage sludge from Ilha do Governador WTP; sewage sludge from Sarapuí WTP; domestic garbage compost (Fertlurb; and a commercial substrate made of biostabilized pine bark (standard substrate. The wastes received 20% (in volume of shredded coconut fiber. At 105 days after sowing, the seedlings were evaluated for different quality parameters. Seedlings produced with Sarapuí WTP sewage sludge showed the best results in all the parameters, followed by seedlings produced with sewage sludge from Alegria and Ilha do Governador WTPs, which did not differ. Seedlings produced with domestic garbage compost showed satisfactory results, higher than the ones observed for seedlings produced with commercial substrate. The urban solid wastes with 20% of coconut fiber showed high potential and can be recommended for the composition of substrate in the production of Lafoensia pacari seedlings.

  14. Enhanced Bio-Ethanol Production from Industrial Potato Waste by Statistical Medium Optimization

    OpenAIRE

    Izmirlioglu, Gulten; Demirci, Ali

    2015-01-01

    Industrial wastes are of great interest as a substrate in production of value-added products to reduce cost, while managing the waste economically and environmentally. Bio-ethanol production from industrial wastes has gained attention because of its abundance, availability, and rich carbon and nitrogen content. In this study, industrial potato waste was used as a carbon source and a medium was optimized for ethanol production by using statistical designs. The effect of various medium componen...

  15. Production of Biodiesel from Waste Vegetable Oil via KM Micromixer

    Directory of Open Access Journals (Sweden)

    M. F. Elkady

    2015-01-01

    Full Text Available The production of biodiesel from waste vegetable oils through its pretreatment followed by transesterification process in presence of methanol was investigated using a KM micromixer reactor. The parameters affecting biodiesel production process such as alcohol to oil molar ratio, catalyst concentration, the presence of tetrahydrofuran (THF as a cosolvent, and the volumetric flow rates of inlet fluids were optimized. The properties of the produced biodiesel were compared with its parent waste oil through different characterization techniques. The presence of methyl ester groups at the produced biodiesel was confirmed using both the gas chromatography-mass spectrometry (GC-MS and the infrared spectroscopy (FT-IR. Moreover, the thermal analysis of the produced biodiesel and the comparable waste oil indicated that the product after the transesterification process began to vaporize at 120°C which makes it lighter than its parent oil which started to vaporize at around 300°C. The maximum biodiesel production yield of 97% was recorded using 12 : 1 methanol to oil molar ratio in presence of both 1% NaOH and THF/methanol volume ratio 0.3 at 60 mL/h flow rate.

  16. Purification of Polymer-Grade Fumaric Acid from Fermented Spent Sulfite Liquor

    Directory of Open Access Journals (Sweden)

    Diogo Figueira

    2017-04-01

    Full Text Available Fumaric acid is a chemical building block with many applications, namely in the polymer industry. The fermentative production of fumaric acid from renewable feedstock is a promising and sustainable alternative to petroleum-based chemical synthesis. The use of existing industrial side-streams as raw-materials within biorefineries potentially enables production costs competitive against current chemical processes, while preventing the use of refined sugars competing with food and feed uses and avoiding purposely grown crops requiring large areas of arable land. However, most industrial side streams contain a diversity of molecules that will add complexity to the purification of fumaric acid from the fermentation broth. A process for the recovery and purification of fumaric acid from a complex fermentation medium containing spent sulfite liquor (SSL as a carbon source was developed and is herein described. A simple two-stage precipitation procedure, involving separation unit operations, pH and temperature manipulation and polishing through the removal of contaminants with activated carbon, allowed for the recovery of fumaric acid with 68.3% recovery yield with specifications meeting the requirements of the polymer industry. Further, process integration opportunities were implemented that allowed minimizing the generation of waste streams containing fumaric acid, which enabled increasing the yield to 81.4% while keeping the product specifications.

  17. Ion-exchange preparation of high-purity vanadium acid from industrial liquors

    International Nuclear Information System (INIS)

    Sajdakhmedov, U.A.; Arslanov, Sh.S.; Vulikh, A.I.

    1994-01-01

    The results of investigations on production of special-purity vanadium acid and vanadium oxide directly from process solutions (technical grade liquors) using ionites are presented. Potentiality of thorough purification of vanadium(5) oxide, when producing vanadium acid on the KU-2 cationite with subsequent purification on anionite, is shown. On the basis of the results obtained a principle flowsheet of ion-exchange production of high-purity vanadium(5) oxide from industrial liquors has been developed. 2 refs.; 1 fig.; 4 tabs

  18. Value chains for biorefineries of wastes from food production and services - ValueWaste

    Energy Technology Data Exchange (ETDEWEB)

    Kahiluoto, H.; Kuisma, M.; Knuuttila, M. (and others) (MTT Agrifood Research Finland, Mikkeli (Finland)). Email: helena.kahiluoto@mtt.fi

    2010-10-15

    The aim of the ValueWaste project is to analyse biomass potentials, appropriate technologies and business opportunities. Contrasting regional scenarios for biorefinery activities are developed, and their overall sustainability is assessed: environmental impacts using life cycle assessment, impacts on regional economy, partnership in actor chains, as well as business opportunities and possibilities for commercialisation are considered. South Savo and partly Satakunta provide the case study regions, but the project also produces tools for generalisation and contributes to national solutions. The theoretical potentials suggest that the agrifood waste has a significant and currently untapped potential for replacing non-renewable energy and recycling nutrients, and further for climate and water protection. The volume of agrifood waste varies mainly according to animal husbandry, crop production and food processing of a region. New business opportunities were found from the value chain of biowaste flows in the area of Etelae-Savo. Unexploited raw materials and new methods in waste collection and transportation offer entrepreneurial opportunities and decrease the costs of operation. Based on the conceptual work for creation of the contrasting regional biorefinery scenarios, performed in workshops for project and steering group members, four different optimisation starting points were determined: 1) replacement of fossil energy; 2) maximisation of carbon sequestration; 3) water protection and 4) enhancement of regional economy. Present situation of the biomass utilisation in the region was adopted as the baseline scenario. Four contrasting, consistent scenarios for the value chain of waste-based biorefineries are formed in South Savo. (orig.)

  19. Liquor licences issued to Australian schools.

    Science.gov (United States)

    Ward, Bernadette M; Kippen, Rebecca; Munro, Geoffrey; Buykx, Penny; McBride, Nyanda; Wiggers, John; Clark, Madeline

    2017-08-01

    Children's positive socialisation to alcohol is associated with early initiation of drinking and alcohol-related harm in adult life. Internationally, there have been reports of adults' alcohol consumption at school events in the presence of children. The aim of this research was to identify the conditions under which Australian schools are required to apply for a liquor licence and the associated prevalence of liquor licences for these events where children were likely to be present. A document review was conducted to examine temporary liquor licensing legislation. Quantitative analysis was used to examine relevant licensing data. Coding criteria was developed to determine school type, student year levels and the likely presence of children. Four jurisdictions provided data on 1817 relevant licences. The average annual licences/100 schools was highest amongst Independent schools followed by Catholic and public (government) schools. The rates were highest in Queensland and Victoria where children were present at 61% and 32% of events respectively. While there are legislative differences across jurisdictions, the prevalence of adults' alcohol use at school events in the presence of children may reflect the various education department policies and principals' and school communities' beliefs and attitudes. Licences are not required for all events where liquor is consumed so the prevalence of adults' use of alcohol at school events is likely to be higher than our analyses imply. Such practices may undermine teaching about alcohol use in the school curriculum and health promotion efforts to develop alcohol-free events when children are present.

  20. Feed Materials Production Center waste management plan (Revision to NLCO-1100, R.6)

    International Nuclear Information System (INIS)

    Watts, R.E.; Allen, T.; Castle, S.A.; Hopper, J.P.; Oelrich, R.L.

    1986-01-01

    In the process of producing uranium metal products used in Department of Energy (DOE) defense programs at other DOE facilities, various types of wastes are generated at the Feed Materials Production Center (FMPC). Process wastes, both generated and stored, are discussed in the Waste Management Plan and include low-level radioactive waste (LLW), mixed hazardous/radioactive waste, and sanitary/industrial waste. Scrap metal waste and wastes requiring special remediation are also addressed in the Plan. The Waste Management Plan identifies the comprehensive programs developed to address safe storage and disposition of all wastes from past, present, and future operations at the FMPC. Waste streams discussed in this Plan are representative of the wastes generated and waste types that concern worker and public health and safety. Budgets and schedules for implementation of waste disposition are also addressed. The waste streams receiving the largest amount of funding include LLW approved for shipment by DOE/ORO to the Nevada Test Site (NTS) (MgF 2 , slag leach filter cake, and neutralized raffinate); remedial action wastes (waste pits, K-65 silo waste); thorium; scrap metal (contaminated and noncontaminated ferrous and copper scrap); construction rubble and soil generated from decontamination and decommissioning of outdated facilities; and low-level wastes that will be handled through the Low-Level Waste Processing and Shipping System (LLWPSS). Waste Management milestones are also provided. The Waste Management Plan is divided into eight major sections: Introduction; Site Waste and Waste Generating Process; Strategy; Projects and Operations; Waste Stream Budgets; Milestones; Quality Assurance for Waste Management; and Environmental Monitoring Program

  1. Biodiesel production by various oleaginous microorganisms from organic wastes.

    Science.gov (United States)

    Cho, Hyun Uk; Park, Jong Moon

    2018-05-01

    Biodiesel is a biodegradable and renewable fuel. A large amount of research has considered microbial oil production using oleaginous microorganisms, but the commercialization of microbial lipids produced in this way remains uncertain due to the high cost of feedstock or low lipid yield. Microbial lipids can be typically produced by microalgae, yeasts, and bacteria; the lipid yields of these microorganisms can be improved by using sufficient concentrations of organic carbon sources. Therefore, combining low-cost organic compounds contained in organic wastes with cultivation of oleaginous microorganisms can be a promising approach to obtain commercial viability. However, to achieve effective bioconversion of low-cost substrates to microbial lipids, the characteristics of each microorganism and each substrate should be considered simultaneously. This article discusses recent approaches to developing cost-effective microbial lipid production processes that use various oleaginous microorganisms and organic wastes. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. The use KPI's to determine the waste in production process

    Science.gov (United States)

    Borsos, G.; Iacob, C. C.; Calefariu, G.

    2016-11-01

    In theory and practice of management is well-known Lean approach about forms of waste from production processes (Muda) and the method VSM (Value Stream Map), one of the most effective methods for determining the activities generating value within industrial companies. It is also obvious concern of the specialists for performance measurement regardless of purview of the organizations. The literature review has shown that the link between performance indicators and the objectives of the companies is researched in detail. However, the correlation between indicators and the forms of waste that generate deviations from the setpoints is rather nature practical and it depends on the talent and managerial skills of those directing production processes. The paper presents the results of a applied study, performed by the authors, through which it was has sought to will create a system of performance indicators specific to manufacturing activity that to be a useful tool to quantify the losses and to determining ways to improve default losses.

  3. Elaboration of new ceramic composites containing glass fibre production wastes

    International Nuclear Information System (INIS)

    Rozenstrauha, I.; Sosins, G.; Krage, L.; Sedmale, G.; Vaiciukyniene, D.

    2013-01-01

    Two main by-products or waste from the production of glass fibre are following: sewage sludge containing montmorillonite clay as sorbent material and ca 50 % of organic matter as well as waste glass from aluminium borosilicate glass fibre with relatively high softening temperature (> 600 degree centigrade). In order to elaborate different new ceramic products (porous or dense composites) the mentioned by-products and illitic clay from two different layers of Apriki deposit (Latvia) with illite content in clay fraction up to 80-90 % was used as a matrix. The raw materials were investigated by differential-thermal (DTA) and XRD analysis. Ternary compositions were prepared from mixtures of 15 - 35 wt % of sludge, 20 wt % of waste glass and 45 - 65 wt % of clay and the pressed green bodies were thermally treated in sintering temperature range from 1080 to 1120 degree centigrade in different treatment conditions. Materials produced in temperature range 1090 - 1100 degree centigrade with the most optimal properties - porosity 38 - 52 %, water absorption 39 -47 % and bulk density 1.35 - 1.67 g/cm 3 were selected for production of porous ceramics and materials showing porosity 0.35 - 1.1 %, water absorption 0.7 - 2.6 % and bulk density 2.1 - 2.3 g/cm 3 - for dense ceramic composites. Obtained results indicated that incorporation up to 25 wt % of sewage sludge is beneficial for production of both ceramic products and glass-ceramic composites according to the technological properties. Structural analysis of elaborated composite materials was performed by scanning electron microscopy(SEM). By X-ray diffraction analysis (XRD) the quartz, diopside and anorthite crystalline phases were detected. (Author)

  4. Mill Integration-Pulping, Stream Reforming and Direct Causticization for Black Liquor Recovery

    Energy Technology Data Exchange (ETDEWEB)

    Adriaan van Heiningen

    2007-06-30

    MTCI/StoneChem developed a steam reforming, fluidized bed gasification technology for biomass. DOE supported the demonstration of this technology for gasification of spent wood pulping liquor (or 'black liquor') at Georgia-Pacific's Big Island, Virginia mill. The present pre-commercial R&D project addressed the opportunities as well as identified negative aspects when the MTCI/StoneChem gasification technology is integrated in a pulp mill production facility. The opportunities arise because black liquor gasification produces sulfur (as H{sub 2}S) and sodium (as Na{sub 2}CO{sub 3}) in separate streams which may be used beneficially for improved pulp yield and properties. The negative aspect of kraft black liquor gasification is that the amount of Na{sub 2}CO{sub 3} which must be converted to NaOH (the so called causticizing requirement) is increased. This arises because sulfur is released as Na{sub 2}S during conventional kraft black liquor recovery, while during gasification the sodium associated Na{sub 2}S is partly or fully converted to Na{sub 2}CO{sub 3}. The causticizing requirement can be eliminated by including a TiO{sub 2} based cyclic process called direct causticization. In this process black liquor is gasified in the presence of (low sodium content) titanates which convert Na{sub 2}CO{sub 3} to (high sodium content) titanates. NaOH is formed when contacting the latter titanates with water, thereby eliminating the causticizing requirement entirely. The leached and low sodium titanates are returned to the gasification process. The project team comprised the University of Maine (UM), North Carolina State University (NCSU) and MTCI/ThermoChem. NCSU and MTCI are subcontractors to UM. The principal organization for the contract is UM. NCSU investigated the techno-economics of using advanced pulping techniques which fully utilize the unique cooking liquors produced by steam reforming of black liquor (Task 1). UM studied the kinetics and

  5. Assessment of Waste Production and Heavy Metal Emission from Energy Production Sector of Zahedan City

    Directory of Open Access Journals (Sweden)

    Nayyere Poormollae

    2013-12-01

    Full Text Available Background and purpose: Due to the lack of accurate statistics on the amount of waste generated in the energy production sector in Zahedan, before any planning, one should identify all waste producing centers associated with the energy sector and also the quantity and quality of their waste in Zahedan. Materials and methods: This research is a cross-sectional descriptive study. It examined the produced wastes in the electrical energy generation sector. A questionnaire was prepared and completed for each unit that possibility produces these wastes. Moreover, in the studied units, the weigh percent per unit was determined by separating production waste, and collecting and weighing them. Results: In gas power plant of Zahedan, production of burned oil was approximately 480 liters and the annual consumption of turbine oil and compressor oil was 40 liters. In the diesel power plant, 2,200 liters of burned oil is produced for each generator after 1,500 hours of work. Concentration of heavy metals of Cr, Cd, Zn, Pb, Cu, and Ni in the burned oil sample of the gas power plant was 43.2, 0.01, 0.20, 1.3, 2.7, 0.2 mg/l, respectively and in the diesel power plant were 36.3, 0.08, 0.09, 0.9, 4.7, 1.1 mg/l. Conclusion: In the studied samples, several cases of heavy metal pollution were identified. Therefore, proper planning for appropriate management of these units is necessary for any possible leakage and environmental pollution transport. Furthermore, in order to minimize the adverse impacts of hazardous wastes on the environment and people in Zahedan, integrated hazardous wastes management should be practices in electrical energy generation plants. Moreover, one must consider the measures required to exposure, transport, and safe maintenance before managing or eliminating this type of waste.

  6. Molt salts reactors capacity for wastes incineration and energy production

    International Nuclear Information System (INIS)

    David, S.; Nuttin, A.

    2005-01-01

    The molten salt reactors present many advantages in the framework of the IV generation systems development for the energy production and/or the wastes incineration. After a recall of the main studies realized on the molten salt reactors, this document presents the new concepts and the identified research axis: the MSRE project and experience, the incinerators concepts, the thorium cycle. (A.L.B.)

  7. Waste vinegar residue as substrate for phytase production.

    Science.gov (United States)

    Wang, Zhi-Hong; Dong, Xiao-Fang; Zhang, Guo-Qing; Tong, Jian-Ming; Zhang, Qi; Xu, Shang-Zhong

    2011-12-01

    Waste vinegar residue, the by-product of vinegar processing, was used as substrate for phytase production from Aspergillus ficuum NTG-23 in solid-state fermentation to investigate the potential for the efficient re-utilization or recycling of waste vinegar residue. Statistical designs were applied in the processing of phytase production. First, a Plackett-Burman (PB) design was used to evaluate eleven parameters: glucose, starch, wheat bran, (NH(4))(2)SO(4), NH(4)NO(3), tryptone, soybean meal, MgSO(4)·7H(2)O, CaCl(2)·7H(2)O, FeSO(4)·7H(2)O, incubation time. The PB experiments showed that there were three significant factors: glucose, soybean meal and incubation time. The closest values to the optimum point were then derived by steepest ascent path. Finally, a mathematical model was created and validated to explain the behavioural process after these three significant factors were optimized using response surface methodology (RSM). The best phytase activity was attained using the following conditions: glucose (7.2%), soybean meal (5.1%), and incubation time (271 h). The phytase activity was 7.34-fold higher due to optimization by PB design, steepest ascent path design and RSM. The phytase activity was enhanced 0.26-fold in comparison with the results by the second step of steepest ascent path design. The results indicate that with waste vinegar residue as a substrate higher production of phytase from Aspergillus ficuum NTG-23 could be obtained through an optimization process and that this method might be applied to an integrated system for recycling of the waste vinegar residue.

  8. Usage of Farm Animal Waste for Biogas Production

    Science.gov (United States)

    Sankina, O. V.; Chernysh, A. P.; Sankin, A. S.

    2017-05-01

    The article considers problems connecting with the development of cattle breeding in Russia, especially the utilization of animals and poultry waste products. Basing on the foreign scientists’ experience, it has been proposed different solutions to this problem in terms of the Russian Federation, conducted the study, and presented the results of the undertaken experiments. Recommendations on the use of substances, that speed up fermentation processes at certain temperatures, has been developed.

  9. Briquette fuel production from wastewater sludge of beer industry and biodiesel production wastes

    Science.gov (United States)

    Nusong, P.; Puajindanetr, S.

    2018-04-01

    The production of industrial wastes is increasing each year. Current methods of waste disposal are severely impacting the environment. Utilization of industrial wastes as an alternative material for fuel is gaining interest due to its environmental friendliness. Thus, the objective of this research was to study the optimum condition for fuel briquettes produced from wastewater sludge of the beer industry and biodiesel production wastes. This research is divided into two parts. Part I will study the effects of carbonization of brewery wastewater sludge for high fixed carbon. Part II will study the ratio between brewery wastewater sludge and bleaching earth for its high heating value. The results show that the maximum fixed carbon of 10.01% by weight was obtained at a temperature of 350 °C for 30 minutes. The appropriate ratio of brewery wastewater sludge and bleaching earth by weight was 95:5. This condition provided the highest heating value of approximately 3548.10 kcal/kg.

  10. Survey of Optimal Temperature and Moisture for Worms Growth and Operating Vermicompost Production of Food Wastes

    OpenAIRE

    A Eslami; A Nabaey; R Rostami

    2009-01-01

    "n "nBackground and Objectives:Nowadays vermicompost production of food wastes is posed as one of appropriate methods to food wastes. disposal, its production used in agriculture and gardening. Moreover this process has some by products beside useful fertilizer that one of them is the worms. we can use them in variety of products specially in production of poultry and fish food. So determination of optimal condition for operating vermicompost production process of food wastes and worms. growt...

  11. Complex microbiota of a Chinese "Fen" liquor fermentation starter (Fen-Daqu), revealed by culture-dependent and culture-independent methods

    NARCIS (Netherlands)

    Zheng, X.; Zheng, Y.; Han, B.; Zwietering, M.H.; Samson, R.A.; Boekhout, T.; Nout, M.J.R.

