WorldWideScience

Sample records for waste dye utilization

  1. Removal of basic dye (methylene blue) from wastewaters utilizing beer brewery waste

    International Nuclear Information System (INIS)

    Tsai, W.-T.; Hsu, H.-C.; Su, T.-Y.; Lin, K.-Y.; Lin, C.-M.

    2008-01-01

    In the work, the beer brewery waste has been shown to be a low-cost adsorbent for the removal of basic dye from the aqueous solution as compared to its precursor (i.e., diatomite) based on its physical and chemical characterizations including surface area, pore volume, scanning electron microscopy (SEM), and non-mineral elemental analyses. The pore properties of this waste were significantly larger than those of its raw material, reflecting that the trapped organic matrices contained in the waste probably provided additional adsorption sites and/or adsorption area. The results of preliminary adsorption kinetics showed that the diatomite waste could be directly used as a potential adsorbent for removal of methylene blue on the basis of its adsorption-biosorption mechanisms. The adsorption parameters thus obtained from the pseudo-second-order model were in accordance with their pore properties. From the results of adsorption isotherm at 298 K and the applicability examinations in treating industrial wastewater containing basic dye, it was further found that the adsorption capacities of diatomite waste were superior to those of diatomite, which were also in good agreement with their corresponding physical properties. From the results mentioned above, it is feasible to utilize the food-processing waste for removing dye from the industrial dying wastewater

  2. Removal of basic dye (methylene blue) from wastewaters utilizing beer brewery waste.

    Science.gov (United States)

    Tsai, Wen-Tien; Hsu, Hsin-Chieh; Su, Ting-Yi; Lin, Keng-Yu; Lin, Chien-Ming

    2008-06-15

    In the work, the beer brewery waste has been shown to be a low-cost adsorbent for the removal of basic dye from the aqueous solution as compared to its precursor (i.e., diatomite) based on its physical and chemical characterizations including surface area, pore volume, scanning electron microscopy (SEM), and non-mineral elemental analyses. The pore properties of this waste were significantly larger than those of its raw material, reflecting that the trapped organic matrices contained in the waste probably provided additional adsorption sites and/or adsorption area. The results of preliminary adsorption kinetics showed that the diatomite waste could be directly used as a potential adsorbent for removal of methylene blue on the basis of its adsorption-biosorption mechanisms. The adsorption parameters thus obtained from the pseudo-second-order model were in accordance with their pore properties. From the results of adsorption isotherm at 298 K and the applicability examinations in treating industrial wastewater containing basic dye, it was further found that the adsorption capacities of diatomite waste were superior to those of diatomite, which were also in good agreement with their corresponding physical properties. From the results mentioned above, it is feasible to utilize the food-processing waste for removing dye from the industrial dying wastewater.

  3. Removal of basic dye (methylene blue) from wastewaters utilizing beer brewery waste

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, W.-T. [Graduate Institute of Bioresources, National Pingtung University of Science and Technology, Pingtung 912, Taiwan (China)], E-mail: wttsai@mail.npust.edu.tw; Hsu, H.-C.; Su, T.-Y.; Lin, K.-Y.; Lin, C.-M. [Department of Environmental Engineering and Science, Chia Nan University of Pharmacy and Science, Tainan 717, Taiwan (China)

    2008-06-15

    In the work, the beer brewery waste has been shown to be a low-cost adsorbent for the removal of basic dye from the aqueous solution as compared to its precursor (i.e., diatomite) based on its physical and chemical characterizations including surface area, pore volume, scanning electron microscopy (SEM), and non-mineral elemental analyses. The pore properties of this waste were significantly larger than those of its raw material, reflecting that the trapped organic matrices contained in the waste probably provided additional adsorption sites and/or adsorption area. The results of preliminary adsorption kinetics showed that the diatomite waste could be directly used as a potential adsorbent for removal of methylene blue on the basis of its adsorption-biosorption mechanisms. The adsorption parameters thus obtained from the pseudo-second-order model were in accordance with their pore properties. From the results of adsorption isotherm at 298 K and the applicability examinations in treating industrial wastewater containing basic dye, it was further found that the adsorption capacities of diatomite waste were superior to those of diatomite, which were also in good agreement with their corresponding physical properties. From the results mentioned above, it is feasible to utilize the food-processing waste for removing dye from the industrial dying wastewater.

  4. Utilization of biogenic tea waste silver nanoparticles for the reduction of organic dyes

    Science.gov (United States)

    Kaur, H.; Jaryal, N.

    2018-05-01

    Eco-friendly synthesis of nanoparticles is the need of the society today. Present study has been undertaken to investigate the greener approach for the preparation of medicinally and chemically important nanoparticles. Tea waste has been taken to synthesis silver nanoparticles. The nanoparticles are characterized by x-ray Diffraction, and Transmission Emission Microscopy studies. The particle size varied from 2 to 34 nm. These silver nanoparticles were evaluated for their reducing activity against four organic dyes viz crystal violet, methylene blue, Congo red and brilliant green. The particles exhibited good catalytic activity against crystal violet, methylene blue and brilliant green but no activity was visible for Congo red. Furthermore, AgNPs shows very promising and prominent antioxidant activity.

  5. Plant waste materials from restaurants as the adsorbents for dyes

    Directory of Open Access Journals (Sweden)

    Pavlović Marija D.

    2015-01-01

    Full Text Available This paper has demonstrated the valorization of inexpensive and readily available restaurant waste containing most consumed food and beverage residues as adsorbents for methylene blue dye. Coffee, tea, lettuce and citrus waste have been utilized without any pre-treatment, thus the adsorption capacities and dye removal efficiency were determined. Coffee waste showed highest adsorbent capacity, followed by tea, lettuce and citrus waste. The dye removal was more effective as dye concentration increases from 5 up to 60 mg/L. The favorable results obtained for lettuce waste have been especially encouraged, as this material has not been commonly employed for sorption purposes. Equilibrium data fitted very well in a Freundlich isotherm model, whereas pseudo-second-order kinetic model describes the process behavior. Restaurant waste performed rapid dye removal at no cost, so it can be adopted and widely used in industries for contaminated water treatment.

  6. Utilization of unconventional lignocellulosic waste biomass for the biosorption of toxic triphenylmethane dye malachite green from aqueous solution.

    Science.gov (United States)

    Selvasembian, Rangabhashiyam; P, Balasubramanian

    2018-05-12

    Biosorption potential of novel lignocellulosic biosorbents Musa sp. peel (MSP) and Aegle marmelos shell (AMS) was investigated for the removal of toxic triphenylmethane dye malachite green (MG), from aqueous solution. Batch experiments were performed to study the biosorption characteristics of malachite green onto lignocellulosic biosorbents as a function of initial solution pH, initial malachite green concentration, biosorbents dosage, and temperature. Biosorption equilibrium data were fitted to two and three parameters isotherm models. Three-parameter isotherm models better described the equilibrium data. The maximum monolayer biosorption capacities obtained using the Langmuir model for MG removal using MSP and AMS was 47.61 and 18.86 mg/g, respectively. The biosorption kinetic data were analyzed using pseudo-first-order, pseudo-second-order, Elovich and intraparticle diffusion models. The pseudo-second-order kinetic model best fitted the experimental data, indicated the MG biosorption using MSP and AMS as chemisorption process. The removal of MG using AMS was found as highly dependent on the process temperature. The removal efficiency of MG showed declined effect at the higher concentrations of NaCl and CaCl 2 . The regeneration test of the biosorbents toward MG removal was successful up to three cycles.

  7. 40 CFR 268.20 - Waste specific prohibitions-Dyes and/or pigments production wastes.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 26 2010-07-01 2010-07-01 false Waste specific prohibitions-Dyes and/or pigments production wastes. 268.20 Section 268.20 Protection of Environment ENVIRONMENTAL... Disposal § 268.20 Waste specific prohibitions—Dyes and/or pigments production wastes. (a) Effective August...

  8. Waste Water Treatment-Bed of Coal Fly Ash for Dyes and Pigments Industry

    OpenAIRE

    Syed Farman Ali Shah; Aziza Aftab; Noorullah Soomro; Mir Shah Nawaz; Kambiz Vafai

    2015-01-01

    The highly porous power plant waste ashes have been utilized to treat toxic effluent of a dyes manufacturing plant. An attempt has been made for the first time in Pakistan, to generate an effective and economically sound treatment facility for the toxic effluent of a dyes manufacturing plant. This is an indigenous bed which could replace expensive treatment facilities, such as reverse osmosis (RO), granulated activated carbon (GAC) bed, etc. The treatment efficiency was improved by coupling c...

  9. Management of Industrial Dye Wastes Through Adsorption By Functionalized Graft Copolymers

    International Nuclear Information System (INIS)

    El-Nagger Abdel-Wahab, M.; Hegazy El-Sayed, A.; Aly Hussein, A.; Zahran Abdel-Hamid, H.

    1999-01-01

    The sorption of Methyl Green (basic dye) by different grafted polymers with individual acrylonitrile (AN) and its binary comonomer mixture with N-vinylpyrrolidone (NVP) has been investigated. It was found that at approximately equal levels of graft yield of AN, poly(tetrafluoroethylene-hexafluoropropylene)(FEP) showed the highest dye sorption of the basic dye while the grafted low density polyethylene (LDPE) displayed the lowest dye sorption. On the other hand, the different grafted polymers with AN/NVP binary monomers which having an approximately equal total graft yield (TGY) showed a dye sorption for the same basic dye according to the order: HDPE>FEP> LDPE>PP. Nevertheless, it was found that the dye sorption values by the grafted polymers with AN/NVP mixtures are much higher than those by the grafted polymers with individual AN monomer. The dye ability of HDPE grafted with individual AN and the comonomer mixture AN/NVP towards basic and disperse dyes was utilized to investigate the synergism during radiation grafting of the comonomer mixture. Results showed that such graft materials are promising in practical use for the treatment of industrial dye wastes from textile factories

  10. Removal of hazardous dye congored from waste material

    International Nuclear Information System (INIS)

    Jain, Rajeev; Sikarwar, Shalini

    2008-01-01

    The present paper is aimed to investigate and develop cheap adsorption methods for color removal from wastewater using waste material sawdust as adsorbent. Sawdust, a biosorbent, was successfully utilized in removing a water soluble azo dye, congored from wastewater. The paper incorporates effect of pH, temperature, amount of adsorbent, contact time, concentration of adsorbate, particle size on adsorption. Specific rate constants of the processes were calculated by kinetic measurements and a first order adsorption kinetics was observed in each case. Langmuir and Freundlich adsorption isotherm models were then applied to calculate thermodynamics parameters as well as to suggest the plausible mechanism of the ongoing adsorption processes. In order to observe the quality of wastewater COD measurements were also carried out before and after the treatments. A significant decrease in the COD values was observed, which clearly indicates that adsorption method offer good potential to remove congored from wastewater

  11. Waste metal hydroxide sludge as adsorbent for a reactive dye.

    Science.gov (United States)

    Santos, Sílvia C R; Vílar, Vítor J P; Boaventura, Rui A R

    2008-05-30

    An industrial waste sludge mainly composed by metal hydroxides was used as a low-cost adsorbent for removing a reactive textile dye (Remazol Brilliant Blue) in solution. Characterization of this waste material included chemical composition, pH(ZPC) determination, particle size distribution, physical textural properties and metals mobility under different pH conditions. Dye adsorption equilibrium isotherms were determined at 25 and 35 degrees C and pH of 4, 7 and 10 revealing reasonably fits to Langmuir and Freundlich models. At 25 degrees C and pH 7, Langmuir fit indicates a maximum adsorption capacity of 91.0mg/g. An adsorptive ion-exchange mechanism was identified from desorption studies. Batch kinetic experiments were also conducted at different initial dye concentration, temperature, adsorbent dosage and pH. A pseudo-second-order model showed good agreement with experimental data. LDF approximation model was used to estimate homogeneous solid diffusion coefficients and the effective pore diffusivities. Additionally, a simulated real effluent containing the selected dye, salts and dyeing auxiliary chemicals, was also used in equilibrium and kinetic experiments and the adsorption performance was compared with aqueous dye solutions.

  12. Waste heat utilization in agriculture

    International Nuclear Information System (INIS)

    Horacek, P.

    1983-01-01

    The Proceedings contain 17 papers presented at meetings of the Working Group for Waste Heat Utilization of the Committee of the European Society of Nuclear Methods in Agriculture of which 7 fall under the INIS scope. The working group met in May 1980 in Brno, Czechoslovakia, in October 1981 in Aberdeen, Scotland and in September 1982 in Brno. (Z.M.)

  13. Utilization of mining and mineral wastes

    Energy Technology Data Exchange (ETDEWEB)

    Park, Kyung Ho; Hong, Seung Woong; Choi, Young Yoon; Kim, Byung Gyu; Park, Je Shin [Korea Institute of Geology Mining and Materials, Taejon (Korea)

    1998-12-01

    Up to now, it is estimated that more than 50 million tons of mineral wastes have been generated mining industries and deposited on the land in Korea. Much of cultivated land and hilly areas have been occupied by this wastes, which cause pollution of the environment. Utilization of the mineral wastes is preferable to stabilization because full use would both eliminate the waste and broaden the mineral resource base. Therefore, the development of utilization techniques of mineral wastes is very important not only for improving the environment but also for resource conservation. In countries with high population and poor natural resources like Korea, the utilization of these wastes is essential to decrease the environmental problem and the secure the resources and the study on this field play a important part. Therefore, the objective of this study is to develop the utilization techniques of the mineral wastes. In first year's research, the contents and scope of this study are 1) Present condition and Field Survey on the mineral wastes with respect of their utilization, 2) Reviews of Current effects and research to utilize mineral wastes, 3) Characterization of mineral wastes and environmental test, 4) Evaluation and study on the utilization. (author). 67 refs., 25 tabs., 54 figs.

  14. Utilization of mining and mineral wastes

    Energy Technology Data Exchange (ETDEWEB)

    Park, Kyung Ho; Hong, Seung Woong; Choi, Young Yoon; Kim, Byung Gyu; Park, Je Shin [Korea Institute of Geology Mining and Materials, Taejon (Korea)

    1998-12-01

    Up to now, it is estimated that more than 50 million tons of mineral wastes have been generated mining industries and deposited on the land in Korea. Much of cultivated land and hilly areas have been occupied by this wastes, which cause pollution of the environment. Utilization of the mineral wastes is preferable to stabilization because full use would both eliminate the waste and broaden the mineral resource base. Therefore, the development of utilization techniques of mineral wastes is very important not only for improving the environment but also for resource conservation. In countries with high population and poor natural resources like Korea, the utilization of these wastes is essential to decrease the environmental problem and the secure the resources and the study on this field play a important part. Therefore, the objective of this study is to develop the utilization techniques of the mineral wastes. In first year's research, the contents and scope of this study are 1) Present condition and Field Survey on the mineral wastes with respect of their utilization, 2) Reviews of Current effects and research to utilize mineral wastes, 3) Characterization of mineral wastes and environmental test, 4) Evaluation and study on the utilization. (author). 67 refs., 25 tabs., 54 figs.

  15. Microwave reactor for utilizing waste materials

    Directory of Open Access Journals (Sweden)

    M. Pigiel

    2010-01-01

    Full Text Available The paper presents a designed and manufactured, semi-industrial microwave reactor for thermal utilization of asbestos-bearing wastes. Presented are also semi-industrial tests of utilizing such wastes. It was found that microwave heating can be applied for utilizing asbestos with use of suitable wetting agents. The wetting agents should ensure continuous heating process above 600 °C, as well as uniform heat distribution in the whole volume of the utilized material. Analysis of the neutralization process indicates a possibility of presenting specific, efficient and effective process parameters of utilizing some asbestos-bearing industrial wastes.

  16. Integrated waste hydrogen utilization project

    International Nuclear Information System (INIS)

    Armstrong, C.

    2004-01-01

    'Full text:' The BC Hydrogen Highway's, Integrated Waste Hydrogen Utilization Project (IWHUP) is a multi-faceted, synergistic collaboration that will capture waste hydrogen and promote its use through the demonstration of 'Hydrogen Economy' enabling technologies developed by Canadian companies. IWHUP involves capturing and purifying a small portion of the 600 kg/hr of by-product hydrogen vented to the atmosphere at the ERCO's electrochemical sodium chlorate plant in North Vancouver, BC. The captured hydrogen will then be compressed so it is suitable for transportation on roadways and can be used as a fuel in transportation and stationary fuel cell demonstrations. In summary, IWHUP invests in the following; Facilities to produce up to 20kg/hr of 99.999% pure 6250psig hydrogen using QuestAir's leading edge Pressure Swing Absorption technology; Ultra high-pressure transportable hydrogen storage systems developed by Dynetek Industries, Powertech Labs and Sacre-Davey Engineering; A Mobile Hydrogen Fuelling Station to create Instant Hydrogen Infrastructure for light-duty vehicles; Natural gas and hydrogen (H-CNG) blending and compression facilities by Clean Energy for fueling heavy-duty vehicles; Ten hydrogen, internal combustion engine (H-ICE), powered light duty pick-up vehicles and a specialized vehicle training, maintenance, and emissions monitoring program with BC Hydro, GVRD and the District of North Vancouver; The demonstration of Westport's H-CNG technology for heavy-duty vehicles in conjunction with local transit properties and a specialized vehicle training, maintenance, and emissions monitoring program; The demonstration of stationary fuel cell systems that will provide clean power for reducing peak-load power demands (peak shaving), grid independence and water heating; A comprehensive communications and outreach program designed to educate stakeholders, the public, regulatory bodies and emergency response teams in the local community, Supported by industry

  17. Rice husk as dyes removal from impregnated cotton wastes generated in sports industries of sialkot, pakistan

    International Nuclear Information System (INIS)

    Junaid, M.; Khan, M.U.; Malik, R.N.

    2014-01-01

    The current study was designed to the potential dyes removal present in solid wastes of cotton (Generated from sports industries). Sport products were colored with different shaded dyes with the help of cotton that are disposed to the different environmental compartment. Cost effective and eco-friendly adsorbents (rice husk) has been collected and used as an ideal alternative to the conventional method of dyes removal for disposed cotton wastes. The effect of pH, contact time, adsorbent dose, shaking speed and amount of dyes solution of rice husks on dyes removal have been evaluated and optimized. Maximum and efficient dyes removal was observed at pH (3.0), contact time (240 min), adsorbent dose (8.0 g), shaking speed (300 rpm) and amount of dyes solution (200 ml). All these conditions have ensured dyes removal up to 91, 93, 92, 90 and 93% respectively. This process highlighted the advantage of recovery of methyl ethyl ketone (MEK) and dyes which may be used again after modification. Furthermore the present study encourages that the rice husks generated as biological waste can be used as promising tool for dyes removal. (author)

  18. Analysis of Comprehensive Utilization of Coconut Waste

    OpenAIRE

    Zheng, Kan; Liang, Dong; Zhang, Xirui

    2013-01-01

    This paper describes and analyzes the coconut cultivation in China, and the current comprehensive utilization of waste resources generated during cultivation and processing of coconut. The wastes generated in the process of cultivation include old coconut tree trunk, roots, withered coconut leaves, coconut flower and fallen cracking coconut, mainly used for biogas extraction, direct combustion and power generation, brewing, pharmacy, and processing of building materials; the wastes generated ...

  19. Waste Water Treatment-Bed of Coal Fly Ash for Dyes and Pigments Industry

    Directory of Open Access Journals (Sweden)

    Syed Farman Ali Shah

    2015-12-01

    Full Text Available The highly porous power plant waste ashes have been utilized to treat toxic effluent of a dyes manufacturing plant. An attempt has been made for the first time in Pakistan, to generate an effective and economically sound treatment facility for the toxic effluent of a dyes manufacturing plant. This is an indigenous bed which could replace expensive treatment facilities, such as reverse osmosis (RO, granulated activated carbon (GAC bed, etc. The treatment efficiency was improved by coupling coagulants with fly ash adsorbent bed. The ash was collected from coal fired boilers of power plant at Lakhra Power Generation Company, Jamshoro, Pakistan. The use of this ash resolved the disposal and environmental issues by treating wastewater of chemical, dyes and pigment industry. The treatment bed comprised of briquettes of coal fly ash coupled with commercial coagulant ferrous sulfate-lime reduced COD, color, turbidity and TSS of effluent remarkably. An adsorption capacity and chemical behavior of fly ash bed was also studied. In coagulation treatment, coagulant FeSO4-lime influenced reduction of COD, color, turbidity and TSS by 32%, 48%, 50% and 51%, respectively. The CFAB coupled with coagulant, resulted an excessive removal of color, TSS, COD, and turbidity by 88%, 92%, 67% and89%, respectively.

  20. Waste Water Treatment-Bed of Coal Fly Ash for Dyes and Pigments Industry

    International Nuclear Information System (INIS)

    Shah, S.F.A.; Aftab, A.; Soomro, N.; Nawaz, M.S.; Vafai, K.

    2015-01-01

    The highly porous power plant waste ashes have been utilized to treat toxic effluent of a dyes manufacturing plant. An attempt has been made for the first time in Pakistan, to generate an effective and economically sound treatment facility for the toxic effluent of a dyes manufacturing plant. This is an indigenous bed which could replace expensive treatment facilities, such as reverse osmosis (RO), granulated activated carbon (GAC) bed, etc. The treatment efficiency was improved by coupling coagulants with fly ash adsorbent bed. The ash was collected from coal fired boilers of power plant at Lakhra Power Generation Company, Jamshoro, Pakistan. The use of this ash resolved the disposal and environmental issues by treating wastewater of chemical, dyes and pigment industry. The treatment bed comprised of briquettes of coal fly ash coupled with commercial coagulant ferrous sulfate-lime reduced COD, color, turbidity and TSS of effluent remarkably. An adsorption capacity and chemical behavior of fly ash bed was also studied. In coagulation treatment, coagulant FeSO/sun 4/-lime influenced reduction of COD, color, turbidity and TSS by 32 percentage, 48 percentage, 50 percentage and 51 percentage, respectively. The CFAB coupled with coagulant, resulted an excessive removal of color, TSS, COD, and turbidity by 88 percentage, 92 percentage, 67 percentage and 89 percentage, respectively. (author)

  1. Waste sizing solution as co-substrate for anaerobic decolourisation of textile dyeing wastewaters

    NARCIS (Netherlands)

    Bisschops, I.; Santos, dos A.B.; Spanjers, H.

    2005-01-01

    Dyeing wastewaters and residual size are textile factory waste streams that can be treated anaerobically. For successful anaerobic treatment of dyeing effluents, a co-substrate has to be added because of their low concentration of easily biodegradable compounds. Starch-based size contains easily

  2. Review: Utilization of Waste From Coffee Production

    Science.gov (United States)

    Blinová, Lenka; Sirotiak, Maroš; Bartošová, Alica; Soldán, Maroš

    2017-06-01

    Coffee is one of the most valuable primary products in the world trade, and also a central and popular part of our culture. However, coffees production generate a lot of coffee wastes and by-products, which, on the one hand, could be used for more applications (sorbent for the removal of heavy metals and dyes from aqueous solutions, production of fuel pellets or briquettes, substrate for biogas, bioethanol or biodiesel production, composting material, production of reusable cups, substrat for mushroom production, source of natural phenolic antioxidants etc.), but, on the other hand, it could be a source of severe contamination posing a serious environmental problem. In this paper, we present an overview of utilising the waste from coffee production.

  3. Beneficial utilization of nuclear waste products

    International Nuclear Information System (INIS)

    Dix, G.P.

    1975-01-01

    A sufficient supply of isotopes exists to conduct demonstrational experiments in the 1975-1980 time frame to stimulate a market for waste products. A large potential market exists for a number of waste products, measured in terms of billions of dollars. Actinide by-products can become a feed stock for producing other energy producing isotopes by neutron irradiation whose value may exceed that of the fission products. Commercial reprocessors will not invest in the extraction and separation of isotopes from the waste stream until a proven market has evolved. Economic studies must be performed to establish the trade-offs between the beneficial use or disposal of wastes. Fundamental to these studies are process economics, safety analyses applications studies, and market analyses, both domestic and foreign. Regardless of the degree of beneficial utilization of wastes, some residual material from wastes not utilized and spent by-products after utilization will have to undergo ultimate disposal. Isotopic waste products have the potential for solving a number of societal and national security problems and represent a unique source of energy and materials

  4. Induction of fungal laccase production under solid state bioprocessing of new agroindustrial waste and its application on dye decolorization.

    Science.gov (United States)

    Akpinar, Merve; Ozturk Urek, Raziye

    2017-06-01

    Lignocellulosic wastes are generally produced in huge amounts worldwide. Peach waste of these obtained from fruit juice industry was utilized as the substrate for laccase production by Pleurotus eryngii under solid state bioprocessing (SSB). Its chemical composition was determined and this bioprocess was carried out under stationary conditions at 28 °C. The effects of different compounds; copper, iron, Tween 80, ammonium nitrate and manganese, and their variable concentrations on laccase production were investigated in detail. The optimum production of laccase (43,761.33 ± 3845 U L -1 ) was achieved on the day of 20 by employing peach waste of 5.0 g and 70 µM Cu 2+ , 18 µM Fe 2+ , 0.025% (v/v) Tween 80, 4.0 g L -1 ammonium nitrate, 750 µM Mn 2+ as the inducers. The dye decolorization also researched to determine the degrading capability of laccase produced from peach culture under the above-mentioned conditions. Within this scope of the study, methyl orange, tartrazine, reactive red 2 and reactive black dyes were treated with this enzyme. The highest decolorization was performed with methyl orange as 43 ± 2.8% after 5 min of treatment when compared to other dyes. Up to now, this is the first report on the induction of laccase production by P. eryngii under SSB using peach waste as the substrate.

  5. Utilization of agricultural cellulose wastes

    Energy Technology Data Exchange (ETDEWEB)

    Valkanas, G N; Economidis, D G; Koukios, E G; Valkanas, C G

    1977-05-05

    Wastes, example, straw, are prehydrolyzed to convert pentosanes, starches, and hemicelluloses to monosaccharides; the remaining pulp is 50% cellulose. Thus, dry wheat straw 0.8 kg was treated with 10 L of 0.3% aqueous HCl at 5-5.5 atm and 145/sup 0/ and a space velocity of 0.55 L/min, washed with dry steam, followed by water at 120 to 130/sup 0/, and more dry steam, and compressed at 25 kg/cm/sup 2/ to yield a product containing 45 to 50 wt % water. The sugar solution obtained (1394 L) contained 1.34 wt % reducing sugars, a straw hydrolysis of 23 wt %, and comprised xylose 74.3, mannose 5.2, arabinose 11.8, glucose 5.9, galactose 2.9%, and furfural 0.16 g/L. The cellulose residue had a dry weight of 0.545 kg. a yield of 68.2 wt % and contained cellulose 53.1, hemicelluloses 12.6%, lignin 22.1, ash and extractables 12.2%. The degree of polymerization was 805 glucose units.

  6. Solid waste from leather industry as adsorbent of organic dyes in aqueous-medium

    International Nuclear Information System (INIS)

    Oliveira, Luiz C.A.; Goncalves, Maraisa; Oliveira, Diana Q.L.; Guerreiro, Mario C.; Guilherme, Luiz R.G.; Dallago, Rogerio M.

    2007-01-01

    The industrial tanning of leather usually produces considerable amounts of chromium-containing solid waste and liquid effluents and raises many concerns on its environmental effect as well as on escalating landfill costs. Actually, these shortcomings are becoming increasingly a limiting factor to this industrial activity that claims for alternative methods of residue disposals. In this work, it is proposed a novel alternative destination of the solid waste, based on the removal of organic contaminants from the out coming aqueous-residue. The adsorption isotherm pattern for the wet blue leather from the Aurea tanning industry in Erechim-RS (Brazil) showed that these materials present high activity on adsorbing the reactive red textile dye as well as other compounds. The adsorbent materials were characterized by IR spectroscopy and SEM and tested for the dye adsorption (reactive textile and methylene blue dyes). The concentrations of dyes were measured by UV-vis spectrophotometry and the chromium extraction from leather waste was realized by basic hydrolysis and determined by atomic absorption. As a low cost abundant adsorbent material with high adsorption ability on removing dye methylene blue (80 mg g -1 ) and textile dye reactive red (163 mg g -1 ), the leather waste is revealed to be a interesting alternative relatively to more costly adsorbent materials

  7. Solid waste from leather industry as adsorbent of organic dyes in aqueous-medium

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Luiz C.A. [Universidade Federal de Lavras, Depto. de Quimica, Caixa Postal 37, CEP 37200.000, Lavras-MG (Brazil)]. E-mail: luizoliveira@ufla.br; Goncalves, Maraisa [Universidade Federal de Lavras, Depto. de Quimica, Caixa Postal 37, CEP 37200.000, Lavras-MG (Brazil); Oliveira, Diana Q.L. [Universidade Federal de Lavras, Depto. de Quimica, Caixa Postal 37, CEP 37200.000, Lavras-MG (Brazil); Guerreiro, Mario C. [Universidade Federal de Lavras, Depto. de Quimica, Caixa Postal 37, CEP 37200.000, Lavras-MG (Brazil); Guilherme, Luiz R.G. [Universidade Federal de Lavras, Depto. de Ciencia do solo, CEP 37200.000, Lavras-MG (Brazil); Dallago, Rogerio M. [URI-Campus Erechim, Av. 7 Setembro 1621, Centro, CEP 99700-000, Depto de Quimica, Erechim-RS (Brazil)

    2007-03-06

    The industrial tanning of leather usually produces considerable amounts of chromium-containing solid waste and liquid effluents and raises many concerns on its environmental effect as well as on escalating landfill costs. Actually, these shortcomings are becoming increasingly a limiting factor to this industrial activity that claims for alternative methods of residue disposals. In this work, it is proposed a novel alternative destination of the solid waste, based on the removal of organic contaminants from the out coming aqueous-residue. The adsorption isotherm pattern for the wet blue leather from the Aurea tanning industry in Erechim-RS (Brazil) showed that these materials present high activity on adsorbing the reactive red textile dye as well as other compounds. The adsorbent materials were characterized by IR spectroscopy and SEM and tested for the dye adsorption (reactive textile and methylene blue dyes). The concentrations of dyes were measured by UV-vis spectrophotometry and the chromium extraction from leather waste was realized by basic hydrolysis and determined by atomic absorption. As a low cost abundant adsorbent material with high adsorption ability on removing dye methylene blue (80 mg g{sup -1}) and textile dye reactive red (163 mg g{sup -1}), the leather waste is revealed to be a interesting alternative relatively to more costly adsorbent materials.

  8. Green synthesis of graphene from recycled PET bottle wastes for use in the adsorption of dyes in aqueous solution.

    Science.gov (United States)

    El Essawy, Noha A; Ali, Safa M; Farag, Hassan A; Konsowa, Abdelaziz H; Elnouby, Mohamed; Hamad, Hesham A

    2017-11-01

    Polyethyleneterephthalate (PET) is an important component of post-consumer plastic waste. This study focuses on the potential of utilizing "waste-treats-waste" by synthesis of graphene using PET bottle waste as a source material. The synthesized graphene is characterized by SEM, TEM, BET, Raman, TGA, and FT-IR. The adsorption of methylene blue (MB) and acid blue 25 (AB25) by graphene is studied and parameters such as contact time, adsorbent dosage were optimized. The Response Surface Methodology (RSM) is applied to investigate the effect of three variables (dye concentration, time and temperature) and their interaction on the removal efficiency. Adsorption kinetics and isotherm are followed a pseudo-second-order model and Langmuir and Freundlich isotherm models, respectively. Thermodynamic parameters demonstrated that adsorption of dye is spontaneous and endothermic in nature. The plastic waste can be used after transformation into valuable carbon-based nanomaterials for use in the adsorption of organic contaminants from aqueous solution. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Current radioactive waste utilization at PA 'MAYAK'

    International Nuclear Information System (INIS)

    Merkushkin, A.O.

    2001-01-01

    The Production Association 'Mayak' is one of the largest production union of Nuclear Fuel Cycle (NFC) in Russia. In 1988 the last military reactor, which worked for making military plutonium was stopped. From this time civic history of 'Mayak' was began. Today 'Mayak' is the complex production union of NFC, which utilizes the Radiated Nuclear Fuel (RNF). The combine is dynamically develops, new technologies are domesticate and intrude, large works for liquidation of accidents and mistakes of lapsed years are in progress. The short review of radioactive waste utilization methods is present in this account. (author)

  10. Current radioactive waste utilization at PA 'MAYAK'

    Energy Technology Data Exchange (ETDEWEB)

    Merkushkin, A O [Ozyorsk Technological Institute of Moscow Physical Engineering Institute (Russian Federation)

    2001-07-01

    The Production Association 'Mayak' is one of the largest production union of Nuclear Fuel Cycle (NFC) in Russia. In 1988 the last military reactor, which worked for making military plutonium was stopped. From this time civic history of 'Mayak' was began. Today 'Mayak' is the complex production union of NFC, which utilizes the Radiated Nuclear Fuel (RNF). The combine is dynamically develops, new technologies are domesticate and intrude, large works for liquidation of accidents and mistakes of lapsed years are in progress. The short review of radioactive waste utilization methods is present in this account. (author)

  11. Constraints to waste utilization and disposal

    Energy Technology Data Exchange (ETDEWEB)

    Steadman, E.N.; Sondreal, E.A.; Hassett, D.J.; Eylands, K.E.; Dockter, B.A. [Univ. of North Dakota, Grand Forks, ND (United States)

    1995-12-01

    The value of coal combustion by-products for various applications is well established by research and commercial practice worldwide. As engineering construction materials, these products can add value and enhance strength and durability while simultaneously reducing cost and providing the environmental benefit of reduced solid waste disposal. In agricultural applications, gypsum-rich products can provide plant nutrients and improve the tilth of depleted soils over large areas of the country. In waste stabilization, the cementitious and pozzolanic properties of these products can immobilize hazardous nuclear, organic, and metal wastes for safe and effective environmental disposal. Although the value of coal combustion by-products for various applications is well established, the full utilization of coal combustion by-products has not been realized in most countries. The reasons for the under utilization of these materials include attitudes that make people reluctant to use waste materials, lack of engineering standards for high-volume uses beyond eminent replacement, and uncertainty about the environmental safety of coal ash utilization. More research and education are needed to increase the utilization of these materials. Standardization of technical specifications should be pursued through established standards organizations. Adoption of uniform specifications by government agencies and user trade associations should be encouraged. Specifications should address real-world application properties, such as air entrainment in concrete, rather than empirical parameters (e.g., loss on ignition). The extensive environmental assessment data already demonstrating the environmental safety of coal ash by-products in many applications should be more widely used, and data should be developed to include new applications.

  12. Current trends of tropical fruit waste utilization.

    Science.gov (United States)

    Cheok, Choon Yoong; Mohd Adzahan, Noranizan; Abdul Rahman, Russly; Zainal Abedin, Nur Hanani; Hussain, Norhayati; Sulaiman, Rabiha; Chong, Gun Hean

    2018-02-11

    Recent rapid growth of the world's population has increased food demands. This phenomenon poses a great challenge for food manufacturers in maximizing the existing food or plant resources. Nowadays, the recovery of health benefit bioactive compounds from fruit wastes is a research trend not only to help minimize the waste burden, but also to meet the intensive demand from the public for phenolic compounds which are believed to have protective effects against chronic diseases. This review is focused on polyphenolic compounds recovery from tropical fruit wastes and its current trend of utilization. The tropical fruit wastes include in discussion are durian (Durio zibethinus), mangosteen (Garcinia mangostana L.), rambutan (Nephelium lappaceum), mango (Mangifera indica L.), jackfruit (Artocarpus heterophyllus), papaya (Carica papaya), passion fruit (Passiflora edulis), dragon fruit (Hylocereus spp), and pineapple (Ananas comosus). Highlights of bioactive compounds in different parts of a tropical fruit are targeted primarily for food industries as pragmatic references to create novel innovative health enhancement food products. This information is intended to inspire further research ideas in areas that are still under-explored and for food processing manufacturers who would like to minimize wastes as the norm of present day industry (design) objective.

  13. Plastic solid waste utilization technologies: A Review

    Science.gov (United States)

    Awasthi, Arun Kumar; Shivashankar, Murugesh; Majumder, Suman

    2017-11-01

    Plastics are used in more number of applications in worldwide and it becomes essential part of our daily life. In Indian cities and villages people use the plastics in buying vegetable as a carry bag, drinking water bottle, use of plastic furniture in home, plastics objects uses in kitchen, plastic drums in packing and storage of the different chemicals for industrial use, use plastic utensils in home and many more uses. After usage of plastics it will become part of waste garbage and create pollution due to presence of toxic chemicals and it will be spread diseases and give birth to uncontrolled issues in social society. In current scenario consumption of plastic waste increasing day by day and it is very difficult to manage the plastic waste. There are limited methodologies available for reutilization of plastic waste again. Such examples are recycling, landfill, incineration, gasification and hydrogenation. In this paper we will review the existing methodologies of utilization of plastic waste in current scenario

  14. Decolorization of a textile vat dye by adsorption on waste ash

    Directory of Open Access Journals (Sweden)

    MIODRAG ŠMELCEROVIĆ

    2010-06-01

    Full Text Available An adsorption process using cheap adsorbents could be described as a simple, selective and low cost alternative for the treatment of colored waste water compared to conventional physical and chemical processes. In this study the use of a natural waste adsorbent–ash was investigated for the removal of a textile vat dye Ostanthren blue GCD remaining after the dyeing of cotton textile. The ash obtained as a waste material during the burning of brown coal in the heating station of Leskovac (Serbia was used for the treatment of waste waters from the textile industry, i.e., waste water after the dyeing process. The effect of ash quantity, initial dye concentration, pH and agitation time on adsorption was studied. The Langmuir model was used to describe the adsorption isotherm. Based on the analytical expression of the Langmuir model, the adsorption constants, such as adsorption capacity and adsorption energy, were found. Pseudo first and second order kinetic models were studied to evaluate the kinetic data.

  15. The oxidation of acid azo dye AY 36 by a manganese oxide containing mine waste

    International Nuclear Information System (INIS)

    Clarke, Catherine E.; Kielar, Filip; Johnson, Karen L.

    2013-01-01

    Highlights: ► This study looks at the oxidative breakdown of the amine containing dye acid yellow 36 by a Mn oxide containing mine waste. ► The oxidation proceeds by successive one electron transfers between the dye molecule and the Mn oxide minerals. ► The initial decolorization of the dye is rapid, but does not involve the cleavage of the azo bond. -- Abstract: The oxidative breakdown of acid azo dye acid yellow 36 (AY 36) by a Mn oxide containing mine tailings is demonstrated. The oxidation reaction is pH dependent with the rate of decolorization increasing with decreasing pH. The oxidation reaction mechanism is initiated at the amino moiety and proceeds via successive, one electron transfers from the dye to the Mn oxide minerals. The reaction pathway involves the formation of a number of colorless intermediate products, some of which hydrolyze in a Mn oxide-independent step. Decolorization of the dye is rapid and is observed before the cleavage of the azo-bond, which is a slower process. The terminal oxidation products were observed to be p-benzoquinone and 3-hydroxybenzenesulfonate. The reaction order of the initial decolorization was determined to be pseudo fractional order with respect to pH and pseudo first order with respect to dye concentration and Mn tailings’ surface area

  16. Sorption of Different Dye Wastes By Poly(vinyl alcohol) /Poly (Carboxymethyl Cellulose) Blend Grafted Through A Radiation Method

    International Nuclear Information System (INIS)

    El-Salmawi Kariman, M.; Abu Zaid Magda, M.; Ibraheim Sayeda, M.; El-Naggar Abdel Wahab, M.; Zahran Abdel Hamid, H.

    1999-01-01

    The sorption of different dye wastes normaly released from industrial textile factories by a graft copolymer of poly(vinyl alcohol)/poly(carboxymethyl cellulose) blend with polystyrene has been investigated. The dye sorption was evaluated at different conditions. The amount of sorbed dye was determined by using a spectroscopic method. The blend graft copolymer showed a relatively high sorption for basic dye than other dyestuffs such as acid, reactive and direct. Moreover, it was found that the dye sorption did not depend on the weight of the blend graft copolymer or the volume of the waste solution. The treatment of the dye waste by using the prepared blend graft copolymer may be considered a practical one from the point of view of environmental methods

  17. [Adsorption and desorption of dyes by waste-polymer-derived activated carbons].

    Science.gov (United States)

    Lian, Fei; Liu, Chang; Li, Guo-Guang; Liu, Yi-Fu; Li, Yong; Zhu, Ling-Yan

    2012-01-01

    Mesoporous activated carbons with high surface area were prepared from three waste polymers, i. e., tire rubber, polyvinyl chloride (PVC) and polyethyleneterephtalate (PET), by KOH activation. The adsorption/desorption characteristics of dyes (methylene blue and methyl orange) on the carbons were studied. The effects of pH, ionic strength and surface surfactants in the solution on the dye adsorption were also investigated. The results indicated that the carbons derived from PVC and PET exhibited high surface area of 2 666 and 2 831 m2 x g(-1). Their mesopore volume were as high as 1.06 and 1.30 cm3 g(-1), respectively. 98.5% and 97.0% of methylene blue and methyl orange were removed in 15 min by PVC carbon, and that of 99.5% and 95.0% for PET carbon. The Langmuir maximum adsorption capacity to these dyes was more than 2 mmol x g(-1), much higher than that of commercial activated carbon F400. Compared with Freundlich model, the adsorption data was fitted better by Langmiur model, indicating monolayer coverage on the carbons. The adsorption was highly dependent on solution pH, ionic strength and concentration of surface surfactants. The activated carbons exhibited higher adsorption to methylene blue than that of methyl orange, and it was very hard for both of the dyes to be desorbed. The observation in this study demonstrated that activated carbons derived from polymer waste could be effective adsorbents for the treatment of wastewater with dyes.

  18. Biosorption studies on waste cotton seed for cationic dyes sequestration: equilibrium and thermodynamics

    Science.gov (United States)

    Sivarajasekar, N.; Baskar, R.; Ragu, T.; Sarika, K.; Preethi, N.; Radhika, T.

    2017-07-01

    The immature Gossypium hirsutum seeds—an agricultural waste was converted into a novel adsorbent and its effectiveness for cationic dyes removal was discussed in this study. Characterization revealed that sulfuric acid activated waste Gossypium hirsutum seed (WGSAB) contains surface area 496 m2 g-1. The ability of WGSAB to adsorb basic red 2 (BR2) and basic violet 3 (BV3) from aqueous solutions has been studied. Batch adsorption studies were carried out at different initial dye concentrations (100-300 mg l-1), contact time (1-5 h), pH (2-12) and temperature (293-323 K) to understand the adsorption mechanism. Adsorption data were modeled using Langmuir, Freundlich and Toth adsorption isotherms. Equilibrium data of the adsorption process fitted very well to the Toth model for both dyes. The Langmuir maximum adsorption capacity was 66.69 mg g-1 for BV3 and 50.11 mg g-1 for BR2 at optimum conditions. The near unity value of Toth isotherm constant (BR2: 0.999 and BV3: 1.0) indicates that WGSAB surface is heterogeneous in nature. The maximum adsorption capacity predicted by Toth isotherm of BV3 (66.699 mg g-1) is higher than BR2 (50.310 mg g-1). The kinetic investigation revealed that the BR2 and BV3 were chemisorbed on WGSAB surface following Avrami fractional order kinetics. Further, the fractional order and rate constant values are almost similar for every concentration in both the dyes. The thermodynamic parameters such as Δ H 0, Δ S 0 and Δ G 0 were evaluated. The dye adsorption process was found to be spontaneous and endothermic for the two dyes. Regeneration of WGSAB exhausted by the two dyes could be possible via acetic acid as elutant.

  19. Textile Dye Removal from Aqueous Solution using Modified Graphite Waste/Lanthanum/Chitosan Composite

    Science.gov (United States)

    Kusrini, E.; Wicaksono, B.; Yulizar, Y.; Prasetyanto, EA; Gunawan, C.

    2018-03-01

    We investigated various pre-treatment processes of graphite waste using thermal, mechanical and chemical methods. The aim of this work is to study the performance of modified graphite waste/lanthanum/chitosan composite (MG) as adsorbent for textile dye removal from aqueous solution. Effect of graphite waste resources, adsorbent size and lanthanum concentration on the dye removal were studied in batch experiments. Selectivity of MG was also investigated. Pre-heated graphite waste (NMG) was conducted at 80°C for 1 h, followed by mechanical crushing of the resultant graphite to 75 μm particle size, giving adsorption performance of ˜58%, ˜67%, ˜93% and ˜98% of the model dye rhodamine B (concentration determined by UV-vis spectroscopy at 554 nm), methyl orange (464 nm), methylene blue (664 nm) and methyl violet (580 nm), respectively from aqueous solution. For this process, the system required less than ˜5 min for adsorbent material to be completely saturated with the adsorbate. Further chemical modification of the pre-treated graphite waste (MG) with lanthanum (0.01 – V 0.03 M) and chitosan (0.5% w/w) did not improve the performance of dye adsorption. Under comparable experimental conditions, as those of the ‘thermal-mechanical-pre-treated-only’ (NMG), modification of graphite waste (MG) with 0.03 M lanthanum and 0.5% w/w chitosan resulted in ˜14%, ˜47%, ˜72% and ˜85% adsorption of rhodamine B, methyl orange, methylene blue and methyl violet, respectively. Selective adsorption of methylene blue at most to ˜79%, followed by methyl orange, methyl violet and rhodamine B with adsorption efficiency ˜67, ˜38, and ˜9% sequentially using MG with 0.03 M lanthanum and 0.5% w/w chitosan.

  20. 30 CFR 817.87 - Coal mine waste: Burning and burned waste utilization.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Coal mine waste: Burning and burned waste...-UNDERGROUND MINING ACTIVITIES § 817.87 Coal mine waste: Burning and burned waste utilization. (a) Coal mine... extinguishing operations. (b) No burning or unburned coal mine waste shall be removed from a permitted disposal...

  1. 30 CFR 816.87 - Coal mine waste: Burning and burned waste utilization.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Coal mine waste: Burning and burned waste...-SURFACE MINING ACTIVITIES § 816.87 Coal mine waste: Burning and burned waste utilization. (a) Coal mine... extinguishing operations. (b) No burning or burned coal mine waste shall be removed from a permitted disposal...

  2. Industrial waste utilization for foam concrete

    Science.gov (United States)

    Krishnan, Gokul; Anand, K. B.

    2018-02-01

    Foam concrete is an emerging and useful construction material - basically a cement based slurry with at least 10% of mix volume as foam. The mix usually containing cement, filler (usually sand) and foam, have fresh densities ranging from 400kg/m3 to 1600kg/m3. One of the main drawbacks of foam concrete is the large consumption of fine sand as filler material. Usage of different solid industrial wastes as fillers in foam concrete can reduce the usage of fine river sand significantly and make the work economic and eco-friendly. This paper aims to investigate to what extent industrial wastes such as bottom ash and quarry dust can be utilized for making foam concrete. Foam generated using protein based agent was used for preparing and optimizing (fresh state properties). Investigation to find the influence of design density and air-void characteristics on the foam concrete strength shows higher strength for bottom ash mixes due to finer air void distribution. Setting characteristics of various mix compositions are also studied and adoption of Class C flyash as filler demonstrated capability of faster setting.

  3. Potential use of cotton plant wastes for the removal of Remazol Black B reactive dye

    International Nuclear Information System (INIS)

    Tunc, Ozlem; Tanaci, Hacer; Aksu, Zuemriye

    2009-01-01

    In this study, the potential use of cotton plant wastes - stalk (CS) and hull (CH) - as sorbents for the removal of Remazol Black B (RB5), a vinyl sulfone type reactive dye, was investigated. The results indicated that adsorption was strongly pH-dependent but slightly temperature-dependent for each sorbent-dye system. The Freundlich, Langmuir, Redlich-Peterson and Langmuir-Freundlich adsorption models were used for the mathematical description of adsorption equilibrium and isotherm constants were evaluated at 25 deg. C. All models except the Freundlich model were applicable for the description of dye adsorption by both sorbents in the concentration range studied. According to the Langmuir model, CS and CH sorbents exhibited the highest RB5 dye uptake capacities of 35.7 and 50.9 mg g -1 , respectively, at an initial pH value of 1.0. Simple mass transfer and kinetic models were applied to the experimental data to examine the mechanisms of adsorption and potential rate-controlling steps. It was found that both external mass transfer and intra-particle diffusion played an important role in the adsorption mechanisms of dye, and adsorption kinetics followed the pseudo second-order type kinetic model for each sorbent. Using the Langmuir model parameters, thermodynamic constant ΔG o was also evaluated for each sorption system

  4. Utilization of agricultural waste in power production

    Energy Technology Data Exchange (ETDEWEB)

    Clausen, J.C. [ELSAMPROJEKT A/S, Fredericia (Denmark); Rasmussen, I. [MIDTKRAFT Power Co., Aarhus (Denmark)

    1993-12-31

    It is a goal of the Danish energy policy for the last decade to reduce energy consumption and to introduce fuels for power production with less CO{sub 2} emission than coal. This measure has caused a considerable effort by the Danish utilities to develop technologies that reduce CO{sub 2} emissions without causing heavy cost increases of power. Agricultural waste in the form of surplus straw is available in an amount equivalent to 20% of the annual coal imports to Denmark. Straw firing is difficult due to its significant contents of alkaline components. Consequently, its utilization presupposes the development of new technologies. The biomass development program is concentrated on two ways which are (1) co-firing of existing coal fired power station with a modest amount of straw and (2) development of CFB technology that allows a high share of biomass as well as coal only. These options were tested in a coal fired 70 MW spreader stoker unit and a 125 MW PF unit. Approx. 4000 t of straw were burned. Additional tests will be launched this autumn, burning 35,000 t of straw at rates up to 20% straw. The CFB option is pursued from the platform of a 80 MWth unit, operational early `92. This plant burns a mix of 50% straw and 50% coal and consumes annually 70.000 t of straw. Future development is aiming towards CFBs of 250 MW(e), burning in excess of 50% biomass.

  5. Equilibrium and kinetic studies of Remazol Black B dye sorption by cocoa pod husk waste

    International Nuclear Information System (INIS)

    Tan Ton Siang; Mohd Azmier Ahmad

    2010-01-01

    Preparation of the activated carbons from cocoa pod husk (CPH) waste by physical activation was carried out for the removal of Remazol Black B (RBB) reactive dye from aqueous solutions. The effects of various process parameters i.e., temperature, initial RBB concentration and contact time on the adsorption capacity of activated carbon were investigated in batch system. Langmuir isotherm showed better fit than Freundlich and Temkin isotherms. The kinetic model for RBB adsorption follows pseudo-first-order kinetics. (author)

  6. POTENTIAL USE OF WOOL WASTE AS ADSORBENT FOR THE REMOVAL OF ACID DYES FROM WASTEWATER

    Directory of Open Access Journals (Sweden)

    BUCIŞCANU Ingrid

    2016-05-01

    Full Text Available At present, great amounts of raw wool are treated as waste and raise disposal problems. In the sustainable development context , wool is regarded as a biodegradable renewable resource and due to its complex chemical composition and fiber morphology, can find different useful applications. It is the aim of this paper to investigate the potential use of raw wool waste as a non-conventional adsorbent for Acid Red 337(AcR ,currently used for leather and wool dyeing. Two wool-based adsorbents were prepared, namely scoured coarse wool (Wool-S and wool activated with alcoholic solution of sodium hydroxide (Wool-A. Adsorbent dosage, dye concentration, pH and treatment time were factors taken in consideration for the assessment of the sorbate-adsorbent interaction. The removal efficiency (R % is mainly dependent on the solution pH and on the activation treatment applied to wool: at pH 3, the removal efficiency reaches the highest values of 42% on Wool-S and 99% on Wool-A. The adsorption rate is slow and needs almost 6 h to reach equilibrium. The experimental data best fitted the Langmuir equilibrium adsorption model, which proves that the adsorbent possess surface active sites to which the dye sorbate binds in monomolecular layer. Raw wool waste is a potential cheap, biodegradable and effective adsorbent for colored wastewater treatment.

  7. Increasing Effort in Using the Waste of Mangrove Wood for Natural Dyes

    International Nuclear Information System (INIS)

    Kuntari-Sasas; Sri-Sunaryati; G, Isminingsih; Santosa; Mirtha

    2000-01-01

    The general function of mangrove forest is mainly for protecting thesustain ability of sea shore against the wave toss, however, the fishermenhas often used the mangrove wood to produce their ships, building and otherthings. Among others, this wood also contains of chromophore, tannine,furfurol and phtalic that has the possibility to serve as textile dyes,however its fixation ability to silk fiber in this dyes does not have strongfixation ability to silk fiber. In other to improve its color fastness it wasnecessary to do after treatment with mordant. In this study the waste fromthe mangrove in the form of shredded wood, wood bark or twig and small branchwere used as the raw material of the natural dyes. This materials werechopped as small as possible (into saw form) and being extracted in order toobtain the dyes as much as possible. As the result of this study wasaddressed to the small and medium scale industries, the extraction processwas carried out in a simple way using water as medium with various ratios inthe respected order 1:10; 1:20; 1:30; 1:40; and 1 :50. To obtain theextracted yields, the mangrove waste was extracted until it reached the ratioof 1/5 to the medium, the extracted sample was taken out to be extractedagain in fresh water as medium in the same ratio variation. This process wasrepeated until no more wood color to be extracted (± 9 repeats). Theextracted liquid was then put into evaporation, drying and grinded into dyespowder. The highest extracted yields was obtained by the ratio to medium(1:40 to 1:50) with 9.40% -9.48% extracted yields. The following experimentwas dyeing process to silk fabrics by using dyes powder or dyes liquidextracted from medium with ratio 1:40 mixture from first extraction up toforth extraction. The dyeing process was carried out without mordanting,pre-mordanting and post-mordanting, by means of Tawas (Al 2 K 2 (SO 4 ) 3 ) orTunjung (FeSO 4 . 7 H 2 O) as mordanting material. The dyed silk fabrics werethen tested for

  8. Agricultural waste concept, generation, utilization and management ...

    African Journals Online (AJOL)

    Agricultural wastes are non-product outputs of production and processing of ... less than the cost of collection, transportation, and processing for beneficial use. ... Agricultural waste management system (AWMS) was discussed and a typical ...

  9. A Study on promotion of utilizing waste energy

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Jae Ho [Korea Energy Economics Institute, Euiwang (Korea)

    1999-01-01

    The utilization of waste energy occupying over 80% of alternative energy has been an important issue with the trend of large-sized waste incinerator. The object of this study is to seek the methods for the active application of waste energy, which is produced at the process of waste generation and disposal. It is expected to help energy saving, foreign currency saving and prevent environmental pollution by utilizing alternative energy actively. It should have basic information, related information for examining technical feasibility, and feasibility examination of the surroundings for developing the demand place. Moreover, it should enhance the energy saving by recommending use of waste energy with introducing recommendation system of installing waste energy collection system. It should also consider the support of the introduction of waste energy system as well as the aspect of regional energy policy. In addition, the development and distribution of applied technology for waste energy are needed. (author). 36 refs., 4 figs., 77 tabs.

  10. Radioactive waste management: a utility view

    International Nuclear Information System (INIS)

    Draper, E.L.

    1982-01-01

    The management of radioactive waste continues to be a matter of public concern and discussion. There is broad agreement among members of the technical community that the various types of waste radioactive species can be managed without jeopardizing public health and safety. Despite this consensus, one of the major reasons cited by opponents of commercial nuclear power for their opposition is the lack of a fully deployed waste management program. Such a program has been suggested but implementation is not yet complete. It is essential that a program be undertaken so as to dispel the impression that past inaction on waste disposal represents an inability to deal safely with wastes

  11. Utilization of Hospital Waste Ash in Concrete

    Directory of Open Access Journals (Sweden)

    Shazim Ali Memon

    2013-01-01

    Full Text Available Hospital waste management is a huge problem in Pakistan. The annual production of medical waste produced from health care facilities, in Pakistan, is around 250,000 tons. This research paper is intended to evaluate the feasibility of using of hospital waste ash obtained from Pakistan Institute of Medical Sciences, Rawalpindi, Pakistan, as partial replacement of cement. The main variable in this research is the amount of hospital waste ash (2, 4, 6 and 8% by weight of cement while the amount of cementitious material, water to cementitious material ratio, fine and coarse aggregate content were kept constant. Test results substantiate that hospital waste ash can be used in concrete. XRD (X-Ray Diffraction of hospital waste ash showed that it is rich in calcite while scanning electron micrographs indicated that the particles of hospital waste ash have highly irregular shape. The slump value, density of fresh concrete and water absorption decreased with the increase in the quantity of hospital waste ash in the mix. At 3 days of testing, the compressive strength of mixes with hospital waste ash was higher than the control mix while at 7 and 28 days the CM (Control Mix showed higher strength than the hospital waste ash mixes except the mix containing 2% hospital waste ash by weight of cement.

  12. Utilization of hospital waste ash in concrete

    International Nuclear Information System (INIS)

    Memon, S.; Sheikh, M.

    2013-01-01

    Hospital waste management is a huge problem in Pakistan. The annual production of medical waste produced from health care facilities, in Pakistan, is around 250,000 tons. This research paper is intended to evaluate the feasibility of using of hospital waste ash obtained from Pakistan Institute of Medical Sciences, Rawalpindi, Pakistan, as partial replacement of cement. The main variable in this research is the amount of hospital waste ash (2, 4, 6 and 8% by weight of cement) while the amount of cementitious material, water to cementitious material ratio, fine and coarse aggregate content were kept constant. Test results substantiate that hospital waste ash can be used in concrete. XRD (X-Ray Diffraction) of hospital waste ash showed that it is rich in calcite while scanning electron micrographs indicated that the particles of hospital waste ash have highly irregular shape. The slump value, density of fresh concrete and water absorption decreased with the increase in the quantity of hospital waste ash in the mix. At 3 days of testing, the compressive strength of mixes with hospital waste ash was higher than the control mix while at 7 and 28 days the CM (Control Mix) showed higher strength than the hospital waste ash mixes except the mix containing 2% hospital waste ash by weight of cement. (author)

  13. Kinetics of adsorption of dyes from aqueous solution using activated carbon prepared from waste apricot

    International Nuclear Information System (INIS)

    Onal, Yunus

    2006-01-01

    Adsorbent (WA11Zn5) has been prepared from waste apricot by chemical activation with ZnCl 2 . Pore properties of the activated carbon such as BET surface area, pore volume, pore size distribution, and pore diameter were characterized by N 2 adsorption and DFT plus software. Adsorption of three dyes, namely, Methylene Blue (MB), Malachite Green (MG), Crystal Violet (CV), onto activated carbon in aqueous solution was studied in a batch system with respect to contact time, temperature. The kinetics of adsorption of MB, MG and CV have been discussed using six kinetic models, i.e., the pseudo-first-order model, the pseudo-second-order model, the Elovich equation, the intraparticle diffusion model, the Bangham equation, the modified Freundlich equation. Kinetic parameters and correlation coefficients were determined. It was shown that the second-order kinetic equation could describe the adsorption kinetics for three dyes. The dyes uptake process was found to be controlled by external mass transfer at earlier stages (before 5 min) and by intraparticle diffusion at later stages (after 5 min). Thermodynamic parameters, such as ΔG, ΔH and ΔS, have been calculated by using the thermodynamic equilibrium coefficient obtained at different temperatures and concentrations. The thermodynamics of dyes-WA11Zn5 system indicates endothermic process

  14. Dye Removal From Textile Waste Water Through The Adsorption By Pumice Used In Stone Washing

    Directory of Open Access Journals (Sweden)

    Körlü Aysegül Ekmekçi

    2015-09-01

    Full Text Available Because the waste production is inevitable in almost all industries, the elimination of these wastes is a requirement in terms of environmental regulations and welfare of all the creatures in the future. In this study, the use of the waste pumice stones of a denim washing mill is intended to eliminate the pollutant by a waste material and obtain economic benefits by converting it to the adsorbent. The pollutants in the effluents obtained from three different localisations of waste water treatment system of the same factory were removed through the adsorption. The experimental studies were carried out in three different steps; characterisation of adsorbent before and after adsorption; adsorption isotherm studies and biological oxygen demand (BOD, chemical oxygen demand (COD measurements. Characterisation studies showed that the waste pumice has almost the same structural properties with unused one except the existence of some organic residues coming from washing process. The results of adsorption studies conducted at the adsorbent concentrations changing from 5 to 35 g/l revealed that the decolourisation was initial dye-concentration dependent. According to the BOD and COD measurements, the supernatants obtained at the end of adsorption could be assumed as somewhat polluted and this result indicates that the organic impurities other than indigo were also removed through the adsorption.

  15. Adsorption of leather dyes on activated carbon from leather shaving wastes: kinetics, equilibrium and thermodynamics studies.

    Science.gov (United States)

    Manera, Christian; Tonello, Andrezza Piroli; Perondi, Daniele; Godinho, Marcelo

    2018-03-23

    In this work, the adsorption of Acid Black 210 (AB210) and Acid Red 357 (AR357) onto activated carbon prepared from leather shaving wastes (ACLW) was investigated. The activated carbon presented a surface area of 800.4 m²/g with an average pore size of 1.27 nm. The kinetic study showed that the adsorption of both dyes followed the Elovich kinetic model while the AB210 and AR357 isotherm data were well described by the Langmuir and BET models, respectively. Furthermore, the Boyd plot revealed that the adsorption of the leather dyes on activated carbon was mainly governed by film diffusion. The pH had a strong influence on the adsorption, and the higher amounts of dye adsorbed were obtained at pH 2. The obtained activated carbon exhibited a high monolayer adsorption capacity of 573.9 and 204.4 mg/g for AB210 and AR357, respectively. Its high capacity is mainly attributed to its basicity (0.17 mmol/g) and high surface area. Desorption efficiency of the spent activated carbon was found to be 54.3% and 43.0% for AB210 and AR357, respectively. The spontaneity of the process was demonstrated by the negative values of the Gibbs free energy change.

  16. Manual on oil-gas industry waste utilization radioecological safety

    International Nuclear Information System (INIS)

    Kudryashev, V.A.; Lukashenko, S.N.; Tuleushev, A.Zh.; Marabaev, Zh.N.; Pasysaev, V.A.; Kayukov, P.G.; Kozhakhmetov, N.B.; Shevtsov, S.P.

    2003-01-01

    The development of a new document - 'Manual on radio-ecologically safe utilization of waste from oil-and-gas production' is carried out. This document regulates the whole cycle of environment protection measures at waste utilization for the named industry in Kazakhstan and is aimed on lowering the radiation risks and assurance of radioecological safety both at present and for the future. The document presents a set regulations necessary for radioactive wastes handling in the oil-gas industry. The normative document was agreed in both the Ministry of Health of the Republic of Kazakhstan (RK) and Ministry of Environment Protection of RK

  17. Comparative Studies on Dyeability with Direct, Acid and Reactive Dyes after Chemical Modification of Jute with Mixed Amino Acids Obtained from Extract of Waste Soya Bean Seeds

    Science.gov (United States)

    Bhaumik, Nilendu Sekhar; Konar, Adwaita; Roy, Alok Nath; Samanta, Ashis Kumar

    2017-12-01

    Jute fabric was treated with mixed natural amino acids obtained from waste soya bean seed extract for chemical modification of jute for its cataionization and to enhance its dyeability with anionic dyes (like direct, reactive and acid dye) as well enabling soya modified jute for salt free dyeing with anionic reactive dyes maintaining its eco-friendliness. Colour interaction parameters including surface colour strength were assessed and compared for both bleached and soya-modified jute fabric for reactive dyeing and compared with direct and acid dye. Improvement in K/S value (surface colour strength) was observed for soya-modified jute even in absence of salt applied in dye bath for reactive dyes as well as for direct and acid dyes. In addition, reactive dye also shows good dyeability even in acid bath in salt free conditions. Colour fastness to wash was evaluated for bleached and soya-modified jute fabric after dyeing with direct, acid and reactive dyes are reported. Treatment of jute with soya-extracted mixed natural amino acids showed anchoring of some amino/aldemine groups on jute cellulosic polymer evidenced from Fourier Transform Infra-Red (FTIR) Spectroscopy. This amino or aldemine group incorporation in bleached jute causes its cationization and hence when dyed in acid bath for reactive dye (instead of conventional alkali bath) showed dye uptake for reactive dyes. Study of surface morphology by Scanning Electron Microscopy (SEM) of said soya-modified jute as compared to bleached jute was studied and reported.

  18. Energy utilization: municipal waste incineration. Final report

    Energy Technology Data Exchange (ETDEWEB)

    LaBeck, M.F.

    1981-03-27

    An assessment is made of the technical and economical feasibility of converting municipal waste into useful and useable energy. The concept presented involves retrofitting an existing municipal incinerator with the systems and equipment necessary to produce process steam and electric power. The concept is economically attractive since the cost of necessary waste heat recovery equipment is usually a comparatively small percentage of the cost of the original incinerator installation. Technical data obtained from presently operating incinerators designed specifically for generating energy, documents the technical feasibility and stipulates certain design constraints. The investigation includes a cost summary; description of process and facilities; conceptual design; economic analysis; derivation of costs; itemized estimated costs; design and construction schedule; and some drawings.

  19. UTILIZATION OF PINEAPPLE WASTE AS CARBON SOURCE

    Directory of Open Access Journals (Sweden)

    Abdullah Moch Busairi

    2012-02-01

    Full Text Available The liquid pineapple waste contains mainly sucrose, glucose, fructose and other nutrients. It therefore can potentially be used as carbon source for organic acid fermentation.  The objective of this work is to evaluate the use of pineapple waste as substrate for lactic acid fermentation under variables of aerobic, anaerobic condition and pH controlling. Initial results showed that the liquid pineapple waste can be used as carbon source for lactic acid fermentation using Lactobacillus delbrueckii. In the anaerobic condition growth of bacteria and lactic acid production better than aerobic condition. In the anaerobic condition and the controlled pH  the production of lactic acid are found to be 54.79 g/l  (78.27% yield at  40oC, pH 6, 50 rpm and 70 g/l sugar concentration.  In contrast, only 13.87g/l lactic acid produced if the fermentation pH was not controlled even though the fermentation parameters were kept at the same conditions

  20. Valorization of Waste Obtained from Oil Extraction in Moringa Oleifera Seeds: Coagulation of Reactive Dyes in Textile Effluents.

    Science.gov (United States)

    Vilaseca, Mercè; López-Grimau, Víctor; Gutiérrez-Bouzán, Carmen

    2014-09-12

    Moringa oleifera seeds contain about 40% of highly valued oil due to its wide range of applications, from nutritional issues to cosmetics or biodiesel production. The extraction of Moringa oil generates a waste (65%-75% of seeds weight) which contains a water soluble protein able to be used either in drinking water clarification or wastewater treatment. In this paper, the waste of Moringa oleifera extraction was used as coagulant to remove five reactive dyes from synthetic textile effluents. This waste constitutes a natural coagulant which was demonstrated to be effective for the treatment of industrial reactive dyestuff effluents, characterized by alkaline pH, high NaCl content and hydrolyzed dyes. The coagulation yield increased at high NaCl concentration, whereas the pH did not show any significant effect on dye removal. Moringa oleifera showed better results for dye removal than the conventional treatment of coagulation-flocculation with FeCl₃ and polyelectrolyte. Treated water can be reused in new dyeing processes of cotton fabrics with high quality results.

  1. Valorization of Waste Obtained from Oil Extraction in Moringa Oleifera Seeds: Coagulation of Reactive Dyes in Textile Effluents

    Directory of Open Access Journals (Sweden)

    Mercè Vilaseca

    2014-09-01

    Full Text Available Moringa oleifera seeds contain about 40% of highly valued oil due to its wide range of applications, from nutritional issues to cosmetics or biodiesel production. The extraction of Moringa oil generates a waste (65%–75% of seeds weight which contains a water soluble protein able to be used either in drinking water clarification or wastewater treatment. In this paper, the waste of Moringa oleifera extraction was used as coagulant to remove five reactive dyes from synthetic textile effluents. This waste constitutes a natural coagulant which was demonstrated to be effective for the treatment of industrial reactive dyestuff effluents, characterized by alkaline pH, high NaCl content and hydrolyzed dyes. The coagulation yield increased at high NaCl concentration, whereas the pH did not show any significant effect on dye removal. Moringa oleifera showed better results for dye removal than the conventional treatment of coagulation-flocculation with FeCl3 and polyelectrolyte. Treated water can be reused in new dyeing processes of cotton fabrics with high quality results.

  2. Utilization of Blended Waste Materials in Bricks

    Directory of Open Access Journals (Sweden)

    Muhammad Ekhlasur Rahman

    2018-01-01

    Full Text Available Cement is considered a key raw material for brick production. However, excessive use of cement leads to a negative environment impact. Cement replaced with locally available waste materials has a significant potential to address this environmental impact, especially in the construction industry by contributing to cleaner production. The objective of this research is to investigate the performance of brick where cement is replaced by fly ash and palm oil fuel ash, waste materials typically available in Malaysia, where the construction industry is on the rise. To determine the performance of these bricks, a compressive strength test, a water absorption test, and a thermogravimetric analysis were carried out at different percentage combinations of fly ash and palm oil fuel ash. The results from the tests reveal that both fly ash and palm oil fuel ash incorporated bricks satisfy Class 1 and Class 2 load-bearing brick requirements according to the Malaysian Standard MS76:1972 along with water absorption requirements as per ASTM C55-11. The thermogravimetric analysis study confirms that the Ca(OH2 gradually decreases due to the increase of pozzolanic material contents (fly ash and palm oil fuel ash. Moreover, these newly developed bricks cost less than the conventional bricks.

  3. Valorization of Waste Obtained from Oil Extraction in Moringa Oleifera Seeds: Coagulation of Reactive Dyes in Textile Effluents

    OpenAIRE

    Vilaseca, Merc?; L?pez-Grimau, V?ctor; Guti?rrez-Bouz?n, Carmen

    2014-01-01

    Moringa oleifera seeds contain about 40% of highly valued oil due to its wide range of applications, from nutritional issues to cosmetics or biodiesel production. The extraction of Moringa oil generates a waste (65%–75% of seeds weight) which contains a water soluble protein able to be used either in drinking water clarification or wastewater treatment. In this paper, the waste of Moringa oleifera extraction was used as coagulant to remove five reactive dyes from synthetic textile effluents. ...

  4. Waste utilization strategies and markets in Europe, the export potential

    International Nuclear Information System (INIS)

    Vaeisaenen, P.

