WorldWideScience

Sample records for waste line removal

  1. Radioactive liquid wastes lines removal project at Los Alamos (1981-1986)

    International Nuclear Information System (INIS)

    Elder, J.C.; Cox, E.J.; Hohner, D.P.; Valentine, A.M.

    1986-09-01

    This report describes the abandoned liquid waste lines removal operations conducted at Los Alamos in the period 1981 to 1986. Particular emphasis has been placed on as-left conditions, that is, on the location of sections of waste lines or contaminated soil which were left in place on the basis of ALARA decisions. Contaminated items were left when interfering utilities, roads, structures, or great depth made complete removal not cost effective or not safe. Left items were either not highly contaminated or they were not near the surface. Total cost of the project was $4.2 million. Approximately 5800 m 3 of contaminated waste was placed in the Solid Waste Management Site at TA-54 Area G. The project accomplished the removal of approximately 34,500 ft (6.5 miles) of abandoned waste lines under carefully controlled conditions. Procedures for excavation, waste disposal, personnel protection, and radiation monitoring are described. Environmental monitoring criteria and methods for determining acceptable levels of contamination in soils and on surfaces are discussed

  2. Possibilities of Mercury Removal in the Dry Flue Gas Cleaning Lines of Solid Waste Incineration Units

    Czech Academy of Sciences Publication Activity Database

    Svoboda, Karel; Hartman, Miloslav; Šyc, Michal; Pohořelý, Michael; Kameníková, Petra; Jeremiáš, Michal; Durda, Tomáš

    2016-01-01

    Roč. 166, JAN 15 (2016), s. 499-511 ISSN 0301-4797 R&D Projects: GA TA ČR TE02000236 Institutional support: RVO:67985858 Keywords : waste incineration * mercury removal * flue gas Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 4.010, year: 2016

  3. Possibilities of mercury removal in the dry flue gas cleaning lines of solid waste incineration units.

    Science.gov (United States)

    Svoboda, Karel; Hartman, Miloslav; Šyc, Michal; Pohořelý, Michael; Kameníková, Petra; Jeremiáš, Michal; Durda, Tomáš

    2016-01-15

    Dry methods of the flue gas cleaning (for HCl and SO2 removal) are useful particularly in smaller solid waste incineration units. The amount and forms of mercury emissions depend on waste (fuel) composition, content of mercury and chlorine and on the entire process of the flue gas cleaning. In the case of high HCl/total Hg molar ratio in the flue gas, the majority (usually 70-90%) of mercury is present in the form of HgCl2 and a smaller amount in the form of mercury vapors at higher temperatures. Removal of both main forms of mercury from the flue gas is dependent on chemical reactions and sorption processes at the temperatures below approx. 340 °C. Significant part of HgCl2 and a small part of elemental Hg vapors can be adsorbed on fly ash and solid particle in the air pollution control (APC) processes, which are removed in dust filters. Injection of non-impregnated active carbon (AC) or activated lignite coke particles is able to remove mainly the oxidized Hg(2+) compounds. Vapors of metallic Hg(o) are adsorbed relatively weakly. Much better chemisorption of Hg(o) together with higher sorbent capacity is achieved by AC-based sorbents impregnated with sulfur, alkali poly-sulfides, ferric chloride, etc. Inorganic sorbents with the same or similar chemical impregnation are also applicable for deeper Hg(o) removal (over 85%). SCR catalysts convert part of Hg(o) into oxidized compounds (HgO, HgCl2, etc.) contributing to more efficient Hg removal, but excess of NH3 has a negative effect. Both forms, elemental Hg(o) and HgCl2, can be converted into HgS particles by reacting with droplets/aerosol of poly-sulfides solutions/solids in flue gas. Mercury captured in the form of water insoluble HgS is more advantageous in the disposal of solid waste from APC processes. Four selected options of the dry flue gas cleaning with mercury removal are analyzed, assessed and compared (in terms of efficiency of Hg-emission reduction and costs) with wet methods and retrofits for more

  4. Formerly utilized MED/AEC sites remedial action program. Removal of a contaminated industrial waste line, Los Alamos, New Mexico. Final report

    International Nuclear Information System (INIS)

    Gunderson, T.C.; Ahlquist, A.J.

    1979-04-01

    In 1977 parts of an abandoned industrial waste line (IWL) that carried laboratory or process chemical and radiochemical wastes were removed from Los Alamos Scientific Laboratory property and from the townsite of Los Alamos in north-central New Mexico. Most of the IWL was removed between 1964 and 1967. Some IWL segments in the townsite, which at that time were buried under newly paved roads, were left for removal during future construction projects involving these roads to minimize traffic problems and road damage, and because they posed no public health hazard. In 1977, prior to impending major road construction in several areas, 400 m (1300 ft) of IWL and two IWL manhole structures were removed from Laboratory and Los Alamos County property. Associated soil contamination was removed to levels considered to be as low as practicable. Contaminated or potentially contaminated material was removed to an approved radioactive waste disposal site on Department of Energy property. Full details of the methods, findings, and as-left conditions are documented in this report

  5. PROJECT-SPECIFIC TYPE A VERIFICATION FOR THE HIGH FLUX BEAM REACTOR UNDERGROUND UTILITIES REMOVAL PHASE 2 D/F WASTE LINE REMOVAL, BROOKHAVEN NATIONAL LABORATORY UPTON, NEW YORK

    International Nuclear Information System (INIS)

    Weaver, P.C.

    2010-01-01

    Oak Ridge Institute for Science and Education (ORISE) has reviewed the project documentation and data for the High Flux Beam Reactor (HFBR) Underground Utilities removal Phase 2; the D/F Waste Line removal at Brookhaven National Laboratory (BNL) in Upton, New York. The Brookhaven Survey Group (BSG) has completed removal and performed the final status survey (FSS) of the D/F Waste Line that provided the conduit for pumping waste from Building 750 to Building 801. Sample results have been submitted as required to demonstrate that the cleanup goals of 15 mrem/yr above background to a resident in 50 years have been met. Four rounds of sampling, from pre-excavation to final status survey (FSS), were performed as specified in the Field Sampling Plan (FSP) (BNL 2010a). It is the policy of the US Departmental of Energy (DOE) to perform independent verifications of decontamination and decomissioning activities conducted at DOE facilities. ORISE has been designated as the organization responsible for this task at the HFBR. ORISE together with DOE determined that a Type A verification of the D/F Waste Line was appropriate based on its method of construction and upon the minimal potential for residual radioactivity in the area. The removal of underground utilities is being performed in three stages in the process to decommission the HFBR facility and support structures. Phase 2 of this project included the grouting and removal of 1100 feet of 2-inch pipe and 640 feet of 4-inch pipe that served as the D/F Waste Line. Based on the pre-excavation sample results of the soil overburden, the potential for contamination of the soil surrounding the pipe is minimal (BNL 2010a). ORISE reviewed the BNL FSP and identified comments for consideration (ORISE 2010). BNL prepared a revised FSP that addressed each ORISE comment adequately (BNL 2010a). ORISE referred to the revised Phase 2 D/F Waste Line removal FSP FSS data to conduct the Type A verification and determine whether the intent odf

  6. Technetium removal from aqueous wastes

    International Nuclear Information System (INIS)

    Fletcher, P.A.; Jones, C.P.; Junkison, A.R.; Turner, A.D.; Kavanagh, P.R.

    1992-03-01

    The research discussed in this report has compared several ''state of the art'' techniques for the removal of traces of the radionuclide, technetium, from aqueous wastes. The techniques investigated were: electrochemical reduction to an insoluble oxide, electrochemical ion exchange, seeded ultrafiltration and chemical reduction followed by filtration. Each technique was examined using a simulant based upon the waste generated by the Enhanced Actinide Removal Plant (EARP) at Sellafield. The technique selected for further investigation was direct electrochemical reduction which offers an ideal route for the removal of technetium from the stream (DFs 10-100) and can be operated continuously with a low power consumption 25 kW for the waste generated by EARP. Cell designs for scale up have been suggested to treat the 1000m 3 of waste produced every day. Future work is proposed to investigate the simultaneous removal of other key radionuclides, such as ruthenium, plutonium and cobalt as well as scale up of the resulting process and to investigate the effect of these other radionuclides on the efficiency of the electrochemical reduction technique for the removal of technetium. Total development and full scale plant costs are estimated to be of the order of 5 pounds - 10M, with a time scale of 5 -8 years to realisation. (author)

  7. Radioactive waste removing device

    International Nuclear Information System (INIS)

    Sakai, Takuhiko.

    1982-01-01

    Purpose: To cleanup primary coolants for LMFBR type reactors by magnetically generating a high speed rotational flow in the flow of liquid metal, and adsorbing radioactive corrosion products and fission products onto capturing material of a complicated shape. Constitution: Three-phase AC coils for generating a rotational magnetic field are provided to the outside of a container through which liquid sodium is passed to thereby generate a high speed rotational stream in the liquid sodium flowing into the container. A radioactive substance capturing material made of a metal plate such as of nickel and stainless steel in the corrugated shape with shape edges is secured within a flow channel. Magnetic field at a great slope is generated in the flow channel by the capturing material to adsorb radioactive corrosion products and fission products present in the liquid sodium onto the capturing material and removing therefrom. This enables to capture the ferri-magnetic impurities by adsorption. (Moriyama, K.)

  8. Mercury removal from solid mixed waste

    International Nuclear Information System (INIS)

    Gates, D.D.; Morrissey, M.; Chava, K.K.; Chao, K.

    1994-01-01

    The removal of mercury from mixed wastes is an essential step in eliminating the temporary storage of large inventories of mixed waste throughout the Department of Energy (DOE) complex. Currently thermal treatment has been identified as a baseline technology and is being developed as part of the DOE Mixed Waste Integrated Program (MWIP). Since thermal treatment will not be applicable to all mercury containing mixed waste and the removal of mercury prior to thermal treatment may be desirable, laboratory studies have been initiated at Oak Ridge National Laboratory (ORNL) to develop alternative remediation technologies capable of removing mercury from certain mixed waste. This paper describes laboratory investigations of the KI/I 2 leaching processes to determine the applicability of this process to mercury containing solid mixed waste

  9. West Valley waste removal system study

    International Nuclear Information System (INIS)

    Janicek, G.P.

    1981-04-01

    This study addresses the specific task of removing high-level wastes from underground tanks at Western New York Nuclear Center and delivering them to an onsite waste solidification plant. It begins with a review of the design and construction features of the waste storage tanks pertinent to the waste removal task with particular emphasis on the unique and complex tank internals which severely complicate the task of removal. It follows with a review of tank cleaning techniques used and under study at both Hanford and Savannah River and previous studies proposing the use of these techniques at West Valley. It concludes from these reviews that existing techniques are not directly transferable to West Valley and that a new approach is required utilizing selected feature and attributes from existing methodology. The study also concludes, from an investigation of the constraints imposed by the processing facility, that waste removal will be intermittent, requiring batch transfer over the anticipated 3 years of processing operations. Based on these reviews and conclusions, the study proposes that the acid waste be processed first and that one of the 15,000-gallon acid tanks then be used for batch feeding the neutralized waste. The proposed system would employ commercially available pumping equipment to transfer the wastes from the batch tank to processing via existing process piping. A commercially available mixed-flow pump and eight turbine pumps would homogenize the neutralized waste in conjunction with eight custom-fabricated sluicers for periodic transfer to the batch tank

  10. Removal of boron (B) from waste liquors.

    Science.gov (United States)

    Jiang, J Q; Xu, Y; Simon, J; Quill, K; Shettle, K

    2006-01-01

    This paper explores the use of electrocoagulation to remove boron from waste effluent in comparison with alum coagulation. In treating model test wastes, greater boron removals were achieved with electrocoagulation at low doses than conventional alum coagulation when reaction was undertaken for the same conditions (pH 8.5, and initial boron concentration was 500 mg/L). Al electrocoagulation can achieve good boron removal performance (68.3%) at a dose of 2.1 (as molar ratio of Al:B, and for current density of 62.1 A/m2), while alum coagulation can only achieve the maximum boron removal of 56% at a dose of 2.4. Also, Al electrocoagulation can remove 15-20% more boron than alum coagulation for the same dose compared in the treatment of both model test wastes and industry effluent. The estimation of running costs shows that to achieve 75% boron removal from industry waste effluent, i.e. removing 150 g of boron from 1 m3 of effluent, electrocoagulation was 6.2 times cheaper than alum coagulation. The economic advantage of electrocoagulation in the treatment of boron-containing waste effluent is thus significant.

  11. Removal of organic wastes containing tributyl phosphate

    International Nuclear Information System (INIS)

    Drobnik, S.

    TBP in dodecane and kerosene is one of the waste solutions from the reprocessing of spent nuclear fuels by the Purex process. The following methods were investigated for removing the organic solvents: adsorption on suitable solids, extraction, reaction with neutral salts, and saponification with acids or alkalis. Results showed that the best method of TBP removal is saponification with alkali hydroxides, either with dibutyl phosphate or with ortho-phosphate

  12. Nuclear energy waste: space transportation and removal

    International Nuclear Information System (INIS)

    Burns, R.E.

    1975-12-01

    A method for utilizing the decay heat of actinide wastes to power an electric thrust vehicle is proposed. The vehicle, launched by shuttle to earth orbit and to earth escape by a tug, obtains electrical power from the actinide waste heat by thermionic converters. The heavy gamma ray and neutron shielding which is necessary as a safety feature is removed in orbit and returned to earth for reuse. The problems associated with safety are dealt with in depth. A method for eliminating fission wastes via chemical propulsion is briefly discussed

  13. Position paper -- Waste storage tank heat removal

    International Nuclear Information System (INIS)

    Stine, M.D.

    1995-01-01

    The purpose of this paper is to develop and document a position on the heat removal system to be used on the waste storage tanks currently being designed for the Multi-Function Waste Tank Facility (MWTF), project W-236A. The current preliminary design for the waste storage primary tank heat removal system consists of the following subsystems: (1) a once-through dome space ventilation system; (2) a recirculation dome space ventilation system; and (3) an annulus ventilation system. Recently completed and ongoing studies have evaluated alternative heat removal systems in an attempt to reduce system costs and to optimize heat removal capabilities. In addition, a thermal/heat transfer analysis is being performed that will provide assurance that the heat removal systems selected will be capable of removing the total primary tank design heat load of 1.25 MBtu/hr at an allowable operating temperature of 190 F. Although 200 F is the design temperature limit, 190 F has been selected as the maximum allowable operating temperature limit based on instrumentation sensitivity, instrumentation location sensitivity, and other factors. Seven options are discussed and recommendations are made

  14. Rheological evaluation of pretreated cladding removal waste

    International Nuclear Information System (INIS)

    McCarthy, D.; Chan, M.K.C.; Lokken, R.O.

    1986-01-01

    Cladding removal waste (CRW) contains concentrations of transuranic (TRU) elements in the 80 to 350 nCi/g range. This waste will require pretreatment before it can be disposed of as glass or grout at Hanford. The CRW will be pretreated with a rare earth strike and solids removal by centrifugation to segregate the TRU fraction from the non-TRU fraction of the waste. The centrifuge centrate will be neutralized with sodium hydroxide. This neutralized cladding removal waste (NCRW) is expected to be suitable for grouting. The TRU solids removed by centrifugation will be vitrified. The goal of the Rheological Evaluation of Pretreated Cladding Removal Waste Program was to evaluate those rheological and transport properties critical to assuring successful handling of the NCRW and TRU solids streams and to demonstrate transfers in a semi-prototypic pumping environment. This goal was achieved by a combination of laboratory and pilot-scale evaluations. The results obtained during these evaluations were correlated with classical rheological models and scaled-up to predict the performance that is likely to occur in the full-scale system. The Program used simulated NCRW and TRU solid slurries. Rockwell Hanford Operations (Rockwell) provided 150 gallons of simulated CRW and 5 gallons of simulated TRU solid slurry. The simulated CRW was neutralized by Pacific Northwest Laboratory (PNL). The physical and rheological properties of the NCRW and TRU solid slurries were evaluated in the laboratory. The properties displayed by NCRW allowed it to be classified as a pseudoplastic or yield-pseudoplastic non-Newtonian fluid. The TRU solids slurry contained very few solids. This slurry exhibited the properties associated with a pseudoplastic non-Newtonian fluid

  15. Mechanism of lead removal by waste materials

    International Nuclear Information System (INIS)

    Qaiser, S.; Saleemi, A.R.; Ahmed, M.M.

    2007-01-01

    Heavy metal ions are priority pollutants, due to their toxicity and mobility in natural water ecosystems. The discharge of heavy metals into aquatic ecosystems has become a matter of concern in Pakistan over the last few decades. These contaminants are introduced into the aquatic systems significantly as a result of various industrial operations. The metals of concern include lead, chromium, zinc, copper, nickel and uranium. Lead is one of the most hazardous and toxic metals. It is used as industrial raw material in the manufacture of storage batteries, pigments, leaded glass, fuels, photographic materials, matches and explosives. Conventional methods for treatment of dissolved lead include precipitation, adsorption, coagulation/notation, sedimentation, reverse osmosis and ion exchange. Each process has its merits and limitations in applications. Adsorption by activated carbon and ion exchange using commercial ion exchange resins are very expensive processes, especially for a developing country like Pakistan. The present research was conducted to identify some waste materials, which can be utilized to remove lead from industrial wastewater. Natural wastes in the form of leaves and ash have considerable amounts of CaO, MgO, Na/sub 2/O, SiO/sub 2/ and Al/sub 2/O/sub 3/ which can be utilized for precipitation and adsorption. Utilization of waste materials to remove lead from industrial wastewater is the basic theme of this research. The waste materials used in this research were maple leaves, pongamia pinata leaves, coal ash and maple ago leave ash. Parameters studied were reaction time, precipitant dose, pH and temperature. It was found that maple leaves ash has maximum lead removal capacity 19.24 mg g/sup -1/ followed by coal ash 13.2 mg g/sup -1/. The optimal pH was 5 for maple leaves and pongamia Pinata leaves; and 4 for coal ash and maple leaves ash. Removal capacity decreased with increase in temperature. The major removal mechanisms were adsorption and

  16. Structure modification of natural zeolite for waste removal application

    Science.gov (United States)

    Widayatno, W. B.

    2018-03-01

    Tremendous industrialization in the last century has led to the generation of huge amount of waste. One of the recent hot research topics is utilizing any advance materials and methods for waste removal. Natural zeolite as an inexpensive porous material with a high abundance holds a key for efficient waste removal owing to its high surface area. However, the microporous structure of natural zeolite hinders the adsorption of waste with a bigger molecular size. In addition, the recovery of natural zeolite after waste adsorption into its pores should also be considered for continuous utilization of this material. In this study, the porosity of natural zeolite from Tasikmalaya, Indonesia, was hydrothermally-modified in a Teflon-lined autoclave filled with certain pore directing agent such as distilled water, KOH, and NH4OH to obtain hierarchical pore structure. After proper drying process, the as-treated natural zeolite is impregnated with iron cation and heat-treated at specified temperature to get Fe-embedded zeolite structure. XRD observation is carried out to ensure the formation of magnetic phase within the zeolite pores. The analysis results show the formation of maghemite phase (γ-Fe2O3) within the zeolite pore structure.

  17. 40 CFR 194.46 - Removal of waste.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Removal of waste. 194.46 Section 194... PROGRAMS CRITERIA FOR THE CERTIFICATION AND RE-CERTIFICATION OF THE WASTE ISOLATION PILOT PLANT'S... Assurance Requirements § 194.46 Removal of waste. Any compliance application shall include documentation...

  18. Americium removal from nitric acid waste streams

    International Nuclear Information System (INIS)

    Muscatello, A.C.; Navratil, J.D.

    1986-01-01

    Separations research at the Rocky Flats Plant (RFP) has found ways to significantly improve americium removal from nitric acid (7M) waste streams generated by plutonium purification operations. Partial neutralization of the acid waste followed by solid supported liquid membranes (SLM) are useful in transferring and concentrating americium from nitrate solutions. Specifically, DHDECMP (dihexyl-N,N-diethylcarbamoylmethylphosphonate) supported on Accurel polypropylene hollow fibers assembled in modular form transfers >95% of the americium from high nitrate (6.9M), low acid (0.1M) feeds into 0.25M oxalic acid stripping solution. Maximum permeabilities were observed to be 0.001 cm/sec, consistent with typical values for other systems. The feed:strip volume ratio shows an inverse relationship to the fraction of metal ion transferred. Cation exchangers may be used to concentrate americium from the strip solution. Furthermore, O0D (iB)CMPO (or CMPO) (octylphenyl-N-N-diisobutylcarbamoylmethylphosphine oxide) has been tested in an extraction chromatography mode. Preliminary results show CMPO to be effective in removing americium if the feed is neutralized to 1.0M acidity and iron(III) is complexed with 0.20M oxalic acid. 3 figs

  19. Laboratory simulation of salt dissolution during waste removal

    International Nuclear Information System (INIS)

    Wiersma, B.J.; Parish, W.R.

    1997-01-01

    Laboratory experiments were performed to support the field demonstration of improved techniques for salt dissolution in waste tanks at the Savannah River Site. The tests were designed to investigate three density driven techniques for salt dissolution: (1) Drain-Add-Sit-Remove, (2) Modified Density Gradient, and (3) Continuous Salt Mining. Salt dissolution was observed to be a very rapid process as salt solutions with densities between 1.38-1.4 were frequently removed. Slower addition and removal rates and locating the outlet line at deeper levels below the top of the saltcake provided the best contact between the dissolution water and the saltcake. It was observed that dissolution with 1 M sodium hydroxide solution resulted in salt solutions that were within the current inhibitor requirements for the prevention of stress corrosion cracking. This result was independent of the density driven technique. However, if inhibited water (0.01 M sodium hydroxide and 0.011 M sodium nitrite) was utilized, the salt solutions were frequently outside the inhibitor requirements. Corrosion testing at conditions similar to the environments expected during waste removal was recommended

  20. Guidebook of radioactive wastes removal. From collection to storage

    International Nuclear Information System (INIS)

    2014-06-01

    This document, more particularly devoted to radioactive waste producers (except electronuclear industry), defines the technical specifications relative to the taking over of their wastes by the ANDRA, the French national agency of radioactive wastes. Content: general conditions (producers liability and obligations), instructions manual of the taking over demand, non-electronuclear wastes collecting, wastes conditioning specifications, specifications for each category of waste, the lightning arresters case, specifications for particular removals with prior consent

  1. Mixed waste removal from a hazardous waste storage tank

    International Nuclear Information System (INIS)

    Geber, K.R.

    1993-01-01

    The spent fuel transfer canal at the Oak Ridge Graphite Reactor was found to be leaking 400 gallons of water per day into the surrounding soil. Sampling of the sediment layer on the floor of the canal to determine the environmental impact of the leak identified significant radiological contamination and elevated levels of cadmium and lead which are hazardous under the Resource Conservation and Recovery Act (RCRA). Under RCRA regulations and Rules of Tennessee Department of Environment and Conservation, the canal was considered a hazardous waste storage tank. This paper describes elements of the radiological control program established in support of a fast-track RCRA closure plan that involved underwater mapping of the radiation fields, vacuuming, and ultra-filtration techniques that were successfully used to remove the mixed waste sediments and close the canal in a method compliant with state and federal regulations

  2. Removal of radioactive and other hazardous material from fluid waste

    Science.gov (United States)

    Tranter, Troy J [Idaho Falls, ID; Knecht, Dieter A [Idaho Falls, ID; Todd, Terry A [Aberdeen, ID; Burchfield, Larry A [W. Richland, WA; Anshits, Alexander G [Krasnoyarsk, RU; Vereshchagina, Tatiana [Krasnoyarsk, RU; Tretyakov, Alexander A [Zheleznogorsk, RU; Aloy, Albert S [St. Petersburg, RU; Sapozhnikova, Natalia V [St. Petersburg, RU

    2006-10-03

    Hollow glass microspheres obtained from fly ash (cenospheres) are impregnated with extractants/ion-exchangers and used to remove hazardous material from fluid waste. In a preferred embodiment the microsphere material is loaded with ammonium molybdophosphonate (AMP) and used to remove radioactive ions, such as cesium-137, from acidic liquid wastes. In another preferred embodiment, the microsphere material is loaded with octyl(phenyl)-N-N-diisobutyl-carbamoylmethylphosphine oxide (CMPO) and used to remove americium and plutonium from acidic liquid wastes.

  3. Dust removal from waste gas arising from fluidized beds

    International Nuclear Information System (INIS)

    Soltys, L.

    1992-01-01

    Two types dust removal equipment mostly useful for dust removal from waste gas from fluidized beds, i.e. electrofilters and pulsatory bag filters were presented. Their features and functional properties were compared. (author). 7 refs, 4 figs

  4. 75 FR 73972 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste; Removal of...

    Science.gov (United States)

    2010-11-30

    ... Waste Management System; Identification and Listing of Hazardous Waste; Removal of Direct Final.... Lists of Subjects in 40 CFR Part 261 Environmental Protection, Hazardous waste, Recycling, Reporting and... follows: PART 261--IDENTIFICATION AND LISTING OF HAZARDOUS WASTE 0 1. The authority citation for part 261...

  5. Effect of color removal agent on textiles waste water

    International Nuclear Information System (INIS)

    Khomsaton Abu Bakar; Selambakknu, Sarala; Jamaliah Shariff; Ting, Teo Ming; Khairul Zaman Dahlan

    2010-01-01

    The effect of color removal agent (CRA) on textile waste water has been studied. The aim of this work is to determine the optimum condition for CRA to react on the textile waste water and to see the effect of CRA on waste water with different Chemical Oxygen Demand. 8 ml CRA was used to treat 800 mls of sample with various COD ranging between 2500 mg/ l-500 mg/ l. The results showed that CRA totally remove the colour of textile waste water at pH ranging from 6 to 8. At an optimum condition CRA works efficiently on waste water with COD 2300 mg/ l for reduction of suspended solid and turbidity. It also observed, sludge accumulation was depended on COD concentration. Color removal curves for different initial COD concentration also obtained. (author)

  6. Removal of organics from radioactive waste. V. 2

    International Nuclear Information System (INIS)

    Williams, J.; Kitchin, J.; Burton, W.H.

    1989-05-01

    This report reviews the available literature concerning the removal of organic substances from radioactive waste streams. A substantial portion of low level wastes generated in the various parts of the nuclear fuel cycle, nuclear laboratories and other places where radionuclides are used for research, industrial medical and defense related activities is organic (paper, wood, plastics, rubber etc.) and combustible. These combustible wastes can be processed by incineration. Incineration converts combustible wastes into radioactive ashes and residues that are non-flammable, chemically inert and more homogenous than the initial waste. (author)

  7. Waste removal sequencing using ProdMod

    International Nuclear Information System (INIS)

    Paul, P.K.; Gregory, M.V.; Davis, N.R.; Brooke, J.N.

    1996-01-01

    The Savannah River Site (SRS) is starting to solidify its accumulated high-level radioactive waste into borosilicate glass in stainless steel canisters for eventual permanent storage. The in-tank precipitation process (ITP) and extended sludge processing (ESP) are two key operations in the waste processing complex. The supernate and dissolved salt from the waste storage tanks are transferred to the ITP process tank where the solution is decontaminated in batch processes. Soluble radioactive cesium is precipitated with sodium tetraphenylborate and strontium, uranium, and plutonium are adsorbed on monosodium titanate. The precipitate and adsorbent solids, which now contain the radionuclides, are concentrated using crossflow filters. The concentrated solids are sent to the high-level waste vitrification process. The decontaminated salt solution is sent to the low-level waste solidification process to form cement grout. In parallel with the precipitate operations, insoluble sludges that settled originally to the bottom of the waste tanks are reslurried and sent to ESP to undergo washing to reduce soluble salt content and aluminum dissolution, if required. In the vitrification process in the Defense Waste Processing Facility (DWPF), the concentrated precipitate from the ITP is mixed with the washed sludge from ESP and glass frit in proportion to form a stable borosilicate glass. A novel and fast-running Production Planning Model (ProdMod) has been developed to simulate the waste processing operation. This paper describes the application of ProdMod in sequencing the ITP batches and scheduling the ESP batches

  8. Process for removing sulfate anions from waste water

    Science.gov (United States)

    Nilsen, David N.; Galvan, Gloria J.; Hundley, Gary L.; Wright, John B.

    1997-01-01

    A liquid emulsion membrane process for removing sulfate anions from waste water is disclosed. The liquid emulsion membrane process includes the steps of: (a) providing a liquid emulsion formed from an aqueous strip solution and an organic phase that contains an extractant capable of removing sulfate anions from waste water; (b) dispersing the liquid emulsion in globule form into a quantity of waste water containing sulfate anions to allow the organic phase in each globule of the emulsion to extract and absorb sulfate anions from the waste water and (c) separating the emulsion including its organic phase and absorbed sulfate anions from the waste water to provide waste water containing substantially no sulfate anions.

  9. Freeze block testing of buried waste lines

    International Nuclear Information System (INIS)

    Robbins, E.D.; Willi, J.C.

    1976-01-01

    An investigation was conducted to demonstrate application of freeze blocking in waste transfer lines such that a hydrostatic pressure test can be applied. A shop test was conducted on a 20-foot length, 3-inch schedule 40, carbon steel pipe using a coolant of dry ice and Freon. The positive results from these tests prompted a similar employment of the freeze block method in hydrostatic pressure testing the feed inlet leading to 241-S-101 Waste Tank. This pipeline is a 3-inch schedule 10, stainless steel pipe approximately 800 feet long. The freeze block was formed near the lower end of the pipe as it entered the 101-S Waste Tank and a pressure hold test was applied to this pipeline. This test proved the integrity of the pipeline in question, and demonstrated the validity of freeze blocking an open-ended pipeline which could not be hydrotested in other conventional ways. The field demonstration facility, costing $30,200 was completed late in 1975

  10. Mercury removal from SRP radioactive waste streams using ion exchange

    International Nuclear Information System (INIS)

    Bibler, J.P.; Wallace, R.M.; Ebra, M.A.

    1986-01-01

    Mercury is present in varying concentrations in some Savannah River Plant (SRP) waste streams as a result of its use as a catalyst in the dissolution of fuel elements composed of uranium-aluminum alloys. It may be desirable to remove mercury from these streams before treatment of the waste for incorporation in glass for long-term storage. The glass forming process will also create waste from which mercury will have to be removed. The goal of mercury would be to eliminate ultimate emission of the toxic substance into the environment. This paper describes tests that demonstrate the feasibility of using a specific cation exchange resin, Duolite GT-73 for the removal of mercury from five waste streams generated at the SRP. Two of these streams are dilute; one is the condensate from a waste evaporator while the other is the effluent from an effluent treatment plant now under development. The three other streams are related to the Defense Waste Processing Facility (DWPF) that is being built at SRP. One of these streams is a concentrated salt solution (principally sodium nitrate and sodium hydroxide) that constitutes the soluble fraction of SRP waste and contains 20% mercury in the waste. The second stream is a slurry of the insoluble components in SRP waste and contains 80% of the mercury. The third stream is the offgas condensate from the glass melter system in the DWPF

  11. Commercial Submersible Mixing Pump For SRS Tank Waste Removal - 15223

    International Nuclear Information System (INIS)

    Hubbard, Mike; Herbert, James E.; Scheele, Patrick W.

    2015-01-01

    The Savannah River Site Tank Farms have 45 active underground waste tanks used to store and process nuclear waste materials. There are 4 different tank types, ranging in capacity from 2839 m 3 to 4921 m 3 (750,000 to 1,300,000 gallons). Eighteen of the tanks are older style and do not meet all current federal standards for secondary containment. The older style tanks are the initial focus of waste removal efforts for tank closure and are referred to as closure tanks. Of the original 51 underground waste tanks, six of the original 24 older style tanks have completed waste removal and are filled with grout. The insoluble waste fraction that resides within most waste tanks at SRS requires vigorous agitation to suspend the solids within the waste liquid in order to transfer this material for eventual processing into glass filled canisters at the Defense Waste Processing Facility (DWPF). SRS suspends the solid waste by use of recirculating mixing pumps. Older style tanks generally have limited riser openings which will not support larger mixing pumps, since the riser access is typically 58.4 cm (23 inches) in diameter. Agitation for these tanks has been provided by four long shafted standard slurry pumps (SLP) powered by an above tank 112KW (150 HP) electric motor. The pump shaft is lubricated and cooled in a pressurized water column that is sealed from the surrounding waste in the tank. Closure of four waste tanks has been accomplished utilizing long shafted pump technology combined with heel removal using multiple technologies. Newer style waste tanks at SRS have larger riser openings, allowing the processing of waste solids to be accomplished with four large diameter SLPs equipped with 224KW (300 HP) motors. These tanks are used to process the waste from closure tanks for DWPF. In addition to the SLPs, a 224KW (300 HP) submersible mixer pump (SMP) has also been developed and deployed within older style tanks. The SMPs are product cooled and product lubricated canned

  12. Commercial Submersible Mixing Pump For SRS Tank Waste Removal - 15223

    Energy Technology Data Exchange (ETDEWEB)

    Hubbard, Mike [Savannah River Remediation, LLC., Aiken, SC (United States); Herbert, James E. [Savannah River Remediation, LLC., Aiken, SC (United States); Scheele, Patrick W. [Savannah River Remediation, LLC., Aiken, SC (United States)

    2015-01-12

    The Savannah River Site Tank Farms have 45 active underground waste tanks used to store and process nuclear waste materials. There are 4 different tank types, ranging in capacity from 2839 m3 to 4921 m3 (750,000 to 1,300,000 gallons). Eighteen of the tanks are older style and do not meet all current federal standards for secondary containment. The older style tanks are the initial focus of waste removal efforts for tank closure and are referred to as closure tanks. Of the original 51 underground waste tanks, six of the original 24 older style tanks have completed waste removal and are filled with grout. The insoluble waste fraction that resides within most waste tanks at SRS requires vigorous agitation to suspend the solids within the waste liquid in order to transfer this material for eventual processing into glass filled canisters at the Defense Waste Processing Facility (DWPF). SRS suspends the solid waste by use of recirculating mixing pumps. Older style tanks generally have limited riser openings which will not support larger mixing pumps, since the riser access is typically 58.4 cm (23 inches) in diameter. Agitation for these tanks has been provided by four long shafted standard slurry pumps (SLP) powered by an above tank 112KW (150 HP) electric motor. The pump shaft is lubricated and cooled in a pressurized water column that is sealed from the surrounding waste in the tank. Closure of four waste tanks has been accomplished utilizing long shafted pump technology combined with heel removal using multiple technologies. Newer style waste tanks at SRS have larger riser openings, allowing the processing of waste solids to be accomplished with four large diameter SLPs equipped with 224KW (300 HP) motors. These tanks are used to process the waste from closure tanks for DWPF. In addition to the SLPs, a 224KW (300 HP) submersible mixer pump (SMP) has also been developed and deployed within older style tanks. The SMPs are product cooled and

  13. Treatment of radioactive laboratory waste for mercury removal

    International Nuclear Information System (INIS)

    Osteen, A.B.; Bibler, J.P.

    1990-01-01

    Routine analyses of Savannah River Laboratory wastes at the Savannah River Site occasionally reveal mercury concentrations in the waste in excess of the 0.200 μg/L RCRA limit. An ion exchange resin has been demonstrated to be effective for the removal of dissolved mercury from laboratory waste in a special permitted project. The ion exchange material is Duolite trademark GT-73, a polystyrene/divinylbenzene resin with thiol functional groups. As a result of the decontamination demonstration, the resin is in use or under consideration for use with several other SRS radwaste streams as a reliable medium for mercury removal

  14. Radioisotope Characterization of HB Line Low Activity Waste

    International Nuclear Information System (INIS)

    Snyder, S.J.

    1999-01-01

    The purpose of this document is to provide a physical, chemical, hazardous and radiological characterization of Low-Level Waste (LLW) generated in HB-Line as required by the 1S Manual, Savannah River Site Waste Acceptance Criteria Manual

  15. Waste removal systems and recycling participation in residential environments

    DEFF Research Database (Denmark)

    Thøgersen, John

    2002-01-01

    Systems for the removal of waste are important although often overlooked elements of any residential environment. It is an old insight that when these systems are ineffective (and this is globally and historically the rule rather than the exception), human living conditions and often even human...... health are severely impaired (Pieters, 1989). More recently, resource waste and environmental hazards from waste have given rise to public and political concern as well, even when disposal systems are well managed. This concern has led to efforts to divert solid waste away from disposal and towards some...

  16. Removal of overburden soils from buried waste sites

    International Nuclear Information System (INIS)

    Rice, P.M.

    1994-01-01

    Transuranic (TRU) waste buried in pits and trenches is covered with a soil cap, or overburden, to shed water. During retrieval operations, the overburden (expected to be clean) must be removed carefully to avoid breaching the soil/waste matrix within a pit or trench and to confine any possible local spot contamination. This necessitates removal in precise (7.6- to 15.25-cm) increments with a high degree of accuracy. In addition, during overburden removal the overburden must be characterized to a depth that exceeds each cut of soil. A field demonstration was conducted to evaluate a technology for removing overburden soils a the Radioactive Waste Management Complex (RWMC), Subsurface Disposal Area (SDA) at the Idaho National Engineering Laboratory (INEL). The demonstration evaluated equipment performance and techniques for removing overburden soil and controlling contamination and dust. To evaluate the performance of these techniques during removal operations, personnel took air particulate samples, physical measurements of the soil cuts, maneuverability measurements, and rate of soil removal data. The overburden was spiked at specific locations and depths with rare earth tracers to provide a medium for evaluating samples. Analysis to determine the precision and accuracy of the soil removal, amount of dust generated, and potential spread of contamination was performed

  17. Standard Waste Box Lid Screw Removal Option Testing

    International Nuclear Information System (INIS)

    Anast, Kurt Roy

    2016-01-01

    This report provides results from test work conducted to resolve the removal of screws securing the standard waste box (SWB) lids that hold the remediated nitrate salt (RNS) drums. The test work evaluated equipment and process alternatives for removing the 42 screws that hold the SWB lid in place. The screws were secured with a red Loctite thread locker that makes removal very difficult because the rivets that the screw threads into would slip before the screw could be freed from the rivet, making it impossible to remove the screw and therefore the SWB lid.

  18. Standard Waste Box Lid Screw Removal Option Testing

    Energy Technology Data Exchange (ETDEWEB)

    Anast, Kurt Roy [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-03-11

    This report provides results from test work conducted to resolve the removal of screws securing the standard waste box (SWB) lids that hold the remediated nitrate salt (RNS) drums. The test work evaluated equipment and process alternatives for removing the 42 screws that hold the SWB lid in place. The screws were secured with a red Loctite thread locker that makes removal very difficult because the rivets that the screw threads into would slip before the screw could be freed from the rivet, making it impossible to remove the screw and therefore the SWB lid.

  19. Natural diatomite process for removal of radioactivity from liquid waste

    Energy Technology Data Exchange (ETDEWEB)

    Osmanlioglu, Ahmet Erdal [Radioactive Waste Management Unit (RWMU), Turkish Atomic Energy Authority, Cekmece Nuclear Research and Training Center, Altinsehir Yolu 5 km. Halkali, 34303K Cekmece, Istanbul (Turkey)]. E-mail: Erdal.Osmanlioglu@taek.gov.tr

    2007-01-15

    Diatomite has a number of unique physical properties and has found diversified industrial utilization. The filtration characteristics are particularly significant in the purification of liquids. The purpose of this study was to test natural diatomaceous earth (diatomite) as an alternative material that could be used for removal of radioactivity from liquid waste. A pilot-scale column-type device was designed. Natural diatomite samples were ground, sieved and prepared to use as sorption media. In this study, real waste liquid was used as radioactive liquid having special conditions. The liquid waste contained three radionuclides (Cs-137, Cs-134 and Co-60). Following the treatment by diatomite, the radioactivity of liquid waste was reduced from the initial 2.60 Bq/ml to less than 0.40 Bq/ml. The results of this study show that most of the radioactivity was removed from the solution by processing with diatomite.

  20. Natural diatomite process for removal of radioactivity from liquid waste

    International Nuclear Information System (INIS)

    Osmanlioglu, Ahmet Erdal

    2007-01-01

    Diatomite has a number of unique physical properties and has found diversified industrial utilization. The filtration characteristics are particularly significant in the purification of liquids. The purpose of this study was to test natural diatomaceous earth (diatomite) as an alternative material that could be used for removal of radioactivity from liquid waste. A pilot-scale column-type device was designed. Natural diatomite samples were ground, sieved and prepared to use as sorption media. In this study, real waste liquid was used as radioactive liquid having special conditions. The liquid waste contained three radionuclides (Cs-137, Cs-134 and Co-60). Following the treatment by diatomite, the radioactivity of liquid waste was reduced from the initial 2.60 Bq/ml to less than 0.40 Bq/ml. The results of this study show that most of the radioactivity was removed from the solution by processing with diatomite

  1. Natural diatomite process for removal of radioactivity from liquid waste.

    Science.gov (United States)

    Osmanlioglu, Ahmet Erdal

    2007-01-01

    Diatomite has a number of unique physical properties and has found diversified industrial utilization. The filtration characteristics are particularly significant in the purification of liquids. The purpose of this study was to test natural diatomaceous earth (diatomite) as an alternative material that could be used for removal of radioactivity from liquid waste. A pilot-scale column-type device was designed. Natural diatomite samples were ground, sieved and prepared to use as sorption media. In this study, real waste liquid was used as radioactive liquid having special conditions. The liquid waste contained three radionuclides (Cs-137, Cs-134 and Co-60). Following the treatment by diatomite, the radioactivity of liquid waste was reduced from the initial 2.60 Bq/ml to less than 0.40 Bq/ml. The results of this study show that most of the radioactivity was removed from the solution by processing with diatomite.

  2. Nickel removal from exhausted electroplatting baths by using vegetable wastes

    OpenAIRE

    Martínez Martínez, María del Rosario; Villaescusa Gil, Isabel; Fiol Santalo, Núria; Miralles Esteban, Núria; Florido Pérez, Antonio

    2014-01-01

    During the last years our research group has been studying the use of industrial vegetable wastes as grape stalks and exhausted coffee to remove metals ions such as Ni(II), Cu(II), Pb(II), Zn(II), Cd(II) or Cr(VI) and Cr(III) in aqueous solution from the point of view to use these wastes as biosorbents in a low cost alternative to activated carbon for wastewater treatment. The optimal experimental conditions for the removal of each of these metal ions in synthetic solutions by using both bio...

  3. Mixed Waste Focus Area mercury contamination product line: An integrated approach to mercury waste treatment and disposal

    International Nuclear Information System (INIS)

    Hulet, G.A.; Conley, T.B.; Morris, M.I.

    1998-01-01

    The US Department of Energy (DOE) Mixed Waste Focus Area (MWFA) is tasked with ensuring that solutions are available for the mixed waste treatment problems of the DOE complex. During the MWFA's initial technical baseline development process, three of the top four technology deficiencies identified were related to the need for amalgamation, stabilization, and separation/removal technologies for the treatment of mercury and mercury-contaminated mixed waste. The focus area grouped mercury-waste-treatment activities into the mercury contamination product line under which development, demonstration, and deployment efforts are coordinated to provide tested technologies to meet the site needs. The Mercury Working Group (HgWG), a selected group of representatives from DOE sites with significant mercury waste inventories, is assisting the MWFA in soliciting, identifying, initiating, and managing efforts to address these areas. Based on the scope and magnitude of the mercury mixed waste problem, as defined by HgWG, solicitations and contract awards have been made to the private sector to demonstrate amalgamation and stabilization processes using actual mixed wastes. Development efforts are currently being funded under the product line that will address DOE's needs for separation/removal processes. This paper discusses the technology selection process, development activities, and the accomplishments of the MWFA to date through these various activities

  4. Heavy metal removal from waste waters by ion flotation

    OpenAIRE

    Polat, Hürriyet; Erdoğan, D.

    2007-01-01

    Flotation studies were carried out to investigate the removal of heavy metals such as copper (II), zinc (II), chromium (III) and silver (I) from waste waters. Various parameters such as pH, collector and frother concentrations and airflow rate were tested to determine the optimum flotation conditions. Sodium dodecyl sulfate and hexadecyltrimethyl ammonium bromide were used as collectors. Ethanol and methyl isobutyl carbinol (MIBC) were used as frothers. Metal removal reached about 74% under o...

  5. A dented LH2 recirculation line is removed from Discovery

    Science.gov (United States)

    1999-01-01

    In the Payload Changeout Room, Launch Pad 39B, United Space Alliance and NASA workers look at the replacement main propulsion system liquid hydrogen recirculation line (left) to be installed in Shuttle Discovery's aft compartment. At right is the dented line that has been removed. The 12-inch-long dent was discovered during routine aft compartment inspections Tuesday, Dec. 7. The line recirculates hydrogen from the Shuttle main engines back to the external tank during prelaunch engine conditioning. The line is being replaced and managers expect the replacement work to take about 3 days, followed by system retests and final aft compartment close-outs. Preliminary assessments reflect a launch date of Space Shuttle Discovery on mission STS-103 no earlier than Dec. 16. STS-103 is the third servicing mission for the Hubble Space Telescope.

  6. Teeth in the Line of Fracture: To Retain or Remove?

    Science.gov (United States)

    Samson, Jimson; John, Reena; Jayakumar, Shalini

    2010-01-01

    The purpose of this study was to analyze mandibular fracture site, relationship of the fracture line to the periodontium, vitality of teeth, displacement of the fracture segments and their implications, and determine whether to retain or remove the teeth in the fracture line. Fifty patients with 62 fractures were involved in this study. An electric pulp tester was used to measure the pulpal response. The degree of fracture displacement and the relationship of the fracture line to the periodontium were evaluated using panoramic radiographs. Fractures of the parasymphysis region constituted a majority of 60.87% in the gross displacement category. Four of 50 patients showed no response presurgically and minimal response postoperatively on pulp vitality testing. Patients with teeth in the fracture line showing no response on pulp vitality testing should be advised extraction to avoid further complications. PMID:22132255

  7. Nuclear energy waste-space transportation and removal

    Science.gov (United States)

    Burns, R. E.

    1975-01-01

    A method for utilizing the decay heat of actinide wastes to power an electric thrust vehicle is proposed. The vehicle, launched by shuttle to earth orbit and to earth escape by a tug, obtains electrical power from the actinide waste heat by thermionic converters. The heavy gamma ray and neutron shielding which is necessary as a safety feature is removed in orbit and returned to earth for reuse. The problems associated with safety are dealt with in depth. A method for eliminating fission wastes via chemical propulsion is briefly discussed.

  8. Removal of radioactive materials from waste solutions via magnetic ferrites

    International Nuclear Information System (INIS)

    Boyd, T.E.; Kochen, R.L.; Price, M.Y.

    1982-01-01

    Ferrite waste treatment was found to be effective in removing actinides from simulated Rocky Flats process waste solutions. With a one-stage ferrite treatment, plutonium concentrations were consistently reduced from 10 -4 g/l to less than 10 -8 g/l, and americium concentrations were lowered from 10 -7 g/l to below 10 -10 g/l. In addition, siginficantly less solid was produced as compared with the flocculant precipitation technique now employed at Rocky Flats. Aging of ferrite solids and elevated beryllium and phosphate concentrations were identified as interferences in the ferrite treatment of process waste, but neither appeeared serious enough to prevent implementation in plant operations

  9. Method of removing radioactive waste from oil

    International Nuclear Information System (INIS)

    Belanger, R.L.

    1986-01-01

    This patent describes a method of removing particulates, radioactive contaminants, and moisture from oil, which consists of: straining out the particulates by passing the oil through a coarse filter screen to a receiving vessel; forming an upper stratum of oil and a lower stratum of sludge, consisting of mud, oil, particulates, and moisture, by heating the upper two-thirds of the receiving vessel; skimming off the stratum of oil from the receiving vessel; transferring the sludge from the receiving vessel to a container; transferring additional separated oil to the receiving vessel; conveying the oil skimmed from the receiving vessel to a mixing vessel; adding an effective amount of Calcium Hypochlorite crystals containing 65% free Chlorine to the mixing vessel to initiate salt formation with the radioactive contaminants; mixing the contents of the mixing vessel for at least ten minutes; transferring the mixture from the mixing vessel to a circulating heater; outputting the mixture from the circulating heater to a second mixing vessel; removing moisture from the oil; and filtering from the oil, the solid radioactive contaminant-salts and residual particulate matter

  10. Alternatives Generation and Analysis for Heat Removal from High Level Waste Tanks

    Energy Technology Data Exchange (ETDEWEB)

    WILLIS, W.L.

    2000-06-15

    This document addresses the preferred combination of design and operational configurations to provide heat removal from high-level waste tanks during Phase 1 waste feed delivery to prevent the waste temperature from exceeding tank safety requirement limits. An interim decision for the preferred method to remove the heat from the high-level waste tanks during waste feed delivery operations is presented herein.

  11. Alternatives Generation and Analysis for Heat Removal from High Level Waste Tanks

    International Nuclear Information System (INIS)

    WILLIS, W.L.

    2000-01-01

    This document addresses the preferred combination of design and operational configurations to provide heat removal from high-level waste tanks during Phase 1 waste feed delivery to prevent the waste temperature from exceeding tank safety requirement limits. An interim decision for the preferred method to remove the heat from the high-level waste tanks during waste feed delivery operations is presented herein

  12. Application of industrial robots in automatic disassembly line of waste LCD displays

    Science.gov (United States)

    Wang, Sujuan

    2017-11-01

    In the automatic disassembly line of waste LCD displays, LCD displays are disassembled into plastic shells, metal shields, circuit boards, and LCD panels. Two industrial robots are used to cut metal shields and remove circuit boards in this automatic disassembly line. The functions of these two industrial robots, and the solutions to the critical issues of model selection, the interfaces with PLCs and the workflows were described in detail in this paper.

  13. Reconnaissance survey of the intermediate-level liquid waste transfer line between X-10 and the hydrofracture site

    International Nuclear Information System (INIS)

    Duguid, J.O.; Sealand, O.M.

    1975-08-01

    Two leakage points on an intermediate-level liquid waste line were located. The waste line is used periodically to transfer waste between X-10 and the hydrofracture site. The first leak occurred prior to this survey and had been repaired, but no contaminated soil had been removed. The second leak resulted in soil contamination that was more intense than at the first leak. Analyses of soil samples taken from both locations are given in this report. Groundwater data indicate the effectiveness of the removal of the contaminated material from leak two. 1 ref., 5 figs., 3 tabs

  14. Reconnaissance survey of the intermediate level liquid waste transfer line between X-10 and the hydrofracture site

    International Nuclear Information System (INIS)

    Duguid, J.O.; Sealand, O.M.

    1975-08-01

    Two leakage points on an intermediate-level liquid waste line were located. The waste line is used periodically to transfer waste between X-10 and the hydrofracture site. The first leak had occurred prior to this survey and had been repaired. However, no contaminated soil had been removed. The second leak had not been discovered previously and soil contamination in this area was more intense than at the first leak. Analyses of soil samples taken from both locations are given in this report. Groundwater data that indicate the effectiveness of the removal of the contaminated material from leak two are presented. (U.S.)

  15. Removal of actinides from selected nuclear fuel reprocessing wastes

    International Nuclear Information System (INIS)

    Navratil, J.D.; Thompson, G.H.

    1979-01-01

    The US Department of Energy awarded Oak Ridge National Laboratory a program to develop a cost-risk-benefit analysis of partitioning long-lived nuclides from waste and transmuting them to shorter lived or stable nuclides. Two subtasks of this program were investigated at Rocky Flats. In the first subtask, methods for solubilizing actinides in incinerator ash were tested. Two methods appear to be preferable: reaction with ceric ion in nitric acid or carbonate-nitrate fusion. The ceric-nitric acid system solubilizes 95% of the actinides in ash; this can be increased by 2 to 4% by pretreating ash with sodium hydroxide to solubilize silica. The carbonate-nitrate fusion method solubilizes greater than or equal to 98% of the actinides, but requires sodium hydroxide pretreatment. Two additional disadvantages are that it is a high-temperature process, and that it generates a lot of salt waste. The second subtask comprises removing actinides from salt wastes likely to be produced during reactor fuel fabrication and reprocessing. A preliminary feasibility study of solvent extraction methods has been completed. The use of a two-step solvent extraction system - tributyl phosphate (TBP) followed by extraction with a bidentate organophosphorous extractant (DHDECMP) - appears to be the most efficient for removing actinides from salt waste. The TBP step would remove most of the plutonium and > 99.99% of the uranium. The second step using DHDECMP would remove > 99.91% of the americium and the remaining plutonium (> 99.98%) and other actinides from the acidified salt waste. 8 figures, 11 tables

  16. Leak test of the pipe line for radioactive liquid waste

    International Nuclear Information System (INIS)

    Machida, Chuji; Mori, Shoji.

    1976-01-01

    In the Tokai Research Establishment, most of the radioactive liquid waste is transferred to a wastes treatment facility through pipe lines. As part of the pipe lines a cast iron pipe for town gas is used. Leak test has been performed on all joints of the lines. For the joints buried underground, the test was made by radioactivity measurement of the soil; and for the joints in drainage ditch by the pressure and bubble methods. There were no leakage at all, indicating integrity of all the joints. On the other hand, it is also known by the other test that the corrosion of inner surface of the piping due to liquid waste is only slight. The pipe lines for transferring radioactive liquid waste are thus still usable. (auth.)

  17. Removal of Sulfate from Waste Water by Activated Carbon

    OpenAIRE

    Mohammed Sadeq Salman

    2009-01-01

    Activated carbon was Produced from coconut shell and was used for removing sulfate from industrial waste water in batch Processes. The influence of various parameter were studied such as pH (4.5 9.) , agitation time (0 120)min and adsorbent dose (2 10) gm.The Langmuir and frandlich adsorption capacity models were been investigated where showed there are fitting with langmmuir model with squre regression value ( 0.76). The percent of removal of sulfate (22% - 38%) at (PH=7) in the isotherm ...

  18. Heavy metal removal from waste waters by ion flotation.

    Science.gov (United States)

    Polat, H; Erdogan, D

    2007-09-05

    Flotation studies were carried out to investigate the removal of heavy metals such as copper (II), zinc (II), chromium (III) and silver (I) from waste waters. Various parameters such as pH, collector and frother concentrations and airflow rate were tested to determine the optimum flotation conditions. Sodium dodecyl sulfate and hexadecyltrimethyl ammonium bromide were used as collectors. Ethanol and methyl isobutyl carbinol (MIBC) were used as frothers. Metal removal reached about 74% under optimum conditions at low pH. At basic pH it became as high as 90%, probably due to the contribution from the flotation of metal precipitates.

  19. Mechanisms for parasites removal in a waste stabilisation pond.

    Science.gov (United States)

    Reinoso, Roberto; Blanco, Saúl; Torres-Villamizar, Linda A; Bécares, Eloy

    2011-04-01

    A waste stabilisation pond (WSP) system formed by two anaerobic ponds, a facultative pond and a maturation pond was studied from December 2003 to September 2004 in north-western Spain in order to evaluate its efficiency in the removal of faecal indicator bacteria (total coliforms, Escherichia coli, faecal streptococci), coliphages, helminth eggs and protozoan (oo)cysts (Cryptosporidium and Giardia). Furthermore, sediment samples were collected from the bottom of the ponds to assess the settling rates and thus determine the main pathogen removal mechanisms in the WSPs system. The overall removal ranged from 1.4 log units for coliphages in the cold period to 5.0 log units for E. coli in the hot period. Cryptosporidium oocysts were reduced by an average of 96%, Giardia cysts by 98% and helminth eggs by 100%. The anaerobic ponds showed significantly higher surface removal rates (4.6, 5.2 and 3.7 log (oo)cysts/eggs removed m(-2) day(-1), respectively) than facultative and maturation ponds. Sunlight and water physicochemical conditions were the main factors influencing C. parvum oocysts removal both in the anaerobic and maturation ponds, whereas other factors like predation or natural mortality were more important in the facultative pond. Sedimentation, the most commonly proposed mechanism for cyst removal had, therefore, a negligible influence in the studied ponds.

  20. Removal of organics from radioactive waste. V. 1

    International Nuclear Information System (INIS)

    Williams, J.; Kitchin, J.; Burton, W.H.

    1989-05-01

    This report has been prepared to review the methods available to remove organics from nuclear waste. The limitations of the methods and their applicability to the type of waste streams likely to arise in the future is also considered. Although wide experience exists on the application of incineration technology to nuclear waste there is little operational experience that relates to other techniques that have been identified as appropriate for the treatment of nuclear waste streams with the exception of acid digestion which has a moderate amount of operating experience. All the techniques discussed in this report, namely; incineration; acid digestion; wet oxidation; alkaline hydrolysis; microbiological; molten salt; and molten glass; show some potential for dealing with various waste streams. However, the stage of research in each is insufficient to allow any firm conclusions to be drawn on their overall suitability to treating waste arisings, operability, economic cost or environmental costs. Without more research data it is also difficult to establish the overall volume reductions that may be possible. (author)

  1. Removal of fluoride ions from aqueous solution by waste mud

    International Nuclear Information System (INIS)

    Kemer, Baris; Ozdes, Duygu; Gundogdu, Ali; Bulut, Volkan N.; Duran, Celal; Soylak, Mustafa

    2009-01-01

    The present study was carried out to assess the ability of original waste mud (o-WM) and different types of activated waste mud which are acid-activated (a-WM) and precipitated waste mud (p-WM), in order to remove excess of fluoride from aqueous solution by using batch technique. The p-WM exhibited greater performance than the others. Adsorption studies were conducted as a function of pH, contact time, initial fluoride concentration, adsorbent concentration, temperature, etc. Studies were also performed to understand the effect of some co-existing ions present in aqueous solutions. Adsorption process was found to be almost independent of pH for all types of waste mud. Among the kinetic models tested for p-WM, pseudo-second-order model fitted the kinetic data well with a perfect correlation coefficient value of 1.00. It was found that the adequate time for the adsorption equilibrium of fluoride was only 1 h. Thermodynamic parameters including the Gibbs free energy (ΔG o ), enthalpy (ΔH o ), and entropy (ΔS o ) revealed that adsorption of fluoride ions on the p-WM was feasible, spontaneous and endothermic in the temperature range of 0-40 deg. C. Experimental data showed a good fit with the Langmuir and Freundlich adsorption isotherm models. Results of this study demonstrated the effectiveness and feasibility of WM for removal of fluoride ions from aqueous solution.

  2. Removal of fluoride ions from aqueous solution by waste mud

    Energy Technology Data Exchange (ETDEWEB)

    Kemer, Baris; Ozdes, Duygu; Gundogdu, Ali; Bulut, Volkan N.; Duran, Celal [Karadeniz Technical University, Faculty of Arts and Sciences, Department of Chemistry, 61080 Trabzon (Turkey); Soylak, Mustafa, E-mail: soylak@erciyes.edu.tr [Erciyes University, Faculty of Arts and Sciences, Department of Chemistry, 38039 Kayseri (Turkey)

    2009-09-15

    The present study was carried out to assess the ability of original waste mud (o-WM) and different types of activated waste mud which are acid-activated (a-WM) and precipitated waste mud (p-WM), in order to remove excess of fluoride from aqueous solution by using batch technique. The p-WM exhibited greater performance than the others. Adsorption studies were conducted as a function of pH, contact time, initial fluoride concentration, adsorbent concentration, temperature, etc. Studies were also performed to understand the effect of some co-existing ions present in aqueous solutions. Adsorption process was found to be almost independent of pH for all types of waste mud. Among the kinetic models tested for p-WM, pseudo-second-order model fitted the kinetic data well with a perfect correlation coefficient value of 1.00. It was found that the adequate time for the adsorption equilibrium of fluoride was only 1 h. Thermodynamic parameters including the Gibbs free energy ({Delta}G{sup o}), enthalpy ({Delta}H{sup o}), and entropy ({Delta}S{sup o}) revealed that adsorption of fluoride ions on the p-WM was feasible, spontaneous and endothermic in the temperature range of 0-40 deg. C. Experimental data showed a good fit with the Langmuir and Freundlich adsorption isotherm models. Results of this study demonstrated the effectiveness and feasibility of WM for removal of fluoride ions from aqueous solution.

  3. Soluble pig for radioactive waste transfer lines

    International Nuclear Information System (INIS)

    Ohl, P.C.; Pezeshki, C.

    1997-01-01

    Flushing transfer pipe after radioactive waste transfers generates thousands of gallons of additional radioactive waste each year at the Hanford site. The use of pneumatic pigging with waste soluble pigs as a means to clear transfer piping may be an effective alternative to raw water flushes. A feasibility study was performed by a group of senior mechanical engineering students for their senior design project as part of their curriculum at Washington State University. The students divided the feasibility study into three sub-projects involving: (1) material research, (2) delivery system design, and (3) mockup fabrication and testing. The students screened through twenty-three candidate materials and selected a thermoplastic polymer combined 50:50 wt% with sucrose to meet the established material performance criteria. The students also prepared a conceptual design of a remote pneumatic delivery system and constructed a mockup section of transfer pipe for testing the prototype pigs

  4. Removal of the liquid waste storage tank LV-2 in JRTF. Part 2. Removal works

    International Nuclear Information System (INIS)

    Kanayama, Fumihiko; Hagiya, Kazuaki; Sunaoshi, Mizuho; Muraguchi, Yoshinori; Satomi, Shinichi; Nemoto, Kouichi; Terunuma, Akihiro; Shiraishi, Kunio; Ito, Shinichi

    2011-06-01

    Dismantling activities of components in JAERI's Reprocessing Test Facility (JRTF) started from 1996 as a part of decommissioning of this facility. Removing out of a large liquid waste storage tank LV-2 as a whole tank from the annex building B without cutting in pieces to confirm safety and efficiency of this method started from 2006. After preparatory works, ceiling of LV-2 room was opened, and LV-2 was transferred. Useful data such as manpower, radiation control and waste amount through these works were collected, and work efficiency was analyzed by using of these data. (author)

  5. Ammonia nitrogen removal from aqueous solution by local agricultural wastes

    Science.gov (United States)

    Azreen, I.; Lija, Y.; Zahrim, A. Y.

    2017-06-01

    Excess ammonia nitrogen in the waterways causes serious distortion to environment such as eutrophication and toxicity to aquatic organisms. Ammonia nitrogen removal from synthetic solution was investigated by using 40 local agricultural wastes as potential low cost adsorbent. Some of the adsorbent were able to remove ammonia nitrogen with adsorption capacity ranging from 0.58 mg/g to 3.58 mg/g. The highest adsorption capacity was recorded by Langsat peels with 3.58 mg/g followed by Jackfruit seeds and Moringa peels with 3.37 mg/g and 2.64 mg/g respectively. This experimental results show that the agricultural wastes can be utilized as biosorbent for ammonia nitrogen removal. The effect of initial ammonia nitrogen concentration, pH and stirring rate on the adsorption process were studied in batch experiment. The adsorption capacity reached maximum value at pH 7 with initial concentration of 500 mg/L and the removal rate decreased as stirring rate was applied.

  6. Cadmium ion removal using biosorbents derived from fruit peel wastes

    Directory of Open Access Journals (Sweden)

    Wanna Saikaew

    2009-11-01

    Full Text Available The ability of fruit peel wastes, corn, durian, pummelo, and banana, to remove cadmium ions from aqueous solution by biosorption were investigated. The experiments were carried out by batch method at 25oC. The influence of particle sizes, solution pH, and initial cadmium ion concentrations were evaluated on the biosorption studies. The result showed that banana peel had the highest cadmium ions removal followed by durian, pummelo, and corn peels at cadmium ions removal of 73.15, 72.17, 70.56, and 51.22%, respectively. There was a minimal effect when using different particle sizes of corn peel as biosorbent, while the particle size of the others had no influence on the removal of cadmium ions. The cadmium ions removal increased significantly as the pH of the solution increased rapidly from 1 to 5. At pH 5, the cadmium ions removal reached a maximum value. The equilibrium process was best described by the Langmuir isotherms, with maximum biosorption capacities of durian, pummelo, and banana peel of 18.55, 21.83, and 20.88 mg/g respectively. Fourier Transform Infrared Spectroscopy revealed that carboxyl, hydroxyl, and amide groups on the fruit peels’ surface and these groups were involved in the adsorption of the cadmium ions.

  7. Removal of hazardous dye congored from waste material

    International Nuclear Information System (INIS)

    Jain, Rajeev; Sikarwar, Shalini

    2008-01-01

    The present paper is aimed to investigate and develop cheap adsorption methods for color removal from wastewater using waste material sawdust as adsorbent. Sawdust, a biosorbent, was successfully utilized in removing a water soluble azo dye, congored from wastewater. The paper incorporates effect of pH, temperature, amount of adsorbent, contact time, concentration of adsorbate, particle size on adsorption. Specific rate constants of the processes were calculated by kinetic measurements and a first order adsorption kinetics was observed in each case. Langmuir and Freundlich adsorption isotherm models were then applied to calculate thermodynamics parameters as well as to suggest the plausible mechanism of the ongoing adsorption processes. In order to observe the quality of wastewater COD measurements were also carried out before and after the treatments. A significant decrease in the COD values was observed, which clearly indicates that adsorption method offer good potential to remove congored from wastewater

  8. Salt removal from tanks containing high-level radioactive waste

    International Nuclear Information System (INIS)

    Kiser, D.L.

    1981-01-01

    At the Savannah River Plant (SRP), there are 23 waste storage tanks containing high-level radioactive wastes that are to be retired. These tanks contain about 23 million liters of salt and about 10 million liters of sludge, that are to be relocated to new Type III, fully stress-relieved tanks with complete secondary containment. About 19 million liters of salt cake are to be dissolved. Steam jet circulators were originally proposed for the salt dissolution program. However, use of steam jet circulators raised the temperature of the tank contents and caused operating problems. These included increased corrosion risk and required long cooldown periods prior to transfer. Alternative dissolution concepts were investigated. Examination of mechanisms affecting salt dissolution showed that the ability of fresh water to contact the cake surface was the most significant factor influencing dissolution rate. Density driven and mechanical agitation techniques were developed on a bench scale and then were demonstrated in an actual waste tank. Actual waste tank demonstrations were in good agreement with bench-scale experiments at 1/85 scale. The density driven method utilizes simple equipment, but leaves a cake heel in the tank and is hindered by the presence of sludge or Zeolite in the salt cake. Mechanical agitation overcomes the problems found with both steam jet circulators and the density driven technique and is the best method for future waste tank salt removal

  9. TRANSPORT OF WASTE SIMULANTS IN PJM VENT LINES

    Energy Technology Data Exchange (ETDEWEB)

    Qureshi, Z

    2007-02-21

    The experimental work was conducted to determine whether there is a potential for waste simulant to transport or 'creep' up the air link line and contaminate the pulse jet vent system, and possibly cause long term restriction of the air link line. Additionally, if simulant creep occurred, establish operating parameters for washing down the line. The amount of the addition of flush fluids and mixer downtime must be quantified.

  10. Mercury and tritium removal from DOE waste oils

    Energy Technology Data Exchange (ETDEWEB)

    Klasson, E.T. [Oak Ridge National Lab., TN (United States)

    1997-10-01

    This work covers the investigation of vacuum extraction as a means to remove tritiated contamination as well as the removal via sorption of dissolved mercury from contaminated oils. The radiation damage in oils from tritium causes production of hydrogen, methane, and low-molecular-weight hydrocarbons. When tritium gas is present in the oil, the tritium atom is incorporated into the formed hydrocarbons. The transformer industry measures gas content/composition of transformer oils as a diagnostic tool for the transformers` condition. The analytical approach (ASTM D3612-90) used for these measurements is vacuum extraction of all gases (H{sub 2}, N{sub 2}, O{sub 2}, CO, CO{sub 2}, etc.) followed by analysis of the evolved gas mixture. This extraction method will be adapted to remove dissolved gases (including tritium) from the SRS vacuum pump oil. It may be necessary to heat (60{degrees}C to 70{degrees}C) the oil during vacuum extraction to remove tritiated water. A method described in the procedures is a stripper column extraction, in which a carrier gas (argon) is used to remove dissolved gases from oil that is dispersed on high surface area beads. This method appears promising for scale-up as a treatment process, and a modified process is also being used as a dewatering technique by SD Myers, Inc. (a transformer consulting company) for transformers in the field by a mobile unit. Although some mercury may be removed during the vacuum extraction, the most common technique for removing mercury from oil is by using sulfur-impregnated activated carbon (SIAC). SIAC is currently being used by the petroleum industry to remove mercury from hydrocarbon mixtures, but the sorbent has not been previously tested on DOE vacuum oil waste. It is anticipated that a final process will be similar to technologies used by the petroleum industry and is comparable to ion exchange operations in large column-type reactors.

  11. Removal of dissolved and suspended radionuclides from Hanford Waste Vitrification Plant liquid wastes

    International Nuclear Information System (INIS)

    Sharp, S.D.; Nankani, F.D.; Bray, L.A.; Eakin, D.E.; Larson, D.E.

    1990-12-01

    It was determined during Preliminary Design of the Hanford Waste Vitrification Plant that certain intermediate process liquid waste streams should be decontaminated in a way that would permit the purge of dissolved chemical species from the process recycle shop. This capability is needed to ensure proper control of product glass chemical composition and to avoid excessive corrosion of process equipment. This paper discusses the process design of a system that will remove both radioactive particulates and certain dissolved fission products from process liquid waste streams. Supporting data obtained from literature sources as well as from laboratory- and pilot-scale tests are presented. 3 refs., 1 fig., 3 tabs

  12. Composite materials based on inorganic sorbents and extractants - new sorbents for several radionuclides removal from liquid radioactive wastes

    International Nuclear Information System (INIS)

    Kopyrin, A.A.

    1999-01-01

    A short review of recent investigation concerned with liquid radioactive waste treatment by means of composite materials. It is considered different aspects of technology of selective radionuclides removal and its direction connected with usage of composites. Results of research works in this line carried out under the direction of author are presented. (author)

  13. Use of construction waste in the removal of Hydrogen Sulfide

    Directory of Open Access Journals (Sweden)

    Larissa Helena Rocha Meira

    2013-12-01

    Full Text Available The human being has been using the biodegradation principle into the effluent sewage treatment in order to achieve the standards of quality required for the release of effluent in the water bodies’ receivers. However, under anaerobic conditions, there is the formation of gaseous compounds such as carbon dioxide and methane, the damage happens when the effluent contains sulfur compounds, resulting in the formation of sulfide hydrogen, toxic gas, offensive and corrosive odor, requiring treatment. This paper presents an overview of the use of the construction waste, which should receive special attention in the management of solid waste, the removal of this gas, presenting a potential field of study, given the high rates and low efficiency obtained cost of implementation and operation.

  14. Boron Removal in Radioactive Liquid Waste by Forward Osmosis Membrane

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Dooseong; Choi, Hei Min; Lee, Kune Woo; Moon Jeikwon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    These wastes contain about 0.3-0.8 wt% boric acid and have been concentrated through an evaporation treatment. Boric acid tends to crystallize owing to its solubility, and to plug the evaporator. The volume reduction obtained through evaporation is limited by the amount of boric acid in the waste. As an emerging technology, forward osmosis (FO) has attracted growing interest in wastewater treatment and desalination. FO is a membrane process in which water flows across a semi-permeable membrane from a feed solution of lower osmotic pressure to a draw solution of higher osmotic pressure. However, very few studies on the removal of boron by FO have been performed. The objective of this study is to evaluate the possibility of boron separation in radioactive liquid waste by FO. In this study, the performance of FO was investigated to separate boron in the simulated liquid waste under the factors such as pH, osmotic pressure, ionic strength of the solution, and membrane characteristic. The boron separation in radioactive borate liquid waste was investigated with an FO membrane. When the feed solution containing boron is treated by the FO membrane, the boron permeation depends on the type of membrane, membrane orientation, pH of the feed solution, salt and boron concentration in the feed solution, and osmotic pressure of the draw solution. The boron flux begins to decline from pH 7, and increases with an increase in the osmotic driving force. The boron flux of the CTA-ES and ALFD membrane orientation is higher than those of the CTA-NW and ALFF orientation, respectively. The boron permeation rate is constant regardless of the osmotic pressure and membrane orientation. The boron flux decreases slightly with the salt concentration, but it is not heavily influenced at a low salt concentration.