    2012-01-01

    Daqu is a traditional fermentation starter that is used for Chinese liquor production. Although partly mechanized, its manufacturing process has remained traditional. We investigated the microbial diversity of Fen-Daqu, a starter for light-flavour liquor, using combined culture-dependent and

  12. Environmental assessment of energy production from waste and biomass

    Energy Technology Data Exchange (ETDEWEB)

    Tonini, D.

    2013-02-15

    To evaluate the environmental and energy performance of bioenergy and waste-to-energy systems life cycle assessment was used in this thesis. This was supported by other tools such as material, substance, energy flow analysis and energy system analysis. The primary objective of this research was to provide a consistent framework for the environmental assessment of innovative bioenergy and waste-to-energy systems including the integration of LCA with other tools (mentioned earlier). The focus was on the following aspects: - Evaluation of potential future energy scenarios for Denmark. This was done by integrating the results of energy system analysis into life cycle assessment scenarios. - Identification of the criticalities of bioenergy systems, particularly in relation to land use changes. - Identification of potentials and criticalities associated with innovative waste refinery technologies. This was done by assessing a specific pilot-plant operated in Copenhagen, Denmark. The waste refining treatment was compared with a number of different state-of-the-art technologies such as incineration, mechanical-biological treatment and landfilling in bioreactor. The results highlighted that production of liquid and solid biofuels from energy crops should be limited when inducing indirect land use changes (iLUC). Solid biofuels for use in combined heat and power plants may perform better than liquid biofuels due to higher energy conversion efficiencies. The iLUC impacts stood out as the most important contributor to the induced GHG emissions within bioenergy systems. Although quantification of these impacts is associated with high uncertainty, an increasing number of studies are documenting the significance of the iLUC impacts in the bioenergy life cycle. With respect to municipal solid waste, state of the art incineration, MBT and waste refining (with associated energy and material recovery processes) may all provide important and comparable GHG emission savings. The waste

  13. Production of yeast biomass using waste Chinese cabbage

    Energy Technology Data Exchange (ETDEWEB)

    Min Ho Choi; Yun Hee Park [Ajou Univ., Suwon (Korea). Dept. of Molecular Science and Technology

    2003-08-01

    The possibility of using waste Chinese cabbage as a substrate for microbial biomass production was investigated. Cell mass and the protein content of four species of yeast, Candida utilis, Pichia stipitis, Kluyveromyces marxianus, and Saccharomyces cerevisiae, were determined when cultured in juice extracted from cabbage waste. Compared to YM broth containing the same level of sugar, all the strains except C. utilis showed higher total protein production in cabbage juice medium (CJM). Cell mass production was lower for all four strains in heat-treated CJM than in membrane-filtered medium, and this adverse effect was pronounced when the CJM was autoclaved at 121{sup o}C for 15 min. As a source of inorganic nitrogen, only ammonium sulfate added at a concentration of 0.5 g nitrogen per liter of CJM increased cell growth. Of the seven organic nitrogen sources tested, only corn steep powder was effective in increasing cell mass (by about 11%). As a micronutrient, the addition of 0.5 mM zinc increased cell mass. The results suggest that juice from waste Chinese cabbages can be used to produce microbial biomass protein without substantial modification, after preliminary heat treatment at temperatures below those required for sterilization. (Author)

  14. Thermal conversion of municipal solid waste via hydrothermal carbonization: comparison of carbonization products to products from current waste management techniques.

    Science.gov (United States)

    Lu, Xiaowei; Jordan, Beth; Berge, Nicole D

    2012-07-01

    Hydrothermal carbonization (HTC) is a novel thermal conversion process that may be a viable means for managing solid waste streams while minimizing greenhouse gas production and producing residual material with intrinsic value. HTC is a wet, relatively low temperature (180-350 °C) thermal conversion process that has been shown to convert biomass to a carbonaceous residue referred to as hydrochar. Results from batch experiments indicate HTC of representative waste materials is feasible, and results in the majority of carbon (45-75% of the initially present carbon) remaining within the hydrochar. Gas production during the batch experiments suggests that longer reaction periods may be desirable to maximize the production of energy-favorable products. If using the hydrochar for applications in which the carbon will remain stored, results suggest that the gaseous products from HTC result in fewer g CO(2)-equivalent emissions than the gases associated with landfilling, composting, and incineration. When considering the use of hydrochar as a solid fuel, more energy can be derived from the hydrochar than from the gases resulting from waste degradation during landfilling and anaerobic digestion, and from incineration of food waste. Carbon emissions resulting from the use of the hydrochar as a fuel source are smaller than those associated with incineration, suggesting HTC may serve as an environmentally beneficial alternative to incineration. The type and extent of environmental benefits derived from HTC will be dependent on hydrochar use/the purpose for HTC (e.g., energy generation or carbon storage). Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Transmutation of fission products and actinide waste at Hanford

    Energy Technology Data Exchange (ETDEWEB)

    Daemen, L.L.; Pitcher, E.J.; Russell, G.J. [Los Alamos National Laboratory, NM (United States)

    1995-10-01

    The authors studied the neutronics of an ATW system for the transmutation of the fission products ({sup 99}Tc in particular) and the type of actinide waste stored in several tanks at Hanford. The heart of the system is a highly-efficient neutron production target. It is surrounded by a blanket containing a moderator/reflector material, as well as the products to be transmuted. The fission products are injected into the blanket in the form of an aqueous solution in heavy water, whereas an aqueous actinides slurry is circulated in the outer part of the blanket. For the sake of definiteness, the authors focussed on {sup 99}Tc (the most difficult fission product to transmute), and {sup 239}Pu, {sup 237}Np, and {sup 241}Am. Because of the low thermal neutron absorption cross-section of {sup 99}Tc, considerable care and effort must be devoted to the design of a very efficient neutron source.

  16. Radioactivity distribution in phosphate products, by-products, effluents, and wastes

    International Nuclear Information System (INIS)

    Guimond, R.J.; Windham, S.T.

    1975-08-01

    Phosphate rock throughout the world contains uranium in concentrations ranging from a few ppM to a few hundred ppM. In the United States, phosphate rock normally contains between 100 to 150 ppM uranium. Mining and processing of these ores redistributes much of the uranium daughters among the various products, by-products, and wastes. These materials are then widely dispersed throughout the environment. This redistribution may lead to increased exposure of the public to these naturally-occurring radionuclides. In determining the magnitude of the population exposure caused by this redistribution and in developing environmental standards and controls to prevent contamination of the biosphere from these naturally-occurring radionuclides it is necessary to determine the concentrations and total quantities of these radionuclides in the products, by-products, effluents and wastes of phosphate mining and manufacturing. Samples of phosphate ores, products, by-products, effluents, and wastes were obtained and analyzed for their radioactivity content. Quantities of radioactivity entering the environment through various products, by-products, effluents, and wastes were estimated

  17. Study on technology for radioactive waste treatment and management from uranium production

    International Nuclear Information System (INIS)

    Vu Hung Trieu; Vu Thanh Quang; Nguyen Duc Thanh; Trinh Giang Huong; Tran Van Hoa; Hoang Minh Chau; Ngo Van Tuyen; Nguyen Hoang Lan; Vuong Huu Anh

    2007-01-01

    There is some solid and liquid radioactive waste created during producing Uranium that needs being treated and managed to keep our environment safe. This radioactive waste contains Uranium (U-238), Thorium (Th-232), Radium (Ra-226) and some heavy metals and mainly is low radioactive waste. Our project has researched and built up appropriate technology for treating and managing the radioactive waste. After researching and experimenting, we have built up four technology processes as follows: Technology for separating Radium from liquid waste; Technology for treating and managing solid waste containing Ra; Technology for separating Thorium from liquid waste after recovering radium; Technology for stabilizing solid waste from Uranium production. (author)

  18. Characterisation of cemented/bituminized LAW and MAW waste products

    International Nuclear Information System (INIS)

    Vejmelka, P.; Johnsen, P.; Kluger, W.; Koester, R.

    1987-01-01

    In the context of work for characterising low and medium activity waste products, investigations were carried out to determine the release of radioactivity from binding waste in given accidents, such as mechanical and thermal loading for the operating phase of a final store. The effects of mechanical loads on MAW cement products and the effects of thermal laods on MAW cement and MAW bitumen products were examined. The release of fine dust reaching the lungs, with a particle size of ≤10 μm from a 200 litre roller seam cement binder with a maximum mechanical load of 3x10 5 Nm covering the accident case is about 1.5 g and therefore corresponds to ≅ 10 -4 % of the total radio-activity inventory for homogeneous products. With thermal loading (60 minute oil fire, 800 0 C) ≅ 10 -3 % of the radioactivity inventory is released via the release of water from the waste binder. The activity release of MAW bitumen products containing NaNO 3 (175 litre drum) with thermal load is considerably higher, as due to the NaNO 3 content of the products, after an induction period of about 20 minutes there is an exothermal reaction between the bitumen and the NaNO 3 , which leads to burning of the bitumen with considerable aerosol formation. The Na losses are about 32% and the Pu losses, derived from the results of laboratory experiments with samples containing Eu and Pu and samples containing Eu on the original size, are only 15% maximum, even with complete burn up. It was shown for all the investigations with samples of the original size that the effects of the load cases considered can be reduced or completely avoided by additional packing (concrete shielding). (orig./RB) [de

  19. Thermoradiation treatment of sewage sludge using reactor waste fission products

    International Nuclear Information System (INIS)

    Reynolds, M.C.; Hagengruber, R.L.; Zuppero, A.C.

    1974-06-01

    The hazards to public health associated with the application of municipal sewage sludge to land usage are reviewed to establish the need for disinfection of sludge prior to its distribution as a fertilizer, especially in the production of food and fodder. The use of ionizing radiation in conjunction with mild heating is shown to be an effective disinfection treatment and an economical one when reactor waste fission products are utilized. A program for researching and experimental demonstration of the process on sludges is also outlined

  20. Reduction of the waste from domestic production of the orange

    International Nuclear Information System (INIS)

    Husain, K. A. M.

    2010-10-01

    The research subject is (reduction of the waste from domestic production of orange) we find there is a lot of wastage after harvest, because the process of packaging, loading, transportation, and store is not adequate. The purpose of this research is to solve this problem of wastage by following a number of steps after harvesting and pre-harvest process. This process is called COLD CHAIN. Cold chain is: cold store in production place, cold vehicles for transportation, cold room in the market, cold car for distribution, cold and freezer refrigerator home. After adopting the cold chain we achieved the following results: orange wastage is reduced, the orange quality improved. (Author)

  1. Radioactive waste management in sealed sources laboratory production

    International Nuclear Information System (INIS)

    Carvalho, Gilberto

    2001-01-01

    The laboratory of sealed sources production, of Instituto de Pesquisas Energeticas e Nucleares, was created in 1983 and since then, has produced radioactive sources for industry and engineering in general, having specialization in assembly of radiation sources for non destructive testings, by gammagraphy, with Iridium-192, that represents 98% of the production of laboratory and 2% with the Cobalt-60, used in nuclear gages. The aim of this work, is to quantify and qualify the radioactive wastes generated annually, taking into account, the average of radioactive sources produced, that are approximately 220 sources per year

  2. Fundamental Study of Black Liquor Gasification Kinetics. Quarterly progress report for the period October 1999 to December 1999

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-01-31

    The overall objective of this research is to evaluate the kinetics of gasification of kraft black liquor under laboratory conditions simulating pressurized, oxygen-blown gasification. The significant independent variables are gasifier temperature, black liquor composition particle size, and particle residence time. The authors will quantify their impact on the concentration of major and trace gas phase species, as well as the composition of condensed phase inorganic products, including specification of the Na- and S-containing compounds and overall carbon conversion.

  3. Technical Report Cellulosic Based Black Liquor Gasification and Fuels Plant Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Fornetti, Micheal [Escanaba Paper Company, MI (United States); Freeman, Douglas [Escanaba Paper Company, MI (United States)

    2012-10-31

    The Cellulosic Based Black Liquor Gasification and Fuels Plant Project was developed to construct a black liquor to Methanol biorefinery in Escanaba, Michigan. The biorefinery was to be co-located at the existing pulp and paper mill, NewPage’s Escanaba Paper Mill and when in full operation would: • Generate renewable energy for Escanaba Paper Mill • Produce Methanol for transportation fuel of further refinement to Dimethyl Ether • Convert black liquor to white liquor for pulping. Black liquor is a byproduct of the pulping process and as such is generated from abundant and renewable lignocellulosic biomass. The biorefinery would serve to validate the thermochemical pathway and economic models for black liquor gasification. It was a project goal to create a compelling new business model for the pulp and paper industry, and support the nation’s goal for increasing renewable fuels production and reducing its dependence on foreign oil. NewPage Corporation planned to replicate this facility at other NewPage Corporation mills after this first demonstration scale plant was operational and had proven technical and economic feasibility. An overview of the process begins with black liquor being generated in a traditional Kraft pulping process. The black liquor would then be gasified to produce synthesis gas, sodium carbonate and hydrogen sulfide. The synthesis gas is then cleaned with hydrogen sulfide and carbon dioxide removed, and fed into a Methanol reactor where the liquid product is made. The hydrogen sulfide is converted into polysulfide for use in the Kraft pulping process. Polysulfide is a known additive to the Kraft process that increases pulp yield. The sodium carbonate salts are converted to caustic soda in a traditional recausticizing process. The caustic soda is then part of the white liquor that is used in the Kraft pulping process. Cellulosic Based Black Liquor Gasification and Fuels Plant project set out to prove that black liquor gasification could

  4. Bio-hydrogen Production Potential from Market Waste

    Directory of Open Access Journals (Sweden)

    Lanna Jaitalee

    2010-07-01

    Full Text Available This research studied bio-hydrogen production from vegetable waste from a fresh market in order to recover energy. A series of batch experiments were conducted to investigate the effects of initial volatile solids concentration on the bio-hydrogen production process. Lab bench scale anaerobic continuous stirred-tank reactors (CSTR were used to study the effect of substrate and sludge inoculation on hydrogen production. Three different concentrations of initial total volatile solids (TVS of organic waste were varied from 2%, 3% and 5% respectively. The pH was controlled at 5.5 for all batches in the experiment. The results showed that bio-hydrogen production depended on feed-substrate concentration. At initial TVS content of 3%, the highest hydrogen production was achieved at a level of 0.59 L-H2/L at pH 5.5. The maximum hydrogen yield was 15.3 ml H2/g TVS or 8.5 ml H2/g COD. The composition of H2 in the biogas ranged from 28.1-30.9% and no CH4 was detected in all batch tests.

  5. The low-level waste handling challenge at the Feed Materials Production Center

    International Nuclear Information System (INIS)

    Harmon, J.E.; Diehl, D.E.; Gardner, R.L.

    1988-01-01

    The management of low-level wastes from the production of depleted uranium at the Feed Materials Production Center presents an enormous challenge. The recovery of uranium from materials contaminated with depleted uranium is usually not economical. As a result, large volumes of wastes are generated. The Westinghouse Materials Company of Ohio has established an aggressive waste management program. Simple solutions have been applied to problems in the areas of waste handling and waste minimization. The success of this program has been demonstrated by the reduction of low-level waste inventory at the Feed Materials Production Center

  6. The low-level waste handling challenge at the Feed Materials Production Center

    International Nuclear Information System (INIS)

    Harmon, J.E.; Diehl, D.E.; Gardner, R.L.

    1988-02-01

    The management of low-level wastes from the production of depleted uranium at the Feed Materials Production Center presents an enormous challenge. The recovery of uranium from materials contaminated with depleted uranium is usually not economical. As a result, large volumes of wastes are generated. The Westinghouse Materials Company of Ohio has established an aggressive waste management program. Simple solutions have been applied to problems in the areas of waste handling and waste minimization. The success of this program has been demonstrated by the reduction of low-level waste inventory at the Feed Materials Production Center. 8 refs., 4 figs

  7. Uranium recovery from acid leach liquors: Ix or Sx?

    International Nuclear Information System (INIS)

    Van Tonder, D.; Kotze, M.

    2007-01-01

    Various technologies for uranium recovery from sulphuric acid leach solutions were compared. Although the main consideration was the economics (Capex, recovery and Opex) of the various technologies and associated unit operations, other factors, such as flexibility, reliability, ease of operation, fire risk, stability with regards to feed flow variations, and feed solids content, would also need to be considered in the overall analysis. The design basis used for the comparison was a production rate or 200 kg/h U 3 O8 over a solution concentration range of 40 to 1500 mg/L U 3 O8. The technologies to be compared included Resin-in-pulp (RIP), Fixed-bed Ion Exchange (FBIX), Continuous Countercurrent Ion Exchange (CCIX, e.g. NIMCIX), and Solvent Extraction (Sx) using Bateman Pulsed Columns (BPC) and Bateman Settlers. Countercurrent Decantation (CCD) and clarification would be required for the Sx and FBIX technologies. The preliminary economic evaluation indicated that a flowsheet, comprising RIP for bulk uranium extraction and upgrade, followed by Sx, employing the BPC for purification of the RIP eluate stream, was the most economic option at leach liquor concentrations below 900 mg/L. Above 900 mg/L the economic evaluation suggested that CCDs followed by Sx in the BPC was the most economical processing option. For applications where the ore is abrasive and not amenable to RIP, due to the rate of resin consumption, Paste Thickeners to remove the bulk of the solids, followed by RIP, was found to be the most economic processing option at leach liquor concentrations below 200 mg/L. However, for leach liquor concentrations above 200 mg/L, a CCD-circuit followed by Sx using BPC was again the most economic favourable route

  8. Catalytic hydrotreating of waste cooking oil for renewable diesel production

    Energy Technology Data Exchange (ETDEWEB)

    Bezergianni, Stella; Dimitriadis, Athanasios [Centre for Research and Technology Hellas (CERTH), Thessaloniki (Greece)

    2013-06-01

    A new technology based on catalytic hydrotreating of Waste Cooking Oil (WCO) for biodiesel production has been developed in the Centre for Research and Technology Hellas (CERTH). The main premise of this process is the conversion of the WCO fatty acids into normal- and iso-paraffins. The technology was evaluated in hydroprocessing pilot plants of CERTH where feedstock origin as well as optimal catalysts and operating parameters where identified. The fractionated diesel product, called ''white'' diesel exhibits excellent fuel properties including higher heating value (over 49 MJ/kg), negligible acidity, higher oxidation stability and higher cetane number ({proportional_to}77) than conventional biodiesel. The overall product yield is {proportional_to}92% v/v. This new suggested technology is extremely appealing as it employs existing refinery infrastructure and expertise, offers feedstock flexibility, leaves no by-product and above all is economically attractive. (orig.)

  9. An Investigation of Biodiesel Production from Wastes of Seafood Restaurants

    Directory of Open Access Journals (Sweden)

    Nour Sh. El-Gendy

    2014-01-01

    Full Text Available This work illustrates a comparative study on the applicability of the basic heterogeneous calcium oxide catalyst prepared from waste mollusks and crabs shells (MS and CS, resp. in the transesterification of waste cooking oil collected from seafood restaurants with methanol for production of biodiesel. Response surface methodology RSM based on D-optimal deign of experiments was employed to study the significance and interactive effect of methanol to oil M : O molar ratio, catalyst concentration, reaction time, and mixing rate on biodiesel yield. Second-order quadratic model equations were obtained describing the interrelationships between dependent and independent variables to maximize the response variable (biodiesel yield and the validity of the predicted models were confirmed. The activity of the produced green catalysts was better than that of chemical CaO and immobilized enzyme Novozym 435. Fuel properties of the produced biodiesel were measured and compared with those of Egyptian petro-diesel and international biodiesel standards. The biodiesel produced using MS-CaO recorded higher quality than that produced using CS-CaO. The overall biodiesel characteristics were acceptable, encouraging application of CaO prepared from waste MS and CS for production of biodiesel as an efficient, environmentally friendly, sustainable, and low cost heterogeneous catalyst.

  10. Investigating the Variation of Volatile Compound Composition in Maotai-Flavoured Liquor During Its Multiple Fermentation Steps Using Statistical Methods

    Directory of Open Access Journals (Sweden)

    Zheng-Yun Wu

    2016-01-01

    Full Text Available The use of multiple fermentations is one of the most specific characteristics of Maotai-flavoured liquor production. In this research, the variation of volatile composition of Maotai-flavoured liquor during its multiple fermentations is investigated using statistical approaches. Cluster analysis shows that the obtained samples are grouped mainly according to the fermentation steps rather than the distillery they originate from, and the samples from the first two fermentation steps show the greatest difference, suggesting that multiple fermentation and distillation steps result in the end in similar volatile composition of the liquor. Back-propagation neural network (BNN models were developed that satisfactorily predict the number of fermentation steps and the organoleptic evaluation scores of liquor samples from their volatile compositions. Mean impact value (MIV analysis shows that ethyl lactate, furfural and some high-boiling-point acids play important roles, while pyrazine contributes much less to the improvement of the flavour and taste of Maotai-flavoured liquor during its production. This study contributes to further understanding of the mechanisms of Maotai-flavoured liquor production.