    2001-01-01

    advantages and disadvantages. Collection energy waste requires one container more and the recovery is not well. On the other hand the quality is reasonably good and the manufacture of REF can be simple. An exception for the need of an additional container can be found in Kymenlaakson Jaete Oy, there the energy fraction is collected in orange plastic bag in the same waste container as the dry residues. The orange energy waste bags are separated from dry waste by optical separator, which requires extra investments for the waste separation plant. The quality of dry waste can occasionally be poor so the manufacturing process of REF has to tolerate impurities. The yield, on the other hand, is good and the national waste utilization targets can be met

  5. The Utilization of Sago Waste as Cattle Feed

    Science.gov (United States)

    Tiro, B. M. W.; Beding, P. A.; Baliadi, Y.

    2018-02-01

    This study aimed was to evaluate nutrition value of sago waste and its effect on cattle performance.The collected data were analyzed using analysis of variance. The results of the study showed that of the utilization of sago waste had a positive effect on average daily gain (ADG), where with 2% sago waste of body weight (P2 treatment) gave the highest ADG 0.43 ± 0.02 kg/h/day and cattle which consumed only forage without sago waste (P0) gave the lowest ADG 0.26 ± 0.04 kg/h/day. Statistical analysis showed that the addition of sago waste significantly affected the ADG (P0.05), but significant affect(Pcattle.

  6. Mixed waste: An alternative solution. The utility perspective

    International Nuclear Information System (INIS)

    Seizert, R.D.

    1988-01-01

    The issue of mixed waste is one of significant interest to the utility industry. The interest is focused on the current regulatory scheme of dual regulation. A fundamental concern of the commercial nuclear utilities resulting from dual regulation is that there are currently no facilities in the US to dispose of mixed low-level radioactive and hazardous waste. The lack of available sites renders mixed waste an orphan, requiring generators of such material to store the waste on-site. This in turn causes commercial nuclear power plants to be subjected to the full gamut of Environmental Protection Agency (EPA) Resource Conservation and Recovery Act (RCRA) regulation in addition to the existing Nuclear Regulatory Commission (NRC) regulations. Superimposing dual regulatory schemes will have impacts which extend far beyond the mere management of mixed waste. Certainly the burdens, complexities and costs of complying with the overlapping regulatory schemes will not have a commensurate increase in protection from the real risks being addressed. For these reasons, the commercial nuclear utility industry is working toward an alternative solution which will protect the public health and the environment from all hazards of mixed waste and will minimize the impacts on both the regulators and the regulated community

  7. Utilization of waste heat from nuclear power plants in agriculture

    International Nuclear Information System (INIS)

    Horacek, P.

    1981-01-01

    The development of nuclear power will result in the relative and absolute increase in the amount of waste heat which can be used in agriculture for heating greenhouses, open spaces, for fish breeding in heated water, for growing edible mushrooms, growing algae, for frost protection of orchards, air conditioning of buildings for breeding livestock and poultry, and for other purposes. In addition of the positive effect of waste heat, the danger increases of disease, weeds and pests. Pilot plant installations should be build in Czechoslovakia for testing the development of waste heat utilization. (Ha)

  8. Method for utilizing decay heat from radioactive nuclear wastes

    International Nuclear Information System (INIS)

    Busey, H.M.

    1974-01-01

    Management of radioactive heat-producing waste material while safely utilizing the heat thereof is accomplished by encapsulating the wastes after a cooling period, transporting the capsules to a facility including a plurality of vertically disposed storage tubes, lowering the capsules as they arrive at the facility into the storage tubes, cooling the storage tubes by circulating a gas thereover, employing the so heated gas to obtain an economically beneficial result, and continually adding waste capsules to the facility as they arrive thereat over a substantial period of time

  9. Tank Farm Contractor Waste Remediation System and Utilization Plan

    International Nuclear Information System (INIS)

    KIRKBRIDE, R.A.

    1999-01-01

    The Tank Waste Remediation System Operation and Utilization Plan updates the operating scenario and plans for the delivery of feed to BNFL Inc., retrieval of waste from single-shell tanks, and the overall process flowsheets for Phases I and II of the privatization of the Tank Waste Remediation System. The plans and flowsheets are updated with the most recent tank-by-tank inventory and sludge washing data. Sensitivity cases were run to evaluate the impact or benefits of proposed changes to the BNFL Inc. contract and to evaluate a risk-based SST retrieval strategy

  10. Waste Plant Material as a Potential Adsorbent of a Selected Azo Dye

    Directory of Open Access Journals (Sweden)

    Tomczak Elwira

    2017-06-01

    Full Text Available This paper discusses the adsorption of Direct Orange 26 azo dye on sunflower husk - an agricultural waste product. During the study, sorption kinetics and equilibrium as well as sorption capacity of the husk were investigated. The adsorption kinetics was analyzed using pseudo-first and pseudo-second order equations, which indicated a chemical sorption mechanism. The sorption equilibrium was approximated with the two-parameter Freundlich and Langmuir equations and the three-parameter Redlich-Peterson equation. The main experiments were carried out in a laboratory adsorption column under different process conditions. Experimental data were interpreted with the Thomas model, based on the volumetric flow rate, initial composition of the feed solution and mass of the adsorbent. The results of modeling the adsorption equilibrium, adsorption kinetics and adsorption dynamics were evaluated statistically.

  11. Fluorescence quenching and photocatalytic degradation of textile dyeing waste water by silver nanoparticles

    Science.gov (United States)

    Kavitha, S. R.; Umadevi, M.; Janani, S. R.; Balakrishnan, T.; Ramanibai, R.

    2014-06-01

    Silver nanoparticles (Ag NPs) of different sizes have been prepared by chemical reduction method and characterized using UV-vis spectroscopy and transmission electron microscopy (HRTEM). Fluorescence spectral analysis showed that the quenching of fluorescence of textile dyeing waste water (TDW) has been found to decrease with decrease in the size of the Ag NPs. Experimental results show that the silver nanoparticles can quench the fluorescence emission of adsorbed TDW effectively. The fluorescence interaction between Ag NPs (acceptor) and TDW (donor) confirms the Förster Resonance Energy Transfer (FRET) mechanism. Long range dipole-dipole interaction between the excited donor and ground state acceptor molecules is the dominant mechanism responsible for the energy transfer. Furthermore, photocatalytic degradation of TDW was measured spectrophotometrically by using silver as nanocatalyst under UV light illumination. The kinetic study revealed that synthesized Ag NPs was found to be effective in degrading TDW.

  12. Adsorption of rhodamine B and methylene blue dyes using waste of seeds of Aleurites Moluccana, a low cost adsorbent

    Directory of Open Access Journals (Sweden)

    Debora Luiza Postai

    2016-06-01

    Full Text Available Removal of the cationic dyes rhodamine B (RhB and methylene blue (MB by waste seeds Aleurites moluccana (WAM was studied in a batch system. The adsorbent was characterized by Fourier transform infrared spectroscopy (FTIR, thermogravimetric analysis (TGA, point of zero charge measurement, and the Boehm titration method. The effects of contact time and pH were investigated for the removal of cationic dyes. An increase in pH from 3 to 9 was accompanied by an approximately three-fold increase in the amount of dye adsorbed. The adsorptions equilibrium values were obtained and analyzed using the Langmuir, Freundlich, Sips, and Redlich–Peterson equations, the Sips isotherm being the one that showed the best correlation with the experimental values. The maximum adsorption capacities of the dyes were 178 mg/g for the MB and 117 mg/g for the RhB. The kinetic sorption was evaluated by the pseudo-first-order, pseudo-second-order, and intraparticle diffusion models, where it was observed that sorption follows the pseudo-second-order kinetic model. The study of thermodynamics showed that the adsorption is a spontaneous and endothermic process. The results indicate that waste seeds of A. moluccana could be used as a low cost material for the removal of cationic dyes from wastewater.

  13. Batch and bulk removal of a triarylmethane dye, Fast Green FCF, from wastewater by adsorption over waste materials

    International Nuclear Information System (INIS)

    Mittal, Alok; Kaur, Dipika; Mittal, Jyoti

    2009-01-01

    De-Oiled Soya, an agricultural waste material and Bottom Ash a waste of power plants, have been used as adsorbents for the removal and recovery of a triarylmethane dye Fast Green FCF from wastewater. Batch studies have been carried by observing the effects of pH, temperature, concentration of the dye, amount of adsorbents, sieve size of adsorbent, contact time, etc. Graphical correlation of various adsorption isotherm models like, Langmuir, Freundlich, Tempkin and Dubinin-Radushkevich have been carried out for both the adsorbents. The adsorption over both the materials has been found endothermic and feasible in nature. Various thermodynamic parameters, such as, Gibb's free energy, entropy and enthalpy of the on-going adsorption process have been calculated. The kinetic studies suggest the process following pseudo first order kinetics and involvement of particle diffusion mechanism. The bulk removal of the dye has been carried out by passing the dye solution through columns of Bottom Ash and De-Oiled Soya and saturation factor of each column has been calculated. Attempts have also been made to recover the dye by eluting dilute NaOH through the columns

  14. Parametric and kinetic study of adsorptive removal of dyes from aqueous solutions using an agriculture waste

    Science.gov (United States)

    Bencheikh, imane; el hajjaji, souad; abourouh, imane; Kitane, Said; Dahchour, Abdelmalek; El M'Rabet, Mohammadine

    2017-04-01

    Wastewater treatment is the subject of several studies through decades. Interest is continuously oriented to provide cheaper and efficient methods of treatment. Several methods of treatment exit including coagulation flocculation, filtration, precipitation, ozonation, ion exchange, reverse osmosis, advanced oxidation process. The use of these methods proved limited because of their high investment and operational cost. Adsorption can be an efficient low-cost process to remove pollutants from wastewater. This method of treatment calls for an solid adsorbent which constitutes the purification tool. Agricultural wastes have been widely exploited in this case .As we know the agricultural wastes are an important source of water pollution once discharged into the aquatic environment (river, sea ...). The valorization of such wastes and their use allows the prevention of this problem with an economic and environment benefits. In this context our study aimed testing the wastewater treatment capacity by adsorption onto holocellulose resulting from the valorization of an agriculture waste. In this study, methylene blue (MB) and methyl orange (MO) are selected as models pollutants for evaluating the holocellulose adsorbent capacity. The kinetics of adsorption is performed using UV-visible spectroscopy. In order to study the effect of the main parameters for the adsorption process and their mutual interaction, a full factorial design (type nk) has been used.23 full factorial design analysis was performed to screen the parameters affecting dye removal efficiency. Using the experimental results, a linear mathematical model representing the influence of the different parameters and their interactions was obtained. The parametric study showed that efficiency of the adsorption system (Dyes/ Holocellulose) is mainly linked to pH variation. The best yields were observed for MB at pH=10 and for MO at pH=2.The kinetic data was analyzed using different models , namely , the pseudo

  15. Waste utilization in electric energy industry

    International Nuclear Information System (INIS)

    Parate, N.S.; Harris, E.

    1991-01-01

    This paper reports that electric energy is an integral element of today's economy and the standard quality of life. The availability of energy at an affordable cost has always been of basic concern because of the intimate relationship of energy to our societal development and progress. Coal and Uranium are the primary alternative energy sources for large electric power plants. Coal remains the dominant fuel for electric generation. The pressurized fluidized bed combustion technology has the potential of utilizing all types of coal, including coal with high ash, high sulphur, and high moisture content. Fluidized bed combustion is a firing technique which fulfills today's pollution control requirements without downstream flue gas cleaning plants like scrubbers, baghouses, and precipitators

  16. Industrial waste heat utilization for low temperature district heating

    International Nuclear Information System (INIS)

    Fang, Hao; Xia, Jianjun; Zhu, Kan; Su, Yingbo; Jiang, Yi

    2013-01-01

    Large quantities of low grade waste heat are discharged into the environment, mostly via water evaporation, during industrial processes. Putting this industrial waste heat to productive use can reduce fossil fuel usage as well as CO 2 emissions and water dissipation. The purpose of this paper is to propose a holistic approach to the integrated and efficient utilization of low-grade industrial waste heat. Recovering industrial waste heat for use in district heating (DH) can increase the efficiency of the industrial sector and the DH system, in a cost-efficient way defined by the index of investment vs. carbon reduction (ICR). Furthermore, low temperature DH network greatly benefits the recovery rate of industrial waste heat. Based on data analysis and in-situ investigations, this paper discusses the potential for the implementation of such an approach in northern China, where conventional heat sources for DH are insufficient. The universal design approach to industrial-waste-heat based DH is proposed. Through a demonstration project, this approach is introduced in detail. This study finds three advantages to this approach: (1) improvement of the thermal energy efficiency of industrial factories; (2) more cost-efficient than the traditional heating mode; and (3) CO 2 and pollutant emission reduction as well as water conservation. -- Highlights: •We review situation of industrial waste heat recovery with a global perspective. •We present a way to analyze the potential to utilize industrial waste heat for DH. •Northern China has huge potential for using low-grade industrial waste heat for DH. •A demonstration project is introduced using the universal approach we propose. •It proves huge benefits for factories, heat-supply companies and the society

  17. A Generalized Approach to Forensic Dye Identification: Development and Utility of Reference Libraries.

    Science.gov (United States)

    Groves, Ethan; Palenik, Skip; Palenik, Christopher S

    2018-04-18

    While color is arguably the most important optical property of evidential fibers, the actual dyestuffs responsible for its expression in them are, in forensic trace evidence examinations, rarely analyzed and still less often identified. This is due, primarily, to the exceedingly small quantities of dye present in a single fiber as well as to the fact that dye identification is a challenging analytical problem, even when large quantities are available for analysis. Among the practical reasons for this are the wide range of dyestuffs available (and the even larger number of trade names), the low total concentration of dyes in the finished product, the limited amount of sample typically available for analysis in forensic cases, and the complexity of the dye mixtures that may exist within a single fiber. Literature on the topic of dye analysis is often limited to a specific method, subset of dyestuffs, or an approach that is not applicable given the constraints of a forensic analysis. Here, we present a generalized approach to dye identification that ( 1 ) combines several robust analytical methods, ( 2 ) is broadly applicable to a wide range of dye chemistries, application classes, and fiber types, and ( 3 ) can be scaled down to forensic casework-sized samples. The approach is based on the development of a reference collection of 300 commercially relevant textile dyes that have been characterized by a variety of microanalytical methods (HPTLC, Raman microspectroscopy, infrared microspectroscopy, UV-Vis spectroscopy, and visible microspectrophotometry). Although there is no single approach that is applicable to all dyes on every type of fiber, a combination of these analytical methods has been applied using a reproducible approach that permits the use of reference libraries to constrain the identity of and, in many cases, identify the dye (or dyes) present in a textile fiber sample.

  18. Positive utilization of waste materials from mines and quarries

    International Nuclear Information System (INIS)

    Blunden, J.R.

    1980-01-01

    World mineral waste production together with its backlog accumulation is reviewed with particular emphasis upon the situation in North America and the UK. The common problems of conventional waste dumping in relation to its propensity to create land dereliction, are discussed before considering the positive ways of utilizing such material. Upgrading to a saleable product has not resulted in the significant utilization of currently produced waste or stockpiles, whilst processing and transport costs are unlikely in the near future to permit any reduction in on-site tipping through this mode of use. Amenity uses are related to the availability of quantities of waste. Where small amounts are concerned opportunities exist for the backfilling of old excavations, rolling restoration and the construction of amenity backs; the technical and economic problems of each of these is considered. Large scale waste production cannot be similarly contained. Thus the problems of backfilling old workings and long distance transport for reclamation or public works schemes are examined in relation to cost factors. The limitations of conventional economics in dealing with the environmental problems posed by waste are stressed and the possible supportive role of governments in this respect is examined

  19. Equilibrium modeling of removal of drimarine yello HG-3GL dye from aqueous solutions by low cost agricultural waste

    International Nuclear Information System (INIS)

    Bhatti, S.N.H.N.; Sadaf, S.; Sadaf, S.; Farrukh, Z.; Noreen, S.

    2014-01-01

    Pollution control is one of the leading issues of society today. The present study was designed to remove the Drimarine Yellow HF-3GL dye from aqueous solutions through biosorption. Sugarcane bagasse was used as biosorbent in native, acetic acid treated and immobilized form. Batch study was conducted to optimize different system variables like pH of solution, medium temperature, biosorbent concentration, initial dye concentration and contact time. Maximum dye removal was observed at pH 2, biosorbent dose of 0.05 g/50 mL and 40 degree C temperature. The equilibrium was achieved in 45-90 min. Different kinetic and equilibrium models were applied to the experimental results. The biosorption kinetic data was found to follow the pseudo second order kinetic model. Freundlich adsorption isotherm model showed a better fitness to the equilibrium data. The value of Gibbs free energy revealed that biosorption of Drimarine Yellow HF-3GL dye by native and pretreated sugarcane bagasse was a spontaneous process. Presence of salt and heavy metal ions in aqueous solution enhanced the biosorption capacity while presence of surfactants decreased the biosorption potential of biosorbent. Dye was desorbed by 1M NaOH solution. Fixed bed column study of Drimarine Yellow HF-3GL was carried out to optimize different parameters like bed height, flow rate and initial dye concentration. It was observed that biosorption capacity increases with increase in initial dye concentration and bed height but decreases with the increase in flow rate. The data of column study was explained very well by BDST model. FT-IR analysis confirmed the involvement of various functional groups, mainly hydroxyl, carboxyl and amine groups. The results proved that sugarcane bagasse waste biomass can be used as a favorable biosorbent for the removal of dyes from aqueous solutions. (author)

  20. Jackfruit (Artocarpus heterophyllus lamk) wood waste as a textile natural dye by micowave-assisted extraction method

    Science.gov (United States)

    Qadariyah, Lailatul; Gala, Selfina; Widoretno, Dhaniar Rulandri; Kunhermanti, Delita; Bhuana, Donny S.; Sumarno, Mahfud, Mahfud

    2017-05-01

    The development of technology causes most of textile industries in Indonesia prefer to use synthetic dyes in the fabric dyeing process. In fact, synthetic dyes is able to have negative effect since it is is toxic to the health of workers and environment. To resolve this issues, one way to do is to use natural dyes. One of untapped potential in Indonesia is wood waste of jackfruit from furniture industry. Jackfruit wood itself containing dyestuffs which gives yellow color pigment so that it can be used as an alternative source of natural dyes. The purpose of this research is to study the effect of extraction time, mass to solvent volume ratio, and microwave power to yield of dyes. The extract of dye analyzed by UV-Visible Spectrophotometer and GC-MS, along the coloring and endurance tests of natural dyes on fabric and compare it with synthetic dyes. In this research, material is going to be extracted is the wood of jackfruit (Artocarpus heterophyllus lamk) with material size between 35 mesh - 60 mesh. The extraction process is done by using ethanol 96%. Extraction using MAE is carried out at the ratio of materials to solvent of 0,02-0,1 g/mL, the microwave power of 100-800 Watt, and the extraction time of 10-90 minutes. The conclusion is at microwave power of 400 Watt, material to solvent ratio of the 0,02 g/mL, the yield is 3,39% while at microwave power of 600 Watt, material to solvent ratio of the 0,02 g/mL, the yield is 3,67% with extraction time of 30 minutes. The highest recovery from ethanol 96% solvent is 60,41%. The result of UV-Vis Spectrophotometry and GC-MS test show that there is a chromophore compound in the extract of natural dye. The test results show the natural dyes of jackfruit wood can be used to coloring on the textile because it can gives staining result permanently.

  1. A review on applicability of naturally available adsorbents for the removal of hazardous dyes from aqueous waste.

    Science.gov (United States)

    Sharma, Pankaj; Kaur, Harleen; Sharma, Monika; Sahore, Vishal

    2011-12-01

    The effluent water of many industries, such as textiles, leather, paper, printing, cosmetics, etc., contains large amount of hazardous dyes. There is huge number of treatment processes as well as adsorbent which are available for the processing of this effluent water-containing dye content. The applicability of naturally available low cast and eco-friendly adsorbents, for the removal of hazardous dyes from aqueous waste by adsorption treatment, has been reviewed. In this review paper, we have provided a compiled list of low-cost, easily available, safe to handle, and easy-to-dispose-off adsorbents. These adsorbents have been classified into five different categories on the basis of their state of availability: (1) waste materials from agriculture and industry, (2) fruit waste, (3) plant waste, (4) natural inorganic materials, and (5) bioadsorbents. Some of the treated adsorbents have shown good adsorption capacities for methylene blue, congo red, crystal violet, rhodamine B, basic red, etc., but this adsorption process is highly pH dependent, and the pH of the medium plays an important role in the treatment process. Thus, in this review paper, we have made some efforts to discuss the role of pH in the treatment of wastewater.

  2. Utilization of waste as biogas substrateby dominan microbes identified

    Science.gov (United States)

    Nurlina, E.; Sambasri, S.; Hartati, E.; Safitri, R.; Hodijat, A.

    2018-05-01

    Indonesia as the tropics have a source of biomass feedstock which is very large, so the waste biomass can be used optimally as an energy source in the form of biogas. This study was conducted to obtain alternative energy from domestic waste materials, given the limited availability of petroleum and natural gas sourced from fossil fuels. This methodology is an experimental method, the process conditions at room temperature 25-27 °C, pH adjusted to the growth of microbes to produce biogas, retention time 20-60 days, the bioreactor is operated with a batch system, the volume of waste in the bioreactor is made permanent, so that the production of biogas in large scale will increase the pressure inside the bioreactor. Biogas is formed accommodated then distributed to the stove. Factors that determine the formation of biogas is a microbial species capable methanogens convert acetate into biogas. From the results of microbial identification of the isolates in the bioreactor, has identified three types of bacteria methanogens namely Methanospirillum hungatei, Methanobacterium polustre and Methanolacinapoynteri. The results of this study, domestic waste can be utilized as a substrate in biogas production, with the highest methane composition reaches 50.79%. This result is expected to increase public knowledge to utilize the waste into biogas as a renewable energy to sufficient the energy needs of household, so it does not depend on the energy derived from fossil fuels.

  3. Optimization criteria for low temperature waste heat utilization

    International Nuclear Information System (INIS)

    Kranebitter, F.

    1977-01-01

    A special case in this field is the utilization of very low temperature waste heat. The temperature level under consideration in this paper is in the range between the body temperature of human beings and their environment. The waste heat from power generation and industrial processes is also considered. Thermal energy conversion will be mainly accomplished by heat cycles where discharged waste heat is reverse proportional to the upper cycle temperature. Limiting this upper cycle temperature by technological reasons the optimization of the heat cycle will depend on the nature of the cycle itself and specially on the temperature selected for the heat discharge. The waste heat discharge is typical for the different kinds of heat cycles and the paper presents the four most important of them. Feasible heat transfer methods and their economic evaluations are discussed and the distillation processes will be the basis for further considerations. The waste heat utilization for distillation purposes could be realized by three different cycles, the open cycle, the closed cycle and the multy cycle. Resulting problems as deaeration of large water streams and removal of the dissolved gases and their solutions are also discussed. (M.S.)

  4. Adsorption of dyes by ACs prepared from waste tyre reinforcing fibre. Effect of texture, surface chemistry and pH.

    Science.gov (United States)

    Acevedo, Beatriz; Rocha, Raquel P; Pereira, Manuel F R; Figueiredo, José L; Barriocanal, Carmen

    2015-12-01

    This paper compares the importance of the texture and surface chemistry of waste tyre activated carbons in the adsorption of commercial dyes. The adsorption of two commercial dyes, Basic Astrazon Yellow 7GLL and Reactive Rifafix Red 3BN on activated carbons made up of reinforcing fibres from tyre waste and low-rank bituminous coal was studied. The surface chemistry of activated carbons was modified by means of HCl-HNO3 treatment in order to increase the number of functional groups. Moreover, the influence of the pH on the process was also studied, this factor being of great importance due to the amphoteric characteristics of activated carbons. The activated carbons made with reinforcing fibre and coal had the highest SBET, but the reinforcing fibre activated carbon samples had the highest mesopore volume. The texture of the activated carbons was not modified upon acid oxidation treatment, unlike their surface chemistry which underwent considerable modification. The activated carbons made with a mixture of reinforcing fibre and coal experienced the largest degree of oxidation, and so had more acid surface groups. The adsorption of reactive dye was governed by the mesoporous volume, whilst surface chemistry played only a secondary role. However, the surface chemistry of the activated carbons and dispersive interactions played a key role in the adsorption of the basic dye. The adsorption of the reactive dye was more favored in a solution of pH 2, whereas the basic dye was adsorbed more easily in a solution of pH 12. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. A utility's perspective on the Nuclear Waste Policy Act

    International Nuclear Information System (INIS)

    Berry, W.W.

    1985-01-01

    The Nuclear Waste Policy Act is especially important to utilities because their customers pay for the disposal program, and the program is vital to nuclear operations and reconsideration of the nuclear option. DOE's accomplishments in implementing the Act are noteworthy, but we are concerned that some of them have been achieved later than specified by the schedule in the Act. We make recommendations regarding disposal fees, defense wastes, and shipping casks. Virginia Power has adopted a three-part strategy relying mainly on developing dry cask storage to solve the company's interim storage problems

  6. Utilization of Wastes as an Alternative Energy Source for ...

    African Journals Online (AJOL)

    MBI

    2013-04-19

    Apr 19, 2013 ... converting solid waste to energy source, ranging from very simple systems of ... defined by modern systems of waste management, notably: -. Municipal Waste; Household Waste,. Commercial Waste and Demolition Waste.

  7. Pretreatment and utilization of waste incineration bottom ashes

    DEFF Research Database (Denmark)

    Astrup, Thomas

    2007-01-01

    Within recent years, researchers and authorities have had increasing focus on leaching properties from waste incineration bottom ashes. Researchers have investigated processes such as those related to carbonation, weathering, metal complexation, and leaching control. Most of these investigations......, however, have had a strong emphasis on lab experiments with little focus on full scale bottom ash upgrading methods. The introduction of regulatory limit values restricting leaching from utilized bottom ashes, has created a need for a better understanding of how lab scale experiences can be utilized...

  8. Utilizing waste heat. Energy recovery options for trade and industry

    Energy Technology Data Exchange (ETDEWEB)

    Krieg, W

    1988-08-01

    The article shows options for efficient and low-cost thermal energy recovery. Heat recovery involves a number of problems, e.g. the type of waste heat, the uses of the energy recovered, and the best way of utilizing it. There is no generally applicable way of solving these problems. Some practical examples are presented. Economically efficient solutions require detailed technical knowledge as well as a good portion of creativity and imagination. (BR).

  9. Disposal and utilization of broiler slaughter waste by composting

    Directory of Open Access Journals (Sweden)

    N Bharathy

    2012-12-01

    Full Text Available Aim: To know the feasibility of hygienic and environmentally safe method of disposal of broiler slaughter house waste with coir pith and caged layer manure. Materials and Methods: Compost bins (4 feet x 4 feet x 4 feet were established with concrete blocks with air holes to facilitate aerobic composting. The broiler slaughter waste and coconut coir pith waste were collected from the local market, free of cost. The caged layer manure available from poultry farms were utilized as manure substrate. Physical properties and chemical composition of ingredients were analyzed and a suitable compost recipe was formulated (USDA-NRCS, 2000. Two control bins were maintained simultaneously, using caged layer manure with coir pith waste and water in a ratio of 0.8:3:1.2 (T and another one bin using caged layer manure alone(T . 2 3 Results: At the end of composting, moisture content, weight and the Volume of the compost were reduced significantly (P<0.01, pH, EC, TDS, total organic carbon and total nitrogen content were also significantly (P<0.01 reduced at the finishing of composting. Calcium, phosphorous and potassium content was progressively increased during composting period. The finished compost contains undetectable level of salmonella. Cowpea and sorghum seeds showed positive germination percentage when this finished compost was used. It indicated that all of the finished compost was free from phytotoxin substances. Conclusion: The results indicated that, composting of slaughter waste combined with coir pith waste may be a hygienic and environmentally safe method of disposal of broiler slaughter house waste [Vet. World 2012; 5(6.000: 359-361

  10. The use of waste mussel shells for the adsorption of dyes and heavy metals

    Science.gov (United States)

    Papadimitriou, Chrysi A.; Krey, Grigorios; Stamatis, Nikolaos; Kallaniotis, Argyris

    2016-04-01

    Mussel culture is very important sector of the Greek agricultural economy. The majority of mussel culture activities take place in the area of Central Macedonia, Greece, 60% of total mussel production in Greece producing almost 12 tons of waste mussels shells on a daily basis. Currently there is no legislation concerning the disposal of mussel shells. In the present study the waste shells were used for the removal of dyes and heavy metals from aqueous solutions while powdered mussel shells were added in activated sludge processes for the removal of hexavalent chromium. Mussel shells were cleaned, dried and then crushed in order to form a powder. Powdered mussels shells were used in standard adsorption experiments for the removal of methylene blue and methyl red as well as for the removal of Cr (VI), Cd and Cu. Moreover the powdered mussel shells were added in laboratory scale activated sludge reactors treating synthetic wastewater with hexavalent chromium, in order investigate the effects in activated sludge processes and their potential attribution to the removal of hexavalent chromium. Adsorption experiments indicated almost 100% color removal, while adsorption was directly proportional to the amount of powdered mussel shells added in each case. The isotherms calculated for the case of methylene blue indicated similar adsorption capacity and properties to those of the commercially available activated carbon SAE 2, Norit. High removal efficiencies were observed for the metals, especially in the case of chromium and copper. The addition of powdered mussel shells in the activated sludge processes enhanced the removal of chromium and phosphorus, while enabled the formation of heavier activated sludge flocs and thus enhanced the settling properties of the activated sludge.

  11. Bioadsorption of a reactive dye from aqueous solution by municipal solid waste

    Directory of Open Access Journals (Sweden)

    Abdelkader Berrazoum

    2015-09-01

    Full Text Available The biosorbent was obtained from municipal solid waste (MSW of the Mostaganem city. Before use the MSW was dried in air for three days and washed several times. The sorption of yellow procion reactive dye MX-3R onto biomass from aqueous solution was investigated as function of pH, contact time and temperature. The adsorption capacity of MX-3R was 45.84 mg/g at pH 2–3 and room temperature. MX-3R adsorption decreases with increasing temperature. The Langmuir, Freundlich and Langmuir–Freundlich adsorption models were applied to describe the related isotherms. Langmuir–Freundlich equation has shown the best fitting with the experimental data. The pseudo first-order, pseudo second-order and intra-particle diffusion kinetic models were used to describe the kinetic sorption. The results clearly showed that the adsorption of MX-3R onto biosorbent followed the pseudo second-order model. The enthalpy (ΔH°, entropy (ΔS° and Gibbs free energy (ΔG° changes of adsorption were calculated. The results indicated that the adsorption of MX-3R occurs spontaneously as an exothermic process.

  12. Sea water desalination utilizing waste heat by low temperature evaporation

    International Nuclear Information System (INIS)

    Raha, A.; Srivastava, A.; Rao, I.S.; Majumdar, M.; Srivastava, V.K.; Tewari, P.K.

    2007-01-01

    Economics of a process is controlled by management of energy and resources. Fresh water has become most valued resource in industries. Desalination is a process by which fresh water resource is generated from sea water or brackish water, but it is an energy intensive process. The energy cost contributes around 25-40% to the total cost of the desalted water. Utilization of waste heat from industrial streams is one of the ecofriendly ways to produce low cost desalted water. Keeping this in mind Low Temperature Evaporation (LTE) desalination technology utilizing low quality waste heat in the form of hot water (as low as 50 deg C) or low pressure steam (0.13 bar) has been developed for offshore and land based applications to produce high purity water (conductivity < 2μS/cm) from sea water. The probability of the scale formation is practically eliminated by operating it at low temperature and controlling the brine concentration. It also does not require elaborate chemical pretreatment of sea water except chlorination, so it has no environmental impact. LTE technology has found major applications in nuclear reactors where large quantity of low quality waste heat is available to produce high quality desalted water for make up water requirement replacing conventional ion exchange process. Successful continuous operation of 30 Te/day LTE desalination plant utilizing waste heat from nuclear research reactor has demonstrated the safety, reliability, extreme plant availability and economics of nuclear desalination by LTE technology. It is also proposed to utilize waste heat from Main Heat Transport (MHT) purification circuit of Advanced Heavy Water Reactor (AHWR) to produce about 250 Te/ day high quality desalinated water by Low Temperature Evaporation (LTE) process for the reactor make up and plant utilization. Recently we have commissioned a 50 Te/day 2-effect low temperature desalination plant with cooling tower where the specific energy and cooling water requirement are

  13. Utilization of magnetically responsive cereal by-product for organic dye removal

    Czech Academy of Sciences Publication Activity Database

    Baldíková, Eva; Politi, D.; Maděrová, Zdeňka; Pospíšková, K.; Sidiras, D.; Šafaříková, Miroslava; Šafařík, Ivo

    2016-01-01

    Roč. 96, č. 6 (2016), s. 2204-2214 ISSN 0022-5142 R&D Projects: GA ČR GA13-13709S Grant - others:GA MŠk(CZ) LO1305 Institutional support: RVO:67179843 Keywords : modified rice straw * aqueous-solution * methylene-blue * wheat-straw * activated carbon * cost adsorbents * crystal violet * anionic dyes * adsorption * acid * barley straw * magnetic modification * magnetic adsorbent * microwave-assisted synthesis * organic dyes Subject RIV: GC - Agronomy Impact factor: 2.463, year: 2016

  14. Optimal planning for the sustainable utilization of municipal solid waste

    Energy Technology Data Exchange (ETDEWEB)

    Santibañez-Aguilar, José Ezequiel [Chemical Engineering Department, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán 58060 (Mexico); Ponce-Ortega, José María, E-mail: jmponce@umich.mx [Chemical Engineering Department, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán 58060 (Mexico); Betzabe González-Campos, J. [Institute of Chemical and Biological Researches, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán 58060 (Mexico); Serna-González, Medardo [Chemical Engineering Department, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán 58060 (Mexico); El-Halwagi, Mahmoud M. [Chemical Engineering Department, Texas A and M University, College Station, TX 77843 (United States); Adjunct Faculty at the Chemical and Materials Engineering Department, Faculty of Engineering, King Abdulaziz University, P.O. Box 80204, Jeddah 21589 (Saudi Arabia)

    2013-12-15

    Highlights: • An optimization approach for the sustainable management of municipal solid waste is proposed. • The proposed model optimizes the entire supply chain network of a distributed system. • A case study for the sustainable waste management in the central-west part of Mexico is presented. • Results shows different interesting solutions for the case study presented. - Abstract: The increasing generation of municipal solid waste (MSW) is a major problem particularly for large urban areas with insufficient landfill capacities and inefficient waste management systems. Several options associated to the supply chain for implementing a MSW management system are available, however to determine the optimal solution several technical, economic, environmental and social aspects must be considered. Therefore, this paper proposes a mathematical programming model for the optimal planning of the supply chain associated to the MSW management system to maximize the economic benefit while accounting for technical and environmental issues. The optimization model simultaneously selects the processing technologies and their location, the distribution of wastes from cities as well as the distribution of products to markets. The problem was formulated as a multi-objective mixed-integer linear programing problem to maximize the profit of the supply chain and the amount of recycled wastes, where the results are showed through Pareto curves that tradeoff economic and environmental aspects. The proposed approach is applied to a case study for the west-central part of Mexico to consider the integration of MSW from several cities to yield useful products. The results show that an integrated utilization of MSW can provide economic, environmental and social benefits.

  15. Optimal planning for the sustainable utilization of municipal solid waste

    International Nuclear Information System (INIS)

    Santibañez-Aguilar, José Ezequiel; Ponce-Ortega, José María; Betzabe González-Campos, J.; Serna-González, Medardo; El-Halwagi, Mahmoud M.

    2013-01-01

    Highlights: • An optimization approach for the sustainable management of municipal solid waste is proposed. • The proposed model optimizes the entire supply chain network of a distributed system. • A case study for the sustainable waste management in the central-west part of Mexico is presented. • Results shows different interesting solutions for the case study presented. - Abstract: The increasing generation of municipal solid waste (MSW) is a major problem particularly for large urban areas with insufficient landfill capacities and inefficient waste management systems. Several options associated to the supply chain for implementing a MSW management system are available, however to determine the optimal solution several technical, economic, environmental and social aspects must be considered. Therefore, this paper proposes a mathematical programming model for the optimal planning of the supply chain associated to the MSW management system to maximize the economic benefit while accounting for technical and environmental issues. The optimization model simultaneously selects the processing technologies and their location, the distribution of wastes from cities as well as the distribution of products to markets. The problem was formulated as a multi-objective mixed-integer linear programing problem to maximize the profit of the supply chain and the amount of recycled wastes, where the results are showed through Pareto curves that tradeoff economic and environmental aspects. The proposed approach is applied to a case study for the west-central part of Mexico to consider the integration of MSW from several cities to yield useful products. The results show that an integrated utilization of MSW can provide economic, environmental and social benefits

  16. Textile dyes removal from aqueous solution using Opuntia ficus-indica fruit waste as adsorbent and its characterization.

    Science.gov (United States)

    Peláez-Cid, A A; Velázquez-Ugalde, I; Herrera-González, A M; García-Serrano, J

    2013-11-30

    For this research, three different adsorbents, one untreated and two chemically activated, were prepared from Opuntia ficus-indica fruit waste. By the construction of adsorption isotherms, its adsorption capabilities and the viability of its use in the removal of textile basic and direct type dyes were determined. It was found that the adsorbent with the most adsorption capacity for basic dyes was the one activated with NaClO, and, for direct dyes, it was the one activated with NaOH. Langmuir and Freundlich equations isotherms were applied for the analysis of the experimental data. It was found that the Freundlich model best described the adsorption behavior. The adsorption capacity was improved when the pH of the dye solution had an acid value. The specific surface area of the adsorbents was calculated by means of methylene blue adsorption at 298 K to stay within a range between 348 and 643 m(2) g(-1). The FTIR spectroscopic characterization technique, the SEM, the point of zero charge, and the elemental analysis show the chemical and physical characteristics of the studied adsorbents, which confirm the adsorption results obtained. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Remediation of textile dye waste water using a white-rot fungus Bjerkandera adusta through solid-state fermentation (SSF).

    Science.gov (United States)

    Robinson, Tim; Nigam, Poonam Singh

    2008-12-01

    A strict screening strategy for microorganism selection was followed employing a number of white-rot fungi for the bioremediation of textile effluent, which was generated from one Ireland-based American textile industry. Finally, one fungus Bjerkandera adusta has been investigated in depth for its ability to simultaneously degrade and enrich the nutritional quality of highly coloured textile effluent-adsorbed barley husks through solid-state fermentation (SSF). Certain important parameters such as media requirements, moisture content, protein/biomass production and enzyme activities were examined in detail. A previously optimised method of dye desorption was employed to measure the extent of dye remediation through effluent decolorisation achieved as a result of fungal activity in SSF. B. adusta was capable of decolourising a considerable concentration of the synthetic dye effluent (up to 53%) with a moisture content of 80-85%. Protein enrichment of the fermented mass was achieved to the extent of 229 g/kg dry weight initial substrate used. Lignin peroxidase and laccase were found to be the two main enzymes produced during SSF of the dye-adsorbed lignocellulosic waste residue.

  18. Optimal planning for the sustainable utilization of municipal solid waste.

    Science.gov (United States)

    Santibañez-Aguilar, José Ezequiel; Ponce-Ortega, José María; Betzabe González-Campos, J; Serna-González, Medardo; El-Halwagi, Mahmoud M

    2013-12-01

    The increasing generation of municipal solid waste (MSW) is a major problem particularly for large urban areas with insufficient landfill capacities and inefficient waste management systems. Several options associated to the supply chain for implementing a MSW management system are available, however to determine the optimal solution several technical, economic, environmental and social aspects must be considered. Therefore, this paper proposes a mathematical programming model for the optimal planning of the supply chain associated to the MSW management system to maximize the economic benefit while accounting for technical and environmental issues. The optimization model simultaneously selects the processing technologies and their location, the distribution of wastes from cities as well as the distribution of products to markets. The problem was formulated as a multi-objective mixed-integer linear programing problem to maximize the profit of the supply chain and the amount of recycled wastes, where the results are showed through Pareto curves that tradeoff economic and environmental aspects. The proposed approach is applied to a case study for the west-central part of Mexico to consider the integration of MSW from several cities to yield useful products. The results show that an integrated utilization of MSW can provide economic, environmental and social benefits. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Fabrication of the novel hydrogel based on waste corn stalk for removal of methylene blue dye from aqueous solution

    Science.gov (United States)

    Ma, Dongzhuo; Zhu, Baodong; Cao, Bo; Wang, Jian; Zhang, Jianwei

    2017-11-01

    The novel hydrogel based on waste corn stalk was synthetized by aqueous solution polymerization technique with functional monomers in the presence of organic montmorillonite (OMMT) under ultrasonic. In this study, batch adsorption experiments were carried out to research the effect of initial dye concentration, the dosage of hydrogel, stirring speed, contact time and temperature on the adsorption of methylene blue (MB) dye. The adsorption process was best described by the pseudo-second-order kinetic model, which confirmed that it should be a chemical process. Furthermore, we ascertained the rate controlling step by establishing the intraparticle diffusion model and the liquid film diffusion model. The adsorption and synthesis mechanisms were vividly depicted in our work as well. Structural and morphological characterizations by virtue of FTIR, FESEM, and Biomicroscope supported the relationship between the adsorption performance and material's microstructure. This research is a valuable contribution for the environmental protection, which not only converts waste corn stalks into functional materials, but improves the removal of organic dye from sewage water.

  20. Release of Waste Tire Comprehensive Utilization Industry Access Conditions

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    On July 31, 2012, the Ministry of Industry and Information Technology released the Tire Retread- ing lndustry Access Conditions and Waste Tire Comprehensive Utilization Industry Access Condi- tions with the No. 32 announcement of 2012. The state will lay a foundation for realizing the green, safe, efficient, eco-friendly and energy saving tar- gets in the "12th Five-year Plan" of the industry by raising access conditions, regulating industrial development order, strengthening environmental protection, promoting corporate optimizing and up- grading, improving resources comprehensive utiliza- tion technology and management level and guiding the "harmless recycling and eco-friendly utiliza- tion" of the industry.

  1. Adsorptive removal of dye using biochar derived from residual algae after in-situ transesterification: Alternate use of waste of biodiesel industry.

    Science.gov (United States)

    Nautiyal, Piyushi; Subramanian, K A; Dastidar, M G

    2016-11-01

    The primary aim of this present study was to utilize the residual biomass (DB) of Spirulina platensis algae, left after in-situ transesterification, for biochar preparation. This is a solid waste residue of biodiesel industry. The biochar (BC) prepared was examined for its capacity to adsorb congo red dye from the aqueous solution. The results were compared with other adsorbents used in the study such as commercial activated carbon (AC), original algae biomass (AB) and DB. The results of proximate analysis of BC showed the decrease in the percentage of volatile matter and an increase in fixed carbon content compared to DB. The physico-chemical properties of BC were studied using elemental analysis, SEM, FTIR and XRD techniques. The AC and BC adsorbents showed better performance in removing 85.4% and 82.6% of dye respectively from solution compared to AB (76.6%) and DB (78.1%). The effect of initial dye concentration, adsorbent dosage and pH of solution on the adsorption phenomena was studied by conducting the batch adsorption experiments. The highest specific uptake for biochar was observed at acidic pH of 2 with 0.2 g/100 ml of adsorbent dosage and 90 mg/l of initial concentration. The equilibrium adsorption data were fitted to three isotherms, namely Langmuir, Freundlich and Temkin. Freundlich model proved to show the best suited results with value of correlation coefficient of 99.12%. Thus, the application of DB for production of biochar as potential adsorbent supports sustainability of algae biodiesel. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Utilization of Agricultural Wastes in Stabilization of Landfill Soil

    Directory of Open Access Journals (Sweden)

    Nidzam Rahmat Mohamad

    2014-01-01

    Full Text Available Palm Oil Fuel Ash (POFA and Rice Husk Ash (RHA are local agricultural waste material from Palm Oil Industry and from Paddy Industry in Malaysia. Currently, the disposal of these ashes from a burning process is a problem to both industries, and hence leads to environmental pollution. The main aim of this research was to investigate the potential of utilizing POFA and RHA as sustainable stabilizer material as partial replacement of traditional one which is lime and Portland Cement (PC. Laboratory investigations were carried out to establish the potential utilization of Malaysian Agricultural wastes POFA and RHA in stabilizing Teluk Kapas Landfill soil. Landfill soil on its own and combination with laterite clay soil were stabilized using POFA or RHA either on its own or in combination with Lime or Portland Cement (PC. The traditional stabilizers of lime or Portland Cement (PC were used as controls. Compacted cylinder test specimens were made at typical stabilizer contents and moist cured for up to 60 days prior to testing for compressive and water absorption tests. The results obtained showed that landfill soil combined with laterite clay (50:50 stabilized with 20% RHA:PC (50:50and POFA: PC (50:50 recorded the highest values of compressive strength compared to the other compositions of stabilizers and soils. However, when the amount of POFA and RHA increased in the system the compressive strength values of the samples tends to increase. These results suggest technological, economic as well as environmental advantages of using POFA and RHA and similar industrial by-products to achieve sustainable infrastructure development with near zero industrial waste.

  3. Application of potato (Solanum tuberosum plant wastes for the removal of methylene blue and malachite green dye from aqueous solution

    Directory of Open Access Journals (Sweden)

    Neha Gupta

    2016-09-01

    Full Text Available Dye pollutants from the textile, paper, and leather industries are important sources of environmental contamination. In the present study an agricultural waste from potato plant (potato stem powder, PSP and potato leaves powder, PLP was used as an adsorbent for removal of the methylene blue (MB and malachite green (MG dyes from aqueous solution. The adsorbent materials were characterized by scanning electron microscope (SEM and Fourier transform infrared (FTIR spectroscopy. Batch experiments were performed to investigate the effect of physico-chemical parameters, such as pHpzc, ionic strength, adsorbent dose, contact time, initial dyes concentration and temperature. The kinetics of adsorption was studied by applying the pseudo-first order, pseudo-second order and intraparticle diffusion models. The pseudo-second order model better represented the adsorption kinetics and the mechanism was controlled by surface adsorption and intraparticle diffusion. Equilibrium data were analyzed using Langmuir and Freundlich isotherm models. The thermodynamic parameters such as change in enthalpy (ΔH°, entropy (ΔS° and Gibb’s free energy (ΔG° of adsorption systems were also determined and evaluated.

  4. Light Duty Utility Arm System applications for tank waste remediation

    International Nuclear Information System (INIS)

    Carteret, B.A.

    1994-10-01

    The Light Duty Utility Arm (LDUA) System is being developed by the US Department of Energy's (DOE's) Office of Technology Development (OTD, EM-50) to obtain information about the conditions and contents of the DOE's underground storage tanks. Many of these tanks are deteriorating and contain hazardous, radioactive waste generated over the past 50 years as a result of defense materials production at a member of DOE sites. Stabilization and remediation of these waste tanks is a high priority for the DOE's environmental restoration program. The LDUA System will provide the capability to obtain vital data needed to develop safe and cost-effective tank remediation plans, to respond to ongoing questions about tank integrity and leakage, and to quickly investigate tank events that raise safety concerns. In-tank demonstrations of the LDUA System are planned for three DOE sites in 1996 and 1997: Hanford, Idaho National Engineering Laboratory (INEL), and Oak Ridge National Laboratory (ORNL). This paper provides a general description of the system design and discusses a number of planned applications of this technology to support the DOE's environmental restoration program, as well as potential applications in other areas. Supporting papers by other authors provide additional in-depth technical information on specific areas of the system design

  5. Utilization of waste heat from aluminium electrolytic cell

    Science.gov (United States)

    Nosek, Radovan; Gavlas, Stanislav; Lenhard, Richard; Malcho, Milan; Sedlak, Veroslav; Teie, Sebastian

    2017-12-01

    During the aluminium production, 50% of the supplied energy is consumed by the chemical process, and 50% of the supplied energy is lost in form of heat. Heat losses are necessary to maintain a frozen side ledge to protect the side walls, so extra heat has to be wasted. In order to increase the energy efficiency of the process, it is necessary to significantly lower the heat losses dissipated by the furnace's external surface. Goodtech Recovery Technology (GRT) has developed a technology based on the use of heat pipes for utilization energy from the waste heat produced in the electrolytic process. Construction of condenser plays important role for efficient operation of energy systems. The condensation part of the heat pipe is situated on top of the heating zone. The thermal oil is used as cooling medium in the condenser. This paper analyses the effect of different operation condition of thermal oil to thermal performance. From the collected results it is obvious that the larger mass flow and higher temperature cause better thermal performance and lower pressure drop.

  6. ECOLOGICAL AND TECHNOLOGYCAL ASPECTS OF ASH AND SLAG WASTES UTILIZATION

    Directory of Open Access Journals (Sweden)

    Tatyana Aleksandrova

    2017-07-01

    Full Text Available The article presents the results of investigation focused on the utilization of ash and slag wastes (ASW in Russia including investigation of chemical and physical properties of ASW and processing products. Many factors influence the technological properties of ash and slag materials: naturals, processes and environments. The integrated treatment of ash and slag wastes of both stored and re-formed types will allow obtaining the following commercial products: coal concentrate, iron concentrate, aluminosilicate cenospheres, aluminosilicate product. In this study we have analyzed the methods for separation of ASW iron-containing part using the different types of the magnetic separation from the ash and slag material from one of the combined heat and power plant (CHPP in the Russian Far East Federal District. The greatest interest is the dry magnetic separation with travelling electromagnetic field. The subject of research was a sample taken from one of ash dump of CHPP in the Far East. In the study iron concentrate containing Fetotal = 64% was obtained recovery 68% in the low intensity (up to 5 kOe travelling magnetic field.

  7. The relationship among CPU utilization, temperature, and thermal power for waste heat utilization

    International Nuclear Information System (INIS)

    Haywood, Anna M.; Sherbeck, Jon; Phelan, Patrick; Varsamopoulos, Georgios; Gupta, Sandeep K.S.

    2015-01-01

    Highlights: • This work graphs a triad relationship among CPU utilization, temperature and power. • Using a custom-built cold plate, we were able capture CPU-generated high quality heat. • The work undertakes a radical approach using mineral oil to directly cool CPUs. • We found that it is possible to use CPU waste energy to power an absorption chiller. - Abstract: This work addresses significant datacenter issues of growth in numbers of computer servers and subsequent electricity expenditure by proposing, analyzing and testing a unique idea of recycling the highest quality waste heat generated by datacenter servers. The aim was to provide a renewable and sustainable energy source for use in cooling the datacenter. The work incorporates novel approaches in waste heat usage, graphing CPU temperature, power and utilization simultaneously, and a mineral oil experimental design and implementation. The work presented investigates and illustrates the quantity and quality of heat that can be captured from a variably tasked liquid-cooled microprocessor on a datacenter server blade. It undertakes a radical approach using mineral oil. The trials examine the feasibility of using the thermal energy from a CPU to drive a cooling process. Results indicate that 123 servers encapsulated in mineral oil can power a 10-ton chiller with a design point of 50.2 kW th . Compared with water-cooling experiments, the mineral oil experiment mitigated the temperature drop between the heat source and discharge line by up to 81%. In addition, due to this reduction in temperature drop, the heat quality in the oil discharge line was up to 12.3 °C higher on average than for water-cooled experiments. Furthermore, mineral oil cooling holds the potential to eliminate the 50% cooling expenditure which initially motivated this project

  8. Optimizing Waste Heat Utilization in Vehicle Bio-Methane Plants

    Directory of Open Access Journals (Sweden)

    Feng Zhen

    2018-06-01

    Full Text Available Current vehicle bio-methane plants have drawbacks associated with high energy consumption and low recovery levels of waste heat produced during the gasification process. In this paper, we have optimized the performance of heat exchange networks using pinch analysis and through the introduction of heat pump integration technology. Optimal results for the heat exchange network of a bio-gas system producing 10,000 cubic meters have been calculated using a pinch point temperature of 50 °C, a minimum heating utility load of 234.02 kW and a minimum cooling utility load of 201.25 kW. These optimal parameters are predicted to result in energy savings of 116.08 kW (19.75%, whilst the introduction of new heat pump integration technology would afford further energy savings of 95.55 kW (16.25%. The combined energy saving value of 211.63 kW corresponds to a total energy saving of 36%, with economic analysis revealing that these reforms would give annual savings of 103,300 USD. The installation costs required to introduce these process modifications are predicted to require an initial investment of 423,200 USD, which would take 4.1 years to reach payout time based on predicted annual energy savings.

  9. Process development for the removal and recovery of hazardous dye erythrosine from wastewater by waste materials-Bottom Ash and De-Oiled Soya as adsorbents

    Energy Technology Data Exchange (ETDEWEB)

    Mittal, Alok [Department of Applied Chemistry, Maulana Azad National Institute of Technology, Bhopal 462007 (India)]. E-mail: aljymittal@yahoo.co.in; Mittal, Jyoti [Department of Applied Chemistry, Maulana Azad National Institute of Technology, Bhopal 462007 (India); Kurup, Lisha [Department of Applied Chemistry, Maulana Azad National Institute of Technology, Bhopal 462007 (India); Singh, A.K. [Department of Applied Chemistry, University Institute of Technology, RGPV, Bhopal 462036 (India)

    2006-11-02

    Erythrosine is a water-soluble xanthene class of dye. It is widely used as colorant in foods, textiles, drugs and cosmetics. It is highly toxic, causes various types of allergies, thyroid activities, carcinogenicity, DNA damage behaviour, neurotoxicity and xenoestrogen nature in the humans and animals. The photochemical and biochemical degradation of the erythrosine is not recommended due to formation of toxic by-products. The present paper is an attempt to remove erythrosine from wastewater using adsorption over Bottom Ash-a power plant waste and De-Oiled Soya-an agricultural waste. Under the batch studies, effect of concentration of dye, temperature, pH of the solution, dosage of adsorbents, sieve size of adsorbents, etc., have been studied for the uptake of the dye over both adsorbents. The adsorption process verifies Langmuir and Freundlich adsorption isotherms in both the cases and based on the data different thermodynamic parameters have been evaluated. Batch studies also include kinetic measurements, rate constant study, mass transfer behaviour and establishment of mechanistic pathway for both the cases. For the bulk removal of the dye column operations have been carried out and breakthrough capacities of the Bottom Ash and De-Oiled Soya columns have been calculated. Attempts have also been made for the recovery of the adsorbed dye from exhausted columns by eluting dilute NaOH and more than 90% of the dye was recovered.

  10. Process development for the removal and recovery of hazardous dye erythrosine from wastewater by waste materials-Bottom Ash and De-Oiled Soya as adsorbents

    International Nuclear Information System (INIS)

    Mittal, Alok; Mittal, Jyoti; Kurup, Lisha; Singh, A.K.

    2006-01-01

    Erythrosine is a water-soluble xanthene class of dye. It is widely used as colorant in foods, textiles, drugs and cosmetics. It is highly toxic, causes various types of allergies, thyroid activities, carcinogenicity, DNA damage behaviour, neurotoxicity and xenoestrogen nature in the humans and animals. The photochemical and biochemical degradation of the erythrosine is not recommended due to formation of toxic by-products. The present paper is an attempt to remove erythrosine from wastewater using adsorption over Bottom Ash-a power plant waste and De-Oiled Soya-an agricultural waste. Under the batch studies, effect of concentration of dye, temperature, pH of the solution, dosage of adsorbents, sieve size of adsorbents, etc., have been studied for the uptake of the dye over both adsorbents. The adsorption process verifies Langmuir and Freundlich adsorption isotherms in both the cases and based on the data different thermodynamic parameters have been evaluated. Batch studies also include kinetic measurements, rate constant study, mass transfer behaviour and establishment of mechanistic pathway for both the cases. For the bulk removal of the dye column operations have been carried out and breakthrough capacities of the Bottom Ash and De-Oiled Soya columns have been calculated. Attempts have also been made for the recovery of the adsorbed dye from exhausted columns by eluting dilute NaOH and more than 90% of the dye was recovered

  11. Combination of Asymmetric Supercapacitor Utilizing Activated Carbon and Nickel Oxide with Cobalt Polypyridyl-Based Dye-Sensitized Solar Cell

    International Nuclear Information System (INIS)

    Bagheri, Narjes; Aghaei, Alireza; Ghotbi, Mohammad Yeganeh; Marzbanrad, Ehsan; Vlachopoulos, Nick; Häggman, Leif; Wang, Michael; Boschloo, Gerrit; Hagfeldt, Anders; Skunik-Nuckowska, Magdalena; Kulesza, Pawel J.

    2014-01-01

    Highlights: • Dye Solar Cell and supercapacitor are integrated into a single device capable of generation and storage of energy. • The solar cell part of the device utilizes the Co-based electrolyte and nickel/PEDOT counter electrode. • A cobalt-doped nickel oxide together with activated carbon is used in the capacitor part of the device. • The integrated photocapacitor is characterized by the capacitance of 32 F g −1 and the total efficiency of 0.6%. - Abstract: A dye-sensitized solar cell (DSC) based on the metal-free organic sensitizer and the cobalt (II, III) polypyridyl electrolyte was integrated here within an asymmetric supercapacitor utilizing cobalt-doped nickel oxide and activated carbon as positive and negative electrodes, respectively. A low cost nickel foil served as intermediate (auxiliary) bifunctional electrode separating two parts of the device and permitting the DSC electrolyte regeneration at one side and charge storage within cobalt-doped nickel oxide at the other. The main purpose of the research was to develop an integrated photocapacitor system capable of both energy generation and its further storage. Following irradiation at the 100 mW cm −2 level, the solar cell generated an open-circuit voltage of 0.8 V and short-circuit current of 8 mA cm −2 which corresponds to energy conversion efficiency of 4.9%. It was further shown that upon integration with asymmetric supercapacitor, the photogenerated energy was directly injected into porous charge storage electrodes thus resulting in specific capacitance of 32 F g −1 and energy density of 2.3 Wh kg −1 . The coulumbic and total (energy conversion and charge storage) efficiency of photocapacitor were equal to 54% and 0.6%, respectively

  12. Zinc peroxide nanomaterial as an adsorbent for removal of Congo red dye from waste water.

    Science.gov (United States)

    Chawla, Sneha; Uppal, Himani; Yadav, Mohit; Bahadur, Nupur; Singh, Nahar

    2017-01-01

    In the past decade, various natural byproducts, advanced metal oxide composites and photocatalysts have been reported for removal of dyes from water. Although these materials are useful for select applications, they have some limitations such as use at fixed temperature, ultra violet (UV) light and the need for sophisticated experimental set up. These materials can remove dyes up to a certain extent but require long time. To overcome these limitations, a promising adsorbent zinc peroxide (ZnO 2 ) nanomaterial has been developed for the removal of Congo red (CR) dye from contaminated water. ZnO 2 is highly efficient even in the absence of sunlight to remove CR from contaminated water upto the permissible limits set by the World Health Organization (WHO) and the United States- Environmental Protection Agency (US-EPA). The adsorbent has a specific property to adjust the pH of the test solution within 6.5-7.5 range irrespective of acidic or basic nature of water. The adsorption capacity of the material for CR dye was 208mgg -1 within 10min at 2-10pH range. The proposed material could be useful for the industries involved in water purification. The removal of CR has been confirmed by spectroscopic and microscopic techniques. The adsorption data followed a second order kinetics and Freundlich isotherm. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Determination of natural radionuclide level in industrial waste slags and evaluation of comprehensive utilization

    International Nuclear Information System (INIS)

    Li Ruixiang; Liu Xinhua; Gan Lin

    1994-09-01

    Natural radionuclide contents were measured in various industrial waste slags in China by a low background HPGe γ spectrometer and the radiological impact was estimated for some comprehensive utilization of these slags. Most waste slags can be used for building materials except for tailing and waste rock form nuclear industry

  14. Latest developments in the utilization of coal mining wastes

    Energy Technology Data Exchange (ETDEWEB)

    Canibano, J G [HUNOSA, Oviedo (Spain)

    1996-12-31

    This report summarizes recent studies carried out on coal mining wastes (minestones) of Spain. These studies proved that such wastes can be used as filling materials in reinforced earth structures, capping layers of roads, substratum in hydroponic cultures and fuel.

  15. enhancing pineaple waste utilization as animalfeed through nutrient

    African Journals Online (AJOL)

    Rose

    2013-10-23

    Oct 23, 2013 ... that fermentation of pineapple waste by solid state fermentation using the fungi A. niger and T. viride significantly (P < 0.05) ... The conventional commercial feeds ... waste management, biomass energy conservation and.

  16. The use of an agricultural waste material, Jujuba seeds for the removal of anionic dye (Congo red) from aqueous medium

    International Nuclear Information System (INIS)

    Somasekhara Reddy, M.C.; Sivaramakrishna, L.; Varada Reddy, A.

    2012-01-01

    Highlights: ► We have introduced a low-cost, abundantly locally available non-conventional adsorbent in place of activated carbons. ► The kinetic data were well described by second order kinetic model and intra-particle diffusion model. ► The Langmuir and generalized isotherm models were the best fitting for the isotherm results. ► Removal capacity of Jujuba seeds is more than so many agricultural wastes. ► Relative cost of Jujuba seeds for the removal of Congo red can be compared with activated carbons - Abstract: The feasibility of using Indian Jujuba Seeds (IJS) (Zizyphus maruritiana), abundantly available in and around the Nallamalla forest in Andhra Pradesh, for the anionic dye (Congo red, CR) adsorption from aqueous solution, has been investigated as low cost and eco-friendly adsorbent. Adsorption studies were conducted on a batch process, to study the effects of contact time, initial concentration of CR, pH and temperature. Maximum colour removal was observed at pH 2. The equilibrium data was analyzed by the Langmuir, the Freundlich and the General isotherms. The data fitted well with the Langmuir model, with a maximum adsorption capacity of 55.56 mg g −1 . The pseudo-second-order kinetics was the best for the adsorption of CR, by IJS (Z. maruritiana) with good correlation. Thermodynamic parameters, such as standard free energy change (ΔG°), standard enthalpy change (ΔH°) and standard entropy change (ΔS°), were analyzed. The results suggest that IJS (Z. maruritiana) is a potential low-cost adsorbent for the CR dye removal from synthetic dye wastewater.

  17. Application of ionizing radiation on industry waste treatment I. radiolysis of standard reactive dye Cibacron violet

    International Nuclear Information System (INIS)

    Winarti Andayani; Agustin Sumartono

    1999-01-01

    The effect of aeration, irradiation dose and pH on radiation degradation of reactive dye cibacron violet 2r in aqueous solution have been studied. Observation was done on the absorption spectrum before and after irradiation at various conditions. The percentage of degraded sample was analyzed by using HPLC with UV detector. The percentage of degradation was higher by aeration during irradiation. It suggest that oxygen is important for degradation of the dye molecule. Irradiation at neutral pH is preferred to obtain maximum degradation, since pH may affect the reactivity of the radicals produced by the radiolysis of water molecules. One of the degradation product that could be detected was oxalic acid. (author)

  18. Water hyacinth cellulose-based membrane for adsorption of liquid waste dyes and chromium

    Science.gov (United States)

    Agtasia Putri, Cintia; Yulianti, Ian; Desianna, Ika; Sholihah, Anisa; Sujarwata

    2018-04-01

    Water hyacinth (Eichornia crassipes) is a weed in aquatic area whose trunk contains a lot of cellulose. Cellulose contained can be used as dyes adsorbent in a form of composite membrane. This study aims to investigate the capacity of water hyacinth cellulose-based membrane to adsorb dye and Chromium (Cr) contained in liquid. The process of membrane fabrication begins with isolation of water hyacinth cellulose. The isolated cellulose powder was used to make the membrane by mixing it with polyvinyl alcohol-polyethylene glycol (PVA-PEG) with various compositions. The morphology of membrane surface was analyzed using CCD microscope. The analysis using Ultraviolet Visible Spectroscopy (UV-Vis) and Atomic Absorption Spectroscopy (AAS) indicate that the membrane with composition ratio of cellulose: PVA: PEG of 6.5: 2.5: 1 adsorb Cr up to 38.75%.

  19. Waste hydrogen utilization project receives $12 M in federal support

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2005-10-01

    This article announced that $12.2 million dollars in federal funding support, over a 3 year period, will be made available to Sacre-Davey Innovations to support the development and demonstration of the Integrated Waste Hydrogen Utilization Project (IWHUP). The IWHUP is a clean energy project that will develop and demonstrate the feasibility of using hydrogen generated as a byproduct of a sodium chlorate manufacturing plant in North Vancouver. Greenhouse gas emissions and fossil fuels will be reduced by using purified hydrogen to fuel vehicles. The full hydrogen value chain will also be demonstrated by the IWHUP. This includes the supply, storage, distribution and use of hydrogen. Eight light-duty trucks running on hydrogen will be included in the demonstration, along with 4 public transit buses converted to run on a combination of compressed natural gas and hydrogen, and a fuel cell system operating on hydrogen while providing electrical power to a car wash. The newsletter article discussed the funding leveraged from various sources as well as the names of project participants. The article also mentioned that the IWHUP fuel station in North Vancouver will play a key role in sustainable transportation demonstrations during the 2010 Olympic and Paralympic Winter Games in Vancouver.

  20. Magnetic Solid Phase Extraction and Removal of Five Cationic Dyes from Aqueous Solution Using Magnetite Nanoparticle Loaded Platanusorientalis Waste Leaves

    Directory of Open Access Journals (Sweden)

    Elaheh Madrakian

    2016-12-01

    Full Text Available This paper reports on synthesis of a magnetic adsorbent for wastewater treatment purposes. In this regard, platanus orientalis waste leaves were chosen as a cheap material for preparing the magnetic adsorbent by loading magnetite nanoparticles on it. The synthesized adsorbent was characterized using scanning electron microscope and X-ray diffractometer. Then, it was used for magnetic solid phase extraction and removal of five cationic dyes including methyl violet (MV, methylene blue (MB, malachite green (MG, crystal violet (CV, and neutral red (NR from aqueous solution as a model application. Different important factors affecting the adsorption process were optimized, and the results showed that under the optimized conditions (pH 10 for CV, MV, MB, and MG; pH 6 for NR; adsorbent dosage, 20 mg; agitation time, 25 min efficient removal of the investigated dyes (adsorption capacities between of 89-133 mg g-1 is achievable using the synthesized adsorbent. Furthermore, the reusability experiments showed that the adsorbent could be reused at least ten cycles without any significant loss in its sorption behavior.

  1. Recovery of waste dyes, pesticides and detergents by using hydrogels prepared by gamma irradiation

    International Nuclear Information System (INIS)

    Ibrahim, M.S.; Abde-Aal, S.E.; Nizam El-Din, H.M.M.

    2000-01-01

    Hydrogels have been prepared by irradiation acrylic acid and glycerol using methanol and water as solvents. Another sample was prepared with methanol only. The application of the prepared two hydrogels used for recovery of some reactive, acid and direct dyes and also recovery two different pesticides and detergents from wastewater were studies. The hydrogels complexes with different pollutants have been isolated and methanol and water as solvent during polymerization has great adsorption towards dyes, pesticides and detergents than sample containing methanol only. The adsorption isotherm capacity of the two hydrogels was studies by the effect of temperature (20,30,40 degree C) on the adsorption capacity through the kinetic studies of adsorption. The adsorption capacity increase with rising temperature and thermodynamic parameters δH, δS and δG were determined. Also, the adsorption capacity is considerably affected by ph values (3,7 and 10). It was found that adsorption capacity increases in acid medium and decreases towards the alkaline medium for both dyes and pesticides, while the irreversible results was shown in case of anionic detergents. Frundlich equation of adsorption isotherm was applied in this work

  2. Optimisation of the recovery of carotenoids from tomato processing wastes: application on textile dyeing and assessment of its antioxidant activity.

    Science.gov (United States)

    Baaka, Noureddine; El Ksibi, Imen; Mhenni, Mohamed Farouk

    2017-01-01

    The present study has been focused on the extraction of natural pigments from tomato industry waste. At first, different solvents and solvents mixture were compared to determine which one is the best for extracting carotenoids compounds from tomato by-products. A mixture of hexane and acetone gave the highest carotenoids extraction yield among the others examined. The extraction conditions were optimised using a five-level-five-factor central composite design. Under optimal conditions, solvent solid ratio 90, hexane percentage in the solvent mixture 60, extraction duration 50, number of extractions 4 and extraction temperature 35 °C, the yield of carotenoids was 80.7 μg/g. The coloured extract of tomato by-products was applied on textile fabrics to investigate the dyeing characteristics and antioxidant activities. The results indicate that extract can be applied on textile fabrics (wool, silk and polyamide) to produce coloured clothing with acceptable antioxidant properties.

  3. Biogas plants: Utilization of microorganisms for waste management

    Energy Technology Data Exchange (ETDEWEB)

    Stadlbauer, E A; Trieu, C

    1984-05-01

    The continuous realisation of the basic principles of environmental conservation and compatability demands concern about the problems of eliminating wastes in an industrialised society. Biogas- and therefore technical plants for methane generation by anaerobic fermentation have promoted to effective means of environmental protection and sources of alternate energy from organic wastes. Methane fermentation has been employed for the stabilisation of sludges at municipal waste treatment plants for decades. However, the anaerobic digestion process shows promising applications both for industrial effluents and agricultural wastes as well as municipal solid wastes and covered waste deposits. In view of the advances achieved interdisciplinary cooperation the actual potential and perspective of methane fermentation technology with respect to the solution of the increasing problems of waste management and energy supply is discussed.

  4. Ozonation-based decolorization of food dyes for recovery of fruit leather wastes.

    Science.gov (United States)

    Zhu, Wenda; Koziel, Jacek A; Cai, Lingshuang; Brehm-Stecher, Byron F; Ozsoy, H Duygu; van Leeuwen, J Hans

    2013-08-28

    Commercial manufacture of fruit leathers (FL) usually results in a portion of the product that is out of specification. The disposition of this material poses special challenges in the food industry. Because the material remains edible and contains valuable ingredients (fruit pulp, sugars, acidulates, etc.), an ideal solution would be to recover this material for product rework. A key practical obstacle to such recovery is that compositing of differently colored wastes results in an unsalable gray product. Therefore, a safe and scalable method for decolorization of FL prior to product rework is needed. This research introduces a novel approach utilizing ozonation for color removal. To explore the use of ozonation as a decolorization step, we first applied it to simple solutions of the commonly used food colorants 2-naphthalenesulfonic acid (Red 40), tartrazine (Yellow 5), and erioglaucine (Blue 1). Decolorization was measured by UV/vis spectrometry at visible wavelengths and with a Hunter colorimeter. Volatile and semivolatile byproducts from ozone-based colorant decomposition were identified and quantified with solid phase microextraction coupled with gas chromatography-mass spectrometry (SPME-GC-MS). Removal of Yellow 5, Red 40 and Blue 1 of about 65%, 80%, and 90%, respectively, was accomplished with 70 g of ozone applied per 1 kg of redissolved and resuspended FL. Carbonyl compounds were identified as major byproducts from ozone-induced decomposition of the food colorants. A conservative risk assessment based on quantification results and published toxicity information of potentially toxic byproducts, determined that ozone-based decolorization of FL before recycling is acceptable from a safety standpoint. A preliminary cost estimate based on recycling of 1000 tons of FL annually suggests a potential of $275,000 annual profit from this practice at one production facility alone.

