WorldWideScience

Sample records for waste conditioning spent

  1. Treatment of waste salt from the advanced spent fuel conditioning process (II) : optimum immobilization condition

    International Nuclear Information System (INIS)

    Kim, Jeong Guk; Lee, Jae Hee; Yoo, Jae Hyung; Kim, Joon Hyung

    2004-01-01

    Since zeolite is known to be stable at a high temperature, it has been reported as a promising immobilization matrix for waste salt. The crystal structure of dehydrated zeolite A breaks down above 1060 K, resulting in the formation of an amorphous solid and re-crystallization to beta-Cristobalite. This structural degradation depends on the existence of chlorides. When contacted to HCl, zeolite 4A is not stable even at 473 K. The optimum consolidation condition for LiCl salt waste from the oxide fuel reduction process based on the electrochemical method (Advanced spent fuel Conditioning Process; ACP) has been studied using zeolite A since 2001. Actually the constituents of waste salt are water-soluble. And, alkali halides are known to be readily radiolyzed to yield interstitial halogens and metal colloids. For disposal in a geological repository, the waste salt must meet the acceptance criteria. For a waste form containing chloride salt, two of the more important criteria are leach resistance and waste form durability. In this work, we prepared some samples with different mixing ratios of LiCl salt to zeolite A, and then compared some characteristics such as thermal stability, salt occlusion, free chloride content, leach resistance, mixing effect, etc

  2. Methods for conditioning wastes from spent fuel cans and dissolver residues

    International Nuclear Information System (INIS)

    De Regge, P.; Loida, A.; Schmidt-Hansberg, T.; Sombret, C.

    1985-04-01

    Several methods for conditioning spent fuel decladding hulls or dissolver residues have been considered in various countries of the European Community. Five of these methods use embedding technique with or without prior compaction: they are based on incorporation in metallic alloys, glass, ceramics, cements and metals or graphite compounds. A sixth one consists in melting the decladding materials. The corresponding research programs have been pursued to varying states of progress with regard to demonstrating their feasibility on an industrial scale and the use of genuine wastes in bench scale experiments. The properties of the conditioned wastes have been investigated. Special attention has been paid to the corrosion resistance to various aqueous media as tap water, brine or clayey water. Although no categorical conclusion can be drawn from the initial results, the available finding provide a basis for assessing the different processes [fr

  3. Determining heavy metals in spent compact fluorescent lamps (CFLs) and their waste management challenges: Some strategies for improving current conditions

    International Nuclear Information System (INIS)

    Taghipour, Hassan; Amjad, Zahra; Jafarabadi, Mohamad Asghari; Gholampour, Akbar; Norouz, Prviz

    2014-01-01

    Highlights: • Heavy metals in spent compact fluorescent lamps (CFLs) determined. • Current waste management condition of CFLs in Iran assessed. • Currently, waste of CFLs is disposed by municipal waste stream in waste landfills. • We propose extended producer responsibility (EPR) for CFLs waste management. - Abstract: From environmental viewpoint, the most important advantage of compact fluorescent lamps (CFLs) is reduction of green house gas emissions. But their significant disadvantage is disposal of spent lamps because of containing a few milligrams of toxic metals, especially mercury and lead. For a successful implementation of any waste management plan, availability of sufficient and accurate information on quantities and compositions of the generated waste and current management conditions is a fundamental prerequisite. In this study, CFLs were selected among 20 different brands in Iran. Content of heavy metals including mercury, lead, nickel, arsenic and chromium was determined by inductive coupled plasma (ICP). Two cities, Tehran and Tabriz, were selected for assessing the current waste management condition of CFLs. The study found that waste generation amount of CFLs in the country was about 159.80, 183.82 and 153.75 million per year in 2010, 2011 and 2012, respectively. Waste generation rate of CFLs in Iran was determined to be 2.05 per person in 2012. The average amount of mercury, lead, nickel, arsenic and chromium was 0.417, 2.33, 0.064, 0.056 and 0.012 mg per lamp, respectively. Currently, waste of CFLs is disposed by municipal waste stream in waste landfills. For improving the current conditions, we propose by considering the successful experience of extended producer responsibility (EPR) in other electronic waste management. The EPR program with advanced recycling fee (ARF) is implemented for collecting and then recycling CFLs. For encouraging consumers to take the spent CFLs back at the end of the products’ useful life, a proportion of

  4. Determining heavy metals in spent compact fluorescent lamps (CFLs) and their waste management challenges: Some strategies for improving current conditions

    Energy Technology Data Exchange (ETDEWEB)

    Taghipour, Hassan, E-mail: hteir@yahoo.com [Department of Environmental Health Engineering, Tabriz University of Medical Sciences, Tabriz (Iran, Islamic Republic of); Amjad, Zahra [Student Research Committee, Department of Environmental Health Engineering, Tabriz University of Medical Sciences, Tabriz (Iran, Islamic Republic of); Jafarabadi, Mohamad Asghari [Medical Education Research Center, Department of Statistics and Epidemiology, Tabriz University of Medical Sciences, Tabriz (Iran, Islamic Republic of); Gholampour, Akbar [Department of Environmental Health Engineering, Tabriz University of Medical Sciences, Tabriz (Iran, Islamic Republic of); Norouz, Prviz [Environmental Health Engineering, Shahid Beheshti University of Medical Sciences, Tehran (Iran, Islamic Republic of)

    2014-07-15

    Highlights: • Heavy metals in spent compact fluorescent lamps (CFLs) determined. • Current waste management condition of CFLs in Iran assessed. • Currently, waste of CFLs is disposed by municipal waste stream in waste landfills. • We propose extended producer responsibility (EPR) for CFLs waste management. - Abstract: From environmental viewpoint, the most important advantage of compact fluorescent lamps (CFLs) is reduction of green house gas emissions. But their significant disadvantage is disposal of spent lamps because of containing a few milligrams of toxic metals, especially mercury and lead. For a successful implementation of any waste management plan, availability of sufficient and accurate information on quantities and compositions of the generated waste and current management conditions is a fundamental prerequisite. In this study, CFLs were selected among 20 different brands in Iran. Content of heavy metals including mercury, lead, nickel, arsenic and chromium was determined by inductive coupled plasma (ICP). Two cities, Tehran and Tabriz, were selected for assessing the current waste management condition of CFLs. The study found that waste generation amount of CFLs in the country was about 159.80, 183.82 and 153.75 million per year in 2010, 2011 and 2012, respectively. Waste generation rate of CFLs in Iran was determined to be 2.05 per person in 2012. The average amount of mercury, lead, nickel, arsenic and chromium was 0.417, 2.33, 0.064, 0.056 and 0.012 mg per lamp, respectively. Currently, waste of CFLs is disposed by municipal waste stream in waste landfills. For improving the current conditions, we propose by considering the successful experience of extended producer responsibility (EPR) in other electronic waste management. The EPR program with advanced recycling fee (ARF) is implemented for collecting and then recycling CFLs. For encouraging consumers to take the spent CFLs back at the end of the products’ useful life, a proportion of

  5. Leaching of the simulated borosilicate waste glasses and spent nuclear fuel under a repository condition

    International Nuclear Information System (INIS)

    Kim, Seung Soo; Chun, Kwan Sik; Kang, Chul Hyung; Suh, Hang Suk

    2002-12-01

    Leaching behaviors of simulated waste glass and spent fuel, contacted on bentonite blocks, in synthetic granitic groundwater were investigated in this study. The leach rate of boron from borosilicate waste glass between the compacted bentonite blocks reached about 0.03 gm-2day-1 at 1500 days, like as that of molybdenum. However, the concentration of uranium in leachate pass through bentonite blocks was less than their detection limits of 2 μg/L and whose yellow amorphous compound was found on the surface of glass contacted with the bentonite blocks. The leaching mechanism of waste glasses differed with their composition. The release rate of cesium from PWR spent fuel in the simulated granitic water without bentonite was leas than $1.0x10 -5 fraction/day after 300 days. The retardation factor of cesium by a 10 -mm thickness of bentonite block was more than 100 for 4-years leaching time. The cumulative release fraction of uranium for 954 days was 0.016% (1.7x10 -7 fraction/day) in granitic water without bentonite. The gap inventory of cesium for spent fuel G23-J11 was 0.15∼0.2%. However, the release of cesium from C15-I08 was 0.9% until 60 days and has being continued after that. Gap inventories of strontium and iodine in G23-J11 were 0.033% and below 0.2%, respectively. The sum of fraction of cesium in gap and grain boundary of G23-J11 was suggested below 3% and less

  6. Determining heavy metals in spent compact fluorescent lamps (CFLs) and their waste management challenges: some strategies for improving current conditions.

    Science.gov (United States)

    Taghipour, Hassan; Amjad, Zahra; Jafarabadi, Mohamad Asghari; Gholampour, Akbar; Norouz, Prviz

    2014-07-01

    From environmental viewpoint, the most important advantage of compact fluorescent lamps (CFLs) is reduction of green house gas emissions. But their significant disadvantage is disposal of spent lamps because of containing a few milligrams of toxic metals, especially mercury and lead. For a successful implementation of any waste management plan, availability of sufficient and accurate information on quantities and compositions of the generated waste and current management conditions is a fundamental prerequisite. In this study, CFLs were selected among 20 different brands in Iran. Content of heavy metals including mercury, lead, nickel, arsenic and chromium was determined by inductive coupled plasma (ICP). Two cities, Tehran and Tabriz, were selected for assessing the current waste management condition of CFLs. The study found that waste generation amount of CFLs in the country was about 159.80, 183.82 and 153.75 million per year in 2010, 2011 and 2012, respectively. Waste generation rate of CFLs in Iran was determined to be 2.05 per person in 2012. The average amount of mercury, lead, nickel, arsenic and chromium was 0.417, 2.33, 0.064, 0.056 and 0.012 mg per lamp, respectively. Currently, waste of CFLs is disposed by municipal waste stream in waste landfills. For improving the current conditions, we propose by considering the successful experience of extended producer responsibility (EPR) in other electronic waste management. The EPR program with advanced recycling fee (ARF) is implemented for collecting and then recycling CFLs. For encouraging consumers to take the spent CFLs back at the end of the products' useful life, a proportion of ARF (for example, 50%) can be refunded. On the other hand, the government and Environmental Protection Agency should support and encourage recycling companies of CFLs both technically and financially in the first place. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Spent fuel as a waste form: Data needs to allow long term performance assessment under repository disposal conditions

    International Nuclear Information System (INIS)

    Oversby, V.M.

    1986-12-01

    Performance assessment calculations are required for high level waste repositories for a period of 10,000 years. The Siting Guidelines require a comparison of sites following site characterization and prior to final site selection to be made over a 100,000 year period. To perform the required calculations, a detailed knowledge of the physical and chemical processes that affect waste form performance will be needed for each site. This paper will review the factors that affect the release of radionuclides from spent fuel under repository conditions, summarize our present state of knowledge, and suggest areas where more work is needed to support the performance assessment calculations. 17 refs., 5 figs., 3 tabs

  8. Development and engineering plan for graphite spent fuels conditioning program

    International Nuclear Information System (INIS)

    Bendixsen, C.L.; Fillmore, D.L.; Kirkham, R.J.; Lord, D.L.; Phillips, M.B.; Pinto, A.P.; Staiger, M.D.

    1993-09-01

    Irradiated (or spent) graphite fuel stored at the Idaho Chemical Processing Plant (ICPP) includes Fort St. Vrain (FSV) reactor and Peach Bottom reactor spent fuels. Conditioning and disposal of spent graphite fuels presently includes three broad alternatives: (1) direct disposal with minimum fuel packaging or conditioning, (2) mechanical disassembly of spent fuel into high-level waste and low-level waste portions to minimize geologic repository requirements, and (3) waste-volume reduction via burning of bulk graphite and other spent fuel chemical processing of the spent fuel. A multi-year program for the engineering development and demonstration of conditioning processes is described. Program costs, schedules, and facility requirements are estimated

  9. DOCUMENTATION OF NATIONAL WEATHER CONDITIONS AFFECTING LONG-TERM DEGRADATION OF COMMERCIAL SPENT NUCLEAR FUEL AND DOE SPENT NUCLEAR FUEL AND HIGH-LEVEL WASTE

    International Nuclear Information System (INIS)

    W. L. Poe, Jr.; P.F. Wise

    1998-01-01

    The U.S. Department of Energy (DOE) is preparing a proposal to construct, operate 2nd monitor, and eventually close a repository at Yucca Mountain in Nye County, Nevada, for the geologic disposal of spent nuclear fuel (SNF) and high-level radioactive waste (HLW). As part of this effort, DOE has prepared a viability assessment and an assessment of potential consequences that may exist if the repository is not constructed. The assessment of potential consequences if the repository is not constructed assumes that all SNF and HLW would be left at the generator sites. These include 72 commercial generator sites (three commercial facility pairs--Salem and Hope Creek, Fitzpatrick and Nine Mile Point, and Dresden and Morris--would share common storage due to their close proximity to each other) and five DOE sites across the country. DOE analyzed the environmental consequences of the effects of the continued storage of these materials at these sites in a report titled Continued Storage Analysis Report (CSAR; Reference 1 ) . The CSAR analysis includes a discussion of the degradation of these materials when exposed to the environment. This document describes the environmental parameters that influence the degradation analyzed in the CSAR. These include temperature, relative humidity, precipitation chemistry (pH and chemical composition), annual precipitation rates, annual number of rain-days, and annual freeze/thaw cycles. The document also tabulates weather conditions for each storage site, evaluates the degradation of concrete storage modules and vaults in different regions of the country, and provides a thermal analysis of commercial SNF in storage

  10. Conditioning of low level radioactive wastes, spent radiation sources and their transport at the interim storage building of the Institute of Nuclear Physics in Albania

    International Nuclear Information System (INIS)

    Qafmolla, L.

    2000-01-01

    Aspects of treatment and management of radioactive wastes resulting from the use of radiation sources and radioisotopes in research, medicine and industry, are described. The methods applied for the conditioning of low-level radioactive wastes and spent radiation sources are simple. Solid radioactive wastes with low-level activity, after accumulation, minimization, segregation and measurement, are burned or compressed in a simple compactor of the PGS type. Spent radiation sources are placed into 200 l drums, are cemented and conditioned. Conditioned drums from the Radiation Protection Division of the Institute of Nuclear Physics (INP), which is the responsible Institution for the treatment and management of radioactive wastes in Albania, are transported to the interim storage building of the Institute of Nuclear Physics in Tirana. Work to construct a new building for treatment and management of radioactive wastes and spent radiation sources within the territory of INP is underway. Funds have been allocated accordingly: based on the Law No. 8025 of 25.11.1995, it is the Albanian Government's responsibility to finance activities concerned with the treatment and management of radioactive wastes generating from the use of ionizing radiation in science, medicine and industry in the country. (author)

  11. Treatment of waste salt from the advanced spent fuel conditioning process (I): characterization of Zeolite A in Molten LiCl Salt

    International Nuclear Information System (INIS)

    Kim, Jeong Guk; Lee, Jae Hee; Yoo, Jae Hyung; Kim, Joon Hyung

    2004-01-01

    The oxide fuel reduction process based on the electrochemical method (Advanced spent fuel Conditioning Process; ACP) and the long-lived radioactive nuclides partitioning process based on electro-refining process, which are being developed ay the Korea Atomic Energy Research Institute (KAERI), are to generate two types of molten salt wastes such as LiCl salt and LiCl-KCl eutectic salt, respectively. These waste salts must meet some criteria for disposal. A conditioning process for LiCl salt waste from ACP has been developed using zeolite A. This treatment process of waste salt using zeolite A was first developed by US ANL (Argonne National Laboratory) for LiCl-KCl eutectic salt waste from an electro-refining process of EBR (Experimental Breeder Reactor)-II spent fuel. This process has been developed recently, and a ceramic waste form (CWF) is produced in demonstration-scale V-mixer (50 kg/batch). However, ANL process is different from KAERI treatment process in waste salt, the former is LiCl-KCl eutectic salt and the latter is LiCl salt. Because of melting point, the immobilization of eutectic salt is carried out at about 770 K, whereas LiCl salt at around 920 K. Such difference has an effect on properties of immobilization media, zeolite A. Here, zeolite A in high-temperature (923 K) molten LiCl salt was characterized by XRD, Ion-exchange, etc., and evaluated if a promising media or not

  12. Radioecological condition assessment and remediation criteria for sites of spent fuel and radioactive waste storage in the russian northwest

    International Nuclear Information System (INIS)

    Shandala, Nataliya; Titov, Alex; Novikova, Natalia; Kiselev, Mikhail; Romanov, Vladimir; Sneve, Malgorzata; Smith, Graham

    2008-01-01

    The Norwegian Radiation Protection Authority and the Federal Medical-Biological Agency of the Russian Federation have a regulatory cooperation programme which is concerned with management of the nuclear legacy in northwest Russia, and, in particular, the remediation of facilities for spent fuel and radioactive waste management at the former Shore Technical Bases at Andreeva Bay and Gremikha Village. New regulatory guidance documents have been developed, necessary because of the special abnormal situation at these sites, now designated as Sites of Temporary Storage, but also because of the transition from military to civilian regulatory supervision and the evolving regulatory system in the Russian Federation. This paper presents the progress made and on-going projects in 2008 which involve development of the radio-ecological basis for identifying radiation supervision area boundaries and a system of recommended dose constraints and derived control levels for protection of workers and the public. Unconditional guarantee of long-term radioecological protection serves as the basis for criteria development. Non-exceedance of these dose constraints and control levels implies compliance with radiological protection objectives related to the residual contamination. Dose reduction below proposed dose constraint values must also be carried out according to the optimization principle. A number of remediation strategies are considered, corresponding to different future land use assumptions, including interim continued use in a nuclear context. The developed criteria relate to conditions of facilities and surrounding areas at the sites of temporary storage after completion of their remediation, and during the interim stages of remediation, depending upon the remediation strategy adopted. (author)

  13. Advanced waste forms from spent nuclear fuel

    International Nuclear Information System (INIS)

    Ackerman, J.P.; McPheeters, C.C.

    1995-01-01

    More than one hundred spent nuclear fuel types, having an aggregate mass of more than 5000 metric tons (2700 metric tons of heavy metal), are stored by the United States Department of Energy. This paper proposes a method for converting this wide variety of fuel types into two waste forms for geologic disposal. The method is based on a molten salt electrorefining technique that was developed for conditioning the sodium-bonded, metallic fuel from the Experimental Breeder Reactor-II (EBR-II) for geologic disposal. The electrorefining method produces two stable, optionally actinide-free, high-level waste forms: an alloy formed from stainless steel, zirconium, and noble metal fission products, and a ceramic waste form containing the reactive metal fission products. Electrorefining and its accompanying head-end process are briefly described, and methods for isolating fission products and fabricating waste forms are discussed

  14. Spent fuel characterization for the commercial waste and spent fuel packaging program

    International Nuclear Information System (INIS)

    Fish, R.L.; Davis, R.B.; Pasupathi, V.; Klingensmith, R.W.

    1980-03-01

    This document presents the rationale for spent fuel characterization and provides a detailed description of the characterization examinations. Pretest characterization examinations provide quantitative and qualitative descriptions of spent fuel assemblies and rods in their irradiated conditions prior to disposal testing. This information is essential in evaluating any subsequent changes that occur during disposal demonstration and laboratory tests. Interim examinations and post-test characterization will be used to identify fuel rod degradation mechanisms and quantify degradation kinetics. The nature and behavior of the spent fuel degradation will be defined in terms of mathematical rate equations from these and laboratory tests and incorporated into a spent fuel performance prediction model. Thus, spent fuel characterization is an essential activity in the development of a performance model to be used in evaluating the ability of spent fuel to meet specific waste acceptance criteria and in evaluating incentives for modification of the spent fuel assemblies for long-term disposal purposes

  15. Spent fuel and waste inventories and projections

    International Nuclear Information System (INIS)

    Carter, W.L.; Finney, B.C.; Alexander, C.W.; Blomeke, J.O.; McNair, J.M.

    1980-08-01

    Current inventories of commercial spent fuels and both commercial and US Department of Energy radioactive wastes were compiled, based on judgments of the most reliable information available from Government sources and the open literature. Future waste generation rates and quantities to be accumulated over the remainder of this century are also presented, based on a present projection of US commercial nuclear power growth and expected defense-related activities. Spent fuel projections are based on the current DOE/EIA estimate of nuclear growth, which projects 180 GW(e) in the year 2000. It is recognized that the calculated spent fuel discharges are probably high in view of recent reactor cancellations; hence adjustments will be made in future updates of this report. Wastes considered, on a chapter-by-chapter basis, are: spent fuel, high-level wastes, transuranic wastes, low-level wastes, mill tailings (active sites), and remedial action wastes. The latter category includes mill tailings (inactive sites), surplus facilities, formerly utilized sites, and the Grand Junction Project. For each category, waste volume inventories and projections are given through the year 2000. The land usage requirements are given for storage/disposal of low-level and transuranic wastes, and for present inventories of mill tailings

  16. Radioactive waste management decommissioning spent fuel storage. V. 3. Waste transport, handling and disposal spent fuel storage

    International Nuclear Information System (INIS)

    1985-01-01

    As part of the book entitled Radioactive waste management decommissioning spent fuel storage, vol. 3 dealts with waste transport, handling and disposal, spent fuel storage. Twelve articles are presented concerning the industrial aspects of nuclear waste management in France [fr

  17. Handling, conditioning and storage of spent sealed radioactive sources. Technical manual for the management of low and intermediate level wastes generated at small nuclear research centres and by radioisotope users in medicine, research and industry

    International Nuclear Information System (INIS)

    2000-05-01

    This report is intended to provide reference material, guidance and know-how on handling, conditioning and storage of spent sealed radioactive sources (SRS) to both users of SRS and operators of waste management facilities. The scope of this report covers all types of SRS except those exempted from regulatory control. The report contains in some detail technical procedures for the conditioning of spent SRS, describes the means required to assure the quality of the resulting package and discusses the measures to prepare waste packages with a certain flexibility to accommodate possible future disposal requirements

  18. Arrival condition of spent fuel after storage, handling, and transportation

    International Nuclear Information System (INIS)

    Bailey, W.J.; Pankaskie, P.J.; Langstaff, D.C.; Gilbert, E.R.; Rising, K.H.; Schreiber, R.E.

    1982-11-01

    This report presents the results of a study conducted to determine the probable arrival condition of spent light-water reactor (LWR) fuel after handling and interim storage in spent fuel storage pools and subsequent handling and accident-free transport operations under normal or slightly abnormal conditions. The objective of this study was to provide information on the expected condition of spent LWR fuel upon arrival at interim storage or fuel reprocessing facilities or at disposal facilities if the fuel is declared a waste. Results of a literature survey and data evaluation effort are discussed. Preliminary threshold limits for storing, handling, and transporting unconsolidated spent LWR fuel are presented. The difficulty in trying to anticipate the amount of corrosion products (crud) that may be on spent fuel in future shipments is also discussed, and potential areas for future work are listed. 95 references, 3 figures, 17 tables

  19. Immobilization of radioactive waste sludge from spent fuel storage pool

    International Nuclear Information System (INIS)

    Pavlovic, R.; Plecas, I.

    1998-01-01

    In the last forty years, in FR Yugoslavia, as result of the research reactors' operation and radionuclides application in medicine, industry and agriculture, radioactive waste materials of the different categories and various levels of specific activities were generated. As a temporary solution, these radioactive waste materials are stored in the two hanger type interim storages for solid waste and some type of liquid waste packed in plastic barrels, and one of three stainless steal underground containers for other types of liquid waste. Spent fuel elements from nuclear reactors in the Vinca Institute have been temporary stored in water filled storage pool. Due to the fact that the water in the spent fuel elements storage pool have not been purified for a long time, all metallic components submerged in the water have been hardly corroded and significant amount of the sludge has been settled on the bottom of the pool. As a first step in improving spent fuel elements storage conditions and slowing down corrosion in the storage spent fuel elements pool we have decided to remove the sludge from the bottom of the pool. Although not high, but slightly radioactive, this sludge had to be treated as radioactive waste material. Some aspects of immobilisation, conditioning and storage of this sludge are presented in this paper. (author

  20. Plan for spent fuel waste form testing for NNWSI [Nevada Nuclear Waste Storage Investigations

    International Nuclear Information System (INIS)

    Shaw, H.F.

    1987-11-01

    The purpose of spent fuel waste form testing is to determine the rate of release of radionuclides from failed disposal containers holding spent fuel, under conditions appropriate to the Nevada Nuclear Waste Storage Investigations (NNWSI) Project tuff repository. The information gathered in the activities discussed in this document will be used: to assess the performance of the waste package and engineered barrier system (EBS) with respect to the containment and release rate requirements of the Nuclear Regulatory Commission, as the basis for the spent fuel waste form source term in repository-scale performance assessment modeling to calculate the cumulative releases to the accessible environment over 10,000 years to determine compliance with the Environmental Protection Agency, and as the basis for the spent fuel waste form source term in repository-scale performance assessment modeling to calculate cumulative releases over 100,000 years as required by the site evaluation process specified in the DOE siting guidelines. 34 refs

  1. RTR spent fuel treatment and final waste storage

    International Nuclear Information System (INIS)

    Thomasson, J.

    2000-01-01

    A number of RTR operators have chosen in the past to send their spent fuel to the US in the framework of the US take back program. However, this possibility ends as of May 12th, 2006. 3 different strategies are left for managing RTR spent fuel: extended storage, direct disposal and treatment-conditioning through reprocessing. Whilst former strategies raise a number of uncertainties, the latter already offers a management solution. It features two advantages. It benefits from the long experience of existing flexible industrial facilities from countries like France. Secondly, it offers a dramatic volume reduction of the ultimate waste to be stored under well-characterized, stable and durable forms. RTR spent fuel management through reprocessing-conditioning offers a durable management solution that can be fully integrated in whatever global radioactive waste management policy, including ultimate disposal

  2. Spent fuel and high level waste: Chemical durability and performance under simulated repository conditions. Results of a coordinated research project 1998-2004

    International Nuclear Information System (INIS)

    2007-10-01

    This publication contains the results of an IAEA Coordinated Research Project (CRP). It provides a basis for understanding the potential interactions of waste form and repository environment, which is necessary for the development of the design and safety case for deep disposal. Types of high level waste matrices investigated include spent fuel, glasses and ceramics. Of particular interest are the experimental results pertaining to ceramic forms such as SYNROC. This publication also outlines important areas for future work, namely, standardized, collaborative experimental protocols for package-release studies, structured development and calibration of predictive models linking the performance of packaged waste and the repository environment, and studies of the long term behaviour of the wastes, including active waste samples

  3. Handling, conditioning and disposal of spent sealed sources

    International Nuclear Information System (INIS)

    1990-02-01

    The series entitled ''Technical Manual for the Management of Low and Intermediate Level Wastes Generated at Small Nuclear Research Centres and by Radioisotope Users in Medicine, Research and Industry'' will serve as reference material to experts on technical assistance missions and provide ''direct know-how'' for technical staff in developing countries. This document is the first in the series. It provides the technical guidance and know-how necessary to permit developing Member States to safely handle, condition and store spent sealed radiation sources. It covers: characterization of sealed sources, legislation and regulations, management of spent sealed sources, transportation and disposal of spent sealed sources. 5 refs, 10 figs, 6 tabs

  4. International experience in conditioning spent fuel elements

    International Nuclear Information System (INIS)

    Ashton, P.

    1991-04-01

    The purpose of this report is to compile and present in a clear form international experience (USA, Canada, Sweden, FRG, UK, Japan, Switzerland) gained to date in conditioning spent fuel elements. The term conditioning is here taken to mean the handling and packaging of spent fuel elements for short- or long-term storage or final disposal. Plants of a varying nature fall within this scope, both in terms of the type of fuel element treated and the plant purpose eg. experimental or production plant. Emphasis is given to plants which bear some similarity to the concept developed in Germany for direct disposal of spent fuel elements. Worldwide, however, relatively few conditioning plants are in existence or have been conceived. Hence additional plants have been included where aspects of the experience gained are also of relevance eg. plants developed for the consolidation of spent fuel elements. (orig./HP) [de

  5. Conditioning of spent nuclear fuel for permanent disposal

    International Nuclear Information System (INIS)

    Laidler, J.J.

    1994-01-01

    A compact, efficient method for conditioning spent nuclear fuel is under development This method, known as pyrochemical processing, or open-quotes pyroprocessing,close quotes provides a separation of fission products from the actinide elements present in spent fuel and further separates pure uranium from the transuranic elements. The process can facilitate the timely and environmentally-sound treatment of the highly diverse collection of spent fuel currently in the inventory of the United States Department of Energy (DOE). The pyroprocess utilizes elevated-temperature processes to prepare spent fuel for fission product separation; that separation is accomplished by a molten salt electrorefining step that provides efficient (99.9%) separation of transuranics. The resultant waste forms from the pyroprocess are stable under envisioned repository environment conditions and highly leach-resistant. Treatment of any spent fuel type produces a set of common high-level waste forms, one a mineral and the other a metal alloy, that can be readily qualified for repository disposal and preclude the substantial costs that would be associated with the qualification of the numerous spent fuel types included in the DOE inventory

  6. Conditioning of spent nuclear fuel for permanent disposal

    International Nuclear Information System (INIS)

    Laidler, J.J.

    1994-01-01

    A compact, efficient method for conditioning spent nuclear fuel is under development. This method, known as pyrochemical processing, or pyroprocessing, provides a separation of fission products from the actinide elements present in spent fuel and further separates pure uranium from the transuranic elements. The process can facilitate the timely and environmentally-sound treatment of the highly diverse collection of spent fuel currently in the inventory of the US Department of Energy (DOE). The pyroprocess utilizes elevated-temperature processes to prepare spent fuel for fission product separation; that separation is accomplished by a molten salt electrorefining step that provides efficient (> 99.9%) separation of transuranics. The resultant waste forms from the pyroprocess are stable under envisioned repository environment conditions and highly leach-resistant. Treatment of any spent fuel type produces a set of common high-level waste forms, one a mineral and the other a metal alloy, that can be readily qualified for repository disposal and that avoid the substantial costs that would be associated with the qualification of the numerous spent fuel types included in the DOE inventory

  7. Encapsulation, shielding, and packaging for conditioning of spent radium sources

    International Nuclear Information System (INIS)

    Kang, I. S.; Kim, T. K.; Lee, B. C.; Kim, G. J.; Hong, K. P.

    2002-01-01

    The appropriate management and conditioning of spent radium sources have been risen to one of the greatest challenges faced by the international society. The expert teams in Korea were organized to tackle this problem by the request of IAEA and supported to condition sources in Southeastern Asia. The main object of this paper is to apply safely and effectively conditioning of spent sealed sources in our country near future by virtue of describing the technology on conditioning the national inventory of spent radium sources in Singapore. The paper is the result that the Korean expert team successfully carried out the conditioning of spent radium sources in Singapore with accumulated experiences. The conditioning operation was carried out under the supervision of IAEA's technical officer, Mr. Al-Mughrabi and Singapore Nuclear Cancer Centre. The 204 sources of spent radium stored in Singapore were encapsuled and welded in 17 small capsules and a large capsule, and conditioned in 2 lead shields, producing 2 package. As a result of this operation, a total amount of 938.56mg were conditioned and distributed into 2 shielding devices, holding 497.5mg and 441.06mg. In addition, the contaminated objects and the secondary wastes produced during segregation and dismantling of sources were immobilized in a plastic box

  8. Conditioning experience for spent radium sources

    International Nuclear Information System (INIS)

    Kang, I. S.; Shon, J. S.; Kim, K. J.; Min, D. K.

    2001-01-01

    In order to avoid accidents that could be resulted from improper storage of spent radium sources, it is necessary to condition and store them safely. The program for safe conditioning of spent radium sources by IAEA has been established to assist the developing countries. The main object of this paper is to apply the technology that was adapted by IAEA for the conditioning the national inventory of Ra-226 sources in member states, as a part of IAEA's project with the Korean expert team. This paper is the result that the Korean expert team carried out spent radium conditioning, under the project title 'Radium Conditioning in Myanmar(INT4131-06646C)'. The whole inventory of spent radium sources 1,429.5mCi, was safely conditioned by the Korean expert team according to the manual under the supervision of IAEA's technical officer and the control of Myanmar authority on behalf of Myanmar. These sources were encapsuled and welded into 27 small capsules and 3 large capsules, and conditioned in 3 lead shields, producing 3 concrete-shielded drums. The inventories were distributed into 3 shielding devices, holding 500mCi, 459.5mCi, and 470mCi

  9. Conditioning and storage of spent sealed radium sources

    International Nuclear Information System (INIS)

    Cholerzynski, A.; Tomczak, W.

    2001-01-01

    In Poland sealed radioactive sources (SRS) are extensively used in medicine and in industry. There are mainly Co-60, Cs-137, lr-192 and also historical sources contain in Ra-226. The Radioactive Waste Management Department (ZDUOP) of the Institute of Atomic Energy at Swierk is the only organization licensed for the management, storage and disposal of radioactive waste in Poland. ZDUOP deals with all radioactive waste in the country. Storage and disposal of SRS is one of the most important part of its activity. Every year ZDUOP collects about 1000 spent SRS which total activity is near 600 GBq. Spent Ra-226 sources are a special case and therefore are required suitable procedures. Due to their production according to earlier standards and their undesirable characteristics, leakage of these sources is highly possible and practically observed. For this reason conditioning of radium sources needs strict requirements and quality assurance procedure to guarantee their safe storage for an extended period of time (e.g. 40-70 years). The National Radioactive Waste Repository is superficial type repository and considered as temporary storage site for long-lived waste. A storage facility for spent SRS has been properly prepared and licensed by the regulatory body. This facility consist of several concrete chambers which floor is lined stainless steel. The existing regulatory framework for sealed radioactive sources entered into force with issue of the Atomic Law in 1986

  10. Conditioning of alpha bearing wastes

    International Nuclear Information System (INIS)

    1991-01-01

    Alpha bearing wastes are generated during the reprocessing of spent fuel, mixed oxide fuel fabrication, decommissioning and other activities. The safe and effective management of these wastes is of particular importance owing to the radiotoxicity and long lived characteristics of certain transuranic (TRU) elements. The management of alpha bearing wastes involves a number of stages which include collection, characterization, segregation, treatment, conditioning, transport, storage and disposal. This report describes the currently available matrices and technologies for the conditioning of alpha wastes and relates them to their compatibility with the other stages of the waste management process. The selection of a specific immobilization process is dependent on the waste treatment state and the subsequent handling, transport, storage and disposal requirements. The overall objectives of immobilization are similar for all waste producers and processors, which are to produce: (a) Waste forms with sufficient mechanical, physical and chemical stability to satisfy all stages of handling, transport and storage (referred to as the short term requirements), and (b) Waste forms which will satisfy disposal requirements and inhibit the release of radionuclides to the biosphere (referred to as the long term requirements). Cement and bitumen processes have already been successfully applied to alpha waste conditioning on the industrial scale in many of the IAEA Member States. Cement systems based on BFS and pozzolanic cements have emerged as the principal encapsulation matrices for the full range of alpha bearing wastes. Alternative technologies, such as polymers and ceramics, are being developed for specific waste streams but are unlikely to meet widespread application owing to cost and process complexity. The merits of alpha waste conditioning are improved performance in transport, storage and disposal combined with enhanced public perception of waste management operations. These

  11. Conditioning technology of spent radium sources

    International Nuclear Information System (INIS)

    Kang, Il Sik; Kim, K. J.; Jang, K. D.

    2001-03-01

    In order to avoid accidents that could be resulted from improper storage of spent radium sources, it is necessary to condition and store them safely. The program for safe conditioning of spent radium sources by IAEA has been established to assist the developing countries. The main object of this report is to understand well and apply the technology that was applied in conditioning the national inventory of Ra-226 sources in Myanmar, as a part of IAEA's project by the Korean expert team. The report is the result that the Korean expert team carried out in Myanmar under the project title 'Radium Conditioning Service in Myanmar(INT4131-06646C)'. As a result of the mission, a whole inventory, 1,429.5 mCi of spent radium sources was safely conditioned by the Korean expert team according to the manual under the supervision of IAEA's technical officer, Mr. Al-Mughrabi, and under the control of DAE authority. These sources were encapsuled in 27 small capsules and 3 large capsules, and conditioned in 3 lead shields, producing 3 packages. The inventories were distributed into 3 shielding devices, holding 500, 459.5, and 470 mCi

  12. Safeguardability of advanced spent fuel conditioning process

    Energy Technology Data Exchange (ETDEWEB)

    Li, T. K. (Tien K.); Lee, S. Y. (Sang Yoon); Burr, Tom; Russo, P. A. (Phyllis A.); Menlove, Howard O.; Kim, H. D.; Ko, W. I. (Won Il); Park, S. W.; Park, H. S.

    2004-01-01

    The Advanced Spent Fuel Conditioning Process (ACP) is an electro-metallurgical treatment technique to convert oxide-type spent nuclear fuel into a metallic form. The Korea Atomic Energy Research Institute (KAERI) has been developing this technology since 1977 for the purpose of spent fuel management and is planning to perform a lab-scale demonstration in 2006. By using of this technology, a significant reduction of the volume and heat load of spent fuel is expected, which would lighten the burden of final disposal in terms of disposal size, safety and economics. In the framework of collaboration agreement to develop the safeguards system for the ACP, a joint study on the safeguardability of the ACP technology has been performed by the Los Alamos National Laboratory (LANL) and the KAERI since 2002. In this study, the safeguardability of the ACP technology was examined for the pilot-scale facility. The process and material flows were conceptually designed, and the uncertainties in material accounting were estimated with international target values.

  13. Treatment and conditioning of historical radioactive waste

    International Nuclear Information System (INIS)

    Dogaru, Ghe.; Dragolici, F.; Ionascu, L.; Rotarescu, Ghe.

    2009-01-01

    The paper describes the management of historical radioactive waste from the storage facility of Radioactive Waste Treatment Plant. The historical waste stored into storage facility of IFIN-HH consists of spent sealed radioactive sources, empty contaminated containers, wooden radioactive waste, low specific activity radioactive waste, contaminated waste as well as radioactive waste from operation of WWR-S research reactor. After decommissioning of temporary storage facility about 5000 packages with radioactive waste were produced and transferred to the disposal facility. A large amount of packages have been transferred and disposed of to repository but at the end of 2000 there were still about 800 packages containing cement conditioned radioactive waste in an advanced state of degradation declared by authorities as 'historical waste'. During the management of historical waste campaign there were identified: radium spent radioactive sources, containers containing other spent sealed radioactive sources, packages containing low specific activity waste consist of thorium scrap allow, 30 larger packages (316 L), packages with activity lower than activity limit for disposal, packages with activity higher than activity limit for disposal. At the end of 2008, the whole amount of historical waste which met the waste acceptance criteria has been conditioned and transferred to disposal facility. (authors)

  14. Spent fuel and radioactive waste inventories, projections, and characteristics

    International Nuclear Information System (INIS)

    1984-09-01

    Current inventories and characteristics of commercial spent fuels and both commercial and US Department of Energy (DOE) radioactive wastes were compiled through December 31, 1983, based on the most reliable information available from government sources and the open literature, technical reports, and direct contacts. Future waste and spent fuel to be generated over the next 37 years and characteristics of these materials are also presented, consistent with the latest DOE/Energy Information Administration (EIA) or projection of US commercial nuclear power growth and expected defense-related and private industrial and institutional activities. Materials considered, on a chapter-by-chapter basis, are: spent fuel, high-level waste, transuranic waste, low-level waste, commercial uranium mill tailings, airborne waste, remedial action waste, and decommissioning waste. For each category, current and projected inventories are given through the year 2020, and the radioactivity and thermal power are calculated, based on reported or calculated isotopic compositions. 48 figures, 107 tables

  15. Spent fuel and high level waste: Chemical durability and performance under simulated repository conditions. Results of a coordinated research project 1998-2004. Part 2: Results of a previously unpublished CRP: Performance of high level waste forms and packages under repository conditions. Results of a co-ordinated research project 1991-1998

    International Nuclear Information System (INIS)

    2007-07-01

    The objective of the CRP (Coordinated Research Projekt) on the 'Performance of High Level Waste Forms and Packages under Repository Conditions' was to contribute to the development and implementation of proper and sound technologies for HLW and spent fuel management. Special emphasis was given to the identification of various waste form properties and the study of their long term durability in simulated repository conditions. Another objective was to promote the co-operation and exchange of information between Member States on experimental concerning behaviour of the waste form. The CRP was composed of research contracts and agreements with Argentina, Australia, Belgium, Canada, China, Czech Republic, Finland, France, Germany, India, Japan, Russia, and the United States of America. The publication includes 14 individual contributions of the participants to the CRP, which are indexed separately.