  11. Post-Digestion Liquor Treatment in the Method Combining Chemical Precipitation with Reverse Osmosis

    Directory of Open Access Journals (Sweden)

    Kuglarz Mariusz

    2014-12-01

    Full Text Available The aim of the study was to develop an effective treatment of post-digestion liquors highly-loaded with biogenic and organic substances. The scope of the research project encompassed: mesophilic anaerobic digestion of waste activated sludge (WAS as well as the treatment of post-digestion liquors, coming from the most appropriate HRT value of 25 days, in the process of ammonium magnesium phosphate (struvite precipitation targeted at ammonia nitrogen binding and a subsequent reverse osmosis (RO process. It was established that the method combining chemical precipitation and high-pressure filtration ensures a high degree of contaminants removal allowing for a direct release of treated liquors into the natural reservoir. However, in order to decrease the residual NH4+ concentration (6.1 mg NH4+/dm3 in the purified post-digestion liquors below the level allowing for a direct release to the natural reservoir, it turned out to be necessary to apply increased molar ratio of magnesium and phosphates (Mg:NH4+: PO43-= 1.5:1:1.5.

  12. PEA PEEL WASTE: A LIGNOCELLULOSIC WASTE AND ITS UTILITY IN CELLULASE PRODUCTION BY Trichoderma reesei UNDER SOLID STATE CULTIVATION

    Directory of Open Access Journals (Sweden)

    Nitin Verma

    2011-03-01

    Full Text Available A wide variety of waste bioresources are available on our planet for conversion into bioproducts. In the biological systems, microorganisms are used to utilize waste as an energy source for the synthesis of valuable products such as biomass proteins and enzymes. The large quantities of byproducts generated during the processing of plant food involve an economic and environmental problem due to their high volumes and elimination costs. After isolation of the main constituent, there are abundant remains which represent an inexpensive material that has been undervalued until now. Pea peel waste is one of the undervalued, unused sources of energy that can serve as a potential source for cellulase production. Batch experiments have been performed, using pea peel waste as a carbon source for cellulase production under solid state cultivation by Trichoderma reesei. It was observed that 30 oC temperature and pH 5.0 are the most favorable conditions for cellulase production by T. reesei. FPase activity significantly increases by incorporation of whey as well as wheat starch hydrolysate in the basal salt media used in the production study. The present study describes the utility of pea peel waste, whey as well as wheat starch hydrolysate in cellulase production by T. reesei. The utilization of economically cheap, pea peel waste for cellulase production could be a novel, cost effective, and valuable approach in cellulase production as well as in solid waste management.

  13. Production of water-soluble sago waste - HAMPAS

    International Nuclear Information System (INIS)

    Norhazlin Zainuddin; Kamaruddin Hashim; Kamaruddin Bahari; Mansor Ahmad; Wan Md Zin Wan Yunus

    2002-01-01

    Carboxylmethyl sago waste (CMSW) was prepared in completely heterogeneous conditions as a product of the reaction of sago waste and sodium monochloroacetate (MCA) in mixed solution of isopropanol and sodium hydroxide (NaOH). The results showed that the DS values depend on the concentration of NaOH, ratio of MCA to anhydroglucose unit (AGU), (MCA:AGU), and also time and temperature of the reaction. DS value increased with increasing the concentration of NaOH and reaction temperature, but further increase will reduce the value of DS. Increasing the reaction time will increase the DS value and achieve a constant value after 2 hours. The study showed that the highest value of DS i.e. 1.04, could be achieved at 2:1 of MCA:AGU ratio, NaOh concentration of 25% and 2 hours reaction time at 55 degree C. (Author)

  14. Activation of waste brewer's yeast Saccharomyces cerevisiae for bread production

    Directory of Open Access Journals (Sweden)

    Popov Stevan D.

    2005-01-01

    Full Text Available The waste brewer's yeast S. cerevisiae (activated and non-activated was compared with the commercial baker's yeast regarding the volume of developed gas in dough, volume and freshness stability of produced bread. The activation of waste brewer's yeast resulted in the increased volume of developed gas in dough by 100% compared to non-activated brewer's yeast, and the obtained bread is of more stable freshness compared to bread produced with baker's yeast. The activation of BY affects positively the quality of produced bread regarding bread volume. The volume of developed gas in dough prepared with the use of non-activated BY was not sufficient, therefore, it should not be used as fermentation agent, but only as an additive in bread production process for bread freshness preservation. Intense mixing of dough results in more compressible crumb 48 hrs after baking compared to high-speed mixing.

  15. Biological treatment of chicken feather waste for improved biogas production

    Institute of Scientific and Technical Information of China (English)

    Gergely Forgács; Saeid Alinezhad; Amir Mirabdollah; Elisabeth Feuk-Lagerstedt; Ilona Sárvári Horwáth

    2011-01-01

    A two-stage system was developed which combines the biological degradation of keratin-rich waste with the production of biogas.Chicken feather waste was treated biologically with a recombinant Bacillus megaterium strain showing keratinase activity prior to biogas production.Chopped,autoclaved chicken feathers (4%,W/V) were completely degraded,resulting in a yellowish fermentation broth with a level of 0.51 mg/mL soluble proteins after 8 days of cultivation of the recombinant strain.During the subsequent anaerobic batch digestion experiments,methane production of 0.35 Nm3/kg dry feathers (i.e.,0.4 Nm3/kg volatile solids of feathers),corresponding to 80% of the theoretical value on proteins,was achieved from the feather hydrolyzates,independently of the prehydrolysis time period of 1,2 or 8 days.Cultivation with a native keratinase producing strain,Bacillus licheniformis resulted in only 0.25 mg/mL soluble proteins in the feather hydrolyzate,which then was digested achieving a maximum accumulated methane production of 0.31 Nm3/kg dry feathers.Feather hydrolyzates treated with the wild type B.megaterium produced 0.21 Nm3 CH4/kg dry feathers as maximum yield.

  16. Technological Desition of Extraction of Melanin from the Waste of Production of Sunflower-Seed Oil

    Science.gov (United States)

    Kartushina, Yu N.; Nefedieva, E. E.; Sevriukova, G. A.; Gracheva, N. V.; Zheltobryukhov, V. F.

    2017-05-01

    The research was realized in the field of the technology for re-use of waste of sunflower-seed oil production. A technological scheme of production of melanin from sunflower husk as a waste was developed. Re-cycling will give the opportunity to reduce the amount of waste and to obtain an additional source of income.

  17. Toward Hazardless Waste: A Guide for Safe Use and Disposal of Hazardous Household Products.

    Science.gov (United States)

    Toteff, Sally; Zehner, Cheri

    This guide is designed to help individuals make responsible decisions about safe use and disposal of household products. It consists of eight sections dealing with: (1) hazardous chemicals in the home, how hazaradous products become hazardous waste, and whether a hazardous waste problem exists in Puget Sound; (2) which household wastes are…

  18. Eyelid liquoric fistula secondary to orbital meningocele

    Directory of Open Access Journals (Sweden)

    Renato Antunes Schiave Germano

    2015-02-01

    Full Text Available Liquoric fistula (LF is defined as the communication of the subarachnoid space with the external environment, which main complication is the development of infection in the central nervous system. We reported the case of a patient with non-traumatic eyelid liquoric fistula secondary to orbital meningocele (congenital lesion, which main clinical manifestation was unilateral eyelid edema. Her symptoms and clinical signs appeared in adulthood, which is uncommon. The patient received surgical treatment, with complete resolution of the eyelid swelling. In conclusion, eyelid cerebrospinal fluid (CSF fistula is a rare condition but with great potential deleterious to the patient. It should be considered in the differential diagnosis of unilateral eyelid edema, and surgical treatment is almost always mandatory.

  19. Separation of transuranium elements and fission products from medium activity aqueous liquid wastes

    International Nuclear Information System (INIS)

    Gompper, K.; Kunze, S.; Eden, G.; Loesch, G.; Zemski, C.

    1986-01-01

    In the course of work performed between January 1981 and June 1985 on the separation of TRU elements and fission products three liquid alpha containing waste streams were treated: - medium level waste solutions, - waste solutions from the acid digestion of burnable alpha containing solid residues, - waste solutions from mixed oxide fuel element fabrication. The method of separation was initially developed and optimized with simulating substances. Subesequently it was tested with real waste solutions

  20. Ethanol Production from Waste Potato Mash by Using Saccharomyces Cerevisiae

    Directory of Open Access Journals (Sweden)

    Gulten Izmirlioglu

    2012-10-01

    Full Text Available Bio-ethanol is one of the energy sources that can be produced by renewable sources. Waste potato mash was chosen as a renewable carbon source for ethanol fermentation because it is relatively inexpensive compared with other feedstock considered as food sources. However, a pretreatment process is needed: specifically, liquefaction and saccharification processes are needed to convert starch of potato into fermentable sugars before ethanol fermentation. In this study, hydrolysis of waste potato mash and growth parameters of the ethanol fermentation were optimized to obtain maximum ethanol production. In order to obtain maximum glucose conversions, the relationship among parameters of the liquefaction and saccharification process was investigated by a response surface method. The optimum combination of temperature, dose of enzyme (α-amylase and amount of waste potato mash was 95 °C, 1 mL of enzyme (18.8 mg protein/mL and 4.04 g dry-weight/100 mL DI water, with a 68.86% loss in dry weight for liquefaction. For saccharification, temperature, dose of enzyme and saccharification time were optimized and optimum condition was determined as 60 °C-72 h-0.8 mL (300 Unit/mL of amyloglucosidase combination, yielded 34.9 g/L glucose. After optimization of hydrolysis of the waste potato mash, ethanol fermentation was studied. Effects of pH and inoculum size were evaluated to obtain maximum ethanol. Results showed that pH of 5.5 and 3% inolculum size were optimum pH and inoculum size, respectively for maximum ethanol concentration and production rate. The maximum bio-ethanol production rate was obtained at the optimum conditions of 30.99 g/L ethanol. Since yeast extract is not the most economical nitrogen source, four animal-based substitutes (poultry meal, hull and fines mix, feather meal, and meat and bone meal were evaluated to determine an economical alternative nitrogen source to yeast extract. Poultry meal and feather meal were able to produce 35 g/L and

  1. Low carbon fuel and chemical production from waste gases

    Energy Technology Data Exchange (ETDEWEB)

    Simpson, S.; Liew, F.M.; Daniell, J.; Koepke, M. [LanzaTech, Ltd., Auckland (New Zealand)

    2012-07-01

    LanzaTech has developed a gas fermentation platform for the production of alter native transport fuels and commodity chemicals from carbon monoxide, hydrogen and carbon dioxide containing gases. LanzaTech technology uses these gases in place of sugars as the carbon and energy source for fermentation thereby allowing a broad spectrum of resources to be considered as an input for product synthesis. At the core of the Lanzatech process is a proprietary microbe capable of using gases as the only carbon and energy input for product synthesis. To harness this capability for the manufacture of a diverse range of commercially valuable products, the company has developed a robust synthetic biology platform to enable a variety of novel molecules to be synthesised via gas fermentation. LanzaTech initially focused on the fermentation of industrial waste gases for fuel ethanol production. The company has been operating pilot plant that uses direct feeds of steel making off gas for ethanol production for over 24 months. This platform technology has been further successfully demonstrated using a broad range of gas inputs including gasified biomass and reformed natural gas. LanzaTech has developed the fermentation, engineering and control systems necessary to efficiently convert gases to valuable products. A precommercial demonstration scale unit processing steel mill waste gases was commissioned in China during the 2{sup nd} quarter of 2012. Subsequent scale-up of this facility is projected for the 2013 and will represent the first world scale non-food based low carbon ethanol project. More recently LanzaTech has developed proprietary microbial catalysts capable of converting carbon dioxide in the presence of hydrogen directly to value added chemicals, where-in CO{sub 2} is the sole source of carbon for product synthesis. Integrating the LanzaTech technology into a number of industrial facilities, such as steel mills, oil refineries and other industries that emit Carbon bearing

  2. Properties of waste stillage from shochu distillery and waste water occurred sosei paper production process

    OpenAIRE

    山内, 正仁; 平田, 登基男; 前野, 祐二; 三原, めぐみ; 松藤, 康司

    1999-01-01

    As an effective utilization of waste stillage, which will be banned from being dumped into sea from the year of 2001, authors have been studied and succeeded to make the sosei paper by using waste stillage form shochu distillery. This research is tried to consider the property of waste stillage from shochu distillery ( sweet potato waste stillage and barley waste stillage) and the weight and property of waste water in compressing samples added some amount of old newspaper to waste stillage. F...

  3. Characterization of volatile compounds in Fen-Daqu - a traditional Chinese liquor fermentation starter

    NARCIS (Netherlands)

    Van-Diep, L.; Zheng, X.; Chen, J.Y.; Han, B.Z.

    2012-01-01

    Fen-Daqu is a saccharifying agent and fermentation starter for the production of Chinese liquor Fen (alcoholic spirit) and Fen traditional vinegar. The volatile compounds produced at seven incubation steps were analysed by HS-SPME-GC-MS. A total of 83 major volatile compounds were identified,

  4. 27 CFR 31.75 - Dealer in beer and dealer in liquors at the same location.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Dealer in beer and dealer... Subject to Registration § 31.75 Dealer in beer and dealer in liquors at the same location. Any person who registers as a wholesale dealer in beer or retail dealer in beer and who thereafter begins to sell distilled...

  5. Effect of Microbial Interaction on Urea Metabolism in Chinese Liquor Fermentation

    NARCIS (Netherlands)

    Wu, Qun; Lin, Jianchun; Cui, Kaixiang; Du, Rubin; Zhu, Yang; Xu, Yan

    2017-01-01

    Urea is the primary precursor of the carcinogen ethyl carbamate in fermented foods. Understanding urea metabolism is important for controlling ethyl carbamate production. Using Chinese liquor as a model system, we used metatranscriptome analysis to investigate urea metabolism in spontaneous food

  6. Let’s limit our waste production and let’s’ sort it!

    CERN Multimedia

    HSE Unit

    2013-01-01

    Let’s limit our waste production! – Why ? Preventing the production of waste is the best solution to avoid environmental issues, economic impacts and technical constraints. So, whenever you are involved in the design, manufacturing, distribution, use or dismantling of a product or an activity in general, always remember that the best waste is that which is not produced. The limitation of waste production being an HSE objective declared in 2013 by the CERN Director-General, we encourage everyone to help limit the amount of waste produced through CERN activities. Let’s sort it! – Why ? Since the 90s, CERN has implemented a policy to promote recovery of the waste* generated by its activities. Nowadays, CERN is committed to continuously improving its sorting and recovery and therefore various initiatives have been started by GS-IS to improve the recovery of waste (e.g. recovery of organic waste from restaurants; implementation of solar trash compactors - see Bulletin 27-...

  7. A holistic approach for food waste management towards zero-solid disposal and energy/resource recovery.

    Science.gov (United States)

    Ma, Yingqun; Yin, Yao; Liu, Yu

    2017-03-01

    This study developed a holistic approach which was based on the ultra-fast hydrolysis of food waste with the fungal mash rich in various hydrolytic enzymes produced in situ from food waste as well. After the 8-h hydrolytic treatment, the solid residue and liquor were separated. It was found that the produced solid residue can meet all the requirements for biofertilizer in terms of NPK and heavy metal contents, while the separated liquor with high soluble organics concentration was further subject to anaerobic digestion for enhanced biomethane production. The results showed that 0.41kg of biofertilizer with a moisture content of 76.9% and 54.4L of biomethane could be produced from 1kg of food waste. As such, it is expected that this study may lead to the paradigm shift in food waste management with the ultimate target of zero-solid discharge. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Production of sodalite waste forms by addition of glass

    International Nuclear Information System (INIS)

    Pereira, C.

    1995-01-01

    Spent nuclear fuel can be treated in a molten salt electrorefiner for conversion into metal and mineral waste forms for geologic disposal. Sodalite is one of the mineral waste forms under study. Fission products in the molten salt are ion-exchanged into zeolite A, which is converted to sodalite and consolidated. Sodalite can be formed directly from mixtures of salt and zeolite A at temperatures above 975 K; however, nepheline is usually produced as a secondary phase. Addition of small amounts of glass frit to the mixture reduced nepheline formation significantly. Loss of fission products was not observed for reaction below 1000 K. Hot-pressing of the sodalite powders yielded dense pellets (∼2.3 g/cm 3 ) without any loss of fission product species. Normalized release rates were below 1 g/m 2 ·day for pre-washed samples in 28-day leach tests based on standard MCC-1 tests but increased with the presence of free salt on the sodalite

  9. Bio production of Vanillin from Agro-Industrial Wastes

    International Nuclear Information System (INIS)

    Abd EI-Aziz, A.B.

    2011-01-01

    The present study describes an environmentally friendly vanillin production processes from agro industrial wastes. Ferulic 'acid is a well-known product of cereal. brans and sugarcane bagasse lignin degradation, ferulic acid and cellulose degradation sugars were used as feedstock for the vanillin bio production by Debaryomyces hansenii. The bioconversion of ferulic into vanillin by Debaryomyces hansenii was affected by the type and amount of ferulic acid. Addition of purified ferulic acid (2 g/l) and using of adapted yeast cells. increase the yield of vanillin and decrease the secondary products. Yeast extract (3 g/l) and glucose (20 g/l) proved to be the best component as co-substrates for bio production of vanillin. Variable aeration conditions were tested by simultaneously vanilIin the ratio of medium to vessel volume and the agitation speed. under excess aeration, oxidation of a, significant portion of vanillin to vanillic acid occur, thus reducing the vanillin yield. Increasing the inoculum size up to 1 g/I and using low doses of gamma irradiation (0.25 kGy) increase the vanillin production. Under optimum conditions vanillin production from ferulic acid by Debaryomyces attained very high level of 1531 mg/1 with a molar yield of 76.5%

  10. Hydration products and mechanical properties of hydroceramics solidified waste for simulated Non-alpha low and intermediate level radioactive wastes

    International Nuclear Information System (INIS)

    Wang Jin; Hong Ming; Wang Junxia; Li Yuxiang; Teng Yuancheng; Wu Xiuling

    2011-01-01

    In this paper, simulated non-alpha low and intermediate level radioactive wastes was handled as curing object and that of 'alkali-slag-coal fly ash-metakaolin' hydroceramics waste forms were prepared by hydrothermal synthesis method. The hydration products were analyzed by X ray diffraction. The composition of hydrates and the compressive strength of waste forms were determined and measured. The results indicate that the main crystalline phase of hydration products were analcite when the temperature was 150 to 180 degree C and the salt content ratio was 0.10 to 0.30. Analcite diffraction peaks in hydration products is increasing when the temperature was raised and the reaction time prolonged. Strength test results show that the solidified waste forms have superior compressive strength. The compressive strength gradually decreased with the increase in salt content ratio in waste forms. (authors)

  11. Production of Biofuels from Selected Cellulosic Waste materials

    Directory of Open Access Journals (Sweden)

    Jathwa Abdul Kareem Ibrahim

    2017-08-01

    Full Text Available In this study four types of cellulose-rich municipal solid wastes (residuals of orange, banana peel, corn residues, and saw dust were used as raw materials. These cellulosic substrates usually have a lot of lignin content which prevents the process of saccharification by microorganisms. Thus pretreatment methods of enzymatic, acid or base with enzymatic treatment and dilute acid followed by autoclaving were necessary to dignify these wastes and to obtain higher reducing sugar yields and hence higher ethanol production. Dilute HCl acid of 1% followed by autoclaving at 121℃ for 30 min proved to give good result where significant amounts of reducing sugars were obtained at the end of the saccharification process. Orange peel proved to give the highest glucose concentration of an average of 6000 mg/l on day 4 of the saccharification process. Fermentation was carried out for the hydrolyzed samples using Saccharomyces cerevisiae yeast. The amount of ethanol produced after fermentation was found to be the highest for orange peel having a value of 1300 mg/l after 96h of incubation. As science is proceeding, engineered microorganisms could help to produce sustainable fuels from cellulose-rich municipal solid wastes in the future.