  5. Dyeing of Polyester with Disperse Dyes: Part 2. Synthesis and Dyeing Characteristics of Some Azo Disperse Dyes for Polyester Fabrics

    Directory of Open Access Journals (Sweden)

    Alya M. Al-Etaibi

    2016-06-01

    Full Text Available The goal of this study was to utilize carrier for accelerating the rate of dyeing not only to enhance dyeing of polyester fabrics dyed with disperse dyes 3a,b, but also to save energy. Both the color strength expressed as dye uptake and the fastness properties of the dyed fabrics were evaluated.

  6. Waste printed circuit board recycling techniques and product utilization

    International Nuclear Information System (INIS)

    Hadi, Pejman; Xu, Meng; Lin, Carol S.K.; Hui, Chi-Wai; McKay, Gordon

    2015-01-01

    Highlights: • There is a major environmental issue about the printed circuit boards throughout the world. • Different physical and chemical recycling techniques have been reviewed. • Nonmetallic fraction of PCBs is the unwanted face of this waste stream. • Several applications of the nonmetallic fraction of waste PCBs have been introduced. - Abstract: E-waste, in particular waste PCBs, represents a rapidly growing disposal problem worldwide. The vast diversity of highly toxic materials for landfill disposal and the potential of heavy metal vapors and brominated dioxin emissions in the case of incineration render these two waste management technologies inappropriate. Also, the shipment of these toxic wastes to certain areas of the world for eco-unfriendly “recycling” has recently generated a major public outcry. Consequently, waste PCB recycling should be adopted by the environmental communities as an ultimate goal. This article reviews the recent trends and developments in PCB waste recycling techniques, including both physical and chemical recycling. It is concluded that the physical recycling techniques, which efficiently separate the metallic and nonmetallic fractions of waste PCBs, offer the most promising gateways for the environmentally-benign recycling of this waste. Moreover, although the reclaimed metallic fraction has gained more attention due to its high value, the application of the nonmetallic fraction has been neglected in most cases. Hence, several proposed applications of this fraction have been comprehensively examined

  7. Waste printed circuit board recycling techniques and product utilization

    Energy Technology Data Exchange (ETDEWEB)

    Hadi, Pejman; Xu, Meng [Chemical and Biomolecular Engineering Department, Hong Kong University of Science and Technology, Clear Water Bay Road, Hong Kong Special Administrative Region (Hong Kong); Lin, Carol S.K. [School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region (Hong Kong); Hui, Chi-Wai [Chemical and Biomolecular Engineering Department, Hong Kong University of Science and Technology, Clear Water Bay Road, Hong Kong Special Administrative Region (Hong Kong); McKay, Gordon, E-mail: kemckayg@ust.hk [Chemical and Biomolecular Engineering Department, Hong Kong University of Science and Technology, Clear Water Bay Road, Hong Kong Special Administrative Region (Hong Kong); Division of Sustainable Development, College of Science, Engineering and Technology, Hamad Bin Khalifa University, Qatar Foundation, Doha (Qatar)

    2015-02-11

    Highlights: • There is a major environmental issue about the printed circuit boards throughout the world. • Different physical and chemical recycling techniques have been reviewed. • Nonmetallic fraction of PCBs is the unwanted face of this waste stream. • Several applications of the nonmetallic fraction of waste PCBs have been introduced. - Abstract: E-waste, in particular waste PCBs, represents a rapidly growing disposal problem worldwide. The vast diversity of highly toxic materials for landfill disposal and the potential of heavy metal vapors and brominated dioxin emissions in the case of incineration render these two waste management technologies inappropriate. Also, the shipment of these toxic wastes to certain areas of the world for eco-unfriendly “recycling” has recently generated a major public outcry. Consequently, waste PCB recycling should be adopted by the environmental communities as an ultimate goal. This article reviews the recent trends and developments in PCB waste recycling techniques, including both physical and chemical recycling. It is concluded that the physical recycling techniques, which efficiently separate the metallic and nonmetallic fractions of waste PCBs, offer the most promising gateways for the environmentally-benign recycling of this waste. Moreover, although the reclaimed metallic fraction has gained more attention due to its high value, the application of the nonmetallic fraction has been neglected in most cases. Hence, several proposed applications of this fraction have been comprehensively examined.

  8. Utilization of crushed radioactive concrete for mortar to fill waste container void space

    International Nuclear Information System (INIS)

    Ishikura, Takeshi; Ohnishi, Kazuhiko; Oguri, Daiichiro; Ueki, Hiroyuki

    2004-01-01

    Minimizing the volume of radioactive waste generated during dismantling of nuclear power plants is a matter of great importance. In Japan waste forms buried in a shallow burial disposal facility as low level radioactive waste must be solidified by cement or other materials with adequate strength and must provide no harmful opening. The authors have developed an improved method to minimize radioactive waste volume by utilizing radioactive concrete for fine aggregate for mortars to fill void space in waste containers. Tests were performed with pre-placed concrete waste and with filling mortar using recycled fine aggregate produced from concrete. It was estimated that the improved method substantially increases the waste fill ratio in waste containers, thereby decreasing the total volume of disposal waste. (author)

  9. Hole Burning Imaging Studies of Cancerous and Analogous Normal Ovarian Tissues Utilizing Organelle Specific Dyes

    Energy Technology Data Exchange (ETDEWEB)

    Matsuzaki, Satoshi [Iowa State Univ., Ames, IA (United States)

    2004-01-01

    Presented in this dissertation is the successful demonstration that nonphotochemical hole burning (NPWB) imaging can be used to study in vitro tissue cellular systems for discerning differences in cellular ultrastructures due to cancer development. This has been accomplished with the surgically removed cancerous ovarian and analogous normal peritoneal tissues from the same patient and the application of a fluorescent mitochondrion specific dye, Molecular Probe MitoFluor Far Red 680 (MF680), commonly known as rhodamine 800, that has been proven to exhibit efficient NPHB. From the results presented in Chapters 4 and 5 , and Appendix B, the following conclusions were made: (1) fluorescence excitation spectra of MF680 and confocal microscopy images of thin sliced tissues incubated with MF680 confirm the site-specificity of the probe molecules in the cellular systems. (2) Tunneling parameters, {lambda}{sub 0} and σΛ, as well as the standard hole burning parameters (namely, γ and S), have been determined for the tissue samples by hole growth kinetics (HGK) analyses. Unlike the preliminary cultured cell studies, these parameters have not shown the ability to distinguish tissue cellular matrices surrounding the chromophores. (3) Effects of an external electric (Stark) field on the nonphotochemical holes have been used to determine the changes in permanent dipole moment (fΔμ) for MF680 in tissue samples when burn laser polarization is parallel to the Stark field. Differences are detected between fΔμs in the two tissue samples, with the cancerous tissue exhibiting a more pronounced change (1.35-fold increase) in permanent dipole moment change relative to the normal analogs. It is speculated that the difference may be related to differences in mitochondrial membrane potentials in these tissue samples. (4) In the HGK mode, hole burning imaging (HBI) of cells adhered to coverslips and cooled to liquid helium temperatures in the complete absence of

  10. Nuclear waste disposal utilizing a gaseous core reactor

    Science.gov (United States)

    Paternoster, R. R.

    1975-01-01

    The feasibility of a gaseous core nuclear reactor designed to produce power to also reduce the national inventories of long-lived reactor waste products through nuclear transmutation was examined. Neutron-induced transmutation of radioactive wastes is shown to be an effective means of shortening the apparent half life.

  11. Utilization of Wastes as an Alternative Energy Source for ...

    African Journals Online (AJOL)

    To meet the rising demand for energy and to address environmental concerns, a conversion from conventional energy systems to renewable resources is essential. For the sustainability of human civilization, an environmentally techno – economically feasible waste treatment method is very important to treat waste. Several ...

  12. WATERLESS DYEING [REVIEW

    Directory of Open Access Journals (Sweden)

    DEVRENT Nalan

    2015-05-01

    Full Text Available The textile industry is believed to be one of the biggest consumers of water. Water consumption and exhaustion in dyeing textile materials in conventional methods is an important environmental problem. The cost of waste water treatment will cause a prominent problem in the future as it does today. Increasing consideration of ecologic consequences of industrial processes as well as legislation enforcing the avoidance of environmental problems have caused a reorientation of thinking and promoted projects for replacement of conventional technologies. One of these new technologies is dyeing in supercritical fluids. Dyeing with supercritical carbon dioxide is a favourable concept considering the value of water as a natural resource and the cost of waste water treatment. This dyeing method offers many advantages over conventional aqueous dyeing: During this dyeing process no water is used, therefore there is no waste water problem, no other chemicals are required; the carbon dioxide can be recycled; the dystuff which is not adsorbed on the substrate can be collected and reused; The necessary energy consumption in this process is relatively lower than is needed to heat water in conventional methods of dyeing. Due to unnecessary of drying process, it helps to save both energy and time; and dyeing cycle is shorter compared with traditional methods. In addition carbon dioxide is non-toxic and non-flammable. Supercritical fluid, supercritical dyeing, disperse dyestuffs, solid-fluid equilibrium

  13. Utilization of Aluminum Waste with Hydrogen and Heat Generation

    Science.gov (United States)

    Buryakovskaya, O. A.; Meshkov, E. A.; Vlaskin, M. S.; Shkolnokov, E. I.; Zhuk, A. Z.

    2017-10-01

    A concept of energy generation via hydrogen and heat production from aluminum containing wastes is proposed. The hydrogen obtained by oxidation reaction between aluminum waste and aqueous solutions can be supplied to fuel cells and/or infrared heaters for electricity or heat generation in the region of waste recycling. The heat released during the reaction also can be effectively used. The proposed method of aluminum waste recycling may represent a promising and cost-effective solution in cases when waste transportation to recycling plants involves significant financial losses (e.g. remote areas). Experiments with mechanically dispersed aluminum cans demonstrated that the reaction rate in alkaline solution is high enough for practical use of the oxidation process. In theexperiments aluminum oxidation proceeds without any additional aluminum activation.

  14. An overview on characterization, utilization and leachate analysis of biomedical waste incinerator ash.

    Science.gov (United States)

    Rajor, Anita; Xaxa, Monika; Mehta, Ratika; Kunal

    2012-10-15

    Solid waste management is one of the major global environmental issues, as there is continuous increase in industrial globalization and generation of waste. Solid wastes encompass the heterogeneous mass of throwaways from the urban community as well as the homogeneous accumulations of agricultural, industrial and mineral wastes. Biomedical waste pose a significant impact on health and environment. A proper waste management system should be required to dispose hazardous biomedical waste and incineration should be the best available technology to reduce the volume of this hazardous waste. The incineration process destroys pathogens and reduces the waste volume and weight but leaves a solid material called biomedical waste ash as residue which increases the levels of heavy metals, inorganic salts and organic compounds in the environment. Disposal of biomedical waste ash in landfill may cause contamination of groundwater as metals are not destroyed during incineration. The limited space and the high cost for land disposal led to the development of recycling technologies and the reuse of ash in different systems. In order to minimize leaching of its hazardous components into the environment several studies confirmed the successful utilization of biomedical waste ash in agriculture and construction sector. This paper presents the overview on the beneficial use of ash in agriculture and construction materials and its leachate characteristics. This review also stressed on the need to further evaluate the leachate studies of the ashes and slag for their proper disposal and utilization. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Amputation of congo red dye from waste water using microwave induced grafted Luffa cylindrica cellulosic fiber.

    Science.gov (United States)

    Gupta, Vinod Kumar; Pathania, Deepak; Agarwal, Shilpi; Sharma, Shikha

    2014-10-13

    The present study deals with the surface modification of Luffa cylindrica fiber through graft copolymerization of methyl acrylate/acrylamide (MA/AAm) via microwave radiation without the use of initiator. Various reaction parameters effecting grafting yield were optimized and physico-chemical properties were evaluated. The grafted Luffa cylindrica fiber showed morphological transformations, thermal stability and chemical resistance. The adsorption potential of modified fiber was investigated using adsorption isotherms for hazardous congo red dye removal from aqueous system. The maximum adsorption capacity of dye onto grafted Luffa cylindrica fiber was found to be 17.39 mg/g with best fit for Langmuir adsorption isotherm. The values of thermodynamic parameters such as enthalpy change, ΔH(0) (21.27 kJ/mol), entropy change, ΔS(0) (64.71 J/mol K) and free energy change, ΔG(0) (-139.52 kJ/mol) were also calculated. Adsorption process was found spontaneous and endothermic in nature. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Outline of a multiattribute utility approach to development of a waste management strategy at Sillamaee

    International Nuclear Information System (INIS)

    Anselmo, P.C.

    2000-01-01

    The article briefly discusses a framework for analysis of the waste disposition and management problem at Sillamaee. It is a response to the need to develop a strategic waste management plan for the Sillamaee site. A hypothetical objectives hierarchy is presented, along with two possible methods for aggregating scores for designated alternatives. Waste management and disposal problems, particularly nuclear waste disposal problems, have been addressed by many decision analysts. The latter citations are examples of Multiattribute Utility (MAU) Analysis, a decision analysis technique that is most appropriate for evaluation of waste management strategies at Sillamaee

  17. PEA PEEL WASTE: A LIGNOCELLULOSIC WASTE AND ITS UTILITY IN CELLULASE PRODUCTION BY Trichoderma reesei UNDER SOLID STATE CULTIVATION

    Directory of Open Access Journals (Sweden)

    Nitin Verma

    2011-03-01

    Full Text Available A wide variety of waste bioresources are available on our planet for conversion into bioproducts. In the biological systems, microorganisms are used to utilize waste as an energy source for the synthesis of valuable products such as biomass proteins and enzymes. The large quantities of byproducts generated during the processing of plant food involve an economic and environmental problem due to their high volumes and elimination costs. After isolation of the main constituent, there are abundant remains which represent an inexpensive material that has been undervalued until now. Pea peel waste is one of the undervalued, unused sources of energy that can serve as a potential source for cellulase production. Batch experiments have been performed, using pea peel waste as a carbon source for cellulase production under solid state cultivation by Trichoderma reesei. It was observed that 30 oC temperature and pH 5.0 are the most favorable conditions for cellulase production by T. reesei. FPase activity significantly increases by incorporation of whey as well as wheat starch hydrolysate in the basal salt media used in the production study. The present study describes the utility of pea peel waste, whey as well as wheat starch hydrolysate in cellulase production by T. reesei. The utilization of economically cheap, pea peel waste for cellulase production could be a novel, cost effective, and valuable approach in cellulase production as well as in solid waste management.

  18. UTILIZATION OF WASTE PLASTIC BOTTLES IN ASPHALT MIXTURE

    Directory of Open Access Journals (Sweden)

    TAHER BAGHAEE MOGHADDAM

    2013-06-01

    Full Text Available Nowadays, large amounts of waste materials are being produced in the world. One of the waste materials is plastic bottle. Generating disposable plastic bottles is becoming a major problem in many countries. Using waste plastic as a secondary material in construction projects would be a solution to overcome the crisis of producing large amount of waste plastics in one hand and improving the structure’s characteristics such as resistance against cracking on the other hand. This study aimed to investigate the effects of adding plastic bottles in road pavement. Marshall properties as well as specific gravity of asphalt mixture containing different percentages of plastic bottles were evaluated. Besides, Optimum Asphalt Content (OAC was calculated for each percentages of plastic bottles used in the mix. The stiffness and fatigue characteristics of mixture were assessed at OAC value. Results showed that the stability and flow values of asphalt mixture increased by adding waste crushed plastic bottle into the asphalt mixture. Further, it was shown that the bulk specific gravity and stiffness of mixtures increased by adding lower amount of plastic bottles; however, adding higher amounts of plastic resulted in lower specific gravity and mix stiffness. In addition, it was concluded that the mixtures containing waste plastic bottles have lower OAC values compared to the conventional mixture, and this may reduce the amount of asphalt binder can be used in road construction projects. Besides, the mixtures containing waste plastic showed significantly greater fatigue resistance than the conventional mixture.

  19. Utilization of cocoa pod husk waste as potential adsorbents for Remazol Brilliant Violet 5R removal

    International Nuclear Information System (INIS)

    Tan Tong Siang; Mohd Azmier Ahmad

    2010-01-01

    Removal of Remazol Brilliant Violet 5R (RBV5R) dye from aqueous solution by adsorption onto activated carbon produced from cocoa pod husk (CPH) waste was investigated. Adsorption isotherms were derived at 30 degree Celsius on the basis of batch analysis. Isotherm data were treated according to Langmuir and Freundlich models. Kinetics of adsorption was followed by in situ UV-spectroscopy and the data were treated according to pseudo-first-order and pseudo-second-order models. The fits of experimental data to these equations were examined. It was found that the adsorption process by RVB5R dye onto activated carbon (AC) follows the Freundlich and pseudo-first-order model. (author)

  20. Utilization of crop residue and animal wastes among agropastoral ...

    African Journals Online (AJOL)

    Journal Home > Vol 7 (2009) > ... Quantitative data collection method was used with the aid of a well structured questionnaire with both open and close ended ... But their wives and children used chicken waste as manure on vegetable farms.

  1. Utilization of ash from municipal solid waste combustion

    Energy Technology Data Exchange (ETDEWEB)

    Jones, C.; Hahn, J.; Magee, B.; Yuen, N.; Sandefur, K.; Tom, J.; Yap, C.

    1999-09-01

    This ash study investigated the beneficial use of municipal waste combustion combined ash from the H-POWER facility in Oahu. These uses were grouped into intermediate cover for final closure of the Waipahu landfill, daily cover at the Waimanalo Gulch Landfill, and partial replacement for aggregate in asphalt for road paving. All proposed uses examine combined fly and bottom ash from a modern waste-to-energy facility that meets requirements of the Clean Air Act Amendments for Maximum Achievable Control Technology.

  2. A comparative investigation on adsorption performances of mesoporous activated carbon prepared from waste rubber tire and activated carbon for a hazardous azo dye-Acid Blue 113

    International Nuclear Information System (INIS)

    Gupta, V.K.; Gupta, Bina; Rastogi, Arshi; Agarwal, Shilpi; Nayak, Arunima

    2011-01-01

    Research highlights: → The system is cheap, efficient and fast for the removal of dyes from waters. → Higher adsorption capacity is due to higher mesoporous volume of the adsorbent. → The rate determining step of the adsorption process is particle diffusion. - Abstract: A mesoporous carbon developed from waste tire rubber, characterized by chemical analysis, FTIR, and SEM studies, was used as an adsorbent for the removal and recovery of a hazardous azo dye, Acid Blue 113. Surface area, porosity, and density were determined. The adsorption of the dye over the prepared adsorbent and a commercial activated carbon was achieved under different pH, adsorbate concentration, sieve size, adsorbent dosage, contact time and temperature conditions. Langmuir and Freundlich adsorption isotherm models were applied and thermodynamic parameters were calculated. Kinetic studies indicated that the adsorption process follow first order kinetics and particle diffusion mechanisms are operative. By percolating the dye solution through fixed-bed columns the bulk removal of the Acid Blue 113 was carried out and necessary parameters were determined to find out the percentage saturation of both the columns. Recovery of the dye was made by eluting 0.1 M NaOH through the column.

  3. Recycling of agricultural solid waste, coir pith: Removal of anions, heavy metals, organics and dyes from water by adsorption onto ZnCl2 activated coir pith carbon

    International Nuclear Information System (INIS)

    Namasivayam, C.; Sangeetha, D.

    2006-01-01

    The abundant lignocellulosic agricultural waste, coir pith is used to develop ZnCl 2 activated carbon and applied to the removal of toxic anions, heavy metals, organic compounds and dyes from water. Sorption of inorganic anions such as nitrate, thiocyanate, selenite, chromium(VI), vanadium(V), sulfate, molybdate, phosphate and heavy metals such as nickel(II) and mercury(II) has been studied. Removal of organics such as resorcinol, 4-nitrophenol, catechol, bisphenol A, 2-aminophenol, quinol, O-cresol, phenol and 2-chlorophenol has also been investigated. Uptake of acidic dyes such as acid brilliant blue, acid violet, basic dyes such as methylene blue, rhodamine B, direct dyes such as direct red 12B, congo red and reactive dyes such as procion red, procion orange were also examined to assess the possible use of the adsorbent for the treatment of contaminated ground water. Favorable conditions for maximum removal of all adsorbates at the adsorbate concentration of 20 mg/L were used. Results show that ZnCl 2 activated coir pith carbon is effective for the removal of toxic pollutants from water

  4. MERCURY CONTROL IN MUNICIPAL WASTE COMBUSTORS AND COAL-FIRED UTILITIES

    Science.gov (United States)

    Control of mercury (Hg) emissions from municipal waste combustors (MWCs) and coal-fired utilities has attracted attention due to current and potential regulations. Among several techniques evaluated for Hg control, dry sorbent injection (primarily injection of activated carbon) h...

  5. A study on the utilization of chromic oxide wastes

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Seung Woong; Kim, Chi Kwon; Hwang, Seon Kook; Kim, Byung Gyu; Son, Jeong Soo; Nam, Chul Woo [Korea Inst. of Geology Mining and Materials, Taejon (Korea, Republic of)

    1995-12-01

    This study was carried out to develop the optimum process for recovering precious and valuable metals from chrome oxide wastes. The following subjects such as, (1) feasibility on the recovery of precious and valuable metals, (2) recovery rate of precious and valuable metals, (3) purification of extracted precious and valuable metals, and (4) environmental aspects of recovery process, were investigated and the main results are as follows. (1) With Sem analysis of chrome oxide wastes, it was found that combustion process for eliminating oil and water in wastes, was necessary. (2) After leaching chrome oxide wastes with nitric acid and aqua regia, silver and gold were effectively separated and recovered. But a lot of silver and gold were remaining in the leaching residue. It was considered that chrome oxide powder was coated with organic materials during polishing stage and their products were insoluble in acidic solution. (3) The optimum process for separation and recovery of precious metal and production of new chrome oxide is consist of several process such as perchloric acid leaching, recovery of silver chloride, cementation for gold, reduction of chrome ion, and production of pure chrome oxide. (4) For separating chrome compound from the chrome oxide waste occurred in stainless steel polishing process, alkali roasting process was suggested. (author). 18 refs., 29 figs., 11 tabs.

  6. The waste-to-energy framework for integrated multi-waste utilization: Waste cooking oil, waste lubricating oil, and waste plastics

    Energy Technology Data Exchange (ETDEWEB)

    Singhabhandhu, Ampaitepin; Tezuka, Tetsuo [Energy Economics Laboratory, Department of Socio-Environmental Energy Science, Graduate School of Energy Science, Kyoto University, Yoshida-honmachi, Sakyo-ku, Kyoto 606-8501 (Japan)

    2010-06-15

    Energy generation by wastes is considered one method of waste management that has the benefit of energy recovery. From the waste-to-energy point of view, waste cooking oil, waste lubricating oil, and waste plastics have been considered good candidates for feedstocks for energy conversion due to their high heating values. Compared to the independent management of these three wastes, the idea of co-processing them in integration is expected to gain more benefit. The economies of scale and the synergy of co-processing these wastes results in higher quality and higher yield of the end products. In this study, we use cost-benefit analysis to evaluate the integrated management scenario of collecting the three wastes and converting them to energy. We report the total heat of combustion of pyrolytic oil at the maximum and minimum conversion rates, and conduct a sensitivity analysis in which the parameters of an increase of the electricity cost for operating the process and increase of the feedstock transportation cost are tested. We evaluate the effects of economy of scale in the case of integrated waste management. We compare four cases of waste-to-energy conversion with the business as usual (BAU) scenario, and our results show that the integrated co-processing of waste cooking oil, waste lubricating oil, and waste plastics is the most profitable from the viewpoints of energy yield and economics. (author)

  7. Preparation of dye waste-barium sulfate hybrid adsorbent and application in organic wastewater treatment.

    Science.gov (United States)

    Hu, Zhang-Jun; Xiao, Yan; Zhao, Dan-Hua; Shen, Yu-Lin; Gao, Hong-Wen

    2010-03-15

    A new hybrid material was developed by the template-free hybridization of weak acidic pink red B (APRB, C.I. 18073) with BaSO(4). The composition and structure of the material were determined and characterized. In contrast to conventional sorbents, the hybrid material has a specific surface area of 0.89 m(2)/g, but it contains lots of negative charges and lipophilic groups as the basis of specific adsorption. The efficient removal of cationic dyes and persistent organic pollutants (POPs) indicates that it has an improved adsorption capacity and selectivity with a short removal time less than 2 min; while the hybrid sorbents fit the Langmuir isotherm model, and follow the octanol-water partition law. Instead of using APRB reagent, an APRB-producing wastewater was reused to prepare the cost-effective sorbent, and the equilibrium adsorption capacities of which reached 222 and 160 mg/g for EV and BPR, respectively. The sorbents was then used to treat three wastewater samples with satisfactory results of over 97% decolonization and 88% COD-decreasing. In addition, the hybrid sorbent was regenerated from sludge over five cycles, and its adsorption capacity was not appreciably changed. This work has developed a simple and eco-friendly method for synthesizing a practical and efficient sorbent. (c) 2009 Elsevier B.V. All rights reserved.

  8. Pyrolysis of chromium rich tanning industrial wastes and utilization of carbonized wastes in metallurgical process.

    Science.gov (United States)

    Tôrres Filho, Artur; Lange, Liséte Celina; de Melo, Gilberto Caldeira Bandeira; Praes, Gustavo Eduardo

    2016-02-01

    Pyrolysis is the thermal degradation of organic material in oxygen-free or very lean oxygen atmosphere. This study evaluates the use of pyrolysis for conversion of leather wastes from chromium tanning processes into Carbonized Leather Residues (CLR), and the utilization of CLR in metallurgical processes through the production of iron ore pellets. CLR was used to replace mineral coal in proportions of 10% and 25% on fixed carbon basis content in the mixtures for pellets preparation. Experimental conversions were performed on a pilot scale pyrolysis plant and a pelletizing reactor of the "pot grate" type. The results demonstrated the technical feasibility of using the charcoal product from animal origin as an energy source, with recovery of up to 76.47% of chromium contained in CLR in the final produced of iron ore pellets. Pellets with 25% replacement of fixed carbon in the coal showed an enhanced compressive strength, with an average value of 344kgfpellet(-1), compared to 300kgfpellet(-1) for standard produced pellets. Copyright © 2015. Published by Elsevier Ltd.

  9. Utilization of waste glass in translucent and photocatalytic concrete

    NARCIS (Netherlands)

    Spiesz, P.; Rouvas, S.; Brouwers, H.J.H.

    2016-01-01

    Abstract This article addresses the development of a translucent and air purifying concrete containing waste glass. The concrete composition was optimized applying the modified Andreasen & Andersen model to obtain a densely packed system of granular ingredients. Both untreated (unwashed) and washed

  10. Utilization of borosilicate glass for transuranic waste immobilization

    International Nuclear Information System (INIS)

    Ledford, J.A.; Williams, P.M.

    1979-01-01

    Incinerated transuranic waste and other low-level residues have been successfully vitrified by mixing with boric acid and sodium carbonate and heating to 1050 0 C in a bench-scale continuous melter. The resulting borosilicate glass demonstrates excellent mechanical durability and chemical stability

  11. Utilization of waste tire rubber in manufacture of oriented strandboard.

    Science.gov (United States)

    Ayrilmis, Nadir; Buyuksari, Umit; Avci, Erkan

    2009-09-01

    Some physical and mechanical properties of oriented strandboards (OSBs) containing waste tire rubber at various addition levels based on the oven-dry strand weight, using the same method as that used in the manufacture of OSB. Two resin types, phenol-formaldehyde (PF) and polyisocyanate, were used in the experiments. The manufacturing parameters were: a specific gravity of 0.65 and waste tire rubber content (10/90, 20/80 and 30/70 by wt.% of waste tire rubber/wood strand). Average internal bond values of PF-bonded OSB panels with rubber chips were between 17.6% and 48.5% lower than the average of the control samples while polyisocyanate bonded OSBs were 16.5-50.6%. However, water resistance and mechanical properties of OSBs made using polyisocyanate resin were found to comply with general-purpose OSB minimum property requirements of EN 300 Type 1 (1997) values for use in dry conditions at the lowest tire rubber loading level (10%) based on the oven-dry panel weight. The tire rubber improved water resistance of the OSB panel due to its almost hydrophobic property. Based on the findings obtained from this study, we concluded that waste tire rubber could be used for general-purpose OSB manufacturing up to 10% ratio based on the oven-dry panel weight.

  12. Practice of the utilization of biomass from waste materials; Praxis der Verwertung von Biomasse aus Abfaellen

    Energy Technology Data Exchange (ETDEWEB)

    Wiemer, Klaus; Kern, Michael; Raussen, Thomas (eds.)

    2010-07-01

    Within the 4th Witzenhaeuser Biomass Conference from 10th to 11th November, 2010, in Witzenhausen (Federal Republic of Germany) the following lectures were held: (1) Consequences of the amendment of the law of life-cycle management and biological waste regulations for the practice of acquisition and utilization of biological wastes (Claus-Gerhard Bergs); (2) An eco-efficient handling with biological wastes and composting wastes (Siegfried Kreibe); (3) Perspectives of the biological waste management (Michael Kern); (4) Assessment of waste biogas plants by environmental verifiers - implementation of the EEG novella (Michael Hub); (5) Fermentation of biogenic residuals - State of the art and perspectives (David Wilken); (6) Energy from cultivation masses and waste biomasses - Perspectives for Europe (Katja Bunzel); (7) Optimization of a biogas plant in practical operation (Michael Buchheit); (8) Odour situation and germ situation before and after an integration of a biogas plant in a composite system (Juergen Roth); (9) Aspects of immission protection rights according to the requirements on the permission and operation of biogas plants (Norbert Suritsch); (10) Actual veterinary regulatory, fertilizer regulatory and waste regulatory requirements on the treatment and utilization of fermentation products (Andreas Kirsch); (11) Utilization of fermentation residues from biological waste: Basic conditions and technology of processing (Thomas Raussen); (12) Practical experiences and new developments using selected examples: Pohlsche Heide, Baar (Switzerland) and Cesena (Italy) (Peter Lutz); (13) New facility concepts of dry fermentation in Lohfelden and Uelzen (Gunnar Ziehmann); (14) New facility concepts of plug flow fermentation (Michael Oertig); (15) Further development of the KOMPOFERM {sup registered} systems (Sandra Striewski); (16) Optimization of the gas yield and reduction of disruptive substances in the processing of biological wastes for the wet fermentation

  13. Research of environmentally-friendly utilization methods of the crushed stone waste on granite quarries

    Directory of Open Access Journals (Sweden)

    Levytskyi V.G.

    2017-12-01

    Full Text Available The analysis of activity of stone-mining enterprises shows the low competitiveness of crushed stone products Upgrading the quality of crushed stone and production of the European standard fractions requires to use of new technologies and equipment. The main waste of crushed stone pits is сrushed granite waste, which high percent of an exit is caused by outdated equipment and incorrectly selected technological parameters of the crushing process. Crushed-granite waste is stored in dumps which occupy large areas and negatively effect on production area ecology. In November 2017, the Government of Ukraine accepted the National Waste Management Strategy until 2030, the main aim of it is develop a strategy of the mineral raw materials balanced use and international standards introduction at the national level. Therefore, the problem of complex utilization and recycling of waste from stone-mining enterprises with receiving a qualitative secondary product is relevant. The publication presents the сrushed granite waste volumes by crushed stone pit, its properties and main directions of utilization. The ecological influence of waste dumps, in particular granite dust, on the environment and human, the strategy of using non-waste technologies and ecological features of сrushed granite waste secondary processing are considered

  14. ASPEN+ and economic modeling of equine waste utilization for localized hot water heating via fast pyrolysis

    Science.gov (United States)

    ASPEN Plus based simulation models have been developed to design a pyrolysis process for the on-site production and utilization of pyrolysis oil from equine waste at the Equine Rehabilitation Center at Morrisville State College (MSC). The results indicate that utilization of all available Equine Reh...

  15. Compressed air production with waste heat utilization in industry

    Science.gov (United States)

    Nolting, E.

    1984-06-01

    The centralized power-heat coupling (PHC) technique using block heating power stations, is presented. Compressed air production in PHC technique with internal combustion engine drive achieves a high degree of primary energy utilization. Cost savings of 50% are reached compared to conventional production. The simultaneous utilization of compressed air and heat is especially interesting. A speed regulated drive via an internal combustion motor gives a further saving of 10% to 20% compared to intermittent operation. The high fuel utilization efficiency ( 80%) leads to a pay off after two years for operation times of 3000 hr.

  16. Plating Plant Waste Utilization in Glasswork, Ceramic and Building Industry

    International Nuclear Information System (INIS)

    Nikolaev, V.P.; Scheglov, M.; Korneva, S.A.

    1999-01-01

    The technology allows using electroplating plant waste for recovery of fine inorganic pigments, which may be used in paintwork and ceramic industry (for coating and enamel preparation, for ceramic painting), in glasswork (colored glass) and in building industry (for producing foundation slabs, sidewalk plates and curbing, for art urban planning, for pavement and aerodrome covering and so on). For fine inorganic pigment recovery so-called sol-gel method was used

  17. Observed TRU data from nuclear utility waste streams

    International Nuclear Information System (INIS)

    Wessman, R.A.; Floyd, J.G.; Leventhal, L.

    1990-01-01

    TMA/Norcal has performed 10CFR61 analysis of radioactive waste streams from BWR's and PWR's since 1983. Many standard and non-routine sample types have been received for analysis from nuclear power plants nation-wide. In addition to the 10CFR61 Tables I and II analyses, we also have analyzed for many of the supplementary isotopes. As part of this program TRU analyses are required. As a result, have accumulated a significant amount of data for plutonium, americium, and curium in radioactive waste for many different sample matrices from many different waste streams. This paper will present our analytical program for 10CFR61 TRU. The laboratory methodology including chemical and radiometric procedures is discussed. The sensitivity of our measurements and ability to meet the lower limits of detection is also discussed. Secondly, a review of TRU data is presented. Scaling factors and their ranges from selected PWR stations are included. We discuss some features of, and limits to, interpretation of these data. 8 refs., 3 tabs

  18. A Quantitative Analysis of the Reversibility of Nuclear Waste Storage: Waste Re-utilization

    International Nuclear Information System (INIS)

    Gollier, Christian; Devezeaux de Lavergne, Jean-Guy

    2001-01-01

    The reversibility of nuclear waste storage can be justified on various economic grounds, including the eventuality that future generations may wish to recover this waste in order to re-utilise it. Real options theory is used to cost this option. By including the value of this option in the cost/benefit analysis, it is possible to determine what present generations should spend to organise this reversibility. Taking current values of the materials contained in the waste, and taking into account the low growth trend of such values, we show that the reversibility value of a waste storage site is derisory

  19. Utilization of chemically modified citrus reticulata peels for biosorptive removal of acid yellow-73 dye from water

    International Nuclear Information System (INIS)

    Rehman, R.; Salman, M.; Mahmud, T.; Kanwal, F.; Zaman, W.

    2013-01-01

    Textile effluents contain several varieties of natural and synthetic dyes, which are non-biodegradable. Acid Yellow-73 is one of them. In this research work, adsorptive removal of this dye was investigated using chemically modified Citrus reticulata peels, in batch mode. It was noted that adsorption of dye on Citrus reticulata peels increased by increasing contact time and decreased in basic pH conditions. Langmuir and Freundlich isothermal models were followed by equilibrium data, but the first isotherm fitted the data better, showing that chemisorption occurred more as compared to physiosorption, showing maximum adsorption capacity 96.46 mg.g-1.L-1. The thermodynamic study showed that adsorption of Acid Yellow-73 on chemically modified Citrus reticulata peels was favorable in nature, following pseudo-second order kinetics. (author)

  20. Utilization of construction and agricultural waste in Malaysia for development of Green Concrete: A Review

    Science.gov (United States)

    Tambichik, M. A.; Mohamad, N.; Samad, A. A. A.; Bosro, M. Z. M.; Iman, M. A.

    2018-04-01

    Green Concrete (GC) is defined as a concrete that utilize a waste material for at least one of its component. The production of GC has been increasing due to the drawback of conventional concrete that create many environmental problems. In Malaysia, the amount of waste generates from agricultural and construction industries were increasing every year. Hence, one of the solutions to reduce the impact of conventional concrete and limited landfill spaces due to excessive waste is by utilizing it in concrete. This paper reviews the possible use of construction waste (Recycle Concrete Aggregate) and agricultural waste (Palm Oil Fuel Ash, Rice Husk Ash and Palm Oil Fibre) as partial replacement for the basic material in a concrete to produce an innovative Green Concrete. The optimum replacement level for each type of waste was also been review. Green Concrete also has the potential to reduce environmental pollution and solve the depletion of natural sources. The result from this review shows that the addition of agricultural waste or construction waste in concrete indicate positive and satisfactory strength when compared to normal concrete. Finally, a mass production of Green Concrete can fulfil the Construction Industry Transformation Plan (CITP) 2016-2020 made by CIDB that emphasizes on a construction system which is environmentally sustainable.

  1. 40 CFR Appendix B to Part 414 - Complexed Metal-Bearing Waste Streams

    Science.gov (United States)

    2010-07-01

    ... 414—Complexed Metal-Bearing Waste Streams Chromium Azo dye intermediates/Substituted diazonium salts + coupling compounds Vat dyes Acid dyes Azo dyes, metallized/Azo dye + metal acetate Acid dyes, Azo...

  2. Fact Versus Conjecture in the History of Industrial Waste Utilization

    OpenAIRE

    Christine Meisner Rosen

    2012-01-01

    This piece is a response to Pierre Desrochers’s criticism of an article by me. This response challenges Desrochers’s argument that market forces compelled nineteenth- and early twentieth-century manufacturers to recycle, voluntarily, the vast majority of their wastes. I argue that Desrochers provides no counter-evidence that disproves my findings and that he bases some of his criticism on conjecture that is factually inaccurate and/or overly simplistic. I conclude that to do justice to this i...

  3. Waste utilization for the controlled synthesis of nanosized hydroxyapatite

    Energy Technology Data Exchange (ETDEWEB)

    Nayar, Suprabha, E-mail: Suprabha.nayar@gmail.com [National Metallurgical Laboratory, Jamshedpur (India); Guha, Avijit [National Metallurgical Laboratory, Jamshedpur (India)

    2009-05-05

    This work uses biomolecules in waste and medicinally important materials for the synthesis of hydroxyapatite nanoparticles. Orange and potato peel, eggshell, papaya leaf and calendula flower extracts have varied biomolecules, which exert a significant, control on the in situ synthesis of nanosized hydroxyapatite particles. The biomimetic synthesis of inorganic particles using known matrices is already well established, however, there are only a few reports using compound extracts. The synthesized nanocomposite has been characterized using X-ray diffraction, Fourier transform infrared spectroscopy and scanning electron microscopy studies. Role of varied biomolecules in controlled inorganic synthesis may have tremendous technological impact.

  4. Utilization of immobilized urease for waste water treatment

    Science.gov (United States)

    Husted, R. R.

    1974-01-01

    The feasibility of using immobilized urease for urea removal from waste water for space system applications is considered, specifically the elimination of the urea toxicity problem in a 30-day Orbiting Frog Otolith (OFO) flight experiment. Because urease catalyzes the hydrolysis of urea to ammonia and carbon dioxide, control of their concentrations within nontoxic limits was also determined. The results of this study led to the use of free urease in lieu of the immobilized urease for controlling urea concentrations. An ion exchange resin was used which reduced the NH3 level by 94% while reducing the sodium ion concentration only 10%.

  5. Utilization of tomato waste as a source of polyphenolic antioxidants

    Directory of Open Access Journals (Sweden)

    Savatović Slađana M.

    2010-01-01

    Full Text Available This study is concerned with the effects of two extraction procedures (using ultrasonic bath and high performance homogenizer on the extraction efficiency of polyphenolics present in the tomato waste. The isolation of flavonoid fraction of obtained extracts was performed by solid-phase extraction. The antioxidant activity of flavonoid fractions was determined using different spectrophotometric tests, including reducing power and 2,2- diphenyl-1-picrylhydrazyl (DPPH free radical scavenging assays. The content of total polyphenolics and flavonoids in extract obtained employing homogenizer (E2 was higher than in the extract obtained employing ultrasonic bath (E1, and it was 14.33 mg/g and 7.70 mg/g, respectively. The flavonoid fraction (EF2 of extract E2 showed higher antioxidant activity than flavonoid fraction (EF1 of extract E1. The DPPH free radical scavenging activity of fractions EF1 and EF2, expressed as EC50 value, were 0.78 mg/ml and 0.45 mg/ml, respectively. The obtained results show that tomato wastes can be used as an easily accessible source of antioxidant polyphenolics.

  6. Plastic Bottles Waste Utilization as Modifier for Asphalt Mixture Production

    Directory of Open Access Journals (Sweden)

    Jan Hakeem

    2017-01-01

    Full Text Available Plastic Bottles was used as the polymeric waste to investigate performance of asphalt mixture Aggregates obtained from Margalla, Burhan and Karak quarries. 12 samples were prepared for conventional asphalt mixtures and 48 samples were prepared for PB modified asphalt mixture of each quarries at various proportions of PB waste. The PB used for modification according to wet process are 15%, 20%, 25% and 30% by weight of Optimum Bitumen Content (OBC. OBC of 4.2 % was concluded for conventional asphalt mixtures. The stability and flow values of the conventional and modified Asphalt Mixture were compared. The average Stability of the modified Margalla asphalt mixtures when 15% PB was used was much higher as compared to conventional asphalt mixtures. But when PB was used beyond 15%, the Marshall stability showed a decreasing trend for Margalla aggregates, increasing trend for Karak aggregates and decreasing trend for Burhan aggregates. This decline in stability is attributed to a decline in interlocking of aggregates due to lubricating effect. The corresponding flow for the Modified asphalt mixtures first showed a decreasing trend for Margalla aggregates at 15% PB modification but beyond 15%, an increasing trend in flow as compared to conventional asphalt mixtures The decrease in flow or increase in Marshall Stability is attributed to improvement in interlocking and decline in flow or stability is attributed to a decline in interlocking offered by binder and PB coated aggregate particles in modified asphalt.

  7. Utility and infrastructure needs for private tank waste processing

    International Nuclear Information System (INIS)

    Reynolds, B.A.

    1996-05-01

    This document supports the development of the Draft TWRS Privatization RFP. The document provides summaries of a wide variety of utility infrastructure and support services that are available at the Hanford Site. The needs of the privatization contractors are estimated and compared to the existing infrastructure. Recommendations are presented on the preferred and alternate routes of supplying the identifies requirements

  8. Gas recovery & utilization from a municipal waste disposal site

    National Research Council Canada - National Science Library

    1981-01-01

    .... The results of this project indicate that recovering and utilizing landfill gas in an unprocessed state is feasible both physically and economically. The recovery of landfill generated gas in the Canadian climate is greatly enhanced during the winter months when the demand for gas is highest.

  9. Utilization of a new optical sensor unit to monitor the electrochemical elimination of selected dyes in water

    Science.gov (United States)

    Valica, M.; Černá, T.; Hostin, S.

    2017-10-01

    This paper presents results obtained by developed optical sensor, which consist from multi-wavelength LED light source and two photodetectors capable of measuring the change in optical signal along two different optical paths (absorbance and reflectance measurements). Arduino microcomputer was used for light source management and optical signal data measuring and recording. Analytical validation of developed optical sensor is presented in this paper. The performance of the system has been tested with varying water solution of dyes (malachite green, methyl orange, trypan red). These results show strong correlations between the optical signal response and colour change from the dyes. Sensor was used for continual in-situ monitoring of electrochemical elimination of selected dyes (current density 15.7 mA cm-2, electrolyte volume 4 L and NaCl concentration 2 g L-1). Maximum decolorization level varies with each dye. For malachite green was obtain 92,7 % decolorization (25 min); methyl orange 90,8% (8,5 min) and trypan red 84,7% decolorization after 33 min of electrochemical treatment.

  10. Treatment of aqueous wastes contaminated with Congo Red dye by electrochemical oxidation and ozonation processes

    International Nuclear Information System (INIS)

    Faouzi Elahmadi, Mohammed; Bensalah, Nasr; Gadri, Abdellatif

    2009-01-01

    Synthetic aqueous wastes polluted with Congo Red (CR) have been treated by two advanced oxidation processes: electrochemical oxidation on boron doped diamond anodes (BDD-EO) and ozonation under alkaline conditions. For same concentrations, galvanostatic electrolyses have led to total COD and TOC removals but ozonation process can reach only 85% and 81% of COD and TOC removals, respectively. UV-vis qualitative analyses have shown different behaviors of CR molecules towards ozonation and electrochemical oxidation. Rapid discoloration has been observed during ozonation, whereas color persistence till the end of galvanostatic electrolyses has been seen during BDD-EO process. It seems that the oxidation mechanisms involved in the two processes are different: simultaneous destruction of azoic groups is suggested during ozonation process but consecutive destruction of these groups is proposed during BDD-EO. However, energetic study has evidenced that BDD-EO appears more efficient and more economic than ozonation in terms of TOC removals. These results have been explained by the fact that during BDD-EO, other strong oxidants electrogenerated from the electrolyte oxidation such as persulfates and direct-oxidation of CR and its byproducts on BDD anodes complement the hydroxyl radicals mediated oxidation to accomplish the total mineralization of organics.

  11. Research on Recycling and Utilization of Solid Waste in Civil Airport

    Science.gov (United States)

    Li, Bo; Zhang, Wen; Wang, Jianping; Yi, Wei

    2018-05-01

    The aviation industry is embracing unprecedented prosperity together with the economic development. Building green airports resource-saving, environment-friendly and sustainable has become the inevitability of the times. The operation of airport will generate the large amount of waste every day, which certainly exposes airports and surrounding regions to waste disposal and ecological environment pressure. Waste disposal directly affects the surrounding environment of airports, which can be effectively mitigated by disposing waste into resources, i.e., sorting and recycling them into renewable materials. The development of green airport can also be promoted in this process. The article elaborates on the current methods of waste disposal adopted by airports. According to the principle of waste reduction, harmlessness, and resource recycling, a set of solid waste recycling and utilization methods suitable for airports are proposed, which can reduce the costs of waste transported to other places and landfilled. Various environmental pollution caused by landfill and other disposal methods can also be contained effectively. At the same time, resources can be fully recycled, converting waste into useful resources in an efficient and environmental-friendly way.

  12. Automotive absorption air conditioner utilizing solar and motor waste heat

    Science.gov (United States)

    Popinski, Z. (Inventor)

    1981-01-01

    In combination with the ground vehicles powered by a waste heat generating electric motor, a cooling system including a generator for driving off refrigerant vapor from a strong refrigerant absorbant solution is described. A solar collector, an air-cooled condenser connected with the generator for converting the refrigerant vapor to its liquid state, an air cooled evaporator connected with the condenser for returning the liquid refrigerant to its vapor state, and an absorber is connected to the generator and to the evaporator for dissolving the refrigerant vapor in the weak refrigerant absorbant solution, for providing a strong refrigerant solution. A pump is used to establish a pressurized flow of strong refrigerant absorbant solution from the absorber through the electric motor, and to the collector.

  13. Utilization of the household organic wastes in compost

    International Nuclear Information System (INIS)

    Calvache O, B.

    1995-01-01

    Residues or wastes are a problem to the cities, owing to its collect and disposal produce many negative effects in public health and the environment as odors, microorganism (pathogens), vectors (flies, rodents and mosquitoes), and others. To solve this problem have been propose mainly two alternatives: 1. Sanitary landfills and 2. Recycling. To recover the residues as biodegradable as not-biodegradable, exist alternatives as composting (fermentation process or aerobic oxidation) and recycling - reuse, respectively. The composting process in aspects as the required conditions to that the organism acts efficiently as control of temperature (between 40-75 centigrade degrees), feed (carbon, nitrogen and other organic matter), aeration (by mixing or turning), control of moisture (between 50-60%), are present. Methodology aspects to composting also are described

  14. Waste resources utilization program. Interim report, June 30, 1976

    International Nuclear Information System (INIS)

    1976-07-01

    This is an interim report on the effects of the combined use of heat and ionizing radiation (thermoradiation) as a treatment for ridding sewage sludge of pathogenic organisms as well as its effect on the physical-chemical properties. This activity couples two major environmental problems, disposition of human and of nuclear waste, in an attempt to provide a framework in which both will become useful resources. This combined treatment might be chosen to inactivate both heat labile (but possibly radiation resistant) and radiation labile (but possibly heat resistant) organisms. The cost-effective analyses of such a treatment are being examined. Sludge treated with thermoradiation offers considerable potential for use as a fertilizer in agriculture or a soil conditioner for land reclamation free of the potential health hazards associated with conventional methods of land disposal. Treated sludge may also provide a low-cost substitute for high-nutritional components in ruminant diets

  15. Microbial contamination level of air in animal waste utilization plants.

    Science.gov (United States)

    Chmielowiec-Korzeniowska, Anna; Tymczyna, Leszek; Drabik, Agata; Krzosek, Łukasz

    2016-01-01

    The aim of this research was evaluation of microbial contamination of air within and in the vicinity of animal waste disposal plants. Air samples were analyzed to determine total bacterial and fungal counts as well as microbial species composition. Measurements of climate conditions (temperature, humidity, air motion) and total dust concentration were also performed. Total numbers of bacteria and fungi surpassed the threshold limit values for production halls. The most abundant bacteria detected were those consisting of physiological microflora of animal dermis and mucosa. Fungal species composition proved to be most differentiated in the air beyond the plant area. Aspergillus versicolor, a pathogenic and allergenic filamentous fungus, was isolated only inside the rendering plant processing hall. The measurement results showed a low sanitary-hygienic state of air in the plant processing halls and substantial air pollution in its immediate vicinity.

  16. Absorption technology for solar and waste heat utilization

    International Nuclear Information System (INIS)

    Grossman, G.

    1993-01-01

    Absorption heat pumps, first developed in the 19th century, have received renewed and growing attention in the past two decades. With the increasing cost of oil and electricity, the particular features of this heat-powered cycle have made it attractive for both residential and industrial applications. Solar-powered air conditioning, gas-fired domestic cooling and waste-heat-powered temperature boosters are some of the applications on which intensive research and development has been conducted. This paper describes the operation of absorption systems and discusses several practical applications. It surveys recent advances in absorption technology, including the selection of working fluids, cycle improvements and multi-staging, and fundamentals of the combined heat and mass transfer in absorption processes. (author)

  17. Utilization of waste heat from electricity generating stations

    International Nuclear Information System (INIS)

    Robertson, R.F.S.

    1977-06-01

    Historically the nuclear power station has been designed solely as an electricity producer. But in Canada today only 15 percent of our energy consumption is as electricity. The non-electrical needs today are supplied almost entirely by natural gas and oil. There is an incentive to see whether a nuclear station could supply energy for some of these non-electrical needs, thus freeing gas and oil for uses for which they may be more valuable and suitable, especially in transportation. A group located at the Whiteshell Nuclear Research Establishment undertook a series of studies to examine this problem. These studies were done in sufficient depth to provide technological and economic answers, and as a result several reports have been published on various topics. In this report, the findings from these studies are drawn together in an assessment of the potential in Canada for using waste heat. (author)

  18. A Review on Landfill Management in the Utilization of Plastic Waste as an Alternative Fuel

    Directory of Open Access Journals (Sweden)

    Hidayah Nurul

    2018-01-01

    Full Text Available Wastes from landfills originate from many spheres of life. These are produces as a result of human activities either domestically or industrially. The global plastic production increased over years due to the vast applications of plastics in many sectors. The continuous demand of plastics caused the plastic wastes accumulation in the landfill consumed a lot of spaces that contributed to the environmental. In addition, economic growth and development also increased our demand and dependency on plastics which leads to its accumulation in landfills imposing risk on human health, animals and cause environmental pollution problems such as ground water contamination, sanitary related issues, etc. The management and disposal of plastic waste have become a major concern, especially in developing cities. The idea of waste to energy recovery is one of the promising techniques used for managing the waste of plastic. Hence, this paper aims review at utilizing of plastic as an alternative fuel.

  19. A Review on Landfill Management in the Utilization of Plastic Waste as an Alternative Fuel

    Science.gov (United States)

    Hidayah, Nurul; Syafrudin

    2018-02-01

    Wastes from landfills originate from many spheres of life. These are produces as a result of human activities either domestically or industrially. The global plastic production increased over years due to the vast applications of plastics in many sectors. The continuous demand of plastics caused the plastic wastes accumulation in the landfill consumed a lot of spaces that contributed to the environmental. In addition, economic growth and development also increased our demand and dependency on plastics which leads to its accumulation in landfills imposing risk on human health, animals and cause environmental pollution problems such as ground water contamination, sanitary related issues, etc. The management and disposal of plastic waste have become a major concern, especially in developing cities. The idea of waste to energy recovery is one of the promising techniques used for managing the waste of plastic. Hence, this paper aims review at utilizing of plastic as an alternative fuel.

  20. Study utilization of extractable petroleum hydrocarbons biodegradation waste as the main material for making solid fuels

    Science.gov (United States)

    Hendrianie, Nuniek; Juliastuti, Sri Rachmania; Ar-rosyidah, Fanny Husna; Rochman, Hilal Abdur

    2017-05-01

    Nowadays the existence of energy sources of oil and was limited. Therefore, it was important to searching for new innovations of renewable energy sources by utilizing the waste into a source of energy. On the other hand, the process of extractable petroleum hydrocarbons biodegradation generated sludge that had calorific value and untapped. Because of the need for alternative sources of energy innovation with the concept of zero waste and the fuel potential from extractable petroleum hydrocarbons biodegradation waste, so it was necessary to study the use of extractable petroleum hydrocarbons biodegradation waste as the main material for making solid fuel. In addition, sawdust is a waste that had a great quantities and also had a high calorific value to be mixed with extractable petroleum hydrocarbons biodegradation waste. The purpose of this study was to determine the characteristics of the extractable petroleum hydrocarbons biodegradation waste and to determine the potential and a combination of a mixture of extractable petroleum hydrocarbons biodegradation waste and sawdust which has the best calorific value. The variables of this study was the composition of the waste and sawdust as follows 1:1; 1:3; and 3:1 (mass of sawdust : mass of waste) and time of sawdust carbonization was 10, 15 and 20 minutes. Sawdust was carbonized to get the high heating value. The characteristic of main material and fuel analysis performed with proximate analysis. While the calorific value analysis was performed with a bomb calorimeter. From the research, it was known that extractable petroleum hydrocarbons biodegradation waste had a moisture content of 3.06%; volatile matter 19.98%; ash content of 0.56%; fixed carbon content of 76.4% and a calorific value of 717 cal/gram. And a mixture that had the highest calorific value (4286.5 cal/gram) achieved in comparison sawdust : waste (3:1) by carbonization of sawdust for 20 minutes.

  1. Use of agricultural waste sugar beet pulp for the removal of Gemazol turquoise blue-G reactive dye from aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Aksu, Zuemriye [Hacettepe University, Department of Chemical Engineering, 06532 Beytepe, Ankara (Turkey)]. E-mail: zaksu@hacettepe.edu.tr; Isoglu, I. Alper [Hacettepe University, Department of Chemical Engineering, 06532 Beytepe, Ankara (Turkey)

    2006-09-01

    The potential use of dried sugar beet pulp, an agricultural solid waste by-product, as an biosorbent for Gemazol turquoise blue-G, a copper-pthalocyanine reactive dye commonly used in dyeing of cotton, was investigated in the present study. Batch adsorption studies were carried out to examine the influence of various parameters such as initial pH, temperature and initial dye concentration. The results indicated that adsorption was strongly pH-dependent and slightly temperature-dependent. At 800 mg l{sup -1} initial Gemazol turquoise blue-G concentration, dried sugar beet pulp exhibited the highest Gemazol turquoise blue-G uptake capacity of 234.8 mg g{sup -1} at 25 deg. C and at an initial pH value of 2.0. The Freundlich, Langmuir, Redlich-Peterson and Langmuir-Freundlich, the two and three parameters adsorption models were used for the mathematical description of the biosorption equilibrium and isotherm constants were evaluated depending on temperature. Both the Langmuir and Redlich-Peterson models were applicable for describing the dye biosorption by dried sugar beet pulp in the concentration (100-800 mg l{sup -1}) and temperature (25-45 deg. C) ranges studied. Simple mass transfer and kinetic models were applied to the experimental data to examine the mechanisms of biosorption and potential rate controlling steps such as external mass transfer, intraparticle diffusion and biosorption process. The sorption process was found to be controlled by both surface and pore diffusion with surface diffusion at the earlier stages followed by pore diffusion at the later stages. Pseudo first-order, pseudo second-order and saturation type kinetic models described the biosorption kinetics accurately at all concentrations and temperatures studied. The thermodynamic analysis indicated that the sorption process was exothermic and the biosorption of dye on dried sugar beet pulp might be physical in nature.

  2. Use of agricultural waste sugar beet pulp for the removal of Gemazol turquoise blue-G reactive dye from aqueous solution.

    Science.gov (United States)

    Aksu, Zümriye; Isoglu, I Alper

    2006-09-01

    The potential use of dried sugar beet pulp, an agricultural solid waste by-product, as an biosorbent for Gemazol turquoise blue-G, a copper-pthalocyanine reactive dye commonly used in dyeing of cotton, was investigated in the present study. Batch adsorption studies were carried out to examine the influence of various parameters such as initial pH, temperature and initial dye concentration. The results indicated that adsorption was strongly pH-dependent and slightly temperature-dependent. At 800 mg l(-1) initial Gemazol turquoise blue-G concentration, dried sugar beet pulp exhibited the highest Gemazol turquoise blue-G uptake capacity of 234.8 mg g(-1) at 25 degrees C and at an initial pH value of 2.0. The Freundlich, Langmuir, Redlich-Peterson and Langmuir-Freundlich, the two and three parameters adsorption models were used for the mathematical description of the biosorption equilibrium and isotherm constants were evaluated depending on temperature. Both the Langmuir and Redlich-Peterson models were applicable for describing the dye biosorption by dried sugar beet pulp in the concentration (100-800 mg l(-1)) and temperature (25-45 degrees C) ranges studied. Simple mass transfer and kinetic models were applied to the experimental data to examine the mechanisms of biosorption and potential rate controlling steps such as external mass transfer, intraparticle diffusion and biosorption process. The sorption process was found to be controlled by both surface and pore diffusion with surface diffusion at the earlier stages followed by pore diffusion at the later stages. Pseudo first-order, pseudo second-order and saturation type kinetic models described the biosorption kinetics accurately at all concentrations and temperatures studied. The thermodynamic analysis indicated that the sorption process was exothermic and the biosorption of dye on dried sugar beet pulp might be physical in nature.

  3. Performance of Natural Dye and Counter Electrode from Robusta Coffee Beans Peel Waste for Fabrication of Dye-Sensitized Solar Cell (DSSC)

    Science.gov (United States)

    Setiawan, T.; Subekti, W. Y.; Nur'Adya, S. S.; Ilmiah, K.; Ulfa, S. M.

    2018-01-01

    The DSSC prototype using activated carbon (AC) and natural dye from Robusta coffee bean peels have been investigated. The natural dye obtained from the extraction of Robusta coffee bean peels is identified as anthocyanin by UV-Vis spectrophotometer at maximum wavelength 219.5 nm and 720.0 nm in methanol. From the FT-IR analysis, the vibration of O-H observed at 3385 cm-1, C=O at 1618 cm-1, and C-O-C at 1065 cm-1. The counter electrode prepared by calcined the peels at 300°C. Surface analyser of AC showed the larger surface area compared prior activation. The DSSC prototype was prepared using FTO glass (2x2 cm) coated with carbon paste in various thickness. The working electrode is coated with the TiO2 paste. The optimum voltage measured was 395mV (300 μL of CA), 334 mV (200 μL AC), and 254 mV (100 μL AC). From this result, we understand that the thickness of counter electrode influent the voltage of the DSSC.

  4. Utilization of byproducts and waste materials from meat, poultry and fish processing industries: a review.

    Science.gov (United States)

    Jayathilakan, K; Sultana, Khudsia; Radhakrishna, K; Bawa, A S

    2012-06-01

    India is bestowed with vast livestock wealth and it is growing at the rate of 6% per annum. The contribution of livestock industry including poultry and fish is increasing substantially in GDP of country which accounts for >40% of total agricultural sector and >12% of GDP. This contribution would have been much greater had the animal by-products been also efficiently utilized. Efficient utilization of by-products has direct impact on the economy and environmental pollution of the country. Non-utilization or under utilization of by-products not only lead to loss of potential revenues but also lead to the added and increasing cost of disposal of these products. Non-utilization of animal by-products in a proper way may create major aesthetic and catastrophic health problems. Besides pollution and hazard aspects, in many cases meat, poultry and fish processing wastes have a potential for recycling raw materials or for conversion into useful products of higher value. Traditions, culture and religion are often important when a meat by-product is being utilized for food. Regulatory requirements are also important because many countries restrict the use of meat by-products for reasons of food safety and quality. By-products such as blood, liver, lung, kidney, brains, spleen and tripe has good nutritive value. Medicinal and pharmaceutical uses of by-product are also highlighted in this review. Waste products from the poultry processing and egg production industries must be efficiently dealt with as the growth of these industries depends largely on waste management. Treated fish waste has found many applications among with which the most important are animal feed, biodiesel/biogas, dietectic products (chitosan), natural pigments (after extraction) and cosmetics (collagen). Available information pertaining to the utilization of by-products and waste materials from meat, poultry and fish and their processing industries has been reviewed here.

  5. Utilization of Waste Materials for Microbial Carrier in Wastewater Treatment

    Directory of Open Access Journals (Sweden)

    H. T. Le

    2016-01-01

    Full Text Available This research focused on the ammonium-nitrogen (NH4-N removal from the domestic wastewater using the attached growth reactors. Two types of waste material of corncob (biodegradable material and concrete (nonbiodegradable material were used as the carrier for microorganisms’ attachment. During operation, both reactors achieved absolutely high performance of ammonium removal (up to 99% and total nitrogen removal (up to 95%. The significant advantage of corncob carrier was that the corncob was able to be a source of carbon for biological denitrification, leading to no external carbon requirement for operating the system. However, the corncob caused an increasing turbidity of the effluent. On the other hand, the concrete carrier required the minimal external carbon of 3.5 C/N ratio to reach the good performance. Moreover, a longer period for microorganisms’ adaptation was found in the concrete carrier rather than the corncob carrier. Further, the same physiological and biochemical characteristics of active bacteria were found at the two carriers, which were negative gram, cocci shape, and smooth and white-turbid colony. Due to the effluent quality, the concrete was more appropriate carrier than the corncob for wastewater treatment.

  6. Feasibility study on waste utilization of a palm oil refinery

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    As to empty fruit bunches (EFB) which are wasted at the Lahad Datu plant of Felda Vegetable Oil Products Co. in Malaysia, a project was studied for energy substitution and greenhouse effect gas reduction by fluidized bed cogeneration facilities using this as fuel. In the project, studied was the introduction of on-site cogenerator of 7,800kW in generating-end output, and that of IPP cogenerator of 16,000kW as reference. As a result of the study, the energy substitution amount in toe in 20 years was approximately 376 k tons in case of on-site power generation/fluidized bed boiler and approximately 695 k tons in case of IPP and fluidized bed boiler. The amount of greenhouse effect gas emission in toe in 20 years was approximately 5,757 k tons and 11,654 k tons, respectively. Concerning the profitability, the internal earning rate was 3.32-8.47% in case of on-site power generation/fluidized bed boiler and 9.13-14.65% in case of IPP/fluidized bed boiler. It indicated the materialization of the project. (NEDO)

  7. Final storage of radioactive waste in Germany. Waste arisings and availability of a repository as seen by an electricity utility

    International Nuclear Information System (INIS)

    Broeskamp, H.; Brammer, K.J.; Graf, R.

    2004-01-01

    The management of waste arising in the operation of nuclear power plants has been taken into account since the beginnings of the peaceful uses of nuclear power in Germany. As early as in 1957, a memorandum of the German Advisory Committee on Atomic Energy contains a reference to the need for safe disposal of radioactive waste. Legislation adopted the suggestion and laid down some provisions on the safe utilization of radioactive materials as early as in the Atomic Energy Act of December 23, 1959. In connection with the nuclear waste management center, the Federal Republic also looked for a suitable site for a repository. After thorough site selection proceedings by the federal government and the state of Lower Saxony, the Lower Saxony state government in 1977 defined Gorleben as the site. The decision has been preceded by a three-stage selection process in which more than 140 sites had been investigated. Exploration of the Gorleben site began in 1979 and was interrupted on October 1, 2000 to clarify conceptual and safety-related doubts of the federal government. The German Federal Ministry for the Environment (BMU) seeks to make a repository (for high-level waste) available in 2030. Technically, it is still possible to commission a repository for waste generating heat at Gorleben after 2025 if the salt dome is found to be suitable after speedy conclusion of the exploration work. Reference is made to foreseeable problem areas. Another project pursued by the federal government is the use of the Konrad mine as a repository for low and medium-level radioactive waste. After well over twenty years, the plans approval decision was made in May 2002 and is at present the subject of litigation. On the basis of the data presented about the expected arisings of waste generating no heat in combination with the possible start of emplacement in Konrad in 2013, detailed results are presented. (orig.) [de

  8. Waste recycling: utilization of coffee grounds and kitchen waste in vermicomposting.

    Science.gov (United States)

    Adi, A J; Noor, Z M

    2009-01-01

    Vermicomposting using Lumbricus rubellus for 49 days was conducted after 21 days of pre-composting. Three different combination of treatments were prepared with eight replicates for each treatment namely cow dung: kitchen waste in 30:70 ratio (T(1)), cow dung: coffee grounds in 30:70 ratio (T(2)), and cow dung: kitchen waste: coffee grounds in 30:35:35 ratio (T(3)). The multiplication of earthworms in terms of numbers and weight were measured at the end of vermicomposting. Consequently, only T(2) showed significant increase (from it initial stage) compared to other treatments. The presence of coffee grounds in T(2) and T(3) showed higher percentage of nutrient elements in vermicompost produced. The data reveal that coffee grounds can be decomposed through vermicomposting and help to enhance the quality of vermicompost produced rather than sole use of kitchen waste in vermicomposting.

  9. A comparison of costs associated with utility management options for dry active waste

    Energy Technology Data Exchange (ETDEWEB)

    Hornibrook, C. [EPRI, Palo Alto, CA (United States)

    1995-12-31

    The economics of low level waste management is receiving more attention today than ever before. This is due to four factors: (1) the increases in the cost of processing of these wastes; (2) increases in the cost of disposal; (3) the addition of storage costs for those without access to disposal; and (4) the increasing competitive nature of the electric generation industry. These pressures are forcing the industry to update it`s evaluation of the mix of processing that will afford it the best long term economics and minimize it`s risks for unforeseen costs. Whether disposal is available or not, all utilities face the same challenge of minimizing the costs associated with the management of these wastes. There are a number of variables that will impact how a utility manages their wastes but the problem is the uncertainty of what will actually happen, i.e., will disposal be available, when and at what cost. Using the EPRI-developed WASTECOST: DAW code, this paper explores a variety of LLW management options available to utilities. Along with providing the costs and benefits, other technical considerations which play an important part in the management of these wastes are also addressed.

  10. Gasification: An alternative solution for energy recovery and utilization of vegetable market waste.

    Science.gov (United States)

    Narnaware, Sunil L; Srivastava, Nsl; Vahora, Samir

    2017-03-01

    Vegetables waste is generally utilized through a bioconversion process or disposed of at municipal landfills, dumping sites or dumped on open land, emitting a foul odor and causing health hazards. The presents study deals with an alternative way to utilize solid vegetable waste through a thermochemical route such as briquetting and gasification for its energy recovery and subsequent power generation. Briquettes of 50 mm diameter were produced from four different types of vegetable waste. The bulk density of briquettes produced was increased 10 to 15 times higher than the density of the dried vegetable waste in loose form. The lower heating value (LHV) of the briquettes ranged from 10.26 MJ kg -1 to 16.60 MJ kg -1 depending on the type of vegetable waste. The gasification of the briquettes was carried out in an open core downdraft gasifier, which resulted in syngas with a calorific value of 4.71 MJ Nm -3 at the gasification temperature between 889°C and 1011°C. A spark ignition, internal combustion engine was run on syngas and could generate a maximum load up to 10 kW e . The cold gas efficiency and the hot gas efficiency of the gasifier were measured at 74.11% and 79.87%, respectively. Energy recovery from the organic vegetable waste was possible through a thermochemical conversion route such as briquetting and subsequent gasification and recovery of the fuel for small-scale power generation.

  11. Utilization of Wheat Offal-Carried Pineapple Waste in the Diet of ...

    African Journals Online (AJOL)

    Utilization of Wheat Offal-Carried Pineapple Waste in the Diet of West African Dwarf (WAD) Goats. ... Although, the analysis of blood cells (red blood cell, white blood and packed cell volume counts) were significantly different (p<0.05) among the goats fed experimental diets, the counts fell within the normal physiological ...

  12. Green synthesis of silver nanoparticles by waste tea extract and degradation of organic dye in the absence and presence of H2O2

    Science.gov (United States)

    Qing, Weixia; Chen, Kui; Wang, Yong; Liu, Xiuhua; Lu, Minghua

    2017-11-01

    The silver nanoparticles (AgNPs) had been successfully synthesized by using an aqueous extract of waste tea as a stabilizing and reducing agent. The green synthesized AgNPs were characterized by ultraviolet visible (UV-vis) spectroscopy, Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), X-ray powder diffraction (XRD) and zeta potential. The work focused on the degradation of methylene blue (MB) and ethyl violet (EV) in aqueous solution with AgNPs as catalyst in the absence and presence of H2O2. The AgNPs exhibit fast, efficient and stable catalytic activity in the degradation of cationic organic dyes, but it is no catalytic degradation of anionic organic dyes at room temperature. The kinetics of dyes degradation with AgNPs follows the pseudo-second-order model. Meanwhile, the AgNPs also show better antimicrobial activity against pathogenic bacteria. The formed highly catalytic active AgNPs can be used as catalyst in industries and water purification.

  13. Financial analysis of biogas utilization : input cattle, pig feces and coffee waste in Karo, Indonesia

    Science.gov (United States)

    Ginting, N.; Zuhri, F.; Hasnudi; Mirwandhono, E.; Sembiring, I.; Daulay, A. H.