  16. SE-VYZ - Decommissioning of Nuclear Installations, Radioactive Waste and Spent Fuel Management

    International Nuclear Information System (INIS)

    Anon

    2004-01-01

    In this presentations processes of radioactive waste treatment in the Bohunice Radioactive Waste Processing Center (SE-VYZ), Jaslovske Bohunice are presented. Decommissioning of the A-1 NPP is also presented. Disposal of conditioned radioactive waste in fibre concrete containers (FCC) are transported to Mochovce from Jaslovske Bohunice by the transport truck where are reposited in the National radioactive waste repository Mochovce. The Interim spent fuel storage facility (ISFSF) is included into this presentation

  17. Providing flexibility in spent fuel and vitrified waste management

    International Nuclear Information System (INIS)

    Bradley, N.; O'Tallamhain, C.; Brown, G.A.

    1986-01-01

    The UK Central Electricity Generating Board is pondering a decision to build a dry vault store as a buffer in its overall AGR spent fuel management programme. The application of the dry vault is not limited to fuel from gas cooled reactors, it can be used for spent LWR fuel and vitrified waste. A cutaway diagram of such a vault is presented. (UK)

  18. Spent fuel and radioactive-waste inventories, projections, and characteristics

    International Nuclear Information System (INIS)

    1982-10-01

    Current inventories and characteristics of commercial spent fuels and both commercial and US Department of Energy radioactive wastes were compiled, based on the most reliable information available from government sources and the open literature, technical reports, and direct contacts. Future waste and spent fuel to be generated over the next 40 years, and characteristics of these materials are also presented, based on a present DOE/EIA projection of US commercial nuclear power growth and expected defense-related and industrial and institutional activities. Materials considered, on a chapter-by-chapter basis, are: spent fuel, high-level waste, transuranic waste, low-level waste, remedial action waste, active uranium mill tailings, airborne waste, and decommissioning. For each category, current and projected inventories are given through the year 2020. The land usage requirements are given for storage/disposal of low-level and transuranic wastes, and for the present inventories of inactive uranium mill tailings. For each waste category the radioactivity and thermal power are calculated. Isotopic compositions and cost data are given for each waste type and for spent fuel

  19. Report on the disposal of radioactive wastes and spent fuel elements from Baden-Wuerttemberg

    International Nuclear Information System (INIS)

    2017-04-01

    The report on the disposal of radioactive wastes and spent fuel elements from Baden- Wuerttemberg covers the following issues: legal framework for the nuclear disposal; producer of spent fuels and radioactive wastes in Baden- Report on the disposal of radioactive wastes and spent fuel elements from Baden- Wuerttemberg; low- and medium-level radioactive wastes (non heat generating radioactive wastes); spent fuels and radioactive wastes from waste processing (heat generating radioactive wastes); final disposal.

  20. Future spent nuclear fuel and radioactive waste infrastructure in Norway

    International Nuclear Information System (INIS)

    Soerlie, A.A.

    2002-01-01

    In Norway a Governmental Committee was appointed in 1991 to make an evaluation of the future steps that need to be taken in Norway to find a final solution for the spent nuclear fuel and for some other radioactive waste for which a disposal option does not exist today. The report from the Committee is now undergoing a formal hearing process. Based on the Committees recommendation and comments during the hearing the responsible Ministry will take a decision on future infrastructure in Norway for the spent nuclear fuel. This will be decisive for the future management of spent nuclear fuel and radioactive waste in Norway. (author)

  1. Spent fuel and radioactive waste inventories, projections, and characteristics

    International Nuclear Information System (INIS)

    1983-09-01

    Current inventories and characteristics of commercial spent fuels and both commercial and US Department of Energy radioactive wastes were compiled through December 31, 1982, based on the most reliable information available from government sources and the open literature, technical reports, and direct contacts. Future waste and spent fuel to be generated over the next 40 years and characteristics of these materials are also presented, based on the latest DOE/EIA projection of US commercial nuclear power growth and expected defense-related and industrial and institutional activities. Materials considered, on a chapter-by-chapter bases, are: spent fuel, high-level waste, transuranic waste, low-level waste, active uranium mill tailings, airborne waste, remedial action waste, and decommissioning waste. For each category, current and projected inventories are given through the year 2020, and the radioactivity and thermal power are calculated, based on reported or calculated isotopic compositions. One chapter gives broad, summary data on the costs of spent fuel and radioactive waste management and disposal to provide an economic perspective. This chapter is not intended as a definitive guide, but it is a source of reasonable, order-of-magnitude costs and also provides references to more-detailed and scenario-specific studies. An appendix on generic flowsheets and source terms used for the projections is also included

  2. Production of metal waste forms from spent fuel treatment

    International Nuclear Information System (INIS)

    Westphal, B.R.; Keiser, D.D.; Rigg, R.H.; Laug, D.V.

    1995-01-01

    Treatment of spent nuclear fuel at Argonne National Laboratory consists of a pyroprocessing scheme in which the development of suitable waste forms is being advanced. Of the two waste forms being proposed, metal and mineral, the production of the metal waste form utilizes induction melting to stabilize the waste product. Alloying of metallic nuclear materials by induction melting has long been an Argonne strength and thus, the transition to metallic waste processing seems compatible. A test program is being initiated to coalesce the production of the metal waste forms with current induction melting capabilities

  3. Anticipating Potential Waste Acceptance Criteria for Defense Spent Nuclear Fuel

    International Nuclear Information System (INIS)

    Rechard, R.P.; Lord, M.E.; Stockman, C.T.; McCurley, R.D.

    1997-01-01

    The Office of Environmental Management of the U.S. Department of Energy is responsible for the safe management and disposal of DOE owned defense spent nuclear fuel and high level waste (DSNF/DHLW). A desirable option, direct disposal of the waste in the potential repository at Yucca Mountain, depends on the final waste acceptance criteria, which will be set by DOE's Office of Civilian Radioactive Waste Management (OCRWM). However, evolving regulations make it difficult to determine what the final acceptance criteria will be. A method of anticipating waste acceptance criteria is to gain an understanding of the DOE owned waste types and their behavior in a disposal system through a performance assessment and contrast such behavior with characteristics of commercial spent fuel. Preliminary results from such an analysis indicate that releases of 99Tc and 237Np from commercial spent fuel exceed those of the DSNF/DHLW; thus, if commercial spent fuel can meet the waste acceptance criteria, then DSNF can also meet the criteria. In large part, these results are caused by the small percentage of total activity of the DSNF in the repository (1.5%) and regulatory mass (4%), and also because commercial fuel cladding was assumed to provide no protection

  4. Safeguarding of spent fuel conditioning and disposal in geological repositories

    International Nuclear Information System (INIS)

    Forsstroem, H.; Richter, B.

    1997-01-01

    Disposal of spent nuclear fuel in geological formations, without reprocessing, is being considered in a number of States. Before disposal the fuel will be encapsulated in a tight and corrosion resistant container. The method chosen for disposal and the design of the repository will be determined by the geological conditions and the very strict requirements on long-term safety. From a safeguards perspective spent fuel disposal is a new issue. As the spent fuel still contains important amounts of material under safeguards and as it can not be considered practicably irrecoverable in the repository, the IAEA has been advised not to terminate safeguards, even after closure of the repository. This raises a number of new issues where there could be a potential conflict of interests between safety and safeguards demands, in particular in connection with the safety principle that burdens on future generations should be avoided. In this paper some of these issues are discussed based on the experience gained in Germany and Sweden about the design and future operation of encapsulation and disposal facilities. The most important issues are connected to the required level of safeguards for a closed repository, the differences in time scales for waste management and safeguards, the need for verification of the fissile content in the containers and the possibility of retrieving the fuel disposed of. (author)

  5. Final disposal of spent fuels and high activity waste: status and trends in the world

    International Nuclear Information System (INIS)

    Herscovich de Pahissa, Marta

    2007-01-01

    Geological disposal of spent nuclear fuel and high level waste from reprocessing, properly conditioned, is described. This issue is a major challenge related to radioactive waste management. Several options are analyzed, such as application of separation and transmutation to high level waste before final disposal; need of multinational repositories; a phased approach to deep geological disposal and long term surface storage. Bearing in mind this information, a future article will report the state of art in the world. (author) [es

  6. Handling of spent nuclear fuel and final storage of vitrified high level reprocessing waste

    International Nuclear Information System (INIS)

    1978-01-01

    The report gives a general summary of the Swedish KBS-project on management and disposal of vitrified reprocessed waste. Its final aim is to demostrate that the means of processing and managing power reactor waste in an absolutely safe way, as stipulated in the Swedish so called Conditions Act, already exist. Chapters on Storage facility for spent fuel, Intermidiate storage of reprocessed waste, Geology, Final repository, Transportation, Protection, and Siting. (L.E.)

  7. Spent sealed radium sources conditioning in Latin America

    International Nuclear Information System (INIS)

    Mourao, R.P.

    1999-01-01

    The management of spent sealed sources is considered by the International Atomic Energy Agency (IAEA) one of the greatest challenges faced by nuclear authorities today, especially in developing countries. One of the Agency's initiatives to tackle this problem is the Spent Radium Sources Conditioning Project, a worldwide project relying on the regional co-operation between countries. A team from the Brazilian nuclear research institute Centro de Desenvolvimento da Tecnologia Nuclear (CDTN) was chosen as the expert team to carry out the operations in Latin America; since December 1996 radium sources have been safely conditioned in Uruguay, Nicaragua, Guatemala, Ecuador and Paraguay. A Quality Assurance Program was established, encompassing the qualification of the capsule welding process, written operational procedures referring to all major steps of the operation, calibration of monitors and information retrievability. A 200L carbon steel drum-based packaging concept was used to condition the sources, its cavity being designed to receive the lead shield device containing stainless steel capsules with the radium sources. As a result of these operations, a total amount of 2,897 mg of needles, tubes, medical applicators, standard sources for calibration, lightning rods, secondary wastes and contaminated objects were stored in proper conditions and are now under control of the nuclear authorities of the visited countries

  8. Spent sealed radium sources conditioning in Latin America

    International Nuclear Information System (INIS)

    Mourao, Rogerio Pimenta

    1999-01-01

    The management of spent sealed sources is considered by the IAEA one of the greatest challenges faced by nuclear authorities today, especially in developing countries. One of the Agency's initiatives to tackle this problem is the 'Spent Radium Sources Conditioning Project', a worldwide project relying on the regional cooperation between countries. A CDTN team was chooses as the expert team to carry out the operations in Latin America; since Dec 96 radium sources have been safely conditioned in Uruguay, Nicaragua, Guatemala and Ecuador. A Quality Assurance Program was established, encompassing the qualification of the capsule welding process, written operational procedures referring to all major steps of the operation, calibration of monitors and information retrievability. A 200L carbon steel drum-based packaging concept was used to condition the sources, its cavity being designed to receive the lead shield device containing stainless steel capsules with the radium sources. As a result of these operations, a total amount of 2,629 mg (approx. 98 GBq) of needles, tubes, medical applicators, standard sources for calibration, lightning rods, secondary wastes (generated during the operations) and contaminated objects were stored in proper conditions and are now under control, of the nuclear authorities of the visited countries. (author)

  9. Spent fuel and high-level radioactive waste storage

    International Nuclear Information System (INIS)

    Trigerman, S.

    1988-06-01

    The subject of spent fuel and high-level radioactive waste storage, is bibliographically reviewed. The review shows that in the majority of the countries, spent fuels and high-level radioactive wastes are planned to be stored for tens of years. Sites for final disposal of high-level radioactive wastes have not yet been found. A first final disposal facility is expected to come into operation in the United States of America by the year 2010. Other final disposal facilities are expected to come into operation in Germany, Sweden, Switzerland and Japan by the year 2020. Meanwhile , stress is placed upon the 'dry storage' method which is carried out successfully in a number of countries (Britain and France). In the United States of America spent fuels are stored in water pools while the 'dry storage' method is still being investigated. (Author)

  10. Labeling of the spent fuel waste package

    International Nuclear Information System (INIS)

    Culbreth, W.G.; Chagari, A.K.

    1992-01-01

    This paper reports that the containers used to store spent fuel in an underground repository must meet federal guidelines that call for unique labels that identify the contents and processing history. Existing standards in the nuclear power industry and relevant ASME/ANSI codes have been reviewed for possible application to the spent-fuel container labeling. An Array of labeling techniques were found that include recommendations for: fonts, word spacing, color combinations, label materials and mounting methods, placement, and content. The use of bar code, optical character recognition, and RF labels were also studied to meet the requirement that the container labels be consistent with the methods used to maintain the repository records

  11. Modelling spent fuel and HLW behaviour in repository conditions

    Energy Technology Data Exchange (ETDEWEB)

    Esparza, A M; Esteban, J A

    2003-07-01

    The aim of this report is to give the reader an overall insight of the different models, which are used to predict the long-term behaviour of the spent fuels and HLW disposed in a repository. The models must be established on basic data and robust kinetics describing the mechanisms controlling spent fuel alteration/dissolution in a repository. The UO2 matrix, or source term, contains embedded in it the , majority of radionuclides of the spent fuel (some are in the gap cladding). For this reason the SF radionuclides release models play a significant role in the performance assessment of radioactive waste disposal. The differences existing between models published in the literature are due to the conceptual understanding of the processes and the degree of the conservatism used with the parameter values, and the boundary conditions. They mainly differ in their level of simplification and their final objective. Sometimes are focused the show compliance with regulatory requirements, other to support decision making, to increase the level of confidence of public and scientific community, could be empirical, semi-empirical or analytical. The models take into account the experimental results from radionuclides releases and their extrapolation to the very long term. Its necessary a great statistics for have a representative dissolution rate, due at the number of experimental results is not very high and many of them show a great scatter, independently of theirs different compositions by axial and radial variations, due to linear power or local burnup. On the other hand, it is difficult to predict the spent fuel behaviour over the long term, based in short term experiments. In this report is given a little description of the radionuclides distribution in the spent fuel and also in the cladding/pellet gap, grain boundary, cracks and rim zones (the matrix rim zone can be considered with an especial characteristics very different to the rest of the spent fuel), and structural

  12. Modelling spent fuel and HLW behaviour in repository conditions

    International Nuclear Information System (INIS)

    Esparza, A. M.; Esteban, J. A.

    2003-01-01

    The aim of this report is to give the reader an overall insight of the different models, which are used to predict the long-term behaviour of the spent fuels and HLW disposed in a repository. The models must be established on basic data and robust kinetics describing the mechanisms controlling spent fuel alteration/dissolution in a repository. The UO2 matrix, or source term, contains embedded in it the , majority of radionuclides of the spent fuel (some are in the gap cladding). For this reason the SF radionuclides release models play a significant role in the performance assessment of radioactive waste disposal. The differences existing between models published in the literature are due to the conceptual understanding of the processes and the degree of the conservatism used with the parameter values, and the boundary conditions. They mainly differ in their level of simplification and their final objective. Sometimes are focused the show compliance with regulatory requirements, other to support decision making, to increase the level of confidence of public and scientific community, could be empirical, semi-empirical or analytical. The models take into account the experimental results from radionuclides releases and their extrapolation to the very long term. Its necessary a great statistics for have a representative dissolution rate, due at the number of experimental results is not very high and many of them show a great scatter, independently of theirs different compositions by axial and radial variations, due to linear power or local burnup. On the other hand, it is difficult to predict the spent fuel behaviour over the long term, based in short term experiments. In this report is given a little description of the radionuclides distribution in the spent fuel and also in the cladding/pellet gap, grain boundary, cracks and rim zones (the matrix rim zone can be considered with an especial characteristics very different to the rest of the spent fuel), and structural

  13. Conditioning of spent mercury by amalgamation

    International Nuclear Information System (INIS)

    Yim, S. P.; Shon, J. S.; An, B. G.; Lee, H. J.; Lee, J. W.; Ji, C. G.; Kim, S. H.; Yoon, J. H.; Yang, M. S.

    2002-01-01

    Solidification by amalgamation was performed to immobilize and stabilize the liquid spent mercury. First, the appropriate metal and alloy which can convert liquid mercury into a solid form of amalgam were selected through initial tests. The amalgam form, formulated in optimum composition, was characterized and subjected to performance tests including compressive strength, water immersion, leachability and initial vaporization rate to evaluate mechanical integrity, durability and leaching properties. Finally, bench scale amalgamation trial was conducted with about 1 kg of spent mercury to verify the feasibility of amalgamation method

  14. Quality control of concretes for conditioning of spent radioactive sources

    International Nuclear Information System (INIS)

    Gonzalez N, M.

    2015-01-01

    The spent sealed radioactive sources are considered as a specific type of radioactive wastes and should be properly stored to ensure their integrity and prevent or limit the release of radionuclides in the geosphere. For this, these sources can be put up in concrete matrices. This research presents the evaluation and characterization of five concretes prepared with 4 brands of commercial cements: CPC Extra RS, CPC 30R Impercem of Cemex, Cruz Azul CPC 30R and CPC 30R of Apasco; three sizes of coarse aggregate (<30 mm, 29-11 mm and <10 mm) and fine aggregate (0.0797 mm) used as matrices for conditioning of spent sealed radioactive sources, in order to verify if these specific concretes accredit the standard NOM-019-Nucl-1995. After hardening for 28 days the concrete specimens were subjected to the tests: compressive strength; thermal cycles, irradiation, leaching and permeability, later to be characterized by: 1) X-ray diffraction in order to meet their crystalline phases; 2) scanning electron microscopy, to determine changes in morphology; 3) infrared spectroscopy, to determine the structural changes of concrete from its functional groups; 4) Raman spectroscopy to determine their structural changes and 5) Moessbauer spectroscopy, which determines changes in the oxidation state of iron in the concrete. According to the results and the changes presented by each concrete after applying the tests set by NOM-019-Nucl-1995, is concluded that the concrete made with cement Cemex brand (CPC 30-RS Extra), gravel of particle size 11-29 mm and sieved sand (0.0797 mm) can be used as matrices of spent sealed sources conditioning. Is remarkable a morphological and structural change of the concrete due to gamma irradiation and heat treatment. (Author)

  15. Acceptance of failed SNF [spent nuclear fuel] assemblies by the Federal Waste Management System

    International Nuclear Information System (INIS)

    1990-03-01

    This report is one of a series of eight prepared by E. R. Johnson Associates, Inc. (JAI) under ORNL's contract with DOE's OCRWM Systems Integration Program and in support of the Annual Capacity Report (ACR) Issue Resolution Process. The report topics relate specifically to the list of high priority technical waste acceptance issues developed jointly by DOE and a utility-working group. JAI performed various analyses and studies on each topic to serve as starting points for further discussion and analysis leading eventually to finalizing the process by which DOE will accept spent fuel and waste into its waste management system. The eight reports are concerned with the conditions under which spent fuel and high level waste will be accepted in the following categories: failed fuel; consolidated fuel and associated structural parts; non-fuel-assembly hardware; fuel in metal storage casks; fuel in multi-element sealed canisters; inspection and testing requirements for wastes; canister criteria; spent fuel selection for delivery; and defense and commercial high-level waste packages. This document discusses acceptance of failed spent fuel assemblies by the Federal Waste Management System. 18 refs., 7 figs., 25 tabs

  16. Conditioning of spent radiation sources in developing countries

    International Nuclear Information System (INIS)

    1990-01-01

    This video presents the safe handling and conditioning of radioactive spent sealed sources when technological resources are limited and specialized equipment is not available. The process is divided into three phases which are demonstrated in detail: 1) Planning, including training; 2) Conditioning, which is the actual incorporation of the spent sources; and 3) Follow-up, which includes radiological control, documentation and safe storage

  17. Commercial Spent Nuclear Fuel Waste Package Misload Analysis

    International Nuclear Information System (INIS)

    J.K. Knudson

    2003-01-01

    The purpose of this calculation is to estimate the probability of misloading a commercial spent nuclear fuel waste package with a fuel assembly(s) that has a reactivity (i.e., enrichment and/or burnup) outside the waste package design. The waste package designs are based on the expected commercial spent nuclear fuel assemblies and previous analyses (Macheret, P. 2001, Section 4.1 and Table 1). For this calculation, a misloaded waste package is defined as a waste package that has a fuel assembly(s) loaded into it with an enrichment and/or burnup outside the waste package design. An example of this type of misload is a fuel assembly designated for the 21-PWR Control Rod waste package being incorrectly loaded into a 21-PWR Absorber Plate waste package. This constitutes a misloaded 21-PWR Absorber Plate waste package, because the reactivity (i.e., enrichment and/or burnup) of a 21-PWR Control Rod waste package fuel assembly is outside the design of a 21-PWR Absorber Plate waste package. These types of misloads (i.e., fuel assembly with enrichment and/or burnup outside waste package design) are the only types that are evaluated in this calculation. This calculation utilizes information from ''Frequency of SNF Misload for Uncanistered Fuel Waste Package'' (CRWMS M and O 1998) as the starting point. The scope of this calculation is limited to the information available. The information is based on the whole population of fuel assemblies and the whole population of waste packages, because there is no information about the arrival of the waste stream at this time. The scope of this calculation deviates from that specified in ''Technical Work Plan for: Risk and Criticality Department'' (BSC 2002a, Section 2.1.30) in that only waste package misload is evaluated. The remaining issues identified (i.e., flooding and geometry reconfiguration) will be addressed elsewhere. The intended use of the calculation is to provide information and inputs to the Preclosure Safety Analysis

  18. Conditioning of spent fuel for interim and final storage in the pilot conditioning plant (PKA) at Gorleben

    International Nuclear Information System (INIS)

    Lahr, H.; Willax, H.O.; Spilker, H.

    1999-01-01

    In 1994, due to the change of the nuclear law in Germany, the concept of direct final disposal for spent fuel was developed as an equivalent alternative to the waste management with reprocessing. Since 1979, tests for the direct final disposal of spent fuel have been conducted in Germany. In 1985, the State and the utilities came to an agreement to develop this concept of waste management to technical maturity. Gesellschaft fuer Nuklear-Service (GNS) was commissioned by the utilities with the following tasks: to develop and test components with regard to conditioning technology, to construct and operate the pilot conditioning plant (PKA), and to develop casks suitable for final disposal. Since 1990, the construction of the PKA has taken place at the Brennelementlager Gorleben site. The PKA has been designed as a multipurpose facility and can thus fulfil various tasks within the framework of the conditioning and management of spent fuel assemblies and radioactive waste. The pilot character of the plant allows for development and testing in the field of spent fuel assembly conditioning. The objectives of the PKA may be summarized as follows: to condition spent fuel assemblies, to reload spent fuel assemblies and waste packages, to condition radioactive waste, and to do maintenance work on transport and storage casks as well as on waste packages. Currently, the buildings of the PKA are constructed and the technical facilities are installed. The plant will be ready for service in the middle of 1999. It is the first plant of its kind in the world. (author)

  19. Test plan for reactions between spent fuel and J-13 well water under unsaturated conditions

    International Nuclear Information System (INIS)

    Finn, P.A.; Wronkiewicz, D.J.; Hoh, J.C.; Emery, J.W.; Hafenrichter, L.D.; Bates, J.K.

    1993-01-01

    The Yucca Mountain Site Characterization Project is evaluating the long-term performance of a high-level nuclear waste form, spent fuel from commercial reactors. Permanent disposal of the spent fuel is possible in a potential repository to be located in the volcanic tuff beds near Yucca Mountain, Nevada. During the post-containment period the spent fuel could be exposed to water condensation since of the cladding is assumed to fail during this time. Spent fuel leach (SFL) tests are designed to simulate and monitor the release of radionuclides from the spent fuel under this condition. This Test Plan addresses the anticipated conditions whereby spent fuel is contacted by small amounts of water that trickle through the spent fuel container. Two complentary test plans are presented, one to examine the reaction of spent fuel and J-13 well water under unsaturated conditions and the second to examine the reaction of unirradiated UO 2 pellets and J-13 well water under unsaturated conditions. The former test plan examines the importance of the water content, the oxygen content as affected by radiolysis, the fuel burnup, fuel surface area, and temperature. The latter test plant examines the effect of the non-presence of Teflon in the test vessel

  20. Safety of handling, storing and transportation of spent nuclear fuel and vitrified high-level wastes

    International Nuclear Information System (INIS)

    Ericsson, A.M.

    1977-11-01

    The safety of handling and transportation of spent fuel and vitrified high-level waste has been studied. Only the operations which are performed in Sweden are included. That is: - Transportation of spent fuel from the reactors to an independant spent fuel storage installation (ISFSI). - Temporary storage of spent fuel in the ISFSI. - Transportation of the spent fuel from the ISFSI to a foreign reprocessing plant. - Transportation of vitrified high-level waste to an interim storage facility. - Interim storage of vitrified high-level waste. - Handling of the vitrified high-level waste in a repository for ultimate disposal. For each stage in the handling sequence above the following items are given: - A brief technical description. - A description of precautionary measures considered in the design. - An analysis of the discharges of radioactive materials to the environment in normal operation. - An analysis of the discharges of radioactive materials due to postulated accidents. The dose to the public has been roughly and conservatively estimated for both normal and accident conditions. The expected rate of occurence are given for the accidents. The results show that above described handling sequence gives only a minor risk contribution to the public

  1. Necessity and opportunity of building a mobile facility for conditioning the spent ionic resins

    International Nuclear Information System (INIS)

    Barariu, Gheorghe

    2002-01-01

    The ionic resins utilized in nuclear industry for purification of different working fluids become contaminated by important amounts of radionuclides incorporated in their structure. Thus, these resins become intermediate-level radioactive wastes, containing radioisotopes of rather long lifetimes, and so their conditioning is required to ensure binding and isolation of the radionuclides over a period long enough, until their decay. Binding the radionuclides in stable matrices and their isolation by means of engineered barriers ensures protection of environment against contamination. In the frame of Radioactive Waste Management Program related to Cernavoda NPP, optimal technologies for processing the radioactive waste generated during the NPP operation were developed and also a site for final disposal of the low and intermediate level waste was selected. The last one is a modern, ground repository with multiple engineered barriers based on the natural properties of the host geological formation. The final disposal concept implies building a conditioning facility to ensure: a super-compacting stage of the already compacted wastes; cementing the uncompactable wastes; cementing spent filters; cementing the pellets resulted from the super-compacting stage and drums with conditioned wastes in concrete modules; cementing the organic wastes; cementing the spent ionic resins by means of a mobile facility. The spent ionic resins removed from the technologic purification systems of the station are discharged by means of demineralized water and transferred, corresponding to source, to one of the 3 storage 200 m 3 basins from the basement of the CANDU 6 NPP servicing building. To avoid the danger of spent resins being cemented at basin's bottom the basins should be emptied at every 10-15 years. To comply with IAEA requirements concerning the radioactive waste final disposal, a procedure for establishing the quantitative concentration of solidification agents and additives

  2. Commercial waste and spent fuel packaging program. Annual report

    International Nuclear Information System (INIS)

    Hakl, A.R.

    1981-10-01

    This document is a report of activities performed by Westinghouse Advanced Energy Systems Division - Nevada Operations in meeting subtask objectives described in the Nevada Nuclear Waste Storage Investigations (NNWSI) Project Plan and revised planning documentation for Fiscal Year (FY) 1981. Major activities included: completion of the first fuel exchange in the Spent Fuel Test - Climax program; plasma arc welder development; modification and qualification of a canister cutter; installation, and activation of a remote area monitor, constant air monitor and an alpha/beta/gamma counting system; qualification of grapples required to handle pressurized water reactor or boiling water reactor fuel and high level waste (HLW) logs; data acquisition from the 3 kilowatt soil temperature test, 2 kw fuel temperature test, and 2 kw drywell test; calorimetry of the fuel assembly used in the fuel temperature test; evaluation of moisture accumulation in the drywells and recommendations for proposed changes; revision of safety assessment document to include HLW log operations; preparation of quality assurance plan and procedures; development and qualification of all equipment and procedures to receive, handle and encapsulate both the HLW log and spent fuel for the basalt waste isolation program/near surface test facility program; preliminary studies of both the requirements to perform waste packaging for the test and evaluation facility and a cask storage program for the DOE Interim Spent Fuel Management program; and remote handling operations on radioactive source calibration in support of other contractors

  3. USA: energy policy and spent fuel and waste management

    International Nuclear Information System (INIS)

    Petroll, M.R.

    2001-01-01

    The new US administration under President Bush has shifted political weights in the country's energy policy. The policy pursued by the Clinton administration, which had been focused strongly on energy efficiency and environmental protection, will be revoked in a number of points, and the focus instead will now be on economics and continuity of supply, also against the backdrop of the current power supply crisis in California. However, it is more likely that fossil-fired generating capacity will be expanded or added than new nuclear generating capacity. As far as the policy of managing radioactive waste is concerned, no fast and fundamental changes are expected. Low-level waste arising in medicine, research, industry, and nuclear power plants will be stored in a number of shallow ground burial facilities also involving more than one federal state. The Yucca Mountain repository project will be advanced with a higher budget, and WIPP (Waste Isolation Plant) in the state of New Mexico has been in operation since 1998. Plans for the management of spent fuel elements include interim stores called ISFSIs (Independent Spent Fuel Storage Installations) both near and independent of nuclear power sites. Nineteen sites have been licensed, another eighteen are ready to be licensed. In addition, also international spent fuel and nuclear waste management approaches are being discussed in the United States which, inter alia, are meant to offer comprehensive solutions to countries running only a small number of nuclear power plants. (orig.) [de

  4. A literature survey on the dissolution mechanism of spent fuel under disposal conditions

    International Nuclear Information System (INIS)

    Ollila, Kaija

    1989-06-01

    In Finland spent nuclear fuel is planned to be disposed of at large depths in crystalline bedrock. As part of the YJT (Nuclear Waste Commission of Finnish Power Companies) - program, the solubiliy and dissolution mechanisms of unirradiated UO 2 are experimentally investigated as a function of groundwater conditions. This study is a literature survey on the leaching and dissolution studies carried out with spent fuel. It consists first a review on characterization studies of spent fuel. Then the solubilities and release mechanisms of the radionuclides from spent fuel in granitic or related groundwaters are discussed, including the dissolution of UO 2 matrix, and the leaching of fission products and actinides. Lastly approaches to modelling the dissolution of spent fuel are shortly discussed

  5. Transportation of high-level waste and spent fuel

    International Nuclear Information System (INIS)

    Carlson, J.H.; Lake, W.H.; Thompson, J.H.

    1993-01-01

    The Office of Civilian Radioactive Waste Management (OCRWM) transportation program is a multifaceted undertaking to transport spent nuclear fuel from commercial reactors to temporary and permanent storage facilities commencing in 1998. One of the significant ingredients necessary to achieving this goal is the development and acquisition of shipping casks. Efforts to design and acquire high capacity casks is ongoing, as are efforts to purchase casks that can be made available using current technology. By designing casks that are optimized to the specifications of the older cooler spent fuel that will be shipped, and by designing to current NRC requirements, OCRWM's new generation of spent fuel casks will be more efficient and at least as safe as current cask designs. (J.P.N.)

  6. Nuclear Waste Imaging and Spent Fuel Verification by Muon Tomography

    OpenAIRE

    Jonkmans, G.; Anghel, V. N. P.; Jewett, C.; Thompson, M.

    2012-01-01

    This paper explores the use of cosmic ray muons to image the contents of shielded containers and detect high-Z special nuclear materials inside them. Cosmic ray muons are a naturally occurring form of radiation, are highly penetrating and exhibit large scattering angles on high Z materials. Specifically, we investigated how radiographic and tomographic techniques can be effective for non-invasive nuclear waste characterization and for nuclear material accountancy of spent fuel inside dry stor...

  7. Spent Fuel and High-Level Radioactive Waste Transportation Report

    International Nuclear Information System (INIS)

    1992-03-01

    This publication is intended to provide its readers with an introduction to the issues surrounding the subject of transportation of spent nuclear fuel and high-level radioactive waste, especially as those issues impact the southern region of the United States. It was originally issued by SSEB in July 1987 as the Spent Nuclear Fuel and High-Level Radioactive Waste Transportation Primer, a document patterned on work performed by the Western Interstate Energy Board and designed as a ''comprehensive overview of the issues.'' This work differs from that earlier effort in that it is designed for the educated layman with little or no background in nuclear waste Issues. In addition. this document is not a comprehensive examination of nuclear waste issues but should instead serve as a general introduction to the subject. Owing to changes in the nuclear waste management system, program activities by the US Department of Energy and other federal agencies and developing technologies, much of this information is dated quickly. While this report uses the most recent data available, readers should keep in mind that some of the material is subject to rapid change. SSEB plans periodic updates in the future to account for changes in the program. Replacement pages will be supplied to all parties in receipt of this publication provided they remain on the SSEB mailing list

  8. Radioactive wastes and spent fuels management in Argentina

    International Nuclear Information System (INIS)

    Maset, Elvira R.

    2006-01-01

    CNEA was created in 1950 and since then has carried out research and development activities, production of radioisotopes, medical and industrial applications, and those activities related with the nuclear fuel cycle, including the operation of two nuclear power stations. More ever, different public and private institutions use radioactive materials in medical, industrial and research activities. These activities generate different types of radioactive waste, desuse sealed sources and spent fuel. The management of radioactive waste of all types produced in the country, as the spent nuclear fuel of power and research reactors and the used radioactive sources was always and it is at present a CNEA's responsibility. In February 2003, according to the Law No. 25.018, called 'Management of Radioactive Waste Regimen', the 'Radioactive Waste Management National Programme' was created by CNEA to fulfill the institutional functions and responsibilities established in the Law, in order to guarantee the safe management of radioactive waste according to the regulations established by the Argentine Nuclear Regulatory Agency and to the legislation in force. (author) [es

  9. Spent fuel and high-level radioactive waste transportation report

    Energy Technology Data Exchange (ETDEWEB)

    1989-11-01

    This publication is intended to provide its readers with an introduction to the issues surrounding the subject of transportation of spent nuclear fuel and high-level radioactive waste, especially as those issues impact the southern region of the United States. It was originally issued by the Southern States Energy Board (SSEB) in July 1987 as the Spent Nuclear Fuel and High-Level Radioactive Waste Transportation Primer, a document patterned on work performed by the Western Interstate Energy Board and designed as a ``comprehensive overview of the issues.`` This work differs from that earlier effort in that it is designed for the educated layman with little or no background in nuclear waste issues. In addition, this document is not a comprehensive examination of nuclear waste issues but should instead serve as a general introduction to the subject. Owing to changes in the nuclear waste management system, program activities by the US Department of Energy and other federal agencies and developing technologies, much of this information is dated quickly. While this report uses the most recent data available, readers should keep in mind that some of the material is subject to rapid change. SSEB plans periodic updates in the future to account for changes in the program. Replacement pages sew be supplied to all parties in receipt of this publication provided they remain on the SSEB mailing list.

  10. Spent fuel and high-level radioactive waste transportation report

    International Nuclear Information System (INIS)

    1989-11-01

    This publication is intended to provide its readers with an introduction to the issues surrounding the subject of transportation of spent nuclear fuel and high-level radioactive waste, especially as those issues impact the southern region of the United States. It was originally issued by the Southern States Energy Board (SSEB) in July 1987 as the Spent Nuclear Fuel and High-Level Radioactive Waste Transportation Primer, a document patterned on work performed by the Western Interstate Energy Board and designed as a ''comprehensive overview of the issues.'' This work differs from that earlier effort in that it is designed for the educated layman with little or no background in nuclear waste issues. In addition, this document is not a comprehensive examination of nuclear waste issues but should instead serve as a general introduction to the subject. Owing to changes in the nuclear waste management system, program activities by the US Department of Energy and other federal agencies and developing technologies, much of this information is dated quickly. While this report uses the most recent data available, readers should keep in mind that some of the material is subject to rapid change. SSEB plans periodic updates in the future to account for changes in the program. Replacement pages sew be supplied to all parties in receipt of this publication provided they remain on the SSEB mailing list

  11. Spent fuel and high-level radioactive waste transportation report

    International Nuclear Information System (INIS)

    1990-11-01

    This publication is intended to provide its readers with an introduction to the issues surrounding the subject of transportation of spent nuclear fuel and high-level radioactive waste, especially as those issues impact the southern region of the United States. It was originally issued by the Southern States Energy Board (SSEB) in July 1987 as the Spent Nuclear Fuel and High-Level Radioactive Waste Transportation Primer, a document patterned on work performed by the Western Interstate Energy Board and designed as a ''comprehensive overview of the issues.'' This work differs from that earlier effort in that it is designed for the educated layman with little or no background in nuclear waste issues. In addition, this document is not a comprehensive examination of nuclear waste issues but should instead serve as a general introduction to the subject. Owing to changes in the nuclear waste management system, program activities by the US Department of Energy and other federal agencies and developing technologies, much of this information is dated quickly. While this report uses the most recent data available, readers should keep in mind that some of the material is subject to rapid change. SSEB plans periodic updates in the future to account for changes in the program. Replacement pages will be supplied to all parties in receipt of this publication provided they remain on the SSEB mailing list

  12. Processing ix spent resin waste for C-14 isotope recovery

    International Nuclear Information System (INIS)

    Chang, F. H.; Woodall, K. B.; Sood, S. K.; Vogt, H. K.; Krochmainek, L. S.

    1991-01-01

    A process developed at Ontario Hydro for recovering carbon-14 (C-14) from spent ion exchange resin wastes is described. Carbon-14 is an undesirable by-product of CANDU 1 nuclear reactor operation. It has an extremely long (5730 years) half-life and can cause dosage to inhabitants by contact, inhalation, or through the food cycle via photosynthesis. Release of carbon-14 to the environment must be minimized. Presently, all the C-14 produced in the Moderator and Primary Heat Transport (PHT) systems of the reactor is effectively removed by the respective ion exchange columns, and the spent ion exchange resins are stored in suitably engineered concrete structures. Because of the large volumes of spent resin waste generated each year this method of disposal by long term storage tends to be uneconomical; and may also be unsatisfactory considering the long half-life of the C-14. However, purified C-14 is a valuable commercial product for medical, pharmaceutical, agricultural, and organic chemistry research. Currently, commercial C-14 is made artificially in research reactors by irradiating aluminum nitride targets for 4.5 years. If the C-14 containing resin waste can be used to reduce this unnecessary production of C-14, the total global build-up of this radioactive chemical can be reduced. There is much incentive in removing the C-14 from the resin waste to reduce the volume of C-14 waste, and also in purifying the recovered C-14 to supply the commercial market. The process developed by Ontario Hydro consists of three main steps: C-14 removal from spent resins, enrichment of recovered C-14, and preparation of final product. Components of the process have been successfully tested at Ontario Hydro's Research Division, but the integration of the process is yet to be demonstrated. A pilot scale plant capable of processing 4 m 3 of spent resins annually is being planned for demonstrating the technology. The measured C-14 activity levels on the spent resins ranged from 47

  13. Acceptance of spent nuclear fuel in multiple element sealed canisters by the Federal Waste Management System

    International Nuclear Information System (INIS)

    1990-03-01

    This report is one of a series of eight prepared by E.R. Johnson Associates, Inc. (JAI) under ORNL's contract with DOE's OCRWM Systems Integration Program and in support of the Annual Capacity Report (ACR) Issue Resolution Process. The report topics relate specifically to the list of high priority technical waste acceptance issues developed jointly by DOE and a utility-working group. JAI performed various analyses and studies on each topic to serve as starting points for further discussion and analysis leading eventually to finalizing the process by which DOE will accept spent fuel and waste into its waste management system. The eight reports are concerned with the conditions under which spent fuel and high level waste will be accepted in the following categories: (1) failed fuel; (2) consolidated fuel and associated structural parts; (3) non-fuel-assembly hardware; (4) fuel in metal storage casks; (5) fuel in multi-element sealed canisters; (6) inspection and testing requirements for wastes; (7) canister criteria; (8) spent fuel selection for delivery; and (9) defense and commercial high-level waste packages. 14 refs., 27 figs

  14. Preliminary waste acceptance criteria for the ICPP spent fuel and waste management technology development program

    International Nuclear Information System (INIS)

    Taylor, L.L.; Shikashio, R.