  12. Preliminary treatment of chlorinated waste streams containing fission products

    Energy Technology Data Exchange (ETDEWEB)

    Hudry, Damien; Bardez, Isabelle; Bart, Florence [CEA Marcoule DTCD/SECM/LM2C, BP 17171, 30207 Bagnols sur Ceze (France); Deniard, Philippe; Jobic, Stephane [Institut des Materiaux Jean Rouxel, Universite de Nantes, CNRS, BP 32229, 44322 Nantes cedex 3 (France); Rakhmatullin, Aydar [Conditions Extremes et Materiaux: Hautes Temperatures et Irradiations, CEMHTI-CNRS, 45071 Orleans cedex 2 (France); Bessada, Catherine [Conditions Extremes et Materiaux: Hautes Temperatures et Irradiations, CEMHTI-CNRS, 45071 Orleans cedex 2 (France); Universite d' Orleans, Faculte des Sciences, BP 6749, 45067 Orleans cedex 2 (France)

    2008-07-01

    Separating actinides from fission products (FP) by electrolytic techniques in a molten chloride medium produces high-level waste which, because of its high chlorine content, cannot be directly and quantitatively loaded in a glass matrix and therefore requires the development of new management methods. In this regard the strategy of submitting chlorinated waste streams to a preliminary treatment consists in separating the various types of FP from the solvent to minimize the ultimate high-level waste volume. Selective precipitation of the rare earth elements by NH{sub 4}H{sub 2}PO{sub 4} was investigated in a LiCl-KCl medium, and could constitute the first step in the purification process. Unlike the use of alkali orthophosphate, this method provides similar conversion factors with the simple addition of stoichiometric phosphorus (P:rare-earth = 1) and does not require excess phosphate (P:rare-earth = 5). This prevents the formation of a secondary Li{sub 3}PO{sub 4} phase. Moreover, NH{sub 4}H{sub 2}PO{sub 4} also allows chlorine bound to rare earth elements to be eliminated as NH{sub 4}Cl. The formation of HCl is highly probable.

  13. Biohydrogen production from enzymatic hydrolysis of food waste in batch and continuous systems

    OpenAIRE

    Wei Han; Yingting Yan; Yiwen Shi; Jingjing Gu; Junhong Tang; Hongting Zhao

    2016-01-01

    In this study, the feasibility of biohydrogen production from enzymatic hydrolysis of food waste was investigated. Food waste (solid-to-liquid ratio of 10%, w/v) was first hydrolyzed by commercial glucoamylase to release glucose (24.35?g/L) in the food waste hydrolysate. Then, the obtained food waste hydrolysate was used as substrate for biohydrogen production in the batch and continuous (continuous stirred tank reactor, CSTR) systems. It was observed that the maximum cumulative hydrogen prod...

  14. Method and apparatus for treatment of animal waste products

    Energy Technology Data Exchange (ETDEWEB)

    Davidson, R R

    1977-12-15

    Animal wastes (fresh manure and urine) are converted to products useful on farmland or in animal feed by treating them with alkali metal hydroxides or carbonates and/or alkaline earth hydroxides to give slurries with pH 9.0 to 12.0, thus deactivating urease. Thus, a slurry of swine manure and urine adjusted with CaO to pH 11 has urea content 27.0 and 26.5 mg/L after 0 and 10 days, respectively, at 20/sup 0/, compared with 22.0 and 0, respectively, in the absence of base.

  15. Accelerator Production of Tritium Waste Characterization and Certification Challenges

    International Nuclear Information System (INIS)

    Ades, M.J.; England, J.L.; Nowacki, P.L.; Hane, R.; Tempel, K.L.; Pitcher, E.; Cohen, H.S.

    1998-06-01

    This paper summaries the processes and methods APT used for the identification and classification of the waste streams, the characterization and certification of the waste streams, and waste minimization

  16. Energy Supply- Production of Fuel from Agricultural and Animal Waste

    Energy Technology Data Exchange (ETDEWEB)

    Gabriel Miller

    2009-03-25

    The Society for Energy and Environmental Research (SEER) was funded in March 2004 by the Department of Energy, under grant DE-FG-36-04GO14268, to produce a study, and oversee construction and implementation, for the thermo-chemical production of fuel from agricultural and animal waste. The grant focuses on the Changing World Technologies (CWT) of West Hempstead, NY, thermal conversion process (TCP), which converts animal residues and industrial food processing biproducts into fuels, and as an additional product, fertilizers. A commercial plant was designed and built by CWT, partially using grant funds, in Carthage, Missouri, to process animal residues from a nearby turkey processing plant. The DOE sponsored program consisted of four tasks. These were: Task 1 Optimization of the CWT Plant in Carthage - This task focused on advancing and optimizing the process plant operated by CWT that converts organic waste to fuel and energy. Task 2 Characterize and Validate Fuels Produced by CWT - This task focused on testing of bio-derived hydrocarbon fuels from the Carthage plant in power generating equipment to determine the regulatory compliance of emissions and overall performance of the fuel. Task 3 Characterize Mixed Waste Streams - This task focused on studies performed at Princeton University to better characterize mixed waste incoming streams from animal and vegetable residues. Task 4 Fundamental Research in Waste Processing Technologies - This task focused on studies performed at the Massachusetts Institute of Technology (MIT) on the chemical reformation reaction of agricultural biomass compounds in a hydrothermal medium. Many of the challenges to optimize, improve and perfect the technology, equipment and processes in order to provide an economically viable means of creating sustainable energy were identified in the DOE Stage Gate Review, whose summary report was issued on July 30, 2004. This summary report appears herein as Appendix 1, and the findings of the report

  17. Applicability of industrial wastewater as carbon source for denitrification of a sludge dewatering liquor.

    Science.gov (United States)

    Chen, Jiazhong; Lee, Yoomin; Oleszkiewicz, Jan A

    2013-01-01

    The applicability of four industrial waste streams from potato processing, canola processing and oil refining, biodiesel production (glycerol), and glycol as substitutes to methanol and ethanol in denitrification of anaerobically digested sludge dewatering liquor (centrate) was evaluated in bench-scale sequencing batch reactors. It was found that glycerol was the best substitute with the specific denitrification rate (SDNR) of 13 mg NO3-N/(g VSS x h) followed by potato processing wastewater at 12mg NO3-N/(g VSS x h). Both substrates produced faster SDNR than methanol's 10mg NO3-N/(g VSS x h); however, they were inferior to ethanol's 17 mg NO3-N/(g VSS x h). Glycol had SDNR of 8 mg NO3-N/(g VSS x h) and demonstrated a very fast acclimation rate, i.e. the response in increased denitrification rate was visible in three days following glycol addition. Canola processing and oil refining wastewater was considered an inappropriate carbon source due to a low SDNR of 5 mg NO3-N/(g VSS x h) and apparent inhibitory effect on nitrification.

  18. Feasibility of reusing the black liquor for enzymatic hydrolysis and ethanol fermentation.

    Science.gov (United States)

    Wang, Wen; Chen, Xiaoyan; Tan, Xuesong; Wang, Qiong; Liu, Yunyun; He, Minchao; Yu, Qiang; Qi, Wei; Luo, Yu; Zhuang, Xinshu; Yuan, Zhenhong

    2017-03-01

    The black liquor (BL) generated in the alkaline pretreatment process is usually thought as the environmental pollutant. This study found that the pure alkaline lignin hardly inhibited the enzymatic hydrolysis of cellulose (EHC), which led to the investigation on the feasibility of reusing BL as the buffer via pH adjustment for the subsequent enzymatic hydrolysis and fermentation. The pH value of BL was adjusted from 13.23 to 4.80 with acetic acid, and the alkaline lignin was partially precipitated. It deposited on the surface of cellulose and negatively influenced the EHC via blocking the access of cellulase to cellulose and adsorbing cellulase. The supernatant separated from the acidified BL scarcely affected the EHC, but inhibited the ethanol fermentation. The 4-times diluted supernatant and the last-time waste wash water of the alkali-treated sugarcane bagasse didn't inhibit the EHC and ethanol production. This work gives a clue of saving water for alkaline pretreatment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Precipitation of uranium peroxide from the leach liquor of uranium ores

    International Nuclear Information System (INIS)

    Gao Xizhen; Lin Sirong; Guo Erhua; Lu Shijie

    1995-06-01

    A chemical precipitation process of recovering uranium from the leach liquor of uranium ores was investigated. The process primarily includes the precipitation of iron with lime, the preprocessing of the slurry of iron hydroxides and the precipitation of uranium with H 2 O 2 . The leach liquor is neutralized by lime milk to pH 3.7 to precipitate the iron hydroxides which after flocculation and settle is separated out and preprocessed at 170 degree C in an autoclave. H 2 O 2 is then used to precipitate uranium in the leach liquor free of iron, and the pH of process for uranium precipitation adjusted by adding MgO slurry to 3.5. The barren solution can be used to wash the filter cakes of leach tailing. The precipitated slurry of iron hydroxides after being preprocessed is recycled to leaching processes for recovering uranium in it. This treatment can not only avoid the filtering of the slurry of iron hydroxides, but also prevent the iron precipitate from redissolving and consequently the increase of iron concentration in the leach liquor. The results of the investigation indicate that lime, H 2 O 2 and MgO are the main chemical reagents used to obtain the uranium peroxide product containing over 65% uranium from the leach liquor, and they also do not cause environmental pollution. In accordance with the uranium content in the liquor, the consumption of chemical reagent for H 2 O 2 (30%) and MgO are 0.95 kg/kgU and 0.169 kg/kgU, respectively. (1 fig., 8 tabs., 7 refs.)

  20. Waste Cooking Oil as an Alternate Feedstock for Biodiesel Production

    Directory of Open Access Journals (Sweden)

    M. Rafiqul Islam

    2008-04-01

    Full Text Available As crude oil price reach a new high, the need for developing alternate fuels has become acute. Alternate fuels should be economically attractive in order to compete with currently used fossil fuels. In this work, biodiesel (ethyl ester was prepared from waste cooking oil collected from a local restaurant in Halifax, Nova Scotia, Canada. Ethyl alcohol with sodium hydroxide as a catalyst was used for the transesterification process. The fatty acid composition of the final biodiesel esters was determined by gas chromatography. The biodiesel was characterized by its physical and fuel properties including density, viscosity, acid value, flash point, cloud point, pour point, cetane index, water and sediment content, total and free glycerin content, diglycerides and monoglycerides, phosphorus content and sulfur content according to ASTM standards. The viscosity of the biodiesel ethyl ester was found to be 5.03 mm2/sec at 40oC. The viscosity of waste cooking oil measured in room temperature (at 21° C was 72 mm2/sec. From the tests, the flash point was found to be 164oC, the phosphorous content was 2 ppm, those of calcium and magnesium were 1 ppm combined, water and sediment was 0 %, sulfur content was 2 ppm, total acid number was 0.29 mgKOH/g, cetane index was 61, cloud point was -1oC and pour point was -16oC. Production of biodiesel from waste cooking oils for diesel substitute is particularly important because of the decreasing trend of economical oil reserves, environmental problems caused due to fossil fuel use and the high price of petroleum products in the international market.

  1. Waste cooking oil as an alternate feedstock for biodiesel production

    Energy Technology Data Exchange (ETDEWEB)

    Chhetri, A. B.; Rafiqul Islam, M. [Civil and Resources Engineering Dalhousie University, Room D510, 1360 Barrington St., Box 1000, Halifax, N.S. B3J 2X4 (Canada); Watts, K. Ch. [Process Engineering, Dalhousie University, Halifax, NS, Box 1000, Halifax, N.S. B3J 2X4 (Canada)

    2008-07-01

    As crude oil price reach a new high, the need for developing alternate fuels has become acute. Alternate fuels should be economically attractive in order to compete with currently used fossil fuels. In this work, biodiesel (ethyl ester) was prepared from waste cooking oil collected from a local restaurant in Halifax, Nova Scotia, Canada. Ethyl alcohol with sodium hydroxide as a catalyst was used for the transesterification process. The fatty acid composition of the final biodiesel esters was determined by gas chromatography. The biodiesel was characterized by its physical and fuel properties including density, viscosity, acid value, flash point, cloud point, pour point, cetane index, water and sediment content, total and free glycerin content, diglycerides and monoglycerides, phosphorus content and sulfur content according to ASTM standards. The viscosity of the biodiesel ethyl ester was found to be 5.03 mm{sup 2}/sec at 40 {sup o}C. The viscosity of waste cooking oil measured in room temperature (at 21 {sup o}C) was 72 mm{sup 2}/sec. From the tests, the flash point was found to be 164 {sup o}C, the phosphorous content was 2 ppm, those of calcium and magnesium were 1 ppm combined, water and sediment was 0 %, sulfur content was 2 ppm, total acid number was 0.29 mg KOH/g, cetane index was 61, cloud point was -1 {sup o}C and pour point was -16 {sup o}C. Production of biodiesel from waste cooking oils for diesel substitute is particularly important because of the decreasing trend of economical oil reserves, environmental problems caused due to fossil fuel use and the high price of petroleum products in the international market. (author)

  2. Anaerobic biodegradation of spent sulphite liquor in a UASB reactor

    DEFF Research Database (Denmark)

    Jantsch, T.G.; Angelidaki, Irini; Schmidt, Jens Ejbye

    2002-01-01

    Anaerobic biodegradation of fermented spent sulphite liquor, SSL, which is produced during the manufacture of sulphite pulp, was investigated. SSL contains a high concentration of lignin products in addition to hemicellulose and has a very high COD load (173 g COD l1). Batch experiments...... ðl dÞ1 and hydraulic retention time from 3.7 to 1.5 days. The biogas productivity was 3 l ðlreactor dÞ1, with a yield of 0.05 l gas ðg VSÞ1. These results suggest that anaerobic digestion in UASB reactors may provide a new alternative for the treatment of SSL to other treatment strategies...... such as incineration. Although the total COD reduction achieved is limited, bioenergy is produced and readily biodegradable matter is removed causing less load on post-treatment installations. 2002 Elsevier Science Ltd. All rights reserved....

  3. Subsides for optimization of transfer of radioactive liquid waste from 99MO production plant to the waste treatment facility

    International Nuclear Information System (INIS)

    Rego, Maria Eugenia de Melo; Vicente, Roberto; Hiromoto, Goro

    2013-01-01

    The increasing need for radioisotopes lead Brazil to consider the domestic production of 99 Mo from fission of low enriched uranium targets. In order to meet the present demand of 99m Tc generators the planned 'end of irradiation' activity of 99 Mo is about 170 TBq per week. The radioactive waste from the production plant will be transferred to a waste treatment facility at the same site. The total activity of the actinides, fission and activation products present in the waste were predicted based on the fission yield and activation data for the irradiation conditions, such as composition and mass of uranium targets, irradiation time, neutron flux, production process and schedule, already established by the project management. The transfer of the waste from the production plant to the treatment facility will be done by means of special shielded packages. In the present study, the commercially available code Scale 6.0 was used to simulate the irradiation of the targets and the decay of radioactive products, assuming that an alkaline dissolution process would be performed on the targets before the removal and purification of 99 Mo. The assessment of the shielding required for the packages containing liquid waste was done using MicroShield 9 code. The results presented here are part of a project that aims at contributing to the design of the waste management system for the 99 Mo production facility. (author)

  4. Subsides for optimization of transfer of radioactive liquid waste from {sup 99}MO production plant to the waste treatment facility

    Energy Technology Data Exchange (ETDEWEB)

    Rego, Maria Eugenia de Melo; Vicente, Roberto; Hiromoto, Goro, E-mail: maria.eugenia@ipen.br, E-mail: rvicente@ipen.br, E-mail: hiromoto@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2013-07-01

    The increasing need for radioisotopes lead Brazil to consider the domestic production of {sup 99}Mo from fission of low enriched uranium targets. In order to meet the present demand of {sup 99m}Tc generators the planned 'end of irradiation' activity of {sup 99}Mo is about 170 TBq per week. The radioactive waste from the production plant will be transferred to a waste treatment facility at the same site. The total activity of the actinides, fission and activation products present in the waste were predicted based on the fission yield and activation data for the irradiation conditions, such as composition and mass of uranium targets, irradiation time, neutron flux, production process and schedule, already established by the project management. The transfer of the waste from the production plant to the treatment facility will be done by means of special shielded packages. In the present study, the commercially available code Scale 6.0 was used to simulate the irradiation of the targets and the decay of radioactive products, assuming that an alkaline dissolution process would be performed on the targets before the removal and purification of {sup 99}Mo. The assessment of the shielding required for the packages containing liquid waste was done using MicroShield 9 code. The results presented here are part of a project that aims at contributing to the design of the waste management system for the {sup 99}Mo production facility. (author)

  5. Biogas Production from Citrus Waste by Membrane Bioreactor

    Directory of Open Access Journals (Sweden)

    Rachma Wikandari

    2014-08-01

    Full Text Available Rapid acidification and inhibition by d-limonene are major challenges of biogas production from citrus waste. As limonene is a hydrophobic chemical, this challenge was encountered using hydrophilic polyvinylidine difluoride (PVDF membranes in a biogas reactor. The more sensitive methane-producing archaea were encapsulated in the membranes, while freely suspended digesting bacteria were present in the culture as well. In this membrane bioreactor (MBR, the free digesting bacteria digested the citrus wastes and produced soluble compounds, which could pass through the membrane and converted to biogas by the encapsulated cell. As a control experiment, similar digestions were carried out in bioreactors containing the identical amount of just free cells. The experiments were carried out in thermophilic conditions at 55 °C, and hydraulic retention time of 30 days. The organic loading rate (OLR was started with 0.3 kg VS/m3/day and gradually increased to 3 kg VS/m3/day. The results show that at the highest OLR, MBR was successful to produce methane at 0.33 Nm3/kg VS, while the traditional free cell reactor reduced its methane production to 0.05 Nm3/kg VS. Approximately 73% of the theoretical methane yield was achieved using the membrane bioreactor.

  6. Waste processing system for product contaminated with radioactivity

    International Nuclear Information System (INIS)

    Sotoyama, Koichi; Takaya, Jun-ichi; Takahashi, Suehiro.

    1987-01-01

    Purpose: To enable to processing contaminated products while separating them into metals at high contamination level and non-metals at low contamination level. Constitution: Pulverized radioactive wastes conveyed on a conveyor belt are uniformly irradiated by a ring-illumination device and then they are picked-up by a television camera or the like. The picked-up signals are sent to an image processing device, applied with appropriate binarization and metal objects are separated by utilizing the light absorbing property of non-metal and light reflection property of metals. The graviational center for the metal object is calculated from the binarized image, the positional information is provided to a robot controller and the metal object is transferred to another position by a robot. Since only the metal object at high radioactive contamination level can be taken out separately, it is no more necessary to process the entire wastes as the high level decontamination products, to thereby provide an economical advantage. (Sekiya, K.)

  7. Method of producing solidification product of radioactive waste

    International Nuclear Information System (INIS)

    Masuda, Shunji; Iwami, Etsuji; Kadota, Keishi.

    1989-01-01

    Layers of thermosetting resin composition capable of curing at normal temperature are formed to a thickness of 2 to 5 mm at the bottom of a container. As the thermosetting resin composition capable of curing at normal temperature, there can be mentioned, for example, unsaturated polyester resin comprising a polymerizable monomer and an unsaturated polyester. After the layers are cured, a mixture of radioactive wastes and the thermosetting resin composition capable of curing at normal temperature is filled on the layer. After curing, thermosetting resin composition capable of curing at normal temperature is filled so as to fill gaps between the curing product and the container caused by curing shrinkage and at the upper surface of the curing products. After curing, plastic layers are formed at the surface. This can avoid residual bubbles in the layers or development of cracks. Further, leaching rate of Na ions is low and water proofness can be improved as well. (T.M.)