  15. Boron Removal in Radioactive Liquid Waste by Forward Osmosis Membrane

    International Nuclear Information System (INIS)

    Hwang, Dooseong; Choi, Hei Min; Lee, Kune Woo; Moon Jeikwon

    2014-01-01

    These wastes contain about 0.3-0.8 wt% boric acid and have been concentrated through an evaporation treatment. Boric acid tends to crystallize owing to its solubility, and to plug the evaporator. The volume reduction obtained through evaporation is limited by the amount of boric acid in the waste. As an emerging technology, forward osmosis (FO) has attracted growing interest in wastewater treatment and desalination. FO is a membrane process in which water flows across a semi-permeable membrane from a feed solution of lower osmotic pressure to a draw solution of higher osmotic pressure. However, very few studies on the removal of boron by FO have been performed. The objective of this study is to evaluate the possibility of boron separation in radioactive liquid waste by FO. In this study, the performance of FO was investigated to separate boron in the simulated liquid waste under the factors such as pH, osmotic pressure, ionic strength of the solution, and membrane characteristic. The boron separation in radioactive borate liquid waste was investigated with an FO membrane. When the feed solution containing boron is treated by the FO membrane, the boron permeation depends on the type of membrane, membrane orientation, pH of the feed solution, salt and boron concentration in the feed solution, and osmotic pressure of the draw solution. The boron flux begins to decline from pH 7, and increases with an increase in the osmotic driving force. The boron flux of the CTA-ES and ALFD membrane orientation is higher than those of the CTA-NW and ALFF orientation, respectively. The boron permeation rate is constant regardless of the osmotic pressure and membrane orientation. The boron flux decreases slightly with the salt concentration, but it is not heavily influenced at a low salt concentration

  16. Actinide removal from wastewater applying waste minimization techniques

    International Nuclear Information System (INIS)

    Covey, J.R.; Midkiff, W.S.; Cadena, F.

    1992-01-01

    A major concern at LANL is the large volume of low level radioactive sludge that is generated by the current treatment technology. The plant meets current discharge limits but annually produces 200 55-gallon drums of sludge (approximately 60 tons) during the process of removing only few grants of radioactive isotopes. Most of the sludge results from the coagulants, iron and lime, added at the plant at a concentration of 10,000 parts-per-million (ppm). If the principal actinides in the influent could be separated and reduced to pure metallic form, the annual volume of plutonium would be about the size of a marble and the americium would be about the size of a BB. Waste minimization will be a key design criteria for the new facility. Records of total suspended solids (TSS) in the influent average about 1000 Kg per year (approximately 1 ton). Therefore, the theoretical sludge volume reduction is near 98%. Research is underway to develop and evaluate technologies that achieve the desired removal efficiency with a minimum of produced waste volume

  17. Removal of floating organic in Hanford Waste Tank 241-C-103 restart plan

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, T.R.; Hanson, C.

    1994-10-03

    The decision whether or not to remove the organic layer from Waste Tank 241-C-103 was deferred until May, 1995. The following restart plan was prepared for removal of the organic if the decision is to remove the organic from the waste tank 241-C-103.

  18. Removal of floating organic in Hanford Waste Tank 241-C-103 restart plan

    International Nuclear Information System (INIS)

    Wilson, T.R.; Hanson, C.

    1994-01-01

    The decision whether or not to remove the organic layer from Waste Tank 241-C-103 was deferred until May, 1995. The following restart plan was prepared for removal of the organic if the decision is to remove the organic from the waste tank 241-C-103

  19. Nuclear waste inventory characterization for mixer pumps and long length equipment removed from Hanford waste tanks

    International Nuclear Information System (INIS)

    Troyer, G.L.

    1998-01-01

    The removal and disposition of contaminated equipment from Hanford high-level nuclear waste tanks presents many challenges. One of which is the characterization of radioactive contaminants on components after removal. A defensible assessment of the radionuclide inventory of the components is required for disposal packaging and classification. As examples of this process, this paper discusses two projects: the withdrawal of thermocouple instrument tubes from Tank 101-AZ, and preparation for eventual replacement of the hydrogen mitigation mixer pump in Tank 101-SY. Emphasis is on the shielding analysis that supported the design of radiation detection systems and the interpolation of data recorded during the equipment retrieval operations

  20. Decision Document for Heat Removal from High-Level Waste Tanks

    International Nuclear Information System (INIS)

    WILLIS, W.L.

    2000-01-01

    This document establishes the combination of design and operational configurations that will be used to provide heat removal from high-level waste tanks during Phase 1 waste feed delivery to prevent the waste temperature from exceeding tank safety requirement limits. The chosen method--to use the primary and annulus ventilation systems to remove heat from the high-level waste tanks--is documented herein

  1. Lean manufacturing implementation in reducing waste for electronic assembly line

    Directory of Open Access Journals (Sweden)

    Zakaria Nurul Husna

    2017-01-01

    Full Text Available Lean manufacturing is the most convenient way to eliminate unnecessary waste and can provide what customers demand. This paper presents possibilities and sustainability of application of lean manufacturing method by using a virtual simulation of the workers performance in a line production of small and medium industry. Actual case study and Witness simulation were used in this study to find the waste that exists in the production and identified the performance of workers in the production line. Lean manufacturing concept has identified and rectified problems related to low productivity in the assembly line. The case study is involved a line production for electronic part assembly. The result of this preliminary study should illustrate the relationship of worker’s performance by lean manufacturing method as well as the productivity improvements which help to reduce cost for manufacturer. Lean manufacturing method has been used during the study to reduce the cost when waste is eliminated by reducing the workstation without reducing the performance of the production. The performance of the production is increased when allocating the labor in a needed working area. Lastly, the study also proves that the new layout has improved the process to be used for future production process.

  2. Mercury removal from liquid and solid mixed waste

    International Nuclear Information System (INIS)

    Gates, D.D.; Klasson, K.T.; Corder, S.L.; Cameron, P.A.; Perona, J.J.

    1995-01-01

    Based on bench-scale laboratory experiments, the following conclusions were reached: Sulfur-impregnated, activated, carbon pellets (Mersorb) can be used to remove mercury (Hg 2+ ) to below EPA's toxic characteristic level (0.2 mg/L). Mersorb works under acid conditions (pH 2) but its capacity is reduced by approximately 50% compared with neutral conditions. Competing ions present in the target waste stream reduced the Mersorb capacity by 50%. Mersorb appears to be economical compared with leading ion exchange resin. KI/I 2 leaching solution can be used to remove up to 99% of Hg in contaminated soil and glass. KI/I 2 leaching solution worked well with several mercury species, including Hg 0 , HgO, HgS, and HgCl 2 . KI/I 2 leaching solution worked well with a wide variety of initial mercury concentrations. Radionuclide surrogate studies suggested that uranium will not partition into KI/I 2 leaching solutions. Cesium may partition into the KI/I 2 leaching solution because of the high solubility of cesium salts

  3. Power-line Interference Removal from ECG in Case of Power-line Frequency Variations

    Directory of Open Access Journals (Sweden)

    Todor Stoyanov

    2008-10-01

    Full Text Available The original version of the most successful approach for power-line (PL interference removal from ECG, called subtraction procedure, is based on linear segment detection in the signal and hardware synchronised analogue-to-digital conversion to cope with the PL frequency variations. However, this is not feasible for battery supplied devices and some computer-aided ECG systems. Recent improvements of the procedure apply software measurement of the frequency variations that allow a re-sampling of the contaminated signal with the rated PL frequency followed by interference removal and back re-sampling for restoration of the original time intervals. This study deals with a more accurate software frequency measurement and introduces a notch filtration as alternative to the procedure when no linear segments are encountered for long time, e.g. in cases of ventricular fibrillation or tachycardia. The result obtained with large PL frequency variations demonstrate very small errors, usually in the range of ± 20 μV for the subtraction procedure and ± 60 μV for the notch filtration, the last values strongly depending on the frequency contents of the QRS complexes.

  4. Concrete as secondary containment for interior wall embedded waste lines

    International Nuclear Information System (INIS)

    Porter, C.L.

    1993-01-01

    Throughout the Department of Energy (DOE) complex are numerous facilities that handle hazardous waste solutions. Secondary containment of tank systems and their ancillary piping is a major concern for existing facilities. The Idaho Division of Environmental Quality was petitioned in 1990 for an Equivalent Device determination regarding secondary containment of waste lines embedded in interior concrete walls. The petition was granted, however it expires in 1996. To address the secondary containment issue, additional studies were undertaken. One study verified the hypothesis that an interior wall pipe leak would follow the path of least resistance through the naturally occurring void found below a rigidly supported pipe and pass into an adjacent room where detection could occur, before any significant deterioration of the concrete takes place. Other tests demonstrated that with acidic waste solutions rebar and cold joints are not an accelerated path to the environment. The results from these latest studies confirm that the subject configuration meets all the requirements of secondary containment

  5. Lined rock caverns for the storage of hazardous waste

    International Nuclear Information System (INIS)

    Semprich, S.; Speidel, S.R.; Schneider, H.J.

    1987-01-01

    For reasons of environmental protection the storage of hazardous waste in unlined rock caverns is possible to a very limited extent only. Therefore, the authors have recently developed technologies for the lining and sealing of rock caverns. In the process, sealing systems of synthetic materials or metals have proved suitable. Synthetic materials can be used in the form of either sheets or coatings with various materials such as epoxy resins, polyethylenes etc. being used. Metal sealings consist of thin sheets or foils which are either welded or bonded. In either case, the structural design must provide for a leakage control possibility. The article describes the design principles, the structural and operational aspects as well as the control measures with regard to the planning and execution of lined rock caverns for the storage of hazardous waste

  6. On-line removal of volatile fatty acids from CELSS anaerobic bioreactor via nanofiltration.

    Science.gov (United States)

    Colon, G; Sager, J C

    2001-01-01

    The CELSS resource recovery system, which is a waste-processing system, uses aerobic and anaerobic bioreactors to recover plants nutrients and secondary foods from the inedible biomass. The anaerobic degradation of the inedible biomass, by means of culture of rumen bacteria, generates organic compounds such as volatile fatty acids (VFA) (acetic, propionic, butyric) and ammonia. The presence of VFA in the bioreactor medium at fairly low concentrations decreases the microbial population's metabolic reactions due to end-product inhibition. Technologies to remove VFA continuously from the bioreactor are of high interest. Several candidate technologies were analyzed, such as organic solvent liquid-liquid extraction, adsorption and/or ion exchange, dialysis, electrodialysis, and pressure-driven membrane separation processes. The proposed technique for the on-line removal of VFA from the anaerobic bioreactor was a nanofiltration membrane recycle bioreactor. In order to establish the nanofiltration process performance variables before coupling it to the bioreactor, a series of experiments was carried out using a 10,000 molecular weight cutoff (MWCO) tubular ceramic membrane module. The variables studied were the bioreactor slurry permeation characteristics, such as: the permeate flux, VFA and nutrient removal rates as a function of applied transmembrane pressure, fluid recirculation velocity, suspended matter concentration, and process operating time. Results indicated that the permeate flux, VFA, and nutrients removal rates are directly proportional to the fluid recirculation velocity in the range between 0.6 and 1.0 m/s, applied pressure when these are lower than 1.5 bar, and inversely proportional to the total suspended solids concentration in the range between 23,466 and 34,880 mg/L. At applied pressure higher than 1.5 bar the flux is not more linearly dependent due to concentration polarization and fouling effects over the membrane surface. It was also found that the

  7. On-line removal of volatile fatty acids from CELSS anaerobic bioreactor via nanofiltration

    Science.gov (United States)

    Colon, Guillermo

    1995-01-01

    The CELSS (controlled ecological life support system) resource recovery system, which is a waste processing system, uses aerobic and anaerobic bioreactors to recover plants nutrients and secondary foods from the inedible biomass. The anaerobic degradation of the inedible biomass by means of culture of rumen bacteria,generates organic compounds such as volatile fatty acids (acetic, propionic, butyric, VFA) and ammonia. The presence of VFA in the bioreactor medium at fairly low concentrations decreases the microbial population's metabolic reactions due to end-product inhibition. Technologies to remove VFA continuously from the bioreactor are of high interest. Several candidate technologies were analyzed, such as organic solvent liquid-liquid extraction, adsorption and/or ion exchange, dialysis, electrodialysis, and pressure driven membrane separation processes. The proposed technique for the on-line removal of VFA from the anaerobic bioreactor was a nanofiltration membrane recycle bioreactor. In order to establish the nanofiltration process performance variables before coupling it to the bioreactor, a series of experiments were carried out using a 10,000 MWCO tubular ceramic membrane module. The variables studied were the bioreactor slurry permeation characteristics, such as, the permeate flux, VFA and the nutrient removal rates as a function of applied transmembrane pressure, fluid recirculation velocity, suspended matter concentration, and process operating time. Results indicate that the permeate flux, VFA and nutrients removal rates are directly proportional to the fluid recirculation velocity in the range between 0.6 to 1.0 m/s, applied pressure when these are low than 1.5 bar, and inversely proportional to the total suspended solids concentration in the range between 23,466 to 34,880. At applied pressure higher than 1.5 bar the flux is not more linearly dependent due to concentration polarization and fouling effects over the membrange surface. It was also found

  8. 8 CFR 241.9 - Notice to transportation line of alien's removal.

    Science.gov (United States)

    2010-01-01

    ... 8 Aliens and Nationality 1 2010-01-01 2010-01-01 false Notice to transportation line of alien's removal. 241.9 Section 241.9 Aliens and Nationality DEPARTMENT OF HOMELAND SECURITY IMMIGRATION REGULATIONS APPREHENSION AND DETENTION OF ALIENS ORDERED REMOVED Post-hearing Detention and Removal § 241.9...

  9. Testing and modelling the performance of inorganic exchangers for radionuclide removal from aqueous nuclear waste

    International Nuclear Information System (INIS)

    Harjula, R.; Lehto, J.; Paajanen, A.; Saarinen, L.

    1997-01-01

    Three different inorganic sorbents/ion exchangers have been tested in this work. Granular hexacyanoferrate-based ion exchanger was developed for Cs removal from radioactive liquid waste at NPPs. It was tested for Cs removal from waste solutions containing different complexing agents and detergents. Radiation stability and thermal stability test has shown, that this sorbent can be used for treatment of medium-active waste treatment. Active carbon materials were tested for Co removal from liquid waste effluents at NPPs. It was found that 60 Co cannot be removed from the evaporator concentrates with reasonable efficiency and a combined process with up-stream precipitation step is needed for better Co separation efficiency. Granular modified titanium oxide was tested for 90 Sr removal from the waste effluents and showed very high efficiency. A mathematical model was developed to analyze ion exchange performance in feeds of different chemical and radiochemical compositions. (author). 9 refs, 7 figs, 3 tabs

  10. 324 Building liquid waste handling and removal system project plan

    Energy Technology Data Exchange (ETDEWEB)

    Ham, J.E.

    1998-07-29

    This report evaluates the modification options for handling radiological liquid waste generated during decontamination and cleanout of the 324 Building. Recent discussions indicate that the Hanford site railroad system will be closed by the end of FY 1998 necessitating the need for an alternate transfer method. The issue of handling of Radioactive Liquid Waste (RLW) from the 324 Building (assuming the 340 Facility is not available to accept the RLW) has been examined in at least two earlier engineering studies (Parsons 1997a and Hobart 1997). Each study identified a similar preferred alternative that included modifying the 324 Building RLWS to allow load-out of wastewater to a truck tanker, while making maximum use of existing piping, tanks, instrumentation, controls and other features to minimize costs and physical changes to the building. This alternative is accepted as the basis for further discussion presented in this study. The goal of this engineering study is to verify the path forward presented in the previous studies and assure that the selected alternative satisfies the 324 Building deactivation goals and objectives as currently described in the project management plan. This study will also evaluate options available to implement the preferred alternative and select the preferred option for implementation of the entire system. Items requiring further examination will also be identified. Finally, the study will provide a conceptual design, schedule and cost estimate for the required modifications to the 324 Building to allow removal of RLW. Attachment 5 is an excerpt from the project baseline schedule found in the Project Management Plan.

  11. Laboratory scale studies on removal of chromium from industrial wastes.

    Science.gov (United States)

    Baig, M A; Mir, Mohsin; Murtaza, Shazad; Bhatti, Zafar I

    2003-05-01

    Chromium being one of the major toxic pollutants is discharged from electroplating and chrome tanning processes and is also found in the effluents of dyes, paint pigments, manufacturing units etc. Chromium exists in aqueous systems in both trivalent (Cr(3+)) and hexavalent (Cr(6+)) forms. The hexavalent form is carcinogenic and toxic to aquatic life, whereas Cr(3+) is however comparatively less toxic. This study was undertaken to investigate the total chromium removal from industrial effluents by chemical means in order to achieve the Pakistan NEQS level of 1 mg/L by the methods of reduction and precipitation. The study was conducted in four phases. In phase I, the optimum pH and cost effective reducing agent among the four popular commercial chemicals was selected. As a result, pH of 2 was found to be most suitable and sodium meta bisulfate was found to be the most cost effective reducing agent respectively. Phase II showed that lower dose of sodium meta bisulfate was sufficient to obtain 100% efficiency in reducing Cr(6+) to Cr(3+), and it was noted that reaction time had no significance in the whole process. A design curve for reduction process was established which can act as a tool for treatment of industrial effluents. Phase III studies indicated the best pH was 8.5 for precipitation of Cr(3+) to chromium hydroxide by using lime. An efficiency of 100% was achievable and a settling time of 30 minutes produced clear effluent. Finally in Phase IV actual waste samples from chrome tanning and electroplating industries, when precipitated at pH of 12 gave 100% efficiency at a settling time of 30 minutes and confined that chemical means of reduction and precipitation is a feasible and viable solution for treating chromium wastes from industries.

  12. Sequestering agents for the removal of actinides from waste streams

    Energy Technology Data Exchange (ETDEWEB)

    Raymond, K.N.; White, D.J.; Xu, Jide; Mohs, T.R. [Univ. of California, Berkeley, CA (United States)

    1997-10-01

    The goal of this project is to take a biomimetic approach toward developing new separation technologies for the removal of radioactive elements from contaminated DOE sites. To achieve this objective, the authors are investigating the fundamental chemistry of naturally occurring, highly specific metal ion sequestering agents and developing them into liquid/liquid and solid supported actinide extraction agents. Nature produces sideophores (e.g., Enterobactin and Desferrioxamine B) to selectivity sequester Lewis acidic metal ions, in particular Fe(III), from its surroundings. These chelating agents typically use multiple catechols or hydroxamic acids to form polydentate ligands that chelate the metal ion forming very stable complexes. The authors are investigating and developing analogous molecules into selective chelators targeting actinide(IV) ions, which display similar properties to Fe(III). By taking advantage of differences in charge, preferred coordination number, and pH stability range, the transition from nature to actinide sequestering agents has been applied to the development of new and highly selective actinide extraction technologies. Additionally, the authors have shown that these chelating ligands are versatile ligands for chelating U(VI). In particular, they have been studying their coordination chemistry and fundamental interactions with the uranyl ion [UO{sub 2}]{sup 2+}, the dominant form of uranium found in aqueous media. With an understanding of this chemistry, and results obtained from in vivo uranium sequestration studies, it should be possible to apply these actinide(IV) extraction technologies to the development of new extraction agents for the removal of uranium from waste streams.

  13. Removal of americium and curium from high-level wastes

    International Nuclear Information System (INIS)

    Bond, W.D.; Leuze, R.E.

    1979-01-01

    The DHDECMP process was demonstrated to give a 99.5% removal of actinides from actual HLLW in small-scale, batch extraction tests. Results from cold tests indicate that it may be possible to carry out the oxalate precipitation step of the OPIX process continuously. About 90% recovery of the trivalent actinides and lanthanides can be achieved in the continuous precipitation. the presence of zirconium impurity in feed solutions to Talspeak process at concentrations of 10 -4 M (0.5% of the Zr in the original waste) affected phase separations but equipment could be operated satisfactory in cold tests. Zirconium concentrations of 10 -3 M seriously affected phase separations and substantial quantities of interfacial cruds were formed. Modest concentrations (0.006 M or less) of H 2 MEHP, a suspected degradation product of HDEHP, did not effect separation factors. The presence of impurities derived from the thermal degradation of DHDECMP did not inhibit the loading of the trivalent actinide and lanthanide elements in the cation exchange chromatographic process for their separation. It appears that the biodentate (DHDECMP) solvent extraction process and the OPIX process are the leading candidate process for the co-removal of trivalent actinide and lanthanide elements from HLLW. The cation exchange chromatography and the Talspeak processes, are the leading candidate processes for the subsequent separation of actinides and lanthanides. The bidentate and cation exchange processes are further along in their development than the other processes and are currently considered the reference processes for the partitioning of Am-Cm from HLLW. 4 figures, 4 tables

  14. UJV line for research into radioactive wastes solidification

    International Nuclear Information System (INIS)

    Neumann, L.; Feist, I.; Kepak, F.; Nachmilner, L.; Napravnik, J.; Novak, M.; Pecak, V.; Vojtech, O.

    1985-01-01

    An experimental line with a capacity of 0.01 m 3 /h was developed and built for research of the solidification of liquid radioactive wastes at the Nuclear Research Institute. The line allows the research and pilot plant testing of processes based on vitrification but also on other procedures including calcination. It consists of a horizontal calciner, a resistance melting unit, a homogenization device for research into cementation of the calcinate, and equipment for the disposal of gaseous emissions. The facility is provided with a control console which allows remote control and the control of all basic operating parameters. The design of the line allows its eventual completion with other equipment. (Z.M.)

  15. Selective removal of heavy metals from metal-bearing wastewater in a cascade line reactor.

    Science.gov (United States)

    Pavlović, Jelena; Stopić, Srećko; Friedrich, Bernd; Kamberović, Zeljko

    2007-11-01

    This paper is a part of the research work on 'Integrated treatment of industrial wastes towards prevention of regional water resources contamination - INTREAT' the project. It addresses the environmental pollution problems associated with solid and liquid waste/effluents produced by sulfide ore mining and metallurgical activities in the Copper Mining and Smelting Complex Bor (RTB-BOR), Serbia. However, since the minimum solubility for the different metals usually found in the polluted water occurs at different pH values and the hydroxide precipitates are amphoteric in nature, selective removal of mixed metals could be achieved as the multiple stage precipitation. For this reason, acid mine water had to be treated in multiple stages in a continuous precipitation system-cascade line reactor. All experiments were performed using synthetic metal-bearing effluent with chemical a composition similar to the effluent from open pit, Copper Mining and Smelting Complex Bor (RTB-BOR). That effluent is characterized by low pH (1.78) due to the content of sulfuric acid and heavy metals, such as Cu, Fe, Ni, Mn, Zn with concentrations of 76.680, 26.130, 0.113, 11.490, 1.020 mg/dm3, respectively. The cascade line reactor is equipped with the following components: for feeding of effluents, for injection of the precipitation agent, for pH measurements and control, and for removal of the process gases. The precipitation agent was 1M NaOH. In each of the three reactors, a changing of pH and temperature was observed. In order to verify. efficiency of heavy metals removal, chemical analyses of samples taken at different pH was done using AES-ICP. Consumption of NaOH in reactors was 370 cm3, 40 cm3 and 80 cm3, respectively. Total time of the experiment was 4 h including feeding of the first reactor. The time necessary to achieve the defined pH value was 25 min for the first reactor and 13 min for both second and third reactors. Taking into account the complete process in the cascade line

  16. Coil extensions improve line shapes by removing field distortions

    Science.gov (United States)

    Conradi, Mark S.; Altobelli, Stephen A.; McDowell, Andrew F.

    2018-06-01

    The static magnetic susceptibility of the rf coil can substantially distort the field B0 and be a dominant source of line broadening. A scaling argument shows that this may be a particular problem in microcoil NMR. We propose coil extensions to reduce the distortion. The actual rf coil is extended to a much longer overall length by abutted coil segments that do not carry rf current. The result is a long and nearly uniform sheath of copper wire, in terms of the static susceptibility. The line shape improvement is demonstrated at 43.9 MHz and in simulation calculations.

  17. Use of ionizing radiation for color removal and increased biodegradability in tannery wastes

    International Nuclear Information System (INIS)

    Hyfantis, G.J. Jr.

    1977-01-01

    The special problems associated with the treatment of waste-waters generated by the vegetable leather tanning process have been studied to determine their treatability utilizing ionizing radiation. Conventional treatment schemes do not provide an effective means for the removal of color from vegetable tanning wastes. Radiation treatment is an advanced treatment method that does effectively remove the color. In addition to color removal, radiation treatment of vegetable tanning wastes increases the biodegradability. The results of this study show that radiation treatment of wastes offers a viable method for removing color and increasing biodegradability. An economic analysis, which is also included, indicates that in the near future radiation treatment will be competitive with other advanced waste treatment methods

  18. Strategy of Construction and Demolition Waste Management after Chemical Industry Facilities Removal

    Science.gov (United States)

    Tashkinova, I. N.; Batrakova, G. M.; Vaisman, Ya I.

    2017-06-01

    Mixed waste products are generated in the process of irrelevant industrial projects’ removal if conventional techniques of their demolition and dismantling are applied. In Russia the number of unused chemical industry facilities including structures with high rate of wear is growing. In removing industrial buildings and production shops it is used conventional techniques of demolition and dismantling in the process of which mixed waste products are generated. The presence of hazardous chemicals in these wastes makes difficulties for their use and leads to the increasing volume of unutilized residues. In the process of chemical industry facilities’ removal this fact takes on special significance as a high level of hazardous chemicals in the waste composition demands for the realization of unprofitable measures aimed at ensuring environmental and industrial safety. The proposed strategy of managing waste originated from the demolition and dismantling of chemical industry facilities is based on the methodology of industrial metabolism which allows identifying separate material flows of recycled, harmful and ballast components, performing separate collection of components during removal and taking necessary preventive measures. This strategy has been tested on the aniline synthesis plant being in the process of removal. As a result, a flow of 10 wt. %, subjected to decontamination, was isolated from the total volume of construction and demolition waste (C&D waste). The considered approach allowed using the resource potential of more than 80wt. % of waste and minimizing the disposed waste volume.

  19. Two Methods for Antialiased Wireframe Drawing with Hidden Line Removal

    DEFF Research Database (Denmark)

    Bærentzen, Jakob Andreas; Munk-Lund, Steen; Gjøl, Mikkel

    2008-01-01

    Two novel and robust techniques for wireframe drawing are proposed. Neither suffer from the well-known artifacts associated with the standard two pass, offset based techniques for wireframe drawing. Both methods draw prefiltered lines and produce high-quality antialiased results without super...

  20. Ferrate treatment for removing chromium from high-level radioactive tank waste.

    Science.gov (United States)

    Sylvester, P; Rutherford, L A; Gonzalez-Martin, A; Kim, J; Rapko, B M; Lumetta, G J

    2001-01-01

    A method has been developed for removing chromium from alkaline high-level radioactive tank waste. Removing chromium from these wastes is critical in reducing the volume of waste requiring expensive immobilization and deep geologic disposition. The method developed is based on the oxidation of insoluble chromium(III) compounds to soluble chromate using ferrate. This method could be generally applicable to removing chromium from chromium-contaminated solids, when coupled with a subsequent reduction of the separated chromate back to chromium(III). The tests conducted with a simulated Hanford tank sludge indicate that the chromium removal with ferrate is more efficient at 5 M NaOH than at 3 M NaOH. Chromium removal increases with increasing Fe(VI)/Cr(II) molar ratio, but the chromium removal tends to level out for Fe(VI)/ Cr(III) greaterthan 10. Increasingtemperature leadsto better chromium removal, but higher temperatures also led to more rapid ferrate decomposition. Tests with radioactive Hanford tank waste generally confirmed the simulant results. In all cases examined, ferrate enhanced the chromium removal, with a typical removal of around 60-70% of the total chromium present in the washed sludge solids. The ferrate leachate solutions did not contain significant concentrations of transuranic elements, so these solutions could be disposed as low-activity waste.

  1. Simulation tools for robotic and teleoperated hazardous waste removal

    International Nuclear Information System (INIS)

    Love, L.J.; Kress, R.L.; Bills, K.C.

    1997-02-01

    The primary mission of Oak Ridge National laboratory (ORNL) during World War II was the processing of pure plutonium metal in support of the Manhattan Project. Between 1943 and 1951, the Gunite and Associated Tanks (GAAT) at ORNL were built to collect, neutralize, and store the radioactive by-products. Currently, twelve gunite tanks and four stainless steel tanks are located on the ORNL complex. These tanks hold approximately 75,000 gal of radioactive sludge and solids and over 350,000 gal of liquid. Characterization studies of these tanks in 1994 indicated that the structural integrity of some of the tanks is questionable. Subsequently, there is presently an aggressive program directed towards the remediation and relocation of waste stored in the ORNL tanks. A number of factors complicate the remediation process. The material stored in these tanks ranges from liquid to sludge and solid and is composed of organic materials, heavy metals, and radionuclides. The tanks, which range from 12 to 50 ft in diameter are located below ground and in the middle of the ORNL complex. The only access to these tanks is through one of three access ports that are either 12 or 24 in. in diameter. These characteristics provide a daunting challenge: How can material be safely removed from such a confined structure. This paper describes the existing strategy and hardware presently used in the remediation process. This is followed by a description of an integrated hardware system model. This investigation has isolated a few key areas where further work is needed

  2. Removal of radioactive ions from nuclear waste solutions by electrodialysis

    Energy Technology Data Exchange (ETDEWEB)

    Sugimoto, S [Radia Industries Co. Ltd., Takasaki, Gunma (Japan)

    1978-10-01

    Removal of radioactive ions was studied from low and medium level radioactive waste solutions by electrodialysis using ion exchange membranes. The test solutions contained /sup 137/Cs/sup +/, /sup 106/Ru/sup 3 +/ or fission products (F.P.) as active ions and NaCl, Na/sub 2/SO/sub 4/ or Ca(NO/sub 3/)/sub 2/ as inactive coexisting salts. The decontamination factor of the active ions was in the order: /sup 137/Cs/sup +/ (greater than 99%) > /sup 90/Sr/sup 2 +/ > F.P. > /sup 106/Ru/sup 3 +/. The dialysis time required to attain the saturation was the shortest for monovalent cations K/sup +/, Cs/sup +/ and Na/sup +/, intermediate for divalent cation Sr/sup 2 +/, and the longest for trivalent cation Ru/sup 3 +/. The ratio of the decontamination factor of an active ion eta sub( a) to the desalination factor of an inactive ion eta sub( b) was nearly equal to unity for /sup 24/Na, /sup 42/K, /sup 137/Cs and /sup 90/Sr. On the other hand, the apparent selective permeability of an active ion (A/sup +/) against Na/sup +/ ion, T sub(Na/sup +/) sup( a) was higher than unity for all the active ions tested, and was in the order of /sup 137/Cs > /sup 90/Sr > /sup 42/K > /sup 24/Na, where T sub(Na/sup +/) sup( a) is defined by the ratio of ..gamma..sub( a) to ..gamma..sub(Na/sup +/) with ..gamma..sub( a) being the ratio of dilution of A in the diluate the ..gamma..sub(Na/sup +/) being that of Na/sup +/ in the same diluate. The decontamination factor of the active ions did not depend significantly on the species and concentration of the coexistent salts or on the concentration of the active ions.

  3. Chemical activation of tea waste and use for the removal of chromium (Vi) from aqueous solution

    International Nuclear Information System (INIS)

    Qureshi, K.; Bhatti, I.; Ansari, A.K.

    2009-01-01

    Tea waste is the residue left after the preparation of tea. At present the tea waste is regarded as a waste product having no use. In this study, tea waste is converted into an adsorbent. Tea waste is chemically activated with phosphoric acid at low temperature 450 degree C. This activated carbon is then utilized as an adsorbent for the removal of Chromium (VI) from aqueous solution. The various sorption parameters i.e pH, sorbent dose sorbate concentration, shaking time and shaking speed are first optimized. 75% of chromium from aqueous solution is effectively removed at pH 2. The best optimum conditions were obtained when 1 gm of sorbent was agitated at 100 rpm with 60 mg/l of sorbate for 50 minutes. Better results were obtained when low concentrations of sorbates were used. Hence tea waste could also be successfully used for the sorption of Chromium (VI), from industrial waste water. (author)

  4. Mechanisms governing the direct removal of wastes from the Waste Isolation Pilot Plant repository caused by exploratory drilling

    International Nuclear Information System (INIS)

    Berglund, J.W.

    1992-12-01

    Two processes are identified that can influence the quantity of wastes brought to the ground surface when a waste disposal room of the Waste Isolation Pilot Plant is inadvertently penetrated by an exploratory borehole. The first mechanism is due to the erosion of the borehole wall adjacent to the waste caused by the flowing drilling fluid (mud); a quantitative computational model based upon the flow characteristics of the drilling fluid (laminar or turbulent) and other drilling parameters is developed and example results shown. The second mechanism concerns the motion of the waste and borehole spall caused by the flow of waste-generated gas to the borehole. Some of the available literature concerning this process is discussed, and a number of elastic and elastic-plastic finite-difference and finite-element calculations are described that confirm the potential importance of this process in directly removing wastes from the repository to the ground surface. Based upon the amount of analysis performed to date, it is concluded that it is not unreasonable to expect that volumes of waste several times greater than that resulting from direct cutting of a gauge borehole could eventually reach the ground surface. No definitive quantitative model for waste removal as a result of the second mechanism is presented; it is concluded that decomposed waste constitutive data must be developed and additional experiments performed to assess further the full significance of this latter mechanism

  5. The Probability of Detection in the Telephone Line of Device of the Unauthorized Removal of Information

    Directory of Open Access Journals (Sweden)

    I. V. Svintsov

    2011-06-01

    Full Text Available The article discusses the theory of quantitative description of the possible presence in the telephone line devices unauthorized removal of information, investigated with the help of probability theory.

  6. Power Line Interference Removal from Electrocardiogram Using a Simplified Lattice Based Adaptive IIR Notch Filter

    National Research Council Canada - National Science Library

    Dhillon, Santpal

    2001-01-01

    ...) notch filter with a simplified adaptation algorithm for removal of power line frequency from ECG signals, The performance of this filter is better as compared to a second order infinite impulse response (IIR...

  7. Protein removal from waste brines generated during ham salting through acidification and centrifugation.

    Science.gov (United States)

    Gutiérrez-Martínez, Maria del Rosario; Muñoz-Guerrero, Hernán; Alcaína-Miranda, Maria Isabel; Barat, José Manuel

    2014-03-01

    The salting step in food processes implies the production of large quantities of waste brines, having high organic load, high conductivity, and other pollutants with high oxygen demand. Direct disposal of the residual brine implies salinization of soil and eutrophication of water. Since most of the organic load of the waste brines comes from proteins leaked from the salted product, precipitation of dissolved proteins by acidification and removal by centrifugation is an operation to be used in waste brine cleaning. The aim of this study is optimizing the conditions for carrying out the separation of proteins from waste brines generated in the pork ham salting operation, by studying the influence of pH, centrifugal force, and centrifugation time. Models for determining the removal of proteins depending on the pH, centrifugal force, and time were obtained. The results showed a high efficacy of the proposed treatment for removing proteins, suggesting that this method could be used for waste brine protein removal. The best pH value to be used in an industrial process seems to be 3, while the obtained results indicate that almost 90% of the proteins from the brine can be removed by acidification followed by centrifugation. A further protein removal from the brine should have to be achieved using filtrating techniques, which efficiency could be highly improved as a consequence of the previous treatment through acidification and centrifugation. Waste brines from meat salting have high organic load and electrical conductivity. Proteins can be removed from the waste brine by acidification and centrifugation. The total protein removal can be up to 90% of the initial content of the waste brine. Protein removal is highly dependent on pH, centrifugation rate, and time. © 2014 Institute of Food Technologists®

  8. Impact of the amount of working fluid in loop heat pipe to remove waste heat from electronic component

    Directory of Open Access Journals (Sweden)

    Smitka Martin

    2014-03-01

    Full Text Available One of the options on how to remove waste heat from electronic components is using loop heat pipe. The loop heat pipe (LHP is a two-phase device with high effective thermal conductivity that utilizes change phase to transport heat. It was invented in Russia in the early 1980’s. The main parts of LHP are an evaporator, a condenser, a compensation chamber and a vapor and liquid lines. Only the evaporator and part of the compensation chamber are equipped with a wick structure. Inside loop heat pipe is working fluid. As a working fluid can be used distilled water, acetone, ammonia, methanol etc. Amount of filling is important for the operation and performance of LHP. This work deals with the design of loop heat pipe and impact of filling ratio of working fluid to remove waste heat from insulated gate bipolar transistor (IGBT.

  9. FERRATE TREATMENT FOR REMOVING CHROMIUM FROM HIGH-LEVEL RADIOACTIVE TANK WASTE

    International Nuclear Information System (INIS)

    Sylvester, Paul; Rutherford, Andy; Gonzalez-Martin, Anuncia; Kim, J.; Rapko, Brian M.; Lumetta, Gregg J.

    2000-01-01

    A method has been developed for removing chromium from alkaline high-level radioactive tank waste. Removing chromium from these wastes is critical in reducing the volume of waste requiring expensive immobilization and deep geologic disposition. The method developed is based on the oxidation of insoluble chromium(III) compounds to soluble chromate using ferrate. The tests conducted with a simulated Hanford tank sludge indicate that the chromium removal with ferrate is more efficient at 5 M NaOH than at 3 M NaOH. Chromium removal increases with increasing Fe(VI)/Cr(III) molar ratio, but the chromium removal tends to level out for Fe(VI)/Cr(III) greater than 10. Increasing temperature leads to better chromium removal, but higher temperatures also led to more rapid ferrate decomposition. Tests with radioactive Hanford tank waste generally confirmed the simulant results. In all cases examined, ferrate enhanced the chromium removal, with a typical removal of around 60-70% of the total chromium present in the washed sludge solids. The ferrate leachate solutions did not contain significant concentrations of transuranic elements, so these solutions could be handled as low-activity waste

  10. Study of methods for removing strontium, plutonium, and ruthenium from Savannah River Plant waste supernate

    International Nuclear Information System (INIS)

    Wiley, J.R.

    1976-06-01

    As a part of long-term waste management studies at the Savannah River Laboratory, tests were made to study removal of strontium, plutonium, and ruthenium from simulated and actual waste supernates. Plutonium was sorbed by Duolite ARC-359 ion exchange resin, the same resin that is used to remove cesium from waste supernate. Strontium was removed from supernate by sorption on a chelating resin Chelex 100, or by precipitation as Sr 3 (PO 4 ) 2 . Activities of 137 Cs, 90 Sr, and 238-241 Pu remaining in processed waste supernate should be 1-10 nanocuries of each element per gram of salt. Of the methods that were tested, none was adequate for plant-scale removal of ruthenium

  11. SELENIUM TREATMENT/REMOVAL ALTERNATIVES DEMONSTRATION PROJECT - MINE WASTE TECHNOLOGY PROGRAM ACTIVITY III, PROJECT 20

    Science.gov (United States)

    This document is the final report for EPA's Mine WAste Technology Program (MWTP) Activity III, Project 20--Selenium Treatment/Removal Alternatives Demonstration project. Selenium contamination originates from many sources including mining operations, mineral processing, abandoned...

  12. Potential use of maize waste for the removal of Pb(II) from aqueous solution

    CSIR Research Space (South Africa)

    Okonkwo, J

    2006-09-01

    Full Text Available batch adsorption procedures. The utilization of tassels for the removal of toxic heavy metals from effluent solutions would, however, attach some economic value to this waste material. Tassel flowers were collected just prior to harvest, dried under...

  13. Removal of actinides from high-level wastes generated in the reprocessing of commercial fuels

    International Nuclear Information System (INIS)

    Bond, W.D.; Leuze, R.E.

    1975-09-01

    Progress is reported on a technical feasibility study of removing the very long-lived actinides (uranium, neptunium, plutonium, americium, and curium) from high-level wastes generated in the commercial reprocessing of spent nuclear fuels. The study was directed primarily at wastes from the reprocessing of light water reactor (LWR) fuels and specifically to developing satisfactory methods for reducing the actinide content of these wastes to values that would make 1000-year-decayed waste comparable in radiological toxicity to natural uranium ore deposits. Although studies are not complete, results thus far indicate the most promising concept for actinide removal includes both improved recovery of actinides in conventional fuel reprocessing and secondary processing of the high-level wastes. Secondary processing will be necessary for the removal of americium and curium and perhaps some residual plutonium. Laboratory-scale studies of separations methods that appear most promising are reported and conceptual flowsheets are discussed. (U.S.)

  14. In-line coagulation prior to UF of treated domestic wastewater - foulants removal, fouling control and phosphorus removal

    KAUST Repository

    Zheng, Xing; Plume, Stephan; Ernst, Mathias; Croue, Jean-Philippe; Jekel, Martin R.

    2012-01-01

    The present work investigated fouling control and phosphorus removal by applying in-line coagulation prior to ultrafiltration (UF) of treated domestic wastewater. Experiments were conducted in both lab- and pilot-scale under close to neutral pH condition. Lab-scale foulant removal tests showed that increasing the dosage of FeCl3, AlCl3 and polymeric aluminum chloride (PACl) can improve biopolymer removal. Specifically, PACl reduced preferentially the proteinaceous fraction of biopolymer while the other two coagulants showed no significant preference. The filterability of water samples was improved after coagulation, which is contributed to biopolymer removal and the formation of larger particles. Pilot UF experiments demonstrated that in-line coagulation improved the performance of UF to a large extent. Within 0.037-0.148mmol Me3+/L dosage range, adding more FeCl3 and AlCl3 slowed down the development of trans-membrane pressure (TMP) correspondingly, while changing PACl dosage showed little effect on the variation of TMP increase rate. Further investigations indicated that PACl related precipitates contributed to more irreversible fouling than that which the monomeric coagulants made. Fouling control is thus considered as a co-effect determined by foulant removal efficiency, fouling layer structure and the adherence of hydrolysis products/precipitates onto the membrane. With respect to phosphorus removal, dosing FeCl3 and AlCl3 achieved higher removal efficiency than using PACl. Based on lab- and pilot-scale results, dosing FeCl3 and AlCl3 at a relative dosage of over 2.5mol Me3+ per mol total phosphorus (TP) in feedwater is necessarily required to keep the TP concentration under 50μg/L in UF permeate. © 2012 Elsevier B.V.

  15. In-line coagulation prior to UF of treated domestic wastewater - foulants removal, fouling control and phosphorus removal

    KAUST Repository

    Zheng, Xing

    2012-06-01

    The present work investigated fouling control and phosphorus removal by applying in-line coagulation prior to ultrafiltration (UF) of treated domestic wastewater. Experiments were conducted in both lab- and pilot-scale under close to neutral pH condition. Lab-scale foulant removal tests showed that increasing the dosage of FeCl3, AlCl3 and polymeric aluminum chloride (PACl) can improve biopolymer removal. Specifically, PACl reduced preferentially the proteinaceous fraction of biopolymer while the other two coagulants showed no significant preference. The filterability of water samples was improved after coagulation, which is contributed to biopolymer removal and the formation of larger particles. Pilot UF experiments demonstrated that in-line coagulation improved the performance of UF to a large extent. Within 0.037-0.148mmol Me3+/L dosage range, adding more FeCl3 and AlCl3 slowed down the development of trans-membrane pressure (TMP) correspondingly, while changing PACl dosage showed little effect on the variation of TMP increase rate. Further investigations indicated that PACl related precipitates contributed to more irreversible fouling than that which the monomeric coagulants made. Fouling control is thus considered as a co-effect determined by foulant removal efficiency, fouling layer structure and the adherence of hydrolysis products/precipitates onto the membrane. With respect to phosphorus removal, dosing FeCl3 and AlCl3 achieved higher removal efficiency than using PACl. Based on lab- and pilot-scale results, dosing FeCl3 and AlCl3 at a relative dosage of over 2.5mol Me3+ per mol total phosphorus (TP) in feedwater is necessarily required to keep the TP concentration under 50μg/L in UF permeate. © 2012 Elsevier B.V.

  16. Microbial Community Profile of a Lead Service Line Removed from a Drinking Water Distribution System▿

    Science.gov (United States)

    White, Colin; Tancos, Matthew; Lytle, Darren A.

    2011-01-01

    A corroded lead service line was removed from a drinking water distribution system, and the microbial community was profiled using 16S rRNA gene techniques. This is the first report of the characterization of a biofilm on the surface of a corroded lead drinking water service line. The majority of phylotypes have been linked to heavy-metal-contaminated environments. PMID:21652741

  17. Particle removal by coagulation and settling from a waste plume

    International Nuclear Information System (INIS)

    Hunt, J.R.

    1990-01-01

    Oceanic and coastal waters have long been used for disposal of human wastes, such as treated sewage, sewage sludge, dredged sediments from harbors, and more recently, drilling fluids from offshore oil exploration and deep-ocean bottom sediments that are resuspended by mining activities. These wastes contain pollutants mainly in the particulate fraction. Because most organic matter is particulate matter, toxic metals are either present as sulfide precipitates or adsorbed onto other particles, and suspended particles themselves are viewed as pollutants if an increase in turbidity is apparent. Thus, to analyze waste-disposal practices, an accurate prediction is needed for the fate of waste particles. This paper demonstrates how particle coagulation can be incorporated into models for predicting the fate of particulate wastes that are discharged into oceanic waters

  18. Recovery and removal of uranium by using plant wastes

    International Nuclear Information System (INIS)

    Nakajima, Akira; Sakaguchi, Takashi

    1990-01-01

    The uranium-adsorbing abilities of seven plant wastes were investigated. High abilities to adsorb uranium from non-saline water containing 10 mg dm -3 of uranium were observed with a number of plant wastes tested. However, with seawater supplemented with 10 mg dm -3 of uranium, similar results were found only with chestnut residues. When the plant wastes were immobilized with formaldehyde, their ability to adsorb uranium was increased. Uranium and copper ions were more readily adsorbed by all plant wastes tested than other metal ions from a solution containing a mixture of seven different heavy metals. The selective adsorption of heavy metal ions differs with different species of plant wastes. The immobilization of peanut inner skin, orange peel and grapefruit peel increased the selectivity for uranium. (author)

  19. Performance evaluation of the PITBULL trademark pump for the removal of hazardous waste

    International Nuclear Information System (INIS)

    Hatchell, B.K.; Combs, W.H.; Hymas, C.R.; Powell, M.R.; Rinker, M.W.; White, M.

    1998-09-01

    One objective of the Waste Removal Project at the Department of Energy's Savannah River Site (SRS) is to explore methods to successfully remove waste heels that will remain in the high-level waste tanks after bulk waste removal has been completed. Tank closure is not possible unless this residue is removed. As much as 151,000 liters of residue can remain after a conventional waste removal campaign. The waste heels can be comprised of sludge, zeolite, and silica. The heels are generally hardened or compacted insoluble particulate with relatively rapid settling velocities. A PITBULL trademark pump is being considered by SRS to retrieve sludge-type waste from Tank 19. Sections 1 through 4 of this report present the scope and objectives of the test program, describe the principles of operation of the PITBULL, and present the test approach, set-up, and instrumentation. Test results, including pumping rates with water and slurry, are provided in Section 5, along with considerations for remote operation. Conclusions and recommendations are provided in Section 6

  20. Buffer lining manufacturing method for radioactive waste container

    International Nuclear Information System (INIS)

    Kawakami, Susumu; Sugino, Hiroyuki

    1998-01-01

    A recessed portion is formed on an upper surface of a filler layer made of a buffer powder filled into a container main body, the upper portion of the vessel main body is closed by a shrinkable liquid tight film. It is placed in a pressurizing container and pressed to mold a buffer lining base material integrated with the vessel main body. A flat upper surface and a containing space are formed by shaving to form a buffer lining. A disposing vessel containing radioactive wastes is inserted into the containing space, and the containing space is closed by a buffer block. The upper surface is sealed by a lid. With such a constitution, since a buffer lining integrated with the vessel main body can be formed easily inside the vessel main body, the disposing vessel can be contained in the containing vessel in a state surrounded by the buffer easily and stably without laying or piling over a large quantity of buffer blocks. (T.M.)

  1. Precipitation process for the removal of technetium values from nuclear waste solutions

    Science.gov (United States)

    Walker, D.D.; Ebra, M.A.

    1985-11-21

    High efficiency removal of techetium values from a nuclear waste stream is achieved by addition to the waste stream of a precipitant contributing tetraphenylphosphonium cation, such that a substantial portion of the technetium values are precipitated as an insoluble pertechnetate salt.

  2. Calcium carbonate in the removal of iron and lead from dilute waste water

    Energy Technology Data Exchange (ETDEWEB)

    Hautala, E; Randall, J; Goodban, A; Waiss, A Jr

    1977-01-01

    The utility of powdered CaCO/sub 3/ in the removal of lead and iron from dilute aqueous waste waters has been demonstrated and the results successfully applied to treat industrial waste water from a lead battery plant. The reclaimed water is suitable for recycling to the plant and is now being utilized with consequent economic advantages.

  3. Autotrophic nitrogen removal from low strength waste water at low temperature

    NARCIS (Netherlands)

    Hendrickx, T.L.G.; Wang, Y.; Kampman, C.; Zeeman, G.; Temmink, B.G.; Buisman, C.J.N.

    2012-01-01

    Direct anaerobic treatment of municipal waste waters allows for energy recovery in the form of biogas. A further decrease in the energy requirement for waste water treatment can be achieved by removing the ammonium in the anaerobic effluent with an autotrophic process, such as anammox. Until now,

  4. Thiacrown polymers for removal of mercury from waste streams

    Science.gov (United States)

    Baumann, Theodore F.; Reynolds, John G.; Fox, Glenn A.

    2004-02-24

    Thiacrown polymers immobilized to a polystyrene-divinylbenzene matrix react with Hg.sup.2+ under a variety of conditions to efficiently and selectively remove Hg.sup.2+ ions from acidic aqueous solutions, even in the presence of a variety of other metal ions. The mercury can be recovered and the polymer regenerated. This mercury removal method has utility in the treatment of industrial wastewater, where a selective and cost-effective removal process is required.

  5. Removal of batteries from solid waste using trommel separation.

    Science.gov (United States)

    Lau, S T; Cheung, W H; Kwong, C K; Wan, C P; Choy, K K H; Leung, C C; Porter, J F; Hui, C W; Mc Kay, G

    2005-01-01

    This paper describes the design and testing of a trommel for separation of batteries from solid waste. A trommel is a cylindrical separation device that rotates and performs size separation. It has also been used in areas such as municipal solid waste (MSW) processing, classifying construction and demolition debris, screening mass-burn incinerator ash and compost processing. A trommel has been designed based on size separation to separate household batteries from solid waste, which can then be used as feedstock for alternative applications of solid waste combustion, particularly where the metal content of the product is also a critical parameter, such as the Co-Co process for integrated cement and power production. This trommel has been tested with batches of university office and restaurant wastes against various factors. The recovery efficiency of batteries increases with decreasing inclination angle of the trommel and decreasing rotational speed. A physical characterization of the university solid waste has been performed with a 20-kg sample of the tested waste. It was found that there is a trend of decreasing recovery of batteries with increasing paper composition, and a trend of increasing recovery of batteries with increasing organic materials composition.

  6. Methods for removing transuranic elements from waste solutions

    International Nuclear Information System (INIS)

    Slater, S.A.; Chamberlain, D.B.; Connor, C.; Sedlet, J.; Srinivasan, B.; Vandegrift, G.F.

    1994-11-01

    This report outlines a treatment scheme for separating and concentrating the transuranic (TRU) elements present in aqueous waste solutions stored at Argonne National Laboratory (ANL). The treatment method selected is carrier precipitation. Potential carriers will be evaluated in future laboratory work, beginning with ferric hydroxide and magnetite. The process will result in a supernatant with alpha activity low enough that it can be treated in the existing evaporator/concentrator at ANL. The separated TRU waste will be packaged for shipment to the Waste Isolation Pilot Plant

  7. Heat removal characteristics of waste storage tanks. Revision 1

    International Nuclear Information System (INIS)

    Kummerer, M.

    1995-10-01

    A topical report that examines the relationship between tank heat load and maximum waste temperatures. The passive cooling response of the tanks is examined, and loss of active cooling in ventilated tanks is investigated

  8. removal of hazardous pollutants from industrial waste solutions using membrane techniques

    International Nuclear Information System (INIS)

    Selim, Y.T.M.

    2001-01-01

    the removal of hazardous pollutants from industrial waste solutions is of essential demand field for both scientific and industrial work. the present work includes detailed studies on the possible use of membrane technology especially liquid emulsion membrane for the removal of hazardous pollutants such as; cadmium , cobalt , lead, copper and uranium from different industrial waste solution . this research can be applied for mixed waste problems. the work carried out in this thesis is presented in three main chapters, namely introduction, experimental and results and discussion

  9. Using Magnetically Responsive Tea Waste to Remove Lead in Waters under Environmentally Relevant Conditions

    KAUST Repository

    Yeo, Siang Yee; Choi, Siwon; Dien, Vivian; Sow-Peh, Yoke Keow; Qi, Genggeng; Hatton, T. Alan; Doyle, Patrick S.; Thio, Beng Joo Reginald

    2013-01-01

    We report the use of a simple yet highly effective magnetite-waste tea composite to remove lead(II) (Pb2+) ions from water. Magnetite-waste tea composites were dispersed in four different types of water–deionized (DI), artificial rainwater, artificial groundwater and artificial freshwater–that mimic actual environmental conditions. The water samples had varying initial concentrations (0.16–5.55 ppm) of Pb2+ ions and were mixed with the magnetite-waste tea composite for at least 24 hours to allow adsorption of the Pb2+ ions to reach equilibrium. The magnetite-waste tea composites were stable in all the water samples for at least 3 months and could be easily removed from the aqueous media via the use of permanent magnets. We detected no significant leaching of iron (Fe) ions into the water from the magnetite-waste tea composites. The percentage of Pb adsorbed onto the magnetite-waste tea composite ranged from ~70% to 100%; the composites were as effective as activated carbon (AC) in removing the Pb2+ ions from water, depending on the initial Pb concentration. Our prepared magnetite-waste tea composites show promise as a green, inexpensive and highly effective sorbent for removal of Pb in water under environmentally realistic conditions.

  10. Using Magnetically Responsive Tea Waste to Remove Lead in Waters under Environmentally Relevant Conditions

    KAUST Repository

    Yeo, Siang Yee

    2013-06-20

    We report the use of a simple yet highly effective magnetite-waste tea composite to remove lead(II) (Pb2+) ions from water. Magnetite-waste tea composites were dispersed in four different types of water–deionized (DI), artificial rainwater, artificial groundwater and artificial freshwater–that mimic actual environmental conditions. The water samples had varying initial concentrations (0.16–5.55 ppm) of Pb2+ ions and were mixed with the magnetite-waste tea composite for at least 24 hours to allow adsorption of the Pb2+ ions to reach equilibrium. The magnetite-waste tea composites were stable in all the water samples for at least 3 months and could be easily removed from the aqueous media via the use of permanent magnets. We detected no significant leaching of iron (Fe) ions into the water from the magnetite-waste tea composites. The percentage of Pb adsorbed onto the magnetite-waste tea composite ranged from ~70% to 100%; the composites were as effective as activated carbon (AC) in removing the Pb2+ ions from water, depending on the initial Pb concentration. Our prepared magnetite-waste tea composites show promise as a green, inexpensive and highly effective sorbent for removal of Pb in water under environmentally realistic conditions.

  11. Removing radio-active wastes from nuclear power stations by the STEAG system

    International Nuclear Information System (INIS)

    Baatz, H.

    1978-01-01

    The mobile STEAG System for conditioning radio-active wastes from nuclear power stations represents a particularly safe and economic method of removing them in present day conditions. Cementation by the FAFNIR System is used for the greater part of the waste, the liquid concentrate (evaporator concentrate and filter slurry). For the special case of the medium active resin balls from the primary circuits, embedding in plastic by the FAMA process has proved to be the only available successful process so far. The highly active solid waste from the reactor core is decomposed by the MOSAIK System, is packed in transportable and storable containers and is removed from the fuel element storage pond. The systems are so safe that faults or interruptions of power station operation due to faults in removing radio-active wastes can be excluded. (orig.) [de

  12. Toluene removal in a biofilm reactor for waste gas treatment

    DEFF Research Database (Denmark)

    Pedersen, A.R.; Arvin, E.

    1997-01-01

    A lab-scale trickling filter for treatment of toluene-containing waste gas was investigated. The filter performance was investigated for various loads of toluene. Two levels of the gas flow were examined, 322 m d(-1) and 707 m d(-1). The gas inlet concentrations were varied in the range from 0...

  13. Membrane Characteristics for Removing Particulates in PFC Wastes

    International Nuclear Information System (INIS)

    Kim, Gye Nam; Lee, Sung Yeol; Won, Hui Jun; Jung, Chong Hun; Oh, Won Zin; Park, Jin Ho

    2005-01-01

    Pc (Per fluorocarbon) decontamination process is one of best methods to remove hot particulate adhered at inside surface of hot cell and surface of equipment in hot cell. It was necessary to develop a particulate filtration equipment to reuse Pc solution used on Pc decontamination due to its high cost and to minimize the volume of second wastewater. Contamination characteristics of hot particulate were investigated and then a filtration process was presented to remove hot particulate in Pc solution generated through Pc decontamination process. The removal efficiency of Pvdf (Poly vinylidene fluoride), Pp (Polypropylene), Ceramic (Al 2 O 3 ) filter showed more than 95%. The removal efficiency of Pvdf filter was a little lower than those of other kiters at same pressure (3 psi). A ceramic filter showed a higher removal efficiency with other filters, while a little lower flux rate than other filters. Due to inorganic composition, a ceramic filter was highly stable against radio nuclides in comparison with Pvdf and Pp membrane, which generate H 2 gas in α-radioactivity atmosphere. Therefore, the adoption of ceramic filter is estimated to be suitable for the real nitration process.

  14. Removing lead from metallic mixture of waste printed circuit boards by vacuum distillation: factorial design and removal mechanism.

    Science.gov (United States)

    Li, Xingang; Gao, Yujie; Ding, Hui

    2013-10-01

    The lead removal from the metallic mixture of waste printed circuit boards by vacuum distillation was optimized using experimental design, and a mathematical model was established to elucidate the removal mechanism. The variables studied in lead evaporation consisted of the chamber pressure, heating temperature, heating time, particle size and initial mass. The low-level chamber pressure was fixed at 0.1 Pa as the operation pressure. The application of two-level factorial design generated a first-order polynomial that agreed well with the data for evaporation efficiency of lead. The heating temperature and heating time exhibited significant effects on the efficiency, which was validated by means of the copper-lead mixture experiments. The optimized operating conditions within the region studied were the chamber pressure of 0.1 Pa, heating temperature of 1023 K and heating time of 120 min. After the conditions were employed to remove lead from the metallic mixture of waste printed circuit boards, the efficiency was 99.97%. The mechanism of the effects was elucidated by mathematical modeling that deals with evaporation, mass transfer and condensation, and can be applied to a wider range of metal removal by vacuum distillation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. The effective removal method of copper and cyanide in waste water of metal plating factories

    International Nuclear Information System (INIS)

    Jae, Won Mok; Hong, Zong Doo; Kim, Myun Sup

    1988-01-01

    To investigate the effective removal method of cooper and cyanide compounds in metal plating waste water, removal ratio of cooper and cyanide compounds in solution are measured with varying pH, concentration and contact time. As results of the present experiment, cyanide compounds in the solution are removed to 0.03mg/l or less with 5% NaOCl solution. The present result is satisfied to environmental disposal standards. The removal ratio against pH values show 99% over pH8. As results of neutral precipitation method, copper including solution are removed to 99% at pH8 in short time. The removal ratios of cyanide mixed copper solution against pH values show high efficiency(over 95%) at pH8 and 11 and removal ratios are decreased at pH10.(Author)

  16. Nuclear Waste Removal Using Particle Beams Incineration with Fast Neutrons

    CERN Document Server

    Revol, Jean Pierre Charles

    1997-01-01

    The management of nuclear waste is one of the major obstacles to the acceptability of nuclear power as a main source of energy for the future. TARC, a new experiment at CERN, is testing the practicality of Carlo Rubbia's idea to make use of Adiabatic Resonance Crossing to transmute long-lived fission fragments into short-lived or stable nuclides. Spallation neutrons produced in a large Lead assembly have a high probability to be captured at the energies of cross-section resonances in elements such as 99Tc, 129I, etc. An accelerator-driven sub-critical device using Thorium (Energy Amplifier) would be very effective in eliminating TRansUranic elements which constitute the most dangerous part of nuclear waste while producing from it large amounts of energy. In addition, such a system could transform, at a high rate and little energetic cost, long-lived fission fragments into short-lived elements.

  17. Electrodialytic Removal of Heavy Metals from Different Solid Waste Products

    DEFF Research Database (Denmark)

    Ottosen, Lisbeth M.; Christensen, Iben Vernegren; Pedersen, Anne Juul

    2003-01-01

    in a 7-day experiment in which oxalic acid was used as enhancement solution. From the straw ash, 66% of the Cd was removed, but 64% of the fly ash dry mass dissolved during the treatment. In this actual experiment, no enhancement solution was used but that will be necessary to avoid dissolution...

  18. Removal of actinides from dilute waste waters using polymer filtration

    International Nuclear Information System (INIS)

    Smith, B.F.; Robison, T.W.; Gibson, R.R.

    1995-01-01

    More stringent US Department of Energy discharge regulations for waste waters containing radionuclides (30 pCi/L total alpha) require the development of new processes to meet the new discharge limits for actinide metal ions, particularly americium and plutonium, while minimizing waste. We have been investigating a new technology, polymer filtration, that has the potential for effectively meeting these new limits. Traditional technology uses basic iron precipitation which produces large amounts of waste sludge. The new technology is based on using water-soluble chelating polymers with ultrafiltration for physical separation. The actinide metal ions are selectively bound to the polymer and can not pass through the membrane. Small molecules and nonbinding metals pass through the membrane. Advantages of polymer filtration technology compared to ion, exchange include rapid kinetics because the binding is occurring in a homogenous solution and no mechanical strength requirement on the polymer. We will present our results on the systematic development of a new class of water-soluble chelating polymers and their binding ability from dilute acid to near neutral waters

  19. Safety evaluation for packaging (onsite) concrete-lined waste packaging

    Energy Technology Data Exchange (ETDEWEB)

    Romano, T.

    1997-09-25

    The Pacific Northwest National Laboratory developed a package to ship Type A, non-transuranic, fissile excepted quantities of liquid or solid radioactive material and radioactive mixed waste to the Central Waste Complex for storage on the Hanford Site.

  20. Study into an organization for collecting, processing and removing of radioactive waste

    International Nuclear Information System (INIS)

    1983-09-01

    This report presents the results of a study into a new organization for the collection, processing and removal of radioactive waste. At present these activities are carried out by the Dutch Energy Research Foundation (ECN). The new organization has to offer guarantees for a qualititatively responsible retrieval and processing of radioactive waste. It also has to be certain that the waste offered will not be send back, or even refused, if stagnation occurs in the removal. Finally the tariffs have to be not so prohibitive that they hinder a responsible handling with radioactive waste by the producers. An organization is advised which is self-employed with regard to management, directorate and materials. It is recommended to submit this organization in a limited liability company. This form of government may be supplemented optionally with a slight form of a cooperative association. (author). 10 refs.; 3 figs.; 11 tabs

  1. Removal of radionuclides from the water-soluble fraction of Hanford nuclear defense wastes

    International Nuclear Information System (INIS)

    Strachan, D.M.; Schulz, W.W.

    1980-01-01

    The current Hanford Waste Management Program has operated since 1968 to remove the bulk of the long-lived heat emitters /sup 90/Sr and /sup 137/Cs from stored high-level wastes. The liquid waste remaining after removal of /sup 90/Sr and /sup 137/Cs is returned to underground tanks for eventual evaporation to damp solid salt cake. Approximately 95,000 m/sup 3/ of salt cake and 49,000 m/sup 3/ of ''sludge'' will eventually accumulate in approximately 50 underground single-shell tanks. One alternative for long-term management of high-level Hanford wastes involves retrieval, after a yet-to-be determined interim storage time, conversion to more immobile forms, and terminal storage in a suitable geologic repository. Another alternative for long-term management of salt cake and residual liquid involves removing most of the long-lived radionuclides and many of the shorter-lived ones from these wastes. This paper describes conditions and results of recent hot cell tests of the complete Hanford Radionuclide Removal Process. These advanced tests, made with actual residual liquid containing large concentrations of ethylenediaminetetracetic acid (EDTA) and other organic compounds, provided a rigorous and convincing proof of the process flowsheet. 16 refs

  2. Removal of arsenic from aqueous solutions using waste iron columns inoculated with iron bacteria.

    Science.gov (United States)

    Azhdarpoor, Abooalfazl; Nikmanesh, Roya; Samaei, Mohammad Reza

    2015-01-01

    Arsenic contamination of water resources is one of the serious risks threatening natural ecosystems and human health. This study investigates arsenic removal using a waste iron column with and without iron bacteria in continuous and batch phases. In batch experiments, the effects of pH, contact time, initial concentration of arsenic and adsorbent dose were investigated. Results indicated that the highest arsenate removal efficiency occurred at pH 7 (96.76%). On increasing the amount of waste iron from 0.25 to 1 g, the removal rate changed from about 42.37%-96.70%. The results of continuous experiments on the column containing waste iron showed that as the empty bed contact time increased from 5 to 60 min, the secondary arsenate concentration changed from 23 to 6 µg/l. In experiments involving a waste iron column with iron bacteria, an increase in residence time from 5 to 60 min decreased the secondary arsenate concentration from 14.97 to 4.86 µg/l. The results of this study showed that waste iron containing iron bacteria is a good adsorbent for removal of arsenic from contaminated water.

  3. The removal of uranium from mining waste water using algal/microbial biomass

    International Nuclear Information System (INIS)

    Kalin, Margarete; Wheeler, W.N.; Meinrath, G.

    2004-01-01

    We describe a three step process for the removal of uranium (U) from dilute waste waters. Step one involves the sequestration of U on, in, and around aquatic plants such as algae. Cell wall ligands efficiently remove U(VI) from waste water. Growing algae continuously renew the cellular surface area. Step 2 is the removal of U-algal particulates from the water column to the sediments. Step 3 involves reducing U(VI) to U(IV) and transforming the ions into stable precipitates in the sediments. The algal cells provide organic carbon and other nutrients to heterotrophic microbial consortia to maintain the low E H , within which the U is transformed. Among the microorganisms, algae are of predominant interest for the ecological engineer because of their ability to sequester U and because some algae can live under many extreme environments, often in abundance. Algae grow in a wide spectrum of water qualities, from alkaline environments (Chara, Nitella) to acidic mine drainage waste waters (Mougeotia, Ulothrix). If they could be induced to grow in waste waters, they would provide a simple, long-term means to remove U and other radionuclides from U mining effluents. This paper reviews the literature on algal and microbial adsorption, reduction, and transformation of U in waste streams, wetlands, lakes and oceans

  4. Development of a solvent extraction process for cesium removal from SRS tank waste

    International Nuclear Information System (INIS)

    Leonard, R.A.; Conner, C.; Liberatore, M.W.; Sedlet, J.; Aase, S.B.; Vandegrift, G.F.; Delmau, L.H.; Bonnesen, P.V.; Moyer, B.A.

    2001-01-01

    An alkaline-side solvent extraction process was developed for cesium removal from Savannah River Site (SRS) tank waste. The process was invented at Oak Ridge National Laboratory and developed and tested at Argonne National Laboratory using singlestage and multistage tests in a laboratory-scale centrifugal contactor. The dispersion number, hydraulic performance, stage efficiency, and general operability of the process flowsheet were determined. Based on these tests, further solvent development work was done. The final solvent formulation appears to be an excellent candidate for removing cesium from SRS tank waste.

  5. Mercury reduction and removal during high-level radioactive waste processing and vitrification

    International Nuclear Information System (INIS)

    Eibling, R.E.; Fowler, J.R.

    1981-01-01

    A reference process for immobilizing the high-level radioactive waste in borosilicate glass has been developed at the Savannah River Plant. This waste contains a substantial amount of mercury from separations processing. Because mercury will not remain in borosilicate glass at the processing temperature, mercury must be removed before vitrification or must be handled in the off-gas system. A process has been developed to remove mercury by reduction with formic acid prior to vitrification. Additional benefits of formic acid treatment include improved sludge handling and glass melter redox control

  6. Removal of basic dye (methylene blue) from wastewaters utilizing beer brewery waste

    International Nuclear Information System (INIS)

    Tsai, W.-T.; Hsu, H.-C.; Su, T.-Y.; Lin, K.-Y.; Lin, C.-M.

    2008-01-01

    In the work, the beer brewery waste has been shown to be a low-cost adsorbent for the removal of basic dye from the aqueous solution as compared to its precursor (i.e., diatomite) based on its physical and chemical characterizations including surface area, pore volume, scanning electron microscopy (SEM), and non-mineral elemental analyses. The pore properties of this waste were significantly larger than those of its raw material, reflecting that the trapped organic matrices contained in the waste probably provided additional adsorption sites and/or adsorption area. The results of preliminary adsorption kinetics showed that the diatomite waste could be directly used as a potential adsorbent for removal of methylene blue on the basis of its adsorption-biosorption mechanisms. The adsorption parameters thus obtained from the pseudo-second-order model were in accordance with their pore properties. From the results of adsorption isotherm at 298 K and the applicability examinations in treating industrial wastewater containing basic dye, it was further found that the adsorption capacities of diatomite waste were superior to those of diatomite, which were also in good agreement with their corresponding physical properties. From the results mentioned above, it is feasible to utilize the food-processing waste for removing dye from the industrial dying wastewater

  7. Removal of basic dye (methylene blue) from wastewaters utilizing beer brewery waste.

    Science.gov (United States)

    Tsai, Wen-Tien; Hsu, Hsin-Chieh; Su, Ting-Yi; Lin, Keng-Yu; Lin, Chien-Ming

    2008-06-15

    In the work, the beer brewery waste has been shown to be a low-cost adsorbent for the removal of basic dye from the aqueous solution as compared to its precursor (i.e., diatomite) based on its physical and chemical characterizations including surface area, pore volume, scanning electron microscopy (SEM), and non-mineral elemental analyses. The pore properties of this waste were significantly larger than those of its raw material, reflecting that the trapped organic matrices contained in the waste probably provided additional adsorption sites and/or adsorption area. The results of preliminary adsorption kinetics showed that the diatomite waste could be directly used as a potential adsorbent for removal of methylene blue on the basis of its adsorption-biosorption mechanisms. The adsorption parameters thus obtained from the pseudo-second-order model were in accordance with their pore properties. From the results of adsorption isotherm at 298 K and the applicability examinations in treating industrial wastewater containing basic dye, it was further found that the adsorption capacities of diatomite waste were superior to those of diatomite, which were also in good agreement with their corresponding physical properties. From the results mentioned above, it is feasible to utilize the food-processing waste for removing dye from the industrial dying wastewater.