    1993-09-01

    The purpose of this document is to identify requirements to be met by the Producer/Shipper of Spent Nuclear Fuel/High-LeveL Waste SNF/HLW in order for DOE to be able to accept the packaged materials. This includes defining both standard and nonstandard waste forms

  15. Analysis of scenarios for the direct disposal of spent nuclear fuel disposal conditions as expected in Germany

    International Nuclear Information System (INIS)

    Ashton, P.; Mehling, O.; Mohn, R.; Wingender, H.J.

    1990-01-01

    This report contains an investigation of aspects of the waste management of spent light water reactor fuel by direct disposal in a deep geological formation on land. The areas covered are: interim dry storage of spent fuel with three options of pre-conditioning; conditioning of spent fuel for final disposal in a salt dome repository; disposal of spent fuel (heat-generating waste) in a salt dome repository; disposal of medium and low-level radioactive wastes in the Konrad mine. Dose commitments, effluent discharges and potential incidents were not found to vary significantly for the various conditioning options/salt dome repository types. Due to uncertainty in the cost estimates, in particular the disposal cost estimates, the variation between the three conditioning options examined is not considered as being significant. The specific total costs for the direct disposal strategy are estimated to lie in the range ECU 600 to 700 per kg hm (basis 1988)

  16. Solidification of radioactive liquid wastes. A comparison of treatment options for spent resins and concentrates

    International Nuclear Information System (INIS)

    Roth, A.; Willmann, F.; Ebata, M.; Wendt, S.

    2008-01-01

    Ion exchange is one of the most common and effective treatment methods for liquid radioactive waste. However, spent ion exchange resins are considered to be problematic waste that in many cases require special approaches and pre-conditioning during its immobilization to meet the acceptance criteria for disposal. Because of the function that they fulfill, spent ion exchange resins often contain high concentrations of radioactivity and pose special handling and treatment problems. Another very common method of liquid radioactive waste treatment and water cleaning is the evaporation or diaphragm filtration. Both treatment options offer a high volume reduction of the total volume of liquids treated but generate concentrates which contain high concentrations of radioactivity. Both mentioned waste streams, spent resins as well as concentrates, resulting from first step liquid radioactive waste treatment systems have to be conditioned in a suitable manner to achieve stable waste products for final disposal. The most common method of treatment of such waste streams is the solidification in a solid matrix with additional inactive material like cement, polymer etc. In the past good results have been achieved and the high concentration of radioactivity can be reduced by adding the inactive material. On the other hand, under the environment of limited space for interim storage and the absence of a final repository site, the built-up of additional volume has to be considered as very critical. Moreover, corrosive effects on cemented drums during long-term interim storage at the surface have raised doubts about the long-term stability of such waste products. In order to avoid such disadvantages solidification methods have been improved in order to get a well-defined product with a better load factor of wastes in the matrix. In a complete different approach, other technologies solidify the liquid radioactive wastes without adding of any inactive material by means of drying

  17. Spent catalyst waste management. A review. Part 1. Developments in hydroprocessing catalyst waste reduction and use

    Energy Technology Data Exchange (ETDEWEB)

    Marafi, M.; Stanislaus, A. [Petroleum Refining Department, Petroleum Research and Studies Center, Kuwait Institute for Scientific Research, P.O. Box 24885, 13109-Safat (Kuwait)

    2008-04-15

    Solid catalysts containing metals, metal oxides or sulfides, which play a key role in the refining of petroleum to clean fuels and many other valuable products, become solid wastes after use. In many refineries, the spent catalysts discarded from hydroprocessing units form a major part of these solid wastes. Disposal of spent hydroprocessing catalysts requires compliance with stringent environmental regulations because of their hazardous nature and toxic chemicals content. Various options such as minimizing spent catalyst waste generation by regeneration and reuse, metals recovery, utilization to produce useful materials and treatment for safe disposal, could be considered to deal with the spent catalyst environmental problem. In this paper, information available in the literature on spent hydroprocessing catalyst waste reduction at source by using improved more active and more stable catalysts, regeneration, rejuvenation and reuse of deactivated catalysts in many cycles, and reusing in other processes are reviewed in detail with focus on recent developments. Available methods for recycling of spent hydroprocessing catalysts by using them as raw materials for the preparation of active new catalysts and many other valuable products are also reviewed. (author)

  18. Final disposal of high levels waste and spent nuclear fuel

    International Nuclear Information System (INIS)

    Gelin, R.

    1984-05-01

    Foreign and international activities on the final disposal of high-level waste and spent nuclear fuel have been reviewed. A considerable research effort is devoted to development of acceptable disposal options. The different technical concepts presently under study are described in the report. Numerous studies have been made in many countries of the potential risks to future generations from radioactive wastes in underground disposal repositories. In the report the safety assessment studies and existing performance criteria for geological disposal are briefly discussed. The studies that are being made in Canada, the United States, France and Switzerland are the most interesting for Sweden as these countries also are considering disposal into crystalline rocks. The overall time-tables in different countries for realisation of the final disposal are rather similar. Normally actual large-scale disposal operations for high-level wastes are not foreseen until after year 2000. In the United States the Congress recently passed the important Nuclear Waste Policy Act. It gives a rather firm timetable for site-selection and construction of nuclear waste disposal facilities. According to this act the first repository for disposal of commercial high-level waste must be in operation not later than in January 1998. (Author)

  19. Program for responsible and safe disposal of spent fuel elements and radioactive wastes (National disposal program)

    International Nuclear Information System (INIS)

    2015-01-01

    The contribution covers the following topics: fundamentals of the disposal policy; amount of radioactive wastes and prognosis; disposal of radioactive wastes - spent fuel elements and wastes from waste processing, radioactive wastes with low heat production; legal framework of the nuclear waste disposal in Germany; public participation, cost and financing.

  20. Regulations for the safe management of radioactive wastes and spent nuclear fuel

    International Nuclear Information System (INIS)

    Voica, Anca

    2007-01-01

    The paper presents the national, international and European regulations regarding radioactive waste management. ANDRAD is the national authority charged with nation wide coordination of safe management of spent fuel and radioactive waste including their final disposal. ANDRAD's main objectives are the following: - establishing the National Strategy concerning the safety management of radioactive waste and spent nuclear fuel; - establishing the national repositories for the final disposal of the spent nuclear fuel and radioactive waste; - developing the technical procedures and establishing norms for all stages of management of spent nuclear fuel and radioactive waste, including the disposal and the decommissioning of the nuclear and radiologic facilities

  1. Implications of the Croatian Spent Fuel and Radioactive Waste Strategy

    International Nuclear Information System (INIS)

    Lokner, V.; Levanat, I.

    2012-01-01

    Croatian Government approved its national Radioactive waste and Spent Fuel Strategy as a part of the accession process to EU in July 2009 enabling acquisition of adequate administrative capacity by the time of accession to properly implement and enforce the relevant legislation in all areas related to nuclear safety. Strategy was formulated in line with the Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management. In particular, the strategy was approved to ensure that sufficient qualified staff and adequate financial services are available to support the safety of facilities for spent fuel and radioactive waste management generated by Krsko NPP during their operating lifetime and from decommissioning. Following are statements from the Croatian strategy that are relevant for Croatian position regarding capacity building for storage and disposal of LILW and SF. To be able to fulfill the obligations assumed, Croatia needs to do the following (Strategy Section 3.3): reach an agreement with Slovenia by 2013 at the latest regarding the location of objects for storing LILW; should no such agreement be reached, Croatia is to initiate preparations for assuming its half of operational LILW and for third-country export thereof, or for storing the LILW on Croatian territory, whilst also gradually assuming the part of LILW created from decommissioning; reach an agreement with Slovenia by 2018 at the latest regarding the location of a common SF storage; should no such agreement be reached, initiate preparations for assuming a third-country export of SF, or for storing half of SF on Croatian territory. This paper discusses the Strategy aims in the light of noticeable delay of 2nd revision of the Program of NPP Krsko Decommissioning and SF andLILW Disposal, the status of the planned Slovenian national repository on Vrbina site and the prospects of its use for joint Croatian/Slovenian LILW disposal - all in the context of as yet

  2. Geological aspects of the high level waste and spent fuel disposal programme in Slovakia

    Energy Technology Data Exchange (ETDEWEB)

    Matej, Gedeon; Milos, Kovacik; Jozef, Hok [Geological Survey of Slovak Republic, Bratislava (Slovakia)

    2001-07-01

    An autonomous programme for development of a deep geological high level waste and spent fuel disposal began in 1996. One of the most important parts in the programme is siting of the future deep seated disposal. Geological conditions in Slovakia are complex due to the Alpine type tectonics that formed the geological environment during Tertiary. Prospective areas include both crystalline complexes (tonalites, granites, granodiorites) and Neogene (Miocene) argillaceous complexes. (author)

  3. Liquid waste processing from TRIGA spent fuel storage pits

    International Nuclear Information System (INIS)

    Buchtela, Karl

    1988-01-01

    At the Atominstitute of the Austrian Universities and also at other facilities running TRIGA reactors, storage pits for spent fuel elements are installed. During the last revision procedure, the reactor group of the Atominstitute decided to refill the storage pits and to get rid of any contaminated storage pit water. The liquid radioactive waste had been pumped to polyethylene vessels for intermediate storage before decontamination and release. The activity concentration of the storage pit water at the Aominstitute after a storage period of several years was about 40 kBq/l, the total amount of liquid in the storage pits was about 0.25 m 3 . It was attempted to find a simple and inexpensive method to remove especially the radioactive Cesium from the waste solution. Different methods for decontamination like distillation, precipitation and ion exchange are discussed

  4. Safeguards approach for conditioning facility for spent fuel

    International Nuclear Information System (INIS)

    Younkin, J.M.; Barham, M.; Moran, B.W.

    1999-01-01

    A safeguards approach has been developed for conditioning facilities associated with the final disposal of spent fuel in geologic repositories. The proposed approach is based on a generic conditioning facility incorporating common features of conditioning facility designs currently proposed. The generic facility includes a hot cell for consolidation of spent fuel pins and repackaging of spent fuel items such as assemblies and cans of pins. The consolidation process introduces safeguards concerns which have not previously been addressed in traditional safeguards approaches. In developing the safeguards approach, diversion of spent fuel was assessed in terms of potential target items, operational activities performed on the items, containment of the items, and concealment activities performed on the items. The combination of these factors defines the potential diversion pathways. Diversion pathways were identified for spent fuel pellets, pins, assemblies, canisters, and casks. Diversion activities provide for opportunities of detection along the diversion paths. Potential detection methods were identified at several levels of diversion activities. Detection methods can be implemented through safeguards measures. Safeguards measures were proposed for each of the primary safeguards techniques of design information verification (DIV), containment and surveillance (C/S), and material accountancy. Potential safeguards approaches were developed by selection of appropriate combinations of safeguards measures. For all candidate safeguards approaches, DIV is a fundamental component. Variations in the approaches are mainly in the degree of C/S measures and in the types and numbers of material accountancy verification measures. The candidate safeguards approaches were evaluated toward the goal of determining a model safeguards approach. This model approach is based on the integrated application of selected safeguards measures to use International Atomic Energy Agency resources

  5. Performance of borosilicate glass, Synroc and spent fuel as nuclear waste forms

    International Nuclear Information System (INIS)

    Lutze, W.; Grambow, B.; Ewing, R.C.

    1990-01-01

    Presently, there are three prominent waste forms under consideration for the disposal of high-level waste: Borosilicate glass and Synroc for high-level radioactive waste from fuel reprocessing and spent fuel as the waste form for non-reprocessed fuel. Using the present experimental data base, one may compare the performance of these three waste forms under repository relevant conditions. In low water flow regimes and at temperatures less than 100 degree C, the fractional release rates of all three waste forms are low, on the order of 10-7/d or less and may decrease with time. Under these conditions the three waste forms behave similarly. At elevated temperatures or in high flow regimes, the durability of borosilicate glass will be much less than that of Synroc, and thus, for certain disposal schemes (e.g., deep burial) Synroc is preferable. All predictions of the long-term behavior are based on the extrapolation of short term experimental data, we point out that appropriate and useful natural analogues are available for each of these waste forms and should be used in the performance assessment of each waste form's long-term behavior. 14 refs

  6. Biodegradation of radioactive organic liquid waste from spent fuel reprocessing

    International Nuclear Information System (INIS)

    Ferreira, Rafael Vicente de Padua

    2008-01-01

    The research and development program in reprocessing of low burn-up spent fuel elements began in Brazil in 70's, originating the lab-scale hot cell, known as Celeste located at Nuclear and Energy Research Institute, IPEN - CNEN/SP. The program was ended at the beginning of 90's, and the laboratory was closed down. Part of the radioactive waste generated mainly from the analytical laboratories is stored waiting for treatment at the Waste Management Laboratory, and it is constituted by mixture of aqueous and organic phases. The most widely used technique for the treatment of radioactive liquid wastes is the solidification in cement matrix, due to the low processing costs and compatibility with a wide variety of wastes. However, organics are generally incompatible with cement, interfering with the hydration and setting processes, and requiring pre -treatment with special additives to stabilize or destroy them. The objective of this work can be divided in three parts: organic compounds characterization in the radioactive liquid waste; the occurrence of bacterial consortia from Pocos de Caldas uranium mine soil and Sao Sebastiao estuary sediments that are able to degrade organic compounds; and the development of a methodology to biodegrade organic compounds from the radioactive liquid waste aiming the cementation. From the characterization analysis, TBP and ethyl acetate were chosen to be degraded. The results showed that selected bacterial consortia were efficient for the organic liquid wastes degradation. At the end of the experiments the biodegradation level were 66% for ethyl acetate and 70% for the TBP. (author)

  7. Radioactive waste management and spent nuclear fuel storing. Options and priorities

    International Nuclear Information System (INIS)

    Popescu, Ion

    2001-01-01

    As a member of the states' club using nuclear energy for peaceful applications, Romania approaches all the activities implied by natural uranium nuclear fuel cycle, beginning with uranium mining and ending with electric energy generation. Since, in all steps of the nuclear fuel cycle radioactive wastes are resulting, in order to protect the environment and the life, the correct and competent radioactive waste management is compulsory. Such a management implies: a. Separating the radioisotopes in all the effluences released into environment; b. Treating separately the radioisotopes to be each properly stored; c. Conditioning waste within resistant matrices ensuring long term isolation of the radioactive waste destined to final disposal; d. Building radioactive waste repositories with characteristics of isolation guaranteed for long periods of time. To comply with the provisions of the International Convention concerning the safety of the spent nuclear fuel and radioactive waste management, signed on 5 September 1997, Romania launched its program 'Management of Radioactive Wastes and Dry Storing of Spent Nuclear Fuel' having the following objectives: 1. Establishing the technology package for treating and conditioning the low and medium active waste from Cernavoda NPP to prepare them for final disposal; 2. Geophysical and geochemical investigations of the site chosen for the low and medium active final disposal (DFDSMA); 3. Evaluating the impact on environment and population of the DFDSMA; 4. Providing data necessary in the dry intermediate storing of spent nuclear fuel and the continuous and automated surveillance; 5. Establishing multiple barriers for spent nuclear fuel final disposal in order to establish the repository in granitic rocks and salt massives; 6. Designing and testing containers for final disposal of spent nuclear fuel guaranteeing the isolation over at least 500 years; 7. Computational programs for evaluation of radionuclide leakage in environment in

  8. Behaviour of Spent WWER fuel under long term storage conditions

    Energy Technology Data Exchange (ETDEWEB)

    Kadarmetov, I M [A.A.Bochvar All-Russia Research Institute of Inorganic Materials, Moscow (Russian Federation)

    1999-07-02

    Results of experimental investigation into thermomechanical properties of pre-irradiated Zr-1%Nb alloy over a range temperatures 500-570 grad C are presented. Safety examination of the Ventilation Storage Casks dry storage system has been carried out. Preliminary safety criteria under dry storage conditions in an environment of inert gas are follows: maximum cladding temperature under normal conditions of dry storage should not exceed 330 grad C after 5-year cooling in water-filled pools; maximum allowable temperature of spent fuel rod cladding under operational mode with infringement of heat removal should not exceed 440 grad C over 8 hours. As each SFA dry storage project comprises its individual technology of spent fuel management, it is necessary to evaluate allowable parameters (terms of storage, maximum temperatures of fuel) for each project respectively. The programme of experimental investigations for the justification of safety criteria for WWER-1000 dry spent fuel storage systems is underway. (author)

  9. Overview of the US program for developing a waste disposal system for spent nuclear fuel and high-level waste

    International Nuclear Information System (INIS)

    Kay, C.E.

    1988-01-01

    Safe disposal of spent nuclear fuel and radioactive high-level waste (HLW) has been a matter of national concern ever since the first US civilian nuclear reactor began generating electricity in 1957. Based on current projections of commercial generating capacity, by the turn of the century, there will be >40,000 tonne of spent fuel in the Untied States. In addition to commercial spent fuel, defense HLW is generated in the United States and currently stored at three US Department of Energy (DOE) sites: The Nuclear Waste Policy Amendments Act of 1987 provided for financial incentives to host a repository or a monitored retrievable storage (MRS) facility; mandated the areas in which DOE's siting efforts should concentrate (Yucca Mountain, Nevada); required termination of site-specific activities at other sites; required a resisting process for an MRS facility, which DOE had proposed as an integral part of the waste disposal system; terminated all activities for identifying candidates for a second repository; established an 11-member Nuclear Waste Technical Review Board; established a three-member MRS commission to be appointed by heads of the US Senate and House; directed the President to appoint a negotiator to seek a state or Indian tribe willing to host a repository or MRS facility at a suitable site and to negotiate terms and conditions under which the state or tribe would be willing to host such a facility; and amended, adjusted, or established other requirements contained in the 1982 law

  10. Muon tomography for imaging nuclear waste and spent fuel verification

    Energy Technology Data Exchange (ETDEWEB)

    Jonkmans, G.; Anghel, V.N.P.; Thompson, M. [Atomic Energy of Canada Limited, Chalk River (Canada)

    2010-07-01

    This paper explores the use of cosmic ray muons to image the content of, and to detect high-Z special nuclear material inside, shielded containers. Cosmic ray muons are a naturally occurring form of radiation, are highly penetrating and exhibit large scattering angles on high Z materials. Specifically, we investigated how radiographic and tomographic techniques can be effective for non-invasive nuclear waste characterization and for nuclear material accountancy of spent fuel inside dry storage containers. We show that the tracking of individual muons, as they enter and exit a structure, can potentially improve the accuracy and availability of data on nuclear waste and the content of Dry Storage Containers (DSC) used for spent fuel storage at CANDU plants. This could be achieved in near real time, with the potential for unattended and remotely monitored operations. We show that the expected sensitivity to perform material accountancy, in the case of the DSC, exceeds the IAEA detection target for nuclear material accountancy. (author)

  11. Solidification of radioactive liquid wastes, Treatment options for spent resins and concentrates - 16405

    International Nuclear Information System (INIS)

    Roth, Andreas

    2009-01-01

    Ion exchange is one of the most common and effective treatment methods for liquid radioactive waste. However, spent ion exchange resins are considered to be problematic waste that in many cases require special approaches and pre-conditioning during its immobilization to meet the acceptance criteria for disposal. Because of the function that they fulfill, spent ion exchange resins often contain high concentrations of radioactivity and pose special handling and treatment problems. Another very common method of liquid radioactive waste treatment and water cleaning is the evaporation or diaphragm filtration. Both treatment options offer a high volume reduction of the total volume of liquids treated but generate concentrates which contain high concentrations of radioactivity. Both mentioned waste streams, spent resins as well as concentrates, resulting from first step liquid radioactive waste treatment systems have to be conditioned in a suitable manner to achieve stable waste products for final disposal. Spent resin and concentrate treatment often appear as a specific task in decommissioning projects, because in the past those waste streams typically had been stored in tanks for the lifetime of the plant and needs to be retrieved, conditioned and packed prior to dismantling activities. Additionally a large amount of contaminated liquids will be generated by utilizing decontamination processes and needs to be processed further on. Such treatment options need to achieve waste products acceptable for final disposal, because due to the closure of the site no interim storage can be envisaged. The most common method of treatment of such waste streams is the solidification in a solid matrix with additional inactive material like cement, polymer etc. In the past good results have been achieved and the high concentration of radioactivity can be reduced by adding the inactive material. On the other hand, under the environment of limited space for interim storage and the absence

  12. Structural analysis of advanced spent fuel conditioning process

    International Nuclear Information System (INIS)

    Gu, J. H.; Jung, W. M.; Jo, I. J.; Gug, D. H.; Yoo, K. S.

    2003-01-01

    An advanced spent fuel conditioning process (ACP) is developing for the safe and effective management of spent fuels which arising from the domestic nuclear power plants. And its demonstration facility is under design. This facility will be prepared by modifying IMEF's reserve hot cell facility which reserved for future usage by considering the characteristics of ACP. This study presents a basic structural architecture design and analysis results of ACP hot cell including modification of the IMEF. The results of this study will be used for the detail design of ACP demonstration facility, and utilized as basic data for the licensing of the ACP facility

  13. Conditioning of alpha waste

    International Nuclear Information System (INIS)

    Halaszovich, S.; Gerontopoulos, P.; Hennart, D.; Ledebrink, F.W.; Loida, A.; Phillips, D.C.; Vandevoorde, N.

    1985-01-01

    The long life and high radiotoxicity of the alph-emitting transuranics in radioactive waste provide an incentive for the constant improvement of existing processes and waste forms or the development of new alternatives, to isolate them safely from the biosphere. In the following, five processes at differing stages of development are outlined, the products ranging between cement, glass and ceramics: a process developed by ALKEM for the cementation of waste from fuel element manufacture; a process to improve the quality of cement products containing Magnox hulls, under development at AERE Harwell; high-temperature slagging incineration, developed at SCK/CEN; embedding of waste in an alumosilicate-based ceramic, being developed at KfK; embedding of waste in a titanium dioxide-based ceramic, proposed by Agip

  14. Bituminization of simulated waste, spent resins, evaporator concentrates and animal ashes by extrusion process

    International Nuclear Information System (INIS)

    Grosche Filho, C.E.; Chandra, U.

    1986-01-01

    The results of the study of simulated radwaste, spent ion-exchange resins, borates/evaporator-concentrates and animal ashes, in bituminized form, are presented and discussed. Distilled and oxidized bitumen were used for characterizing the crude material and simulated wastes-bitumen mixtures of varying weight composition 30, 40, 50, 60% by weight the dry waste material. The asphaltine and parafin contents in the bitumens were determined. Some additives and clays were used aiming best characteristics of solidified wastes. For leaching studies, granular ion-exchange resins were loaded with Cs 134 and mixtures of resins-bitumens were prepared. The leaching studies were executed using the IAEA recommendation and the ISO method. It was used a conventional screw-extruder, used in plastic industry, to determine operational conditions and process difficulties. Mixtures resins-bitumen and concentrate-bitumen in differents operational condition were prepared and analysed. (Author) [pt

  15. Low temperature spent fuel oxidation under tuff repository conditions

    International Nuclear Information System (INIS)

    Einziger, R.E.; Woodley, R.E.

    1985-01-01

    The Nevada Nuclear Waste Storage Investigations Project is studying the suitability of tuffaceous rocks at Yucca Mountain, Nye County, Nevada, for high level waste disposal. The oxidation state of LWR spent fuel in a tuff repository may be a significant factor in determining its ability to inhibit radionuclide migration. Long term exposure at low temperatures to the moist air expected in a tuff repository is expected to increase the oxidation state of the fuel. A program is underway to determine the spent fuel oxidation mechanisms which might be active in a tuff repository. Initial work involves a series of TGA experiments to determine the effectiveness of the technique and to obtain preliminary oxidation data. Tests were run at 200 0 C and 225 0 C for as long as 720 hours. Grain boundary diffusion appears to open up a greater surface area for oxidation prior to onset of bulk diffusion. Temperature strongly influences the oxidation rates. The effect of moisture is small but readily measurable. 25 refs., 7 figs., 4 tabs

  16. Key convention on safe management of spent fuel and radioactive waste to enter into force

    International Nuclear Information System (INIS)

    2001-01-01

    At a ceremony at IAEA Headquarters today, Ireland deposited its instrument of ratification to an important convention on the safe management of spent fuel and radioactive waste, thereby ensuring its entry into force. The Convention will be the first international instrument to address the safety of management and storage of radioactive wastes and spent fuels in countries with and without nuclear programmes

  17. The concept of radioactive waste and spent nuclear fuel management in the Czech Republic

    International Nuclear Information System (INIS)

    Suransky, F.; Duda, V.

    2003-01-01

    The article briefly comments on the status of nuclear waste and spent nuclear fuel management in the Czech Republic in the context of the document entitled 'The Concept of Radioactive Waste and Spent Nuclear Fuel Management in the Czech Republic', which was adopted by the Czech Government in May 2002 as a national strategy in this field. (author)

  18. Current activities on improving storage conditions of the research reactor RA spent fuel - Part II

    International Nuclear Information System (INIS)

    Matausek, M.V.; Kopecni, M.; Vukadin, Z.; Plecas, I.; Pavlovic, R.; Sotic, O.; Marinkovic, N.

    1998-01-01

    To minimize further corrosion and preserve integrity of aluminum barrels and the stainless steel channel-type containers that were found to contain leaking spent fuel, actions to improve conditions in the existing spent fuel storage pool at the RA research reactor were initiated. Technology was elaborated and equipment was produced and applied for removal of sludge and other debris from the bottom of the pool, filtration of the pool water, sludge conditioning in cement matrix and disposal at the low and medium waste repository at VINCA site. More sophisticated operations are to be performed together with foreign experts. Safety measures and precautions were determined. Subcriticality was proved under normal and/or possible abnormal conditions. (author)

  19. Truck and rail charges for shipping spent fuel and nuclear waste

    International Nuclear Information System (INIS)

    McNair, G.W.; Cole, B.M.; Cross, R.E.; Votaw, E.F.

    1986-06-01

    The Pacific Northwest Laboratory developed techniques for calculating estimates of nuclear-waste shipping costs and compiled a listing of representative data that facilitate incorporation of reference shipping costs into varius logistics analyses. The formulas that were developed can be used to estimate costs that will be incurred for shipping spent fuel or nuclear waste by either legal-weight truck or general-freight rail. The basic data for this study were obtained from tariffs of a truck carrier licensed to serve the 48 contiguous states and from various rail freight tariff guides. Also, current transportation regulations as issued by the US Department of Transportation and the Nuclear Regulatory Commission were investigated. The costs that will be incurred for shipping spent fuel and/or nuclear waste, as addressed by the tariff guides, are based on a complex set of conditions involving the shipment origin, route, destination, weight, size, and volume and the frequency of shipments, existing competition, and the length of contracts. While the complexity of these conditions is an important factor in arriving at a ''correct'' cost, deregulation of the transportation industry means that costs are much more subject to negotiation and, thus, the actual fee that will be charged will not be determined until a shipping contract is actually signed. This study is designed to provide the baseline data necessary for making comparisons of the estimated costs of shipping spent fuel and/or nuclear wastes by truck and rail transportation modes. The scope of the work presented in this document is limited to the costs incurred for shipping, and does not include packaging, cask purchase/lease costs, or local fees placed on shipments of radioactive materials

  20. Radiation Monitoring System in Advanced Spent Fuel Conditioning Process Facility

    Energy Technology Data Exchange (ETDEWEB)

    You, Gil Sung; Kook, D. H.; Choung, W. M.; Ku, J. H.; Cho, I. J.; You, G. S.; Kwon, K. C.; Lee, W. K.; Lee, E. P

    2006-09-15

    The Advanced spent fuel Conditioning Process is under development for effective management of spent fuel by converting UO{sub 2} into U-metal. For demonstration of this process, {alpha}-{gamma} type new hot cell was built in the IMEF basement . To secure against radiation hazard, this facility needs radiation monitoring system which will observe the entire operating area before the hot cell and service area at back of it. This system consists of 7 parts; Area Monitor for {gamma}-ray, Room Air Monitor for particulate and iodine in both area, Hot cell Monitor for hot cell inside high radiation and rear door interlock, Duct Monitor for particulate of outlet ventilation, Iodine Monitor for iodine of outlet duct, CCTV for watching workers and material movement, Server for management of whole monitoring system. After installation and test of this, radiation monitoring system will be expected to assist the successful ACP demonstration.

  1. Radiation Monitoring System in Advanced Spent Fuel Conditioning Process Facility

    International Nuclear Information System (INIS)

    You, Gil Sung; Kook, D. H.; Choung, W. M.; Ku, J. H.; Cho, I. J.; You, G. S.; Kwon, K. C.; Lee, W. K.; Lee, E. P.

    2006-09-01

    The Advanced spent fuel Conditioning Process is under development for effective management of spent fuel by converting UO 2 into U-metal. For demonstration of this process, α-γ type new hot cell was built in the IMEF basement . To secure against radiation hazard, this facility needs radiation monitoring system which will observe the entire operating area before the hot cell and service area at back of it. This system consists of 7 parts; Area Monitor for γ-ray, Room Air Monitor for particulate and iodine in both area, Hot cell Monitor for hot cell inside high radiation and rear door interlock, Duct Monitor for particulate of outlet ventilation, Iodine Monitor for iodine of outlet duct, CCTV for watching workers and material movement, Server for management of whole monitoring system. After installation and test of this, radiation monitoring system will be expected to assist the successful ACP demonstration

  2. Radioactive spent resins conditioning by the hot super-compaction process

    International Nuclear Information System (INIS)

    Roth, Andreas; Centner, Baudouin; Lemmens, Alain

    2007-01-01

    Spent ion exchanger media are considered to be problematic waste that, in many cases, requires special approaches and precautions during its immobilization to meet the acceptance criteria for disposal. The waste acceptance criteria define, among others, the quality of waste forms for disposal, and therefore will sometimes define appropriate treatment options. The selection of treatment options for spent ion exchange materials must consider their physical and chemical characteristics. Basically, the main methods for the treatment of spent organic ion exchange materials, following to pretreatment methods are: - Direct immobilization, producing a stable end product by using Cement, Bitumen, Polymer or High Integrity Containers, - The destruction of the organic compounds by using Thermochemical processes or Oxidation to produce an inorganic intermediate product that may or may not be further conditioned for storage and/or disposal, - The complete removal of the resin inner structural water by a thermal process. After a thorough technical economical analysis, Tractebel Engineering selected the Resin Hot Compaction Process to be installed at Tihange Nuclear Power Plant. The Resin Hot Compaction Process is used to make dense homogenous organic blocks from a wide range of particulate waste. In this process spent resins are first dewatered and dried to remove the inner structural water content. The drying takes place in a drying vessel that holds the contents of two 200 L drums (Figure). In the oil heated drying and mixing unit, the resins are heated to the necessary process temperature for the hot pressing step and then placed into special metal drums, which are automatically lidded and immediately transferred to a high force compactor. After high force compaction the pellets are transferred to a measuring unit, where the dose rate, height and weight are automatically measured and recorded. A volume reduction factor of approximately up to four (depending on the type of

  3. Reduction of uranium in disposal conditions of spent nuclear fuel

    International Nuclear Information System (INIS)

    Myllykylae, E.

    2008-02-01

    This literature study is a summary of publications, in which the reduction of uranium by iron has been investigated in anaerobic groundwater conditions or in aqueous solution in general. The basics of the reduction phenomena and the oxidation states, complexes and solubilities of uranium and iron in groundwaters are discussed as an introduction to the subject, as well as, the Finnish disposal concept of spent nuclear fuel. The spent fuel itself mainly (∼96 %) consists of a sparingly soluble uranium(IV) dioxide, UO 2 (s), which is stable phase in the anticipated reducing disposal conditions. If spent fuel gets in contact with groundwater, oxidizing conditions might be induced by the radiolysis of water, or by the intrusion of oxidizing glacial melting water. Under these conditions, the oxidation and dissolution of uranium dioxide to more soluble U(VI) species could occur. This could lead to the mobilization of uranium and other components of spent fuel matrix including fission products and transuranium elements. The reduction of uranium back to oxidation state U(IV) can be considered as a favourable immobilization mechanism in a long-term, leading to precipitation due to the low solubility of U(IV) species. The cast iron insert of the disposal canister and its anaerobic corrosion products are the most important reductants under disposal conditions, but dissolved ferrous iron may also function as reductant. Other iron sources in the buffer or near-field rock, are also considered as possible reductants. The reduction of uranium is a very challenging phenomenon to investigate. The experimental studies need e.g. well-controlled anoxic conditions and measurements of oxidation states. Reduction and other simultaneous phenomena are difficult to distinghuish. The groundwater conditions (pH, Eh and ions) influence on the prevailing complexes of U and Fe and on forming corrosion products of iron and, thus they determine also the redox chemistry. The partial reduction of

  4. Improving of spent fuel monitoring in condition of Slovak wet interim spent fuel storage facility

    International Nuclear Information System (INIS)

    Miklos, M.; Krsjak, V.; Bozik, M.; Vasina, D.

    2008-01-01

    Monitoring of WWER fuel assemblies condition in Slovakia is presented in the paper. The leak tightness results of fuel assemblies used in Slovak WWER units in last 20 years are analyzed. Good experiences with the 'Sipping system' are described. The Slovak wet interim spent fuel storage facility in NPP Jaslovske Bohunice was build and put in operation in 1986. Since 1999, leak tests of WWER-440 fuel assemblies are provided by special leak tightness detection system 'Sipping in Pool' delivered by Framatome-ANP facility with external heating for the precise detection of active specimens. Another system for monitoring of fuel assemblies condition was implemented in December 2006 under the name 'SVYPP-440'. First non-active tests started at February 2007 and are described in the paper. Although those systems seems to be very effective, the detection time of all fuel assemblies in one storage pool is too long (several months). Therefore, a new 'on-line' detection system, based on new sorbent KNiFC-PAN for effective 134 Cs and 137 Cs activity was developed. This sorbent was compared with another type of sorbent NIFSIL and results are presented. The design of this detection system and its possible application in the Slovak wet spent fuel storage facility is discussed. For completeness, the initial results of the new system are also presented. (authors)

  5. Transporting spent fuel and reactor waste in Sweden experience from 5 years of operation

    International Nuclear Information System (INIS)

    Dybeck, P.; Gustafsson, B.

    1990-01-01

    This paper reports that since the Final Repository for Reactor Waste, SFR, was taken into operation in 1988, the SKB sea transportation system is operating at full capacity by transporting spent fuel and now also reactor waste from the 12 Swedish reactors to CLAB and SFR. Transports from the National Research Center, Studsvik to the repository has recently also been integrated in the system. CLAB, the central intermediate storage for spent fuel, has been in operation since 1985. The SKB Sea Transportation System consists today of the purpose built ship M/s Sigyn, 10 transport casks for spent fuel, 2 casks for spent core components, 27 IP-2 shielded steel containers for reactor waste and 5 terminal vehicles. During an average year about 250 tonnes of spent fuel and 3 -- 4000 m 3 of reactor waste are transported to CLAB and SFR respectively, corresponding to around 30 sea voyages

  6. Integrated data management system for radioactive waste and spent fuel in Korea

    International Nuclear Information System (INIS)

    Shin, Young Ho

    2001-03-01

    An integrated data management system for the safe management of radioactive waste and spent fuel in Korea is developed to collect basic information, provide the framework for national regulation, and improve national competition and efficiency in the management of radioactive waste and spent fuel. This system can also provide public access to information such as a statistical graphs and integrated data from various waste generators to meet increased public needs and interests. So through the system, the five principles (independence, openness, clearance, efficiency and reliance) of safety regulation can be realized, and public understanding and reliance on the safety of spent fuel and radioactive waste management can be promoted by providing reliable information, it can ensure an openness within the international nuclear community and efficiently support international agreements among contracting parties by operating safe and efficient management of spent fuel and radioactive waste (IAEA joint convention on the safety of spent fuel management and on the safety of radioactive waste management), the system can compensate for the imperfections in safe regulation of radioactive waste and spent fuel management related to waste generation, storage and disposal, and make it possible to holistic control and finally re-organize the basic framework of KINS's intermediate and long term research organization and trends, regarding waste management policy is to integrate safe management and unit safe disposal. For this objectives, benchmark study was performed on similar data base system worldwide and data specification with major input/output data during the first phase of this project

  7. Spent sealed radioactive sources conditioning technology for the disposal at the national repository Baita-Bihor

    International Nuclear Information System (INIS)

    Bujoreanu, D.; Popescu, I.V.

    2006-01-01

    A spent sealed radioactive source(SRS) is a high integrity capsule which contains a small amount of concentrated radionuclide with an activity which ranges from a few MBq up to levels of hundreds TBq. Presently, there are now many spent and unusable SRS in Romania, which have been used a long time in various industrial applications (smoke detectors, weld testing etc.). Considering the activity of the Radioactive Waste Treatment Plant (STDR) at the Institute for Nuclear Research Pitesti regarding radioactive source collecting from various economic agents, several radioactive sources are held in the intermediate storage deposit facility on the institute platform awaiting conditioning for the final disposal. This paper presents the conditioning technology for this sources, which has as ultimate purpose to completion of a product which matches the waste acceptance requirements imposed by the National Authority Control of Nuclear Activities, CNCAN, for the disposal site DNDR Baita - Bihor. The technology used for obtaining the final product allows two options for the immobilization of the sources in the 218 L steel drum and these are: Sources placed in the original packages and which can not be dismantled will be isolated by encapsulation in 10 litters metal capsules and then conditioned in 218 l steel drum, with a concrete biological shielding; Sources removed from the initial package are isolated in stainless steel capsules, which are to be conditioned in the same 218 L steel drum. The final product obtained as a result of the concrete conditioning operations of the spent SRS in 218 L steel drum is the steel drum - concrete - low radioactive waste assembly which presents itself as a concrete block which includes one or more capsules containing SRS. (author)

  8. Cleaning of spent solvent and method of processing cleaning liquid waste

    International Nuclear Information System (INIS)

    Ozawa, Masaki; Kawada, Tomio; Tamura, Nobuhiko.

    1993-01-01

    Spent solvents discharged from a solvent extracting step mainly comprise n-dodecane and TBP and contain nuclear fission products and solvent degradation products. The spent solvents are cleaned by using a sodium chloride free detergent comprising hydrazine oxalate and hydrazine carbonate in a solvent cleaning device. Nitric acid is added to the cleaning liquid wastes containing spent detergents extracted from the solvent cleaning device, to control an acid concentration. The detergent liquid wastes of controlled acid concentration are sent to an electrolysis oxidation bath as electrolytes and electrochemically decomposed in carbonic acid gas, nitrogen gas and hydrogen gas. The decomposed gases are processed as off gases. The decomposed liquid wastes are processed as a waste nitric acid solution. This can provide more effective cleaning. In addition, the spent detergent can be easily decomposed in a room temperature region. Accordingly, the amount of wastes can be decreased. (I.N.)

  9. Smelting Associated with the Advanced Spent Fuel Conditioning Process

    International Nuclear Information System (INIS)

    Hur, J-M.; Jeong, M-S.; Lee, W-K.; Cho, S-H.; Seo, C-S.; Park, S-W.

    2004-01-01

    The smelting process associated with the advanced spent fuel conditioning process (ACP) of Korea Atomic Energy Research Institute was studied by using surrogate materials. Considering the vaporization behaviors of input materials, the operation procedure of smelting was set up as (1) removal of residual salts, (2) melting of metal powder, and (3) removal of dross from a metal ingot. The behaviors of porous MgO crucible during smelting were tested and the chemical stability of MgO in the salt-being atmosphere was confirmed

  10. The present state and future prospects of the radioactive waste and spent fuel management in Lithuania

    International Nuclear Information System (INIS)

    Gylys, J.

    2001-01-01

    The Ignalina nuclear power plant (NPP) is the main source of the spent fuel and the radioactive waste (RW) in Lithuania. Now Lithuania is fully responsible for the management and disposal of its RW and spent fuel. The present scheme of spent fuel, solid, and liquid waste treatment is incomplete. The Department of Thermal and Nuclear Energy at Kaunas University of Technology proposed the new idea - cellular foam apparatus for the concentration of the liquid waste at Ignalina NPP. Some data and main results of the investigation of such apparatus are presented here. (author)

  11. Trends for minimization of radioactive waste arising from spent nuclear fuel reprocessing

    International Nuclear Information System (INIS)

    Polyakov, A.S.; Koltunov, V.S.; Marchenko, V.I.; Ilozhev, A.P.; Mukhin, I.V.