  8. Conceptual waste package interim product specifications and data requirements for disposal of borosilicate glass defense high-level waste forms in salt geologic repositories

    International Nuclear Information System (INIS)

    1983-06-01

    The conceptual waste package interim product specifications and data requirements presented are applicable specifically to the normal borosilicate glass product of the Defense Waste Processing Facility (DWPF). They provide preliminary numerical values for the defense high-level waste form parameters and properties identified in the waste form performance specification for geologic isolation in salt repositories. Subject areas treated include containment and isolation, operational period safety, criticality control, waste form/production canister identification, and waste package performance testing requirements. This document was generated for use in the development of conceptual waste package designs in salt. It will be revised as additional data, analyses, and regulatory requirements become available

  9. Composition, Production Rate and Management of Dental Solid Waste in 2017 in Birjand, Iran

    Directory of Open Access Journals (Sweden)

    Habibe Momeni

    2018-01-01

    Full Text Available Background: The presence of toxic and pathogenic agents in the dental waste products has made it to be classified as “hazardous waste.” Objective: To assess dental waste production rate and composition and approaches used to manage these waste products in 2017 in Birjand, Iran. Methods: 48 dental clinics were evaluated in two months of 2017. Sampling was performed from each clinic 3 times a week. Samples were manually divided into 5 categories of chemical-pharmaceutical, infectious, semi-household, sharp and cutting materials, and toxic waste products, and weighed. A checklist containing 25 questions was used to evaluate the aspects of waste management in dental clinics. Results: The total amount of waste products generated in dental clinics was 7848.02 kg/ year in which semi-household waste had the highest quantity (4263.411 kg/year and toxic waste had the lowest quantity (9.275 kg/year. Components with the highest amounts in dentistry waste products were nylon gloves (16.7%, paper and cardboard (13.4%, latex gloves (10.8%, and pharmaceuticals (10.2%. Waste separation was restricted to sharp and cutting waste. More than half (57% of dental units were equipped with amalgam filter. Fixing solutions were directly discharged to sewage in 48.6% of clinics. There was no program to reduce waste generation in 54% of the clinics. Autoclave was the main tool for sterilizing dental instruments. Conclusion: This study showed a remarkable share of recyclable materials in the composition of dental waste and lack of special approach to manage waste in dental clinics. It is necessary to plan for minimizing generation of, separating, and recycling waste at source.

  10. Composition, Production Rate and Management of Dental Solid Waste in 2017 in Birjand, Iran.

    Science.gov (United States)

    Momeni, Habibe; Tabatabaei Fard, Seyyedeh Fatemeh; Arefinejad, Aliye; Afzali, Afsane; Talebi, Farkhonde; Rahmanpour Salmani, Elham

    2018-01-01

    The presence of toxic and pathogenic agents in the dental waste products has made it to be classified as "hazardous waste." To assess dental waste production rate and composition and approaches used to manage these waste products in 2017 in Birjand, Iran. 48 dental clinics were evaluated in two months of 2017. Sampling was performed from each clinic 3 times a week. Samples were manually divided into 5 categories of chemical-pharmaceutical, infectious, semi-household, sharp and cutting materials, and toxic waste products, and weighed. A checklist containing 25 questions was used to evaluate the aspects of waste management in dental clinics. The total amount of waste products generated in dental clinics was 7848.02 kg/ year in which semi-household waste had the highest quantity (4263.411 kg/year) and toxic waste had the lowest quantity (9.275 kg/year). Components with the highest amounts in dentistry waste products were nylon gloves (16.7%), paper and cardboard (13.4%), latex gloves (10.8%), and pharmaceuticals (10.2%). Waste separation was restricted to sharp and cutting waste. More than half (57%) of dental units were equipped with amalgam filter. Fixing solutions were directly discharged to sewage in 48.6% of clinics. There was no program to reduce waste generation in 54% of the clinics. Autoclave was the main tool for sterilizing dental instruments. This study showed a remarkable share of recyclable materials in the composition of dental waste and lack of special approach to manage waste in dental clinics. It is necessary to plan for minimizing generation of, separating, and recycling waste at source.

  11. High efficiency power production from biomass and waste

    Energy Technology Data Exchange (ETDEWEB)

    Rabou, L.P.L.M.; Van Leijenhorst, R.J.C.; Hazewinkel, J.H.O. [ECN Biomass, Coal and Environment, Petten (Netherlands)

    2008-11-15

    Two-stage gasification allows power production from biomass and waste with high efficiency. The process involves pyrolysis at about 550C followed by heating of the pyrolysis gas to about 1300C in order to crack hydrocarbons and obtain syngas, a mixture of H2, CO, H2O and CO2. The second stage produces soot as unwanted by-product. Experimental results are reported on the suppression of soot formation in the second stage for two different fuels: beech wood pellets and Rofire pellets, made from rejects of paper recycling. Syngas obtained from these two fuels and from an industrial waste fuel has been cleaned and fed to a commercial SOFC stack for 250 hours in total. The SOFC stack showed comparable performance on real and synthetic syngas and no signs of accelerated degradation in performance over these tests. The experimental results have been used for the design and analysis of a future 25 MWth demonstration plant. As an alternative, a 2.6 MWth system was considered which uses the Green MoDem approach to convert waste fuel into bio-oil and syngas. The 25 MWth system can reach high efficiency only if char produced in the pyrolysis step is converted into additional syngas by steam gasification, and if SOFC off-gas and system waste heat are used in a steam bottoming cycle for additional power production. A net electrical efficiency of 38% is predicted. In addition, heat can be delivered with 37% efficiency. The 2.6 MWth system with only a dual fuel engine to burn bio-oil and syngas promises nearly 40% electrical efficiency plus 41% efficiency for heat production. If syngas is fed to an SOFC system and off-gas and bio-oil to a dual fuel engine, the electrical efficiency can rise to 45%. However, the efficiency for heat production drops to 15%, as waste heat from the SOFC system cannot be used effectively. The economic analysis makes clear that at -20 euro/tonne fuel, 70 euro/MWh for electricity and 7 euro/GJ for heat the 25 MWth system is not economically viable at the

  12. Classification of Multiple Chinese Liquors by Means of a QCM-based E-Nose and MDS-SVM Classifier.

    Science.gov (United States)

    Li, Qiang; Gu, Yu; Jia, Jing

    2017-01-30

    Chinese liquors are internationally well-known fermentative alcoholic beverages. They have unique flavors attributable to the use of various bacteria and fungi, raw materials, and production processes. Developing a novel, rapid, and reliable method to identify multiple Chinese liquors is of positive significance. This paper presents a pattern recognition system for classifying ten brands of Chinese liquors based on multidimensional scaling (MDS) and support vector machine (SVM) algorithms in a quartz crystal microbalance (QCM)-based electronic nose (e-nose) we designed. We evaluated the comprehensive performance of the MDS-SVM classifier that predicted all ten brands of Chinese liquors individually. The prediction accuracy (98.3%) showed superior performance of the MDS-SVM classifier over the back-propagation artificial neural network (BP-ANN) classifier (93.3%) and moving average-linear discriminant analysis (MA-LDA) classifier (87.6%). The MDS-SVM classifier has reasonable reliability, good fitting and prediction (generalization) performance in classification of the Chinese liquors. Taking both application of the e-nose and validation of the MDS-SVM classifier into account, we have thus created a useful method for the classification of multiple Chinese liquors.

  13. Classification of Multiple Chinese Liquors by Means of a QCM-based E-Nose and MDS-SVM Classifier

    Directory of Open Access Journals (Sweden)

    Qiang Li

    2017-01-01

    Full Text Available Chinese liquors are internationally well-known fermentative alcoholic beverages. They have unique flavors attributable to the use of various bacteria and fungi, raw materials, and production processes. Developing a novel, rapid, and reliable method to identify multiple Chinese liquors is of positive significance. This paper presents a pattern recognition system for classifying ten brands of Chinese liquors based on multidimensional scaling (MDS and support vector machine (SVM algorithms in a quartz crystal microbalance (QCM-based electronic nose (e-nose we designed. We evaluated the comprehensive performance of the MDS-SVM classifier that predicted all ten brands of Chinese liquors individually. The prediction accuracy (98.3% showed superior performance of the MDS-SVM classifier over the back-propagation artificial neural network (BP-ANN classifier (93.3% and moving average-linear discriminant analysis (MA-LDA classifier (87.6%. The MDS-SVM classifier has reasonable reliability, good fitting and prediction (generalization performance in classification of the Chinese liquors. Taking both application of the e-nose and validation of the MDS-SVM classifier into account, we have thus created a useful method for the classification of multiple Chinese liquors.

  14. High-level waste-form-product performance evaluation

    International Nuclear Information System (INIS)

    Bernadzikowski, T.A.; Allender, J.S.; Stone, J.A.; Gordon, D.E.; Gould, T.H. Jr.; Westberry, C.F. III.

    1982-01-01

    Seven candidate waste forms were evaluated for immobilization and geologic disposal of high-level radioactive wastes. The waste forms were compared on the basis of leach resistance, mechanical stability, and waste loading. All forms performed well at leaching temperatures of 40, 90, and 150 0 C. Ceramic forms ranked highest, followed by glasses, a metal matrix form, and concrete. 11 tables

  15. Combustion properties of kraft black liquors; Mustalipeaen koostumuksen vaikutus lipeaen poltto-ominaisuuksiin

    Energy Technology Data Exchange (ETDEWEB)

    Alen, R.; Siistonen, H.; Heikkinen, T.; Malkavaara, P. [Jyvaeskylae Univ. (Finland)

    1996-12-01

    The aim of this work is to study the combustion properties of kraft black liquors from modified cooking. Both the industrial and laboratory-made black liquors are included. In addition, changes in the combustion properties of the spent liquors obtained by mixing prior to combustion different chlorine-free bleach liquors with black liquor are studied. (author)

  16. Elimination of Phenol and Color from Pulping Black Liquor Using Electrocoagulation Process

    Directory of Open Access Journals (Sweden)

    Nahid Rastegarfar

    2013-08-01

    Full Text Available There are many non-wood lignocelluloses resources such as wheat, rice straw and other agriculture by- products with appropriate feature for pulp production in Iran. The most major deterrent to their use is presence of pulping black liquor that due to lignin of lignocelluloses solution contains significant amounts of color and phenol compounds. The aim of this paper was investigation of the ability to remove phenol and color as the most important organic pollutants from back liquor of agri-based pulping process using electrocoagulation method. In the electrocoagulation process aluminium electrode was used and cell potential and current intensity were adjusted on 16 V and 1700 mA respectively. The effect of various treatment time (10, 25, 40, 55, 70 min and initial pH (3, 5, 7, 9, 10/5 of black liquor were investigated.The results showed that maximum of decrease obtained at pH 5 that has led to a remove capacity 78% of phenol and 98% of color in treatment time 70 min. electrocoagulation method can be used for black liquor treatment because of simple, effective and its low investment cost compared to other technologies.

  17. Bacterial Cellulose Production from Industrial Waste and by-Product Streams.

    Science.gov (United States)

    Tsouko, Erminda; Kourmentza, Constantina; Ladakis, Dimitrios; Kopsahelis, Nikolaos; Mandala, Ioanna; Papanikolaou, Seraphim; Paloukis, Fotis; Alves, Vitor; Koutinas, Apostolis

    2015-07-01

    The utilization of fermentation media derived from waste and by-product streams from biodiesel and confectionery industries could lead to highly efficient production of bacterial cellulose. Batch fermentations with the bacterial strain Komagataeibacter sucrofermentans DSM (Deutsche Sammlung von Mikroorganismen) 15973 were initially carried out in synthetic media using commercial sugars and crude glycerol. The highest bacterial cellulose concentration was achieved when crude glycerol (3.2 g/L) and commercial sucrose (4.9 g/L) were used. The combination of crude glycerol and sunflower meal hydrolysates as the sole fermentation media resulted in bacterial cellulose production of 13.3 g/L. Similar results (13 g/L) were obtained when flour-rich hydrolysates produced from confectionery industry waste streams were used. The properties of bacterial celluloses developed when different fermentation media were used showed water holding capacities of 102-138 g · water/g · dry bacterial cellulose, viscosities of 4.7-9.3 dL/g, degree of polymerization of 1889.1-2672.8, stress at break of 72.3-139.5 MPa and Young's modulus of 0.97-1.64 GPa. This study demonstrated that by-product streams from the biodiesel industry and waste streams from confectionery industries could be used as the sole sources of nutrients for the production of bacterial cellulose with similar properties as those produced with commercial sources of nutrients.

  18. Bacterial Cellulose Production from Industrial Waste and by-Product Streams

    Directory of Open Access Journals (Sweden)

    Erminda Tsouko

    2015-07-01

    Full Text Available The utilization of fermentation media derived from waste and by-product streams from biodiesel and confectionery industries could lead to highly efficient production of bacterial cellulose. Batch fermentations with the bacterial strain Komagataeibacter sucrofermentans DSM (Deutsche Sammlung von Mikroorganismen 15973 were initially carried out in synthetic media using commercial sugars and crude glycerol. The highest bacterial cellulose concentration was achieved when crude glycerol (3.2 g/L and commercial sucrose (4.9 g/L were used. The combination of crude glycerol and sunflower meal hydrolysates as the sole fermentation media resulted in bacterial cellulose production of 13.3 g/L. Similar results (13 g/L were obtained when flour-rich hydrolysates produced from confectionery industry waste streams were used. The properties of bacterial celluloses developed when different fermentation media were used showed water holding capacities of 102–138 g·water/g·dry bacterial cellulose, viscosities of 4.7–9.3 dL/g, degree of polymerization of 1889.1–2672.8, stress at break of 72.3–139.5 MPa and Young’s modulus of 0.97–1.64 GPa. This study demonstrated that by-product streams from the biodiesel industry and waste streams from confectionery industries could be used as the sole sources of nutrients for the production of bacterial cellulose with similar properties as those produced with commercial sources of nutrients.

  19. Renewable Energy Production from DoD Installation Solid Wastes by Anaerobic Digestion

    Science.gov (United States)

    2016-06-01

    ENGINEERING GUIDANCE REPORT Renewable Energy Production from DoD Installation Solid Wastes by Anaerobic Digestion ESTCP Project ER-200933 JUNE...Defense. Page Intentionally Left Blank Renewable Energy Production From DoD Installation Solid Wastes by Anaerobic Digestion ii June 2016 REPORT...3. DATES COVERED (2009 – 2016) 4. TITLE AND SUBTITLE Renewable Energy Production from DoD Installation Solid Wastes by Anaerobic Digestion 5a

  20. Production of bacterial cellulose and enzyme from waste fiber sludge

    Science.gov (United States)

    2013-01-01

    Background Bacterial cellulose (BC) is a highly crystalline and mechanically stable nanopolymer, which has excellent potential as a material in many novel applications, especially if it can be produced in large amounts from an inexpensive feedstock. Waste fiber sludge, a residue with little or no value, originates from pulp mills and lignocellulosic biorefineries. A high cellulose and low lignin content contributes to making the fiber sludge suitable for bioconversion, even without a thermochemical pretreatment step. In this study, the possibility to combine production of BC and hydrolytic enzymes from fiber sludge was investigated. The BC was characterized using field-emission scanning electron microscopy and X-ray diffraction analysis, and its mechanical properties were investigated. Results Bacterial cellulose and enzymes were produced through sequential fermentations with the bacterium Gluconacetobacter xylinus and the filamentous fungus Trichoderma reesei. Fiber sludges from sulfate (SAFS) and sulfite (SIFS) processes were hydrolyzed enzymatically without prior thermochemical pretreatment and the resulting hydrolysates were used for BC production. The highest volumetric yields of BC from SAFS and SIFS were 11 and 10 g/L (DW), respectively. The BC yield on initial sugar in hydrolysate-based medium reached 0.3 g/g after seven days of cultivation. The tensile strength of wet BC from hydrolysate medium was about 0.04 MPa compared to about 0.03 MPa for BC from a glucose-based reference medium, while the crystallinity was slightly lower for BC from hydrolysate cultures. The spent hydrolysates were used for production of cellulase with T. reesei. The cellulase activity (CMCase activity) in spent SAFS and SIFS hydrolysates reached 5.2 U/mL (87 nkat/mL), which was similar to the activity level obtained in a reference medium containing equal amounts of reducing sugar. Conclusions It was shown that waste fiber sludge is a suitable raw material for production of

  1. Systems evolution of waste and by-product management and bioenergy production

    Energy Technology Data Exchange (ETDEWEB)

    Okkonen, L.

    2009-07-01

    Evolutionary economic geography provides an inspiring extension to geographical systems analysis. The objective of this dissertation is to apply the systems approach and theory as an integrative framework of sustainable development, and as a capable analytical tool in the analysis of evolutionary resource management and energy production systems in their geographical contexts. The systems investigated are waste and by-product management and bioenergy production systems located in Finland and Scotland. Industrial ecosystem (IE) indicators are constructed for the analysis of waste and by-product management. They present both direct and indirect environmental, economic and social impacts of local waste management operations. The indicators are further applied in scenarios that dynamise the evolution of systems material and energy flows towards the balanced environmental, economic and social development, i.e. the vision of the industrial ecology. The results indicate that the energy use of waste derived fuels in regional cooperation has much potential in the development towards the optimal roundput model of industrial ecosystem. The business opportunities based on local woodfuels are investigated in the context of Scottish forestry policy. The evolution of institutional environments and arrangements of forest management in the Scottish Highlands enables a new type of rural entrepreneurship. The case study of Finnish heat entrepreneurship constructs a heat energy business model, including both the business architecture for product/service flows and the earning logics. Finally, a synthesis of the evolution of natural resource management systems is presented. The evolution process has many geographical contingent conditions, such as resources, technologies, institutions and organisations. Together with general socio-economic mechanisms, they affect the actors in spatial economic processes and interactions. Realisations of the system evolution are structures of economies

  2. Evaluation of the increasing of radioactive wastes production at the Instituto de Energia Atomica, Brazil

    International Nuclear Information System (INIS)

    Sawakuchi, R.S.; Sordi, G.A.A.

    1976-01-01

    This evaluation has the purpose of selecting a new method for radioactive waste disposal at the IEA (Brazil). A production growth pattern for radioactive waste was established. The growth of radioactive wastes produced at the IEA was estimated for the next ten years

  3. Trash to Gas: Converting Space Waste into Useful Supply Products

    Science.gov (United States)

    Tsoras, Alexandra

    2013-01-01

    The cost of sending mass into space with current propulsion technology is very expensive, making every item a crucial element of the space mission. It is essential that all materials be used to their fullest potential. Items like food, packaging, clothing, paper towels, gloves, etc., normally become trash and take up space after use. These waste materials are currently either burned up upon reentry in earth's atmosphere or sent on cargo return vehicles back to earth: a very wasteful method. The purpose of this project was to utilize these materials and create useful products like water and methane gas, which is used for rocket fuel, to further supply a deep space mission. The system used was a thermal degradation reactor with the configuration of a down-draft gasifier. The reactor was loaded with approximately 100g of trash simulant and heated with two external ceramic heaters with separate temperature control in order to create pyrolysis and gasification in one zone and incineration iri a second zone simultaneously. Trash was loaded into the top half of the reactor to undergo pyrolysis while the downdraft gas experienced gasification or incineration to treat tars and maximize the production of carbon dioxide. Minor products included carbon monoxide, methane, and other hydrocarbons. The carbon dioxide produced can be sent to a Sabatier reactor to convert the gas into methane, which can be used as rocket propellant. In order to maximize the carbon dioxide and useful gases produced, and minimize the unwanted tars and leftover ashen material, multiple experiments were performed with altered parameters such as differing temperatures, flow rates, and location of inlet air flow. According to the data received from these experiments, the process will be further scaled up and optimized to ultimately create a system that reduces trash buildup while at the same time providing enough useful gases to potentially fill a methane tank that could fuel a lunar ascent vehicle or

  4. Effect of Paper Waste Products as a Litter Material on Broiler Performance

    Directory of Open Access Journals (Sweden)

    Serdar Özlü

    2017-12-01

    Full Text Available This study conducted to determine the possibilities of using the paper waste products as a litter material in broiler production. A total of 468 Ross 308 broilers were used in this experiment. Litter materials were rice hulls (RH, waste paper (WP and mix of them (50 % RH + 50 % WP. BW was approximately 60 g heavier in waste paper group compare to other two litter groups at 42d of age. Type of litter material had no significant effects on feed conversion ratio, livability and leg defect. Therefore, paper waste products have potential as an alternative litter material for broiler production.

  5. Microbial Transformations of Actinides and Fission Products in Radioactive Waste

    Energy Technology Data Exchange (ETDEWEB)

    Francis, A. J. [Pohang Univ. Science and Technology, Pohang (Korea, Republic of)

    2011-07-01

    The environmental factors that can affect microbial growth and activity include moisture, temperature, ph, Eh, availability of organic and inorganic nutrients, and radiation. The microbial activity in a specific repository is influenced by the ambient environment of the repository, and the materials to be emplaced. For example, a repository in unsaturated igneous rock formations such as volcanic tuff rocks at Yucca Mountain is generally expected to be oxidizing; a repository in a hydrologically expected to be oxidizing; a repository in a hydrologically saturated zone, especially in sedimentary rocks, could be reducing. Sedimentary rocks contain a certain amount of organic matter, which may stimulate microbial activities and, thus maintain the repository and its surrounding areas at reducing conditions. Although the impacts of microbial activity on high-level nuclear waste and the long-term performance of the repository have not fully investigated, little microbial activity is expected in the near-field because of the radiation, lack of nutrients and the harsh conditions. However in the far-field microbial effects could be significant. Much of our understanding of the microbial effects on radionuclides stems from studies conducted with selected transuranic elements and fission products and limited studies with low-level radioactive wastes. Significant aerobic- and anaerobic-microbial activity is expected to occur in the waste because of the presence of electron donors and acceptors. The actinides initially may be present as soluble- or insoluble-forms but, after disposal, may be converted from one to the other by microorganisms. The direct enzymatic or indirect non-enzymatic actions of microbes could alter the speciation, solubility, and sorption properties of the actinides, thereby increasing or decreasing their concentrations in solution.