  8. Removal of basic dye (methylene blue) from wastewaters utilizing beer brewery waste

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, W.-T. [Graduate Institute of Bioresources, National Pingtung University of Science and Technology, Pingtung 912, Taiwan (China)], E-mail: wttsai@mail.npust.edu.tw; Hsu, H.-C.; Su, T.-Y.; Lin, K.-Y.; Lin, C.-M. [Department of Environmental Engineering and Science, Chia Nan University of Pharmacy and Science, Tainan 717, Taiwan (China)

    2008-06-15

    In the work, the beer brewery waste has been shown to be a low-cost adsorbent for the removal of basic dye from the aqueous solution as compared to its precursor (i.e., diatomite) based on its physical and chemical characterizations including surface area, pore volume, scanning electron microscopy (SEM), and non-mineral elemental analyses. The pore properties of this waste were significantly larger than those of its raw material, reflecting that the trapped organic matrices contained in the waste probably provided additional adsorption sites and/or adsorption area. The results of preliminary adsorption kinetics showed that the diatomite waste could be directly used as a potential adsorbent for removal of methylene blue on the basis of its adsorption-biosorption mechanisms. The adsorption parameters thus obtained from the pseudo-second-order model were in accordance with their pore properties. From the results of adsorption isotherm at 298 K and the applicability examinations in treating industrial wastewater containing basic dye, it was further found that the adsorption capacities of diatomite waste were superior to those of diatomite, which were also in good agreement with their corresponding physical properties. From the results mentioned above, it is feasible to utilize the food-processing waste for removing dye from the industrial dying wastewater.

  9. Waste removal in pyrochemical fuel processing for the Integral Fast Reactor

    International Nuclear Information System (INIS)

    Ackerman, J.P.; Johnson, T.R.; Laidler, J.J.

    1994-01-01

    Electrorefining in a molten salt electrolyte is used in the Integral Fast Reactor fuel cycle to recover actinides from spent fuel. Processes that are being developed for removing the waste constituents from the electrorefiner and incorporating them into the waste forms are described in this paper. During processing, halogen, chalcogen, alkali, alkaline earth, and rare earth fission products build up in the molten salt as metal halides and anions, and fuel cladding hulls and noble metal fission products remain as metals of various particle sizes. Essentially all transuranic actinides are collected as metals on cathodes, and are converted to new metal fuel. After processing, fission products and other waste are removed to a metal and a mineral waste form. The metal waste form contains the cladding hulls, noble metal fission products, and (optionally) most rare earths in a copper or stainless steel matrix. The mineral waste form contains fission products that have been removed from the salt into a zeolite or zeolite-derived matrix

  10. Recovery and removal of mercury from mixed wastes. Final report, September 1994--June 1995

    International Nuclear Information System (INIS)

    Sutton, W.F.; Weyand, T.E.; Koshinski, C.J.

    1995-06-01

    In recognition of the major environmental problem created by mercury contamination of wastes and soils at an estimated 200,000 sites along US natural gas and oil pipelines and at a number of government facilities, including Oak Ridge, Savannah River, Hanford, and Rocky Flats, the US Department of Energy (DOE) is seeking an effective and economical process for removing mercury from various DOE waste streams in order to allow the base waste streams to be treated by means of conventional technologies. In response to the need for Unproved mercury decontamination technology, Mercury Recovery Services (MRS) has developed and commercialized a thermal treatment process for the recovery of mercury from contaminated soils and industrial wastes. The objectives of this program were to: demonstrate the technical and economic feasibility of the MRS process to successfully remove and recover mercury from low-level mixed waste containing mercury compounds (HgO, HgS, HgCl 2 ) and selected heavy metal compounds (PbO, CdO); determine optimum processing conditions required to consistently reduce the residual total mercury content to 1 mg/kg while rendering the treated product nontoxic as determined by TCLP methods; and provide an accurate estimate of the capital and operating costs for a commercial processing facility designed specifically to remove and recovery mercury from various waste streams of interest at DOE facilities. These objectives were achieved in a four-stage demonstration program described within with results

  11. Study on removal technology for thorium in the waste gas-lamp mantle

    International Nuclear Information System (INIS)

    Shi Yucheng; Wang Chengbao; Zhang Ping; Xu Lingqi; Jiang Shangen

    1999-01-01

    The author describes thorium removal technology and its application in the handling of the waste gas-lamp mantle that produced during the production of gas-lamp process. After laboratory test, pilot test, trial run and engineering scale use, the thorium removal technology is mainly as follows: soak the waste gas-lamp mantle into the ceramic vat with the nitric acid solution twice and wash it with the tap water twice. The volume of the ceramic vat is 500 L and the concentration of the nitric acid solution is 2 mol/L. After handling, the thorium removal rate can reach 99.97% and the residual thorium will be less than 160 Bq/kg. The waste gas-lamp mantle can be buried under the ground or be handled in the other ways just as the harmless waste. The nitric acid solution, in which gas-lamp mantle has been soaked, should be extracted with TBP, then back extracted with diluted hydrochloric acid. After supplementing the thorium nitrate into the back extracted liquid, the liquid can be reused in the gas-lamp mantle production. The waste water from the handling process can be handled together with waste water from production process

  12. Performance of Spent Mushroom Farming Waste (SMFW) Activated Carbon for Ni (II) Removal

    Science.gov (United States)

    Desa, N. S. Md; Ghani, Z. Ab; Talib, S. Abdul; Tay, C. C.

    2016-07-01

    The feasibility of a low cost agricultural waste of spent mushroom farming waste (SMFW) activated carbon for Ni(II) removal was investigated. The batch adsorption experiments of adsorbent dosage, pH, contact time, metal concentration, and temperature were determined. The samples were shaken at 125 rpm, filtered and analyzed using ICP-OES. The fifty percent of Ni(II) removal was obtained at 0.63 g of adsorbent dosage, pH 5-6 (unadjusted), 60 min contact time, 50 mg/L Ni(II) concentration and 25 °C temperature. The evaluated SMFW activated carbon showed the highest performance on Ni(II) removal compared to commercial Amberlite IRC86 resin and zeolite NK3. The result indicated that SMFW activated carbon is a high potential cation exchange adsorbent and suitable for adsorption process for metal removal. The obtained results contribute toward application of developed SMFW activated carbon in industrial pilot study.

  13. Adsorptive removal of cesium using bio fuel extraction microalgal waste

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, Katsutoshi, E-mail: inoue@elechem.chem.saga-u.ac.jp [Department of Applied Chemistry, Faculty of Science and Engineering, Saga University, Honjo 1, Saga 840-8502 (Japan); Gurung, Manju [Department of Applied Chemistry, Faculty of Science and Engineering, Saga University, Honjo 1, Saga 840-8502 (Japan); Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John' s, NL, Canada A1B 3X5 (Canada); Adhikari, Birendra Babu; Alam, Shafiq [Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John' s, NL, Canada A1B 3X5 (Canada); Kawakita, Hidetaka; Ohto, Keisuke [Department of Applied Chemistry, Faculty of Science and Engineering, Saga University, Honjo 1, Saga 840-8502 (Japan); Kurata, Minoru [Research Laboratories, DENSO CORPORATION, Minamiyama 500-1, Komenoki, Nisshin, Aichi 470-0111 (Japan); Atsumi, Kinya [New Business Promotion Dept., DENSO CORPORATION, Showa-cho 1-1, Kariya, Aichi 448-8661 (Japan)

    2014-04-01

    Highlights: • A novel biosorbent was prepared from the microalgal waste after biofuel extraction. • Higher selectivity and adsorption efficiency of the adsorbent for Cs{sup +} over Na{sup +} ions from aqueous solutions. • Potential candidate and eco-friendly alternative to the commercial resins such as zeolite. - Abstract: An adsorption gel was prepared from microalgal waste after extracting biodiesel oil by a simple chemical treatment of crosslinking using concentrated sulfuric acid. The adsorbent exhibited notably high selectivity and adsorption capacity towards Cs{sup +} over Na{sup +} from aqueous solutions, within the pH range of slightly acidic to neutral. The adsorption followed Langmuir isotherm and the maximum adsorption capacity of the gel for Cs{sup +} calculated from Langmuir model was found to be 1.36 mol kg{sup −1}. Trace concentration of Cs{sup +} ions present in aqueous streams was successfully separated from Na{sup +} ions using a column packed with the adsorbent at pH 6.5. The adsorption capacity of the gel towards Cs{sup +} in column operation was 0.13 mol kg{sup −1}. Although the adsorbed Cs{sup +} ions were easily eluted using 1 M hydrochloric acid solution, simple incineration is proposed as an alternative for the treatment of adsorbent loaded with radioactive Cs{sup +} ions due to the combustible characteristics of this adsorbent.

  14. Test procedures and instructions for Hanford tank waste supernatant cesium removal

    Energy Technology Data Exchange (ETDEWEB)

    Hendrickson, D.W., Westinghouse Hanford

    1996-05-31

    This document provides specific test procedures and instructions to implement the test plan for the preparation and conduct of a cesium removal test using Hanford Double-Shell Slurry Feed supernatant liquor from tank 251-AW-101 in a bench-scale column.Cesium sorbents to be tested include resorcinol-formaldehyde resin and crystalline silicotitanate. The test plan for which this provides instructions is WHC-SD-RE-TP-022, Hanford Tank Waste Supernatant Cesium Removal Test Plan.

  15. Removal and recovery of toxic metal ions from aqueous waste sites using polymer pendant ligands

    International Nuclear Information System (INIS)

    Fish, D.

    1996-01-01

    The purpose of this project is to investigate the use of polymer pendant ligand technology to remove and recover toxic metal ions from DOE aqueous waste sites. Polymer pendant lgiands are organic ligands, anchored to crosslinked, modified divinylbenzene-polystyrene beads, that can selectively complex metal ions. The metal ion removal step usually occurs through a complexation or ion exchange phenomena, thus recovery of the metal ions and reuse of the beads is readily accomplished

  16. Precipitate hydrolysis process for the removal of organic compounds from nuclear waste slurries

    Science.gov (United States)

    Doherty, J.P.; Marek, J.C.

    1987-02-25

    A process for removing organic compounds from a nuclear waste slurry comprising reacting a mixture of radioactive waste precipitate slurry and an acid in the presence of a catalytically effective amount of a copper(II) catalyst whereby the organic compounds in the precipitate slurry are hydrolyzed to form volatile organic compounds which are separated from the reacting mixture. The resulting waste slurry, containing less than 10 percent of the original organic compounds, is subsequently blended with high level radioactive sludge land transferred to a vitrification facility for processing into borosilicate glass for long-term storage. 2 figs., 3 tabs.

  17. Rice husk as dyes removal from impregnated cotton wastes generated in sports industries of sialkot, pakistan

    International Nuclear Information System (INIS)

    Junaid, M.; Khan, M.U.; Malik, R.N.

    2014-01-01

    The current study was designed to the potential dyes removal present in solid wastes of cotton (Generated from sports industries). Sport products were colored with different shaded dyes with the help of cotton that are disposed to the different environmental compartment. Cost effective and eco-friendly adsorbents (rice husk) has been collected and used as an ideal alternative to the conventional method of dyes removal for disposed cotton wastes. The effect of pH, contact time, adsorbent dose, shaking speed and amount of dyes solution of rice husks on dyes removal have been evaluated and optimized. Maximum and efficient dyes removal was observed at pH (3.0), contact time (240 min), adsorbent dose (8.0 g), shaking speed (300 rpm) and amount of dyes solution (200 ml). All these conditions have ensured dyes removal up to 91, 93, 92, 90 and 93% respectively. This process highlighted the advantage of recovery of methyl ethyl ketone (MEK) and dyes which may be used again after modification. Furthermore the present study encourages that the rice husks generated as biological waste can be used as promising tool for dyes removal. (author)

  18. Nitrogen removal in the bioreactor landfill system with intermittent aeration at the top of landfilled waste

    International Nuclear Information System (INIS)

    He Ruo; Shen Dongsheng

    2006-01-01

    High ammonia concentration of recycled landfill leachate makes it very difficult to treat. In this work, a vertical aerobic/anoxic/anaerobic lab-scale bioreactor landfill system, which was constructed by intermittent aeration at the top of landfilled waste, as a bioreactor for in situ nitrogen removal was investigated during waste stabilization. Intermittent aeration at the top of landfilled waste might stimulate the growth of nitrifying bacteria and denitrifying bacteria in the top and middle layers of waste. The nitrifying bacteria population for the landfill bioreactor with intermittent aeration system reached between10 6 and 10 8 cells/dry g waste, although it decreased 2 orders of magnitude on day 30, due to the inhibitory effect of the acid environment and high organic matter in the landfilled waste. The denitrifying bacteria population increased by between 4 and 13 orders of magnitude compared with conventional anaerobic landfilled waste layers. Leachate NO 3 - -N concentration was very low in both two experimental landfill reactors. After 105 days operation, leachate NH 4 + -N and TN concentrations for the landfill reactor with intermittent aeration system dropped to 186 and 289 mg/l, respectively, while they were still kept above 1000 mg/l for the landfill reactor without intermittent aerobic system. In addition, there is an increase in the rate of waste stabilization as well as an increase of 12% in the total waste settlement for the landfill reactor with intermittent aeration system

  19. Boron removal in radioactive liquid waste by forward osmosis membrane

    Energy Technology Data Exchange (ETDEWEB)

    Doo Seong Hwang; Hei Min Choi; Kune Woo Lee; Jei Kwon Moon [KAERI, Daejeon (Korea, Republic of)

    2013-07-01

    This study investigated the treatment of boric acid contained in liquid radioactive waste using a forward osmosis membrane. The boron permeation through the membrane depends on the type of membrane, membrane orientation, pH of the feed solution, salt and boron concentration in the feed solution, and osmotic pressure of the draw solution. The boron flux begins to decline from pH 7 and increases with an increase of the osmotic driving force. The boron flux decreases slightly with the salt concentration, but is not heavily influenced by a low salt concentration. The boron flux increases linearly with the concentration of boron. No element except for boron was permeated through the FO membrane in the multi-component system. The maximum boron flux is obtained in an active layer facing a draw solution orientation of the CTA-ES membrane under conditions of less than pH 7 and high osmotic pressure. (authors)

  20. Removal of radioactive waste waters by calcium phosphate precipitation

    International Nuclear Information System (INIS)

    Raicevic, S.; Vukovic, Z.; Mandic, M.

    1997-01-01

    The kinetics of removal of radioactive strontium by coprecipitation and sorption with amorphous calcium phosphate (ACP) which transformed into stable crystalline hydroxyapatite (HA) were investigated. The advantage of phosphate precipitation is a possibility not only for removal of radioactive strontium but also for incorporation of a strontium ion into stable structure of HA. calcium phosphate was precipitated from highly saturated solution by fast reagent mixing. Kinetic experiments were performed using strontium nitrate solution labeled with 8 5 Sr. The amount of radionuclide uptake by the solid phase was determined radiometrically at different time intervals. It was found that ACP phase firmly retains coprecipitated impurities up to 150 min, of reaction time when partial rejection of strontium into the solution occurred. In sorption experiments after prolonged time of equilibrium the firm incorporation of 8 5 Sr stable crystalline structure of HA was detected. The incorporation of 8 5 Sr into crystalline HA was analysed in detail in the paper /S. Raicevic, et. al., J. Radioanal. Nucl. Chem., Articles, Vol. 204, No 2, 1996/ (author)

  1. Inorganic sorbents for radiostrontium removal from waste solutions: selectivity and role of calixarenes

    International Nuclear Information System (INIS)

    Vijayan, S.; Belikov, K.; Drapailo, A.

    2011-01-01

    The challenge in the remediation of 90 Sr-contaminated waters arises from the need to achieve very high removal efficiencies to meet discharge targets from waste effluents containing relatively high concentrations of non-radioactive cations. Low-cost natural zeolites are not selective for strontium over other divalent cations, notably such ions as calcium; and produce low 90 Sr removal performance, and large volumes of spent sorbent waste. The synthesis and use of selective, synthetic inorganic sorbents could prove to be a feasible approach for high 90 Sr removal efficiencies, and much smaller volumes of secondary solid waste generation. The essential advantages of inorganic sorbents include their stability and resistance to radiation, and the potential for producing stable waste forms such as vitrified glass or ceramics for disposal. However, the cost of strontium-specific sorbents is prohibitive for large-scale applications at present. This paper is a review of the reported information on removal mechanisms and performance of Sr-specific inorganic sorbents. The analysis has revealed promising performance, efficiency and selectivity for strontium removal from solutions containing low and high concentrations of salts. The leading sorbents are crystalline silicotitanate and oxides of metals such as titanium. An initial assessment has also been made of the performance of calixarene-based macrocyclic compounds. These are known for their selectivity for strontium in solvent extraction processes. From the initial strontium removal results in bench-scale tests using different solid substrates, impregnated with calixarene derivatives, only sodium-mordenite impregnated with calyx[8]arene octamide gave an overall strontium removal efficiency in the range of 90 to 95% in the presence of 3.5 ppm calcium. There was no improvement observed for strontium-removal efficiency or selectivity over calcium in the calixarene-impregnated inorganic sorbent matrix. In several tests, the

  2. Removal of ethylene oxide from waste gases by absorption

    Directory of Open Access Journals (Sweden)

    Arsenijević Zorana Lj.

    2011-01-01

    Full Text Available Ethylene oxide (EtO is an organic compound, which is used as starting material in the production of polymers and as sterilizing agent for thermolabile materials. Although ethylene oxide is not common as an organic pollutant, its removal from numerous emission sources (e.g. ethylene oxide production plants or food and pharmaceutical sterilizing units is of the crucial importance because of its mutagenic, teratogenic and cancerogenic effect on human health. The objective of this paper is the experimental investigation of ethylene oxide (EtO absorption in diluted aqueous solution of sulfuric acid in order to evaluate the applicability of this procedure as well as to obtain project parameters for industrial plant realization. It was found that absorption is suitable as the fist step in the purification treatment of high EtO concentrations in the emission gases. According to the literature data, the basic parameter that defines the scrubber efficiency is the contact time, i.e. the ratio of packing height in scrubber and velocity of gas mixture. To investigate the characteristics of wet treatment in a broad range of contact time, part of experimental studies were conducted in the system with two and with three scrubbers in series. The obtained experimental results show that the high degree of EtO removal can be achieved (>98% when the contact time is sufficiently long (about 25 s. The process is effective until the concentration of formed glycol in the solution reaches value of about 20%. The process is safe and there is no danger of ignition and explosion of air and EtO mixture, although at the entrance to the scrubber EtO concentrations are significantly above the lower explosive limit.

  3. Can the identification of an idle line facilitate its removal? A comparison between a proposed guideline and clinical practice.

    Science.gov (United States)

    Kara, Areeba; Johnson, Cynthia S; Murray, Michelle; Dillon, Jill; Hui, Siu L

    2016-07-01

    There are 250,000 cases of central line-associated blood stream infections in the United States annually, some of which may be prevented by the removal of lines that are no longer needed. To test the performance of criteria to identify an idle line as a guideline to facilitate its removal. Patients with central lines on the wards were identified. Criteria for justified use were defined. If none were met, the line was considered "idle." We proposed the guideline that a line may be removed the day following the first idle day and compared actual practice with our proposed guideline. One hundred twenty-six lines in 126 patients were observed. Eighty-three (65.9%) were peripherally inserted central catheters. Twenty-seven percent (n= 34) were placed for antibiotics. Seventy-six patients had lines removed prior to discharge. In these patients, the line was in place for 522 days, of which 32.7% were idle. The most common reasons to justify the line included parenteral antibiotics and meeting systemic inflammatory response (SIRS) criteria. In 11 (14.5%) patients, the line was removed prior to the proposed guideline. Most (n = 36, 47.4%) line removals were observed to be in accordance with our guideline. In another 29 (38.2%), line removal was delayed compared to our guideline. Idle days are common. Central line days may be reduced by the consistent daily reevaluation of a line's justification using defined criteria. The practice of routine central line placement for prolonged antibiotics and the inclusion of SIRS criteria to justify the line may need to be reevaluated. Journal of Hospital Medicine 2016;11:489-493. © 2016 Society of Hospital Medicine. © 2016 Society of Hospital Medicine.

  4. 75 FR 78918 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste; Removal of...

    Science.gov (United States)

    2010-12-17

    ... and Community Right-to-Know Act FDA Food and Drug Administration HSWA Hazardous and Solid Waste...(f)), and hazardous substances (40 CFR 302.4) based solely upon the evidence that it is a potential... subsequently identified as hazardous wastes in Sec. 261.33(f) based solely on their potential for carcinogenic...

  5. Operational Limitations of Arctic Waste Stabilization Ponds: Insights from Modeling Oxygen Dynamics and Carbon Removal

    DEFF Research Database (Denmark)

    Ragush, Colin M.; Gentleman, Wendy C.; Hansen, Lisbeth Truelstrup

    2018-01-01

    Presented here is a mechanistic model of the biological dynamics of the photic zone of a single-cell arctic waste stabilization pond (WSP) for the prediction of oxygen concentration and the removal of oxygen-demanding substances. The model is an exploratory model to assess the limiting environmen...

  6. Removal of two antibacterial compounds triclocarban and triclosan in a waste water treatment plant

    Science.gov (United States)

    This study investigates the fate of Triclocarban (TCC) and Triclosan (TCS) in a waste water treatment plant (WWTP). Our goal was to identify the most effective removal step and to determine the amount on the solid phase versus degraded. Our influent contained higher TCS than TCC concentrations (8....

  7. Regressional modeling of electrodialytic removal of Cu, Cr and As from CCA treated timber waste

    DEFF Research Database (Denmark)

    Moreira, E.E.; Ribeiro, Alexandra B.; Mateus, Eduardo

    2005-01-01

    ) removal of Cu, Cr and As from CCA treated timber waste. The method uses a low-level direct current as the cleaning agent, combining the electrokinetic movement of ions in the matrix with the principle of electrodialysis. The technique was tested in eight experiments using a laboratory cell on sawdust...

  8. MODELING AN ION EXCHANGE PROCESS FOR CESIUM REMOVAL FROM ALKALINE RADIOACTIVE WASTE SOLUTIONS

    International Nuclear Information System (INIS)

    Smith, F.; Hamm, Luther; Aleman, Sebastian; Michael, Johnston

    2008-01-01

    The performance of spherical Resorcinol-Formaldehyde ion-exchange resin for the removal of cesium from alkaline radioactive waste solutions has been investigated through computer modeling. Cesium adsorption isotherms were obtained by fitting experimental data using a thermodynamic framework. Results show that ion-exchange is an efficient method for cesium removal from highly alkaline radioactive waste solutions. On average, two 1300 liter columns operating in series are able to treat 690,000 liters of waste with an initial cesium concentration of 0.09 mM in 11 days achieving a decontamination factor of over 50,000. The study also tested the sensitivity of ion-exchange column performance to variations in flow rate, temperature and column dimensions. Modeling results can be used to optimize design of the ion exchange system

  9. Optimization of CHA-PCFC Hybrid Material for the Removal of Radioactive Cs from Waste Seawater

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Keun-Young; Kim, Jimin; Park, Minsung; Kim, Kwang-Wook; Lee, Eil-Hee; Chung, Dong-Yong; Moon, Jei-Kwon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    The liquid waste treatment processes in the normal operation of nuclear power plant are commercialized, those in the abnormal accidents have not been fully developed until now. In the present study, as a preliminary research for the development of precipitation-based treatment process specialized for the removal of Cs from waste seawater generated in the emergency case, the performance test of a hybrid material combining chabazite and potassium cobalt ferrocyanide was conducted. Also the synthesis method for the hybrid adsorbent was optimized for the best Cs removal efficiency on the actual contamination level of waste seawater. Because the temperature effect on the synthesis of PCFC was confirmed by preliminary experiments, the optimization of CHA-PCFC synthesis was also conducted. The hybrid material synthesized at 40 .deg. C showed the highest distribution coefficient of Cs in the same manner of the performance of PCFC synthesized at the lower temperature than that of conventional methods.

  10. Removal of phenol from radioactive waste solutions using activated granular Carbon and activated vermiculite

    International Nuclear Information System (INIS)

    Ezz El-Din, M.R.; Atta, E.R.

    2006-01-01

    The efficiency of both activated granular carbon (AGC) and activated vermiculite (AV) in removal of phenol from aqueous waste solutions is of great interest. The aim of the present study is to compare the absorbance capacities of both AGC and AV for the removal of phenol from radioactive waste solutions and to identify the factors affecting the sorption process. The experimental results were in the form of batch sorption measurements for the removal of phenol at ambient temperature (29 ± 1 degree C) and for times up to 40 min and 180 min for AGC and AV, respectively. The results indicated that activated carbon has good efficiency to adsorb phenol. Freundlich equation has been fitted to both AGC and AV for the contaminant removal. The adsorption capacities of both AGC and AV to phenol were 17.4 mg g-1 and 4.5 mg g-1, respectively. The maximum desorption percent of phenol from both loaded AGC and loaded AV were 9 % and 0 %, respectively, and it attained within about 200 min. accordingly, it is recommended that activated carbon is preferred in the applied field for removing phenol from radioactive aqueous wastes

  11. Effect and Removal Mechanisms of 6 Different Washing Agents for Building Wastes Containing Chromium

    Directory of Open Access Journals (Sweden)

    Wang Xing-run

    2012-01-01

    Full Text Available With the building wastes contaminated by chromium in Haibei Chemical Plan in China as objects, we studied the contents of total Cr and Cr (VI of different sizes, analyzed the effect of 6 different washing agents, discussed the removal mechanisms of 6 different washing agents for Cr in various forms, and finally selected applicable washing agent. As per the results, particle size had little impact on the contents of total Cr and Cr (VI; after one washing with water, the removal rate of total Cr and Cr (VI was 75% and 78%, respectively, and after the second washing with 6 agents, the removal rate of citric acid was the highest, above 90% for total Cr and above 99% for hexavalent chromium; the pH of building wastes were reduced by citric acid, and under acid condition, hexavalent chromium was reduced to trivalent chromium spontaneously by organic acid, which led to better removal rate of acid soluble Cr and reducible Cr; due to the complexing action, citric acid had best removal rate for oxidizable trivalent chromium. In conclusion, citric acid is the most applicable second washing agent for building wastes.

  12. Removal of Chromium from Waste Water of Tanning Industry Using Bentonite

    International Nuclear Information System (INIS)

    Abbasi, S.; Wahba, H.; AL-Masri, M.S.

    2009-01-01

    Tanning industry is considered as one of the oldest industries in the world, which produces solid and liquid wastes, where the Chromium-containing liquid wastes are considered to be as the main liquid pollutant to the environment. In this research, a new method is applied to remove the chromium from the industrial water wastes, which are produced by tanning industry using the Aleppo Bentonite.The experiments on laboratory- prepared samples and collected samples from some tanning factories in Damascus have proved that chromium removal from tanning waste water is very effective for solution of 85-98 %. Moreover, the optimal conditions for the treatment process of tanning waste water by Aleppo Bentonite have determined and found to be (pH=4, Bentonite concentration = 20 g l -1 when chromium concentration is 0.8 g l -1 , solution temperature = 30 degree centigrade, and Bentonite particle size < 90 μm). However, the proposed method can be considered to be an environmental solution for the treatment of tanning industrial wastes in Syria. (author)

  13. Technetium in alkaline, high-salt, radioactive tank waste supernate: Preliminary characterization and removal

    International Nuclear Information System (INIS)

    Blanchard, D.L. Jr.; Brown, G.N.; Conradson, S.D.

    1997-01-01

    This report describes the initial work conducted at Pacific Northwest National Laboratory to study technetium (Tc) removal from Hanford tank waste supernates and Tc oxidation state in the supernates. Filtered supernate samples from four tanks were studied: a composite double shell slurry feed (DSSF) consisting of 70% from Tank AW-101, 20% from AP-106, and 10% from AP-102; and three complexant concentrate (CC) wastes (Tanks AN-107, SY-101, ANS SY-103) that are distinguished by having a high concentration of organic complexants. The work included batch contacts of these waste samples with Reillex trademark-HPQ (anion exchanger from Reilly Industries) and ABEC 5000 (a sorbent from Eichrom Industries), materials designed to effectively remove Tc as pertechnetate from tank wastes. A short study of Tc analysis methods was completed. A preliminary identification of the oxidation state of non-pertechnetate species in the supernates was made by analyzing the technetium x-ray absorption spectra of four CC waste samples. Molybdenum (Mo) and rhenium (Re) spiked test solutions and simulants were tested with electrospray ionization-mass spectrometry to evaluate the feasibility of the technique for identifying Tc species in waste samples

  14. Dye Removal From Textile Waste Water Through The Adsorption By Pumice Used In Stone Washing

    Directory of Open Access Journals (Sweden)

    Körlü Aysegül Ekmekçi

    2015-09-01

    Full Text Available Because the waste production is inevitable in almost all industries, the elimination of these wastes is a requirement in terms of environmental regulations and welfare of all the creatures in the future. In this study, the use of the waste pumice stones of a denim washing mill is intended to eliminate the pollutant by a waste material and obtain economic benefits by converting it to the adsorbent. The pollutants in the effluents obtained from three different localisations of waste water treatment system of the same factory were removed through the adsorption. The experimental studies were carried out in three different steps; characterisation of adsorbent before and after adsorption; adsorption isotherm studies and biological oxygen demand (BOD, chemical oxygen demand (COD measurements. Characterisation studies showed that the waste pumice has almost the same structural properties with unused one except the existence of some organic residues coming from washing process. The results of adsorption studies conducted at the adsorbent concentrations changing from 5 to 35 g/l revealed that the decolourisation was initial dye-concentration dependent. According to the BOD and COD measurements, the supernatants obtained at the end of adsorption could be assumed as somewhat polluted and this result indicates that the organic impurities other than indigo were also removed through the adsorption.

  15. Assessment of the Cast Stone Low-Temperature Waste Form Technology Coupled with Technetium Removal - 14379

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Christopher F.; Rapko, Brian M.; Serne, R. Jeffrey; Westsik, Joseph H.; Cozzi, Alex; Fox, Kevin M.; Mccabe, Daniel J.; Nash, C. A.; Wilmarth, William R.

    2014-03-03

    The U.S. Department of Energy Office of Environmental Management (EM) is engaging the national laboratories to provide the scientific and technological rigor to support EM program and project planning, technology development and deployment, project execution, and assessment of program outcomes. As an early demonstration of this new responsibility, Pacific Northwest National Laboratory (PNNL) and Savannah River National Laboratory (SRNL) were chartered to implement a science and technology program addressing low-temperature waste forms for immobilization of DOE aqueous waste streams, including technetium removal as an implementing technology. As a first step, the laboratories examined the technical risks and uncertainties associated with the Cast Stone waste immobilization and technetium removal projects at Hanford. Science and technology gaps were identified for work associated with 1) conducting performance assessments and risk assessments of waste form and disposal system performance, and 2) technetium chemistry in tank wastes and separation of technetium from waste processing streams. Technical approaches to address the science and technology gaps were identified and an initial sequencing priority was suggested. A subset of research was initiated in 2013 to begin addressing the most significant science and technology gaps. The purpose of this paper is to report progress made towards closing these gaps and provide notable highlights of results achieved to date.

  16. Design of modified annulus air sampling system for the detection of leakage in waste transfer line

    International Nuclear Information System (INIS)

    Deokar, U.V; Khot, A.R.; Mathew, P.; Ganesh, G.; Tripathi, R.M.; Srivastava, Srishti

    2018-01-01

    Various liquid waste streams are generated during the operation of reprocessing plant. The High Level (HL), Intermediate Level (IL) and Low Level (LL) liquid wastes generated, are transferred from reprocessing plant to Waste Management Facility. These respective waste streams are transferred through pipe-in-pipe lines along the shielded concrete trench. For detection of radioactive leakage from primary waste transfer line into secondary line, sampling of the annulus air between the two pipes is carried out. The currently installed pressurized annulus air sampling system did not have online leakage detection provision. Hence, there are chances of personal exposure and airborne activity in the working area. To overcome these design flaws, free air flow modified online annulus air sampling system with more safety features is designed

  17. Use of synthetic zeolites and other inorganic sorbents for the removal of radionuclides from aqueous wastes

    International Nuclear Information System (INIS)

    Samantha, S.K.; Singh, I.J.; Jain, S.; Sathi, S.; Venkatesan, K.; Ramaswamy, M.; Theyyunni, T.K.; Siddiqui, H.R.

    1997-01-01

    Several synthetic zeolites and inorganic sorbents were tested in the laboratory for the sorption of various radionuclides present in radioactive aqueous waste streams originating from nuclear installations. The sorption of the critical radionuclides like 137 Cs, 90 Sr and 60 Co from level waste solutions was studied using the synthetic zeolites 4A, 13X and AR1 of Indian origin. Granulated forms of ammonium molybdophosphate and CaSO 4 -BaSO 4 eutectoid were tested for the sorption of cesium and strontium respectively, from acidic solutions. The removal of radiostrontium from alkaline salt-loaded intermediate level reprocessing wastes was studied using hydrous ferric oxide-activated carbon composite sorbent, hydrous titania and hydrous manganese dioxide.. The results of these investigations are expected to be of value in formulating radioactive waste treatment schemes for achieving high decontamination and volume reduction factors. (author). 12 refs, 5 figs, 18 tabs

  18. On-line caloric value sensor and validation of dynamic models applied to municipal solid waste

    NARCIS (Netherlands)

    Kessel, van L.B.M.; Leskens, M.; Brem, G.

    2002-01-01

    This paper deals with two aspects concerning the optimization of municipal solid waste combustion (MSWC) processes. First of all, an on-line calorific value sensor is discussed by means of which the calorific value of the waste can be estimated from actual process data. Experimental results on a

  19. Delisting Petition for Vitrified M-Area Plating Line Wastes

    International Nuclear Information System (INIS)

    Pickett, J.B.

    2001-01-01

    The Savannah River Site Operations Office of the U.S. Department of Energy is submitting this Delisting Petition to the U.S. Environmental Protection Agency, Region IV. This petition seeks exclusion of certain solid wastes generated at the Savannah River Site near Aiken, South Carolina from the list of Resource Conservation and Recovery Act hazardous wastes contained in 40 CFR 261.24 and 40 CFR 261.31

  20. Chromium removal from water by activated carbon developed from waste rubber tires.

    Science.gov (United States)

    Gupta, Vinod Kumar; Ali, Imran; Saleh, Tawfik A; Siddiqui, M N; Agarwal, Shilpi

    2013-03-01

    Because of the continuous production of large amount of waste tires, the disposal of waste tires represents a major environmental issue throughout the world. This paper reports the utilization of waste tires (hard-to-dispose waste) as a precursor in the production of activated carbons (pollution-cleaning adsorbent). In the preparation of activated carbon (AC), waste rubber tire (WRT) was thermally treated and activated. The tire-derived activated carbon was characterized by means of scanning electron microscope, energy-dispersive X-ray spectroscopy, FTIR spectrophotometer, and X-ray diffraction. In the IR spectrum, a number of bands centred at about 3409, 2350, 1710, 1650, and 1300-1000 cm(-1) prove the present of hydroxyl and carboxyl groups on the surface of AC in addition to C═C double bonds. The developed AC was tested and evaluated as potential adsorbent removal of chromium (III). Experimental parameters, such as contact time, initial concentration, adsorbent dosage and pH were optimized. A rapid uptake of chromium ions was observed and the equilibrium is achieved in 1 h. It was also found that the adsorption process is pH dependent. This work adds to the global discussion of the cost-effective utilization of waste rubber tires for waste water treatment.

  1. Preparation of Metal Immobilized Orange Waste Gel for Arsenic(V Removal From Water

    Directory of Open Access Journals (Sweden)

    Biplob Kumar Biswas

    2014-05-01

    Full Text Available Abstract - The toxicity of arsenic is known to be a risk to aquatic flora and fauna and to human health even in relatively low concentration. In this research an adsorption gel was prepared from agricultural waste material (orange waste through simple chemical modification in the view to remove arsenic (V from water. Orange waste was crushed into small particles and saponified with Ca(OH2 to prepare saponified orange waste, which was further modified by immobilizing gadolinium(III to obtain desired adsorption material (Gd(III-immobilized SOW gel. The effective pH range for arsenic adsorption was found to be 7.5 – 8.5. Adsorption capacity of the gel was evaluated to be 0.45 mol-arsenic (V/kg. Dynamic adsorption of arsenic (V in column-mode was conducted and a dynamic capacity was found to be 0.39 mol/kg. Elution of arsenate was tested after complete saturation of the column packed with gadolinium-immobilized orange waste adsorption gel. A complete elution of arsenate was achieved with the help of 1 M HCl and 28 times pre-concentration factor was attained. This study showed that a cheap and abundant agro-industrial waste material could be successfully employed for the remediation of arsenic pollution in aquatic environment. Keywords: Arsenic; Orange waste; Gadolinium(III; Adsorption; Elution.

  2. Removal of actinides from nuclear fuel reprocessing waste solutions with bidentate organophosphorus extractants

    International Nuclear Information System (INIS)

    Schulz, W.W.; McIsaac, L.D.

    1975-08-01

    The neutral bidentate organophosphorus reagents DBDECMP (dibutyl-N,N-diethylcarbamylmethylenephosphonate) and its dihexyl analogue DHDECMP are candidate extractants for removal of actinides from certain acidic waste streams produced at the U. S. ERDA Hanford and Idaho Falls sites. Various chemical and physical properties including availability, cost, purification, alpha radiolysis, and aqueous phase solubility of DBDECMP and DHDECMP are reviewed. A conceptual flowsheet employing a 15 percent DBDECMP (or DHDECMP)--CCl 4 extractant for removal (and recovery) of Am and Pu from Hanford's Plutonium Reclamation Facility acid waste stream (CAW solution) was successfully demonstrated in laboratory-scale mixer-settler tests; this extraction scheme can be used to produce an actinide-free waste. A 30 percent DBDECMP-xylene flowsheet is being tested at the Idaho Falls site for removal of U, Np, Pu, and Am from Idaho Chemical Processing Plant first-cycle high-level raffinate to produce an actinide-free (less than 10 nCi alpha activity/gram) waste. (auth)

  3. Removal of polycyclic aromatic hydrocarbons from organic solvents by ashes wastes

    Energy Technology Data Exchange (ETDEWEB)

    Perez-Gregorio, M.R.; Garcia-Falcon, M.S.; Martinez-Carballo, E. [Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E32004 Ourense (Spain); Simal-Gandara, J., E-mail: jsimal@uvigo.es [Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E32004 Ourense (Spain)

    2010-06-15

    Polycyclic aromatic hydrocarbons (PAHs) can be formed during the refinery processes of crude petroleum. Their removal is of great importance. The same happens with other organic solvents used for the extraction of PAHs (hexane, acetonitrile...), which can be polluted with PAHs. Kinetic and equilibrium batch sorption tests were used to investigate the effect of wood ashes wastes as compared to activated carbon on the sorption of three representative PAHs from n-hexane and acetonitrile. Mussel shell ashes were discarded for batch sorption experiments because they were the only ashes containing PAHs. The equilibrium time was reached at 16 h. Physical sorption caused by the aromatic nature of the compounds was the main mechanism that governed the PAHs removal process. Our investigation revealed that wood ashes obtained at lower temperature (300 deg. C) did not show any PAHs sorption, while ashes obtained at higher temperature (>500 deg. C) have adsorbent sites readily available for the PAH molecules. An increase in the molecular weight of PAHs has a strong effect on sorption wood ashes wastes. As low the wood ashes particle size as high the sorption of PAHs, as a result of differences in adsorbent sites. The performance of wood ash wastes vs. activated carbon to remove 10 PAHs from organic solvents is competitive in price, and a good way for waste disposal.

  4. Characterization of leaf waste based biochar for cost effective hydrogen sulphide removal from biogas.

    Science.gov (United States)

    Sahota, Shivali; Vijay, Virendra Kumar; Subbarao, P M V; Chandra, Ram; Ghosh, Pooja; Shah, Goldy; Kapoor, Rimika; Vijay, Vandit; Koutu, Vaibhav; Thakur, Indu Shekhar

    2018-02-01

    Installation of decentralized units for biogas production along with indigenous upgradation systems can be an effective approach to meet growing energy demands of the rural population. Therefore, readily available leaf waste was used to prepare biochar at different temperatures and employed for H 2 S removal from biogas produced via anaerobic digestion plant. It is found that biochar prepared via carbonization of leaf waste at 400 °C effectively removes 84.2% H 2 S (from 1254 ppm to 201 ppm) from raw biogas for 25 min in a continuous adsorption tower. Subsequently, leaf waste biochar compositional, textural and morphological properties before and after H 2 S adsorption have been analyzed using proximate analysis, CHNS, BET surface area, FTIR, XRD, and SEM-EDX. It is found that BET surface area, pore size, and textural properties of leaf waste biochar plays a crucial role in H 2 S removal from the biogas. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. HIGH LEVEL WASTE MECHANCIAL SLUDGE REMOVAL AT THE SAVANNAH RIVER SITE F TANK FARM CLOSURE PROJECT

    International Nuclear Information System (INIS)

    Jolly, R; Bruce Martin, B

    2008-01-01

    The Savannah River Site F-Tank Farm Closure project has successfully performed Mechanical Sludge Removal (MSR) using the Waste on Wheels (WOW) system for the first time within one of its storage tanks. The WOW system is designed to be relatively mobile with the ability for many components to be redeployed to multiple waste tanks. It is primarily comprised of Submersible Mixer Pumps (SMPs), Submersible Transfer Pumps (STPs), and a mobile control room with a control panel and variable speed drives. In addition, the project is currently preparing another waste tank for MSR utilizing lessons learned from this previous operational activity. These tanks, designated as Tank 6 and Tank 5 respectively, are Type I waste tanks located in F-Tank Farm (FTF) with a capacity of 2,840 cubic meters (750,000 gallons) each. The construction of these tanks was completed in 1953, and they were placed into waste storage service in 1959. The tank's primary shell is 23 meters (75 feet) in diameter, and 7.5 meters (24.5 feet) in height. Type I tanks have 34 vertically oriented cooling coils and two horizontal cooling coil circuits along the tank floor. Both Tank 5 and Tank 6 received and stored F-PUREX waste during their operating service time before sludge removal was performed. DOE intends to remove from service and operationally close (fill with grout) Tank 5 and Tank 6 and other HLW tanks that do not meet current containment standards. Mechanical Sludge Removal, the first step in the tank closure process, will be followed by chemical cleaning. After obtaining regulatory approval, the tanks will be isolated and filled with grout for long-term stabilization. Mechanical Sludge Removal operations within Tank 6 removed approximately 75% of the original 95,000 liters (25,000 gallons). This sludge material was transferred in batches to an interim storage tank to prepare for vitrification. This operation consisted of eleven (11) Submersible Mixer Pump(s) mixing campaigns and multiple intraarea

  6. HIGH LEVEL WASTE MECHANCIAL SLUDGE REMOVAL AT THE SAVANNAH RIVER SITE F TANK FARM CLOSURE PROJECT

    Energy Technology Data Exchange (ETDEWEB)

    Jolly, R; Bruce Martin, B

    2008-01-15

    The Savannah River Site F-Tank Farm Closure project has successfully performed Mechanical Sludge Removal (MSR) using the Waste on Wheels (WOW) system for the first time within one of its storage tanks. The WOW system is designed to be relatively mobile with the ability for many components to be redeployed to multiple waste tanks. It is primarily comprised of Submersible Mixer Pumps (SMPs), Submersible Transfer Pumps (STPs), and a mobile control room with a control panel and variable speed drives. In addition, the project is currently preparing another waste tank for MSR utilizing lessons learned from this previous operational activity. These tanks, designated as Tank 6 and Tank 5 respectively, are Type I waste tanks located in F-Tank Farm (FTF) with a capacity of 2,840 cubic meters (750,000 gallons) each. The construction of these tanks was completed in 1953, and they were placed into waste storage service in 1959. The tank's primary shell is 23 meters (75 feet) in diameter, and 7.5 meters (24.5 feet) in height. Type I tanks have 34 vertically oriented cooling coils and two horizontal cooling coil circuits along the tank floor. Both Tank 5 and Tank 6 received and stored F-PUREX waste during their operating service time before sludge removal was performed. DOE intends to remove from service and operationally close (fill with grout) Tank 5 and Tank 6 and other HLW tanks that do not meet current containment standards. Mechanical Sludge Removal, the first step in the tank closure process, will be followed by chemical cleaning. After obtaining regulatory approval, the tanks will be isolated and filled with grout for long-term stabilization. Mechanical Sludge Removal operations within Tank 6 removed approximately 75% of the original 95,000 liters (25,000 gallons). This sludge material was transferred in batches to an interim storage tank to prepare for vitrification. This operation consisted of eleven (11) Submersible Mixer Pump(s) mixing campaigns and multiple

  7. Risk-based equipment removal guide for on-line maintenance at PSE ampersand G

    International Nuclear Information System (INIS)

    Knoll, A.; Smith, C.; Pollock, J.

    1995-01-01

    On-line maintenance plays an important role in achieving safe and reliable power generation in a nuclear power plant. However, maintenance, if not properly planned and performed, may also be an important contributor to plant risk. Therefore, plant-specific procedures are needed for equipment removal from service to enhance the benefits of on-line maintenance and minimize the risks involved. The problem is to identify and implement the most effective on-line maintenance policy in the form of a proceduralized guide to assure plant safety under various operation and maintenance constraints. This paper presents a methodology to develop plant-specific on-line maintenance strategies and acceptance criteria using a multivariate safety approach based on risk assessment. Based on plant-specific data as modeled in the individual plant evaluation (IPE) and the updated probabilistic safety assessment (PSA), the risk-based methodology is currently being applied to the development of proceduralized equipment removal guides at Hope Creek and Salem units 1 and 2 of Public Service Electric and Gas Company (PSE ampersand G)

  8. The removal of blockage from a BWR bottom head drain line

    International Nuclear Information System (INIS)

    McGough, M.S.

    1990-01-01

    Low flow through the 2-inch schedule 160 bottom head drain line at Carolina Power and Light's Brunswick Unit 2 indicated that the line was probably plugged. Since this low flow condition had existed since startup, it was suspected that the plug consisted of construction debris. However, the makeup of the plug was unknown, and the suspected location was inaccessible for nondestructive examination techniques. Evaluation of techniques possible, both from the vessel ID and from outside the vessel resulted in the selection of a hot-tapping device and a self-propelled high-pressure water lance which was inserted in the trapped line from the undervessel area. Removal of the plug was complicated by undervessel space restrictions, dose rates, and the torturous path of elbows and horizontal and vertical pipe runs which had to be negotiated with the water lance. This paper describes the technique applied to this problem

  9. Partition calculation for zero-order and conjugate image removal in digital in-line holography.

    Science.gov (United States)

    Ma, Lihong; Wang, Hui; Li, Yong; Jin, Hongzhen

    2012-01-16

    Conventional digital in-line holography requires at least two phase-shifting holograms to reconstruct an original object without zero-order and conjugate image noise. We present a novel approach in which only one in-line hologram and two intensity values (namely the object wave intensity and the reference wave intensity) are required. First, by subtracting the two intensity values the zero-order diffraction can be completely eliminated. Then, an algorithm, called partition calculation, is proposed to numerically remove the conjugate image. A preliminary experimental result is given to confirm the proposed method. The method can simplify the procedure of phase-shifting digital holography and improve the practical feasibility for digital in-line holography.

  10. Removal of some ions from the radioactive liquid wastes by means of membrane techniques

    International Nuclear Information System (INIS)

    Roman, Gabriela; Garganciuc, Dana; Batrinescu, Gheorghe; Popescu, Georgeta

    2000-01-01

    The radioactive wastes imply important problems in the pollution control. Contrary to the case of other liquid wastes, which are specifically treated depending on the nature of pollutants, the liquid radioactive wastes are treated as a function of their activity (high, medium or low) and not depending on the nature of radioisotopes. The paper presents the advantages of the membrane processes as comparing with the classical processes in the removal of some ions from liquid radioactive waste up to values admissible of the current standards. Two types of radioactive liquid solutions were processed namely: one solution from the decontamination of the parts of an installation and other from the decontamination of primary circuit of the nuclear power plant. The first solution was treated with ultrafiltration and reverse osmosis, the retention for radioactive and toxic elements ranging between 14 - 69% for ultrafiltration and 63 - 99% for reverse osmosis. The second solution was processed only with reverse osmosis, a retention between 64 - 98% being obtained. The tests proved that by reverse osmosis membrane process a good removal efficiency of radioactive elements from liquid waste is obtained, corresponding to the requirements imposed by the current regulations. (author)

  11. Removal of radionuclides from partitioning waste solutions by adsorption and catalytic oxidation methods

    Energy Technology Data Exchange (ETDEWEB)

    Yamagishi, Isao; Yamaguchi, Isoo [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Kubota, Masumitsu [Research Organization for Information Science and Technology (RIST), Tokai, Ibaraki (Japan)

    2000-09-01

    Adsorption of radionuclides with inorganic ion exchangers and catalytic oxidation of a complexant were studied for the decontamination of waste solutions generated in past partitioning tests with high-level liquid waste. Granulated ferrocyanide and titanic acid were used for adsorption of Cs and Sr, respectively, from an alkaline solution resulting from direct neutralization of an acidic waste solution. Both Na and Ba inhibited adsorption of Sr but Na did not that of Cs. These exchangers adsorbed Cs and Sr at low concentration with distribution coefficients of more than 10{sup 4}ml/g from 2M Na solution of pH11. Overall decontamination factors (DFs) of Cs and total {beta} nuclides exceeded 10{sup 5} and 10{sup 3}, respectively, at the neutralization-adsorption step of actual waste solutions free from a complexant. The DF of total {alpha} nuclides was less than 10{sup 3} for a waste solution containing diethylenetriaminepentaacetic acid (DTPA). DTPA was rapidly oxidized by nitric acid in the presence of a platinum catalyst, and radionuclides were removed as precipitates by neutralization of the resultant solution. The DF of {alpha} nuclides increased to 8x10{sup 4} by addition of the oxidation step. The DFs of Sb and Co were quite low through the adsorption step. A synthesized Ti-base exchanger (PTC) could remove Sb with the DF of more than 4x10{sup 3}. (author)

  12. Removal of 14C-Prothiofos Insecticide from Chamomile Oil Using Agricultural and Industrial Wastes

    International Nuclear Information System (INIS)

    Hegazi, B.; Abdel-Gawad, H.; Zayed, S.M.D.; Nowwar, G.A.M.

    2011-01-01

    The removal of prothiofos from chamomile oil has been investigated as a function of adsorbent type, adsorbent concentration, time and temperature. Therefore, 14 C-prothiofos was prepared in our laboratory. Low cost adsorbent such as agricultural wastes (Rice bran, rice husk, and watermelon peels), industrial by-products (sawdust-bagasse) in addition to calcium oxide as a chemical adsorbent were used. It was found that, the best adsorbent concentration for the insecticide removal is 0.016 g adsorbent/g oil. The maximum removal of prothiofos from chamomile oil was 87%, 90% by using calcium oxide and watermelon peels, respectively at 30 degree C for 2 hours. Saw dust, bagasse and rice bran proved to be better for the insecticide removal at 40 degree C

  13. The use of supercritical carbon dioxide for contaminant removal from solid waste

    International Nuclear Information System (INIS)

    Adkins, C.L.J.; Russick, E.M.; Smith, H.M.; Olson, R.B.

    1994-01-01

    Supercritical carbon dioxide is being explored as a waste minimization technique for separating oils, greases and solvents from solid waste. The containments are dissolved into the supercritical fluid and precipitated out upon depressurization. The carbon dioxide solvent can then be recycled for continued use. Definitions of the temperature, pressure, flowrate and potential co-solvents are required to establish the optimum conditions for hazardous contaminant removal. Excellent extractive capability for common manufacturing oils, greases, and solvents has been observed in both supercritical and liquid carbon dioxide. Solubility measurements are being used to better understand the extraction process, and to determine if the minimum solubility required by federal regulations is met

  14. Removal of chromium(III) from tannery wastewater using activated carbon from sugar industrial waste.

    Science.gov (United States)

    Fahim, N F; Barsoum, B N; Eid, A E; Khalil, M S

    2006-08-21

    Chromium is commonly found in huge quantities in tannery wastewaters. For this reason, the removal and recovery of the chromium content of tannery wastewaters is crucial for environmental protection and economic reasons. Removal and recovery of chromium were carried out by using low-cost potential adsorbents. For this purpose three types of activated carbon; C1, the waste generated from sugar industry as waste products and the others (C2, C3) are commercial granular activated carbon, were used. The adsorption process and extent of adsorption are dependent on the physical and chemical characteristics of the adsorbent, adsorbate and experimental condition. The effect of pH, particle size and different adsorbent on the adsorption isotherm of Cr(III) was studied in batch system. The sorption data fitted well with Langmuir adsorption model. The efficiencies of activated carbon for the removal of Cr(III) were found to be 98.86, 98.6 and 93 % for C1, C2 and C3, respectively. The order of selectivity is C1>C2>C3 for removal of Cr(III) from tannery wastewater. Carbon "C1" of the highest surface area (520.66 m(2)/g) and calcium content (333.3 mg/l) has the highest adsorptive capacity for removal of Cr(III). The results revealed that the trivalent chromium is significantly adsorbed on activated carbon collected from sugar industry as waste products and the method could be used economically as an efficient technique for removal of Cr(III) and purification of tannery wastewaters.

  15. Characterization and Cadmium Ion-Removing Property of Adsorbents Synthesized from Inorganic Wastes

    Energy Technology Data Exchange (ETDEWEB)

    Ooishi, Kou; Ogino, Kana; Nishioka, Hiroshi; Muramatsu, Yasuji, E-mail: hnisioka@eng.u-hyogo.ac.jp [Department of Material Science and Chemistry, Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji, Hyogo (Japan)

    2011-10-29

    Adsorbents for removing cadmium ions from water were synthesized from inorganic wastes such as oyster shells, drinking-water-treatment sludge (DWTS), and waste glass. The oyster shells and DWTS were pretreated by heating for 2 h at 1173 K before hydrothermal synthesis was started. The Al/(Al+Si) ratio was adjusted, and then, the mixture of pretreated materials was hydrothermally treated in a sodium hydroxide solution for 72 h at 423 K to synthesize the adsorbents. The synthesized adsorbent specimens were characterized by X-ray diffraction (XRD), thermogravimetric-differential thermal analysis (TG-DTA) measurements, and scanning electron microscopy (SEM). The main components of these specimens were aluminum-substituted tobermorite and sodalite. The formation of sodalite was dependent on the mass ratio of DWTS to glass. The maximum amount of cadmium ions were removed when the mass ratio of the pretreated material was 1:1:1. In the cadmium removal test, the adsorbent with this mass ratio removed almost 100% of the cadmium in a solution with a concentration of 10 mg L-1. Even in the presence of a 1000-fold excess of potassium ions or 10000-fold excess of sodium ions, approximately 80% of the cadmium ions were removed.

  16. Bidentate organophosphorus extractants: purification, properties and applications to removal of actinides from acidic waste solutions

    International Nuclear Information System (INIS)

    Schulz, W.W.; McIsaac, L.D.

    1977-05-01

    At both Hanford and Idaho, DHDECMP (dihexyl-N, N-diethylcarbamylmethylene phosphonate) continuous counter-current solvent extraction processes are being developed for removal of americium, plutonium, and, in some cases, other actinides from acidic wastes generated at these locations. Bench and, eventually, pilot and plant-scale testing and application of these processes have been substantially enhanced by the discovery of suitable chemical and physical methods of removing deleterious impurities from technical-grade DHDECMP. Flowsheet details, as well as various properties of purified DHDECMP extractants, are enumerated

  17. Removal of 125I from radioactive experimental waste with an anion exchange paper membrane

    International Nuclear Information System (INIS)

    Inoue, Hiroyoshi; Kagoshima, Mayumi

    2000-01-01

    The behavior of radioactive iodide and chloride ions through an anion exchange paper membrane to remove 125 I from radioactive experimental waste has been studied with nonequilibrium thermodynamic analyses. Anion exchange paper membrane was found to be electroconductively more permeable to iodide ion than to chloride ion. The iodide ion bound more strongly to the anion exchange site within a membrane phase than the chloride ion by more than twice. The results suggested that an anion exchange paper membrane was appropriate for the filtration removal system

  18. Removal of organic matter from dairy industry waste water using low-cost adsorbents

    Energy Technology Data Exchange (ETDEWEB)

    Rao, M.; Bhole, A.G. [College of Engineering, Badnera (India). Civil Engineering Department

    2002-07-01

    The present study envisages the use of cost-effective adsorbents such as fly ash, bagasse, wheat straw dust, sawdust, and coconut coir for the reduction of the TDS (total dissolved solids) from dairy industry effluent waste water. PAC (powdered activated carbon) was also used and the results were compared. Sorption data have been correlated with both the Langmuir and the Freundlich adsorption isotherm models. The Freundlich static isotherm model is found applicable to all the six adsorbents for removing TDS from the dairy waste water. The order of selectivity is PAC, bagasse, fly ash, sawdust, wheat straw, coconut coir for the removal of TDS at optimum conditions. 8 refs., 6 figs., 3 tabs.

  19. Preliminary analysis of West Valley Waste Removal System equipment development and mock demonstration facilities

    International Nuclear Information System (INIS)

    Janicek, G.P.

    1981-06-01

    This report defines seven areas requiring further investigation to develop and demonstrate a safe and viable West Valley Waste Removal System. These areas of endeavor are discussed in terms of their minimum facility requirements. It is concluded that utilizing separated specific facilities at different points in time is of a greater advantage than an exact duplication of the West Valley tanks. Savannah River Plant's full-scale, full-circle and half-circle tanks, and their twelfth scale model tank would all be useful to varying degrees but would require modifications. Hanford's proposed full-size mock tank would be useful, but is not seriously considered because its construction may not coincide with West Valley needs. Costs of modifying existing facilities and/or constructing new facilities are assessed in terms of their benefit to the equipment development and mock demonstration. Six facilities were identified for further analysis which would benefit development of waste removal equipment

  20. Electrochemical removal of CU, CR and AS from CCA-treated waste wood

    Energy Technology Data Exchange (ETDEWEB)

    Kristensen, I.V.; Ottosen, L.M.; Villumsen, A. [Dept. of Geology and Geotechnical Engineering, The Technical Univ. of Denmark, Lyngby (Denmark); Ribeiro, A.B. [Dept. of Geology and Geotechnical Engineering, The Technical Univ. of Denmark, Lyngby (Denmark)]|[Dept. de Ciencias e Engenharia do Ambiente, Faculdade de Ciencias e Tecnologia, Univ. Nova de Lisboa, Caparica (Portugal)

    2001-07-01

    CCA-treated waste wood poses a potential environmental problem due to the content of copper, chromium and arsenic. This paper presents the results obtained by electrodialytic remediation of CCA-treated waste wood. It is found that more than 90% Cu, and approximately 85% Cr and As was removed from the wood during the remediation. Thereby the concentration of copper in the wood is reduced from app. 426 ppm to app. 25 ppm, chromium is reduced from app. 837 ppm to app. 135 ppm and the arsenic content decreases from app. 589 ppm to app. 151 ppm. After remediation the removed metals are collected into liquids. The use of ion exchange membranes to separate the wood from the electrolytes result in a distribution of the metals after remediation that makes the collection of the metals easier, and reuse of the metals, for e.g. new CCA, may be possible. (orig.)

  1. Comparative Cost of Colour Removal from Textile Effluents Using Agriculture Wastes

    International Nuclear Information System (INIS)

    Afifi, T.H.; Aboul Fetouh, M.S.; Nassar, F.A.; Riyad, Y.M.

    1999-01-01

    In recent years, investigations have been oriented towards practical use of low cost materials in the treatment of wastewater polluted by dyestuffs. The use of bagasse pith and maize cob as agricultural wastes for the colour removal of dyestuffs, namely, Direct Orange 34, Direct Red 23, Reactive Violet 2 and Reactive Blue 19 from aqueous solution at different concentrations has been investigated. The adsorption capacity for each dye- adsorbent system has been determined. The relative costs of dye removal were reported based on adsorption capacity only. The aim of the present work is to assess the feasibility of two low-cost agriculture-wastes materials to adsorb both direct and reactive dyestuffs on economic basis

  2. Statistical estimate of mercury removal efficiencies for air pollution control devices of municipal solid waste incinerators.

    Science.gov (United States)

    Takahashi, Fumitake; Kida, Akiko; Shimaoka, Takayuki

    2010-10-15

    Although representative removal efficiencies of gaseous mercury for air pollution control devices (APCDs) are important to prepare more reliable atmospheric emission inventories of mercury, they have been still uncertain because they depend sensitively on many factors like the type of APCDs, gas temperature, and mercury speciation. In this study, representative removal efficiencies of gaseous mercury for several types of APCDs of municipal solid waste incineration (MSWI) were offered using a statistical method. 534 data of mercury removal efficiencies for APCDs used in MSWI were collected. APCDs were categorized as fixed-bed absorber (FA), wet scrubber (WS), electrostatic precipitator (ESP), and fabric filter (FF), and their hybrid systems. Data series of all APCD types had Gaussian log-normality. The average removal efficiency with a 95% confidence interval for each APCD was estimated. The FA, WS, and FF with carbon and/or dry sorbent injection systems had 75% to 82% average removal efficiencies. On the other hand, the ESP with/without dry sorbent injection had lower removal efficiencies of up to 22%. The type of dry sorbent injection in the FF system, dry or semi-dry, did not make more than 1% difference to the removal efficiency. The injection of activated carbon and carbon-containing fly ash in the FF system made less than 3% difference. Estimation errors of removal efficiency were especially high for the ESP. The national average of removal efficiency of APCDs in Japanese MSWI plants was estimated on the basis of incineration capacity. Owing to the replacement of old APCDs for dioxin control, the national average removal efficiency increased from 34.5% in 1991 to 92.5% in 2003. This resulted in an additional reduction of about 0.86Mg emission in 2003. Further study using the methodology in this study to other important emission sources like coal-fired power plants will contribute to better emission inventories. Copyright © 2010 Elsevier B.V. All rights

  3. Removal of Aerosol Particles Generated from Vitrification Process for High-Level Liquid Wastes

    OpenAIRE

    加藤 功

    1990-01-01

    The vitrification technology has been developed for the high-level liquid waste (HLLW) from reprocessing nuclear spent fuel in PNC. The removal performance of the aerosol particles generated from the melting process was studied in a nonradioactive full-scale mock-up test facility (MTF). The off-gas treatment system consists of submerged bed scrubber (SBS), venturi scrubber, NOx absorber, high efficiency mist eliminater (HEME). Deoomtamination factors (DFs) were derived from the mass ratio of ...

  4. Removal of radioruthenium from alkaline intermediate level radioactive waste solution : a laboratory investigation

    International Nuclear Information System (INIS)

    Samanta, S.K.; Theyyunni, T.K.

    1994-01-01

    Various methods were investigated in the laboratory for the removal of radioruthenium from alkaline intermediate level radioactive waste solutions of reprocessing plant origin. The methods included batch equilibration with different ion exchangers and sorbents, column testing and chemical precipitation. A column method using zinc-activated carbon mixture and a chemical precipitation method using ferrous salt along with sodium sulphite were found to be promising for plant scale application. (author). 10 refs., 3 figs., 7 tabs

  5. Effect of Vermifiltration on COD and Color Removal from Textile Factories’ Waste Water

    Directory of Open Access Journals (Sweden)

    Rabbani D.1 PhD,

    2015-09-01

    Full Text Available Aims Textile industries are among the manufactures which produce the highly polluted waste water. The purpose of this research was to evaluate the effect of vermifiltration on COD and color removal from textile waste water. Materials & Methods This experimental research was performed March to August 2014 in one of the textile factories of Kashan region, Iran. The glass cubic kits with- without Eisenia fetida were used to filter the waste water samples. Data was analyzed using Kruskal–Wallis and two-way analysis of variance in SPSS 19 statistical software. Findings The mean of COD concentration in the raw waste water samples was 1324.24±757.01mg/l which was decreased to 598.22±349.33 and 831.32±445.19mg/l after the experimental and control kits usage, respectively (p<0.001. The mean of color intensity in raw waste water samples was 51.2±30.6% which was decreased to 27.8±15.0 and 27.4±15.1% (p=0.635 in experimental and control kits, respectively. There was a significant negative correlation between COD removal and hydraulic loads (p<0.001; r=-0.804 and a significant negative correlation between color removal and hydraulic loads (p<0.001; r=- 0.278 in both experimental and control kits. Conclusion The most important risk groups in our study were abattoir workers, butchers, housewives and students who handle infected animals.

  6. Technetium removal column flow testing with alkaline, high salt, radioactive tank waste

    International Nuclear Information System (INIS)

    Blanchard, D.L. Jr.; Kurath, D.E.; Golcar, G.R.; Conradson, S.D.

    1996-01-01

    This report describes two bench-scale column tests conducted to demonstrate the removal of Tc-99 from actual alkaline high salt radioactive waste. The waste used as feed for these tests was obtained from the Hanford double shell tank AW-101, which contains double shell slurry feed (DSSF). The tank sample was diluted to approximately 5 M Na with water, and most of the Cs-137 was removed using crystalline silicotitanates. The tests were conducted with two small columns connected in series, containing, 10 mL of either a sorbent, ABEC 5000 (Eichrom Industries, Inc.), or an anion exchanger Reillex trademark-HPQ (Reilly Industries, Inc.). Both materials are selective for pertechnetate anion (TcO 4 - ). The process steps generally followed those expected in a full-scale process and included (1) resin conditioning, (2) loading, (3) caustic wash to remove residual feed and prevent the precipitation of Al(OH) 3 , and (4) elution. A small amount of Tc-99m tracer was added as ammonium pertechnetate to the feed and a portable GEA counter was used to closely monitor the process. Analyses of the Tc-99 in the waste was performed using ICP-MS with spot checks using radiochemical analysis. Technetium x-ray absorption spectroscopy (XAS) spectra of 6 samples were also collected to determine the prevalence of non-pertechnetate species [e.g. Tc(IV)

  7. Textile Dye Removal from Aqueous Solution using Modified Graphite Waste/Lanthanum/Chitosan Composite

    Science.gov (United States)

    Kusrini, E.; Wicaksono, B.; Yulizar, Y.; Prasetyanto, EA; Gunawan, C.

    2018-03-01

    We investigated various pre-treatment processes of graphite waste using thermal, mechanical and chemical methods. The aim of this work is to study the performance of modified graphite waste/lanthanum/chitosan composite (MG) as adsorbent for textile dye removal from aqueous solution. Effect of graphite waste resources, adsorbent size and lanthanum concentration on the dye removal were studied in batch experiments. Selectivity of MG was also investigated. Pre-heated graphite waste (NMG) was conducted at 80°C for 1 h, followed by mechanical crushing of the resultant graphite to 75 μm particle size, giving adsorption performance of ˜58%, ˜67%, ˜93% and ˜98% of the model dye rhodamine B (concentration determined by UV-vis spectroscopy at 554 nm), methyl orange (464 nm), methylene blue (664 nm) and methyl violet (580 nm), respectively from aqueous solution. For this process, the system required less than ˜5 min for adsorbent material to be completely saturated with the adsorbate. Further chemical modification of the pre-treated graphite waste (MG) with lanthanum (0.01 – V 0.03 M) and chitosan (0.5% w/w) did not improve the performance of dye adsorption. Under comparable experimental conditions, as those of the ‘thermal-mechanical-pre-treated-only’ (NMG), modification of graphite waste (MG) with 0.03 M lanthanum and 0.5% w/w chitosan resulted in ˜14%, ˜47%, ˜72% and ˜85% adsorption of rhodamine B, methyl orange, methylene blue and methyl violet, respectively. Selective adsorption of methylene blue at most to ˜79%, followed by methyl orange, methyl violet and rhodamine B with adsorption efficiency ˜67, ˜38, and ˜9% sequentially using MG with 0.03 M lanthanum and 0.5% w/w chitosan.

  8. Design of a machine to bore and line a long horizontal hole in tuff: Nevada Nuclear Waste Storage Investigations Project

    International Nuclear Information System (INIS)

    Friant, J.E.; Dowden, P.B.

    1987-09-01

    This report describes an engineering design for equipment capable of simultaneously drilling and lining deep horizontal bore holes. The ultimate use of the equipment is to bore up to 600 ft long, 3 ft diameter emplacement holes for a nuclear waste repository. The specific system designed is referred to as a Development Prototype Boring Machine (DPBM) which will be used to demonstrate the drilling/lining capability in field development tests. The system utilizes as in-hole electric drive and a vacuum chip removal and handling system. The drilling unit is capable of active directional control and uses laser-type alignment equipment. The system combines the features of a small steerable tunnel boring machine, combined with a horizontally-oriented raise drill, thereby utilizing current technology. All elements of the system are compact and mobile as required for a shaft entry, underground mining environment. 3 refs., 35 figs., 1 tab

  9. [Removal of toluene from waste gas by honeycomb adsorption rotor with modified 13X molecular sieves].

    Science.gov (United States)

    Wang, Jia-De; Zheng, Liang-Wei; Zhu, Run-Ye; Yu, Yun-Feng

    2013-12-01

    The removal of toluene from waste gas by Honeycomb Adsorption Rotor with modified 13X molecular sieves was systematically investigated. The effects of the rotor operating parameters and the feed gas parameters on the adsorption efficiency were clarified. The experimental results indicated that the honeycomb adsorption rotor had a good humidity resistance. The removal efficiency of honeycomb adsorption rotor achieved the maximal value with optimal rotor speed and optimal generation air temperature. Moreover, for an appropriate flow rate ratio the removal efficiency and energy consumption should be taken into account. When the recommended operating parameters were regeneration air temperature of 180 degrees C, rotor speed of 2.8-5 r x h(-1), flow rate ratio of 8-12, the removal efficiency kept over 90% for the toluene gas with concentration of 100 mg x m(-3) and inlet velocity of 2 m x s(-1). The research provided design experience and operating parameters for industrial application of honeycomb adsorption rotor. It showed that lower empty bed velocity, faster rotor speed and higher temperature were necessary to purify organic waste gases of higher concentrations.

  10. Using copper hexacyanoferrate (II) impregnated zeolite for cesium removal from radioactive liquid waste

    International Nuclear Information System (INIS)

    Fumio, K.; Kenji, M.