    2000-01-01

    Research and development of technologies for radioactive waste (RAW) minimization arising from spent nuclear fuel reprocessing are discussed. Novel reductants of Pu and Np ions, reagents of purification recycled extractant, possibility of the electrochemical methods are studied. The partitioning of high activity level waste are considered. Examples of microbiological methods decomposition of radioactive waste presented. (authors)

  12. Handling and storage of conditioned high-level wastes

    International Nuclear Information System (INIS)

    1983-01-01

    This report deals with certain aspects of the management of one of the most important wastes, i.e. the handling and storage of conditioned (immobilized and packaged) high-level waste from the reprocessing of spent nuclear fuel and, although much of the material presented here is based on information concerning high-level waste from reprocessing LWR fuel, the principles, as well as many of the details involved, are applicable to all fuel types. The report provides illustrative background material on the arising and characteristics of high-level wastes and, qualitatively, their requirements for conditioning. The report introduces the principles important in conditioned high-level waste storage and describes the types of equipment and facilities, used or studied, for handling and storage of such waste. Finally, it discusses the safety and economic aspects that are considered in the design and operation of handling and storage facilities

  13. 10 CFR 72.108 - Spent fuel, high-level radioactive waste, or reactor-related greater than Class C waste...

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Spent fuel, high-level radioactive waste, or reactor... RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE Siting Evaluation Factors § 72.108 Spent fuel, high-level radioactive waste, or reactor-related greater than Class C waste transportation. The...

  14. Regulatory supervision of sites for spent fuel and radioactive waste storage in the Russian northwest.

    Science.gov (United States)

    Shandala, N K; Sneve, M K; Smith, G M; Kiselev, M F; Kochetkov, O A; Savkin, M N; Simakov, A V; Novikova, N Ya; Titov, A V; Romanov, V V; Seregin, V A; Filonova, A V; Semenova, M P

    2008-12-01

    In the 1960s two technical bases for the Northern Fleet were created in the Russian northwest at Andreeva Bay in the Kola Peninsula and Gremikha village on the coast of the Barents Sea. They maintained nuclear submarines, receiving and storing radioactive waste and spent nuclear fuel. No further waste was received after 1985, and the technical bases have since been re-categorised as temporary storage sites. The handling of these materials to put them into a safe condition is especially hazardous because of their degraded state. This paper describes regulatory activities which have been carried out to support the supervision of radiological protection during recovery of waste and spent fuel, and to support regulatory decisions on overall site remediation. The work described includes: an assessment of the radiation situation on-site; the development of necessary additional regulatory rules and standards for radiation protection assurance for workers and the public during remediation; and the completion of an initial threat assessment to identify regulatory priorities. Detailed consideration of measures for the control of radiation exposure of workers and radiation exposure of the public during and after operations and emergency preparedness and response are complete and provided in sister papers. The continuing requirements for regulatory activities relevant to the development and implementation of on-going and future remediation activities are also outlined. The Norwegian Radiation Protection Authority supports the work, as part of the Norwegian Government's plan of action to promote improvements in radiation protection and nuclear safety in northwest Russia.

  15. Regulatory supervision of sites for spent fuel and radioactive waste storage in the Russian Northwest

    Energy Technology Data Exchange (ETDEWEB)

    Shandala, N K; Kochetkov, O A; Savkin, M N; Simakov, A V; Novikova, N Ya; Titov, A V; Seregin, V A; Filonova, A V; Semenova, M P [Burnasyan Federal Medical Biophysical Centre, Moscow (Russian Federation); Sneve, M K [Norwegian Radiation Protection Authority, Oslo (Norway); Smith, G M [GMS Abingdon Ltd (United Kingdom); Kiselev, M F; Romanov, V V [Federal Medical-Biological Agency, Moscow (Russian Federation)], E-mail: shandala@srcibph.ru

    2008-12-15

    In the 1960s two technical bases for the Northern Fleet were created in the Russian northwest at Andreeva Bay in the Kola Peninsula and Gremikha village on the coast of the Barents Sea. They maintained nuclear submarines, receiving and storing radioactive waste and spent nuclear fuel. No further waste was received after 1985, and the technical bases have since been re-categorised as temporary storage sites. The handling of these materials to put them into a safe condition is especially hazardous because of their degraded state. This paper describes regulatory activities which have been carried out to support the supervision of radiological protection during recovery of waste and spent fuel, and to support regulatory decisions on overall site remediation. The work described includes: an assessment of the radiation situation on-site; the development of necessary additional regulatory rules and standards for radiation protection assurance for workers and the public during remediation; and the completion of an initial threat assessment to identify regulatory priorities. Detailed consideration of measures for the control of radiation exposure of workers and radiation exposure of the public during and after operations and emergency preparedness and response are complete and provided in sister papers. The continuing requirements for regulatory activities relevant to the development and implementation of on-going and future remediation activities are also outlined. The Norwegian Radiation Protection Authority supports the work, as part of the Norwegian Government's plan of action to promote improvements in radiation protection and nuclear safety in northwest Russia.

  16. Radionuclide release from spent fuel under geologic disposal conditions: An overview of experimental and theoretical work through 1985

    Energy Technology Data Exchange (ETDEWEB)

    Reimus, P.W.; Simonson, S.A.

    1988-04-01

    This report presents an overview of experimental and theoretical work on radionuclide release from spent fuel and uranium dioxide (UO/sub 2/) under geologic disposal conditions. The purpose of the report is to provide a source book of information that can be used to develop models that describe radionuclide release from spent fuel waste packages. Modeling activities of this nature will be conducted within the Waste Package Program (WPP) of the Department of Energy's Salt Repository Project (SRP). The topics discussed include experimental methods for investigating radionuclide release, how results have been reported from radionuclide release experiments, theoretical studies of UO/sub 2/ and actinide solubility, results of experimental studies of radionuclide release from spent fuel and UO/sub 2/ (i.e., the effects of different variables on radionuclide release), characteristics of spent fuel pertinent to radionuclide release, and status of modeling of radionuclide release from spent fuel. Appendix A presents tables of data from spent fuel radionuclide release experiments. These data have been digitized from graphs that appear in the literature. An annotated bibliography of literature on spent fuel characterization is provided in Appendix B.

  17. Waste form development and characterization in pyrometallurgical treatment of spent nuclear fuel

    International Nuclear Information System (INIS)

    Ackerman, J.

    1998-01-01

    Electrometallurgical treatment is a compact, inexpensive method that is being developed at Argonne National Laboratory to deal with spent nuclear fuel, primarily metallic and oxide fuels. In this method, metallic nuclear fuel constituents are electrorefined in a molten salt to separate uranium from the rest of the spent fuel. Oxide and other fuels are subjected to appropriate head end steps to convert them to metallic form prior to electrorefining. The treatment process generates two kinds of high-level waste--a metallic and a ceramic waste. Isolation of these wastes has been developed as an integral part of the process. The wastes arise directly from the electrorefiner, and waste streams do not contain large quantities of solvent or other process fluids. Consequently, waste volumes are small and waste isolation processes can be compact and rapid. This paper briefly summarizes waste isolation processes then describes development and characterization of the two waste forms in more detail

  18. Safeguards System for the Advanced Spent Fuel Conditioning Process Facility

    International Nuclear Information System (INIS)

    Kim, Ho-dong; Lee, T.H.; Yoon, J.S.; Park, S.W; Lee, S.Y.; Li, T.K.; Menlove, H.; Miller, M.C.; Tolba, A.; Zarucki, R.; Shawky, S.; Kamya, S.

    2007-01-01

    The advanced spent fuel conditioning process (ACP) which is a part of a pyro-processing has been under development at Korean Atomic Energy Research Institute (KAERI) since 1997 to tackle the problem of an accumulation of spent fuel. The concept is to convert spent oxide fuel into a metallic form in a high temperature molten salt in order to reduce the heat energy, volume, and radioactivity of a spent fuel. Since the inactive tests of the ACP have been successfully implemented to confirm the validity of the electrolytic reduction technology, a lab-scale hot test will be undertaken in a couple of years to validate the concept. For this purpose, the KAERI has built the ACP Facility (ACPF) at the basement of the Irradiated Material Examination Facility (IMEF) of KAERI, which already has a reserved hot-cell area. Through the bilateral arrangement between US Department of Energy (DOE) and Korean Ministry of Science and Technology (MOST) for safeguards R and D, the KAERI has developed elements of safeguards system for the ACPF in cooperation with the Los Alamos National Laboratory (LANL). The reference safeguards design conditions and equipment were established for the ACPF. The ACPF safeguards system has many unique design specifications because of the particular characteristics of the pyro-process materials and the restrictions during a facility operation. For the material accounting system, a set of remote operation and maintenance concepts has been introduced for a non-destructive assay (NDA) system. The IAEA has proposed a safeguards approach to the ACPF for the different operational phases. Safeguards measures at the ACPF will be implemented during all operational phases which include a 'Cold Test', a 'Hot Test' and at the end of a 'Hot test'. Optimization of the IAEA's inspection efforts was addressed by designing an effective safeguards approach that relies on, inter alia, remote monitoring using cameras, installed NDA instrumentation, gate monitors and seals

  19. Spent fuel and high level waste: Chemical durability and performance under simulated repository conditions. Results of a coordinated research project 1998-2004. Part 1: Contributions by participants in the co-ordinated research project on chemical durability and performance assessment under simulated repository conditions

    International Nuclear Information System (INIS)

    2007-07-01

    This publication contains the results of an IAEA Coordinated Research Project (CRP). It provides a basis for understanding the potential interactions of waste form and repository environment, which is necessary for the development of the design and safety case for deep disposal. Types of high level waste matrices investigated include spent fuel, glasses and ceramics. Of particular interest are the experimental results pertaining to ceramic forms such as SYNROC. This publication also outlines important areas for future work, namely, standardized, collaborative experimental protocols for package-release studies, structured development and calibration of predictive models linking the performance of packaged waste and the repository environment, and studies of the long term behaviour of the wastes, including active waste samples. It comprises 15 contributions of the participants on the Coordinated Research Project which are indexed individually.

  20. Corrosion mechanisms of spent fuel under oxidizing conditions

    International Nuclear Information System (INIS)

    Finn, P.A.; Finch, R.; Buck, E.; Bates, J.

    1997-01-01

    The release of 99 Tc can be used as a reliable marker for the extent of spent oxide fuel reaction under unsaturated high-drip-rate conditions at 90 degrees C. Evidence from leachate data and from scanning and transmission electron microscopy (SEM and TEM) examination of reacted fuel samples is presented for radionuclide release, potential reaction pathways, and the formation of alteration products. In the ATM-103 fuel, 0.03 of the total inventory of 99 Tc is released in 3.7 years under unsaturated and oxidizing conditions. Two reaction pathways that have been identified from SEM are (1) through-grain dissolution with subsequent formation of uranyl alteration products, and (2) grain-boundary dissolution. The major alteration product identified by x-ray diffraction (XRD) and SEM, is Na-boltwoodite, Na[(UO 2 )(SiO 3 OH)]lg-bullet H 2 O, which is formed from sodium and silicon in the water leachant

  1. Risk analysis methodology for spent fuel repositories in bedded salt: methodlogy summary and differences between spent fuel and high level wastes

    International Nuclear Information System (INIS)

    Pepping, R.E.; Chu, M.S.

    1981-06-01

    In the absence of spent fuel reprocessing plans, unreprocessed spent fuel has become a candidate waste form for geologic disposal. In order to understand the public health risks from such disposal and to gain insights into the factors that influence them, a methodology is needed to combine the effects of site geology and hydrology, physical and chemical properties of the waste form, and the details of the engineering design. This report outlines such a methodology which the authors currently are applying to the analysis of unreprocessed spent fuel disposal. The methodology is the same methodology as was developed to describe the risks from geologic disposal of wastes from reprocessed spent fuel. The difference between spent fuel wastes and wastes from reprocessing that may affect the applicability of the methodology are highlighted

  2. On ocean island geological repository - a second-generation option for disposal of spent fuel and high-level waste

    International Nuclear Information System (INIS)

    Forsberg, C.W.

    1993-01-01

    The concept of an ocean subseabed geological high-level waste repository with access via an ocean island is discussed. The technical advantages include, in addition to geologic waste isolation, geographical isolation, near-zero groundwater flow through the disposal site, and near-infinite ocean dilution as a backup in the event of a failure of the repository geological waste isolation system. The institutional advantages may include reduced siting problems and the potential of creating an international waste repository. Establishment of a repository accepting wastes from many countries would allow cost sharing, aid international nonproliferation goals, and ensure proper disposal of spent fuel from developing countries. Major uncertainties that are identified in this concept are the uncertainties in rock conditions at waste disposal depths, costs, and ill-defined institutional issues

  3. The Canadian program for management of spent fuel and high level wastes

    International Nuclear Information System (INIS)

    Barnes, R.W.; Mayman, S.A.

    A brief history and description of the nuclear power program in Canada is given. Schedules and programs are described for storing spent fuel in station fuel bays, centralized water pool storage facilities, concrete canisters, convection vaults, and rock or salt formations. High-level wastes will be retrievable initially, therefore the focus is on storage in mined cavities. The methods developed for high-level waste storage/disposal will ideally be flexible enough to accommodate spent fuel. (E.C.B.)

  4. Spent fuel and radioactive waste inventories and projections as of December 31, 1980

    International Nuclear Information System (INIS)

    1981-09-01

    Current inventories and characteristics of commercial spent fuels and both commercial and US Department of Energy radioactive wastes were compiled, based on the most reliable information available from Government sources and the open literature, technical reports, and direct contacts. Future waste generation rates and characteristics of these materials to be accumulated over the remainder of this century are also presented, based on a present DOE/EIA projection of US commercial nuclear power growth and expected defense-related and industrial and institutional activities. Materials considered, on a chapter-by-chapter basis, are: spent fuel, high-level wastes, transuranic waste, low-level waste, remedial action waste, active uranium mill tailings, and airborne waste. For each category, current and projected inventories are given through the year 2000. The land usage requirements are given for storage/disposal of low-level and transuranic wastes, and for the present inventories of inactive uranium mill tailings

  5. Evaluation of treatment alternatives for wastes from both spent fuel rod consolidation and miscellaneous commercial activities

    International Nuclear Information System (INIS)

    Ross, W.A.; Schneider, K.J.; Oma, K.H.; Smith, R.I.; Bunnell, L.R.

    1986-07-01

    Alternative treatments were considered for both existing commercial transuranic wastes and future wastes from spent fuel rod consolidation. Waste treatment was assumed to occur at a hypothetical central treatment facility (a Monitored Retrieval Storage [MRS] facility was used as a reference). Disposal of the waste in a geologic repository was also assumed. The waste form charcteristics, process characteristics, and costs were evaluated for each waste treatment alternative. The evaluation indicated that selection of a high volume reduction alternative can save almost $1 billion in life-cycle costs for the management of transuranic and high-activity wastes from 70,000 MTU of spent fuel compared to the reference MRS waste treatment processes. The supercompaction, arc pyrolysis and melting, and maximum volume reduction alternatives are recommended for further consideration; the latter two are recommended for further testing and demonstration

  6. Management of spent shea waste: An instrumental characterization and valorization in clay bricks construction.

    Science.gov (United States)

    Adazabra, A N; Viruthagiri, G; Shanmugam, N

    2017-06-01

    This work studies the reuse of spent shea waste as an economic construction material in improving fired clay bricks manufacture aside providing a novel approach to ecofriendly managing its excessive generated from the shea agroindustry. For this purpose, the influence of spent shea waste addition on the chemical, mineralogical, molecular bonding and technological properties (i.e. compressive strength and water absorption) of the fired clay bricks were extensively investigated. The results indicated that the chemical, mineralogical, phase transformations, molecular bonding and thermal behavior of the produced bricks were practically unaffected by the addition of spent shea waste. However, spent shea waste addition increased the compressive strengths and water absorptions of the brick products. Potential performance benefits of reusing spent shea waste was improved fluxing agents, energy-contribution reaction, excellent porosifying effect, reduced thermal conductivity and enhanced compressive strengths of the brick products. This research has therefore provided compelling evidence that could create newfound route for the synergistic ecofriendly reuse of spent shea waste to enhance clay brick construction aside being a potential mainstream disposal option. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Two-step sequential pretreatment for the enhanced enzymatic hydrolysis of coffee spent waste.

    Science.gov (United States)

    Ravindran, Rajeev; Jaiswal, Swarna; Abu-Ghannam, Nissreen; Jaiswal, Amit K

    2017-09-01

    In the present study, eight different pretreatments of varying nature (physical, chemical and physico-chemical) followed by a sequential, combinatorial pretreatment strategy was applied to spent coffee waste to attain maximum sugar yield. Pretreated samples were analysed for total reducing sugar, individual sugars and generation of inhibitory compounds such as furfural and hydroxymethyl furfural (HMF) which can hinder microbial growth and enzyme activity. Native spent coffee waste was high in hemicellulose content. Galactose was found to be the predominant sugar in spent coffee waste. Results showed that sequential pretreatment yielded 350.12mg of reducing sugar/g of substrate, which was 1.7-fold higher than in native spent coffee waste (203.4mg/g of substrate). Furthermore, extensive delignification was achieved using sequential pretreatment strategy. XRD, FTIR, and DSC profiles of the pretreated substrates were studied to analyse the various changes incurred in sequentially pretreated spent coffee waste as opposed to native spent coffee waste. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Treatment of wastes from a central spent-fuel rod consolidation facility

    International Nuclear Information System (INIS)

    Ross, W.A.

    1986-01-01

    The consolidation of commercial spent-fuel rods at a central treatment facility (such as the proposed Monitored Retrievable Storage Facility) will generate several types of waste, which may require treatment and disposal. Eight alternatives for the treatment of the wastes have been evaluated as part of DOE's Nuclear Waste Treatment Program at the Pacific Northwest Laboratory. The evaluation considered the system costs, potential waste form requirements, and processing characteristics

  9. High level radioactive wastes storage characterization and long-term behaviour of spent fuels

    International Nuclear Information System (INIS)

    Diaz Arocas, P.P.; Garcia Serrano, J.; Mendez Martin, F.J.; Quinones Diez, J.; Rodriguez Almazan, J.L.; Serrano Agejas, J.A.; Esteban Hernandez, J.A.

    1997-04-01

    The knowledge of long term spent fuel behaviour in a repository is one of the main goals in the waste management assessment due to its influence on repository design topics and on the performance assessment. At the moment, Spain has not selected a geological formation for a final repository. Therefore, R AND D activities are performed by considering granite, salt and clay as candidate options. This report summarises the activities carried out in CIEMAT from 1991 to 1995 in the frame of the Agreement between CIEMAT and ENRESA in the Area of spent fuel direct disposed. Experimental activities include leaching experiments of spent fuel, UO 2 and SIMFUEL and co-precipitation/solubility experiments of relevant secondary solid phases expected under repository conditions. The objective of leaching studies is to understand the processes which will occur when the underground water accede to the source term and to provide leaching rates of spent fuel and the influence of several variables as pH, Eh, etc. The co-precipitation/solubility experiments are focused on the knowledge of the formation conditions of relevant secondary phases, to characterise these phases and to determine their solubility, which could control the leaching of spent fuel. One of the main items to carry out the objectives before indicated in both leaching and co-precipitation/solubility experiments is to perform a extensive solid phases characterisation in order to facilitate the understanding of the processes involved. This report is structured in three parts, the first include experimental procedures, characterisation techniques and solid and solution analyses. The second shows the leaching results obtained by considering the effect of pH, complex formation, redox conditions, surface/volume ratio, etc. The third supply the results of the co-precipitation/solubility studies. The conclusions obtained in this work are considered as the start point of going on and more extensive studies on the mechanisms

  10. Environmental Radiation Protection Standards for Management and Disposal of Spent Nuclear Fuel and Transuranic Radioactive Wastes (40 CFR Part 191)

    Science.gov (United States)

    This regulation sets environmental standards for public protection from the management and disposal of spent nuclear fuel, high-level wastes and wastes that contain elements with atomic numbers higher than uranium (transuranic wastes).

  11. Reaction progress pathways for glass and spent fuel under unsaturated conditions

    International Nuclear Information System (INIS)

    Bates, J.; Finn, P.; Bourcier, W.; Stout, R.

    1994-10-01

    The source term for the release of radionuclides from a nuclear waste repository is the waste form. In order to assess the performance of the repository and the engineered barrier system (EBS) compared to regulations established by the Nuclear Regulatory Commission and the Environmental Protection Agency it is necessary (1) to use available data to place bounding limits on release rates from the EBS, and (2) to develop a mechanistic predictive model of the radionuclide release and validate the model against tests done under a variety of different potential reaction conditions. The problem with (1) is that there is little experience to use when evaluating waste form reaction under unsaturated conditions such that errors in applying expert judgment to the problem may be significant. The second approach, to test and model the waste form reaction, is a more defensible means of providing input to the prediction of radionuclide release. In this approach, information related to the source term has a technical basis and provides a starting point to make reasonable assumptions for long-term behavior. Key aspects of this approach are an understanding of the reaction progress mechanism and the ability to model the tests using a geochemical code such as EQ3/6. Current knowledge of glass, UO 2 , and spent fuel reactions under different conditions are described below

  12. Application of ion exchange processes for the treatment of radioactive waste and management of spent ion exchangers

    International Nuclear Information System (INIS)

    2002-01-01

    This report describes the ion exchange technologies currently used and under development in nuclear industry, in particular for waste management practices, along with the experience gained in their application and with the subsequent handling, treatment and conditioning of spent ion exchange media for long term storage and/or disposal. The increased role of inorganic ion exchangers for treatment of radioactive liquid waste, both in nuclear power plant operations and in the fuel reprocessing sector, is recognised in this report. The intention of this report is to consolidate the previous publications, document recent developments and describe the state of the art in the application of ion exchange processes for the treatment of radioactive liquid waste and the management of spent ion exchange materials

  13. Economics of National Waste Terminal Storage Spent Fuel Pricing Study

    International Nuclear Information System (INIS)

    1978-05-01

    The methodology for equitably pricing commercial nuclear spent fuel management is developed, and the results of four sample calculations are presented. The spent fuel management program analyzed places encapsulated spent fuel in bedded salt while maintaining long-term retrievability. System design was reasonable but not optimum. When required, privately-owned Away From Reactor (AFR) storage is provided and the spent fuel placed in AFR storage is eventually transported to final storage. Applicable Research and Development and Government Overhead are included. The cost of each component by year was estimated from the most recent applicable data source available. These costs were input to the pricing methodology to establish a one-time charge whose present value exactly recovered the present value of the expenditure flow. The four cases exercised were combinations of a high and a low quantity of spent fuel managed, with a single repository (venture) or a multiple repository (campaign) approach to system financial structure. The price for spent fuel management calculated ranged from 116 to 152 dollars (1978) per kilogram charged initially to the reactor. The effect of spent fuel receiving rate on price is illustrated by the fact that the extremes of price did not coincide with the cases having the extremes of undiscounted cost. These prices for spent fuel management are comparable in magnitude to other fuel cycle costs. The range of variation is small because of compensating effects, i.e., additional costs for high early deliveries (AFR and transportation) versus lower present value of future revenue for later delivery cases. The methodology contains numerous conservative assumptions, provisions for contingencies, and covers the complete set of spent fuel management expenses

  14. The preliminary design and feasibility study of the spent fuel and high level waste repository in the Czech Republic

    International Nuclear Information System (INIS)

    Valvoda, Z.; Holub, J.; Kucerka, M.

    1996-01-01

    In the year 1993, began the Program of Development of the Spent Fuel and High Level Waste Repository in the Conditions of the Czech Republic. During the first phase, the basic concept and structure of the Program has been developed, and the basic design criteria and requirements were prepared. In the conditions of the Czech Republic, only an underground repository in deep geological formation is acceptable. Expected depth is between 500 to 1000 meters and as host rock will be granites. A preliminary variant design study was realized in 1994, that analyzed the radioactive waste and spent fuel flow from NPPs to the repository, various possibilities of transportation in accordance to the various concepts of spent fuel conditioning and transportation to the underground structures. Conditioning and encapsulation of spent fuel and/or radioactive waste is proposed on the repository site. Underground disposal structures are proposed at one underground floor. The repository will have reserve capacity for radioactive waste from NPPs decommissioning and for waste non acceptable to other repositories. Vertical disposal of unshielded canisters in boreholes and/or horizontal disposal of shielded canisters is studied. As the base term of the start up of the repository operation, the year 2035 has been established. From this date, a preliminary time schedule of the Project has been developed. A method of calculating leveled and discounted costs within the repository lifetime, for each of selected 5 variants, was used for economic calculations. Preliminary expected parametric costs of the repository are about 0,1 Kc ($0.004) per MWh, produced in the Czech NPPs. In 1995, the design and feasibility study has gone in more details to the technical concept of repository construction and proposed technologies, as well as to the operational phase of the repository. Paper will describe results of the 1995 design work and will present the program of the repository development in next period

  15. 10 CFR 72.128 - Criteria for spent fuel, high-level radioactive waste, reactor-related greater than Class C waste...

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Criteria for spent fuel, high-level radioactive waste, reactor-related greater than Class C waste, and other radioactive waste storage and handling. 72.128... STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C...

  16. Spent Fuel and Waste Management Technology Development Program. Annual progress report

    Energy Technology Data Exchange (ETDEWEB)

    Bryant, J.W.

    1994-01-01

    This report provides information on the progress of activities during fiscal year 1993 in the Spent Fuel and Waste Management Technology Development Program (SF&WMTDP) at the Idaho Chemical Processing Plant (ICPP). As a new program, efforts are just getting underway toward addressing major issues related to the fuel and waste stored at the ICPP. The SF&WMTDP has the following principal objectives: Investigate direct dispositioning of spent fuel, striving for one acceptable waste form; determine the best treatment process(es) for liquid and calcine wastes to minimize the volume of high level radioactive waste (HLW) and low level waste (LLW); demonstrate the integrated operability and maintainability of selected treatment and immobilization processes; and assure that implementation of the selected waste treatment process is environmentally acceptable, ensures public and worker safety, and is economically feasible.

  17. MANAGING SPENT NUCLEAR FUEL WASTES AT THE IDAHO NATIONAL LABORATORY

    Energy Technology Data Exchange (ETDEWEB)

    Hill, Thomas J

    2005-09-01

    The Idaho National Engineering Laboratory (INL) has a large inventory of diverse types of spent nuclear fuel (SNF). This legacy is in part due to the history of the INL as the National Reactor Testing Station, in part to its mission to recover highly enriched uranium from SNF and in part to it’s mission to test and examine SNF after irradiation. The INL also has a large diversity of SNF storage facility, some dating back 50 years in the site history. The success of the INL SNF program is measured by its ability to: 1) achieve safe existing storage, 2) continue to receive SNF from other locations, both foreign and domestic, 3) repackage SNF from wet storage to interim dry storage, and 4) prepare the SNF for dispositioning in a federal repository. Because of the diversity in the SNF and the facilities at the INL, the INL is addressing almost very condition that may exist in the SNF world. Many of solutions developed by the INL are applicable to other SNF storage sites as they develop their management strategy. The SNF being managed by the INL are in a variety of conditions, from intact assemblies to individual rods or plates to powders, rubble, and metallurgical mounts. Some of the fuel has been in wet storage for over forty years. The fuel is stored bare, or in metal cans and either wet under water or dry in vaults, caissons or casks. Inspections have shown varying degrees of corrosion and degradation of the fuel and the storage cans. Some of the fuel has been recanned under water, and the conditions of the fuel inside the second or third can are unknown. The fuel has been stored in one of 10 different facilities: five wet pools and one casks storage pad, one vault, two generations of caisson facilities, and one modular Independent Spent Fuel Storage Installation (ISFSI). The wet pools range from forty years old to the most modern pool in the US Department of Energy (DOE) complex. The near-term objective is moving the fuel in the older wet storage facilities to

  18. Investigation of the condition of spent-fuel pool components

    International Nuclear Information System (INIS)

    Kustas, F.M.; Bates, S.O.; Opitz, B.E.; Johnson, A.B. Jr.; Perez, J.M. Jr.; Farnsworth, R.K.

    1981-09-01

    It is currently projected that spent nuclear fuel, which is discharged from the reactor and then stored in water pools, may remain in those pools for several decades. Other studies have addressed the expected integrity of the spent fuel during extended water storage; this study assesses the integrity of metallic spent fuel pool components. Results from metallurgical examinations of specimens taken from stainless steel and aluminum components exposed in spent fuel pools are presented. Licensee Event Reports (LERs) relating to problems with spent fuel components were assessed and are summarized to define the types of operational problems that have occurred. The major conclusions of this study are: aluminum and stainless steel spent fuel pool components have a good history of performance in both deionized and borated water pools. Although some operational problems involving pool components have occurred, these problems have had minimal impacts

  19. Investigation of the condition of spent-fuel pool components

    Energy Technology Data Exchange (ETDEWEB)

    Kustas, F.M.; Bates, S.O.; Opitz, B.E.; Johnson, A.B. Jr.; Perez, J.M. Jr.; Farnsworth, R.K.

    1981-09-01

    It is currently projected that spent nuclear fuel, which is discharged from the reactor and then stored in water pools, may remain in those pools for several decades. Other studies have addressed the expected integrity of the spent fuel during extended water storage; this study assesses the integrity of metallic spent fuel pool components. Results from metallurgical examinations of specimens taken from stainless steel and aluminum components exposed in spent fuel pools are presented. Licensee Event Reports (LERs) relating to problems with spent fuel components were assessed and are summarized to define the types of operational problems that have occurred. The major conclusions of this study are: aluminum and stainless steel spent fuel pool components have a good history of performance in both deionized and borated water pools. Although some operational problems involving pool components have occurred, these problems have had minimal impacts.

  20. Preparation of the National Radioactive Waste and Spent Fuel Management Programme in Slovenia

    International Nuclear Information System (INIS)

    Kralj, M.; Zeleznik, N.; Mele, I.; Veselic, M.

    2006-01-01

    The first separate National Radioactive Waste and Spent Fuel Management Programme (National Programme) was prepared in Slovenia in 2005, as a separate part of the National Environmental Action Programme that was adopted in June 2005. In the previous National Environmental Action Programme from the year 1999, the radioactive waste and spent fuel management was mentioned only briefly in the paragraph on radiation and nuclear safety with two main objectives: to provide an effective management of radioactive waste, and to keep the environmental ionising radiation under control. The new National Programme from 2005 includes all topics being relevant for the management of the radioactive waste and spent fuel, from the legislation and identification of different waste streams in Slovenia, to the management of radioactive waste and spent fuel, the decommissioning of nuclear facilities and management of (TE)NORM. It deals also with the relevant actors in the radioactive waste management, communication and information activities, and the financial aspects of the radioactive waste and spent fuel management. The National Programme was already adopted by the Slovenian Government in October 2005 and will go to Parliament proceedings. The Technical bases for the National Programme was prepared by ARAO and presented to the government in the beginning of 2005. The frames for this document were taken from relevant strategic documents: the Programme of decommissioning the nuclear power plant Krsko and the radioactive waste and spent fuel management, prepared in 2004 by Slovenian and Croatian experts (ARAO and APO), the Proposal of LILW Management Strategy (1999), the Strategy of Spent Fuel Management (1996), and the Resolution on the National Energy Programme (2004). ARAO made a detailed study on the amount and types of radioactive waste produced in Slovenia and future arising with emphasis on the minimization on radioactive waste production. It considered all producers of LILW and

  1. Foreign programs for the storage of spent nuclear power plant fuels, high-level waste canisters and transuranic wastes

    International Nuclear Information System (INIS)

    Harmon, K.M.; Johnson, A.B. Jr.

    1984-04-01

    The various national programs for developing and applying technology for the interim storage of spent fuel, high-level radioactive waste, and TRU wastes are summarized. Primary emphasis of the report is on dry storage techniques for uranium dioxide fuels, but data are also provided concerning pool storage

  2. Integrated data management system for radioactive waste and spent fuel in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Park, Yong Taek [Korea Power Engineering Co., Inc., Yongin (Korea, Republic of)

    2002-05-15

    An integrated data management system for the safe management of radioactive waste and spent fuel in Korea is developed to collect basic information, provide the framework for national regulation and improve national competition and efficiency in the management of radioactive waste and spent fuel. This system can also provide public access to information such as a statistical graphs and integrated data from various waste generators to meet increased public needs and interests. Through the system, the five principles(independence, openness, clearance, efficiency and reliance) of safety regulation can be realized and public understanding and reliance on the safety of spent fuel and radioactive waste management can be promoted. By providing reliable information and openness within the international nuclear community can be ensured and efficient support of international agreements among contracting parties can be ensured. By operating safe and efficient management of spent fuel and radioactive waste (IAEA joint convention on the safety of spent fuel management and on the safety of radioactive waste management), the system can compensate for the imperfections in safe regulation of radioactive waste and spent fuel management related to waste generation, storage and disposal, and make it possible for holistic control and reorganization of the basic framework of KINS's intermediate and long term research organization and trends, regarding waste management policy so as to integrate safe management and unit safe disposal. To meet this objectives, design of the database system structure and the study of input/output data validation and verification methodology was performed during the second phase of this project.

  3. Radionuclide compositions of spent fuel and high level waste from commercial nuclear reactors

    International Nuclear Information System (INIS)

    Goodill, D.R.; Tymons, B.J.

    1984-10-01

    This report provides information on radionuclide compositions of spent fuel and high level waste produced during reprocessing. The reactor types considered are Magnox, AGR, PWR and CFR. The activities of the radionuclides are calculated using the FISPIN code. The results are presented in a form suitable for radioactive waste management calculations. (author)

  4. Conditioning spent fuels from research nuclear reactor in ceramic dies

    International Nuclear Information System (INIS)

    Russo, D.O; Rodriguez, D.S; Mateos, P; Heredia, A; Sangilippo, M; Sterba, M

    2002-01-01

    The problem of immobilizing nuclear wastes is a complex one and is vitally important in the nuclear fuels cycle. In the case of spent elements from research reactors, the presence of large amounts of aluminum makes the procedure more complex and, therefore, onerous. There are various alternatives proposed for processing these materials. Two methods were studied in the Nuclear Materials Division for obtaining, as a final product, a vitreous block that could be place definitively in a geological repository. The processes are briefly, as follows: 1.By mechanical and chemical processes eliminating all the exterior aluminum from the fuel plates and then placing the product which we will call 'meat' (with some additional treatment and mixing with the amount needed to produce a natural uranium compound or weakened by decreasing the isotope enrichment in U-235) in a vitreous matrix. 2.Mechanically eliminate the aluminum from the exterior frame (as shown below) by shearing and cutting off the sectors containing only the Al, but leaving the rest of the aluminum, a big part of which is still present (4511.03), then doing the same procedure as in the case above: mixing with a natural uranium compound or weakening and vitrifying this mixture. In both cases, the vitrification can be carried out by fusion as well as by sintering. Given that these methods imply a big increase in volume together with a big mass of uranium and an even bigger amount of glass we decided to study an alternative. The proposed process involves synthesizing the mixtures obtained from the pre-treatment of the fuel plates (as described later) with natural isotope uranium oxide in order to obtain a block with the appropriate properties for its final disposal in a deep geological repository (CW)

  5. Separation of Metals From Spent Catalysts Waste by Bioleaching Process

    OpenAIRE

    Sirin Fairus, Tria Liliandini, M.Febrian, Ronny Kurniawan

    2010-01-01

    A kind of waste that hard to be treated is a metal containing solid waste. Leaching method is one thealternative waste treatment. But there still left an obstacle on this method, it is the difficulty to find theselective solvent for the type of certain metal that will separated. Bioleaching is one of the carry ablealternative waste treatments to overcome that obstacle. Bioleaching is a metal dissolving process orextraction from a sediment become dissolve form using microorganisms. On this met...

  6. Spent fuel management in France: Reprocessing, conditioning, recycling

    International Nuclear Information System (INIS)

    Giraud, J.P.; Montalembert, J.A. de

    1994-01-01

    The French energy policy has been based for 20 years on the development of nuclear power. The some 75% share of nuclear in the total electricity generation, representing an annual production of 317 TWh requires full fuel cycle control from the head-end to the waste management. This paper presents the RCR concept (Reprocessing, Conditioning, Recycling) with its industrial implementation. The long lasting experience acquired in reprocessing and MOX fuel fabrication leads to a comprehensive industrial organization with minimized impact on the environment and waste generation. Each 900 MWe PWR loaded with MOX fuel avoids piling up 2,500 m 3 per year of mine tailings. By the year 2000, less than 500 m 3 of high-level and long-lived waste will be annually produced at La Hague for the French program. The fuel cycle facilities and the associated MOX loading programs are ramping-up according to schedule. Thus, the RCR concept is a reality as well as a policy adopted in several countries. Last but not least, RCR represents a strong commitment to non-proliferation as it is the way to fully control and master the plutonium inventory

  7. Spent LWR fuel leach tests: Waste Isolation Safety Assessment program

    International Nuclear Information System (INIS)

    Katayama, Y.B.

    1979-04-01

    Spent light-water-reactor (LWR) fuels with burnups of 54.5, 28 and 9 MWd/kgU were leach-tested in deionized water at 25 0 C. Fuel burnup has no apparent effect on the calculated leach rates based upon the behavior of 137 Cs and 239+240 Pu. A leach test of 54.5 MWd/kgU spent fuel in synthetic sea brine showed that the cesium-based leach rate is lower in sea brine than in deionized water. A rise in the leach rate was observed after approximately 600 d of cumulative leaching. During the rise, the leach rate for all the measured radionuclides become nearly equal. Evidence suggests that exposure of new surfaces to the leachant may cause the increase. As a result, experimental work to study leaching mechanisms of spent fuel has been initiated. 22 figures

  8. Spent Nuclear Fuel Option Study on Hybrid Reactor for Waste Transmutation

    International Nuclear Information System (INIS)

    Hong, Seong Hee; Kim, Myung Hyun

    2016-01-01

    DUPIC nuclear fuel can be used in hybrid reactor by compensation of subcritical level through (U-10Zr) fuel. Energy production performance of Hyb-WT with DUPIC is grateful because it has high EM factor and performs waste transmutation at the same time. However, waste transmutation performance should be improved by different fissile fuel instead of (U-10Zr) fuel. SNF (Spent Nuclear Fuel) disposal is one of the problems in the nuclear industry. FFHR (Fusion-Fission Hybrid Reactor) is one of the most attractive option on reuse of SNF as a waste transmutation system. Because subcritical system like FFHR has some advantages compared to critical system. Subcritical systems have higher safety potential than critical system. Also, there is suppressed excess reactivity at BOC (Beginning of Cycle) in critical system, on the other hand there is no suppressed reactivity in subcritical system. Our research team could have designed FFHR for waste transmutation; Hyb-WT. Various researches have been conducted on fuel and coolant option for optimization of transmutation performance. However, Hyb-WT has technical disadvantage. It is required fusion power (Pfus) which is the key design parameter in FFHR is increased for compensation of decreasing subcritical level. As a result, structure material integrity is damaged under high irradiation condition by increasing Pfus. Also, deep burn of reprocessed SNF is limited by weakened integrity of structure material. Therefore, in this research, SNF option study will be conducted on DUPIC (Direct Use of Spent PWR Fuel in CANDU Reactor) fuel, TRU fuel and DUPIC + TRU mixed fuel for optimization of Hyb-WT performance. Goal of this research is design check for low required fusion power and high waste transmutation. In this paper, neutronic analysis is conducted on Hyb-WT with DUPIC nuclear fuel. When DUPIC nuclear fuel is loaded in fast neutron system, supplement fissile materials need to be loaded together for compensation of low criticality

  9. Spent Nuclear Fuel Option Study on Hybrid Reactor for Waste Transmutation

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Seong Hee; Kim, Myung Hyun [Kyung Hee University, Yongin (Korea, Republic of)

    2016-05-15

    DUPIC nuclear fuel can be used in hybrid reactor by compensation of subcritical level through (U-10Zr) fuel. Energy production performance of Hyb-WT with DUPIC is grateful because it has high EM factor and performs waste transmutation at the same time. However, waste transmutation performance should be improved by different fissile fuel instead of (U-10Zr) fuel. SNF (Spent Nuclear Fuel) disposal is one of the problems in the nuclear industry. FFHR (Fusion-Fission Hybrid Reactor) is one of the most attractive option on reuse of SNF as a waste transmutation system. Because subcritical system like FFHR has some advantages compared to critical system. Subcritical systems have higher safety potential than critical system. Also, there is suppressed excess reactivity at BOC (Beginning of Cycle) in critical system, on the other hand there is no suppressed reactivity in subcritical system. Our research team could have designed FFHR for waste transmutation; Hyb-WT. Various researches have been conducted on fuel and coolant option for optimization of transmutation performance. However, Hyb-WT has technical disadvantage. It is required fusion power (Pfus) which is the key design parameter in FFHR is increased for compensation of decreasing subcritical level. As a result, structure material integrity is damaged under high irradiation condition by increasing Pfus. Also, deep burn of reprocessed SNF is limited by weakened integrity of structure material. Therefore, in this research, SNF option study will be conducted on DUPIC (Direct Use of Spent PWR Fuel in CANDU Reactor) fuel, TRU fuel and DUPIC + TRU mixed fuel for optimization of Hyb-WT performance. Goal of this research is design check for low required fusion power and high waste transmutation. In this paper, neutronic analysis is conducted on Hyb-WT with DUPIC nuclear fuel. When DUPIC nuclear fuel is loaded in fast neutron system, supplement fissile materials need to be loaded together for compensation of low criticality

  10. Integrated data base report - 1994: US spent nuclear fuel and radioactive waste inventories, projections, and characteristics

    International Nuclear Information System (INIS)

    1995-09-01

    The Integrated Data Base Program has compiled historic data on inventories and characteristics of both commercial and U.S. Department of Energy (DOE) spent nuclear fuel and commercial and U.S. government-owned radioactive wastes. Except for transuranic wastes, inventories of these materials are reported as of December 31, 1994. Transuranic waste inventories are reported as of December 31, 1993. All spent nuclear fuel and radioactive waste data reported are based on the most reliable information available from government sources, the open literature, technical reports, and direct contacts. The information forecasted is consistent with the latest DOE/Energy Information Administration (EIA) projections of U.S. commercial nuclear power growth and the expected DOE-related and private industrial and institutional activities. The radioactive materials considered, on a chapter-by-chapter basis, are spent nuclear fuel, high-level waste, transuranic waste, low-level waste, commercial uranium mill tailings, DOE Environmental Restoration Program contaminated environmental media, commercial reactor and fuel-cycle facility decommissioning wastes, and mixed (hazardous and radioactive) low-level waste. For most of these categories, current and projected inventories are given through the calendar-year 2030, and the radioactivity and thermal power are calculated based on reported or estimated isotopic compositions

  11. Integrated data base report - 1994: US spent nuclear fuel and radioactive waste inventories, projections, and characteristics

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    The Integrated Data Base Program has compiled historic data on inventories and characteristics of both commercial and U.S. Department of Energy (DOE) spent nuclear fuel and commercial and U.S. government-owned radioactive wastes. Except for transuranic wastes, inventories of these materials are reported as of December 31, 1994. Transuranic waste inventories are reported as of December 31, 1993. All spent nuclear fuel and radioactive waste data reported are based on the most reliable information available from government sources, the open literature, technical reports, and direct contacts. The information forecasted is consistent with the latest DOE/Energy Information Administration (EIA) projections of U.S. commercial nuclear power growth and the expected DOE-related and private industrial and institutional activities. The radioactive materials considered, on a chapter-by-chapter basis, are spent nuclear fuel, high-level waste, transuranic waste, low-level waste, commercial uranium mill tailings, DOE Environmental Restoration Program contaminated environmental media, commercial reactor and fuel-cycle facility decommissioning wastes, and mixed (hazardous and radioactive) low-level waste. For most of these categories, current and projected inventories are given through the calendar-year 2030, and the radioactivity and thermal power are calculated based on reported or estimated isotopic compositions.