  6. Lipase production by Penicillium restrictum using solid waste of industrial babassu oil production as substrate.

    Science.gov (United States)

    Palma, M B; Pinto, A L; Gombert, A K; Seitz, K H; Kivatinitz, S C; Castilho, L R; Freire, D M

    2000-01-01

    Lipase, protease, and amylase production by Penicillium restrictum in solid-state fermentation was investigated. The basal medium was an industrial waste of babassu oil (Orbignya oleifera) production. It was enriched with peptone, olive oil, and Tween-80. The supplementation positively influenced both enzyme production and fungal growth. Media enriched with Tween-80 provided the highest protease activity (8.6 U/g), whereas those enriched with peptone and olive oil led to the highest lipase (27.8 U/g) and amylase (31.8 U/g) activities, respectively.

  7. Production of bioethanol using agricultural waste: banana pseudo stem

    Directory of Open Access Journals (Sweden)

    Snehal Ingale

    2014-09-01

    Full Text Available India is amongst the largest banana (Musa acuminata producing countries and thus banana pseudo stem is commonly available agricultural waste to be used as lignocellulosic substrate. Present study focuses on exploitation of banana pseudo stem as a source for bioethanol production from the sugars released due to different chemical and biological pretreatments. Two fungal strains Aspergillus ellipticus and Aspergillus fumigatus reported to be producing cellulolytic enzymes on sugarcane bagasse were used under co-culture fermentation on banana pseudo stem to degrade holocellulose and facilitate maximum release of reducing sugars. The hydrolysate obtained after alkali and microbial treatments was fermented by Saccharomyces cerevisiae NCIM 3570 to produce ethanol. Fermentation of cellulosic hydrolysate (4.1 g% gave maximum ethanol (17.1 g/L with yield (84% and productivity (0.024 g%/h after 72 h. Some critical aspects of fungal pretreatment for saccharification of cellulosic substrate using A. ellipticus and A. fumigatus for ethanol production by S. cerevisiae NCIM 3570 have been explored in this study. It was observed that pretreated banana pseudo stem can be economically utilized as a cheaper substrate for ethanol production.

  8. Bioconversion of garden waste, kitchen waste and cow dung into value-added products using earthworm Eisenia fetida.

    Science.gov (United States)

    Wani, K A; Mamta; Rao, R J

    2013-04-01

    Solid waste management is a worldwide problem and it is becoming more and more complicated day by day due to rise in population, industrialization and changes in our life style. Transformation of industrial sludges into vermicompost is of double interest: on the one hand, a waste is converted into value added product, and, on the other, it controls a pollutant that is a consequence of increasing industrialization. Garden waste, kitchen waste and cow dung were subjected to recycle through vermicomposting by using the epigeic earthworm Eisenia fetida under field conditions. The pH, moisture content, total organic carbon, humus, nitrogen, phosphorous and potassium in vermicompost was analysed. It was found that moisture content, total organic carbon, humus, nitrogen, phosphorous and potassium was high in cow dung, followed by kitchen waste and garden waste. This study clearly indicates that vermicomposting of garden waste, kitchen waste and cow dung can not only produce a value added produce (vermicomposting) but at the same time reduce the quantity of waste.

  9. Bioconversion of garden waste, kitchen waste and cow dung into value-added products using earthworm Eisenia fetida

    Science.gov (United States)

    Wani, K.A.; Mamta; Rao, R.J.

    2013-01-01

    Solid waste management is a worldwide problem and it is becoming more and more complicated day by day due to rise in population, industrialization and changes in our life style. Transformation of industrial sludges into vermicompost is of double interest: on the one hand, a waste is converted into value added product, and, on the other, it controls a pollutant that is a consequence of increasing industrialization. Garden waste, kitchen waste and cow dung were subjected to recycle through vermicomposting by using the epigeic earthworm Eisenia fetida under field conditions. The pH, moisture content, total organic carbon, humus, nitrogen, phosphorous and potassium in vermicompost was analysed. It was found that moisture content, total organic carbon, humus, nitrogen, phosphorous and potassium was high in cow dung, followed by kitchen waste and garden waste. This study clearly indicates that vermicomposting of garden waste, kitchen waste and cow dung can not only produce a value added produce (vermicomposting) but at the same time reduce the quantity of waste. PMID:23961230

  10. Lignocellulolytic enzyme production of Pleurotus ostreatus growth in agroindustrial wastes

    Directory of Open Access Journals (Sweden)

    José Maria Rodrigues da Luz

    2012-12-01

    Full Text Available The mushroom Pleurotus ostreatus has nutritional and medicinal characteristics that depend on the growth substrate. In nature, this fungus grows on dead wood, but it can be artificially cultivated on agricultural wastes (coffee husks, eucalyptus sawdust, corncobs and sugar cane bagasse. The degradation of agricultural wastes involves some enzyme complexes made up of oxidative (laccase, manganese peroxidase and lignin peroxidase and hydrolytic enzymes (cellulases, xylanases and tanases. Understanding how these enzymes work will help to improve the productivity of mushroom cultures and decrease the potential pollution that can be caused by inadequate discharge of the agroindustrial residues. The objective of this work was to assess the activity of the lignocellulolytic enzymes produced by two P. ostreatus strains (PLO 2 and PLO 6. These strains were used to inoculate samples of coffee husks, eucalyptus sawdust or eucalyptus bark add with or without 20 % rice bran. Every five days after substrate inoculation, the enzyme activity and soluble protein concentration were evaluated. The maximum activity of oxidative enzymes was observed at day 10 after inoculation, and the activity of the hydrolytic enzymes increased during the entire period of the experiment. The results show that substrate composition and colonization time influenced the activity of the lignocellulolytic enzymes.

  11. Valorization of rice straw waste: production of porcelain tiles

    Directory of Open Access Journals (Sweden)

    Álvaro Guzmán A

    2015-12-01

    Full Text Available Abstract The rice industry generates huge amounts of rice straw ashes (RSA. This paper presents the results of an experimental research work about the incorporation of RSA waste as a new alternative raw material for production of porcelain tiles. The RSA replaces, partially or completely, the non-plastic raw materials (quartz (feldspathic sand in this research and feldspar, that together with the clays, constitute the major constituents of formulations of porcelain tiles. A standard industrial composition (0% RSA and two more compositions in which feldspar and feldspathic sand were replaced with two percentages of RSA (12.5% RSA and 60% RSA were formulated, keeping the clay content constant. The mixtures were processed, reproducing industrial porcelain tile manufacturing conditions by the dry route and fired at peak temperatures varying from 1140-1260 ºC. The results showed that additions of 12.5% RSA in replacement of feldspar and feldspathic sand allowed producing porcelain tiles that did not display marked changes in processing behaviour, in addition to obtain a microstructure and the typical mineralogical phases of porcelain tile. Thus, an alternative use of an agricultural waste material is proposed, which can be translated into economic and environmental benefits.

  12. Biodiesel production from waste frying oils and its quality control.

    Science.gov (United States)

    Sabudak, T; Yildiz, M

    2010-05-01

    The use of biodiesel as fuel from alternative sources has increased considerably over recent years, affording numerous environmental benefits. Biodiesel an alternative fuel for diesel engines is produced from renewable sources such as vegetable oils or animal fats. However, the high costs implicated in marketing biodiesel constitute a major obstacle. To this regard therefore, the use of waste frying oils (WFO) should produce a marked reduction in the cost of biodiesel due to the ready availability of WFO at a relatively low price. In the present study waste frying oils collected from several McDonald's restaurants in Istanbul, were used to produce biodiesel. Biodiesel from WFO was prepared by means of three different transesterification processes: a one-step base-catalyzed, a two-step base-catalyzed and a two-step acid-catalyzed transesterification followed by base transesterification. No detailed previous studies providing information for a two-step acid-catalyzed transesterification followed by a base (CH(3)ONa) transesterification are present in literature. Each reaction was allowed to take place with and without tetrahydrofuran added as a co-solvent. Following production, three different procedures; washing with distilled water, dry wash with magnesol and using ion-exchange resin were applied to purify biodiesel and the best outcome determined. The biodiesel obtained to verify compliance with the European Standard 14214 (EN 14214), which also corresponds to Turkish Biodiesel Standards. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  13. Composition and production rate of pharmaceutical and chemical waste from Xanthi General Hospital in Greece

    International Nuclear Information System (INIS)

    Voudrias, Evangelos; Goudakou, Lambrini; Kermenidou, Marianthi; Softa, Aikaterini

    2012-01-01

    Highlights: ► We studied pharmaceutical and chemical waste production in a Greek hospital. ► Pharmaceutical waste comprised 3.9% w/w of total hazardous medical waste. ► Unit production rate for total pharmaceutical waste was 12.4 ± 3.90 g/patient/d. ► Chemical waste comprised 1.8% w/w of total hazardous medical waste. ► Unit production rate for total chemical waste was 5.8 ± 2.2 g/patient/d. - Abstract: The objective of this work was to determine the composition and production rates of pharmaceutical and chemical waste produced by Xanthi General Hospital in Greece (XGH). This information is important to design and cost management systems for pharmaceutical and chemical waste, for safety and health considerations and for assessing environmental impact. A total of 233 kg pharmaceutical and 110 kg chemical waste was collected, manually separated and weighed over a period of five working weeks. The total production of pharmaceutical waste comprised 3.9% w/w of the total hazardous medical waste produced by the hospital. Total pharmaceutical waste was classified in three categories, vial waste comprising 51.1%, syringe waste with 11.4% and intravenous therapy (IV) waste with 37.5% w/w of the total. Vial pharmaceutical waste only was further classified in six major categories: antibiotics, digestive system drugs, analgesics, hormones, circulatory system drugs and “other”. Production data below are presented as average (standard deviation in parenthesis). The unit production rates for total pharmaceutical waste for the hospital were 12.4 (3.90) g/patient/d and 24.6 (7.48) g/bed/d. The respective unit production rates were: (1) for vial waste 6.4 (1.6) g/patient/d and 13 (2.6) g/bed/d, (2) for syringe waste 1.4 (0.4) g/patient/d and 2.8 (0.8) g/bed/d and (3) for IV waste 4.6 (3.0) g/patient/d and 9.2 (5.9) g/bed/d. Total chemical waste was classified in four categories, chemical reagents comprising 18.2%, solvents with 52.3%, dyes and tracers with 18.2% and

  14. Production of single cell protein (SCP) from food and agricultural waste by using Saccharomyces cerevisiae.

    Science.gov (United States)

    Gervasi, Teresa; Pellizzeri, Vito; Calabrese, Giorgio; Di Bella, Giuseppa; Cicero, Nicola; Dugo, Giacomo

    2018-03-01

    Food waste is the single-largest component of the waste stream, in order to protect and safeguard the public health, useful and innovative recycling methods are investigated. The conversion of food wastes in value-added products is becoming a more economically viable and interesting practice. Food waste, collected in the distribution sector and citrus industries, was characterised for its potential as a raw material to use in fermentation processes. In this study, the production of single-cell protein (SCP) using food waste as a substrate was investigated. The purpose of this study has been to produce SCP from mixtures of food waste using Saccharomyces cerevisiae. The main fermentation test was carried out using a 25 l bioreactor. The utilisation of food waste can allow us to not only to reduce environmental pollution, but also to obtain value-added products such as protein supply for animal feed.

  15. Glucoamylase production from food waste by solid state fermentation and its evaluation in the hydrolysis of domestic food waste

    Directory of Open Access Journals (Sweden)

    Esra Uçkun Kiran

    2014-08-01

    Full Text Available In this study, food wastes such as waste bread, savory, waste cakes, cafeteria waste, fruits, vegetables and potatoes were used as sole substrate for glucoamylase production by solid state fermentation. Response surface methodology was employed to optimize the fermentation conditions for improving the production of high activity enzyme. It was found that waste cake was the best substrate for glucoamylase production. Among all the parameters studied, glucoamylase activity was significantly affected by the initial pH and incubation time. The highest glucoamylase activity of 108.47 U/gds was achieved at initial pH of 7.9, moisture content of 69.6% wt., inoculum loading of 5.2×105 cells/gram substrate (gs and incubation time of 6 d. The enzyme preparation could effectively digest 50% suspension of domestic food waste in 24 h with an almost complete saccharification using an enzyme dose of only 2U/g food waste at 60°C.

  16. The use of wood waste for energy production

    International Nuclear Information System (INIS)

    Karlopoulos, E.; Pavloudakis, F.

    1999-01-01

    The paper presents some technical aspects and management issues of wood waste reuse end disposal. It refers to the Greek and European legislation which determines the framework for rational and environmental friendly practices for woos waste management. It refers also to the wood waste classification systems and the currently applied methods of wood waste disposal and reuse. Emphasis is given to the wood waste-to-energy conversion system, particularly to the pretreatment requirements, the combustion techniques, and the environmental constrains. Finally, the decision making process for the investments in the wood waste firing thermal units is discussed

  17. Electrowinning of lead powder from chloride leach liquor

    Energy Technology Data Exchange (ETDEWEB)

    Owais, Ashour [Suez Canal Univ., Suez (Egypt). Metallurgical and Materials Engineering Dept.

    2012-11-15

    Electrowinning of lead powder from chloride leach liquor obtained from secondary lead slag leached in hydrochloric acid is the main aim of this work. The resulted lead chloride solution (leachate) containing 2.2 wt.-% Pb and 1.24 wt.-% HCl was electrowon in an electrolytic cell containing one graphite plate as inert anode and two lead sheets as starting permanent cathodes. Different electrolysis parameters such as current density, electrolyte temperature and electrolyte stirring rate were studied. As indicated by SEM, EDX and XRD analyses, fine and pure (100 % Pb) powders with a dispersed and needle-like shape were formed with cathodic current efficiency up to 67.9 % and electrical energy demand ranges from 0.809 to 4.998 kWh/kg Pb with productivity up to 2.63 g/Ah. (orig.)

  18. Distribution of sulphur into products from waste tire pyrolysis

    International Nuclear Information System (INIS)

    Susa, D.; Haydary, J.; Markos, J.

    2012-01-01

    Tire pyrolysis is getting growing attention as an effective waste tire disposal method in comparison to environmentally less friendly methods like dumping or incineration. But the scrap tire sulphur content can be a potential obstacle to scrap tire utilization as a fuel. In this paper the distribution of sulphur into tire pyrolysis yields, solid (char) and liquid (tar), was investigated. The pyrolysis experiments were carried out under different conditions to determine the partitioning of sulphur into pyrolysis products. The influence of different temperatures and reaction times was investigated in a laboratory flow reactor under nitrogen atmosphere. Solid and liquid residues were collected and analyzed by elemental analysis. The sulphur content in residual char and tar was determined using an elemental analyzer and the sulphur forms in tar were characterized by the X-ray photoelectron spectroscopy (XPS). (Authors)

  19. Waste management from pulp and paper production in the European Union

    International Nuclear Information System (INIS)

    Monte, M.C.; Fuente, E.; Blanco, A.; Negro, C.

    2009-01-01

    Eleven million tonnes of waste are produced yearly by the European pulp and paper industry, of which 70% originates from the production of deinked recycled paper. Wastes are very diverse in composition and consist of rejects, different types of sludges and ashes in mills having on-site incineration treatment. The production of pulp and paper from virgin pulp generates less waste but the waste has similar properties to waste from the production of deinked pulp, although with less inorganics. Due to legislation and increased taxes, landfills are quickly being eliminated as a final destination for wastes in Europe, and incineration with energy recovery is becoming the main waste recovery method. Other options such as pyrolysis, gasification, land spreading, composting and reuse as building material are being applied, although research is still needed for optimization of the processes. Due to the large volumes of waste generated, the high moisture content of the waste and the changing waste composition as a result of process conditions, recovery methods are usually expensive and their environmental impact is still uncertain. For this reason, it is necessary to continue research on different applications of wastes, while taking into account the environmental and economic factors of these waste treatments

  20. Single cell protein production of Chlorella sp. using food processing waste as a cultivation medium

    Science.gov (United States)

    Putri, D.; Ulhidayati, A.; Musthofa, I. A.; Wardani, A. K.

    2018-03-01

    The aim of this study was to investigate the effect of various food processing wastes on the production of single cell protein by Chlorella sp. Three various food processing wastes i.e. tofu waste, tempeh waste and cheese whey waste were used as cultivation medium for Chlorella sp. growth. Sea water was used as a control of cultivation medium. The addition of waste into cultivation medium was 10%, 20%, 30%, 40%, and 50%. The result showed that the highest yield of cell mass and protein content was found in 50% tofu waste cultivation medium was 47.8 × 106 cell/ml with protein content was 52.24%. The 50% tofu waste medium showed improved cell yield as nearly as 30% than tempeh waste medium. The yield of biomass and protein content when 30% tempeh waste was used as cultivation medium was 37.1 × 106 cell/ml and 52%, respectively. Thus, food processing waste especially tofu waste would be a promising candidate for cultivation medium for single cell production from Chlorella sp. Moreover, the utilization of waste can reduce environmental pollution and increase protein supply for food supplement or animal feed.

  1. Handling of quarry waste from schist production at Oppdal, Norway

    Science.gov (United States)

    Willy Danielsen, Svein; Alnæs, Lisbeth; Azrague, Kamal; Suleng, Jon

    2017-04-01

    Handling of quarry waste from schist production at Oppdal, Norway Svein Willy Danielsen1), Lisbeth Alnæs2), Kamal Azrague2), Jon Suleng3) 1) Geomaterials Consultant, Trondheim Norway, 2) SINTEF, Trondheim, Norway, 3) AF Gruppen AS, Oppdal, Norway A significant amount of aggregate research in Norway has been focused on the recovery and use of surplus sizes from hard rock aggregate quarries. The use of sand sized quarry waste (QW) from crushing/processing has been motivated by the rapid depletion of traditional sand/gravel resources, increasing land-use conflicts, and the need to minimise QW deposits which for some quarries are becoming a critical factor for economy as well as for environmental reasons. With an annual aggregate production of 77 million tons, out of which approximately 83 % comes from hard rock, the annual volume of size market, the economic - and also environmental - potential will be considerable. Understanding the geological conditions and petrographic properties of the rock is vital. This is a quartz-feldspar rich metamorphic rock - a meta-arkose - containing rhythmically distributed planar lamina (less than 2 mm thick) or scattered occurrence of mica, separated by layers composed predominately of quartz and feldspar. The rock can be split along the lamina to slabs varying from 0.5 cm to more than 10 cm in thickness, and the microstructure can be characterized as being granoblastic to gneissic. . This makes it possible by well designed crushing process and careful selection of the in-going rock particles, to obtain well shaped aggregates up to at least 20 mm. The on-going project will also study the total cost situation depending on the QW utilisation, discuss the environmental and sustainability issues with a societal perspective, and also consider the market opportunities.

  2. Avoiding tar formation in biocoke production from waste biomass

    International Nuclear Information System (INIS)

    Adrados, A.; De Marco, I.; Lopez-Urionabarrenechea, A.; Solar, J.; Caballero, B.