    2018-02-01

    The community's need for renewable energy was very urgent. In addition, efforts to preserve the environment from waste caused biogas technology feasible to apply. This study aims to provide biogas technology with minimal cost and utilize agricultural waste that were coffee and livestock waste. The study was conducted from July to October 2016. The theoretical and empirical methods used in this study were included data from officials resources, field survey on 16 biogas locations, focus group discussion and interview with stake holders. Data were tabulated by Excel Program which then were analysed by SAS. Parameters were included Production Cost, Production Result, Profit Loss Analysis, Revenue Cost Ratio (R/C Ratio), Return On Investment (ROI), Net B/C, and IRR. The result of this research showed that the application of bioplastic gas with cow dung and coffee waste as bioplasticgas input cause the best results.

  14. Practical utilization of modeling and simulation in laboratory process waste assessments

    International Nuclear Information System (INIS)

    Lyttle, T.W.; Smith, D.M.; Weinrach, J.B.; Burns, M.L.

    1993-01-01

    At Los Alamos National Laboratory (LANL), facility waste streams tend to be small but highly diverse. Initial characterization of such waste streams is difficult in part due to a lack of tools to assist the waste generators in completing such assessments. A methodology has been developed at LANL to allow process knowledgeable field personnel to develop baseline waste generation assessments and to evaluate potential waste minimization technology. This process waste assessment (PWA) system is an application constructed within the process modeling system. The Process Modeling System (PMS) is an object-oriented, mass balance-based, discrete-event simulation using the common LISP object system (CLOS). Analytical capabilities supported within the PWA system include: complete mass balance specifications, historical characterization of selected waste streams and generation of facility profiles for materials consumption, resource utilization and worker exposure. Anticipated development activities include provisions for a best available technologies (BAT) database and integration with the LANL facilities management Geographic Information System (GIS). The environments used to develop these assessment tools will be discussed in addition to a review of initial implementation results

  15. Radiation exposure estimates on production and utilization of recycled items using dismantling waste

    International Nuclear Information System (INIS)

    Nakamura, Hisashi; Nakashima, Mikio

    2002-03-01

    Radiation exposure was estimated on production and utilization of recycled items using dismantling wastes by assuming that their usage are restricted to nuclear facilities. The radiation exposure attributed to production of a steel-plate cast iron waste container, a receptacle for slag, and a drum reinforcement was calculated to be in the range of several μSv to several tens of μSv even in recycling contaminated metal waste of which radioactivity concentration of Co-60 is higher than the clearance level by a factor of two figures. It is also elucidated that casting of a multiple casting waste package meets the standards of dose equivalent rate for the transport of a radioactive package and the weight of the package will be able to kept around 20 tons for the convenience of the handling, in case of disposal of metal waste less than 37 MBq/g with the steel-plate cast iron waste container. As the results, from the radiological exposure's point of view, it should be possible to use slightly contaminated metal for recycled items in waste management. (author)

  16. Degradation of Remazol Red in batik dye waste water by contact glow discharge electrolysis method using NaOH and NaCl electrolytes

    Science.gov (United States)

    Saksono, Nelson; Putri, Dita Amelia; Suminar, Dian Ratna

    2017-03-01

    Contact Glow Discharge Electrolysis (CGDE) method is one of Plasma Electrolysis technology which has been approved to degrade organic waste water because it is very productive in producing hydroxyl radical. This study aims to degrade Remazol Red by CGDE method and evaluate important parameters that have influent in degradation process of Remazol Red in Batik dye waste water in batch system. The kind of electrolyte (acid and base) and the addition of metal ion such as Fe2+ have affected Remazol Red degradation percentage. Ultraviolet-Visible (UV-Vis) absorption spectra were used to monitor the degradation process. The result of study showed that percentage degradation was 99.97% which obtained by using NaCl 0.02 M with addition Fe2+ 20 ppm, applied voltage 700 volt, anode depth 0.5 cm, initial concentration of Remazol Red 250 ppm and the temperature of solutions was maintained 50-60 ˚C.

  17. Synthesis and utilization of a novel carbon nanotubes supported nanocables for the adsorption of dyes from aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Wei; Jiang, Xinyu [School of Chemistry and Chemical Engineering, Central South University, Changsha 410083 (China); Chen, Xiaoqing, E-mail: xqchen@csu.edu.cn [School of Chemistry and Chemical Engineering, Central South University, Changsha 410083 (China); Collaborative Innovation Center of Resource-conserving & Environment-friendly Society and Ecological Civilization (China)

    2015-09-15

    Using multiwalled carbon nanotubes(MWCNTs) as mechanical support and glucose as carbon resource, a hydrothermal carbonization route was designed for the synthesis of MWCNTs@carbon nanocables with tunable diameter and length. MWCNTs are firstly used as templates for the formation of carbon-rich composite nanocables, and the diameter of the nanocables could be tailored through adjusting the hydrothermal time or the ratio of MWCNTs and glucose. Owing to abundant superficial oxygen-containing functional groups, porous surface and remarkable reactivity, the as-synthesized nanocables are capable of efficiently adsorbing cationic dye methylene blue (MB) and crystal violet (CV). Furthermore, the optimum adsorption conditions, kinetics, adsorption isotherms and adsorption thermodynamics of dyes were studied systematically. Additionally, the maximum adsorption capacities calculated from data analysis (298.5 mg/g for MB and 228.3 mg/g for CV) are significant higher than those of raw MWCNTs and some other adsorbents reported previously, which provides strong evidence for using MWCNTs@carbon nanocables as adsorbent to remove dyes from aqueous solutions. - Graphical abstract: MWCNTs@carbon nanocables has been successfully fabricated by a hydrothermal carbonization method. The as-synthesized novel samples were used as adsorbents and exhibited high adsorption capacity on MB and CV. - Highlights: • A simple, cost-effective and “green” method for the synthesis of the material. • The diameter and length of the material are relatively easy to control. • The surface has large oxygen-containing groups and preferable chemical reactivity. • Compared with raw MWCNTs and some other adsorbents, the adsorption capacity is much high.

  18. Plastic waste as a resource. Strategies for reduction and utilization of plastic waste

    OpenAIRE

    Pasqual i Camprubí, Gemma

    2010-01-01

    Plastic materials have experienced a spectacular rate of growth in recent decades, consequently, production of plastics, and likewise their consumption, has increased markedly since 1950. Moreover, they are lightweight and durable, as well as can be moulded into a variety of products that can be manufactured in many different types of plastic and in a wide range of applications. Inevitably, continually increasing amounts of used plastic are originating daily, resulting in a plastic waste prob...

  19. Utilization of coal fly ash in solidification of liquid radioactive waste from research reactor.

    Science.gov (United States)

    Osmanlioglu, Ahmet Erdal

    2014-05-01

    In this study, the potential utilization of fly ash was investigated as an additive in solidification process of radioactive waste sludge from research reactor. Coal formations include various percentages of natural radioactive elements; therefore, coal fly ash includes various levels of radioactivity. For this reason, fly ashes have to be evaluated for potential environmental implications in case of further usage in any construction material. But for use in solidification of radioactive sludge, the radiological effects of fly ash are in the range of radioactive waste management limits. The results show that fly ash has a strong fixing capacity for radioactive isotopes. Specimens with addition of 5-15% fly ash to concrete was observed to be sufficient to achieve the target compressive strength of 20 MPa required for near-surface disposal. An optimum mixture comprising 15% fly ash, 35% cement, and 50% radioactive waste sludge could provide the solidification required for long-term storage and disposal. The codisposal of radioactive fly ash with radioactive sludge by solidification decreases the usage of cement in solidification process. By this method, radioactive fly ash can become a valuable additive instead of industrial waste. This study supports the utilization of fly ash in industry and the solidification of radioactive waste in the nuclear industry.

  20. UTILIZATION OF CASSAVA WASTE IN THE PRODUCTION OF PLYWOOD ADHESIVE EKSTENDER WITH DEXTRIN (WITH ACID CATALYST

    Directory of Open Access Journals (Sweden)

    Piyantina Rukmini

    2017-10-01

    Full Text Available Abstract- Require of manihot Esculinta Crantz in Indonesia rises in every year as growth of Indonesian people, bioethanol industry,and animal food. Raw material that use in this research is cassava wastes. This research aimed to know the utilization of cassava waste, the optimum condition process of dextrin, and to know the variable that influent the utilization of cassava waste in the production of adhesive ekstender ( catalyst concentration and time. The dekstrin process need beaker glass, stirrer, electric stove with oilbatch heater, thermometer, screening 80 mesh. Cassava wastes that keep on several days is burned without water at 800 C for 1 hours. Then drops acid catalyst ion the beaker glass with different concentration. Then the temperature is raised until 1100C for 1 hour. After the drying process, make it cool then screen it in to screener 80 mesh. The results show that on the higher concentration of acid, dextrin will get on the higher concentration. At the certain concentration of acid, dekstrin will not get in the high concentration. Maximum efficiency of the concentration of acid is 0,8 N. Keeping long day for cassava waste can make lower the concentration of dextrin. The best keeping day is the first day until four day.

  1. UTILIZATION OF CASSAVA WASTE IN THE PRODUCTION OF PLYWOOD ADHESIVE EKSTENDER WITH DEXTRIN (WITH ACID CATALYST

    Directory of Open Access Journals (Sweden)

    Piyantina Rukmini

    2017-10-01

    Full Text Available Require of manihot Esculinta Crantz in Indonesia rises in every year as growth of Indonesian people, bioethanol industry,and animal food. Raw material that use in this research is cassava wastes. This research aimed to know the utilization of cassava waste, the optimum condition process of dextrin, and to know the variable that influent the utilization of cassava waste in the production of adhesive ekstender ( catalyst concentration and time. The dekstrin process need beaker glass, stirrer, electric stove with oilbatch heater, thermometer, screening 80 mesh. Cassava wastes that keep on several days is burned without water at 800 C for 1 hours. Then drops acid catalyst ion the beaker glass with different concentration. Then the temperature is raised until 1100C for 1 hour. After the drying process, make it cool then screen it in to screener 80 mesh. The results show that on the higher concentration of acid, dextrin will get on the higher concentration. At the certain concentration of acid, dekstrin will not get in the high concentration. Maximum efficiency of the concentration of acid is 0,8 N. Keeping long day for cassava waste can make lower the concentration of dextrin. The best keeping day is the first day until four day.

  2. The evaluation of chosen properties of ashes created by thermal utilization of hazardous and communal wastes

    Directory of Open Access Journals (Sweden)

    Damian Krawczykowski

    2005-11-01

    Full Text Available One of methods of the waste neutralization is their thermal transformation in suitable installations or devices in order to achieve the state, which is no longer dangerous for the human health and life or for the environment. In effect of the thermal transformation the “new” wastes are created, which, by law are suppose a to be utilized first. These wastes may be utilized if their properties are suitable. In the paper, the process of thermal utilization of hazardous and municipal wastes is presented, together with the investigation results of the grain composition, surface area, density and of the initial chemical analysis of the created ashes. The research of the grain composition was conducted by using the “Fritsch” apparatus. On the base of the grain composition, the surface area of ashes under investigation was determined, whereas the density was determined by using the helium pycnometer. The purpose of the research was to determine how the properties of ashes are changed and if the differences allow to use these ashes in future.

  3. Performance and availability of seawater distiller with heat pipe utilizing low grade waste heat

    Energy Technology Data Exchange (ETDEWEB)

    Park, Chang Dae; Chung, Kyung Yul [Korea Institute of Machinery and Materials, Daejeon (Korea, Republic of); Tanaka, Hiroshi [Department of Mechanical Engineering, Ulsan (Korea, Republic of)

    2013-01-15

    Exhaust gas from a small portable electric generator is simply exhausted to the surroundings because the capacity and quality of the waste heat of this gas is generally not sufficient to recover and utilize. We have proposed a seawater distiller utilizing the thermal energy of waste gas from an electric generator. The distiller recovers heat from the waste gas by means of a heat pipe and uses it effectively through a multiple effect diffusion type structure. We constructed an experimental apparatus with a vertical single effect still having a 4 stroke 50cc generator engine and found that the experimental results for distillate productivity show good agreement with the theoretical predictions. The results show that the distiller can recover 52W of waste heat from the gas at 171.deg.C, and {approx}85%, of the recovered heat can be utilized for distillation to produce 70g/h of fresh water. This is equivalent to a productivity of 500g/h in the case of a 10 effect still. Therefore, the proposed distiller should be useful in remote areas where electricity and water grids are inadequate.

  4. Selective enrichment of a methanol-utilizing consortium using pulp & paper mill waste streams

    Energy Technology Data Exchange (ETDEWEB)

    Gregory R. Mockos; William A. Smith; Frank J. Loge; David N. Thompson

    2007-04-01

    Efficient utilization of carbon inputs is critical to the economic viability of the current forest products sector. Input carbon losses occur in various locations within a pulp mill, including losses as volatile organics and wastewater . Opportunities exist to capture this carbon in the form of value-added products such as biodegradable polymers. Waste activated sludge from a pulp mill wastewater facility was enriched for 80 days for a methanol-utilizing consortium with the goal of using this consortium to produce biopolymers from methanol-rich pulp mill waste streams. Five enrichment conditions were utilized: three high-methanol streams from the kraft mill foul condensate system, one methanol-amended stream from the mill wastewater plant, and one methanol-only enrichment. Enrichment reactors were operated aerobically in sequencing batch mode at neutral pH and 25°C with a hydraulic residence time and a solids retention time of four days. Non-enriched waste activated sludge did not consume methanol or reduce chemical oxygen demand. With enrichment, however, the chemical oxygen demand reduction over 24 hour feed/decant cycles ranged from 79 to 89 %, and methanol concentrations dropped below method detection limits. Neither the non-enriched waste activated sludge nor any of the enrichment cultures accumulated polyhydroxyalkanoates (PHAs) under conditions of nitrogen sufficiency. Similarly, the non-enriched waste activated sludge did not accumulate PHAs under nitrogen limited conditions. By contrast, enriched cultures accumulated PHAs to nearly 14% on a dry weight basis under nitrogen limited conditions. This indicates that selectively-enriched pulp mill waste activated sludge can serve as an inoculum for PHA production from methanol-rich pulp mill effluents.

  5. Optimal utilization of waste-to-energy in an LCA perspective.

    Science.gov (United States)

    Fruergaard, T; Astrup, T

    2011-03-01

    Energy production from two types of municipal solid waste was evaluated using life cycle assessment (LCA): (1) mixed high calorific waste suitable for production of solid recovered fuels (SRF) and (2) source separated organic waste. For SRF, co-combustion was compared with mass burn incineration. For organic waste, anaerobic digestion (AD) was compared with mass burn incineration. In the case of mass burn incineration, incineration with and without energy recovery was modelled. Biogas produced from anaerobic digestion was evaluated for use both as transportation fuel and for heat and power production. All relevant consequences for energy and resource consumptions, emissions to air, water and soil, upstream processes and downstream processes were included in the LCA. Energy substitutions were considered with respect to two different energy systems: a present-day Danish system based on fossil fuels and a potential future system based on 100% renewable energy. It was found that mass burn incineration of SRF with energy recovery provided savings in all impact categories, but co-combustion was better with respect to Global Warming (GW). If all heat from incineration could be utilized, however, the two alternatives were comparable for SRF. For organic waste, mass burn incineration with energy recovery was preferable over anaerobic digestion in most impact categories. Waste composition and flue gas cleaning at co-combustion plants were critical for the environmental performance of SRF treatment, while the impacts related to utilization of the digestate were significant for the outcome of organic waste treatment. The conclusions were robust in a present-day as well as in a future energy system. This indicated that mass burn incineration with efficient energy recovery is a very environmentally competitive solution overall. Copyright © 2010 Elsevier Ltd. All rights reserved.

  6. OPTIMIZATION OF DYEING PARAMETERS TO DYE COTTON WITH CARROT EXTRACTION

    Directory of Open Access Journals (Sweden)

    MIRALLES Verónica

    2017-05-01

    Full Text Available Natural dyes derived from flora and fauna are believed to be safe because of non-toxic, non-carcinogenic and biodegradable nature. Furthermore, natural dyes do not cause pollution and waste water problems. Natural dyes as well as synthetic dyes need the optimum parameters to get a good dyeing. On some occasions, It is necessary the use of mordants to increase the affinity between cellulose fiber and natural dye, but there are other conditions to optimize in the dyeing process, like time, temperature, auxiliary porducts, etc. In addition, the optimum conditions are different depends on the type of dye and the fiber nature. The aim of this work is the use of carrot extract to dye cotton fabric by exhaustion at diverse dyeing conditions. Diffferent dyeing processes were carried out to study the effect of pH condition and the temperature, using 7, 6 and 4 pH values and 95 ºC and 130ºC for an hour. As a result some images of dyed samples are shown. Moreover, to evaluate the colour of each sample CIELAB parameters are analysed obtained by reflexion spectrophotometre. The results showed that the temperature used has an important influence on the colour of the dyed sample.

  7. Ways to achieve optimum utilization of waste gas heat in cement kiln plants with cyclone preheaters

    Energy Technology Data Exchange (ETDEWEB)

    Steinbiss, E

    1986-02-01

    Kiln exit gases and the exhaust gases from clinker coolers often cannot be fully utilized in drying plants. In such cases a part of the heat content of the gases should be utilized for water heating. In addition, it is possible to utilize the waste gas heat in conventional steam boilers, with which, depending on design, it is possible to generate electricity at a rate of between 10-30 kWh/t (net output). A new and promising method of utilization of waste gas heat is provided by precalcining systems with bypass, in which up to 100% of the kiln exit gases can be economically bypassed and be utilized in a steam boiler, without requiring any cooling. A development project, already started, gives information on the operational behaviour of such a plant and on the maximum energy recoverable. Alternatively, the bypass gases may, after partial cooling with air or preheater exit gas, be dedusted and then utilized in a grinding/drying plant. Furthermore, they can be used in the cement grinding process for the drying of wet granulated blastfurnace slag or other materials. For this it is not necessary to dedust the bypass gases.

  8. Utilization of household food waste for the production of ethanol at high dry material content.

    Science.gov (United States)

    Matsakas, Leonidas; Kekos, Dimitris; Loizidou, Maria; Christakopoulos, Paul

    2014-01-08

    Environmental issues and shortage of fossil fuels have turned the public interest to the utilization of renewable, environmentally friendly fuels, such as ethanol. In order to minimize the competition between fuels and food production, researchers are focusing their efforts to the utilization of wastes and by-products as raw materials for the production of ethanol. household food wastes are being produced in great quantities in European Union and their handling can be a challenge. Moreover, their disposal can cause severe environmental issues (for example emission of greenhouse gasses). On the other hand, they contain significant amounts of sugars (both soluble and insoluble) and they can be used as raw material for the production of ethanol. Household food wastes were utilized as raw material for the production of ethanol at high dry material consistencies. A distinct liquefaction/saccharification step has been included to the process, which rapidly reduced the viscosity of the high solid content substrate, resulting in better mixing of the fermenting microorganism. This step had a positive effect in both ethanol production and productivity, leading to a significant increase in both values, which was up to 40.81% and 4.46 fold, respectively. Remaining solids (residue) after fermentation at 45% w/v dry material (which contained also the unhydrolyzed fraction of cellulose), were subjected to a hydrothermal pretreatment in order to be utilized as raw material for a subsequent ethanol fermentation. This led to an increase of 13.16% in the ethanol production levels achieving a final ethanol yield of 107.58 g/kg dry material. In conclusion, the ability of utilizing household food waste for the production of ethanol at elevated dry material content has been demonstrated. A separate liquefaction/saccharification process can increase both ethanol production and productivity. Finally, subsequent fermentation of the remaining solids could lead to an increase of the overall

  9. Highly catalytic carbon nanotube counter electrode on plastic for dye solar cells utilizing cobalt-based redox mediator

    International Nuclear Information System (INIS)

    Aitola, Kerttu; Halme, Janne; Feldt, Sandra; Lohse, Peter; Borghei, Maryam; Kaskela, Antti; Nasibulin, Albert G.; Kauppinen, Esko I.; Lund, Peter D.; Boschloo, Gerrit; Hagfeldt, Anders

    2013-01-01

    A flexible, slightly transparent and metal-free random network of single-walled carbon nanotubes (SWCNTs) on plain polyethylene terephthalate (PET) plastic substrate outperformed platinum on conductive glass and on plastic as the counter electrode (CE) of a dye solar cell employing a Co(II/III)tris(2,2′-bipyridyl) complex redox mediator in 3-methoxypropionitrile solvent. The CE charge-transfer resistance of the SWCNT film was 0.60 Ω cm 2 , 4.0 Ω cm 2 for sputtered platinum on indium tin oxide-PET substrate and 1.7 Ω cm 2 for thermally deposited Pt on fluorine-doped tin oxide glass, respectively. The solar cell efficiencies were in the same range, thus proving that an entirely carbon-based SWCNT film on plastic is as good CE candidate for the Co electrolyte

  10. Waste resources utilization program. Progress report, period ending 30 June 1975

    International Nuclear Information System (INIS)

    1975-08-01

    Initial progress on the Waste Resources Utilization Program, a joint effort sponsored by ERDA and EPA under the terms of Interagency Agreement E(29-2)-3536/EPA-IAG-D5-0675 is reported. This program has as its objective the use of 134 Cs/ 137 Cs (a potential nuclear reactor ''waste resource'') as a gamma radiation source, coupled with modest heating, to treat sewage sludge (another ''waste resource'') to rid it of pathogenic organisms so that it may be safely used as a fertilizer or a feed supplement for ruminant animals. The potential exists for using at least 50 percent of the by-product cesium from future reactor fuel-rod reprocessing in this one application alone. Activities dealing with research on many aspects of the problem such as pathogen reduction, physical and chemical effects, cost benefit analysis, safety and security, and systems engineering are reported. (U.S.)

  11. Characteristics of Vacuum Freeze Drying with Utilization of Internal Cooling and Condenser Waste Heat for Sublimation

    Directory of Open Access Journals (Sweden)

    Muhammad Alhamid

    2013-09-01

    Full Text Available Vacuum freeze drying is an excellent drying method, but it is very energy-intensive because a relatively long drying time is required. This research investigates the utilization of condenser waste heat for sublimation as a way of accelerating the drying rate. In addition, it also investigates the effect of internal cooling combined with vacuum cooling in the pressure reduction process. Jelly fish tentacles were used as the specimen, with different configurations for condenser heat waste and internal cooling valve opening. The results show that heating with condenser heat waste can accelerate the drying rate up to 0.0035 kg/m2.s. In addition, pre-freezing by internal cooling prevents evaporation until the mass of the specimen is 0.47 g and promotes transition of the specimen into the solid phase.

  12. The thermoelectric generators use for waste heat utilization from cement plant

    Directory of Open Access Journals (Sweden)

    Sztekler Karol

    2017-01-01

    Production often entails the formation of by-product which is waste heat. One of the equipment processing heat into electricity is a thermoelectric generator. Its operation is based on the principle of thermoelectric phenomenon, which is known as a Seebeck phenomenon. The simplicity of thermoelectric phenomena allows its use in various industries, in which the main waste product is in the form of heat with the temperature of several hundred degrees. The study analyses the possibility of the thermoelectric systems use for the waste heat utilization resulting in the cement production at the cement plant. The location and design of the thermoelectric system that could be implemented in cement plant is chosen. The analysis has been prepared in the IPSEpro software.

  13. Utilization of fermentation waste (Corynebacterium glutamicum) for biosorption of Reactive Black 5 from aqueous solution

    International Nuclear Information System (INIS)

    Vijayaraghavan, K.; Yun, Yeoung-Sang

    2007-01-01

    A fermentation waste, Corynebacterium glutamicum, was successfully employed as a biosorbent for Reactive Black 5 (RB5) from aqueous solution. This paper initially studied the effect of pretreatment on the biosorption capacity of C. glutamicum toward RB5, using several chemical agents, such as HCl, H 2 SO 4 , HNO 3 , NaOH, Na 2 CO 3 , CaCl 2 and NaCl. Among these reagents, 0.1 M HNO 3 gave the maximum enhancement of the RB5 uptake, exhibiting 195 mg/g at pH 1 with an initial RB5 concentration of 500 mg/l. The solution pH and temperature were found to affect the biosorption capacity, and the biosorption isotherms derived at different pHs and temperatures revealed that a low pH (pH 1) and high temperature (35 deg. C) favored biosorption. The biosorption isotherm was well represented using three-parameter models (Redlich-Peterson and Sips) compared to two-parameter models (Langmuir and Freundlich models). As a result, high correlation coefficients and low average percentage error values were observed for three-parameter models. A maximum RB5 uptake of 419 mg/g was obtained at pH 1 and a temperature of 35 deg. C, according to the Langmuir model. The kinetics of the biosorption process with different initial concentrations (500-2000 mg/l) was also monitored, and the data were analyzed using pseudo-first and pseudo-second order models, with the latter describing the data well. Various thermodynamic parameters, such as ΔG o , ΔH o and ΔS o , were calculated, indicating that the present system was a spontaneous and endothermic process. The use of a 0.1 M NaOH solution successfully desorbed almost all the dye molecules from dye-loaded C. glutamicum biomass at different solid-to-liquid ratios examined

  14. Ionic Liquids for Utilization of Waste Heat from Distributed Power Generation Systems

    Energy Technology Data Exchange (ETDEWEB)

    Joan F. Brennecke; Mihir Sen; Edward J. Maginn; Samuel Paolucci; Mark A. Stadtherr; Peter T. Disser; Mike Zdyb

    2009-01-11

    The objective of this research project was the development of ionic liquids to capture and utilize waste heat from distributed power generation systems. Ionic Liquids (ILs) are organic salts that are liquid at room temperature and they have the potential to make fundamental and far-reaching changes in the way we use energy. In particular, the focus of this project was fundamental research on the potential use of IL/CO2 mixtures in absorption-refrigeration systems. Such systems can provide cooling by utilizing waste heat from various sources, including distributed power generation. The basic objectives of the research were to design and synthesize ILs appropriate for the task, to measure and model thermophysical properties and phase behavior of ILs and IL/CO2 mixtures, and to model the performance of IL/CO2 absorption-refrigeration systems.

  15. Application of physical separation techniques for waste utilization and management - case studies from Indian uranium deposits

    International Nuclear Information System (INIS)

    Anand Rao, K.; Sreenivas, T.

    2013-01-01

    The importance of physical beneficiation techniques in metallurgical industry showed gradual decline due to decreasing ore grades and very-fine size dissemination of valuable minerals in the host matrix. However, this technology regained prominence in recent past due to their utility in resource recycle, waste utilization, waste treatment and environmental remediation. Hybrid processes combined with physical, chemical and biological technology is now developing such that the idea of sustainable development is implemented. The uranium ore processing industry has always been under intense public scanner for some of the apprehensions, chiefly radioactivity, inspite of its immense energy delivering potential. Besides this, the chemical compounds formed due to gangue mineral reactivity and their carry-over to tailings pond added further owes. However, conscious scientific efforts are being made to contain these hazards to permissible levels by application of various remedial methods of which the physical separation techniques too are quite prominent

  16. Alternatives for management of wastes generated by the formerly utilized sites remedial action program and supplement

    International Nuclear Information System (INIS)

    Gilbert, T.L.; Peterson, J.M.; Vocke, R.W.; Alexander, J.K.

    1983-03-01

    Alternatives for disposal or stabilization of the wastes generated by the US Department of Energy's Formerly Utilized Sites Remedial Action Program (FUSRAP) are identified and compared, with emphasis on the long-term aspects. These wastes consist of soil material and rubble containing trace amounts of radionuclides. A detailed pathway analysis for the dose to the maximally exposed individual is carried out using an adaptation of the natural analogue method. Comparisons of the different alternatives, based on the results of the pathway analysis and qualitative cost considerations, indicate that, if the hazard is such that the wastes must be removed and disposed of rather than stabilized in place, disposal by immediate dispersal is preferable to containment, and containment followed by slow planned dispersal is preferable to containment without dispersal. The Supplement presents refinements of work that was reported at the 1982 International Decommissioning Symposium. The new material consists of revisions of the estimates of the predicted potential dose to the maximally exposed individual and a more detailed comparative assessment of the radiological impacts of alternatives for management of wastes generated by the US Department of Energy's Formerly Utilized Sites Remedial Action Program (FUSRAP)

  17. Utilization of metal scrap for the production of waste drums for ultimate disposal

    International Nuclear Information System (INIS)

    Janberg, K.; Rittscher, D.

    1988-01-01

    The contribution reviews the history of development of the techniques for treatment of decommissioning scrap from the beginning of the 1980's onwards (decommissioning of the Niederaichbach and Gundremmingen nuclear power stations), together with the radiological measuring methods required for regulatory purposes. The advantages of the recycling of the metal scrap by means of melting, and of materials utilization for production of waste containers for ultimate storage are discussed together with product quality assurance criteria. (RB) [de

  18. Scope for utilizing gamma radiation for microbiological control of sewage waste-water in India

    International Nuclear Information System (INIS)

    Lewis, N.F.

    1975-01-01

    Conventional methods, including the activated sludge process, the trickling filter process and oxidation pond process, of treating sewage waste in India, do not adequately ensure safe utilization of the secondary effluent for land irrigation purposes. Preliminary findings indicate that gamma radiation in the range of 0.1-0.3 Mrad effectively destroys pathogens in the secondary effluent, thereby making available very large quantities of water for land irrigation and industrial purposes. (author)

  19. Fiscal 2000 achievement report on the venture business assisting type regional consortium - Minor business creation base type. Development of high pressure fluid aided dyeing and finishing system for cellulose textile products generating no waste liquid; 2000 nendo chiiki consortium kenkyu kaihatsu jigyo seika hokokusho. Cellulose kei sen'i seihin no koatsu ryutai ni yoru muhaieki senshoku kako system no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    There is a voice in the textile dyeing industry for a dyeing and finishing method without discharge of waste liquid from the viewpoint of environmental protection. When the special coexistence effect is applied to the technology of making polar dyes soluble in high pressure carbon dioxide, according to Associate Professor Mishima of Fukuoka University, a dyeing method is feasible wherein the separation of supercritical carbon dioxide and the dye is easier than in the conventional method of dyeing in water and wherein discharge of waste liquid after dyeing is not necessary. He also writes that technologies for recovering carbon dioxide have already been established. Under this project, attention is paid to cellulose textile products which will find a great demand, and efforts are made to commercialize a novel dyeing and finishing system of the low environmental impact type. The results of the research conducted under the project involve (1) the improvement of various dyes and assistants in their degree of solution in high pressure carbon dioxide, (2) development of a technology of attaching dyes and finishing agents to textiles, (3) designing and construction of a practical high pressure fluid dyeing and finishing apparatus, (4) search for optimum dyeing conditions for textile products using the said apparatus, and (5) the reinforced functions that textile products have after being dyed. (NEDO)

  20. Laser Dyes

    Indian Academy of Sciences (India)

    amplification or generation of coherent light waves in the UV,. VIS, and near IR region. .... ciency in most flashlamp pumped dye lasers. It is used as reference dye .... have led to superior laser dyes with increased photostabilities. For instance ...

  1. Utilization of waste syrup for production of polyunsaturated fatty acids and xanthophylls by Aurantiochytrium.

    Science.gov (United States)

    Iwasaka, Hiroaki; Aki, Tsunehiro; Adachi, Hirofumi; Watanabe, Kenshi; Kawamoto, Seiji; Ono, Kazuhisa

    2013-01-01

    In the food industry, syrups containing a high concentration of sugar used for fruit preservation is abundantly discharged as a food processing waste and disposed by incineration, resulting in the rise of the manufacturing cost and environmental pollution. This study demonstrates how waste syrup can be utilized as carbon source for production of docosahexaenoic acid (DHA) and astaxanthin by the thraustochytrid strain, Aurantiochytrium sp. KH105. The strain could grow in culture medium containing 3-50% waste syrup, and the maximum yields of DHA and astaxanthin were 207.6 mg/L (at 50%) and 1.1 mg/L (at 25%), respectively. After the optimization of culture medium composition by response surface method, DHA and astaxanthin yields increased by 2.1 and 1.5 fold, respectively. When the waste syrup was treated with activated charcoal, citrate concentration in the syrup was reduced and the astaxanthin yield increased by 2.3 fold. This study shows that the waste syrup can be effectively used for the functional lipid production by the thraustochytrid.

  2. Utilization of Black Tiger Shrimp Flesh Waste for Pop Shrimp Processing

    Directory of Open Access Journals (Sweden)

    Hari Eko Irianto

    2017-05-01

    Full Text Available A study on the utilization of black  tiger shrimp (Penaeus monodon flesh waste in the processing of pop shrimp has been carried out.  So far, shrimp flesh waste is used for the production of shrimp paste, and shrimp cracker.   The objective of this study was to develop a fomula for pop shrimp production using shrimp flesh waste. Experimental design applied in this study was three-variables mixture design, in which variables observed were shrimp flesh waste, surimi and tapioca flour. Pop shrimp obtained was evaluated for sensory properties. The best product processed using a selected formula was analysed chemically and microbiologically, particularly for proxymate composition and total plate count respectively. Selected formula of pop shrimp consisted of 50.91% shrimp flesh waste, 18.18% surimi, 3.64% tapioca flour, 10.91% onion, 2.18% garlic, 0.73% pepper powder, 1.45% sugar, 0.36% monosodium glutamate, 0.73% ginger, 1.45% salt, 4.44% butter mix, 1.38% corn flour (maizena and 3.64% bread crumb. Proxymate composition of the best pop shrimp was 70.52% moisture, 0.73% ash, 0.39% fat, and 7.44% protein, while microbiological load in terms of total plate count was 3.3x103 colonies/g.

  3. Model of sustainable utilization of organic solids waste in Cundinamarca, Colombia

    Directory of Open Access Journals (Sweden)

    Solanyi Castañeda Torres

    2017-05-01

    Full Text Available Introduction: This article considers a proposal of a model of use of organic solids waste for the department of Cundinamarca, which responds to the need for a tool to support decision-making for the planning and management of organic solids waste. Objective: To perform an approximation of a conceptual technical and mathematician optimization model to support decision-making in order to minimize environmental impacts. Materials and methods: A descriptive study was applied due to the fact that some fundamental characteristics of the studied homogeneous phenomenon are presented and it is also considered to be quasi experimental. The calculation of the model for plants of the department is based on three axes (environmental, economic and social, that are present in the general equation of optimization. Results: A model of harnessing organic solids waste in the techniques of biological treatment of composting aerobic and worm cultivation is obtained, optimizing the system with the emissions savings of greenhouse gases spread into the atmosphere, and in the reduction of the overall cost of final disposal of organic solids waste in sanitary landfill. Based on the economic principle of utility that determines the environmental feasibility and sustainability in the plants of harnessing organic solids waste to the department, organic fertilizers such as compost and humus capture carbon and nitrogen that reduce the tons of CO2.

  4. Contamination of ground water as a consequence of land disposal of dye waste mixed sewage effluents: a case study of Panipat district of Haryana, India.

    Science.gov (United States)

    Dubey, S K; Yadav, Rashmi; Chaturvedi, R K; Yadav, R K; Sharma, V K; Minhas, P S

    2010-09-01

    Spatial samples of surface and ground water collected from land disposal site of dye waste mixed sewage effluents at Binjhole, in Haryana, India were analyzed to evaluate its effect on quality of pond, hand pumps and ground waters for human health and irrigation purposes. It was found that average COD and TDS of dye houses discharge (310 and 3,920 mg/L) and treated sewage (428 and 1,470 mg/L) on mixing acquired the values of 245 and 1,780 mg/L and only Pb (0.24 microg/L) was above the permissible limit for irrigation purpose. Disposal of this mixed water to village pond changes the COD and TDS to 428 and 1,470 mg/L, respectively. COD and TDS of hand pump water samples were 264 and 1,190 mg/L, where as in tube well water these values were 151 and 900 mg/L. Though the ground water contamination seemed to decrease with the increasing distance from the pond but COD, TDS and BOD values continued to be quite high in water samples drawn from the hand pumps up to a distance of 500 m from pond. However, the major cause of the concern in these waters was Pb (0.11-0.45 ppm). Crops grown with this water shows accumulation of heavy metals like Pb,Cd, Fe, Mn, Ni, Cu, and Zn but in few crops they (Zn, Pb and Cd) exceed the safe limits. Regular consumption of these crop products may lead heavy metal toxicity. It was concluded from this study that the deep seepage of effluents led to deterioration of ground water quality for drinking purposes and the well waters rendered unfit for irrigation purposes within a span of 2 years. This warrants appropriate disposal measures for sewage and dye industry effluents in order to prevent deterioration of ground water and health of human and animals.

  5. Site study plan for utilities and solid waste, Deaf Smith County Site, Texas: Environmental Field Program: Preliminary draft

    International Nuclear Information System (INIS)

    1987-06-01

    This site plan describes utilities and solid waste studies to be conducted during the characterization of the Deaf Smith County, Texas, site for the US Department of Energy's Salt Repository Project. After utilities and solid waste information needs derived from Federal, State, and local statutes and regulations and the project specifications are briefly described, the site study plan describes the study design and rationale, the field data collection procedures and equipment, and data analysis methods and application of results, the data management strategy, the schedule of field activities, the management of the study, and the study's quality assurance program. The field data collection activities are organized into programs to characterize electrical power, natural gas, communication, water, wastewater sludge, nonradiological solid waste, nonradiological hazardous waste, and low-level radiological waste. These programs include details for the collection of project needs, identification of utilities and solid waste disposal contractor capabilities, and verification of the obtained data. Utilities and solid waste field activities will begin approximately at the time of site access. Utilities and solid waste characterization will be completed within the first year of activity. 29 refs., 6 figs., 2 tabs

  6. Department of Energy plan for recovery and utilization of nuclear byproducts from defense wastes. Volume 2

    International Nuclear Information System (INIS)

    1983-08-01

    Nuclear wastes from the defense production cycle contain many uniquely useful, intrinsically valuable, and strategically important materials. These materials have a wide range of known and potential applications in food technology, agriculture, energy, public health, medicine, industrial technology, and national security. Furthermore, their removal from the nuclear waste stream can facilitate waste management and yield economic, safety, and environmental advantages in the management and disposal of the residual nuclear wastes that have no redemptive value. This document is the program plan for implementing the recovery and beneficial use of these valuable materials. An Executive Summary of this document, DOE/DP-0013, Vol. 1, January 1983, is available. Program policy, goals and strategy are stated in Section 2. Implementation tasks, schedule and funding are detailed in Section 3. The remaining five sections and the appendixes provide necessary background information to support these two sections. Section 4 reviews some of the unique properties of the individual byproduct materials and describes both demonstrated and potential applications. The amounts of byproduct materials that are available now for research and demonstration purposes, and the amounts that could be recovered in the future for expanded applications are detailed in Section 5. Section 6 describes the effects byproduct recovery and utilization have on the management and final disposal of nuclear wastes. The institutional issues that affect the recovery, processing and utilization of nuclear byproducts are discussed in Section 7. Finally, Section 8 presents a generalized mathematical process by which applications can be evaluated and prioritized (rank-ordered) to provide planning data for program management

  7. Department of Energy plan for recovery and utilization of nuclear byproducts from defense wastes. Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    1983-08-01

    Nuclear wastes from the defense production cycle contain many uniquely useful, intrinsically valuable, and strategically important materials. These materials have a wide range of known and potential applications in food technology, agriculture, energy, public health, medicine, industrial technology, and national security. Furthermore, their removal from the nuclear waste stream can facilitate waste management and yield economic, safety, and environmental advantages in the management and disposal of the residual nuclear wastes that have no redemptive value. This document is the program plan for implementing the recovery and beneficial use of these valuable materials. An Executive Summary of this document, DOE/DP-0013, Vol. 1, January 1983, is available. Program policy, goals and strategy are stated in Section 2. Implementation tasks, schedule and funding are detailed in Section 3. The remaining five sections and the appendixes provide necessary background information to support these two sections. Section 4 reviews some of the unique properties of the individual byproduct materials and describes both demonstrated and potential applications. The amounts of byproduct materials that are available now for research and demonstration purposes, and the amounts that could be recovered in the future for expanded applications are detailed in Section 5. Section 6 describes the effects byproduct recovery and utilization have on the management and final disposal of nuclear wastes. The institutional issues that affect the recovery, processing and utilization of nuclear byproducts are discussed in Section 7. Finally, Section 8 presents a generalized mathematical process by which applications can be evaluated and prioritized (rank-ordered) to provide planning data for program management.

  8. Reuse of coal mining wastes in civil engineering. Part 2: Utilization of minestone

    International Nuclear Information System (INIS)

    Skarzynska, K.M.

    1995-01-01

    The oldest method of minestone utilization is reclamation of spoil heaps by adapting them to the landscape by afforestation or agricultural management. The best method is, however, complete removal of the wastes. Hence, for many years research has been carried out to find new ways of minestone utilization to minimize disposal cost and harmful environmental effects. Earth structures offer the best possibilities of minestone utilization. Investigations conducted in recent years in Germany, the United Kingdom, France, Belgium, the Netherlands and also in Poland have led to the use of many tones of wastes in the construction of road and railroad banks, river embankments, dykes and dams, filling of land depressions and open pits, as well as for sea wharfs and land reclamation. This paper presents descriptions of minestone applications to hydraulic, harbor and road engineering as well as to mine backfilling and restoration of derelict land. Effective management of minestone is still the principal problem with respect to safety, economics and environmental protection. Hence, the propagation of minestone utilization of known sources and the search for new methods of its management are essential. Two sections in this review have been devoted to the prevention of spontaneous heating and combustion of minestone and to the impact of minestone structures on the environment and its protection

  9. Lean Six Sigma in Health Care: Improving Utilization and Reducing Waste.

    Science.gov (United States)

    Almorsy, Lamia; Khalifa, Mohamed

    2016-01-01

    Healthcare costs have been increasing worldwide mainly due to over utilization of resources. The savings potentially achievable from systematic, comprehensive, and cooperative reduction in waste are far higher than from more direct and blunter cuts in care and coverage. At King Faisal Specialist Hospital and Research Center inappropriate and over utilization of the glucose test strips used for whole blood glucose determination using glucometers was observed. The hospital implemented a project to improve its utilization. Using the Six Sigma DMAIC approach (Define, Measure, Analyze, Improve and Control), an efficient practice was put in place including updating the related internal policies and procedures and the proper implementation of an effective users' training and competency check off program. That resulted in decreasing the unnecessary Quality Control (QC) runs from 13% to 4%, decreasing the failed QC runs from 14% to 7%, lowering the QC to patient testing ratio from 24/76 to 19/81.

  10. Environmental impact of coal utilization (from raw material to waste resources): Proceedings

    International Nuclear Information System (INIS)

    Sahu, K.C.

    1991-10-01

    The proceedings contains 27 papers presented at the conference on environmental impact of coal utilization from raw material to waste resources which was held at the Indian Institute of Technology, Bombay, during 14-15 January 1991. The conference was held as a follow-up of the research project to study the impact of coal utilization. The project was undertaken jointly by the Indian Institute of Technology, Bombay and the University of Western Ontario, Canada. The project was funded by the International Development Research Centre, Ottawa (Canada). The principle themes of the conference were : occurrence of trace elements in coal, fate of trace elements during combustion of coal, characterisation of fly ash and its properties and utilization, and environmental impact of ash disposal. (M.G.B.)

  11. Utilization of Construction Waste Tiles as a Replacement for Fine Aggregates in Concrete

    Directory of Open Access Journals (Sweden)

    A. A. Adekunle

    2017-10-01

    Full Text Available Ceramic wastes are found to be suitable for usage as substitution for fine and coarse aggregates in concrete production. This study is an investigation into the utilization of waste tiles as partial replacement for fine and coarse aggregates in concrete. The control mix and other mixes containing cement, water, granite and partial replacement for sand with crushed tiles (in 5%, 10%, 15% and 20% proportions were cast, cubed, cured and crushed. Also, another mix containing cement, water, sand and partial replacement of granite with crushed tiles (in 25%, 50% and 75% proportions were cast, cubed, cured and crushed. The specimens were tested for their respective compressive strengths using the Universal Testing Machine (UTM on the 7th, 14th, 21st and 28th days of curing. At 28 days, the compressive strength value of 5% of fine-waste tiles replacement was 20.12 N/mm2 while that of 10%, 15% and 20% were 14.24 N/mm2, 11.04 N/mm2 and 10.12 N/mm2 respectively. Moreover, at 28 days, the compressive strength of 25% of coarse-waste tiles replacement shows an increase to 22.45 N/mm2 while that of 50% and 75% were 18.4 N/mm2 and 12.2 N/mm2 respectively. Thus it can be concluded that fine aggregates can be substituted at 5% waste tiles while coarse aggregates can be substituted at 25% waste tiles.>/p>

  12. Enhanced photocatalytic performance of CeO2-TiO2 nanocomposite for degradation of crystal violet dye and industrial waste effluent

    Science.gov (United States)

    Zahoor, Mehvish; Arshad, Amara; Khan, Yaqoob; Iqbal, Mazhar; Bajwa, Sadia Zafar; Soomro, Razium Ali; Ahmad, Ishaq; Butt, Faheem K.; Iqbal, M. Zubair; Wu, Aiguo; Khan, Waheed S.

    2018-03-01

    This study presents the synthesis of CeO2-TiO2 nanocomposite and its potential application for the visible light-driven photocatalytic degradation of model crystal violet dye as well as real industrial waste water. The ceria-titania (CeO2-TiO2) nanocomposite material was synthesised using facile hydrothermal route without the assistance of any template molecule. As-prepared composite was characterised by SEM, TEM, HRTEM, XRD, XPS for surface features, morphological and crystalline characters. The formed nanostructures were determined to possess crystal-like geometrical shape and average size less than 100 nm. The as-synthesised nanocomposite was further investigated for their heterogeneous photocatalytic potential against the oxidative degradation of CV dye taken as model pollutant. The photo-catalytic performance of the as-synthesised material was evaluated both under ultra-violet as well as visible light. Best photocatalytic performance was achieved under visible light with complete degradation (100%) exhibited within 60 min of irradiation time. The kinetics of the photocatalytic process were also considered and the reaction rate constant for CeO2-TiO2 nanocomposite was determined to be 0.0125 and 0.0662 min-1 for ultra-violet and visible region, respectively. In addition, the as-synthesised nanocomposite demonstrated promising results when considered for the photo-catalytic degradation of coloured industrial waste water collected from local textile industry situated in Faisalabad region of Pakistan. Enhanced photo-catalytic performance of CeO2-TiO2 nanocomposite was proposed owing to heterostructure formation leading to reduced electron-hole recombination.

  13. Sacramento Municipal Utility district's interim onsite storage building for low level radioactive waste

    International Nuclear Information System (INIS)

    Gillis, E.

    1986-01-01

    In order to meet current and anticipated needs for the low level radwaste management program at the Rancho Seco Nuclear Generating Station, the Sacramento Municipal Utility District has a design and construction program underway which will provide an onsite interim storage facility that can be expanded in two and one-half year increments. The design approach utilized allows capital investment to be minimized and still provides radwaste management flexibility in anticipation of delays in resolution of the nationwide long term radwaste disposal situation. The facility provides storage and material accountability for all low level radwastes generated by the plant. Wastes are segregated by radioactivity level and are stored in two separate storage areas located within one facility. Lower activity wastes are stored in a lightly shielded structure and handled by lift trucks, while the higher activity wastes are stored in a highly shielded structure and handled remotely by manual bridge crane. The layout of the structure provides for economy of operation and minimizes personnel radiation exposure. Design philosophy and criteria, building layout and systems, estimated costs and construction schedule are discussed

  14. Process of optimization of district heat production by utilizing waste energy from metallurgical processes

    Science.gov (United States)

    Konovšek, Damjan; Fužir, Miran; Slatinek, Matic; Šepul, Tanja; Plesnik, Kristijan; Lečnik, Samo

    2017-07-01

    In a consortium with SIJ (Slovenian Steel Group), Metal Ravne, the local community of Ravne na Koro\\vskem and the public research Institut Jožef Stefan, with its registered office in Slovenia, Petrol Energetika, d.o.o. set up a technical and technological platform of an innovative energy case for a transition of steel industry into circular economy with a complete energy solution called »Utilization of Waste Heat from Metallurgical Processes for District Heating of Ravne na Koro\\vskem. This is the first such project designed for a useful utilization of waste heat in steel industry which uses modern technology and innovative system solutions for an integration of a smart, efficient and sustainable heating and cooling system and which shows a growth potential. This will allow the industry and cities to make energy savings, to improve the quality of air and to increase the benefits for the society we live in. On the basis of circular economy, we designed a target-oriented co-operation of economy, local community and public research institute to produce new business models where end consumers are put into the centre. This innovation opens the door for steel industry and local community to a joint aim that is a transition into efficient low-carbon energy systems which are based on involvement of natural local conditions, renewable energy sources, the use of waste heat and with respect for the principles of sustainable development.

  15. Utilization of Solid Waste as a Substrate for Production of Oil from Oleaginous Microorganisms

    Directory of Open Access Journals (Sweden)

    Fortunate Laker

    2018-01-01

    Full Text Available The overwhelming demand of oil and fats to meet the ever increasing needs for biofuel, cosmetics production, and other industrial purposes has enhanced a number of innovations in this industry. One such innovation is the use of microorganisms as alternative sources of oil and fats. Organic solid waste that is causing a big challenge of disposal worldwide is biodegradable and can be utilized as substrate for alternative oil production. The study evaluated the potential of isolated yeast-like colonies to grow and accumulate oil by using organic solid waste as substrate. Of the 25 yeast-like colonies isolated from the soil samples collected from three different suburbs in Kampala district, Uganda, 20 were screened positive for accumulation of lipid but only 2 were oleaginous. The NHC isolate with the best oil accumulation potential of 48.8% was used in the central composite design (CCD experiments. The CCD experimental results revealed a maximum oil yield of 61.5% from 1.25 g/L cell biomass at 10 g/L of solid waste and temperature of 25°C. The study revealed that organic solid waste could be used as a substrate for microbial oil production.

  16. Utilization of Solid Waste as a Substrate for Production of Oil from Oleaginous Microorganisms.

    Science.gov (United States)

    Laker, Fortunate; Agaba, Arnold; Akatukunda, Andrew; Gazet, Robert; Barasa, Joshua; Nanyonga, Sarah; Wendiro, Deborah; Wacoo, Alex Paul

    2018-01-01

    The overwhelming demand of oil and fats to meet the ever increasing needs for biofuel, cosmetics production, and other industrial purposes has enhanced a number of innovations in this industry. One such innovation is the use of microorganisms as alternative sources of oil and fats. Organic solid waste that is causing a big challenge of disposal worldwide is biodegradable and can be utilized as substrate for alternative oil production. The study evaluated the potential of isolated yeast-like colonies to grow and accumulate oil by using organic solid waste as substrate. Of the 25 yeast-like colonies isolated from the soil samples collected from three different suburbs in Kampala district, Uganda, 20 were screened positive for accumulation of lipid but only 2 were oleaginous. The NHC isolate with the best oil accumulation potential of 48.8% was used in the central composite design (CCD) experiments. The CCD experimental results revealed a maximum oil yield of 61.5% from 1.25 g/L cell biomass at 10 g/L of solid waste and temperature of 25°C. The study revealed that organic solid waste could be used as a substrate for microbial oil production.

  17. Utilization of ferrochrome wastes such as ferrochrome ash and ferrochrome slag in concrete manufacturing.

    Science.gov (United States)

    Acharya, Prasanna K; Patro, Sanjaya K

    2016-08-01

    Solid waste management is one of the subjects essentially addressing the current interest today. Due to the scarcity of land filling area, utilization of wastes in the construction sector has become an attractive proposition for disposal. Ferrochrome ash (FA) is a dust obtained as a waste material from the gas cleaning plant of Ferro alloy industries. It possesses the chemical requirements of granulated slag material used for the manufacture of Portland cement. Ferrochrome slag (FS) is another residue that is obtained as a solid waste by the smelting process during the production of stainless steel in Ferroalloy industries. FS possesses the required engineering properties of coarse aggregates. The possibility of using FA with lime for partial replacement of ordinary Portland cement (OPC) and FS for total replacement of natural coarse aggregates is explored in this research. The combined effect of FA with lime and FS-addition on the properties of concrete, such as workability, compressive strength, flexural strength, splitting tensile strength and sorptivity, were studied. Results of investigation revealed improvement in strength and durability properties of concrete on inclusion of FA and FS. Concrete mix containing 40% FA with 7% lime (replacing 47% OPC) and100% of FS (replacing 100% natural coarse aggregate) achieved the properties of normal concrete or even better properties at all ages. The results were confirmed by microscopic study such as X-ray diffraction and petrography examination. Environmental compatibility of concrete containing FA and FS was verified by the toxicity characteristic leaching procedure test. © The Author(s) 2016.

  18. A novel approach in organic waste utilization through biochar addition in wood/polypropylene composites

    Energy Technology Data Exchange (ETDEWEB)

    Das, Oisik [Department of Civil and Environmental Engineering, University of Auckland, Auckland 1142 (New Zealand); Sarmah, Ajit K., E-mail: a.sarmah@auckland.ac.nz [Department of Civil and Environmental Engineering, University of Auckland, Auckland 1142 (New Zealand); Bhattacharyya, Debes [Department of Mechanical Engineering, Center for Advanced Composite Materials, University of Auckland, Auckland 1142 (New Zealand)

    2015-04-15

    Highlights: • Biochar made from waste wood was added with wood polypropylene composites. • 24% biochar gave the best mechanical properties. • 6% biochar had no effect on physico-mechanical properties of composites. • Coupling agent remained unreacted in composites having higher amount of biochar. - Abstract: In an attempt to concurrently address the issues related to landfill gas emission and utilization of organic wastes, a relatively novel idea is introduced to develop biocomposites where biochar made from pyrolysis of waste wood (Pinus radiata) is added with the same wood, plastic/polymer (polypropylene) and maleated anhydride polypropylene (MAPP). Experiments were conducted by manufacturing wood and polypropylene composites (WPCs) mixed with 6 wt%, 12 wt%, 18 wt%, 24 wt%, and 30 wt% biochar. Though 6 wt% addition had similar properties to that of the control (composite without biochar), increasing biochar content to 24 wt% improved the composite’s tensile/flexural strengths and moduli. The biochar, having high surface area due to fine particles and being highly carbonised, acted as reinforcing filler in the biocomposite. Composites having 12 wt% and 18 wt% of biochar were found to be the most ductile and thermally stable, respectively. This study demonstrates that, WPCs added with biochar has good potential to mitigate wastes while simultaneously producing biocomposites having properties that might be suited for various end applications.

  19. A novel approach in organic waste utilization through biochar addition in wood/polypropylene composites

    International Nuclear Information System (INIS)

    Das, Oisik; Sarmah, Ajit K.; Bhattacharyya, Debes

    2015-01-01

    Highlights: • Biochar made from waste wood was added with wood polypropylene composites. • 24% biochar gave the best mechanical properties. • 6% biochar had no effect on physico-mechanical properties of composites. • Coupling agent remained unreacted in composites having higher amount of biochar. - Abstract: In an attempt to concurrently address the issues related to landfill gas emission and utilization of organic wastes, a relatively novel idea is introduced to develop biocomposites where biochar made from pyrolysis of waste wood (Pinus radiata) is added with the same wood, plastic/polymer (polypropylene) and maleated anhydride polypropylene (MAPP). Experiments were conducted by manufacturing wood and polypropylene composites (WPCs) mixed with 6 wt%, 12 wt%, 18 wt%, 24 wt%, and 30 wt% biochar. Though 6 wt% addition had similar properties to that of the control (composite without biochar), increasing biochar content to 24 wt% improved the composite’s tensile/flexural strengths and moduli. The biochar, having high surface area due to fine particles and being highly carbonised, acted as reinforcing filler in the biocomposite. Composites having 12 wt% and 18 wt% of biochar were found to be the most ductile and thermally stable, respectively. This study demonstrates that, WPCs added with biochar has good potential to mitigate wastes while simultaneously producing biocomposites having properties that might be suited for various end applications

  20. Waste heat utilization in the thermal spa of Lavey-les-Bains

    International Nuclear Information System (INIS)

    2004-01-01

    This final report for the Swiss Federal Office of Energy looks at the possibilities for improved waste water utilization in the Lavey-les-Bains thermal spa, Switzerland. According to the regulations in force, the temperature of the waste water rejected into the Rhone river shall not exceed 30 o C, what is currently not the case. Also the operational cost shall be reduced and the waste water quality improved. The installations are presented. From the two geothermal wells, mineral water comes out at an average flow rate of 940 l/min and a temperature of 63 o C. Actual waste water data are reported. The measured thermal water consumption data, including seasonal variations, are analysed by computerized simulation and measures to reduce the consumed volume by the optimization of internal procedures are evaluated. Measures to reduce the quantity of the rejected free chlorine are discussed. Several possible adaptations of the existing space heating, domestic water heating and pools' heating are evaluated, including cost. In addition, extensions of the thermal spa center to recreational activities are discussed, as the construction of a tropical greenhouse is

  1. Low temperature industrial waste heat utilization in the area 'Speyer-Ludwigshafen-Frankenthal-Worms'

    International Nuclear Information System (INIS)

    Nunold, K.; Krebs, A.

    1982-01-01

    The aim of the study is the elaboration of reliable facts whether and under which conditions low temperature industrial waste heat systems can be economically utilized for heating purposes. The source of the waste heat are power- and industrial plants. In order to obtain reliable results, investigations have been carried out in the area Speyer-Ludwigshafen-Frankenthal and Worms. These investigations showed a number of application possibilities for heat pumps and it became moreover evident that there is a high variaiton of the heat requirement due to social components and the different type of building structures of the consumers. The economic results showed that the application of this heating system can under certain conditions supplement resp. replace other heating systems. (orig.) [de

  2. Soil warming for utilization and dissipation of waste heat from power generation in Pennsylvania

    International Nuclear Information System (INIS)

    DeWalle, D.R.

    1977-01-01

    The purpose of this paper is to describe the Penn State research project, which studies the soil warming by circulation of heated power plant discharge water through a buried pipe network. Waste heat can be utilized by soil warming for increased crop growth in open fields with proper selection of crops and cropping systems. Dissipation of waste heat from a buried pipe network can be predicted using either of two steady-state conduction equations tested. Accurate predictions are dependent upon estimates of the pipe outer-surface temperatures, soil surface temperatures in heated soil and soil thermal conductivity. The effect of economic optimization on soil-warming land area requirements for a 1500 MWe power plant in Pennsylvania is presented. (M.S.)

  3. Feasibility study on utilization of vitrified radioactive waste as radiation sources

    International Nuclear Information System (INIS)

    Makuuchi, Keizo; Yoshii, Fumio; Hyakutake, Kenichiro

    1995-01-01

    A feasibility study on utilization of vitrified high level radioactive waste (VW) as radiation source has been carried out. Natural rubber latex was radiation vulcanized with VW to demonstrate the feasibility. The dose rate was 0.1 kGy/hr. As a sensitizer, n-butyl acrylate was added. Negligible small activation of natural rubber (NR) latex by neutron from the VW was observed. The residual sensitizer in the irradiated latex and physical properties of film molded from the irradiated latex were the same level with the conventional radiation vulcanization of NR latex with γ-rays from Co-60. Surgical gloves and protective rubber gloves for radioactive contamination were produced from 20 litters of NR latex vulcanized with 2 VWs. The physical properties of both gloves were acceptable. These results suggested that vitrified high level waste can be used as an industrial radiation source. (author)

  4. Device for district heating with utilization of waste heat from power plants

    International Nuclear Information System (INIS)

    Korek, J.

    1976-01-01

    In order to utilize the waste heat developing in power plants - especially in nuclear power plants - the author suggests to lead the waste heat of the coolers for oil (which the bearings are lubricated with), hydrogen (which serves for the stator rotor-cooling), and the stator cooling water to the circulating district heating water and to arrange these heat exchangers one behind another or parallel to each other in the water circuit of the district heating system. The oil cooler of the engine transformer is also connected with the circulation of the district heating water. The runback water of the district heating network could thus be heated from approx. 40 0 C up to 65 0 C. (UA) [de

  5. Nonphotochemical Hole-Burning Imaging Studies of in vitro Carcinoma and Normal Cells Utilizing a Mitochondrial Specific Dye

    Energy Technology Data Exchange (ETDEWEB)

    Walsh, Richard Joseph [Iowa State Univ., Ames, IA (United States)

    2002-01-01

    Low temperature Nonphotochemical Hole Burning (NPHB) Spectroscopy of the dye rhodamine 800 (MF680) was applied for the purpose of discerning differences between cultured normal and carcinoma ovarian surface epithelial (OSE) cells. Both the cell lines were developed and characterized at the Mayo Clinic (Rochester, MN), with the normal cell line having been transfected with a strain of temperature sensitive Simian Virus 40 Large T Antigen (SV40) for the purpose of extending the life of the cell culture without inducing permanent changes in the characteristics of the cell line. The cationic lipophilic fluorophore rhodamine 800 preferentially locates in in situ mitochondria due to the high lipid composition of mitochondria and the generation of a large negative membrane potential (relative to the cellular cytoplasm) for oxidative phosphorylation. Results presented for NPHB of MF680 located in the cells show significant differences between the two cell lines. The results are interpreted on the basis of the NPHB mechanism and characteristic interactions between the host (cellular mitochondrial) and the guest (MF680) in the burning of spectral holes, thus providing an image of the cellular ultrastructure. Hole growth kinetics (HGK) were found to differ markedly between the two cell lines, with the carcinoma cell line burning at a faster average rate for the same exposure fluence. Theoretical fits to the data suggest a lower degree of structural heterogeneity in the carcinoma cell line relative to the normal cell line. Measurement of changes in the permanent dipole moment (fΔμ) were accomplished by measurement of changes in hole width in response to the application of an external electric field (the Stark effect), and found that Δμ values for the carcinoma line were 1.5x greater than those of the SV40 antigen-free normal analogs. These findings are interpreted in terms of effects from the mitochondrial membrane potential. Results for HGK on the scale of single cells is

  6. Nonphotochemical Hole-Burning Imaging Studies of In Vitro Carcinoma and Normal Cells Utilizing a Mitochondrial Specific Dye

    Energy Technology Data Exchange (ETDEWEB)

    Walsh, Richard Joseph [Iowa State Univ., Ames, IA (United States)

    2002-01-01

    Low temperature Nonphotochemical Hole Burning (NPHB) Spectroscopy of the dye rhodamine 800 (MF680) was applied for the purpose of discerning differences between cultured normal and carcinoma ovarian surface epithelial (OSE) cells. Both the cell lines were developed and characterized at the Mayo Clinic (Rochester, MN), with the normal cell line having been transfected with a strain of temperature sensitive Simian Virus 40 Large T Antigen (SV40) for the purpose of extending the life of the cell culture without inducing permanent changes in the characteristics of the cell line. The cationic lipophilic fluorophore rhodamine 800 preferentially locates in in situ mitochondria due to the high lipid composition of mitochondria and the generation of a large negative membrane potential (relative to the cellular cytoplasm) for oxidative phosphorylation. Results presented for NPHB of MF680 located in the cells show significant differences between the two cell lines. The results are interpreted on the basis of the NPHB mechanism and characteristic interactions between the host (cellular mitochondrial) and the guest (MF680) in the burning of spectral holes, thus providing an image of the cellular ultrastructure. Hole growth kinetics (HGK) were found to differ markedly between the two cell lines, with the carcinoma cell line burning at a faster average rate for the same exposure fluence. Theoretical fits to the data suggest a lower degree of structural heterogeneity in the carcinoma cell line relative to the normal cell line. Measurement of changes in the permanent dipole moment (fΔμ)were accomplished by measurement of changes in hole width in response to the application of an external electric field (the Stark effect), and found that Δμ values for the carcinoma line were 1.5x greater than those of the SV40 antigen-free normal analogs. These findings are interpreted in terms of effects from the mitochondrial membrane potential. Results for HGK on the scale of single cells is

  7. Some problems in utilization system of FP nuclides and actinides in the high level liquid wastes

    International Nuclear Information System (INIS)

    Ichiyanagi, Katsuaki; Emura, Satoru

    1974-01-01

    There are three nuclides of sup(134/137)Cs for irradiation sources, 90 Sr for radioisotope thermoelectric generators, and 238 Pu for cardiac pacemakers, as the nuclides for which considerable demand is expected in near future among those contained in reprocessed high level liquid wastes. Technical problems are first described from the viewpoint of utilization system. Then the control system of reprocessed high level wastes is expained. Finally, economic possibility and problems in their utilization are discussed. Being in competition with 60 Co, the price of sup(134/137)Cs will be lower than that of 60 Co after a decade. The annual demand in 1985 may be 6.1 x 10 6 Ci. The conclusive factor of 90 Sr market price is hard to get because it finds no strong competitive nuclides. It may be about 20 yen/Ci after ten years. Demand is expected to be approximately 1.2 x 10 7 Ci/year. However it is pretty hard to pay the cost of group separation and solidification, storage and conversion to products with such gain. It is estimated that the balance of income and outgo would be almost profitable, if the utilization of FP nuclides would progress and the demand three times as large as this assumption would be developed. (Wakatsuki, Y.)

  8. Utilization of waste expanded polystyrene: Blends with silica-filled natural rubber

    International Nuclear Information System (INIS)

    Sekharan, Renju Vaikathusseril; Abraham, Beena Thattekatt; Thachil, Eby Thomas

    2012-01-01

    Highlights: ► Tensile strength of the silica filled blend is comparable with silica filled NR. ► Modulus and compression set were the best for compatibilized NR/EPS blends. ► Tear strength has increased by 25% for compatibilized blends. ► A 5% waste EPS can be incorporated into NR compounds as a waste management measure. -- Abstract: Expanded polystyrene (EPS) constitutes a considerable part of thermoplastic waste in the environment in terms of volume. In this study, this waste material has been utilized for blending with silica-reinforced natural rubber (NR). The NR/EPS (35/5) blends were prepared by melt mixing in a Brabender Plasticorder. Since NR and EPS are incompatible and immiscible a method has been devised to improve compatibility. For this, EPS and NR were initially grafted with maleic anhydride (MA) using dicumyl peroxide (DCP) to give a graft copolymer. Grafting was confirmed by Fourier Transform Infrared Spectroscopy (FTIR) spectroscopy. This grafted blend was subsequently blended with more of NR during mill compounding. Morphological studies using Scanning Electron Microscopy (SEM) showed better dispersion of EPS in the compatibilized blend compared to the noncompatibilized blend. By this technique, the tensile strength, elongation at break, modulus, tear strength, compression set and hardness of the blend were found to be either at par with or better than that of virgin silica filled NR compound. It is also noted that the thermal properties of the blends are equivalent with that of virgin NR. The study establishes the potential of this method for utilising waste EPS.

  9. Multiattribute utility analysis of alternative sites for the disposal of nuclear waste

    International Nuclear Information System (INIS)

    Merkhofer, M.W.; Keeney, R.L.

    1987-01-01

    Five potential sites nominated for the Nation's first geologic repository for disposing of nuclear waste are evaluated using multiattribute utility analysis. The analysis was designed to aid the Department of Energy in its selection of 3 sites for characterization, a detailed data-gathering process that will involve the construction of exploratory shafts for underground testing and that may cost as much as $1 billion per site. The analysis produced insights into the relative advantages and disadvantages of the nominated sites and clarified current uncertainties regarding repository performance

  10. Drying of bio fuel utilizing waste heat; Torkning av biobraenslen med spillvaerme

    Energy Technology Data Exchange (ETDEWEB)

    Johansson, Inge; Larsson, Sara; Wennberg, Olle [S.E.P. Scandinavian Energy Project AB, Goeteborg (Sweden)

    2004-10-01

    Many industries today have large sources of low grade heat (waste heat), however this energy is mainly lost with effluents to air and water. The aim of this study has been to investigate the technical and economical aspects of utilizing this low grade heat to dry biofuel. The project has been mainly focused towards the forest industry since they have both large amounts of biofuel and waste heat available. Drying of biofuel could generate added revenue (or reduced purchase costs) and through that also create larger incentives for further energy saving modifications to the main process. Due to the higher moisture content together with the risk of frozen bark in the winter time, additional fuels (such as oil) to combust bark in the existing boiler. This is mainly the case when mechanical dewatering is not available. Drying of bark results in an added energy value, which makes it possible to combust the bark without additional fuel. The primary energy demand, in the form of electricity and optional additional heating at load peaks, is low when waste heat is used for the drying process. In this way it is possible to increase the biofuel potential, since the primary energy input to the drying process is essentially lower then the increased energy value of the fuel. Drying also decreases the biological degradation of the fuel. Taking all the above into consideration, waste heat drying could result in a 25 % increase of the biofuel potential in the forest industry in Sweden, without additional cutting of wood. A survey has been done to state which commercial technologies are available for biofuel drying with waste heat. An inquiry was sent out to a number of suppliers and included a few different cases. Relations for approximating investment cost as well as electric power demand were created based on the answers from the inquiry. These relations have then been used in the economical evaluations made for a number of cases representing both sawmills and pulp and paper mills

  11. Progress report Waste Resources Utilization Program period ending March 31, 1976

    International Nuclear Information System (INIS)

    1976-06-01

    This report describes the work on the Waste Resources Utilization Program for the quarter ending March 31, 1976. The purpose of this program is to develop technologies to utilize a 137 Cs γ source to modify sewage sludge for safe application as a fertilizer or an animal feed supplement. Results are reported from studies in microbiology, virology, and physical-chemical studies. Determinations were made of inactivation rates for Salmonella species, coliforms, and fecal strep in sewage sludge when radiation and thermoradiation were applied while bubbling oxygen through the sludge. Virology studies were continued investigating virucidal characteristics of anaerobically digested sludge. Another area of study was the dewatering of sewage sludge to reduce the drying time of the sewage sludge in the drying beds. A centrifuge was also installed to dewater treated sludge to approximately 30 percent solids

  12. Multiattribute utility analysis as a framework for public participation siting a hazardous waste facility

    International Nuclear Information System (INIS)

    Merkhofer, M.W.; Conway, R.; Anderson, R.G.

    1996-01-01

    How can the public play a role in decisions involving complicated scientific arguments? This paper describes a public participation exercise in which stakeholders used multiattribute utility analysis to select a site for a hazardous waste facility. Key to success was the ability to separate and address the two types of judgements inherent in environmental decisions: technical judgements on the likely consequences of alternative choices and value judgements on the importance or seriousness of those consequences. This enabled technical specialists to communicate the essential technical considerations and allowed stakeholders to establish the value judgements for the decision. Although rarely used in public participation, the multiattribute utility approach appears to provide a useful framework for the collaborative resolution of many complex environmental decision problems

  13. INVESTIGATION ON UTILITY OF PLASTIC WASTE AS AN ADDITIVE FOR BITUMINOUS CONCRETE USING WET PROCESS OF MIXING

    Directory of Open Access Journals (Sweden)

    Anurag Virendra Tiwari

    2017-12-01

    Full Text Available Purpose. Plastic waste has become a major environmental issue of concern due to its exponential growth due to rapid urbanization. The paper investigates utility of plastic waste as an additive for bituminous concrete using wet process of mixing. Methodology. The methodology for the present paper has been designed with complex research consisting of Marshall mix design of the bituminous mix added with plastic waste for modifying bitumen using wet process of mixing, performing the tests on the samples and analyzing the results in the form of table and figures. In the present paper LDPE and HDPE type of plastic waste are used to modify the bitumen. Finding. The results show that addition of 6 percent of bitumen improves the Marshall properties of the mix. Use of plastic to modify the bitumen not only makes the road surface more durable but also it is an eco-friendly way of proper disposal of plastic waste. Originality. The processes used for mixing the plastic waste to the bitumen are dry process and wet process. Dry process of mixing the plastic waste to the bituminous mix is most common and lot of study is carried out on its application. In the present paper wet process of mixing has not yet been studied much. Practical Value. The practical application of utilizing the plastic waste to modify bitumen in the bituminous mix improves the stability values resulting in the more durable road surface. Also the method ensures the proper disposal of plastic waste in eco-friendly way.