  12. Conditioning of radioactive waste solutions by cementation

    International Nuclear Information System (INIS)

    Vejmelka, P.; Rudolph, G.; Kluger, W.; Koester, R.

    1992-02-01

    For the cementation of the low and intermediate level evaporator concentrates resulting from the reprocessing of spent fuel numerous experiments were performed to optimize the waste form composition and to characterize the final waste form. Concerning the cementation process, properties of the waste/cement suspension were investigated. These investigations include the dependence of viscosity, bleeding, setting time and hydration heat from the waste cement slurry composition. For the characterization of the waste forms, the mechanical, thermal and chemical stability were determined. For special cases detailed investigations were performed to determine the activity release from waste packages under defined mechanical and thermal stresses. The investigations of the interaction of the waste forms with aqueous solutions include the determination of the Cs/Sr release, the corrosion resistance and the release of actinides. The Cs/Sr release was determined in dependence of the cement type, additives, setting time and sample size. (orig./DG) [de

  13. Implementation of the Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management

    International Nuclear Information System (INIS)

    Stewart, L.; Tonkay, D.

    2004-01-01

    This paper discusses the implementation of the Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management. The Joint Convention: establishes a commitment with respect to safe management of spent nuclear fuel and radioactive waste; requires the Parties to ''take appropriate steps'' to ensure the safety of their spent fuel and waste management activities, but does not delineate standards the Parties must meet; and seeks to attain, through its Contracting Parties, a higher level of safety with respect to management of their spent nuclear fuel, disused sealed sources, and radioactive waste

  14. The situation in Italy of radiactive wastes and spent fuels

    International Nuclear Information System (INIS)

    1986-01-01

    After having done a classification of radioactive wastes, some principles of radioprotection referred to the management and disposal are established according to their nature. Methods and responsabilities for the management of wastes are reported together with a description of the present situation in Italy.Finally studies carried out and under way in this field are described

  15. Spent fuel storage requirements for nuclear utilities and OCRWM [Office of Civilian Radioactive Waste Management

    International Nuclear Information System (INIS)

    Wood, T.W.

    1990-03-01

    Projected spent fuel generation at US power reactors exceeds estimated aggregate pool storage capacity by approximately 30,000 metric tons of uranium (MTU). Based on the current repository schedule, little of the spent fuel inventory will be disposed of prior to shutdown of existing reactors, and a large additional capacity for surface storage of spent fuel will be required, either at reactors or at a centralized DOE storage site. Allocation of this storage requirement across the utility-DOE interface, and the resulting implications for reactor sites and the performance of the federal waste management system, were studied during the DOE MRS System Study and again subsequent to the reassessment of the repository schedule. Spent fuel logistics and cost results from these analyses will be used in definition of spent fuel storage capacity requirements for the federal system. 9 refs., 8 figs., 1 tab

  16. Development of thermal conditioning technology for alpha-contaminated wastes

    International Nuclear Information System (INIS)

    Kim, Joon Hyung; Kim, H. Y.; Kim, J. G.

    2001-04-01

    To develop a thermal conditioning technology for alpha-contaminated wastes, which are presumed to generate from pyrochemical processing of spent fuel, research on the three different fields have been performed; incineration, off-gas treatment, and vitrification/cementation technology. Through the assessment on the amount of alpha-contaminated waste and incineration characterises, an oxygen-enriched incineration process, which can greatly reduce the off-gas volume, was developed by our own technology. Trial burn test with paper waste resulted in a reduction of off-gas volume by 3.5. A study on the behavior and adsorption of nuclides/heavy metals at high-temperature was performed to develop an efficient removal technology. Off-gas treatment technologies for radioiodine at high-temperature and 14 CO 2 , acidic gases, and radioactive gaseous wastes such as Xe/Kr at room temperature were established. As a part of development of high-level waste solidification technology, manufacture of high-frequency induction melter, fabrication and characterization of base-glass media fabricated with spent HEPA filter medium, and development of titanate ceramic material as a precursor of SYNROC by a self-combustion method were performed. To develop alpha-contaminated waste solidification technology, a process to convert periodontal in the cement matrix to calcite with SuperCritical Carbon Dioxide (SCCD) was manufactured. The SCCD treatment enhanced the physicochemical properties of cement matrices, which increase the long-term integrity of cement waste forms during transportation and storage

  17. Integrated Data Base for 1989: Spent fuel and radioactive waste inventories, projections, and characteristics

    International Nuclear Information System (INIS)

    1989-11-01

    The Integrated Data Base (IDB) Program has compiled current data on inventories and characteristics of commercial spent fuel and both commercial and US government-owned radioactive wastes through December 31, 1988. These data are based on the most reliable information available from government sources, the open literature, technical reports, and direct contacts. The current projections of future waste and spent fuel to be generated through the year 2020 and characteristics of these materials are also presented. The information forecasted is consistent with the latest US Department of Energy/Energy Information Administration (DOE/EIA) projections of US commercial nuclear power growth and the expected defense-related and private industrial and institutional (I/I) activities. The radioactive materials considered, on a chapter-by-chapter basis, are spent fuel, high-level waste, transuranic waste, low-level waste, commercial uranium mill tailings, remedial action waste, commercial reactor and fuel cycle facility decommissioning waste, and mixed (hazardous and radioactive) low-level waste. For most of these categories, current and projected inventories are given through the year 2020, and the radioactivity and thermal power are calculated based on reported or estimated isotopic compositions. In addition, characteristics and current inventories are reported for miscellaneous, highly radioactive materials that may require geologic disposal. 45 figs., 119 tabs

  18. Integrated data base for 1990: US spent fuel and radioactive waste inventories, projections, and characteristics

    International Nuclear Information System (INIS)

    1990-10-01

    The Integrated Data Base (IDB) Program has compiled current data on inventories and characteristics of commercial spent fuel and both commercial and US government-owned radioactive wastes through December 31, 1989. These data are based on the most reliable information available from government sources, the open literature, technical reports, and direct contacts. The current projections of future waste and spent fuel to be generated through the year 2020 and characteristics of these materials are also presented. The information forecasted is consistent with the latest US Department of Energy/Energy Information Administration (DOE/EIA) projections of US commercial nuclear power growth and the expected DOE-related and private industrial and institutional (I/I) activities. The radioactive materials considered, on a chapter-by-chapter basis, are spent fuel, high-level waste, transuranic waste, low-level waste, commercial uranium mill tailings, environmental restoration wastes, commercial reactor and fuel cycle facility decommissioning wastes, and mixed (hazardous and radioactive) low-level waste. For most of these categories, current and projected inventories are given through the year 2020, and the radioactivity and thermal power are calculated based on reported or estimated isotopic compositions. In addition, characteristics and current inventories are reported for miscellaneous radioactive materials that may require geologic disposal. 22 refs., 48 figs., 109 tabs

  19. Integrated Data Base for 1991: US spent fuel and radioactive waste inventories, projections, and characteristics

    International Nuclear Information System (INIS)

    1991-10-01

    The Integrated Data Base (IDB) Program has compiled current data on inventories and characteristics of commercial spent fuel and both commercial and US government-owned radioactive wastes through December 31, 1990. These data are based on the most reliable information available form government sources, the open literature, technical reports, and direct contacts. The current projections of future waste and spent fuel to be generated generally through the year 2020 and characteristics of these materials are also presented. The information forecasted is consistent with the latest US Department of Energy/Energy Information Administration (DOE/EIA) projections of US commercial nuclear power growth and the expected DOE-related and private industrial and institutional (I/I) activities. The radioactive materials considered are spent fuel, high-level waste, transuranic waste, low-level waste, commercial uranium mill tailings, environmental restoration wastes, commercial reactor and fuel cycle facility decommissioning wastes, and mixed (hazardous and radioactive) low-level waste. For most of these categories, current and projected inventories are given through the year 2020, and the radioactivity and thermal power are calculated based on reported or estimated isotopic compositions. In addition, characteristics and current inventories are reported for miscellaneous radioactive materials that may require geologic disposal. 160 refs., 61 figs., 142 tabs

  20. International safeguards relevant to geologic disposal of high-level wastes and spent fuels

    International Nuclear Information System (INIS)

    Pillay, K.K.S.; Picard, R.R.

    1989-01-01

    Spent fuels from once-through fuel cycles placed in underground repositories have the potential to become attractive targets for diversion and/or theft because of their valuable material content and decreasing radioactivity. The first geologic repository in the US, as currently designed, will contain approximately 500 Mt of plutonium, 60,000 Mt of uranium and a host of other fissile and strategically important elements. This paper identifies some of the international safeguards issues relevant to the various proposed scenarios for disposing of the spent fuel. In the context of the US program for geologic disposal of spent fuels, this paper highlights several issues that should be addressed in the near term by US industries, the Department of Energy, and the Nuclear Regulatory Commission before the geologic repositories for spent fuels become a reality. Based on US spent fuel discharges, an example is presented to illustrate the enormity of the problem of verifying spent fuel inventories. The geologic disposal scenario for high-level wastes originating from defense facilities produced a ''practicably irrecoverable'' waste form. Therefore, safeguards issues for geologic disposal of high-level waste now in the US are less pressing. 56 refs. , 2 figs

  1. The management of spent resins at rad waste installation (RWI)

    International Nuclear Information System (INIS)

    Johan, Bahdir

    2002-01-01

    During years 2000 RWI has been managed 1.596 liters the spent resins from MPR, multipurpose reactor G.A. Siwabessy (RSG-GAS). The spent resins containing 6 0 C o, 1 37 C s and 8 9 S r. The immobilization of spent resins using Portland cement type I and sand in shell 950 liter has been carried out. The immobilization product quality was characterized by measurement of surface exposure, density, compression strength and leaching rate. The samples each being 3000 g are made by taking cement slurry from the 950 liter shell. The samples are molded in the form of cylinder of 50 mm diameter and height 50 mm. The density was determined by weighing and measuring sample's volume. The compression strength was determinate using P aul Weber a pparatus. The leaching rate by immerse of the samples in the demineralized water and the rate the contact surface dose measures using survey meter. The results show that the density ρ= (1,72 ± 0,01) s/d 1,73 ± 0,03) g.cm - 3 , the compression strength Γ= (20,10 ± 0,02 s/d 20,18 ± 0,02) N.mm - 2 , the leaching rate R n = (1,32x10 - 2 s /d 2,0x10 - 3 ) g.cm - 2 . h - 1 , the contact surface rate D 0 = (0,374 s/d 0,79) mrem.jam - 1 a nd 1m distance from the surface D 1 = (0,18 s/d 0,19) mrem.jam - 1 h ave been in compliance with the criteria recommended by IAEA the quality of spent resins concrete in shell 950 liters (number 22C to 27C) is qualified for ultimate disposal

  2. Development of database for spent fuel and special waste from the Spanish nuclear power plants

    International Nuclear Information System (INIS)

    Gonzalez Gandal, R.; Rodriguez Gomez, M. A.; Serrano, G.; Lopez Alvarez, G.

    2013-01-01

    GNF Engineering is developing together with ENRESA and with the UNESA participation, the spent fuel and high activity radioactive waste data base of Spanish nuclear power plants. In the article is detailed how this strategic project essential to carry out the CTS (centralized temporary storage) future management and other project which could be emerged is being dealing with, This data base will serve as mechanics of relationship between ENRESA and Spanish NPPS, covering the expected necessary information to deal with mentioned future management of spent fuel and high activity radioactive waste. (Author)

  3. Integrated data base for 1988: Spent fuel and radioactive waste inventories, projections, and characteristics

    International Nuclear Information System (INIS)

    1988-09-01

    The Integrated Data Base (IDB) Program has compiled current data on inventories and characteristics of commercial spent fuel and both commercial and US government-owned radioactive wastes through December 31, 1987. These data are based on the most reliable information available from government sources, the open literature, technical reports, and direct contacts. The current projections of future waste and spent fuel to be generated through the year 2020 and characteristics of these materials are also presented. The information forecasted is consistent with the latest US Department of Energy/Energy Information Administration (DOE/EIA) projections of US commercial nuclear power growth and the expected defense-related and private industrial and institutional (I/I) activities. The radioactive materials considered, on a chapter-by-chapter basis are: spent fuel, high-level waste, transuranic waste, low-level waste, commercial uranium mill tailings, remedial action waste, and decommissioning waste. For each category, current and projected inventories are given through the year 2020, and the radioactivity and thermal power are calculated based on reported or estimated isotopic compositions. In addition, characteristics and current inventories are reportd for miscellaneous, highly radioactive materials that may require geologic disposal. 89 refs., 46 figs., 104 tabs

  4. Integrated data base for 1986: spent fuel and radioactive waste inventories, projections, and characteristics. Revision 2

    International Nuclear Information System (INIS)

    1986-09-01

    The Integrated Data Base (IDB) Program has compiled current data on inventories and characteristics of commercial spent fuel and both commercial and US Department of Energy (DOE) radioactive wastes through December 31, 1985, based on the most reliable information available from government sources, the open literature, technical reports, and direct contacts. Current projections of future waste and spent fuel to be generated through the year 2020 and characteristics of these materials are also presented. The information forecasted is consistent with the expected defense-related and private industrial and institutional activities and the latest DOE/Energy Information Administration (EIA) projections of US commercial nuclear power growth. The materials considered, on a chapter-by-chapter basis, are: spent fuel, high-level waste, transuranic waste, low-level waste, commercial uranium mill tailings, remedial action waste, and decommissioning waste. For each category, current and projected inventories are given through the year 2020, and the radioactivity and thermal power are calculated based on reported or calculated isotopic compositions

  5. Evaluation of alternative spent fuel waste package concepts for a repository in Basalt

    International Nuclear Information System (INIS)

    Hall, G.V.B.; Nair, B.R.

    1986-01-01

    The United States government has established a program for the disposal of spent nuclear fuel and high-level radioactive waste. The Nuclear Waste Policy Act (NWPA) of 1982 requires the first nuclear waste repository to begin receiving high-level radioactive waste in 1998. One of the potentially acceptable sites currently being evaluated is the Hanford Site in the Pasco Basin in the state of Washington where the host rock is basalt. Under the direction of the United States Department of Energy (DOE), Rockwell International's Rockwell Hanford Operations (RHO) has initiated the Basalt Waste Isolation Project (BWIP). The BWIP must design waste packages for emplacement in the repository. As part of the BWIP waste package development program, several alternative designs were considered for the disposal of spent nuclear fuel. This paper describes the concepts that were evaluated, the criteria that was developed for judging their relative merits, and the methodology that was employed. The results of the evaluation show that a Pipe-In-Tunnel design, which uses a long carbon steel pipe for the containment barrier for multiple packages of consolidated spent fuel, has the highest rating. Other designs which had high ratings are also discussed

  6. Development of geological disposal system for spent fuels and high-level radioactive wastes in Korea

    International Nuclear Information System (INIS)

    Choi, Heui Joo; Lee, Jong Youl; Choi, Jong Won

    2013-01-01

    Two different kinds of nuclear power plants produce a substantial amount of spent fuel annually in Korea. According to the current projection, it is expected that around 60,000 MtU of spent fuel will be produced from 36 PWR and APR reactors and 4 CANDU reactors by the end of 2089. In 2006, KAERI proposed a conceptual design of a geological disposal system (called KRS, Korean Reference disposal System for spent fuel) for PWR and CANDU spent fuel, as a product of a 4-year research project from 2003 to 2006. The major result of the research was that it was feasible to construct a direct disposal system for 20,000 MtU of PWR spent fuels and 16,000 MtU of CANDU spent fuel in the Korean peninsula. Recently, KAERI and MEST launched a project to develop an advanced fuel cycle based on the pyroprocessing of PWR spent fuel to reduce the amount of HLW and reuse the valuable fissile material in PWR spent fuel. Thus, KAERI has developed a geological disposal system for high-level waste from the pyroprocessing of PWR spent fuel since 2007. However, since no decision was made for the CANDU spent fuel, KAERI improved the disposal density of KRS by introducing several improved concepts for the disposal canister. In this paper, the geological disposal systems developed so far are briefly outlined. The amount and characteristics of spent fuel and HLW, 4 kinds of disposal canisters, the characteristics of a buffer with domestic Ca-bentonite, and the results of a thermal design of deposition holes and disposal tunnels are described. The different disposal systems are compared in terms of their disposal density.

  7. DEVELOPMENT OF GEOLOGICAL DISPOSAL SYSTEMS FOR SPENT FUELS AND HIGH-LEVEL RADIOACTIVE WASTES IN KOREA

    Directory of Open Access Journals (Sweden)

    HEUI-JOO CHOI

    2013-02-01

    Full Text Available Two different kinds of nuclear power plants produce a substantial amount of spent fuel annually in Korea. According to the current projection, it is expected that around 60,000 MtU of spent fuel will be produced from 36 PWR and APR reactors and 4 CANDU reactors by the end of 2089. In 2006, KAERI proposed a conceptual design of a geological disposal system (called KRS, Korean Reference disposal System for spent fuel for PWR and CANDU spent fuel, as a product of a 4-year research project from 2003 to 2006. The major result of the research was that it was feasible to construct a direct disposal system for 20,000 MtU of PWR spent fuels and 16,000 MtU of CANDU spent fuel in the Korean peninsula. Recently, KAERI and MEST launched a project to develop an advanced fuel cycle based on the pyroprocessing of PWR spent fuel to reduce the amount of HLW and reuse the valuable fissile material in PWR spent fuel. Thus, KAERI has developed a geological disposal system for high-level waste from the pyroprocessing of PWR spent fuel since 2007. However, since no decision was made for the CANDU spent fuel, KAERI improved the disposal density of KRS by introducing several improved concepts for the disposal canister. In this paper, the geological disposal systems developed so far are briefly outlined. The amount and characteristics of spent fuel and HLW, 4 kinds of disposal canisters, the characteristics of a buffer with domestic Ca-bentonite, and the results of a thermal design of deposition holes and disposal tunnels are described. The different disposal systems are compared in terms of their disposal density.

  8. A novel waste form for disposal of spent-nuclear-fuel reprocessing waste: A vitrifiable cement

    International Nuclear Information System (INIS)

    Gougar, M.L.D.; Scheetz, B.E.; Siemer, D.D.

    1999-01-01

    A cement capable of being hot isostatically pressed into a glass ceramic has been proposed as the waste form for spent-nuclear-fuel reprocessing wastes at the Idaho National Engineering and Environmental Laboratory (INEEL). This intermediate cement, with a composition based on that of common glasses, has been designed and tested. The cement formulations included mixed INEEL wastes, blast furnace slag, reactive silica, and INEEL soil or vermiculite, which were activated with potassium or sodium hydroxide. Following autoclave processing, the cements were characterized. X-ray diffraction analysis revealed three notable crystalline phases: quartz, calcite, and fluorite. Results of compressive strength testing ranged from 1452 and 4163 psi, exceeding the US Nuclear Regulatory Commission (NRC)-suggested standard of >500 psi. From American National Standards Institute/American Nuclear Society 16.1-1986 leach testing, effective diffusivities for Cs were determined to be on the order of 10 -11 to 10 -10 cm 2 /s and for Sr were 10 -12 cm 2 /s, which are four orders of magnitude less than diffusivities in some other radwaste materials. Average leach indices (LI) were 9.6 and 11.9 for Cs and Sr, respectively, meeting the NRC Standard of LI > 6. The 28-day Materials Characterization Center-1 leach testing resulted in normalized elemental mass losses between 0.63 and 28 g/(m 2 ·day) for Cs and between 0.34 and 0.70 g/(m 2 ·day) industry-accepted standard while Cs losses indicate a process sensitive parameter

  9. The Analytical Repository Source-Term (AREST) model: Analysis of spent fuel as a nuclear waste form

    International Nuclear Information System (INIS)

    Apted, M.J.; Liebetrau, A.M.; Engel, D.W.

    1989-02-01

    The purpose of this report is to assess the performance of spent fuel as a final waste form. The release of radionuclides from spent nuclear fuel has been simulated for the three repository sites that were nominated for site characterization in accordance with the Nuclear Waste Policy Act of 1982. The simulation is based on waste package designs that were presented in the environmental assessments prepared for each site. Five distinct distributions for containment failure have been considered, and the release for nuclides from the UO 2 matrix, gap (including grain boundary), crud/surface layer, and cladding has been calculated with the Analytic Repository Source-Term (AREST) code. Separate scenarios involving incongruent and congruent release from the UO 2 matrix have also been examined using the AREST code. Congruent release is defined here as the condition in which the relative mass release rates of a given nuclide and uranium from the UO 2 matrix are equal to their mass ratios in the matrix. Incongruent release refers to release of a given nuclide from the UO 2 matrix controlled by its own solubility-limiting solid phase. Release of nuclides from other sources within the spent fuel (e.g., cladding, fuel/cladding gap) is evaluated separately from either incongruent or congruent matrix release. 51 refs., 200 figs., 9 tabs

  10. Recovery of fissile materials from plutonium residues, miscellaneous spent nuclear fuel, and uranium fissile wastes

    International Nuclear Information System (INIS)

    Forsberg, C.W.

    1997-01-01

    A new process is proposed that converts complex feeds containing fissile materials into a chemical form that allows the use of existing technologies (such as PUREX and ion exchange) to recover the fissile materials and convert the resultant wastes to glass. Potential feed materials include (1) plutonium scrap and residue, (2) miscellaneous spent nuclear fuel, and (3) uranium fissile wastes. The initial feed materials may contain mixtures of metals, ceramics, amorphous solids, halides, and organics. 14 refs., 4 figs

  11. STRUCTURAL CALCULATIONS FOR THE CODISPOSAL OF TRIGA SPENT NUCLEAR FUEL IN A WASTE PACKAGE

    International Nuclear Information System (INIS)

    S. Mastilovic

    1999-01-01

    The purpose of this analysis is to determine the structural response of a TRIGA Department of Energy (DOE) spent nuclear fuel (SNF) codisposal canister placed in a 5-Defense High Level Waste (DHLW) waste package (WP) and subjected to a tipover design basis event (DBE) dynamic load; the results will be reported in terms of displacements and stress magnitudes. This activity is associated with the WP design

  12. Recycling of waste spent catalyst in road construction and masonry blocks.

    Science.gov (United States)

    Taha, Ramzi; Al-Kamyani, Zahran; Al-Jabri, Khalifa; Baawain, Mahad; Al-Shamsi, Khalid

    2012-08-30

    Waste spent catalyst is generated in Oman as a result of the cracking process of petroleum oil in the Mina Al-Fahl and Sohar Refineries. The disposal of spent catalyst is of a major concern to oil refineries. Stabilized spent catalyst was evaluated for use in road construction as a whole replacement for crushed aggregates in the sub-base and base layers and as a partial replacement for Portland cement in masonry blocks manufacturing. Stabilization is necessary as the waste spent catalyst exists in a powder form and binders are needed to attain the necessary strength required to qualify its use in road construction. Raw spent catalyst was also blended with other virgin aggregates, as a sand or filler replacement, for use in road construction. Compaction, unconfined compressive strength and leaching tests were performed on the stabilized mixtures. For its use in masonry construction, blocks were tested for unconfined compressive strength at various curing periods. Results indicate that the spent catalyst has a promising potential for use in road construction and masonry blocks without causing any negative environmental impacts. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Comparison of selected foreign plans and practices for spent fuel and high-level waste management

    International Nuclear Information System (INIS)

    Schneider, K.J.; Mitchell, S.J.; Lakey, L.T.; Johnson, A.B. Jr.; Hazelton, R.F.; Bradley, D.J.

    1990-04-01

    This report describes the major parameters for management of spent nuclear fuel and high-level radioactive wastes in selected foreign countries as of December 1989 and compares them with those in the United States. The foreign countries included in this study are Belgium, Canada, France, the Federal Republic of Germany, Japan, Sweden, Switzerland, and the United Kingdom. All the countries are planning for disposal of spent fuel and/or high-level wastes in deep geologic repositories. Most countries (except Canada and Sweden) plan to reprocess their spent fuel and vitrify the resultant high-level liquid wastes; in comparison, the US plans direct disposal of spent fuel. The US is planning to use a container for spent fuel as the primary engineered barrier. The US has the most developed repository concept and has one of the earliest scheduled repository startup dates. The repository environment presently being considered in the US is unique, being located in tuff above the water table. The US also has the most prescriptive regulations and performance requirements for the repository system and its components. 135 refs., 8 tabs

  14. Comparison of selected foreign plans and practices for spent fuel and high-level waste management

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, K.J.; Mitchell, S.J.; Lakey, L.T.; Johnson, A.B. Jr.; Hazelton, R.F.; Bradley, D.J.

    1990-04-01

    This report describes the major parameters for management of spent nuclear fuel and high-level radioactive wastes in selected foreign countries as of December 1989 and compares them with those in the United States. The foreign countries included in this study are Belgium, Canada, France, the Federal Republic of Germany, Japan, Sweden, Switzerland, and the United Kingdom. All the countries are planning for disposal of spent fuel and/or high-level wastes in deep geologic repositories. Most countries (except Canada and Sweden) plan to reprocess their spent fuel and vitrify the resultant high-level liquid wastes; in comparison, the US plans direct disposal of spent fuel. The US is planning to use a container for spent fuel as the primary engineered barrier. The US has the most developed repository concept and has one of the earliest scheduled repository startup dates. The repository environment presently being considered in the US is unique, being located in tuff above the water table. The US also has the most prescriptive regulations and performance requirements for the repository system and its components. 135 refs., 8 tabs.

  15. Spent fuel waste form characteristics: Grain and fragment size statistical dependence for dissolution response

    International Nuclear Information System (INIS)

    Stout, R.B.; Leider, H.; Weed, H.; Nguyen, S.; McKenzie, W.; Prussin, S.; Wilson, C.N.; Gray, W.J.

    1991-04-01

    The Yucca Mountain Project of the US Department of Energy is investigating the suitability of the unsaturated zone at Yucca Mountain, NV, for a high-level nuclear waste repository. All of the nuclear waste will be enclosed in a container package. Most of the nuclear waste will be in the form of fractured UO 2 spent fuel pellets in Zircaloy-clad rods from electric power reactors. If failure of both the container and its enclosed clad rods occurs, then the fragments of the fractured UO 2 spent fuel will be exposed to their surroundings. Even though the surroundings are an unsaturated zone, a possibility of water transport exists, and consequently, UO 2 spent fuel dissolution may occur. A repository requirement imposes a limit on the nuclide release per year during a 10,000 year period; thus the short term dissolution response from fragmented fuel pellet surfaces in any given year must be understood. This requirement necessitates that both experimental and analytical activities be directed toward predicting the relatively short term dissolution response of UO 2 spent fuel. The short term dissolution response involves gap nuclides, grain boundary nuclides, and grain volume nuclides. Analytical expressions are developed that describe the combined geometrical influences of grain boundary nuclides and grain volume nuclides on the dissolution rate of spent fuel. 7 refs., 1 fig

  16. Radioactive wastes. Commune convention about the safety of spent fuel management and about the radioactive waste management

    International Nuclear Information System (INIS)

    Anon.

    1997-01-01

    This common convention do not give detailed safety standards but general obligations whom objective is the development of a safety culture in the world. It concerns the spent fuels (valuable and valued by the reprocessing) and radioactive wastes (matter without any later use). (N.C.)

  17. Wet-Oxidation of Spent Organic Waste Tri-butyl Phosphate/Diluents

    International Nuclear Information System (INIS)

    El-Dessouky, M.I.; Abed El-Aziz, M.M.; El-Mossalamy, E.H.; Aly, H.F.

    1999-01-01

    Tri-Butyl Phosphate was used in reprocessing of spent nuclear fuel in the purex process. The amount of uranium retained in the organic phase depends on the type of TBP/Diluent. Destruction of spent TBP is of high interest in waste management. In the present work, oxidative degradation of TBP diluted with kerosene, carbon tetrachloride, benzene and toluene using potassium permanganate as oxidant was carried out to produce stable inorganic dry particle residue which is then immobilized in different matrices. The different factors affecting the destruction of spent waste was investigated. The up take and decontamination factor for both 152 and 154 Eu and 181 Hf and the analysis of the final product have been studied

  18. Advance notification of shipments of nuclear waste and spent fuel: guidance

    International Nuclear Information System (INIS)

    1982-06-01

    U.S. Nuclear Regulatory Commission regulations in 10 CFR 70.5b and 73.37(f) require NRC licensees to notify the governor of a state prior to making a shipment of nuclear waste or spent fuel within or through the state. This guidance document was prepared to assist licensees in carrying out those requirements

  19. Radionuclide compositions of spent fuel and high level waste for the uranium and plutonium fuelled PWR

    International Nuclear Information System (INIS)

    Fairclough, M.P.; Tymons, B.J.

    1985-06-01

    The activities of a selection of radionuclides are presented for three types of reactor fuel of interest in radioactive waste management. The fuel types are for a uranium 'burning' PWR, a plutonium 'burning' PWR using plutonium recycled from spent uranium fuel and a plutonium 'burning' PWR using plutonium which has undergone multiple recycle. (author)

  20. Corrosion of titanium and titanium alloys in spent fuel repository conditions - literature review

    International Nuclear Information System (INIS)

    Aho-Mantila, I.; Haenninen, H.; Aaltonen, P.; Taehtinen, S.

    1985-03-01

    The spent nuclear fuel is planned to be disposed in Finnish bedrock. The canister of spent fuel in waste repository is one barrier to the release of radionuclides. It is possible to choose a canister material with a known, measurable corrosion rate and to make it with thickness allowing corrosion to occur. The other possibility is to use a material which is nearly immune to general corrosion. In this second category there are titanium and titanium alloys which exhibit a very high degree of resistance to general corrosion. In this literature study the corrosion properties of unalloyed titanium, titanium alloyed with palladium and titanium alloyed with molybdenum and nickel are reviewed. The two titanium alloys own in addition to the excellent general corrosion properties outstanding properties against localized corrosion like pitting or crevice corrosion. Stress corrosion cracking and corrosion fatique of titanium seem not to be a problem in the repository conditions, but the possibilities of delayed cracking caused by hydrogen should be carefully appreciated. (author)

  1. Strategic environmental assessment of the national programme for the safe management of spent fuel and radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    Steinhoff, Mathias; Kallenbach-Herbert, Beate; Claus, Manuel [Oeko-Institut e.V. Darmstadt (Germany); and others

    2015-03-27

    The report on the strategic environmental audit for the national waste disposal program covers the following issues: aim of the study, active factors, environmental objectives; description and evaluation of environmental impact including site selection criteria for final repositories of heat generating radioactive waste, intermediate storage of spent fuel elements and waste from reprocessing plants, disposal of wastes retrieved from Asse II; hypothetical zero variants.

  2. Strategic environmental assessment of the national programme for the safe management of spent fuel and radioactive waste

    International Nuclear Information System (INIS)

    Steinhoff, Mathias; Kallenbach-Herbert, Beate; Claus, Manuel

    2015-01-01

    The report on the strategic environmental audit for the national waste disposal program covers the following issues: aim of the study, active factors, environmental objectives; description and evaluation of environmental impact including site selection criteria for final repositories of heat generating radioactive waste, intermediate storage of spent fuel elements and waste from reprocessing plants, disposal of wastes retrieved from Asse II; hypothetical zero variants.

  3. Logistics models for the transportation of radioactive waste and spent fuel

    International Nuclear Information System (INIS)

    Joy, D.S.; Holcomb, B.D.

    1978-03-01

    Mathematical modeling of the logistics of waste shipment is an effective way to provide input to program planning and long-range waste management. Several logistics models have been developed for use in parametric studies, contingency planning, and management of transportation networks. These models allow the determination of shipping schedules, optimal routes, probable transportation modes, minimal costs, minimal personnel exposure, minimal transportation equipment, etc. Such information will permit OWI to specify waste-receiving rates at various repositories in order to balance work loads, evaluate surge capacity requirements, and estimate projected shipping cask fleets. The programs are tailored to utilize information on the types of wastes being received, location of repositories and waste-generating facilities, shipping distances, time required for a given shipment, availability of equipment, above-ground storage capabilities and locations, projected waste throughput rates, etc. Two basic models have been developed. The Low-Level Waste Model evaluates the optimal transportation policy for shipping waste directly from the source to a final destination without any intermediate stops. The Spent Fuel Logistics Model evaluates the optimal transportation policy for shipping unreprocessed spent fuel from nuclear power plants (1) indirectly, that is, to an Away-From-Reactor (AFR) storage facility, with subsequent transhipment to a repository, or (2) directly to a repository

  4. An analysis of the technical status of high level radioactive waste and spent fuel management systems

    Science.gov (United States)

    English, T.; Miller, C.; Bullard, E.; Campbell, R.; Chockie, A.; Divita, E.; Douthitt, C.; Edelson, E.; Lees, L.

    1977-01-01

    The technical status of the old U.S. mailine program for high level radioactive nuclear waste management, and the newly-developing program for disposal of unreprocessed spent fuel was assessed. The method of long term containment for both of these waste forms is considered to be deep geologic isolation in bedded salt. Each major component of both waste management systems is analyzed in terms of its scientific feasibility, technical achievability and engineering achievability. The resulting matrix leads to a systematic identification of major unresolved technical or scientific questions and/or gaps in these programs.

  5. Safety of direct disposal of spent fuel and of disposal of reprocessing waste

    Energy Technology Data Exchange (ETDEWEB)

    Besnus, F. [Institut de Radioprotection et de Surete Nucleaire (IRSN), 92 - Fontenay-aux-Roses (France)

    2006-07-01

    In 2005, the French Agency for Radioactive waste management (ANDRA) established a report on the feasibility of the geological disposal of high level and intermediate level long lived radioactive waste, in a clay formation. The hypothesis of spent fuel direct disposal was also considered. By the end of 2005, IRSN performed a complete technical review of ANDRA's report, aiming at highlighting the salient safety issues that were to be addressed within a process that may possibly lead to the creation of a disposal facility for these wastes. The following publication presents the main conclusions of this technical review. (author)

  6. Safety of direct disposal of spent fuel and of disposal of reprocessing waste

    International Nuclear Information System (INIS)

    Besnus, F.

    2006-01-01

    In 2005, the French Agency for Radioactive waste management (ANDRA) established a report on the feasibility of the geological disposal of high level and intermediate level long lived radioactive waste, in a clay formation. The hypothesis of spent fuel direct disposal was also considered. By the end of 2005, IRSN performed a complete technical review of ANDRA's report, aiming at highlighting the salient safety issues that were to be addressed within a process that may possibly lead to the creation of a disposal facility for these wastes. The following publication presents the main conclusions of this technical review. (author)

  7. Anaerobic co-digestion of spent coffee grounds with different waste feedstocks for biogas production.

    Science.gov (United States)

    Kim, Jaai; Kim, Hakchan; Baek, Gahyun; Lee, Changsoo

    2017-02-01

    Proper management of spent coffee grounds has become a challenging problem as the production of this waste residue has increased rapidly worldwide. This study investigated the feasibility of the anaerobic co-digestion of spent coffee ground with various organic wastes, i.e., food waste, Ulva, waste activated sludge, and whey, for biomethanation. The effect of co-digestion was evaluated for each tested co-substrate in batch biochemical methane potential tests by varying the substrate mixing ratio. Co-digestion with waste activated sludge had an apparent negative effect on both the yield and production rate of methane. Meanwhile, the other co-substrates enhanced the reaction rate while maintaining methane production at a comparable or higher level to that of the mono-digestion of spent coffee ground. The reaction rate increased with the proportion of co-substrates without a significant loss in methanation potential. These results suggest the potential to reduce the reaction time and thus the reactor capacity without compromising methane production. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Operational programs for national radioactive waste and spent fuel management programme in Slovenia

    International Nuclear Information System (INIS)

    Zeleznik, Nadja; Kralj, Metka; Mele, Irena

    2007-01-01

    The first separate National Radioactive Waste and Spent Fuel Management Programme (National Programme) was prepared in Slovenia in 2005 as a supplementary part of the National Environmental Action Programme and was adopted in February 2006 by the Slovenian Parliament. The new National Programme includes all topics being relevant for the management of the radioactive waste and spent fuel which are produced in Slovenia, from the legislation and identification of different waste streams, to the management of radioactive waste and spent fuel, the decommissioning of nuclear facilities and management of (TE)NORM in the near future from 2006 up to the 2015. The National Programme identified the existing and possible future problems and proposed the technical solutions and action plans for two distinctive periods: 2006-2009 and 2010- 2015. According to the requirement of Act on Protection against Ionising Radiation and Nuclear Safety the national Agency for Radwaste Management (ARAO) prepared the operational programmes for the four year period with technical details on implementation of the National programme. ARAO gained the detailed plans of different involved holders and proposed 9 operational programmes with aims, measures, individual organizations in charge, expenses and resources for each of the programmes. The Operational programmes were already reviewed by the Ministry of Environment and Physical Planning and are under acceptance. The orientation of the radioactive waste management according to the National Programme and operational activities within additional limitations based on the strategical decisions of Slovenian Government is presented in the paper. (authors)

  9. Geologic disposal as optimal solution of managing the spent nuclear fuel and high-level radioactive waste

    International Nuclear Information System (INIS)

    Ilie, P.; Didita, L.; Ionescu, A.; Deaconu, V.