    1982-01-01

    Experiments were performed to obtain fundamental data on cesium ion removal characteristics of metal hexacyanoferrate (II) impregnated zeolite in radioactive liquid waste containing a large amount of sodium sulfate. Copper hexacyanoferrate (II) impregnated zeolite (CuFZ) was prepared and showed a high selectivity for cesium ion. The material was suitable for use in an ion exchange column. This exchanger could selectively and efficiently remove the cesium even if there is 15 wt% Na 2 SO 4 in the solution. Cesium removal ability and stability of CuFZ were excellent over a wide pH range between 1.5 and 10. The cesium ion exchange ability was not influenced by the presence of the alkali metal ions, calcium and magnesium, and carbonate ions even at concentrations 25 times greater than the cesium ion. However, since ammonium ion behaves similarly to cesium ion and interrupts latter ion adsorption, the presence of ammonium ion is not desirable. The CuFZ offers the possibility of separating and removing cesium from liquid wastes produced in facilities handling radioactive materials

  11. Adsorption and removal of arsenic from water by iron ore mining waste.

    Science.gov (United States)

    Nguyen, Tien Vinh; Nguyen, Thi Van Trang; Pham, Tuan Linh; Vigneswaran, Saravanamuth; Ngo, Huu Hao; Kandasamy, J; Nguyen, Hong Khanh; Nguyen, Duc Tho

    2009-01-01

    There is a global need to develop low-cost technologies to remove arsenic from water for individual household water supply. In this study, a purified and enriched waste material (treated magnetite waste, TMW) from the Trai Cau's iron ore mine in the Thai Nguyen Province in Vietnam was examined for its capacity to remove arsenic. The treatment system was packed with TMW that consisted of 75% of ferrous-ferric oxide (Fe(3)O(4)) and had a large surface area of 89.7 m(2)/g. The experiments were conducted at a filtration rate of 0.05 m/h to treat groundwater with an arsenic concentration of 380 microg/L and iron, manganese and phosphate concentrations of 2.07 mg/L, 0.093 mg/L and 1.6 mg/L respectively. The batch experimental results show that this new material was able to absorb up to 0.74 mg arsenic/g. The results also indicated that the treatment system removed more than 90% arsenic giving an effluent with an arsenic concentration of less than 30 microg/L while achieving a removal efficiency of about 80% for Mn(2 + ) and PO(4) (3-). This could be a promising and cost-effective new material for capturing arsenic as well as other metals from groundwater.

  12. Persimmon leaf bio-waste for adsorptive removal of heavy metals from aqueous solution.

    Science.gov (United States)

    Lee, Seo-Yun; Choi, Hee-Jeong

    2018-03-01

    The aim of this study was to investigate heavy metal removal using waste biomass adsorbent, persimmon leaves, in an aqueous solution. Persimmon leaves, which are biomaterials, have a large number of hydroxyl groups and are highly suitable for removal of heavy metals. Therefore, in this study, we investigated the possibility of removal of Cu, Pb, and Cd in aqueous solution by using raw persimmon leaves (RPL) and dried persimmon leaves (DPL). Removal of heavy metals by RPL and DPL showed that DPL had a 10%-15% higher removal than RPL, and the order of removal efficiency was found to be Pb > Cu > Cd. The pseudo-second order model was a better fit to the heavy metal adsorption experiments using RPL and DPL than the pseudo-first order model. The adsorption of Cu, Pb, and Cd by DPL was more suitable with the Freundlich isothermal adsorption and showed an ion exchange reaction which occurred in the uneven adsorption surface layer. The maximum adsorption capacity of Cu, Pb, and Cd was determined to be 19.42 mg/g, 22.59 mg/g, and 18.26 mg/g, respectively. The result of the adsorption experiments showed that the n value was higher than 2 regardless of the dose, indicating that the heavy metal adsorption on DPL was easy. In the thermodynamic experiment, ΔG° was a negative value, and ΔH° and ΔS° were positive values. It can be seen that the heavy metal adsorption process using DPL was spontaneous in nature and was an endothermic process. Moreover, as the temperature increased, the adsorption increased, and the affinity of heavy metal adsorption to DPL was very good. This experiment, in which heavy metals are removed using the waste biomass of persimmon leaves is an eco-friendly new bioadsorbent method because it can remove heavy metals without using chemicals while utilizing waste recycling. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. The utilization of waste by-products for removing silicate from mineral processing wastewater via chemical precipitation.

    Science.gov (United States)

    Kang, Jianhua; Sun, Wei; Hu, Yuehua; Gao, Zhiyong; Liu, Runqing; Zhang, Qingpeng; Liu, Hang; Meng, Xiangsong

    2017-11-15

    This study investigates an environmentally friendly technology that utilizes waste by-products (waste acid and waste alkali liquids) to treat mineral processing wastewater. Chemical precipitation is used to remove silicate from scheelite (CaWO 4 ) cleaning flotation wastewater and the waste by-products are used as a substitute for calcium chloride (CaCl 2 ). A series of laboratory experiments is conducted to explain the removal of silicate and the characterization and formation mechanism of calcium silicate. The results show that silicate removal reaches 90% when the Ca:Si molar ratio exceeds 1.0. The X-ray diffraction (XRD) results confirm the characterization and formation of calcium silicate. The pH is the key factor for silicate removal, and the formation of polysilicic acid with a reduction of pH can effectively improve the silicate removal and reduce the usage of calcium. The economic analysis shows that the treatment costs with waste acid (0.63 $/m 3 ) and waste alkali (1.54 $/m 3 ) are lower than that of calcium chloride (2.38 $/m 3 ). The efficient removal of silicate is confirmed by industrial testing at a plant. The results show that silicate removal reaches 85% in the recycled water from tailings dam. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. AEC sets basic policy line on treatment and disposal of radioactive waste

    International Nuclear Information System (INIS)

    Anon.

    1976-01-01

    The AEC's new policy line for the treatment and disposal of radioactive wastes is explained with three tables added. The first table was prepared by MITI's Nuclear Fuel Advisory Committee regarding the projections on the amounts of radioactive wastes to be discharged from nuclear power plants, fuel fabrication plants and reprocessing plants, and the other two tables were made by the AEC committee on technical development of radioactive waste management, the one proposed the developmental steps necessary for establishing waste management technologies, and the other showed the related research and development items with target time schedule. The proper treatment and disposal of radioactive waste S are the problems that have to be resolved prior to the full development and utilization of nuclear energy. The Atomic Energy Commission set up a committee on July 29, 1975, to discuss the technologies on the management of radioactive wastes. The principle essential to the radioactive waste management was set, and it is desirable that this principle is put into practice with the cooperation and understanding of the people and all parties concerned. The countermeasures proposed will be subject to review yet as the technology makes further progress and they are as follows: on the high level radioactive waste management and the low-and intermediate-level radioactive waste management, the basic idea, targets and measures are given, and the methods for promoting experimental ocean dumping of low level radioactive wastes are proposed. (Iwakiri, K.)

  15. Selective removal of cesium and strontium using porous frameworks from high level nuclear waste.

    Science.gov (United States)

    Aguila, Briana; Banerjee, Debasis; Nie, Zimin; Shin, Yongsoon; Ma, Shengqian; Thallapally, Praveen K

    2016-05-01

    Efficient and cost-effective removal of radioactive (137)Cs and (90)Sr found in spent fuel is an important step for safe, long-term storage of nuclear waste. Solid-state materials such as resins and titanosilicate zeolites have been assessed for the removal of Cs and Sr from aqueous solutions, but there is room for improvement in terms of capacity and selectivity. Herein, we report the Cs(+) and Sr(2+) exchange potential of an ultra stable MOF, namely, MIL-101-SO3H, as a function of different contact times, concentrations, pH levels, and in the presence of competing ions. Our preliminary results suggest that MOFs with suitable ion exchange groups can be promising alternate materials for cesium and strontium removal.

  16. Treatment methods and comparative risks of thorium removal from waste residues

    Energy Technology Data Exchange (ETDEWEB)

    Porter, R.D.; Hamby, D.M.; Martin, J.E.

    1997-07-01

    This study was done to examine the risks of remediation and the effectiveness of removal methods for thorium and its associated radioactive decay products from various soils and wastes associated with DOE`s Formerly Utilized Sites Remedial Action Program (FUSRAP). Removal of {sup 230}Th from uranium process residues would significantly reduce the buildup of {sup 226}Ra (half-life of 1600 years), and since {sup 230}Th concentrations at most of the important sites greatly exceed the {sup 226}Ra concentrations, such removal would reduce the accumulation of additional radiation risks associated with {sup 226}Ra and its products; and, if treatment also removed {sup 226}Ra, these risks could be mitigated even further. Removal of {sup 232}Th from thorium process residues would remove the source material for {sup 228}Ra, and since {sup 228}Ra has a half-life of 5.76 years, its control at FUSRAP sites could be done with land use controls for the 30--50 years required for {sup 228}Ra and the risks associated with its decay products to decay away. It must be recognized, however, that treatment methods invariably require workers to process residues and waste materials usually with bulk handling techniques. These processes expose workers to the radioactivity in the materials, therefore, workers would incur radiological risks in addition to industrial accident risks. An important question is whether the potential reduction of future radiological risks to members of the public justifies the risks that are incurred by remediation workers due to handling materials. This study examines, first, the effectiveness of treatment and then the risks that would be associated with remediation.

  17. Vertical removable filters in shielded casing for radioactive cells and process gaseous wastes

    International Nuclear Information System (INIS)

    Prinz, M.

    1983-01-01

    The installation of shielded filtration casing is necessary for highly contaminated active cells and process gaseous wastes containing active aerosols. SGN and COGEMA have developed two filtration casings (for 500 and 3000 m 3 /h flow rates) equipped with a vertically removable filter element. The filter elements fitted with high efficiency glass fiber media, are cylindrical in shape. The top flange of the filter is equipped with a gasket to ensure sealing between the filter element and its casing. The filter element is blindly installed and removed and its orientation, inside the casing, is immaterial. The shielding casing is made of a cast iron, or steel, shielding slab under which is secured the filtration casing itself. This shielding slab is settled on side shielding walls made of concrete or cast iron. The filter element, integral with a plug, is placed in the horizontal slab. The attachment of the filter element under the plug is necessary so that the plug and filter may be removed as one unit, and to keep the filter on its sealing surfaces, according to sealing and seismic resistance requirements. Filter removal is performed with the help of an intervention cask, centered over a removable trap door provided on the shielding slab of the casing. First, the plug and filter element assembly is raised into the cask. Then, the filtering element may be separated from the plug which is decontaminated and salvaged. The whole plug and filter assembly may also be sent to the conditioning waste storage. The installation of a clean filter element in the casing, is also performed with the help of the intervention cask, proceeding as above, but in reverse order. The same intervention cask may also be used to remove the upstream and downstream dampers from the top of the casing

  18. Treatment methods and comparative risks of thorium removal from waste residues

    International Nuclear Information System (INIS)

    Porter, R.D.; Hamby, D.M.; Martin, J.E.

    1997-07-01

    This study was done to examine the risks of remediation and the effectiveness of removal methods for thorium and its associated radioactive decay products from various soils and wastes associated with DOE's Formerly Utilized Sites Remedial Action Program (FUSRAP). Removal of 230 Th from uranium process residues would significantly reduce the buildup of 226 Ra (half-life of 1600 years), and since 230 Th concentrations at most of the important sites greatly exceed the 226 Ra concentrations, such removal would reduce the accumulation of additional radiation risks associated with 226 Ra and its products; and, if treatment also removed 226 Ra, these risks could be mitigated even further. Removal of 232 Th from thorium process residues would remove the source material for 228 Ra, and since 228 Ra has a half-life of 5.76 years, its control at FUSRAP sites could be done with land use controls for the 30--50 years required for 228 Ra and the risks associated with its decay products to decay away. It must be recognized, however, that treatment methods invariably require workers to process residues and waste materials usually with bulk handling techniques. These processes expose workers to the radioactivity in the materials, therefore, workers would incur radiological risks in addition to industrial accident risks. An important question is whether the potential reduction of future radiological risks to members of the public justifies the risks that are incurred by remediation workers due to handling materials. This study examines, first, the effectiveness of treatment and then the risks that would be associated with remediation

  19. Copper removal by algae Gelidium, agar extraction algal waste and granulated algal waste: kinetics and equilibrium.

    Science.gov (United States)

    Vilar, Vítor J P; Botelho, Cidália M S; Boaventura, Rui A R

    2008-03-01

    Biosorption of copper ions by an industrial algal waste, from agar extraction industry has been studied in a batch system. This biosorbent was compared with the algae Gelidium itself, which is the raw material for agar extraction, and the industrial waste immobilized with polyacrylonitrile (composite material). The effects of contact time, pH, ionic strength (IS) and temperature on the biosorption process have been studied. Equilibrium data follow both Langmuir and Langmuir-Freundlich models. The parameters of Langmuir equilibrium model were: q(max)=33.0mgg(-1), K(L)=0.015mgl(-1); q(max)=16.7mgg(-1), K(L)=0.028mgl(-1) and q(max)=10.3mgg(-1), K(L)=0.160mgl(-1) respectively for Gelidium, algal waste and composite material at pH=5.3, T=20 degrees C and IS=0.001M. Increasing the pH, the number of deprotonated active sites increases and so the uptake capacity of copper ions. In the case of high ionic strengths, the contribution of the electrostatic component to the overall binding decreases, and so the uptake capacity. The temperature has little influence on the uptake capacity principally for low equilibrium copper concentrations. Changes in standard enthalpy, Gibbs energy and entropy during biosorption were determined. Kinetic data at different solution pH (3, 4 and 5.3) were fitted to pseudo-first-order and pseudo-second-order models. The adsorptive behaviour of biosorbent particles was modelled using a batch reactor mass transfer kinetic model, which successfully predicts Cu(II) concentration profiles.

  20. Pilot-plant for NOx, SO2, HCl removal from flue-gas of municipal waste incinerator by electron beam irradiation

    International Nuclear Information System (INIS)

    Doi, Takeshi; Suda, Shoichi; Morishige, Atsushi; Tokunaga, Okihiro; Aoki, Yasushi; Sato, Shoichi; Komiya, Mikihisa; Hashimoto, Nobuo; Nakajima, Michihiro.

    1992-01-01

    A pilot-Plant for NO x , SO 2 and HCl removal from flue-gas of municipal waste incinerator by electron beam irradiation was designed and its construction at Matsudo City Waste Disposal Center was planned. The flue-gas of 1,000 Nm 3 /hr is guided from the waste incinerator flue-gas line of 30,000 Nm 3 /hr to the Pilot-Plant to be processed by spraying Ca(OH) 2 slurry (NKK-LIMAR Process) and irradiating high-energy electron beam of an accelerator. NO x , SO 2 and HCl are removed simultaneously from the flue-gas by the enhanced reaction with Ca(OH) 2 under irradiation. According to the basic research performed using a small size reactor at TRCRE of JAERI, the electron beam irradiation process was proved to be very effective for these harmful gases removal. Based on this result, the Pilot-Plant was designed for the demonstration of NO x , SO 2 and HCl removal performance using electron accelerator of maximum energy 0.95 MeV and maximum power 15 kW. The designing and planning were promoted by NKK in cooperation with JAERI and Matsudo City. (author)

  1. Cesium removal from liquid acidic wastes with the primary focus on ammonium molybdophosphate as an ion exchanger: A literature review

    International Nuclear Information System (INIS)

    Miller, C.J.

    1995-03-01

    Many articles have been written concerning the selective removal of cesium from both acidic and alkaline defense wastes. The majority of the work performed for cesium removal from defense wastes involves alkaline feed solutions. Several different techniques for cesium removal from acidic solutions have been evaluated such as precipitation, solvent extraction, and ion exchange. The purpose of this paper is to briefly review various techniques for cesium removal from acidic solutions. The main focus of the review will be on ion exchange techniques, particularly those involving ammonium molybdophosphate as the exchanger. The pertinent literature sources are condensed into a single document for quick reference. The information contained in this document was used as an aid in determining techniques to evaluate cesium removal from the acidic Idaho Chemical Processing Plant waste matrices. 47 refs., 2 tabs

  2. EVALUATION OF FROST HEAVE ON WASTE TRANSFER LINES WITH SHALLOW DEPTHS IN DST (DOUBLE SHELL TANK) FARMS

    Energy Technology Data Exchange (ETDEWEB)

    HAQ MA

    2009-05-12

    The purpose of this document is to evaluate the effect of frost heave on waste transfer lines with shallow depths in DST farms. Because of the insulation, well compacted sandy material around waste transfer lines, the type of sandy and gravel soil, and relatively low precipitation at Hanford site, it is concluded that waste transfer lines with one foot of soil covers (sandy cushion material and insulation) are not expected to undergo frost heave damaging effects.

  3. A review of technology for verification of waste removal from Hanford Underground Storage Tanks (WHC Issue 30)

    International Nuclear Information System (INIS)

    Thunborg, S.

    1994-09-01

    Remediation of waste from Underground Storage Tanks (UST) at the Hanford Waste storage sites will require removal of all waste to a nearly clean condition. Current requirements are 99% clean. In order to meet remediation legal requirements, a means to remotely verify that the waste has been removed to sufficient level is needed. This report discusses the requirements for verification and reviews major technologies available for inclusion in a verification system. The report presents two operational scenarios for verification of residual waste volume. Thickness verification technologies reviewed are Ultrasonic Sensors, Capacitance Type Sensors, Inductive Sensors, Ground Penetrating Radar, and Magnetometers. Of these technologies Inductive (Metal Detectors) and Ground Penetrating Radar appear to be the most suitable for use as waste thickness sensors

  4. The selective removal of 90Sr and 137Cs from liquid low-level waste at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Bostick, D.T.; Arnold, W.D.; Burgess, M.W.; Taylor, P.A.; Kent, T.E.

    1995-01-01

    Methods are being developed for the selective removal of the two principal radioactive contaminants, 90 Sr and 137 Cs, from liquid low-level waste generated and/or stored at Oak Ridge National Laboratory. These methods are to be used in a future centralized treatment facility at ORNL. Removal of 90 Sr in the proposed treatment flashed is based on coprecipitation from strongly alkaline waste by adding stable strontium to the waste solution. Ferric sulfate, added with the stable strontium, improves the 90 Sr removal and aids in the flocculation of the strontium carbonate (SrCO 3 ) precipitate. After separation of the solids, the resultant supernate is adjusted to pH 8 for the cesium removal treatment. Upon pH adjustment, aluminum originally present in the untreated alkaline waste precipitates and sorbs an additional amount of 90 Sr. Cesium is removed from the neutralized waste by two sequential treatments with potassium cobalt hexacyanoferrate (KCCF) slurry formed by the addition of potassium ferrocyanide (K 4 Fe(CN) 6 ) and cobalt nitrate (Co(NO 3 ) 2 ) solutions. The cumulative decontamination factors (DFs) for 90 Sr and 137 Cs in benchscale studies are 4900 and 1 x 10 6 , respectively, if high speed centrifugation is used for the liquid/solid separations. Efforts are now underway to evaluate process-scale techniques to perform the liquid/solid separations required for removal of SrCO 3 and 137 Cs-bearing hexacyanoferrate solids from the treated waste solution

  5. Sorption Capacity Measurement of Chlorella Vulgaris and Scenedesmus Acutus to Remove Chromium from Tannery Waste Water

    Science.gov (United States)

    Ardila, Liliana; Godoy, Rubén; Montenegro, Luis

    2017-08-01

    Tanning process is a polluting activity due to the release of toxic agents into the environment. One of the most important of those toxic chemicals is chromium. Different alternatives have been proposed for the removal of this metal from tanning waste water which include the optimization of the productive processes, physicochemical and biochemical waste water treatment. In this study, the biological adsorption process of trivalent chromium was carried out in synthetic water and tannery waste water through two types of native green microalgae, called Chlorella vulgaris and Scenedesmus acutus in Free State and immobilized in PVA state. This, considering that cellular wall of microalgae has functional groups like amines and carboxyl that might bind with trivalent chromium. Statistical significance of variables as pH temperature, chromium and algae concentrations was evaluated just like bio sorption capacity of different types of water and kind of bioadsorbent was calculated to determine if this process is a competitive solution comparing to other heavy metal removal processes.

  6. Investigation on the efficiency of treated Palm Tree waste for removal of organic pollutants

    Science.gov (United States)

    Azoulay, Karima; El HajjajiI, Souad; Dahchour, Abdelmalek

    2017-04-01

    Development of the industrial sector generates several problems of environmental pollution. This issue rises concern among scientific community and decision makers, in this work; we e interested in water resources polluted by the chemical substances, which can cause various problems of health. As an example, dyes generated by different industrial activities such as textile, cosmetic, metal plating, leather, paper and plastic sectors, constitute an important source of pollution. In this work, we aim at investigating the efficiency of palm tree waste for removal of dyes from polluted solution. Our work presents a double environmental aspect, on one hand it constitutes an attempt for valorization of Palm Tree waste, and on the other hand it provides natural adsorbent. The study focuses on the effectiveness of the waste in removing Methylene Bleu and Methyl Orange taken as models of pollutants from aqueous solution. Kinetics and isotherm experiments were conducted in order to determine the sorption behavior of the examined dye. The effects of initial dye and adsorbent concentrations are considered. The results indicate that the correlation coefficient calculated from pseudo-second order equation was higher than the other kinetic equations, indicating that equilibrium data fitted well with pseudo-second order model where adsorption process was chemisorption. The adsorption equilibrium was well described by Langmuir isotherm model.

  7. POTENTIAL USE OF WOOL WASTE AS ADSORBENT FOR THE REMOVAL OF ACID DYES FROM WASTEWATER

    Directory of Open Access Journals (Sweden)

    BUCIŞCANU Ingrid

    2016-05-01

    Full Text Available At present, great amounts of raw wool are treated as waste and raise disposal problems. In the sustainable development context , wool is regarded as a biodegradable renewable resource and due to its complex chemical composition and fiber morphology, can find different useful applications. It is the aim of this paper to investigate the potential use of raw wool waste as a non-conventional adsorbent for Acid Red 337(AcR ,currently used for leather and wool dyeing. Two wool-based adsorbents were prepared, namely scoured coarse wool (Wool-S and wool activated with alcoholic solution of sodium hydroxide (Wool-A. Adsorbent dosage, dye concentration, pH and treatment time were factors taken in consideration for the assessment of the sorbate-adsorbent interaction. The removal efficiency (R % is mainly dependent on the solution pH and on the activation treatment applied to wool: at pH 3, the removal efficiency reaches the highest values of 42% on Wool-S and 99% on Wool-A. The adsorption rate is slow and needs almost 6 h to reach equilibrium. The experimental data best fitted the Langmuir equilibrium adsorption model, which proves that the adsorbent possess surface active sites to which the dye sorbate binds in monomolecular layer. Raw wool waste is a potential cheap, biodegradable and effective adsorbent for colored wastewater treatment.

  8. Vault lining for 340 waste handling facility, 300 area

    International Nuclear Information System (INIS)

    Hollenbeck, R.G.

    1997-01-01

    Coating systems by Protection Enterprises, Ameron, Carboline, and Steelcote were evaluated. Each manufacturer has a coating system that is acceptable for use in the 340 Vault (see Appendix A). The choice of which system to use will be made after in-place adhesion tests are complete. The Protection Enterprises coating has the greatest potential for acceptable adhesion with minimal surface preparation. Total project cost for engineering and construction is $1,220,000 including 50% for contingency (see Appendix B). If the existing vault coverblock access hatch can satisfy entry requirements, $95,000 can be saved from the removal of coverblocks and the erection and disassembly of the greenhouse

  9. Screening of Phosphorus-Accumulating Fungi and Their Potential for Phosphorus Removal from Waste Streams.

    Science.gov (United States)

    Ye, Yulin; Gan, Jing; Hu, Bo

    2015-11-01

    While bacteria have been primarily studied for phosphorus (P) removal in wastewater treatment, fungi and their ability to accumulate intracellular polyphosphate are less investigated. P-accumulating fungal strains were screened from soybean plants and surrounding soil by flask cultivation with potato dextrose broth and KH2PO4 in this study. Mucor circinelloides was selected for its high efficiency in P removal efficiency and high cellular P content. Neisser staining and growth-curve analysis confirmed that M. circinelloides stored polyphosphate intracellularly by luxury phosphate uptake. The effect of culture medium compositions on P removal efficiency and cellular P content was also investigated. Monosaccharides (such as glucose and fructose) and organic nitrogen (N, such as urea, and peptone) promoted fungi growth and P accumulation. M. circinelloides also preferred organic phosphates. When glucose, urea, and phytic acid sodium salt were used as the carbon, N, and P source, respectively, the maximum utilization efficiency was 40.1% for P and 7.08% for cellular P content. In addition, the potential of M. circinelloides for P removal from waste streams was investigated. Compared with the non-inoculated control culture, inoculation with M. circinelloides improved the soluble P removal in treating wastewater centrate, screened manure, and digested manure.

  10. Removing Dissolved Silica from Waste Water with Catechol and Active Carbon

    Energy Technology Data Exchange (ETDEWEB)

    Sasan, Koroush [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Nanoscale Sciences Dept.; Brady, Patrick [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Advanced Nuclear Energy Program; Krumhansl, James L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Geosciences Dept.; Nenoff, Tina M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Physical Chemical and Nano Sciences Center

    2017-01-01

    Fresh water scarcity is going to be a global great challenge in the near future because of the increasing population. Our water resources are limited and, hence, water treatment and recycling methods are the only alternatives for fresh water procurement in the upcoming decades. Water treatment and recycling methods serve to remove harmful or problematic constituents from ground, surface and waste waters prior to its consumption, industrial supply, or other uses. Scale formation in industrial and domestic installations is still an important problem during water treatment. In water treatment, silica scaling is a real and constant concern for plant operations. The focus of this study is on the viability of using a combination of catechol and active carbon to remove dissolved silica from concentrated cooling tower water (CCTW). Various analytical methods, such as ICP-MS and UV-vis, were used to understand the structure-property relationship between the material and the silica removal results. UV-Vis indicates that catechol can react with silica ions and form a silica-catecholate complex. The speciation calculation of catechol and silica shows that catechol and silica bind in the pH range of 8 – 10; there is no evidence of linkage between them in neutral and acidic pHs. The silica removal results indicate that using ~4g/L of catechol and 10g/L active carbon removes up to 50% of the dissolved silica from the CCTW.

  11. Further contributions to the understanding of nitrogen removal in waste stabilization ponds.

    Science.gov (United States)

    Bastos, R K X; Rios, E N; Sánchez, I A

    2018-06-01

    A set of experiments were conducted in Brazil in a pilot-scale waste stabilization pond (WSP) system (a four-maturation-pond series) treating an upflow anaerobic sludge blanket (UASB) reactor effluent. Over a year and a half the pond series was monitored under two flow rate conditions, hence also different hydraulic retention times and surface loading rates. On-site and laboratory trials were carried out to assess: (i) ammonia losses by volatilization using acrylic capture chambers placed at the surface of the ponds; (ii) organic nitrogen sedimentation rates using metal buckets placed at the bottom of the ponds for collecting settled particulate matter; (iii) nitrogen removal by algal uptake based on the nitrogen content of the suspended particulate matter in samples from the ponds' water column. In addition, nitrification and denitrification rates were measured in laboratory-based experiments using pond water and sediment samples. The pond system achieved high nitrogen removal (69% total nitrogen and 92% ammonia removal). The average total nitrogen removal rates varied from 10,098 to 3,849 g N/ha·d in the first and the last ponds, respectively, with the following fractions associated with the various removal pathways: (i) 23.5-45.6% sedimentation of organic nitrogen; (ii) 13.1-27.8% algal uptake; (iii) 1.2-3.1% ammonia volatilization; and (iv) 0.15-0.34% nitrification-denitrification.

  12. Electrodialytic removal of Cu, Cr, and As from chromated copper arsenate-treated timber waste

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro, A.B.; Mateus, E.P.; Ottosen, L.M.; Bech-Nielsen, G.

    2000-03-01

    Waste of wood treated with chromated copper arsenate (CCA) is expected to increase in volume over the next decades. Alternative disposal options to landfilling are becoming more attractive to study, especially those that promote reuse. The authors have studied the electrodialytic removal of Cu, Cr, and As from CCA-treated timber wastes. The method uses a low-level direct current as the cleaning agent, combining the electrokinetic movement of ions in the matrix with the principle of electrodialysis. The technique was tested in four experiments using a laboratory cell on sawdust of an out-of-service CCA-treated Pinus pinaster Ait. pole. The duration of all the experiments was 30 days, and the current density was kept constant at 0.2 mA/cm{sup 2}. The experiments differ because in one the sawdust was saturated with water (experiment 1) and in the rest it was saturated with oxalic acid, 2.5, 5, and 7.5% (w/w), respectively, in experiments 2--4. The highest removal rates obtained were 93% of Cu, 95% of Cr, and 99% of As in experiment 2. Other experimental conditions might possibly optimize the removal rates.

  13. Removal of Contaminants from Waste Streams at Gas Evolving Flow-Through Porous Electrodes

    International Nuclear Information System (INIS)

    Mahmoud Saleh, M.

    1999-01-01

    Electrochemical techniques have been used for the removal of inorganic and organic toxic materials from industrial waste streams. One of the most important branch of these electrochemical techniques is the flow-through porous electrode. Such systems allow for the continuous operation and hence continuous removal of the contaminants from waste streams at high rates and high efficiency. However, when there is an evolution of gas bubbles with the removal process, the treatment process needs a much different treatment of both the design and the mathematical treatment of the such these systems. The evolving gas bubbles within the electrode decrease the pore electrolyte conductivity of the porous electrodes, decrease the efficiency and make the current more non-uniform. This cause the under utilization of the reaction area and finally make the electrode inoperable. In this work the harmful effects of the gas bubbles on the performance of the porous electrode will be modeled. The model accounts for the effects of kinetic, mass transfer and gas bubbles resistance on the overall performance of the electrode. This will help in optimizing the operating conditions and the cell design

  14. Demonstration of Entrained Solids and Sr/TRU Removal Processes with Archived AN-107 Waste

    International Nuclear Information System (INIS)

    Hallen, R.T.; Brooks, K.P.; Jagoda, L.K.

    2000-01-01

    Archived AN-107 waste was used to evaluate entrained solids removal, Sr/TRU decontamination of supernatant, and Sr/TRU solids removal. Even though most of the entrained solids had been previously removed from the archived sample, the residual entrained solids rapidly fouled the filter element resulting in very poor filter performance. An attempt to run at higher pressure resulted in more fouling, and reduced filter performance. Filtration efforts to remove entrained solids were abandoned and the waste was treated for Sr/TRU removal with the entrained solids present. The new processing scheme for Sr/TRU removal involving precipitation by added strontium and permanganate worked well. The decontamination factors for Sr and TRU components were significantly greater than the ILAW DF requirements for higher reagent concentrations of 1M hydroxide, 0.075M Sr, and 0.05M permanganate and lower reagent concentrations of 0.8M hydroxide, 0.05M Sr, and 0.03M permanganate. These results support the use of lower concentration of reagent additions in future tests. Optimization studies should be conducted to examine the reduction in added hydroxide from 1M to 0.5 M, reduction of Sr from 0.075M to 0.05M, and reduction in permanganate from 0.05M to 0.03M and the impact this reduction has on filtration performance with new samples from Tank AN-107. The combined entrained solids and Sr/TRU precipitate were successfully filtered in the single element, crossflow filtration unit. The filtrate flux was high, >0.1 gpm/ft 2 , at the initial test conditions of 53 psi and 11.2ft/s for the treated archived AN-107 sample. The filter flux rate dropped significantly with time as testing progressed and appears to be a result of shearing the agglomerated solids and fouling of the filter element by the resulting fine particles. The relatively low clean water flux rates obtained at the end of the test also indicate filter fouling. Chemical cleaning was required to restore clean water flux rates to pre

  15. PRELIMINARY ASSESSMENT OF THE LOW-TEMPERATURE WASTE FORM TECHNOLOGY COUPLED WITH TECHNETIUM REMOVAL

    Energy Technology Data Exchange (ETDEWEB)

    Fox, K.

    2014-05-13

    The U.S. Department of Energy Office of Environmental Management (EM) is engaging the national laboratories to provide the scientific and technological rigor to support EM program and project planning, technology development and deployment, project execution, and assessment of program outcomes. As an early demonstration of this new responsibility, Pacific Northwest National Laboratory (PNNL) and Savannah River National Laboratory (SRNL) have been chartered to implement a science and technology program addressing low-temperature waste forms for immobilization of DOE aqueous waste streams, including technetium removal as an implementing technology. As a first step, the laboratories examined the technical risks and uncertainties associated with the Cast Stone waste immobilization projects at Hanford. Science and technology needs were identified for work associated with 1) conducting performance assessments and risk assessments of waste form and disposal system performance, and 2) technetium chemistry in tank wastes and separations of technetium from waste processing streams. Technical approaches to address the science and technology needs were identified and an initial sequencing priority was suggested. The following table summarizes the most significant science and technology needs and associated approaches to address those needs. These approaches and priorities will be further refined and developed as strong integrated teams of researchers from national laboratories, contractors, industry, and academia are brought together to provide the best science and technology solutions. Implementation of a science and technology program that addresses these needs by pursuing the identified approaches will have immediate benefits to DOE in reducing risks and uncertainties associated with near-term decisions regarding supplemental immobilization at Hanford. Longer term, the work has the potential for cost savings and for providing a strong technical foundation for future

  16. Waste Stabilization Ponds and Aerated Lagoons Performance in Removal of Wastewater Indicator Microorganisms

    Directory of Open Access Journals (Sweden)

    Seyed ali Ghasemi

    2013-08-01

    Full Text Available In this work, the performance of two treatment plants in the City of Mashhad, one with an aerated lagoons system and the other one with waste stabilization ponds system were evaluated in regard to their efficiency in reduction of pathogenic microorganisms. For this purpose, over a period of one year (with 15-days intervals, samples were taken from the influent and effluent (prior to disinfection unit of the above mentioned treatment plants. The samples then were analyzed for parameters such as temperature, pH, density of total coliforms (TC and fecal coliforms (FC, dissolved oxygen and total suspended solids concentration. The results indicated that the aerated lagoons system was much more efficient in removal of indicator bacteria than the waste stabilization ponds during autumn and winter periods. However during the summer months, the waste stabilization ponds showed a higher efficiency in this regard. In general, the waste stabilization ponds system reduced the density of TC and FC by 0.21-2.15 log10 and 0.20-2.33 log10, respectively. In contrast, the levels of reduction in aerated lagoons system were in the range of 0.29-2.03 log10 for TC and 0.42-2.40 log10 for FC. Results indicated that solar intensity, pH and dissolved oxygen concentration were found to be the most significant parameters that reduced the microorganisms population in waste stabilization ponds, While, in the aerated lagoons system, the dissolved oxygen concentration in aerated basin and solar intensity play the most important role. In general, without receiving an adequate disinfection, the effluent from waste stabilization ponds and aerated lagoons cannot provide the microbiological standards required for irrigation of agricultural crops.

  17. Use of sepiolite as an adsorbent for the removal of copper (II) from industrial waste leachate

    Science.gov (United States)

    Gamze Turan, N.; Ardali, Yüksel

    2013-04-01

    Land filling is the most common method of disposal of solid waste all over the world. As well as municipal solid waste, industrial wastes, which may contain hazardous substances, are also received by landfills in many countries. Leachate is one of the problems arising from landfills. When water percolates through solid wastes, contaminants are leached into solution. The major concern with the movement of leachate into the subsurface aquifer is the fate of the constituents found in leachate. The fate of heavy metals is the greatest interest in leachate. Several treatment technologies have been developed for eliminating heavy metals recently. Adsorption is one of the most interesting methods that it has been successfully applied for the heavy metal removal. Activated carbons were widely used as adsorbent materials because of their extended surface area, microporous structure, high adsorption capacity and high degree of surface reactivity. However, it is restricted due to its relatively high price, high operation costs, and problems with generation for the industrial scale applications. Recently, more research efforts have been focused on effective sorbents material in order to minimize the processing cost and solve their disposal problems in an environmentally sustainable way. Adsorption of metal ions onto clay minerals has been studied extensively because both metal ions and clays are common components in nature. The cost of clays is relatively low as compared to other alternative adsorbents. Furthermore, the high specific surface area, chemical and mechanical stability, variety of structural and surface properties and higher values of cation exchange capacities make the clays an excellent group of adsorbents. Sepiolite (Si12O30Mg8(OH)4(H2O)4•8H2O) is a natural, fibrous clay mineral with fine microporous channels running parallel to the length of the fibers. The structure of sepiolite, in some aspects, is similar to those of other 2:1 trioctahedral silicates, such

  18. Arsenic, chromium and mercury removal using mussel shell ash or a sludge/ashes waste mixture.

    Science.gov (United States)

    Seco-Reigosa, Natalia; Peña-Rodríguez, Susana; Nóvoa-Muñoz, Juan Carlos; Arias-Estévez, Manuel; Fernández-Sanjurjo, María J; Alvarez-Rodríguez, Esperanza; Núñez-Delgado, Avelino

    2013-04-01

    Different batches of valued mussel shell and waste mussel shell ash are characterised. Shell ash has pH > 12 and high electrical conductivities (between 16.01 and 27.27 dS m(-1)), while calcined shell shows pH values up to 10.7 and electrical conductivities between 1.19 and 3.55 dS m(-1). X-ray fluorescence, nitric acid digestion and water extractions show higher concentrations in shell ash for most parameters. Calcite is the dominant crystalline compound in this ash (95.6%), followed by aragonite. Adsorption/desorption trials were performed for mussel shell ash and for a waste mixture including shell ash, sewage sludge and wood ash, showing the following percentage adsorptions: Hg(II) >94%, As(V) >96% and Cr(VI) between 11 and 30% for shell ash; Hg(II) >98%, As(V) >88% and Cr(VI) between 30 and 88% for the waste mixture. Hg and As desorption was ash and the waste mixture, while Cr desorption was between 92 and 45% for shell ash, and between 19 and 0% for the mixture. In view of that, mussel shell ash and the mixture including shell ash, sewage sludge and wood ash could be useful for Hg(II) and As(V) removal.

  19. Heavy metal removal from municipal solid waste fly ash by chlorination and thermal treatment

    International Nuclear Information System (INIS)

    Nowak, B.; Pessl, A.; Aschenbrenner, P.; Szentannai, P.; Mattenberger, H.; Rechberger, H.; Hermann, L.; Winter, F.

    2010-01-01

    Municipal solid waste (MSW) fly ash is classified as a hazardous material because it contains high amounts of heavy metals. For decontamination, MSW fly ash is first mixed with alkali or alkaline earth metal chlorides (e.g. calcium chloride) and water, and then the mixture is pelletized and treated in a rotary reactor at about 1000deg. C. Volatile heavy metal compounds are formed and evaporate. In this paper, the effect of calcium chloride addition, gas velocity, temperature and residence time on the separation of heavy metals are studied. The fly ash was sampled at the waste-to-energy plant Fernwaerme Wien/Spittelau (Vienna, Austria). The results were obtained from batch tests performed in an indirectly heated laboratory-scale rotary reactor. More than 90% of Cd and Pb and about 60% of Cu and 80% of Zn could be removed in the experiments.

  20. W-320 waste retrieval sluicing system transfer line flushing volume and frequency calculation

    International Nuclear Information System (INIS)

    Bailey, J.W.

    1997-01-01

    The calculations contained in this analysis document establish the technical basis for the volume, frequency, and flushing fluid to be utilized for routine Waste Retrieval Sluicing System (WRSS) process line flushes. The WRSS was installed by Project W-320, Tank 241-C-106 Sluicing. The double contained pipelines being flushed have 4 inch stainless steel primary pipes. The flushes are intended to prevent hydrogen buildup in the transfer lines and to provide ALARA conditions for maintenance personnel

  1. Influence of wick properties in a vertical LHP on remove waste heat from electronic equipment

    International Nuclear Information System (INIS)

    Smitka, Martin; Nemec, Patrik; Malcho, Milan

    2014-01-01

    The loop heat pipe is a vapour-liquid phase-change device that transfers heat from evaporator to condenser. One of the most important parts of the LHP is the porous wick structure. The wick structure provides capillary force to circulate the working fluid. To achieve good thermal performance of LHP, capillary wicks with high permeability and porosity and fine pore radius are expected. The aim of this work is to develop porous wick of sintered nickel powder with different grain sizes. These porous wicks were used in LHP and there were performed a series of measurements to remove waste heat from the insulated gate bipolar transistor (IGBT)

  2. Influence of wick properties in a vertical LHP on remove waste heat from electronic equipment

    Energy Technology Data Exchange (ETDEWEB)

    Smitka, Martin, E-mail: martin.smitka@fstroj.uniza.sk, E-mail: patrik.nemec@fstroj.uniza.sk, E-mail: milan.malcho@fstroj.uniza.sk; Nemec, Patrik, E-mail: martin.smitka@fstroj.uniza.sk, E-mail: patrik.nemec@fstroj.uniza.sk, E-mail: milan.malcho@fstroj.uniza.sk; Malcho, Milan, E-mail: martin.smitka@fstroj.uniza.sk, E-mail: patrik.nemec@fstroj.uniza.sk, E-mail: milan.malcho@fstroj.uniza.sk [University of Žilina, Faculty of Mechanical Engineering, Department of Power Engeneering, Univerzitna 1, 010 26 Žilina (Slovakia)

    2014-08-06

    The loop heat pipe is a vapour-liquid phase-change device that transfers heat from evaporator to condenser. One of the most important parts of the LHP is the porous wick structure. The wick structure provides capillary force to circulate the working fluid. To achieve good thermal performance of LHP, capillary wicks with high permeability and porosity and fine pore radius are expected. The aim of this work is to develop porous wick of sintered nickel powder with different grain sizes. These porous wicks were used in LHP and there were performed a series of measurements to remove waste heat from the insulated gate bipolar transistor (IGBT)

  3. Synthesis of LTA zeolite on corundum supports: Preliminary assessment for heavy metal removal from waste water

    International Nuclear Information System (INIS)

    Jacas, A.; Ortega, P.; Velasco, M. J.; Camblor, M. A.; Rodriguez, M. A.

    2012-01-01

    The effectiveness of materials based on LTA Zeolite as active phase, for their incorporation into systems aimed at the removal of heavy metals on waste water is evaluated in a preliminary way. This type of Zeolite with the main channel of a minimum free diameter of 0,41 nm and a low SiO 2 /Al 2 O 3 ratio is an interesting molecular sieve, which in turn display a high ion exchange capacity. From this point of view, LTA Zeolite crystals were obtained in situ by hydrothermal synthesis and characterized by x ray diffraction (XRD) and scanning electron microscopy (SEM). We have studied the effect of hydrothermal synthesis time at 378 K. Likewise, the removal capacity of heavy metal from the active phase was evaluated in as a first step on diluted solutions of cooper salts at slightly acidic pH (∼ 4,7). (Author) 28 refs.

  4. Zeolitic adsorbent synthesized from powdered waste porcelain, and its capacity for heavy metal removal

    International Nuclear Information System (INIS)

    Wajima, T.; Ikegami, Y.

    2006-01-01

    A zeolitic adsorbent was synthesized from powdered waste porcelain kept at 80 o C for 24 h. The product contained the zeolite phases Na-P1 and hydroxysodalite. The product with the highest cation exchange capacity (CEC) was synthesized using 4 M NaOH and the sample weight / volume of alkali solution ratio was 1/4. The highest CEC obtained for the product was almost 1900 mmol/kg, which is the same as that of natural zeolite. The product with the highest CEC was tested for its ability to remove heavy metals (Fe, Cu, Ni, Zn, Pb, Cd, Mn, Cr, Al, B,Mo) from an acidic solution (pH 2). The product can neutralize the acidic solution to almost pH 7, and the capacity of the product for the removal of heavy metals is higher than that of the natural zeolite, except for Mo and B. (authors)

  5. Evaluation of uranium removal by Hydrilla verticillata (L.f.) Royle from low level nuclear waste under laboratory conditions.

    Science.gov (United States)

    Srivastava, Sudhakar; Bhainsa, K C

    2016-02-01

    The present study evaluated uranium (U) removal ability and tolerance to low level nuclear waste (LLNW) of an aquatic weed Hydrilla verticillata. Plants were screened for growth in 10%-50% waste treatments up to 3 d. Treatments of 20% and 50% waste imposed increasing toxicity with duration assessed in terms of change in fresh weight and in the levels of photosynthetic pigments and thiobarbituric acid-reactive substances. U concentration, however, did not show a progressive increase and was about 42 μg g(-1) dw from 20% to 50% waste at 3 d. This suggested that a saturation stage was reached with respect to U removal due to increasing toxicity. However, in another experiment with 10% waste and 10% waste+10 ppm U treatments, plants showed an increase in U concentration with the maximum level approaching 426 μg g(-1) dw at 3 d without showing any toxicity as compared to that at 20% and 50% waste treatments. Hence, plants possessed significant potential to take up U and toxicity of LLNW limited their U removal ability. This implies that the use of Hydrilla plants for U removal from LLNW is feasible at low concentrations and would require repeated harvesting at short intervals. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Removal of mercury from aqueous solutions using activated carbon prepared from agricultural by-product/waste.

    Science.gov (United States)

    Rao, M Madhava; Reddy, D H K Kumar; Venkateswarlu, Padala; Seshaiah, K

    2009-01-01

    Removal of mercury from aqueous solutions using activated carbon prepared from Ceiba pentandra hulls, Phaseolus aureus hulls and Cicer arietinum waste was investigated. The influence of various parameters such as effect of pH, contact time, initial metal ion concentration and adsorbent dose for the removal of mercury was studied using a batch process. The experiments demonstrated that the adsorption process corresponds to the pseudo-second-order-kinetic models and the equilibrium adsorption data fit the Freundlich isotherm model well. The prepared adsorbents ACCPH, ACPAH and ACCAW had removal capacities of 25.88 mg/g, 23.66 mg/g and 22.88 mg/g, respectively, at an initial Hg(II) concentration of 40 mg/L. The order of Hg(II) removal capacities of these three adsorbents was ACCPH>ACPAH>ACCAW. The adsorption behavior of the activated carbon is explained on the basis of its chemical nature. The feasibility of regeneration of spent activated carbon adsorbents for recovery of Hg(II) and reuse of the adsorbent was determined using HCl solution.

  7. Assessment of commercially available ion exchange materials for cesium removal from highly alkaline wastes

    International Nuclear Information System (INIS)

    Brooks, K.P.; Kim, A.Y.; Kurath, D.E.

    1996-04-01

    Approximately 61 million gallons of nuclear waste generated in plutonium production, radionuclide removal campaigns, and research and development activities is stored on the Department of Energy's Hanford Site, near Richland, Washington. Although the pretreatment process and disposal requirements are still being defined, most pretreatment scenarios include removal of cesium from the aqueous streams. In many cases, after cesium is removed, the dissolved salt cakes and supernates can be disposed of as LLW. Ion exchange has been a leading candidate for this separation. Ion exchange systems have the advantage of simplicity of equipment and operation and provide many theoretical stages in a small space. The organic ion exchange material Duolite trademark CS-100 has been selected as the baseline exchanger for conceptual design of the Initial Pretreatment Module (IPM). Use of CS-100 was chosen because it is considered a conservative, technologically feasible approach. During FY 96, final resin down-selection will occur for IPM Title 1 design. Alternate ion exchange materials for cesium exchange will be considered at that time. The purpose of this report is to conduct a search for commercially available ion exchange materials which could potentially replace CS-100. This report will provide where possible a comparison of these resin in their ability to remove low concentrations of cesium from highly alkaline solutions. Materials which show promise can be studied further, while less encouraging resins can be eliminated from consideration

  8. Assessment of commercially available ion exchange materials for cesium removal from highly alkaline wastes

    Energy Technology Data Exchange (ETDEWEB)

    Brooks, K.P.; Kim, A.Y.; Kurath, D.E.

    1996-04-01

    Approximately 61 million gallons of nuclear waste generated in plutonium production, radionuclide removal campaigns, and research and development activities is stored on the Department of Energy`s Hanford Site, near Richland, Washington. Although the pretreatment process and disposal requirements are still being defined, most pretreatment scenarios include removal of cesium from the aqueous streams. In many cases, after cesium is removed, the dissolved salt cakes and supernates can be disposed of as LLW. Ion exchange has been a leading candidate for this separation. Ion exchange systems have the advantage of simplicity of equipment and operation and provide many theoretical stages in a small space. The organic ion exchange material Duolite{trademark} CS-100 has been selected as the baseline exchanger for conceptual design of the Initial Pretreatment Module (IPM). Use of CS-100 was chosen because it is considered a conservative, technologically feasible approach. During FY 96, final resin down-selection will occur for IPM Title 1 design. Alternate ion exchange materials for cesium exchange will be considered at that time. The purpose of this report is to conduct a search for commercially available ion exchange materials which could potentially replace CS-100. This report will provide where possible a comparison of these resin in their ability to remove low concentrations of cesium from highly alkaline solutions. Materials which show promise can be studied further, while less encouraging resins can be eliminated from consideration.

  9. Simultaneous improvement of waste gas purification and nitrogen removal using a novel aerated vertical flow constructed wetland.

    Science.gov (United States)

    Zhang, Xinwen; Hu, Zhen; Ngo, Huu Hao; Zhang, Jian; Guo, Wenshan; Liang, Shuang; Xie, Huijun

    2018-03-01

    Insufficient oxygen supply is identified as one of the major factors limiting organic pollutant and nitrogen (N) removal in constructed wetlands (CWs). This study designed a novel aerated vertical flow constructed wetland (VFCW) using waste gas from biological wastewater treatment systems to improve pollutant removal in CWs, its potential in purifying waste gas was also identified. Compared with unaerated VFCW, the introduction of waste gas significantly improved NH 4 + -N and TN removal efficiencies by 128.48 ± 3.13% and 59.09 ± 2.26%, respectively. Furthermore, the waste gas ingredients, including H 2 S, NH 3 , greenhouse gas (N 2 O) and microbial aerosols, were remarkably reduced after passing through the VFCW. The removal efficiencies of H 2 S, NH 3 and N 2 O were 77.78 ± 3.46%, 52.17 ± 2.53%, and 87.40 ± 3.89%, respectively. In addition, the bacterial and fungal aerosols in waste gas were effectively removed with removal efficiencies of 42.72 ± 3.21% and 47.89 ± 2.82%, respectively. Microbial analysis results revealed that the high microbial community abundance in the VFCW, caused by the introduction of waste gas from the sequencing batch reactor (SBR), led to its optimized nitrogen transformation processes. These results suggested that the VFCW intermittently aerated with waste gas may have potential application for purifying wastewater treatment plant effluent and waste gas, simultaneously. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. DOUBLE-SHELL TANK WASTE TRANSFER LINE ENCASEMENT INTEGRITY ASSESSMENT TECHNOLOGY STUDY

    International Nuclear Information System (INIS)

    BOWER, R.R.

    2006-01-01

    The report provides various alternative methods of performing integrity assessment inspections of buried Hanford Double Shell Tank waste transfer line encasements, and provides method recommendations as an alternative to costly encasement pneumatic leak testing. A schedule for future encasement integrity assessments is also included

  11. Preliminary engineering evaluation of heat and digest treatment for in-tank removal of radionuclides from complexed waste

    International Nuclear Information System (INIS)

    Klem, M.J.

    1995-01-01

    This report uses laboratory data from low temperature-ambient pressure digestion of actual complexed supernatant to evaluate digestion as a pretreatment method for waste in double-shell tanks 241-AN-102, 241-AN-107 and 241-AY-101. Digestion time requirements were developed at 100 degrees celsius to remove organic and meet NRC Class C criterion for TRU elements and NRC Class B criterion for 90Sr. The incidental waste ruling will establish the need for removal of 90Sr. Digestion pretreatment precipitates non radioactive metal ions and produces additional high-level waste solids and canisters of high level glass. This report estimates the amount of additional high-level waste produced and preliminary capital and operating costs for in-tank digestion of waste. An overview of alternative in-tank treatment methods is included

  12. Development of an Alternative Treatment Scheme for Sr/TRU Removal: Permanganate Treatment of AN-107 Waste

    Energy Technology Data Exchange (ETDEWEB)

    RT Hallen; SA Bryan; FV Hoopes

    2000-08-04

    A number of Hanford tanks received waste containing organic complexants, which increase the volubility of Sr-90 and transuranic (TRU) elements. Wastes from these tanks require additional pretreatment to remove Sr-90 and TRU for immobilization as low activity waste (Waste Envelope C). The baseline pretreatment process for Sr/TRU removal was isotopic exchange and precipitation with added strontium and iron. However, studies at both Battelle and Savannah River Technology Center (SRTC) have shown that the Sr/Fe precipitates were very difficult to filter. This was a result of the formation of poor filtering iron solids. An alternate treatment technology was needed for Sr/TRU removal. Battelle had demonstrated that permanganate treatment was effective for decontaminating waste samples from Hanford Tank SY-101 and proposed that permanganate be examined as an alternative Sr/TRU removal scheme for complexant-containing tank wastes such as AW107. Battelle conducted preliminary small-scale experiments to determine the effectiveness of permanganate treatment with AN-107 waste samples that had been archived at Battelle from earlier studies. Three series of experiments were performed to evaluate conditions that provided adequate Sr/TRU decontamination using permanganate treatment. The final series included experiments with actual AN-107 diluted feed that had been obtained specifically for BNFL process testing. Conditions that provided adequate Sr/TRU decontamination were identified. A free hydroxide concentration of 0.5M provided adequate decontamination with added Sr of 0.05M and permanganate of 0.03M for archived AN-107. The best results were obtained when reagents were added in the sequence Sr followed by permanganate with the waste at ambient temperature. The reaction conditions for Sr/TRU removal will be further evaluated with a 1-L batch of archived AN-107, which will provide a large enough volume of waste to conduct crossflow filtration studies (Hallen et al. 2000a).

  13. Development of an Alternative Treatment Scheme for Sr/TRU Removal: Permanganate Treatment of AN-107 Waste

    International Nuclear Information System (INIS)

    Hallen, R.T.; Bryan, S.A.; Hoopes, F.V.

    2000-01-01

    A number of Hanford tanks received waste containing organic complexants, which increase the volubility of Sr-90 and transuranic (TRU) elements. Wastes from these tanks require additional pretreatment to remove Sr-90 and TRU for immobilization as low activity waste (Waste Envelope C). The baseline pretreatment process for Sr/TRU removal was isotopic exchange and precipitation with added strontium and iron. However, studies at both Battelle and Savannah River Technology Center (SRTC) have shown that the Sr/Fe precipitates were very difficult to filter. This was a result of the formation of poor filtering iron solids. An alternate treatment technology was needed for Sr/TRU removal. Battelle had demonstrated that permanganate treatment was effective for decontaminating waste samples from Hanford Tank SY-101 and proposed that permanganate be examined as an alternative Sr/TRU removal scheme for complexant-containing tank wastes such as AW107. Battelle conducted preliminary small-scale experiments to determine the effectiveness of permanganate treatment with AN-107 waste samples that had been archived at Battelle from earlier studies. Three series of experiments were performed to evaluate conditions that provided adequate Sr/TRU decontamination using permanganate treatment. The final series included experiments with actual AN-107 diluted feed that had been obtained specifically for BNFL process testing. Conditions that provided adequate Sr/TRU decontamination were identified. A free hydroxide concentration of 0.5M provided adequate decontamination with added Sr of 0.05M and permanganate of 0.03M for archived AN-107. The best results were obtained when reagents were added in the sequence Sr followed by permanganate with the waste at ambient temperature. The reaction conditions for Sr/TRU removal will be further evaluated with a 1-L batch of archived AN-107, which will provide a large enough volume of waste to conduct crossflow filtration studies (Hallen et al. 2000a)

  14. Design and modeling of an advanced marine machinery system including waste heat recovery and removal of sulphur oxides

    DEFF Research Database (Denmark)

    Frimann Nielsen, Rasmus; Haglind, Fredrik; Larsen, Ulrik

    2013-01-01

    -stroke diesel engine and a conventional waste heat recovery system. The results suggest that an organic Rankine cycle placed after the conventional waste heat recovery system is able to extract the sulphuric acid from the exhaust gas, while at the same time increase power generation from waste heat by 32...... consists of a two-stroke diesel engine, the wet sulphuric process for sulphur removal and an advanced waste heat recovery system including a conventional steam Rankine cycle and an organic Rankine cycle. The results are compared with those of a state-of-the-art machinery system featuring a two...

  15. Hierarchical porous structured zeolite composite for removal of ionic contaminants from waste streams and effective encapsulation of hazardous waste

    Energy Technology Data Exchange (ETDEWEB)

    Al-Jubouri, Sama M. [Chemical Engineering & Analytical Science, The University of Manchester, Oxford Road, Manchester M13 9PL (United Kingdom); Curry, Nicholas A. [Materials Science, The University of Manchester, Oxford Road, Manchester M13 9PL (United Kingdom); Holmes, Stuart M., E-mail: stuart.holmes@manchester.ac.uk [Chemical Engineering & Analytical Science, The University of Manchester, Oxford Road, Manchester M13 9PL (United Kingdom)

    2016-12-15

    A hierarchical structured composite made from clinoptilolite supported on date stones carbon is synthesized using two techniques. The composites are manufactured by fixing a natural zeolite (clinoptilolite) to the porous surface of date stones carbon or by direct hydrothermal synthesis on to the surface to provide a supported high surface area ion-exchange material for metal ion removal from aqueous streams. The fixing of the clinoptilolite is achieved using sucrose and citric acid as a binder. The composites and pure clinoptilolite were compared to test the efficacy for the removal of Sr{sup 2+} ions from an aqueous phase. The encapsulation of the Sr{sup 2+} using either vitrification or a geo-polymer addition was tested to ensure that the hazardous waste can be made safe for disposal. The hierarchical structured composites were shown to achieve a higher ion exchange capacity per gram of zeolite than the pure clinoptilolite (65 mg/g for the pure natural clinoptilolite and 72 mg/g for the pure synthesized clinoptilolite) with the synthesized composite (160 mg/g) having higher capacity than the natural clinoptilolite composite (95 mg/g). The rate at which the equilibria were established followed the same trend showing the composite structure facilitates diffusion to the ion-exchange sites in the zeolite.

  16. Aluminum Removal From Hanford Waste By Lithium Hydrotalcite Precipitation - Laboratory Scale Validation On Waste Simulants Test Report

    International Nuclear Information System (INIS)

    Sams, T.; Hagerty, K.

    2011-01-01

    To reduce the additional sodium hydroxide and ease processing of aluminum bearing sludge, the lithium hydrotalcite (LiHT) process has been invented by AREV A and demonstrated on a laboratory scale to remove alumina and regenerate/recycle sodium hydroxide prior to processing in the WTP. The method uses lithium hydroxide (LiOH) to precipitate sodium aluminate (NaAI(OH) 4 ) as lithium hydrotalcite (Li 2 CO 3 .4Al(OH) 3 .3H 2 O) while generating sodium hydroxide (NaOH). In addition, phosphate substitutes in the reaction to a high degree, also as a filterable solid. The sodium hydroxide enriched leachate is depleted in aluminum and phosphate, and is recycled to double-shell tanks (DSTs) to leach aluminum bearing sludges. This method eliminates importing sodium hydroxide to leach alumina sludge and eliminates a large fraction of the total sludge mass to be treated by the WTP. Plugging of process equipment is reduced by removal of both aluminum and phosphate in the tank wastes. Laboratory tests were conducted to verify the efficacy of the process and confirm the results of previous tests. These tests used both single-shell tank (SST) and DST simulants.

  17. Waste management of Line Item projects at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Zill, D.S.

    1993-01-01

    With the growing number of companies involved with today's Line Item projects at the Oak Ridge National Laboratory (ORNL), there are ever increasing problems in the handling of Radioactive Solid Low-Level Waste (SLLW). The most important of these problems is who is going to do what with the waste and when are they going to do it. The who brings to mind training; the what, compliance; and the when, cost. At ORNL, the authors have found that the best way to address the challenges of waste handling where several contractors are involved is through communication, compromise and consistency. Without these elements, opportunities bred from waste handling are likely to bring the project to a halt

  18. Bioremediation system on-line for removal radionuclides in radioactive waters

    International Nuclear Information System (INIS)

    Belinchon, J. A.; Garcia, A. M.; Ruibal, C.; Moreno, D. A.

    2010-01-01

    In previous studies developed in Cofrentes Nuclear Power Plant (Valencia, Spain), has been observed that the microorganisms in the radioactive waters of the spent nuclear fuel pool are capable of colonizing the metallic surfaces of the walls and pipes and perform biofilm. These biofilm retain the nuclides contributing to decontaminate the water. In this project, carried out in Cofrentes Nuclear Power Plant, a pilot plant has been designed for the bio decontamination of the radioactive water. At present, the radioactive water coming from the spent nuclear fuel pools, pass through ionic exchange resins. After, these resins are managed as radioactive waste. In this project, the water passes through a bioreactor with stainless steel balls capable of being colonized by the microorganisms in the water. Inside the bioreactor the water gets in contact with the material of the balls, and a biofilm, which retains the nuclides in the water, is developed. The biofilm is easily removed by any conventional procedure of radiochemical decontamination of materials and the nuclides can be collected in a small volume for recovery final disposition or containment. Later, the material of the bioreactor could be managed as not radioactive material. (Author) 9 refs.

  19. Design of SMART waste heat removal dry cooling tower using solar energy

    International Nuclear Information System (INIS)

    Choi, Yong Jae; Jeong, Yong Hoon

    2014-01-01

    The 85% of cooling system are once-through cooling system and closed cycle wet cooling system. However, many countries are trying to reduce the power plant water requirement due to the water shortage and water pollution. Dry cooling system is investigated for water saving advantage. There are two dry cooling system which are direct and indirect cooling system. In direct type, turbine exhaust is directly cooled by air-cooled condenser. In indirect system, turbine steam is cooled by recirculating intermediate cooling water loop, then the loop is cooled by air-cooled heat exchanger in cooling tower. In this paper, the purpose is to remove SMART waste heat, 200MW by using newly designed tower. The possibility of enhancing cooling performance by solar energy is analyzed. The simple cooling tower and solar energy cooling tower are presented and two design should meet the purpose of removing SMART waste heat, 200MW. In first design, when tower diameter is 70m, the height of tower should be 360m high. In second design, the chimney height decrease from 360m to 180m as collector radius increase from 100m to 500m due to collector temperature enhancement by solar energy, To analyze solar cooling tower further, consideration of solar energy performance at night should be analyzed

  20. Permanganate Treatment of Savannah River Site Simulant Wastes for Strontium and Actinide Removal

    International Nuclear Information System (INIS)

    Wilmarth, W.R.

    2003-01-01

    This study examined the use of sodium permanganate and strontium nitrate to remove the actinides and radio-strontium from Savannah River Site (SRS) waste supernate. We examined the quantities of chemical feed reagents along with increased mixing and the excess of organic reductant. Additionally, we examined two processing schemes including that applicable to either the Salt Waste Processing Facility or the Alpha Removal Process (ARP) (5.6 M sodium ion concentration) conditions and the conditions for an In-Tank application (7.5 M sodium ion concentration). Our results support the following conclusions: The process met minimum required decontamination factors (DFs) within the tested parameter sets for strontium and plutonium in both the ARP and In-Tank application. The strontium DFs far exceeded the required values within the tested parameter sets. Within the ARP application, the use of peroxide as the reductant for permanganate produced higher plutonium DFs than the use of sodium formate. Reductant concentration and degree of mixing strongly influenced radionuclide decontamination. In the formate application under the ARP process, increasing the reductant concentration and mixing energy resulted in higher Sr and Pu decontamination

  1. 3001 canal radiological characterization and waste removal report, Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    Ritchie, M.G.

    1996-12-01

    An underground steel reinforced concrete transfer and storage canal was built in 1943 and operated as an integral part of the Oak Ridge Graphite Reactor Building (3001) until 1963 when the reactor was shutdown. During operation, the canal was used for under water transfer of irradiated materials and other metals from the reactor in Building 3001 to the Building 3019 hot cell for further processing. After shutdown of the reactor, the canal was used for storage of irradiated materials and fission products until 1990 when the larger materials were removed and stored in the Department of Energy (DOE) approved solid waste management storage facilities. At that time it was discovered that a considerable amount of sludge had accumulated over the intervening years and subsequent analysis showed that the sludge contained Resource Conservation and Recovery Act (RCRA) materials that violated quantities allowed by the RCRA regulations. It was also recognized in 1990 that the canal was losing water to evaporation and the ground at the rate of approximately 400 gallons per day. To maintain water quality; i.e., radionuclide content at or near DOE derived concentration guidelines (DCG), the water in the canal is constantly demineralized using a demineralizer in the Building 3001 and demineralized make up water is supplied from the Building 3004 demineralizer. This report summarizes the 301 Canal Cleanup Task and the solid waste removed from the 3001 Canal in 1996

  2. Removal of fission products from waste solutions using 16 different soil samples

    International Nuclear Information System (INIS)

    Bangash, M.A.; Hanif, J.

    1997-01-01

    Most of the nuclear sites use pits in the surrounding soils for the storage/disposal of low active waste (LAW) solutions. The characteristics of the soil if not suitable for the fixation or adsorption of the radioactive nuclides, may cause migration of these nuclides to hydrosphere. The phenomenon has the risk of radio toxic pollution for the living bodies therefore minerals composing the soil and their adsorption properties need to be investigated. For this purpose 16 different soil samples were collected from all over Pakistan. Mineralogical composition of the soils was determined by X-ray diffraction analysis. It was found that most of the samples contained clay minerals, illite, kaolinite and montmorillonite. Studies for the removal of fission products like, /sup 137/Cs. /sup 60/Sr and activation product /sup 60/CO from solution were carried out on these samples. The sorption experiments were performed by batch technique using radioactive as tracers. Distribution co-efficient were determined by mixing he element solution at pH 3 with the soil at soil solution ratios of 1 to 20. It is revealed from the experimental data that efficient removal of fission products from solutions is achieved by soil samples containing clay mineral montmorillonite, followed by little and kaolinite. These soils thus can be effectively used for the disposal of low level radioactive waste solutions without causing any environmental hazard. (author)

  3. Design of SMART waste heat removal dry cooling tower using solar energy

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Yong Jae; Jeong, Yong Hoon [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2014-10-15

    The 85% of cooling system are once-through cooling system and closed cycle wet cooling system. However, many countries are trying to reduce the power plant water requirement due to the water shortage and water pollution. Dry cooling system is investigated for water saving advantage. There are two dry cooling system which are direct and indirect cooling system. In direct type, turbine exhaust is directly cooled by air-cooled condenser. In indirect system, turbine steam is cooled by recirculating intermediate cooling water loop, then the loop is cooled by air-cooled heat exchanger in cooling tower. In this paper, the purpose is to remove SMART waste heat, 200MW by using newly designed tower. The possibility of enhancing cooling performance by solar energy is analyzed. The simple cooling tower and solar energy cooling tower are presented and two design should meet the purpose of removing SMART waste heat, 200MW. In first design, when tower diameter is 70m, the height of tower should be 360m high. In second design, the chimney height decrease from 360m to 180m as collector radius increase from 100m to 500m due to collector temperature enhancement by solar energy, To analyze solar cooling tower further, consideration of solar energy performance at night should be analyzed.

  4. Nickel removal from nickel plating waste water using a biologically active moving-bed sand filter.

    Science.gov (United States)

    Pümpel, Thomas; Macaskie, Lynne E; Finlay, John A; Diels, Ludo; Tsezos, Marios

    2003-12-01

    Efficient removal of dissolved nickel was observed in a biologically active moving-bed 'MERESAFIN' sand filter treating rinsing water from an electroless nickel plating plant. Although nickel is fully soluble in this waste water, its passage through the sand filter promoted rapid removal of approximately 1 mg Ni/l. The speciation of Ni in the waste water was modelled; the most probable precipitates forming under the conditions in the filter were predicted using PHREEQC. Analyses of the Ni-containing biosludge using chemical, electron microscopical and X-ray spectroscopic techniques confirmed crystallisation of nickel phosphate as arupite (Ni3(PO4)2 x 8H2O), together with hydroxyapatite within the bacterial biofilm on the filter sand grains. Biosorption contributed less than 1% of the overall sequestered nickel. Metabolising bacteria are essential for the process; the definitive role of specific components of the mixed population is undefined but the increase in pH promoted by metabolic activity of some microbial components is likely to promote nickel desolubilisation by others.

  5. MERCURY REMOVAL FROM DOE SOLID MIXED WASTE USING THE GEMEP(sm) TECHNOLOGY

    Energy Technology Data Exchange (ETDEWEB)

    None

    1999-03-01

    Under the sponsorship of the Federal Energy Technology Center (FETC), Metcalf and Eddy (M and E), in association with General Electric Corporate Research and Development Center (GE-CRD), Colorado Minerals Research Institute (CMRI), and Oak Ridge National Laboratory (ORNL), conducted laboratory-scale and bench-scale tests of the General Electric Mercury Extraction Process technology on two mercury-contaminated mixed solid wastes from U. S. Department of Energy sites: sediment from the East Fork of Poplar Creek, Oak Ridge (samples supplied by Oak Ridge National Laboratory), and drummed soils from Idaho National Environmental and Engineering Laboratory (INEEL). Fluorescent lamps provided by GE-CRD were also studied. The GEMEP technology, invented and patented by the General Electric Company, uses an extraction solution composed of aqueous potassium iodide plus iodine to remove mercury from soils and other wastes. The extraction solution is regenerated by chemical oxidation and reused, after the solubilized mercury is removed from solution by reducing it to the metallic state. The results of the laboratory- and bench-scale testing conducted for this project included: (1) GEMEP extraction tests to optimize extraction conditions and determine the extent of co-extraction of radionuclides; (2) pre-screening (pre-segregation) tests to determine if initial separation steps could be used effectively to reduce the volume of material needing GEMEP extraction; and (3) demonstration of the complete extraction, mercury recovery, and iodine recovery and regeneration process (known as locked-cycle testing).

  6. Operating test report for project W-417, T-plant steam removal upgrade, waste transfer portion

    International Nuclear Information System (INIS)

    Myers, N.K.

    1997-01-01

    This Operating Test Report (OTR) documents the performance results of the Operating Test Procedure HNF-SD-W417-OTP-001 that provides steps to test the waste transfer system installed in the 221-T Canyon under project W-417. Recent modifications have been performed on the T Plant Rail Car Waste Transfer System. This Operating Test Procedure (OTP) will document the satisfactory operation of the 221-T Rail Car Waste Transfer System modified by project W-417. Project W-417 installed a pump in Tank 5-7 to replace the steam jets used for transferring liquid waste. This testing is required to verify that operational requirements of the modified transfer system have been met. Figure 2 and 3 shows the new and existing system to be tested. The scope of this testing includes the submersible air driven pump operation in Tank 5-7, liquid waste transfer operation from Tank 5-7 to rail car (HO-IOH-3663 or HO-IOH-3664), associated line flushing, and the operation of the flow meter. This testing is designed to demonstrate the satisfactory operation-of the transfer line at normal operating conditions and proper functioning of instruments. Favorable results will support continued use of this system for liquid waste transfer. The Functional Design Criteria for this system requires a transfer flow rate of 40 gallons per minute (GPM). To establish these conditions the pump will be supplied up to 90 psi air pressure from the existing air system routed in the canyon. An air regulator valve will regulate the air pressure. Tank capacity and operating ranges are the following: Tank No. Capacity (gal) Operating Range (gal) 5-7 10,046 0 8040 (80%) Rail car (HO-IOH-3663 HO-IOH-3664) 097219,157 Existing Tank level instrumentation, rail car level detection, and pressure indicators will be utilized for acceptance/rejection Criteria. The flow meter will be verified for accuracy against the Tank 5-7 level indicator. The level indicator is accurate to within 2.2 %. This will be for information only

  7. Removal of cesium and strontium from low active waste solutions by zeolites

    International Nuclear Information System (INIS)

    Jain, Savita; Ramaswamy, M.; Theyyunni, T.K.