  14. Utilization of different waste proteins to create a novel PGPR-containing bio-organic fertilizer

    Science.gov (United States)

    Huang, Yan; Sun, Li; Zhao, Jianshu; Huang, Rong; Li, Rong; Shen, Qirong

    2015-01-01

    High-quality bio-organic fertilizers (BIOs) cannot be produced without the addition of some proteins, while many waste proteins are haphazardly disposed, causing serious environmental pollution. In this study, several waste proteins were used as additives to assist with the reproduction of the functional microbe (Bacillus amyloliquefaciens SQR9) inoculated into matured composts to produce BIOs. An optimized composition of solid-state fermentation (SSF) raw materials was predicted by response surface methodology and experimental validation. The results showed that 7.61% (w/w, DW, the same below) rapeseed meal, 8.85% expanded feather meal, 6.47% dewatered blue algal sludge and 77.07% chicken compost resulted in maximum biomass of strain SQR-9 and the maximum amount of lipopeptides 7 days after SSF. Spectroscopy experiments showed that the inner material structural changes in the novel SSF differed from the control and the novel BIO had higher dissolved organic matter. This study offers a high value-added utilization of waste proteins for producing economical but high-quality BIO. PMID:25586328

  15. Utilization of different waste proteins to create a novel PGPR-containing bio-organic fertilizer

    Science.gov (United States)

    Huang, Yan; Sun, Li; Zhao, Jianshu; Huang, Rong; Li, Rong; Shen, Qirong

    2015-01-01

    High-quality bio-organic fertilizers (BIOs) cannot be produced without the addition of some proteins, while many waste proteins are haphazardly disposed, causing serious environmental pollution. In this study, several waste proteins were used as additives to assist with the reproduction of the functional microbe (Bacillus amyloliquefaciens SQR9) inoculated into matured composts to produce BIOs. An optimized composition of solid-state fermentation (SSF) raw materials was predicted by response surface methodology and experimental validation. The results showed that 7.61% (w/w, DW, the same below) rapeseed meal, 8.85% expanded feather meal, 6.47% dewatered blue algal sludge and 77.07% chicken compost resulted in maximum biomass of strain SQR-9 and the maximum amount of lipopeptides 7 days after SSF. Spectroscopy experiments showed that the inner material structural changes in the novel SSF differed from the control and the novel BIO had higher dissolved organic matter. This study offers a high value-added utilization of waste proteins for producing economical but high-quality BIO.

  16. Investigation of the Stability of the Ruthenium based Dye (N719) Utilizing the Polarization Properties of Dispersive Raman Modes and/or of the Fluorescent Emission

    DEFF Research Database (Denmark)

    Hassing, Søren; Jernshøj, Kit Drescher; Phuong, Nguyen

    2013-01-01

    a dye and the degradation products possibly formed in a DSC under working conditions. We have carried out the preliminary steps in this direction by showing that a distinction between the commonly used dye N719 and the main degradation product [Ru(LH)2(NCS)(4-tert-butylpyridine)][N(Bu)4] (N719-TBP...

  17. Feasibility of solar-pumped dye lasers

    Science.gov (United States)

    Lee, Ja H.; Kim, Kyung C.; Kim, Kyong H.

    1987-01-01

    Dye laser gains were measured at various pump-beam irradiances on a dye cell in order to evaluate the feasibility of solar pumping. Rhodamine 6G dye was considered as a candidate for the solar-pumped laser because of its high utilization of the solar spectrum and high quantum efficiency. Measurements show that a solar concentration of 20,000 is required to reach the threshold of the dye.

  18. Water Pollution and Treatments Part II: Utilization of Agricultural Wastes to Remove Petroleum Oils From Refineries Pollutants Present in Waste Water

    International Nuclear Information System (INIS)

    Ali, N.A.; El-Emary, M.M.

    2011-01-01

    Several natural agricultural wastes, of lignocellulose nature, such as Nile flower plant (ward El-Nil), milled green leaves, sugar cane wastes, palm tree leaves (carina), milled cotton stems, milled linseed stems, fine sawdust, coarse sawdust and palm tree cover were dried and then crushed to suitable size to be evaluated and utilized as adsorbents to remove oils floating or suspended in the waste water effluents from refineries and petroleum installations. The parameters investigated include effect of adsorbent type (adsorptive efficiency), adsorbate (type and concentration), mixing time, salinity of the water, adsorbent ratio to treated water, temperature, ph and stirring. Two different Egyptian crude oils varying in their properties and several refined products such as gasoline, kerosene, gas oil, diesel oil, fuel oil and lubricating oil were employed in this work in addition to the skimmed oil from the skim basin separator. Most of the agricultural wastes proved to be very effective in adsorbing oils from waste water effluents.

  19. Analysis of economic and energy utilization aspects for waste heat aquaculture

    Energy Technology Data Exchange (ETDEWEB)

    Olszewski, M.; Wilson, J. V.

    1978-01-01

    A waste heat aquaculture system using extensive culture techniques to produce fin and shellfish is currently under investigation at the Oak Ridge National Laboratory. The system uses nutrients in waste water streams to grow algae and zooplankton which are fed to fish and clams. A tilapia polyculture association and the freshwater clam Corbicula are the animals cultured in the system. The investigations were performed to determine the economic feasibility of the system and examine energy utilization in the system. A net energy analysis was performed to identify the energy saving potential for the system. This analysis includes all energy costs (both direct and indirect) associated with building and operating the system. The results of the economic study indicated that fish production costs of $0.55/kg ($0.25/lb) were possible. This cost, however, depends upon the fish production rate and food conversion efficiency and could rise to as much as $1.65/kg ($0.75/lb). Clam production costs were found to be in the neighborhood of $0.37/kg of clam meat ($1.24/bushel). The energy utilization study results indicated that, when all energy costs are included, fish from the aquaculture system may require only 35% of the net energy now required for fish products from the ocean. However, the energy requirements also depend on system parameters and could be as large as the energy required for ocean caught products. Clams can be produced in the aquaculture system using only about 25% of the net energy required by traditional means. The results of the analysis indicate that the system appears to be economically feasible. They also indicate that significant energy savings are possible if waste heat aquaculture products replace ocean caught products.

  20. Multiple utilization of energy in buildings. Utilization of waste heat at the Blood Transfusion Service; Energie im Gebaeude mehrfach nutzen. Abwaermenutzung beim Blutspendedienst Nord

    Energy Technology Data Exchange (ETDEWEB)

    Gaigalat, Jens

    2012-11-01

    For the Blood Transfusion Service North the German Red Cross (Berlin, Federal Republic of Germany) utilizes the waste heat from production facilities and laboratories for heating offices. By doing this, the VRV technology for the realization of this solution was used.

  1. Adsorption isotherms, kinetics and column operations for the removal of hazardous dye, Tartrazine from aqueous solutions using waste materials-Bottom Ash and De-Oiled Soya, as adsorbents

    International Nuclear Information System (INIS)

    Mittal, Alok; Mittal, Jyoti; Kurup, Lisha

    2006-01-01

    Adsorbents, Bottom Ash (a power plant waste) and De-Oiled Soya (an agricultural waste) exhibit good efficacy to adsorb a highly toxic dye, Tartrazine. Through the batch technique equilibrium uptake of the dye is observed at different concentrations, pH of the solution, dosage of adsorbents and sieve size of adsorbents. Langmuir and Freundlich adsorption isotherms are successfully employed on both the adsorbents and on the basis of these models the thermodynamic parameters are evaluated. Kinetic investigations reveal that more than 50% adsorption of dye is achieved in about 1 h in both the cases, whereas, equilibrium establishment takes about 3-4 h. The linear plots obtained in rate constant and mass transfer studies further confirm the applicability of first order rate expression and mass transfer model, respectively. The kinetic data treated to identify rate controlling step of the ongoing adsorption processes indicate that for both the systems, particle diffusion process is predominant at higher concentrations, while film diffusion takes place at lower concentrations. The column studies reveal that about 96% saturation of both the columns is attained during their exhaustion, while about 88 and 84% of the dye material is recovered by eluting dilute NaOH solution through exhausted Bottom Ash and De-Oiled Soya columns, respectively

  2. Adsorption isotherms, kinetics and column operations for the removal of hazardous dye, Tartrazine from aqueous solutions using waste materials-Bottom Ash and De-Oiled Soya, as adsorbents

    Energy Technology Data Exchange (ETDEWEB)

    Mittal, Alok [Department of Applied Chemistry, Maulana Azad National Institute of Technology, Bhopal 462 007 (India)]. E-mail: aljymittal@yahoo.co.in; Mittal, Jyoti [Department of Applied Chemistry, Maulana Azad National Institute of Technology, Bhopal 462 007 (India); Kurup, Lisha [Department of Applied Chemistry, Maulana Azad National Institute of Technology, Bhopal 462 007 (India)

    2006-08-25

    Adsorbents, Bottom Ash (a power plant waste) and De-Oiled Soya (an agricultural waste) exhibit good efficacy to adsorb a highly toxic dye, Tartrazine. Through the batch technique equilibrium uptake of the dye is observed at different concentrations, pH of the solution, dosage of adsorbents and sieve size of adsorbents. Langmuir and Freundlich adsorption isotherms are successfully employed on both the adsorbents and on the basis of these models the thermodynamic parameters are evaluated. Kinetic investigations reveal that more than 50% adsorption of dye is achieved in about 1 h in both the cases, whereas, equilibrium establishment takes about 3-4 h. The linear plots obtained in rate constant and mass transfer studies further confirm the applicability of first order rate expression and mass transfer model, respectively. The kinetic data treated to identify rate controlling step of the ongoing adsorption processes indicate that for both the systems, particle diffusion process is predominant at higher concentrations, while film diffusion takes place at lower concentrations. The column studies reveal that about 96% saturation of both the columns is attained during their exhaustion, while about 88 and 84% of the dye material is recovered by eluting dilute NaOH solution through exhausted Bottom Ash and De-Oiled Soya columns, respectively.

  3. Adsorption isotherms, kinetics and column operations for the removal of hazardous dye, Tartrazine from aqueous solutions using waste materials--Bottom Ash and De-Oiled Soya, as adsorbents.

    Science.gov (United States)

    Mittal, Alok; Mittal, Jyoti; Kurup, Lisha

    2006-08-25

    Adsorbents, Bottom Ash (a power plant waste) and De-Oiled Soya (an agricultural waste) exhibit good efficacy to adsorb a highly toxic dye, Tartrazine. Through the batch technique equilibrium uptake of the dye is observed at different concentrations, pH of the solution, dosage of adsorbents and sieve size of adsorbents. Langmuir and Freundlich adsorption isotherms are successfully employed on both the adsorbents and on the basis of these models the thermodynamic parameters are evaluated. Kinetic investigations reveal that more than 50% adsorption of dye is achieved in about 1h in both the cases, whereas, equilibrium establishment takes about 3-4h. The linear plots obtained in rate constant and mass transfer studies further confirm the applicability of first order rate expression and mass transfer model, respectively. The kinetic data treated to identify rate controlling step of the ongoing adsorption processes indicate that for both the systems, particle diffusion process is predominant at higher concentrations, while film diffusion takes place at lower concentrations. The column studies reveal that about 96% saturation of both the columns is attained during their exhaustion, while about 88 and 84% of the dye material is recovered by eluting dilute NaOH solution through exhausted Bottom Ash and De-Oiled Soya columns, respectively.

  4. A Low-Cost Wheat Bran Medium for Biodegradation of the Benzidine-Based Carcinogenic Dye Trypan Blue Using a Microbial Consortium

    Directory of Open Access Journals (Sweden)

    Harshad Lade

    2015-03-01

    Full Text Available Environmental release of benzidine-based dyes is a matter of health concern. Here, a microbial consortium was enriched from textile dye contaminated soils and investigated for biodegradation of the carcinogenic benzidine-based dye Trypan Blue using wheat bran (WB as growth medium. The PCR-DGGE analysis of enriched microbial consortium revealed the presence of 15 different bacteria. Decolorization studies suggested that the microbial consortium has high metabolic activity towards Trypan Blue as complete removal of 50 mg∙L−1 dye was observed within 24 h at 30 ± 0.2 °C and pH 7. Significant reduction in TOC (64% and COD (88% of dye decolorized broths confirmed mineralization. Induction in azoreductase (500%, NADH-DCIP reductase (264% and laccase (275% proved enzymatic decolorization of dye. HPLC analysis of dye decolorized products showed the formation of six metabolites while the FTIR spectrum indicated removal of diazo bonds at 1612.30 and 1581.34 cm−1. The proposed dye degradation pathway based on GC-MS and enzyme analysis suggested the formation of two low molecular weight intermediates. Phytotoxicity and acute toxicity studies revealed the less toxic nature of the dye degradation products. These results provide experimental evidence for the utilization of agricultural waste as a novel low-cost growth medium for biodegradation of benzidine-based dyes, and suggested the potential of the microbial consortium in detoxification.

  5. The pyrolytic-plasma method and the device for the utilization of hazardous waste containing organic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Opalińska, Teresa [Tele and Radio Research Institute, Ratuszowa 11, 03-450 Warsaw (Poland); Wnęk, Bartłomiej, E-mail: bartlomiej.wnek@itr.org.pl [Tele and Radio Research Institute, Ratuszowa 11, 03-450 Warsaw (Poland); Witowski, Artur; Juszczuk, Rafał; Majdak, Małgorzata [Tele and Radio Research Institute, Ratuszowa 11, 03-450 Warsaw (Poland); Bartusek, Stanilav [VŠB—Technical University of Ostrava, 17. listopadu 15/2172, 708 33 Ostrava − Poruba Czech Republic (Czech Republic)

    2016-11-15

    Highlights: • A first stage of the process of waste utilization consisted in pyrolysis of waste. • Then the pyrolytic gas was oxidized with a use of non-equilibrium plasma. • The device for the process implementation was built and characterized. • Correctness of the device operation was proven with a use of the decomposition of PE. • Usefulness of the method was proven in the process of utilization of EW. - Abstract: This paper is focused on the new method of waste processing. The waste, including hazardous waste, contain organic compounds. The method consists in two main processes: the pyrolysis of waste and the oxidation of the pyrolytic gas with a use of non-equilibrium plasma. The practical implementation of the method requires the design, construction and testing of the new device in large laboratory scale. The experiments were carried out for the two kinds of waste: polyethylene as a model waste and the electronic waste as a real waste. The process of polyethylene decomposition showed that the operation of the device is correct because 99.74% of carbon moles contained in the PE samples was detected in the gas after the process. Thus, the PE samples practically were pyrolyzed completely to hydrocarbons, which were completely oxidized in the plasma reactor. It turned out that the device is useful for decomposition of the electronic waste. The conditions in the plasma reactor during the oxidation process of the pyrolysis products did not promote the formation of PCDD/Fs despite the presence of the oxidizing conditions. An important parameter determining the efficiency of the oxidation of the pyrolysis products is gas temperature in the plasma reactor.

  6. Research reactor utilization, safety, decommissioning, fuel and waste management. Posters of an international conference

    International Nuclear Information System (INIS)

    2005-01-01

    For more than 50 years research reactors have played an important role in the development of nuclear science and technology. They have made significant contributions to a large number of disciplines as well as to the educational and research programmes of about 70 countries world wide. About 675 research reactors have been built to date, of which some 278 are now operating in 59 countries (86 of them in 38 developing Member States). Altogether over 13,000 reactor-years of cumulative operational experience has been gained during this remarkable period. The objective of this conference was to foster the exchange of information on current research reactor concerns related to safety, operation, utilization, decommissioning and to provide a forum for reactor operators, designers, managers, users and regulators to share experience, exchange opinions and to discuss options and priorities. The topical areas covered were: a) Utilization, including new trends and directions for utilization of research reactors. Effective management of research reactors and associated facilities. Engineering considerations and experience related to refurbishment and modifications. Strategic planning and marketing. Classical applications (nuclear activation analysis, isotope production, neutron beam applications, industrial irradiations, medical applications). Training for operators. Educational programmes using a reactor. Current developments in design and fabrication of experimental facilities. Irradiation facilities. Projects for regional uses of facilities. Core management and calculation tools. Future trends for reactors. Use of simulators for training and educational programmes. b) Safety, including experience with the preparation and review of safety analysis reports. Human factors in safety analysis. Management of extended shutdown periods. Modifications: safety analysis, regulatory aspects, commissioning programmes. Engineering safety features. Safety culture. Safety peer reviews and

  7. Disposal Notifications and Quarterly Membership Updates for the Utility Solid Waste Group Members’ Risk-Based Approvals to Dispose of PCB Remediation Waste Under Title 40 of the Code of Federal Regulations Section 761.61(c)

    Science.gov (United States)

    Disposal Notifications and Quarterly Membership Updates for the Utility Solid Waste Group Members’ Risk-Based Approvals to Dispose of Polychlorinated Biphenyl (PCB) Remediation Waste Under Title 40 of the Code of Federal Regulations Section 761.61(c)

  8. Data gathering in support of phase O program for waste heat utilization from nuclear enrichment facilities, Ohio

    International Nuclear Information System (INIS)

    1978-01-01

    The gathering of demographic, community development, and economic data for the region impacted by the Pikeville (Ohio) Nuclear Enrichment Facility is described. These data are to be used for establishing possible community uses, e.g., space heating, domestic water heating, and industrial uses, of waste heat from the facility. It was concluded that although the economic feasibility of such waste heat utilization remains to be proven, the community would cooperate in a feasibility demonstration program

  9. Ultrasonically facilitated adsorption of an azo dye onto nanostructures obtained from cellulosic wastes of broom and cooler straw.

    Science.gov (United States)

    Safari, Mahdi; Khataee, Alireza; Darvishi Cheshmeh Soltani, Reza; Rezaee, Reza

    2018-07-15

    In the present work, ultrasonically facilitated adsorption (UFA) of a cationic dye [Basic Red 46 (BR46)] was examined using cellulosic nanostructures obtained from broom and cooler straw. Although the exclusive application of the nanostructured broom resulted in the 43.51% adsorption of BR46, the UFA process gave rise to the substantial removal efficiency of about 93%. In the case of the nanostructured straw, the efficiency was increased from 36.9% to 55.7%. The UFA process for both adsorbents reached the equilibrium within 60 min which was shorter than the time for the only adsorption. According to the values of the mean free energy (E), the decolorization via the UFA process applying broom (15.81 kJ/mol) and straw (11.18 kJ/mol) nanostructures was occurred chemically. An insignificant loss in the adsorption capacity of both adsorbents was observed after three regeneration tests by means of 0.05 M hydrochloric acid, indicating the good reusability potential of the as-synthesized cellulosic nanostructures. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. Utilization of calcium carbonate particles from eggshell waste as coating pigments for ink-jet printing paper.

    Science.gov (United States)

    Yoo, Sukjoon; Hsieh, Jeffery S; Zou, Peter; Kokoszka, John

    2009-12-01

    The effective treatment and utilization of biowaste have been emphasized in our society for environmental and economic concerns. Recently, the eggshell waste in the poultry industry has been highlighted because of its reclamation potential. This study presents an economical treatment process to recover useful bioproducts from eggshell waste and their utilization in commercial products. We developed the dissolved air floatation (DAF) separation unit, which successfully recovered 96% of eggshell membrane and 99% of eggshell calcium carbonate (ECC) particles from eggshell waste within 2 h of operation. The recovered ECC particles were utilized as coating pigments for ink-jet printing paper and their impact on the ink density and paper gloss were investigated. The addition of the ECC particles as coating pigments enhances the optical density of cyan, magenta and yellow inks while decreasing the black ink density and the gloss of the coated paper.

  11. Recent Advances in Heterogeneous Photocatalytic Decolorization of Synthetic Dyes

    Science.gov (United States)

    Muhd Julkapli, Nurhidayatullaili; Bagheri, Samira; Bee Abd Hamid, Sharifah

    2014-01-01

    During the process and operation of the dyes, the wastes produced were commonly found to contain organic and inorganic impurities leading to risks in the ecosystem and biodiversity with the resultant impact on the environment. Improper effluent disposal in aqueous ecosystems leads to reduction of sunlight penetration which in turn diminishes photosynthetic activity, resulting in acute toxic effects on the aquatic flora/fauna and dissolved oxygen concentration. Recently, photodegradation of various synthetic dyes has been studied in terms of their absorbance and the reduction of oxygen content by changes in the concentration of the dye. The advantages that make photocatalytic techniques superior to traditional methods are the ability to remove contaminates in the range of ppb, no generation of polycyclic compounds, higher speed, and lower cost. Semiconductor metal oxides, typically TiO2, ZnO, SnO, NiO, Cu2O, Fe3O4, and also CdS have been utilized as photocatalyst for their nontoxic nature, high photosensitivity, wide band gap and high stability. Various process parameters like photocatalyst dose, pH and initial dye concentrations have been varied and highlighted. Research focused on surface modification of semiconductors and mixed oxide semiconductors by doping them with noble metals (Pt, Pd, Au, and Ag) and organic matter (C, N, Cl, and F) showed enhanced dye degradation compared to corresponding native semiconductors. This paper reviews recent advances in heterogeneous photocatalytic decolorization for the removal of synthetic dyes from water and wastewater. Thus, the main core highlighted in this paper is the critical selection of semiconductors for photocatalysis based on the chemical, physical, and selective nature of the poisoning dyes. PMID:25054183

  12. Recent Advances in Heterogeneous Photocatalytic Decolorization of Synthetic Dyes

    Directory of Open Access Journals (Sweden)

    Nurhidayatullaili Muhd Julkapli

    2014-01-01

    Full Text Available During the process and operation of the dyes, the wastes produced were commonly found to contain organic and inorganic impurities leading to risks in the ecosystem and biodiversity with the resultant impact on the environment. Improper effluent disposal in aqueous ecosystems leads to reduction of sunlight penetration which in turn diminishes photosynthetic activity, resulting in acute toxic effects on the aquatic flora/fauna and dissolved oxygen concentration. Recently, photodegradation of various synthetic dyes has been studied in terms of their absorbance and the reduction of oxygen content by changes in the concentration of the dye. The advantages that make photocatalytic techniques superior to traditional methods are the ability to remove contaminates in the range of ppb, no generation of polycyclic compounds, higher speed, and lower cost. Semiconductor metal oxides, typically TiO2, ZnO, SnO, NiO, Cu2O, Fe3O4, and also CdS have been utilized as photocatalyst for their nontoxic nature, high photosensitivity, wide band gap and high stability. Various process parameters like photocatalyst dose, pH and initial dye concentrations have been varied and highlighted. Research focused on surface modification of semiconductors and mixed oxide semiconductors by doping them with noble metals (Pt, Pd, Au, and Ag and organic matter (C, N, Cl, and F showed enhanced dye degradation compared to corresponding native semiconductors. This paper reviews recent advances in heterogeneous photocatalytic decolorization for the removal of synthetic dyes from water and wastewater. Thus, the main core highlighted in this paper is the critical selection of semiconductors for photocatalysis based on the chemical, physical, and selective nature of the poisoning dyes.

  13. Quantitative feasibility study of magnetocaloric energy conversion utilizing industrial waste heat

    International Nuclear Information System (INIS)

    Vuarnoz, D.; Kitanovski, A.; Gonin, C.; Borgeaud, Y.; Delessert, M.; Meinen, M.; Egolf, P.W.

    2012-01-01

    Highlights: ► We model magnetic energy conversion machine for the use of industrial waste heat. ► Efficiencies and masses of the system are evaluated by a numerical model. ► Excellent potential of profitability is expected with large low-exergy heat sources. -- Abstract: The main objective of this theoretical study was to investigate under which conditions a magnetic energy conversion device (MECD) – utilizing industrial waste heat – is economically feasible. Furthermore, it was evaluated if magnetic energy conversion (MCE) has the potential of being a serious concurrent to already existing conventional energy conversion technologies. Up-today the availability of magnetocaloric materials with a high Curie temperature and a high magnetocaloric effect is rather limited. Therefore, this study was mainly focused on applications with heat sources of low to medium temperature levels. Magnetic energy conversion machines, containing permanent magnets, are numerically investigated for operation conditions with different temperature levels, defined by industrial waste heat sources and environmental heat sinks, different magnetic field intensities and different frequencies of operation (number of thermodynamic cycles per unit of time). Theoretical modeling and numerical simulations were performed in order to determine thermodynamic efficiencies and the exergy efficiencies as function of different operation conditions. From extracted data of our numerical results, approximate values of the total mass and total volume of magnetic energy conversion machines could be determined. These important results are presented dependent on the produced electric power. An economic feasibility study supplements the scientific study. It shows an excellent potential of profitability for certain machines. The most important result of this article is that the magnetic energy conversion technology can be economically and technically competitive to or even beat conventional energy

  14. Novel procurement concepts utilized to award contract for vitrification of an F006 mixed waste sludge

    International Nuclear Information System (INIS)

    Pickett, J.B.; Musall, J.C.; Hayes, A.F.; Campbell, E.E.

    1994-01-01

    A number of novel concepts were utilized in a procurement bid process to award a contract for the stabilization of a mixed wastewater treatment plating line sludge from the Reactor Materials department (M-Area) at the Savannah River site (SRS). The contract award was based on a combination of technical and cost considerations. The technical aspects included an evaluation of the technical validity of the proposed process(es) (i.e., would the process work?), the physical resources of the proposer and the expertise of the personnel proposed to work on the program, and prior experience of the firm wit treatment and stabilization of mixed (radioactive and hazardous) wastes. This paper will concentrate on the cost and the bid award considerations, rather than the technical aspects

  15. Utilization of cast seaweed and waste from pectin production for anaerobic digestion

    DEFF Research Database (Denmark)

    Fredenslund, A M; Christensen, T B; Kjær, T

    2011-01-01

    and cast seaweed (winter sample): 118 ml CH4 g VS-1. The predicted annual biogas production of the plant was 5.4 million m3 CH4. An environmental assessment concluded that a biogas plant using the aforementioned organic materials will reduce greenhouse gas emissions between 25,000 tons CO2 year-1 and 40......,000 tons CO2 year-1 depending on the type of energy utilization. Reduction of nutrients in the coastal zone by removal of seaweed was found to be of high value.......The paper describes a preliminary study on the environmental consequences of realizing a biogas plant using locally available biomass fractions in Solrød, Denmark. The biomass, which will be used at the plant, will consist of: cast seaweed (app. 20,000 tons year-1), waste from pectin production...

  16. Spent fuel storage requirements for nuclear utilities and OCRWM [Office of Civilian Radioactive Waste Management

    International Nuclear Information System (INIS)

    Wood, T.W.

    1990-03-01

    Projected spent fuel generation at US power reactors exceeds estimated aggregate pool storage capacity by approximately 30,000 metric tons of uranium (MTU). Based on the current repository schedule, little of the spent fuel inventory will be disposed of prior to shutdown of existing reactors, and a large additional capacity for surface storage of spent fuel will be required, either at reactors or at a centralized DOE storage site. Allocation of this storage requirement across the utility-DOE interface, and the resulting implications for reactor sites and the performance of the federal waste management system, were studied during the DOE MRS System Study and again subsequent to the reassessment of the repository schedule. Spent fuel logistics and cost results from these analyses will be used in definition of spent fuel storage capacity requirements for the federal system. 9 refs., 8 figs., 1 tab

  17. Utilization of natural hematite as reactive barrier for immobilization of radionuclides from radioactive liquid waste.

    Science.gov (United States)

    El Afifi, E M; Attallah, M F; Borai, E H

    2016-01-01

    Potential utilization of hematite as a natural material for immobilization of long-lived radionuclides from radioactive liquid waste was investigated. Hematite ore has been characterized by different analytical tools such as Fourier transformer infrared (FTIR), X-ray fluorescence (XRF), powder X-ray diffraction (XRD), thermogravimetry (TG) and differential thermal (DT) analysis, scanning electron microscopy (SEM) and BET-surface area. In this study, europium was used as REEs(III) and as a homolog of Am(III)-isotopes (such as (241)Am of 432.6 y, (242m)Am of 141 y and (243)Am of 7370 y). Micro particles of the hematite ore were used for treatment of radioactive waste containing (152+154)Eu(III). The results indicated that 96% (4.1 × 10(4) Bq) of (152+154)Eu(III) was efficiently retained onto hematite ore. Kinetic experiments indicated that the processes could be simulated by a pseudo-second-order model and suggested that the process may be chemisorption in nature. The applicability of Langmuir, Freundlich and Temkin models was investigated. It was found that Langmuir isotherm exhibited the best fit with the experimental results. It can be concluded that hematite is an economic and efficient reactive barrier for immobilization of long-lived radio isotopes of actinides and REEs(III). Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Development of thermoelectric power generation system utilizing heat of combustible solid waste

    International Nuclear Information System (INIS)

    Kajikawa, T.; Ito, M.; Katsube, I.; Shibuya, E.

    1994-01-01

    The paper presents the development of thermoelectric power generation system utilizing heat of municipal solid waste. The systematic classification and design guideline are proposed in consideration of the characteristics of solid waste processing system. The conceptual design of thermoelectric power generation system is carried out for a typical middle scale incinerator system (200 ton/day) by the local model. Totally the recovered electricity is 926.5 kWe by 445 units (569,600 couples). In order to achieve detailed design, one dimensional steady state model taking account of temperature dependency of the heat transfer performance and thermoelectric properties is developed. Moreover, small scale on-site experiment on 60 W class module installed in the real incinerator is carried out to extract various levels of technological problems. In parallel with the system development, high temperature thermoelectric elements such as Mn-Si and so on are developed aiming the optimization of ternary compound and high performance due to controlled fine-grain boundary effect. The manganese silicide made by shrinking-rate controlled sintering method performs 5 (μW/cm K2) in power factor at 800 K. copyright 1995 American Institute of Physics

  19. Organic Rankine Cycle Analysis: Finding the Best Way to Utilize Waste Heat

    Directory of Open Access Journals (Sweden)

    Nadim Chakroun

    2012-01-01

    Full Text Available An Organic Rankine Cycle (ORC is a type of power cyclethat uses organic substances such as hydrocarbons orrefrigerants as the working fluid. ORC technology is usedto generate electricity in waste heat recovery applications,because the available heat is not at a high enoughtemperature to operate with other types of cycles. Theoptimum amount of working fluid required for the cycle(i.e., optimum charge level was investigated. Three chargelevels (13, 15, and 18 lbm were tested, and their effect onefficiency and performance of the system was analyzed.The heat source for the fluid was waste steam from thePurdue Power Plant, which had an average temperatureof 120oC. Regular city tap water at a temperature of 15oCwas used as the heat sink. For each charge level, multipletests were performed by measuring the temperaturesand pressures at all state points in the cycle, in order tounderstand any overarching patterns within the data.An important parameter that was analyzed is the 2nd lawefficiency. This efficiency is a measure of the effectivenessof the energy utilization compared to that of an idealcase. The peak efficiency increased from 24% to 27% asthe charge in the system decreased. Therefore, movingforward, this research suggests that a lower charge levelin the system will increase efficiency. However, testingbelow 13 lbm might cause mechanical complications inthe equipment as there may not be enough fluid to flowaround; thus, a compromise had to be made.

  20. The Utilization of Blue Swimming Crab (Portunus pelagicus) Waste Product, Lemi, as a Food Flavor

    Science.gov (United States)

    Sasongko, A. Y.; Dewi, E. N.; Amalia, U.

    2018-01-01

    Lemi is a wasted product that resulted from the meating process of blue swim crab. One of the utilization of blue swim crab lemi is processed it into a food flavor. The aim of this research was to know the value of glutamic acid in blue swim crab lemi flavor with the addition of dextrin using different concentration and know the level of consumer preference of lemi flavor by using hedonic test. The research was using a Completely Randomized research Design (CRD) with a factor of 0%, 1%, 2%, and 3% dextrin concentration. The treatment that was tested was the additions of 0%, 1%, 2%, and 3% dextrin. The nonparametric data (panelist hedonic level) was analyzed by Kruskal-Wallis and further analysis using Mann-Whitney. The parametric data (glutamic acid content, protein content, moisture content, and solubility level) were analyzed by analysis of varians and further analysis using Honestly Significant Difference. The results showed that flavor with 1% dextrin addition has the highest hedonic score (7,07 swim crab lemi flavor. The flavor resulted from this experiment can be used as an alternative of blue swim crab lemi as processing waste so that it can optimalized any further.

  1. Electric melting furnace of solidifying radioactive waste by utilizing magnetic field and melting method

    International Nuclear Information System (INIS)

    Igarashi, Hiroshi.

    1990-01-01

    An electric melting furnace for solidification of radioactive wastes utilizing magnetic fields in accordance with the present invention comprises a plurality of electrodes supplying AC current to molten glass in a glass melting furnace and a plurality of magnetic poles for generating AC magnetic fields. Interactions between the current and the magnetic field, generated forces in the identical direction in view of time in the molten glass. That is, forces for promoting the flow of molten glass in the melting furnace are resulted due to the Fleming's left-hand rule. As a result, the following effects can be obtained. (1) The amount of heat ransferred from the molten glass to the starting material layer on the molten surface is increased to improve the melting performance. (2) For an identical melting performance, the size and the weight of the melting furnace can be reduced to decrease the amount of secondary wastes when the apparatus-life is exhausted. (3) Bottom deposits can be suppressed and prevented from settling and depositing to the reactor bottom by the promoted flow in the layer. (4) Further, the size of auxiliary electrodes for directly supplying electric current to heat the molten glass near the reactor bottom can be decreased. (I.S.)

  2. Utilization of Baggase Waste Based Materials as Improvement for Thermal Insulation of Cement Brick

    Directory of Open Access Journals (Sweden)

    Aminudin Eeydzah

    2017-01-01

    Full Text Available Building materials having low thermal load and low thermal conductivity will provide thermal comforts to the occupants in building. In an effort to reduce the use of high energy and waste products from the agricultural industry, sugarcane bagasse and banana bagasse has been utilize as an additive in the manufacture of cement brick. The aim of this study is to investigate the insulation and mechanical properties of brick that has been mixed with bagasse and its effectiveness as thermal insulation using heat flow meter. Waste bagasse is being treated using sodium hydroxide (NaOH and is characterized using SEM and XRF. The samples produced with two different dimensions of 50 mm × 50 mm × 50 mm and 215mm × 102.5mm × 65mm for thermal conductivity test. Next, the sample varies from 0% (control sample, 2%, 4%, 6%, 8% and 10% in order to determine the best mix proportion. The compressive strength is being tested for 7, 14 and 28 days of water curing. Results showed that banana bagasse has lower thermal conductivity compared to sugarcane bagasse used, with compressive strength of 15.6MPa with thermal conductivity 0.6W/m.K.

  3. Carbon/Attapulgite Composites as Recycled Palm Oil-Decoloring and Dye Adsorbents

    Directory of Open Access Journals (Sweden)

    Guangyan Tian

    2018-01-01

    Full Text Available Activated clay minerals have been widely used in the edible oil refining industry for decolorization of crude oil by adsorption, and so far many methods have been used to improve their decolorization efficiency. Herein, we successfully prepared a series of carbon/attapulgite (C/APT composite adsorbents by a one-step in-situ carbonization process with natural starch (St as the carbon source. It has been revealed that the adsorbent had better decolorization efficiency for crude palm oil than acid-activated APT. However, more than a million tons of decolorized waste is produced every year in the oil-refining industry, which was often treated as solid waste and has not yet been reutilized effectively. In order to explore a viable method to recycle and reuse the decolorant, the waste decolorant was further prepared into new C/APT adsorbents for the removal of dyes from wastewater, and then the dyes adsorbed on the adsorbent were used as the carbon sources to produce new C/APT adsorbents by a cyclic carbonization process. The results showed that the adsorbents prepared from the decolorized waste could remove more than 99.5% of the methylene blue (MB, methyl violet (MV, and malachite green (MG dyes from the simulated wastewater with the dye concentration of 200 mg/L, and the C/APT–Re adsorbent consecutively regenerated five times using the adsorbed dyes as a carbon source still exhibit good adsorption efficiency for dyes. As a whole, this process opens a new avenue to develop efficient decolorants of palm oil and achieves recyclable utilization of decolored waste.

  4. Utilization possibilities of hydrocarbon fractions obtained by waste plastic pyrolysis: energetic utilization and applications in polymer composites

    Energy Technology Data Exchange (ETDEWEB)

    Miskolczi, Norbert; Borsodi, Nikolett; Angyal, Andras [University of Pannonia, MOL Department of Hydrocarbon and Coal Processing (Hungary)], email: mnorbert@almos.uni-pannon.hu, email: borsodinikolett@almos.uni-pannon.hu, email: angyala@almos.uni-pannon.hu

    2011-07-01

    With the energy crisis and the rising concerns about the environment, energy-saving measures are urgently needed. Each year about 300M tons of plastic wastes are produced world-wide and governments are now focusing on recycling and reusing these products to save significant amounts of energy. The aim of this paper was to analyze the products which can be obtained from waste plastic and determine their possible uses. Pyrolysis of commercial waste plastics was done in a reactor at 500-600 degree celsius and the products were then analyzed using several methods. Results showed that the pyrolysis produces gases, naphtha, middle distillates and heavy oils. The properties of these products were also determined and it was found that they have the potential to be used in fuel-like and additive producing applications. This study highlighted that pyrolysis of waste polymers can yield useful products.

  5. Study on Waste Heat Utilization Device of High-Temperature Freshwater in the Modern Marine Diesel Engine

    Science.gov (United States)

    Wang, Shuaijun; Liu, Chentao; Zhou, Yao

    2018-01-01

    Based on using the waste heat recycling from high temperature freshwater in marine diesel engine to heat fuel oil tank, lubrication oil tank and settling tank and so on to achieve energy saving, improve fuel efficiency as the goal, study on waste heat utilization device of high-temperature freshwater in the modern marine diesel engine to make the combustion chamber effectively cooled by high-temperature freshwater and the inner liner freshwater temperature heat is effectively utilized and so on to improve the overall efficiency of the power plant of the ship and the diesel optimum working condition.

  6. Views of the electric utility industry on the direction and progress of the Department of Energy's Nuclear Waste Program

    International Nuclear Information System (INIS)

    Mills, L.E.

    1986-01-01

    The NWPA does provide guidance for a reasonable waste management program and one must work to implement it in an efficient and effective manner. It is well recognized that the lack of stability and predictability has been the bane of many nuclear reactor projects. The electric utilities are not satisfied with the progress of the nuclear waste program even though much has been achieved. DOE must continue in its struggle to seek a better balance between the technical, political and institutional aspects of the program to provide reasonable assurance that it will fulfill its contractual obligation with utilities

  7. Technical procedures for utilities and solid waste: Environmental Field Program, Deaf Smith County site, Texas: Final draft

    International Nuclear Information System (INIS)

    1987-08-01

    The evaluation of environmental issues and concerns and the addressing of statutory requirements are fundamental parts in the characterization of the site in Deaf Smith County, Texas for the US Department of Energy's Salt Repository Project (SRP). To ensure that the environmental field program comprehensively addresses the issues and requirements of the project, a site study plan (SSP) has been prepared for Utilities and Solid Waste considerations. This technical procedure (TP) has been developed to implement the field program described in the Utilities and Solid Waste Site Study Plan. The purpose and scope of the Utilities and Solid Waste Technical Procedure is to develop and implement a data collection procedure to fulfill the data base needs of the Utilities and Solid Waste SSP. The procedure describes a method of obtaining, assessing and verifying the capabilities of the regional service utilities and disposal contractors. This data base can be used to identify a preferred service source for the engineering contractor. The technical procedure was produced under the guidelines established in Technical Administrative Procedure No. 1.0, Preparation, Review and Approval of Technical Procedures

  8. Alternative bioenergy through the utilization of Kappaphycus alvarezii waste as a substitution of substrate for biogas products

    Science.gov (United States)

    Yulita, R.; Agustono; Pujiastuti, D. Y.; Alamsjah, M. A.

    2018-04-01

    Biogas is one of the renewable energy resources which are able to be developed by providing some sufficient renewable substances and manufactured from the fermentation process of organic substances metabolized by anaerobic bacteria. In this research, Kappaphycus alvarezii seaweed waste from carrageenan processing and contents of rumen were used. This research aims to comprehend the carrageenan processing waste of macroalga K. alvarezii can be used as alternative source generating biogas. The research method is P0 (100 % of the contents of rumen), P1 (75 % of the contents of rumen and 25 % of seaweed waste), P2 (50 % of the contents of rumen and 50 % of seaweed waste), and P3 (25 % of the contents of rumen and 75 % of seaweed waste), and P4 (100 % of seaweed waste). The result showed that according to the quality determination of biogas based on SNI (Indonesia National Standard) 8019:2014, the K. alvarezii seaweed waste from carrageenan processing can be utilized as the alternative source of manufacturing biogas and got the methane gas resulted from the comparison method is P2 (50 % of the contents of rumen and 50 % of seaweed waste), with value of 58.61 %.

  9. Utilization of Paneer Whey Waste for Cost-Effective Production of Rhamnolipid Biosurfactant.

    Science.gov (United States)

    Patowary, Rupshikha; Patowary, Kaustuvmani; Kalita, Mohan Chandra; Deka, Suresh

    2016-10-01

    The present study aimed at isolating rhamnolipid biosurfactant-producing bacteria that could utilize paneer whey, an abundant waste source as sole medium for the production purpose. Pseudomonas aeruginosa strain, SR17, was isolated from hydrocarbon-contaminated soil that could efficiently utilize paneer whey for rhamnolipid production and reduce surface tension of the medium from 52 to 26.5 mN/m. The yield of biosurfactant obtained was 2.7 g/l, upgraded to 4.8 g/l when supplemented with 2 % glucose and mineral salts. Biochemical, FTIR, and LC-MS analysis revealed that extracted biosurfactant is a combination of both mono and di-rhamnolipid congeners. The critical micelle concentration (CMC) was measured to be 110 mg/l. Emulsification activity of the biosurfactant against n-hexadecane, olive oil, kerosene, diesel oil, engine oil, and crude oil were found to be 83, 88, 81, 92, 86, and 100 %, respectively. The rhamnolipid was detected to be non-toxic against mouse fibroblastic cell line L292.

  10. Preparation and characterization of clay bonded high strength silica refractory by utilizing agriculture waste

    International Nuclear Information System (INIS)

    Bhardwaj, A.; Hossain, S.K.S.; Majh, M.R.

    2017-01-01

    Clay bonded silica refractory was prepared by utilizing agriculture waste called rice husk ash (RHA) and refractory grog. Various samples were prepared with different compositions based upon partial replacement of quartz by RHA. Rectangular samples were prepared by following semi dry process prior to pressing in a uniaxial hydraulic press and sintering at a temperature of 1200°C in air atmosphere. Various physical, mechanical and thermal characterizations were done like X-ray diffraction (XRD), scanning electron microscope (SEM), apparent porosity (AP), bulk density (BD), cold crushing strength (CCS), refractoriness and thermal conductivity measurement. The sample utilizing 30% of RHA was considered most optimum composition which produced cold crushing strength of 38MPa and thermal conductivity of 2.08W/mK at 800°C with a considerable good refractoriness. Enhancement in the mechanical as well as thermal properties may be considered as attributed to the amorphous silica which has reacted more easily and efficiently with other material surrounding giving rise to the densification and produced stable crystalline phase to the refractory material. These promising characteristics suggests that the RHA may lead to be used as a potential material for the preparation of clay bonded high strength silica refractories. [es

  11. An outlook of Malaysian energy, oil palm industry and its utilization of wastes as useful resources

    International Nuclear Information System (INIS)

    Sulaiman, F.; Abdullah, N.; Gerhauser, H.; Shariff, A.

    2011-01-01

    Malaysia has an abundance of energy resources, both renewable and non-renewable. The largest non-renewable energy resource found in Malaysia is oil, and second, is natural gas, primarily liquefied natural gas. The production and consumption of oil, gas and coal in Malaysia are given in this paper. The energy demand and supply by source are also shown in relation to the country's fuel diversification policy. In order to reduce the overall dependence on a single source of energy, efforts were undertaken to encourage the utilization of renewable resources. Forest residue and oil palm biomass are found to be potentially of highest energy value and considered as the main renewable energy option for Malaysia. Palm oil and related products represent the second largest export of Malaysia. The total oil palm planted area in Malaysia has increased significantly in recent years. This paper gives a detailed representation of oil palm planted and produced together with its yield from the year 1976 onwards. The large amounts of available forest and palm oil residues resulting from the harvest can be utilized for energy generation and other by-products in a manner that also addresses environmental concerns related to current waste disposal methods. -- Highlights: →Palm oil and related products represent the second largest export of Malaysia. →Malaysia has an abundance of energy resources, both renewable and non-renewable. →Forest and oil palm residues are the main renewable energy option for Malaysia. →Efforts were undertaken to encourage the utilization of renewable resources.

  12. Technical and economic feasibility of a solar-bio-powered waste utilization and treatment system in Central America.

    Science.gov (United States)

    Aguilar Alvarez, Ronald Esteban; Bustamante Roman, Mauricio; Kirk, Dana; Miranda Chavarria, Jose Alberto; Baudrit, Daniel; Aguilar Pereira, Jose Francisco; Rodriguez Montero, Werner; Reinhold, Dawn; Liao, Wei

    2016-12-15

    The purpose of this study was to implement and evaluate a pilot-scale and closed-loop system that synergistically combines solar thermal collector, anaerobic digester, and constructed treatment wetland to simultaneously treat and utilize organic wastes. The system utilizes 863 kg of mixed animal and food wastes to generate 263 MJ renewable energy, produced 28 kg nitrogen and phosphorus fertilizer, and reclaimed 550 kg water per day. The net revenue considering electricity and fertilizer was $2436 annually. The payback period for the system is estimated to be 17.8 years for a relatively dilute waste stream (i.e., 2% total solids). The implemented system has successfully demonstrated a self-efficient and flexible waste utilization and treatment system. It creates a win-win solution to satisfy the energy needs of the community and address environmental concerns of organic wastes disposal in the region. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Utilization possibilites of waste products from fishing and hunting to biogas and bio-oil production in Uummannaq County

    DEFF Research Database (Denmark)

    Gunnarsdottir, Ragnhildur; Jørgensen, Marianne Willemoes

    2008-01-01

    In spring 2007 a project was carried out at the Arctic Technology Centre in which research of various possibilities of utilizing waste products from fishing and hunting generated in Uummannaq County was performed. Numerous alternatives were identified in the project, which were weighed against...... the specific conditions that apply in Uummannaq County. The best alternatives were evaluated to be biogas production and utilization of fat from the fish waste to produce bio-oil. The results showed that with the price of energy in Greenland in 2009 of 3,71 DKR per kWh, the waste in Uummannaq County would...... amount to approximately 6 million DKR when using biogas production and 5,7 million DKR when using bio-oil. Compared with the energy used in Uummannaq County today, the biogas production would be able to supply 17 percent of the energy and bio-oil production would cover approximately 16 percent....

  14. The Effect of the SCAMPER Technique in Raising Awareness Regarding the Collection and Utilization of Solid Waste

    Science.gov (United States)

    Çelikler, Dilek; Harman, Gonca

    2015-01-01

    The aim of this study was to determine the effect of the SCAMPER technique in raising awareness among science students regarding the collection and utilization of solid waste. The participants included a total of 65 third-year students. According to the study results, the science students described schools and visual media as their main source of…

  15. Potentialities of biotechnology for the reduction and utilization for energy purposes of wastes generated by food industry

    Energy Technology Data Exchange (ETDEWEB)

    1982-10-19

    The study dealt with the present trends in biotechnology related to the methods for the reduction and utilization, for energy purposes, of wastes generated by food industry and to the methods for controlling the emission of pollutants from industrial plants with emphasis on meat industry, dairy industry, food-packing trade, sugar industry, vinification, fatty foods, fish meal, beverage industry.

  16. From waste to value - direct utilization of limonene from orange peel in a biocatalytic cascade reaction towards chiral carvolactone

    NARCIS (Netherlands)

    Oberleitner, N.; Ressmann, A. K.; Bica, K.; Gaertner, P.; Fraaije, M. W.; Bornscheuer, U. T.; Rudroff, F.; Mihovilovic, M. D.

    2017-01-01

    In this proof of concept study we demonstrate direct utilization of limonene containing waste product orange peel as starting material for a biocatalytic cascade reaction. The product of this cascade is chiral carvolactone, a promising building block for thermoplastic polymers. Four different

  17. Material stream management of biomass wastes for the optimization of organic wastes utilization; Stoffstrommanagement von Biomasseabfaellen mit dem Ziel der Optimierung der Verwertung organischer Abfaelle

    Energy Technology Data Exchange (ETDEWEB)

    Knappe, Florian; Boess, Andreas; Fehrenbach, Horst; Giegrich, Juergen; Vogt, Regine [ifeu-Institut fuer Energie- und Umweltforschung GmbH, Heidelberg (Germany); Dehoust, Guenter; Schueler, Doris; Wiegmann, Kirsten; Fritsche, Uwe [Oeko-Institut, Inst. fuer Angewandte Oekologie, Darmstadt (Germany)

    2007-02-15

    The effective use of the valuable substances found in waste materials can make an important contribution to climate protection and the conservation of fossil and mineral resources. In order to harness the potential contribution of biomass waste streams, it is necessary to consider the potential of the waste in connection with that of the total biomass. In this project, relevant biogenous material streams in the forestry, the agriculture as well as in several industries are studied, and their optimization potentials are illustrated. Scenarios are then developed, while taking various other environmental impacts into considerations, to explore possible optimized utilization of biomass streams and biomass waste substances for the future. Straw that is not needed for humus production and currently left on the field can be used for its energy content. The realisation of this potential would be significant contribution towards climate protection. The energetic use of liquid manure without negatively influencing its application as commercial fertilizer can also be similarly successful because of its large volume. The results of our study also support an increased energetic use of saw residues as fuel (in form of pellets) in small furnaces. For household organic wastes, the report suggests the fermentation with optimized energy use and intensified marketing of the aerobically treated compost as peat substitution. While for waste cooking fat that is currently disposed in the residual waste, a separate collection and direct use in motors that are used as combined heat and power generation are recommended. For meat and bone meal and communal sludge that are not being used substantial currently or in the future, phosphorus can be recovered with promising success from the ash produced when the waste is burnt in mono incinerators. These technical options should however be tested against disposal standard. (orig.)

  18. Utility of Rice Bran Mixed with Fermentation Extract of Vegetable Waste Unconditioned as Probiotics from Vegetable Market

    Directory of Open Access Journals (Sweden)

    Cahya Setya Utama

    2013-06-01

    Full Text Available The aimed of the study was to enhance utilization of Lactobacillus Sp. and Saccharomyces sp. as starter for fermentation of waste cabbage and green mustard to enhance the utility of rice bran as an ingredient of poultry feed. The first stage of the study was to characterize the extract of fermented wasted vegetable with difference concentration of glucose and different period of time for incubation. Completely randomized design using 3 x 3 factorial with three replications was used for the first stage of the study. The second stage of the study was to evaluate the effectiveness of the extract of fermented wasted vegetable to improve the quality and utility of rice bran. Completely randomized design with four treatments and 4 replications. The third stage of the study was to obtain the value of nitrogen, calcium and phosphorus retention, as well as metabolic energy of rice bran after fermentation in broiler hatching. The third stage analysis was conducted by t-test analysis. The results of the study showed that the microbial characteristics on the extract of fermented wasted vegetable in two days incubation time and 2% concentration of glucose was able to produce pH of 3.80, log of total lactic acid bacteria 7.38 and types of microbes that grow predominantly were Lactobacillus Sp. and Saccharomyces Sp. The effectiveness of the extract fermented wasted vegetable for the fermentation of rice bran were shown in additional concentration of extract wasted vegetable of 40% with a moisture content of  toluene 65.24%, 13.36% ash, 14.93% protein, 7.61% crude fat, 12.39% crude fiber, nitrogen free extract material (NFE 51.59% and 0.07% biomass. The biological value and the availability of fermented rice bran were higher than unfermented rice bran on the broiler chickens after hatching. The values were justified from nitrogen, calcium and phosphorus retention also metabolic energy. The study concluded that the benefits and utility of rice bran could

  19. Issues to be resolved for the successful implementation of the Nuclear Waste Policy Act of 1982: Utilities' viewpoint

    International Nuclear Information System (INIS)

    Kauffman, J.T.; Kraft, S.P.

    1987-01-01

    This article describes issues that utility companies perceive as important for successful implementation of the NWPA. Electric utility companies with nuclear energy programs are fulfilling their commitments under the NWPA by paying over $400 million a year into the Nuclear Waste Fund as well as preparing for on-site storage of spent fuel until 1998. The current impasse in Congress over DOE's recommend second repository reprogramming is giving the industry pause to consider whether or not DOE will be allowed by Congress to live up to its 1998 obligation to the utilities. The industry is asking Congress to allow DOE to proceed with characterization of the three potential first sites, to authorize and fund the MRS, and to provide equitable payments for defense waste disposal. Also, Congress and DOE must work cooperatively to find a solution to the current impasse over the second repository program

  20. Developing sensor-based robots with utility to waste management applications

    International Nuclear Information System (INIS)

    Trivedi, M.M.; Abidi, M.A.; Gonzalez, R.C.

    1990-01-01

    There are several Environmental Restoration and Waste Management (ER and WM) application areas where autonomous or teleoperated robotic systems can be utilized to improve personnel safety and reduce operation costs. In this paper the authors describe continuing research undertaken by their group in intelligent robotics area which should have a direct relevance to a number of ER and WM applications. The authors' current research is sponsored by the advanced technology division of the U.S. Department of Energy. It is part of a program undertaken at four universities (Florida, Michigan, Tennessee, and Texas) and the Oak ridge National Laboratory directed towards the development of advanced robotic systems for use in nuclear environments. The primary motivation for using robotic (autonomous and/or teleoperated) technology in such hazardous environments is to reduce exposure and costs associated with performing tasks such as surveillance, maintenance and repair. The main focus of the authors' research a the University of Tennessee has been to contribute to the development of autonomous inspection and manipulation systems which utilize a wide array of sensory inputs in controlling the actions of a stationary robot. The authors' experimental research effort is directed towards design and evaluation of new methodologies using a laboratory based robotic testbed. A unique feature of this testbed is a multisensor module useful in the characterization of the robot workspace. In this paper, the authors describe the development of a robot vision system for automatic spill detection, localization and clean-up verification; and the development of efficient techniques for analyzing range images using a parallel computer. The 'simulated spill cleanup' scenario allows us to show the applicability of robotic systems to problems encountered in nuclear environments

  1. Utilization of cellulosic waste from tequila bagasse and production of polyhydroxyalkanoate (PHA) bioplastics by Saccharophagus degradans.

    Science.gov (United States)

    Alva Munoz, Luis Esteban; Riley, Mark R

    2008-08-01

    Utilization of wastes from agriculture is becoming increasingly important due to concerns of environmental impact. The goals of this work were to evaluate the ability of an unusual organism, Saccharophagus degradans (ATCC 43961), to degrade the major components of plant cell walls and to evaluate the ability of S. degradans to produce polyhydroxyalkanoates (PHAs, also known as bioplastics). S. degradans can readily attach to cellulosic fibers, degrade the cellulose, and utilize this as the primary carbon source. The growth of S. degradans was assessed in minimal media (MM) containing glucose, cellobiose, avicel, and bagasse with all able to support growth. Cells were able to attach to avicel and bagasse fibers; however, growth on these insoluble fibers was much slower and led to a lower maximal biomass production than observed with simple sugars. Lignin in MM alone did not support growth, but did support growth upon addition of glucose, although with an increased adaptation phase. When culture conditions were switched to a nitrogen depleted status, PHA production commences and extends for at least 48 h. At early stationary phase, stained inclusion bodies were visible and two chronologically increasing infrared light absorbance peaks at 1,725 and 1,741 cm(-1) confirmed the presence of PHAs. This work demonstrates for what we believe to be the first time, that a single organism can degrade insoluble cellulose and under similar conditions can produce and accumulate PHA. Additional work is necessary to more fully characterize these capabilities and to optimize the PHA production and purification. (c) 2008 Wiley Periodicals, Inc.

  2. Management in the system of waste utilization of production and consumption

    Science.gov (United States)

    Azimov, U. I.; Gilmanshin, I. R.; Krainova, D. R.; Galeev, I. A.

    2017-09-01

    The main problems of waste management in accordance with the legislation are considered in the article. The economic benefits of separate waste collection are listed. The necessity of transition to a new level of waste management in the Republic of Tatarstan is determined.

  3. Toward environmentally-benign utilization of nonmetallic fraction of waste printed circuit boards as modifier and precursor

    Energy Technology Data Exchange (ETDEWEB)

    Hadi, Pejman; Ning, Chao; Ouyang, Weiyi; Xu, Meng [Chemical and Biomolecular Engineering Department, Hong Kong University of Science and Technology, Clear Water Bay Road, Hong Kong Special Administrative Region (Hong Kong); Lin, Carol S.K. [School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong Special Administrative Region (Hong Kong); McKay, Gordon, E-mail: kemckayg@ust.hk [Chemical and Biomolecular Engineering Department, Hong Kong University of Science and Technology, Clear Water Bay Road, Hong Kong Special Administrative Region (Hong Kong); Division of Sustainable Development, College of Science, Engineering and Technology, Hamad bin Khalifa University, Doha (Qatar)

    2015-01-15

    Highlights: • Environmental impacts of electronic waste and specifically waste printed circuit boards. • Review of the recycling techniques of waste printed circuit boards. • Advantages of physico-mechanical recycling techniques over chemical methods. • Utilization of nonmetallic fraction of waste printed circuit boards as modifier/filler. • Recent advances in the use of nonmetallic fraction of waste printed circuit boards as precursor. - Abstract: Electronic waste, including printed circuit boards, is growing at an alarming rate due to the accelerated technological progress and the shorter lifespan of the electronic equipment. In the past decades, due to the lack of proper economic and environmentally-benign recycling technologies, a major fraction of e-waste generated was either destined to landfills or incinerated with the sole intention of its disposal disregarding the toxic nature of this waste. Recently, with the increasing public awareness over their environment and health issues and with the enaction of more stringent regulations, environmentally-benign recycling has been driven to be an alternative option partially replacing the traditional eco-unfriendly disposal methods. One of the most favorable green technologies has been the mechanical separation of the metallic and nonmetallic fraction of the waste printed circuit boards. Although metallic fraction, as the most profitable component, is used to generate the revenue of the separation process, the nonmetallic fraction (NMF) has been left isolated. Herein, the recent developments in the application of NMF have been comprehensively reviewed and an eco-friendly emerging usage of NMF as a value-added material for sustainable remediation has been introduced.

  4. Toward environmentally-benign utilization of nonmetallic fraction of waste printed circuit boards as modifier and precursor

    International Nuclear Information System (INIS)

    Hadi, Pejman; Ning, Chao; Ouyang, Weiyi; Xu, Meng; Lin, Carol S.K.; McKay, Gordon

    2015-01-01

    Highlights: • Environmental impacts of electronic waste and specifically waste printed circuit boards. • Review of the recycling techniques of waste printed circuit boards. • Advantages of physico-mechanical recycling techniques over chemical methods. • Utilization of nonmetallic fraction of waste printed circuit boards as modifier/filler. • Recent advances in the use of nonmetallic fraction of waste printed circuit boards as precursor. - Abstract: Electronic waste, including printed circuit boards, is growing at an alarming rate due to the accelerated technological progress and the shorter lifespan of the electronic equipment. In the past decades, due to the lack of proper economic and environmentally-benign recycling technologies, a major fraction of e-waste generated was either destined to landfills or incinerated with the sole intention of its disposal disregarding the toxic nature of this waste. Recently, with the increasing public awareness over their environment and health issues and with the enaction of more stringent regulations, environmentally-benign recycling has been driven to be an alternative option partially replacing the traditional eco-unfriendly disposal methods. One of the most favorable green technologies has been the mechanical separation of the metallic and nonmetallic fraction of the waste printed circuit boards. Although metallic fraction, as the most profitable component, is used to generate the revenue of the separation process, the nonmetallic fraction (NMF) has been left isolated. Herein, the recent developments in the application of NMF have been comprehensively reviewed and an eco-friendly emerging usage of NMF as a value-added material for sustainable remediation has been introduced

  5. Utilization of agricultural wastes for production of ethanol. Progress report, October 1979-May 1980

    Energy Technology Data Exchange (ETDEWEB)

    Singh, B.

    1980-05-01

    The project proposes to develop methods to utilize agricultural wastes, especially cottonseed hulls and peanut shells to produce ethanol. Initial steps will involve development of methods to break down cellulose to a usable form of substrates for chemical or biological digestion. The process of ethanol production will consist of (a) preparatory step to separate fibrous (cellulose) and non-fibrous (non-cellulosic compounds). The non-cellulosic residues which may include grains, fats or other substrates for alcoholic fermentation. The fibrous residues will be first pre-treated to digest cellulose with acid, alkali, and sulfur dioxide gas or other solvents. (b) The altered cellulose will be digested by suitable micro-organisms and cellulose enzymes before alcoholic fermentation. The digester and fermentative unit will be specially designed to develop a prototype for pilot plant for a continuous process. The first phase of the project will be devoted toward screening of a suitable method for cellulose modification, separation of fibrous and non-fibrous residues, the micro-organism and enzyme preparations. Work is in progress on: the effects of various microorganisms on the degree of saccharification; the effects of higher concentrations of acids, alkali, and EDTA on efficiency of microbial degradation; and the effects of chemicals on enzymatic digestion.

  6. Investigation of Waste Paper Cellulosic Fibers Utilization into Cement Based Building Materials

    Directory of Open Access Journals (Sweden)

    Viola Hospodarova

    2018-03-01

    Full Text Available Recently, the utilization of renewable natural cellulosic materials, such as wood, plants, and waste paper in the preparation of building materials has attracted significant interest. This is due to their advantageous properties, low environmental impact and low cost. The objective of this paper is to investigate the influence of recycled cellulosic fibers (in the amount 0.5 wt % of the filler and binder weight and superplasticizer (in the amount 0.5 wt % of the cement weight on the resulting properties of cement composites (consistency of fresh mixture, density, thermal conductivity, and compressive and flexural strength for hardening times of 1, 3, 7, 28, and 90 days. Plasticizer use improved the workability of fresh cement mixture. In comparison to the reference sample, the results revealed a decrease in density of 6.8% and in the thermal conductivity of composites with cellulosic fibers of 34%. The highest values of compressive (48.4 MPa and flexural (up to 7 MPa strength were achieved for hardened fiber cement specimens with plasticizer due to their significantly better dispersion of cement particles and improved bond strength between fibers and matrix.

  7. Framework for evaluating the utility of incentive systems for radioactive waste repository siting

    International Nuclear Information System (INIS)

    Carnes, S.A.; Soderstrom, E.J.; Sorensen, J.; Peelle, E.; Reed, J.H.; Bjornstad, D.J.; Copenhaver, E.D.

    1982-01-01

    The importance of social and institutional issues in siting radioactive waste repositories has been recognized in recent years. Within this set of issues, the siting of repositories over the objections of members of potential host communities is viewed as especially problematic. Incentives to potential host communities have been suggested as a means of increasing local support for and offsetting local opposition to such facilities. Incentives are classified according to their function as mitigation, compensation or reward. Our analysis of results of a 1980 survey (conducted by John Kelly, Complex Systems Group, University of New Hampshire) of 420 rural Wisconsin residents indicates that incentives may achieve the purpose of increasing support for and decreasing opposition to accepting a repository. Criteria for evaluating the utility of incentives are identified. They respond to four basic questions: (1) What is absolutely necessary. (2) Will the incentive work. (3) Can the incentive be understood. and (4) What are the consequences of implementing the incentive. It is suggested that meaningful evaluations of incentives can only be performed by members of potential host communities

  8. A combined power cycle utilizing low-temperature waste heat and LNG cold energy

    International Nuclear Information System (INIS)

    Shi Xiaojun; Che Defu

    2009-01-01

    This paper has proposed a combined power system, in which low-temperature waste heat can be efficiently recovered and cold energy of liquefied natural gas (LNG) can be fully utilized as well. This system consists of an ammonia-water mixture Rankine cycle and an LNG power generation cycle, and it is modelled by considering mass, energy and species balances for every component and thermodynamic analyses are conducted. The results show that the proposed combined cycle has good performance, with net electrical efficiency and exergy efficiency of 33% and 48%, respectively, for a typical operating condition. The power output is equal to 1.25 MWh per kg of ammonia-water mixture. About 0.2 MW of electrical power for operating sea water pumps can be saved. Parametric analyses are performed for the proposed combined cycle to evaluate the effects of key factors on the performance of the proposed combined cycle through simulation calculations. Results show that a maximum net electrical efficiency can be obtained as the inlet pressure of ammonia turbine increases and the peak value increases as the ammonia mass fraction increases. Exergy efficiency goes up with the increased ammonia turbine inlet pressure. With the ammonia mass fraction increases, the net electrical efficiency increases, whereas exergy efficiency decreases. For increasing LNG turbine inlet pressure or heat source temperature, there is also a peak of net electrical efficiency and exergy efficiency. With the increase of LNG gas turbine outlet pressure, exergy efficiency increases while net electrical efficiency drops

  9. On the Utilization of Pozzolanic Wastes as an Alternative Resource of Cement

    Directory of Open Access Journals (Sweden)

    Md. Rezaul Karim

    2014-12-01

    Full Text Available Recently, as a supplement of cement, the utilization of pozzolanic materials in cement and concrete manufacturing has increased significantly. This study investigates the scope to use pozzolanic wastes (slag, palm oil fuel ash and rice husk ash as an alkali activated binder (AAB that can be used as an alternative to cement. To activate these materials, sodium hydroxide solution was used at 1.0, 2.5 and 5.0 molar concentration added into the mortar, separately. The required solution was used to maintain the flow of mortar at 110% ± 5%. The consistency and setting time of the AAB-paste were determined. Mortar was tested for its flow, compressive strength, porosity, water absorption and thermal resistance (heating at 700 °C and investigated by scanning electron microscopy. The experimental results reveal that AAB-mortar exhibits less flow than that of ordinary Portland cement (OPC. Surprisingly, AAB-mortars (with 2.5 molar solution achieved a compressive strength of 34.3 MPa at 28 days, while OPC shows that of 43.9 MPa under the same conditions. Although water absorption and porosity of the AAB-mortar are slightly high, it shows excellent thermal resistance compared to OPC. Therefore, based on the test results, it can be concluded that in the presence of a chemical activator, the aforementioned pozzolans can be used as an alternative material for cement.

  10. Industrial waste utilization in the panels production for high buildings facade and socle facing

    Science.gov (United States)

    Vitkalova, Irina; Torlova, Anastasiya; Pikalov, Evgeniy; Selivanov, Oleg

    2018-03-01

    The research presents comprehensive utilization of such industrial waste as galvanic sludge, broken window glass as functional additives for producing ceramics for facade and socle paneling in high-rise construction. The basic charge component is low-plasticity clay, which does not allow producing high-quality products if used without any functional additives. The application of the mentioned above components broadens the resource base, reduces production cost and the mass of the products in comparison with the currently used facing ceramics. The decrease of product mass helps to reduce the load on the basement and to use ceramic material in high-rise construction more effectively. Additional advantage of the developed composition is the reducing of production energy intensity due to comparatively low pressing pressure and firing temperature thus reducing the overall production cost. The research demonstrates the experimental results of determining density, compressive strength, water absorption, porosity and frost resistance of the produced ceramic material. These characteristics prove that the material can be applied for high buildings outdoor paneling. Additional research results prove ecologic safety of the produced ceramic material.

  11. Prospects of sugarcane milling waste utilization for hydrogen production in India

    International Nuclear Information System (INIS)

    Singh, S.P.; Asthana, R.K.; Singh, A.P.

    2007-01-01

    Cane-sugar producing countries also generate sufficient waste (bagasse) that is mostly utilized ''on-site'' as a replacement to coal in specialized boilers. In addition to sugar and molasses, about 25% by-product of the cane milling is bagasse that still retains 2.5% sugar on dry wt. basis.This paper deals with the prospects of bagasse fermentation for hydrogen production. It seems relevant, as India and Brazil are the major sugarcane producers in the world. The results obtained confirm bagasse, annually generated to a tune of 40 Mt (million tons) in India, can be diverted from the conventional burning or composting to fermentative hydrogen production in a cost-effective way. The processing cost of bagasse for hydrogen production (3Nm 3 ) equivalent to 1L petrol is about half. The system optimization for accessibility of polysaccharides in bagasse and the use of genetically efficient bacterial strains for agrowaste-based hydrogen production seems the ideal option for clean energy generation

  12. Utilization of solid coffee waste as a substrate for microbial protein production

    Energy Technology Data Exchange (ETDEWEB)

    Arue, C; Bahar, S

    1986-01-01

    The feasibility of using the solid waste from the instant coffee processing industry (NESCAFE) as a substrate for the production of protein from fungi imperfecti in order to be used as an animal feed supplement was studied. Studies on the selected fungi, Paecilomyces elegans, Aspergillus oryzae and Fusarium oxysporum showed that F. oxysporum produces significantly higher protein levels than the other fungi studied. The fungus was grown in batch on the acid hydrolyzed coffee medium. Maximal values for sugar utilization and mycelium production (3-4 mg/ml) were obtained on 0.5% (w/v) acid hydrolyzed substrate (4% w/v) supplemented with 0.05% (w/v) potassium phosphate and 0.2% (w/v) yeast extract. Supplementary nitrogen was not necessary. The fungus was found to require pyridoxine and inositol. Addition of 1.5% (w/v) glucose to the medium increased the biomass production, indicating that the carbon source may be a limiting factor. 37 references.

  13. Severe situation of rural nonpoint source pollution and efficient utilization of agricultural wastes in the Three Gorges Reservoir Area.