    2002-01-01

    To date there exist three alternatives for the concept of geological disposal: 1. storing the high-level waste (HLW) and spent nuclear fuel (SNF) on ground repositories; 2. solutions implying advanced separation processes including partitioning and transmutation (P and T) and eventual disposal in outer space; 3. geological disposal in repositories excavated in rocks. Ground storing seems to be advantageous as it ensures a secure sustainable storing system over many centuries (about 300 years). On the other hand ground storing would be only a postponement in decision making and will be eventually followed by geological disposal. Research in the P and T field is expected to entail a significant reduction of the amount of long-lived radioactive waste although the long term geological disposal will be not eliminated. Having in view the high cost, as well as the diversity of conditions in the countries owning power reactors it appears as a reasonable regional solution of HLW disposal that of sharing a common geological disposal. In Romania legislation concerning of radioactive waste is based on the Law concerning Spent Nuclear Fuel and Radioactive Waste Management in View of Final Disposal. One admits at present that for Romania geological disposal is not yet a stressing issue and hence intermediate ground storing of SNF will allow time for finding a better final solution

  10. Applications of chemical sensors in spent fuel reprocessing and waste management

    International Nuclear Information System (INIS)

    Achuthan, P.V.

    2012-01-01

    Environmental friendly power generation is essential to preserve the quality of life for the future generations. For more than fifty years, nuclear energy has proven its potential as an economically and commercially viable alternative to conventional energy. More over it is a clean source of energy with minimum green house effect. Recent data on climate changes have stressed the need for more caution on atmospheric discharges, hence a revival of interest in nuclear energy is in the offing. The entire world is committed to protect the atmosphere from polluting agents. Even nuclear power plants and the fuel cycle facilities are looking forward to reduce the already low gaseous emissions further and also to develop ways and means of controlling the impact of the small but significant radiotoxicity of the wastes generated in the nuclear fuel cycle. Spent fuel reprocessing and associated waste management, an integral part of the nuclear fuel cycle, employs chemical processes for the recovery of fuel value and for the conditioning of the reprocessed waste. In this respect they can be classified as a chemical plant dealing with radioactive materials. Hence it is essential to keep the gaseous, liquid and solid discharges at the lowest possible levels to comply with the regulations of discharges stipulated by the regulatory authorities. Elaborate cleaning and detection systems are needed for effective control of these discharges from both radioactive and chemical contamination point of view. Even though radiation detectors, which are non specific to the analytes, are the major tools for these controls, analyte specific chemical sensors can play a vital role in controlling the chemical vapours/gases generated during processing. The presentation will cover the major areas where chemical sensors play a significant role in this industry. (author)

  11. Integrated Data Base for 1992: US spent fuel and radioactive waste inventories, projections, and characteristics

    International Nuclear Information System (INIS)

    1992-10-01

    The Integrated Data Base (IDB) Program has compiled current data on inventories and characteristics of commercial spent fuel and both commercial and US government-owned radioactive wastes through December 31, 1991. These data are based on the most reliable information available from government sources, the open literature, technical reports, and direct contacts. The information forecasted is consistent with the latest US Department of Energy/Energy Information Administration (DOE/EIA) projections of US commercial nuclear power growth and the expected DOE-related and private industrial and institutional (I/I) activities. The radioactive materials considered, on a chapter-by-chapter basis, are spent nuclear fuel, high-level waste, transuranic waste, low-level waste, commercial uranium mill tailings, environmental restoration wastes, commercial reactor and fuel cycle facility decommissioning wastes, and mixed (hazardous and radioactive) low-level waste. For most of these categories, current and projected inventories are given through the year 2030, and the radioactivity and thermal power are calculated based on reported or estimated isotopic compositions. In addition, characteristics and current inventories are reported for miscellaneous radioactive materials that may require geologic disposal

  12. Idaho Chemical Processing Plant spent fuel and waste management technology development program plan: 1994 Update

    International Nuclear Information System (INIS)

    1994-09-01

    The Department of Energy has received spent nuclear fuel (SNF) at the Idaho Chemical Processing Plant (ICPP) for interim storage since 1951 and reprocessing since 1953. Until April 1992, the major activity of the ICPP was the reprocessing of SNF to recover fissile uranium and the management of the resulting high-level wastes (HLW). In 1992, DOE chose to discontinue reprocessing SNF for uranium recovery and shifted its focus toward the continued safe management and disposition of SNF and radioactive wastes accumulated through reprocessing activities. Currently, 1.8 million gallons of radioactive liquid wastes (1.5 million gallons of radioactive sodium-bearing liquid wastes and 0.3 million gallons of high-level liquid waste), 3,800 cubic meters of calcine waste, and 289 metric tons heavy metal of SNF are in inventory at the ICPP. Disposal of SNF and high-level waste (HLW) is planned for a repository. Preparation of SNF, HLW, and other radioactive wastes for disposal may include mechanical, physical, and/or chemical processes. This plan outlines the program strategy of the ICPP spent Fuel and Waste Management Technology Development Program (SF ampersand WMTDP) to develop and demonstrate the technology required to ensure that SNF and radioactive waste will be properly stored and prepared for final disposal in accordance with regulatory drivers. This Plan presents a brief summary of each of the major elements of the SF ampersand WMTDP; identifies key program assumptions and their bases; and outlines the key activities and decisions that must be completed to identify, develop, demonstrate, and implement a process(es) that will properly prepare the SNF and radioactive wastes stored at the ICPP for safe and efficient interim storage and final disposal

  13. Nuclear Solid Waste Processing Design at the Idaho Spent Fuels Facility

    International Nuclear Information System (INIS)

    Dippre, M. A.

    2003-01-01

    A spent nuclear fuels (SNF) repackaging and storage facility was designed for the Idaho National Engineering and Environmental Laboratory (INEEL), with nuclear solid waste processing capability. Nuclear solid waste included contaminated or potentially contaminated spent fuel containers, associated hardware, machinery parts, light bulbs, tools, PPE, rags, swabs, tarps, weld rod, and HEPA filters. Design of the nuclear solid waste processing facilities included consideration of contractual, regulatory, ALARA (as low as reasonably achievable) exposure, economic, logistical, and space availability requirements. The design also included non-attended transfer methods between the fuel packaging area (FPA) (hot cell) and the waste processing area. A monitoring system was designed for use within the FPA of the facility, to pre-screen the most potentially contaminated fuel canister waste materials, according to contact- or non-contact-handled capability. Fuel canister waste materials which are not able to be contact-handled after attempted decontamination will be processed remotely and packaged within the FPA. Noncontact- handled materials processing includes size-reduction, as required to fit into INEEL permitted containers which will provide sufficient additional shielding to allow contact handling within the waste areas of the facility. The current design, which satisfied all of the requirements, employs mostly simple equipment and requires minimal use of customized components. The waste processing operation also minimizes operator exposure and operator attendance for equipment maintenance. Recently, discussions with the INEEL indicate that large canister waste materials can possibly be shipped to the burial facility without size-reduction. New waste containers would have to be designed to meet the drop tests required for transportation packages. The SNF waste processing facilities could then be highly simplified, resulting in capital equipment cost savings, operational

  14. Standard format and content for a license application to store spent fuel and high-level radioactive waste

    International Nuclear Information System (INIS)

    1989-09-01

    Subpart B, ''License Application, Form, and Contents,'' of 10 CFR Part 72, ''Licensing Requirements for the Independent Storage of Spent Nuclear Fuel and High-Level Radioactive Waste,'' specifies the information to be covered in an application for a license to store spent fuel in an independent spent fuel storage installation (ISFSI) or to store spent fuel and high-level radioactive waste in a monitored retrievable storage facility (MRS). However, Part 72 does not specify the format to be followed in the license application. This regulatory guide suggests a format acceptable to the NRC staff for submitting the information specified in Part 72 for license application to store spent fuel in an ISFSI or to store spent fuel and high-level radioactive waste in an MRS

  15. Literature survey on metal waste form for metallic waste from electrorefiners for the electrometallurgical treatment of spent metallic fuels

    International Nuclear Information System (INIS)

    Nishimura, Tomohiro

    2003-01-01

    This report summarizes the recent results of the metal waste form development activities at the Argonne National Laboratory in the USA for high-level radioactive metallic waste (stainless-steel (SS) cladding hulls, zirconium (Zr), noble-metal fission products (NMFPs), etc.) from electrorefiners for the electrometallurgical treatment of spent metallic fuels. Their main results are as follows: (1) SS- 15 wt.% Zr- ∼4 wt.% NMFPs alloy was selected as the metal waste form, (2) metallurgical data, properties, long-term corrosion data, etc. of the alloy have been collected, (3) 10-kg ingots have been produced in hot tests and a 60-kg production machine is under development. The following research should be made to show the feasibility of the metal waste form in Japan: (1) degradation assessment of the metal waste form in Japanese geological repository environments, and (2) clarification of the maximum allowable contents of NMFPs. (author)

  16. Criteria of reference radionuclides for safety analysis of spent fuel waste disposal

    International Nuclear Information System (INIS)

    Suryanto

    1998-01-01

    Study on the criteria for reference radionuclides selection for assessment on spent fuel disposal have done. The reference radionuclides in this study means radionuclides are predicted to contribute of the most radiological effect for man if spent fuel waste are discharged on deep geology formation. The research was done by investigate critically of parameters were used on evaluation a kind of radionuclide. Especially, this research study of parameter which relevant disposal case and or spent fuel waste on deep geology formation . The research assumed that spent fuel discharged on deep geology by depth 500-1000 meters from surface of the land. The migration scenario Radionuclides from waste form to man was assumed particularly for normal release in which Radionuclides discharge from waste form in a series thorough container, buffer, geological, rock, to fracture(fault) and move together with ground water go to biosphere and than go into human body. On this scenario, the parameter such as radionuclides inventory, half life, heat generation, hazard index based on maximum permissible concentration (MPC) or annual limit on intake (ALI) was developed as criteria of reference radionuclides selection. The research concluded that radionuclides inventory, half live, heat generated, hazard index base on MPC or ALI can be used as criteria for selection of reference Radionuclide. The research obtained that the main radionuclides are predicted give the most radiological effect to human are as Cs-137, Sr-90, I-129, Am-243, Cm-244, Pu-238, Pu-239, Pu-240. The radionuclides reasonable to be used as reference radionuclides in safety analysis at spent fuel disposal. (author)

  17. Literature review of intrinsic actinide colloids related to spent fuel waste package release rates

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, P.; Steward, S.A.

    1997-01-01

    Existence of actinide colloids provides an important mechanism in the migration of radionuclides and will be important in performance of a geologic repository for high-level nuclear waste. Actinide colloids have been formed during long-term unsaturated dissolution of spent fuel by groundwater. This article summarizes a literature search of actinide colloids. This report emphasizes the formation of intrinsic actinide colloids, because they would have the opportunity to form soon after groundwater contact with the spent fuel and before actinide-bearing groundwater reaches the surrounding geologic formations.

  18. Literature review of intrinsic actinide colloids related to spent fuel waste package release rates

    International Nuclear Information System (INIS)

    Zhao, P.; Steward, S.A.

    1997-01-01

    Existence of actinide colloids provides an important mechanism in the migration of radionuclides and will be important in performance of a geologic repository for high-level nuclear waste. Actinide colloids have been formed during long-term unsaturated dissolution of spent fuel by groundwater. This article summarizes a literature search of actinide colloids. This report emphasizes the formation of intrinsic actinide colloids, because they would have the opportunity to form soon after groundwater contact with the spent fuel and before actinide-bearing groundwater reaches the surrounding geologic formations

  19. Safety aspects of the cleaning and conditioning of radioactive sludge from spent fuel storage pool on 'RA' Research reactor in the Vinca Institute

    International Nuclear Information System (INIS)

    Pavlovic, R; Pavlovic, S.; Plecas, I.

    1999-01-01

    Spent fuel elements from nuclear reactors in the Vinca Institute have been temporary stored in water filled storage pool. Due to the fact that the water in the spent fuel elements storage pool have not been purified for a long time, all metallic components submerged in the water have been hardly corroded and significant amount of the sludge has been settled on the bottom of the pool. As a first step in improving spent fuel elements storage conditions and slowing down corrosion in the storage spent fuel elements pool we have decided to remove the sludge from the bottom of the pool. Although not high, but slightly radioactive, this sludge had to be treated as radioactive waste material. Some safety aspects and radiation protection measures in the process of the spent fuel storage pool cleaning are presented in this paper

  20. Assessment of degradation concerns for spent fuel, high-level wastes, and transuranic wastes in monitored retrievalbe storage

    International Nuclear Information System (INIS)

    Guenther, R.J.; Gilbert, E.R.; Slate, S.C.; Partain, W.L.; Divine, J.R.; Kreid, D.K.

    1984-01-01

    It has been concluded that there are no significant degradation mechanisms that could prevent the design, construction, and safe operation of monitored retrievable storage (MRS) facilities. However, there are some long-term degradation mechanisms that could affect the ability to maintain or readily retrieve spent fuel (SF), high-level wastes (HLW), and transuranic wastes (TRUW) several decades after emplacement. Although catastrophic failures are not anticipated, long-term degradation mechanisms have been identified that could, under certain conditions, cause failure of the SF cladding and/or failure of TRUW storage containers. Stress rupture limits for Zircaloy-clad SF in MRS range from 300 to 440 0 C, based on limited data. Additional tests on irradiated Zircaloy (3- to 5-year duration) are needed to narrow this uncertainty. Cladding defect sizes could increase in air as a result of fuel density decreases due to oxidation. Oxidation tests (3- to 5-year duration) on SF are also needed to verify oxidation rates in air and to determine temperatures below which monitoring of an inert cover gas would not be required. Few, if any, changes in the physical state of HLW glass or canisters or their performance would occur under projected MRS conditions. The major uncertainty for HLW is in the heat transfer through cracked glass and glass devitrification above 500 0 C. Additional study of TRUW is required. Some fraction of present TRUW containers would probably fail within the first 100 years of MRS, and some TRUW would be highly degraded upon retrieval, even in unfailed containers. One possible solution is the design of a 100-year container. 93 references, 28 figures, 17 tables

  1. Nuclear criticality safety analysis of a spent fuel waste package in a tuff repository

    International Nuclear Information System (INIS)

    Weren, B.H.; Capo, M.A.; O'Neal, W.C.

    1983-12-01

    An assessment has been performed of the criticality potential associated with the disposal of spent fuel in a tuff geology above the water table. Eleven potential configurations were defined which cover a vast range of geometries and conditions from the nominal configuration at emplacement to a hypothetical configuration thousands of years after emplacement in which the structure is gone, the fuel pellets disintegrated and the borehole flooded. Of these eleven configurations, four have been evaluated at this time. The results of this evaluation indicate that even with very conservative assumptions (4.5 w/o fresh fuel), criticality is not a problem for the nominal configuration either dry or fully flooded. In the cases where the condition of the waste package is assumed to have severely deteriorated, over long times, calculations were performed with less conservative assumptions (depleted fuel). An assessment of these calculations indicates that criticality safety could be demonstrated if the depletion of the fissile inventory during fuel irradiation is taken into account. A detailed discussion of the calculations performed is presented in this report. Also included are a description of the configurations which were considered, the analytical methods and models used, and a discussion of additional related work which should be performed. 15 references, 11 figures, 8 tables

  2. Low-Waste Recycling of Spent CuO-ZnO-Al2O3 Catalysts

    Directory of Open Access Journals (Sweden)

    Stanisław Małecki

    2018-03-01

    Full Text Available CuO-ZnO-Al2O3 catalysts are designed for low-temperature conversion in the process of hydrogen and ammonia synthesis gas production. This paper presents the results of research into the recovery of copper and zinc from spent catalysts using pyrometallurgical and hydrometallurgical methods. Under reducing conditions, at high temperature, having appropriately selected the composition of the slag, more than 66% of the copper can be extracted in metallic form, and about 70% of zinc in the form of ZnO from this material. Hydrometallurgical processing of the catalysts was carried out using two leaching solutions: alkaline and acidic. Almost 62% of the zinc contained in the catalysts was leached to the alkaline solution, and about 98% of the copper was leached to the acidic solution. After the hydrometallurgical treatment of the catalysts, an insoluble residue was also obtained in the form of pure ZnAl2O4. This compound can be reused to produce catalysts, or it can be processed under reducing conditions at high temperature to recover zinc. The recovery of zinc and copper from such a material is consistent with the policy of sustainable development, and helps to reduce the environmental load of stored wastes.

  3. REGIONAL BINNING FOR CONTINUED STORAGE OF SPENT NUCLEAR FUEL AND HIGH-LEVEL WASTES

    Energy Technology Data Exchange (ETDEWEB)

    W. Lee Poe, Jr

    1998-10-01

    In the Continued Storage Analysis Report (CSAR) (Reference 1), DOE decided to analyze the environmental consequences of continuing to store the commercial spent nuclear fuel (SNF) at 72 commercial nuclear power sites and DOE-owned spent nuclear fuel and high-level waste at five Department of Energy sites by region rather than by individual site. This analysis assumes that three commercial facilities pairs--Salem and Hope Creek, Fitzpatrick and Nine-Mile Point, and Dresden and Moms--share common storage due to their proximity to each other. The five regions selected for this analysis are shown on Figure 1. Regions 1, 2, and 3 are the same as those used by the Nuclear Regulatory Commission in their regulatory oversight of commercial power reactors. NRC Region 4 was subdivided into two regions to more appropriately define the two different climates that exist in NRC Region 4. A single hypothetical site in each region was assumed to store all the SNF and HLW in that region. Such a site does not exist and has no geographic location but is a mathematical construct for analytical purposes. To ensure that the calculated results for the regional analyses reflect appropriate inventory, facility and material degradation, and radionuclide transport, the waste inventories, engineered barriers, and environmental conditions for the hypothetical sites were developed from data for each of the existing sites within the given region. Weighting criteria to account for the amount and types of SNF and HLW at each site were used in the development of the environmental data for the regional site, such that the results of the analyses for the hypothetical site were representative of the sum of the results of each actual site if they had been modeled independently. This report defines the actual site data used in development of this hypothetical site, shows how the individual site data was weighted to develop the regional site, and provides the weighted data used in the CSAR analysis. It is

  4. REGIONAL BINNING FOR CONTINUED STORAGE OF SPENT NUCLEAR FUEL AND HIGH-LEVEL WASTES

    International Nuclear Information System (INIS)

    W. Lee Poe, Jr.

    1998-01-01

    In the Continued Storage Analysis Report (CSAR) (Reference 1), DOE decided to analyze the environmental consequences of continuing to store the commercial spent nuclear fuel (SNF) at 72 commercial nuclear power sites and DOE-owned spent nuclear fuel and high-level waste at five Department of Energy sites by region rather than by individual site. This analysis assumes that three commercial facilities pairs--Salem and Hope Creek, Fitzpatrick and Nine-Mile Point, and Dresden and Moms--share common storage due to their proximity to each other. The five regions selected for this analysis are shown on Figure 1. Regions 1, 2, and 3 are the same as those used by the Nuclear Regulatory Commission in their regulatory oversight of commercial power reactors. NRC Region 4 was subdivided into two regions to more appropriately define the two different climates that exist in NRC Region 4. A single hypothetical site in each region was assumed to store all the SNF and HLW in that region. Such a site does not exist and has no geographic location but is a mathematical construct for analytical purposes. To ensure that the calculated results for the regional analyses reflect appropriate inventory, facility and material degradation, and radionuclide transport, the waste inventories, engineered barriers, and environmental conditions for the hypothetical sites were developed from data for each of the existing sites within the given region. Weighting criteria to account for the amount and types of SNF and HLW at each site were used in the development of the environmental data for the regional site, such that the results of the analyses for the hypothetical site were representative of the sum of the results of each actual site if they had been modeled independently. This report defines the actual site data used in development of this hypothetical site, shows how the individual site data was weighted to develop the regional site, and provides the weighted data used in the CSAR analysis. It is

  5. Biological treatment of sulfidic spent caustics under haloalkaline conditions using soda lake bacteria

    NARCIS (Netherlands)

    Graaff, de C.M.

    2012-01-01

    In this thesis, the development of a newbiotechnological process for the treatment of undiluted sulfidic spent caustics (SSC’s) using soda lake bacteria is described. SSC’s are waste solutions that are formed in the oil and gas industry due to the caustic (NaOH) scrubbing of hydrocarbon streams

  6. Generation projection of solid and liquid radioactive wastes and spent radioactive sources in Mexico

    International Nuclear Information System (INIS)

    Garcia A, E.; Hernandez F, I. Y.; Fernandez R, E.; Monroy G, F.; Lizcano C, D.

    2014-10-01

    This work is focused to project the volumes of radioactive aqueous liquid wastes and spent radioactive sources that will be generated in our country in next 15 years, solids compaction and radioactive organic liquids in 10 years starting from the 2014; with the purpose of knowing the technological needs that will be required for their administration. The methodology involves six aspects to develop: the definition of general objectives, to specify the temporary horizon of projection, data collection, selection of the prospecting model and the model application. This approach was applied to the inventory of aqueous liquid wastes, as well as radioactive compaction organic and solids generated in Mexico by non energy applications from the 2001 to 2014, and of the year 1997 at 2014 for spent sources. The applied projection models were: Double exponential smoothing associating the tendency, Simple Smoothing and Lineal Regression. For this study was elected the first forecast model and its application suggests that: the volume of the compaction solid wastes, aqueous liquids and spent radioactive sources will increase respectively in 152%, 49.8% and 55.7%, while the radioactive organic liquid wastes will diminish in 13.15%. (Author)

  7. Viability of Sharing Facilities for the Disposition of Spent Fuel and Nuclear Waste. An Assessment of Recent Proposals

    International Nuclear Information System (INIS)

    2011-01-01

    For a long time, ideas have been put forward and initiatives launched regarding cooperation in the nuclear fuel cycle, including both regional and multilateral approaches, to dealing with reprocessing, storage of spent fuel or, more recently, disposal of radioactive waste. The rationale behind the multinational disposal concepts ranges from concerns about the capability of some countries to implement safe national nuclear waste management programmes in a timely fashion, to questions about the availability of suitable geological formations; and, of course, the economies of scale in repository implementation are a major driver. In addition to these issues of cost, environmental and safety considerations, other benefits of such approaches for storage and underground disposal are security and non-proliferation advantages, which have become increasingly important after recent terrorist events worldwide. The IAEA has supported, since the 1970s, multilateral initiatives that seek to reduce access to weapons usable nuclear material technologies. Among different cooperation concepts, the sharing of facilities for dealing with radioactive waste management was proposed and developed through conferences and expert group meetings, as well as technical publications. The experience gained in other international frameworks, such as groupings in the European Union, was also reviewed. It was concluded that the scenarios and approaches proposed in earlier IAEA publications require further consideration regarding the conditions for their implementation, their viability, and the benefits and challenges inherent in the alternatives proposed. It is useful to consider the wider issue of spent fuel disposition (reprocessing/encapsulation, storage and disposal) when discussing the option of shared repositories for the disposal of spent fuel and high level waste from reprocessing. This proper account to be taken of new initiatives and technologies in predisposal activities and their impact

  8. Integrated data base for 1993: US spent fuel and radioactive waste inventories, projections, and characteristics

    International Nuclear Information System (INIS)

    Klein, J.A.; Storch, S.N.; Ashline, R.C.

    1994-03-01

    The Integrated Data Base (IDB) Program has compiled historic data on inventories and characteristics of both commercial and DOE spent fuel; also, commercial and U.S. government-owned radioactive wastes through December 31, 1992. These data are based on the most reliable information available from government sources, the open literature, technical reports, and direct contacts. The information forecasted is consistent with the latest U.S. Department of Energy/Energy Information Administration (DOE/EIA) projections of U.S. commercial nuclear power growth and the expected DOE-related and private industrial and institutional (I/I) activities. The radioactive materials considered, on a chapter-by-chapter basis, are spent nuclear fuel, high-level waste (HLW), transuranic (TRU), waste, low-level waste (LLW), commercial uranium mill tailings, environmental restoration wastes, commercial reactor and fuel-cycle facility decommissioning wastes, and mixed (hazardous and radioactive) LLW. For most of these categories, current and projected inventories are given through the calendar-year (CY) 2030, and the radioactivity and thermal power are calculated based on reported or estimated isotopic compositions. In addition, characteristics and current inventories are reported for miscellaneous radioactive materials that may require geologic disposal

  9. Foreign travel report: Visits to UK, Belgium, Germany, and France to benchmark European spent fuel and waste management technology

    International Nuclear Information System (INIS)

    Ermold, L.F.; Knecht, D.A.

    1993-08-01

    The ICPP WINCO Spent Fuel and Waste Management Development Program recently was funded by DOE-EM to develop new technologies for immobilizing ICPP spent fuels, sodium-bearing liquid waste, and calcine to a form suitable for disposal. European organizations are heavily involved, in some cases on an industrial scale in areas of waste management, including spent fuel disposal and HLW vitrification. The purpose of this trip was to acquire first-hand European efforts in handling of spent reactor fuel and nuclear waste management, including their processing and technical capabilities as well as their future planning. Even though some differences exist in European and U.S. DOE waste compositions and regulations, many aspects of the European technologies may be applicable to the U.S. efforts, and several areas offer potential for technical collaboration

  10. Foreign travel report: Visits to UK, Belgium, Germany, and France to benchmark European spent fuel and waste management technology

    Energy Technology Data Exchange (ETDEWEB)

    Ermold, L.F.; Knecht, D.A.

    1993-08-01

    The ICPP WINCO Spent Fuel and Waste Management Development Program recently was funded by DOE-EM to develop new technologies for immobilizing ICPP spent fuels, sodium-bearing liquid waste, and calcine to a form suitable for disposal. European organizations are heavily involved, in some cases on an industrial scale in areas of waste management, including spent fuel disposal and HLW vitrification. The purpose of this trip was to acquire first-hand European efforts in handling of spent reactor fuel and nuclear waste management, including their processing and technical capabilities as well as their future planning. Even though some differences exist in European and U.S. DOE waste compositions and regulations, many aspects of the European technologies may be applicable to the U.S. efforts, and several areas offer potential for technical collaboration.

  11. Spent nuclear fuel and high level radioactive waste transportation. White paper

    International Nuclear Information System (INIS)

    1985-06-01

    The High-Level Radioactive Waste Committee of the Western Interstate Energy Board has been involved in a year-long cooperative project with the US Department of Energy (DOE) to develop an information base on the transportation of spent nuclear fuel and high-level radioactive waste (HLW) so that western states can be constructive and informed participants in the repository program under the Nuclear Waste Policy Act (NWPA). The historical safety record of transportation of HLW and spent fuel is excellent; no release of these radioactive materials has ever occurred during transportation. Projected shipments under the NWPA will, however, greatly exceed current shipments in the US. For example, over the past five years, 119 metric tons of civilian spent fuel have been shipped in this country, while shipments to the first and second repository are each expected to peak at 3000 metric tons per year. The Committee believes that the successful development and operation of a national HLW/spent fuel transportation system can best be accomplished through an open process based on the common sense approach of taking all reasonable measures to minimize public risk and performing whatever actions are reasonably required to promote public acceptance. Therefore, the Committee recommends that the Department of Energy further the goals of the NWPA by developing a Comprehensive Transportation Plan which adopts a systematic, comprehensive, and integrated approach to resolving all spent fuel and HLW transportation issues in a timely manner. The suggested scope of such a plan is discussed in this White paper. Many of the suggested elements of such a plan are similar to those being developed by the Department of energy for inclusion in the Department's Transportation Institutional Plan

  12. Data processing in the integrated data base for spent fuel and radioactive waste

    International Nuclear Information System (INIS)

    Forsberg, C.W.; Morrison, G.W.; Notz, K.J.

    1984-01-01

    The Integrated Data Base (IDB) Program at Oak Ridge National Laboratory (ORNL) produces for the U.S. Department of Energy (DOE) the official spent fuel and radioactive waste inventories and projections for the United States through the year 2020. Inventory data are collected and checked for consistency, projection data are calculated based on specified assumptions, and both are converted to a standard format. Spent fuel and waste radionclides are decayed as a function of time. The resulting information constitutes the core data files called the Past/Present/Future (P/P/F) data base. A data file management system, SAS /sup R/, is used to retrieve the data and create several types of output: an annual report, an electronic summary data file designed for IBM-PC /sup R/ -compatible computers, and special-request reports

  13. Spent fuel and radioactive waste: an integrated data base of inventories, projections, and characteristics

    International Nuclear Information System (INIS)

    Notz, K.J.; Forsberg, C.W.; Mastal, E.F.

    1984-01-01

    The Integrated Data Base (IDB) Program provides official US Department of Energy (DOE) data on spent fuel and radioactive waste inventories, projections, and characteristics. This information is provided through the cooperative efforts of the IDB Program and DOE lead offices, lead sites, major programs, and generator sites. The program is entering its fifth year, and major accomplishments are summarized in three broad areas: (1) the annual inventory report, including ORIGEN2 applications and a Quality Assurance (QA) plan; (2) the summary data file and direct user access; and (3) data processing methodology and support to other programs. Plans for future work in these areas are outlined briefly, including increased utilization of personal computers. Some examples of spent fuel data are given in terms of projected quantities for two growth scenarios, burnup and age profile of the existing inventory, and the approximate specific thermal power relative to high-level waste (HLW) from various sources. 4 refs., 2 figs., 3 tabs

  14. Intermediate storage of radioactive waste and spent nuclear fuel at the Kola Peninsula

    International Nuclear Information System (INIS)

    Bohmer, N.

    1999-01-01

    The problem of nuclear waste and disused nuclear submarines are a product of the arms race and the Cold War. Russia still continues to build new nuclear submarines, but there are very few provisions being made to properly store old nuclear submarines, and develop sufficient storage facilities for spent nuclear fuel and other radioactive waste. A solution to this problem is proposed: to construct a new regional interim storage facilities at Kola for the spent nuclear fuel instead of transporting it to Mayak, the existing reprocessing plant. This storage should have the capacity to handle the fuel in the existing storage and the fuel still on board of retired nuclear submarines. Its lifetime should be 50 years. later it would be possible to make a decision on the future of this fuel

  15. German Spent Nuclear Fuel Legacy: Characteristics and High-Level Waste Management Issues

    Directory of Open Access Journals (Sweden)

    A. Schwenk-Ferrero

    2013-01-01

    Full Text Available Germany is phasing-out the utilization of nuclear energy until 2022. Currently, nine light water reactors of originally nineteen are still connected to the grid. All power plants generate high-level nuclear waste like spent uranium or mixed uranium-plutonium dioxide fuel which has to be properly managed. Moreover, vitrified high-level waste containing minor actinides, fission products, and traces of plutonium reprocessing loses produced by reprocessing facilities has to be disposed of. In the paper, the assessments of German spent fuel legacy (heavy metal content and the nuclide composition of this inventory have been done. The methodology used applies advanced nuclear fuel cycle simulation techniques in order to reproduce the operation of the German nuclear power plants from 1969 till 2022. NFCSim code developed by LANL was adopted for this purpose. It was estimated that ~10,300 tonnes of unreprocessed nuclear spent fuel will be generated until the shut-down of the ultimate German reactor. This inventory will contain ~131 tonnes of plutonium, ~21 tonnes of minor actinides, and 440 tonnes of fission products. Apart from this, ca.215 tonnes of vitrified HLW will be present. As fission products and transuranium elements remain radioactive from 104 to 106 years, the characteristics of spent fuel legacy over this period are estimated, and their impacts on decay storage and final repository are discussed.

  16. The significance of the pilot conditioning plant (PKA) for spent fuel management

    International Nuclear Information System (INIS)

    Willax, H.O.

    1996-01-01

    The pilot conditioning plant (PKA) is intended as a multi-purpose facility and thus may serve various purposes involved in the conditioning or disposal of spent fuel elements or radwaste. Its design as a pilot plant permits development and trial of various methods and processes for fuel element conditioning, as well as for radwaste conditioning. (orig./DG) [de

  17. Magneto-plasma separating technologies and their possible application for conversion spent fuel and radioactive waste

    International Nuclear Information System (INIS)

    Kovtun, Yu.V.; Skyibenko, Je.Yi.; Yuferov, V.B.

    2007-01-01

    A problem of spent fuel (SF) and radioactive waste (RAW) processing is considered in the views of using magneto-plasma technologies. Basing on this analysis, the block-diagram of RAW processing by the technology using a magneto-plasma separator is offered. The paper describes the device for material element separation, where the main physical mechanism of plasma formation and heating are collective processes involved by the plasma-beam interaction. The dimensions of a pilot-separating device are determined

  18. Depleted uranium oxides as spent-nuclear-fuel waste-package invert and backfill materials

    International Nuclear Information System (INIS)

    Forsberg, C.W.; Haire, M.J.

    1997-01-01

    A new technology has been proposed in which depleted uranium, in the form of oxides or silicates, is placed around the outside of the spent nuclear fuel waste packages in the geological repository. This concept may (1) reduce the potential for repository nuclear criticality events and (2) reduce long-term release of radionuclides from the repository. As a new concept, there are significant uncertainties

  19. Problems on radioactive waste and spent nuclear fuel management in the European Arctic Region of Russia

    International Nuclear Information System (INIS)

    Krukov, Evgeny B.

    1999-01-01

    In the Arkhangelsk and Murmansk regions of Russia, radioactive wastes and spent nuclear fuel from the Northern Fleet and Mineconomiki, the technological repairing plant Atomflot and the Kola nuclear power plant and other activities is accumulating steadily and there is no adequate waste management system in the region. There is an action plan to remedy the situation, but it has been delayed because of insufficient funds. This presentation lists the volumes of liquid and solid radioactive wastes from these sources in 1996 and the expected volumes in 2020. It also lists the specific problems of the present waste management and main proposals of the action plan. In addition to federal funds, a number of projects are financed through international co-operation

  20. Integrated data base report--1995: US spent nuclear fuel and radioactive waste inventories, projections, and characteristics

    International Nuclear Information System (INIS)

    1996-12-01

    The information in this report summarizes the U.S. Department of Energy (DOE) data base for inventories, projections, and characteristics of domestic spent nuclear fuel and radioactive waste. This report is updated annually to keep abreast of continual waste inventory and projection changes in both the government and commercial sectors. Baseline information is provided for DOE program planning purposes and to support DOE program decisions. Although the primary purpose of this document is to provide background information for program planning within the DOE community, it has also been found useful by state and local governments, the academic community, and some private citizens

  1. Metal waste forms from the electrometallurgical treatment of spent nuclear fuel

    International Nuclear Information System (INIS)

    Abraham, D.P.; McDeavitt, S.M.; Park, J.

    1996-01-01

    Stainless steel-zirconium alloys are being developed for the disposal of radioactive metal isotopes isolated using an electrometallurgical treatment technique to treat spent nuclear fuel. The nominal waste forms are stainless steel-15 wt% zirconium alloy and zirconium-8 wt% stainless steel alloy. These alloys are generated in yttria crucibles by melting the starting materials at 1,600 C under an argon atmosphere. This paper discusses the microstructures, corrosion and mechanical test results, and thermophysical properties of the metal waste form alloys

  2. Waste management system alternatives for treatment of wastes from spent fuel reprocessing

    International Nuclear Information System (INIS)

    McKee, R.W.; Swanson, J.L.; Daling, P.M.

    1986-09-01

    This study was performed to help identify a preferred TRU waste treatment alternative for reprocessing wastes with respect to waste form performance in a geologic repository, near-term waste management system risks, and minimum waste management system costs. The results were intended for use in developing TRU waste acceptance requirements that may be needed to meet regulatory requirements for disposal of TRU wastes in a geologic repository. The waste management system components included in this analysis are waste treatment and packaging, transportation, and disposal. The major features of the TRU waste treatment alternatives examined here include: (1) packaging (as-produced) without treatment (PWOT); (2) compaction of hulls and other compactable wastes; (3) incineration of combustibles with cementation of the ash plus compaction of hulls and filters; (4) melting of hulls and failed equipment plus incineration of combustibles with vitrification of the ash along with the HLW; (5a) decontamination of hulls and failed equipment to produce LLW plus incineration and incorporation of ash and other inert wastes into HLW glass; and (5b) variation of this fifth treatment alternative in which the incineration ash is incorporated into a separate TRU waste glass. The six alternative processing system concepts provide progressively increasing levels of TRU waste consolidation and TRU waste form integrity. Vitrification of HLW and intermediate-level liquid wastes (ILLW) was assumed in all cases

  3. Estimation of the Waste Mass from a Pyro-Process of Spent Nuclear Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Min Soo; Choi, Jong Won; Choi, Heui Joo (and others)

    2008-04-15

    Pyro-Process is now developing to retrieve reusable uranium and TRU, and to reduce the volume of high level waste from a nuclear power plant. In this situation, it is strongly required for the estimation of expected masses and their physical properties of the wastes. In this report, the amount of wastes and their physical properties are presupposed through some assumptions in regard to 10MTHM of Oxide Fuel with 4.5wt% U-235, 45,000 MWD/MTU, and 5yrs cooling. The produced wastes can be divided into three categories such as metal, CWF(Ceramic Waste Form), and VWF(Vitrified Waste Form). The 42 nuclrides in a spent nuclear fuel are distributed into the waste categories on the their physical and thermodynamic properties when they exist in metal, oxide, or chloride forms. The treated atomic groups are Uranium, TRU, Noble metal, Rare earth, Alkali metal, Halogens, and others. The mass of each waste is estimated by the distribution results. The off-gas waste is included into a CWF. The heat generations by the wastes in this Pyro-Process are calculated using a ORIGEN-ARP program. It is possible to estimate the amounts of wastes and their heat generation rates in this Pyro-Process analysis. These information are very helpful to design a waste container and its quantity also can be determined. The number of container and its heat generation rate will be key factor for the construction of interim storage facilities including a underground disposal site.

  4. An experimental study on Sodalite and SAP matrices for immobilization of spent chloride salt waste

    Science.gov (United States)

    Giacobbo, Francesca; Da Ros, Mirko; Macerata, Elena; Mariani, Mario; Giola, Marco; De Angelis, Giorgio; Capone, Mauro; Fedeli, Carlo

    2018-02-01

    In the frame of Generation IV reactors a renewed interest in pyro-processing of spent nuclear fuel is underway. Molten chloride salt waste arising from the recovering of uranium and plutonium through pyro-processing is one of the problematic wastes for direct application of vitrification or ceramization. In this work, Sodalite and SAP have been evaluated and compared as potential matrices for confinement of spent chloride salt waste coming from pyro-processing. To this aim Sodalite and SAP were synthesized both in pure form and mixed with different glass matrices, i.e. commercially available glass frit and borosilicate glass. The confining matrices were loaded with mixed chloride salts to study their retention capacities with respect to the elements of interest. The matrices were characterized and leached for contact times up to 150 days at room temperature and at 90 °C. SEM analyses were also performed in order to compare the matrix surface before and after leaching. Leaching results are discussed and compared in terms of normalized releases with similar results reported in literature. According to this comparative study the SAP matrix with glass frit binder resulted in the best matrix among the ones studied, with respect to retention capacities for both matrix and spent fuel elements.