    2015-01-01

    This paper focuses in avoiding tar formation and in optimizing pyrolysis gas (maximizing H 2 and CO) in the production of biocoke from waste lignocellulosic biomass. In order to obtain metallurgical grade biochar (biocoke) slow heating rate and high temperature are required. Under such conditions useless pyrolysis liquids, mainly composed of water together with some heavy-sticky tars, are obtained. In order to make biocoke a cost-effective process it is necessary to optimize pyrolysis vapors avoiding tar formation and maximizing the amount and quality of both coke and gases. With this objective, in this work different heating rates (3–20 °C min −1 ) and catalysts (zeolite, Ni/CeO 2 –Al 2 O 3 ) have been tested in a two step pyrolysis process. Olive tree cuttings have been pyrolyzed in a 3.5 L batch reactor at 750 °C and the vapors generated have been thermally and catalytically treated at 900 °C in a second tubular reactor. About 25 wt.% biocoke useful as reducing agent in certain metallurgical processes, ≈57 wt.% gases with near 50 vol.% H 2 , and no tar production has been achieved when a heating rate of 3 °C min −1 and the homemade Ni/CeO 2 –Al 2 O 3 catalyst were used. - Highlights: • Metallurgical grade biochar was obtained by olive waste pyrolysis. • Low heating rates avoid tar formation and increase gas and biochar yields. • Ni/CeO 2 –Al 2 O 3 was better than HZSM5 zeolite for vapor upgrading in a second step. • Ni/CeO 2 –Al 2 O 3 and 3 °C min −1 gave the maximum H 2 , gas and biochar yields

  3. Adopting local alcohol policies: a case study of community efforts to regulate malt liquor sales.

    Science.gov (United States)

    McKee, Patricia A; Nelson, Toben F; Toomey, Traci L; Shimotsu, Scott T; Hannan, Peter J; Jones-Webb, Rhonda J

    2012-01-01

    To learn how the local context may affect a city's ability to regulate alcohol products such as high-alcohol-content malt liquor, a beverage associated with heavy drinking and a spectrum of nuisance crimes in urban areas. An exploratory, qualitative case study comparing cities that adopted policies to restrict malt liquor sales with cities that considered, but did not adopt policies. Nine large U.S. cities in seven states. City legislators and staff, alcohol enforcement personnel, police, neighborhood groups, business associations, alcohol retailers, and industry representatives. Qualitative data were obtained from key informant interviews (n = 56) and media articles (n = 360). The data were coded and categorized. Similarities and differences in major themes among and across Adopted and Considered cities were identified. Cities faced multiple barriers in addressing malt liquor-related problems, including a lack of enforcement tools, alcohol industry opposition, and a lack of public and political will for alcohol control. Compared to cities that did not adopt malt liquor sales restrictions, cities that adopted restrictions appeared to have a stronger public mandate for a policy and were less influenced by alcohol industry opposition and lack of legislative authority for alcohol control. Strategies common to successful policymaking efforts are discussed. Understanding the local context may be a critical step in winning support for local alcohol control policies.

  4. Biodegradation of bituminous products from processing liquid radioactive wastes

    International Nuclear Information System (INIS)

    Tibensky, L.; Krejci, F.; Hladky, E.; Halama, D.

    1988-01-01

    One of the possible ways of disturbing the stability of bituminous products from liquid radioactive waste processing, is biodegradation caused by common microorganisms. Pseudomonas bacteria and a Bacillus cereus culture were selected for experimental study of cultivation of microorganisms. Experiments with mixed cultures were also performed. Pitches, ajatin and imidazoline were used as inhibitors. The thin layer and the emulsion methods were used in assessing biological corrosion. The results of the experiments are discussed with respect to the dependence of bacterial growth on bitumen biodegradation, the effect of pH on bitumen degradation and the effect of inhibitors on bitumen biodegradation. The salts contained in bituminous products were not found to significantly affect the rate of destruction. The degree of degradation was found to mainly depend on the bitumen, its chemical composition, and on the conditions of storage. It was also found that inhibitor additions in some cases modified the properties of the matrix such that it became more liquid. The coefficient of extractibility thus increased of matrix salts. The recultivation of bacteria on a full-value medium resulted in the loss of the inhibitory effect. In some cases, the inhibitor even stimulated the growth of microorganisms. The use of inhibitors in an effort to achieve biostability of bituminous products thus did not solve the problem. (Z.M.). 2 tabs., 9 refs

  5. Conversion of waste polystyrene through catalytic degradation into valuable products

    Energy Technology Data Exchange (ETDEWEB)

    Shah, Jasmin; Jan, Muhammad Rasul; Adnan [University of Peshawar, Peshawar (Pakistan)

    2014-08-15

    Waste expanded polystyrene (EPS) represents a source of valuable chemical products like styrene and other aromatics. The catalytic degradation was carried out in a batch reactor with a mixture of polystyrene (PS) and catalyst at 450 .deg. C for 30 min in case of Mg and at 400 .deg. C for 2 h both for MgO and MgCO{sub 3} catalysts. At optimum degradation conditions, EPS was degraded into 82.20±3.80 wt%, 91.60±0.20 wt% and 81.80±0.53 wt% liquid with Mg, MgO and MgCO{sub 3} catalysts, respectively. The liquid products obtained were separated into different fractions by fractional distillation. The liquid fractions obtained with three catalysts were compared, and characterized using GC-MS. Maximum conversion of EPS into styrene monomer (66.6 wt%) was achieved with Mg catalyst, and an increase in selectivity of compounds was also observed. The major fraction at 145 .deg. C showed the properties of styrene monomer. The results showed that among the catalysts used, Mg was found to be the most effective catalyst for selective conversion into styrene monomer as value added product.

  6. Methylxanthine and catechin content of fresh and fermented cocoa beans, dried cocoa beans, and cocoa liquor

    Directory of Open Access Journals (Sweden)

    Pedro P. Peláez

    2016-01-01

    Full Text Available The theobromine and catechin content can affect the quality of cocoa liquor and is influenced by cacao variety, production area (PA, and fermentation, as well as the method of drying beans (FDB and cocoa liquor production (CLP. This study examined variationsin methylxanthine and catechin levels in fresh and fermented cocoa beans, dried cocoa grains, and in cocoa liquor from Trinitario, Criollo, and Forastero cacao varieties. A total of 123 cocoa bean samples from three Peruvian PAs at different altitudes, Tingo María (TM, San Alejandro (SA, and Curimana (CU, were evaluated. The theobromine (Tb and caffeine (Cf contents in fresh cocoa beans were affected by both cocoa type and PA. The caffeine content was higher in Trinitario cacao than in Criollo and Forastero varieties (p ≤ 0.05. The Tb and CF contents decreased in dry cocoa grain and was affected by FDB (p ≤ 0.05 (1.449 ± 0.004 to 1.140 ± 0.010 and 0.410 ± 0.03 to 0.165 ± 0.02 g Tb and C, respectively, per 100 g dry weight. Cocoa beans from Tingo María, which has thehighest altitude, had higher Tb and CF contents than those from other PAs. The catechin (C and epicatechin (EC contents were affected by the FDB and CLP, and were highestin fresh cocoa beans from the Tingo María area (range: 0.065 ± 0.01 to 0.020 ± 0.00 g C/100 g. The C and EC contents decreased during FDB and CLP (0.001 g C/100 g of cocoa liquor. Taken together, these results show that higher concentrations of Tb, Cf, C,and EC are present in fresh cocoa beans. Moreover, the cocoa variety influenced cocoa liquor quality. Overall, cocoa from the Tingo María PA had the most desirable chemical composition.

  7. The solidification of aluminum production waste in geopolymer matrix

    Czech Academy of Sciences Publication Activity Database

    Perná, Ivana; Hanzlíček, Tomáš

    2014-01-01

    Roč. 84, DEC 1 (2014), s. 657-662 ISSN 0959-6526 Institutional support: RVO:67985891 Keywords : aluminum waste * solidification * recycling * geopolymer Subject RIV: DM - Solid Waste and Recycling Impact factor: 3.844, year: 2014

  8. Production of Enzymes From Agricultural Wastes and Their Potential Industrial Applications.

    Science.gov (United States)

    Bharathiraja, S; Suriya, J; Krishnan, M; Manivasagan, P; Kim, S-K

    Enzymatic hydrolysis is the significant technique for the conversion of agricultural wastes into valuable products. Agroindustrial wastes such as rice bran, wheat bran, wheat straw, sugarcane bagasse, and corncob are cheapest and plentifully available natural carbon sources for the production of industrially important enzymes. Innumerable enzymes that have numerous applications in industrial processes for food, drug, textile, and dye use have been produced from different types of microorganisms from agricultural wastes. Utilization of agricultural wastes offers great potential for reducing the production cost and increasing the use of enzymes for industrial purposes. This chapter focuses on economic production of actinobacterial enzymes from agricultural wastes to make a better alternative for utilization of biomass generated in million tons as waste annually. © 2017 Elsevier Inc. All rights reserved.

  9. Environmental issues and waste management in energy and minerals production

    International Nuclear Information System (INIS)

    Yegulalp, T.M.; Kim, K.

    1992-01-01

    This book includes the following topics: water management in the minerals industry; management of radioactive wastes in the energy industry; the US high-level radioactive waste program; acid mine drainage; health risks from uranium mill tailings; alternate energy sources, such as hydrogen; superconductive magnetic energy storage; nuclear waste

  10. Actinides and fission products partitioning from high level liquid waste

    International Nuclear Information System (INIS)

    Yamaura, Mitiko

    1999-01-01

    The presence of small amount of mixed actinides and long-lived heat generators fission products as 137 Cs and 90 Sr are the major problems for safety handling and disposal of high level nuclear wastes. In this work, actinides and fission products partitioning process, as an alternative process for waste treatment is proposed. First of all, ammonium phosphotungstate (PWA), a selective inorganic exchanger for cesium separation was chosen and a new procedure for synthesizing PWA into the organic resin was developed. An strong anionic resin loaded with tungstate or phosphotungstate anion enables the precipitation of PWA directly in the resinous structure by adding the ammonium nitrate in acid medium (R-PWA). Parameters as W/P ratio, pH, reactants, temperature and aging were studied. The R-PWA obtained by using phosphotungstate solution prepared with W/P=9.6, 9 hours digestion time at 94-106 deg C and 4 to 5 months aging time showed the best capacity for cesium retention. On the other hand, Sr separation was performed by technique of extraction chromatography, using DH18C6 impregnated on XAD7 resin as stationary phase. Sr is selectively extracted from acid solution and >99% was recovered from loaded column using distilled water as eluent. Concerning to actinides separations, two extraction chromatographic columns were used. In the first one, TBP(XAD7) column, U and Pu were extracted and its separations were carried-out using HNO 3 and hydroxylamine nitrate + HNO 3 as eluent. In the second one, CMP0-TBP(XAD7) column, the actinides were retained on the column and the separations were done by using (NH 4 ) 2 C 2 O 4 , DTPA, HNO 3 and HCl as eluent. The behavior of some fission products were also verified in both columns. Based on the obtained data, actinides and fission products Cs and Sr partitioning process, using TBP(XAD7) and CMP0-TBP(XAD7) columns for actinides separation, R-PWA column for cesium retention and DH18C6(XAD7) column for Sr isolation was performed

  11. Influence of probiotics on rumen liquor characteristics and ...

    African Journals Online (AJOL)

    Probiotics has been noted to work synergistically with rumen microbes and improved rumen liquor characteristics. In this study, we investigated the effect of probiotics inclusion on rumen liquor characteristics (physical, chemical and fermentative qualities) and microbiology in WAD goats. In a completely randomised design, ...

  12. Life cycle greenhouse gases and non-renewable energy benefits of kraft black liquor recovery

    International Nuclear Information System (INIS)

    Gaudreault, Caroline; Malmberg, Barry; Upton, Brad; Miner, Reid

    2012-01-01

    The life cycle greenhouse gas (GHG) and fossil fuel benefits of black liquor recovery are analyzed. These benefits are due to the production of energy that can be used in the pulping process or sold, and the recovery of the pulping chemicals that would otherwise need to be produced from other resources. The fossil GHG emissions and non-renewable energy consumption of using black liquor in the kraft recovery system are approximately 90% lower than those for a comparable fossil fuel-based system. Across all scenarios, the systems relying on black liquor solids achieve a median reduction of approximately 140 kg CO 2 eq./GJ of energy produced, compared to the systems relying on fossil fuels to provide the same energy and pulping chemical production functions. The benefits attributable to the recovery of pulping chemicals vary from 44% to 75% of the total benefit. Applied to the total production of kraft pulp in the U.S., the avoided emissions are equivalent to the total Scopes 1 and 2 emissions from the entire U.S. forest products industry. These results do not depend on the accounting method for biogenic carbon (because biogenic CO 2 emissions are the same for the systems compared) and the results are valid across a range of assumptions about the displaced fossil fuel, the GHG-intensity of the electricity grid, the fossil fuels used in the lime kiln, and the level of cogeneration at pulp and paper mills. The benefits occur without affecting the amount of wood harvested or the amount of chemical pulp produced. -- Highlights: ► Black liquor, a by-product of kraft pulping, represents about half of the energy used in the paper industry. ► The greenhouse gases (GHG) benefits of black liquor recovery compared to an equivalent fossil fuel system were analyzed. ► The GHG emissions of the black liquor system are approximately 90% lower than those for the fossil fuel system. ► The benefits from the recovery of the chemicals vary from 44% to 75% of the total benefit.

  13. Research Progress of Hydrogen Production fromOrganic Wastes in Microbial Electrolysis Cell(MEC

    Directory of Open Access Journals (Sweden)

    YU Yin-sheng

    2015-08-01

    Full Text Available Microbial electrolysis cell(MECtechnology as an emerging technology, has achieved the target of hydrogen production from different substrates such as waste water, forestry wastes, activated sludge by simultaneous enzymolysis and fermentation, which can effectively improve the efficiency of resource utilization. This paper described the working principle of MEC and analyzed these factors influencing the process of hydrogen production from organic waste in MEC.

  14. Calcium carbonate synthesis with prescribed properties based on liquid waste of soda production

    OpenAIRE

    E.O. Mikhailova; V.O. Panasenko; N.B. Markova

    2016-01-01

    A promising direction in solving of environmental problems of soda industry is the development of low-waste resource-saving technologies, which consist in recycling of valuable waste components with obtaining the commercial products. Aim: The aim is to establish the optimal conditions for obtaining calcium carbonate with prescribed properties from liquid waste of soda production. Materials and Methods: Chemically deposited calcium carbonate is used as filler and should have certain physical a...

  15. Mixed Waste Focus Area mercury contamination product line: An integrated approach to mercury waste treatment and disposal

    International Nuclear Information System (INIS)

    Hulet, G.A.; Conley, T.B.; Morris, M.I.

    1998-01-01

    The US Department of Energy (DOE) Mixed Waste Focus Area (MWFA) is tasked with ensuring that solutions are available for the mixed waste treatment problems of the DOE complex. During the MWFA's initial technical baseline development process, three of the top four technology deficiencies identified were related to the need for amalgamation, stabilization, and separation/removal technologies for the treatment of mercury and mercury-contaminated mixed waste. The focus area grouped mercury-waste-treatment activities into the mercury contamination product line under which development, demonstration, and deployment efforts are coordinated to provide tested technologies to meet the site needs. The Mercury Working Group (HgWG), a selected group of representatives from DOE sites with significant mercury waste inventories, is assisting the MWFA in soliciting, identifying, initiating, and managing efforts to address these areas. Based on the scope and magnitude of the mercury mixed waste problem, as defined by HgWG, solicitations and contract awards have been made to the private sector to demonstrate amalgamation and stabilization processes using actual mixed wastes. Development efforts are currently being funded under the product line that will address DOE's needs for separation/removal processes. This paper discusses the technology selection process, development activities, and the accomplishments of the MWFA to date through these various activities

  16. Uranium complex recycling method of purifying uranium liquors

    International Nuclear Information System (INIS)

    Elikan, L.; Lyon, W.L.; Sundar, P.S.

    1976-01-01

    Uranium is separated from contaminating cations in an aqueous liquor containing uranyl ions. The liquor is mixed with sufficient recycled uranium complex to raise the weight ratio of uranium to said cations preferably to at least about three. The liquor is then extracted with at least enough non-interfering, water-immiscible, organic solvent to theoretically extract about all of the uranium in the liquor. The organic solvent contains a reagent which reacts with the uranyl ions to form a complex soluble in the solvent. If the aqueous liquor is acidic, the organic solvent is then scrubbed with water. The organic solvent is stripped with a solution containing at least enough ammonium carbonate to precipitate the uranium complex. A portion of the uranium complex is recycled and the remainder can be collected and calcined to produce U 3 O 8 or UO 2

  17. Immobilization and Waste Form Product Acceptance for Low Level and TRU Waste Forms

    International Nuclear Information System (INIS)

    Holtzscheiter, E.W.; Harbour, J.R.

    1998-05-01

    The Tanks Focus Area is supporting technology development in immobilization of both High Level (HLW) and Low Level (LLW) radioactive wastes. The HLW process development at Hanford and Idaho is patterned closely after that of the Savannah River (Defense Waste Processing Facility) and West Valley Sites (West Valley Demonstration Project). However, the development and options open to addressing Low Level Waste are diverse and often site specific. To start, it is important to understand the breadth of Low Level Wastes categories

  18. The influence of slaughterhouse waste on fermentative H{sub 2} production from food waste: Preliminary results

    Energy Technology Data Exchange (ETDEWEB)

    Boni, Maria Rosaria; Sbaffoni, Silvia; Tuccinardi, Letizia, E-mail: letizia.tuccinardi@uniroma1.it

    2013-06-15

    Highlights: • Co-digestion process finalized to bio-H{sub 2} production was tested in batch tests. • Slaughterhouse waste (SHW) and food waste (FW) were co-digested in different proportions. • The presence of SHW affected the H{sub 2} production from FW. • When SHW ranging between 50% and 70% the H{sub 2} production is improved. • SHW percentages above 70%, led to a depletion in H{sub 2} production. - Abstract: The aim of this study was to evaluate the influence of slaughterhouse waste (SHW; essentially the skin, fats, and meat waste of pork, poultry, and beef) in a fermentative co-digestion process for H{sub 2} production from pre-selected organic waste taken from a refectory (food waste [FW]). Batch tests under mesophilic conditions were conducted in stirred reactors filled with different proportions of FW and SHW. The addition of 60% and 70% SHW to a mixture of SHW and FW improved H{sub 2} production compared to that in FW only, reaching H{sub 2}-production yields of 145 and 109 ml gVS{sub 0}{sup -1}, respectively, which are 1.5–2 times higher than that obtained with FW alone. Although the SHW ensured a more stable fermentative process due to its high buffering capacity, a depletion of H{sub 2} production occurred when SHW fraction was higher than 70%. Above this percentage, the formation of foam and aggregated material created non-homogenous conditions of digestion. Additionally, the increasing amount of SHW in the reactors may lead to an accumulation of long chain fatty acids (LCFAs), which are potentially toxic for anaerobic microorganisms and may inhibit the normal evolution of the fermentative process.

  19. A review of literature relevant to gas production in radioactive waste

    International Nuclear Information System (INIS)

    Norris, G.H.

    1987-11-01

    A review of relevant recent papers on gas generation in low-level wastes and intermediate-level wastes is presented. Chemical, microbiological, radiolytic and thermal reactions are considered for both unconditioned wastes and wastes conditioned in cement, or bitumen, or polymer. Possible reaction mechanisms are identified and the effects of temperature and pressure are evaluated. Estimations of the production of combustible gases (which also have the potential to form explosive mixtures) have been taken from the literature. The implications of gas production for pressurisation (and possible rupture) of waste drums and of a repository are assessed. Waste-treatment schemes for the reduction of gas-generation capacity of several waste-types are highlighted. Recommendations for further work are summarised. (author)

  20. Effect of Waste Paper on Biogas Production from Co-digestion of ...

    African Journals Online (AJOL)

    The effect of waste paper on biogas production from the co-digestion of fixed amount of cow dung and water hyacinth was studied at room temperature in five batch reactor for over 60 days. Waste paper addition was varied for a fixed amount of cow dung and water hyacinth until maximum biogas production was achieved.

  1. Influence of mine waste water purification on radium concentration in desalinisation products

    International Nuclear Information System (INIS)

    Chalupnik, S.

    2005-01-01

    The effects of mine waste water treatment in the desalination process on radium concentration in final products have been shown on the example of installations working in 'Ziemowit' and 'Piast' Polish coal mines. The environmental impact and health hazard resulting deposition of waste water treatment plant by-products have been also discussed

  2. Improved energy efficiency in juice production through waste heat recycling

    International Nuclear Information System (INIS)

    Anderson, J.-O.; Elfgren, E.; Westerlund, L.

    2014-01-01

    Highlights: • A heating system at a juice production was investigated and improved. • Different impacts of drying cycle improvements at the energy usage were explored. • The total heat use for drying could thereby be decreased with 52%. • The results point out a significant decrease of heat consumption with low investment costs. - Abstract: Berry juice concentrate is produced by pressing berries and heating up the juice. The by-products are berry skins and seeds in a press cake. Traditionally, these by-products have been composted, but due to their valuable nutrients, it could be profitable to sell them instead. The skins and seeds need to be separated and dried to a moisture content of less than 10 %wt (on dry basis) in order to avoid fermentation. A berry juice plant in the north of Sweden has been studied in order to increase the energy and resource efficiency, with special focus on the drying system. This was done by means of process integration with mass and energy balance, theory from thermodynamics and psychrometry along with measurements of the juice plant. Our study indicates that the drying system could be operated at full capacity without any external heat supply using waste heat supplied from the juice plant. This would be achieved by increasing the efficiency of the dryer by recirculation of the drying air and by heat supply from the flue gases of the industrial boiler. The recirculation would decrease the need of heat in the dryer with about 52%. The total heat use for the plant could thereby be decreased from 1262 kW to 1145 kW. The improvements could be done without compromising the production quality

  3. Isotope production potential at Sandia National Laboratories: Product, waste, packaging, and transportation

    International Nuclear Information System (INIS)

    Trennel, A.J.