    Science.gov (United States)

    Zhang, Tong; Ni, Jiupai; Xie, Deti

    2015-11-01

    Rural nonpoint source (NPS) pollution caused by agricultural wastes has become increasingly serious in the Three Gorges Reservoir Area (TGRA), significantly affecting the reservoir water quality. The grim situation of rural NPS pollution in the TGRA indicated that agrochemicals (chemical fertilizer and pesticide) were currently the highest contributor of rural NPS pollution (50.38%). The harmless disposal rates of livestock excrement, crop straws, rural domestic refuse, and sewage also cause severe water pollution. More importantly, the backward agricultural economy and the poor environmental awareness of farmers in the hinterland of the TGRA contribute to high levels of rural NPS pollution. Over the past decade, researchers and the local people have carried out various successful studies and practices to realize the effective control of rural NPS pollution by efficiently utilizing agricultural wastes in the TGRA, including agricultural waste biogas-oriented utilization, crop straw gasification, decentralized land treatment of livestock excrement technology, and crop straw modification. These technologies have greatly increased the renewable resource utilization of agricultural wastes and improved water quality and ecological environment in the TGRA.

  14. Utilization of Information Technology for Non Domestic Waste Management in Semarang City

    Science.gov (United States)

    Ali, Muhammad; Hadi, Sudharto P.; Soemantri, Maman

    2018-02-01

    Garbage problem is often very complex in urban areas. The handling pattern of collecting, transporting and disposing that has been applied up to this day has not yet produced an appropriate solution. This is evident from the data of statistic centre institution in 2015 that 76.31% of the existing waste in the community has not been sorted, while 10.28% sorted to be used and 13.41% sorted to be discarded, showing the community amount of unsorted garbage large enough to necessitate managerial efforts at the waste sources. In designing a systematic and structured waste management system, the generations, compositions, and characteristics of the waste are indispensable. Therefore, a research is conducted on these three dimensions to the non-domestic waste in Semarang City, which involves commercial waste (from the markets, restaurants, and hotels), institutional waste (from the offices and schools). From the research result the average of 0,24kgs/person/day in weight unit of the City's non-domestical waste generation is derived. The waste composition is dominated by organic waste of around 61.95%, while the rest percentage is inorganic. The management policy is directed with the application of Management Information System model based on Information Technology because of the system's abilities to effectuate the waste management.

  15. Dye removal from textile wastewater using bioadsorbent

    International Nuclear Information System (INIS)

    Gardazi, S.M.H.

    2014-01-01

    Textile industries throughout the world produce huge quantities of dyes and pigments annually. Effluents from textile industries are dye wastewater, and disposal of these wastes to freshwater bodies causes damage to the environment. Among the treatment technologies, adsorption is an attractive and viable option, provided that the sorbent is inexpensive and readily available for use. In this study, a typical basic dye, methylene blue, in wastewater was treated using Melia azedarach sawdust. The effects of contact time, adsorbent amount and particle size were investigated on the removal efficiency of adsorbent for methylene blue. Complete removal of the dye were attained at higher adsorbent dose of 3 g/L with 50 mg/L initial dye concentration. The maximum adsorption was at 240 minutes, whereas more than 90% removal with 105 meu m particle size of 1 g/L adsorbent for same initial dye concentration. The experimental data best fits with 2 Langmuir adsorption isotherm (R= 0.991). (author)

  16. Utilization of waste glass in ECO-cement: Strength properties and microstructural observations

    International Nuclear Information System (INIS)

    Sobolev, Konstantin; Tuerker, Pelin; Soboleva, Svetlana; Iscioglu, Gunsel

    2007-01-01

    Waste glass creates a serious environmental problem, mainly because of the inconsistency of the waste glass streams. The use of waste glass as a finely ground mineral additive (FGMA) in cement is a promising direction for recycling. Based on the method of mechano-chemical activation, a new group of ECO-cements was developed. In ECO-cement, relatively large amounts (up to 70%) of portland cement clinker can be replaced with waste glass. This report examines the effect of waste glass on the microstructure and strength of ECO-cement based materials. Scanning electron microscopy (SEM) investigations were used to observe the changes in the cement hydrates and interface between the cement matrix and waste glass particles. According to the research results, the developed ECO-cement with 50% of waste glass possessed compressive strength properties at a level similar to normal portland cement

  17. Mixed ZnO-TiO2 Suspended Solution as an Efficient Photocatalyst for Decolonization of a Textile Dye from Waste Water

    Directory of Open Access Journals (Sweden)

    Mohammad Ali Mooji

    2015-03-01

    Full Text Available Introduction: Textile industries produce large volume of colored dye effluents which are toxic and removal of dyes from wastewater is a significant environmental issue. Advanced oxidation process (AOPs is alternative method for the complete degradation many organic pollutants. ZnO and TiO2 are important photocatalysts with high catalytic activity that have attracted much research attention. Material and Methods: Mixed ZnO/TiO2 was prepared with mixing of ZnO and TiO2 (20, 40, 60, 80 % (w/w. 20 mL of dye solution (80 mgL-1 for DB71 containing the appropriate quantity of photocatalyst was magnetically stirred under UV irradiation. Photocatalytic study was carried out to evaluate the effect of UV (400 W, ZnO/TiO2 weight percent (20, 40, 60, 80 % (w/w, pH (2.3 – 9.2, irradiation time of (10 – 70 min, initial dye concentration of (10, 40, 80 mg/L and ZnO/TiO2 dosage of (0.2 – 1.6 g/L on removal of dye. Dye concentration was monitored spectrophotometrically by measuring the dye absorbance at 285 nm. Results: In comparison with TiO2 or ZnO as photocatalyst, mixed photocatalyst (ZnO/TiO2 is more efficient catalyst for degradation of dye under UV irradiation Results show that approximately 90 % of Direct Blue 71 has been eliminated after 70 minutes and optimized condition ((pH = 6.4, ZnO/TiO2 (50% w/w, 1.25 g/L. Experiments showed, the noticeable decolorization of dye solution can be done without any oxidation agent with mixed ZnO/TiO2 photocatalyst.

  18. Preparation and characterization of clay bonded high strength silica refractory by utilizing agriculture waste

    Directory of Open Access Journals (Sweden)

    Aman Bhardwaj

    2017-11-01

    Full Text Available Clay bonded silica refractory was prepared by utilizing agriculture waste called rice husk ash (RHA and refractory grog. Various samples were prepared with different compositions based upon partial replacement of quartz by RHA. Rectangular samples were prepared by following semi dry process prior to pressing in a uniaxial hydraulic press and sintering at a temperature of 1200 °C in air atmosphere. Various physical, mechanical and thermal characterizations were done like X-ray diffraction (XRD, scanning electron microscope (SEM, apparent porosity (AP, bulk density (BD, cold crushing strength (CCS, refractoriness and thermal conductivity measurement. The sample utilizing 30% of RHA was considered most optimum composition which produced cold crushing strength of 38 MPa and thermal conductivity of 2.08 W/m K at 800 °C with a considerable good refractoriness. Enhancement in the mechanical as well as thermal properties may be considered as attributed to the amorphous silica which has reacted more easily and efficiently with other material surrounding giving rise to the densification and produced stable crystalline phase to the refractory material. These promising characteristics suggests that the RHA may lead to be used as a potential material for the preparation of clay bonded high strength silica refractories. Resumen: Se preparó sílice refractaria unida a arcilla con residuos agrícolas conocidos como ceniza de cascarilla de arroz (rice husk ash [RHA] y grog refractario. Se prepararon varias muestras con diferentes composiciones basadas en la sustitución parcial de cuarzo por RHA. Las muestras rectangulares se prepararon siguiendo un proceso semiseco antes de prensarlas en una prensa hidráulica uniaxial y sinterizarlas a una temperatura de 1.200 °C en atmósfera de aire. Se realizaron diversas caracterizaciones físicas, mecánicas y térmicas, como la difracción de rayos X, el microscopio electrónico de barrido, la porosidad

  19. The utilization of waste by-products for removing silicate from mineral processing wastewater via chemical precipitation.

    Science.gov (United States)

    Kang, Jianhua; Sun, Wei; Hu, Yuehua; Gao, Zhiyong; Liu, Runqing; Zhang, Qingpeng; Liu, Hang; Meng, Xiangsong

    2017-11-15

    This study investigates an environmentally friendly technology that utilizes waste by-products (waste acid and waste alkali liquids) to treat mineral processing wastewater. Chemical precipitation is used to remove silicate from scheelite (CaWO 4 ) cleaning flotation wastewater and the waste by-products are used as a substitute for calcium chloride (CaCl 2 ). A series of laboratory experiments is conducted to explain the removal of silicate and the characterization and formation mechanism of calcium silicate. The results show that silicate removal reaches 90% when the Ca:Si molar ratio exceeds 1.0. The X-ray diffraction (XRD) results confirm the characterization and formation of calcium silicate. The pH is the key factor for silicate removal, and the formation of polysilicic acid with a reduction of pH can effectively improve the silicate removal and reduce the usage of calcium. The economic analysis shows that the treatment costs with waste acid (0.63 $/m 3 ) and waste alkali (1.54 $/m 3 ) are lower than that of calcium chloride (2.38 $/m 3 ). The efficient removal of silicate is confirmed by industrial testing at a plant. The results show that silicate removal reaches 85% in the recycled water from tailings dam. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Removal of reactive dyes from aqueous solutions by a non-conventional and low cost agricultural waste: adsorption on ash of Aloe Vera plant

    Directory of Open Access Journals (Sweden)

    Mohammad Malakootian

    2014-08-01

    Full Text Available Dyes are an important class of pollutants and disposal of them in precious water resources must be avoided. Among various methods adsorption occupies a prominent place in dye removal. The aim of this study is to evaluate adsorption of dye Reactive Red 198 and Blue 19 (RR-198 & RB-19 (on to Aloe Vera plant ash from aqueous solutions. In this research Aloe Vera ash was prepared at laboratory conditions and then after shredding, screened by ASTM standard sieve with 60 -200 mesh sizes and the effects of pH (3-12, adsorbent dose (0.1-1 g/L, contact time (10-60 min, initial dye concentration (10-160 mg/L and temperature were investigated in the experiment. In different samples Dye concentration was measured by spectrophotometer at 592 nm and 520 nm wavelength for RR198 and RB19 respectively. Also the Langmuir and Freundlich adsorption isotherms were determined in order to describe the relations between the colored solutions and the adsorbent. The results of this study showed that acidic conditions were more conducive to enhance the hydrolysis rate than basic ones as the decomposition was optimum at pH 3. The adsorption rate of RR-198 and RB-19 dyes was increased by increasing of initial dye concentration, increasing of adsorbent dose in 0.1 to 0.4 mg/L. Dye solution was decolorized in a relatively short time (20 min. The efficiencies for RR-198 and RB- 19 reactive dyes were 82.68% and 90.42% respectively. The maximum adsorption capacity (qmax has been found to be 80.152 mg/g for RR-198 reactive dye and 88.452 mg/g for Blue 19 reactive dye. Adsorption isotherms were examined by Freundlich and Langmuir isotherm that finally showed the Freundlich multilayer isotherm has better accordance with dates. The results indicate that Aloe Vera ash plant as a natural and inexpensive adsorbent is a suitable adsorbent for the adsorption of textile dyes.

  1. Use of the Modified Light Duty Utility Arm to Perform Nuclear Waste Cleanup of Underground Waste Storage Tanks at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Blank, J.A.; Burks, B.L.; DePew, R.E.; Falter, D.D.; Glassell, R.L.; Glover, W.H.; Killough, S.M.; Lloyd, P.D.; Love, L.J.; Randolph, J.D.; Van Hoesen, S.D.; Vesco, D.P.

    1999-01-01

    The Modified Light Duty Utility Arm (MLDUA) is a selectable seven or eight degree-of-freedom robot arm with a 16.5 ft (5.03 m) reach and a payload capacity of 200 lb. (90.72 kg). The utility arm is controlled in either joystick-based telerobotic mode or auto sequence robotics mode. The MLDUA deployment system deploys the utility arm vertically into underground radioactive waste storage tanks located at Oak Ridge National Laboratory. These tanks are constructed of gunite material and consist of two 25 ft (7.62 m) diameter tanks in the North Tank Farm and six 50 ft (15.24 m) diameter tanks in the South Tank Farm. After deployment inside a tank, the utility arm reaches and grasps the confined sluicing end effecter (CSEE) which is attached to the hose management arm (HMA). The utility arm positions the CSEE within the tank to allow the HMA to sluice the tank's liquid and solid waste from the tank. The MLDUA is used to deploy the characterization end effecter (CEE) and gunite scarifying end effecter (GSEE) into the tank. The CEE is used to survey the tank wall's radiation levels and the physical condition of the walls. The GSEE is used to scarify the tank walls with high-pressure water to remove the wall scale buildup and a thin layer of gunite which reduces the radioactive contamination that is embedded into the gunite walls. The MLDUA is also used to support waste sampling and wall core-sampling operations. Other tools that have been developed for use by the MLDUA include a pipe-plugging end effecter, pipe-cutting end effecter, and pipe-cleaning end effecter. Washington University developed advance robotics path control algorithms for use in the tanks. The MLDUA was first deployed in June 1997 and has operated continuously since then. Operational experience in the first four tanks remediated is presented in this paper

  2. Utilization of the waste gases from a petroleum refinery as fuel

    International Nuclear Information System (INIS)

    Torres Contreras, Jose Francisco

    2012-01-01

    The fuels waste gases that are burned in a flare stack were proposed as an alternative for its utilization. The current operation of the flare stack system of a petroleum refinery was analyzed. The historical information of the equipment and original design of the same was used. From the calculations that were performed, it is expected that the delivered heat for the flare gases approaching to 65 MJ/M 3 , so it would be an effective fuel for be used in furnaces and boilers. A new flare stack system and a system for recovery of the waste gases of process is proposed. The new flare stack system must have a liquid separator of 2,3 meters of diameter, a length of 6,4 meters and a capacity of 26,1 cubic meters. The velocity of the gas to the exit of the separator has been of 80,7 m/s. The liquid hydrocarbon flow that has exited the separator has been of 71 m 3 /h, with a speed of 0,91 m/s and a pump of 2,75 HP is required. The liquid seal of flare stack systems must have a minimum height of 1,05 m. The gas recovery system to burn in the flare stack should be located between the liquid separator and liquid seal of the flare stack systems. For an average consumption of 150 m 3 /h of fuel gas for furnaces and boilers, the gas recovery system must have with a compressor of 4,75 HP, a liquid separator of 50 m 3 and a pump of 2,50 HP. The gas recovery system has had with an absorber of 7 plates for washing of the stream acid gas with MEA, at 40 degrees celsius and an pressure of operating of 67 kPa, and a flow of 55,88 kg/h at amine solution. The flare gas flow has been recommended to be analyzed chemically, as well as the measurement of the flow of gas streams plant consumption and gases flare. A technical-economic feasibility study of the process should be realized. (author) [es

  3. Savannah River Plant Low-Level Waste Heat Utilization Project preliminary analysis. Volume III. Preferred utilization options

    International Nuclear Information System (INIS)

    1978-11-01

    The technical, economic, environmental, and institutional considerations that must be resolved before implementing options to recover energy from the heated SRP effluent are examined. Detailed hypothetical siting options and expected economic returns are examined for power generation, prawn production, and one industrial park scenario. The likely indirect effects on regional population, income, taxes, and infrastructure requirements if the industrial park scenario is implemented are also projected. Recommendations for follow-on studies to make possible an informed go/no-go decision for implementing attractive waste heat options using reject SRP effluent are included

  4. Utilization of red mud for the purification of waste waters from nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Luka, Mikelic; Visnja, Orescanin; Stipe, Lulic [Rudjer Boskovic Institute, Lab. for radioecology, Zagreb (Croatia)

    2006-07-01

    Sorption of the radionuclides and heavy metals from low level liquid radioactive waste on the coagulant produced from bauxite waste (red mud and waste base) was presented. Research was conducted on composite annual samples of waste water collected in the Waste Monitor Tank (W.M.T.) from Kro Nuclear Power Plant during each month. Activities of radionuclide in W.M.T. were measured before and after purification using high purity germanium detector. Also, elemental concentrations in W.M.T. before and after purification were measured by source excited energy dispersive X-ray fluorescence (E.D.X.R.F.). It has been showed that activated red mud is excellent purification agent for the removal of radionuclides present in low level liquid radioactive waste. Removal efficiency was 100% for the radionuclides {sup 58}Co and {sup 60}Co 100%, and over 60% for {sup 134}Cs and {sup 137}Cs. (authors)

  5. Utilization of red mud for the purification of waste waters from nuclear power plants

    International Nuclear Information System (INIS)

    Luka, Mikelic; Visnja, Orescanin; Stipe, Lulic

    2006-01-01

    Sorption of the radionuclides and heavy metals from low level liquid radioactive waste on the coagulant produced from bauxite waste (red mud and waste base) was presented. Research was conducted on composite annual samples of waste water collected in the Waste Monitor Tank (W.M.T.) from Kro Nuclear Power Plant during each month. Activities of radionuclide in W.M.T. were measured before and after purification using high purity germanium detector. Also, elemental concentrations in W.M.T. before and after purification were measured by source excited energy dispersive X-ray fluorescence (E.D.X.R.F.). It has been showed that activated red mud is excellent purification agent for the removal of radionuclides present in low level liquid radioactive waste. Removal efficiency was 100% for the radionuclides 58 Co and 60 Co 100%, and over 60% for 134 Cs and 137 Cs. (authors)

  6. Box-Behnken design for optimizing the acid blue dye adsorption on flower wastes Diseño Box-Behnken para la optimización de la adsorción del colorante azul ácido sobre residuos de flores

    OpenAIRE

    Ana Cristina Jaramillo Madrid; Ana Maria Echavarria; Angelina Hormaza

    2013-01-01

    In this paper we identified the best conditions for the removal of Acid Blue 9 dye (AB9) using ower wastes (FW) as an adsorbent were determined using a full factorial 23 and a Box-Behnken design for further optimization. Adsorbent dose (D), dye concentration (C) and contact time (t), were the assessed variables. The dye content was quantied by UV-Vis spectrometry. The statistical model presented an adequate adjustment coecient (R2 = 99,18%), allowing to achieve a removal of 98,5% with a dosag...

  7. Integrating the commercial and defense high level waste programs - A utility perspective

    International Nuclear Information System (INIS)

    Tomonto, J.R.

    1986-01-01

    The Nuclear Waste Policy Act of 1982 provided that disposal of high-level wastes resulting from defense activities be included in the authorized repository unless the President determined that separate facilities are required. President Reagan approved commingling of defense and civilian wastes on April 30, 1985. The impacts of this decision on the repository schedule, civilian spent fuel acceptance rates, and cost sharing are reviewed and recommendations for resolving these issues are presented

  8. Waste Utilization and Biodiesel Production by the Green Microalga Scenedesmus obliquus▿

    Science.gov (United States)

    Mandal, Shovon; Mallick, Nirupama

    2011-01-01

    Scenedesmus obliquus was cultivated in three types of waste discharges to couple waste treatment with biodiesel production. The lipid pool accumulation was boosted to 1.0 g liter−1 against 0.1 g liter−1 for the control. The waste-grown S. obliquus showed an increase in the content of the saturated fatty acid pool, which is desirable for good-quality biodiesel. PMID:21057012

  9. Utilization of Construction Waste Composite Powder Materials as Cementitious Materials in Small-Scale Prefabricated Concrete

    OpenAIRE

    Cuizhen Xue; Aiqin Shen; Yinchuan Guo; Tianqin He

    2016-01-01

    The construction and demolition wastes have increased rapidly due to the prosperity of infrastructure construction. For the sake of effectively reusing construction wastes, this paper studied the potential use of construction waste composite powder material (CWCPM) as cementitious materials in small-scale prefabricated concretes. Three types of such concretes, namely, C20, C25, and C30, were selected to investigate the influences of CWCPM on their working performances, mechanical properties, ...

  10. Recovery of fission products from waste solutions utilizing controlled cathodic potential electrolysis

    International Nuclear Information System (INIS)

    Carlin, W.W.; Darlington, W.B.

    1975-01-01

    Fission products, e.g., palladium, rhodium and technetium, are recovered from aqueous waste solutions thereof, e.g., aged Purex alkaline waste solutions. The metal values from the waste solutions are extracted by ion exchange techniques. The metals adsorbed by the ion exchange resin are eluted and selectively recovered by controlled cathodic potential electrolysis. The metal values deposited on the cathode are recovered and, if desired, further purified

  11. Low-Cost Biodegradation and Detoxification of Textile Azo Dye C.I. Reactive Blue 172 by Providencia rettgeri Strain HSL1

    Directory of Open Access Journals (Sweden)

    Harshad Lade

    2015-01-01

    Full Text Available Present study focuses on exploitation of agricultural waste wheat bran (WB as growth medium for degradation of textile azo dye C.I. Reactive Blue 172 (RB 172 using a single bacterium P. rettgeri strain HSL1 (GenBank accession number JX853768.1. The bacterium was found to completely decolorize 50 mg L−1 of dye RB 172 within 20 h at 30 ± 0.2°C under microaerophilic incubation conditions. Additionally, significant reduction in COD (85% and TOC (52% contents of dye decolorized medium was observed which suggested its mineralization. Induction in the activities of azoreductase (159% and NADH-DCIP reductase (88% provided an evidence for reductive cleavage of dye RB 172. The HPLC, FTIR, and GC-MS analysis of decolorized products confirmed the degradation of dye into various metabolites. The proposed metabolic pathway for biodegradation of RB 172 has been elucidated which showed the formation of 2 intermediate metabolites, namely, 4-(ethenylsulfonyl aniline and 1-amino-1-(4-aminophenyl propan-2-one. The acute and phytotoxicity evaluation of degraded metabolites suggests that bacterial strain favors the detoxification of dye RB 172. Thus, WB could be utilized as a low-cost growth medium for the enrichment of bacteria and their further use for biodegradation of azo dyes and its derivatives containing wastes into nontoxic form.

  12. Laser-induced removal of a dye C.I. Acid Red 87 using n-type WO{sub 3} semiconductor catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Qamar, M. [Center of Excellence in Nanotechnology, King Fahd University of Petroleum and Minerals, KFUPM Box 741, Dhahran 31261 (Saudi Arabia); Gondal, M.A., E-mail: magondal@kfupm.edu.sa [Center of Excellence in Nanotechnology, King Fahd University of Petroleum and Minerals, KFUPM Box 741, Dhahran 31261 (Saudi Arabia); Laser Research Laboratory, Physics Department, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Hayat, K. [Chemistry Department, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Yamani, Z.H. [Center of Excellence in Nanotechnology, King Fahd University of Petroleum and Minerals, KFUPM Box 741, Dhahran 31261 (Saudi Arabia); Laser Research Laboratory, Physics Department, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Al-Hooshani, K. [Center of Excellence in Nanotechnology, King Fahd University of Petroleum and Minerals, KFUPM Box 741, Dhahran 31261 (Saudi Arabia); Chemistry Department, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia)

    2009-10-30

    Water contamination by organic substances such as dyes is of great concern worldwide due to their utilization in many industrial processes and environmental concerns. To cater the needs for waste water treatment polluted with organic dyes, laser-induced photocatalytic process was investigated for removal of a dye derivative namely Acid Red 87 using n-type WO{sub 3} semiconductor catalyst. The degradation was investigated in aqueous suspensions of tungsten oxide under different experimental conditions using laser instead of conventional UV lamp as an irradiation source. The degradation process was monitored by measuring the change in dye concentration as a function of laser irradiation time by employing UV spectroscopic analysis. The degradation of dye was studied by varying different parameters such as laser energy, reaction pH, substrate concentration, catalyst concentration, and in the presence of electron acceptors such as hydrogen peroxide (H{sub 2}O{sub 2}), and potassium bromate (KBrO{sub 3}). The degradation rates were found to be strongly dependent on all the above-mentioned parameters. Our experimental results revealed that the dye degradation process was very fast (within few minutes) under laser irradiation as compared to conventional setups using broad spectral lamps (hours or days) and this laser-induced photocatalytic degradation method could be an effective means to eliminate the pollutants present in liquid phase. The experience gained through this study could be beneficial for treatment of waste water contaminated with organic dyes and other organic pollutants.

  13. Generation of electricity and combustible gas by utilization of agricultural waste in Nara canal area water board

    International Nuclear Information System (INIS)

    Joyo, P.; Memon, F.; Sohag, M.A.

    2005-01-01

    Biomass in an important source of energy, however, it is not fully utilized in Sindh. The various types of biomass normally used for the generation of energy are extensively available in the province. These are forest debris and thinning; residue from wood products industry; agricultural waste; fast-growing trees and crops; wood and wood waste; animal manures and non-hazardous organic portion of municipal solid waste. Since agriculture is pre-dominant in Sindh, it has a large amount of agricultural waste available in most of the areas. Agriculture wastes like rice husk, wheat straw, cotton stalks, and sugarcane bagasse can be utilized to produce gas and afterwards electricity. Pakistan Agricultural Research Council (PARC) has found that at most of the locations of Sindh, agricultural waste is available more than the energy requirements of that particular area. Biomass can also generate electricity (or heat) in one of the several processes, can be used in a piston driven engine, high efficiency gas turbine generator or a fuel cell to produce electricity. Biomass gasifies have gained attention for their efficiency, economy and environment-friendly. The Nara Canal Area Water Board is facing acute problem of electricity in the O and M of its drainage network and running of tube wells. The frequent breakdown and irregular supply of power is badly affecting in the management of drainage system and control of rising water-table, however, it is anticipated that the generation of electricity through biomass can address this acute problem and greatly help in controlling water logging and salinity in Sindh. (author)

  14. Proceedings of waste stream minimization and utilization innovative concepts: An experimental technology exchange. Volume 1, Industrial solid waste processing municipal waste reduction/recycling

    Energy Technology Data Exchange (ETDEWEB)

    Lee, V.E. [ed.; Watts, R.L.

    1993-04-01

    This two-volume proceedings summarizes the results of fifteen innovations that were funded through the US Department of Energy`s Innovative Concept Program. The fifteen innovations were presented at the sixth Innovative Concepts Fair, held in Austin, Texas, on April 22--23, 1993. The concepts in this year`s fair address innovations that can substantially reduce or use waste streams. Each paper describes the need for the proposed concept, the concept being proposed, and the concept`s economics and market potential, key experimental results, and future development needs. The papers are divided into two volumes: Volume 1 addresses innovations for industrial solid waste processing and municipal waste reduction/recycling, and Volume 2 addresses industrial liquid waste processing and industrial gaseous waste processing. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.

  15. Validating continuous digital light processing (cDLP) additive manufacturing accuracy and tissue engineering utility of a dye-initiator package.

    Science.gov (United States)

    Wallace, Jonathan; Wang, Martha O; Thompson, Paul; Busso, Mallory; Belle, Vaijayantee; Mammoser, Nicole; Kim, Kyobum; Fisher, John P; Siblani, Ali; Xu, Yueshuo; Welter, Jean F; Lennon, Donald P; Sun, Jiayang; Caplan, Arnold I; Dean, David

    2014-03-01

    This study tested the accuracy of tissue engineering scaffold rendering via the continuous digital light processing (cDLP) light-based additive manufacturing technology. High accuracy (i.e., <50 µm) allows the designed performance of features relevant to three scale spaces: cell-scaffold, scaffold-tissue, and tissue-organ interactions. The biodegradable polymer poly (propylene fumarate) was used to render highly accurate scaffolds through the use of a dye-initiator package, TiO2 and bis (2,4,6-trimethylbenzoyl)phenylphosphine oxide. This dye-initiator package facilitates high accuracy in the Z dimension. Linear, round, and right-angle features were measured to gauge accuracy. Most features showed accuracies between 5.4-15% of the design. However, one feature, an 800 µm diameter circular pore, exhibited a 35.7% average reduction of patency. Light scattered in the x, y directions by the dye may have reduced this feature's accuracy. Our new fine-grained understanding of accuracy could be used to make further improvements by including corrections in the scaffold design software. Successful cell attachment occurred with both canine and human mesenchymal stem cells (MSCs). Highly accurate cDLP scaffold rendering is critical to the design of scaffolds that both guide bone regeneration and that fully resorb. Scaffold resorption must occur for regenerated bone to be remodeled and, thereby, achieve optimal strength.

  16. Validating continuous digital light processing (cDLP) additive manufacturing accuracy and tissue engineering utility of a dye-initiator package

    International Nuclear Information System (INIS)

    Wallace, Jonathan; Wang, Martha O; Kim, Kyobum

    2014-01-01

    This study tested the accuracy of tissue engineering scaffold rendering via the continuous digital light processing (cDLP) light-based additive manufacturing technology. High accuracy (i.e., <50 µm) allows the designed performance of features relevant to three scale spaces: cell-scaffold, scaffold-tissue, and tissue-organ interactions. The biodegradable polymer poly (propylene fumarate) was used to render highly accurate scaffolds through the use of a dye-initiator package, TiO 2  and bis (2,4,6-trimethylbenzoyl)phenylphosphine oxide. This dye-initiator package facilitates high accuracy in the Z dimension. Linear, round, and right-angle features were measured to gauge accuracy. Most features showed accuracies between 5.4–15% of the design. However, one feature, an 800 µm diameter circular pore, exhibited a 35.7% average reduction of patency. Light scattered in the x, y directions by the dye may have reduced this feature's accuracy. Our new fine-grained understanding of accuracy could be used to make further improvements by including corrections in the scaffold design software. Successful cell attachment occurred with both canine and human mesenchymal stem cells (MSCs). Highly accurate cDLP scaffold rendering is critical to the design of scaffolds that both guide bone regeneration and that fully resorb. Scaffold resorption must occur for regenerated bone to be remodeled and, thereby, achieve optimal strength. (paper)

  17. Demonstration of an on-site PAFC cogeneration system with waste heat utilization by a new gas absorption chiller

    Energy Technology Data Exchange (ETDEWEB)

    Urata, Tatsuo [Tokyo Gas Company, LTD, Tokyo (Japan)

    1996-12-31

    Analysis and cost reduction of fuel cells is being promoted to achieve commercial on-site phosphoric acid fuel cells (on-site FC). However, for such cells to be effectively utilized, a cogeneration system designed to use the heat generated must be developed at low cost. Room heating and hot-water supply are the most simple and efficient uses of the waste heat of fuel cells. However, due to the short room-heating period of about 4 months in most areas in Japan, the sites having demand for waste heat of fuel cells throughout the year will be limited to hotels and hospitals Tokyo Gas has therefore been developing an on-site FC and the technology to utilize tile waste heat of fuel cells for room cooling by means of an absorption refrigerator. The paper describes the results of fuel cell cogeneration tests conducted on a double effect gas absorption chiller heater with auxiliary waste heat recovery (WGAR) that Tokyo Gas developed in its Energy Technology Research Laboratory.

  18. Utilization of Activated Carbon Prepared from Aceh Coffee Grounds as Bio-sorbent for Treatment of Fertilizer Industrial Waste Water

    Science.gov (United States)

    Mariana, M.; Mahidin, M.; Mulana, F.; Aman, F.

    2018-05-01

    The people of Aceh are well known as coffee drinkers. Therefore, a lot of coffee shops have been established in Aceh in the past decade. The growing of coffee shops resulting to large amounts of coffee waste produced in Aceh Province that will become solid waste if not wisely utilized. The high carbon content in coffee underlined as background of this research to be utilized those used coffee grounds as bio-sorbent. The preparation of activated carbon from coffee grounds by using carbonization method that was initially activated with HCl was expected to increase the absorption capacity. The prepared activated carbon with high reactivity was applied to adsorb nitrite, nitrate and ammonia in wastewater outlet of PT. PIM wastewater pond. Morphological structure of coffee waste was analyzed by using Scanning Electron Microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR). The result showed that the adsorption capacity of iodine was equal to 856.578 mg/g. From the characterization results, it was concluded that the activated carbon from coffee waste complied to the permitted quality standards in accordance with the quality requirements of activated carbon SNI No. 06-3730-1995. Observed from the adsorption efficiency, the bio-sorbent showed a tendency of adsorbing more ammonia than nitrite and nitrate of PT. PIM wastewater with ammonia absorption efficiency of 56%.

  19. A Multi-Approach Evaluation System (MA-ES) of Organic Rankine Cycles (ORC) used in waste heat utilization

    International Nuclear Information System (INIS)

    Shu, Gequn; Yu, Guopeng; Tian, Hua; Wei, Haiqiao; Liang, Xingyu

    2014-01-01

    Highlights: • The MA-ES provides comprehensive valuations on ORC used for waste heat utilization. • The MA-ES covers energetic, exergetic and economic evaluations of typical ORCs. • The MA-ES is a general assessing method without restriction to specific ORC condition. • Two ORC cases of ICE waste-heat-recovery are exemplified applying the MA-ES. - Abstract: A Multi-Approach Evaluation System (MA-ES) is established in this paper providing comprehensive evaluations on Organic Rankine Cycles (ORC) used for waste heat utilization. The MA-ES covers three main aspects of typical ORC performance: basic evaluations of energy distribution and system efficiency based on the 1st law of thermodynamics; evaluations of exergy distribution and exergy efficiency based on the 2nd law of thermodynamics; economic evaluations based on calculations of equipment capacity, investment and cost recovery. The MA-ES is reasonably organized aiming at providing a general method of ORC performance assessment, without restrictions to system configurations, operation modes, applications, working fluid types, equipment conditions, process parameters and so on. Two ORC cases of internal combustion engines’ (ICEs) waste-heat-recovery are exemplified to illustrate the applications of the evaluation system. The results clearly revealed the performance comparisons among ORC configurations and working fluids referred. The comparisons will provide credible guidance for ORC design, equipment selection and system construction

  20. Utilization of the Pilot Scale Demonstration Facility for Vitrification of Low and Intermediate Level Radioactive Wastes

    International Nuclear Information System (INIS)

    Oh, Won Zin; Choi, W. K.; Jung, C. H.; Won, H. J.; Song, P. S.; Min, B. Y.; Park, H. S.; Jung, K. K.; Yun, K. S.

    2005-10-01

    A series of maintenance and repair work for normalization of the pilot scale vitrification demonstration facility was completed successfully to develop the waste treatment in high temperature and melting technology. It was investigated that the treatment of combustible and non-combustible wastes produced at the KAERI site is technically feasible in the pilot scale vitrification demonstration facility which is designed to be able to treat various kinds of radioactive wastes such as combustible and non-combustible wastes including soil and concrete. The vitrification test facility can be used as the R and D and the technology demonstration facility for melt decontamination of the metallic wastes which have a fixed specification. The modification of the RI storage room in the pilot scale vitrification demonstration facility and the licensing according to the facility modification were completed for the R and D on melt decontamination of dismantled metallic wastes which is carrying out as one of the national long-term R and D projects on nuclear energy. The lab-scale melt decontamination apparatus was installed in modified RI storage room and the characteristics of melt decontamination will be examined using various metallic wastes. It is expected that the economical feasibility on the volume reduction and recycle of metallic wastes will be escalated in the present situation when the unit cost for waste disposal has the tendency to grow up gradually. Therefore, the pilot scale vitrification demonstration facility can be used for the technology development for the volume reduction and recycle of the metallic wastes generated from on-going projects on the decommissioning of research reactors and the environmental restoration of uranium conversion plant, and for the treatment of radioactive solid wastes produced at the KAERI site

  1. Utilization of the Pilot Scale Demonstration Facility for Vitrification of Low and Intermediate Level Radioactive Wastes

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Won Zin; Choi, W. K.; Jung, C. H.; Won, H. J.; Song, P. S.; Min, B. Y.; Park, H. S.; Jung, K. K.; Yun, K. S

    2005-10-15

    A series of maintenance and repair work for normalization of the pilot scale vitrification demonstration facility was completed successfully to develop the waste treatment in high temperature and melting technology. It was investigated that the treatment of combustible and non-combustible wastes produced at the KAERI site is technically feasible in the pilot scale vitrification demonstration facility which is designed to be able to treat various kinds of radioactive wastes such as combustible and non-combustible wastes including soil and concrete. The vitrification test facility can be used as the R and D and the technology demonstration facility for melt decontamination of the metallic wastes which have a fixed specification. The modification of the RI storage room in the pilot scale vitrification demonstration facility and the licensing according to the facility modification were completed for the R and D on melt decontamination of dismantled metallic wastes which is carrying out as one of the national long-term R and D projects on nuclear energy. The lab-scale melt decontamination apparatus was installed in modified RI storage room and the characteristics of melt decontamination will be examined using various metallic wastes. It is expected that the economical feasibility on the volume reduction and recycle of metallic wastes will be escalated in the present situation when the unit cost for waste disposal has the tendency to grow up gradually. Therefore, the pilot scale vitrification demonstration facility can be used for the technology development for the volume reduction and recycle of the metallic wastes generated from on-going projects on the decommissioning of research reactors and the environmental restoration of uranium conversion plant, and for the treatment of radioactive solid wastes produced at the KAERI site.

  2. Synergistic Utilization of Coal Fines and Municipal Solid Waste in Coal-Fired Boilers. Phase I Final Report

    Energy Technology Data Exchange (ETDEWEB)

    V. Zamansky; P. Maly; M. Klosky

    1998-06-12

    A feasibility study was performed on a novel concept: to synergistically utilize a blend of waste coal fines with so-called E-fuel for cofiring and reburning in utility and industrial boilers. The E-fuel is produced from MSW by the patented EnerTech's slurry carbonization process. The slurry carbonization technology economically converts MSW to a uniform, low-ash, low-sulfur, and essentially chlorine-free fuel with energy content of about 14,800 Btu/lb.

  3. Utilization of waste of coal-mining enterprise in production of building materials

    Science.gov (United States)

    Chugunov, A. D.; Filatova, E. G.; Yakovleva, A. A.

    2018-03-01

    Wastes of coal producers often include substances allowing treating such wastes as valuable feeds for metallurgy, chemical and construction processes. This study concerned elemental and phase composition of samples obtained by calcination of bottom sediments of the coal producer spoil bank. The research has shown that the samples contain significant amounts of carbon, iron, silicon, aluminum and other valuable components.

  4. Utilization of waste of chicken feathers and waste of cardboard as the material of acoustic panel maker

    Science.gov (United States)

    Ansarullah; Rahim, Ramli; Kusno, Asniawaty; Baharuddin; Jamala, Nurul

    2018-03-01

    In The existence of chicken fur is a waste of chicken slaughterhouse Which is produced daily and still not widely used. Likewise cartons everywhere we can see its being because its function is so great in all human activities In the fulfillment of the need for storage and packaging of goods for human purposes such as electronic goods, commodity, Because it has a relatively large thickness of paper. Several studies have proven that Quill and cardboard can be used for acoustic materials. This study aims to identify the potential of chicken fur and cardboard to be created as panel materials Which acts as an acoustic panel. . This study uses an experimental method by combining two materials, Including waste Quill and carton waste by performing several stages in the formation of panels, Such as the selection of chicken fur material and cardboard cleaning process, drying process, enumeration process, panel modeling process. The result of this research is acoustic panel model with size 20x20cm2 with thickness 9 and 18 mm, The study also produced a Ø9,8 cm diameter-shaped panel model with 1.5cm, 2.5cm, and 5cm thickness for use in testing absorption coefficients using impedance tubes.

  5. Leaching tests as a tool in waste management to evaluate the potential for utilization of waste materials

    Energy Technology Data Exchange (ETDEWEB)

    Sloot, H.A. van der [Netherlands Energy Research Foundation (ECN), Petten (Netherlands); Kosson, D.S. [Rutgers Univ., Piscataway, NJ (United States)

    1995-12-01

    Several waste materials from large scale industrial processes possess technical properties that would allow their use in certain construction applications, e.g. coal fly ash, slags from large scale industrial melting and ore processing, and incinerator residues. The disposal of such materials requires space and controlled landfills to minimize long term environmental risks. The beneficial use of such bulk materials is an attractive alternative, if it can be shown that such applications are environmentally acceptable. For this management of wastes and the decision to either dispose or use, information on the environmental properties of materials is needed. Leaching tests have been developed to assess such properties. These have been designed typically in relation to regulatory tools, not as instruments to guide the management of wastes and the possibilities to improve material properties. New methods have been designed to address this aspect, in which maximum benefit can be derived from knowledge of the systematic behaviour of materials and the already existing knowledge in other countries producing similar residues. After initial detailed characterization, concise procedures can be used for control purposes focused on the typical aspects of a certain residue stream. Examples of existing knowledge in this field will be presented.

  6. Combined energy production and waste management in manned spacecraft utilizing on-demand hydrogen production and fuel cells

    Science.gov (United States)

    Elitzur, Shani; Rosenband, Valery; Gany, Alon

    2016-11-01

    Energy supply and waste management are among the most significant challenges in human spacecraft. Great efforts are invested in managing solid waste, recycling grey water and urine, cleaning the atmosphere, removing CO2, generating and saving energy, and making further use of components and products. This paper describes and investigates a concept for managing waste water and urine to simultaneously produce electric and heat energies as well as fresh water. It utilizes an original technique for aluminum activation to react spontaneously with water at room temperature to produce hydrogen on-site and on-demand. This reaction has further been proven to be effective also when using waste water and urine. Applying the hydrogen produced in a fuel cell, one obtains electric energy as well as fresh (drinking) water. The method was compared to the traditional energy production technology of the Space Shuttle, which is based on storing the fuel cell reactants, hydrogen and oxygen, in cryogenic tanks. It is shown that the alternative concept presented here may provide improved safety, compactness (reduction of more than one half of the volume of the hydrogen storage system), and management of waste liquids for energy generation and drinking water production. Nevertheless, it adds mass compared to the cryogenic hydrogen technology. It is concluded that the proposed method may be used as an emergency and backup power system as well as an additional hydrogen source for extended missions in human spacecraft.

  7. Nano-dyeing

    Directory of Open Access Journals (Sweden)

    Ning Cui-Juan

    2016-01-01

    Full Text Available Dyeing nanofibers is a frontier of both modern textile engineering and nanotechnology. This paper suggest a feasible method for dyeing nanofibers with a natural red (Roselle Calyx by bubble electrospinning. Reactive dye (Red S3B and acid dye (Red 2B were also used in the experiment for comparison. The dyeing process was finished during the spinning process.

  8. The Utilization of Banana Peel in the Fermentation Liquid in Food Waste Composting

    Science.gov (United States)

    Kadir, A. A.; Rahman, N. A.; Azhari, N. W.

    2016-07-01

    Municipal solid waste in Malaysia contains a high amount of organic matters, particularly food waste. Food waste represents almost 60% from the total municipal solid waste disposed in the landfill. Food waste can be converted into useful materials such as compost. However, source separation of food waste for recycling is not commonly practiced in Malaysia due to various constraints. These constraints include low awareness among the waste generators and low demand of the products produced from the food waste such as composts. Composting is one of the alternatives that can be used in food waste disposal from Makanan Ringan Mas. The aim of the study is to convert food waste generated from Makanan Ringan Mas which is a medium sale industry located at Parit Kuari Darat, Batu Pahat by using composting method. The parameters which include temperature, pH value, NPK (Nitrogen, Phosphorus, Potassium) values has been examined. Banana peel is being used as the fermentation liquid whilst soil and coconut husk were used as the composting medium. Based on the results during the composting process, most of the pH value in each reactor is above 5 and approximately at neutral. This shown that the microbial respiration in the well controlled composting reactor was inhibited and had approached the mature phase. On the other hand, during the period of composting, the overall temperature range from 25 °C to 47 °C which shown the active phase for composting will occoured. As for NPK content Nitrogen value range is 35325 mg/L to 78775 mg/L, Phosphorus, 195.83 mg/L to 471 mg/L and potassium is 422.3 mg/L to 2046 mg/L which is sufficient to use for agricultural purpose. The comparison was made with available organic compost in the market and only showed slightly difference. Nevertheless, in comparison with common fertilizer, the NPK value of organic compost are considerably very low.

  9. System analysis of energy utilization from waste - evaluation of energy, environment and economy. Case study - Aelvdalen

    International Nuclear Information System (INIS)

    Sundqvist, Jan-Olov; Granath, Jessica; Frostell, Bjoern; Bjoerklund, Anna; Eriksson, Ola; Carlsson, Marcus

    1999-12-01

    Energy, environmental, and economic consequences of different management systems for municipal solid waste have been studied in a systems analysis. In the systems analysis, different combinations of incineration, materials recycling of separated plastic and cardboard containers, and biological treatment (anaerobic digestion and composting) of easily degradable organic waste, were studied and also compared to landfilling. In the study a computer model (ORWARE) based on LCA methodology was used. The following parameters were used for evaluating the different waste management options: consumption of energy resources, global warming potential, acidification, eutrophication, photo oxidant formation, heavy metal flows, financial economy and welfare economy, where welfare economy is the sum of financial economy and environmental economy. The study shows that reduced landfilling to the benefit of an increased use of energy and material from waste is positive from an environmental and energy as well as economic aspect. This is mainly due to the fact that the choice of waste management method affects processes outside the waste management system, such as production of district heating, vehicle fuel, plastic, cardboard, and fertiliser. This means that landfilling of energy-rich waste should be avoided as far as possible, both because of the the environmental impact, and because of the low recovery of resources. Incineration should constitute a basis in the waste management system of Aelvdalen, even if the waste has to be transported to a regional facility. Once the waste is collected, longer regional transports are of little significance, as long as the transports are carried out in an efficient manner. Comparing materials recycling and incineration, and biological treatment and incineration, no unambiguous conclusions can be drawn. There are benefits and drawbacks associated with all these waste management options. Materials recycling of plastic containers is comparable to

  10. System analysis of energy utilization from waste - evaluation of energy, environment and economy. Summary report

    International Nuclear Information System (INIS)

    Sundqvist, Jan-Olov; Granath, Jessica; Frostell, Bjoern; Bjoerklund, Anna; Eriksson, Ola; Carlsson, Marcus

    1999-12-01

    Energy, environmental, and economic consequences of different management systems for municipal solid waste have been studied in a systems analysis. In the systems analysis, different combinations of incineration, materials recycling of separated plastic and cardboard containers, and biological treatment (anaerobic digestion and composting) of easily degradable organic waste, were studied and also compared to landfilling. In the study a computer model (ORWARE) based on LCA methodology was used. Case studies were performed for three different municipalities: Uppsala, Stockholm, and Aelvdalen. The following parameters were used for evaluating the different waste management options: consumption of energy resources, global warming potential, acidification, eutrophication, photo oxidant formation, heavy metal flows, financial economy and welfare economy, where welfare economy is the sum of financial economy and environmental economy. The study shows that reduced landfilling to the benefit of an increased use of energy and material from waste is positive from an environmental and energy as well as economic aspect. This is mainly due to the fact that the choice of waste management method affects processes outside the waste management system, such as production of district heating, electricity, vehicle fuel, plastic, cardboard, and fertiliser. This means that landfilling of energy-rich waste should be avoided as far as possible, both because of the the environmental impact, and because of the low recovery of resources. Incineration should constitute a basis in the waste management systems of the three municipalities studied, even if the waste has to be transported to a regional facility. Once the waste is collected, longer regional transports are of little significance, as long as the transports are carried out in an efficient manner. Comparing materials recycling and incineration, and biological treatment and incineration, no unambiguous conclusions can be drawn. There are

  11. Utilization of solid catfish manure waste as carbon and nutrient source for lactic acid production.

    Science.gov (United States)

    Shi, Suan; Li, Jing; Blersch, David M

    2018-04-19

    The aim of this work was to study the solid waste (manure) produced by catfish as a potential feedstock for the production of lactic acid (LA) via fermentation. The solid waste contains high levels of both carbohydrates and nutrients that are sufficient for LA bacteria. Simultaneous saccharification and co-fermentation (SSCF) was applied using enzyme and Lactobacillus pentosus, and different loadings of enzyme and solid waste were tested. Results showed LA concentrations of 35.7 g/L were obtained at 15% solids content of catfish waste. Because of the high nutrient content in the fish waste, it could also be used as supplementary substrate for nitrogen and carbon sources with other lignocellulosic materials. A combined feedstock of catfish waste and paper mill sludge was tested, increasing the final LA concentration to 43.1 g/L at 12% solids loading. The catfish waste was shown to be a potential feedstock to provide both carbon and nutrients for LA production, suggesting its use as a sole substrate or in combination with other lignocellulosic materials.

  12. Considerations in reviewing the waste volume reduction program in a large utility

    International Nuclear Information System (INIS)

    Kohout, R.; Calzolari, L.M.

    1987-01-01

    A program is underway at Ontario Hydro to establish a desirable future scheme for central processing/volume reduction of solid radioactive Low-Level Wastes (LLW) prior to their placement into the centralized storage, and in the future into a disposal facility. The approach being investigated is to furnish the current Waste Volume Reduction Facility (WVRF) with state-of-art processes, reclassify the waste categories and segregate the wastes such that each volume reduction (VR) process is then applied where it would be most effective. The ''optimized'' approach is then compared with other, specific schemes, which basically differ in that each scheme omits one of the major VR processes, thus allowing the next most effective process to take over its role. Each scheme is assessed quantitatively from the viewpoint of cost and VR effectiveness, and qualitatively from the viewpoint of resultant waste form. The economic assessments take into consideration the long term (20 year) impact of selected VR schemes on the overall waste management cost, including construction and operation of the storage facility. This paper highlights the overall study, includes the major results, and identifies aspects that need to be addressed in the selection of a desirable combination of VR processes in absence of knowledge of future waste disposal costs

  13. Municipal wastes and landfield gases utilization - renewable resource of energy and materials

    International Nuclear Information System (INIS)

    Kuburovic, M.; Jovovic, A.

    2002-01-01

    Urbanization and industrialization, have been fundamental causes of environmental pollution (of water, air and land) which the cities were unable to handle. There is already enough evidence of the fact that the role of technology in environmental matters is moving in two important directions: sustainable development, dealing primary with global problems, and preventive technology, designed to reduce the environmental effects of processes, operations, and products. Treatment plants for industrial and municipal wastes, emission controls for incinerators, and safe landfills for waste disposal were developed to control air, water, and land pollution. Now, this 'end-of-pipe' treatment technologies are still the way of environmental protection philosophy, particularly in the developing countries. New environmental standards demand more and more rigorous preventive environmental protection technologies, therefore further development of industrial production requires the rational use of natural sources of raw materials and energy. Production and the use of goods with the minimum municipal and industrial wastes and the development of recycling technology provided closed cycle of materials. Main principles for the development and exploitation of the technology with the minimum or without waste materials and energy are: the use of renewable sources of material and energy, maximum use of waste materials and waste energy, waste minimisation and reduction of energy losses in the production, development of new industrial processes operating with minimum material and energy losses in products exploitation period and after that, and the responsible use of natural sources, products and energy in the field of industry and consumption. (author)

  14. Concrete-polymer composite materials and their potential for construction, urban waste utilization, and nuclear waste storage

    International Nuclear Information System (INIS)

    Fowler, E.E.; Steinberg, Meyer.

    1974-01-01

    A wide range of concrete-polymer composites have been investigated by Brookhaven National Laboratory. Polymer impregnated concrete (PIC) is basically formed by drying cured conventional concrete, displacing the air from open cell void volume, diffusing low viscosity monomer (less than 10 cps) through the open cell structure, saturating the concrete with the monomer and in-situ polymerizing the monomer to polymer by most convenient means. Mainly free-radical vinyl type monomers are used. For increased thermal stability, crosslinking agents and thermosetting monomers such as styrene-trimethylol propane trimethacrylate (TMPTMA) and polyester-styrene are used. Much informations on the formation, structural properties and durability of PIC have been accumulated over past five years. U.S. Patent 3,567,496 has been issued on the production of PIC. Compressive strength can be increased from 352 kg/cm 2 of conventional concrete to 1,410 kg/cm 2 . Water absorption is reduced by 99% and the freeze-thaw resistance is remarkably improved. With high silica cement, strong basaltic aggregate, and high temperature steam curing, strength increase from 845 to over 2,630 kg/cm 2 can be obtained. A maximum of 238 kg/cm 2 tensile strength has been obtained with the steam-cured concrete. In the steam- cured concrete, polymer loading roughly around 8% by weight is obtained. Aggregates can include the urban solid waste discarded by man. Sewage and solid waste refuse-polymer concrete has been produced by using garbage as aggregate and sewage as the hydrating media for cement. The potentially important application of hydrauric cement concrete, in combination with the polymers in PIC and PC, is the storage of long-living radioactive wastes from nuclear industry. (Iwakiri, K.)

  15. System analysis of energy utilization from waste - evaluation of energy, environment and economy. Case study - Uppsala

    International Nuclear Information System (INIS)

    Sundqvist, Jan-Olov; Granath, Jessica; Frostell, Bjoern; Bjoerklund, Anna; Eriksson, Ola; Carlsson, Marcus

    1999-12-01

    Energy, environmental, and economic consequences of different management systems for municipal solid waste have been studied in a systems analysis. In the systems analysis, different combinations of incineration, materials recycling of separated plastic and cardboard containers, and biological treatment (anaerobic digestion and composting) of easily degradable organic waste, were studied and also compared to landfilling. In the study a computer model (ORWARE) based on LCA methodology was used. The following parameters were used for evaluating the different waste management options: consumption of energy resources, global warming potential, acidification, eutrophication, photo oxidant formation, heavy metal flows, financial economy and welfare economy, where welfare economy is the sum of financial economy and environmental economy. The study shows that reduced landfilling to the benefit of an increased use of energy and material from waste is positive from an environmental and energy as well as economic aspect. This is mainly due to the fact that the choice of waste management method affects processes outside the waste management system, such as production of district heating, electricity, vehicle fuel, plastic, cardboard, and fertiliser. This means that landfilling of energy-rich waste should be avoided as far as possible, both because of the the environmental impact, and because of the low recovery of resources. Incineration should constitute a basis in the waste management system of Uppsala. Once the waste is collected, longer regional transports are of little significance, as long as the transports are carried out in an efficient manner. Comparing materials recycling and incineration, and biological treatment and incineration, no unambiguous conclusions can be drawn. There are benefits and drawbacks associated with all these waste management options. Materials recycling of plastic containers is comparable to incineration from a welfare economic aspect, but gives

  16. Purification of (potato)-starch manufacture waste water utilizing the residual pulp

    Energy Technology Data Exchange (ETDEWEB)

    Malcher, J

    1956-01-01

    Diagrams and procedures are given for fermentation of potato-starch-factory wastes and production of ethanol, butanol, acetone, and amylase. The combined process gives 95% recovery of the total solids of potatoes.

  17. Proceedings of the DOE residue and waste fuels utilization program contract or review meeting

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-12-01

    Commercialization of wood combustion was discussed at this meeting. The use of agricultural and wood wastes as energy sources was also discussed. Separate abstracts were written for individual items. (DC)

  18. Optimization of methane gas recovery from waste material and possibilities for its utilization

    Energy Technology Data Exchange (ETDEWEB)

    Shim, K C

    1981-01-01

    Sewer gas (biogas) can be generated from anaerobic decomposition of different waste substances, e.g. from sludge obtained in sewage works, from household refuse and from agricultural waste. In order to run a sewage works economically the managers of the plants are now obliged to show more interest in the maximum usage of this gas. Even though in most of the municipal waste water treatment plants in the Federal Republic of Germany the digesters are available, one quarter of the annual gas production remains unused. In view of the so-called 'energy crisis', it seems foolish to burn off sewer gas, a valuable source of energy and one, moreover, produced at high cost. Laboratory tests were carried out with agricultural wastes and with sludge and household refuse to analyse the sludge digestion process and determine the optimum conditions required by the process. Finally, the situation in Korea, where there are 30,000 biogas plants, is summarized. (Refs. 5).

  19. Utilization of agriculture wastes. part I. production of fungal protein from rice and wheat straws

    International Nuclear Information System (INIS)

    Murtaza, N.; Hussain, S.A.

    2000-01-01

    Agricultural Agricultural waste of rice and wheat straws were studied for the production of protein and biomass. As these wastes have low protein contents as attempt is made to increase the protein and biomass content of these wastes so as to produce a better product for consumption as food. The studies were conducted using various media and various incubation periods. Some inorganic salts and molasses were added to improve the cultivation of fungi. Aspergillus oryzae produced the results due to its rapid growth which minimized the chance of contamination. Seven days incubation gave the most favourable results in both the agricultural wastes. The maximum production of biomass (33.33%) with a protein value of 20% was obtained with 450 g of rice straw in media no. 2 whereas 400 g of wheat straw on 6 litres of medium produced the best results with 20% biomass and a protein value of 20%. (author)

  20. Utilization of cotton waste for regenerated cellulose fibres: Influence of degree of polymerization on mechanical properties.

    Science.gov (United States)

    De Silva, Rasike; Byrne, Nolene

    2017-10-15

    Cotton accounts for 30% of total fibre production worldwide with over 50% of cotton being used for apparel. In the process from cotton bud to finished textile product many steps are required, and significant cotton waste is generated. Typically only 30% of pre consumer cotton is recycled. Here we use cotton waste lint to produce regenerated cellulose fibres (RCF). We find the RCF from waste cotton lint had increased mechanical properties compared to RCF produced from wood pulp. We show that this is likely linked to the higher degree of polymerization (DP) of waste cotton lint. An ionic liquid is used to dissolve the cotton lint and the rheology of the spinning is measured. The properties of the RCF are characterized and compared to wood pulp RCF. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Optimal utilization of waste-to-energy in an LCA perspective

    DEFF Research Database (Denmark)

    Fruergaard, Thilde; Astrup, Thomas

    2011-01-01

    Energy production from two types of municipal solid waste was evaluated using life cycle assessment (LCA): (1) mixed high calorific waste suitable for production of solid recovered fuels (SRF) and (2) source separated organic waste. For SRF, co-combustion was compared with mass burn incineration....... For organic waste, anaerobic digestion (AD) was compared with mass burn incineration. In the case of mass burn incineration, incineration with and without energy recovery was modelled. Biogas produced from anaerobic digestion was evaluated for use both as transportation fuel and for heat and power production....... All relevant consequences for energy and resource consumptions, emissions to air, water and soil, upstream processes and downstream processes were included in the LCA. Energy substitutions were considered with respect to two different energy systems: a present-day Danish system based on fossil fuels...

  2. SOLID AND LIQUID PINEAPPLE WASTE UTILIZATION FOR LACTIC ACID FERMENTATION USING Lactobacillus delbrueckii

    Directory of Open Access Journals (Sweden)

    Abdullah Abdullah

    2012-01-01

    Full Text Available The liquid and solid  pineapple wastes contain mainly sucrose, glucose, fructose and other nutrients. It therefore can potentially be used as carbon source for fermentation to produce organic acid. Recently, lactic acid has been considered to be an important raw material for production of biodegradable lactate polymer. The experiments were  carried out in batch fermentation using  the  liquid and solid pineapple wastes to produce lactic acid. The anaerobic fermentation of lactic acid were performed at 40 oC, pH 6, 5% inocolum and  50 rpm. Initially  results show that the liquid pineapple waste by  using Lactobacillus delbrueckii can be used as carbon source  for lactic acid fermentation. The production of lactic acid  are found to be 79 % yield, while only  56% yield was produced by using solid waste

  3. The environmental impact and cost efficiency of combustible waste utilization - the potential and impact of ongoing technology developments

    Energy Technology Data Exchange (ETDEWEB)

    Zevenhoven, M.; Hupa, M.

    2008-08-15

    Driving forces in development of waste to energy (WtE) have and will be often related to political decisions, i.e. emission limits are determined by politicians as a compromise between best available and best acceptable technologies against a background of health and environmental effects of ongoing or planned activities. This means that legislation may be the main driving force for development of new cleaner technologies and emission control. Currently the EU directive on waste conversion sets limits for emissions that can be met with existing technology and no break through developments may be expected in this area. More development may be expected from development of technologies for CO{sub 2} capture and storage or from shifting from fossil fuels to waste derived fuels. A secondary force may be political decisions whether waste will be treated in centralized, large scale facilities or decentralized, small scale tailor made solutions near the place of waste production. If technologies are developed, either small or large scale, these often have as main goal to reach higher profitability or as a solution of encountered problems. Small scale solutions for WtE will be advantageous in case a choice is made for decentralized waste treatment. In that case a new development could be the use of 'Fuel cell CHP'. However, at this moment this technology has not been applied widely. Large scale solutions will be the choice in case centralized WtE is chosen. In this case waste quality will define the technology used. Fluidized beds are preferred for well defined fuel quality. Fluidized bed WtE for unsorted waste is still challenging and may encounter fuel feeding and ash related problems. Grate firing will remain a well proven technology. Higher steam values may increase boiler efficiency in traditional grate boilers. Higher steam values in fluidized beds may be achieved by in situ heat exchange in the bed. Co-firing of high quality waste may become more common in

  4. System analysis of energy utilization from waste - evaluation of energy, environment and economy. Case study - Stockholm

    International Nuclear Information System (INIS)

    Sundqvist, Jan-Olov; Granath, Jessica; Frostell, Bjoern; Bjoerklund, Anna; Eriksson, Ola; Carlsson, Marcus

    1999-12-01

    Energy, environmental, and economic consequences of different management systems for municipal solid waste have been studied in a systems analysis. In the systems analysis, different combinations of incineration, materials recycling of separated plastic and cardboard containers, and biological treatment (anaerobic digestion) of easily degradable organic waste, were studied and also compared to landfilling. In the study a computer model (ORWARE) based on LCA methodology was used. The following parameters were used for evaluating the different waste management options: consumption of energy resources, global warming potential, acidification, eutrophication, photo oxidant formation, heavy metal flows, financial economy and welfare economy, where welfare economy is the sum of financial economy and environmental economy. The study shows that reduced landfilling to the benefit of an increased use of energy and material from the waste is positive, from an environmental and energy as well as economic aspect. This is mainly due to the fact that the choice of waste management method affects processes outside the waste management system, such as production of district heating, electricity, vehicle fuel, plastic, cardboard, and fertiliser. This means that landfilling of energy-rich waste should be avoided as far as possible, both because of the the environmental impact, and because of the low recovery of resources. Incineration should constitute a basis in the waste management system of Stockholm. Once the waste is collected, longer regional transports are of little significance, as long as the transports are carried out in an efficient manner. Comparing materials recycling and incineration, and biological treatment and incineration, no unambiguous conclusions can be drawn. There are benefits and drawbacks associated with all these waste management options. Materials recycling of plastic containers is comparable to incineration from a welfare economic aspect, but gives less

  5. Utilizing waste materials to enhance mechanical and durability characteristics of concrete incorporated with silica fume

    Directory of Open Access Journals (Sweden)

    Hamza Ali

    2017-01-01

    Full Text Available Construction and demolition wastes are increasing significantly due to augmented boom of modern construction. Although the partial cement replacement materials do promote the idea of sustainable construction, the use of construction and demolition waste can also be considered to be viable option to advance the sustainability in modern construction practices. This paper investigates the use of industrial waste materials namely marble dust and crushed bricks as replacement of natural fine aggregates along with the use of silica fume as a partial cement replacement on the mechanical properties and durability characteristics of concrete. Partial replacement levels of waste materials were 10 and 20 percent by volume while the partial replacement level of silica fume was kept to 20 percent at all concrete samples. The results reported in this paper show that the use of marble dust as a replacement material to the natural fine aggregates resulted in an increase in the mechanical properties of concrete. However, the use of crushed bricks did not substantially contribute in the development of strength. Water permeability of concrete incorporated with both silica fume and waste materials (marble dust and crushed bricks decreased significantly. The decrease in water permeability of concrete was attributed to the pozzolanic reaction of silica fume with calcium hydroxide of cement and the filler effect of the waste materials of marble dust and crushed bricks. The use of waste materials also enhance the freeze and thaw resistance of concrete. Authors strongly suggest that the pozzolanic reaction and the development of the microstructure of the concrete through the use of waste materials are largely responsible from the advances in the durability of concrete.

  6. UTILIZATION OF POULTRY, COW AND KITCHEN WASTES FOR BIOGAS PRODUCTION: A COMPARATIVE ANALYSIS

    Directory of Open Access Journals (Sweden)

    K. Animasahun

    2007-09-01

    Full Text Available The amount of solid wastes generated in developing countries such as Nigeria has steadily increased over the last two decades as a result of population explosion and continuous growth of industries and agricultural practices. In agriculture, particularly cattle rearing, large quantities of cow wastes are generated, which could be used as biogas inputs to compliment the fuel usage alternative. In addition, a large number of families generate heavy wastes in the kitchen on a daily basis, which could be converted to economic benefits. In this work, a comparative study of biogas production from poultry droppings, cattle dung, and kitchen wastes was conducted under the same operating conditions. 3kg of each waste was mixed with 9L of water and loaded into the three waste reactors. Biogas production was measured for a period of 40 days and at an average temperature of 30.5oC. Biogas production started on the 7th day, and attained maximum value on the 14th days for reactor 1. Production reached its peak on the 14th day with 85´10-3dm3 of gas produced in reactor 2. For reactor 3, biogas production started on the 8th day and production reached a peak value on the 14th day. The average biogas production from poultry droppings, cow dung and kitchen waste was 0.0318dm3/day, 0.0230dm3/day and 0.0143dm3/day, respectively. It is concluded that the wastes can be managed through conversion into biogas, which is a source of income generation for the society.

  7. Utilization of high energy electron beam in the treatment of drinking and waste water

    International Nuclear Information System (INIS)

    Oliveira Sampa, M.H. de; Borrely, S.I.; Morita, D.M.

    1991-08-01

    Samples of drinking water and waste water were irradiated using high energy electron beam with doses from 0.37kGy to 100kGy. Preliminary data show the removal of about 100% tri halomethanes (THM) in drinking water (concentration from 2.7 μg/1 to 45μg/1, 90% of the color of the Public Owned Wastewater Treatment Plant effluent and 87% of oil and grease of the cutting fluid waste water. (author)

  8. Utilization of waste waters in fish production: preliminary results from fish culture studies in floating cages in a sewage pond, New Bussa, Nigeria

    OpenAIRE

    Otubusin, S.O.; Olatunde, A.A.

    1993-01-01

    The utilization of waste waters in aquaculture were briefly reviewed. At the National Institute for Freshwater Fisheries Research (NIFFR), stocking density (20 to 160 fish/m super(3)) experiments using Sarotherodon galilaeus (without supplementary feeding) in floating cages were carried out in a sewage pond (0.4ha surface area). Cage culture of S. galilaeus was observed to have potentials in waste waters aquaculture. Recommendations were made on the execution of an intergrated waste water ...

  9. Hair dye poisoning

    Science.gov (United States)

    Hair tint poisoning ... Different types of hair dye contain different harmful ingredients. The harmful ingredients in permanent dyes are: Naphthylamine Other aromatic amino compounds Phenylenediamines Toluene ...

  10. Potential of utilizing asphalt dust waste as filler material in the production of sustainable self compacting concrete (SCC)

    Science.gov (United States)

    Ismail, Isham; Shahidan, Shahiron; Bahari, Nur Amira Afiza Saiful

    2017-12-01

    Waste materials from many industries are widely used in the production of sustainable green concrete. Utilizing asphalt dust waste (ADW) as a filler material in the development of self-compacting concrete (SCC) is one of the alternative solutions for reducing environmental waste. SCC is an innovative concrete that does not require vibration for placing and compaction. However, there is limited information on the effects of utilizing ADW in the development of SCC. Therefore, this research study examines the effects of various w/b ratios (0.2, 0.3 and 0.4) and differing amounts of ADW (0% to 50%) on the rheological properties of fresh state concrete. The compressive strength of the SCC was tested only for 7 and 28 days as preliminary studies. The results revealed that mixtures MD730, MD740 and MD750 showed satisfactory results for the slump flow, J-Ring, L-Box and V-Funnel test during the fresh state. The compressive strength values obtained after 28 days for MD730, MD740 and MD750 were 35.1 MPa, 36.8 MPa and 29.4 MPa respectively. In conclusion, the distribution of materials in mixtures has significant effect in achieving rheological properties and compressive strength of SCC.

  11. Economical utilization of hot water - an important precondition for an efficient utilization of waste heat in milk cooling

    Energy Technology Data Exchange (ETDEWEB)

    Kaiser, E; Pflug, C

    1985-01-01

    Indispensable both in the field of hydroecological and energy policies is the economical utilization of hot water. Hydroecological process analyses in specialized dairy cattle plants have shown that the specific mean annual abstraction of hot water (50/sup 0/C) may be reduced to 14 l per cow and per day. The proportionate contribution of different operational sectors and methods to arrive at the standards are pointed out. Economizing dairy cattly plants reducing hot water consumption as indicated and reaching average milking outputs of >= 1 l per cow and per day may thus bridge the summer season by heat recovery processes producing a sufficient quantity of hot water and allowing a shutdown of all heating units. At present the majority of dairy cattle plants cannot yet dispense with supplementary water during the remaining months. The hot water consumption rate is highest at the end of shifts. In double-shifted dairy cattle plants the estimated maximum hourly consumption amounts to 12 per cent of the average daily consumption. (orig.).

  12. Utilization of a cost effective Lapindo mud catalyst derived from eruption waste for transesterification of waste oils

    International Nuclear Information System (INIS)

    Talib, N.B.; Triwahyono, S.; Jalil, A.A.; Mamat, C.R.; Salamun, N.; Fatah, N.A.A.; Sidik, S.M.; Teh, L.P.

    2016-01-01

    Highlights: • Lapindo mud (LM) was used as catalyst in waste cooking oil (WCO) transesterification. • K_2O and CaO were identified as the active species for WCO transesterification. • FTIR and ESR analyses prove activated LM have higher basicity and surface defects. • Under the optimum conditions, WCO transesterification reached 96.6% FAME yield. • Conversion of palm oil mill effluent (POME) in optimum conditions gave 91.69% FAME. - Abstract: The most remarkable property of heterogeneous-catalyzed transesterification is its recyclability which surpass the issue by homogenous catalyst. Lapindo mud (LM), an eruption waste from Indonesia, was treated into an active catalyst for transesterification. LM is reasonably tolerant to FFA, as no visible soap layer was observed during transesterification of high acid value WCO (20.723 mgKOH/g) and POME (120.48 mgKOH/g) with FAME yield of 96.6% and 91.69%, respectively. The reaction conditions obtained for both reaction are mild and comparable to currently reported conditions except LM effectively accelerated the transesterification process of WCO. Reusability test showed that LM exhibited a stable performance with less than 10% declined in FAME after the seventh run with 95% catalyst recovery. Kinetic analysis showed that both WCO and POME transesterification fitted well with Langmuir–Hishelwood first order reaction. The activation energy for WCO and POME transesterification were 55.7 and 59.75 kJ/mol. This findings shows the possibility of LM as a catalyst in general heterogeneous reaction and particularly for transesterification to produce FAME.