    1994-01-01

    Ion exchange, crystallographic and thermal characteristics of sodium, cesium and strontium forms of locally available synthetic zeolites have been investigated. X-ray and differential thermal analyses have confirmed that the synthetic materials AR1 and 4A belonged to the mordenite and A type families of zeolites respectively. Equilibrium uptake of cesium and strontium ions by sodium forms of zeolite was studied as a function of time, pH and sodium concentration. It was found that the rate of sorption by AR1 was higher than that by 4A. In regard to pH, distribution of nuclides on zeolites was found to pass through maxima at a pH value of around 9. Sodium ion interfered with the sorption of cesium and strontium by zeolites. However, at sodium concentration ≤ 0.01 M, distribution coefficient values for these nuclides were sufficiently high to merit consideration of these zeolites for low level waste treatment. Lab-scale column runs using 5 ml beds of materials showed that the zeolites AR1 and 4A were very effective in removing cesium and strontium nuclides respectively from large volumes (a decontamination factor of 50 for a throughput of 6000 bed volumes) of actual low level waste solutions. Thus, the zeolite system has a potential future for large scale application in the treatment of low level wastes. (author). 6 refs., 5 figs., 6 tabs

  8. Removal of sulphates from waste waters by sulphate-reducing bacteria

    Directory of Open Access Journals (Sweden)

    Luptáková Alena

    2002-03-01

    Full Text Available are present in almost all types of water, usually as a simple anion SO42-. The sulphates together with hydrogencarbonates and chlorides are principal anions in natural waters. In typical underground and surface waters, the concentration of sulphates is in the range from ten to hundreds milligrams per litre.Nowadays, the importance of the control of sulphate concentration in waste waters increases. According to the Slovak legislation the limit concentration of sulphates in surface and drinking waters is 250 mg.l-1 . In rivers the contents of sulphates increases mainly by the discharge of waste waters, which are coming mainly from chemical, textile, metallurgical, pharmaceutical, paper and mining industry. The concentration of sulphates in these waters is in the order of grams per litre.Many technologies for the sulphates removal from waste waters exist, including biologico-chemical processes. The principle of one of these methods is the reduction of sulphates by sulphate-reducing bacteria to hydrogen-sulphide.The objective of this work was to study the effect of initial sulphates concentration on the activity of anaerobic sulphate reducers as well as the kinetics of the anaerobic sulphate reduction. The batch reactor was used at temperature of 30°C and pH 7,5. Lactate was used as the carbon source.

  9. Removal and recovery of radionuclides and toxic metals from wastes, soils and materials

    International Nuclear Information System (INIS)

    Francis, A.J.

    1993-07-01

    A process has been developed at Brookhaven National Laboratory (BNL) for the removal of metals and radionuclides from contaminated materials, soils, and waste sites (Figure 1). In this process, citric acid, a naturally occurring organic complexing agent, is used to extract metals such as Ba, Cd, Cr, Ni, Zn, and radionuclides Co, Sr, Th, and U from solid wastes by formation of water soluble, metal-citrate complexes. Citric acid forms different types of complexes with the transition metals and actinides, and may involve formation of a bidentate, tridentate, binuclear, or polynuclear complex species. The extract containing radionuclide/metal complex is then subjected to microbiological degradation followed by photochemical degradation under aerobic conditions. Several metal citrate complexes are biodegraded and the metals are recovered in a concentrated form with the bacterial biomass. Uranium forms binuclear complex with citric acid and is not biodegraded. The supernatant containing uranium citrate complex is separated and upon exposure to light, undergoes rapid degradation resulting in the formation of an insoluble, stable polymeric form of uranium. Uranium is recovered as a precipitate (uranium trioxide) in a concentrated form for recycling or for appropriate disposal. This treatment process, unlike others which use caustic reagents, does not create additional hazardous wastes for disposal and causes little damage to soil which can then be returned to normal use

  10. Waste treatment process for removal of contaminants from aqueous, mixed-waste solutions using sequential chemical treatment and crossflow microfiltration, followed by dewatering

    Science.gov (United States)

    Vijayan, S.; Wong, C.F.; Buckley, L.P.

    1994-11-22

    In processes of this invention aqueous waste solutions containing a variety of mixed waste contaminants are treated to remove the contaminants by a sequential addition of chemicals and adsorption/ion exchange powdered materials to remove the contaminants including lead, cadmium, uranium, cesium-137, strontium-85/90, trichloroethylene and benzene, and impurities including iron and calcium. Staged conditioning of the waste solution produces a polydisperse system of size enlarged complexes of the contaminants in three distinct configurations: water-soluble metal complexes, insoluble metal precipitation complexes, and contaminant-bearing particles of ion exchange and adsorbent materials. The volume of the waste is reduced by separation of the polydisperse system by cross-flow microfiltration, followed by low-temperature evaporation and/or filter pressing. The water produced as filtrate is discharged if it meets a specified target water quality, or else the filtrate is recycled until the target is achieved. 1 fig.

  11. Application of Direct Assessment Approaches and Methodologies to Cathodically Protected Nuclear Waste Transfer Lines

    International Nuclear Information System (INIS)

    Dahl, Megan M.; Pikas, Joseph; Edgemon, Glenn L.; Philo, Sarah

    2013-01-01

    The U.S. Department of Energy's (DOE) Hanford Site is responsible for the safe storage, retrieval, treatment, and disposal of approximately 54 million gallons (204 million liters) of radioactive waste generated since the site's inception in 1943. Today, the major structures involved in waste management at Hanford include 149 carbon steel single-shell tanks, 28 carbon-steel double-shell tanks, plus a network of buried metallic transfer lines and ancillary systems (pits, vaults, catch tanks, etc.) required to store, retrieve, and transfer waste within the tank farm system. Many of the waste management systems at Hanford are still in use today. In response to uncertainties regarding the structural integrity of these systems,' an independent, comprehensive integrity assessment of the Hanford Site piping system was performed. It was found that regulators do not require the cathodically protected pipelines located within the Hanford Site to be assessed by External Corrosion Direct Assessment (ECDA) or any other method used to ensure integrity. However, a case study is presented discussing the application of the direct assessment process on pipelines in such a nuclear environment. Assessment methodology and assessment results are contained herein. An approach is described for the monitoring, integration of outside data, and analysis of this information in order to identify whether coating deterioration accompanied by external corrosion is a threat for these waste transfer lines

  12. The On-line Waste Library (OWL): Usage and Inventory Status Report

    Energy Technology Data Exchange (ETDEWEB)

    Sassani, David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Jang, Je-Hun [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Mariner, Paul [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Price, Laura L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Rechard, Robert P. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Rigali, Mark J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Rogers, Ralph [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Stein, Emily [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Walkow, Walter M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Weck, Philippe F. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-09-23

    The Waste Form Disposal Options Evaluation Report (SNL 2014) evaluated disposal of both Commercial Spent Nuclear Fuel (CSNF) and DOE-managed HLW and Spent Nuclear Fuel (DHLW and DSNF) in the variety of disposal concepts being evaluated within the Used Fuel Disposition Campaign. That work covered a comprehensive inventory and a wide range of disposal concepts. The primary goal of this work is to evaluate the information needs for analyzing disposal solely of a subset of those wastes in a Defense Repository (DRep; i.e., those wastes that are either defense related, or managed by DOE but are not commercial in origin). A potential DRep also appears to be safe in the range of geologic mined repository concepts, but may have different concepts and features because of the very different inventory of waste that would be included. The focus of this status report is to cover the progress made in FY16 toward: (1) developing a preliminary DRep included inventory for engineering/design analyses; (2) assessing the major differences of this included inventory relative to that in other analyzed repository systems and the potential impacts to disposal concepts; (3) designing and developing an on-line waste library (OWL) to manage the information of all those wastes and their waste forms (including CSNF if needed); and (4) constraining post-closure waste form degradation performance for safety assessments of a DRep. In addition, some continuing work is reported on identifying potential candidate waste types/forms to be added to the full list from SNL (2014 – see Table C-1) which also may be added to the OWL in the future. The status for each of these aspects is reported herein.

  13. Removal of actinide elements from high level radioactive waste by trialkylphosphine oxide (TRPO)

    International Nuclear Information System (INIS)

    Song Chongli; Yang Dazhu; He Longhai; Xu Jingming; Zhu Yongjun

    1992-03-01

    The modified TRPO process for removing actinide elements from synthetic solution, which was taken from reprocessing of power reactor nuclear fuel, was verified by cascade experiment. Neptunium valence was adjusted in the process for improving neptunium removing efficiency. At 1 mol/L concentration of HNO 3 of feed solution and after a few stages of extraction with 30% t=TRPO kerosene, over 99.9% of Am, Pu, Np and U could be removed from HAW (high level radioactive waste) solution. The stripping of actinides loaded in TRPO are accomplished by high concentration nitric acid, oxalic acid and sodium carbonate instead of amino carboxylic complexing agents used in previous process. The actinides stripped were divided into three groups, which are Am + RE, Np + Pu, and U, and the cross contamination between them is small. Behaviours of F.P. elements are divided into three types which are not extracted, little extracted and extracted elements. The extracted elements are rare earth and Pd, Zr and Mo which are co-extracted with actinides. The separation factor between actinides and other two types of F.P.elements will increase if more scrubbing sections are added in the process. The relative concentration profile of actinide elements and Tc in various stages as well as the distribution of actinides and F.P. elements in the process stream solutions are also presented

  14. The removal of ammonia from sanitary landfill leachate using a series of shallow waste stabilization ponds.

    Science.gov (United States)

    Leite, V D; Pearson, H W; de Sousa, J T; Lopes, W S; de Luna, M L D

    2011-01-01

    This study evaluated the efficiency of a shallow (0.5 m deep) waste stabilization pond series to remove high concentrations of ammonia from sanitary landfill leachate. The pond system was located at EXTRABES, Campina Grande, Paraiba, Northeast Brazil. The pond series was fed with sanitary landfill leachate transported by road tanker to the experimental site from the sanitary landfill of the City of Joao Pessoa, Paraiba. The ammoniacal-N surface loading on the first pond of the series was equivalent to 364 kg ha(-1) d(-1) and the COD surface loading equivalent to 3,690 kg ha(-1) d(-1). The maximum mean ammonia removal efficiency was 99.5% achieved by the third pond in the series which had an effluent concentration of 5.3 mg L(-1) ammoniacal-N for an accumulative HRT of 39.5 days. The removal process was mainly attributed to ammonia volatilization (stripping) from the pond surfaces as a result of high surface pH values and water temperatures of 22-26°C. Shallow pond systems would appear to be a promising technology for stripping ammonia from landfill leachate under tropical conditions.

  15. Removing antimony from waste lead storage batteries alloy by vacuum displacement reaction technology.

    Science.gov (United States)

    Liu, Tiantian; Qiu, Keqiang

    2018-04-05

    With the wide application of lead acid battery, spent lead acid battery has become a serious problem to environmental protection and human health. Though spent battery can be a contaminant if not handled properly, it is also an important resource to obtain refined lead. Nowadays, the Sb-content in lead storage batteries is about 0.5-3 wt%, which is higher than the Sb-content in the crude lead. However, there are few reports about the process of removing antimony from high-antimony lead bullion. In this study, vacuum displacement reaction technology, a new process for removing antimony from high-antimony lead melts, was investigated. During this process, lead oxide was added to the system and antimony from lead melts was converted into antimony trioxide, which easily was evaporated under vacuum so that antimony was removed from lead melts. The experimental results demonstrated that Sb-content in lead melts decreased from 2.5% to 23 ppm under following conditions: mass ratio of PbO/lead bullion of 0.33, residual gas pressure of 30 Pa, melt temperature of 840 °C, reaction time of 60 min. The distillate gotten can be used as by-product to produce antimony white. Moreover, this study is of importance to recycling of waste lead storage batteries alloy. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Production of biochar from olive mill solid waste for heavy metal removal.

    Science.gov (United States)

    Abdelhadi, Samya O; Dosoretz, Carlos G; Rytwo, Giora; Gerchman, Yoram; Azaizeh, Hassan

    2017-11-01

    Commercial activated carbon (CAC) and biochar are useful adsorbents for removing heavy metals (HM) from water, but their production is costly. Biochar production from olive solid waste from two olive cultivars (Picual and Souri) and two oil production process (two- or three-phase) and two temperatures (350 and 450°C) was tested. The biochar yield was 24-35% of the biomass, with a surface area of 1.65-8.12m 2 g -1 , as compared to 1100m 2 g -1 for CAC. Picual residue from the two-phase milling technique, pyrolysed at 350°C, had the best cumulative removal capacity for Cu +2 , Pb +2 , Cd +2 , Ni +2 and Zn +2 with more than 85% compared to other biochar types and CAC. These results suggest that surface area cannot be used as a sole predictor of HM removal capacity. FTIR analysis revealed the presence of different functional groups in the different biochar types, which may be related to the differences in absorbing capacities. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. The removal of thermo-tolerant coliform bacteria by immobilized waste stabilization pond algae.

    Science.gov (United States)

    Pearson, H W; Marcon, A E; Melo, H N

    2011-01-01

    This study investigated the potential of laboratory- scale columns of immobilized micro-algae to disinfect effluents using thermo-tolerant coliforms (TTC) as a model system. Cells of a Chlorella species isolated from a waste stabilization pond complex in Northeast Brazil were immobilized in calcium alginate, packed into glass columns and incubated in contact with TTC suspensions for up to 24 hours. Five to six log removals of TTC were achieved in 6 hours and 11 log removals in 12 hours contact time. The results were similar under artificial light and shaded sunlight. However little or no TTC removal occurred in the light in columns of alginate beads without immobilized algae present or when the immobilized algae were incubated in the dark suggesting that the presence of both algae and light were necessary for TTC decay. There was a positive correlation between K(b) values for TTC and increasing pH in the effluent from the immobilized algal columns within the range pH 7.2 and 8.9. The potential of immobilized algal technology for wastewater disinfection may warrant further investigation.

  18. Application of coals as sorbents for the removal of Cr from aqueous waste streams

    Energy Technology Data Exchange (ETDEWEB)

    Lakatos, J.; Brown, S.D.; Snape, C.E. [University of Miskolc, Miskolc (Hungary). Dept. of Analytical Chemistry

    2001-09-01

    The study reported further understanding of how various electron transfer processes operate for Cr(VI) with a view to using coals for the removal of Cr(VI) from waste streams. Skye peat, Spanish and German lignites, UK high and low volatility bituminous coals and an activated carbon were used. After treatment to remove exchangeable cations, ion exchange experiments were conducted in 0.1 M acetic acid-sodium acetate (1:1) buffer and 0.05 M sulphuric acid solutions and the slurries were agitated once a day. The ion concentrations in the solutions were determined by flame atomic absorption spectroscopy. The Cr(VI) renaming in solution was determined by the standard calorimetric 1,5-diphenylcarbazide method. Peat and low rank (Spanish Mequinenza) coal exhibited a larger capacity for Cr(VI) removal than bituminous coal. Redox mechanisms are operative coupled with the oxidation of the coal and peat surfaces. Desorption of Cr(III) formed by reduction which occurs in strongly acidic media also needs to be considered. 1 ref., 3 figs.

  19. Removal of brominated flame retardant from electrical and electronic waste plastic by solvothermal technique

    International Nuclear Information System (INIS)

    Zhang, Cong-Cong; Zhang, Fu-Shen

    2012-01-01

    Highlights: ► A process for brominated flame retardants (BFRs) removal in plastic was established. ► The plastic became bromine-free with the structure maintained after this treatment. ► BFRs transferred into alcohol solvent were easily debrominated by metallic copper. - Abstract: Brominated flame retardants (BFRs) in electrical and electronic (E and E) waste plastic are toxic, bioaccumulative and recalcitrant. In the present study, tetrabromobisphenol A (TBBPA) contained in this type of plastic was tentatively subjected to solvothermal treatment so as to obtain bromine-free plastic. Methanol, ethanol and isopropanol were examined as solvents for solvothermal treatment and it was found that methanol was the optimal solvent for TBBPA removal. The optimum temperature, time and liquid to solid ratio for solvothermal treatment to remove TBBPA were 90 °C, 2 h and 15:1, respectively. After the treatment with various alcohol solvents, it was found that TBBPA was finally transferred into the solvents and bromine in the extract was debrominated catalyzed by metallic copper. Bisphenol A and cuprous bromide were the main products after debromination. The morphology and FTIR properties of the plastic were generally unchanged after the solvothermal treatment indicating that the structure of the plastic maintained after the process. This work provides a clean and applicable process for BFRs-containing plastic disposal.

  20. Removal of brominated flame retardant from electrical and electronic waste plastic by solvothermal technique

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Cong-Cong [Research Center For Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing 100085 (China); Zhang, Fu-Shen, E-mail: fszhang@rcees.ac.cn [Research Center For Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing 100085 (China)

    2012-06-30

    Highlights: Black-Right-Pointing-Pointer A process for brominated flame retardants (BFRs) removal in plastic was established. Black-Right-Pointing-Pointer The plastic became bromine-free with the structure maintained after this treatment. Black-Right-Pointing-Pointer BFRs transferred into alcohol solvent were easily debrominated by metallic copper. - Abstract: Brominated flame retardants (BFRs) in electrical and electronic (E and E) waste plastic are toxic, bioaccumulative and recalcitrant. In the present study, tetrabromobisphenol A (TBBPA) contained in this type of plastic was tentatively subjected to solvothermal treatment so as to obtain bromine-free plastic. Methanol, ethanol and isopropanol were examined as solvents for solvothermal treatment and it was found that methanol was the optimal solvent for TBBPA removal. The optimum temperature, time and liquid to solid ratio for solvothermal treatment to remove TBBPA were 90 Degree-Sign C, 2 h and 15:1, respectively. After the treatment with various alcohol solvents, it was found that TBBPA was finally transferred into the solvents and bromine in the extract was debrominated catalyzed by metallic copper. Bisphenol A and cuprous bromide were the main products after debromination. The morphology and FTIR properties of the plastic were generally unchanged after the solvothermal treatment indicating that the structure of the plastic maintained after the process. This work provides a clean and applicable process for BFRs-containing plastic disposal.

  1. Removal action report on Waste Area Grouping 4 seeps 4 and 6 at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1996-12-01

    This report documents removal action activities for a Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) non-time-critical removal action as described in the Action Memorandum prepared in 1996. The technical objective of this removal action was to reduce the release of strontium 90 ( 90 Sr) into an ephemeral tributary to White Oak Creek from Waste Area Grouping 4 (WAG 4) seeps, as measured at Monitoring Station (MS) 1 at ORNL, Oak Ridge, TN. Design was initiated in early January 1996 and grouting activities were completed in late October 9996. Portions of four waste disposal trenches were injected using low-temperature permeation grouting technology with multiple formulations of grouts to reduce the in situ hydraulic conductivity of the waste materials and ultimately reduce the off-site transport of 90 Sr

  2. Water Pollution and Treatments Part II: Utilization of Agricultural Wastes to Remove Petroleum Oils From Refineries Pollutants Present in Waste Water

    International Nuclear Information System (INIS)

    Ali, N.A.; El-Emary, M.M.

    2011-01-01

    Several natural agricultural wastes, of lignocellulose nature, such as Nile flower plant (ward El-Nil), milled green leaves, sugar cane wastes, palm tree leaves (carina), milled cotton stems, milled linseed stems, fine sawdust, coarse sawdust and palm tree cover were dried and then crushed to suitable size to be evaluated and utilized as adsorbents to remove oils floating or suspended in the waste water effluents from refineries and petroleum installations. The parameters investigated include effect of adsorbent type (adsorptive efficiency), adsorbate (type and concentration), mixing time, salinity of the water, adsorbent ratio to treated water, temperature, ph and stirring. Two different Egyptian crude oils varying in their properties and several refined products such as gasoline, kerosene, gas oil, diesel oil, fuel oil and lubricating oil were employed in this work in addition to the skimmed oil from the skim basin separator. Most of the agricultural wastes proved to be very effective in adsorbing oils from waste water effluents.

  3. Parametric and kinetic study of adsorptive removal of dyes from aqueous solutions using an agriculture waste

    Science.gov (United States)

    Bencheikh, imane; el hajjaji, souad; abourouh, imane; Kitane, Said; Dahchour, Abdelmalek; El M'Rabet, Mohammadine

    2017-04-01

    Wastewater treatment is the subject of several studies through decades. Interest is continuously oriented to provide cheaper and efficient methods of treatment. Several methods of treatment exit including coagulation flocculation, filtration, precipitation, ozonation, ion exchange, reverse osmosis, advanced oxidation process. The use of these methods proved limited because of their high investment and operational cost. Adsorption can be an efficient low-cost process to remove pollutants from wastewater. This method of treatment calls for an solid adsorbent which constitutes the purification tool. Agricultural wastes have been widely exploited in this case .As we know the agricultural wastes are an important source of water pollution once discharged into the aquatic environment (river, sea ...). The valorization of such wastes and their use allows the prevention of this problem with an economic and environment benefits. In this context our study aimed testing the wastewater treatment capacity by adsorption onto holocellulose resulting from the valorization of an agriculture waste. In this study, methylene blue (MB) and methyl orange (MO) are selected as models pollutants for evaluating the holocellulose adsorbent capacity. The kinetics of adsorption is performed using UV-visible spectroscopy. In order to study the effect of the main parameters for the adsorption process and their mutual interaction, a full factorial design (type nk) has been used.23 full factorial design analysis was performed to screen the parameters affecting dye removal efficiency. Using the experimental results, a linear mathematical model representing the influence of the different parameters and their interactions was obtained. The parametric study showed that efficiency of the adsorption system (Dyes/ Holocellulose) is mainly linked to pH variation. The best yields were observed for MB at pH=10 and for MO at pH=2.The kinetic data was analyzed using different models , namely , the pseudo

  4. Efficiency Evaluation of Food Waste Materials for the Removal of Metals and Metalloids from Complex Multi-Element Solutions

    Science.gov (United States)

    Giuliano, Antonella; Astolfi, Maria Luisa; Congedo, Rossana; Masotti, Andrea; Canepari, Silvia

    2018-01-01

    Recent studies have shown the potential of food waste materials as low cost adsorbents for the removal of heavy metals and toxic elements from wastewater. However, the adsorption experiments have been performed in heterogeneous conditions, consequently it is difficult to compare the efficiency of the individual adsorbents. In this study, the adsorption capacities of 12 food waste materials were evaluated by comparing the adsorbents’ efficiency for the removal of 23 elements from complex multi-element solutions, maintaining homogeneous experimental conditions. The examined materials resulted to be extremely efficient for the adsorption of many elements from synthetic multi-element solutions as well as from a heavy metal wastewater. The 12 adsorbent surfaces were analyzed by Fourier transform infrared spectroscopy and showed different types and amounts of functional groups, which demonstrated to act as adsorption active sites for various elements. By multivariate statistical computations of the obtained data, the 12 food waste materials were grouped in five clusters characterized by different elements’ removal efficiency which resulted to be in correlation with the specific adsorbents’ chemical structures. Banana peel, watermelon peel and grape waste resulted the least selective and the most efficient food waste materials for the removal of most of the elements. PMID:29495363

  5. Efficiency Evaluation of Food Waste Materials for the Removal of Metals and Metalloids from Complex Multi-Element Solutions.

    Science.gov (United States)

    Massimi, Lorenzo; Giuliano, Antonella; Astolfi, Maria Luisa; Congedo, Rossana; Masotti, Andrea; Canepari, Silvia

    2018-02-26

    Recent studies have shown the potential of food waste materials as low cost adsorbents for the removal of heavy metals and toxic elements from wastewater. However, the adsorption experiments have been performed in heterogeneous conditions, consequently it is difficult to compare the efficiency of the individual adsorbents. In this study, the adsorption capacities of 12 food waste materials were evaluated by comparing the adsorbents' efficiency for the removal of 23 elements from complex multi-element solutions, maintaining homogeneous experimental conditions. The examined materials resulted to be extremely efficient for the adsorption of many elements from synthetic multi-element solutions as well as from a heavy metal wastewater. The 12 adsorbent surfaces were analyzed by Fourier transform infrared spectroscopy and showed different types and amounts of functional groups, which demonstrated to act as adsorption active sites for various elements. By multivariate statistical computations of the obtained data, the 12 food waste materials were grouped in five clusters characterized by different elements' removal efficiency which resulted to be in correlation with the specific adsorbents' chemical structures. Banana peel, watermelon peel and grape waste resulted the least selective and the most efficient food waste materials for the removal of most of the elements.

  6. Efficiency Evaluation of Food Waste Materials for the Removal of Metals and Metalloids from Complex Multi-Element Solutions

    Directory of Open Access Journals (Sweden)

    Lorenzo Massimi

    2018-02-01

    Full Text Available Recent studies have shown the potential of food waste materials as low cost adsorbents for the removal of heavy metals and toxic elements from wastewater. However, the adsorption experiments have been performed in heterogeneous conditions, consequently it is difficult to compare the efficiency of the individual adsorbents. In this study, the adsorption capacities of 12 food waste materials were evaluated by comparing the adsorbents’ efficiency for the removal of 23 elements from complex multi-element solutions, maintaining homogeneous experimental conditions. The examined materials resulted to be extremely efficient for the adsorption of many elements from synthetic multi-element solutions as well as from a heavy metal wastewater. The 12 adsorbent surfaces were analyzed by Fourier transform infrared spectroscopy and showed different types and amounts of functional groups, which demonstrated to act as adsorption active sites for various elements. By multivariate statistical computations of the obtained data, the 12 food waste materials were grouped in five clusters characterized by different elements’ removal efficiency which resulted to be in correlation with the specific adsorbents’ chemical structures. Banana peel, watermelon peel and grape waste resulted the least selective and the most efficient food waste materials for the removal of most of the elements.

  7. Utilization of cocoa pod husk waste as potential adsorbents for Remazol Brilliant Violet 5R removal

    International Nuclear Information System (INIS)

    Tan Tong Siang; Mohd Azmier Ahmad

    2010-01-01

    Removal of Remazol Brilliant Violet 5R (RBV5R) dye from aqueous solution by adsorption onto activated carbon produced from cocoa pod husk (CPH) waste was investigated. Adsorption isotherms were derived at 30 degree Celsius on the basis of batch analysis. Isotherm data were treated according to Langmuir and Freundlich models. Kinetics of adsorption was followed by in situ UV-spectroscopy and the data were treated according to pseudo-first-order and pseudo-second-order models. The fits of experimental data to these equations were examined. It was found that the adsorption process by RVB5R dye onto activated carbon (AC) follows the Freundlich and pseudo-first-order model. (author)

  8. Silver-based getters for 129I removal from low-activity waste

    International Nuclear Information System (INIS)

    Asmussen, R. Matthew; Neeway, James J.; Lawter, Amanda R.; Wilson, Andrew; Qafoku, Nikolla P.

    2016-01-01

    A prominent radionuclide of concern in nuclear wastes, 129 I, is present in low-activity wastes (LAW) at the Hanford site. Several Ag-containing materials were tested as immobilization agents, or ''getters'', for I (as iodide, I - ) removal from deionized (DI) water and a liquid LAW simulant: Ag impregnated activate carbon (Ag-C), Ag exchanged zeolite (Ag-Z), and argentite. In anoxic batch experiments with DI water, the Ag-C and argentite were most effective, with maximum K d values of 6.2 x 10 5 mL/g for the Ag-C and 3.7 x 10 5 mL/g for the argentite after 15 days. Surface area and Ag content were found to influence the performance of the getters in DI water. In the anoxic batch experiments with LAW simulant, Ag-Z vastly outperformed the other getters with K d values of 2.2 x 10 4 mL/g at 2 h, which held steady until 15 days, compared with 1.8 x 10 3 mL/g reached at 15 days by the argentite. All getters were stable over long periods of time (i.e. 40 days) in DI water, while the Ag-Z and argentite were also stable in the LAW simulant. Ag-Z was found to have consistent I removal upon crushing to a smaller particle size and in the presence of O 2 , making it a strong candidate for the treatment of LAW containing I.

  9. Enhanced removal of nitrate from water using amine-grafted agricultural wastes

    Energy Technology Data Exchange (ETDEWEB)

    Kalaruban, Mahatheva; Loganathan, Paripurnanda [Faculty of Engineering, University of Technology Sydney (UTS), P.O. Box 123, Broadway, NSW 2007 (Australia); Shim, W.G. [Faculty of Engineering, University of Technology Sydney (UTS), P.O. Box 123, Broadway, NSW 2007 (Australia); Department of Polymer Science and Engineering, Sunchon National University, 255 Jungang-ro, Suncheon, Jeollanam-do (Korea, Republic of); Kandasamy, Jaya; Ngo, H.H. [Faculty of Engineering, University of Technology Sydney (UTS), P.O. Box 123, Broadway, NSW 2007 (Australia); Vigneswaran, Saravanamuthu, E-mail: s.vigneswaran@uts.edu.au [Faculty of Engineering, University of Technology Sydney (UTS), P.O. Box 123, Broadway, NSW 2007 (Australia)

    2016-09-15

    Adsorption using low-cost adsorbents is a favourable water treatment method for the removal of water contaminants. In this study the enhanced removal of nitrate, a contaminant at elevated concentration affecting human health and causing eutrophication of water, was tested using chemically modified agricultural wastes as adsorbents. Batch and fixed-bed adsorption studies were performed on corn cob and coconut copra that were surface modified by amine-grafting to increase the surface positive charges. The Langmuir nitrate adsorption capacities (mg N/g) were 49.9 and 59.0 for the amine-grafted (AG) corn cob and coconut copra, respectively at pH 6.5 and ionic strength 1 × 10{sup −3} M NaCl. These values are higher than those of many commercially available anion exchange resins. Fixed-bed (15-cm height) adsorption capacities (mg N/g) calculated from the breakthrough curves were 15.3 and 18.6 for AG corn cob and AG coconut copra, respectively, for an influent nitrate concentration 20 mg N/L at a flow velocity 5 m/h. Nitrate adsorption decreased in the presence of sulphate, phosphate and chloride, with sulphate being the most competitive anion. The Thomas model fitted well to the fixed-bed adsorption data from four repeated adsorption/desorption cycles. Plug-flow model fitted well to the data from only the first cycle. - Highlights: • Ground coconut copra and corn cob particles surfaces are readily amine-grafted. • Amine-grafting reversed the particles' surface charge from negative to positive. • Amine-grafting of the waste particles increased nitrate adsorption capacity. • Nitrate adsorption capacity reduced by co-ions; sulphate > chloride > phosphate. • Fixed-bed nitrate adsorption data fitted well to Thomas and plug-flow models.

  10. Removal of cobalt, chromium, copper, iron and nickel cations from electroplating waste water by apatite ore

    Energy Technology Data Exchange (ETDEWEB)

    Kargar-Razi, M.; Yahyaabadi, S. [Azad Univ. Tehran (Iran, Islamic Republic of)

    2012-07-01

    In this investigation, the adsorption behavior of natural phosphate rock and it's concentrate with respect to Fe{sup 3+}, Ni{sup 2+}, Co{sup 2+}, Cu{sup 2+} and Cr{sup 3+} has been studied, in order to consider its application to purity of electroplating waste water pollution. The batch mehtod has been employed, using metal concentrations in solution ranging from 2 ppm to 40 ppm with mixing process. The effect of pH, concentration of heavy metals and times (10-20 min) is considered. The results of their removal performance in 40 ppm concentration, pH = 8 and 10 minutes are obtained as Cr{sup 3+} > Cu{sup 2+} > Fe{sup 3+} > Co{sup 2+} > Ni{sup 2+} for phosphate rock and the sequence can be given as Cr{sup 3+} > Fe{sup 3+} > Cu{sup 2+} > Co{sup 2+} > Ni{sup 2+} for phosphate concentrate. It was found that the adsorption phenomena depend on charge density and hydrated ion diameter. The same results show that maximum adsorption in PH = 4.5 and 7 for concentrate. The Langmuir adsorption isotherm constants corresponding to adsorption capacity were found to be as Cr{sup 3+} > Fe{sup 3+} > Cu{sup 2+} > Ni{sup 2+} > Co{sup 2+} for phosphate soil and Cr{sup 3+} > Fe{sup 3+} > Cu{sup 2+} > Co{sup 2+} > Ni{sup 2+} for phosphate concentrate. Sorption of metallic cations are considered in pH 4.5, 7 and 8. The results show that phosphate rock and its concentrate have great potential to remove cations of heavy metal species from electroplating waste water. (orig.)

  11. Enhanced removal of nitrate from water using amine-grafted agricultural wastes

    International Nuclear Information System (INIS)

    Kalaruban, Mahatheva; Loganathan, Paripurnanda; Shim, W.G.; Kandasamy, Jaya; Ngo, H.H.; Vigneswaran, Saravanamuthu

    2016-01-01

    Adsorption using low-cost adsorbents is a favourable water treatment method for the removal of water contaminants. In this study the enhanced removal of nitrate, a contaminant at elevated concentration affecting human health and causing eutrophication of water, was tested using chemically modified agricultural wastes as adsorbents. Batch and fixed-bed adsorption studies were performed on corn cob and coconut copra that were surface modified by amine-grafting to increase the surface positive charges. The Langmuir nitrate adsorption capacities (mg N/g) were 49.9 and 59.0 for the amine-grafted (AG) corn cob and coconut copra, respectively at pH 6.5 and ionic strength 1 × 10"−"3 M NaCl. These values are higher than those of many commercially available anion exchange resins. Fixed-bed (15-cm height) adsorption capacities (mg N/g) calculated from the breakthrough curves were 15.3 and 18.6 for AG corn cob and AG coconut copra, respectively, for an influent nitrate concentration 20 mg N/L at a flow velocity 5 m/h. Nitrate adsorption decreased in the presence of sulphate, phosphate and chloride, with sulphate being the most competitive anion. The Thomas model fitted well to the fixed-bed adsorption data from four repeated adsorption/desorption cycles. Plug-flow model fitted well to the data from only the first cycle. - Highlights: • Ground coconut copra and corn cob particles surfaces are readily amine-grafted. • Amine-grafting reversed the particles' surface charge from negative to positive. • Amine-grafting of the waste particles increased nitrate adsorption capacity. • Nitrate adsorption capacity reduced by co-ions; sulphate > chloride > phosphate. • Fixed-bed nitrate adsorption data fitted well to Thomas and plug-flow models.

  12. Continuous biological waste gas treatment in stirred trickle-bed reactor with discontinuous removal of biomass.

    Science.gov (United States)

    Laurenzis, A; Heits, H; Wübker, S; Heinze, U; Friedrich, C; Werner, U

    1998-02-20

    A new reactor for biological waste gas treatment was developed to eliminate continuous solvents from waste gases. A trickle-bed reactor was chosen with discontinuous movement of the packed bed and intermittent percolation. The reactor was operated with toluene as the solvent and an optimum average biomass concentration of between 5 and 30 kg dry cell weight per cubic meter packed bed (m3pb). This biomass concentration resulted in a high volumetric degradation rate. Reduction of surplus biomass by stirring and trickling caused a prolonged service life and prevented clogging of the trickle bed and a pressure drop increase. The pressure drop after biomass reduction was almost identical to the theoretical pressure drop as calculated for the irregular packed bed without biomass. The reduction in biomass and intermittent percolation of mineral medium resulted in high volumetric degradation rates of about 100 g of toluene m-3pb h-1 at a load of 150 g of toluene m-3pb h-1. Such a removal rate with a trickle-bed reactor was not reported before. Copyright 1998 John Wiley & Sons, Inc.

  13. Double liquid membrane system for the removal of actinides and lanthanides from acidic nuclear wastes

    International Nuclear Information System (INIS)

    Chiarizia, R.; Danesi, P.R.

    1985-01-01

    Supported liquid membranes (SLM), consisting of an organic solution of n-octyl-(phenyl)-N,N-diisobutylcarbamoylmethylphosphine oxide (CMPO) and tributyl-phosphate (TBP) in decalin are able to perform selective separation and concentration of actinide and lanthanide ions from aqueous nitrate feed solutions and synthetic nuclear wastes. In the membrane process a possible strip solution is a mixture of formic acid and hydroxylammonium formate (HAF). The effectiveness of this strip solution is reduced and eventually nullified by the simultaneous transfer through the SLM of nitric acid which accumulates in the strip solution. A possible way to overcome this drawback is to make use of a second SLM consisting of a primary amine which is able to extract only HNO 3 from the strip solution. In this work the results obtained by experimentally studying the membrane system: synthetic nuclear waste/CMPO-TBP membrane/HCOOH-HAF strip solution/primary amine membrane/NaOH solution, are reported. They show that the use of a second liquid membrane is effective in controlling the HNO 3 concentration in the strip solution, thus allowing the actinide and lanthanide ions removal from the feed solution to proceed to completion. 15 refs., 10 figs., 1 tab

  14. Ion Exchange Modeling Of Cesium Removal From Hanford Waste Using Spherical Resorcinol-Formaldehyde Resin

    Energy Technology Data Exchange (ETDEWEB)

    Aleman, S. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Hamm, L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Smith, F. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2007-06-27

    This report discusses the expected performance of spherical Resorcinol-Formaldehyde (RF) ion exchange resin for the removal of cesium from alkaline Hanford radioactive waste. Predictions of full scale column performance in a carousel mode are made for the Hot Commissioning, Envelope B, and Subsequent Operations waste compositions under nominal operating conditions and for perturbations from the nominal. Only the loading phase of the process cycle is addressed in this report. Pertinent bench-scale column tests, kinetic experiments, and batch equilibrium experiments are used to estimate model parameters and to benchmark the ion-exchange model. The methodology and application presented in this report reflect the expected behavior of spherical RF resin manufactured at the intermediate-scale (i.e., approximately 100 gallon batch size; batch 5E-370/641). It is generally believed that scale-up to production-scale in resin manufacturing will result in similarly behaving resin batches whose chemical selectivity is unaffected while total capacity per gram of resin may vary some. As such, the full-scale facility predictions provided within this report should provide reasonable estimates of production-scale column performance.

  15. Corrosion studies of carbon steel under impinging jets of simulated slurries of neutralized current acid waste (NCAW) and neutralized cladding removal waste (NCRW)

    International Nuclear Information System (INIS)

    Smith, H.D.; Elmore, M.R.

    1992-01-01

    Plans for the disposal of radioactive liquid and solid wastes presently stored in double-shell tanks at the Hanford Site call for retrieval and processing of the waste to create forms suitable for permanent disposal. Waste will be retrieved from a tank using a submerged slurry pump in conjunction with one or more rotating slurry jet mixer pumps. Pacific Northwest Laboratory (PNL) has conducted tests using simulated waste slurries to assess the effects of a impinging slurry jet on the corrosion rate of the tank wall and floor, an action that could potentially compromise the tank's structural integrity. Corrosion processes were investigated on a laboratory scale with a simulated neutralized cladding removal waste (NCRW) slurry and in a subsequent test with simulated neutralized current acid waste (NCAW) slurry. The test slurries simulated the actual NCRW and NCAW both chemically and physically. The tests simulated those conditions expected to exist in the respective double-shell tanks during waste retrieval operations. Results of both tests indicate that, because of the action of the mixer pump slurry jets, the waste retrieval operations proposed for NCAW and NCRW will moderately accelerate corrosion of the tank wall and floor. Based on the corrosion of initially unoxidized test specimens, and the removal of corrosion products from those specimens, the maximum time-averaged corrosion rates of carbon steel in both waste simulants for the length of the test was ∼4 mil/yr. The protective oxide layer that exists in each storage tank is expected to inhibit corrosion of the carbon steel

  16. Preliminary results from uranium/americium affinity studies under experimental conditions for cesium removal from NPP ''Kozloduy'' simulated wastes solutions

    International Nuclear Information System (INIS)

    Nikiforova, A.; Kinova, L.; Peneva, C.; Taskaeva, I.; Petrova, P.

    2005-01-01

    We use the approach described by Westinghouse Savannah River Company using ammonium molybdophosphate (AMP) to remove elevated concentrations of radioactive cesium to facilitate handling waste samples from NPP K ozloduy . Preliminary series of tests were carried out to determine the exact conditions for sufficient cesium removal from five simulated waste solutions with concentrations of compounds, whose complexing power complicates any subsequent processing. Simulated wastes solutions contain high concentrations of nitrates, borates, H 2 C 2 O 4 , ethylenediaminetetraacetate (EDTA) and Citric acid, according to the composition of the real waste from the NPP. On this basis a laboratory treatment protocol was created. This experiment is a preparation for the analysis of real waste samples. In this sense the results are preliminary. Unwanted removal of non-cesium radioactive species from simulated waste solutions was studied with gamma spectrometry with the aim to find a compromise between on the one hand the AMP effectiveness and on the other hand unwanted affinity to AMP of Uranium and Americium. Success for the treatment protocol is defined by proving minimal uptake of U and Am, while at the same time demonstrating good removal effectiveness through the use of AMP. Uptake of U and Am were determined as influenced by oxidizing agents at nitric acid concentrations, proposed by Savannah River National laboratory. It was found that AMP does not significantly remove U and Am when concentration of oxidizing agents is more than 0.1M for simulated waste solutions and for contact times inherent in laboratory treatment protocol. Uranium and Americium affinity under experimental conditions for cesium removal were evaluated from gamma spectrometric data. Results are given for the model experiment and an approach for the real waste analysis is chosen. Under our experimental conditions simulated wastes solutions showed minimal affinity to AMP when U and Am are most probably in

  17. ION EXCHANGE MODELING FOR REMOVAL OF CESIUM FROM HANFORD WASTE USING SUPERLIG 644 RESIN

    International Nuclear Information System (INIS)

    Hamm, L

    2004-01-01

    The expected performance of a proposed ion exchange column using SuperLig(reg s ign) 644 resin for the removal of cesium from Hanford high level radioactive alkaline waste is discussed. This report represents a final report on the ability and knowledge with regard to modeling the Cesium-SuperLig(reg s ign) 644 resin ion exchange system. Only the loading phase of the cycle process is addressed within this report. Pertinent bench-scale column tests and batch equilibrium experiments are addressed. The methodology employed and sensitivity analyses are also included (i.e., existing methodology employed is referenced to prior developmental efforts while updated methodology is discussed). Pilot-scale testing is not assessed since no pilot-scale testing was available at the time of this report. Column performance predictions are made considering three selected feed compositions under nominal operating conditions. The sensitivity analyses provided help to identify key parameters that aid in resin procurement acceptance criteria. The methodology and application presented within this report reflect the expected behavior of SuperLig(reg s ign) 644 resin manufactured at the production-scale (i.e, 250 gallon batch size level). The primary objective of this work was, through modeling and verification based on experimental assessments, to predict the cesium removal performance of SuperLig(reg s ign) 644 resin for application in the RPP pretreatment facility

  18. Enhancement of sludge reduction and methane production by removing extracellular polymeric substances from waste activated sludge.

    Science.gov (United States)

    Nguyen, Minh Tuan; Mohd Yasin, Nazlina Haiza; Miyazaki, Toshiki; Maeda, Toshinari

    2014-12-01

    The management of waste activated sludge (WAS) recycling is a concern that affects the development of the future low-carbon society, particularly sludge reduction and biomass utilization. In this study, we investigated the effect of removing extracellular polymeric substances (EPS), which play important roles in the adhesion and flocculation of WAS, on increased sludge disintegration, thereby enhancing sludge reduction and methane production by anaerobic digestion. EPS removal from WAS by ethylenediaminetetraacetic acid (EDTA) significantly enhanced sludge reduction, i.e., 49 ± 5% compared with 27 ± 1% of the control at the end the digestion process. Methane production was also improved in WAS without EPS by 8881 ± 109 CH4 μmol g(-1) dry-weight of sludge. Microbial activity was determined by denaturing gradient gel electrophoresis and real-time polymerase chain reaction, which showed that the hydrolysis and acetogenesis stages were enhanced by pretreatment with 2% EDTA, with a larger methanogenic community and better methane production. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Removal of total suspended solid by natural coagulant derived from cassava peel waste

    Science.gov (United States)

    Mohd-Asharuddin, S.; Othman, N.; Mohd-Zin, N. S.; Tajarudin, H. A.

    2018-04-01

    The present study was aimed to investigate the performance of starch derived from cassava peel waste as primary coagulant and coagulant aid. Comparable study was also conducted using commercially used aluminium sulfate (alum) as primary coagulant. A series of Jar tests were performed using raw water from Sembrong Barat water treatment plant. It was observed that coagulation test using cassava peel starch (CPS) alone had unappreciable removing ability. However, it was found that combination of alum-CPS successfully achieve up to 90.48% of total suspended solid (TSS) removal under optimized working conditions (pH 9, 7.5mg/L : 100 mg/L of alum : CPS dosage, rapid mixing of 200 rpm for 1 minute; 100 rpm for 2 minutes, slow mixing of 25 rpm for 30 minutes and 30 minutes settling time). This remarks the reduction in alum dosage up to 50% compared to coagulation test using alum alone. Therefore this finding suggesting that CPS can be considered as potential source of sustainable and effective coagulant aid for water treatment especially in developing countries.

  20. Study of mineral ion exchangers for strontium removal from nuclear waste waters

    International Nuclear Information System (INIS)

    Merceille, A.

    2012-01-01

    The problems of chemical pollution of water have become a major concern and a priority for the nuclear industry. The aim of this work is to study some ion exchangers used for the removal of strontium ions because 90 Sr is one of a major pollutant in nuclear liquid wastes. This study allows linking the physical and chemical properties of these materials and their sorption properties. This work presents therefore the synthesis of two materials - sodium nona-titanate and zeolite A - selected for their specific sorption properties of strontium: A second part of this work is dedicated to the study of specific exchange capacities of these materials for the strontium in presence of other elements such as sodium and calcium. Batch experiments were performed and kinetic and ion exchange models have been applied to understand the selectivity of the materials for strontium removal. Sodium nona-titanate and zeolite A are also studied in actual effluents. Monoliths of zeolite A have been also tested in dynamic ion exchange process. This material is promising for the treatment of radioactive effluents in continuous flow because it joins the sorption properties of the zeolite powder with the advantage of a solid with a macroporous network. (author) [fr

  1. Fruit stones from industrial waste for the removal of lead ions from polluted water.

    Science.gov (United States)

    Rashed, M N

    2006-08-01

    Lead, one of the earliest metals recognized and used by humans, has a long history of beneficial use. However, it is now recognized as toxic and as posing a widespread threat to humans and wildlife. Treatment of lead from polluted water and wastewater has received a great deal of attention. Adsorption is one of the most common technologies for the treatment of lead-polluted water. This technique was evaluated here, with the goal of identifying innovative, low-cost adsorbent. This study presents experiments undertaken to determine the suitable conditions for the use of peach and apricot stones, produced from food industries as solid waste, as adsorbents for the removal of lead from aqueous solution. Chemical stability of adsorbents, effect of pH, adsorbents dose, adsorption time and equilibrium concentration were studied. The results reveal that adsorption of lead ions onto peach stone was stronger than onto apricot stone up to 3.36% at 3 h adsorption time. Suitable equilibrium time for the adsorption was 3-5 h (% Pb adsorption 93% for apricot and 97.64% for peach). The effective adsorption range for pH in the range was 7-8. Application of Langmuir and Freundlich isotherm models show high adsorption maximum and binding energies for using these adsorbents for the removal of lead ions from contaminated water and wastewater.

  2. Waste biomass adsorbents for copper removal from industrial wastewater--a review.

    Science.gov (United States)

    Bilal, Muhammad; Shah, Jehanzeb Ali; Ashfaq, Tayyab; Gardazi, Syed Mubashar Hussain; Tahir, Adnan Ahmad; Pervez, Arshid; Haroon, Hajira; Mahmood, Qaisar

    2013-12-15

    Copper (Cu(2+)) containing wastewaters are extensively released from different industries and its excessive entry into food chains results in serious health impairments, carcinogenicity and mutagenesis in various living systems. An array of technologies is in use to remediate Cu(2+) from wastewaters. Adsorption is the most attractive option due to the availability of cost effective, sustainable and eco-friendly bioadsorbents. The current review is dedicated to presenting state of the art knowledge on various bioadsorbents and physico-chemical conditions used to remediate Cu(2+) from waste streams. The advantages and constraints of various adsorbents were also discussed. The literature revealed the maximum Cu adsorption capacities of various bioadsorbents in the order of algae>agricultural and forest>fungal>bacterial>activated carbon>yeast. However, based on the average Cu adsorption capacity, the arrangement can be: activated carbon>algal>bacterial>agriculture and forest-derived>fungal>yeast biomass. The data of Cu removal using these bioadsorbents were found best fit both Freundlich and Langmuir models. Agriculture and forest derived bioadsorbents have greater potential for Cu removal because of higher uptake, cheaper nature, bulk availability and mono to multilayer adsorption behavior. Higher costs at the biomass transformation stage and decreasing efficiency with desorption cycles are the major constraints to implement this technology. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Denitration of simulated high-level liquid wastes and selective removal of cesium with zeolites

    Energy Technology Data Exchange (ETDEWEB)

    Mimura, Hitoshi; Kanno, Takuji [Tohoku Univ., Sendai (Japan). Research Inst. of Mineral Dressing and Metallurgy; Kimura, Toshiya

    1982-03-01

    Denitration of high-level liquid wastes (HLW) from nuclear fuel reprocessing has been studied. Selective removal of Cs has been also examined with various types of zeolites. The following zeolites were used in this study; Na-synthetic mordenite (NaSM), Na-natural mordenite (NaNM), Na-natural clinoptilolite (NaCP) and H-synthetic mordenites (HSM). The effective denitration is found in the simulated HLW (15 components, 2N HNO/sub 3/ soln.) containing platinum group elements in the case of the addition of formic acid, and the pH of the solution shows the value of 5.4 when the excess formic acid ((HCOOH)/(HNO/sub 3/) = 2.0) was added. Platinum group elements may react as a catalyst for the decomposition of nitric acid and the excess formic acid. The break-through properties of NaSM column are poor for the simulated HLW, and the selective removal of Cs appears to be difficult. On the other hand, good results are obtained in the denitrated HLW, i.e., break-through capacity, total capacity and column utilization are 59.4 (meq./100 g zeolite), 147 (meq./100 g zeolite) and 40.4 (%), respectively. The break-through properties of NaSM and NaNM are superior to those of HSM. The break-through capacity and column utilization increase with an increase in column temperature.

  4. Denitration of simulated high-level liquid wastes and selective removal of cesium with zeolites

    International Nuclear Information System (INIS)

    Mimura, Hitoshi; Kanno, Takuji; Kimura, Toshiya.

    1982-01-01

    Denitration of high-level liquid wastes (HLW) from nuclear fuel reprocessing has been studied. Selective removal of Cs has been also examined with various types of zeolites. The following zeolites were used in this study; Na-synthetic mordenite (NaSM), Na-natural mordenite (NaNM), Na-natural clinoptilolite (NaCP) and H-synthetic mordenites (HSM). The effective denitration is found in the simulated HLW (15 components, 2N HNO 3 soln.) containing platinum group elements in the case of the addition of formic acid, and the pH of the solution shows the value of 5.4 when the excess formic acid ([HCOOH]/[HNO 3 ] = 2.0) was added. Platinum group elements may react as a catalyst for the decomposition of nitric acid and the excess formic acid. The break-through properties of NaSM column are poor for the simulated HLW, and the selective removal of Cs appears to be difficult. On the other hand, good results are obtained in the denitrated HLW, i.e., break-through capacity, total capacity and column utilization are 59.4 (meq./100 g zeolite), 147 (meq./100 g zeolite) and 40.4 (%), respectively. The break-through properties of NaSM and NaNM are superior to those of HSM. The break-through capacity and column utilization increase with an increase in column temperature. (author)

  5. REMOVAL OF ARSENIC FROM AN AQUEOUS SOLUTION BY PRETREATED WASTE TEA FUNGAL BIOMASS

    Directory of Open Access Journals (Sweden)

    S. Mamisahebei , Gh. R. Jahed Khaniki, A. Torabian, S. Nasseri, K. Naddafi

    2007-04-01

    Full Text Available Arsenic contamination in water poses a serious threat on human health. The tea fungus known as Kombucha is a waste produced during black tea fermentation. The objective of this study was to examine the main aspect of a possible strategy for the removal of arsenates employing tea fungal biomass. The pretreatment of biomass with FeCl3 was found to improve the biosorption efficiency. Arsenics uptake was found to be rapid for all concentrations and reached to 79% of equilibrium capacity of biosorption in 20 min and reached equilibrium in 90 min. The pseudo second-order and first-order models described the biosorption kinetics of As (V with good correlation coefficient (R2>0.93 and better than the other equations. The data obtained from the experiment of biosorption isotherm were analyzed using the Freundlich and Langmuir isotherm models. The equation described the isotherm of As (V biosorption with relatively high correlation coefficient (R2>0.93. According to the Langmuir model, the maximum uptake capacities (qm of tea fungal biomass for As (V were obtained 3.9810-3 mmol/gr. The effect of Na+, K+, Mg+2 and Ca+2 on equilibrium capacities of As was not significant. The variation of sorption efficiency with pH showed that optimum biosorption takes place in the pH ranges of 6 to 8. Promising results were obtained in laboratory experiments and effective As (V removals were observed.

  6. The removal of 134Cs from radioactive process waste water by coprecipitate flotation

    International Nuclear Information System (INIS)

    Aziz, M.; Shakir, K.; Benyamin, K.

    1986-01-01

    The coprecipitate flotation of 134 Cs from radioactive process waste water using copper ferrocyanide as a coprecipitating agent and sodium lauryl sulphate, cetyl trimethyl ammonium bromide or gelatin as collector was extensively investigated to establish the best conditions for caesium removal with each of the collectors under test. The investigated parameters include the collector dosage, the Cu 2+ /Fe(CN) 6 4- ratio, the caesium, potassium, sodium and calcium ion concentrations, the ageing time period of the Cu 2+ - Fe(CN) 6 4- - 134 Cs - water system and the bubbling time duration. The results indicate that copper ferrocyanide has a high affinity for caesium and can preferentially co-precipitate it in presence of relatively high amounts of other alkali or alkaline earth cations. For the alkali metals the affinity increases in the order Na < K < Cs. Under the optimal conditions removals higher than 99% could be achieved with any of the tested collectors. The results are discussed in terms of the ion exchange properties of copper ferrocyanide and collector behaviour. Advantages of the coflotation technique over other methods are enumerated. (Auth.)

  7. Removal of power line interference of space bearing vibration signal based on the morphological filter and blind source separation

    Science.gov (United States)

    Dong, Shaojiang; Sun, Dihua; Xu, Xiangyang; Tang, Baoping

    2017-06-01

    Aiming at the problem that it is difficult to extract the feature information from the space bearing vibration signal because of different noise, for example the running trend information, high-frequency noise and especially the existence of lot of power line interference (50Hz) and its octave ingredients of the running space simulated equipment in the ground. This article proposed a combination method to eliminate them. Firstly, the EMD is used to remove the running trend item information of the signal, the running trend that affect the signal processing accuracy is eliminated. Then the morphological filter is used to eliminate high-frequency noise. Finally, the components and characteristics of the power line interference are researched, based on the characteristics of the interference, the revised blind source separation model is used to remove the power line interferences. Through analysis of simulation and practical application, results suggest that the proposed method can effectively eliminate those noise.

  8. Removal heavy metals and sulphate from waste waters by sulphate-reducing bacteria

    Directory of Open Access Journals (Sweden)

    Kušnierová Mária

    2000-09-01

    Full Text Available This article is devoted to the process of bacterial sulphate reduction, which is used to removal of heavy metals and sulphate ions from waste waters.The life of animals and plants depends on the existence of microscopic organisms – microorganisms (MO, which play an important role in cycle changes of biogenic elements on the earth. The sulphur cycle in the nature is considered as one of the oldest and most significant biological systems (Fig. 1. The sulphate-reducing bacteria (SRB miss the assimilatory part of the cycle and produce sulphides. The microbial population of this dissimilatory part is called “sulfuretum”. The SRB can be found in anaerobic mud and sediments of freshwater, thermal or non-thermal sulphur springs, mining waters from sulphide deposits, oil deposits, sea and ocean beds, and in the gastrointestinal tract of man and animals. The SRB represent a group of chemoorganotrophic, strictly anaerobic and gramnegative bacteria, which exhibit a great morphological and physiological diversity. Despite of their considerable morphological variety, they have one property in common, which is the ability to utilise preferentially sulphates (occasionally sulphites, thiosulphates, tetrathionates as electron acceptors, which are reduced to sulphides, during anaerobic respiration. The electron donors in these processes are simple organic compounds as lactate, malate, etc.,(heterotrophically reduction or gaseous hydrogen (autotrophically reduction. SRB can produce a considerable amount of hydrogen sulphide, which reacts easily in aqueous solution with the cations of heavy metals, forming metal sulphides that have low solubility. The bacterial sulphate reduction can be used for the treatment of acid mine drainage waters, which is considered to be the major problem associated with mining activities.In order to remove heavy metals from waste waters, e.g., from galvanizing plants, mine waters (Smolnik, Šobov locality and metallurgic plants (works

  9. Radiological Assessment for the Removal of Legacy BPA Power Lines that Cross the Hanford Site

    International Nuclear Information System (INIS)

    Millsap, William J.; Brush, Daniel J.

    2013-01-01

    This paper discusses some radiological field monitoring and assessment methods used to assess the components of an old electrical power transmission line that ran across the Hanford Site between the production reactors area (100 Area) and the chemical processing area (200 Area). This task was complicated by the presence of radon daughters -- both beta and alpha emitters -- residing on the surfaces, particularly on the surfaces of weathered metals and metals that had been electrically-charged. In many cases, these activities were high compared to the DOE Surface Contamination Guidelines, which were used as guides for the assessment. These methods included the use of the Toulmin model of argument, represented using Toulmin diagrams, to represent the combined force of several strands of evidences, rather than a single measurement of activity, to demonstrate beyond a reasonable doubt that no or very little Hanford activity was present and mixed with the natural activity. A number of forms of evidence were used: the overall chance of Hanford contamination; measurements of removable activity, beta and alpha; 1-minute scaler counts of total surface activity, beta and alpha, using 'background makers'; the beta activity to alpha activity ratios; measured contamination on nearby components; NaI gamma spectral measurements to compare uncontaminated and potentially-contaminated spectra, as well as measurements for the sentinel radionuclides, Am- 241 and Cs-137 on conducting wire; comparative statistical analyses; and in-situ measurements of alpha spectra on conducting wire showing that the alpha activity was natural Po-210, as well as to compare uncontaminated and potentially-contaminated spectra

  10. Radiological Assessment for the Removal of Legacy BPA Power Lines that Cross the Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    Millsap, William J.; Brush, Daniel J.

    2013-11-13

    This paper discusses some radiological field monitoring and assessment methods used to assess the components of an old electrical power transmission line that ran across the Hanford Site between the production reactors area (100 Area) and the chemical processing area (200 Area). This task was complicated by the presence of radon daughters -- both beta and alpha emitters -- residing on the surfaces, particularly on the surfaces of weathered metals and metals that had been electrically-charged. In many cases, these activities were high compared to the DOE Surface Contamination Guidelines, which were used as guides for the assessment. These methods included the use of the Toulmin model of argument, represented using Toulmin diagrams, to represent the combined force of several strands of evidences, rather than a single measurement of activity, to demonstrate beyond a reasonable doubt that no or very little Hanford activity was present and mixed with the natural activity. A number of forms of evidence were used: the overall chance of Hanford contamination; measurements of removable activity, beta and alpha; 1-minute scaler counts of total surface activity, beta and alpha, using "background makers"; the beta activity to alpha activity ratios; measured contamination on nearby components; NaI gamma spectral measurements to compare uncontaminated and potentially-contaminated spectra, as well as measurements for the sentinel radionuclides, Am- 241 and Cs-137 on conducting wire; comparative statistical analyses; and in-situ measurements of alpha spectra on conducting wire showing that the alpha activity was natural Po-210, as well as to compare uncontaminated and potentially-contaminated spectra.

  11. Evaluation of a membrane bioreactor system as post-treatment waste water treatment for better removal of micropollutants

    DEFF Research Database (Denmark)

    Arriaga, Sonia; de Jonge, Nadieh; Lund Nielsen, Marc

    2016-01-01

    Organic micropollutants such as pharmaceuticals are persistent pollutants that are only partially degraded in waste water treatment plants (WWTPs). In this study, a membrane bioreactor (MBR) system was used as a polishing step on a full-scale WWTP, and its ability to remove micropollutants...

  12. Electrodialytic removal of heavy metals from municipal solid waste incineration fly ash using ammonium citrate as assisting agent

    DEFF Research Database (Denmark)

    Pedersen, Anne Juul; Ottosen, Lisbeth M.; Villumsen, Arne

    2005-01-01

    Electrodialytic remediation, an electrochemically assisted separation method, has previ-ously shown potential for removal of heavy metals from municipal solid waste incineration (MSWI) fly ashes. In this work electrodialytic remediation of MSWI fly ash using ammonium citrate as assisting agent...

  13. Material development for waste to energy plants. Overlay welding and refractory linings. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Noergaard Hansson, A.

    2011-02-15

    Waste is an extremely corrosive fuel. In order to recover a higher percentage of the energy in waste, waste incineration plants have developed from purely heat producing units to heat and power producing units. The change in concept results in higher material temperatures and thereby faster material degradation. As a result material failures have been observed in many waste incineration plants. The purpose of this project was to develop materials with higher resistance to the corrosive elements, in order to reduce the cost of maintenance, increase the availability, and increase the efficiency. The focus is on overlay welding and refractory linings. Inconel 625, alloy 50, alloy 686, and Super 625 offer equivalent corrosion protection at panel walls. 100% overlay performs better than 50% overlay. The corrosion morphology changes with increasing temperature from pitting and general corrosion to pitting and selective corrosion (dendritic core or grain boundaries). The previously observed detrimental effect of Fe on the corrosion resistance was not confirmed. It probably depends on factors such as microstructure of the alloy and local metal temperature. Ni-overlay also reduces the corrosion rates on superheater tubes. However, the superheater environment is less aggressive than the water wall environment. Failure of refractory linings is linked to excess porosity, detrimental reactions between raw materials and other mix constituents, volume growth reactions between base material and salt depositions, and thermal stress induced crack formation. Free water and not decomposition of hydrates causes spalling and cracking during the initial heating of refractory linings. Finite Element analysis confirms the stress levels between steel and refractory with the higher stress level at the top of the panel wall tube. A number of LCC mixes were formulated, adjusted and tested. Mixes with low open porosities ({approx} 10%) and state of the art resistance to KCl were achieved. (LN)

  14. Removal of Gross Air Embolization from Cardiopulmonary Bypass Circuits with Integrated Arterial Line Filters: A Comparison of Circuit Designs.

    Science.gov (United States)

    Reagor, James A; Holt, David W

    2016-03-01

    Advances in technology, the desire to minimize blood product transfusions, and concerns relating to inflammatory mediators have lead many practitioners and manufacturers to minimize cardiopulmonary bypass (CBP) circuit designs. The oxygenator and arterial line filter (ALF) have been integrated into one device as a method of attaining a reduction in prime volume and surface area. The instructions for use of a currently available oxygenator with integrated ALF recommends incorporating a recirculation line distal to the oxygenator. However, according to an unscientific survey, 70% of respondents utilize CPB circuits incorporating integrated ALFs without a path of recirculation distal to the oxygenator outlet. Considering this circuit design, the ability to quickly remove a gross air bolus in the blood path distal to the oxygenator may be compromised. This in vitro study was designed to determine if the time required to remove a gross air bolus from a CPB circuit without a path of recirculation distal to the oxygenator will be significantly longer than that of a circuit with a path of recirculation distal to the oxygenator. A significant difference was found in the mean time required to remove a gross air bolus between the circuit designs (p = .0003). Additionally, There was found to be a statistically significant difference in the mean time required to remove a gross air bolus between Trial 1 and Trials 4 (p = .015) and 5 (p =.014) irrespective of the circuit design. Under the parameters of this study, a recirculation line distal to an oxygenator with an integrated ALF significantly decreases the time it takes to remove an air bolus from the CPB circuit and may be safer for clinical use than the same circuit without a recirculation line.

  15. Removal of strontium and transuranics from Hanford waste via hydrothermal processing -- FY 1994/95 test results

    International Nuclear Information System (INIS)

    Orth, R.J.; Schmidt, A.J.; Elmore, M.R.; Hart, T.R.; Neuenschwander, G.G.; Gano, S.R.; Lehmann, R.W.; Momont, J.A.

    1995-09-01

    Under the Tank Waste Remediation System (TWRS) Pretreatment Technology Development Project, Pacific Northwest Laboratory (PNL) is evaluating and developing organic destruction technologies that may be incorporated into the Initial Pretreatment Module (IPM) to treat Hanford tank waste. Organic (and ferrocyanide) destruction removes the compounds responsible for waste safety issues, and conditions the supernatant for low-level waste disposal by removing compounds that may be responsible for promoting strontium and transuranic (TRU) components solubility. Destruction or defunctionalization of complexing organics in tank wastes eliminates organic species that can reduce the efficiency of radionuclide (E.g., 90 Sr) separation processes, such as ion exchange, solvent extraction, and precipitation. The technologies being evaluated and tested for organic destruction are low-temperature hydrothermal processing (HTP) and wet air oxidation (WAO). Four activities are described: Batch HTP/WAO testing with Actual Tank Waste (Section 3.0), Batch HTP Testing with Simulant (Section 4.0), Batch WAO testing with Simulant (Section 5.0), and Continuous Bench-scale WAO Testing with Simulant (Section 6.0). For each of these activities, the objectives, test approach, results, status, and direction of future investigations are discussed. The background and history of the HTP/WAO technology is summarized below. Conclusions and Recommendations are provided in Section 2.0. A continuous HTP off-gas safety evaluation conducted in FY 1994 is included as Appendix A

  16. Removal of some Fission Products from Low Level Liquid Radioactive Waste by Chemical Precipitation liquid/Co-precipitation / Phosphate Coagulant

    International Nuclear Information System (INIS)

    Borai, E.H.; Attallah, M.F.; Hilal, M.A.; Abo-Aly, M.M.; Shehata, F.A.

    2008-01-01

    In Egypt radioactive waste has been generated from various uses of radioactive materials. Presence of cesium demonstrated a major problem from the removal point of view even by conventional and advanced technologies. Selective chemical precipitation has been oriented for removal of some fission products including 137 Cs from low level liquid radioactive waste (LLLRW). The aim of the present study was focused to investigate the effectiveness of various phosphate compounds that improved the precipitation process and hence the decontamination factor. The results showed that, maximum removal of 137 Cs reaching 46.4 % using di-sodium hydrogen phosphate as a selective coagulant. It was found that significant enhancement of co-precipitation of 137 Cs (62.5 %) was obtained due to presence of Nd 3+ in the LLLRW

  17. Removal of selenium species from waters using various surface-modified natural particles and waste materials

    Energy Technology Data Exchange (ETDEWEB)

    Yigit, Nevzat O.; Tozum, Seda [Department of Environmental Engineering, Suleyman Demirel University, Isparta (Turkey)

    2012-07-15

    Waste red mud and natural pumice/volcanic slag particles were surface modified and their selenium adsorption from waters was investigated. Acid activation/heat treatment of original red mud (ORM) particles significantly increased their micropore and external surface area and cumulative volume of pores. Iron oxide coating of pumice/slags and acid activation of ORM decreased their pH{sub pzc} values and increased surface acidity. Selenite/selenate adsorption on iron oxide surfaces and acid activated red mud (AARM) was very fast with approximately first-order adsorption kinetics. Iron oxide coating of pumice/slag and acid activation of ORM particles significantly enhanced their selenite and selenate uptakes. Maximum Se adsorption capacities as high as 6.3 (mg Se/g adsorbent) were obtained by AARM. The extent of selenate uptakes by the surface modified particles was generally lower than those of selenite. Due to competition among Se species and other background water matrix for iron oxide adsorption sites, reduced selenite/selenate uptakes were found in natural water compared to single solute tests. Higher Se uptakes by iron oxide surfaces were found at pH 7.5 compared to pH 8.9, due to increased electrostatic repulsion among iron oxides and Se species at higher pH. The most effective adsorbents among the tested 17 different particles for Se uptake were AARM and iron oxide coated pumice. Se concentrations less than drinking water standards (5-10 {mu}g/L) can be achieved by these particles. These low-cost, natural, or recyclable waste particles appear to be promising adsorbents for Se removal after their surface modification. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. Waste water treatment plants with removal of nitrogens and phosphorous; Planta de tratamiento de aguas residuales con eliminacion de fosforo y nitrogeno

    Energy Technology Data Exchange (ETDEWEB)

    Kroiss, H.

    1996-10-01

    Wherever waste water is discharged into a receiving water of a sensitive area the treatment efficiency has to be increased beyond the removal of easily biodegradable carbonaceous compounds (BOD{sub 5}). The main requirements are then the removal of nitrogens and phosphorous compounds in order to prevent eutrophication in the receiving water. With these requirements a much better removal of carbonaceous matter is achieved too. One of this prerequisites for nitrogen removal is the nitrification process wich removes ammonia toxicity from the waste water. The removal of ammonia from the waste water can easily be monitored by the treatment plant operators and can be classified as the best indicator for a stable high treatment efficiency for every waste water.

  19. Species removal from aqueous radioactive waste by deep-bed filtration.

    Science.gov (United States)

    Dobre, Tănase; Zicman, Laura Ruxandra; Pârvulescu, Oana Cristina; Neacşu, Elena; Ciobanu, Cătălin; Drăgolici, Felicia Nicoleta

    2018-05-26

    Performances of aqueous suspension treatment by deep-bed sand filtration were experimentally studied and simulated. A semiempirical deterministic model and a stochastic model were used to predict the removal of clay particles (20 μm) from diluted suspensions. Model parameters, which were fitted based on experimental data, were linked by multiple linear correlations to the process factors, i.e., sand grain size (0.5 and 0.8 mm), bed depth (0.2 and 0.4 m), clay concentration in the feed suspension (1 and 2 kg p /m 3 ), suspension superficial velocity (0.015 and 0.020 m/s), and operating temperature (25 and 45 °C). These relationships were used to predict the bed radioactivity determined by the deposition of radioactive suspended particles (>50 nm) from low and medium level aqueous radioactive waste. A deterministic model based on mass balance, kinetic, and interface equilibrium equations was developed to predict the multicomponent sorption of 60 Co, 137 Cs, 241 Am, and 3 H radionuclides (0.1-0.3 nm). A removal of 98.7% of radioactive particles was attained by filtering a radioactive wastewater volume of 10 m 3 (0.5 mm sand grain size, 0.3 m bed depth, 0.223 kg p /m 3 suspended solid concentration in the feed suspension, 0.003 m/s suspension superficial velocity, and 25 °C operating temperature). Predicted results revealed that the bed radioactivity determined by the sorption of radionuclides (0.01 kBq/kg b ) was significantly lower than the bed radioactivities caused by the deposition of radioactive particles (0.5-1.8 kBq/kg b ). Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Assessment of the Mechanisms for Sr-90 and TRU Removal from Complexant-Containing Tank Wastes at Hanford

    International Nuclear Information System (INIS)

    Hallen, Richard T.; Geeting, John GH; Lilga, Michael A.; Hart, Todd R.; Hoopes, Francis V.