    1995-01-01

    The U.S. Congress directed the U.S. Department of Energy to establish a domestic source of molybdenum-99, an essential isotope used in nuclear medicine and radiopharmacology. An Environmental Impact Statement for production of 99 Mo at one of four candidate sites is being prepared. As one of the candidate sites, Sandia National Laboratories is developing the Isotope Production Project. Using federally approved processes and procedures now owned by the U.S. Department of Energy, and existing facilities that would be modified to meet the production requirements, the Sandia National Laboratories' Isotope Project would manufacture up to 30 percent of the U.S. market, with the capacity to meet 100 percent of the domestic need if necessary. This paper provides a brief overview of the facility, equipment, and processes required to produce isotopes. Packaging and transportation issues affecting both product and waste are addressed, and the storage and disposal of the four low-level radioactive waste types generated by the production program are considered. Recommendations for future development are provided

  4. UTILIZATION OF MINERAL FIBER WASTE IN THE PRODUCTION OF GYPSUM PRODUCTS

    Directory of Open Access Journals (Sweden)

    Solov'ev Vitaliy Nikolaevich

    2018-01-01

    Full Text Available Subject: the effectiveness of using compositions with the use of basalt fibers is proven, but the composition must be selected depending on the binder and additives chosen. Research objectives: we examine the possibility of waste recycling of basalt fiber production during manufacturing of modified gypsum composite material with improved characteristics. Materials and methods: as a raw material, a gypsum binder of Samara production was used. As a reinforcement additive, a disperse waste of basalt fiber production of Tver region was used. Studying characteristics of the gypsum binder and modified mixture, and also comparative analysis of these characteristics by average density, total porosity, strength in compression and flexure of the gypsum composite were carried out using standard techniques. Results: dependence of physical and mechanical properties of the modified gypsum material on the content of the basalt fiber additive is established. It was found that an increase in concentration of the additive requires an increased water content or additional use of plasticizer. Conclusions: modification of gypsum stone with a mineral basalt additive will increase the strength, density and durability of thin-walled gypsum products, and, consequently, the demand for products due to ensuring their high quality in transportation and installation.

  5. Biodiesel waste products as soil amendments : evaluation of microbial, biological, and plant toxicity.

    Science.gov (United States)

    2011-10-22

    During biodiesel production, about 200 lbs of glycerol, commonly called glycerin, is produced for every 1 ton of biodiesel. As the : biodiesel industry grows, so does the need to dispose of this waste product. While potential uses for glycerin exist,...

  6. Biodiesel Production from Waste Cooking Oil Using Hydrodinamic Cavitation

    Directory of Open Access Journals (Sweden)

    Muhammad Supardan

    2013-04-01

    Full Text Available The aim of this research was to study biodiesel production from low cost feedstock of waste cooking oil (WCO using hydrodynamic cavitation apparatus. A two-step processes esterification process and transesterification process using hydrodynamic cavitation for the production of biodiesel from WCO is presented. The first step is acid-catalyzed esteri-fication process for reducing free fatty acid (FFA content of WCO and followed by base-catalyzed transesterification process for converting WCO to biodiesel as the second step. The result of esterification process with methanol to oil molar ratio of 5 and temperature of 60 oC showed that the initial acid value of WCO of 3.9 mg KOH/g can be decreased to 1.81 mg KOH/g in 120 minutes. The highest yield of biodiesel in transesterification process of 89.4% obtained at reaction time of 150 minutes with methanol to oil molar ratio of 6. The biodiesel produced in the experiment was analyzed by gas chromatography-mass spectrometry (GC-MS, which showed that it mainly contained five fatty acid methyl esters. In addition, the properties of biodiesel showed that all of the fuel properties met the Indonesian National Standard (INS No. 04-7182-2006 for biodiesel. 

  7. Production of Biodiesel from Mixed Waste Cooking and Castor Oil

    Directory of Open Access Journals (Sweden)

    Hadiyanto Hadiyanto

    2018-01-01

    Full Text Available Due to increasing population growth, the consumption and needs of energy increase significantly. This leads Indonesia government to search alternative energy to cover the lacks of fossil energy reserves. Biodiesel is one of the prospective alternative energy which are renewable and environmental friendly. A common problem in large-scale biodiesel production is the sustainability of feedstock and the biodiesel stability. Therefore, the purpose of this study was to evaluate the production of biodiesel from two oil sources i.e. waste cooking oil and castor oil. This study examined the effect of mixed oil ratio on yield, biodiesel characteristics and stability. The physical properties included kinematic viscosity, acid number, saponification number, iodine number and cetane number have been evaluated as function of oil ratio. Yield of biodiesel was obtained at 35.07%, 99.2% and 83.69% for jatropha:castor oil ratio of 1: 0, 1: 2 and 2: 1, respectively. Most of these characteristics showed an increase by increasing the oil ratio. The result concluded that at the ratio of 1:1(v/v was the best characteristic and stability.

  8. Feed Materials Production Center Waste Management: Annual report for fiscal year 1986

    International Nuclear Information System (INIS)

    Watts, R.E.; Kottner, S.A.

    1986-01-01

    During FY-1986, the Westinghouse Materials Company of Ohio (WMCO) and the Department of Energy focused on safe storage and disposition of all wastes at the Feed Materials Production Center (FMPC) in compliance with federal and state regulations concerning waste management and worker health and safety. The Waste Management Annual Report identifies the comprehensive programs developed to achieve WMCO goals at the FMPC. The programs address waste issues which concern worker and public health and safety. Among those programs discussed are the decontamination, safe storage, and disposition of low-level and mixed hazardous radioactive waste. Principal attention and resources were allocated to programs which identify the largest waste streams (both currently generated and inventory backlogged). The most voluminous waste streams include low-level waste approved for shipment to the Nevada Test Site (MgF 2 slag, slag leach filter cake, and neutralized raffinate); remedial action wastes (K-65, stormwater runoff/effluent, and waste pits); thorium; and contaminated construction rubble and soil. Goals were established and met for the Waste Management Section in the form of completed milestones. The completed milestones involved such activities as characterization studies for the waste pits, K-65 Silos and adjacent areas; issuance of the Waste Management Plan required by DOE; analysis of decontamination alternatives for copper scrap; and analysis of silo structural integrity and remedial action alternatives

  9. OPTIMIZATION OF VEGETABLE WASTES FOR LACTIC ACID PRODUCTION: A LABORATORY SCALE APPROACH

    Directory of Open Access Journals (Sweden)

    Sailaja Daharbha

    2015-04-01

    Full Text Available Vegetables wastes are organic materials which are not utilized as vegetables and are discarded at all stages of production, processing and marketing. These wastes form a major part of municipal solid wastes and are cause of foul smell and growth of microorganisms due to their high organic contents. The vegetable wastes can be utilized in many different ways to produces different products. We have shown that they can be utilized for production of lactic acid using anaerobic digestion. The 2nd day was the optimum day for recovery of lactic acid while 1:1 ratio of slurry and water was found to the best ratio for production of lactic acid from vegetable wastes. Effect of salts on lactic acid was also studied and it was found that the production decreased in all the concentrations of salts.

  10. Improvement of anaerobic bio-hydrogen gas production from organic sludge waste

    International Nuclear Information System (INIS)

    Lee, S.; Lee, Y. H.

    2009-01-01

    Microbial hydrogen gas production from organic matters stands out as one of the most promising alternatives for sustainable green energy production. Based on the literature review, investigation of anaerobic bio-hydrogen gas production from organic sludge waste using a mixed culture has been very limited. The objective of this study was to assess the anaerobic bio-hydrogen gas production from organic sludge waste under various conditions. (Author)

  11. Evaluation of treated black liquor used as dispersant of concentrated coal-water slurry

    Energy Technology Data Exchange (ETDEWEB)

    Mingsong Zhou; Qian Kong; Bing Pan; Xueqing Qiu; Dongjie Yang; Hongming Lou [South China University of Technology, Guangzhou (China). State Key Laboratory of Pulp and Paper Engineering

    2010-03-15

    The paper making waste liquor is a great water pollution source and much work has been done over the years to overcome this challenge. We present here a solution of black liquor used as dispersant of coal-water slurry (abbreviated as CWS) following chemical treatment. The treated black liquor (abbreviated as TBL) is used to prepare CWS for three bituminous coals, and the factors influencing its dispersing ability and the properties of CWS are investigated. The results show that the increasing sulfonating agent and formaldehyde dosage increase the sulfonic group content while reducing the molecular weight of TBL. The comparison with a naphthalene dispersant shows that TBL has a similar or better dispersing ability, and the large quantity of sulfonic groups engrafted in lignin molecules and the markedly increase of molecular weight are considered the key reason for the excellent performance of TBL. Moreover, the change of the molecular configuration from globular to flocculent in solution observed by TEM is also considered as an important reason for the excellent dispersing effect of TBL for CWS. 25 refs., 6 figs., 7 tabs.

  12. Policy options to reduce consumer waste to zero: comparing product stewardship and extended producer responsibility for refrigerator waste.

    Science.gov (United States)

    Nicol, Scott; Thompson, Shirley

    2007-06-01

    Today, over-consumption, pollution and resource depletion threaten sustainability. Waste management policies frequently fail to reduce consumption, prevent pollution, conserve resources and foster sustainable products. However, waste policies are changing to focus on lifecycle impacts of products from the cradle to the grave by extending the responsibilities of stakeholders to post-consumer management. Product stewardship and extended producer responsibility are two policies in use, with radically different results when compared for one consumer product, refrigerators. North America has enacted product stewardship policies that fail to require producers to take physical or financial responsibility for recycling or for environmentally sound disposal, so that releases of ozone depleting substances routinely occur, which contribute to the expanding the ozone hole. Conversely, Europe's Waste Electrical and Electronic Equipment (WEEE) Directive requires extended producer responsibility, whereby producers collect and manage their own post-consumer waste products. WEEE has resulted in high recycling rates of greater than 85%, reduced emissions of ozone-depleting substances and other toxins, greener production methods, such as replacing greenhouse gas refrigerants with environmentally friendly hydrocarbons and more reuse of refrigerators in the EU in comparison with North America.

  13. Enzymes and microorganisms in food industry waste processing and conversion to useful products: literature review

    Energy Technology Data Exchange (ETDEWEB)

    Carroad, P A [Univ. of California, Davis; Wilke, C R

    1978-01-01

    Bioconversion of food processing wastes is receiving increased attention with the realization that waste components represent an available and utilizable resource for conversion to useful products. Liquid wastes are characterized as dilute streams containing sugars, starches, proteins and fats. Solid wastes are generally cellulosic, but may contain other polymers. The greatest potential for economic bioconversion is represented by processes to convert cellulose to glucose, glucose to alcohol and protein, starch to invert sugar, and dilute waste streams to methane by anaerobic digestion. Microbial or enzymatic processes to accomplish these conversions are described.

  14. Waste printed circuit board recycling techniques and product utilization

    International Nuclear Information System (INIS)

    Hadi, Pejman; Xu, Meng; Lin, Carol S.K.; Hui, Chi-Wai; McKay, Gordon

    2015-01-01

    Highlights: • There is a major environmental issue about the printed circuit boards throughout the world. • Different physical and chemical recycling techniques have been reviewed. • Nonmetallic fraction of PCBs is the unwanted face of this waste stream. • Several applications of the nonmetallic fraction of waste PCBs have been introduced. - Abstract: E-waste, in particular waste PCBs, represents a rapidly growing disposal problem worldwide. The vast diversity of highly toxic materials for landfill disposal and the potential of heavy metal vapors and brominated dioxin emissions in the case of incineration render these two waste management technologies inappropriate. Also, the shipment of these toxic wastes to certain areas of the world for eco-unfriendly “recycling” has recently generated a major public outcry. Consequently, waste PCB recycling should be adopted by the environmental communities as an ultimate goal. This article reviews the recent trends and developments in PCB waste recycling techniques, including both physical and chemical recycling. It is concluded that the physical recycling techniques, which efficiently separate the metallic and nonmetallic fractions of waste PCBs, offer the most promising gateways for the environmentally-benign recycling of this waste. Moreover, although the reclaimed metallic fraction has gained more attention due to its high value, the application of the nonmetallic fraction has been neglected in most cases. Hence, several proposed applications of this fraction have been comprehensively examined

  15. Alternative fish feed production from waste chicken feathers

    Directory of Open Access Journals (Sweden)

    Sri Jumini

    2017-08-01

    Full Text Available In this This devotion has been done to provide education and training of the utilization of waste chicken manure, making flour chicken feathers as a fish feed alternative, that can overcome some of the problems that waste chicken feathers from the center cutting broiler chickens in the village Krasak enough, it causes pollution, and not used optimally; Low public awareness of awareness of environmental pollution; the lack of public knowledge about the utilization of waste chicken feathers, and processing technology, as well as to address the needs of fish feed more expensive, need alternative feed ingredients. This service program has provided insight to the public about waste chicken feathers so that it can be used as a new entrepreneurial startups. To achieve these objectives have been done of activity as follows: 1 Provide counseling and understanding of the community will be a negative impact on the environment of waste chicken feathers. 2 Provide counseling utilization of waste chicken feathers for people in nearby farms. 3 Make a chicken feather meal of chicken feather waste as an alternative fish feed to improve digestibility of chicken feathers. 3 The formation of the group for increasing the economic income of the family. This service activities program runs quite well with demonstrated some activity, namely: 1 Change Behavior Society (knowledge transfer; 2 Chicken Feather Extension Waste Utilization; 3 Making Unit Waste Chicken Feathers; 4 Establishment of New Business of Diversified Waste Chicken Feathers.

  16. Waste printed circuit board recycling techniques and product utilization

    Energy Technology Data Exchange (ETDEWEB)

    Hadi, Pejman; Xu, Meng [Chemical and Biomolecular Engineering Department, Hong Kong University of Science and Technology, Clear Water Bay Road, Hong Kong Special Administrative Region (Hong Kong); Lin, Carol S.K. [School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region (Hong Kong); Hui, Chi-Wai [Chemical and Biomolecular Engineering Department, Hong Kong University of Science and Technology, Clear Water Bay Road, Hong Kong Special Administrative Region (Hong Kong); McKay, Gordon, E-mail: kemckayg@ust.hk [Chemical and Biomolecular Engineering Department, Hong Kong University of Science and Technology, Clear Water Bay Road, Hong Kong Special Administrative Region (Hong Kong); Division of Sustainable Development, College of Science, Engineering and Technology, Hamad Bin Khalifa University, Qatar Foundation, Doha (Qatar)

    2015-02-11

    Highlights: • There is a major environmental issue about the printed circuit boards throughout the world. • Different physical and chemical recycling techniques have been reviewed. • Nonmetallic fraction of PCBs is the unwanted face of this waste stream. • Several applications of the nonmetallic fraction of waste PCBs have been introduced. - Abstract: E-waste, in particular waste PCBs, represents a rapidly growing disposal problem worldwide. The vast diversity of highly toxic materials for landfill disposal and the potential of heavy metal vapors and brominated dioxin emissions in the case of incineration render these two waste management technologies inappropriate. Also, the shipment of these toxic wastes to certain areas of the world for eco-unfriendly “recycling” has recently generated a major public outcry. Consequently, waste PCB recycling should be adopted by the environmental communities as an ultimate goal. This article reviews the recent trends and developments in PCB waste recycling techniques, including both physical and chemical recycling. It is concluded that the physical recycling techniques, which efficiently separate the metallic and nonmetallic fractions of waste PCBs, offer the most promising gateways for the environmentally-benign recycling of this waste. Moreover, although the reclaimed metallic fraction has gained more attention due to its high value, the application of the nonmetallic fraction has been neglected in most cases. Hence, several proposed applications of this fraction have been comprehensively examined.

  17. Production of surfactin by bacillus subtilis mtcc 2423 from waste frying oils

    Directory of Open Access Journals (Sweden)

    N. Vedaraman

    2011-06-01

    Full Text Available One of the obstacles in the way of wide scale industrial application of biosurfactants is the high production cost coupled with a low production rate. In order to lower the production cost surfactin production by Bacillus subtilis MTCC 2423 was studied in submerged batch cultivation using waste frying oils. It was observed that the decrease in surface tension was 56.32%, 48.5% and 46.1% with glucose, waste frying sunflower oil and waste frying rice bran oil, respectively. Biomass formation was 4.36 g/L, 3.67 g/L and 4.67 g/L for glucose, waste frying sunflower oil and waste frying rice bran oil, respectively. Product yield (g product/g substrate was 2.1%, 1.49% and 1.1% with glucose, waste frying sunflower oil and waste frying rice bran oil as substrates. This process facilitates safe disposal of waste frying oil, as well reducing the production cost of surfactin.

  18. Potential of fecal waste for the production of biomethane, bioethanol and biodiesel.

    Science.gov (United States)

    Gomaa, Mohamed A; Abed, Raeid M M

    2017-07-10

    Fecal waste is an environmental burden that requires proper disposal, which ultimately becomes also an economic burden. Because fecal waste is nutrient-rich and contains a diverse methanogenic community, it has been utilized to produce biomethane via anaerobic digestion. Carbohydrates and lipids in fecal waste could reach up to 50% of the dry weight, which also suggests a potential as a feedstock for bioethanol and biodiesel production. We measured biomethane production from fecal waste of cows, chickens, goats and humans and compared the microbial community composition before and after anaerobic digestion. We also compared the fecal waste for cellulase production, saccharification and fermentation to produce bioethanol and for lipid content and fatty acid profiles to produce biodiesel. All fecal waste produced biomethane, with the highest yield of 433.4±77.1ml CH 4 /g VS from cow fecal waste. Production of bioethanol was achieved from all samples, with chicken fecal waste yielding as high as 1.6±0.25g/l. Sludge samples exhibited the highest extractable portion of lipids (20.9±0.08wt%) and conversion to fatty acid methyl esters (11.94wt%). Utilization of fecal waste for the production of biofuels is environmentally and economically beneficial. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Catalytic mechanism of sodium compounds in black liquor during gasification of coal black liquor slurry

    International Nuclear Information System (INIS)

    Kuang Jianping; Zhou Junhu; Zhou Zhijun; Liu Jianzhong; Cen Kefa

    2008-01-01

    The coal black liquor slurry (CBLS) was composed of coal and black pulping liquor, which has plenty of sodium compounds, lignin and cellulose. The sodium compounds have a catalytic effect on the gasification process of coal black liquor slurry, while lignin and cellulose enhance the heat value. Alkali-catalyzed gasification experiments of CBLS and CWS (coal water slurry) are investigated on the thermobalance and fixed bed reactor. The residues of the gasification of CBLS and CWS are analyzed by XRD, SEM and FT-IR. It is found that many micro- and mesopores and zigzag faces exist in the surface of the CBLS coke, which play a key role in the catalytic gasification. Sodium can enhance the reaction potential, weaken the bond of C-O and improve the gasification reaction rate. XRD results show that sodium aluminum silicate and nepheline are the main crystal components of the CBLS and CWS. The C-O stretching vibration peak in the 1060 cm -1 band in the CBLS shifts to 995.65 cm -1 in the CBLS coke after partial gasification. This means that the energy of the C-O stretching vibration in the CBLS carbon matrix decreases, so the structure of the carbon matrix is more liable to react with an oxygen ion or hydroxide ion. The amplitude of the C-O stretching vibration peak is augmented step by step due to the ground-excited level jump of the C-O band

  20. Conditioning of radioactive waste from the waste collection centers of the German states as illustrated by radioactive waste from industrial production processes

    International Nuclear Information System (INIS)

    Stellmacher, J.; Sickert, T.

    2011-01-01

    The amount of negligible heat generating waste in Germany is increasing due to deconstruction of decommissioned nuclear facilities. Until 2040 277.000 m 3 are expected. By conditioning processes the wastes are transferred into a chemical stabile and water insoluble state and packaged in appropriate containers for final repository disposal. The radioactive waste in the collection containers are coated with wax for immobilization of the surface contamination, in the next step the containers are filled with pressurized geopolymer, a thixotropic fluid (under pressure the viscosity is decreased, so that cavities are filled). The conditioned material, the so called interim product is stored in trays for the final packaging in appropriate containers.