  13. Savannah River Plant Low-Level Waste Heat Utilization Project preliminary analysis. Volume II. Options for capturing the waste heat

    International Nuclear Information System (INIS)

    1978-11-01

    Options for utilizing the heated SRP effluent are investigated. The temperature and availability characteristics of the heated effluent are analyzed. Technical options for energy recovery are discussed. A number of thermodynamic cycles that could generate electrical power using the energy in the heated SRP effluent are described. Conceptual designs for SRP application of two attractive options are presented. Other direct uses for the heated effluent, as heat sources for agriculture and aquaculture options are discussed

  14. Utilization and management of organic wastes in Chinese agriculture: Past, present and perspectives

    Institute of Scientific and Technical Information of China (English)

    JU; Xiaotang

    2005-01-01

    the Sustainable Development of China,Nannin:Guangxi Science and Technology Press,2000,5-6.[13]Shi,Y.C.,Cheng,X.,The three transformations of Chinese agriculture:two past,one present,in Dare to Dream-Vision of 2050 Agriculture in China (ed.Tso,T.C.& He,K.),Beijing:China Agricultural University Press,2004,19- 31.[14]Bao,X.M.,Zhang,F.S.,Gao,X.Z.et al.,Evaluation of application status of organic fertilizer in China,Review of China Agricultural Science and Technology (in Chinese with English abstract),2003,5 (Supplement):3-8.[15]Smil,V.,China's Environmental Crisis,An Inquiry into the Limits of National Development,M.E.Sharpe,NY-London:Armonk,1993,257.[16]Li,G.X.,Li,Y.M.,Li,Y.C.H.,The treatment and utilization of organic solid wastes as resources in China,in China Ecological Agriculture (in Chinese),Beijing:Chemical Industry Press,2003,499-520.[17]Li G.X.(eds.),MSW Compost Market Research Report by Eric'sons Naturnomics Company,and College of Resources and Environmental Sciences of China Agricultural University (English translation),Beijing,China,2004,106.[18]FAOSTAT,FAO Statistical Databases,Agriculture Data,Food and Agriculture Organization of the United Nations,2004,http://apps.fao.org/page/collections ?subset=agriculture.[19]Bao,X.M.,Zhang,F.S.Ma,W.Q.,The resources of crop straw and their recycling nutrients in China,Review of China Agricultural Science and Technology (in Chinese with English abstract),2003b,5 (Supplement):14- 17.[20]Li,G.X.,Li,Y.C.H.,The treatment and utilization of organic solid wastes in China,in Lu Ming (ed.),Model Ecological Agriculture in China (in Chinese),Beijing:China Agricultural Press,2002,292-316.[21]Xie,J.C.,Prospects for plant nutrient supply form organic residues in China,in International Potash Institute (ed.):Potassium in Asia.Proc.24th Colloquium of the International Potash Institute,Chiang Mai,Thailand,Feb.21-24,Basel:International Potash Institute,1995,397-411.[22]Schulz,R.,A1-Najar,H.,Breuer,J.et al.,The effect of bio

  15. Utilization of waste cooking oil as an alternative fuel for Turkey.

    Science.gov (United States)

    Arslan, Ridvan; Ulusoy, Yahya

    2017-04-03

    This study is based on three essential considerations concerning biodiesel obtained from waste cooking oil: diesel engine emissions of biodiesel produced from waste cooking oil, its potential in Turkey, and policies of the Turkish government about environmentally friendly alternative fuels. Emission tests have been realized with 35.8 kW, four-cylinder, four-stroke, direct injection diesel tractor engine. Test results are compared with Euro non-road emission standards for diesel fuel and five different blends of biodiesel production from waste cooking oil. The results of the experimental study show that the best blends are B10 and B20 as they show the lowest emission level. The other dimensions of the study include potential analysis of waste cooking oil as diesel fuels, referring to fuel price policies applied in the past, and proposed future policies about the same issues. It was also outlined some conclusions and recommendations in connection with recycling of waste oils as alternative fuels.

  16. Utilization and optimization of a waste stream cellulose culture medium for pigment production by Penicillium spp.

    Science.gov (United States)

    Sopandi, T; Wardah, A; Surtiningsih, T; Suwandi, A; Smith, J J

    2013-03-01

    This research sought to determine optimal corn waste stream-based fermentation medium C and N sources and incubation time to maximize pigment production by an indigenous Indonesian Penicillium spp., as well as to assess pigment pH stability. A Penicillium spp. was isolated from Indonesian soil, identified as Penicillium resticulosum, and used to test the effects of carbon and nitrogen type and concentrations, medium pH, incubation period and furfural on biomass and pigment yield (PY) in a waste corncob hydrolysate basal medium. Maximum red PY (497.03 ± 55.13 mg l(-1)) was obtained with a 21 : 1 C : N ratio, pH 5.5-6.0; yeast extract-, NH(4) NO(3)-, NaNO(3)-, MgSO(4) ·7H(2) O-, xylose- or carboxymethylcellulose (CMC)-supplemented medium and 12 days (25 °C, 60-70% relative humidity, dark) incubation. C source, C, N and furfural concentration, medium pH and incubation period all influenced biomass and PY. Pigment was pH 2-9 stable. Penicillium resticulosum demonstrated microbial pH-stable-pigment production potential using a xylose or CMC and N source, supplemented waste stream cellulose culture medium. Corn derived, waste stream cellulose can be used as a culture medium for fungal pigment production. Such application provides a process for agricultural waste stream resource reuse for production of compounds in increasing demand. © 2012 The Society for Applied Microbiology.

  17. Use of batch and column methodologies to assess utility waste leaching and subsurface chemical attenuation

    International Nuclear Information System (INIS)

    Zachara, J.M.; Streile, G.P.

    1991-05-01

    Waste leaching and chemical attenuation involve geochemical reactions between immobile solid surfaces in the waste or in other porous media and dissolved solutes in the mobile fluid phase. Because the geochemical reactions occur along with water flow, the question often arises whether waste leaching and chemical attenuation are best studied under static or dynamic conditions. To answer this question, the scientific literature was reviewed to identify how static (batch) and dynamic (column) approaches have been applied to obtain data on waste leaching and chemical attenuation and the types of information each technique has provided. This review made it possible to both (1) assess the specific merits of the batch and column experimental techniques and (2) develop an integrated research strategy for employing these techniques to quantify leaching and chemical attenuation processes under conditions relevant to the field. This review led to the conclusion that batch systems are best suited to systematically establishing the specific geochemical reactions involved in leaching and attenuation, obtaining thermodynamic and kinetic constants, and identifying the manifestation of these reactions in wastes or natural subsurface materials. 184 refs., 5 figs., 4 tabs

  18. Mining utilization of residues of exhaust gas cleaning from waste incinerators; Bergtechnische Verwertung von Abgasreinigungsrueckstaenden aus Verbrennungsanlagen

    Energy Technology Data Exchange (ETDEWEB)

    Werthmann, Rainer [K+S Entsorgung GmbH, Kassel (Germany). Abfallchemie und Zulassungen

    2013-03-01

    The exhaust gas purification of a household incinerator or a substitute fuel power plant intends to remove dust, heavy metal compounds and acid harmful gases from the exhaust gas in order to comply with the immission-control legal limits. The particulate matter contains volatile heavy metal chlorides which precipitate as a solid matter. The enhanced amount of water-soluble salts is conspicuous. The concentration of soluble components is limited to 10,000 mg/L in the 1:10 eluate due to the landfill regulation. Thus, the residues of exhaust gas cleaning are predestined for an underground waste disposal in salt mines. Under this aspect, the author of the contribution under consideration reports on the mining utilization of residues of exhaust gas cleaning from waste incinerators.

  19. CO2 Mineralization and Utilization using Steel Slag for Establishing a Waste-to-Resource Supply Chain.

    Science.gov (United States)

    Pan, Shu-Yuan; Chung, Tai-Chun; Ho, Chang-Ching; Hou, Chin-Jen; Chen, Yi-Hung; Chiang, Pen-Chi

    2017-12-08

    Both steelmaking via an electric arc furnace and manufacturing of portland cement are energy-intensive and resource-exploiting processes, with great amounts of carbon dioxide (CO 2 ) emission and alkaline solid waste generation. In fact, most CO 2 capture and storage technologies are currently too expensive to be widely applied in industries. Moreover, proper stabilization prior to utilization of electric arc furnace slag are still challenging due to its high alkalinity, heavy metal leaching potentials and volume instability. Here we deploy an integrated approach to mineralizing flue gas CO 2 using electric arc furnace slag while utilizing the reacted product as supplementary cementitious materials to establish a waste-to-resource supply chain toward a circular economy. We found that the flue gas CO 2 was rapidly mineralized into calcite precipitates using electric arc furnace slag. The carbonated slag can be successfully utilized as green construction materials in blended cement mortar. By this modulus, the global CO 2 reduction potential using iron and steel slags was estimated to be ~138 million tons per year.

  20. Aspen Plus® and economic modeling of equine waste utilization for localized hot water heating via fast pyrolysis.

    Science.gov (United States)

    Hammer, Nicole L; Boateng, Akwasi A; Mullen, Charles A; Wheeler, M Clayton

    2013-10-15

    Aspen Plus(®) based simulation models have been developed to design a pyrolysis process for on-site production and utilization of pyrolysis oil from equine waste at the Equine Rehabilitation Center at Morrisville State College (MSC). The results indicate that utilization of all the available waste from the site's 41 horses requires a 6 oven dry metric ton per day (ODMTPD) pyrolysis system but it will require a 15 ODMTPD system for waste generated by an additional 150 horses at the expanded area including the College and its vicinity. For this a dual fluidized bed combustion reduction integrated pyrolysis system (CRIPS) developed at USDA's Agricultural Research Service (ARS) was identified as the technology of choice for pyrolysis oil production. The Aspen Plus(®) model was further used to consider the combustion of the produced pyrolysis oil (bio-oil) in the existing boilers that generate hot water for space heating at the Equine Center. The model results show the potential for both the equine facility and the College to displace diesel fuel (fossil) with renewable pyrolysis oil and alleviate a costly waste disposal problem. We predict that all the heat required to operate the pyrolyzer could be supplied by non-condensable gas and about 40% of the biochar co-produced with bio-oil. Techno-economic Analysis shows neither design is economical at current market conditions; however the 15 ODMTPD CRIPS design would break even when diesel prices reach $11.40/gal. This can be further improved to $7.50/gal if the design capacity is maintained at 6 ODMTPD but operated at 4950 h per annum. Published by Elsevier Ltd.

  1. A new concept of wastes utilization on the JSC 'Ulba Metallurgical Plant' uranium manufacture

    International Nuclear Information System (INIS)

    Yashin, S.A.; Korobejnikov, I.V.; Manych, A.V.; Kombarov, V.A.

    2003-01-01

    A new concept of radioactive waste handling is developed. It is based on the following principals: 1. Reduce of the waste raffinates volumes at the expense of technological process optimization and extraction of valuable reactants with partially close cycle organization; 2. Imposition of limitation on amount of the incoming water-soluble radioisotopes in temporary disposal due to its concentration and co-precipitation with following additional-extraction and return into the technological process; 3. Combustion of wasted organics in the furnace, dissolution of produced ash, extraction of the radionuclides and its return into technologic process; 4. Refining remelting of radioactive stainless scrap with following re-cycling. A new concept is partially put into operation. The solution of a high-tech tasks is carrying out in co-operation with leading research institutions of Kazakhstan and Russia

  2. Waste management - sewage - special wastes

    International Nuclear Information System (INIS)

    1987-01-01

    The 27 papers represent a cross-section of the subject waste management. Particular attention is paid to the following themes: waste avoidance, waste product utilization, household wastes, dumping technology, sewage sludge treatments, special wastes, seepage from hazardous waste dumps, radioactive wastes, hospital wastes, purification of flue gas from waste combustion plants, flue gas purification and heavy metals, as well as combined sewage sludge and waste product utilization. The examples given relate to plants in Germany and other European countries. 12 papers have been separately recorded in the data base. (DG) [de

  3. Utilization of the national Portland cement for immobilizing radioactive wastes - Physical characteristics

    International Nuclear Information System (INIS)

    Rzyski, B.M.; Suarez, A.A.

    1988-01-01

    This paper shows the results obtained in the study of the national Portland cement, P320, as matrix for radioactive nitric waste incorporation. Cement use practice in other countries is common for this purposes and demonstrates to be cheap and accessible when low and medium level wastes are immobilized. Some of physical characteristics as: homogeneity,mechanical strenght, setting and porosity are analysed due to water-cement ratio and salt contents. Those characteristics which are proper of the final product, must be controlled in such way to assure a long time integrity of the wasteform. The establishment of process and quality control criteria are based in such kind of data. (author) [pt

  4. Environmental waste site characterization utilizing aerial photographs and satellite imagery: Three sites in New Mexico, USA

    International Nuclear Information System (INIS)

    Van Eeckhout, E.; Pope, P.; Becker, N.; Wells, B.; Lewis, A.; David, N.

    1996-01-01

    The proper handling and characterization of past hazardous waste sites is becoming more and more important as world population extends into areas previously deemed undesirable. Historical photographs, past records, current aerial satellite imagery can play an important role in characterizing these sites. These data provide clear insight into defining problem areas which can be surface samples for further detail. Three such areas are discussed in this paper: (1) nuclear wastes buried in trenches at Los Alamos National Laboratory, (2) surface dumping at one site at Los Alamos National Laboratory, and (3) the historical development of a municipal landfill near Las Cruces, New Mexico

  5. Utilization of the waste products from the forest industry as raw materials for the production. [In Swedish

    Energy Technology Data Exchange (ETDEWEB)

    Kringstad, K

    1977-02-01

    The economic and marketing possibilitiesof industrial production of chemicals and/or proteins by utilizing waste liquor from processes at pulp mills or bark and needles was investigated. A survey of known processes for such production is given. The costs of producing several chemicals and proteins were estimated and compared with costs of producing these products via petrochemistry. The present as well as the future market of the different chemicals and of proteins were estimated. The present investigation was performed due to the rapidly increasing oil prices.

  6. Optimization of waste heat utilization in cold end system of thermal power station based on neural network algorithm

    Science.gov (United States)

    Du, Zenghui

    2018-04-01

    At present, the flue gas waste heat utilization projects of coal-fired boilers are often limited by low temperature corrosion problems and conventional PID control. The flue gas temperature cannot be reduced to the best efficiency temperature of wet desulphurization, resulting in the failure of heat recovery to be the maximum. Therefore, this paper analyzes, researches and solves the remaining problems of the cold end system of thermal power station, so as to provide solutions and theoretical support for energy saving and emission reduction and upgrading and the improvement of the comprehensive efficiency of the units.

  7. Utilization of noodle waste as replacement for maize in the diets of ...

    African Journals Online (AJOL)

    Maize is a major source of energy. It is expensive because of competition between man, animal and a strong demand for it by the manufacturing/industrial sector. Noodle waste (NW) (a by-product from the wheat noodle processing industry) which attracts little/ almost zero cost was used to replace the maize fraction of the ...

  8. Utilization of open pit burned household waste ash--a feasibility study in Dhaka.

    Science.gov (United States)

    Haque, Md Obaidul; Sharif, Ahmed

    2014-05-01

    Informal incineration or open pit burning of waste materials is a common practice in the peripheral area of Dhaka, one of the fastest growing mega-cities in the world. This study deals with the effect of open pit burned (i.e. open burned) household waste bottom ash on fired clay bricks. Between 0 to 50% (by weight) of open pit burned household waste bottom ash was mixed with clay to make bricks. The molded specimens were air-dried at room temperature for 24 h and then oven dried at 100 °C for another 24 h to remove the water. The raw bricks were fired in a muffle furnace to a designated temperature (800, 900 and 1000 °C, respectively). The firing behaviour (mechanical strength, water absorption and shrinkage) was determined. The microstructures, phase compositions and leachates were evaluated for bricks manufactured at different firing temperatures. These results demonstrate that open pit burned ash can be recycled in clay bricks. This study also presents physical observations of the incinerated ash particles and determination of the chemical compositions of the raw materials by wet analysis. Open pit burned ash can be introduced easily into bricks up to 20% wt. The concentrations of hazardous components in the leachates were below the standard threshold for inert waste category landfill and their environmental risk during their use-life step can be considered negligible.

  9. Utilization of certain chemical and physical properties of smectite for isolation of radioactive waste in Sweden

    International Nuclear Information System (INIS)

    Karlsson, F.

    1990-01-01

    The use of swelling clays as a buffer and backfill in an underground repository for radioactive waste is part of many design concepts from different countries. The Swedish concept KBS-3, for disposal of spent fuel is an underground repository foresees the use of sodium bentonite. The deposition holes with spent fuel containing copper canisters will be backfilled with a mixture of sand and bentonite and the tunnels and shafts will be surrounded by a buffer of highly compact bentonite. The already constructed and licensed repository for low and medium level waste SFR, in Forsmark has a backfill of smectite rich clay between: the rock and an underground concrete silo for reactor operation waste. The clay barriers have a series of protective functions, both mechanically and chemically. This presentation concentrates on the last mentioned aspect and summarizes the experience of clay as an engineered near field barrier to radionuclide release and transport gained by the safety analyses of KBS-3 and SFR. It is concluded that the use of swelling clays adds considerably to the waste isolation function of the engineered near field barriers. 29 refs., 2 figs., 3 tabs

  10. Utilization of waste coconut coir dust as a source of fuel

    Energy Technology Data Exchange (ETDEWEB)

    Festin, T.F.; Jose, W.I.

    1979-01-01

    A review on the production of a gaseous fuel by the pyrolysis of waste coir dust, which is a by-product in the manufacturing of coir fibers from coconut husks. Experimental and pilot-plant studies on the pyrolysis of coir dust are discussed and the properties of the dust and the fuel gas produced are given. (Refs. 13).

  11. Selection of Thai starter components for ethanol production utilizing malted rice from waste paddy

    Directory of Open Access Journals (Sweden)

    Sirilux Chaijamrus

    2011-04-01

    Full Text Available The use of mixed herbs in Thai rice wine starter (Loog-pang were investigated in order to directly maintain theefficiency of the microbial community (Saccharomycopsis fibuligera, Amylomyces sp., Gluconobacter sp. and Pediocccuspentosaceus. The optimum formula was galanga, garlic, long pepper, licorice, and black pepper at the ratio of 0.5:8:1:4:1,respectively. Previously, waste paddy has been used directly as a renewable resource for fuel ethanol production using solidstate fermentation (SSF with Loog-pang. In this study, hydrolyzed malted rice starch was used as the sole nutrient source insubmerged fermentation (SmF to enhance the process yield. The maximum ethanol productivity (4.08 g/kg waste paddy h-1and the highest ethanol concentration (149±7.0 g/kg waste paddy were obtained after 48 hrs of incubation. The resultsindicated that starch saccharification provided a higher ethanol yield (48.38 g/100g sugar consumed than SSF. In addition,the efficiency of ethanol fermentation was 67% which is similar to that of the malted rice made from normal paddy (68%.This result suggests that waste paddy could be used as an alternative raw material for ethanol production.

  12. Utilization of various industrial wastes for the production of poly-b ...

    African Journals Online (AJOL)

    PHB production in various industrial waste based medium and nitrogen limited minimal agar synthetic medium was studied by crotonic acid method. The pure form of PHB was collected and qualitatively analyzed by infrared and nuclear magnetic resonance methods. Highest PHB production was found in nitrogen limited ...

  13. Plasma ARC/SCWO Sysems for Waste-to-Energy Applications Utilizing Milwaste Fuels

    Science.gov (United States)

    2013-07-01

    configuration and physics 4. Gasification and pollution abatement systems 5. Slag chemistry, refractory design, and glass and metal pouring 6. Energy...Manganese (g/L) 0.07 Nickel (g/L) 0.05 Zinc (g/L) 0.49 GA successfully processed the simulated waste for 6 hours at steady state flow

  14. Utilizing environmental management information systems to monitor chemical usage and facilitate waste minimization

    Energy Technology Data Exchange (ETDEWEB)

    Blazer, T.L.; Kinney, R.W. [Modern Technologies Corporation, Dayton, OH (United States)

    1996-10-01

    Waste minimization and pollution prevention activities have proven to be valuable to the chemical industry`s and the chemical user`s bottom line. Many companies have found that, with a modest initial capital investment and product modifications, mounds of bureaucratic liability can be removed and substantial cost savings can be realized.

  15. Treatment and utilization of waste waters of surface mines in Ukraine

    Energy Technology Data Exchange (ETDEWEB)

    Khmel' , N S

    1981-01-01

    Waste water of brown coal surface mines in the Dnieper basin is characterized. The water's pH value is 7, alkalinity ranges from 5.1 to 5.9 mg equivalent/1, it has no odor, a low mineralization level ranging from 1000 to 1100 mg/l. Concentration of mechanical impurities (suspended matter) ranges from 90 to 900 mg/l, and its maximum level can reach 5000 mg/l. An improved design of tanks in which waste water from surface mines is treated, and mechanical impurities settle, is proposed. Conventional design of a water sedimentation tank consists of a long ditch in which suspended matter settles, and a rectangular water reservoir at its end. In the improved version the long ditch is enlarged in some places to create additional tanks and to reduce velocity of flowing waste water. This improvement increases the amount of suspended matter which settles in the ditch and in its enlarged zones. When water reaches the rectangular sedimentation tank at the end of the system its suspended matter content is reduced to 40-45 mg/l. Formulae used to calculate dimensions of water treatment system, gradient of the ditch and size of sedimentation tank are presented. Methods of discharging treated waste water to surface water, rivers and stagnant waters, are evaluated. (In Russian)

  16. ENERGY RECOVERY FOR CONTINUOUS DYEING PROCESS IN TEXTILE INDUSTRY ENTERPRISES

    Directory of Open Access Journals (Sweden)

    V. N. Romaniuk

    2015-01-01

    Full Text Available The paper ascertains and presents alteration in the energy consumption as a consequence of utilizing the low-temperature waste streams commonly used in the lines of continuous dyeing at the finishing shops of textile enterprises of Belarus. The utilization realizes through the engagement of lithium-bromide absorption heat pumps with various energy characteristics such as the heating coefficient (relative conversion ratio COPhp = 1,15; 1,7; 2,2 and the heating capacity. The latter associates with the converted heat-flow energy utilization variant with the heat-transfer medium heating system scheme (one-, twoand multistage heating. The article considers transition to previously not applied service-water preheating due to the technological acceptance of feeding higher temperature water into the dyeing machine and widening specification of the heattransfer media. The authors adduce variants of internal and external energy use and their evaluation based on the relative energy and exergy characteristics. With results of the thermodynamic analysis of the modernized production effectiveness the researchers prove that alongside with traditional and apparent interior utilization of the energy associated with the stream heat recuperation, it is advisable to widen the range of applied heat-transfer media. The transition to the service water twoand multi-stage preheating is feasible. The study shows that the existing energy supply efficiency extremely low index-numbers improve by one or two degrees. Since they are conditioned, inter alia, by the machinery design, traditional approach to energy supply and heat-medium usage as well as the enterprise whole heating system answering requirements of the bygone era of cheap energy resources. The authors examine the continuous dyeing line modernization options intending considerable investments. Preliminary economic assessment of such inevitable modernization options for the enterprise entire heat-and-power system

  17. Anaerobic azo dye reduction

    OpenAIRE

    Zee, van der, F.P.

    2002-01-01

    Azo dyes, aromatic moieties linked together by azo (-N=N-) chromophores, represent the largest class of dyes used in textile-processing and other industries. The release of these compounds into the environment is undesirable, not only because of their colour, but also because many azo dyes and their breakdown products are toxic and/or mutagenic to life. To remove azo dyes from wastewater, a biological treatment strategy based on anaerobic reduction of the azo dye...

  18. Molten salt hazardous waste disposal process utilizing gas/liquid contact for salt recovery

    International Nuclear Information System (INIS)

    Grantham, L.F.; McKenzie, D.E.

    1984-01-01

    The products of a molten salt combustion of hazardous wastes are converted into a cooled gas, which can be filtered to remove hazardous particulate material, and a dry flowable mixture of salts, which can be recycled for use in the molten salt combustion, by means of gas/liquid contact between the gaseous products of combustion of the hazardous waste and a solution produced by quenching the spent melt from such molten salt combustion. The process results in maximizing the proportion of useful materials recovered from the molten salt combustion and minimizing the volume of material which must be discarded. In a preferred embodiment a spray dryer treatment is used to achieve the desired gas/liquid contact

  19. Utilization of flotation wastes of copper slag as raw material in cement production

    International Nuclear Information System (INIS)

    Alp, I.; Deveci, H.; Suenguen, H.

    2008-01-01

    Copper slag wastes, even if treated via processes such as flotation for metal recovery, still contain heavy metals with hazardous properties posing environmental risks for disposal. This study reports the potential use of flotation waste of a copper slag (FWCS) as iron source in the production of Portland cement clinker. The FWCS appears a suitable raw material as iron source containing >59% Fe 2 O 3 mainly in the form of fayalite (Fe 2 SiO 4 ) and magnetite (Fe 3 O 4 ). The clinker products obtained using the FWCS from the industrial scale trial operations over a 4-month period were characterised for the conformity of its chemical composition and the physico-mechanical performance of the resultant cement products was evaluated. The data collected for the clinker products produced using an iron ore, which is currently used as the cement raw material were also included for comparison. The results have shown that the chemical compositions of all the clinker products including those of FWCS are typical of a Portland cement clinker. The mechanical performance of the standard mortars prepared from the FWCS clinkers were found to be similar to those from the iron ore clinkers with the desired specifications for the industrial cements e.g. CEM I type cements. Furthermore, the leachability tests (TCLP and SPLP) have revealed that the mortar samples obtained from the FWCS clinkers present no environmental problems while the FWCS could act as the potential source of heavy metal contamination. These findings suggest that flotation wastes of copper slag (FWCS) can be readily utilised as cement raw material due to its availability in large quantities at low cost with the further significant benefits for waste management/environmental practices of the FWCS and the reduced production and processing costs for cement raw materials

  20. Utilization of flotation wastes of copper slag as raw material in cement production.

    Science.gov (United States)

    Alp, I; Deveci, H; Süngün, H

    2008-11-30

    Copper slag wastes, even if treated via processes such as flotation for metal recovery, still contain heavy metals with hazardous properties posing environmental risks for disposal. This study reports the potential use of flotation waste of a copper slag (FWCS) as iron source in the production of Portland cement clinker. The FWCS appears a suitable raw material as iron source containing >59% Fe(2)O(3) mainly in the form of fayalite (Fe(2)SiO(4)) and magnetite (Fe(3)O(4)). The clinker products obtained using the FWCS from the industrial scale trial operations over a 4-month period were characterised for the conformity of its chemical composition and the physico-mechanical performance of the resultant cement products was evaluated. The data collected for the clinker products produced using an iron ore, which is currently used as the cement raw material were also included for comparison. The results have shown that the chemical compositions of all the clinker products including those of FWCS are typical of a Portland cement clinker. The mechanical performance of the standard mortars prepared from the FWCS clinkers were found to be similar to those from the iron ore clinkers with the desired specifications for the industrial cements e.g. CEM I type cements. Furthermore, the leachability tests (TCLP and SPLP) have revealed that the mortar samples obtained from the FWCS clinkers present no environmental problems while the FWCS could act as the potential source of heavy metal contamination. These findings suggest that flotation wastes of copper slag (FWCS) can be readily utilised as cement raw material due to its availability in large quantities at low cost with the further significant benefits for waste management/environmental practices of the FWCS and the reduced production and processing costs for cement raw materials.

  1. Energy and Exergy Analysis of Kalina Cycle for the Utilization of Waste Heat in Brine Water for Indonesian Geothermal Field

    Directory of Open Access Journals (Sweden)

    Nasruddin Nasruddin

    2015-04-01

    Full Text Available The utilization of waste heat in a power plant system—which would otherwise be released back to the environment—in order to produce additional power increases the efficiency of the system itself. The purpose of this study is to present an energy and exergy analysis of Kalina Cycle System (KCS 11, which is proposed to be utilized to generate additional electric power from the waste heat contained in geothermal brine water available in the Lahendong Geothermal power plant site in North Sulawesi, Indonesia. A modeling application on energy and exergy system is used to study the design of thermal system which uses KCS 11. To obtain the maximum power output and maximum efficiency, the system is optimized based on the mass fraction of working fluid (ammonia-water, as well as based on the turbine exhaust pressure. The result of the simulation is the optimum theoretical performance of KCS 11, which has the highest possible power output and efficiency. The energy flow diagram and exergy diagram (Grassman diagram was also presented for KCS 11 optimum system to give quantitative information regarding energy flow from the heat source to system components and the proportion of the exergy input dissipated in the various system components.

  2. Desulfurization of chemical waste gases and flue gases with economic utilization of air pollutants

    Energy Technology Data Exchange (ETDEWEB)

    Asperger, K.; Wischnewski, W.

    1983-09-01

    The technological state of recovery of sulfur dioxide from waste and flue gases in the GDR is discussed. Two examples of plants are presented: a pyrosulfuric acid plant in Coswig, recovering sulfur dioxide from gases by absorption with sodium hydroxide, followed by catalytic oxidation to sulfur trioxide, and a plant for waste sulfuric acid recovery from paraffin refining, where the diluted waste acid is sprayed into a furnace and recovered by an ammonium-sulfite-bisulfite solution from the combustion gas (with 4 to 10% sulfur dioxide content). Investment and operation costs as well as profits of both plants are given. Methods employed for power plant flue gas desulfurization in major industrial countries are further assessed: about 90% of these methods uses wet flue gas scrubbing with lime. In the USA flue gas from 25,000 MW of power plant capacity is desulfurized. In the USSR, a 35,000 m/sup 3//h trial plant at Severo-Donetzk is operating using lime, alkali and magnesite. At the 150 MW Dorogobush power plant in the USSR a desulfurization plant using a cyclic ammonia process is under construction.

  3. Complex processing and utilization of waste as the basis for sustainable economic development district

    Directory of Open Access Journals (Sweden)

    V.М. Ilchenko

    2015-06-01

    Full Text Available The article describes the main environmental problems of Ukraine. The problems that are connected with complex processing and recycling, the example Dnieper economic paradise-one, which allows more detailed present environmental situation of the country at this stage. The article is used and analyzed recent environmental performance and the basic problems of on-disposal and recycling. Basic research methods: observation, analysis and comparison. The aim was to find ways to overcome the ecological crisis in Ukraine. As a result of the research, it was determined that most types of waste-tion prevail in Ukraine and found the best solutions to problems related to waste and their processing. It was possible to find the main problem that has caused serious environmental situation, and the main task for the country at this stage. The main problems and tasks Dnieper economic region. Also indicate how to save, due to complex processing waste. The article is very relevant and important because it is here that the basic problems and tasks of Ukraine concerning the ecological situation. It also focuses on eco-logical problems, which the government does not pay enough attention.

  4. Some aspects about the Portland cement utilization as a matrix for radioactive waste immobilization

    International Nuclear Information System (INIS)

    Giraldelli, M.A.

    1990-01-01

    More recently, the environmental policy has concentrated the focus on the study of the waste disposal environmental impact. Since Portland cement is commonly used as a matrix in the low-and intermediate-level radioactive waste immobilization, in the present work, some relationships between the structure and properties of matrix, based on available concrete technology information, has been established by using the multi-level approach analysis. The relationships were developed based on hydrating reactions, the microstructure models, the pore system. It have been verified that: a) CSH gel is responsible for the cementing action and for the strength; b) it seems that the capillary porosity is the strength limiting; c) the permeability, regarded in terms of gel porosity and reduced capillary porosity of the hardened cement paste, may not be a decisive factor for the radionuclide release; d) the shrinkage and the swelling induced cracks can enhance the diffusion mechanism for the cracks increase the exposed surface. The durability of the waste disposal matrix concerning chemical attack in the acidic environment has been considered. (author)

  5. Renewable High-Performance Fibers from the Chemical Recycling of Cotton Waste Utilizing an Ionic Liquid.

    Science.gov (United States)

    Asaadi, Shirin; Hummel, Michael; Hellsten, Sanna; Härkäsalmi, Tiina; Ma, Yibo; Michud, Anne; Sixta, Herbert

    2016-11-23

    A new chemical recycling method for waste cotton is presented that allows the production of virgin textile fibers of substantially higher quality than that from the mechanical recycling methods that are used currently. Cotton postconsumer textile wastes were solubilized fully in the cellulose-dissolving ionic liquid 1,5-diazabicyclo[4.3.0]non-5-enium acetate ([DBNH]OAc) to be processed into continuous filaments. As a result of the heterogeneous raw material that had a different molar mass distribution and degree of polymerization, pretreatment to adjust the cellulose degree of polymerization by acid hydrolysis, enzyme hydrolysis, or blending the waste cotton with birch prehydrolyzed kraft pulp was necessary to ensure spinnability. The physical properties of the spun fibers and the effect of the processing parameters on the ultrastructural changes of the fibers were measured. Fibers with a tenacity (tensile strength) of up to 58 cN tex -1 (870 MPa) were prepared, which exceeds that of native cotton and commercial man-made cellulosic fibers. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Investigating the Utility of Iron Ore Waste in Preparing Non-fired Bricks

    Science.gov (United States)

    Lamani, Shreekant R.; Mangalpady, Aruna; Vardhan, Harsha

    2017-10-01

    Iron ore waste is a major problem for mine owners due to the difficulty involved in its storage, handling and other environmental related issues. An alternative solution to this is utilisation of iron ore waste (IOW) as some value added product in construction industry. An attempt has been made in this paper in examining the possibility of making non-fired bricks from iron ore waste with some additives like cement and fly-ash. Each of the additives were mixed with IOW in different ratios and different sets of bricks were prepared. The prepared IOW bricks were cured for 7, 14, 21 and 28 days and their respective compressive strength and percentage of water absorption were determined. The results show that IOW bricks prepared with 9% and above cement and with 28 days of curing are suitable for brick making and meet the IS specifications. It was also observed that the weight of the prepared bricks with 9% cement with 28 days of curing varies between 2.35 and 2.45 kg whereas the weight of compressed fire clay bricks varies from 2.80 to 2.89 kg. Results also show that the cost of bricks prepared with cement ranging from 9 to 20% is comparable to that of commercially available compressed bricks.

  7. Utilization of Construction Waste Composite Powder Materials as Cementitious Materials in Small-Scale Prefabricated Concrete

    Directory of Open Access Journals (Sweden)

    Cuizhen Xue

    2016-01-01

    Full Text Available The construction and demolition wastes have increased rapidly due to the prosperity of infrastructure construction. For the sake of effectively reusing construction wastes, this paper studied the potential use of construction waste composite powder material (CWCPM as cementitious materials in small-scale prefabricated concretes. Three types of such concretes, namely, C20, C25, and C30, were selected to investigate the influences of CWCPM on their working performances, mechanical properties, and antipermeability and antifrost performances. Also the effects of CWCPM on the morphology, hydration products, and pore structure characteristics of the cement-based materials were analyzed. The results are encouraging. Although CWCPM slightly decreases the mechanical properties of the C20 concrete and the 7 d compressive strengths of the C25 and C30 concretes, the 28 d compressive strength and the 90 d flexural strength of the C25 and C30 concretes are improved when CWCPM has a dosage less than 30%; CWCPM improves the antipermeability and antifrost performances of the concretes due to its filling and pozzolanic effects; the best improvement is obtained at CWCPM dosage of 30%; CWCPM optimizes cement hydration products, refines concrete pore structure, and gives rise to reasonable pore size distribution, therefore significantly improving the durability of the concretes.

  8. Feasibility study on utilization of palm fibre waste into fired clay brick

    Science.gov (United States)

    Kadir, A. A.; Sarani, N. A.; Zaman, N. N.; Abdullah, Mohd Mustafa Al Bakri

    2017-04-01

    Malaysia is the second largest of palm oil producer after Indonesia, which contribute to 50 % of palm oil production. With this demand, the increasing of palm oil plantation over the years has led to the large production of agricultural waste, for example palm fibre waste. This study investigates different percentages of palm fibre (0 %, 1 %, 5 % and 10 %) to be incorporated into fired clay brick. Manufactured bricks were fired at 1 °C/min heating rate up to 1050 °C. The effects of manufacture bricks on the physical and mechanical properties of manufactured brick were also determined. All brick samples were tested due to the physical and mechanical properties which include dry density, firing shrinkage, initial rate of suction (IRS), water absorption, porosity and compressive strength. Findings show that increasing palm fibre waste affected the properties of brick, which decreased their density, besides increased firing shrinkage, IRS, water absorption, porosity and compressive strength. However, all the manufactured brick still followed the requirement.

  9. Utilization of molasses spentwash for production of bioplastics by waste activated sludge

    International Nuclear Information System (INIS)

    Khardenavis, Anshuman A.; Vaidya, Atul N.; Kumar, M. Suresh; Chakrabarti, Tapan

    2009-01-01

    Present study describes the treatment of molasses spentwash and its use as a potential low cost substrate for production of biopolymer polyhydroxybutyrate (PHB) by waste activated sludge. Fluorescence microscopy revealed the presence of PHB granules in sludge biomass which was further confirmed by fourier transform-infra-red spectroscopy (FT-IR) and 13 C nuclear magnetic resonance (NMR). The processing of molasses spentwash was carried out for attaining different ratios of carbon and nitrogen (C:N). Highest chemical oxygen demand (COD) removal and PHB accumulation of 60% and 31% respectively was achieved with raw molasses spentwash containing inorganic nitrogen (C:N ratio = 28) followed by COD removal of 52% and PHB accumulation of 28% for filtered molasses containing inorganic nitrogen (C:N ratio = 29). PHB production yield (Y p/s ) was highest (0.184 g g -1 COD consumed) for deproteinized spentwash supplemented with nitrogen. In contrast, the substrate consumption and product formation were higher in case of raw spentwash. Though COD removal was lowest from deproteinized spentwash, evaluation of kinetic parameters suggested higher rates of conversion of available carbon to biomass and PHB. Thus the process provided dual benefit of conversion of two wastes viz. waste activated sludge and molasses spentwash into value-added product-PHB.

  10. Utilization of molasses spentwash for production of bioplastics by waste activated sludge.

    Science.gov (United States)

    Khardenavis, Anshuman A; Vaidya, Atul N; Kumar, M Suresh; Chakrabarti, Tapan

    2009-09-01

    Present study describes the treatment of molasses spentwash and its use as a potential low cost substrate for production of biopolymer polyhydroxybutyrate (PHB) by waste activated sludge. Fluorescence microscopy revealed the presence of PHB granules in sludge biomass which was further confirmed by fourier transform-infra-red spectroscopy (FT-IR) and (13)C nuclear magnetic resonance (NMR). The processing of molasses spentwash was carried out for attaining different ratios of carbon and nitrogen (C:N). Highest chemical oxygen demand (COD) removal and PHB accumulation of 60% and 31% respectively was achieved with raw molasses spentwash containing inorganic nitrogen (C:N ratio=28) followed by COD removal of 52% and PHB accumulation of 28% for filtered molasses containing inorganic nitrogen (C:N ratio=29). PHB production yield (Y(p/s)) was highest (0.184 g g(-1) COD consumed) for deproteinized spentwash supplemented with nitrogen. In contrast, the substrate consumption and product formation were higher in case of raw spentwash. Though COD removal was lowest from deproteinized spentwash, evaluation of kinetic parameters suggested higher rates of conversion of available carbon to biomass and PHB. Thus the process provided dual benefit of conversion of two wastes viz. waste activated sludge and molasses spentwash into value-added product-PHB.

  11. [Industrial waste as indicator of population size: possible utilization in mountain resort tourist stations?].

    Science.gov (United States)

    Olive, F; Rey, S; Zmirou, D

    1998-09-01

    Epidemiological studies, conducted in touristic resorts, often face the difficulty of assessing the size of the referent population. Recently, some population size indicators, have been tested. Among them, the amount of municipal waste seems to be easy and readily accessible. The purpose of the study is to describe how this indicator can be used in touristic mountain resorts. Four touristic resorts were chosen in Isère departement (France): Alpe d'Huez, Deux Alpes, Chamrousse, plateau du Vercors. The evolution of municipal waste over several years was used to compute an individual output level for residents and for tourists. This waste indicator was compared with data on tourists reservations in hotels in the resorts. We found a good fit during touristic seasons in three resorts (Spearman test). For the last one (Chamrousse), the correlation rate was low. We think that the type of tourism is different in this resort with many non residents. This indicator is reliable but needs further validation by sample surveys across several sites and several types of lodging. We propose to estimate the size of the referent population, based on an individual output of 1 kg per person and per day for residents and 0.5 kg per person per day for tourists.

  12. Potential utilization of Citrullus lanatus var. Colocynthoides waste as a novel source of pectin.

    Science.gov (United States)

    Korish, Mohamed

    2015-04-01

    The Citrullus lanatus var. Colocynthoides is an ancestor type of watermelon. It was investigated as a new source of pectin. It was cultivated in Egypt for seeds only, while the remaining fruits are discarded as waste. Effect of different extraction conditions such as pH, solid: liquid ratio, temperature and extraction time on pectin yield of Citrullus lanatus var. Colocynthoides waste was investigated in the present study. The highest yield (19.75 % w/w) was achieved at pH 2, solid: liquid ratio1:15 and 85 °C, for 60 min. Methylation degree and galacturonic acid content of extracted pectin were 55.25 %, w/w and 76.84 %, w/w. The main neutral sugars were galactose followed by arabinose and rhamnose. In addition, glucose, xylose and mannose existed as constituents in the pectin hydrolysate. The results indicated that Citrullus lanatus var. Colocynthoide waste is a potential new source of pectin.

  13. Aerobic decolourization of two reactive azo dyes under varying ...

    African Journals Online (AJOL)

    Bacillus cereus isolated from dye industrial waste, that is, effluent and soil samples was screened for its ability to decolourize two reactive azo dye – cibacron black PSG and cibacron red P4B under aerobic conditions at pH 7 and incubated at 35°C over a five day period. Different carbon and nitrogen sources were used for ...

  14. Production of Controlled Low Strength Material Utilizing Waste Paper Sludge Ash and Recycled Aggregate Concrete

    Directory of Open Access Journals (Sweden)

    Azmi A. N.

    2016-01-01

    Full Text Available Recently, the best method to make the concrete industry more sustainable was using the waste materials to replace the natural resources. Currently waste paper sludge is a major economic and environmental problem in this country. In this research, the alternative method is to dwindle the usage of natural resources and the usage of cement in the construction. This method is to replace the usage of cement with the waste paper sludge ash (WPSA and to use the recycle aggregate collected from the construction is used. The WPSA has ingredient likely cement such as self-cementation but for a low strength. The research was conducted at heavy laboratory UITM Pulau Pinang. Meanwhile, the WPSA is collected at MNI Industries at Mentakab, Pahang. The recycle aggregate is a separated half, which were fine aggregate and the coarse aggregate with the specific size. In this research, the ratio is divided into two (2 which is 1:1 and 1:2 for the aggregate and difference percentage levels of WPSA. The percentage levels of WPSA that use in this research are 10%, 20%, 30%, 40%, 50%, and 60%. A total of 36 cubes were prepared. Aim of this research is to develop a simple design approach for the mixture proportioning of WPSA and recycle concrete aggregate (RCA within the concrete and to assess the effect of concrete mix with different percentage of WPSA and RCA ratio on the properties. It is found that the best design mix that achieves control low strength material (CLSM is on 30% of WPSA with the ratio 1:2 on day 28 of compression test.

  15. Utilization of logging waste from mechanical spruce dominated final cuttings; Koneellisen puunkorjuun hakkuutaehteiden hyoedyntaeminen biopolttoaineena

    Energy Technology Data Exchange (ETDEWEB)

    Ebeling, J [Jaakko Poeyry Consulting Oy, Vantaa (Finland)

    1997-12-01

    The aim of the project has been to improve the economy of collecting logging waste from spruce dominated mechanised final felling. This section of the biomass is regarded as the most promising alternative biofuel source. The project compared different systems of collecting this raw material and concluded, that the most economical way to do this was (1) to integrate the transport of logging waste from the forest to the road side with the transport of logs using the equipment already at the site. The use of a separate tractor proved uneconomical compared to the integrated system. (2) Chip the logging waste at the road side with an integrated chipping and transport lorry (truck) equipped with three 20 feet standard or modified containers. The total cargo space in the lorry is thus around 100 m{sup 3} loose volume. The economical transport distance of this equipment is around under 100 km one way distance. The report contains also detailed drawings of the technical solution arrived at. The main idea is to use a module structure, where the chipper - the Bruks 803CT - is located together with most of the hydraulics, crane and the control equipment. The only outside connections needed are the hydraulic pressure from the pump and the operational unit with the necessary electrical panel. Thus the assembly and installation of the module on the lorry is rapid and the quality of the work can be maintained high. The operation is designed on the basis of one man operation and in such away that the need to for the driver-operator to step down from the controls is minimised. In normal situation the operation can be fully accomplished from the drivers cab - even when changing the containers

  16. APPLICATION OF PHYTOREMEDIATION FOR HERBAL MEDICINE WASTE AND ITS UTILIZATION FOR PROTEIN PRODUCTION

    Directory of Open Access Journals (Sweden)

    Danny Soetrisnanto

    2012-11-01

    Full Text Available Herbal industry in Indonesia is progressing very rapidly. Increasing number of herbal medicineindustries lead to an increase of the waste which are normally processed in anaerobic ponds by usingchemical and biological process. However this process are not economical feasible and therefore analternative method by using natural resource is required. Phytoremediation is an environmentalfriendly method to reduce contaminant using aquatic plant. This method uses water plant to reduceCOD and nutrients content in the waste. Since the waste still high content of nutrient, therefore it ispotential for medium growth of algae Spirulina. This study was aimed to evaluate the use of variousplant species (water hyacinth and lotus in decreasing contaminant and to determine optimal nutrientcomposition of the growth media. The phytoremediation was performed in 3-8 days and height ofliquid in the tank was maintained constant at 5 cm. The effluent of first phytoremediation wastransferred to second stage for cultivation of Spirulina with 15 days of cultivation time. The externalnutrients were added each 2 days and the concentration of biomass was measured for its opticaldensity. Spirulina grow well in herbal medicine waste that has been phytoremediation with lotus for 3days and had a CNP ratio amounted to 57.790 : 9.281 : 1 with a growth rate of 0.271/day. Industri obat di Indonesia tumbuh sangat cepat. Pertumbuhan inimengakibatkan meningkatnya limbah yang umumnya dilakukan dalam kolam anaerobik denganmenggunakan proses kimia dan biologi. Namun demikian, proses tersebut belum menunjukkan hasilekonomis sehingga diperlukan metode lain yang relatif aman dan ekonomis. Salah satu cara yangdapat digunakan adalah phytoremediasi mengguanakn tanaman air untuk mengurangi kandunganCOD dalam limbah dan nutrient. Dikarenakan limbah masih mengandung nutrient yang cukup banyak,maka limbah tersebut juga sangat potensial untuk digunakan sebagai medium mikroalga. Penelitianini

  17. Utilization of stabilized municipal waste combustion ash residues as construction material

    International Nuclear Information System (INIS)

    Shieh, C.S.

    1992-01-01

    Stabilized municipal waste combustion (MWC) ash residues were investigated for their potential as construction material that can be beneficially used in terrestrial and marine environments. End-use products, such as patio stones, brick pavers, solid blocks, and reef units, were fabricated and tested for their engineering and chemical characteristics. engineering feasibility and environmental acceptability of using stabilized ash residues as construction material are discussed in this paper. Ash samples were collected from two mass-burn facilities and one refuse derived fuel (RDF) facility in Florida

  18. Efficient utilization of waste date pits for the synthesis of green diesel and jet fuel fractions

    International Nuclear Information System (INIS)

    Al-Muhtaseb, Ala’a H.; Jamil, Farrukh; Al-Haj, Lamya; Al-Hinai, Mohab A.; Baawain, Mahad; Myint, Myo Tay Zar; Rooney, David

    2016-01-01

    Highlights: • Active catalysts Pt/C and Pd/C were developed from waste date pits. • Catalysts showed good activity in hydrodeoxygenation of date pit oil to alkane fuels. • The liquid product fractions lay within the range of the jet fuel and green diesel. • Green diesel fraction obtained by Pd/C was 72.03% and jet fuel was 30.39%. • Date pits can be a promising platform for the production of catalysts and biofuels. - Abstract: Date pits are considered one of the major agricultural wastes in Oman. The present work involves the synthesis of active catalysts from waste date pits carbon produced by carbonization and impregnation with Pt and Pd metals. Synthesized catalysts Pt/C and Pd/C were characterized by XRD, SEM, TEM, EDX, BET and XPS. The activity of the catalysts’ performance was evaluated by the hydrodeoxygenation of date pits oil for the production of second-generation biofuels, which includes jet fuel and green diesel fractions. Results indicate that the synthesized catalysts were highly active for the hydrodeoxygenation of date pits oil. Based on the elemental analysis, the degree of deoxygenation (DOD) of product oil was 97.5% and 89.4% for the Pd/C and Pt/C catalysts respectively. The high DOD was also confirmed by product analyses that mainly consist of paraffinic hydrocarbons. Results also showed that between the two catalysts, Pd/C showed a higher activity towards hydrodeoxygenation, a conclusion that was based on the high DOD of the product oil due to hydrocarbons formation. Based on the type of components in the product oil, the maximum fraction of hydrocarbons formed lay within the range of 72.03% and 72.78% green diesel, and 30.39% and 28.25% jet fuel using Pd/C and Pt/C catalysts respectively. It can be concluded that waste date pits can be a promising platform for the production of catalysts and biofuels.

  19. THE IMPROVEMENT OF ESTIMATION TECHNIQUE FOR EFFECTIVENESS OF INVESTMENT PROJECTS ON WASTE UTILIZATION

    Directory of Open Access Journals (Sweden)

    V.V. Krivorotov

    2008-06-01

    Full Text Available The main tendencies of the waste products formation and recycling in the Russian Federation and in the Sverdlovsk region have been analyzed and the principal factors restraining the inclusion of anthropogenic formations into the economic circulation have been revealed in the work. A technical approach to the estimation of both ecological and economic integral efficiency of the recycling projects that, in autors, opinion, secures higher objectivity of this estimation as well as the validity of the made decisions on their realization.

  20. Utilization of robusta coffee waste as a renewable energy material - bioetanol

    Directory of Open Access Journals (Sweden)

    Sutarno

    2018-01-01

    Full Text Available A research on robusta coffee waste has been conducted as a renewable energy material - Bioethanol. This research was carried out by hydrolysis and fermentation process using Zymomonasmobilis and Saccharomyces cerevisiae (Zymomonasmobilis bacteria to obtain the best catalyst type in the process of hydrolysis of coffee skin to glucose and the effect of fermentation time on bioethanol content produced. This research was conducted by varying the fermentation time of 7 days; 8 days; 9 days and 10 days. The fermentation fluid was then distilled and tested for bioethanol using a refractometer. Furthermore, bioethanol concentration in the analysis using.

  1. The possibilities of the microwave utilization of wastes on the example of materials containing the asbestos

    Directory of Open Access Journals (Sweden)

    M. Pigiel

    2010-04-01

    Full Text Available The presented paper introduce some of the results of the investigations in the utilization of the materials containing asbestos in the existingin Wroclaw University of Technology Institute’s of Technology of Machines and the Automation Foundry and Automation Group themicrowave reactor. In the reactor’s heating chamber there is possible to recycle from 3 up to 5 kg of the batch at once. The temperaturewith which is possible to receive in it is approx. 1400 oC. The time of it’s achievement (in dependence from utilized material can take outfrom 25 up to 40 minutes.

  2. Viability of utilization of waste materials from ceramic products in precast concretes

    Directory of Open Access Journals (Sweden)

    Sánchez de Rojas, M. I.

    2001-12-01

    Full Text Available The recycled and re-valuation process of waste materials involves studies lead to a deep acknowledges of them, finding applications for their intended use. The waste materials from ceramic products can be recycled into the construction sector, as arid or pozzolanic materials. The current work deals with the incorporation of ceramic materials in these two different ways, checking the behaviour of the elaborated mortar by mean of laboratory tests. Also, tests are developed in factory, using these as components for precast concrete tiles.

    Todo proceso de reciclado y revalorización de residuos implica estudios encaminados a un conocimiento profundo de los mismos, de forma que se busquen aplicaciones concretas de uso. Los materiales de desecho procedentes de productos cerámicos pueden ser reciclados dentro del sector de la construcción, ya sea como áridos o como materiales puzolánicos. El presente trabajo aborda la incorporación de materiales cerámicos desde estas dos vertientes, comprobando, en cada caso, el comportamiento de los morteros elaborados mediante ensayos de laboratorio. También se llevan a cabo pruebas en fábrica, siendo utilizados como componentes en prefabricados de hormigón.

  3. Bioethanol Production By Utilizing Cassava Peels Waste Through Enzymatic And Microbiological Hydrolysis

    Science.gov (United States)

    Witantri, R. G.; Purwoko, T.; Sunarto; Mahajoeno, E.

    2017-07-01

    Cassava peels waste contains, cellulose which is quite high at 43.626%, this is a potential candidate as a raw for bioethanol production. The purpose of this study was to determine the performance of the enzymatic hydrolysis, microbiological (Effective microbe) and fermentation in cassava peel waste is known from the results of quantitative measurement of multiple ethanol parameters (DNS Test, pH, ethanol concentration). This research was carried out in stages, the first stage is hydrolysis with completely randomized design with single factor variation of the catalyst, consisting of three levels ie cellulase enzymes, multienzyme and effective microbial EM4. The second stage is fermentation with factorial randomized block design, consisting of three groups of variations of catalyst, and has two factors: variations of fermipan levels 1, 2, 3% and the duration of fermentation, 2,4,6 days. The parameters in the test is a reducing sugar, pH and concentration of ethanol. The results showed that variation of hydrolysis treatment, fermentation time, and fermipan levels has real effect on the fermentation process. On average the highest ethanol content obtained from the treatment with multienzyme addition, with the addition of 2% fermipan levels and on the 2nd day of fermentation that is equal to 3.76%.

  4. Distillation of Essential Oils from Pontianak Orange Peel Wastes and Its Utilization for Aromatherapy Soap

    Directory of Open Access Journals (Sweden)

    Hidayati Hidayati

    2012-12-01

    Full Text Available Orange (Citrus nobilis var. microcarpa is the main commodities in Pontianak. Production of essential oils from orange peel wastes and its use for soap aromatherapy substance could improve its economic value. This study is aimed to produce the essential oils from orange peel wastes with the highest limonene content by distillation. Its application for aromatherapy soap substance also evaluated. Distillation of essential oils from orange peels was performed at 1000C and 1100C for 4, 5, 6 and 7 hours. The results showed that at 1000C for 7 hours produced the highest limonene content, reach 97.69%. The essential oils color was pale yellow, specific gravity 0.84, refractive index 1.47, solubility in 90% ethanol 1:1 (transparent, acid value 0.143% and ester number 5.37. The aromatherapy soap produced with addition of 3.6% of limonene oils is in accordance with SNI 06-3532-1994 except for water content parameter.

  5. Utilization of agroindustrial waste for biosurfactant production by native bacteria from chiapas

    Directory of Open Access Journals (Sweden)

    Yañez-Ocampo Gustavo

    2017-02-01

    Full Text Available In this work, two agro-industrial wastes, namely Waste Cooking Oil (WCO and Coffee Wastewater (CW have been used as the carbon source for the production of biosurfactants, due to their low cost and high availability. Biosurfactant-producing bacterial isolates from the Mexican state of Chiapas were used. The selected biosurfactant-producer strains were evaluated in a liquid medium with 2% (v/v of WCO as the carbon source. The assay was conducted in an Erlenmeyer flask containing 300 mL aliquots of mineral salt media (MSM + residue and incubated at 100 rpm at room temperature for 96 hours. The biosurfactant produced in the samples reduced the surface tension from 50 to 30-29 mN/m. Strains A and 83 showed the maximum emulsification index at 58-59%. Strain A showed the highest biosurfactant yield with a production of 3.7 g/L in comparison with strains B, 83 and Pseudomonas aeruginosa ATCC27853. Our results suggest that the biosurfactant produced by strain A has great potential in the treatment of wastewater with a high content of fatty acids, and of soils contaminated by pesticides or oil hydrocarbons.

  6. UTILIZATION OF MINERAL FIBER WASTE IN THE PRODUCTION OF GYPSUM PRODUCTS

    Directory of Open Access Journals (Sweden)

    Solov'ev Vitaliy Nikolaevich

    2018-01-01

    Full Text Available Subject: the effectiveness of using compositions with the use of basalt fibers is proven, but the composition must be selected depending on the binder and additives chosen. Research objectives: we examine the possibility of waste recycling of basalt fiber production during manufacturing of modified gypsum composite material with improved characteristics. Materials and methods: as a raw material, a gypsum binder of Samara production was used. As a reinforcement additive, a disperse waste of basalt fiber production of Tver region was used. Studying characteristics of the gypsum binder and modified mixture, and also comparative analysis of these characteristics by average density, total porosity, strength in compression and flexure of the gypsum composite were carried out using standard techniques. Results: dependence of physical and mechanical properties of the modified gypsum material on the content of the basalt fiber additive is established. It was found that an increase in concentration of the additive requires an increased water content or additional use of plasticizer. Conclusions: modification of gypsum stone with a mineral basalt additive will increase the strength, density and durability of thin-walled gypsum products, and, consequently, the demand for products due to ensuring their high quality in transportation and installation.

  7. Tunable Microfluidic Dye Laser

    DEFF Research Database (Denmark)

    Olsen, Brian Bilenberg; Helbo, Bjarne; Kutter, Jörg Peter

    2003-01-01

    We present a tunable microfluidic dye laser fabricated in SU-8. The tunability is enabled by integrating a microfluidic diffusion mixer with an existing microfluidic dye laser design by Helbo et al. By controlling the relative flows in the mixer between a dye solution and a solvent......, the concentration of dye in the laser cavity can be adjusted, allowing the wavelength to be tuned. Wavelength tuning controlled by the dye concentration was demonstrated with macroscopic dye lasers already in 1971, but this principle only becomes practically applicable by the use of microfluidic mixing...

  8. Study of waste-heat recovery and utilization at the Farmington Municipal Power Plant. Final report, December 1, 1980-June 30, 1981

    Energy Technology Data Exchange (ETDEWEB)

    Leigh, G.G.; Edgel, W.R.; Feldman, K.T. Jr.; Moss, E.J.

    1982-03-01

    An examination was made of the technical and economc feasibility of utilizing waste heat from the Farmington Municipal Power Plant. First, the production cycles of the natural-gas-fired plant were assessed to determine the quantity and quality of recoverable waste heat created by the plant during its operation. Possibilities for utilizing waste heat from the exhaust gases and the cooling water were then reviewed. Hot water systems that can be used to retrieve heat from hot flue gases were investigated; the heated water can then be used for space heating of nearby buildings. The potential use of waste heat to operate a refrigeration plant was also analyzed. The use of discharged cooling water for hydroelectric generation was studied, as well as its application for commercial agricultural and aquaculture enterprises.

  9. Parametric Study for Devulcanization of Waste Tire Rubber Utilizing Deep Eutectic Solvent (DES

    Directory of Open Access Journals (Sweden)

    Walvekar Rashmi

    2018-01-01

    Full Text Available Waste rubber is a polymeric material containing 50% of rubber and is generally referred to as waste tyre rubber. The main purpose of this research is to study ultrasonic devulcanisation of waste rubber utilising deep eutectic solvent (DES of ZnCl2:Urea by improving process parameters such as sonication time, reaction temperature and rubber: DES mass ratio by effectively cleaving cross-link sulphur bonds. DES was created and prepared by mixing ZnCl2 with urea at 2:7 and 1:4 molar ratios respectively. Physicochemical properties of the prepared DES was measured using DSC, KFT and TGA analysis to find the freezing point, moisture content and degradation temperature, whereby their freezing point below 60°C, moisture content lower than 3.0 wt.% and 200°C degradation temperature average. Rubber to DES mass ratio was varied at 1:20, 1:30 and 1:40 and sonicated for 15 minutes inside ultrasonic water-bath. Samples were placed onto hot plate whereby heating temperature was varied at room temperature, 130°C, 150°C, and 180°C for 15 minutes. Samples were filtered, washed with distilled water and dried in oven for 24 hours. Once dried, samples were taken for analysis using TGA, EDX, FESEM, FTIR and Gel content. Under TGA analysis, most samples have an average degradation temperature of 200°C, hence justifying a successful devulcanisation. EDX analysis shows two occurrences during devulcanisation process which is bond reformation and cleavage. Furthermore, it is determined that heating temperature of 130°C is an important parameter as it is the optimum temperature for ZnCl2:Urea. Under FTIR analysis, it shows that disulphide bond, S-S is the only bond that is being broken while the rest still remains the same. Gel content analysis showed that samples have a lower soluble fraction after devulcanisation process. Finally, FESEM proves that at 130°C and 15 minutes is the optimum temperature and time which is illustrated by the smooth surface at that

  10. Simulations of longitudinally pumped dye laser amplifier

    International Nuclear Information System (INIS)

    Takehisa, Kiwamu; Takemori, Satoshi

    1995-01-01

    Simulations of a copper laser pumped dye laser amplifier and new designs of the longitudinally pumped dye laser amplifier are presented. The simulations take the consideration of the amplified spontaneous emission (ASE). The new designs utilize a center-hole reflector instead of a dichroic mirror. The simulation results indicate that the poor spatial overlap between the pump beam and the dye beam in the transverse pumping not only reduces the laser output power, but also generates ASE strongly. The results also indicate that the longitudinal pumping is as efficient as the transverse pumping. (author)

  11. Environmental remediation of the Wismut legacy and utilization of the reclaimed areas, waste rock piles and tailings ponds

    International Nuclear Information System (INIS)

    Hagen, M.; Jakubick, A.T.

    2006-01-01

    underground mines is carried out in a controlled way. Both the reclamation works and the environmental base line are subject to thorough monitoring. An important part of emissions control is the monitoring of the seepage from waste rock dumps, discharges from the tailings ponds and of the discharge from mine flooding. The numerous decentralized on site data basis are accessed at the corporate level by means of an ORACLE based holding data base, which allows fast overviews, specific data quires and overlaying of different types of information and data to answer multifaceted questions. Utilization of the reclaimed areas and objects is becoming an important part of the considerations in the present phase of the project. This is due to the fact that the Wismut legacy is located in former mining districts, which are presently depressed and ER is an important factor in creation of an environment conducive to economic revival and infrastructure development. Concerning utilization, there are no legal restrictions placed on areas completely cleaned up of contamination. The utilization of partly reclaimed areas, waste rock piles and tailings ponds is regulated and restricted to settlement of industry and trades or to forestation. Exemptions, however, are possible if the owner takes on the responsibility for long term monitoring and maintenance. Successful examples of integration of reclamation plans and communal development are provided by rebirth of the health spa in Schlema and by the former mining town of Ronneburg expected to host the Federal Garden and Landscape Exhibition in 2007 (BUGA 2007). (author)

  12. Risk communication by utilizing environmental ethics as meta-cognition for high level radioactive waste disposal

    International Nuclear Information System (INIS)

    Kugo, Akihide; Uda, Akinobu; Shimoda, Hiroshi; Yoshikawa, Hidekazu; Ito, Kyoko; Wakabayashi, Yasunaga

    2005-01-01

    Though the high level radioactive waste disposal policy in Japan has been clearly stated, this issue is still unfamiliar with the general public, who tend to make a social decision based on heuristics. Therefore, much effort such as developing risk communication system is required to restrain the general public from making a negative decision which may bring social dilemma. However, societal consensus on acceptable disposal practice will be very difficult to attain in a short period of time. The purpose of this research was to verify the effect of web risk communication model which has dialog-mode contents with environmental ethics as a meta-cognition and a bulletin board system in light of developing objective risk cognition. The experimental result suggested that this model was able to inspire subjective norm and introspection towards the necessity of pro-social behaviors more effectively than a one-way lecture. (author)

  13. Savannah River Plant Low-Level Waste Heat Utilization Project preliminary analysis. Volume I. Executive summary

    International Nuclear Information System (INIS)

    1978-11-01

    A preliminary feasibility study of capturing energy ejected in hot water at the Savannah River Plant (SRP) is presented. The cooling water, drawn from the river or a pond at the rate of 500,000 gallons per minute, is typically heated 80 0 F to about 150 0 F and is then allowed to cool in the atmosphere. The energy added to the water is equivalent to 20 million barrels of oil a year. This study reports that the reject heat can be used directly in an organic Rankine cycle system to evaporate fluids which drive electric generators. The output of one reactor can produce 45,000 kilowatts of electricity. Since the fuel is waste heat, an estimated 45% savings over conventional electric costs is possible over a thirty year period

  14. Effective utilization of agro-waste by application of CMC dry-gel

    International Nuclear Information System (INIS)

    Yoshii, Fumio

    2008-01-01

    Radiation crosslinking, graft polymerization and degradation are useful technologies to improve polymer materials. Processability of radial tires and heat resistance of wire/cable is improved by crosslinking technology. Polysaccharides such as starch/cellulose of natural polymers and their derivatives are typical degradable polymers. Molecular weight of polysaccharides was remarkably reduced at lower dose, 50 kGy. To expand application field of polysaccharides, it is essential to obtain crosslinking structure. It was found that polysaccharide derivatives such as carboxymethyl cellulose (CMC) and carboxymethyl chitosan undergo crosslinking at past-like condition and form hydrogels. Concentration of past-like condition to induce crosslinking should be more than 10%. High molecular weight (Mw) and high degree of substitution (DS) is preferable for crosslinking of polysaccharide derivatives. In this paper, treatment of agro waste and improvement of Japanese traditional paper by addition of CMC dry gel is reported. (author)

  15. Thermoelectric Power Generation Utilizing the Waste Heat from a Biomass Boiler

    Science.gov (United States)

    Brazdil, Marian; Pospisil, Jiri

    2013-07-01

    The objective of the presented work is to test the possibility of using thermoelectric power to convert flue gas waste heat from a small-scale domestic pellet boiler, and to assess the influence of a thermoelectric generator on its function. A prototype of the generator, able to be connected to an existing device, was designed, constructed, and tested. The performance of the generator as well as the impact of the generator on the operation of the boiler was investigated under various operating conditions. The boiler gained auxiliary power and could become a combined heat and power unit allowing self-sufficient operation. The created unit represents an independent source of electricity with effective use of fuel.

  16. GRANULATION TRIALS OF WASTE THE DUST SILICON CARBIDE FOR UTILIZATION IN METALLURGY

    Directory of Open Access Journals (Sweden)

    Gabriel Borowski

    2016-09-01

    Full Text Available The article presents the results of laboratory granulation tests of dust silicon carbide and the results of research on the selection of the binder and the properties of the granules obtained. The research material was a waste of the silicon carbide powder with a high fragmentation, mixed with a cement or an organic modified starch specimen. Six tests were performed in a disc granulator with 100 cm in diameter. In each series of trial specified: the type and share of the binder, the diameter of the granules, tenderness, type of structure and mechanical properties. Good granules of silicon carbide obtained with the addition of cement binder with 4% of the mass fraction and at least 24 hours of seasoning. The binder should be added twice by powdering, first in a stirred granulator, and again after manufacture. It was found that the resulting granules may be used as a replacement of ferrosilicon in the process of steelmaking.

  17. Asbestos Utilization Costs on the Example of Functioning Landfill of Hazardous Waste

    Science.gov (United States)

    Polek, Daria

    2017-12-01

    Asbestos is a trademark of mineral fibres, which are the natural minerals found in nature. Products containing asbestos fibres, in accordance with the national and EU legislation, are covered by the production prohibition and forced to be removed. In Poland, the asbestos removal process started with the adaptation of the EU law by the Council of Ministers Treatment Program of the National Asbestos for the years 2009-2032. The purpose of the dissertation was to analyse the costs associated with the disposal of the costs of collection, transport and disposal of waste. Methodology consisted in obtaining information on the raw materials needed to produce asbestos sheets. The analysis allowed us to determine the asbestos removal cost and include state subsidies in the calculations.

  18. Utilization of Shrimp Skin Waste (Sea Lobster) As Raw Material for the Membrane Filtration

    International Nuclear Information System (INIS)

    Rupiasih, Ni Nyoman; Windari, Putri; Sumadiyasa, Made; Suyanto, Hery

    2017-01-01

    In view of the increasing littering of the sea banks by shells of crustaceans, a study was carried out to investigate the extraction and characterization of chitosan from skin waste of sea lobster i.e. ‘Bamboo Lobster’ ( Panulirus versicolor ). Chitosan was extracted using conventional methods such as pretreatment, demineralization, deprotienization, and deacetylation. The result showed that the degree of deacetylation of chitosan obtained is 70.02%. The FTIR spectra of the chitosan gave a characteristic of –NH 2 band at 3447 cm –1 and carbonyl group band at 1655 cm −1 . This chitosan has been used to prepare membrane. The chitosan membrane 2% has been prepared using phase inversion method with precipitation by solvent evaporation. The membranes were characterized by FTIR spectrophotometer, Nova 1200e using BJH method, and filtration method. The results show that thickness of the membrane is about 134 μm. The FTIR spectra show that functional groups present in the membrane are -NH, -CH, C=O, and -OH. Using BJH method obtained that the pore diameter is 3.382 nm with pore density is 8.95 x 10 5 pores/m 3 . By filtration method obtained that pure water flux (PWF) of the membrane are 386.662 and 489.627 1/m 2 .h at pressure 80-85 kPa and 90-100 kPa, respectively. These results show that skin waste of sea lobster was discovered as a raw material to prepare chitosan membrane. The membrane obtained is belonged to mesoporous group which may use in microfiltration process. (paper)

  19. Market opportunities for the utilization of wood waste generated by small sawmills

    International Nuclear Information System (INIS)

    1992-01-01

    Analysis of the amounts and types of wood residue from the British Columbia sawmill and logging industry shows that only ca 50% of the residue is being utilized. On a large scale, increased utilization will mainly be achieved through use for the generation of energy. For small sawmills, a more innovative approach to the problem is needed. To assist in developing the innovative markets and uses for wood residues from the small mills, a series of in-depth interviews was conducted with sawmill operators, resource agencies, and users of wood residue throughout British Columbia. The user markets include other sawmills; pulp, paper, and particleboard plants; energy applications; and agriculture. The results of the interviews are tabulated and analyzed to demonstrate the broad spectrum of wood residue uses currently available as well as those that are emerging. For many small sawmill operations in remote areas, utilization of residues is not economical. As environmental regulations become more stringent, the cost and difficulty of handling or disposing residue will increase, and utilization (even if not economical) will become a valid option compared to disposal. A number of emerging markets for wood residue are noted, many of which are in the agricultural field. Other products which can be made out of wood residues are hog fuel and fuel pellets or briquettes. Small sawmills will not have the residue volumes or funds to establish a briquette plant, but they have expressed interest in supplying residue to any such plant that can be established in their area. 16 refs., 5 figs., 3 tabs

  20. Utilization of oil palm empty bunches waste as biochar-microbes for improving availibity of soil nutrients

    Directory of Open Access Journals (Sweden)

    G . I . Ichriani

    2016-01-01

    Full Text Available There are about 23% waste oil palm empty fruit bunches (OPEFB of total waste generated from the production of crude palm oil in oil palm plantations. Pyrolysis technology can be used to convert waste into biochar and further can be utilized for the improvement of soil. Biochar-microbes of OPEFB are biochar from OPEFB biomass that enriched with soil microbes. Biochar-microbes is expected to be used for the improvement of the soil and plants. Therefore the purpose of this research was to study the ability of biochar-microbes OPEFB to increase availability of the nutrients in sandy soils. The process of making biochar done by using slow pyrolysis technology by heating 300oC and 400oC for 2 and 3 hours, and with sizes 40 and 80 mesh, as well as indigenous microbial Bulkhorderia nodosa G.52.Rif1 and Trichoderma sp. added. The biochar production and research were conducted in the Department of Forestry Laboratory and in the Department of Agronomy Laboratory, Faculty of Agriculture, Palangka Raya University. In general, the study showed that biochar-microbes could maintain the soil pH value and tends to increase the soil pH, increasing the holding capacity of sandy soil to the elements of P and K as well as increasing the availability of nutrients N, P and K. Furthermore, this study showed that the biochar process by 400oC heating for 3 hours and 40 mesh with microbes or without microbes were the best effect on the improvement of the quality of holding capacity and the nutrients supply in sandy soils.