    2005-01-01

    Small-scale tests (∼20 mL) were conducted with samples from Hanford underground storage tanks AN-102 and AN-107 to assess the mechanisms for removing Sr-90 and transuranics (TRU) from the liquid (supernatant) portion of the waste. The Sr-90 and TRU must be removed (decontaminated), in addition to Cs-137 and the entrained solids, before the supernatant can be disposed of as low-activity waste. Experiments were conducted with various reagents and modified Sr/TRU removal process conditions to more fully understand the reaction mechanisms. The optimized treatment conditions--no added hydroxide, addition of Sr (0.02M target concentration) followed by sodium permanganate (0.02M target concentration) with mixing at ambient temperature--were used as a reference for comparison. The waste was initially two orders of magnitude undersaturated with Sr; the addition of nonradioactive Sr(NO?) ? saturated the supernatant, resulting in isotopic dilution and precipitation of Sr-90 as SrCO?. The reaction chemistry of Mn species relevant to the mechanism of TRU removal by permanganate treatment was evaluated, along with the importance of various mechanisms for decontamination, such as precipitation, absorption, ligand exchange, and oxidation of organic complexants. For TRU removal, permanganate addition generally gave the highest DF. The addition of Mn of lower oxidation states (II, IV, and VI) also resulted in good TRU removal, as did complexant oxidation with periodate and addition of Zr(IV) for ligand exchange. These results suggest that permanganate treatment leads to TRU removal by multiple routes

  1. Scoping Tests of Technetium and Iodine Removal from Tank Waste Using SuperLig® 639 Resin

    Energy Technology Data Exchange (ETDEWEB)

    Nash, C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); McCabe, D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2013-09-26

    The primary chemical form of 99Tc found in Hanford Low Activity Waste (LAW) is pertechnetate anion (TcO4 -), which is highly soluble in water, and is mobile if released to the environment. Pertechnetate will not be removed from the aqueous waste in the Hanford waste treatment plant, and the primary disposition path is immobilization in the LAW glass waste form, which will be disposed in the Integrated Disposal Facility (IDF). Due to the soluble properties of pertechnetate, and the potential for impact to the Performance Assessment (PA), effective management of 99Tc is important to the overall success of the River Protection Project mission. Washington River Protection Solutions (WRPS) is developing some conceptual flow-sheets for LAW treatment and disposal that could benefit from technetium removal. While 99Tc is the primary radionuclide of interest, 129I also contributes to the calculated future dose of disposed LAW, and it would be of interest to examine if removal is possible.

  2. Establishing a store baseline during interim storage of waste packages and a review of potential technologies for base-lining

    Energy Technology Data Exchange (ETDEWEB)

    McTeer, Jennifer; Morris, Jenny; Wickham, Stephen [Galson Sciences Ltd. Oakham, Rutland (United Kingdom); Bolton, Gary [National Nuclear Laboratory Risley, Warrington (United Kingdom); McKinney, James; Morris, Darrell [Nuclear Decommissioning Authority Moor Row, Cumbria (United Kingdom); Angus, Mike [National Nuclear Laboratory Risley, Warrington (United Kingdom); Cann, Gavin; Binks, Tracey [National Nuclear Laboratory Sellafield (United Kingdom)

    2013-07-01

    Interim storage is an essential component of the waste management lifecycle, providing a safe, secure environment for waste packages awaiting final disposal. In order to be able to monitor and detect change or degradation of the waste packages, storage building or equipment, it is necessary to know the original condition of these components (the 'waste storage system'). This paper presents an approach to establishing the baseline for a waste-storage system, and provides guidance on the selection and implementation of potential base-lining technologies. The approach is made up of two sections; assessment of base-lining needs and definition of base-lining approach. During the assessment of base-lining needs a review of available monitoring data and store/package records should be undertaken (if the store is operational). Evolutionary processes (affecting safety functions), and their corresponding indicators, that can be measured to provide a baseline for the waste-storage system should then be identified in order for the most suitable indicators to be selected for base-lining. In defining the approach, identification of opportunities to collect data and constraints is undertaken before selecting the techniques for base-lining and developing a base-lining plan. Base-lining data may be used to establish that the state of the packages is consistent with the waste acceptance criteria for the storage facility and to support the interpretation of monitoring and inspection data collected during store operations. Opportunities and constraints are identified for different store and package types. Technologies that could potentially be used to measure baseline indicators are also reviewed. (authors)

  3. EFFECTIVENESS OF WASTE STABILIZATION PONDS IN REMOVAL OF LINEAR ALKYL BENZENE SALFONATE (LAS

    Directory of Open Access Journals (Sweden)

    Ahmed. M. Abdel-Rahman

    2013-06-01

    Full Text Available Detergents contain synthetic or organic surface active agents called surfactants, which are derived from petroleum product precursors. They have the common property of lowering the surface tensions of water thus allowing dirt or grease adhered to various articles to be washed off. Linear alkyl benzene sulfonate (LAS is a most commonly used anionic surfactant. Discharge of raw or treated wastewater containing this chemical substance into the environment causes major public health and enviromental problems. In this study, samples were taken from raw wastewater and effluents of treatment ponds of Elzaraby waste stabilization ponds over a period of one year. The treated effluent is either discharged into surface waters or re-used in agricultural irrigation. The samples were analyzed according to the standard methods. The results obtained from the samples taken in different seasons showed that the highest overall removal efficiency of LAS was achieved in summer season (77%, and the least efficiency was observed in Winter season (55%, while the maximum overall efficiency of BOD5 was in summer (88% and minimum efficiency was (73% in winter season. The Dissolved oxygen concentrations along the pond series (DO ranged from 0.18 to 4.8 mg/l.

  4. Removal of acid blue 062 on aqueous solution using calcinated colemanite ore waste

    Energy Technology Data Exchange (ETDEWEB)

    Atar, Necip [Department of Chemistry, Faculty of Arts and Science, University of Dumlupinar, Kuetahya (Turkey); Olgun, Asim [Department of Chemistry, Faculty of Arts and Science, University of Dumlupinar, Kuetahya (Turkey)]. E-mail: aolgun@dumlupinar.edu.tr

    2007-07-19

    Colemanite ore waste (CW) has been employed as adsorbent for the removal of acid blue 062 anionic dye (AB 062) from aqueous solution. The adsorption of AB 062 onto CW was examined with respect to contact time, calcination temperature, particle size, pH, adsorbent dosage and temperature. The physical and chemical properties of the CW, such as particle sizes and calcinations temperature, play important roles in dye adsorption. The dye adsorption largely depends on the initial pH of the solution with maximum uptake occurring at pH 1.Three simplified kinetics models, namely, pseudo-first order, pseudo-second order, and intraparticle diffusion models were tested to investigate the adsorption mechanisms. The kinetic adsorption of AB 062 on CW follows a pseudo-second order equation. The adsorption data have been analyzed using Langmuir and Freundlich isotherms. The results indicate that the Langmuir model provides the best correlation of the experimental data. Isotherms have also been used to obtain the thermodynamic parameters such as free energy, enthalpy and entropy of the adsorption of dye onto CW.

  5. Removal of acid blue 062 on aqueous solution using calcinated colemanite ore waste

    International Nuclear Information System (INIS)

    Atar, Necip; Olgun, Asim

    2007-01-01

    Colemanite ore waste (CW) has been employed as adsorbent for the removal of acid blue 062 anionic dye (AB 062) from aqueous solution. The adsorption of AB 062 onto CW was examined with respect to contact time, calcination temperature, particle size, pH, adsorbent dosage and temperature. The physical and chemical properties of the CW, such as particle sizes and calcinations temperature, play important roles in dye adsorption. The dye adsorption largely depends on the initial pH of the solution with maximum uptake occurring at pH 1.Three simplified kinetics models, namely, pseudo-first order, pseudo-second order, and intraparticle diffusion models were tested to investigate the adsorption mechanisms. The kinetic adsorption of AB 062 on CW follows a pseudo-second order equation. The adsorption data have been analyzed using Langmuir and Freundlich isotherms. The results indicate that the Langmuir model provides the best correlation of the experimental data. Isotherms have also been used to obtain the thermodynamic parameters such as free energy, enthalpy and entropy of the adsorption of dye onto CW

  6. Metal removal from Municipal Solid Waste Incineration fly ash: A comparison between chemical leaching and bioleaching.

    Science.gov (United States)

    Funari, V; Mäkinen, J; Salminen, J; Braga, R; Dinelli, E; Revitzer, H

    2017-02-01

    Bio- and hydrometallurgical experimental setups at 2-l reactor scale for the processing of fly ash from municipal waste incinerators were explored. We aimed to compare chemical H 2 SO 4 leaching and bioleaching; the latter involved the use of H 2 SO 4 and a mixed culture of acidophilic bacteria. The leaching yields of several elements, including some of those considered as critical (Mg, Co, Ce, Cr, Ga, Nb, Nd, Sb and Sm), are provided. At the end of the experiments, both leaching methods resulted in comparable yields for Mg and Zn (>90%), Al and Mn (>85%), Cr (∼65%), Ga (∼60%), and Ce (∼50%). Chemical leaching showed the best yields for Cu (95%), Fe (91%), and Ni (93%), whereas bioleaching was effective for Nd (76%), Pb (59%), and Co (55%). The two leaching methods generated solids of different quality with respect to the original material as we removed and significantly reduced the metals amounts, and enriched solutions where metals can be recovered for example as mixed salts for further treatment. Compared to chemical leaching the bioleaching halved the use of H 2 SO 4 , i.e., a part of agent costs, as a likely consequence of bio-produced acid and improved metal solubility. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Evaluation of Zirconium Silico phosphate Material for the Removal of Copper Ions from Waste Water

    International Nuclear Information System (INIS)

    Abd El-Mohsen, E.S.; El-Naggar, M.R.; EI-Naggar, I.M.; El-Shahhat, M.F.

    2014-01-01

    Zirconium silico phosphate/polyacrylamide (ZrSP/PAA) nano composite was synthesized. Synthesis process was based on the intercalation polymerization technique. The obtained nano product was characterized using XRF, XRD, FTIR, TG-DTA, SEM and TEM techniques. The physicochemical properties indicated that the synthesized material was semicrystalline in nature with a particle size in the nan orange (45 nm). FTIR analysis suggested that the intercalation polymerization was achieved via hydrogen bonding. The kinetics of copper retention at different temperatures were analyzed using pseudo first-order, pseudo second-order and Helfferich kinetic models. Kinetic modeling of the experimentally obtained data indicated that the intra-particle diffusion was the controlled mechanism of the sorption process. Various parameters such as effective diffusion coefficient and activation energy were evaluated. The mean free energy was in the range corresponding to the ion exchange type of sorption. Results indicated that synthetic ZrSP/PAA nano composite can be used as an efficient ion exchange material for the removal of cupper ions from waste water

  8. Use of Agro-Residues (Rice Husk) in Removal of some Radioisotopes from their Waste Solutions

    International Nuclear Information System (INIS)

    Omar, H.A.

    2011-01-01

    Removal of some radioisotopes namely ( 152 + 154 )Eu and 60 Co from radioactive waste solutions by natural rice husk (NRh) and modified rice husk with different concentrations of citric acid (MCA) had been investigated. The obtained results indicated that the modification of rice husk using citric acid generated large population of surface acid sites and improved the adsorption characteristics of adsorbent. Characterization by infrared spectroscopy and surface area were carried out for both non-modified and modified rice husk samples. The influences of ph, contact time and initial metal ion concentration on sorption had been reported. Pseudo first-order and intra particle diffusion models were used to analyze the sorption rate data. Equilibrium isotherms were determined to assess the maximum sorption capacity of both studied radionuclides on rice husk and modified rice husk. The equilibrium sorption data were analyzed using Freundlich and Langmuir isotherm models. The tested models fit the data reasonably well in terms of regression coefficients. The maximum sorption capacity of modified rice husk was found to be greater than that of rice husk for both ions.

  9. Potential use of cotton plant wastes for the removal of Remazol Black B reactive dye

    International Nuclear Information System (INIS)

    Tunc, Ozlem; Tanaci, Hacer; Aksu, Zuemriye

    2009-01-01

    In this study, the potential use of cotton plant wastes - stalk (CS) and hull (CH) - as sorbents for the removal of Remazol Black B (RB5), a vinyl sulfone type reactive dye, was investigated. The results indicated that adsorption was strongly pH-dependent but slightly temperature-dependent for each sorbent-dye system. The Freundlich, Langmuir, Redlich-Peterson and Langmuir-Freundlich adsorption models were used for the mathematical description of adsorption equilibrium and isotherm constants were evaluated at 25 deg. C. All models except the Freundlich model were applicable for the description of dye adsorption by both sorbents in the concentration range studied. According to the Langmuir model, CS and CH sorbents exhibited the highest RB5 dye uptake capacities of 35.7 and 50.9 mg g -1 , respectively, at an initial pH value of 1.0. Simple mass transfer and kinetic models were applied to the experimental data to examine the mechanisms of adsorption and potential rate-controlling steps. It was found that both external mass transfer and intra-particle diffusion played an important role in the adsorption mechanisms of dye, and adsorption kinetics followed the pseudo second-order type kinetic model for each sorbent. Using the Langmuir model parameters, thermodynamic constant ΔG o was also evaluated for each sorption system

  10. Process for removing and detoxifying cadmium from scrap metal including mixed waste

    International Nuclear Information System (INIS)

    Kronberg, J.W.

    1994-01-01

    Cadmium-bearing scrap from nuclear applications, such as neutron shielding and reactor control and safety rods, must usually be handled as mixed waste since it is radioactive and the cadmium in it is both leachable and highly toxic. Removing the cadmium from this scrap, and converting it to a nonleachable and minimally radioactive form, would greatly simplify disposal or recycling. A process now under development will do this by shredding the scrap; leaching it with reagents which selectively dissolve out the cadmium; reprecipitating the cadmium as its highly insoluble sulfide; then fusing the sulfide into a glassy matrix to bring its leachability below EPA limits before disposal. Alternatively, the cadmium may be recovered for reuse. A particular advantage of the process is that all reagents (except the glass frit) can easily be recovered and reused in a nearly closed cycle, minimizing the risk of radioactive release. The process does not harm common metals such as aluminum, iron and stainless steel, and is also applicable to non-nuclear cadmium-bearing scrap such as nickel-cadmium batteries

  11. EFFECTIVENESS OF WASTE STABILIZATION PONDS IN REMOVAL OF LINEAR ALKYL BENZENE SALFONATE (LAS

    Directory of Open Access Journals (Sweden)

    Ahmed. M. Abdel-Rahman

    2013-01-01

    Full Text Available Detergents contain synthetic or organic surface active agents called surfactants, which are derived from petroleum product precursors. They have the common property of lowering the surface tensions of water thus allowing dirt or grease adhered to various articles to be washed off. Linear alkyl benzene sulfonate (LAS is a most commonly used anionic surfactant. Discharge of raw or treated wastewater containing this chemical substance into the environment causes major public health and enviromental problems. In this study, samples were taken from raw wastewater and effluents of treatment ponds of Elzaraby waste stabilization ponds over a period of one year. The treated effluent is either discharged into surface waters or re-used in agricultural irrigation. The samples were analyzed according to the standard methods. The results obtained from the samples taken in different seasons showed that the highest overall removal efficiency of LAS was achieved in summer season (77%, and the least efficiency was observed in Winter season (55%, while the maximum overall efficiency of BOD5 was in summer (88% and minimum efficiency was (73% in winter season. The Dissolved oxygen concentrations along the pond series (DO ranged from 0.18 to 4.8 mg/l.

  12. Combining woody biomass for combustion with green waste composting: Effect of removal of woody biomass on compost quality.

    Science.gov (United States)

    Vandecasteele, Bart; Boogaerts, Christophe; Vandaele, Elke

    2016-12-01

    The question was tackled on how the green waste compost industry can optimally apply the available biomass resources for producing both bioenergy by combustion of the woody fraction, and high quality soil improvers as renewable sources of carbon and nutrients. Compost trials with removal of woody biomass before or after composting were run at 9 compost facilities during 3 seasons to include seasonal variability of feedstock. The project focused on the changes in feedstock and the effect on the end product characteristics (both compost and recovered woody biomass) of this woody biomass removal. The season of collection during the year clearly affected the biochemical and chemical characteristics of feedstock, woody biomass and compost. On one hand the effect of removal of the woody fraction before composting did not significantly affect compost quality when compared to the scenario where the woody biomass was sieved from the compost at the end of the composting process. On the other hand, quality of the woody biomass was not strongly affected by extraction before or after composting. The holocellulose:lignin ratio was used in this study as an indicator for (a) the decomposition potential of the feedstock mixture and (b) to assess the stability of the composts at the end of the process. Higher microbial activity in green waste composts (indicated by higher oxygen consumption) and thus a lower compost stability resulted in higher N immobilization in the compost. Removal of woody biomass from the green waste before composting did not negatively affect the compost quality when more intensive composting was applied. The effect of removal of the woody fraction on the characteristics of the green waste feedstock and the extracted woody biomass is depending on the season of collection. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Studies on treatment of low level radioactive liquid waste for removal of anionic species of 125Sb, 99Tc and 106Ru. Contributed Paper RD-14

    International Nuclear Information System (INIS)

    Shivakamy, K.; Chitra, S.; Rao, S.V.S.; Paul, Biplob

    2014-01-01

    The treatment of intermediate level waste at Waste Immobilization Plant generates low level radioactive waste which would require further management before discharge to sea. This waste is expected to contain polymeric oxo anions of 125 Sb, 99 Tc, 106 Ru in addition to cationic species like 137 Cs, 90 Sr etc. Chemical treatment takes care of the major contributors to radioactivity viz 137 Cs, 90 Sr etc but traces of activity due to anionic species remain in the treated waste effluent. Novel composite anionic exchanger namely Polyurethane foam coated with Hydrous Zirconium Oxide was developed for removal of these anionic species. This material was successfully employed for removal of anionic 1 25S b from radioactive waste effluent at Waste Management Division, Trombay. Based on our experience with Sb removal using the above material it was decided to assess the ability of the exchanger in removal of other anionic species bearing Ru and Tc. It was observed that in addition to complete removal of Sb, 50% Ru removal and 40% Tc could also be removed using this material from radioactive waste effluents. In lab experiments, similar results were obtained with simulated low level waste bearing inactive Ru. Among several hydrous oxides tried in a batch study, Hydrous Zirconium Oxide showed a maximum removal of 40% for Tc in actual waste generated from reprocessing plant. Based on the above it has been planned to set up an anion exchange column with Hydrous Zirconium Oxide coated Polyurethane foam for final treatment of chemically treated waste effluent prior to discharge as a prime step towards achieving our goal of minimum discharge to Sea. (author)

  14. Calcium Ion Removal by KMnO4 Modified Pineapple Leaf Waste Carbon Prepared from Waste of Pineapple Leaf Fiber Production Processing

    Directory of Open Access Journals (Sweden)

    Sumrit Mopoung

    2016-12-01

    Full Text Available Pineapple leaf fiber waste carbon, modified with 3% KMnO4, was used for Ca2+ removal from aqueous solution. The effects of contact time, loading, water hardness, and isotherms on Ca2+ adsorption were studied. The results show that the Ca2+ ion removal by pineapple leaf fiber waste carbon could be improved by modification with KMnO4. The adsorption would reach equilibrium state at about 60 min for a water source with hardness values of 40-200 mg/dm3. Increases in total hardness (40 to 200 mg/dm3 lead to a decrease in Ca2+ ion removal efficiency (90.05% to 37.65% and an increase in Ca2+ ion adsorption capacity at equilibrium (4.37 mg/g to 8.95 mg/g. The Ca2+ removal efficiencies increase with increasing loading of modified waste carbon. The equilibrium data were fitted well by both the Langmuir isotherm and the Freundlich isotherm. For the Langmuir isotherm model, the values of the maximum Ca2+ adsorption capacity and Langmuir constant being 2.81 mg/g and 0.9262 dm3 /g, respectively. On the other hand for the Freundlich isotherm model, the KF and n values are 1.374 dm3 (1/n mg (1-1/n/g and 4.671, respectively. These results indicate that modified pineapple fiber waste carbon is a material with high Ca2+ ion adsorption capacity, heterogeneity, and high affinity.

  15. Sustainable approach for recycling waste lamb and chicken bones for fluoride removal from water followed by reusing fluoride-bearing waste in concrete.

    Science.gov (United States)

    Ismail, Zainab Z; AbdelKareem, Hala N

    2015-11-01

    Sustainable management of waste materials is an attractive approach for modern societies. In this study, recycling of raw waste lamb and chicken bones for defluoridation of water has been estimated. The effects of several experimental parameters including contact time, pH, bone dose, fluoride initial concentration, bone grains size, agitation rate, and the effect of co-existing anions in actual samples of wastewater were studied for fluoride removal from aqueous solutions. Results indicated excellent fluoride removal efficiency up to 99.4% and 99.8% using lamb and chicken bones, respectively at fluoride initial concentration of 10 mg F/L and 120 min contact time. Maximum fluoride uptake was obtained at neutral pH range 6-7. Fluoride removal kinetic was well described by the pseudo-second order kinetic model. Both, Langmuir and Freundlich isotherm models could fit the experimental data well with correlation coefficient values >0.99 suggesting favorable conditions of the process. Furthermore, for complete sustainable management of waste bones, the resulted fluoride-bearing sludge was reused in concrete mixes to partially replace sand. Tests of the mechanical properties of fluoride sludge-modified concrete mixes indicated a potential environmentally friendly approach to dispose fluoride sludge in concrete and simultaneously enhance concrete properties. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Arsenic waste management: a critical review of testing and disposal of arsenic-bearing solid wastes generated during arsenic removal from drinking water.

    Science.gov (United States)

    Clancy, Tara M; Hayes, Kim F; Raskin, Lutgarde

    2013-10-01

    Water treatment technologies for arsenic removal from groundwater have been extensively studied due to widespread arsenic contamination of drinking water sources. Central to the successful application of arsenic water treatment systems is the consideration of appropriate disposal methods for arsenic-bearing wastes generated during treatment. However, specific recommendations for arsenic waste disposal are often lacking or mentioned as an area for future research and the proper disposal and stabilization of arsenic-bearing waste remains a barrier to the successful implementation of arsenic removal technologies. This review summarizes current disposal options for arsenic-bearing wastes, including landfilling, stabilization, cow dung mixing, passive aeration, pond disposal, and soil disposal. The findings from studies that simulate these disposal conditions are included and compared to results from shorter, regulatory tests. In many instances, short-term leaching tests do not adequately address the range of conditions encountered in disposal environments. Future research directions are highlighted and include establishing regulatory test conditions that align with actual disposal conditions and evaluating nonlandfill disposal options for developing countries.

  17. Phenols removal by immobilized tyrosinase reactor in on-line high performance liquid chromatography

    Energy Technology Data Exchange (ETDEWEB)

    Girelli, Anna Maria [Dipartimento di Chimica, Universita degli Studi di Roma ' La Sapienza' , P.le Aldo Moro 5, 00185 Rome (Italy)]. E-mail: annamaria.girelli@uniroma1.it; Mattei, Enrico [Dipartimento di Chimica, Universita degli Studi di Roma ' La Sapienza' , P.le Aldo Moro 5, 00185 Rome (Italy); Messina, Antonella [Dipartimento di Chimica, Universita degli Studi di Roma ' La Sapienza' , P.le Aldo Moro 5, 00185 Rome (Italy)

    2006-11-24

    The development of an immobilized enzyme reactor (IMER) based on tyrosinase immobilized on aminopropyl-controlled pore glass (AP-CPG) for the removal of phenols from model aqueous solutions was reported. To elucidate the influence of the substrate nature, the apparent (V{sup '}{sub max}, K{sup '}{sub m}) and the inherent (V{sub max}, K{sub m}) Michaelis-Menten constants were determined by Lineweaver-Burk method and the external diffusional contributions on measured enzyme activities were removed by a graphical method. The dephenolization process was realized by recycling the phenol solutions through the bioreactor connected to a chitosan trap in order to remove the colored quinone-type products of the tyrosinase reactions. The results indicated that a complete removal of phenol derivatives in the range of 150-300min, with the exception of 60% removal for phenol reached in 400min, was obtained. The observed sequence: cresol>4-methylcathecol>catechol>4-Cl-phenol-bar phenol was in accordance to the V{sup '}{sub max}/K{sup '}{sub m} values.

  18. Phenols removal by immobilized tyrosinase reactor in on-line high performance liquid chromatography

    International Nuclear Information System (INIS)

    Girelli, Anna Maria; Mattei, Enrico; Messina, Antonella

    2006-01-01

    The development of an immobilized enzyme reactor (IMER) based on tyrosinase immobilized on aminopropyl-controlled pore glass (AP-CPG) for the removal of phenols from model aqueous solutions was reported. To elucidate the influence of the substrate nature, the apparent (V ' max , K ' m ) and the inherent (V max , K m ) Michaelis-Menten constants were determined by Lineweaver-Burk method and the external diffusional contributions on measured enzyme activities were removed by a graphical method. The dephenolization process was realized by recycling the phenol solutions through the bioreactor connected to a chitosan trap in order to remove the colored quinone-type products of the tyrosinase reactions. The results indicated that a complete removal of phenol derivatives in the range of 150-300min, with the exception of 60% removal for phenol reached in 400min, was obtained. The observed sequence: cresol>4-methylcathecol>catechol>4-Cl-phenol-bar phenol was in accordance to the V ' max /K ' m values

  19. Joule-Heated Ceramic-Lined Melter to Vitrify Liquid Radioactive Wastes Containing Am241 Generated From MOX Fuel Fabrication in Russia

    International Nuclear Information System (INIS)

    Smith, E C; Bowan II, B W; Pegg, I; Jardine, L J

    2004-01-01

    contains. Silver is widely used as an additive in glass making. However, its solubility is known to be limited in borosilicate glasses. Further, silver, which is present as a nitrate salt in the waste, can be easily reduced to molten silver in the melting process. Molten silver, if formed, would be difficult to reintroduce into the glass matrix and could pose operating difficulties for the glass melter. This will place a limitation on the waste loading of the melter feed material to prevent the separation of silver from the waste within the melter. If the silver were recovered in the MOx fabrication process, which is currently under consideration, the composition of the glass would likely be limited only by the thermal heat load from the incorporated 241 Am. The resulting mass of glass used to encapsulate the waste could then be reduced by a factor of approximately three. The vitrification process used to treat the waste stream is proposed to center on a joule-heated ceramic lined slurry fed melter. Glass furnaces of this type are used in the United States to treat high-level waste (HLW) at the: Defense Waste Processing Facility, West Valley Demonstration Project, and to process the Hanford tank waste. The waste will initially be blended with glass-forming chemicals, which are primarily sand and boric acid. The resulting slurry is pumped to the melter for conversion to glass. The melter is a ceramic lined metal box that contains a molten glass pool heated by passing electric current through the glass. Molten glass from the melter is poured into canisters to cool and solidify. They are then sealed and decontaminated to form the final waste disposal package. Emissions generated in the melter from the vitrification process are treated by an off-gas system to remove radioactive contamination and destroy nitrogen oxides (NOx)

  20. Calcium and organic matter removal by carbonation process with waste incineration flue gas towards improvement of leachate biotreatment performance.

    Science.gov (United States)

    Zhang, Cheng; Zhu, Xuedong; Wu, Liang; Li, Qingtao; Liu, Jianyong; Qian, Guangren

    2017-09-01

    Municipal solid wastes incineration (MSWI) flue gas was employed as the carbon source for in-situ calcium removal from MSWI leachate. Calcium removal efficiency was 95-97% with pH of 10.0-11.0 over 100min of flue gas aeration, with both bound Ca and free Ca being removed effectively. The fluorescence intensity of tryptophan, protein-like and humic acid-like compounds increased after carbonation process. The decrease of bound Ca with the increase of precipitate indicated that calcium was mainly converted to calcium carbonate precipitate. It suggested that the interaction between dissolved organic matter and Ca 2+ was weakened. Moreover, 10-16% of chemical oxygen demand removal and the decrease of ultraviolet absorption at 254nm indicated that some organics, especially aromatic compound decreased via adsorption onto the surface of calcium carbonate. The results indicate that introduce of waste incineration flue gas could be a feasible way for calcium removal from leachate. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Waste management plan for the removal action at the former YS-860 Firing Ranges, Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1998-03-01

    This waste management plan defines the procedures for control and management of waste generated as a result of the removal action of the YS-86O Firing Ranges site at the Oak Ridge Y-12 Plant. This document includes plan objectives; remediation activities; key personnel; waste generation activities; and waste treatment, storage, transportation, and disposal. Methods of control and characterization of waste generated as a result of remediation activities will be within the guidelines and procedures outlined herein. ENTECH personnel will make every effort when conducting remediation and decontamination activities to minimize the amount of generated waste

  2. Removal of aluminum, iron and manganese ions from industrial wastes using granular activated carbon and Amberlite IR-120H

    Directory of Open Access Journals (Sweden)

    Mohamed E. Goher

    2015-01-01

    Full Text Available The removal of aluminum, iron and manganese from some pollution sources that drain into Ismailia Canal has been investigated using two different sorbents; granular activated carbon (GAC and Amberlite IR-120H (AIR-120H. Batch equilibrium experiments showed that the two sorbents have maximum removal efficiency for aluminum and iron pH 5 and 10 min contact time in ambient room temperature, while pH 7 and 30 min were the most appropriate for manganese removal. Dosage of 2 g/l for both GAC and AIR-120H was established to give the maximum removal capacity. At optimum conditions, the removal trend was in order of Al+3 > Fe+2 > Mn+2 with 99.2, 99.02 and 79.05 and 99.55, 99.42 and 96.65% of metal removal with GAC and AIR-120H, respectively. For the three metals, Langmuir and Freundlich isotherms showed higher R2 values, with a slightly better fitting for the Langmuir model. In addition, separation factors (RL and exponent (n values indicated favorable Langmuir (0 < RL < 1 and Freundlich (1 < n < 10 approach. GAC and AIR-120H can be used as excellent alternative, effective and inexpensive materials to remove high amounts of heavy metals from waste water.

  3. Removal of actinide elements from liquid scintillation cocktail wastes using liquid-liquid extraction and demulsification techniques

    International Nuclear Information System (INIS)

    Foltz, K.; Landsberger, S.; Srinivasan, B.; Vandegrift, G.F.

    1994-01-01

    For many years liquid scintillation cocktail (LSC) wastes have been generated and stored at Argonne National Laboratory (ANL). These wastes are stored in thousands of 10--20 m scintillation vials, many of which contain elements with Z > 88. Because storage space is limited, disposal of this waste is pressing. These wastes could be commercially incinerated if the radionuclides with Z>88 are reduced to sufficiently low levels. However, there is currently no deminimus level for these radionuclides, and separation techniques are still being tested. The University of Illinois is conducting experiments to separate radionuclides with Z > 88 from simulated LSC wastes by using liquid-liquid extraction (LLX) and demulsification techniques. The actinide elements are removed from the LSC by extraction into an aqueous phase after the cocktail has been demulsified. The aqueous and organic phases are separated and the organic phase, now free from radionuclides with Z > 88, can be sent to a commercial incineration facility. The aqueous phase may be treated and disposed of using existing techniques. The LLX separation techniques used solutions of sodium oxalate, aluminum nitrate, and tetrasodium EDTA at varying concentrations. These extractants were mixed with the simulated waste in a 1:1 volume ratio. Using 1.0M Na 4 EDTA salt solutions, decontamination ratios as high as 230 were achieved

  4. Removal of contaminants from equipment and debris and waste minimization using TechXtract{reg_sign} technology

    Energy Technology Data Exchange (ETDEWEB)

    Bonem, M.W. [EET, Inc., Bellaire, TX (United States)

    1997-10-01

    Under this Program Research and Development Agreement (PRDA), EET, Inc., is extending its proprietary TechXtract{reg_sign} chemical decontamination technology into an effective, economical, integrated contaminant removal system. This integrated system will consist of a series of decontamination baths using the TechXtract{reg_sign} chemical formulas, followed by a waste treatment process that will remove the contaminants from the spent chemicals. Sufficient decontamination will result so that materials can be released without restriction after they have been treated, even those materials that have traditionally been considered to be {open_quotes}undecontaminable.{close_quotes} The secondary liquid waste will then be treated to separate any hazardous and radioactive contaminants, so that the spent chemicals and wastewater can be discharged through conventional, permitted outlets. The TechXtract{reg_sign} technology is a unique process that chemically extracts hazardous contaminants from the surface and substrate of concrete, steel, and other solid materials. This technology has been used successfully to remove contaminants as varied as PCBs, radionuclides, heavy metals, and hazardous organics. The process` advantage over other alternatives is its effectiveness in safe and consistent extraction of subsurface contamination. TechXtract{reg_sign} is a proprietary process developed, owned, and provided by EET, Inc. The objective of the PRDA is to demonstrate on a full-scale basis an economical system for decontaminating equipment and debris, with further treatment of secondary waste streams to minimize waste volumes. Contaminants will be removed from the contaminated items to levels where they can be released for unrestricted use. The entire system will be designed with maximum flexibility and automation in mind.

  5. Removal of contaminants from equipment and debris and waste minimization using TechXtract reg-sign technology

    International Nuclear Information System (INIS)

    Bonem, M.W.

    1997-01-01

    Under this Program Research and Development Agreement (PRDA), EET, Inc., is extending its proprietary TechXtract reg-sign chemical decontamination technology into an effective, economical, integrated contaminant removal system. This integrated system will consist of a series of decontamination baths using the TechXtract reg-sign chemical formulas, followed by a waste treatment process that will remove the contaminants from the spent chemicals. Sufficient decontamination will result so that materials can be released without restriction after they have been treated, even those materials that have traditionally been considered to be open-quotes undecontaminable.close quotes The secondary liquid waste will then be treated to separate any hazardous and radioactive contaminants, so that the spent chemicals and wastewater can be discharged through conventional, permitted outlets. The TechXtract reg-sign technology is a unique process that chemically extracts hazardous contaminants from the surface and substrate of concrete, steel, and other solid materials. This technology has been used successfully to remove contaminants as varied as PCBs, radionuclides, heavy metals, and hazardous organics. The process' advantage over other alternatives is its effectiveness in safe and consistent extraction of subsurface contamination. TechXtract reg-sign is a proprietary process developed, owned, and provided by EET, Inc. The objective of the PRDA is to demonstrate on a full-scale basis an economical system for decontaminating equipment and debris, with further treatment of secondary waste streams to minimize waste volumes. Contaminants will be removed from the contaminated items to levels where they can be released for unrestricted use. The entire system will be designed with maximum flexibility and automation in mind

  6. Removing Phosphate from Hanford High-Phosphate Tank Wastes: FY 2010 Results

    Energy Technology Data Exchange (ETDEWEB)

    Lumetta, Gregg J.; Braley, Jenifer C.; Edwards, Matthew K.; Qafoku, Odeta; Felmy, Andrew R.; Carter, Jennifer C.; MacFarlan, Paul J.

    2010-09-22

    The U.S. Department of Energy (DOE) is responsible for environmental remediation at the Hanford Site in Washington State, a former nuclear weapons production site. Retrieving, processing, immobilizing, and disposing of the 2.2 × 105 m3 of radioactive wastes stored in the Hanford underground storage tanks dominates the overall environmental remediation effort at Hanford. The cornerstone of the tank waste remediation effort is the Hanford Tank Waste Treatment and Immobilization Plant (WTP). As currently designed, the capability of the WTP to treat and immobilize the Hanford tank wastes in the expected lifetime of the plant is questionable. For this reason, DOE has been pursuing supplemental treatment options for selected wastes. If implemented, these supplemental treatments will route certain waste components to processing and disposition pathways outside of WTP and thus will accelerate the overall Hanford tank waste remediation mission.

  7. Removal of cesium using coconut fiber in raw and modified forms for the treatment of radioactive liquid wastes

    International Nuclear Information System (INIS)

    Jesus, Nella N.M. de; Nobre, Vanessa B.; Potiens Junior, Ademar J.; Sakata, Solange K.; Di Vitta, Patricia B.

    2013-01-01

    Sorption is one of the most studied methods to reduce the volume of radioactive waste streams. Cesium-137 is a radioisotope formed by the fission of uranium and it can cause health problems due to its easy assimilation by cells. The aim of this study is to evaluate the potential of coconut fiber in removing cesium from radioactive liquid wastes; this process can help in disposing radioactive waste. The experiments were performed in batch and the particle size of the fiber ranged between 0.30 mm and 0.50 mm. The fiber was treated with hydrogen peroxide in alkaline medium. The following parameters were analyzed: contact time, pH and concentration of cesium ions in aqueous solution. After the experiments the samples were filtered and cesium remaining in solution was quantified by inductively coupled plasma optical emission spectrometry. (author)

  8. Removal of cesium using coconut fiber in raw and modified forms for the treatment of radioactive liquid wastes

    Energy Technology Data Exchange (ETDEWEB)

    Jesus, Nella N.M. de; Nobre, Vanessa B.; Potiens Junior, Ademar J.; Sakata, Solange K., E-mail: sksakata@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Di Vitta, Patricia B. [Universidade de Sao Paulo (USP), SP (Brazil). Instituto de Quimica

    2013-07-01

    Sorption is one of the most studied methods to reduce the volume of radioactive waste streams. Cesium-137 is a radioisotope formed by the fission of uranium and it can cause health problems due to its easy assimilation by cells. The aim of this study is to evaluate the potential of coconut fiber in removing cesium from radioactive liquid wastes; this process can help in disposing radioactive waste. The experiments were performed in batch and the particle size of the fiber ranged between 0.30 mm and 0.50 mm. The fiber was treated with hydrogen peroxide in alkaline medium. The following parameters were analyzed: contact time, pH and concentration of cesium ions in aqueous solution. After the experiments the samples were filtered and cesium remaining in solution was quantified by inductively coupled plasma optical emission spectrometry. (author)

  9. The removal of mercury from solid mixed waste using chemical leaching processes

    International Nuclear Information System (INIS)

    Gates, D.D.; Chao, K.K.; Cameron, P.A.

    1995-07-01

    The focus of this research was to evaluate chemical leaching as a technique to treat soils, sediments, and glass contaminated with either elemental mercury or a combination of several mercury species. Potassium iodide/iodine solutions were investigated as chemical leaching agents for contaminated soils and sediments. Clean, synthetic soil material and surrogate storm sewer sediments contaminated with mercury were treated with KI/I 2 solutions. It was observed that these leaching solutions could reduce the mercury concentration in soil and sediments by 99.8%. Evaluation of selected posttreatment sediment samples revealed that leachable mercury levels in the treated solids exceeded RCRA requirements. The results of these studies suggest that KI/I 2 leaching is a treatment process that can be used to remove large quantities of mercury from contaminated soils and sediments and may be the only treatment required if treatment goals are established on Hg residual concentrations in solid matrices. Fluorescent bulbs were used to simulate mercury contaminated glass mixed waste. To achieve mercury contamination levels similar to those found in larger bulbs such as those used in DOE facilities a small amount of Hg was added to the crushed bulbs. The most effective agents for leaching mercury from the crushed fluorescent bulbs were KI/I 2 , NaOCl, and NaBr + acid. Radionuclide surrogates were added to both the EPA synthetic soil material and the crushed fluorescent bulbs to determine the fate of radionuclides following chemical leaching with the leaching agents determined to be the most promising. These experiments revealed that although over 98% of the dosed mercury solubilized and was found in the leaching solution, no Cerium was measured in the posttreatment leaching solution. This finding suggest that Uranium, for which Ce was used as a surrogate, would not solubilize during leaching of mercury contaminated soil or glass

  10. Removal of Zn (II) and Ga (III) from waste waters using activated composite membranes

    International Nuclear Information System (INIS)

    Melita, L.; Meghea, A.; Munoz Tapia, M.; Gives, J. de

    2001-01-01

    The present study refers to the preparation of activated composite membrane (ACM) containing Aliquat 336 as a carrier, and testing their properties towards the selective transport of Ga and Zn cations. A new type of liquid membrane was prepared, named Activated Composite Membrane (ACM). The stability of these membrane increases, referring to other common membranes used before. These membranes have also good characteristics to separate metals. We cast membranes in two steps, first we used non-woven fabric (Hollytex 3329, France) as a support to manufacture reinforced polysulfone (PS) membrane which was obtained by the phase inversion technique, and second, a thin top layer of polyamide containing Aliquat 336 of two different concentrations (0.5 and 1 M) was obtained by interfacial polymerisation. The membrane thus prepared is composed of polyamide and polysulfone layers containing carrier. The surface texture of the membrane under study was examined by scanning electron microscopy (SEM) using a JSM-6300 scanning electron microscope. The chemical elemental analysis of freshly prepared membranes was performed, by X-ray diffraction measuring the energy distribution of the X-ray signal generated by a focused electron beam. A correlation between the carrier content in the membrane and the concentration of metal separated was obtained from the results of the membrane analysis by using the inductively coupled plasma (ICP) technique. The competition between gallium and zinc in the membrane surface is presented by the retaining membrane capacity. This type of membrane is relatively new for metal removal (Ga and Zn) from waste waters and the best cation retention was obtained for Zn. (authors)

  11. Phosphorus and nitrogen removal in waste water at small factory. Shokibo jigyosho ni okeru haisuichu no rin chisso shori gijutsu

    Energy Technology Data Exchange (ETDEWEB)

    Hirai, M. (National Institute for Resources and Environment, Tsukuba (Japan))

    1994-05-25

    For the purpose of preventing closed waters from eutrophicating, COD regulations and nitrogen and phosphorus waste water regulations are executed in Japan, but practically applicable techniques for this purpose are a few. Concerning technology for removing nitrogen and phosphorus in waste water, this paper describes the actual situation of two industries, electroplating and alumite processing, and applicable techniques. Among various nitrogen removal methods, the biological treatment method has been used practically in many cases and is applicable to practical use. While there are many kinds of physical and chemical treatment methods, applicable methods are limited. In removing nitrogen, the coagulating sedimentation method with Ca salt, Al salt and Fe salt is effective generally for orthophosphate. At electroplating factories, various forms of phosphorus and nitrogen compounds are used as plating chemicals. In treating waste water containing phosphorus, the coagulating sedimentation method is used most frequently. The oxidation + coagulating sedimentation method, the autolysis + oxidation coagulation method, and the evaporation method are effected, though the examples of their implementation are small in number. 15 tabs.

  12. Task 20 - Prevention of Chloride Corrosion in High-Temperature Waste Treatment Systems (Corrosives Removals from Vitrification Slurries)

    International Nuclear Information System (INIS)

    Timpe, R.C.; Aulich, T.R.

    1998-01-01

    GTS Duratek is working with BNFL Incorporated on a US Department of Energy (DOE) contract to develop a facility to treat and immobilize radioactive waste at the Hanford site in southeast Washington. Development of the 10-ton/day Hanford facility will be based on findings from work at Duratek's 3.3-ton/day pilot plant in Columbia, Maryland, which is in the final stage of construction and scheduled for shakedown testing in early 1999. In prior work with the Catholic University of America Vitreous State Laboratory, Duratek has found that slurrying is the most efficient way to introduce low-level radioactive, hazardous, and mixed wastes into vitrification melters. However, many of the Hanford tank wastes to be vitrified contain species (primarily chloride and sulfate) that are corrosive to the vitrifier or the downstream air pollution control equipment, especially under the elevated temperature conditions existent in these components. Removal of these corrosives presents a significant challenge because most tank wastes contain high (up to 10-molar) concentrations of sodium hydroxide (NaOH) along with significant levels of nitrate, nitrite, and other anions, which render standard ion-exchange, membrane filtration, and other separation technologies relatively ineffective. In Task 20, the Energy and Environmental Research Center (EERC) will work with Duratek to develop and optimize a vitrification pretreatment process for consistent, quantitative removal of chloride and sulfate prior to vitrifier injection

  13. Gypsum and organic matter distribution in a mixed construction and demolition waste sorting process and their possible removal from outputs.

    Science.gov (United States)

    Montero, A; Tojo, Y; Matsuo, T; Matsuto, T; Yamada, M; Asakura, H; Ono, Y

    2010-03-15

    With insufficient source separation, construction and demolition (C&D) waste becomes a mixed material that is difficult to recycle. Treatment of mixed C&D waste generates residue that contains gypsum and organic matter and poses a risk of H(2)S formation in landfills. Therefore, removing gypsum and organic matter from the residue is vital. This study investigated the distribution of gypsum and organic matter in a sorting process. Heavy liquid separation was used to determine the density ranges in which gypsum and organic matter were most concentrated. The fine residue that was separated before shredding accounted for 27.9% of the waste mass and contained the greatest quantity of gypsum; therefore, most of the gypsum (52.4%) was distributed in this fraction. When this fine fraction was subjected to heavy liquid separation, 93% of the gypsum was concentrated in the density range of 1.59-2.28, which contained 24% of the total waste mass. Therefore, removing this density range after segregating fine particles should reduce the amount of gypsum sent to landfills. Organic matter tends to float as density increases; nevertheless, separation at 1.0 density could be more efficient. (c) 2009 Elsevier B.V. All rights reserved.

  14. Ion exchange removal of cesium from Hanford tank waste supernates with SuperLigR 644 resin

    International Nuclear Information System (INIS)

    Hassan, N.M.; McCabe, D.J.; King, W.D.; Hamm, L.L.

    2002-01-01

    SuperLig R 644 ion exchange resin is currently being evaluated for cesium ( 137 Cs) removal from radioactive Hanford tank waste supernates as part of the River Protection Project. Testing was performed with actual Hanford tank wastes of widely different compositions using two identical ion exchange columns connected in series each containing approximately 5.5-6.5 ml of SuperLig R 644 resin. The ion exchange columns utilized the same resin material that was eluted between the column tests. This was done to demonstrate the performance of the SuperLig R 644 resin for cesium removal from waste samples of different compositions, determine the loading and elution profiles, and to validate design assumptions for full-scale column performances. Decontaminated product solutions generated at the same operating temperature and constant residence times (bed volumes per hour) exhibited the same chemical compositions as their feed samples. The compositions of eluate solutions were generally as expected with the exception of uranium and total organic carbon, which where concentrated by the resin. Development of a pretreatment method for the SuperLig R 644 resin has been critical to successful column operation with different waste solutions. (author)

  15. Removal of Sr from radioactive waste solutions by polymer enhanced ultra filtration: study of selectivity and mechanism of the process

    International Nuclear Information System (INIS)

    Kedari, C.S.; Yadav, J.S.; Gandhi, P.M.; Banerjee, K.

    2016-01-01

    The removal of 90 Sr in liquid radioactive wastes is an important issue for waste disposal. Because of the physical and biological half-life of 90 Sr, it is one of the most hazardous radionuclides for internal exposure. Accumulation in bones tissues and high-energy beta particles from its daughter nuclide, 90 Y (half-life: 64.1 h), cause the damage to bone marrow. These characteristics are forcing the implementation of monitoring 90 Sr activities and its elimination from the industrial waste solutions. Filtration through semi permeable membrane with the potential of selective retention is a well-established commercial technique, which also has great applicability in nuclear waste processing. The UF based separation is a solute fractionation using appropriate pore size membrane as a sieve. The advantage of working with UF is: high throughput can be achieved as compared to RO while using low driving pressure and temperature. The objective of this research was to determine the effectiveness of separation of divalent strontium by complexing with water soluble cation exchange polymer and its removal by ultra filtration

  16. Valorization of aquaculture waste in removal of cadmium from aqueous solution: optimization by kinetics and ANN analysis

    Science.gov (United States)

    Aditya, Gautam; Hossain, Asif

    2018-05-01

    Cadmium is one of the most hazardous heavy metal concerning human health and aquatic pollution. The removal of cadmium through biosorption is a feasible option for restoration of the ecosystem health of the contaminated freshwater ecosystems. In compliance with this proposition and considering the efficiency of calcium carbonate as biosorbent, the shell dust of the economically important snail Bellamya bengalensis was tested for the removal of cadmium from aqueous medium. Following use of the flesh as a cheap source of protein, the shells of B. bengalensis made up of CaCO3 are discarded as aquaculture waste. The biosorption was assessed through batch sorption studies along with studies to characterize the morphology and surface structures of waste shell dust. The data on the biosorption were subjected to the artificial neural network (ANN) model for optimization of the process. The biosorption process changed as functions of pH of the solution, concentration of heavy metal, biomass of the adsorbent and time of exposure. The kinetic process was well represented by pseudo second order ( R 2 = 0.998), and Langmuir equilibrium ( R 2 = 0.995) had better fits in the equilibrium process with 30.33 mg g-1 of maximum sorption capacity. The regression equation ( R 2 = 0.948) in the ANN model supports predicted values of Cd removal satisfactorily. The normalized importance analysis in ANN predicts Cd2+ concentration, and pH has the most influence in removal than biomass dose and time. The SEM and EDX studies show clear peaks for Cd confirming the biosorption process while the FTIR study depicts the main functional groups (-OH, C-H, C=O, C=C) responsible for the biosorption process. The study indicated that the waste shell dust can be used as an efficient, low cost, environment friendly, sustainable adsorbent for the removal of cadmium from aqueous solution.

  17. Using ice melting and ice rolling technologies to remove ice from sub-transmission and transmission lines at Manitoba Hydro

    International Nuclear Information System (INIS)

    Farias, A. R.

    1999-01-01

    Development of an of an Ice Storm Management program by Manitoba Hydro to reduce ice storm damage to its 8 kV feeders to 115 kV transmission lines, is discussed. The program consists of the de-icing of overhead lines, either by ice melting, or ice rolling. Ice melting involves the placement of a three-phase short at a calculated point. The term ice rolling denotes a process of mechanically stripping the ice from conductors. The most recent major ice storm experienced by Manitoba Hydro was in the winter of 1997/1998. During the period from February 6 to February 17, 1998, a total of 83 'ice melt' procedures were performed to melt the ice from 2,628 km of overhead line (7,883 km of conductor), in addition to 'ice rolling'. This paper describes Manitoba Hydro's 25-years' experience with ice melting and it also describes the advantages and disadvantages of both ice melting and ice rolling. Although not a panacea to combat the effects of ice storms, ice melting was found to be the most effective way of removing ice from overhead transmission and sub-transmission lines. Ice rolling was also found to be effective. Other tools that have been found to be useful by various utilities in combating ice storm damage include improved structure and line design, system design that provide more redundancies and emergency sources, and standby generators at critical load points

  18. Obstacle detection method, obstacle removing method, device and production line for practicing the methods

    International Nuclear Information System (INIS)

    Yoneyama, Takao; Ishimatsu, Tsuneo; Komata, Hisashi; Suzuki, Keisaburo.

    1997-01-01

    The present invention provides techniques for detecting and removing obstacles, which can be applied to pipelines and vessels to be used in structures such as nuclear power structures and electric power generation facilities. Namely, when the pipelines or vessels are in any of the stages, namely, production, installation, before the use after installation and before the reuse after inspection, obstacles remaining in the pipelines and vessels are blown off by using a fluid jetting mechanism (air compressor). Elastic waves generated when the blown off obstacles abut against the pipelines and vessels are detected by using a sensor. As a result, the remaining obstacles can be detected during any one of the stages described above. The blowing is repeated till the absence of the obstacles is confirmed by elastic wave signals detected by the sensor. As a result, the remaining obstacles can be removed. (I.S.)

  19. Biological nutrients removal from the supernatant originating from the anaerobic digestion of the organic fraction of municipal solid waste.

    Science.gov (United States)

    Malamis, S; Katsou, E; Di Fabio, S; Bolzonella, D; Fatone, F

    2014-09-01

    This study critically evaluates the biological processes and techniques applied to remove nitrogen and phosphorus from the anaerobic supernatant produced from the treatment of the organic fraction of municipal solid waste (OFMSW) and from its co-digestion with other biodegradable organic waste (BOW) streams. The wide application of anaerobic digestion for the treatment of several organic waste streams results in the production of high quantities of anaerobic effluents. Such effluents are characterized by high nutrient content, because organic and particulate nitrogen and phosphorus are hydrolyzed in the anaerobic digestion process. Consequently, adequate post-treatment is required in order to comply with the existing land application and discharge legislation in the European Union countries. This may include physicochemical and biological processes, with the latter being more advantageous due to their lower cost. Nitrogen removal is accomplished through the conventional nitrification/denitrification, nitritation/denitritation and the complete autotrophic nitrogen removal process; the latter is accomplished by nitritation coupled with the anoxic ammonium oxidation process. As anaerobic digestion effluents are characterized by low COD/TKN ratio, conventional denitrification/nitrification is not an attractive option; short-cut nitrogen removal processes are more promising. Both suspended and attached growth processes have been employed to treat the anaerobic supernatant. Specifically, the sequencing batch reactor, the membrane bioreactor, the conventional activated sludge and the moving bed biofilm reactor processes have been investigated. Physicochemical phosphorus removal via struvite precipitation has been extensively examined. Enhanced biological phosphorus removal from the anaerobic supernatant can take place through the sequencing anaerobic/aerobic process. More recently, denitrifying phosphorus removal via nitrite or nitrate has been explored. The removal of

  20. Removal of benzene and toluene from a refinery waste air stream by water sorption and biotrickling filtration

    Directory of Open Access Journals (Sweden)

    Paolo Viotti

    2015-11-01

    Full Text Available The paper presents the results of an analysis of a two-stage pilot plant for the removal of toluene and benzene from the exhaust air of an industrial wastewater treatment plant (WWTP. The two-stage air process combines a water scrubber and a biotrickling filter (BTF in sequence, and treats air stripped from the liquid phase compartments of the WWTP. During the experimental period, the pilot plant treated an airflow of 600 Nm3h-1. Average concentrations of the waste air stream entering the water scrubber were 10.61 mg Nm-3 benzene and 9.26 mg Nm-3 toluene. The water scrubber obtained medium-high removal efficiencies (averages 51% and 60%, for benzene and toluene, respectively. Subsequent passage through the BTF allowed a further reduction of average concentrations, which decreased to 2.10 mg Nm-3 benzene and to 0.84 mg Nm-3 toluene, thereby allowing overall average removal efficiencies (REs of 80% and 91% for benzene and toluene, respectively. Results prove the benefits obtained from a combination of different removal technologies: water scrubbers to remove peak concentrations and soluble compounds, and BTFs to remove compounds with lower solubility, due to the biodegradation performed by microorganisms.

  1. Design and modeling of an advanced marine machinery system including waste heat recovery and removal of sulphur oxides

    DEFF Research Database (Denmark)

    Frimann Nielsen, Rasmus; Haglind, Fredrik; Larsen, Ulrik

    2014-01-01

    the efficiency of machinery systems. The wet sulphuric acid process is an effective way of removing flue gas sulphur oxides from land-based coal-fired power plants. Moreover, organic Rankine cycles (ORC) are suitable for heat to power conversion for low temperature heat sources. This paper describes the design...... that an ORC placed after the conventional waste heat recovery system is able to extract the sulphuric acid from the exhaust gas, while at the same time increase the combined cycle thermal efficiency by 2.6%. The findings indicate that the technology has potential in marine applications regarding both energy...... and modeling of a highly efficient machinery system which includes the removal of exhaust gas sulphur oxides. The system consists of a two-stroke diesel engine, the wet sulphuric process for sulphur removal, a conventional steam Rankine cycle and an ORC. Results of numerical modeling efforts suggest...

  2. Activated soil filters for removal of biocides from contaminated run-off and waste-waters

    DEFF Research Database (Denmark)

    Bester, Kai; Banzhaf, Stefan; Burkhardt, Michael

    2011-01-01

    -Octyl-isothiazolinone, Dichloro-n-octylisothiazolinone). However, this removal is a considerable improvement compared to direct discharge into surface waters or infiltration into soil without appropriate removal. In the last experiment the removal efficiencies of the different layers were studied. Though the peat layer...

  3. Biological and chemical removal of Cr(VI) from waste water: cost and benefit analysis.

    Science.gov (United States)

    Demir, Aynur; Arisoy, Münevver

    2007-08-17

    The objective of the present study is cost and benefit analysis of biological and chemical removal of hexavalent chromium [Cr(VI)] ions. Cost and benefit analysis were done with refer to two separate studies on removal of Cr(VI), one of heavy metals with a crucial role concerning increase in environmental pollution and disturbance of ecological balance, through biological adsorption and chemical ion-exchange. Methods of biological and chemical removal were compared with regard to their cost and percentage in chrome removal. According to the result of the comparison, cost per unit in chemical removal was calculated 0.24 euros and the ratio of chrome removal was 99.68%, whereas those of biological removal were 0.14 and 59.3% euros. Therefore, it was seen that cost per unit in chemical removal and chrome removal ratio were higher than those of biological removal method. In the current study where chrome removal is seen as immeasurable benefit in terms of human health and the environment, percentages of chrome removal were taken as measurable benefit and cost per unit of the chemicals as measurable cost.

  4. Parametric Analyses of Heat Removal from High-Level Waste Tanks

    International Nuclear Information System (INIS)

    TRUITT, J.B.

    2000-01-01

    The general thermal hydraulics program GOTH-SNF was used to predict the thermal response of the waste in tanks 241-AY-102 and 241-AZ-102 when mixed by two 300 horsepower mixer pumps. This mixing was defined in terms of a specific waste retrieval scenario. Both dome and annulus ventilation system flow are necessary to maintain the waste within temperature control limits during the mixing operation and later during the sludge-settling portion of the scenario are defined

  5. Removal of Radionuclides from Waste Water at Fukushima Daiichi Nuclear Power Plant: Desalination and Adsorption Methods - 13126

    Energy Technology Data Exchange (ETDEWEB)

    Kani, Yuko; Kamosida, Mamoru; Watanabe, Daisuke [Hitachi Research Laboratory, Hitachi, Ltd., 7-2-1 Omika-cho, Hitachi, Ibaraki, 319-1221 (Japan); Asano, Takashi; Tamata, Shin [Hitachi Works, Hitachi-GE Nuclear Energy, Ltd. (Japan)

    2013-07-01

    Waste water containing high levels of radionuclides due to the Fukushima Daiichi Nuclear Power Plant accident, has been treated by the adsorption removal and reverse-osmosis (RO) desalination to allow water re-use for cooling the reactors. Radionuclides in the waste water are collected in the adsorbent medium and the RO concentrate (RO brine) in the water treatment system currently operated at the Fukushima Daiichi site. In this paper, we have studied the behavior of radionuclides in the presently applied RO desalination system and the removal of radionuclides in possible additional adsorption systems for the Fukushima Daiichi waste water treatment. Regarding the RO desalination system, decontamination factors (DFs) of the elements present in the waste water were obtained by lab-scale testing using an RO unit and simulated waste water with non-radioactive elements. The results of the lab-scale testing using representative elements showed that the DF for each element depended on its hydrated ionic radius: the larger the hydrated ionic radius of the element, the higher its DF is. Thus, the DF of each element in the waste water could be estimated based on its hydrated ionic radius. For the adsorption system to remove radionuclides more effectively, we studied adsorption behavior of typical elements, such as radioactive cesium and strontium, by various kinds of adsorbents using batch and column testing. We used batch testing to measure distribution coefficients (K{sub d}s) for cesium and strontium onto adsorbents under different brine concentrations that simulated waste water conditions at the Fukushima Daiichi site. For cesium adsorbents, K{sub d}s with different dependency on the brine concentration were observed based on the mechanism of cesium adsorption. As for strontium, K{sub d}s decreased as the brine concentration increased for any adsorbents which adsorbed strontium by intercalation and by ion exchange. The adsorbent titanium oxide had higher K{sub d}s and it

  6. Removal of Radionuclides from Waste Water at Fukushima Daiichi Nuclear Power Plant: Desalination and Adsorption Methods - 13126

    International Nuclear Information System (INIS)

    Kani, Yuko; Kamosida, Mamoru; Watanabe, Daisuke; Asano, Takashi; Tamata, Shin

    2013-01-01

    Waste water containing high levels of radionuclides due to the Fukushima Daiichi Nuclear Power Plant accident, has been treated by the adsorption removal and reverse-osmosis (RO) desalination to allow water re-use for cooling the reactors. Radionuclides in the waste water are collected in the adsorbent medium and the RO concentrate (RO brine) in the water treatment system currently operated at the Fukushima Daiichi site. In this paper, we have studied the behavior of radionuclides in the presently applied RO desalination system and the removal of radionuclides in possible additional adsorption systems for the Fukushima Daiichi waste water treatment. Regarding the RO desalination system, decontamination factors (DFs) of the elements present in the waste water were obtained by lab-scale testing using an RO unit and simulated waste water with non-radioactive elements. The results of the lab-scale testing using representative elements showed that the DF for each element depended on its hydrated ionic radius: the larger the hydrated ionic radius of the element, the higher its DF is. Thus, the DF of each element in the waste water could be estimated based on its hydrated ionic radius. For the adsorption system to remove radionuclides more effectively, we studied adsorption behavior of typical elements, such as radioactive cesium and strontium, by various kinds of adsorbents using batch and column testing. We used batch testing to measure distribution coefficients (K d s) for cesium and strontium onto adsorbents under different brine concentrations that simulated waste water conditions at the Fukushima Daiichi site. For cesium adsorbents, K d s with different dependency on the brine concentration were observed based on the mechanism of cesium adsorption. As for strontium, K d s decreased as the brine concentration increased for any adsorbents which adsorbed strontium by intercalation and by ion exchange. The adsorbent titanium oxide had higher K d s and it was used for

  7. Removal of congo red and methylene blue from waste water using coagulation

    International Nuclear Information System (INIS)

    Ghaffar, S.; Nosheen, S.; Ahmad, N.

    2011-01-01

    The textile industry has been condemned as being one of the world's worst offenders in terms of pollution Because of increasing population and industrial developments, a huge amount of wastewater is discharged to the environment above the level that the nature can eliminate. Many techniques like oxidation, reduction, physical treatment and biological method are available for removal of colored dyes from wastewater. The work presented here involved the decolorisation of wastewater containing congo red and methylene blue using various coagulants such as alum, bentonite and lime. The effect of various experimental factors such as dosage of coagulants, contact time between coagulant and dye and concentration of dyes and working environment like shaking and static was studied. Under static condition alum give almost 43% removal of congo red while with 10 minutes shaking 74 % removal of 80 dye was achieved with same coagulant. The highest removal of congo red was found to be 99.5 % by using alum after 30 minutes of shaking but in case of methylene blue it intensified the color and gave negative results. Lime gave only 33 % color removal of congo red under static conditions while 57% color was removed under shaking conditions. Maximum color removal achieved by lime was 89% at 40 minutes with shaking condition. Lime gave 60% removal of methylene blue in static condition and 90% removal in shaking condition and maximum absorbance at 80 ppm was 90%. Bentonite also used for the removal of methylene blue and gave 89% removal in shaking condition. By increasing shaking time %age removal increased to 100% at 40 min. And amount of coagulant increased the removal efficiency it attained 100% in both lime and bentonite coagulant for methylene blue Overall alum was found to be better coagulant for the removal of congo red from its aqueous solution. Lime and bentonite both proved better and economical for removal of methylene blue from aqueous solution at lab scale. (author)

  8. Lining materials for waste disposal containment and waste storage facilities. (Latest citations from the NTIS bibliographic database). Published Search

    International Nuclear Information System (INIS)

    1993-11-01

    The bibliography contains citations concerning the design characteristics, performance, and materials used to make liners for the waste disposal and storage industry. Liners made of concrete, polymeric materials, compacted clays, asphalt, and in-situ glass are discussed. The use of these liners to contain municipal wastes, hazardous waste liquids, and both low-level and high-level radioactive wastes is presented. Liner permeability, transport, stability, construction, and design are studied. Laboratory field measurements for specific wastes are included. (Contains a minimum of 213 citations and includes a subject term index and title list.)

  9. Preparation of SiO2-KCoFC composite ion-exchanger for removal of Cs in the soil decontamination waste solution

    International Nuclear Information System (INIS)

    Lee, Jung Joon; Moon, Jei kwon; Lee, Kune Woo

    2009-01-01

    The soil decontamination process has been developed for remediate the soil wastes excavated from the TRIGA research reactor sites. Even though the process was proven to be very effective for decontaminate the radioactive nuclides such as cesium and cobalt, the secondary spent solution should be treated with an appropriate method to minimize the waste volume. There are mainly two components in the spent decontamination solution of Cs and Co. The Co in the waste solution can be removed easily by precipitation under a basic condition. However, since the Cs is hardly removed by precipitation, an appropriate selective removal method should be employed. In this study, an inorganic composite ion exchanger of SiO 2 -KCoFC was prepared by sol-gel method for a removal of Cs in the decontamination waste solution. An optimum condition for a preparation of the composite ion exchanger and the adsorption performances of the prepared composite ion exchangers were evaluated

  10. Comparison or organic and inorganic ion exchange materials for removal of cesium and strontium from Hanford waste

    Energy Technology Data Exchange (ETDEWEB)

    Brown, G.N.; Carson, K.J.; DesChane, J.R.; Elovich, R.J. [Pacific Northwest National Lab., Richland, WA (United States)

    1997-10-01

    This work is part of an ESP-CP task to develop and evaluate high-capacity, selective, solid extractants for the uptake of cesium, strontium, and technetium (Cs, Sr, and Tc) from nuclear wastes. Pacific Northwest National Laboratory (PNNL) staff, in collaboration with researchers from industry, academia, and national laboratories are investigating these and other novel and commercial ion exchangers for use in nuclear waste remediation of groundwater, HLW, and LLW. Since FY 1995, experimental work at PNNL has focused on small-scale batch distribution (K{sub d}) testing of numerous solid sorbents with actual and simulated Hanford wastes, chemical and radiolytic stability of various organic ion exchanger resins, bench-scale column ion exchange testing in actual and simulated Complexant Concentrate (CC) and Neutralized Current Acid Waste (NCAW), and Tc and Sr removal from groundwater and LLW. In addition, PNNL has continued to support various site demonstrations at the Idaho National Engineering Laboratory, Savannah River Site, West Valley Nuclear Services, Hanford N-Springs, and Hanford N-Basin using technologies developed by their industrial partners. This summary will focus on batch distribution results from the actual waste tests. The data collected in these development and testing tasks provide a rational basis for the selection and direct comparison of various ion exchange materials in simulated and actual HLW, LLW, and groundwater. In addition, prediction of large-scale column loading performance for the materials tested is possible using smaller volumes of actual waste solution. The method maximizes information while minimizing experimental expense, time, and laboratory and process wastes.

  11. Oil and grease (O&G removal from commercial kitchen waste water using carbonised grass as a key media

    Directory of Open Access Journals (Sweden)

    Rahmat Siti Nazahiyah

    2017-01-01

    Full Text Available Oil and grease (O&G are usually found in kitchen waste water. O&G are poorly soluble in water and can cause serious problems during the wastewater treatment. Adsorption is a fundamental process in the treatment of kitchen waste water and very economical. Activated carbon is the most effective adsorbent for this application. Therefore, the aim of the current study is to determine the potential of four materials (i.e. sand, gravel, carbonised grass (CG and clay powder as filter media for O&G removal. The CGs were originated from “Elephant Grass” and it is a fast growing plant with significant potential as carbon. The clay acts as a magnet, drawing the oil molecules out of the water and causing them to attach to the surfaces of the clay. In the current study, two filters were developed with different media materials to get the best percentage removal. Filters 1 and 2 were filled with sand, gravel and CG, and sand, gravel, CG and powder clay, respectively. Three samples were taken during peak hour between April and May 2016. The initial O&G concentration varied from 101.37 mg/l to 248.30 mg/l and the final concentration varied from none to 22.57 mg/l for both filters. The percentage removal (% of O&G were between 90.9 and 97.3 (Filter 1 and between 94.3 and 100 (Filter 2. Overall, both filters could efficiently remove O&G in the waste water and the quality of the carbonised grass proved to be as good as carbon produced from other traditional sources.

  12. Removal of Heavy Metal Contamination from Peanut Skin Extracts by Waste Biomass Adsorbents

    Science.gov (United States)

    Each year, 3.6 million pounds of peanuts are harvested in the United States. Consequent processing, however, generates large amounts of waste biomass as only the seed portion of the fruit is consumed. The under-utilization of waste biomass is a lost economic opportunity to the industry. In particula...

  13. Electrical power line and pole removal radiological survey completion report: Revision 2

    International Nuclear Information System (INIS)

    1989-02-01

    Each electric power pole and all wire, cross members, and attached hardware were radiologically surveyed and removed. The survey procedures did not conform in every respect with the planned procedures because the actual work differed from the removal plan. The survey showed that all contamination was fixed. Certain poles that were suspected of being contaminated with Th-230 were cut off one foot above ground level and left on site. Each truck load of materials was checked at the access point to ensure it met release criteria. Wood samples were taken from all the poles at Building 403 and 5% of all the rest and analyzed for U-238 and Th-232. Only U-238 was detected. 1903 bundles of wire (95,150 lin ft) were released, and 76 bundles (1520 lin ft) were found to be contaminated. 7163 lin ft of power pole material were released, and 1484 lin ft were contaminated. A comprehensive quality measure assurance/quality control program was applied to this work

  14. An improved ring removal procedure for in-line x-ray phase contrast tomography

    Science.gov (United States)

    Massimi, Lorenzo; Brun, Francesco; Fratini, Michela; Bukreeva, Inna; Cedola, Alessia

    2018-02-01

    The suppression of ring artifacts in x-ray computed tomography (CT) is a required step in practical applications; it can be addressed by introducing refined digital low pass filters within the reconstruction process. However, these filters may introduce additional ringing artifacts when simultaneously imaging pure phase objects and elements having a non-negligible absorption coefficient. Ringing originates at sharp interfaces, due to the truncation of spatial high frequencies, and severely affects qualitative and quantitative analysis of the reconstructed slices. In this work, we discuss the causes of ringing artifacts, and present a general compensation procedure to account for it. The proposed procedure has been tested with CT datasets of the mouse central nervous system acquired at different synchrotron radiation facilities. The results demonstrate that the proposed method compensates for ringing artifacts induced by low pass ring removal filters. The effectiveness of the ring suppression filters is not altered; the proposed method can thus be considered as a framework to improve the ring removal step, regardless of the specific filter adopted or the imaged sample.

  15. 324 Building Compliance Project: Selection and evaluation of alternatives for the removal of solid remote-handled mixed wastes from the 324 Building

    International Nuclear Information System (INIS)

    Ross, W.A.; Bierschbach, M.C.; Dukelow, J.S. Jr.

    1995-06-01

    Six alternatives for the interim storage of remote-handled mixed wastes from the 324 Building on the Hanford Site have been identified and evaluated. The alternatives focus on the interim storage facility and include use of existing facilities in the 200 Area, the construction of new facilities, and the vitrification of the wastes within the 324 Building to remove the majority of the wastes from under RCRA regulations. The six alternatives are summarized in Table S.1, which identifies the primary facilities to be utilized, the anticipated schedule for removal of the wastes, the costs of the transfer from 324 Building to the interim storage facility (including any capital costs), and an initial risk comparison of the alternatives. A recently negotiated Tri-Party Agreement (TPA) change requires the last of the mixed wastes to be removed by May 1999. The ability to use an existing facility reduces the costs since it eliminates the need for new capital construction. The basic regulatory approvals for the storage of mixed wastes are in place for the PUREX facility, but the Form HI permit will need some minor modifications since the 324 Building wastes have some additional characteristic waste codes and the current permit limits storage of wastes to those from the facility itself. Regulatory reviews have indicated that it will be best to use the tunnels to store the wastes. The PUREX alternatives will only provide storage for about 65% of the wastes. This results from the current schedule of the B-Cell Clean Out Project, which projects that dispersible debris will continue to be collected in small quantities until the year 2000. The remaining fraction of the wastes will then be stored in another facility. Central Waste Complex (CWC) is currently proposed for that residual waste storage; however, other options may also be available

  16. Removal of Sr ions from nuclear wastes by D2EHPA+TBP based supported liquid membranes

    International Nuclear Information System (INIS)

    Chaudry, M.A.; Ahmad, I.