  5. Idaho Chemical Processing Plant Spent Fuel and Waste Management Technology Development Program Plan

    International Nuclear Information System (INIS)

    1993-09-01

    The Department of Energy (DOE) has received spent nuclear fuel (SNF) at the Idaho Chemical Processing Plant (ICPP) for interim storage and reprocessing since 1953. Reprocessing of SNF has resulted in an existing inventory of 1.5 million gallons of radioactive sodium-bearing liquid waste and 3800 cubic meters (m 3 ) of calcine, in addition to the 768 metric tons (MT) of SNF and various other fuel materials in inventory. To date, the major activity of the ICPP has been the reprocessing of SNF to recover fissile uranium; however, recent changes in world events have diminished the demand to recover and recycle this material. As a result, DOE has discontinued reprocessing SNF for uranium recovery, making the need to properly manage and dispose of these and future materials a high priority. In accordance with the Nuclear Waste Policy Act (NWPA) of 1982, as amended, disposal of SNF and high-level waste (HLW) is planned for a geological repository. Preparation of SNF, HLW, and other radioactive wastes for disposal may include mechanical, physical, and/or chemical processes. This plan outlines the program strategy of the ICPP Spent Fuel and Waste Management Technology Development Program (SF ampersand WMTDP) to develop and demonstrate the technology required to ensure that SNF and radioactive waste will properly stored and prepared for final disposal. Program elements in support of acceptable interim storage and waste minimization include: developing and implementing improved radioactive waste treatment technologies; identifying and implementing enhanced decontamination and decommissioning techniques; developing radioactive scrap metal (RSM) recycle capabilities; and developing and implementing improved technologies for the interim storage of SNF

  6. Process and equipment qualification of the ceramic and metal waste forms for spent fuel treatment

    International Nuclear Information System (INIS)

    Marsden, Ken; Knight, Collin; Bateman, Kenneth; Westphal, Brian; Lind, Paul

    2005-01-01

    The electrometallurgical process for treating sodium-bonded spent metallic fuel at the Materials and Fuels Complex of the Idaho National Laboratory separates actinides and partitions fission products into two waste forms. The first is the metal waste form, which is primarily composed of stainless steel from the fuel cladding. This stainless steel is alloyed with 15w% zirconium to produce a very corrosion-resistant metal which binds noble metal fission products and residual actinides. The second is the ceramic waste form which stabilizes fission product-loaded chloride salts in a sodalite and glass composite. These two waste forms will be packaged together for disposal at the Yucca Mountain repository. Two production-scale metal waste furnaces have been constructed. The first is in a large argon-atmosphere glovebox and has been used for equipment qualification, process development, and process qualification - the demonstration of process reliability for production of the DOE-qualified metal waste form. The second furnace will be transferred into a hot cell for production of metal waste. Prototype production-scale ceramic waste equipment has been constructed or procured; some equipment has been qualified with fission product-loaded salt in the hot cell. Qualification of the remaining equipment with surrogate materials is underway. (author)

  7. Biological treatment of refinery spent caustics under halo-alkaline conditions.

    Science.gov (United States)

    de Graaff, Marco; Bijmans, Martijn F M; Abbas, Ben; Euverink, Gert-J W; Muyzer, Gerard; Janssen, Albert J H

    2011-08-01

    The present research demonstrates the biological treatment of refinery sulfidic spent caustics in a continuously fed system under halo-alkaline conditions (i.e. pH 9.5; Na(+)= 0.8M). Experiments were performed in identical gas-lift bioreactors operated under aerobic conditions (80-90% saturation) at 35°C. Sulfide loading rates up to 27 mmol L(-1)day(-1) were successfully applied at a HRT of 3.5 days. Sulfide was completely converted into sulfate by the haloalkaliphilic sulfide-oxidizing bacteria belonging to the genus Thioalkalivibrio. Influent benzene concentrations ranged from 100 to 600 μM. At steady state, benzene was removed by 93% due to high stripping efficiencies and biodegradation. Microbial community analysis revealed the presence of haloalkaliphilic heterotrophic bacteria belonging to the genera Marinobacter, Halomonas and Idiomarina which might have been involved in the observed benzene removal. The work shows the potential of halo-alkaliphilic bacteria in mitigating environmental problems caused by alkaline waste. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Assessment of spent WWER-440 fuel performance under long-term storage conditions

    Energy Technology Data Exchange (ETDEWEB)

    Takats, F [TS Enercon Kft. (Hungary)

    2012-07-01

    Paks Nuclear Power Plant is the only NPP in Hungary. It has four WWER-440 type reactor units. The fresh fuel is imported from Russia so far. The spent fuel assemblies were shipped back to Russia until 1997 after about 6 years cooling at the plant. A dry storage facility (MVDS type) has been constructed and is operational since then. By 1 January 2008, there were 5107 assemblies in dry storage. The objectives are: 1) Wet AR storage of spent fuel from the NPP Paks: Measurements of conditions for spent fuel storage in the at-reactor (AR) storage pools of Paks NPP (physical and chemical characteristics of pool water, corrosion product data); Measurements and visual control of storage pool component characteristics; Evaluation of storage characteristics and conditions with respect to long-term stability (corrosion of fuel cladding, construction materials); 2) Dry AFR storage at Paks NPP: Calculation and measurement of spent fuel conditions during the transfer from the storage pool to the modular vault dry storage (MVDS) on the site; Calculation and measurement of spent fuel conditions during the preparation of fuel for dry storage (drying process), such as crud release, activity build-up; Measurement of spent fuel conditions during the long-term dry storage, activity data in the storage tubes and amount of crud.

  9. Methods of conditioning waste fuel decladding hulls and dissolver residues

    International Nuclear Information System (INIS)

    De Regge, P.; Loida, A.; Schmidt-Hansberg, T.; Sombret, C.

    1985-01-01

    Several methods for conditioning spent fuel decladding hulls or dissolver residues have been considered in various countries of the European Community. Five of these methods used embedding technique with or without prior compaction: they are based on incorporation in metallic alloys, glass, ceramics, cements and metals or graphite compounds. A sixth one consists in melting the decladding materials. The corresponding research programmes have been pursued to varying states of progress with regard to demonstrating their feasibility on an industrial scale and the use of genuine wastes in bench scale experiments. The properties of the conditioned wastes have been investigated. Special attention has been paid to the corrosion resistance to various aqueous media as tap water, brine or clayey water. Although no categorical conclusion can be drawn from the initial results, the available findings provide a basis for assessing the different processes

  10. The new revision of NPP Krsko decommissioning, radioactive waste and spent fuel management program: analyses and results

    International Nuclear Information System (INIS)

    Zeleznik, Nadja; Kralj, Metka; Lokner, Vladimir; Levanat, Ivica; Rapic, Andrea; Mele, Irena

    2010-01-01

    The preparation of the new revision of the Decommissioning and Spent Fuel (SF) and Low and Intermediate level Waste (LILW) Disposal Program for the NPP Krsko (Program) started in September 2008 after the acceptance of the Term of Reference for the work by Intergovernmental Committee responsible for implementation of the Agreement between the governments of Slovenia and Croatia on the status and other legal issues related to investment, exploitation, and decommissioning of the Nuclear power plant Krsko. The responsible organizations, APO and ARAO together with NEK prepared all new technical and financial data and relevant inputs for the new revision in which several scenarios based on the accepted boundary conditions were investigated. The strategy of immediate dismantling was analyzed for planned and extended NPP life time together with linked radioactive waste and spent fuel management to calculate yearly annuity to be paid by the owners into the decommissioning funds in Slovenia and Croatia. The new Program incorporated among others new data on the LILW repository including the costs for siting, construction and operation of silos at the location Vrbina in Krsko municipality, the site specific Preliminary Decommissioning Plan for NPP Krsko which included besides dismantling and decontamination approaches also site specific activated and contaminated radioactive waste, and results from the referenced scenario for spent fuel disposal but at very early stage. Important inputs for calculations presented also new amounts of compensations to the local communities for different nuclear facilities which were taken from the supplemented Slovenian regulation and updated fiscal parameters (inflation, interest, discount factors) used in the financial model based on the current development in economical environment. From the obtained data the nominal and discounted costs for the whole nuclear program related to NPP Krsko which is jointly owned by Slovenia and Croatia have

  11. Thermoelastic analysis of spent fuel and high level radioactive waste repositories in salt. A semi-analytical solution

    International Nuclear Information System (INIS)

    St John, C.M.

    1977-04-01

    An underground repository containing heat generating, High Level Waste or Spent Unreprocessed Fuel may be approximated as a finite number of heat sources distributed across the plane of the repository. The resulting temperature, displacement and stress changes may be calculated using analytical solutions, providing linear thermoelasticity is assumed. This report documents a computer program based on this approach and gives results that form the basis for a comparison between the effects of disposing of High Level Waste and Spent Unreprocessed Fuel

  12. Report on the disposal of radioactive wastes and spent fuel elements from Baden-Wuerttemberg; Bericht ueber die Entsorgung von radioaktiven Abfaellen und abgebrannten Brennelementen aus Baden-Wuerttemberg

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2017-04-15

    The report on the disposal of radioactive wastes and spent fuel elements from Baden- Wuerttemberg covers the following issues: legal framework for the nuclear disposal; producer of spent fuels and radioactive wastes in Baden- Report on the disposal of radioactive wastes and spent fuel elements from Baden- Wuerttemberg; low- and medium-level radioactive wastes (non heat generating radioactive wastes); spent fuels and radioactive wastes from waste processing (heat generating radioactive wastes); final disposal.

  13. A method for conditioning radioactive-wastes

    International Nuclear Information System (INIS)

    Cuaz, Daniel; Thiery, Daniel.

    1974-01-01

    Description is given of a method for conditioning radioactive-wastes, according to the main patent. This method is characterized in that the radioactive wastes are constituted by radio-elements incorporated with filtration and/or floculation promoters. This can be applied to radioactive effluent processing [fr

  14. The conditioning of radioactive waste by bitumen

    International Nuclear Information System (INIS)

    Rodier, J.; Scheidhauer, J.; Malabre, M.

    1961-01-01

    The separation of radioactive sludge and waste by bitumen is studied. Results are given concerning various trials carried out on the lixiviation of the final product by water as a function of the pH, of the time, and of the composition. The conditions for carrying out this process of coating the waste are controlled from a radioactive point of view. (author) [fr

  15. Transport of Spent Nuclear Fuels, High and Intermediate Level Wastes: A Continuous Challenge

    International Nuclear Information System (INIS)

    Otton, C.; Blachet, L.

    2009-01-01

    For more than 45 years TN International has been involved in the radioactive materials transportation field. Since the beginning the used nuclear fuel transportation has been its core business. During all these years TN International, now part of AREVA, has been able to anticipate and fulfil the needs for new transport or storage casks design to fit the nuclear industry evolutions. A whole fleet of casks able to transport all the materials of the nuclear fuel cycle has been developed. In this presentation we will focus on the casks for the spent fuel, high level waste and intermediate level waste transportation. Answering to the constant evolution of the nuclear industry transport needs is a challenge that TN International faces routinely. Concerning the spent nuclear fuel transportation, TN International has developed in the early 80's a fleet of TN12 type casks fitted with several types of baskets able to safely transport all the spent fuel from the nuclear power plant or the research laboratories to AREVA La Hague plant. The current challenge is the design of a new transport cask generation taking into account the needs of the industry for the next 30 years. The replacement of the TN12 cask generation is to be scheduled as the regulations have changed and the fuel characteristics have evolved. The new generation of casks will take into account all the technical evolutions made during the TN12 thirty years of use. MOX spent fuel has now its dedicated cask: the TN112 which certificate of approval has been obtained in July 2008. This cask is able to transport 12 MOX spent fuel elements with a short cooling time. The first loading of the cask has been performed in 2008 in the EDF nuclear power plant of Saint-Laurent-des-Eaux. Concerning the high level waste such as the La Hague vitrified residues a whole fleet of casks has been developed such as the TN 28 VT dedicated to transport, the TN81 and TN85 dedicated to transport and storage. These casks have permitted the

  16. Performance assessment of the direct disposal in unsaturated tuff of spent nuclear fuel and high-level waste owned by U.S. Department of Energy. Volume 1: Executive summary

    Energy Technology Data Exchange (ETDEWEB)

    Rechard, R.P. [ed.] [Sandia National Labs., Albuquerque, NM (United States). WIPP Performance Assessment Dept.

    1995-03-01

    This assessment studied the performance of high-level radioactive waste and spent nuclear fuel in a hypothetical repository in unsaturated tuff. The results of this 10-month study are intended to help guide the Office of Environment Management of the US Department of Energy (DOE) on how to prepare its wastes for eventual permanent disposal. The waste forms comprised spent fuel and high-level waste currently stored at the Idaho National Engineering Laboratory (INEL) and the Hanford reservation. About 700 metric tons heavy metal (MTHM) of the waste under study is stored at INEL, including graphite spent nuclear fuel, highly enriched uranium spent fuel, low enriched uranium spent fuel, and calcined high-level waste. About 2,100 MTHM of weapons production fuel, currently stored on the Hanford reservation, was also included. The behavior of the waste was analyzed by waste form and also as a group of waste forms in the hypothetical tuff repository. When the waste forms were studied together, the repository was assumed also to contain about 9,200 MTHM high-level waste in borosilicate glass from three DOE sites. The addition of the borosilicate glass, which has already been proposed as a final waste form, brought the total to about 12,000 MTHM. A source term model was developed to study the wide variety of waste forms, which included radionuclides residing in 10 different matrices and up to 8 nested layers of material that might react with water. The possibility and consequences of critical conditions occurring in or near containers of highly enriched uranium spent nuclear fuel were also studied.

  17. Survey of waste package designs for disposal of high-level waste/spent fuel in selected foreign countries

    International Nuclear Information System (INIS)

    Schneider, K.J.; Lakey, L.T.; Silviera, D.J.

    1989-09-01

    This report presents the results of a survey of the waste package strategies for seven western countries with active nuclear power programs that are pursuing disposal of spent nuclear fuel or high-level wastes in deep geologic rock formations. Information, current as of January 1989, is given on the leading waste package concepts for Belgium, Canada, France, Federal Republic of Germany, Sweden, Switzerland, and the United Kingdom. All but two of the countries surveyed (France and the UK) have developed design concepts for their repositories, but none of the countries has developed its final waste repository or package concept. Waste package concepts are under study in all the countries surveyed, except the UK. Most of the countries have not yet developed a reference concept and are considering several concepts. Most of the information presented in this report is for the current reference or leading concepts. All canisters for the wastes are cylindrical, and are made of metal (stainless steel, mild steel, titanium, or copper). The canister concepts have relatively thin walls, except those for spent fuel in Sweden and Germany. Diagrams are presented for the reference or leading concepts for canisters for the countries surveyed. The expected lifetimes of the conceptual canisters in their respective disposal environment are typically 500 to 1,000 years, with Sweden's copper canister expected to last as long as one million years. Overpack containers that would contain the canisters are being considered in some of the countries. All of the countries surveyed, except one (Germany) are currently planning to utilize a buffer material (typically bentonite) surrounding the disposal package in the repository. Most of the countries surveyed plan to limit the maximum temperature in the buffer material to about 100 degree C. 52 refs., 9 figs

  18. Overview of mineral waste form development for the electrometallurgical treatment of spent nuclear fuel

    International Nuclear Information System (INIS)

    Pereira, C.; Lewis, M.A.; Ackerman, J.P.

    1996-01-01

    Argonne is developing a method to treat spent nuclear fuel in a molten salt electrorefiner. Wastes from this treatment will be converted into metal and mineral forms for geologic disposal. A glass-bonded zeolite is being developed to serve as the mineral waste form that will contain the fission products that accumulate in the electrorefiner salt. Fission products are ion exchanged from the salt into the zeolite A structure. The crystal structure of the zeolite after ion exchange is filled with salt ions. The salt-loaded zeolite A is mixed with glass frit and hot pressed. During hot pressing, the zeolite A may be converted to sodalite which also retains the waste salt. The glass-bonded zeolite is leach resistant. MCC-1 testing has shown that it has a release rate below 1 g/(m 2 day) for all elements

  19. Fuel corrosion processes under waste disposal conditions

    International Nuclear Information System (INIS)

    Shoesmith, D.W.

    2000-01-01

    The release of the majority of radionuclides from spent nuclear fuel under permanent disposal conditions will be controlled by the rate of dissolution of the UO 2 fuel matrix. In this manuscript the mechanism of the coupled anodic (fuel dissolution) and cathodic (oxidant reduction) reactions which constitute the overall fuel corrosion process is reviewed, and the many published observations on fuel corrosion under disposal conditions discussed. The primary emphasis is on summarizing the overall mechanistic behaviour and establishing the primary factors likely to control fuel corrosion. Included are discussions on the influence of various oxidants including radiolytic ones, pH, temperature, groundwater composition, and the formation of corrosion product deposits. The relevance of the data recorded on unirradiated UO 2 to the interpretation of spent fuel behaviour is included. Based on the review, the data used to develop fuel corrosion models under the conditions anticipated in Yucca Mountain (NV, USA) are evaluated

  20. The fourth country report on agreement of safety supervision on radiation waste and management of spent fuel

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-10-15

    This report covered the agreement of safety supervision on radiation waste and management of spent fuel. It listed the stipulation, the common law, the coverage and the amount of stock on spent fuel. Also, it indicated law and regulations and restriction on the related the agency, general safety regulations, policy on guarantee of quality, emergency method, dismantling, management of safety control on spent fuel including a process of establishment and safety requirements, regulations of conveyance between countries and improvement of safety of spent fuel.

  1. Handling of spent nuclear fuel and final storage of nitrified high level reprocessing waste

    International Nuclear Information System (INIS)

    The following stages of handling and transport of the fuel on its way to final storage are dealt with in the report. 1) The spent nuclear fuel is stored at the power station or in the central fuel storage facility awaiting reprocessing. 2) The fuel is reprocessed, i.e. uranium, plutonium and waste are separated from each other. Reprocessing does not take place in Sweden. The highlevel waste is vitrified and can be sent back to Sweden in the 1990s. 3) Vitrified waste is stored for about 30 years awaiting deposition in the final repository. 4) The waste is encapsulated in highly durable materials to prevent groundwater from coming into contact with the waste glass while the radioactivity of the waste is still high. 5) The canisters are emplaced in a final repository which is built at a depth of 500 m in rock of low permeability. 6) All tunnels and shafts are filled with a mixture of clay and sand of low permeability. A detailed analysis of possible harmful effects resulting from normal acitivties and from conceivable accidents is presented in a special section. (author)

  2. Development of high-performance supercapacitor electrode derived from sugar industry spent wash waste.

    Science.gov (United States)

    Mahto, Ashesh; Gupta, Rajeev; Ghara, Krishna Kanta; Srivastava, Divesh N; Maiti, Pratyush; D, Kalpana; Rivera, Paul-Zavala; Meena, R; Nataraj, S K

    2017-10-15

    This study aims at developing supercapacitor materials from sugar and distillery industry wastes, thereby mediating waste disposal problem through reuse. In a two-step process, biomethanated spent wash (BMSW) was acid treated to produce solid waste sludge and waste water with significantly reduced total organic carbon (TOC) and biological oxygen demand (BOD) content. Further, waste sludge was directly calcined in presence of activating agent ZnCl 2 in inert atmosphere resulting in high surface area (730-900m 2 g -1 ) carbon of unique hexagonal morphology. Present technique resulted in achieving two-faceted target of liquid-solid waste remediation and production of high-performance carbon material. The resulted high surface area carbon was tested in both three and two electrode systems. Electrochemical tests viz. cyclic voltammetry, galvanostatic charge-discharge and impedance measurement were carried out in aqueous KOH electrolyte yielding specific capacitance as high as 120Fg -1 , whereas all solid supercapacitor devised using PVA/H 3 PO 4 polyelectrolyte showed stable capacitance of 105Fg -1 at 0.2Ag -1 . The presence of transition metal particles and hetero-atoms on carbon surface were confirmed by XPS, EDX and TEM analysis which enhanced the conductivity and imparted pseudocapacitance to some extent into the working electrode. The present study successfully demonstrated production of high-performance electrode material from dirtiest wastewater making process green, sustainable and economically viable. Copyright © 2017. Published by Elsevier B.V.

  3. Integrated data base report - 1996: US spent nuclear fuel and radioactive waste inventories, projections, and characteristics

    International Nuclear Information System (INIS)

    1997-12-01

    The Integrated Data Base Program has compiled historic data on inventories and characteristics of both commercial and U.S. Department of Energy (DOE) spent nuclear fuel (SNF) and commercial and U.S. government-owned radioactive wastes. Inventories of most of these materials are reported as of the end of fiscal year (FY) 1996, which is September 30, 1996. Commercial SNF and commercial uranium mill tailings inventories are reported on an end-of-calendar year (CY) basis. All SNF and radioactive waste data reported are based on the most reliable information available from government sources, the open literature, technical reports, and direct contacts. The information forecasted is consistent with the latest DOE/Energy Information Administration (EIA) projections of U.S. commercial nuclear power growth and the expected DOE-related and private industrial and institutional activities. The radioactive materials considered, on a chapter-by-chapter basis, are SNF, high-level waste, transuranic waste, low-level waste, uranium mill tailings, DOE Environmental Restoration Program contaminated environmental media, naturally occurring and accelerator-produced radioactive material, and mixed (hazardous and radioactive) low-level waste. For most of these categories, current and projected inventories are given through FY 2030, and the radioactivity and thermal power are calculated based on reported or estimated isotopic compositions

  4. NF-PRO research on a repository for vitrified waste and spent fuel

    International Nuclear Information System (INIS)

    Sneyers, A.

    2006-01-01

    NF-PRO is a four-year (2004-2007) Integrated Project supported by funding under the Sixth Research (EURATOM) Programme of the European Commission. NF-PRO is coordinated by SCK C EN and investigates key processes in the near-field of geological repositories for the disposal of high-level vitrified waste and spent nuclear fuel. The near-field of a geological repository consists of the area surrounding the waste packages and is composed of several engineered barriers that enclose and confine the disposed waste. These barriers include the waste form, the waste canisters, backfills, seals, plugs and the part of the host rock that has been modified by the excavation of the repository. In all repository designs under investigation within EU Member States, the near-field plays an important role in ensuring the overall safety of disposal: its principal function is to retain radionuclides over extended periods of time and to minimise their release from the waste to the host rock. The main objective of NF-PRO is to integrate European research on the near field with the aim of enhancing common understanding of the long-term changes taking place in a deep repository. NF-PRO assesses how these changes affect the containment of the disposed radioactive waste. Knowledge generated by the project can be applied in waste management programmes to optimise repository designs and to make barriers functional and resource-efficient. The integration of results from detailed process studies in assessments on the overall near-field system performance is a key objective of NF-PRO. The level of integration envisaged by NF-PRO has not yet been achieved in earlier research projects supported by the European Commission. Accordingly, NF PRO represents a major step forward in the establishing of the scientific and technical basis for geological disposal and the safe management of radioactive wastes

  5. The use of curium neutrons to verify plutonium in spent fuel and reprocessing wastes

    International Nuclear Information System (INIS)

    Miura, N.

    1994-05-01

    For safeguards verification of spent fuel, leached hulls, and reprocessing wastes, it is necessary to determine the plutonium content in these items. We have evaluated the use of passive neutron multiplicity counting to determine the plutonium content directly and also to measure the 240 Pu/ 244 Cm ratio for the indirect verification of the plutonium. Neutron multiplicity counting of the singles, doubles, and triples neutrons has been evaluated for measuring 240 Pu, 244 Cm, and 252 Cf. We have proposed a method to establish the plutonium to curium ratio using the hybrid k-edge densitometer x-ray fluorescence instrument plus a neutron coincidence counter for the reprocessing dissolver solution. This report presents the concepts, experimental results, and error estimates for typical spent fuel applications

  6. Integrated model of Korean spent fuel and high level waste disposal options - 16091

    International Nuclear Information System (INIS)

    Hwang, Yongsoo; Miller, Ian

    2009-01-01

    This paper describes an integrated model developed by the Korean Atomic Energy Research Institute (KAERI) to simulate options for disposal of spent nuclear fuel (SNF) and reprocessing products in South Korea. A companion paper (Hwang and Miller, 2009) describes a systems-level model of Korean options for spent nuclear fuel (SNF) management in the 21. century. The model addresses alternative design concepts for disposal of SNF of different types (Candu, PWR), high level waste, and fission products arising from a variety of alternative fuel cycle back ends. It uses the GoldSim software to simulate the engineered system, near-field and far-field geosphere, and biosphere, resulting in long-term dose predictions for a variety of receptor groups. The model's results allow direct comparison of alternative repository design concepts, and identification of key parameter uncertainties and contributors to receptor doses. (authors)

  7. NWTS program criteria for mined geologic disposal of nuclear waste: functional requirements and performance criteria for waste packages for solidified high-level waste and spent fuel

    International Nuclear Information System (INIS)

    1982-07-01

    The Department of Energy (DOE) has primary federal responsibility for the development and implementation of safe and environmentally acceptable nuclear waste disposal methods. Currently, the principal emphasis in the program is on emplacement of nuclear wastes in mined geologic repositories well beneath the earth's surface. A brief description of the mined geologic disposal system is provided. The National Waste Terminal Storage (NWTS) program was established under DOE's predecessor, the Energy Research and Development Administration, to provide facilities for the mined geologic disposal of radioactive wastes. The NWTS program includes both the development and the implementation of the technology necessary for designing, constructing, licensing, and operating repositories. The program does not include the management of processing radioactive wastes or of transporting the wastes to repositories. The NWTS-33 series, of which this document is a part, provides guidance for the NWTS program in the development and implementation of licensed mined geologic disposal systems for solidified high-level and transuranic (TRU) wastes. This document presents the functional requirements and performance criteria for waste packages for solidified high-level waste and spent fuel. A separate document to be developed, NWTS-33(4b), will present the requirements and criteria for waste packages for TRU wastes. The hierarchy and application of these requirements and criteria are discussed in Section 2.2

  8. Practical experience for liquid radioactive waste treatment from spent fuel storage pool on RA reactor in Vinca Institute

    International Nuclear Information System (INIS)

    Plecas, I.; Pavlovic, R.; Pavlovic, S.

    2002-01-01

    The present paper reports the results of the preliminary removal of sludge from the bottom of the spent fuel storage pool in the RA reactor, mechanical filtration of the pool water and sludge conditioning and storage. Yugoslavia is a country without a nuclear power plant (NPP) on its territory. The law which strictly forbids NPP construction is still valid, but, nevertheless we must handle and dispose radioactive waste. This is not only because of radwaste originating from the use of radioactive materials in medicine and industry, but also because of the waste generated by research in the Nuclear Sciences Institute Vinca. In the last forty years, in the Vinca Institute, as a result of two research reactors being operational, named RA and RB, and as a result of the application of radionuclides in medicine, industry and agriculture, radioactive waste materials of different levels of specific activity were generated. As a temporary solution, radioactive waste materials are stored in two interim storages. Radwaste materials that were immobilized in the inactive matrices are to be placed in concrete containers, for further manipulation and disposal.(author)

  9. High-level radioactive wastes storage characterization and behaviour of spent fuels in long-term

    International Nuclear Information System (INIS)

    Diaz Arocas, P.; Cobos, J.; Quinones, J.; Rodriguez Almazan, J. L.; Serrano, J.

    2001-01-01

    In order to understand the long term spent fuel dissolution under repository this report shows the study performed by considering spent fuel as a part of the multi barriers containment system. The study takes into account that the oxidative alteration/dissolution of spent fuel matrix is influenced by the intrinsic spent fuel physicochemical characteristics and the repository environmental parameters. Experimental and modelling results for granite and saline repositories are reported. Parameters considered in this work were pH, pCO 2 , S/V ratio, redox conditions and the influence of the container material in the redox conditions. The influence of alpha, beta and gamma radiation and the resulting radiolytic products formed remains as one of the main uncertainties to quantify the spent fuel behaviour under repository conditions. It was studied in a first approach through dose calculations, modelling of radiolytic products formation and leaching experiments in the presence of external gamma irradiation source and leaching experiments of alpha doped UO 2 pellets. Materials considered are LWR spent fuel (UO 2 and MOX fuel) and their chemical analogues non irradiated UO 2 , SIMFUEL and alpha doped UO 2 . Lea chants were granite groundwater, synthetic granite groundwater, synthetic granite groundwater saturated in bentonite, and high concentrated saline solutions. The matrix dissolution rate and release rate of key radionuclides (i. e. actinides and fission products) obtained through the several experimental techniques and methodologies (dissolution, co-dissolution, precipitation and co-precipitation) together with modelling studies supported in geochemical codes are proposed. Moreover, secondary phases formed that could control release and retention of key nuclides are identified. Maximum concentration values for these radionuclides are reported. The data provided by this study were used in ENRESA-2000 performance assessment. (Author)

  10. Assessment of spent WWER-440 fuel performance under long-term storage conditions

    Energy Technology Data Exchange (ETDEWEB)

    Kupca, L [VUJE Inc. (Slovakia)

    2012-07-01

    In the Slovak Republic are under operation 6 units (4 in the Jaslovske Bohunice site, and 2 in the Mochovce), 2 units are under construction in Mochovce site. All units are WWER-440 type. The fresh fuel is imported from the Russian Federation. The spent fuel assemblies are stored in wet conditions in Bohunice Interim Storage Spent Fuel Facility (SFIS). By 15 July 2008, there were 8413 assemblies in SFIS. The objectives are: 1) Wet AR storage of spent fuel from the NPP Bohunice and Mochovce: Surveillance of conditions for spent fuel storage in the at-reactor (AR) storage pools of both NPP's (characteristics of pool water, corrosion product data); Visual control of storage pool components; Evaluation of storage conditions with respect to long-term stability (corrosion of fuel cladding, structural materials); 2) Wet SFIS storage at Bohunice: Measurement of spent fuel conditions during the long-term wet storage, activity data in the storage casks and amount of crud; Surveillance program for SFIS structural materials.

  11. Railroad perspective on transportation of spent fuel and high level waste and recent ICC decisions

    International Nuclear Information System (INIS)

    Paschall, J.R.

    1978-01-01

    This paper attempts to summarize some railroad viewpoints on issues concerning transportation of spent fuel and high-level waste and to outline Interstate Commerce Commission decisions arising over differing opinions about the manner of such transportation. Although the railroad position includes a number of legal arguments, it also involves operating expertise and a number of well-based questions concerning the safety of casks under actual operating conditions in regular trains. The commonly-used estimates of accident frequency and severity in regular trains are severe underestimates based on a mistake in the annual number of railroad car-miles, inadequacies in and misunderstanding of accident reporting, and invalid assumptions, especially concerning fires, which some actual data suggest are far more frequent than assumed. Thus, railroads estimate casks could be involved in at least 12 accidents involving severe fires by 1990. A number of unanswered questions about casks and perceived inadequacies in testing lead to a conservative railroad position. These include the possibility of escape routes of materials other than by breach such as weld and pressure relief valve failures and direct radiation hazards through loss of shielding. These doubts are fostered through experience with accidents more severe than those used in testing or certification as well as these questions. Also, there is doubt concerning the integrity of fuel rod cladding (used as a second level of containment) in credible accident situations. Moreover, the damage estimates of $1,000 per man rem have been shown to have no relationship to damages in a transportation accident.Added safety is expected in special trains for at least 17 reasons involving speed, transit time, routing, train consist, crew alertness, reduced slack and other reduced hazards and accident opportunities

  12. Conditioning CANDU reactor wastes for disposal

    International Nuclear Information System (INIS)

    Beamer, N.V.; Bourns, W.T.; Buckley, L.P.; Speranzini, R.A.

    1981-12-01

    A Waste Treatment Centre (WTC) is being constructed at the Chalk River Nuclear Laboratories to develop and demonstrate processes for converting reactor wastes to a form suitable for disposal. The WTC contains a starved air incinerator for reducing the volume of combustible solid wastes, a reverse osmosis section for reducing the volume of liquid wastes and an immobilization section for incorporating the conditioned wastes in bitumen. The incinerator is commissioned on inactive waste: approximately 16.5 Mg of waste packaged in polyethylene bags has been incinerated in 17 burns. Average weight and volume reductions of 8.4:1 and 32:1, respectively, have been achieved. Construction of the reverse osmosis section of WTC is complete and inactive commissioning will begin in 1982 January. The reverse osmosis section was designed to process 30,000 m 3 /a of dilute radioactive waste. The incinerator ash and concentrated aqueous waste will be immobiblized in bitumen using a horizontal mixer and wiped-film evaporator. Results obtained during inactive commissioning of the incinerator are described along with recent results of laboratory programs directed at demonstrating the reverse osmosis and bituminization processes

  13. Study on characteristics of spent PWR cladding hull for categorizing into Non-TRU waste

    International Nuclear Information System (INIS)

    Jung, In Ha; Kim, Jong Ho; Park, Jang Jin; Shin, Jin Myeong; Lee, Ho Hee; Yang, Myung Seung

    2005-01-01

    AFCI and GEN-IV programs aim for decreasing the high level radioactive wastes to be disposed. They also try to get valuable materials to recycle as resources such as uranium and plutonium. On the other hand, cladding hull expected to be one-thirds in volume of spent fuel assembly has not studied so much in the point view of recycling to reuse. Since traditional process of reprocessing was wet process, cladding hull generating through the reprocessing process was unavoidably contaminated with TRU by acid solvent during the process. Therefore, cladding hull has been classified into TRU wastes or high level wastes. According to the strategy for TRU high level radioactive wastes of USA as well as Korea, it regulates in two respects. One is activity and the other is heat generation. In respect of activity, TRU waste contains more than 100 nCi/kg of alpha emits with longer half life than 20 years and higher than 92 in atomic number. Also, wastes are categorized into TRU waste when it generates higher than 2kW/m3, in the respect of heat generation. Our results as well as literatures, almost all of TRU nuclides in the cladding hull are responsible for remained uranium and plutonium owing to pellet-cladding interaction. In addition, recoiled fission products on the surface of the cladding hull serve as heat generator. Up to now, decontamination of the cladding hull generating from the reprocessing of wet process is regarded as valueless and un-economic works owing to the amount of second waste produced

  14. Annotated bibliography for the design of waste packages for geologic disposal of spent fuel and high-level waste

    International Nuclear Information System (INIS)

    Wurm, K.J.; Miller, N.E.

    1982-11-01

    This bibliography identifies documents that are pertinent to the design of waste packages for geologic disposal of nuclear waste. The bibliography is divided into fourteen subject categories so that anyone wishing to review the subject of leaching, for example, can turn to the leaching section and review the abstracts of reports which are concerned primarily with leaching. Abstracts are also cross referenced according to secondary subject matter so that one can get a complete list of abstracts for any of the fourteen subject categories. All documents which by their title alone appear to deal with the design of waste packages for the geologic disposal of spent fuel or high-level waste were obtained and reviewed. Only those documents which truly appear to be of interest to a waste package designer were abstracted. The documents not abstracted are listed in a separate section. There was no beginning date for consideration of a document for review. About 1100 documents were reviewed and about 450 documents were abstracted

  15. Performance of high level waste forms and engineered barriers under repository conditions

    International Nuclear Information System (INIS)

    1991-02-01

    The IAEA initiated in 1977 a co-ordinated research programme on the ''Evaluation of Solidified High-Level Waste Forms'' which was terminated in 1983. As there was a continuing need for international collaboration in research on solidified high-level waste form and spent fuel, the IAEA initiated a new programme in 1984. The new programme, besides including spent fuel and SYNROC, also placed greater emphasis on the effect of the engineered barriers of future repositories on the properties of the waste form. These engineered barriers included containers, overpacks, buffer and backfill materials etc. as components of the ''near-field'' of the repository. The Co-ordinated Research Programme on the Performance of High-Level Waste Forms and Engineered Barriers Under Repository Conditions had the objectives of promoting the exchange of information on the experience gained by different Member States in experimental performance data and technical model evaluation of solidified high level waste forms, components of the waste package and the complete waste management system under conditions relevant to final repository disposal. The programme includes studies on both irradiated spent fuel and glass and ceramic forms as the final solidified waste forms. The following topics were discussed: Leaching of vitrified high-level wastes, modelling of glass behaviour in clay, salt and granite repositories, environmental impacts of radionuclide release, synroc use for high--level waste solidification, leachate-rock interactions, spent fuel disposal in deep geologic repositories and radionuclide release mechanisms from various fuel types, radiolysis and selective leaching correlated with matrix alteration. Refs, figs and tabs

  16. Batch tests of a microbial fuel cell for electricity generation from spent organic extracts from hydrogenogenic fermentation of organic solid wastes

    International Nuclear Information System (INIS)

    Carmona-Martinez, A.; Solorza-Feria, O.; Poggi-Varaldo, H. M.

    2009-01-01

    Hydrogenogenic fermentative processes of organic solid wastes produce spent solids that contain substantial concentrations of low molecular weight organic acids and solvents. The spent solids can be extracted with wastewater to give a stream containing concentrated, degradable organic compounds. (Author)

  17. Retrievability of high level waste and spent nuclear fuel. Proceedings of an international seminar

    International Nuclear Information System (INIS)

    2000-12-01

    The possibility of retrieving spent nuclear fuel or reprocessing high-level radioactive wastes placed in geological repositories is an issue that has attracted increased attention during the past few years, not only among technical experts but also among politicians at different levels, environmental organisations and other interested representatives of the public. This publication contains the presented invited papers, an edited record of the discussions and some concluding remarks. The seminar addressed a wide range of aspects of retrievability including technical options; public acceptance; ethical aspects; long term monitoring and cost considerations; safety and regulatory aspects. Each of the presented papers was indexed separately

  18. What are Spent Nuclear Fuel and High-Level Radioactive Waste?

    International Nuclear Information System (INIS)

    2002-01-01

    Spent nuclear fuel and high-level radioactive waste are materials from nuclear power plants and government defense programs. These materials contain highly radioactive elements, such as cesium, strontium, technetium, and neptunium. Some of these elements will remain radioactive for a few years, while others will be radioactive for millions of years. Exposure to such radioactive materials can cause human health problems. Scientists worldwide agree that the safest way to manage these materials is to dispose of them deep underground in what is called a geologic repository

  19. DOE program for the management of radioactive waste and spent reactor fuel

    International Nuclear Information System (INIS)

    Cooley, C.R.

    1978-01-01

    The development of nuclear energy is seen by the Administration and the Department of Energy (DOE) as one of the important sources of energy for the country. Nuclear energy now provides a major fraction of the electrical power generation in some parts of the United States. In the northwest, with a wealth of hydroelectric power, nuclear power is expected to provide an increasing share of the total electrical energy. However, a great deal of public concern is being expressed about waste management associated with nuclear power. On current Research and Development programs, this paper considers several of the key activities which include work on disposal of spent fuel. 2 refs

  20. Retrievability of high level waste and spent nuclear fuel. Proceedings of an international seminar

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-12-01

    The possibility of retrieving spent nuclear fuel or reprocessing high-level radioactive wastes placed in geological repositories is an issue that has attracted increased attention during the past few years, not only among technical experts but also among politicians at different levels, environmental organisations and other interested representatives of the public. This publication contains the presented invited papers, an edited record of the discussions and some concluding remarks. The seminar addressed a wide range of aspects of retrievability including technical options; public acceptance; ethical aspects; long term monitoring and cost considerations; safety and regulatory aspects. Each of the presented papers was indexed separately.

  1. Influence of environment on the alteration of the UO2 matrix of spent fuel in storage condition

    International Nuclear Information System (INIS)

    Gaulard, C.

    2012-01-01

    Within the framework of the geological disposal of spent nuclear fuel, research on the long term behavior of spent fuel is undertaken and in particular the study of mechanisms of UO 2 oxidation and dissolution in water-saturated host rock. Under the law program on the sustainable management of radioactive materials and waste of June 28, 2006, France was chose as the reference solution the retreatment of spent fuel and disposal in deep geological repository of vitrified final waste. Nevertheless, studies on a direct disposal of spent fuel will continue for safety. The disposal concept provides for conditioning spent fuel in a steel container whose seal is guaranteed for a period specified in the order of 10,000 years. It is also reasonable to assume that the groundwater comes into contact with the fuel after the deterioration of container and lead to the UO 2 matrix degradation and the release of radionuclides. The oxidation/dissolution of UO 2 has been studied by means electrochemical methods coupled to XPS and ICP-MS measurements.A thermodynamic and bibliographic study of U(VI)/UO 2 (s) system allowed to show the effect of the physical and chemical conditions of the solution on the system, and to show the different mechanisms proposed to describe the oxidation and the dissolution of the uranium dioxide in different media (non-complexing, carbonate and clay). The study of the oxidation/dissolution of UO 2 in acidic and non-complexing media (0.1 mol/L NaCF 3 SO 3 , pH = 3), where UO 2 2+ /UO 2 (s) predominates and the formation of precipitates is limited or even avoided, showed a mechanism with two electrochemical steps and a model characteristic of UO 2 oxidation in acidic non-complexing media. Then, the study in neutral non-complexing media (0.05 mol/L NaCl, pH = 7.5) showed a mechanism with two electrochemical steps and one chemical step (EEC) in which both electrochemical steps are similar to those proposed in acidic media. Finally, a first approach of the UO 2

  2. Criticality safety studies involved in actions to improve conditions for storing 'RA' research reactor spent fuel

    International Nuclear Information System (INIS)

    Matausek, M.; Marinkovic, N.