  1. Utilization of small-angle neutron scattering to decide the maximum loading of nuclear waste in cement matrix

    International Nuclear Information System (INIS)

    Das, Avik; Mazumder, S.; Sen, D.; Yalmali, V.; Shah, J.G.

    2014-01-01

    Nuclear power plants generate many kinds of hazardous nuclear waste which are needed to be disposed in an eco-friendly manner. Many different waste incarceration techniques have been adapted for managing the nuclear waste of different category of radioactivity. Immobilisation of low and intermediate level radioactive wastes in cement matrix is one of the widely used and cost-effective techniques in waste management. However, loading of nuclear waste in cement matrix can alter the mesoscopic structure of the hydrated cement and hence, it is very important to set the maximum limit of waste loading in cement for providing proper physical isolation to the nuclear waste

  2. Microbial network for waste activated sludge cascade utilization in an integrated system of microbial electrolysis and anaerobic fermentation

    DEFF Research Database (Denmark)

    Liu, Wenzong; He, Zhangwei; Yang, Chunxue

    2016-01-01

    in an integrated system of microbial electrolysis cell (MEC) and anaerobic digestion (AD) for waste activated sludge (WAS). Microbial communities in integrated system would build a thorough energetic and metabolic interaction network regarding fermentation communities and electrode respiring communities...... to Firmicutes (Acetoanaerobium, Acetobacterium, and Fusibacter) showed synergistic relationship with exoelectrogensin the degradation of complex organic matter or recycling of MEC products (H2). High protein and polysaccharide but low fatty acid content led to the dominance of Proteiniclasticum...... biofilm. The overall performance of WAS cascade utilization was substantially related to the microbial community structures, which in turn depended on the initial pretreatment to enhance WAS fermentation. It is worth noting that species in AD and MEC communities are able to build complex networks...

  3. Chemistry of Natural Dyes

    Indian Academy of Sciences (India)

    scientific principles, and the interaction between the dye and the dyed material is ... Dyes are classified based on their structure, source, method of application .... the right source that gives not only beautiful tones, but colourfast shades as well.

  4. Effect of Mixing Dyes and Solvent in Electrolyte Toward Characterization of Dye Sensitized Solar Cell Using Natural Dyes as The Sensitizer

    Science.gov (United States)

    Puspitasari, Nurrisma; Nurul Amalia, Silviyanti S.; Yudoyono, Gatut; Endarko

    2017-07-01

    Dye Sensitized Solar Cell (DSSC) using natural dyes (chlorophyll, curcumin from turmeric extract, and anthocyanin from mangosteen extract) have been successfully fabricated for determining the effect of variation natural dyes, mixing dyes and acetonitrile in electrolyte toward characterization of DSSC. DSSC consists of five parts namely ITO (Indium Tin Oxide) as a substrate; TiO2 as semiconductor materials; natural dyes as an electron donor; electrolyte as electron transfer; and carbon as a catalyst that can convert light energy into electric energy. Two types of gel electrolyte based on PEG that mixed with liquid electrolyte have utilized for analyzing the lifetime of DSSC. Type I used distilled water as a solvent whilst type II used acetonitrile as a solvent with addition of concentration of KI and iodine. The main purpose of study was to investigate influence of solvent in electrolyte, variation of natural dyes and mixing dyes toward an efficiency that resulted by DSSC. The result showed that electrolyte type II is generally better than type I with efficiency 0,0556 and 0,0456 %, respectively. An efficiency values which resulted from a variation of mixed three natural dyes showed the greatest efficiency compared to mixed two natural dyes and one dye, with an efficiency value can be achieved at 0,0194 % for chlorophyll; 0,111 % for turmeric; 0,0105 % for mangosteen; 0,0244% (mangosteen and chlorophyll); 0,0117 % (turmeric and mangosteen); 0,0158 % (turmeric and chlorophyll); and 0.0566 % (mixed three natural dyes).

  5. Broad band exciplex dye lasers

    International Nuclear Information System (INIS)

    Dienes, A.; Shank, C.V.; Trozzolo, A.M.

    1975-01-01

    The disclosure is concerned with exciplex dye lasers, i.e., lasers in which the emitting species is a complex formed only from a constituent in an electronically excited state. Noting that an exciplex laser, favorable from the standpoint of broad tunability, results from a broad shift in the peak emission wavelength for the exciplex relative to the unreacted species, a desirable class resulting in such broad shift is described. Preferred classes of laser media utilizing specified resonant molecules are set forth. (auth)

  6. Radioactive waste management: a series of bibliographies. Formerly utilized sites: remedial action. Supplement 1

    International Nuclear Information System (INIS)

    McLaren, L.H.

    1985-04-01

    This bibliography contains information on formerly utilized sites included in the Department of Energy's Energy Data Base from November 1982 through December 1983. The abstracts are grouped by subject category as shown in the table of contents. Entries in the subject index also facilitate access by subject, e.g., Abandoned Sites/Decontamination. Within each category the arrangement is by report number for reports, followed by nonreports in reverse chronological order. These citations are to research reports, journal articles, books, patents, theses, and conference papers from worldwide sources. Five indexes, each preceded by a brief description, are provided: Corporate Author, Personal Author, Subject, Contract Number, and Report Number

  7. uv dye lasers

    International Nuclear Information System (INIS)

    Abakumov, G.A.; Fadeev, V.V.; Khokhlov, R.V.; Simonov, A.P.

    1975-01-01

    The most important property of visible dye lasers, that is, continuous wavelength tuning, stimulated the search for dyes capable to lase in uv. They were found in 1968. Now the need for tunable uv lasers for applications in spectroscopy, photochemistry, isotope separation, remote air and sea probing, etc. is clearly seen. A review of some recent advances in uv dye lasers is reviewed

  8. Development of Portable Venturi Kiln for Agricultural Waste Utilization by Carbonization Process

    Science.gov (United States)

    Agustina, S. E.; Chasanah, N.; Eris, A. P.

    2018-05-01

    Many types of kiln or carbonization equipment have been developed, but most of them were designed for big capacity and some also having low performance. This research aims to develop kiln, especially portable metal kiln, which has higher performance, more environmental- friendly, and can be used for several kinds of biomass or agricultural waste (not exclusive for one kind of biomass) as feeding material. To improve the kiln performance, a venturi drum type of portable kiln has been designed with an optimum capacity of 12.45 kg coconut shells. Basic idea of those design is heat flow improvement causing by venturi effect. The performance test for coconut shell carbonization shows that the carbonization process takes about 60-90 minutes to produce average yields of 23.8%., and the highest temperature of the process was 441 °C. The optimum performance has been achieved in the 4th test, which was producing 24% yield of highest charcoal quality (represented by LHV) in 65 minutes process at average temperature level 485 °C. For pecan shell and palm shell, design modification has been done by adding 6 air inlet holes and 3 ignition column to get better performance. While operation procedure should be modified on loading and air supply, depending on each biomass characteristic. The result of performance test showed that carbonization process of pecan shell produce 17 % yield, and palm shell produce 15% yield. Based on Indonesian Standard (SNI), all charcoal produced in those carbonization has good quality level.

  9. Slope Reinforcement with the Utilization of the Coal Waste Anthropogenic Material

    Science.gov (United States)

    Gwóźdź-Lasoń, Monika

    2017-10-01

    The protection of the environment, including waste management, is one of the pillars of the policy of the Europe. The application which is presented in that paper tries to show a trans-disciplinary way to design geotechnical constructions - slope stability analysis. The generally accepted principles that the author presents are numerous modelling patterns of earth retaining walls as slope stabilization system. The paper constitutes an attempt to summarise and generalise earlier researches which involved FEM numeric procedures and the Z_Soil package. The design of anthropogenic soil used as a material for reinforced earth retaining walls, are not only of commercial but of environmental importance as well and consistent with the concept of sustainable development and the need to redevelop brownfield. This paper tries to show conceptual and empirical modelling approaches to slope stability system used in anthropogenic soil formation such as heaps, resulting from mining, with a special focus on urban areas of South of Poland and perspectives of anthropogenic materials application in geotechnical engineering are discussed.

  10. Struvite for composting of agricultural wastes with termite mound: Utilizing the unutilized.

    Science.gov (United States)

    Karak, Tanmoy; Sonar, Indira; Nath, Jyoti Rani; Paul, Ranjit Kumar; Das, Sampa; Boruah, Romesh Kumar; Dutta, Amrit Kumar; Das, Kuntal

    2015-01-01

    Although, compost is the store house of different plant nutrients, there is a concern for low amount of major nutrients especially nitrogen content in prepared compost. The present study deals with preparation of compost by using agricultural wastes with struvite (MgNH4PO4·6H2O) along with termite mound. Among four composting mixtures, 50kg termite mound and 2.5kg struvite with crop residues (stover of ground nut: 361.65kg; soybean: 354.59kg; potato: 357.67kg and mustard: 373.19kg) and cow dung (84.90kg) formed a good quality compost within 70days of composting having nitrogen, phosphorus and potassium as 21.59, 3.98 and 34.6gkg(-1), respectively. Multivariate analysis of variance revealed significant differences among the composts. The four composts formed two (pit 1, pit 2 and pit 3, pit 4) different groups. Two principal components expressed more than 97% of the total variability. Hierarchical cluster analysis resulted two homogeneous groups of composts. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Clean recycle and utilization of hazardous iron-bearing waste in iron ore sintering process.

    Science.gov (United States)

    Gan, Min; Ji, Zhiyun; Fan, Xiaohui; Chen, Xuling; Zhou, Yang; Wang, Guojing; Tian, Ye; Jiang, Tao

    2018-04-18

    Applying recycled iron-bearing waste materials (RIM) into iron ore sintering process is the general disposal approach worldwide, while its use is still a thorny problem. Results showed that adding RIM increased contents of hazardous elements (K, Na, Pb, Zn, and Cl) in sinter product, and also enhanced emission concentration of PM 2.5 in flue gas; increasing reaction temperature, and contents of CaO & coke breeze in raw mixtures improved hazardous elements removal. Based on these features, a novel method through granulating natural iron ores and RIM separately and distributing granulated RIM in bottom sintering layers was proposed for clean RIM cycle. When recycling 5% RIM, granulating RIM separately with higher contents of CaO and coke breeze removed hazardous elements effectively, the contents of which in sinter were reduced to comparable level of the case without RIM. Moreover, distributing RIM in bottom sintering layer reached intensive release of hazardous elements and PM 2.5 during sintering, which reduced the flue gas volume needing purification by about 2/3. Through activated carbon purification, about 60% of PM 2.5 comprised high contents of hazardous elements was removed. Novel technique eliminated the negative impact of RIM and has the prospect to reach clean recycle in sinter-making plants. Copyright © 2018. Published by Elsevier B.V.

  12. Recent developments in biochar utilization as an additive in organic solid waste composting: A review.

    Science.gov (United States)

    Xiao, Ran; Awasthi, Mukesh Kumar; Li, Ronghua; Park, Jonghwan; Pensky, Scott M; Wang, Quan; Wang, Jim J; Zhang, Zengqiang

    2017-12-01

    In recent years, considerable studies have been devoted to investigating the effect of biochar application on organic solid waste composting. This review provides an up-to-date overview of biochar amendment on composting processes and compost quality. Biochar production, characteristics, and its application coupled with the basic concepts of composting are briefly introduced before detailing the effects of biochar addition on composting. According to recent studies, biochar has exhibited great potential for enhancing composting. It is evident that biochar addition in composting can: (1) improve compost mixture physicochemical properties, (2) enhance microbial activities and promote organic matter decomposition, (3) reduce ammonia (NH 3 ) and greenhouse gas (GHG) emissions, and (4) upgrade compost quality by increasing the total/available nutrient content, enhancing maturity, and decreasing phytotoxicity. Despite that, further research is needed to explore the mechanism of biochar addition on composting and to evaluate the agricultural and environmental performances of co-composted biochar compost. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Synthesis of Biomass and Utilization of Plant Wastes in a Physical Model of a Biological Life Support System

    Science.gov (United States)

    Tikhomirov, A. A.; Ushakova, S. A.; Manukovsky, N. S.; Lisovsky, G. M.; Kudenko, Yu A.; Kovalev, V. S.; Gribovksaya, I. V.; Tirranen, L. S.; Zolotukkhin, I. G.; Gros, J. B.; Lasseur, Ch.

    Biological life support systems (LSS) with highly closed intrasystem mass ex change mass ex change hold much promise for long-term human life support at planetary stations (Moon, Mars, etc.). The paper considers problems of biosynthesis of higher plants' biomass and "biological incineration" of plant wastes in a working physical model of biological LSS. The plant wastes are "biologically incinerated" in a special heterotroph block involving Californian worms, mushrooms and straw. The block processes plant wastes (straw, haulms) to produce soil-like substrate (SLS) on which plants (wheat, radish) are grown. Gas ex change in such a system consists of respiratory gas ex change of SLS and photosynthesis and respiration of plants. Specifics of gas ex change dynamics of high plants -SLS complex has been considered. Relationship between such a gas ex change and photosynthetic active radiation (PAR) and age of plants has been established. SLS fertility has been shown to depend on its thickness and phase of maturity. The biogenic elements (potassium, phosphorus, nitrogen) in Liebig minimum have been found to include nitrogen which is the first to impair plants' growth in disruption of the process conditions. The SLS microflora has been found to have different kinds of ammonifying and denitrifying bacteria which is indicative of intensive transformation of nitrogen-containing compounds. The number of physiological groups of microorganisms in SLS was, on the whole, steady. As a result, organic substances -products of ex change of plants and microorganisms were not accumulated in the medium, but mineralized and assimilated by the biocenosis. Experiments showed that the developed model of a man-made ecosystem realized complete utilization of plant wastes and involved them into the intrasystem turnover. In multiple recycle of the mat ter (more than 5 cycles) under the irradiance intensity of 150 W/m2 PAR and the SLS mass (dry weight) of 17.7 -19.9 kg/m2 average total harvest of

  14. RE-UTILIZATION OF INORGANIC SOLID WASTE (LIME MUD AS FOREST ROAD STABILIZER FROM THE CHEMICAL RECOVERY PROCESS IN KRAFT PULP MILL

    Directory of Open Access Journals (Sweden)

    Habip Eroğlu

    2005-04-01

    Full Text Available Waste handling is a concern in all pulp and paper mills. Best available techniques for reducing waste is to minimize the generation of solid waste and/or reuse these materials, wherever practicable. One of the most important solid wastes is lime mud which is generated from the kraft pulping in its chemical recovery process. This paper explores the composition of lime mud resulting from the chemical recovery unite of kraft pulp mill and investigation of this waste for re-using beneficially on sub grade and pavement of forest road as a alternative disposal method. Lime mud obtained from the re-causticising process in SEKA pulp mill that utilizes wheat straw and reed as the principal raw material was supplied with % 47 water content and its chemical and physical characterisations was performed according to standard methods. Dried waste to environmental condition was mixed with certain amount to composite cement for using on pavement and sandy clay, loamy clay and clay soils for enriching forest road sub grade properties. In order to investigate the lime mud addition on pavement and sub grade properties necessary physical tests were performed. As a consequence this study reveals that while waste of lime mud causes environmental and economical problem with conventional disposal techniques and/or abandoning to environment, this waste can be used as good stabilisation materials on forest road sub-grade and pavement without any environmental problem.

  15. Wastes

    International Nuclear Information System (INIS)

    Bovard, Pierre

    The origin of the wastes (power stations, reprocessing, fission products) is determined and the control ensuring the innocuity with respect to man, public acceptance, availability, economics and cost are examined [fr

  16. Utilization of bagasse and coconut fibers waste as fillers of sandwich composite for bridge railway sleepers

    Science.gov (United States)

    Soehardjo, K. A.; Basuki, A.

    2017-07-01

    The bridge railway sleepers is an essential component in the construction of railways, as the foundation of the rail support in order to withstand the load a train that runs above it. Sleepers used in bridge construction are expected to have a longer service life, lighter weight and durable so that can be used more efficient. This research was carried out to create a model of bridges railway sleepers made of sandwich structured composite from fiber glass, epoxy resin with fillers waste of bagasse (sugar cane pulp mill) or coconut fiberboard (copra industry) that using polyurethane as an adhesive. The process of making was conditioned for small and medium industrial applications. Railway sleepers’ specifications adapted to meet the requirements of end user. The process steps in this research include; lay-up fiberglass combined with bagasse/coconut fiberboard (as fillers), gluing with epoxy resin, molded it with pressure to be solid, curing after solidification process. The specimens of composite, bagasse and coconut fiber board were tested for tensile and compressive strength. The prototype were tested of mechanical test: flexural moment test to the stand rail, flexural moment test to the middle of the sleepers and tensile strength test on one side of the sleepers, in accordance to SNI 11-3388-1994 Method testing of single block concrete sleepers and bearing single rail fastening systems. The results of mechanical testing all variations meet the technical specifications of end user such as test results for flexural moment on all prototypes, after load test, there is no visible crack. While in the tensile strength test, it seem the prototype with coconut fiberboard filler, shows better performance than bagasse fiberboard filler, the decisions is just depended on techno economic and lifetime.

  17. Utilization of shrimp industry waste in the formulation of tilapia (Oreochromis niloticus Linnaeus) feed.

    Science.gov (United States)

    Oliveira Cavalheiro, José Marcelino; Oliveira de Souza, Erivelto; Bora, Pushkar Singh

    2007-02-01

    A rapid expansion of fisheries is demanding an adequate supply of efficient, nutritious and inexpensive fish feed, because feed contributes highly to the cost of fish production. Shrimp head, a waste product from the shrimp export industry qualifies as an economical, abundant and good quality protein source for fish feeds. In the present work, shrimp head silage powder, which contained approximately 40% protein, was used as a substitute for fish flour. Four feeds, in the form of pellets, were prepared by substituting shrimp head silage for fish flour at 0%, 33.3%, 66.6% and 100% dietary levels. Other ingredients such as corn, soy, bovine blood, cassava and corn cob flours, soy oil, vitamin premix, salt, and other components also were used in the formulation. A commercial fish feed was used as the control. The proximate composition of these feeds did not differ significantly at p>0.05, except for the protein content of the control feed, which was about 30.6% versus 35.4-36.9% protein in the other diets. No significant differences (p>0.05 level) in weight and length of juveniles fed with the different feeds during a period of 60 days were observed. In all cases, an excellent correlation (0.9950-0.9996) between weight and length of juveniles was observed. No significant difference in growth of juveniles fed on R1, R2, R3, or R4, or the control feed, was observed. Similarly, the proximate analyses of the flesh of juveniles did not present significant differences (p>0.05). The result of the study indicates that the shrimp head silage could replace fish flour as an ingredient in tilapia feed with economic advantages and without sacrificing the quality of the feed.

  18. Waste utilization of red snapper (Lutjanus sp.) fish bone to improve phosphorus contents in compost

    Science.gov (United States)

    Ramadhani, S.; Iswanto, B.; Purwaningrum, P.

    2018-01-01

    The purpose of this research is to get the idea that bone waste will be the P content enhancer in compost so that the compost produced meets the standard P levels specified in SNI 19-7030-2004 which regulating compost quality standard. Nutrient levels were obtained in fish bone meal (FBM) are C (3.35%), N (0.48%), P (30.90%) and K (0.02%). Effects of fish bone meal to the rising levels of P in the compost has been known. P levels of compost B, C, D, and E increased at 428.57; 542.85; 657.14 and 914.28% against the compost A (blank). FBM ideal addition indicated in compost B, as much as 15 gr, with a P content of 0.37% and has been passed according standards (0.10% for P). C/N ratio decreased over the 21 days period of composting, with the greatest decline was compost E with a ratio of 16:1. Highest nitrogen (N) levels recorded respectively in compost B and C with value of 1.09% and the lowest of recorded N content was compost A, D and E (1.08%). N content in all samples of compost were eligible minimum N of 0.40%. Carbon (C) is the highest recorded in compost B; 20.20% and the lowest in the compost E; 17.34%. Highest and lowest C levels on the compost has met the minimum C of 9.80%. Composting is done in a bucket as an aerobic composter (with air holes), compost pile turnover for each sample is controlled as much as once/2 days. Mesophilic period (23-450C) occurs during the 21-day period of composting. Compost B has P content of 0.37%, so it has fulfilled the provisions of SNI 19-7030-2004 about the recommended compost standard.

  19. Ecologically clean technologies for utilization of fuel-power complex's wastes. Chapter 5

    International Nuclear Information System (INIS)

    1997-01-01

    In the chapter 5 technology of atmospheric air radiation purification from different toxicants consists in radiation-chemical oxidation of sulfur and nitrogen compounds with following acids receiving is described. Radiation methods of purification are ecologically clean and have high effectiveness within wide operation range and its allow to conduct simultaneously of purification from different mixtures (both organic and inorganic) and water disinfection. Now radiation purification of sewage gradually displacing traditional ways (mechanical, biological and chemical). Usually electron accelerators with energy 1.2-4.0 MeV are using for radiation treatment of sewage as well as gamma-radiation sources. Radiation method one of few does not leading to additional water mineralization. Usage of ionizing radiation considerably simplify of sewage purification technology and making it reliable and easy controlling. Data on influence of absorption dose value on metals content in examined sewage samples are given. Early was determined, that ash and slag materials: fly ash , ash-pulp and ash-slag wastes occupy vast ash disposal area on Ekibastuz Thermal Power Plant-1,2 and its have relatively stable macro-component content and are distinguished by micro-component ones. Concentration and content of both the rare and the scattering metals are changing from 10 -4 up to 10 -2 %. Besides content of metals like vanadium, zirconium and helium is comparable with content in industrial ores. In the chapter tbe technological scheme of reprocessing of ash-slag materials is offered, due to in the result of leaching one may obtain concentrate of metals or finished product after recovery by any chemical or physical method. The technology is based firstly, on the usage of leaching, allowing to reprocessing of large mass of raw materials, and secondarily on usage for sorption concentration purposes of local natural ceolytes

  20. Environmental waste site characterization utilizing aerial photographs, remote sensing, and surface geophysics

    International Nuclear Information System (INIS)

    Pope, P.; Van Eeckhout, E.; Rofer, C.; Baldridge, S.; Ferguson, J.; Jiracek, G.; Balick, L.; Josten, N.; Carpenter, M.

    1996-01-01

    Six different techniques were used to delineate 40 year old trench boundary at Los Alamos National Laboratory. Data from historical aerial photographs, a magnetic gradient survey, airborne multispectral and thermal infra-red imagery, seismic refraction, DC resistivity, and total field magnetometry were utilized in this process. Each data set indicated a southern and northern edge for the trench. Average locations and 95% confidence limits for each edge were determined along a survey line perpendicular to the trench. Trench edge locations were fairly consistent among all six techniques. Results from a modeling effort performed with the total magnetic field data was the least consistent. However, each method provided unique and complementary information, and the integration of all this information led to a more complete characterization of the trench boundaries and contents

  1. Utilization of ultraviolet radiation in effluent disinfestation of domestic waste treatment systems

    International Nuclear Information System (INIS)

    Camacho, P.R.R.; Andrade e Silva, L.G. de

    1995-01-01

    Ultraviolet radiation disinfection of Upflow Anaerobic Sludge Biodigestor (UASB) and UASB with aerated lagoon pos-treatment effluents is possible to be reached utilizing a single low pressure mercury lamp arc (15 W nominal power) in a shell tube flow through reactor (1.2 L useful volume). Fecal coliforms, total coliforms and colifages were used as microbiological parameters. For fecal coliforms, about 3 logarithmic units (log. un.) was removed from UASB with aerated lagoon pos-treatment effluent and 4 log. un. from UASB effluent with 7 and 30 seconds of hydraulic retention time, respectively. Good empirical correlations were obtained between microbiological parameters and hydraulic retention times. (author). 4 refs, 1 fig, 3 tabs

  2. COMPARATIVE STUDY OF TWO DYEING METHODS USING REACTIVE DYE

    Directory of Open Access Journals (Sweden)

    HINOJOSA Belén

    2016-05-01

    Full Text Available Environment preservation is a common worry not only for people but for companies as well. Industry is more and more concern about the necessity of developing new and more respectful processes. Dye is one of the most important processes in the textile industry but it is also considered as no too safe regarding environment issues. This process uses large amounts of water and generates big volumes of wastewater. Following this issue, new regulations and laws emerge to control the waste generated. This leads to the companies and increased costs in terms of wastewater treatments and high water consumption. In this research we compare two systems on garment finishing application, the conventional bath process and the new Ecofinish system that is able to save water and product. To compare these processes, we carried out a reactive dyeing using both systems in order to determine the quality differences in the final product. For this purpose, the samples have been tested to washing and rubbing fastness, according to UNE EN ISO 105 C10 and UNE- EN ISO 105 X12 standards, respectively. This study confirms that this system achieves water savings and reduces the wastewater produced, getting a good dyeing. This process can be considered as an alternative to the conventional one.

  3. Hair dye contact allergy

    DEFF Research Database (Denmark)

    Søsted, Heidi; Rastogi, Suresh Chandra; Andersen, Klaus Ejner

    2004-01-01

    Colouring of hair can cause severe allergic contact dermatitis. The most frequently reported hair dye allergens are p-phenylenediamine (PPD) and toluene-2,5-diamine, which are included in, respectively, the patch test standard series and the hairdressers series. The aim of the present study...... was to identify dye precursors and couplers in hair dyeing products causing clinical hair dye dermatitis and to compare the data with the contents of these compounds in a randomly selected set of similar products. The patient material comprised 9 cases of characteristic clinical allergic hair dye reaction, where...... exposure history and patch testing had identified a specific hair dye product as the cause of the reaction. The 9 products used by the patients were subjected to chemical analysis. 8 hair dye products contained toluene-2,5-diamine (0.18 to 0.98%). PPD (0.27%) was found in 1 product, and m-aminophenol (0...

  4. Utilization of municipal solid waste incineration (MSWI) fly ash in blended cement

    International Nuclear Information System (INIS)

    Aubert, J.E.; Husson, B.; Sarramone, N.

    2006-01-01

    -hazardous waste. The modifications of the process led to a significant reduction in the stabilization of chromium, selenium and antimony

  5. Utilization of municipal solid waste incineration (MSWI) fly ash in blended cement

    Energy Technology Data Exchange (ETDEWEB)

    Aubert, J.E. [Laboratoire Materiaux et Durabilite des Constructions (L.M.D.C.), INSA-UPS, 135 avenue de Rangueil, 31077 Toulouse cedex 4 (France)]. E-mail: aubert@insa-toulouse.fr; Husson, B. [Laboratoire Materiaux et Durabilite des Constructions (L.M.D.C.), INSA-UPS, 135 avenue de Rangueil, 31077 Toulouse cedex 4 (France); Sarramone, N. [Laboratoire Materiaux et Durabilite des Constructions (L.M.D.C.), INSA-UPS, 135 avenue de Rangueil, 31077 Toulouse cedex 4 (France)

    2006-08-25

    landfills for non-hazardous waste. The modifications of the process led to a significant reduction in the stabilization of chromium, selenium and antimony.

  6. Integrated High-Level Waste System Planning - Utilizing an Integrated Systems Planning Approach to Ensure End-State Definitions are Met and Executed - 13244

    Energy Technology Data Exchange (ETDEWEB)

    Ling, Lawrence T. [URS-Savannah River Remediation, Savannah River Site, Building 766-H Room 2205, Aiken, SC 29808 (United States); Chew, David P. [URS-Savannah River Remediation, Savannah River Site, Building 766-H Room 2426, Aiken, SC 29808 (United States)

    2013-07-01

    The Savannah River Site (SRS) is a Department of Energy site which has produced nuclear materials for national defense, research, space, and medical programs since the 1950's. As a by-product of this activity, approximately 37 million gallons of high-level liquid waste containing approximately 292 million curies of radioactivity is stored on an interim basis in 45 underground storage tanks. Originally, 51 tanks were constructed and utilized to support the mission. Four tanks have been closed and taken out of service and two are currently undergoing the closure process. The Liquid Waste System is a highly integrated operation involving safely storing liquid waste in underground storage tanks; removing, treating, and dispositioning the low-level waste fraction in grout; vitrifying the higher activity waste at the Defense Waste Processing Facility; and storing the vitrified waste in stainless steel canisters until permanent disposition. After waste removal and processing, the storage and processing facilities are decontaminated and closed. A Liquid Waste System Plan (hereinafter referred to as the Plan) was developed to integrate and document the activities required to disposition legacy and future High-Level Waste and to remove from service radioactive liquid waste tanks and facilities. It establishes and records a planning basis for waste processing in the liquid waste system through the end of the program mission. The integrated Plan which recognizes the challenges of constrained funding provides a path forward to complete the liquid waste mission within all regulatory and legal requirements. The overarching objective of the Plan is to meet all Federal Facility Agreement and Site Treatment Plan regulatory commitments on or ahead of schedule while preserving as much life cycle acceleration as possible through incorporation of numerous cost savings initiatives, elimination of non-essential scope, and deferral of other scope not on the critical path to compliance

  7. Integrated High-Level Waste System Planning - Utilizing an Integrated Systems Planning Approach to Ensure End-State Definitions are Met and Executed - 13244

    International Nuclear Information System (INIS)

    Ling, Lawrence T.; Chew, David P.

    2013-01-01

    The Savannah River Site (SRS) is a Department of Energy site which has produced nuclear materials for national defense, research, space, and medical programs since the 1950's. As a by-product of this activity, approximately 37 million gallons of high-level liquid waste containing approximately 292 million curies of radioactivity is stored on an interim basis in 45 underground storage tanks. Originally, 51 tanks were constructed and utilized to support the mission. Four tanks have been closed and taken out of service and two are currently undergoing the closure process. The Liquid Waste System is a highly integrated operation involving safely storing liquid waste in underground storage tanks; removing, treating, and dispositioning the low-level waste fraction in grout; vitrifying the higher activity waste at the Defense Waste Processing Facility; and storing the vitrified waste in stainless steel canisters until permanent disposition. After waste removal and processing, the storage and processing facilities are decontaminated and closed. A Liquid Waste System Plan (hereinafter referred to as the Plan) was developed to integrate and document the activities required to disposition legacy and future High-Level Waste and to remove from service radioactive liquid waste tanks and facilities. It establishes and records a planning basis for waste processing in the liquid waste system through the end of the program mission. The integrated Plan which recognizes the challenges of constrained funding provides a path forward to complete the liquid waste mission within all regulatory and legal requirements. The overarching objective of the Plan is to meet all Federal Facility Agreement and Site Treatment Plan regulatory commitments on or ahead of schedule while preserving as much life cycle acceleration as possible through incorporation of numerous cost savings initiatives, elimination of non-essential scope, and deferral of other scope not on the critical path to compliance

  8. UTILIZATION OF AREN (Arenga pinnata Merr. SAWMILLING WASTE FOR EDIBLE MUSHROOM CULTIVATION MEDIA

    Directory of Open Access Journals (Sweden)

    Djarwanto

    2016-04-01

    Full Text Available Aren (Arenga pinnata Merr. is a multipurpose tree that can be utilized for palm sugar, alcoholic drinks, beverages and construction wood. The use of aren sawdust has not been studied intensively. This study examines the utilization of aren sawdust as cultivation media for edible mushrooms. Aren sawdust was mixed with rice bran, CaCO3, gypsum, fertilizers and distilled water before sterilization in 30 minutes pressurized autoclave at 1210C and 1.5atm. The mixed media was inoculated with pure cultures containing four mushrooms species (Pleurotus flabellatus, P. ostreatus, P. sajor-caju and Lentinula edodes and incubated for five weeks to allow mycelium growth producing fruit bodies. The fruit bodies were harvested everyday within four months and examined for its gained mushroom-weight and biological conversion efficiency/BE. The core part of aren trunk was cut into smaller pieces of 10 cm (width by 5 cm (thickness, by 120 cm (length. Each core sample was bored from the surface inward, creating holes with a particular distance apart. Each hole was inoculated with pure cultures containing 6 mushroom species (four species above, P. cystidiosus and Auricularia polytricha. The inoculated samples were slanted on bamboo support, and placed in a bamboo hut. Harvesting was carried out everyday after the fruiting body became mature and examined for its gained mushroom weight. Results show that the use of sawdust supplemented with nutritious material is more likely to improve the mushroom yield than that of aren sawn-timber core. In this case, the BE values with aren-sawdust media were 21.97-89.45% (P. flabellatus, 15.36-105.36% (P. ostreatus, 63.88-76.86% (P. sajor-caju, and up to 62.88% (L. edodes. Meanwhile, the yields (gained mushroom weight with aren sawn-timber media were 210g (P. ostreatus, 368g (P. flabellatus, 331g (P. sajor-caju and 48g (A. polytricha; however, P. cystidiosus and L. edodes inoculated on aren stem core failed to grow.

  9. Production of Enzymes From Agricultural Wastes and Their Potential Industrial Applications.

    Science.gov (United States)

    Bharathiraja, S; Suriya, J; Krishnan, M; Manivasagan, P; Kim, S-K

    Enzymatic hydrolysis is the significant technique for the conversion of agricultural wastes into valuable products. Agroindustrial wastes such as rice bran, wheat bran, wheat straw, sugarcane bagasse, and corncob are cheapest and plentifully available natural carbon sources for the production of industrially important enzymes. Innumerable enzymes that have numerous applications in industrial processes for food, drug, textile, and dye use have been produced from different types of microorganisms from agricultural wastes. Utilization of agricultural wastes offers great potential for reducing the production cost and increasing the use of enzymes for industrial purposes. This chapter focuses on economic production of actinobacterial enzymes from agricultural wastes to make a better alternative for utilization of biomass generated in million tons as waste annually. © 2017 Elsevier Inc. All rights reserved.

  10. Utilization of sepiolite materials as a bottom liner material in solid waste landfills.

    Science.gov (United States)

    Guney, Yucel; Cetin, Bora; Aydilek, Ahmet H; Tanyu, Burak F; Koparal, Savas

    2014-01-01

    Landfill bottom liners are generally constructed with natural clay soils due to their high strength and low hydraulic conductivity characteristics. However, in recent years it is increasingly difficult to find locally available clay soils that satisfy the required engineering properties. Fine grained soils such as sepiolite and zeolite may be used as alternative materials in the constructions of landfill bottom liners. A study was conducted to investigate the feasibility of using natural clay rich in kaolinite, sepiolite, zeolite, and their mixtures as a bottom liner material. Unconfined compression tests, swell tests, hydraulic conductivity tests, batch and column adsorption tests were performed on each type of soil and sepiolite-zeolite mixtures. The results of the current study indicate that sepiolite is the dominant material that affects both the geomechanical and geoenvironmental properties of these alternative liners. An increase in sepiolite content in the sepiolite-zeolite mixtures increased the strength, swelling potential and metal adsorption capacities of the soil mixtures. Moreover, hydraulic conductivity of the mixtures decreased significantly with the addition of sepiolite. The utilization of sepiolite-zeolite materials as a bottom liner material allowed for thinner liners with some reduction in construction costs compared to use of a kaolinite-rich clay. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Soil warming for utilization and dissipation of waste heat in Pennsylvania

    International Nuclear Information System (INIS)

    DeWalle, D.R.; Chapura, A.M. Jr.

    1978-01-01

    The feasibility of using soil warming for utilization and dissipation of reject heat from power plants was demonstrated in a year-long test operation of a field prototype in Pennsylvania. A parallel network of 5-mm-diam polyethylene pipes was buried at a 0.3-m depth and with 0.6-m spacing in the soil covering a 15- x 60-m area to convey hot water simulating condenser cooling water from a power plant. Crop response to the heated soil varied: Snap beans and warm season forage crops such as sudangrass responded with increased yields, while cool season forage crops experienced decreased yields. Winter wheat yields were also increased, but winter barley was winter-killed due to delayed development of cold tolerance in the warm soil. Heat dissipation from the buried pipes was primarily by thermal conduction to the soil surface. Rates of heat loss from the buried pipes were most accurately predicted using an equation that included an explicit term for heat conduction below the pipes. Estimated soil warming land area necessary to dissipate all the reject heat from a 33% efficiency, 1500-MW electrical power plant based on minimum measured summer heat loss rates was 76 km 2 compared to the economic optimum of 18.2 km 2 determined as the least-cost system

  12. Degradation of textile dyes by cyanobacteria.

    Science.gov (United States)

    Dellamatrice, Priscila Maria; Silva-Stenico, Maria Estela; Moraes, Luiz Alberto Beraldo de; Fiore, Marli Fátima; Monteiro, Regina Teresa Rosim

    Dyes are recalcitrant compounds that resist conventional biological treatments. The degradation of three textile dyes (Indigo, RBBR and Sulphur Black), and the dye-containing liquid effluent and solid waste from the Municipal Treatment Station, Americana, São Paulo, Brazil, by the cyanobacteria Anabaena flos-aquae UTCC64, Phormidium autumnale UTEX1580 and Synechococcus sp. PCC7942 was evaluated. The dye degradation efficiency of the cyanobacteria was compared with anaerobic and anaerobic-aerobic systems in terms of discolouration and toxicity evaluations. The discoloration was evaluated by absorption spectroscopy. Toxicity was measured using the organisms Hydra attenuata, the alga Selenastrum capricornutum and lettuce seeds. The three cyanobacteria showed the potential to remediate textile effluent by removing the colour and reducing the toxicity. However, the growth of cyanobacteria on sludge was slow and discoloration was not efficient. The cyanobacteria P. autumnale UTEX1580 was the only strain that completely degraded the indigo dye. An evaluation of the mutagenicity potential was performed by use of the micronucleus assay using Allium sp. No mutagenicity was observed after the treatment. Two metabolites were produced during the degradation, anthranilic acid and isatin, but toxicity did not increase after the treatment. The cyanobacteria showed the ability to degrade the dyes present in a textile effluent; therefore, they can be used in a tertiary treatment of effluents with recalcitrant compounds. Copyright © 2016 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  13. Application opportunities of systems of control and monitoring for engineering processes fading by JSC 'Instrumental plant 'Tenzor', for utilization and storage of radioactive waste

    International Nuclear Information System (INIS)

    Verbitsky, V.J.; Esaulkov, R.O.; Maslova, M.V.; Kujil, A.S.

    2005-01-01

    Full text: Use of unique automated technological process control systems (ATPCS) on objects of storage of radiation hazardous and nuclear materials is offered. The application opportunity of diagnostic complex consisting of specialized software 'Cruise' and infra-red detection system for control and diagnostics of utilization of nuclear waste products in subcritical thermonuclear equipment is considered

  14. Practice and prospects of creation of equipment for reprocessing and utilization of contaminated metal wastes of plants of nuclear industry in Russia

    International Nuclear Information System (INIS)

    Popov, G.P.

    2005-01-01

    Program of reprocessing and utilization of metallic radioactive wastes exists in Russia. In the framework of this program in nuclear industry it is accumulated forty years experience on taking-off-service, disassembly, decontamination and reprocessing of technological facilities. Some technical characteristics of the units used for these operations are represented [ru

  15. The utility industry's perspective on OCRWM's plans for developing the system for transporting spent fuel under the Nuclear Waste Policy Act

    International Nuclear Information System (INIS)

    Brodnick, D.A.

    1988-01-01

    The electric utility industry has a vital interest in the transport program to be developed by the Department of Energy's Office of Civilian Radioactive Waste Management under the Nuclear Waste Policy Act. The industry's interest stems in part from the fact that the DOE's transportation program is financed by the Nuclear Waste Fund which is made up of ratepayer funds. However, the industry is also vitally interested in the DOE's transportation program because it could impact the ongoing transportation operations of all nuclear utilities, and, perhaps most importantly, without the utility industry's input, DOE is not able to develop an optimal transportation program. The NWPA contemplates that the DOE conducts its transportation program in accordance with the existing federal and state regulatory structure. DOE has significant discretion, however, in creating and implementing the business, operational and institutional aspects of its NWPA transportation program. The utility industry intends to ensure that the DOE meets the challenge to develop a safe, efficient and economically sound program to transport spent fuel and high-level waste to the appropriate federal facilities

  16. Investigation of utilization of process of polyethylene waste of low density for creation of competitive materials with application of phenol formaldehyde oligomers

    International Nuclear Information System (INIS)

    Agakishieva, M.A.; Bilalov, Ya. M; Ibragimova, S. M; Dadasheva, G. I; Rezaei, Rudabeh

    2007-01-01

    Full text: The possibility of the utilization of low density polyethylene wastes by means of their modification with phenol formaldehyde oligomers (Ph FO) and PhFO with the thiourathenes has been investigation. Theology properties of the investigated systems showed that the obtained compositions can be able to be processed by the ordinary methods such as extrusion and casting

  17. Utilization of waste heat from a HCCI (homogeneous charge compression ignition) engine in a tri-generation system

    International Nuclear Information System (INIS)

    Sarabchi, N.; Khoshbakhti Saray, R.; Mahmoudi, S.M.S.

    2013-01-01

    The waste heat from exhaust gases and cooling water of Homogeneous charge compression ignition engines (HCCI) are utilized to drive an ammonia-water cogeneration cycle (AWCC) and some heating processes, respectively. The AWCC is a combination of the Rankine cycle and an absorption refrigeration cycle. Considering the chemical kinetic calculations, a single zone combustion model is developed to simulate the natural gas fueled HCCI engine. Also, the performance of AWCC is simulated using the Engineering Equation Solver software (EES). Through combining these two codes, a detailed thermodynamic analysis is performed for the proposed tri-generation system and the effects of some main parameters on the performances of both the AWCC and the tri-generation system are investigated in detail. The cycle performance is then optimized for the fuel energy saving ratio (FESR). The enhancement in the FESR could be up to 28.56%. Under optimized condition, the second law efficiency of proposed system is 5.19% higher than that of the HCCI engine while the reduction in CO 2 emission is 4.067% as compared with the conventional separate thermodynamic systems. Moreover, the results indicate that the engine, in the tri-generation system and the absorber, in the bottoming cycle has the most contribution in exergy destruction. - Highlights: • A new thermodynamic tri-generation system is proposed for waste heat recovery of HCCI engine. • A single zone combustion model is developed to simulate the natural gas fueled HCCI engine. • The proposed tri-generation cycle is analyzed from the view points of both first and second laws of thermodynamics. • In the considered cycle, enhancements of 28.56% in fuel energy saving ratio and 5.19% in exergy efficiency are achieved

  18. Utilization of biogas produced by anaerobic digestion of agro-industrial waste: Energy, economic and environmental effects.

    Science.gov (United States)

    Hublin, Andrea; Schneider, Daniel Rolph; Džodan, Janko

    2014-07-01

    Anaerobic digestion of agro-industrial waste is of significant interest in order to facilitate a sustainable development of energy supply. Using of material and energy potentials of agro-industrial waste, in the framework of technical, economic, and ecological possibilities, contributes in increasing the share of energy generated from renewable energy sources. The paper deals with the benefits arising from the utilization of biogas produced by co-digestion of whey and cow manure. The advantages of this process are the profitability of the plant and the convenience in realizing an anaerobic digestion plant to produce biogas that is enabled by the benefits from the sale of electric energy at favorable prices. Economic aspects are related to the capital cost (€ 2,250,000) of anaerobic digestion treatment in a biogas plant with a 300 kW power and 510 kW heating unit in a medium size farm (450 livestock units). Considering the optimum biogas yield of 20.7 dm(3) kg(-1) of wet substrate and methane content in the biogas obtained of 79%, the anaerobic process results in a daily methane production of 2,500 kg, with the maximum power generation of 2,160,000 kWh y(-1) and heat generation of 2,400,000 kWh y(-1) The net present value (NPV), internal rate of return (IRR) and payback period for implementation of profitable anaerobic digestion process is evaluated. Ecological aspects related to carbon dioxide (CO2) and methane (CH4) emission reduction are assessed. © The Author(s) 2014.

  19. Investigation of hair dye deposition, hair color loss, and hair damage during multiple oxidative dyeing and shampooing cycles.

    Science.gov (United States)

    Zhang, Guojin; McMullen, Roger L; Kulcsar, Lidia

    2016-01-01

    Color fastness is a major concern for consumers and manufacturers of oxidative hair dye products. Hair dye loss results from multiple wash cycles in which the hair dye is dissolved by water and leaches from the hair shaft. In this study, we carried out a series of measurements to help us better understand the kinetics of the leaching process and pathways associated with its escape from the fiber. Hair dye leaching kinetics was measured by suspending hair in a dissolution apparatus and monitoring the dye concentration in solution (leached dye) with an ultraviolet-visible spectrophotometer. The physical state of dye deposited in hair fibers was evaluated by a reflectance light microscopy technique, based on image stacking, allowing enhanced depth of field imaging. The dye distribution within the fiber was monitored by infrared spectroscopic imaging of hair fiber cross sections. Damage to the ultrafine structure of the hair cuticle (surface, endocuticle, and cell membrane complex) and cortex (cell membrane complex) was determined in hair cross sections and on the hair fiber surface with atomic force microscopy. Using differential scanning calorimetry, we investigated how consecutive coloring and leaching processes affect the internal proteins of hair. Further, to probe the surface properties of hair we utilized contact angle measurements. This study was conducted on both pigmented and nonpigmented hair to gain insight into the influence of melanin on the hair dye deposition and leaching processes. Both types of hair were colored utilizing a commercial oxidative hair dye product based on pyrazole chemistry.

  20. The Successful Utilization Of Commercial Treatment Capabilities To Disposition Hanford's No-Path-Forward Suspect Transuranic Wastes

    International Nuclear Information System (INIS)

    Blackford, L.T.; Catlow, R.L.; West, L.D.; Collins, M.S.; Romine, L.D.; Moak, D.J.

    2012-01-01

    The U.S. Department of Energy (DOE) Richland Operations Office (RL) has adopted the 2015 Vision for Cleanup of the Hanford Site. The CH2M HILL Plateau Remediation Company's (CHPRC) Waste and Fuels Management Project (W and FMP) and their partners support this mission by providing centralized waste management services for the Hanford Site waste generating organizations. At the time of the CHPRC contract award (August 2008) slightly more than 9,000 cubic meters (m 3 ) of legacy waste was defined as ''no-path-forward waste.'' A significant portion of this waste (7,650 m 3 ) comprised wastes with up to 50 grams of special nuclear materials (SNM) in oversized packages recovered during retrieval operations and large glove boxes removed from Hanford's Plutonium Finishing Plant (PFP). Through a collaborative effort between the DOE, CHPRC, and Perma-Fix Environmental Services, Inc. (PESI), pathways for these problematic wastes were developed and are currently being implemented.

  1. Utilization of agro-resources by radiation treatment -production of animal feed and mushroom from oil palm wastes

    International Nuclear Information System (INIS)

    Kume, Tamikazu; Matsuhashi, Shinpei; Hashimoto, Shoji

    1993-01-01

    The production of animal feeds and mushrooms from oil palm cellulosic wastes by radiation and fermentation has been investigated in order to utilize the agro-resources and to reduce the smoke pollution. The process is as follows: decontamination of microorganisms in fermentation media of empty fruit bunch of oil palm (EBF) by irradiation, inoculation of useful fungi, and subsequently production of proteins and edible mushrooms. The dose of 25 kGy was required for the sterilization of contaminating bacteria whereas the dose of 10 kGy was enough to eliminate the fungi. Among many kinds of fungi tested, C. cinereus and P. sajor-caju were selected as the most suitable microorganism for the fermentation of EFB. The protein content of the product increased to 13% and the crude fiber content decreased to 20% after 30 days of incubation with C. cinereus at 30 o C in solid state fermentation. P. sajor-caju was suitable for the mushroom production on EFB with rice bran. (author)

  2. Utilization of waste bittern from saltern as a source for magnesium and an absorbent for carbon dioxide capture.

    Science.gov (United States)

    Na, Choon-Ki; Park, Hyunju; Jho, Eun Hea

    2017-10-01

    During solar salt production, large quantities of bittern, a liquid by-product containing high inorganic substance concentrations, are produced. The purpose of this research was to examine the utilization of waste bittern generated from salterns as a source for Mg production and as an absorbent for carbon dioxide (CO 2 ) capture. The study was conducted in a sequential two-step process. At NaOH/Mg molar ratios of 2.70-2.75 and pH 9.5-10.0, > 99% Mg precipitation from the bittern was achieved. After washing with water, 100-120 g/L of precipitate containing 94% Mg(OH) 2 was recovered from the bittern. At the optimum NH 4 OH concentration of 5%, 120 g of sodium bicarbonate precipitate per liter of bittern were recovered, which was equivalent to 63 g CO 2 captured per liter of bittern. These results can be used to support the use of bittern as a resource and reduce economic losses during solar salt production.

  3. Utilization of inulin-containing waste in industrial fermentations to produce biofuels and bio-based chemicals.

    Science.gov (United States)

    Hughes, Stephen R; Qureshi, Nasib; López-Núñez, Juan Carlos; Jones, Marjorie A; Jarodsky, Joshua M; Galindo-Leva, Luz Ángela; Lindquist, Mitchell R

    2017-04-01

    Inulins are polysaccharides that belong to an important class of carbohydrates known as fructans and are used by many plants as a means of storing energy. Inulins contain 20 to several thousand fructose units joined by β-2,1 glycosidic bonds, typically with a terminal glucose unit. Plants with high concentrations of inulin include: agave, asparagus, coffee, chicory, dahlia, dandelion, garlic, globe artichoke, Jerusalem artichoke, jicama, onion, wild yam, and yacón. To utilize inulin as its carbon and energy source directly, a microorganism requires an extracellular inulinase to hydrolyze the glycosidic bonds to release fermentable monosaccharides. Inulinase is produced by many microorganisms, including species of Aspergillus, Kluyveromyces, Penicillium, and Pseudomonas. We review various inulinase-producing microorganisms and inulin feedstocks with potential for industrial application as well as biotechnological efforts underway to develop sustainable practices for the disposal of residues from processing inulin-containing crops. A multi-stage biorefinery concept is proposed to convert cellulosic and inulin-containing waste produced at crop processing operations to valuable biofuels and bioproducts using Kluyveromyces marxianus, Yarrowia lipolytica, Rhodotorula glutinis, and Saccharomyces cerevisiae as well as thermochemical treatments.

  4. Development of UHPC mixtures utilizing natural and industrial waste materials as partial replacements of silica fume and sand.

    Science.gov (United States)

    Ahmad, Shamsad; Hakeem, Ibrahim; Maslehuddin, Mohammed

    2014-01-01

    In the exploratory study presented in this paper, an attempt was made to develop different mixtures of ultrahigh performance concrete (UHPC) using various locally available natural and industrial waste materials as partial replacements of silica fume and sand. Materials such as natural pozzolana (NP), fly ash (FA), limestone powder (LSP), cement kiln dust (CKD), and pulverized steel slag (PSS), all of which are abundantly available in Saudi Arabia at little or no cost, were employed in the development of the UHPC mixtures. A base mixture of UHPC without replacement of silica fume or sand was selected and a total of 24 trial mixtures of UHPC were prepared using different percentages of NP, FA, LSP, CKD, and PSS, partially replacing the silica fume and sand. Flow and 28-d compressive strength of each UHPC mixture were determined to finally select those mixtures, which satisfied the minimum flow and strength criteria of UHPC. The test results showed that the utilization of NP, FA, LSP, CKD, and PSS in production of UHPC is possible with acceptable flow and strength. A total of 10 UHPC mixtures were identified with flow and strength equal to or more than the minimum required.

  5. Development of UHPC Mixtures Utilizing Natural and Industrial Waste Materials as Partial Replacements of Silica Fume and Sand

    Directory of Open Access Journals (Sweden)

    Shamsad Ahmad

    2014-01-01

    Full Text Available In the exploratory study presented in this paper, an attempt was made to develop different mixtures of ultrahigh performance concrete (UHPC using various locally available natural and industrial waste materials as partial replacements of silica fume and sand. Materials such as natural pozzolana (NP, fly ash (FA, limestone powder (LSP, cement kiln dust (CKD, and pulverized steel slag (PSS, all of which are abundantly available in Saudi Arabia at little or no cost, were employed in the development of the UHPC mixtures. A base mixture of UHPC without replacement of silica fume or sand was selected and a total of 24 trial mixtures of UHPC were prepared using different percentages of NP, FA, LSP, CKD, and PSS, partially replacing the silica fume and sand. Flow and 28-d compressive strength of each UHPC mixture were determined to finally select those mixtures, which satisfied the minimum flow and strength criteria of UHPC. The test results showed that the utilization of NP, FA, LSP, CKD, and PSS in production of UHPC is possible with acceptable flow and strength. A total of 10 UHPC mixtures were identified with flow and strength equal to or more than the minimum required.

  6. New Insight into Sugarcane Industry Waste Utilization (Press Mud) for Cleaner Biobutanol Production by Using C. acetobutylicum NRRL B-527.

    Science.gov (United States)

    Nimbalkar, Pranhita R; Khedkar, Manisha A; Gaikwad, Shashank G; Chavan, Prakash V; Bankar, Sandip B

    2017-11-01

    In the present study, press mud, a sugar industry waste, was explored for biobutanol production to strengthen agricultural economy. The fermentative production of biobutanol was investigated via series of steps, viz. characterization, drying, acid hydrolysis, detoxification, and fermentation. Press mud contains an adequate amount of cellulose (22.3%) and hemicellulose (21.67%) on dry basis, and hence, it can be utilized for further acetone-butanol-ethanol (ABE) production. Drying experiments were conducted in the temperature range of 60-120 °C to circumvent microbial spoilage and enhance storability of press mud. Furthermore, acidic pretreatment variables, viz. sulfuric acid concentration, solid to liquid ratio, and time, were optimized using response surface methodology. The corresponding values were found to be 1.5% (v/v), 1:5 g/mL, and 15 min, respectively. In addition, detoxification studies were also conducted using activated charcoal, which removed almost 93-97% phenolics and around 98% furans, which are toxic to microorganisms during fermentation. Finally, the batch fermentation of detoxified press mud slurry (the sample dried at 100 °C and pretreated) using Clostridium acetobutylicum NRRL B-527 resulted in a higher butanol production of 4.43 g/L with a total ABE of 6.69 g/L.

  7. The utilization of coconut waste fermentated by aspergillus niger and saccharomyces cerevisiae on meat quality of weaning males rex rabbit

    Science.gov (United States)

    Wahyuni, T. H.; Ginting, N.; Yunilas; Hasnudi; Mirwandono, E.; Siregar, G. A.; Sinaga, I. G.; Sembiring, I.

    2018-02-01

    Coconut waste (CW) could be applied for animal feed while its nutrition quality were low. This study aims to investigate fermented CW effect on meat quality of Rex rabbit which feed by fermented CW either by Aspergillus niger or Tape Yeast. This research was conducted in rabbit farm Brastagi, using 24 male Rex rabbits with initial weight 1012 ± 126.67 gram in July-October 2016. The design used was complete randomized design : 6 treatment 4 replications. Treatment were T1 (unfermented 10%); T2 (unfermented 20%); T3 (a.niger fermentation 10%); T4 (a niger fermentation 20%); T5 (tape yeast fermentation 10%) and T6 (tape yeast fermentation 20%). The parameters were pH, meat texture either raw or cooked, water content, fat content, protein content of meat and cooking loss. The results showed that effect of treatment was not significantly different (P>0.05) on pH and raw meat texture, but significantly different (Pmeat cooked and meat fat content and very significantly different effect ( P> 0,01) on cooking loss, water content and protein content of meat. The conclusion of this research was the utilization of fermented CW by Aspergillius niger and Tape Yeast improved the quality of Rex rabbit meat

  8. A novel method of utilization of hot dip galvanizing slag using the heat waste from itself for protection from radiation.

    Science.gov (United States)

    Dong, Mengge; Xue, Xiangxin; Kumar, Ashok; Yang, He; Sayyed, M I; Liu, Shan; Bu, Erjun

    2018-02-15

    A novel, unconventional, low cost, eco-friendly and effective shielding materials have been made utilizing the hot dip galvanizing slag using the heat waste from itself, thereby saving the natural resources and preventing the environmental pollution. SEM-EDS of shielding materials indicates that the other elements are distributed in Zn element. The mass attenuation properties of shielding materials were measured using a narrow beam geometrical setup at 0.662MeV, 1.17MeV and 1.33MeV. The half value thickness layer, effective atomic number, and electron density were used to analyze the shielding performance of the materials. The EBFs and EABFs for the prepared shielding materials were also studied with incident photon energy for penetration depths upto 40mfp. The shielding effectiveness has been compared with lead, iron, zinc, some standard shielding concretes, different glasses and some alloys. The shielding effectiveness of the prepared samples is almost found comparable to iron, zinc, selected alloys and glasses while better than some standard shielding concretes. In addition, it is also found that the bending strength of all shielding materials is more than 110MPa. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Utilization of waste materials, non-refined materials, and renewable energy in in situ remediation and their sustainability benefits.

    Science.gov (United States)

    Favara, Paul; Gamlin, Jeff

    2017-12-15

    In the ramp-up to integrating sustainability into remediation, a key industry focus area has been to reduce the environmental footprint of treatment processes. The typical approach to integrating sustainability into remediation projects has been a top-down approach, which involves developing technology options and then applying sustainability thinking to the technology, after it has been conceptualized. A bottom-up approach allows for systems thinking to be included in remedy selection and could potentially result in new or different technologies being considered. When using a bottom-up approach, there is room to consider the utilization of waste materials, non-refined materials, and renewable energy in remediation technology-all of which generally have a smaller footprint than processed materials and traditional forms of energy. By integrating more systems thinking into remediation projects, practitioners can think beyond the traditional technologies typically used and how technologies are deployed. To compare top-down and bottom-up thinking, a traditional technology that is considered very sustainable-enhanced in situ bioremediation-is compared to a successful, but infrequently deployed technology-subgrade biogeochemical reactors. Life Cycle Assessment is used for the evaluation and shows the footprint of the subgrade biogeochemical reactor to be lower in all seven impact categories evaluated, sometimes to a significant degree. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Decolorization of complex dyes and textile effluent by extracellular enzymes of Cyathus bulleri cultivated on agro-residues/domestic wastes and proposed pathway of degradation of Kiton blue A and reactive orange 16.

    Science.gov (United States)

    Vats, Arpita; Mishra, Saroj

    2017-04-01

    In this study, the white-rot fungus Cyathus bulleri was cultivated on low-cost agro-residues, namely wheat bran (WB), wheat straw (WS), and domestic waste orange peel (OP) for production of ligninolytic enzymes. Of the three substrates, WB and OP served as good materials for the production of laccase with no requirement of additional carbon or nitrogen source. Specific laccase activity of 94.4 U mg -1 extracellular protein and 21.01 U mg -1 protein was obtained on WB and OP, respectively. Maximum decolorization rate of 13.6 μmol h -1  U -1 laccase for reactive black 5 and 22.68 μmol h -1  U -1 laccase for reactive orange 16 (RO) was obtained with the WB culture filtrate, and 11.7 μmol h -1  U -1 laccase for reactive violet 5 was observed with OP culture filtrate. Importantly, Kiton blue A (KB), reported not to be amenable to enzymatic degradation, was degraded by culture filtrate borne activities. Products of degradation of KB and RO were identified by mass spectrometry, and a pathway of degradation proposed. WB-grown culture filtrate decolorized and detoxified real and simulated textile effluents by about 40%. The study highlights the use of inexpensive materials for the production of enzymes effective on dyes and effluents.

  11. Column operation studies for the removal of dyes and phenols using a low cost adsorbent

    International Nuclear Information System (INIS)

    Gupta, V. K.; Suhas; Tyagi, I.

    2016-01-01

    Fertilizer plant waste carbon slurry has been investigated after some processing used as efficient adsorbent for the fast removal and rapid adsorption of dyes and phenols using columns. The results reveals that the adsorbent developed from carbon slurry is carbonaceous in nature and having appreciable surface area (380 m2/g) can remove dyes both cationic (meldola blue, methylene blue, chrysoidine G, crystal violet) as well as anionic (ethyl orange, metanil yellow, acid blue 113), and phenols (phenol, 2-chlorophenol, 4-chlorophenol and 2,4-dichlorophenol) fruitfully from water. The column type continuous flow operations were used to obtain the breakthrough curves. The breakthrough capacity, exhaustion capacity and degree of column utilization were optimized and evaluated from the plots. The results obtained revealed that the degree of column utilization for dyes falls in range from 60 to 76% while for phenols was in the range 53-58%. The exhaustion capacities were quite high as compared to the breakthrough capacities and were found to be 217, 211, 104, 126, 233, 248, 267 mg/g for meldola blue, crystal violet, chrysoidine G, methylene blue, ethyl orange, metanil yellow, acid blue 113, respectively and 25.6, 72.2, 82.2 and 197.3 mg/g for phenol, 2-chlorophenol, 4- chlorophenol and 2,4-dichlorophenol, respectively.

  12. Conceptual designs of near surface disposal facility for radioactive waste arising from the facilities using radioisotopes and research facilities for nuclear energy development and utilization

    International Nuclear Information System (INIS)

    Sakai, Akihiro; Yoshimori, Michiro; Okoshi, Minoru; Yamamoto, Tadatoshi; Abe, Masayoshi

    2001-03-01

    Various kinds of radioactive waste is generating from the utilization of radioisotopes in the field of science, technology, etc. and the utilization and development of nuclear energy. In order to promote the utilization of radionuclides and the research activities, it is necessary to treat and dispose of radioactive waste safely and economically. Japan Nuclear Cycle Development Institute (JNC), Japan Radioisotope Association (JRIA) and Japan Atomic Energy Research Institute (JAERI), which are the major waste generators in Japan in these fields, are promoting the technical investigations for treatment and disposal of the radioactive waste co-operately. Conceptual design of disposal facility is necessary to demonstrate the feasibility of waste disposal business and to determine the some conditions such as the area size of the disposal facility. Three institutes share the works to design disposal facility. Based on our research activities and experiences of waste disposal, JAERI implemented the designing of near surface disposal facilities, namely, simple earthen trench and concrete vaults. The designing was performed based on the following three assumed site conditions to cover the future site conditions: (1) Case 1 - Inland area with low groundwater level, (2) Case 2 - Inland area with high groundwater level, (3) Case 3 - Coastal area. The estimation of construction costs and the safety analysis were also performed based on the designing of facilities. The safety assessment results show that the safety for concrete vault type repository is ensured by adding low permeability soil layer, i.e. mixture of soil and bentonite, surrounding the vaults not depending on the site conditions. The safety assessment results for simple earthen trench also show that their safety is ensured not depending on the site conditions, if they are constructed above groundwater levels. The construction costs largely depend on the depth for excavation to build the repositories. (author)

  13. Potential of solid waste utilization as source of refuse derived fuel (RDF) energy (case study at temporary solid waste disposal site in West Jakarta)

    Science.gov (United States)

    Indrawati, D.; Lindu, M.; Denita, P.

    2018-01-01

    This study aims to measure the volume of solid waste generated as well asits density, composition, and characteristics, to analyze the potential of waste in TPS to become RDF materials and to analyze the best composition mixture of RDF materials. The results show that the average of solid waste generation in TPS reaches 40.80 m3/day, with the largest percentage of its share is the organic waste component of 77.9%, while the smallest amount of its share is metal and rubber of 0.1%. The average water content and ash content of solid waste at the TPS is 27.7% and 6.4% respectively, while the average calorific potential value is 728.71 kcal/kg. The results of solid waste characteristics comparison at three TPS indicate thatTPS Tanjung Duren has the greatest waste potential to be processed into RDF materials with a calorific value of 893.73 kcal/kg, water content level of 24.6%, andlow ash content of 6.11%. This research has also shown that the best composition for RDF composite materials is rubber, wood, and textile mixtureexposed to outdoor drying conditions because it produced low water content and low ash content of 10.8% and 9.6%, thus optimizedthe calorific value of 4,372.896 kcal/kg.

  14. Waste Resources Utilization program

    International Nuclear Information System (INIS)

    Anon.

    1975-01-01

    The effectiveness of thermoradiation (simultaneous use of heat and ionizing radiation) as a treatment for ridding sewage sludge of pathogenic organisms is being studied. The feasibiity of treating sewage sludge with thermoradiation to the ultimate benefit of society depends on a number of factors. For any proposed use of the sludge, the degree of thermoradiation treatment needed must be determined. This involves biological studies of major classes of organisms in sewage sludge. The cost of such a treatment versus the value of the benefits from sludge usage must be assessed. To do this realistically optimal treatment facilities must be designed, and actual sludge use assessment must be made. (LK)

  15. Utilization of cellulosic wastes

    Energy Technology Data Exchange (ETDEWEB)

    Kausar, T; Mahmud, B A; Shah, F H

    1976-01-01

    Extractable sugar content of bagasse and rice husk increased from 0.6 to 6.0 mg/g when the particle size of the samples was reduced from 60 to 120 mesh. Heating for 30 to 40 min at 125/sup 0/ released maximum amount of sugar, 282.23 mg/g when refluxed with 2N HCl for 40 min. Soaking in 2N HCL and 2% NaOH for 1 h at room temperature released 2.8 and 1.85 mg/g sugar from bagasse and husk respectively.

  16. Supercritical water oxidation of colored smoke, dye, and pyrotechnic compositions. Final report: Pilot plant conceptual design

    Energy Technology Data Exchange (ETDEWEB)

    LaJeunesse, C.A.; Chan, Jennifer P.; Raber, T.N.; Macmillan, D.C.; Rice, S.F.; Tschritter, K.L.

    1993-11-01

    The existing demilitarization stockpile contains large quantities of colored smoke, spotting dye, and pyrotechnic munitions. For many years, these munitions have been stored in magazines at locations within the continental United States awaiting completion of the life-cycle. The open air burning of these munitions has been shown to produce toxic gases that are detrimental to human health and harmful to the environment. Prior efforts to incinerate these compositions have also produced toxic emissions and have been unsuccessful. Supercritical water oxidation (SCWO) is a rapidly developing hazardous waste treatment method that can be an alternative to incineration for many types of wastes. The primary advantage SCWO affords for the treatment of this selected set of obsolete munitions is that toxic gas and particulate emissions will not occur as part of the effluent stream. Sandia is currently designing a SCWO reactor for the US Army Armament Research, Development & Engineering Center (ARDEC) to destroy colored smoke, spotting dye, and pyrotechnic munitions. This report summarizes the design status of the ARDEC reactor. Process and equipment operation parameters, process flow equations or mass balances, and utility requirements for six wastes of interest are developed in this report. Two conceptual designs are also developed with all process and instrumentation detailed.

  17. The utility of system-level RAM analysis and standards for the US nuclear waste management system

    International Nuclear Information System (INIS)

    Rod, S.R.; Adickes, M.D.; Paul, B.K.

    1992-03-01

    The Department of Energy (DOE) Office of Civilian Radioactive Waste Management (OCRWM) is responsible for developing a system to manage spent nuclear fuel and high-level radioactive waste in accordance with the Nuclear Waste Policy Act of 1982 and its subsequent amendments. Pacific Northwest Laboratory (PNL) is assisting OCRWM in its investigation of whether system-level reliability, availability, and maintainability (RAM) requirements are appropriate for the waste management system and, if they are, what appropriate form should be for such requirements. Results and recommendations are presented

  18. The Mississippi University Research Consortium for the Utilization of Biomass: Production of Alternative Fuels from Waste Biomass Initiative

    Energy Technology Data Exchange (ETDEWEB)

    Drs. Mark E. Zapp; Todd French; Lewis Brown; Clifford George; Rafael Hernandez; Marvin Salin (from Mississippie State University); Drs. Huey-Min Hwang, Ken Lee, Yi Zhang; Maria Begonia (from Jackson State University); Drs. Clint Williford; Al Mikell (from the University of Mississippi); Drs. Robert Moore; Roger Hester (from the University of Southern Mississippi).

    2009-03-31

    The Mississippi Consortium for the Utilization of Biomass was formed via funding from the US Department of Energy's EPSCoR Program, which is administered by the Office of Basic Science. Funding was approved in July of 1999 and received by participating Mississippi institutions by 2000. The project was funded via two 3-year phases of operation (the second phase was awarded based on the high merits observed from the first 3-year phase), with funding ending in 2007. The mission of the Consortium was to promote the utilization of biomass, both cultured and waste derived, for the production of commodity and specialty chemicals. These scientific efforts, although generally basic in nature, are key to the development of future industries within the Southeastern United States. In this proposal, the majority of the efforts performed under the DOE EPSCoR funding were focused primarily toward the production of ethanol from lignocellulosic feedstocks and biogas from waste products. However, some of the individual projects within this program investigated the production of other products from biomass feeds (i.e. acetic acid and biogas) along with materials to facilitate the more efficient production of chemicals from biomass. Mississippi is a leading state in terms of raw biomass production. Its top industries are timber, poultry production, and row crop agriculture. However, for all of its vast amounts of biomass produced on an annual basis, only a small percentage of the biomass is actually industrially produced into products, with the bulk of the biomass being wasted. This situation is actually quite representative of many Southeastern US states. The research and development efforts performed attempted to further develop promising chemical production techniques that use Mississippi biomass feedstocks. The three processes that were the primary areas of interest for ethanol production were syngas fermentation, acid hydrolysis followed by hydrolyzate fermentation, and

  19. Anaerobic azo dye reduction

    NARCIS (Netherlands)

    Zee, van der F.P.

    2002-01-01

    Azo dyes, aromatic moieties linked together by azo (-N=N-) chromophores, represent the largest class of dyes used in textile-processing and other industries. The release of these compounds into the environment is undesirable, not only because of their colour, but also

  20. for aqueous dye lasers

    Indian Academy of Sciences (India)

    2014-02-12

    Feb 12, 2014 ... inclusion complex of RhB with the container molecule cucurbit[7]uril (CB[7]). Keywords. Temperature-dependent fluorescence; Rhodamine B; cucurbit[7]uril; host–guest complex; dye laser. PACS Nos 36.20.kd; 83.60.pq; 87.64.kv. 1. Introduction. Rhodamine B (RhB) is an efficient and photostable laser dye ...