    2000-01-01

    Sr ions removal from nuclear wastes is of great importance. /sup 90/Sr radionuclide, due to its long half-life to disintegrate into daughter products and release of radiations, resulting from fission of uranium, produce heat and is a real problem for disposal of radioactive wastes. The separation study of Sr ions from aqueous solutions is, therefore, very important in the nuclear industry. n the present article some of the work done to develop the separation technique based on coupled transport phenomenon for Sr ions is reported. Di-2-ethyl-hexyl phosphoric acid mixed with tri-n-butyl phosphate (TBP), diluted in kerosene oil, as an organic liquid has been used as a membrane, supported in polypropylene hydrophobic films to transport Sr ions. The optimum conditions and mechanism of transport for these ions across the membrane have been described. The effect of feed complexing components i.e. tartaric acid and citric acid concentration on the flux and permeability of the Sr/sup 2+/ ions has been studied. It is shown that supported liquid membrane technique can be used as an alternate process to classical solvent extraction to remove Sr ions from nuclear industry wastes. (author)

  17. Selective cesium and strontium removal for TRU-liquid waste including fission products and concentrated nitric acids

    International Nuclear Information System (INIS)

    Mimori, T.; Miyajima, K.; Kozeki, M.; Kubota, T.; Tusa, E.; Keskinen, A.

    1996-01-01

    A nuclide removal system was designed for treatment of liquid radioactive waste at the Japan Atomic Energy Research Institute (JAERI) Tokai site. Total system will include removal of plutonium, cesium and strontium. Removal of plutonium will be carried out by a method developed by JAERI. Removal of cesium and strontium will be carried out by the methods developed in Finland. The whole project will be implemented for JAERI in cooperation between Mitsui Engineering and Shipbuilding and IVO International. This project has been carried out under the Science and Technology Agency (STA) of Japan. The liquid to be treated includes 7.4x10 9 Bq/L of cesium and 7.4x10 9 Bq/L of strontium. The amount of alpha nuclides is 3.7x10 6 Bq/L. Nitric acid concentration is 1.74 mol/L. The volume of 11,000 liters had to be treated in 200 batches of operation. Removal of cesium and strontium is based on the use of new ion exchange materials developed in Finland. These inorganic ion exchange materials have extremely good properties to separate cesium and strontium from even very difficult liquids. Ion exchange material will be used in columns, where there are materials both for cesium and strontium. According to column tests with simulated waste, one 2 liter column will effectively reach the required DF during 10 batches of operation. Purified liquid can be led to further liquid treatment at the site. After treatment of liquids, both used particle filters and used ion exchange columns will be drained and stored to wait for final treatment and disposal. The designed treatment system has a special beneficial feature as it does not produce secondary waste. Final waste is in the form of particle filters or ion exchange columns with material. Used ion exchange columns and filters will be replaced with new ones by means of remote handling. Construction of the treatment system will be scheduled to commence in FY1995 and assemblying at the site in FY1996. (J.P.N.)

  18. Use to titanium-treated zeolite for plutonium, strontium, and cesium removal from West Valley alkaline wastes and sludge wash wastes

    International Nuclear Information System (INIS)

    Bray, L.A.; Hara, F.T.

    1993-01-01

    Zeolite (IONSIV IE-96) treated with a titanium (Ti) solution will extract traces of plutonium (Pu), strontium (Sr), and cesium (Cs) found in the West Valley Nuclear Services Co., Inc. (WVNS) alkaline supernatant and alkaline sludge water washes. Small ion exchange columns containing Ti-treated zeolite have been successfully tested at WVNS and Pacific Northwest Laboratory (PNL) for the removal of Pu. Full-scale ion exchange processing of sludge wash solution is now being developed at WVNS for use in FY 1992. Commercial manufacturing options for the production of the Ti-treated zeolite were investigated. The Ti-treated zeolite may have application at Hanford and at other U.S. Department of Energy (DOE) sites for the removal of low-level concentrations of Cs, Sr, and Pu from alkaline waste streams

  19. Simultaneous Removal of Hg(II and Phenol Using Functionalized Activated Carbon Derived from Areca Nut Waste

    Directory of Open Access Journals (Sweden)

    Lalhmunsiama

    2017-07-01

    Full Text Available Areca nut waste was utilized to obtain high surface area activated carbon (AC, and it was further functionalized with succinic anhydride under microwave irradiation. The surface morphology and surface functional groups of the materials were discussed with the help of scanning electron microscope(SEM images and fourier transform infra-red (FT-IR analysis. The specific surface area of the AC and functionalized-AC was obtained by the Brunauer-Emmett-Teller (BET method, and found to be 367.303 and 308.032 m2/g, respectively. Batch experiments showed that higher pH favoured the removal of Hg(II, whereas the phenol removal was slightly affected by the changes in the solution pH. The kinetic data followed pseudo-first order kinetic model, and intra-particle diffusion played a significant role in the removal of both pollutants. The maximum sorption capacity of Hg(II and phenol were evaluated using Langmuir adsorption isotherms, and found to be 11.23 and 5.37 mg/g, respectively. The removal of Hg(II was significantly suppressed in the presence of chloride ions due to the formation of a HgCl2 species. The phenol was specifically adsorbed, forming the donor–acceptor complexes or π–π electron interactions at the surface of the solid. Further, a fixed-bed column study was conducted for both Hg(II and phenol. The loading capacity of the column was estimated using the nonlinear Thomas equation, and found to be 2.49 and 2.70 mg/g, respectively. Therefore, the study showed that functionalized AC obtained from areca nut waste could be employed as a sustainable adsorbent for the simultaneous removal of Hg(II and phenol from polluted water.

  20. An investigation into the rapid removal of tetracycline using multilayered graphene-phase biochar derived from waste chicken feather.

    Science.gov (United States)

    Li, Huiqin; Hu, Jingtao; Meng, Yue; Su, Jinhua; Wang, Xiaojing

    2017-12-15

    This study investigated the removal of tetracycline (TC) using multilayered graphene-phase biochar (MGB) derived from waste chicken feather. MGB was produced through a two-stage carbonization and KOH-activation method. MGB was characterized by scanning electron microscopy (SEM), transmission electron microscope (TEM), Fourier transform infrared (FT-IR), Raman spectra, Zeta potential and elemental analysis. Various chemical functional groups were demonstrated on the surface of MGB. MGB was featured by a very large BET surface area of 1838m 2 /g. A rapid equilibrium (within 30s) and an ultrahigh removal efficiency (up to 99.65%) were obtained when MGB was used in the adsorption of TCs. The adsorption processes were temperature-dependent and the maximum adsorption capacity of MGB was 388.33mg/g at 30°C. The data of adsorption isotherms and kinetics were represented well by the Langmuir and Elovich models, respectively. The chemical monolayer adsorption could play an important role in this process. Furthermore, the adsorption of MGB was tolerant with wide pH, high ionic strength and even co-existing anions. Regeneration experiments indicated the removal efficiency was still satisfied (96.61%) even after four cycles. These results have important implications for the future application of animal waste-derived adsorbents in the treatment of wastewater containing antibiotic residues. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Magnetic nanoparticle (Fe3O4) impregnated onto tea waste for the removal of nickel(II) from aqueous solution

    International Nuclear Information System (INIS)

    Panneerselvam, P.; Morad, Norhashimah; Tan, Kah Aik

    2011-01-01

    The removal of Ni(II) from aqueous solution by magnetic nanoparticles prepared and impregnated onto tea waste (Fe 3 O 4 -TW) from agriculture biomass was investigated. Magnetic nanoparticles (Fe 3 O 4 ) were prepared by chemical precipitation of a Fe 2+ and Fe 3+ salts from aqueous solution by ammonia solution. These magnetic nanoparticles of the adsorbent Fe 3 O 4 were characterized by surface area (BET), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM) and Fourier Transform-Infrared Spectroscopy (FT-IR). The effects of various parameters, such as contact time, pH, concentration, adsorbent dosage and temperature were studied. The kinetics followed is first order in nature, and the value of rate constant was found to be 1.90 x 10 -2 min -1 at 100 mg L -1 and 303 K. Removal efficiency decreases from 99 to 87% by increasing the concentration of Ni(II) in solution from 50 to 100 mg L -1 . It was found that the adsorption of Ni(II) increases by increasing temperature from 303 to 323 K and the process is endothermic in nature. The adsorption isotherm data were fitted to Langmuir and Freundlich equation, and the Langmuir adsorption capacity, Q o , was found to be (38.3) mg g -1 . The results also revealed that nanoparticle impregnated onto tea waste from agriculture biomass, can be an attractive option for metal removal from industrial effluent.

  2. Removal of technetium from alkaline nuclear-waste media by a solvent-extraction process using crown ethers

    International Nuclear Information System (INIS)

    Bonnesen, P.V.; Presley, D.J.; Haverlock, T.J.; Moyer, B.A.

    1995-01-01

    Crown ethers dissolved in suitably modified aliphatic kerosene diluents can be employed to extract technetium as pertechnetate anion (TcO 4 - ) with good extraction ratios from realistic simulants of radioactive alkaline nitrate waste. The modifiers utilized are non-halogenated and non-volatile, and the technetium can be removed from the solvent by stripping using water. The crown ethers bis-4,4'(5')[(tert-butyl)cyclohexano]-18-crown-6 (di-t-BuCH18C6) and dicyclohexano-18-crown-6 (DCH18C6) provide stronger TcO 4 - extraction than dicyclohexano-21-crown-7 and 4-tert-butylcyclohexano 15-crown-5. Whereas DCH18C6 provides somewhat higher TcO 4 - extraction ratios than the more lipophilic di-t-BuCH18C6 derivative, the latter was selected for further study owing to its lower distribution to the aqueous phase. Particularly good extraction and stripping results were obtained with di-t-BuCH 18C6 at 0.02 M in a 2:1 vol/vol blend of tributyl phosphate and Isopar reg-sign M. Using this solvent, 98.9% of the technetium contained (at 6 x 10 -5 M) in a Double-Shell Slurry Feed (DSSF) Hanford tank waste simulant was removed following two cross-current extraction contacts. Two cross-current stripping contacts with deionized water afforded removal of 99.1% of the technetium from the organic solvent

  3. Removal of bulk contaminants from radioactive waste water at Bruce A using a clay based flocculent system

    International Nuclear Information System (INIS)

    Davloor, R.; Harper, B.

    2011-01-01

    Bruce Power's Bruce Nuclear Generating Station 'A', located on Lake Huron, has a treatment system that processes all aqueous radioactive waste water originating from the station. This Active Liquid Waste Treatment System (ALWTS) consists of collection tanks for the collection of radioactive waste water, a Pre-Treatment System (PTS) for the removal of bulk contaminants and suspended solids, a Reverse Osmosis System (ROS) to remove dissolved solids, an Evaporation and Solidification System (ESS) to concentrate and immobilize solids contained in concentrated waste streams from the ROS, and discharge tanks for the dispersal of the treated water. The ALWTS has been in continuous service since 1999 and is used to treat approximately 100,000 litres of Active Liquid Waste (ALW) each day. With the exception of tritium, it discharges waste water containing near zero concentrations of radioactive and conventional contaminants to the lake. The original design of the Bruce A ALWTS used a Backwashable Filtration System (BFS) to provide solids free water to the ROS, as measured by the Silt Density Index (SDI). During commissioning, the BFS was not successful in backwashing the solids from the filter elements. For approximately one year, a temporary solution was implemented using a Disposable Filtration System (DFS). A cationic polymer was added upstream of the DFS to agglomerate the solids. The system proved to be highly unreliable. It was difficult to agglomerate solids in the waste stream containing high amounts of detergent. As a result, DFS consumption was high and very costly. The SDI specification for the RO membrane was not always met, resulting in a quick decline of performance of the first stage ROS membranes in the treatment process. In addition, the excess cationic polymer in the RO feed caused the membranes to become fouled. In-house station staff, together with personnel from Colloid Environmental Technologies (CETCO) Company, worked to develop and

  4. Removal of bulk contaminants from radioactive waste water at Bruce A using a clay based flocculent system

    Energy Technology Data Exchange (ETDEWEB)

    Davloor, R.; Harper, B. [Bruce Power, Tiverton, ON (Canada)

    2011-07-01

    Bruce Power's Bruce Nuclear Generating Station 'A', located on Lake Huron, has a treatment system that processes all aqueous radioactive waste water originating from the station. This Active Liquid Waste Treatment System (ALWTS) consists of collection tanks for the collection of radioactive waste water, a Pre-Treatment System (PTS) for the removal of bulk contaminants and suspended solids, a Reverse Osmosis System (ROS) to remove dissolved solids, an Evaporation and Solidification System (ESS) to concentrate and immobilize solids contained in concentrated waste streams from the ROS, and discharge tanks for the dispersal of the treated water. The ALWTS has been in continuous service since 1999 and is used to treat approximately 100,000 litres of Active Liquid Waste (ALW) each day. With the exception of tritium, it discharges waste water containing near zero concentrations of radioactive and conventional contaminants to the lake. The original design of the Bruce A ALWTS used a Backwashable Filtration System (BFS) to provide solids free water to the ROS, as measured by the Silt Density Index (SDI). During commissioning, the BFS was not successful in backwashing the solids from the filter elements. For approximately one year, a temporary solution was implemented using a Disposable Filtration System (DFS). A cationic polymer was added upstream of the DFS to agglomerate the solids. The system proved to be highly unreliable. It was difficult to agglomerate solids in the waste stream containing high amounts of detergent. As a result, DFS consumption was high and very costly. The SDI specification for the RO membrane was not always met, resulting in a quick decline of performance of the first stage ROS membranes in the treatment process. In addition, the excess cationic polymer in the RO feed caused the membranes to become fouled. In-house station staff, together with personnel from Colloid Environmental Technologies (CETCO) Company, worked to develop and

  5. Removal of salt from high-level waste tanks by density-driven circulation or mechanical agitation

    International Nuclear Information System (INIS)

    Kiser, D.L.

    1981-01-01

    Twenty-two high-level waste storage tanks at the Savannah River Plant are to be retired in the tank replacement/waste transfer program. The salt-removal portion of this program requires dissolution of about 19 million liters of salt cake. Steam circulation jets were originally proposed to dissolve the salt cake. However, the jets heated the waste tank to 80 to 90 0 C. This high temperature required a long cooldown period before transfer of the supernate by jet, and increased the risk of stress-corrosion cracking in these older tanks. A bench-scale investigation at the Savannah River Laboratory developed two alternatives to steam-jet circulation. One technique was density-driven circulation, which in bench tests dissolved salt at the same rate as a simulated steam circulation jet but at a lower temperature. The other technique was mechanical agitation, which dissolved the salt cake faster and required less fresh water than either density-driven circulation or the simulated steam circulation jet. Tests in an actual waste tank verified bench-scale results and demonstrated the superiority of mechanical agitation

  6. A review on applicability of naturally available adsorbents for the removal of hazardous dyes from aqueous waste.

    Science.gov (United States)

    Sharma, Pankaj; Kaur, Harleen; Sharma, Monika; Sahore, Vishal

    2011-12-01

    The effluent water of many industries, such as textiles, leather, paper, printing, cosmetics, etc., contains large amount of hazardous dyes. There is huge number of treatment processes as well as adsorbent which are available for the processing of this effluent water-containing dye content. The applicability of naturally available low cast and eco-friendly adsorbents, for the removal of hazardous dyes from aqueous waste by adsorption treatment, has been reviewed. In this review paper, we have provided a compiled list of low-cost, easily available, safe to handle, and easy-to-dispose-off adsorbents. These adsorbents have been classified into five different categories on the basis of their state of availability: (1) waste materials from agriculture and industry, (2) fruit waste, (3) plant waste, (4) natural inorganic materials, and (5) bioadsorbents. Some of the treated adsorbents have shown good adsorption capacities for methylene blue, congo red, crystal violet, rhodamine B, basic red, etc., but this adsorption process is highly pH dependent, and the pH of the medium plays an important role in the treatment process. Thus, in this review paper, we have made some efforts to discuss the role of pH in the treatment of wastewater.

  7. Kinetic study of liquid-phase adsorptive removal of heavy metal ions by almond tree (Terminalia catappa L. leaves waste

    Directory of Open Access Journals (Sweden)

    Michael Horsfall Jnr

    2007-04-01

    Full Text Available The kinetic sorption of five metal ions – Al3+, Cr6+, Zn2+, Ag+ and Mn2+- from aqueous solution onto almond tree leaves (ATL waste in single component system has been studied. The experimental data was analyzed in terms of intraparticle diffusion and rate of adsorption, thus comparing transport mechanism and chemical sorption processes. The sorption rates based on the pseudo-second order rate constants for the five metal ions are 0.018 (Al3+, 0.016 (Cr6+, 0.023 (Zn2+, 0.021 (Ag+ and 0.022 (Mn2+ g/mg.min. The adsorption rates are rapid and within 180 min of agitation more than 85 percent of these metal ions has been removed from solution by the ATL waste biomass. The kinetic data suggest that the overall adsorption process is endothermic, and that the rate-limiting step is a surface diffusion controlled process. The results from this study have revealed that the ATL waste, which is hitherto an environmental nuisance, has the ability to adsorb metal ions from solution and the data are relevant for optimal design of wastewater treatment plants. The low cost and easy availability of ATL waste make potential industrial application a strong possibility.

  8. Functional design criteria radioactive liquid waste line replacement, Project W-087. Revision 3

    International Nuclear Information System (INIS)

    McVey, C.B.

    1994-01-01

    This document provides the functional design criteria for the 222-S Laboratory radioactive waste drain piping and transfer pipeline replacement. The project will replace the radioactive waste drain piping from the hot cells in 222-S to the 219-S Waste Handling Facility and provide a new waste transfer route from 219-S to the 244-S Catch Station in Tank Farms

  9. Bioremediation system on-line for removal radionuclides in radioactive waters; Sistema de biorremediation on-line pra la eliminacion de radionuclidos en aguas radiactivas

    Energy Technology Data Exchange (ETDEWEB)

    Belinchon, J. A.; Garcia, A. M.; Ruibal, C.; Moreno, D. A.

    2010-07-01

    In previous studies developed in Cofrentes Nuclear Power Plant (Valencia, Spain), has been observed that the microorganisms in the radioactive waters of the spent nuclear fuel pool are capable of colonizing the metallic surfaces of the walls and pipes and perform biofilm. These biofilm retain the nuclides contributing to decontaminate the water. In this project, carried out in Cofrentes Nuclear Power Plant, a pilot plant has been designed for the bio decontamination of the radioactive water. At present, the radioactive water coming from the spent nuclear fuel pools, pass through ionic exchange resins. After, these resins are managed as radioactive waste. In this project, the water passes through a bioreactor with stainless steel balls capable of being colonized by the microorganisms in the water. Inside the bioreactor the water gets in contact with the material of the balls, and a biofilm, which retains the nuclides in the water, is developed. The biofilm is easily removed by any conventional procedure of radiochemical decontamination of materials and the nuclides can be collected in a small volume for recovery final disposition or containment. Later, the material of the bioreactor could be managed as not radioactive material. (Author) 9 refs.

  10. Technology Readiness Evaluation For Aluminum Removal And Sodium Hydroxide Regenration From Hanford Tank Waste By Lithium Hydrotalcite Precipitation

    International Nuclear Information System (INIS)

    Sams, T.L.; Massie, H.L.

    2011-01-01

    A Technology Readiness Evaluation (TRE) performed by AREV A Federal Services, LLC (AFS) for Washington River Protection Solutions, LLC (WRPS) shows the lithium hydrotalcite (LiHT) process invented and patented (pending) by AFS has reached an overall Technology Readiness Level (TRL) of 3. The LiHT process removes aluminum and regenerates sodium hydroxide. The evaluation used test results obtained with a 2-L laboratory-scale system to validate the process and its critical technology elements (CTEs) on Hanford tank waste simulants. The testing included detailed definition and evaluation for parameters of interest and validation by comparison to analytical predictions and data quality objectives for critical subsystems. The results of the TRE would support the development of strategies to further mature the design and implementation of the LiHT process as a supplemental pretreatment option for Hanford tank waste.

  11. Selective removal/recovery of RCRA metals from waste and process solutions using polymer filtration{trademark} technology

    Energy Technology Data Exchange (ETDEWEB)

    Smith, B.F. [Los Alamos National Lab., NM (United States)

    1997-10-01

    Resource Conservation and Recovery Act (RCRA) metals are found in a number of process and waste streams at many DOE, U.S. Department of Defense, and industrial facilities. RCRA metals consist principally of chromium, mercury, cadmium, lead, and silver. Arsenic and selenium, which form oxyanions, are also considered RCRA elements. Discharge limits for each of these metals are based on toxicity and dictated by state and federal regulations (e.g., drinking water, RCRA, etc.). RCRA metals are used in many current operations, are generated in decontamination and decommissioning (D&D) operations, and are also present in old process wastes that require treatment and stabilization. These metals can exist in solutions, as part of sludges, or as contaminants on soils or solid surfaces, as individual metals or as mixtures with other metals, mixtures with radioactive metals such as actinides (defined as mixed waste), or as mixtures with a variety of inert metals such as calcium and sodium. The authors have successfully completed a preliminary proof-of-principle evaluation of Polymer Filtration{trademark} (PF) technology for the dissolution of metallic mercury and have also shown that they can remove and concentrate RCRA metals from dilute solutions for a variety of aqueous solution types using PF technology. Another application successfully demonstrated is the dilute metal removal of americium and plutonium from process streams. This application was used to remove the total alpha contamination to below 30 pCi/L for the wastewater treatment plant at TA-50 at Los Alamos National Laboratory (LANL) and from nitric acid distillate in the acid recovery process at TA-55, the Plutonium Facility at LANL (ESP-CP TTP AL16C322). This project will develop and optimize the PF technology for specific DOE process streams containing RCRA metals and coordinate it with the needs of the commercial sector to ensure that technology transfer occurs.

  12. Selective removal/recovery of RCRA metals from waste and process solutions using polymer filtration trademark technology

    International Nuclear Information System (INIS)

    Smith, B.F.

    1997-01-01

    Resource Conservation and Recovery Act (RCRA) metals are found in a number of process and waste streams at many DOE, U.S. Department of Defense, and industrial facilities. RCRA metals consist principally of chromium, mercury, cadmium, lead, and silver. Arsenic and selenium, which form oxyanions, are also considered RCRA elements. Discharge limits for each of these metals are based on toxicity and dictated by state and federal regulations (e.g., drinking water, RCRA, etc.). RCRA metals are used in many current operations, are generated in decontamination and decommissioning (D ampersand D) operations, and are also present in old process wastes that require treatment and stabilization. These metals can exist in solutions, as part of sludges, or as contaminants on soils or solid surfaces, as individual metals or as mixtures with other metals, mixtures with radioactive metals such as actinides (defined as mixed waste), or as mixtures with a variety of inert metals such as calcium and sodium. The authors have successfully completed a preliminary proof-of-principle evaluation of Polymer Filtration trademark (PF) technology for the dissolution of metallic mercury and have also shown that they can remove and concentrate RCRA metals from dilute solutions for a variety of aqueous solution types using PF technology. Another application successfully demonstrated is the dilute metal removal of americium and plutonium from process streams. This application was used to remove the total alpha contamination to below 30 pCi/L for the wastewater treatment plant at TA-50 at Los Alamos National Laboratory (LANL) and from nitric acid distillate in the acid recovery process at TA-55, the Plutonium Facility at LANL (ESP-CP TTP AL16C322). This project will develop and optimize the PF technology for specific DOE process streams containing RCRA metals and coordinate it with the needs of the commercial sector to ensure that technology transfer occurs

  13. Characterization of the March 2017 Tank 15 Waste Removal Slurry Sample (Combination of Slurry Samples HTF-15-17-28 and HTF-15-17-29)

    Energy Technology Data Exchange (ETDEWEB)

    Reboul, S. H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); King, W. D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Coleman, C. J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-05-09

    Two March 2017 Tank 15 slurry samples (HTF-15-17-28 and HTF-15-17-29) were collected during the second bulk waste removal campaign and submitted to SRNL for characterization. At SRNL, the two samples were combined and then characterized by a series of physical, elemental, radiological, and ionic analysis methods. Sludge settling as a function of time was also quantified. The characterization results reported in this document are consistent with expectations based upon waste type, process knowledge, comparisons between alternate analysis techniques, and comparisons with the characterization results obtained for the November 2016 Tank 15 slurry sample (the sample collected during the first bulk waste removal campaign).

  14. Blurred Lines: The Ethics and Policy of Greenhouse Gas Removal at Scale

    Directory of Open Access Journals (Sweden)

    Emily M. Cox

    2018-05-01

    Full Text Available The topic of Greenhouse Gas Removal (GGR for climate geoengineering is becoming increasingly salient following the IPCC's 5th Assessment Report and the Paris Agreement. GGR is thought of as a separate category to mitigation techniques such as low-carbon supply or demand reduction, yet multiple social, ethical and acceptability concerns cut across categories. We propose moving beyond classifying climate strategies as a set of discrete categories (which may implicitly homogenize diverse technologies, toward a prioritization of questions of scale of both technology and decision-making in the examination of social and ethical risks. This is not just a theoretical issue: important questions for policy, governance and finance are raised, for instance over the future inclusion of GGR in carbon markets. We argue that the conclusions drawn about how best to categorize, govern and incentivize any strategy will depend on the framing used, because different framings could lead to very different policy recommendations being drawn. Because of this, a robust approach to developing, governing and financing GGR should pay attention first to urgent concerns regarding democracy, justice and acceptability.

  15. Activation of bentonite to remove the chromium from waste water produced by panning industry, and studying the chromium recovery efficiency

    International Nuclear Information System (INIS)

    Abbasi, S.; Wahba, H.; AL-Masri, M.S.

    2010-01-01

    The fast development of tanning industry led to an increase in environmental problems resulting from discharging its wastes to the surrounding environment. Thus solving this problem became one of the most important aims that the researchers work on. The chromium content of the industrial water wastes of the tanning industry considered as the main pollutant for the environment. The Aleppo Bentonite is used in early research to remove the chromium from the industrial waste water.The current research aims to find a method to activate the Aleppo Bentonite in order to increase the effective removal of chromium from the industrial waste water which is produced by tanning industry, as well as to specify the optimal conditions for chromium recovery.This study used the Aleppo Bentonite, whose origin is Tal Ajar-Aleppo to study the activation aspects using Sulfuric Acid, Hydrochloric Acid and Nitric Acid, in addition to study the recovery aspects using the same acids and hydrogen peroxide and to specify the optimal conditions for chromium recovery through applying some experiments based on three main factors: concentration, settling time and temperature.It was observed from the applied experiments that it is possible to recover chromium from Bentonite efficiently up to (80% - 90%) by treating the Bentonite with hydrogen peroxide(33% concentration) at room temperature, or by treating it with hydrogen peroxide(8.25% concentration) at 75 o C, while the settling time factor proved that full recovery of chromium is obtained during the first hour, and increasing the time factor does not affect the efficiency of chromium recovery. (author)

  16. Inhibition of protease-resistant prion protein formation in a transformed deer cell line infected with chronic wasting disease

    NARCIS (Netherlands)

    Raymond, G.J.; Olsen, E.A.; Lee, K.S.; Raymond, L.D.; Bryant, P.K.; Baron, G.S.; Caughey, W.S.; Kocisko, D.A.; McHolland, L.E.; Favara, C.; Langeveld, J.P.M.; Zijderveld, van F.G.; Mayer, R.T.; Miller, M.W.; Williams, E.S.; Caughey, B.

    2006-01-01

    Chronic wasting disease (CWD) is an emerging transmissible spongiform encephalopathy (prion disease) of North American cervids, i.e., mule deer, white-tailed deer, and elk (wapiti). To facilitate in vitro studies of CWD, we have developed a transformed deer cell line that is persistently infected

  17. Biodiesel production from waste coconut oil by esterification with ethanol: The effect of water removal by adsorption

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Joao Felipe G.; Lucena, Izabelly Larissa; Saboya, Rosana M. Alves; Rodrigues, Marcelo L.; Torres, Antonio Eurico B.; Fernandes, Fabiano A. Narciso; Cavalcante, Celio L. Jr. [Departamento de Engenharia Quimica, Universidade Federal do Ceara, Campus do Pici, Bl. 709, 60455-760, Fortaleza, CE (Brazil); Parente, Expedito Jose S. Jr. [Tecnologias Bioenergeticas (TECBIO), PARTEC, Rua Prof. Romulo Proenca, s/n, CEP 60455-700, Fortaleza, CE (Brazil)

    2010-11-15

    The production of biodiesel by esterification with ethanol using waste oil generated in the refining of coconut oil was investigated in this study. The reaction was performed with and without adsorption of water in order to verify the effect of removing water on the reaction conversion. Methanol was also evaluated as an esterification agent. For both ethanol and methanol, conversions over 99% mol were observed. Simultaneous water adsorption allowed the use of lower alcohol/oil molar ratios thus enabling better economics to a possible industrial process. (author)

  18. Removal potential of toxic 2378-substituted PCDD/F from incinerator flue gases by waste-derived activated carbons.

    Science.gov (United States)

    Hajizadeh, Yaghoub; Onwudili, Jude A; Williams, Paul T

    2011-06-01

    The application of activated carbons has become a commonly used emission control protocol for the removal or adsorption of persistent organic pollutants from the flue gas streams of waste incinerators. In this study, the 2378-substituted PCDD/F removal efficiency of three types of activated carbons derived from the pyrolysis of refuse derived fuel, textile waste and scrap tyre was investigated and compared with that of a commercial carbon. Experiments were carried out in a laboratory scale fixed-bed reactor under a simulated flue gas at 275°C with a reaction period of four days. The PCDD/F in the solid matrices and exhaust gas, were analyzed using gas chromatography coupled with a triple quadrupole mass spectrometer. In the absence of activated carbon adsorbent, there was a significant increase in the concentration of toxic PCDD/F produced in the reacted flyash, reaching up to 6.6 times higher than in the raw flyash. In addition, there was a substantial release of PCDD/F into the gas phase, which was found in the flue gas trapping system. By application of the different commercial, refuse derived fuel, textile and tyre activated carbons the total PCDD/F toxic equivalent removal efficiencies in the exhaust gas stream were 58%, 57%, 64% and 52%, respectively. In general, the removal of the PCDDs was much higher with an average of 85% compared to PCDFs at 41%. Analysis of the reacted activated carbons showed that there was some formation of PCDD/F, for instance, a total of 60.6 μg I-TEQ kg(-1) toxic PCDD/F was formed in the refuse derived fuel activated carbon compared to 34 μg I-TEQ kg(-1) in the commercial activated carbon. The activated carbons derived from the pyrolysis of waste, therefore, showed good potential as a control material for PCDD/F emissions in waste incinerator flue gases. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Retrofit design of remotely removable decontamination spray nozzles for the new waste calcining facility at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Gay, J.A.

    1988-01-01

    High level radioactive liquid waste is converted to a solid form at the Idaho Chemical Processing Plant (ICPP). The conversion is done by a fluidized bed combustion process in the calciner vessel. The interior decontamination system for the calciner vessel uses a common header bolted to four decontamination nozzles around the upper head. The retrofit was required to eliminate hands-on maintenance and difficulty in nozzle removal because of nozzle plugging. The retrofit design for this project demonstrates the solution of problems associated with thermal phenomena, structural supports, seismic requirements, remote handling and installations into extremely restricted spaces

  20. Removal of palladium precipitate from a simulated high-level radioactive liquid waste by reduction by ascorbic acid

    International Nuclear Information System (INIS)

    Kim, Eung Ho; Yoo, Jae Hyung; Choi, Cheong Song

    1998-01-01

    A study of the selective removal of Palladium from a simulated solution of high-level radioactive liquid waste (HLLW) was carried out. The simulated solution contained 7 representative elements (Pd 2+ , Cs + , Sr 2+ , Fe 3+ , MoO 2 2+ , Ru 4+ , and Nd 3+ ) typical of HLLW, ascorbic acid was added to the solution at room temperature. Pd 2+ in the simulated solution was easily reduced to Pd metal by the ascorbic acid and then the metal precipitate could be removed from the solution, whereas other elements remained mainly in solution. When the resulting Pd metal was left in solution, it was reoxidized to Pb 2+ ion and redissolved in a nitric acid medium. The oxidation rate of Pd 2+ depended on the presence of a transition metal such as ferric ion, and was also in proportion to the concentration of nitric acid and in inverse proportion to the concentration of ascrobic acid. (orig.)

  1. Removal of actinides from high activity wastes by solvent extraction: outline of the research work at Ispra J.R.C. laboratories

    International Nuclear Information System (INIS)

    Mannone, F.

    1976-07-01

    The development of an advanced waste management alternative such as the actinide nuclear incineration requires an almost quantitative removal of actinides from waste streams. Within the framework of the Ispra JRC Waste Disposal R and D programme, actinide separation studies were directed towards solvent extraction and precipitation methods. To develop a tentative waste partitioning flow-sheet based on solvent extraction, two conceptual process flow-sheet for actinide removal were evaluated on the basis of the currently used actinide recovery processes, i.e. removal after waste adjustment to low-acidity conditions and direct actinide removal from acidic wastes, as they are generated in actual reprocessing plants. No improvements have been devised for actinide recoveries within the conventional Purex reprocessing operations and a currently agreed value has been assumed for neptunium recovery (90%). According to these basic orientations some organic extractants have been selected for testing as promising candidates for waste partitioning and laboratory studies, designed to develop a satisfactory partitioning flow-sheet, have been proposed and described

  2. Adsorption removal of Sr by Barium impregnated 4A Zeolite(BaA) from high radioactive seawater waste

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Eil Hee; Lee, Keun Young; Kim, Kwang Wook; Kim, Ik Soo; Chung, Dong Yong; Moon, Jei Kwon; Choi, Jong Won [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-06-15

    This study investigated the removal of Sr, which was one of the high radioactive nuclides, by adsorption with Barium (Ba) impregnated 4A zeolite (BaA) from high-radioactive seawater waste (HSW). Adsorption of Sr by BaA (BaA-Sr), in the impregnated Ba concentration of above 20.2wt%, was decreased by increasing the impregnated Ba concentration, and the impregnated Ba concentration was suitable at 20.2wt%. The BaA-Sr adsorption was added to the co-precipitation of Sr with BaSO4 precipitation in the adsorption of Sr by 4A (4A-Sr) within BaA. Thus, it was possible to remove Sr more than 99% at m/V (adsorbent weight/solution volume)=5 g/L for BaA and m/V >20 g/L for 4A, respectively, in the Sr concentration of less than 0.2 mg/L (actual concentration level of Sr in HSW). It shows that BaA-Sr adsorption is better than 4A-Sr adsorption in for the removal capacity of Sr per unit gram of adsorbent, and the reduction of the secondary solid waste generation (spent adsorbent etc.). Also, BaA-Sr adsorption was more excellent removal capacity of Sr in the seawater waste than distilled water. Therefore, it seems to be effective for the direct removal of Sr from HSW. On the other hand, the adsorption of Cs by BaA (BaA-Cs) was mainly performed by 4A within BaA. Accordingly, it seems to be little effect of impregnated Ba into BaA. Meanwhile, BaA-Sr adsorption kinetics could be expressed the pseudosecond order rate equation. By increasing the initial Sr concentrations and the ratios of V/m, the adsorption rate constants (k2) were decreased, but the equilibrium adsorption capacities (qe) were increasing. However, with increasing the temperature of solution, k2 was conversely increased, and qe was decreased. The activation energy of BaA-Sr adsorption was 38 kJ/mol. Thus, the chemical adsorption seems to be dominant rather than physical adsorption, although it is not a chemisorption with strong bonding form.

  3. Investigation of variable compositions on the removal of technetium from Hanford Waste Treatment Plant low activity waste melter off-gas condensate simulant

    Energy Technology Data Exchange (ETDEWEB)

    Taylor-Pashow, Kathryn M. L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); McCabe, Daniel J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Pareizs, John M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-03-29

    The Low Activity Waste (LAW) vitrification facility at the Hanford Waste Treatment and Immobilization Plant (WTP) will generate an aqueous condensate recycle stream (LAW Off-Gas Condensate) from the offgas system. The plan for disposition of this stream during baseline operations is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility again. The primary reason to recycle this stream is so that the semi-volatile 99Tc isotope eventually becomes incorporated into the glass. This stream also contains non-radioactive salt components that are problematic in the melter, so diversion of this stream to another process would eliminate recycling of these salts and would enable simplified operation of the LAW melter and the Pretreatment Facilities. This diversion from recycling this stream within WTP would have the effect of decreasing the LAW vitrification mission duration and quantity of glass waste. The concept being tested here involves removing the 99Tc so that the decontaminated aqueous stream, with the problematic salts, can be disposed elsewhere.

  4. Removal of heavy-metal ions from dilute waste streams using membrane-based hybrid systems

    International Nuclear Information System (INIS)

    Friesen, D.T.; Edlund, D.J.

    1993-01-01

    At Bend research, the authors have developed hybrid systems that couple a process that removes solvent (water) and a process that removes solute (metal ions) such that toxic heavy-metal ions can be efficiently and selectively removed to very low levels while simultaneously concentrating the heavy-metal ions in relatively pure form. Although this technology is broadly applicable, the authors are focusing on the development of a system to treat groundwater that is contaminated with heavy-metal ions. The process utilizes coupled transport and reverse osmosis to reduce chromium and uranium concentration down to parts-per-billion levels

  5. Visit to the 2nd International seminar on quality control of radioactive waste packaged for removal; Juelich, 28/5-1/6 1990

    International Nuclear Information System (INIS)

    Boekschoten, H.J.C.; Tanke, R.H.J.

    1990-01-01

    An account is presented of a five-day seminar on the quality control of radioactive waste contained for removal. In a number of countries a control system is raised. Such a control system can be subdivided in two large parts: -the system of rules, organization (responsibilities) and financing, -the control upon these. Because of the many kinds of radio-active waste, treatment methods and various removal possibilities and because everything has to be accounted well, a quality control system elaborated in detail may involve large costs. It has been mentioned that the costs for processing and removal could be enlarged with 20 - 30 % (BRD). During the seminar attention has been paid to national programmes, the raising of quality control systems, the quality assurance of products of treatment products and the containment of those products, certification of storage and removal sites, experiences with quality control systems, inspection of offered waste. (author)

  6. Disinfection and removal of human pathogenic bacteria in arctic waste stabilization ponds

    DEFF Research Database (Denmark)

    Huang, Yannan; Hansen, Lisbeth Truelstrup; Ragush, Colin M.

    2017-01-01

    Wastewater stabilization ponds (WSPs) are commonly used to treat municipal wastewater in Arctic Canada. The biological treatment in the WSPs is strongly influenced by climatic conditions. Currently, there is limited information about the removal of fecal and pathogenic bacteria during the short...... cool summer treatment season. With relevance to public health, the objectives of this paper were to determine if treatment in arctic WSPs resulted in the disinfection (i.e., removal of fecal indicator bacteria, Escherichia coli) and removal of selected human bacterial pathogens from the treated...... treatment of the wastewater with a 2–3 Log removal of generic indicator E. coli. The bacterial pathogens Salmonella spp., pathogenic E. coli, and Listeria monocytogenes, but not Campylobacter spp. and Helicobacter pylori, were detected in the untreated and treated wastewater, indicating that human...

  7. Removal of lead ions from industrial waste water by using biomaterials – a novel method

    Directory of Open Access Journals (Sweden)

    Malairajan Singanan

    2005-12-01

    Full Text Available A simple cost effective and eco-friendly method for the remediation of lead from industrial wastewater has been investigated. A novel biomaterial, Tridax procumbens (Asteraceae a medicinal plant, was used for the removal of lead ions from synthetic wastewater and the method was also applied for real sample analysis. The operational pH of the experimental solution was fixed as 4.5. The optimum amount of bioadsorbent was 3.5 g. The Pb(II ions removal efficiency of the raw bioadsorbent was also determined. The removal efficiency of the activated carbon of the bioadsorbent was excellent. 98 % removal of Pb(II ions was achieved at the dose rate of 3.5 g. The optimum contact time was estimated to be 160 minutes.

  8. Experiences with on line fault detection system for protection system logic and decay heat removal system logic in Dhruva

    International Nuclear Information System (INIS)

    Ramkumar, N.; Dutta, P.K.; Darbhe, M.D.; Bharadwaj, G.

    2001-01-01

    Dhruva is a 100 MW (Thermal) natural uranium fuelled, vertical core, tank type multi purpose research reactor with heavy water acting as moderator, coolant and reflector. Helium is used as cover gas for heavy water system. Reactor Protection System and Decay Heat Removal System (DHRS) have triplicated instrumented channels. The logic for these systems are hybrid in nature with a mixture of relay logic and solid state logic. Fine Impulse Technique(FIT) is employed for On-line fault detection in the solid state logics of these systems. The FIT systems were designed in the early eighties. Operating experiences over the past 15 years has revealed certain deficiencies. In view of this, a microcomputer based state of the art FIT systems for logics of Reactor Protection System and DHRS are being implemented with improved functionalities built into them. This paper describes the operating experience of old FIT systems and improved features of the proposed new FIT systems. (author)

  9. Selective cesium removal from radioactive liquid waste by crown ether immobilized new class conjugate adsorbent

    OpenAIRE

    Awual, M. R.; 矢板 毅; 田口 富嗣; 塩飽 秀啓; 鈴木 伸一; 岡本 芳浩

    2014-01-01

    Conjugate materials can provide chemical functionality, enabling an assembly of the ligand complexation ability to metal ions that are important for applications, such as separation and removal devices. In this study, we developed ligand immobilized conjugate adsorbent for selective cesium (Cs) removal from wastewater. The adsorbent was synthesized by direct immobilization of DB24C8 onto inorganic mesoporous silica. The obtained results revealed that adsorbent had higher selectivity towards C...

  10. Microbial Community in a Biofilter for Removal of Low Load Nitrobenzene Waste Gas.

    Directory of Open Access Journals (Sweden)

    Jian Zhai

    Full Text Available To improve biofilter performance, the microbial community of a biofilter must be clearly defined. In this study, the performance of a lab-scale polyurethane biofilter for treating waste gas with low loads of nitrobenzene (NB (< 20 g m-3 h-1 was investigated when using different empty bed residence times (EBRT (64, 55.4 and 34 s, respectively. In addition, the variations of the bacterial community in the biofilm on the longitudinal distribution of the biofilters were analysed by using Illumina MiSeq high-throughput sequencing. The results showed that NB waste gas was successfully degraded in the biofilter. High-throughput sequencing data suggested that the phylum Actinobacteria and genus Rhodococcus played important roles in the degradation of NB. The variations of the microbial community were attributed to the different intermediate degradation products of NB in each layer. The strains identified in this study were potential candidates for purifying waste gas effluents containing NB.

  11. Removal of 14C from Irradiated Graphite for Graphite Recycle and Waste Volume Reduction

    International Nuclear Information System (INIS)

    Dunzik-Gougar, Mary Lou; Windes, Will; Marsden, Barry

    2014-01-01

    The aim of the research presented here was to identify the chemical form of 14 C in irradiated graphite. A greater understanding of the chemical form of this longest-lived isotope in irradiated graphite will inform not only management of legacy waste, but also development of next generation gas-cooled reactors. Approximately 250,000 metric tons of irradiated graphite waste exists worldwide, with the largest single quantity originating in the Magnox and AGR reactors of UK. The waste quantity is expected to increase with decommissioning of Generation II reactors and deployment of Generation I gas-cooled, graphite moderated reactors. Of greatest concern for long-term disposal of irradiated graphite is carbon-14 14 C, with a half-life of 5730 years.

  12. Removal of plutonium from real time waste using supercritical fluid extraction

    International Nuclear Information System (INIS)

    Sujatha, K.; Sivaraman, N.; Kumar, R.; Srinivasan, T.G.; Vasudeva Rao, P.R.

    2010-01-01

    Supercritical fluid extraction (SFE) technique was carried out for the recovery of plutonium from cellulose waste matrix using supercritical carbon dioxide (SC-CO 2 ) modified with suitable ligands such as octylphenyl N,N-diisobutyl carbamoylmethyl phosphine oxide (φCMPO), tri-n-butyl phosphate (TBP), acetyl acetone, trifluoro acetyl acetone and theonyltrifluoroacetyl acetone (TTA). The maximum plutonium recovery was found to be 99.8% when SC-CO 2 modified with CMPO was employed. About 15mg of plutonium was recovered from waste. (author)

  13. Where to remove radioactive waste? Perspective for a problem-oriented sociological repository research

    International Nuclear Information System (INIS)

    Hocke, P.; Grunwald, A.

    2006-01-01

    The search for a final disposal site for high-level nuclear waste in Germany is to characterize as an enduring and politicised conflict causing a blocked process of decision making. A social science based research on final disposals, reflecting this stalemate situation in Germany, did not take place since the middle of the 1980s. This book persues three aims, it analyses the conflict situation in an historical and a systematic view, it discusses the new decision- and participation procedures and it formulates a socio-scientific research perspective on waste disposal. Th volume directs to political decision makers, representants from industry and economy, scientists and actors from the citizen sector. (GL)

  14. Logistic Problem Connected with Removing Asbestos as Dangerous Waste from Terrains of Country Communes

    Science.gov (United States)

    Parkitny, Waldemar; Wojcik, Weronika; Generowicz, Agnieszka

    2017-12-01

    Asbestos is a common term referring to certain mineral groups having the form of fibers with a length to fibre diameter of at least 100: 1. The specific properties of asbestos - flammability, mechanical strength and thermal and flexibility - meant that asbestos has been widely used in various types of industrial technologies. It is classified as hazardous waste and therefore requires special methods for collection, export and disposal. The article proposes a model of logistics exports of asbestos from selected villages, in order to guarantee the shortest route, while maintaining the ecological safety and the rules of transportation of hazardous waste.

  15. Batch and bulk removal of a triarylmethane dye, Fast Green FCF, from wastewater by adsorption over waste materials

    International Nuclear Information System (INIS)

    Mittal, Alok; Kaur, Dipika; Mittal, Jyoti

    2009-01-01

    De-Oiled Soya, an agricultural waste material and Bottom Ash a waste of power plants, have been used as adsorbents for the removal and recovery of a triarylmethane dye Fast Green FCF from wastewater. Batch studies have been carried by observing the effects of pH, temperature, concentration of the dye, amount of adsorbents, sieve size of adsorbent, contact time, etc. Graphical correlation of various adsorption isotherm models like, Langmuir, Freundlich, Tempkin and Dubinin-Radushkevich have been carried out for both the adsorbents. The adsorption over both the materials has been found endothermic and feasible in nature. Various thermodynamic parameters, such as, Gibb's free energy, entropy and enthalpy of the on-going adsorption process have been calculated. The kinetic studies suggest the process following pseudo first order kinetics and involvement of particle diffusion mechanism. The bulk removal of the dye has been carried out by passing the dye solution through columns of Bottom Ash and De-Oiled Soya and saturation factor of each column has been calculated. Attempts have also been made to recover the dye by eluting dilute NaOH through the columns

  16. Removal action work plan for Corehole 8 in Waste Area Grouping 1 at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1994-11-01

    The objective of the Waste Area Grouping 1 Corehole 8 Removal Action is to collect strontium-90 contaminated groundwater that is currently being discharged from existing storm drains into First Creek. 90 Sr has been identified as a major contributor to potential risk offsite. First Creek contributes about 10% of the 90 Sr contamination detected at White Oak Dam. This Removal Action Work Plan (RAWP) addresses construction of new french drains, gravity piping, and a pressure sewer pipeline to collect and pump the contaminated water to Manhole 24. The contaminated water will then flow through existing pipes to the Process Waste Treatment Plant for treatment. The proposed scope of work for this project includes the installation of approximately 480 ft of high-density polyethylene gravity piping, with cleanouts, to transport the contaminated water to a proposed pumping station. The contaminated water will then be pumped from the new pump station approximately 1,140 ft through a new force main to Manhole 24. This project will reduce the quantity of 90 Sr contaminated groundwater entering First Creek

  17. Safety evaluation report for packaging (onsite) concrete-lined waste packaging

    International Nuclear Information System (INIS)

    Romano, T.

    1997-01-01

    The Pacific Northwest National Laboratory developed a package to ship Type A, non-transuranic, fissile excepted quantities of liquid or solid radioactive material and radioactive mixed waste to the Central Waste Complex for storage on the Hanford Site

  18. Removal of heavy metal contamination from peanut skin extracts by waste biomass adsorption

    Science.gov (United States)

    Polyphenols are a rapidly increasing portion of the nutraceutical and functional food marketplace. Peanut skins are a waste product which have potential as a low-cost source of polyphenols. Extraction and concentration of peanut skin extracts can cause normally innocuous levels of the heavy metal co...

  19. Process waste assessment: Petroleum jelly removal from semiconductor die using trichloroethylene

    International Nuclear Information System (INIS)

    Curtin, D.P.

    1993-05-01

    The process analyzed involves non-production, laboratory environment use of trichloroethylene for the cleaning of semiconductor devices. The option selection centered on the replacement of the trichloroethylene with a non-hazardous material. This process waste assessment was performed as part of a pilot project

  20. Method for removing and decolorizing aqueous waste effluents containing dissolved or dispersed organic matter

    International Nuclear Information System (INIS)

    Case, F.N.; Ketchen, E.E.

    1975-01-01

    A method is provided for treating organic waste material dissolved or dispersed in an aqueous effluent, which comprises contacting the effluent with an inert particulate carbonaceous sorbent at an oxygen pressure up to 2000 psi, irradiating the resultant mixture with high energy radiation until a decolorized liquid is produced, and then separating the decolorized liquid

  1. Evaluation of Point of Use Water Treatment Devices for Removal of Mine Wastes from Well Water

    Science.gov (United States)

    U.S. EPA Region VII and the Office of Research and Development (ORD) are conducting a large-scale study to identify the prevalence of lead (Pb) and other contaminants in drinking water at four mine waste areas in Washington County, Missouri. Numerous households in Potosi, Richwoo...

  2. The effect of waste water treatment on river metal concentrations: removal or enrichment?

    NARCIS (Netherlands)

    Teuchies, J.; Bervoets, L.; Cox, T.J.S.; Meire, P.; de Deckere, E.

    2011-01-01

    Purpose Discharge of untreated domestic and industrial waste in many European rivers resulted in low oxygen concentrations and contamination with trace metals, often concentrated in sediments. Under these anoxic conditions, the formation of insoluble metal sulfides is known to reduce metal

  3. A process for containment removal and waste volume reduction to remediate groundwater containing certain radionuclides, toxic metals and organics

    International Nuclear Information System (INIS)

    Buckley, L.P.; Killey, D.R.W.; Vijayan, S.; Wong, P.C.F.

    1992-09-01

    A project to remove groundwater contaminants by an improved treatment process was performed during 1990 October--1992 March by Atomic Energy of Canada Limited for the United States Department of Energy, managed by Argonne National Laboratory. The goal was to generate high-quality effluent while minimizing secondary waste volume. Two effluent target levels, within an order of magnitude, or less than the US Drinking Water Limit, were set to judge the process effectiveness. The program employed mixed waste feeds containing cadmium, uranium, lead, iron, calcium, strontium-85-90, cesium-137, benzene and trichlorethylene in simulated and actual groundwater and soil leachate solutions. A combination of process steps consisting of sequential chemical conditioning, cross-flow microfiltration and dewatering by low temperature-evaporation, or filter pressing were effective for the treatment of mixed waste having diverse physico-chemical properties. A simplified single-stage version of the process was implemented to treat ground and surface waters contaminated with strontium-90 at the Chalk River Laboratories site. Effluent targets and project goals were met successfully

  4. Removal of radioactive sodium from experimental breeder reactor-II components and conversion to a disposable solid waste: alcohol recovery

    International Nuclear Information System (INIS)

    Krusl, J.R.; Washburn, R.A.

    1985-01-01

    Radioactive sodium is removed from Experimental Breeder Reactor-II components by immersing the components in denatured alcohol until the sodium has reacted with the alcohol. The resulting radioactive sodium-alcohol solution must be processed to separate and convert the sodium to a solid waste for disposal. A process was developed and is described that converts radioactive sodium dissolved in alcohol to a dry powdered carbonate waste product and recovers the alcohol for reuse. The sodium-alcohol waste solution, after adjustment for proper sodium and water content, is fed to a wiped-film evaporator operated at 190 0 C and maintained with a CO 2 atmosphere that converts the dissolved sodium to anhydrous Na 2 CO 3 . The end product, about85 to 90 wt% Na 2 CO 3 , is directed into a 208-l (55-gal) drum for disposal. Alcohol distilled during the process is condensed, collected, and dried for immediate reuse. The composition of the alcohol is not altered in the process

  5. Evaluating Residence Time for Cesium Removal from Simulated Hanford Tank Wastes Using SuperLig(R) 644 Resin

    International Nuclear Information System (INIS)

    Hassan, N.M.

    2003-01-01

    Batch contact and column experiments were performed to evaluate the effect of residence time on cesium (Cs) removal from two simulated Hanford tank wastes using SuperLig(R) 644 resin. The two waste simulants mimic the compositions of tanks 241-AZ-102 and 241-AN-107 at the U.S. Department of Energy (DOE) Hanford site. A single column made of glass tube (2.7-cm i.d.), which contained approximately 100 mL of H-form SuperLig(R) 644 resin was used in the column experiments. The experiments each consisted of loading, elution, and regeneration steps were performed at flow rates ranging from 0.64 to 8.2 BV/h for AZ-102 and from 1.5 to 18 BV/h for AN-107 simulant. The lowest flow rates of 0.64 and 1.5 BV/h were selected to evaluate less than optimal flow conditions in the plant. The range of the flow rates is consistent with the River Protection Project design for the waste treatment plant (WTP) columns, which will operate at a flow rate between 1.5 to 3 BV/h. Batch contact experiments were also performed for two batches of SuperLig(R) 644 to determine the equilibrium distribution coefficients (Kds) as a function of Cs concentration

  6. Removal of I by adsorption with AgX (Ag-impregnated X Zeolite) from high-radioactive seawater waste

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Eil Hee; Lee, Keun Young; Kim, Kwang Wook; Kim, Hyung Ju; Kim, Ik Soo; Chung, Dong Yong; Moon, Jei Kwon; Choi, Jong Won [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-09-15

    This study aimed to the adsorption-removal of high- radioactive iodide (I) contained in the initially generated high-radioactive seawater waste (HSW), with the use of AgX (Ag-impregnated X zeolite). Adsorption of I by AgX (hereafter denoted as AgX-I adsorption) was increased by increasing the Ag-impregnated concentration in AgX, and its concentration was suitable at about 30 wt%. Because of AgCl precipitation by chloride ions contained in seawater waste, the leaching yields of Ag from AgX (Ag-impregnated concentration : about 30-35 wt%) was less than those in distilled water (< 1 mg/L). AgX-I adsorption was above 99% in the initial iodide concentration (Ci) of 0.01-10 mg/L at m/V (ratio of weight of adsorbent to solution volume)=2.5 g/L. This shows that efficient removal of I is possible. AgX-I adsorption was found to be more effective in distilled water than in seawater waste, and the influence of solution temperature was insignificant. Ag-I adsorption was better described by a Freundlich isotherm rather than a Langmuir isotherm. AgX-I adsorption kinetics can be expressed by a pseudo-second order rate equation. The adsorption rate constants (k2) decreased by increasing Ci, and conversely increased by increasing the ratio of m/V and the solution temperature. This time, the activation energy of AgX-I adsorption was about 6.3 kJ/mol. This suggests that AgX-I adsorption is dominated by physical adsorption with weaker bonds. The evaluation of thermodynamic parameters (a negative Gibbs free energy and a positive Enthalpy) indicates that AgX-I adsorption is a spontaneous reaction (forward reaction), and an endothermic reaction indicating that higher temperatures are favored.

  7. Kinetic and thermodynamic aspects of Cu(II) and Cr(III) removal from aqueous solutions using rose waste biomass

    International Nuclear Information System (INIS)

    Iftikhar, Abdur Rauf; Bhatti, Haq Nawaz; Hanif, Muhammad Asif; Nadeem, Razyia

    2009-01-01

    Distillation waste of rose petals was used to remove Cu(II) and Cr(III) from aqueous solutions. The results demonstrated the dependency of metal sorption on pH, sorbent dose, sorbent size, initial bulk concentration, time and temperature. A dosage of 1 g/L of rose waste biomass was found to be effective for maximum uptake of Cu(II) and Cr(III). Optimum sorption temperature and pH for Cu(II) and Cr(III) were 303 ± 1 K and 5, respectively. The Freundlich regression model and pseudo-second-order kinetic model were resulted in high correlation coefficients and described well the sorption of Cu(II) and Cr(III) on rose waste biomass. At equilibrium q max (mg/g) of Cu(II) and Cr(III) was 55.79 and 67.34, respectively. The free energy change (ΔG o ) for Cu(II) and Cr(III) sorption process was found to be -0.829 kJ/mol and -1.85 kJ/mol, respectively, which indicates the spontaneous nature of sorption process. Other thermodynamic parameters such as entropy change (ΔS o ), enthalpy (ΔH o )and activation energy (ΔE) were found to be 0.604 J mol -1 K -1 , -186.95 kJ/mol and 68.53 kJ/mol, respectively for Cu(II) and 0.397 J mol -1 K -1 , -119.79 kJ/mol and 114.45 kJ/mol, respectively for Cr(III). The main novelty of this work was the determination of shortest possible sorption time for Cu(II) and Cr(III) in comparison to earlier studies. Almost over 98% of Cu(II) and Cr(III) were removed in only first 20 min at an initial concentration of 100 mg/L

  8. Efficient removal of cesium from low-level radioactive liquid waste using natural and impregnated zeolite minerals.

    Science.gov (United States)

    Borai, E H; Harjula, R; Malinen, Leena; Paajanen, Airi

    2009-12-15

    The objective of the proposed work was focused to provide promising solid-phase materials that combine relatively inexpensive and high removal capacity of some radionuclides from low-level radioactive liquid waste (LLRLW). Four various zeolite minerals including natural clinoptilolite (NaNCl), natural chabazite (NaNCh), natural mordenite (NaNM) and synthetic mordenite (NaSM) were investigated. The effective key parameters on the sorption behavior of cesium (Cs-134) were investigated using batch equilibrium technique with respect to the waste solution pH, contacting time, potassium ion concentration, waste solution volume/sorbent weight ratio and Cs ion concentration. The obtained results revealed that natural chabazite (NaNCh) has the higher distribution coefficients and capacity towards Cs ion rather than the other investigated zeolite materials. Furthermore, novel impregnated zeolite material (ISM) was prepared by loading Calix [4] arene bis(-2,3 naphtho-crown-6) onto synthetic mordenite to combine the high removal uptake of the mordenite with the high selectivity of Calix [4] arene towards Cs radionuclide. Comparing the obtained results for both NaSM and the impregnated synthetic mordenite (ISM-25), it could be observed that the impregnation process leads to high improvement in the distribution coefficients of Cs+ ion (from 0.52 to 27.63 L/g). The final objective in all cases was aimed at determining feasible and economically reliable solution to the management of LLRLW specifically for the problems related to the low decontamination factor and the effective recovery of monovalent cesium ion.

  9. Efficient removal of cesium from low-level radioactive liquid waste using natural and impregnated zeolite minerals

    International Nuclear Information System (INIS)

    Borai, E.H.; Harjula, R.; Malinen, Leena; Paajanen, Airi

    2009-01-01

    The objective of the proposed work was focused to provide promising solid-phase materials that combine relatively inexpensive and high removal capacity of some radionuclides from low-level radioactive liquid waste (LLRLW). Four various zeolite minerals including natural clinoptilolite (NaNCl), natural chabazite (NaNCh), natural mordenite (NaNM) and synthetic mordenite (NaSM) were investigated. The effective key parameters on the sorption behavior of cesium (Cs-134) were investigated using batch equilibrium technique with respect to the waste solution pH, contacting time, potassium ion concentration, waste solution volume/sorbent weight ratio and Cs ion concentration. The obtained results revealed that natural chabazite (NaNCh) has the higher distribution coefficients and capacity towards Cs ion rather than the other investigated zeolite materials. Furthermore, novel impregnated zeolite material (ISM) was prepared by loading Calix [4] arene bis(-2,3 naphtho-crown-6) onto synthetic mordenite to combine the high removal uptake of the mordenite with the high selectivity of Calix [4] arene towards Cs radionuclide. Comparing the obtained results for both NaSM and the impregnated synthetic mordenite (ISM-25), it could be observed that the impregnation process leads to high improvement in the distribution coefficients of Cs + ion (from 0.52 to 27.63 L/g). The final objective in all cases was aimed at determining feasible and economically reliable solution to the management of LLRLW specifically for the problems related to the low decontamination factor and the effective recovery of monovalent cesium ion.

  10. Zinc peroxide nanomaterial as an adsorbent for removal of Congo red dye from waste water.

    Science.gov (United States)

    Chawla, Sneha; Uppal, Himani; Yadav, Mohit; Bahadur, Nupur; Singh, Nahar

    2017-01-01

    In the past decade, various natural byproducts, advanced metal oxide composites and photocatalysts have been reported for removal of dyes from water. Although these materials are useful for select applications, they have some limitations such as use at fixed temperature, ultra violet (UV) light and the need for sophisticated experimental set up. These materials can remove dyes up to a certain extent but require long time. To overcome these limitations, a promising adsorbent zinc peroxide (ZnO 2 ) nanomaterial has been developed for the removal of Congo red (CR) dye from contaminated water. ZnO 2 is highly efficient even in the absence of sunlight to remove CR from contaminated water upto the permissible limits set by the World Health Organization (WHO) and the United States- Environmental Protection Agency (US-EPA). The adsorbent has a specific property to adjust the pH of the test solution within 6.5-7.5 range irrespective of acidic or basic nature of water. The adsorption capacity of the material for CR dye was 208mgg -1 within 10min at 2-10pH range. The proposed material could be useful for the industries involved in water purification. The removal of CR has been confirmed by spectroscopic and microscopic techniques. The adsorption data followed a second order kinetics and Freundlich isotherm. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Removal of Radioactive Pollutants by Liquid Emulsion Membrane From Liquid Waste

    International Nuclear Information System (INIS)

    Yossef, Y.A.A.

    2013-01-01

    Radioactive liquid waste should be safely managed because it is potentially hazardous to human health and the environment. Several methods were used for treatment of liquid waste, such as liquid emulsion membrane (LEM). In this work, liquid emulsion membrane using Tri-butyl phosphate (TBP) plus Bis (2-ethylhexyl) phosphate (HDEHP) as mobile carriers, hydrochloric acid (HCl) as stripping agents and an emulsifying agent (span 80) was used for the extraction of uranium ions from radioactive liquid waste. Various parameters influencing the permeation of uranium ions through the membrane have been optimized to separate uranium ions from radioactive liquid waste such as: the effects of membrane material, carrier concentration, operating conditions, etc. were examined; moreover, the transport mechanism of this uranium was also studied. The internal mass transfer in the water/oil (W/O) emulsion drop, the external mass transfer around the drop, the rates of formation, and the decomposition of the complex at the external aqueous-organic interface were considered. The results show that, the liquid emulsion membrane which consists of (25% by volume HDEHP, 0.005 M + 75% by volume TBP, 0.01 M) as extractant (carrier), span 80, 4% (v/v) (sorbitan monooleate) as surfactant agent, hydrochloric acid (HCl), (1.0 M) as stripping agent. From the results, the maximum extraction percent of uranium ions (nearly about of 100%) occurred at the operating conditions: stirring speed =500 rpm, the ratio between LEM and feed phase (liquid waste) = 20 ml: 100 ml, the ratio between organic phase (membrane phase) to internal aqueous phase (stripping phase) = 1.0 and the ph value of the external aqueous phase equal to 5.0.

  12. 222-S radioactive liquid waste line replacement and 219-S secondary containment upgrade, Hanford Site, Richland, Washington

    International Nuclear Information System (INIS)

    1995-01-01

    The U.S. Department of Energy (DOE) is proposing to: (1) replace the 222-S Laboratory (222-S) radioactive liquid waste drain lines to the 219-S Waste Handling Facility (219-S); (2) upgrade 219-S by replacing or upgrading the waste storage tanks and providing secondary containment and seismic restraints to the concrete cells which house the tanks; and (3) replace the transfer lines from 219-S to the 241-SY Tank Farm. This environmental assessment (EA) has been prepared in compliance with the National Environmental Policy Act (NEPA) of 1969, as amended, the Council on Environmental Quality Regulations for Implementing the Procedural Provisions of NEPA (40 Code of Federal Regulations [CFR] 1500-1508), and the DOE Implementing Procedures for NEPA (10 CFR 1021). 222-S is used to perform analytical services on radioactive samples in support of the Tank Waste Remediation System and Hanford Site environmental restoration programs. Activities conducted at 222-S include decontamination of analytical processing and support equipment and disposal of nonarchived radioactive samples. These activities generate low-level liquid mixed waste. The liquid mixed waste is drained through pipelines in the 222-S service tunnels and underground concrete encasements, to two of three tanks in 219-S, where it is accumulated. 219-S is a treatment, storage, and/or disposal (TSD) unit, and is therefore required to meet Washington Administrative Code (WAC) 173-303, Dangerous Waste Regulations, and the associated requirements for secondary containment and leak detection. The service tunnels are periodically inspected by workers and decontaminated as necessary to maintain as low as reasonably achievable (ALARA) radiation levels. Although no contamination is reaching the environment from the service tunnels, the risk of worker exposure is present and could increase. 222-S is expected to remain in use for at least the next 30 years to serve the Hanford Site environmental cleanup mission

  13. Removal of some heavy metals from industrial waste water using polyacrylamide ferric antimonate as new ion exchange material

    International Nuclear Information System (INIS)

    El-Aryan, Y.F.A.

    2011-01-01

    Composite ion exchangers consist of one or more ion exchangers combined with another material, which can be inorganic or organic and may it be an ion exchanger. The reason for manufacturing a composite material is to produce a granular material, with sufficient strength for column use, from ion exchangers that do not form, or only form weak, granules themselves. Attempts in this study are focused to prepare composite ion exchangers for treatment of wastewater. Heavy metals when present in water in concentrations exceeding the permitted limits are injurious to the health. Hence, it is very important to treat such waters to remove the metal ions present before it is supplied for any useful purpose. Therefore, many investigations have studied to develop more effective process to treat such waste stream. Ion-exchange has been widely adopted in heavy metal containing wastewater and most of the ion-exchangers (i.e. ion-exchange media) currently being used are commercially mass-produced organic resins.Therefore, the main aim of this work is directed to find the optimum conditions for removal of some heavy metals from industrial waste water.1-Preparation of polyacrylamide ferric antimonate composite.2-Characterization of the prepared exchanger using IR spectra, X-ray diffraction pattern, DTA and TG analyses.3-Chemical stability, capacity and equilibrium measurements will be determined on the materials using at different conditions (ph heating temperature and reaction temperature).4-Kinetic studies of some heavy metals.5-Ion exchange isotherm.6-Breakthrough curves for removal of the investigated metal ions on the prepared exchanger under certain condition.

  14. Heavy metal removal from aqueous solutions using engineered magnetic biochars derived from waste marine macro-algal biomass.

    Science.gov (United States)

    Son, Eun-Bi; Poo, Kyung-Min; Chang, Jae-Soo; Chae, Kyu-Jung

    2018-02-15

    Despite the excellent sorption ability of biochar for heavy metals, it is difficult to separate and reuse after adsorption when applied to wastewater treatment process. To overcome these drawbacks, we developed an engineered magnetic biochar by pyrolyzing waste marine macro-algae as a feedstock, and we doped iron oxide particles (e.g., magnetite, maghemite) to impart magnetism. The physicochemical characteristics and adsorption properties of the biochar were evaluated. When compared to conventional pinewood sawdust biochar, the waste marine algae-based magnetic biochar exhibited a greater potential to remove heavy metals despite having a lower surface area (0.97m 2 /g for kelp magnetic biochar and 63.33m 2 /g for hijikia magnetic biochar). Although magnetic biochar could be effectively separated from the solution, however, the magnetization of the biochar partially reduced its heavy metal adsorption efficiency due to the biochar's surface pores becoming plugged with iron oxide particles. Therefore, it is vital to determine the optimum amount of iron doping that maximizes the biochar's separation without sacrificing its heavy metal adsorption efficiency. The optimum concentration of the iron loading solution for the magnetic biochar was determined to be 0.025-0.05mol/L. The magnetic biochar's heavy metal adsorption capability is considerably higher than that of other types of biochar reported previously. Further, it demonstrated a high selectivity for copper, showing two-fold greater removal (69.37mg/g for kelp magnetic biochar and 63.52mg/g for hijikia magnetic biochar) than zinc and cadmium. This high heavy metal removal performance can likely be attributed to the abundant presence of various oxygen-containing functional groups (COOH and OH) on the magnetic biochar, which serve as potential adsorption sites for heavy metals. The unique features of its high heavy metal removal performance and easy separation suggest that the magnetic algae biochar can potentially

  15. A study of electrochemical precipitation as a possible method of removing radium from uranium industry liquid wastes

    International Nuclear Information System (INIS)

    Paiva, M.I.F. de

    1996-09-01

    Of the various dissolved species contained in the effluents from the mining and milling of uranium ores, the one which is of particular concern for environmental protection is Radium-226. The literature shows that, in recent years, considerable efforts have been made to develop treatment systems that can achieve the stricter effluent discharge standards imposed by the regulatory bodies. There has also been a concern to treat the already existent sludges from previous treatments. The main priority is to limit, as much as possible, the arising of sludge from future treatment systems. The most common treatment used is the addition of lime and limestone to raise the pH followed by barium chloride to form a very finely divided Ba(Ra)SO 4 precipitate which is then settled in large ponds or basins. In spite of the high decontamination factors obtained with this technique, these may not be satisfactory in terms of environmental protection. In addition, the industry is increasingly aware of the economical benefits resulting from treatment processes that allow water reuse to the process. The main objectives of this work were to carry out a fundamental study of a new technique, Electrochemical Precipitation, and assess its viability to remove undesirable ions from liquid solutions, in this particular case, radium from liquid wastes resulting from the milling of uranium ores. To achieve the proposed objectives, research was carried out using strontium sulphate precipitative membranes combined with an electrical field. Barium was used as a target ion due to its similarity to radium and no radioactive characteristics. The process studied, combines electrical ionic transport and selective precipitation, which relies on a solubility difference between the inorganic membrane and the ions to be separated. This study investigated different parameters involved in the process such as flowrate, current density, different cell geometries and the gap between half cells (internal volume of

  16. Removal efficiency of methylene blue using activated carbon from waste banana stem: Study on pH influence

    Science.gov (United States)

    Misran, E.; Bani, O.; Situmeang, E. M.; Purba, A. S.

    2018-02-01

    The effort to remove methylene blue in artificial solution had been conducted using adsorption process. The abundant banana stem waste was utilized as activated carbon precursor. This study aimed to analyse the influence of solution pH to removal efficiency of methylene blue using activated carbon from banana stem as adsorbent. Activated carbon from banana stem was obtained by chemical activation using H3PO4 solution. Proximate analysis result showed that the activated carbon has 47.22% of fixed carbon. This value exhibited that banana stem was a potential adsorbent precursor. Methylene blue solutions were prepared at initial concentration of 50 ppm. The influence of solution pH was investigated with the use of 0.2 g adsorbent for 100 mL dye solution. The adsorption was conducted using shaker with at a constant rate of 100 rpm at room temperature for 90 minutes. The results showed that solution pH influenced the adsorption. The activated carbon from banana stem demonstrated satisfying performance since removal efficiencies of methylene blue were higher than 99%.

  17. Tea waste biomass activated carbon electrode for simultaneous removal of Cr(VI) and fluoride by capacitive deionization.

    Science.gov (United States)

    Gaikwad, Mahendra S; Balomajumder, Chandrajit

    2017-10-01

    Capacitive deionization is promising less energy based desalination technique to achieve pure water. In the present study microporous activated carbon was prepared from tea waste biomass by chemical and thermal modification. Further TWBAC was used for preparation of the electrode. The TWBAC electrode was applied in the self-made CDI set up for simultaneous removal of hexavalent chromium [Cr(VI)] and fluoride (F) form mixed feed solution of Cr(VI) and F. The performance of TWBAC electrode was found effective for simultaneous removal of Cr(VI) and F from mixed feed solution. The maximum electrosorption capacity of Cr(VI) and F were found 0.77 and 0.74 mg g -1 for 10 mg L -1 and 2.83 and 2.49 mg g -1 for 100 mg L -1 mixed feed solution respectively. The higher removal of Cr(VI) was found due to the electrosorption selectivity of the divalent CrO 4 2- is higher than that of the monovalent F - . Multicomponent isotherm modeling and kinetic study were carried out in this study. TWBAC CDI electrode could be useful for treatment of a low concentrated Cr(VI) and F containing wastewater. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. The use of ionizing radiation and ion exchange resins in the removal of heavy metals from waste water

    International Nuclear Information System (INIS)

    El-Arnaouty, M.B.; Taher, N.H.; El-Toony, M.M.; Dessouki, A.M.

    2002-01-01

    The removal of heavy metal ions from waste water using gamma-radiation and a polymeric membrane prepared by radiation graft copolymerization of vinyl acetate (VAc) onto low density polyethylene films was investigated for the cases of zinc and iron ions. These metal ions were reduced by the hydrated electrons and hydrogen atoms to lower or zero valence state and eventually precipitate out of solution. parameter analysis includes the effect metal ion concentration, Ph, degree of grafting and irradiation dose. The maximum precipitation of the unirradiated metal ions was achieved at Ph 10, while the least precipitation occurred at Ph 3. Irradiation at Ph 5.5 resulted in more precipitation of iron than zinc. Both elements were adsorbed by different adsorbents granular activated carbon (GAC), powdered activated carbon (PAC), amberlite IR-120 plus, dowex-1- exchangers and grafted membranes). The combined treatment by irradiation plus adsorption showed more removal percent, especially for powdered activated carbon (PAC). Also, the grafted membranes showed a removal percent of 98% at high degree of grafting

  19. Influence of feedstock on the copper removal capacity of waste-derived biochars.

    Science.gov (United States)

    Arán, Diego; Antelo, Juan; Fiol, Sarah; Macías, Felipe

    2016-07-01

    Biochar samples were generated by low temperature pyrolysis of different types of waste. The physicochemical characteristics of the different types of biochar affected the copper retention capacity, by determining the main mechanism involved. The capacity of the biochar to retain copper present in solution depended on the size of the inorganic fraction and varied in the following order: rice biochar>chicken manure biochar>olive mill waste biochar>acacia biochar>eucalyptus biochar>corn cob biochar. The distribution of copper between the forms bound to solid biochar, dissolved organic matter and free organic matter in solution also depended on the starting material. However, the effect of pH on the adsorption capacity was independent of the nature of the starting material, and the copper retention of all types of biochar increased with pH. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Selective cesium removal from radioactive liquid waste by crown ether immobilized new class conjugate adsorbent.

    Science.gov (United States)

    Awual, Md Rabiul; Yaita, Tsuyoshi; Taguchi, Tomitsugu; Shiwaku, Hideaki; Suzuki, Shinichi; Okamoto, Yoshihiro

    2014-08-15

    Conjugate materials can provide chemical functionality, enabling an assembly of the ligand complexation ability to metal ions that are important for applications, such as separation and removal devices. In this study, we developed ligand immobilized conjugate adsorbent for selective cesium (Cs) removal from wastewater. The adsorbent was synthesized by direct immobilization of dibenzo-24-crown-8 ether onto inorganic mesoporous silica. The effective parameters such as solution pH, contact time, initial Cs concentration and ionic strength of Na and K ion concentrations were evaluated and optimized systematically. This adsorbent was exhibited the high surface area-to-volume ratios and uniformly shaped pores in case cavities, and its active sites kept open functionality to taking up Cs. The obtained results revealed that adsorbent had higher selectivity toward Cs even in the presence of a high concentration of Na and K and this is probably due to the Cs-π interaction of the benzene ring. The proposed adsorbent was successfully applied for radioactive Cs removal to be used as the potential candidate in Fukushima nuclear wastewater treatment. The adsorbed Cs was eluted with suitable eluent and simultaneously regenerated into the initial form for the next removal operation after rinsing with water. The adsorbent retained functionality despite several cycles during sorption-elution-regeneration operations. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Method of removing arsenic and/or other amphoteric elements from sludge and solid waste materials

    NARCIS (Netherlands)

    Van Breemen, A.N.

    1990-01-01

    Abstract of WO 9006820 (A1) The noxious element arsenic may be removed with high efficiency from iron hydroxide sludge by first subjecting that sludge first to a thermal treatment in the presence of air or oxygen and of an alkaline reagent and next extracting the treated material with water. The

  2. Optimized biofilm-based systems for removal of pharmaceuticals from hospital waste water

    DEFF Research Database (Denmark)

    Andersen, Henrik R; Chhetri, Ravi; Hansen, Kamilla

    Discharge of hospital wastewater is of increasing concern, as hospitals are identified as chemical pollution source due to pharmaceutical content. This project seeks to develop the most efficient and economically feasible technology to remove pharmaceuticals from wastewater, regardless of the poi...

  3. Coal and Zea mays cob waste as adsorbents for removal of metallic ...

    African Journals Online (AJOL)

    The efficiency of coal (CO) and Zea mays (ZM) cob adsorbents for the removal of metallic ions from wastewater is reported. The adsorbents were used in both their granular (GCO and GZM) and powdered (PCO and PZM) forms respectively. Chromium, nickel, iron and cadmium were used as model ions. Efficiency of the ...

  4. Nitrogen removal in maturation waste stabilisation ponds via biological uptake and sedimentation of dead biomass.

    Science.gov (United States)

    Camargo Valero, M A; Mara, D D; Newton, R J

    2010-01-01

    In this work a set of experiments was undertaken in a pilot-scale WSP system to determine the importance of organic nitrogen sedimentation on ammonium and total nitrogen removals in maturation ponds and its seasonal variation under British weather conditions, from September 2004 to May 2007. The nitrogen content in collected sediment samples varied from 4.17% to 6.78% (dry weight) and calculated nitrogen sedimentation rates ranged from 273 to 2868 g N/ha d. High ammonium removals were observed together with high concentrations of chlorophyll-a in the pond effluent. Moreover, chlorophyll-a had a very good correlation with the corresponding increment of VSS (algal biomass) and suspended organic nitrogen (biological nitrogen uptake) in the maturation pond effluents. Therefore, when ammonium removal reached its maximum, total nitrogen removal was very poor as most of the ammonia taken up by algae was washed out in the pond effluent in the form of suspended solids. After sedimentation of the dead algal biomass, it was clear that algal-cell nitrogen was recycled from the sludge layer into the pond water column. Recycled nitrogen can either be taken up by algae or washed out in the pond effluent. Biological (mainly algal) uptake of inorganic nitrogen species and further sedimentation of dead biomass (together with its subsequent mineralization) is one of the major mechanisms controlling in-pond nitrogen recycling in maturation WSP, particularly when environmental and operational conditions are favourable for algal growth.

  5. Removal of cadmium from aqueous solution using waste shells of golden apple snail

    Science.gov (United States)

    Benliang Zhao; Jia-en Zhang; Wenbin Yan; Xiaowu Kang; Chaogang Cheng; Ying Ouyang

    2016-01-01

    Golden apple snail (GAS) is one of the 100 worst invasive alien species. With the application of molluscicides to kill and control the spreading of these snails, a large amount of dead GAS shells are remained in many farms. This study ascertained the characteristics and removal of cadmium (Cd) by the GAS shell (GASS) powders and the associate mechanisms....

  6. Microwave-acid treated bentonite as adsorbent for removal of radiocobalt from liquid radioactive waste

    International Nuclear Information System (INIS)

    Egamediev, S.; Nurbaeva, D.; Saidova, Z.; Khujaev, S.

    2014-01-01

    Full text : Development of new sorbents and study of its sorption properties is an important task for nuclear waste management. In this study it was examined the ability of modified bentonite clays to sorb 60Co radionuclide with aim to evaluate the possibility of using them as sorbents for treatment of radioactively contaminated solutions. The radioactive tracer technique was used for determination of distribution coefficients and to monitor the modification processes of bentonite

  7. Spherical Resorcinol-Formaldehyde Resin for the Removal of Cesium from Hanford Tank Waste

    International Nuclear Information System (INIS)

    Wilmarth, William

    2006-01-01

    This power-point presentation highlights that spherical RF continues to out-perform baseline technology (SuperLig(registered trademark)644) due to several factors: increased radiation stability from Cs Capacity perspective, outstanding hydraulic performance, and flammable gas generation being the same as the baseline technology. Actual waste testing at Pacific Northwest National Lab. is going well, and isotherm modeling is continuing at Savannah River National Lab. Regulatory analysis of spent resin is planned for early summer 2006

  8. Waste Material Adsorbents for Zinc Removal from Wastewater: A Comprehensive Review

    Directory of Open Access Journals (Sweden)

    Haider M. Zwain

    2014-01-01

    Full Text Available This review examines a variety of adsorbents and discusses mechanisms, modification methods, recovery and regeneration, and commercial applications. A summary of available researches has been composed by a wide range of potentially low-cost modified adsorbents including activated carbon, natural source adsorbents (clay, bentonite, zeolite, etc., biosorbents (black gram husk, sugar-beet pectin gels, citrus peels, banana and orange peels, carrot residues, cassava waste, algae, algal, marine green macroalgae, etc., and byproduct adsorbents (sawdust, lignin, rice husk, rice husk ash, coal fly ash, etc.. From the literature survey, different adsorbents were compared in terms of Zn2+ adsorption capacity; also Zn2+ adsorption capacity was compared with other metals adsorption. Thus, some of the highest adsorption capacities reported for Zn2+ are 168 mg/g powdered waste sludge, 128.8 mg/g dried marine green macroalgae, 73.2 mg/g lignin, 55.82 mg/g cassava waste, and 52.91 mg/g bentonite. Furthermore, modification of adsorbents can improve adsorption capacity. Regeneration cost is important, but if consumption of virgin adsorbent is reduced, then multiple economic, industrial, and environmental benefits can be gained. Finally, the main drawback of the already published Zn2+ adsorption researches is that their use is still in the laboratory stage mostly without scale-up, pilot studies, or commercialization.

  9. Comparison among the rice bark in the raw and active forms in the removal of 241Am and 137Cs from liquid radioactive wastes

    International Nuclear Information System (INIS)

    Ferreira, Rafael V.P.; Lima, Josenilson B. de; Bellini, Maria Helena; Sakata, Solange Kazumi; Marumo, Julio Takehiro

    2011-01-01

    New techniques involving treatment of radioactive wastes which associate simplicity and low cost have been directed the attention for the bio sorption, which is a process were solid vegetable or micro-organism for the retention, removing, or recovering of heavy metals from a liquid environment. This study evaluated the capacity of a bio sorbent to remove Am-241 and Cs-137 from liquid radioactive waste. The chosen material was the rice bark employed in the raw or activated forms. The obtained results suggest that the bio sorption, with the activated rice bark, can be a viable technique for the treatment of liquid radioactive wastes containing Am-241 and Cs-137 present in liquid radioactive wastes

  10. The use of an agricultural waste material, Jujuba seeds for the removal of anionic dye (Congo red) from aqueous medium

    International Nuclear Information System (INIS)

    Somasekhara Reddy, M.C.; Sivaramakrishna, L.; Varada Reddy, A.

    2012-01-01

    Highlights: ► We have introduced a low-cost, abundantly locally available non-conventional adsorbent in place of activated carbons. ► The kinetic data were well described by second order kinetic model and intra-particle diffusion model. ► The Langmuir and generalized isotherm models were the best fitting for the isotherm results. ► Removal capacity of Jujuba seeds is more than so many agricultural wastes. ► Relative cost of Jujuba seeds for the removal of Congo red can be compared with activated carbons - Abstract: The feasibility of using Indian Jujuba Seeds (IJS) (Zizyphus maruritiana), abundantly available in and around the Nallamalla forest in Andhra Pradesh, for the anionic dye (Congo red, CR) adsorption from aqueous solution, has been investigated as low cost and eco-friendly adsorbent. Adsorption studies were conducted on a batch process, to study the effects of contact time, initial concentration of CR, pH and temperature. Maximum colour removal was observed at pH 2. The equilibrium data was analyzed by the Langmuir, the Freundlich and the General isotherms. The data fitted well with the Langmuir model, with a maximum adsorption capacity of 55.56 mg g −1 . The pseudo-second-order kinetics was the best for the adsorption of CR, by IJS (Z. maruritiana) with good correlation. Thermodynamic parameters, such as standard free energy change (ΔG°), standard enthalpy change (ΔH°) and standard entropy change (ΔS°), were analyzed. The results suggest that IJS (Z. maruritiana) is a potential low-cost adsorbent for the CR dye removal from synthetic dye wastewater.

  11. Intensified removal of copper from waste water using activated watermelon based biosorbent in the presence of ultrasound.

    Science.gov (United States)

    Gupta, Harsh; Gogate, Parag R

    2016-05-01

    Copper is one of the most toxic heavy metals having significant effects on the living organisms and hence effective removal of copper from waste water is crucial. The current work investigates the application of activated watermelon shell based biosorbent for the removal of copper from aqueous solution. The effect of activation using calcium hydroxide and citric acid as well as the effect of operating parameters like contact time, adsorbent dosage, temperature, pH, initial concentration and ultrasonic power on the extent of removal has been investigated. Experiments performed in the presence of ultrasound to investigate the degree of intensification as compared to the conventional agitation based treatment revealed that the adsorption rate significantly increases in the presence of ultrasound and also the time required for reaching the equilibrium reduces from 60 min in conventional approach to only 20 min in the presence of ultrasound. The extent of adsorption of Cu(II) on adsorbents was found to increase with an increase in the operating pH till an optimum value of 5. The extent of adsorption also increased with a decrease in the initial concentration and particle size as well as with an increase in ultrasonic power till an optimum. Kinetics and isotherm study revealed that all the experimental data was found to best fit the pseudo second order kinetics and Langmuir adsorption isotherm model respectively. Maximum adsorption capacity was found to be 31.25mg/g for watermelon treated with calcium hydroxide and 27.027 mg/g for watermelon treated with citric acid. Overall present study established that activated watermelon is an environmentally friendly, low cost and highly efficient biosorbent that can be successfully applied for the removal of copper from aqueous solution with intensification benefits based on the ultrasound assisted approach. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Aluminum Removal And Sodium Hydroxide Regeneration From Hanford Tank Waste By Lithium Hydrotalcite Precipitation Summary Of Prior Lab-Scale Testing

    International Nuclear Information System (INIS)

    Sams, T.L.; Guillot, S.

    2011-01-01

    Scoping laboratory scale tests were performed at the Chemical Engineering Department of the Georgia Institute of Technology (Georgia Tech), and the Hanford 222-S Laboratory, involving double-shell tank (DST) and single-shell tank (SST) Hanford waste simulants. These tests established the viability of the Lithium Hydrotalcite precipitation process as a solution to remove aluminum and recycle sodium hydroxide from the Hanford tank waste, and set the basis of a validation test campaign to demonstrate a Technology Readiness Level of 3.

  13. Evaluation of new macroporous resins for the removal of uranium and plutonium from waste streams

    International Nuclear Information System (INIS)

    Koenst, J.W.; Herald, W.R.

    1976-01-01

    Organic ion exchange resins were evaluated for 238 Pu(IV), 238 Pu(VI), and 233 U(VI) removal from water. The capacity of the resins and equilibrium coefficients (Kd) were compared with each other and to bone char--an inorganic adsorbent consisting of hydroxyapatite (HAP) for which data is available. Bone char gave the best results for the removal of 238 Pu(IV), Amberlite XE279 (one of the new macroporous resins) gave the best results for 238 Pu(VI), and another macroporous resin, Dowex-MSA-1, gave good results for 233 U(VI). Kd values were shown to be a function of pH

  14. A Potential Waste to be Selected as Media for Metal and Nutrient Removal

    Science.gov (United States)

    Zayadi, N.; Othman, N.; Hamdan, R.

    2016-07-01

    This study describes the potential of application of cassava peel, banana peel, coconut shell, and coconut coir to be selected as metal removal while limestone and steel slag for nutrient removal. The media were characterized by X-Ray Fluorescence (XRF), Fourier Transform Infrared (FTIR), Field Emission Scanning Electron Microscopy-Energy Dispersive X-Ray (FESEM-EDX), and X-Ray Powder Diffraction (XRD). The results of XRF analysis medias show the present of calcium oxide, CaO which confirm the high efficiency in adsorbing metal ions and nutrient which is in agreement with the result of XRD. The characteristics of medias by FTIR analysis also confirmed the involvement of alcohol, carboxylic, alkanes, amines and ethers which play important role to reduce ions while FESEM-EDX indicates the porous structures of study medias. The characterization analysis highlight that cassava peel and steel slag were selected as a potential media in this study.

  15. Evaluation of natural clay Brasgel as adsorbent in removal of lead in synthetic waste water

    International Nuclear Information System (INIS)

    Lima, W.S.; Rodrigues, M.G.F.; Mota, M.F.; Patricio, A.C.L.; Silva, M.M.

    2012-01-01

    The smectite clays have high adsorption capacity and cation exchange. Due to its chemical and physical characteristics, they can be effectively used as adsorbent of pollutants (such as metal ions). The initial objective of this study was to characterize the clay Brasgel through the techniques of X-Ray Diffraction (XRD), X-Ray Spectrometry by Energy Dispersive (EDX) and nitrogen adsorption (BET method), seeking its use in removing lead (Pb 2+ ) from synthetic effluents. System was used in finite bath to assess the potential removal of lead (Pb 2+ ), following a 2 2 factorial experimental design with three center point experiments, taking as input variables: pH and initial concentrations of lead (Pb 2+ ). The clay has Brasgel clay in its composition that characterize it as a smectite clay. By having a large surface area, this clay showed great potential on the adsorption of metal ions. (author)

  16. Adsorptive Removal of Toxic Chromium from Waste-Water Using Wheat Straw and Eupatorium adenophorum.

    Directory of Open Access Journals (Sweden)

    Dagang Song

    Full Text Available Environmental pollution with heavy metals is a serious issue worldwide posing threats to humans, animals and plants and to the stability of overall ecosystem. Chromium (Cr is one of most hazardous heavy metals with a high carcinogenic and recalcitrant nature. Aim of the present study was to select low-cost biosorbent using wheat straw and Eupatorium adenophorum through simple carbonization process, capable of removing Cr (VI efficiently from wastewater. From studied plants a low cost adsorbent was prepared for removing Cr (VI from aqueous solution following very simple carbonization method excluding activation process. Several factors such as pH, contact time, sorbent dosage and temperature were investigated for attaining ideal condition. For analysis of adsorption equilibrium isotherm data, Langmuir, Freundlich and Temkin models were used while pseudo-first-order, pseudo-second-order, external diffusion and intra-particle diffusion models were used for the analysis of kinetic data. The obtained results revealed that 99.9% of Cr (VI removal was observed in the solution with a pH of 1.0. Among all the tested models Langmuir model fitted more closely according to the data obtained. Increase in adsorption capacity was observed with increasing temperature revealing endothermic nature of Cr (VI. The maximum Cr (VI adsorption potential of E. adenophorum and wheat straw was 89.22 mg per 1 gram adsorbent at 308K. Kinetic data of absorption precisely followed pseudo-second-order model. Present study revealed highest potential of E. adenophorum and wheat straw for producing low cost adsorbent and to remove Cr (VI from contaminated water.

  17. Impact of removing mucosal barrier injury laboratory-confirmed bloodstream infections from central line-associated bloodstream infection rates in the National Healthcare Safety Network, 2014.

    Science.gov (United States)

    See, Isaac; Soe, Minn M; Epstein, Lauren; Edwards, Jonathan R; Magill, Shelley S; Thompson, Nicola D

    2017-03-01

    Central line-associated bloodstream infection (CLABSI) event data reported to the National Healthcare Safety Network from 2014, the first year of required use of the mucosal barrier injury laboratory-confirmed bloodstream infection (MBI-LCBI) definition, were analyzed to assess the impact of removing MBI-LCBI events from CLABSI rates. CLABSI rates decreased significantly in some location types after removing MBI-LCBI events, and MBI-LCBI events will be removed from publicly reported CLABSI rates. Published by Elsevier Inc.

  18. Cesium Removal from Savannah River Site Radioactive Waste Using the Caustic Side Solvent Extraction (CSSX) Process

    International Nuclear Information System (INIS)

    WALKER, DARREL

    2004-01-01

    Researchers at the Savannah River Technology Center (SRTC) successfully demonstrated the Caustic-Side Solvent Extraction (CSSX) process flow sheet using a 33-stage, 2-cm centrifugal contactor apparatus in two 24-hour tests using actual high level waste. Previously, we demonstrated the solvent extraction process with actual SRS HLW supernatant solution using a non-optimized solvent formulation. Following that test, the solvent system was optimized to enhance extractant solubility in the diluent by increasing the modifier concentration. We now report results of two tests with the new and optimized solvent

  19. Supported liquid membrane based removal of lead(II) and cadmium(II) from mixed feed: Conversion to solid waste by precipitation

    Energy Technology Data Exchange (ETDEWEB)

    Bhatluri, Kamal Kumar; Manna, Mriganka Sekhar; Ghoshal, Aloke Kumar; Saha, Prabirkumar, E-mail: p.saha@iitg.ac.in

    2015-12-15

    Highlights: • Simultaneous removal of two heavy metals lead and cadmium. • Conversion of liquid waste to solid precipitation. • Precipitation facilitates the metals transportation through LM. • Solidification of liquid waste minimizes the final removal of waste. - Abstract: Simultaneous removal of two heavy metals, lead(II) and cadmium(II), from mixed feed using supported liquid membrane (SLM) based technique is investigated in this work. The carrier-solvent combination of “sodium salt of Di-2-ethylhexylphosphoric acid (D2EHPA) (4% w/w) in environmentally benign coconut oil” was immobilized into the pores of solid polymeric polyvinylidene fluoride (PVDF) support. Sodium carbonate (Na{sub 2}CO{sub 3}) was used as the stripping agent. Carbonate salts of lead(II) and cadmium(II) were formed in the stripping side interface and they were insoluble in water leading to precipitation inside the stripping solution. The transportation of solute is positively affected due to the precipitation. Lead(II) removal was found to be preferential due to its favorable electronic configuration. The conversion of the liquid waste to the solid one was added advantage for the final removal of hazardous heavy metals.

  20. Development of treatment method for stillage residues of liquid radioactive wastes to remove organic substances and transuranium elements

    International Nuclear Information System (INIS)

    Rudenko, L.I.; Dzhuzha, O.V.; Khan, V.E.

    2008-01-01

    The paper presents the results of the study into the laws that govern the process of treating by oxidation the stillage residues of liquid radioactive wastes to remove organic compounds and transuranium elements with the use of hydrogen peroxide, potassium permanganate and subsequent ultra-filtration. The optimum oxidisation regime has been defined on the basis of this study to ensure that the initial dichromate oxidability of LRW's stillage residues decreases from 6,000-9,500 to 500-1,000 mg O/I, whereas the TUE activity associated with the key isotopes is reduced by 74-87 % for 238,239,240 Pu, by 94-95 % for 241 Am, and by 90-95 % for 244 Cm. The concentration of uranium decreases by 94-99 %. It is proposed to implement this method at the Chernobyl NPP site.

  1. Viimsi water treatment plant for Ra removal: NORM residue/waste generation, radiation safety issues, and regulatory response

    Energy Technology Data Exchange (ETDEWEB)

    Kiisk, M.; Suursoo, S.; Realo, E.; Jantsikene, A.; Lumiste, L.; Vaeaer, K.; Isakar, K.; Koch, R. [University of Tartu (Estonia)

    2014-07-01

    In early 2012, the first large-scale water treatment plant, specifically designed to remove Ra-isotopes from groundwater, was commissioned in Viimsi parish, North-Estonia. The plant serves approximately 15 000 consumers with maximum production capacity of 6000 m{sup 3}/d. The chosen water treatment technology is chemical free and is based on co-precipitation and adsorption with Fe(OH){sub 3} and MnO{sub 2} flocks, and adsorption of residual Ra onto zeolite sand. The chosen technology is a complex approach and is designed to reduce high Fe and Mn concentrations as well as dissolved gases along with Ra isotopes. It is proved to be well adapted with hydro-chemical conditions of the groundwater feeding the plant. As the novel technology has been applied for the first time on a large scale, the plant was taken under long-term investigation when commissioned. The latter focuses on three areas: Ra removal efficiency and its dynamics, build-up of radioactive waste, and radiation safety. The average Ra-226 and Ra-228 activity concentrations in raw water feeding the plant are approximately 0.5 Bq/L and 0.6 Bq/L, respectively, resulting in total indicative dose of 0.4 mSv/y. Operating conditions of the plant are restricted by the established indicative value of 0.1 mSv/y for drinking water, i.e. a minimum 75% removal efficiency for Ra is required. Results of the studies show that the plant operates at Ra-removal efficiency of 98% or higher without the need of regeneration or replacement of filtering materials within the first two years. Measurements confirm that ∼90% of Ra accumulates in the solid filter media, 8-9% is washed out by backwash system as liquid effluent and 1-2% is fed on to the consumer distribution network. It has been calculated that at the level of current production capacity (below 3000 m{sup 3}/d) the yearly accumulation rate in the plant is approximately 300 and 400 MBq/y for Ra-226 and Ra-228, respectively. These values strongly exceed the exemption

  2. Studies on the adsorption kinetics and isotherms for the removal and recovery of Methyl Orange from wastewaters using waste materials

    International Nuclear Information System (INIS)

    Mittal, Alok; Malviya, Arti; Kaur, Dipika; Mittal, Jyoti; Kurup, Lisha

    2007-01-01

    De-Oiled Soya a waste of Soya oil industries and Bottom Ash a waste of thermal power plants have been used as effective adsorbent for recovery and removal of hazardous dye Methyl Orange from wastewater. During the studies effects of amount of dye and adsorbents, pH, sieve sizes, column studies etc. have been carried out. Adsorption of the dye over both the adsorbents has been monitored through Langmuir and Freundlich adsorption isotherm models and feasibility of the process is predicted in both the cases. Different thermodynamic parameters like Gibb's free energy, enthalpy and entropy of the undergoing process are also evaluated through these adsorption models. The kinetic studies confirm the first order process for the adsorption reaction and also play an important role in finding out half-life of the adsorption process and rate constants for both the adsorbents. It is also found that over the entire concentration range the adsorption on Bottom Ash takes place via particle diffusion process, while that of De-Oiled Soya undergoes via film diffusion process. In order to establish the practical utility of the developed process, attempts have been made for the bulk removal of the dye through column operations. For the two columns saturation factors are found as 98.61 and 99.8%, respectively, for Bottom Ash and De-Oiled Soya with adsorption capacity of each adsorbent as 3.618 and 16.664 mg/g, respectively. The dye recovery has been achieved by eluting dil. NaOH through the exhausted columns

  3. Removal of heavy metals from aqueous phases using chemically modified waste Lyocell fiber

    Energy Technology Data Exchange (ETDEWEB)

    Bediako, John Kwame; Wei, Wei; Kim, Sok; Yun, Yeoung-Sang, E-mail: ysyun@jbnu.ac.kr

    2015-12-15

    Highlights: • Waste Lyocell fiber was chemically modified into cellulose xanthate. • The sorbent showed high affinity for Pb(II), Cd(II) and Cu(II) ions. • The sorbent also showed strong Cu(II) selectivity in Pb(II)–Cd(II)–Cu(II) ternary metal solutions. - Abstract: In this study, an outstanding performance of chemically modified waste Lyocell for heavy metals treatment is reported. The sorbent, which was prepared by a simple and concise method, was able to bind heavy metals such as Pb(II), Cu(II) and Cd(II), with very high efficiencies. The binding mechanisms were studied through adsorption and standard characterization tests such as scanning electron microscopy, energy-dispersive spectroscopy, Fourier transform infrared spectroscopy, and X-ray diffraction analyses. Adsorption kinetics was very fast and attained equilibrium within 5 min in all metals studied. The maximum single metal uptakes were 531.29 ± 0.28 mg/g, 505.64 ± 0.21 mg/g, and 123.08 ± 0.26 mg/g for Pb(II), Cd(II) and Cu(II), respectively. In ternary metal systems, Cu(II) selectivity was observed and the underlying factors were discussed. The sorbent by its nature, could be very effective in treating large volumes of wastewater with the contact of very little amount.

  4. Innovative in-line separators: removal of water or sand in oil/water and gas/liquid/solid pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Jepson, Paul; Cheolho Kang; Gopal, Madan [CC Technologies, Dublin, OH (United States)

    2003-07-01

    In oil and gas production, multiphase mixtures are often separated before downstream processing. The separators are large, often 20 - 40 feet long and large diameter and use sophisticated internals. The costs are in the millions of dollars. Further, the sand and water in the flow can cause severe internal erosion and corrosion respectively before the flow reaches the separators. The CC Technologies/MIST In line Separation System is a cost-effective, efficient device for use in multiphase environments. The device is applicable for gas/solid, gas/liquid/solid and oil/water systems and offers exceptional separation between phases for a fraction of the cost of expensive gravity separators and hydro cyclones. The System contains no moving parts and is designed to be of the same diameter as the pipe, and experiences low shear forces. It can be fabricated with standard pipes. The efficiency of the separator has been determined in an industrial scale, pilot plant test facility at CC Technologies in 4-inch diameter pipes and has been found to be in excess of 98-99% for the removal of sand. Two phase oil/water separation effectiveness is in excess of 90% in 1-stage and 95% in 2 - stage. (author)

  5. LINES

    Directory of Open Access Journals (Sweden)

    Minas Bakalchev

    2015-10-01

    Full Text Available The perception of elements in a system often creates their interdependence, interconditionality, and suppression. The lines from a basic geometrical element have become the model of a reductive world based on isolation according to certain criteria such as function, structure, and social organization. Their traces are experienced in the contemporary world as fragments or ruins of a system of domination of an assumed hierarchical unity. How can one release oneself from such dependence or determinism? How can the lines become less “systematic” and forms more autonomous, and less reductive? How is a form released from modernistic determinism on the new controversial ground? How can these elements or forms of representation become forms of action in the present complex world? In this paper, the meaning of lines through the ideas of Le Corbusier, Leonidov, Picasso, and Hitchcock is presented. Spatial research was made through a series of examples arising from the projects of the architectural studio “Residential Transformations”, which was a backbone for mapping the possibilities ranging from playfulness to exactness, as tactics of transformation in the different contexts of the contemporary world.

  6. Super-hierarchical porous carbons derived from mixed biomass wastes by a stepwise removal strategy for high-performance supercapacitors

    Science.gov (United States)

    Peng, Lin; Liang, Yeru; Dong, Hanwu; Hu, Hang; Zhao, Xiao; Cai, Yijing; Xiao, Yong; Liu, Yingliang; Zheng, Mingtao

    2018-02-01

    The synthesis and energy storage application of hierarchical porous carbons with size ranging from nano-to micrometres has attracted considerable attention all over the world. Exploring eco-friendly and reliable synthesis of hierarchical porous carbons for supercapacitors with high energy density and high power is still of ongoing challenge. In this work, we report the design and synthesis of super-hierarchical porous carbons with highly developed porosity by a stepwise removal strategy for high-rate supercapacitors. The mixed biomass wastes of coconut shell and sewage sludge are employed as raw material. The as-prepared super-hierarchical porous carbons present high surface areas (3003 m2 g-1), large pore volume (2.04 cm3 g-1), appropriate porosity, and outstanding electrochemical performance. The dependence of electrochemical performance on structural, textural, and functional properties of carbons engineered by various synthesis strategies is investigated in detail. Moreover, the as-assembled symmetrical supercapacitor exhibits high energy density of 25.4 Wh kg-1 at a power density of 225 W kg-1 and retains 20.7 Wh kg-1 even at a very high power of 9000 W kg-1. This work provides an environmentally benign strategy and new insights to efficiently regulate the porosity of hierarchical porous carbons derived from biomass wastes for energy storage applications.

  7. Fabrication of the novel hydrogel based on waste corn stalk for removal of methylene blue dye from aqueous solution

    Science.gov (United States)

    Ma, Dongzhuo; Zhu, Baodong; Cao, Bo; Wang, Jian; Zhang, Jianwei

    2017-11-01

    The novel hydrogel based on waste corn stalk was synthetized by aqueous solution polymerization technique with functional monomers in the presence of organic montmorillonite (OMMT) under ultrasonic. In this study, batch adsorption experiments were carried out to research the effect of initial dye concentration, the dosage of hydrogel, stirring speed, contact time and temperature on the adsorption of methylene blue (MB) dye. The adsorption process was best described by the pseudo-second-order kinetic model, which confirmed that it should be a chemical process. Furthermore, we ascertained the rate controlling step by establishing the intraparticle diffusion model and the liquid film diffusion model. The adsorption and synthesis mechanisms were vividly depicted in our work as well. Structural and morphological characterizations by virtue of FTIR, FESEM, and Biomicroscope supported the relationship between the adsorption performance and material's microstructure. This research is a valuable contribution for the environmental protection, which not only converts waste corn stalks into functional materials, but improves the removal of organic dye from sewage water.

  8. Preliminary Ion Exchange Modeling for Removal of Cesium from Hanford Waste Using SuperLig 644 Resin

    International Nuclear Information System (INIS)

    Hamm, L.L.

    2000-01-01

    A proposed facility is being designed for the immobilization of Hanford high-level radioactive waste. One unit process in the facility is designed to remove radioactive cesium by ion-exchange from the strongly alkaline aqueous phase. A resin specifically designed with high selectivity of cesium under alkaline conditions is being investigated. The resin also is elutable under more acidic conditions. The proposed design of the facility consists of two sets of two packed columns placed in series (i.e., a lead column followed by a lag (guard) column configuration). During operation, upon reaching a specified cesium concentration criterion at the exit of the lag column, operation is switched to the second set of lead and lag columns. The cesium-loaded lead column is processed (i.e., washed and eluted) and switched to the lag position. the previous lag column is then placed in the lead position (without eluting) and the system is ready for use in the next cycle. For a well designed process, the loading and elution processes result in significant volume reductions in aqueous high-level waste

  9. Defense Waste Processing Facility (DWPF), Modular CSSX Unit (CSSX), and Waste Transfer Line System of Salt Processing Program (U)

    International Nuclear Information System (INIS)

    CHANG, ROBERT

    2006-01-01

    All of the waste streams from ARP, MCU, and SWPF processes will be sent to DWPF for vitrification. The impact these new waste streams will have on DWPF's ability to meet its canister production goal and its ability to support the Salt Processing Program (ARP, MCU, and SWPF) throughput needed to be evaluated. DWPF Engineering and Operations requested OBU Systems Engineering to evaluate DWPF operations and determine how the process could be optimized. The ultimate goal will be to evaluate all of the Liquid Radioactive Waste (LRW) System by developing process modules to cover all facilities/projects which are relevant to the LRW Program and to link the modules together to: (1) study the interfaces issues, (2) identify bottlenecks, and (3) determine the most cost effective way to eliminate them. The results from the evaluation can be used to assist DWPF in identifying improvement opportunities, to assist CBU in LRW strategic planning/tank space management, and to determine the project completion date for the Salt Processing Program

  10. Comparative Study for Removal of Some Heavy Metals from Liquid Wastes Using Natural Resources and Bacteria

    International Nuclear Information System (INIS)

    Ali, H.E.A.

    2011-01-01

    Twenty three bacterial strains have been isolated from polluted water and soil samples of Ismailia Canal in Egypt. The polluted sites were at Abu Zabal Factory (fertilizer factory), Elshaba factory (Aluminum sulfate factory) and Oil-pipes Company (petrochemical materials). By screening the abilities of these isolates to tolerate heavy metals, it has been found that isolate M AM-4 w as the most potent isolate. This isolate was identified as Providencia rettgeri. As the concentration of Al 3+ increased the ability of P. rettgeri to uptake Al 3+ decreased. P. rettgeri could remove 97.2% of Al 3+ from 25 mg/L. Bacillus cereus ATCC 11778 (American Type Culture Collection, U.S.A) gave the same trend for Al 3+ uptake but P. rettgeri was more tolerant to Al 3+ than B. cereus ATCC 11778.With increasing Co 2+ concentration, abilities of P. rettgeri and B. cereus ATCC 11778 to uptake decreased. P. rettgeri could uptake 59 mg/L Co 2+ from 200 mg/L (29.5%), while B. cereus ATCC 11778 uptake 68.3 mg/L (34.1%). Also, as the concentration of Cu 2+ increased the abilities of P. rettgeri and B. cereus ATCC 11778 to uptake Cu 2+ decreased. P. rettgeri removed 11.5 mg/Cu 2+ from 25 mg/L (47.0%), while B. cereus ATCC 11778 removed 13.5 mg/L from the some concentration (54.%). Combined treatment of 1.0% untreated clay with P. rettgeri could remove 471.8 mg/L Al 3+ from 500 mg/L (94.4%), 82.4 mg/L Co 2+ from 200 mg/L (41.2%) and 150 mg/L Cu 2+ from 300 mg/L (50%). However, 1.0 % treated clay combined with P. rettgeri adsorbed 207.8 mg/L Al 3+ from 500 mg/L (41.5%), 52.0 mg/L Co 2+ from 200 mg/L (26.0%) and 185 mg/L Cu 2+ from 300 mg/L (61.6%). The combined treatment adsorbed more heavy metals than clay only or bacterial cells only. Three KGy gamma radiations reduced the viable count of P. rettgeri by 7.4 log cycles. P. rettegri mutant MI was able to tolerate more Al 3+ than the parent strain

  11. Removal and recovery of metal ions from process and waste streams using polymer filtration

    International Nuclear Information System (INIS)

    Jarvinen, G.D.; Smith, B.F.; Robison, T.W.; Kraus, K.M.; Thompson, J.A.

    1999-01-01

    Polymer Filtration (PF) is an innovative, selective metal removal technology. Chelating, water-soluble polymers are used to selectively bind the desired metal ions and ultrafiltration is used to concentrate the polymer-metal complex producing a permeate with low levels of the targeted metal ion. When applied to the treatment of industrial metal-bearing aqueous process streams, the permeate water can often be reused within the process and the metal ions reclaimed. This technology is applicable to many types of industrial aqueous streams with widely varying chemistries. Application of PF to aqueous streams from nuclear materials processing and electroplating operations will be described

  12. Removal of cesium from aluminum decladding wastes generated in irradiated target processing using a fixed-bed column of resorcinol-formaldehyde resin

    International Nuclear Information System (INIS)

    Brunson, R.R.; Williams, D.F.; Bond, W.D.; Benker, D.E.; Chattin, F.R.; Collins, E.D.

    1994-09-01

    The removal of cesium (Cs) from a low-level liquid waste (LLLW) with a cation-exchange column was demonstrated using a resorcinol-formaldehyde (RF) resin. The RF resin was developed at the Westinghouse Savannah River Laboratory (SRL) and is highly specific for the removal of Cs from an alkaline waste of high sodium content. It was determined that the RF resin would be suitable for removing Cs, the largest gamma radiation contributor, from the LLLW generated at the Radiochemical Engineering Development Center located at the Oak Ridge National Laboratory. Presently, the disposal of the LLLW is limited due to the amount of Cs contained in the waste. Cesium removal from the waste solution offers immediate benefits by conserving valuable tank space and would allow cask shipments of the treated waste should the present Laboratory pipelines become unavailable in the future. Preliminary laboratory tests of the RF resins, supplied from two different sources, were used to design a full-scale cation-exchange column for the removal of Cs from a Mark 42 SRL fuel element dejacketing waste solution. The in-cell tests reproduced the preliminary bench-scale test results. The initial Cs breakthrough range was 85--92 column volumes (CV). The resin capacity for Cs was found to be ∼0.35 meq per gram of resin. A 1.5-liter resin bed loaded a combined ∼1,300 Ci of 134 Cs and 137 Cs. A distribution coefficient of ∼110 CV was determined, based on a 50% Cs breakthrough point. The kinetics of the system was studied by examining the rate parameters; however, it was decided that several more tests would be necessary to define the mass transfer characteristics of the system

  13. Use of zeolites for the removal of volatile sulfur compounds from industrial waste gases and from natural gases

    Energy Technology Data Exchange (ETDEWEB)

    Dudzik,; Z,; Bilska, M

    1974-12-01

    The use of zeolites for the removal of sulfur dioxide from industrial waste gases and for the removal of hydrogen sulfide and volatile mercaptans from the natural gas or synthetic gas manufactured from coal is discussed. The effectiveness and cost of zeolite methods are superior to that of other methods. The best sorption properties with respect to sulfur dioxide are observed in faujasites and erionites. The molecular sieve 13X (a sodium form of low-silicon faujasite) is the most effective sorbent of hydrogen sulfide, produced commercially on a large scale. This zeolite is also a very effective catalyst for simultaneous oxygenation of hydrogen sulfide. The reaction with oxygen can begin at temperatures as low as -80/sup 0/C. The effectiveness of zeolite reactors is enhanced by the presence of oxygen in the gas being purified, and is hindered by the presence of water or water vapor. The extraordinary catalytic activity of sodium faujasites is due to free donors, and sulfur and oxygen ion donors at their surface. A zeolite reactor is also economical.

  14. Potential of diatom consortium developed by nutrient enrichment for biodiesel production and simultaneous nutrient removal from waste water.

    Science.gov (United States)

    Marella, Thomas Kiran; Parine, Narasimha Reddy; Tiwari, Archana

    2018-05-01

    Because of the decreasing fossil fuel supply and increasing greenhouse gas (GHG) emissions, microalgae have been identified as a viable and sustainable feedstock for biofuel production. The major effect of the release of wastewater rich in organic compounds has led to the eutrophication of freshwater ecosystems. A combined approach of freshwater diatom cultivation with urban sewage water treatment is a promising solution for nutrient removal and biofuel production. In this study, urban wastewater from eutrophic Hussain Sagar Lake was used to cultivate a diatom algae consortium, and the effects of silica and trace metal enrichment on growth, nutrient removal, and lipid production were evaluated. The nano-silica-based micronutrient mixture Nualgi containing Si, Fe, and metal ions was used to optimize diatom growth. Respectively, N and P reductions of 95.1% and 88.9%, COD and BOD reductions of 91% and 51% with a biomass yield of 122.5 mg L -1  day -1 and lipid productivity of 37 mg L -1  day -1 were observed for cultures grown in waste water using Nualgi. Fatty acid profiles revealed 13 different fatty acids with slight differences in their percentage of dry cell weight (DCW) depending on enrichment level. These results demonstrate the potential of diatom algae grown in wastewater to produce feedstock for renewable biodiesel production. Enhanced carbon and excess nutrient utilization makes diatoms ideal candidates for co-processes such as CO 2 sequestration, biodiesel production, and wastewater phycoremediation.

  15. Trivalent chromium removal from wastewater using low cost activated carbon derived from agricultural waste material and activated carbon fabric cloth

    International Nuclear Information System (INIS)

    Mohan, Dinesh; Singh, Kunwar P.; Singh, Vinod K.

    2006-01-01

    An efficient adsorption process is developed for the decontamination of trivalent chromium from tannery effluents. A low cost activated carbon (ATFAC) was prepared from coconut shell fibers (an agricultural waste), characterized and utilized for Cr(III) removal from water/wastewater. A commercially available activated carbon fabric cloth (ACF) was also studied for comparative evaluation. All the equilibrium and kinetic studies were conducted at different temperatures, particle size, pHs, and adsorbent doses in batch mode. The Langmuir and Freundlich isotherm models were applied. The Langmuir model best fit the equilibrium isotherm data. The maximum adsorption capacities of ATFAC and ACF at 25 deg. C are 12.2 and 39.56 mg/g, respectively. Cr(III) adsorption increased with an increase in temperature (10 deg. C: ATFAC-10.97 mg/g, ACF-36.05 mg/g; 40 deg. C: ATFAC-16.10 mg/g, ACF-40.29 mg/g). The kinetic studies were conducted to delineate the effect of temperature, initial adsorbate concentration, particle size of the adsorbent, and solid to liquid ratio. The adsorption of Cr(III) follows the pseudo-second-order rate kinetics. From kinetic studies various rate and thermodynamic parameters such as effective diffusion coefficient, activation energy and entropy of activation were evaluated. The sorption capacity of activated carbon (ATFAC) and activated carbon fabric cloth is comparable to many other adsorbents/carbons/biosorbents utilized for the removal of trivalent chromium from water/wastewater

  16. Usefulness of ANN-based model for copper removal from aqueous solutions using agro industrial waste materials

    Directory of Open Access Journals (Sweden)

    Petrović Marija S.

    2015-01-01

    Full Text Available The purpose of this study was to investigate the adsorption properties of locally available lignocelluloses biomaterials as biosorbents for the removal of copper ions from aqueous solution. Materials are generated from juice production (apricot stones and from the corn milling process (corn cob. Such solid wastes have little or no economic value and very often present a disposal problem. Using batch adsorption techniques the effects of initial Cu(II ions concentration (Ci, amount of biomass (m and volume of metal solution (V, on biosorption efficiency and capacity were studied for both materials, without any pre-treatments. The optimal parameters for both biosorbents were selected depending on a highest sorption capability of biosorbent, in removal of Cu(II. Experimental data were compared with second order polynomial regression models (SOPs and artificial neural networks (ANNs. SOPs showed acceptable coefficients of determination (0.842 - 0.997, while ANNs performed high prediction accuracy (0.980-0.986 in comparison to experimental results. [Projekat Ministarstva nauke Republike Srbije, br. TR 31003, TR 31055

  17. Investigation of using Zeolite A and P synthesized from Iranian natural clinoptilolite for removal of heavy cations from simulated wastes

    International Nuclear Information System (INIS)

    Ghasemi Mbtaker, H.; Kazemiyan, H.; Maleki Nejad, A.; Zeinali, M. A. A.; Pakzad, M. R.

    2006-01-01

    Various methods have been used for the the removal o f heavy metal cations from mineral and industrial wastes. This research deals with the use of synthetic zeolites A and P synthesized from natural clinoptilolite for the removal process because of their superiority to ones. Ion exchange capacity of natural and synthetic samples was determined, then, the effects of some parameters such as temperature, time, and acidity on sorption were investigated as well as continues sorption. The sorption of lead cations was much better than that of other cations with the use of the synthetic samples and the rise in temperature and in pH has no significant effect. Sorption of this cations on the column was good. The results of cadmium sorption was promising and increasing the temperature increased the sorption and decreasing the pH decreased it. The sorption of zinc was rationally good; however it was less than previous cations, and increased with increasing the temperature. The results of nickel sorption in comparison with other cation, at high concentration was not promising. However, the results, at low concentration were good. Temperature had strong effect on nickel sorption

  18. Magnetic Solid Phase Extraction and Removal of Five Cationic Dyes from Aqueous Solution Using Magnetite Nanoparticle Loaded Platanusorientalis Waste Leaves

    Directory of Open Access Journals (Sweden)

    Elaheh Madrakian

    2016-12-01

    Full Text Available This paper reports on synthesis of a magnetic adsorbent for wastewater treatment purposes. In this regard, platanus orientalis waste leaves were chosen as a cheap material for preparing the magnetic adsorbent by loading magnetite nanoparticles on it. The synthesized adsorbent was characterized using scanning electron microscope and X-ray diffractometer. Then, it was used for magnetic solid phase extraction and removal of five cationic dyes including methyl violet (MV, methylene blue (MB, malachite green (MG, crystal violet (CV, and neutral red (NR from aqueous solution as a model application. Different important factors affecting the adsorption process were optimized, and the results showed that under the optimized conditions (pH 10 for CV, MV, MB, and MG; pH 6 for NR; adsorbent dosage, 20 mg; agitation time, 25 min efficient removal of the investigated dyes (adsorption capacities between of 89-133 mg g-1 is achievable using the synthesized adsorbent. Furthermore, the reusability experiments showed that the adsorbent could be reused at least ten cycles without any significant loss in its sorption behavior.

  19. Removal of ammonium and heavy metals by cost-effective zeolite synthesized from waste quartz sand and calcium fluoride sludge.

    Science.gov (United States)

    Zhang, Qian; Lin, Bing; Hong, Junming; Chang, Chang-Tang

    2017-02-01

    This study focuses on the effectiveness of zeolite (10% CF-Z [0.5]) hydrothermally synthesized from waste quartz sand and calcium fluoride (CF) for ammonium ion and heavy metal removal. Zeolite was characterized through powder X-ray diffraction, Fourier-transform infrared spectroscopy, micromeritics N 2 adsorption/desorption analysis, and field emission scanning electron microscopy. The effects of CF addition, Si/Al ratio, initial ammonium concentration, solution pH, and temperature on the adsorption of ammonium on 10% CF-Z (0.5) were further examined. Results showed that 10% CF-Z (0.5) was a single-phase zeolite A with cubic-shaped crystals and 10% CF-Z (0.5) efficiently adsorbs ammonium and heavy metals. For instance, 91% ammonium (10 mg L -1 ) and 93% lead (10 mg L -1 ) are removed. The adsorption isotherm, kinetics, and thermodynamics of ammonium adsorption on 10% CF-Z (0.5) were also theoretically analyzed. The adsorption isotherm of ammonium and lead on 10% CF-Z (0.5) in single systems indicated that Freundlich model provides the best fit for the equilibrium data, whereas pseudo-second-order model best describes the adsorption kinetics. The adsorption degree of ions on 10% CF-Z (0.5) in mixed systems exhibits the following pattern: lead > ammonium > cadmium > chromium.

  20. Application of HDTMA-intercalated bentonites in water waste treatment for U(VI) removal

    International Nuclear Information System (INIS)

    Krajnak, Adrian; Viglasova, Eva; Galambos, Michal; Krivosudsky, Lukas; Universitat Wien, Vienna

    2017-01-01

    Bentonite deposits in Slovakia are systematically investigated as potential adsorbents for wastewater and radioactive waste treatment applications. Herein, adsorption properties (isotherms, kinetics and thermodynamics) of raw and organo-modified bentonites towards uranium species in aqueous solutions were investigated. Organo-modified bentonites was prepared by practical and simple chemical modification method with hexadecyltrimethylammonium bromide (denoted as HDTMA-bentonites). The adsorption processes of U(VI) on HDTMA-bentonites were spontaneous and endothermic, and well simulated by pseudo-second-order model. The maximum adsorption capacity of U(VI) was calculated to be 31.45 mg/g at pH 8.5 and T = 298 K. Slovak bentonites Jelsovy potok and Kopernica, their natural and HDTMA-modified forms might be a promising sorbent for the treatment of U(VI) contaminants in aqueous solutions. (author)

  1. Removing H{sub 2}S from syngas using proven technology in Japanese waste gasification facilities

    Energy Technology Data Exchange (ETDEWEB)

    Watson, J.; Jones, K.D. [Merichem Chemicals & Refinery Services LLC, Schaumberg, IL (United States). Gas Technology Products

    2007-07-01

    LO-CAT Process from the Gas Technology Products division of Merichem Chemicals and Refinery Services LLC can recover sulfur and provide clean syngas for a variety of uses. The successful implementation of LO-CAT technology in the solid waste gasification market in Japan provided the technical basis for extending the technology into other gasification markets around the world. The first European gasifier project utilizing LO-CAT is scheduled to startup this year, and LO-CAT units are currently under design and construction for coal gasification projects in China and the United States. Whenever the total sulfur contained in the raw syngas is less than 40 tonnes per day, LO-CAT is a valid option for purifying the syngas and recovering the sulfur in a useable form. 1 ref., 2 figs., 1 tab.

  2. Effect of Gamma Radiation in the Removal of some Hazardous Waste

    International Nuclear Information System (INIS)

    Dessouki, A.M.; Aly, H.F.; Sokker, H.H.

    1999-01-01

    The treatment of wastewaters containing toxic pesticides poses a serious environmental problem. Many of the pesticides are not readily biodegradable and complete removal in many cases is a relatively expensive process. Ionizing radiations proved to be more effective for the treatment of these wastewaters than ordinary conventional methods. In the present study a try was made to explain the degradation kinetic due to irradiation of aqueous solutions of some active ingredient pesticides.. These pesticides are: two Organophosphorous Pesticides; Dimethoate and Sumithion and one Organo chlorine Pesticide: DDT. A combined treatment of gamma irradiation and conventional methods was applied . Factors affecting the radiolysis of pesticides such as pesticide concentration, irradiation dose, dose rate and ph of the solutions were studied. The effect of different additives such as nitrogen and oxygen showed an enhancement in the degradation process. Experiments on the adsorption of pesticides on some polymeric materials and on Granular Activated Carbon (GAC), showed that GAC has degradation followed by adsorption of the toxic pesticide pollutants and their removal from wastewater down to concentrations not exceeding the maximum permissible concentration (MPC), according to international standards, proved to be better than the conventional methods of purification and more economical as well

  3. Mercury removal at Idaho National Engineering and Environmental Laboratory's New Waste Calcining Facility

    Energy Technology Data Exchange (ETDEWEB)

    S. C. Ashworth

    2000-02-27

    Technologies were investigated to determine viable processes for removing mercury from the calciner (NWCF) offgas system at the Idaho National Engineering and Environmental Laboratory. Technologies for gas phase and aqueous phase treatment were evaluated. The technologies determined are intended to meet EPA Maximum Achievable Control Technology (MACT) requirements under the Clean Air Act and Resource Conservation and Recovery Act (RCRA). Currently, mercury accumulation in the calciner off-gas scrubbing system is transferred to the tank farm. These transfers lead to accumulation in the liquid heels of the tanks. The principal objective for aqueous phase mercury removal is heel mercury reduction. The system presents a challenge to traditional methods because of the presence of nitrogen oxides in the gas phase and high nitric acid in the aqueous scrubbing solution. Many old and new technologies were evaluated including sorbents and absorption in the gas phase and ion exchange, membranes/sorption, galvanic methods, and UV reduction in the aqueous phase. Process modifications and feed pre-treatment were also evaluated. Various properties of mercury and its compounds were summarized and speciation was predicted based on thermodynamics. Three systems (process modification, NOxidizer combustor, and electrochemical aqueous phase treatment) and additional technology testing were recommended.

  4. Mercury Removal at Idaho National Engineering and Environmental Laboratory's New Waste Calcining Facility

    Energy Technology Data Exchange (ETDEWEB)

    Ashworth, Samuel Clay; Wood, R. A.; Taylor, D. D.; Sieme, D. D.

    2000-03-01

    Technologies were investigated to determine viable processes for removing mercury from the calciner (NWCF) offgas system at the Idaho National Engineering and Environmental Laboratory. Technologies for gas phase and aqueous phase treatment were evaluated. The technologies determined are intended to meet EPA Maximum Achievable Control Technology (MACT) requirements under the Clean Air Act and Resource Conservation and Recovery Act (RCRA). Currently, mercury accumulation in the calciner off-gas scrubbing system is transferred to the tank farm. These transfers lead to accumulation in the liquid heels of the tanks. The principal objective for aqueous phase mercury removal is heel mercury reduction. The system presents a challenge to traditional methods because of the presence of nitrogen oxides in the gas phase and high nitric acid in the aqueous scrubbing solution. Many old and new technologies were evaluated including sorbents and absorption in the gas phase and ion exchange, membranes/sorption, galvanic methods, and UV reduction in the aqueous phase. Process modifications and feed pre-treatment were also evaluated. Various properties of mercury and its compounds were summarized and speciation was predicted based on thermodynamics. Three systems (process modification, NOxidizer combustor, and electrochemical aqueous phase treatment) and additional technology testing were recommended.

  5. Mercury removal at Idaho National Engineering and Environmental Laboratory's New Waste Calciner Facility

    International Nuclear Information System (INIS)

    Ashworth, S.C.

    2000-01-01

    Technologies were investigated to determine viable processes for removing mercury from the calciner (NWCF) offgas system at the Idaho National Engineering and Environmental Laboratory. Technologies for gas phase and aqueous phase treatment were evaluated. The technologies determined are intended to meet EPA Maximum Achievable Control Technology (MACT) requirements under the Clean Air Act and Resource Conservation and Recovery Act (RCRA). Currently, mercury accumulation in the calciner off-gas scrubbing system is transferred to the tank farm. These transfers lead to accumulation in the liquid heels of the tanks. The principal objective for aqueous phase mercury removal is heel mercury reduction. The system presents a challenge to traditional methods because of the presence of nitrogen oxides in the gas phase and high nitric acid in the aqueous scrubbing solution. Many old and new technologies were evaluated including sorbents and absorption in the gas phase and ion exchange, membranes/sorption, galvanic methods, and UV reduction in the aqueous phase. Process modifications and feed pre-treatment were also evaluated. Various properties of mercury and its compounds were summarized and speciation was predicted based on thermodynamics. Three systems (process modification, NOxidizer combustor, and electrochemical aqueous phase treatment) and additional technology testing were recommended

  6. Assessment of Some Synthetic Polymers for the Removal of Pollutants from Waste Solutions

    International Nuclear Information System (INIS)

    Ayoub, R.; El-Naggar, H.A.; Ezz EL-Din, M.R.; Moussa, A.R.

    1999-01-01

    The sorption capacity of 134 Cs, 60 Co, 152+154 Eu and Cu (II) by three prepared has been studied using batch and column techniques. The three polymers are polyacrylic acid (PAA), polyacrylamide-acrylic acid (PAM-AA) and polyacrylamide-N-vinyl-2-pyrraldone (PAM-NVP). These polymers were prepared by gamma radiation initiated polymerization of their corresponding monomer solutions. The appropriate value for V/m ratio (volume of solution to mass of polymer) that can result in reasonably high distribution coefficient, Kd, was determined. The variation of the amount sorbed of the isotope per gram polymer (X/m) with concentration of the relevant element was found to follow a Frendlich type isotherm. The distribution coefficient, Kd, of the studied element was found to be affected by the ph of the solution. The desorption of the investigated metal ions is also studied at different ph. For column studies, the percent removed of the radioisotopes 134 Cs, 60 Co, ( 152+154 )Eu in addition to some heavy metals ions such as Pb, Cd, Zn and Cu(II) was determined. More than 95% of these elements were removed when 3 beds column of PAA or PAM-AA was used. From the data obtained we can conclude that the polymer PAA or PAM-AA can considered as an efficient sorbent for metal cations from their aqueous solution

  7. Strategies for redundancy resolution of dual-arm systems with passive elements for tank waste removal

    International Nuclear Information System (INIS)

    Dubey, R.

    1997-01-01

    The work described in this paper focuses on the coordination and control of two manipulators coupled by passive elements operating in a confined space. An example of one such system is the hardware used for the environmental response treatability study funded by the Department of Energy at Oak Ridge National Laboratory (ORNL). The motivation for this project is to establish the methodology necessary to extract large volumes of hazardous waste from underground storage facilities. The hardware used at ORNL consists of two long-reach manipulators. The first robot, the Modified Light Duty Utility Arm (MLDUA), is an 8-degree-of-freedom long-reach manipulator. The second arm, the Hose Management Arm (HMA), has two active degrees-of-freedom and provides hardware to break up and extract materials from the tank. Current strategies call for the MLDUA to grasp a combined sluicing end-effector attached, by a long flexible hose, to the HMA. The MLDUA will then move the combined system through the waste, extracting material. This paper describes many of the issues related to redundancy resolution and the coordinated control of these two robots. First, the authors provide a brief outline of the project and the existing hardware. This is followed by a description of existing redundancy resolution techniques and the impact redundancy has on the success of the project. Finally, preliminary simulation results show the effect cooperative control has on the level of forces generated between the dual-arm systems when coupled by an elastic exhaust hose. These results show a significant reduction in forces when both arms are active and have a combined manipulation strategy

  8. Pollutant emissions during pyrolysis and combustion of waste printed circuit boards, before and after metal removal

    Energy Technology Data Exchange (ETDEWEB)

    Ortuño, Nuria; Conesa, Juan A., E-mail: ja.conesa@ua.es; Moltó, Julia; Font, Rafael

    2014-11-15

    The constant increase in the production of electronic devices implies the need for an appropriate management of a growing number of waste electrical and electronic equipment. Thermal treatments represent an interesting alternative to recycle this kind of waste, but particular attention has to be paid to the potential emissions of toxic by-products. In this study, the emissions from thermal degradation of printed circuit boards (with and without metals) have been studied using a laboratory scale reactor, under oxidizing and inert atmosphere at 600 and 850 °C. Apart from carbon oxides, HBr was the main decomposition product, followed by high amounts of methane, ethylene, propylene, phenol and benzene. The maximum formation of PAHs was found in pyrolysis at 850 °C, naphthalene being the most abundant. High levels of 2-, 4-, 2,4-, 2,6- and 2,4,6-bromophenols were found, especially at 600 °C. Emissions of PCDD/Fs and dioxin-like PCBs were quite low and much lower than that of PBDD/Fs, due to the higher bromine content of the samples. Combustion at 600 °C was the run with the highest PBDD/F formation: the total content of eleven 2,3,7,8-substituted congeners (tetra- through heptaBDD/Fs) was 7240 and 3250 ng WHO{sub 2005}-TEQ/kg sample, corresponding to the sample with and without metals, respectively. - Highlights: • Thermal decomposition of printed circuit boards (with and without metals) is studied. • Important differences were found at the different experimental conditions. • Emission of brominated pollutants is much higher than that of chlorinated. • Metal enhances emission of halogenated compounds. • An increase in the temperature produces the destruction of pollutants.

  9. Pollutant emissions during pyrolysis and combustion of waste printed circuit boards, before and after metal removal

    International Nuclear Information System (INIS)

    Ortuño, Nuria; Conesa, Juan A.; Moltó, Julia; Font, Rafael

    2014-01-01

    The constant increase in the production of electronic devices implies the need for an appropriate management of a growing number of waste electrical and electronic equipment. Thermal treatments represent an interesting alternative to recycle this kind of waste, but particular attention has to be paid to the potential emissions of toxic by-products. In this study, the emissions from thermal degradation of printed circuit boards (with and without metals) have been studied using a laboratory scale reactor, under oxidizing and inert atmosphere at 600 and 850 °C. Apart from carbon oxides, HBr was the main decomposition product, followed by high amounts of methane, ethylene, propylene, phenol and benzene. The maximum formation of PAHs was found in pyrolysis at 850 °C, naphthalene being the most abundant. High levels of 2-, 4-, 2,4-, 2,6- and 2,4,6-bromophenols were found, especially at 600 °C. Emissions of PCDD/Fs and dioxin-like PCBs were quite low and much lower than that of PBDD/Fs, due to the higher bromine content of the samples. Combustion at 600 °C was the run with the highest PBDD/F formation: the total content of eleven 2,3,7,8-substituted congeners (tetra- through heptaBDD/Fs) was 7240 and 3250 ng WHO 2005 -TEQ/kg sample, corresponding to the sample with and without metals, respectively. - Highlights: • Thermal decomposition of printed circuit boards (with and without metals) is studied. • Important differences were found at the different experimental conditions. • Emission of brominated pollutants is much higher than that of chlorinated. • Metal enhances emission of halogenated compounds. • An increase in the temperature produces the destruction of pollutants

  10. Strategies for redundancy resolution of dual-arm systems with passive elements for tank waste removal

    Energy Technology Data Exchange (ETDEWEB)

    Dubey, R. [Univ. of Tennessee, Knoxville, TN (United States). Dept. of Mechanical Engineering; Love, L.J. [Oak Ridge Inst. for Science and Education, TN (United States)

    1997-03-01

    The work described in this paper focuses on the coordination and control of two manipulators coupled by passive elements operating in a confined space. An example of one such system is the hardware used for the environmental response treatability study funded by the Department of Energy at Oak Ridge National Laboratory (ORNL). The motivation for this project is to establish the methodology necessary to extract large volumes of hazardous waste from underground storage facilities. The hardware used at ORNL consists of two long-reach manipulators. The first robot, the Modified Light Duty Utility Arm (MLDUA), is an 8-degree-of-freedom long-reach manipulator. The second arm, the Hose Management Arm (HMA), has two active degrees-of-freedom and provides hardware to break up and extract materials from the tank. Current strategies call for the MLDUA to grasp a combined sluicing end-effector attached, by a long flexible hose, to the HMA. The MLDUA will then move the combined system through the waste, extracting material. This paper describes many of the issues related to redundancy resolution and the coordinated control of these two robots. First, the authors provide a brief outline of the project and the existing hardware. This is followed by a description of existing redundancy resolution techniques and the impact redundancy has on the success of the project. Finally, preliminary simulation results show the effect cooperative control has on the level of forces generated between the dual-arm systems when coupled by an elastic exhaust hose. These results show a significant reduction in forces when both arms are active and have a combined manipulation strategy.

  11. AUTOMOTIVE DIESEL MAINTENANCE 1. UNIT XVII, I--MAINTAINING THE LUBRICATION SYSTEM--CUMMINS DIESEL ENGINE, II--UNIT INSTALLATION AND REMOVAL--DRIVE LINES.

    Science.gov (United States)

    Minnesota State Dept. of Education, St. Paul. Div. of Vocational and Technical Education.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF THE DIESEL ENGINE LUBRICATION SYSTEM AND THE PROCEDURES FOR REMOVAL AND INSTALLATION OF THE DRIVE LINE USED IN DIESEL ENGINE POWER DISTRIBUTION. TOPICS ARE (1) PROLONGING ENGINE LIFE, (2) FUNCTIONS OF THE LUBRICATING SYSTEM, (3) TRACING THE LUBRICANT FLOW, (4) DETERMINING…

  12. Potential of diatom consortium developed by nutrient enrichment for biodiesel production and simultaneous nutrient removal from waste water

    Directory of Open Access Journals (Sweden)

    Thomas Kiran Marella

    2018-05-01

    Full Text Available Because of the decreasing fossil fuel supply and increasing greenhouse gas (GHG emissions, microalgae have been identified as a viable and sustainable feedstock for biofuel production. The major effect of the release of wastewater rich in organic compounds has led to the eutrophication of freshwater ecosystems. A combined approach of freshwater diatom cultivation with urban sewage water treatment is a promising solution for nutrient removal and biofuel production. In this study, urban wastewater from eutrophic Hussain Sagar Lake was used to cultivate a diatom algae consortium, and the effects of silica and trace metal enrichment on growth, nutrient removal, and lipid production were evaluated. The nano-silica-based micronutrient mixture Nualgi containing Si, Fe, and metal ions was used to optimize diatom growth. Respectively, N and P reductions of 95.1% and 88.9%, COD and BOD reductions of 91% and 51% with a biomass yield of 122.5 mg L−1 day−1 and lipid productivity of 37 mg L−1 day−1 were observed for cultures grown in waste water using Nualgi. Fatty acid profiles revealed 13 different fatty acids with slight differences in their percentage of dry cell weight (DCW depending on enrichment level. These results demonstrate the potential of diatom algae grown in wastewater to produce feedstock for renewable biodiesel production. Enhanced carbon and excess nutrient utilization makes diatoms ideal candidates for co-processes such as CO2 sequestration, biodiesel production, and wastewater phycoremediation. Keywords: Micro algae, Diatom, Biodiesel, Nualgi, Nutrient removal, Wastewater

  13. Equilibrium modeling of removal of drimarine yello HG-3GL dye from aqueous solutions by low cost agricultural waste

    International Nuclear Information System (INIS)

    Bhatti, S.N.H.N.; Sadaf, S.; Sadaf, S.; Farrukh, Z.; Noreen, S.

    2014-01-01

    Pollution control is one of the leading issues of society today. The present study was designed to remove the Drimarine Yellow HF-3GL dye from aqueous solutions through biosorption. Sugarcane bagasse was used as biosorbent in native, acetic acid treated and immobilized form. Batch study was conducted to optimize different system variables like pH of solution, medium temperature, biosorbent concentration, initial dye concentration and contact time. Maximum dye removal was observed at pH 2, biosorbent dose of 0.05 g/50 mL and 40 degree C temperature. The equilibrium was achieved in 45-90 min. Different kinetic and equilibrium models were applied to the experimental results. The biosorption kinetic data was found to follow the pseudo second order kinetic model. Freundlich adsorption isotherm model showed a better fitness to the equilibrium data. The value of Gibbs free energy revealed that biosorption of Drimarine Yellow HF-3GL dye by native and pretreated sugarcane bagasse was a spontaneous process. Presence of salt and heavy metal ions in aqueous solution enhanced the biosorption capacity while presence of surfactants decreased the biosorption potential of biosorbent. Dye was desorbed by 1M NaOH solution. Fixed bed column study of Drimarine Yellow HF-3GL was carried out to optimize different parameters like bed height, flow rate and initial dye concentration. It was observed that biosorption capacity increases with increase in initial dye concentration and bed height but decreases with the increase in flow rate. The data of column study was explained very well by BDST model. FT-IR analysis confirmed the involvement of various functional groups, mainly hydroxyl, carboxyl and amine groups. The results proved that sugarcane bagasse waste biomass can be used as a favorable biosorbent for the removal of dyes from aqueous solutions. (author)

  14. Development of a new adsorbent from agro-industrial waste and its potential use in endocrine disruptor compound removal

    International Nuclear Information System (INIS)

    Rovani, Suzimara; Censi, Monique T.; Pedrotti, Sidnei L.; Lima, Éder C.; Cataluña, Renato; Fernandes, Andreia N.

    2014-01-01

    Highlights: • Development of a new adsorbent from agro-industrial waste. • Characterization by chemical and spectroscopic methods. • Alternative for the treatment of effluents that contain estrogens. • The AC adsorbent was successfully employed as solid phase adsorbent for the preconcentration of E2 and EE2 from aqueous solutions. - Abstract: A new activated carbon (AC) material was prepared by pyrolysis of a mixture of coffee grounds, eucalyptus sawdust, calcium hydroxide and soybean oil at 800 °C. This material was used as adsorbent for the removal of the endocrine disruptor compounds 17β-estradiol (E2) and 17α-ethinylestradiol (EE2) from aqueous solutions. The carbon material was characterized by scanning electron microscopy (SEM), infrared spectroscopy (FTIR), N 2 adsorption/desorption curves and point of zero charge (pH PZC ). Variables including the initial pH of the adsorbate solutions, adsorbent masses and contact time were optimized. The optimum range of initial pH for removal of endocrine disruptor compounds (EDC) was 2.0–11.0. The kinetics of adsorption were investigated using general order, pseudo first-order and pseudo-second order kinetic models. The Sips isotherm model gave the best fits of the equilibrium data (298 K). The maximum amounts of E2 and EE2 removed at 298 K were 7.584 (E2) and 7.883 mg g −1 (EE2) using the AC as adsorbent. The carbon adsorbent was employed in SPE (solid phase extraction) of E2 and EE2 from aqueous solutions

  15. Development of a new adsorbent from agro-industrial waste and its potential use in endocrine disruptor compound removal

    Energy Technology Data Exchange (ETDEWEB)

    Rovani, Suzimara; Censi, Monique T.; Pedrotti, Sidnei L.; Lima, Éder C.; Cataluña, Renato; Fernandes, Andreia N., E-mail: andreia.fernandes@ufrgs.br

    2014-04-01

    Highlights: • Development of a new adsorbent from agro-industrial waste. • Characterization by chemical and spectroscopic methods. • Alternative for the treatment of effluents that contain estrogens. • The AC adsorbent was successfully employed as solid phase adsorbent for the preconcentration of E2 and EE2 from aqueous solutions. - Abstract: A new activated carbon (AC) material was prepared by pyrolysis of a mixture o