    1998-01-01

    A project has recently been initiated by the VINCA Institute of Nuclear Sciences to improve conditions in the spent fuel storage pool at the 6.5 MW research reactor RA, as well as to consider transferring this spent fuel into a new dry storage facility built for the purpose. Since quantity and contents of fissile material in the spent fuel storage at the RA reactor are such that possibility of criticality accident can not be a priori excluded, according to standards and regulations for handling fissile material outside a reactor, before any action is undertaken subcriticality should be proven under normal, as well as under credible abnormal conditions. To perform this task, comprehensive nuclear criticality safety studies had to be performed. (author)

  3. Safeguardability assessment on pilot-scale advanced spent fuel conditioning facility

    International Nuclear Information System (INIS)

    Lee, S.Y.; Li, T.K.; Pickett, S.E.; Miller, M.C.; Ko, W.I.; Kim, H.D.

    2006-01-01

    Full text: In South Korea, approximately 6,000 metric tons of spent nuclear fuel from commercial reactor operation has been accumulated with the expectation of more than 30,000 metric tons, three times the present storage capacity, by the end of 2040. To resolve these challenges in spent fuel management, the Korea Atomic Energy Research Institute (KAERI) has been developing a dry reprocessing technology called Advanced Spent Fuel Conditioning Process (ACP). This is an electrometallurgical treatment technique to convert oxide-type spent fuel into a metallic form, and the electrolytic reduction (ER) technology developed recently is known as a more efficient concept for spent fuel conditioning. The goal of the ACP study is to recover more than 99% of the actinide elements into a metallic form with minimizing the volume and heat load of spent fuel. The significant reduction of the volume and heat load of spent fuel is expected to lighten the burden of final disposal in terms of disposal size, safety, and economics. In the framework of R and D collaboration for the ACP safeguards, a joint study on the safeguardability of the ACP technology has been performed by the Los Alamos National Laboratory (LANL) and KAERI. The purpose of this study is to address the safeguardability of the ACP technology, through analysis of material flow and development of a proper safeguards system that meet IAEA's comprehensive safeguards objective. The sub-processes and material flow of the pilot-scale ACP facility were analyzed, and subsequently the relevant material balance area (MBA) and key measurement point (KMP) were designed for material accounting. The uncertainties in material accounting were also estimated with international target values, and design requirements for the material accounting systems were derived

  4. Performance of Spent Mushroom Farming Waste (SMFW) Activated Carbon for Ni (II) Removal

    Science.gov (United States)

    Desa, N. S. Md; Ghani, Z. Ab; Talib, S. Abdul; Tay, C. C.

    2016-07-01

    The feasibility of a low cost agricultural waste of spent mushroom farming waste (SMFW) activated carbon for Ni(II) removal was investigated. The batch adsorption experiments of adsorbent dosage, pH, contact time, metal concentration, and temperature were determined. The samples were shaken at 125 rpm, filtered and analyzed using ICP-OES. The fifty percent of Ni(II) removal was obtained at 0.63 g of adsorbent dosage, pH 5-6 (unadjusted), 60 min contact time, 50 mg/L Ni(II) concentration and 25 °C temperature. The evaluated SMFW activated carbon showed the highest performance on Ni(II) removal compared to commercial Amberlite IRC86 resin and zeolite NK3. The result indicated that SMFW activated carbon is a high potential cation exchange adsorbent and suitable for adsorption process for metal removal. The obtained results contribute toward application of developed SMFW activated carbon in industrial pilot study.

  5. Long time storage containers for spent fuels and vitrified wastes: synthesis of the studies

    International Nuclear Information System (INIS)

    Beziat, A.

    2004-01-01

    This report presents a synthesis of the studies relatives to the containers devoted to the long time spent fuels storage and vitrified wastes packages. These studies were realized in the framework of the axis 3 of the law of 1991 on the radioactive wastes management. The first part is devoted to the presentation of the studies. The container sizing studies which constitute the first containment barrier are then presented. The material choice and the closed system are also detailed. The studies were validate by the realization of containers models and an associated demonstration program is proposed. A synthesis of the technical and economical studies allowed to determine the components and operation costs. (A.L.B.)

  6. United States Program on Spent Nuclear Fuel and High-Level Radioactive Waste Management

    International Nuclear Information System (INIS)

    Stewart, L.

    2004-01-01

    The President signed the Congressional Joint Resolution on July 23, 2002, that designated the Yucca Mountain site for a proposed geologic repository to dispose of the nation's spent nuclear fuel (SNF) and high-level radioactive waste (HLW). The United States (U.S.) Department of Energy's (DOE) Office of Civilian Radioactive Waste Management (OCRWM) is currently focusing its efforts on submitting a license application to the U.S. Nuclear Regulatory Commission (NRC) in December 2004 for construction of the proposed repository. The legislative framework underpinning the U.S. repository program is the basis for its continuity and success. The repository development program has significantly benefited from international collaborations with other nations in the Americas

  7. Options for Management of Spent Fuel and Radioactive Waste for Countries Developing New Nuclear Power Programmes

    International Nuclear Information System (INIS)

    2013-01-01

    One of the IAEA's statutory objectives is to 'seek to accelerate and enlarge the contribution of atomic energy to peace, health and prosperity throughout the world.' One way this objective is achieved is through the publication of a range of technical series. Two of these are the IAEA Nuclear Energy Series and the IAEA Safety Standards Series. According to Article III.A.6 of the IAEA Statute, the safety standards establish 'standards of safety for protection of health and minimization of danger to life and property'. The safety standards include the Safety Fundamentals, Safety Requirements and Safety Guides. These standards are written primarily in a regulatory style, and are binding on the IAEA for its own programmes. The principal users are the regulatory bodies in Member States and other national authorities. The IAEA Nuclear Energy Series comprises reports designed to encourage and assist R and D on, and application of, nuclear energy for peaceful uses. This includes practical examples to be used by owners and operators of utilities in Member States, implementing organizations, academia, and government officials, among others. This information is presented in guides, reports on technology status and advances, and best practices for peaceful uses of nuclear energy based on inputs from international experts. The IAEA Nuclear Energy Series complements the IAEA Safety Standards Series. Today, numerous countries are considering construction of their first nuclear power plant or the expansion of a small nuclear power programme, and many of these countries have limited experience in managing radioactive waste and spent nuclear fuel. They often have limited information about available technologies and approaches for safe and long term management of radioactive waste and spent nuclear fuel arising from power reactors. The lack of basic know-how and of a credible waste management strategy could present a major challenge or even an obstruction for countries wishing to

  8. Treatment and recycling of spent nuclear fuel. Actinide partitioning - Application to waste management

    International Nuclear Information System (INIS)

    Abonneau, E.; Baron, P.; Berthon, C.; Berthon, L.; Beziat, A.; Bisel, I.; Bonin, L.; Bosse, E.; Boullis, B.; Broudic, J.C.; Charbonnel, M.C.; Chauvin, N.; Den Auwer, C.; Dinh, B.; Duhamet, J.; Escleine, J.M.; Grandjean, S.; Guilbaud, P.; Guillaneux, D.; Guillaumont, D.; Hill, C.; Lacquement, J.; Masson, M.; Miguirditchian, M.; Moisy, P.; Pelletier, M.; Ravenet, A.; Rostaing, C.; Royet, V.; Ruas, A.; Simoni, E.; Sorel, C.; Vaudano, A.; Venault, L.; Warin, D.; Zaetta, A.; Pradel, P.; Bonin, B.; Bouquin, B.; Dozol, M.; Lecomte, M.; Forestier, A.; Beauvy, M.; Berthoud, G.; Defranceschi, M.; Ducros, G.; Guerin, Y.; Latge, C.; Limoge, Y.; Madic, C.; Santarini, G.; Seiler, J.M.; Sollogoob, P.; Vernaz, E.; Bazile, F.; Parisot, J.P.; Finot, P.; Roberts, J.F.

    2008-01-01

    subsequent to its in-reactor dwell time, spent fuel still contains large amounts of materials that are recoverable, for value-added energy purposes (uranium, plutonium), together with fission products, and minor actinides, making up the residues from nuclear reactions. The treatment and recycling of spent nuclear fuel, as implemented in France, entail that such materials be chemically partitioned. The development of the process involved, and its deployment on an industrial scale stand as a high achievement of French science, and technology. Treatment and recycling allow both a satisfactory management of nuclear waste to be implemented, and substantial savings, in terms of fissile material. Bolstered of late as it has been, due to spectacularly skyrocketing uranium prices, this strategy is bound to become indispensable, with the advent of the next generation of fast reactors. This Monograph surveys the chemical process used for spent fuel treatment, and its variants, both current, and future. It outlines currently ongoing investigations, setting out the challenges involved, and recent results obtained by CEA. (authors)

  9. Treatment and recycling of spent nuclear fuel. Actinide partitioning - Application to waste management

    Energy Technology Data Exchange (ETDEWEB)

    Abonneau, E.; Baron, P.; Berthon, C.; Berthon, L.; Beziat, A.; Bisel, I.; Bonin, L.; Bosse, E.; Boullis, B.; Broudic, J.C.; Charbonnel, M.C.; Chauvin, N.; Den Auwer, C.; Dinh, B.; Duhamet, J.; Escleine, J.M.; Grandjean, S.; Guilbaud, P.; Guillaneux, D.; Guillaumont, D.; Hill, C.; Lacquement, J.; Masson, M.; Miguirditchian, M.; Moisy, P.; Pelletier, M.; Ravenet, A.; Rostaing, C.; Royet, V.; Ruas, A.; Simoni, E.; Sorel, C.; Vaudano, A.; Venault, L.; Warin, D.; Zaetta, A.; Pradel, P.; Bonin, B.; Bouquin, B.; Dozol, M.; Lecomte, M.; Forestier, A.; Beauvy, M.; Berthoud, G.; Defranceschi, M.; Ducros, G.; Guerin, Y.; Latge, C.; Limoge, Y.; Madic, C.; Santarini, G.; Seiler, J.M.; Sollogoob, P.; Vernaz, E.; Bazile, F.; Parisot, J.P.; Finot, P.; Roberts, J.F

    2008-07-01

    subsequent to its in-reactor dwell time, spent fuel still contains large amounts of materials that are recoverable, for value-added energy purposes (uranium, plutonium), together with fission products, and minor actinides, making up the residues from nuclear reactions. The treatment and recycling of spent nuclear fuel, as implemented in France, entail that such materials be chemically partitioned. The development of the process involved, and its deployment on an industrial scale stand as a high achievement of French science, and technology. Treatment and recycling allow both a satisfactory management of nuclear waste to be implemented, and substantial savings, in terms of fissile material. Bolstered of late as it has been, due to spectacularly skyrocketing uranium prices, this strategy is bound to become indispensable, with the advent of the next generation of fast reactors. This Monograph surveys the chemical process used for spent fuel treatment, and its variants, both current, and future. It outlines currently ongoing investigations, setting out the challenges involved, and recent results obtained by CEA. (authors)

  10. National Inventories and Management Strategies for Spent Nuclear Fuel and Radioactive Waste. Extended Methodology for the Common Presentation of Data

    International Nuclear Information System (INIS)

    Volckaert, Geert; Dionisi, Mario; Heath, Maurice; Kugel, Karin; Garamszeghy, Miklos; Leclaire, Arnaud; Deryabin, Sergey; Hedberg, Bengt; Dapei, Dominic; Lebedev, Vladimir; )

    2017-01-01

    Radioactive waste inventory data are an important element in the development of a national radioactive waste management program since these data affect the design and selection of the ultimate disposal methods. Inventory data are generally presented as an amount of radioactive waste under various waste classes, according to the waste classification scheme developed and adopted by the country or national program in question. Various waste classification schemes have evolved in most countries, and these schemes classify radioactive waste according to its origin, to criteria related to the protection of workers or to the physical, chemical and radiological properties of the waste and the planned disposal method(s). The diversity in classification schemes across countries has restricted the possibility of comparing waste inventories and led to difficulties in interpreting waste management practices, both nationally and internationally. To help improve this situation, the Nuclear Energy Agency developed a methodology that ensures consistency of national radioactive waste and spent fuel inventory data when presenting them in a common scheme in direct connection with accepted management strategy and disposal routes. This report is a follow up to the 2016 report that introduced the methodology and presenting scheme for spent fuel, and it now extends this methodology and presenting scheme to all types of radioactive waste and corresponding management strategies

  11. Treatment and conditioning of radioactive solid wastes

    International Nuclear Information System (INIS)

    1992-07-01

    Radioactive materials are extensively used in industrial and research activities mainly related to medical, agricultural, environmental and other studies and applications. During the application and production of radioisotopes, significant amounts of radioactive wastes will inevitably arise, which must be managed (i.e. handled, treated, conditioned, intermediately stored and finally disposed of) with particular care. Serious efforts to minimize and appropriately segregate the waste arisings during the application of radioisotopes are the most important first step in waste management. The essential objective of the management of radioactive waste is the protection of mankind, the biosphere and the environment from the detrimental effects of nuclear radiation both now and in the future. This report deals with radioactive wastes outside the nuclear fuel cycle and it is directed primarily to countries without nuclear power programmes, e.g. countries belonging to the Groups A, B and C. Group A includes Member States which utilize radioisotopes at a few hospital locations, universities and industries. Group B includes Member States which have multi-use of radioisotopes in hospitals and other institutional areas and need a central collection and processing system. Group C includes Member States which have multi-use of radioisotopes and a nuclear research centre which is capable of indigenous production of several radioisotopes. When developing a waste management strategy, consideration should be given to the entire sequence of waste management operations from waste sources to disposal and all the related issues: every aspect of waste generation, processing, transportation, storage and disposal, including regulatory, socio-political and economic issues. The interaction of all these aspects must be analysed and understood before the entire waste management system can be properly built up and safely managed. 16 refs, 13 figs, 5 tabs

  12. The reprocessing-recycling of spent nuclear fuel. Actinides separation - Application to wastes management

    International Nuclear Information System (INIS)

    2008-01-01

    After its use in the reactor, the spent fuel still contains lot of recoverable material for an energetic use (uranium, plutonium), but also fission products and minor actinides which represent the residues of nuclear reactions. The reprocessing-recycling of the spent fuel, as it is performed in France, implies the chemical separation of these materials. The development and the industrial implementation of this separation process represent a major contribution of the French science and technology. The reprocessing-recycling allows a good management of nuclear wastes and a significant saving of fissile materials. With the recent spectacular rise of uranium prices, this process will become indispensable with the development of the next generation of fast neutron reactors. This book takes stock of the present and future variants of the chemical process used for the reprocessing of spent fuels. It describes the researches in progress and presents the stakes and recent results obtained by the CEA. content: the separation of actinides, a key factor for a sustainable nuclear energy; the actinides, a discovery of the 20. century; the radionuclides in nuclear fuels; the aquo ions of actinides; some redox properties of actinides; some complexing properties of actinide cations; general considerations about treatment processes; some characteristics of nuclear fuels in relation with their reprocessing; technical goals and specific constraints of the PUREX process; front-end operations of the PUREX process; separation and purification operations of the PUREX process; elaboration of finite products in the framework of the PUREX process; management and treatment of liquid effluents; solid wastes of the PUREX process; towards a joint management of uranium and plutonium: the COEX TM process; technical options of treatment and recycling techniques; the fuels of generation IV reactors; front-end treatment processes of advanced fuels; hydrometallurgical processes for future fuel cycles

  13. Carbon-14 behavior in a cement-dominated environment: Implications for spent CANDU resin waste disposal

    International Nuclear Information System (INIS)

    Dayal, R.; Reardon, E.J.

    1994-01-01

    Cement based waste forms and concrete engineered barriers are expected to play a key role in providing 14 C waste containment and control 14 C migration for time periods commensurate with its hazardous life of about 50,000 years. The main thrust of this study was, therefore, to evaluate the performance of cement based waste forms with regard to 14 C containment. Of particular importance are the geochemical processes controlling 14 C solubility and release under anticipated cement dominated low and intermediate level waste repository conditions. Immobilization of carbonate-form exchange resin in grout involves transfer of sorbed 14 CO 3 2- ions, through exchange for hydroxyl ions from the grout slurry, followed by localized precipitation of solid calcium carbonate at the cement/resin interface in the grout matrix. Carbon-14 release behavior can be attributed to the dissolution characteristics and solubility of calcite present in the cement based waste form. The groundwater flow regime can exert a pronounced effect both on the near-field chemistry and the leaching behavior of 14 C. For a cement dominated repository, at relatively low-flow or stagnant groundwater conditions, the alkaline near-field chemical environments inhibits the release of 14 C from the cemented waste form. Under high flow conditions, the near-field environment is characterized by relatively neutral pH conditions which promote calcite dissolution, thus resulting in 14 C release from the waste form

  14. Conceptual structure design of experimental facility for advanced spent fuel conditioning process

    International Nuclear Information System (INIS)

    Joo, J. S.; Koo, J. H.; Jung, W. M.; Jo, I. J.; Kook, D. H.; Yoo, K. S.

    2003-01-01

    A study on the advanced spent fuel conditioning process (ACP) is carring out for the effective management of spent fuels of domestic nuclear power plants. This study presents basic shielding design, modification of IMEF's reserve hot cell facility which reserved for future usage, conceptual and structural architecture design of ACP hot cell and its contents, etc. considering the characteristics of ACP. The results of this study will be used for the basic and detail design of ACP demonstration facility, and utilized as basic data for the safety evaluation as essential data for the licensing of the ACP facility

  15. Conditioning of tritiated wastes. Part II

    International Nuclear Information System (INIS)

    Hawthorne, S.H.

    1984-01-01

    Work is continuing on the development of conditioning systems for low and intermediate level tritiated liquid and solid wastes which will prevent loss of tritium for at least 150 years. This portion of the program has concentrated on solidification and encapsulation of tritiated aqueous wastes, development of techniques, for the measurement of tritium loss in air and water, and identification and evaluation of encapsulation materials. Solidification of tritiated aqueous wastes by water extendible polyester or cements resulted in average tritium releases of approximately 1-4x10 -1 α/day with that from water extendible polyester being the lowest. The daily release rate is independent of initial tritium concentration in the waste form and can be reduced by a factor of 1000 by encapsultation of the waste within a 10 mm layer of water extendible polyester. Water extendible polyester is the preferred material for solidification and encapsulation of aqueous tritiated wastes and encapsulation of tritiated solids permitting release of only 3x10 -3 % of the original activity over 150 years. It is expected that this program which was originally scheduled for three years can now be completed in two years with complete definition of the conditioning system including the outer package

  16. A kinetic model for the stability of spent fuel matrix under oxic conditions

    International Nuclear Information System (INIS)

    Bruno, J.; Cera, E.; Duro, L.; Eriksen, T.E.

    1996-01-01

    A kinetic model for the UO 2 -spent fuel dissolution has been developed by integrating all the fundamental and experimental evidence about the redox buffer capacity of the UO 2 matrix itself within the methodological framework of heterogeneous redox reactions and dissolution kinetics. The purpose of the model is to define the geochemical stability of the spent fuel matrix and its resistance to internal and external disturbances. The model has been built in basis the reductive capacity (RDC) of the spent fuel/water system. A sensitivity analysis has been performed in order to identify the main parameters that affect the RDC of the system, the oxidant consumption and the radionuclide release. The number of surface co-ordination sites, the surface area to volume ratio, the kinetics of oxidants generation by radiolysis and the kinetics of oxidative dissolution of UO 2 , have been found to be the main parameters that can affect the reductive capacity of the spent fuel matrix. The model has been checked against some selected UO 2 and spent fuel dissolution data, performed under oxidizing conditions. The results are quite encouraging. (orig.)

  17. Final disposal of spent fuels and high activity waste: status and trends in the world. Part 2

    International Nuclear Information System (INIS)

    Herscovich de Pahissa, Marta

    2008-01-01

    The proper management of spent fuel arising from nuclear power production is a key issue for the sustainable development of nuclear energy. Some countries have adopted reprocessing of spent fuel and part of them has continued to develop and improve closed fuel cycle technologies; some other countries have adopted a direct final disposal. The objective in this article is to provide an update on the latest development in the world related with the geological disposal of spent nuclear fuel and high level wastes. (author) [es

  18. Preliminary conceptual design of a geological disposal system for high-level wastes from the pyroprocessing of PWR spent fuels

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Heui-Joo, E-mail: hjchoi@kaeri.re.kr [Korea Atomic Energy Research Institute, 1045 Daeduk-Daero, Yuseong, Daejon 305-353 (Korea, Republic of); Lee, Minsoo; Lee, Jong Youl [Korea Atomic Energy Research Institute, 1045 Daeduk-Daero, Yuseong, Daejon 305-353 (Korea, Republic of)

    2011-08-15

    Highlights: > A geological disposal system consists of disposal overpacks, a buffer, and a deposition hole or a disposal tunnel for high-level wastes from a pyroprocessing of PWR spent fuels is proposed. The amount and characteristics of high-level wastes are analyzed based on the material balance of pyroprocessing. > Four kinds of deposition methods, two horizontal and two vertical, are proposed. Thermal design is carried out with ABAQUS program. The spacing between the disposal modules is determined for the peak temperature in buffer not to exceed 100 deg. C. > The effect of the double-layered buffer is compared with the traditional single-layered buffer in terms of disposal density. Also, the effect of cooling time (aging) is illustrated. > All the thermal calculations are represented by comparing the disposal area of PWR spent fuels with the same cooling time. - Abstract: The inventories of spent fuels are linearly dependent on the production of electricity generated by nuclear energy. Pyroprocessing of PWR spent fuels is one of promising technologies which can reduce the volume of spent fuels remarkably. The properties of high-level wastes from the pyroprocessing are totally different from those of spent fuels. A geological disposal system is proposed for the high-level wastes from pyroprocessing of spent fuels. The amount and characteristics of high-level wastes are analyzed based on the material balance of pyroprocessing. Around 665 kg of monazite ceramic wastes are expected from the pyroprocessing of 10 MtU of PWR spent fuels. Decay heat from monazite ceramic wastes is calculated using the ORIGEN-ARP program. Disposal modules consisting of storage cans, overpacks, and a deposition hole or a disposal tunnel are proposed. Four kinds of deposition methods are proposed. Thermal design is carried out with ABAQUS program and geological data obtained from the KAERI Underground Research Tunnel. Through the thermal analysis, the spacing between the disposal modules

  19. Lessons learned in demonstration projects regarding operational safety during final disposal of vitrified waste and spent fuel

    International Nuclear Information System (INIS)

    Filbert, Wolfgang; Herold, Philipp

    2015-01-01

    The paper summarizes the lessons learned in demonstration projects regarding operational safety during the final disposal of vitrified waste and spent fuel. The three demonstration projects for the direct disposal of vitrified waste and spent fuel are described. The first two demonstration projects concern the shaft transport of heavy payloads of up to 85 t and the emplacement operations in the mine. The third demonstration project concerns the borehole emplacement operation. Finally, open issues for the next steps up to licensing of the emplacement and disposal systems are summarized.

  20. Mössbauer and Raman spectroscopy characterization of concretes used in the conditioning of spent radioactive sources

    Energy Technology Data Exchange (ETDEWEB)

    Monroy-Guzman, F., E-mail: fabiola.monroy@inin.gob.mx; González-Neri, M.; González-Díaz, R. C.; Ortíz-Arcivar, G.; Corona-Pérez, I. J. [Instituto Nacional de Investigaciones Nucleares. Carretera México-Toluca s/n, La Marquesa, Ocoyoacac (Mexico); Nava, N. [Instituto Mexicano del Petroleo (Mexico); Cabral-Prieto, A.; Escobar-Alarcón, L. [Instituto Nacional de Investigaciones Nucleares. Carretera México-Toluca s/n, La Marquesa, Ocoyoacac (Mexico)

    2015-06-15

    Spent radioactive sources are considered a type of radioactive waste which must be stored properly. These sources are usually conditioned in concrete that functions as shield and physical barrier to prevent the potential migration of radionuclides, and must have suitable properties: mechanical, thermal or irradiation resistance. Concretes used in the conditioning of spent radioactive source in Mexico were tested, preparing concrete test specimens with Portland cement CPC 30RS EXTRA CEMEX and aggregates, and subjected to compression strength, γ-ray-irradiation and thermal resistance assays and subsequently analyzed by Mössbauer and Raman Spectroscopies as well as by Scanning Electron Microscopy, in order to correlate the radiation and temperature effects on the compressive strengths, the oxidation states of iron and the structural features of the concrete. Iron was found in the concrete in Fe {sup 2+} and Fe {sup 3+} in the tetrahedral (T) and two octahedral positions (O1, O2). Radiolysis of water causes the dehydratation (200-600 kGy) and rehydratation (1000-10000 kGy) of calcium silicate hydrates (C-S-H) and ferric hydrate phases in concretes and structural distortion around the iron sites in concretes. The compressive strength of concretes are not significantly affected by γ-radiation or heat.

  1. Review of the Effects of Normal Conditions of Transport on Spent Fuel Integrity in Transportation Casks

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Junggoo; Yoo, Youngik; Lee, Seongki; Lim, Chaejoon [Korea Nuclear Fuel Co., Daejeon (Korea, Republic of)

    2014-10-15

    Spent fuel(SF) storage capacity of each domestic nuclear power plant will reach a saturated state in the near future. Although there are several methods of SF disposal, interim storage is suggested as the most realistic and promising alternative. SF integrity evaluation is a regulatory requirement that is described in Part 71 of Code of Federal Regulations, Title 10 of the U..S. NRC licensing requirement. In this paper, the report is reviewed written by EPRI in US and it is helpful to a development of domestic SF integrity evaluation technology. EPRI report about integrity evaluation method on normal conditions of high burn-up spent fuel transport is reviewed. First, dynamic forces occurred in one-foot side drop are calculated. And deformation patterns and fuel rods responses by dynamic forces calculated from spent fuel and cask model are analyzed. It is shown that the damage of fuel rods is not occurred by the dynamic forces on normal conditions. Assembly distortion is not predicted, by virtue of the facts that the spacer grids do not experience significant permanent deformation. Axial forces, bending moments and pinch forces of fuel rods are calculated and compared with the results under the hypothetical accident conditions. No occurrence of transverse tearing mode that is the most serious damage mode in side drop case is predicted. Till now, in Korea, regulatory requirements related with structural integrity of spent fuel are not specified such as 10CFR71. To establish own regulation standards, producing and analyzing sufficient experimental data must be performed preferentially. Based on this, failure analysis and criteria establishment are necessary through modeling and analyzing of spent fuel.

  2. Licensing procedures for a dedicated ship for carrying spent nuclear fuel and radioactive waste. Report from workshop held at GOSAOMNADZOR, Moscow 2 -3 July 2001

    Energy Technology Data Exchange (ETDEWEB)

    Sneve, Margorzata K.; Bergman, Curt; Markarov, Valentin

    2001-07-01

    The report describes information exchange and discussion about the licensing principles and procedures for spent nuclear fuel and radioactive waste transportation at sea. Russian health, environment and safety requirements for transportation of waste by ships. (Author)

  3. Metal waste forms from treatment of EBR-II spent fuel

    International Nuclear Information System (INIS)

    Abraham, D. P.

    1998-01-01

    Demonstration of Argonne National Laboratory's electrometallurgical treatment of spent nuclear fuel is currently being conducted on irradiated, metallic driver fuel and blanket fuel elements from the Experimental Breeder Reactor-II (EBR-II) in Idaho. The residual metallic material from the electrometallurgical treatment process is consolidated into an ingot, the metal waste form (MWF), by employing an induction furnace in a hot cell. Scanning electron microscopy (SEM) and chemical analyses have been performed on irradiated cladding hulls from the driver fuel, and on samples from the alloy ingots. This paper presents the microstructures of the radioactive ingots and compares them with observations on simulated waste forms prepared using non-irradiated material. These simulated waste forms have the baseline composition of stainless steel - 15 wt % zirconium (SS-15Zr). Additions of noble metal elements, which serve as surrogates for fission products, and actinides are made to that baseline composition. The partitioning of noble metal and actinide elements into alloy phases and the role of zirconium for incorporating these elements is discussed in this paper

  4. Radiological criteria for the remediation of sites for spent fuel and radioactive waste storage in the Russian Northwest.

    Science.gov (United States)

    Shandala, N K; Sneve, M K; Titov, A V; Smith, G M; Novikova, N Ya; Romanov, V V; Seregin, V A

    2008-12-01

    In the 1960s, two technical bases of the Northern Fleet were created in Northwest Russia, at Andreeva Bay in the Kola Peninsula and Gremikha village on the coast of the Barents Sea. They maintained nuclear submarines, performing receipt and storage of radioactive waste and spent nuclear fuel, and are now designated sites of temporary storage (STSs). An analysis of the radiation situation at these sites demonstrates that substantial long-term remediation work will be required after the removal of the waste and spent nuclear fuel. Regulatory guidance is under development to support this work. Having in mind modern approaches to guaranteeing radiation safety, the primary regulatory focus is on a justification of dose constraints for determining acceptable residual contamination which might lead to exposure to workers and the public. For these sites, four principal options for remediation have been considered-renovation, conversion, conservation and liquidation. This paper describes a system of recommended dose constraints and derived control levels formulated for each option. The unconditional guarantee of long-term radioecological protection provides the basis for criteria development. Non-exceedance of these dose constraints and control levels implies compliance with radiological protection objectives related to the residual contamination. Dose reduction below proposed dose constraint values must also be carried out according to the optimisation principle. The developed criteria relate to the condition of the facilities and the STS areas after the termination of remediation activities. The proposed criteria for renovation, conversion, conservation and liquidation are entirely within the dose limits adopted in Russia for the management of man-made radiation sources, and are consistent with ICRP recommendations and national practice in other countries. The proposed criteria for STS remediation and new industrial (non-radiation-hazardous) facilities and buildings on

  5. A direct, single-step plasma arc-vitreous ceramic process for stabilizing spent nuclear fuels, sludges, and associated wastes

    International Nuclear Information System (INIS)

    Feng, X.; Einziger, R.E.; Eschenbach, R.C.

    1997-01-01

    A single-step plasma arc-vitreous ceramic (PAVC) process is described for converting spent nuclear fuel (SNF), SNF sludges, and associated wastes into a vitreous ceramic waste form. This proposed technology is built on extensive experience of nuclear waste form development and nuclear waste treatment using the commercially available plasma arc centrifugal (PAC) system. SNF elements will be loaded directly into a PAC furnace with minimum additives and converted into vitreous ceramics with up to 90 wt% waste loading. The vitreous ceramic waste form should meet the functional requirements for borosilicate glasses for permanent disposal in a geologic repository and for interim storage. Criticality safety would be ensured through the use of batch modes, and controlling the amount of fuel processed in one batch. The minimum requirements on SNF characterization and pretreatment, the one-step process, and minimum secondary waste generation may reduce treatment duration, radiation exposure, and treatment cost

  6. The conditioned reprocessing waste returns. An overview of the question

    International Nuclear Information System (INIS)

    Donato, A.

    1987-01-01

    Although the spent nuclear fuel reprocessing is at present under careful reconsideration and analysis in several countries, the economics, the environmental and health protection aspects being taken into consideration by many experts, it is nevertheless currently carried out in Great Britain and in France as a commercial service offered to the domestic utilities an to foreign customers, according to the contracts and the agreements signed in the past. Such contracts have been signed with COGEMA and/or BNFL by seven countries: Germany, Sweden, Japan, Belgium, Switzerland, Italy, Holland. As a consequence of this, a big number of high level radioactive glass containers and of cemented and bituminized waste will be returned in order to be stored and disposed off in these European countries and in Japan. The disposal of the conditioned wastes will only be possible if their characteristics comply with the acceptance criteria established or to be established in each customer country. A brief review of the situation will be presented in this paper, particular attention being given to the problems possibly arising from the acceptance point of view of the different reprocessing waste categories

  7. Critical review of welding technology for canisters for disposal of spent fuel and high level waste

    International Nuclear Information System (INIS)

    Pike, S.; Allen, C.; Punshon, C.; Threadgill, P.; Gallegillo, M.; Holmes, B.; Nicholas, J.

    2010-03-01

    Nagra is the Swiss national cooperative for the disposal of radioactive waste and is responsible for final disposal of all types of waste produced in Switzerland, which are partitioned into two repository types, one for spent fuel (SF), vitrified high-level waste (HLW) and long-lived intermediate level waste and one for low and intermediate level waste. In the general licences applied for these repositories, documentation has to show that long-term safety can be ensured and that factors for the construction, operation, and closure of the facility have been considered. Nagra has commissioned TWI to carry out a critical review of welding technologies for the sealing of HLW and SF canisters made of carbon steel. In conjunction with a material selection report, the information gained will be used as a preliminary step to provide input to developing design concepts for the canisters. The features to be considered are: a) Suitability of techniques for thickness of weld required; b) Suitability for remote operation, maintenance and set-up; c) Welding speed, weld quality, tolerances and cost; d) Effect of welding process on parent materials properties including microstructure corrosion resistance, distortion and residual stress; e) Potential post-weld treatments to reduce residual stress and enhance corrosion resistance; f) Suitability of inspection techniques for the weld thickness required; g) Impact of welding techniques on the canister design and material selection; h) Critique of emerging technologies which may be suitable in the future. The review of potential welding technologies began with a feasibility study carried out by TWI experts, where the unsuitable processes were rejected. For the remaining processes attention was focused on previous applications for the material and thickness suggested, and especially on safety critical applications such as applied in the nuclear and pressure vessel industry. Once the relevant information was gathered each process was

  8. On the possibility of reprocessing spent nuclear fuel and radioactive waste by plasma methods

    Energy Technology Data Exchange (ETDEWEB)

    Vorona, N. A.; Gavrikov, A. V., E-mail: gavrikov@ihed.ras.ru; Samokhin, A. A.; Smirnov, V. P. [Russian Academy of Sciences, Joint Institute for High Temperatures (Russian Federation); Khomyakov, Yu. S. [Innovation–Technology Center of the Project Proryv (Russian Federation)

    2015-12-15

    The concept of plasma separation of spent nuclear fuel and radioactive waste is presented. An approach that is based on using an accelerating potential to overcome the energy and angular spread of plasma ions at the separation region inlet and utilizing a potential well to separate spatially the ions of different masses is proposed. It is demonstrated that such separation may be performed at distances of about 1 m with electrical potentials of about 1 kV and a magnetic field of about 1 kG. The estimates of energy consumption and performance of the plasma separation method are presented. These estimates illustrate its potential for technological application. The results of development and construction of an experimental setup for testing the method of plasma separation are presented.

  9. Separation and Recovery of Precious Metals from Leach Liquors of Spent Electronic Wastes by Solvent Extraction

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Thi Hong; Wang, Lingyun; Lee, Man Seung [Mokpo National University, Mokpo (Korea, Republic of)

    2017-04-15

    Solvent extraction was employed to recover precious metals (Au (III), Pd (II) and Pt (IV)) from the leach solution of spent electronic wastes containing Cu (II), Cr (III) and Fe (III). First, pure Fe (III) and Au (III) were recovered by simultaneous extraction with Cyanex 923 followed by selective stripping with HCl and Na{sub 2}S{sub 2}O{sub 3}. Second, Pt (IV), Pd (II) and Cu (II) were extracted by Alamine 336 from the raffinate. After the removal of Cu (II) by stripping with weak HCl, Pd (II) and Pt (IV) were separately stripped by controlling the concentration of thiourea in the mixture with HCl. A process flow sheet for the separation of precious metals was proposed.

  10. Study of shielding analysis methods for casks of spent fuel and radioactive waste

    International Nuclear Information System (INIS)

    Saito, Ai

    2017-01-01

    Casks are used for storage or transport spent fuels or radioactive waste. Because high shielding performances are required, it is very important to confirm the validity of shielding analysis methods in order to evaluate cask shielding abilities appropriately. For this purpose, following studies were carried out. 1) A series of parameter survey for several codes to evaluated the difference of the results. 2) Calculations using the MCNP code are effective and theoretically have better accuracy. However setting reasonable variance reduction parameters is indispensable. Therefore, effectiveness of the ADVANTG code which produces automatically reasonable variance reduction parameters is carried out by comparison with conventional method. As a result, the validity of shielding analysis methods for casks is confirmed. The results will be taken into consideration in our future shielding analysis. (author)

  11. Results from Nevada Nuclear Waste Storage Investigations (NNWSI) Series 3 spent fuel dissolution tests

    International Nuclear Information System (INIS)

    Wilson, C.N.

    1990-06-01

    The dissolution and radionuclide release behavior of spent fuel in groundwater is being studied by the Yucca Mountain Project (YMP), formerly the Nevada Nuclear Waste Storage Investigations (NNWSI) Project. Specimens prepared from pressurized water reactor fuel rod segments were tested in sealed stainless steel vessels in Nevada Test Site J-13 well water at 85 degree C and 25 degree C. The test matrix included three specimens of bare-fuel particles plus cladding hulls, two fuel rod segments with artificially defected cladding and water-tight end fittings, and an undefected fuel rod section with watertight end fittings. Periodic solution samples were taken during test cycles with the sample volumes replenished with fresh J-13 water. Test cycles were periodically terminated and the specimens restarted in fresh J-13 water. The specimens were run for three cycles for a total test duration of 15 months. 22 refs., 32 figs., 26 tabs

  12. Status of standardization efforts for packaging and transportation of spent fuel and high-level waste

    International Nuclear Information System (INIS)

    Eggers, P.E.; Dawson, D.M.

    1986-01-01

    This paper provides a current review of the status of efforts to develop standards and guidelines related to the packaging and transportation of spent fuel and high-level waste. An overview of each of the organizations and agencies developing standards and guidelines is discussed and includes the efforts of the N14 Division of the American National Standards Institute (ANSI), NUPACK Committee of Section III of the American Society of Mechanical Engineers, Nuclear Regulatory Commission and Department of Energy. This comparative overview identifies the scope and areas of application of each standard and guideline. In addition, the current or proposed standards and guidelines are considered collectively with commentary on areas of apparent or potential complimentary fit, overlap and incompatability. Finally, the paper reviews initiatives now being taken within the N14 division of ANSI to identify where new standards development activities are required

  13. Sweden's radiation protection regulations for spent fuel and nuclear waste: Requirements and compliance

    International Nuclear Information System (INIS)

    Norden, M.; Jensen, M.; Larsson, C.M.; Avila, R.; Bergman, S.S.; Wiebert, A.; Wiklund, A.

    2000-01-01

    The Swedish regulations on radiation protection in connection with spent fuel and nuclear waste disposal concern protection of human health and the environment. The reasoning behind the regulations is in observance with the Rio declaration, in the sense that they take into consideration sustainable development also in continued presence of multiple sources of radioactive effluents. Optimisation and best available technique are used as methods for risk reduction. For human health, a risk concept is used, whereas for environmental protection, focus is set on protection of biological resources and diversity. Compliance with the health and environmental goals is discussed using generic definition of the environment. The hypothetical outflow from a repository takes place in the different compartments and the resulting spread in doses are discussed and compared to the requirements of the individual dose standard, and other environmental effects are assessed. (author)

  14. Radiological protection regulation during spent nuclear fuel and radioactive waste management in the western branch of the Federal State Unitary Enterprise 'SevRAO'.

    Science.gov (United States)

    Simakov, A V; Sneve, M K; Abramov, Yu V; Kochetkov, O A; Smith, G M; Tsovianov, A G; Romanov, V V

    2008-12-01

    The site of temporary storage of spent nuclear fuel and radioactive waste, situated at Andreeva Bay in Northwest Russia, was developed in the 1960s, and it has carried out receipt and storage of fresh and spent nuclear fuel, and solid and liquid radioactive waste generated during the operation of nuclear submarines and nuclear-powered icebreakers. The site is now operated as the western branch of the Federal State Unitary Enterprise, SevRAO. In the course of operation over several decades, the containment barriers in the Spent Nuclear Fuel and Radioactive Waste storage facilities partially lost their containment effectiveness, so workshop facilities and parts of the site became contaminated with radioactive substances. This paper describes work being undertaken to provide an updated regulatory basis for the protection of workers during especially hazardous remediation activities, necessary because of the unusual radiation conditions at the site. It describes the results of recent survey work carried out by the Burnasyan Federal Medical Biophysical Centre, within a programme of regulatory cooperation between the Norwegian Radiation Protection Authority and the Federal Medical-Biological Agency of Russia. The survey work and subsequent analyses have contributed to the development of special regulations setting out radiological protection requirements for operations planned at the site. Within these requirements, and taking account of a variety of other factors, a continuing need arises for the implementation of optimisation of remediation at Andreeva Bay.

  15. YUCCA Mountain Project - Argonne National Laboratory, Annual Progress Report, FY 1997 for activity WP 1221 unsaturated drip condition testing of spent fuel and unsaturated dissolution tests of glass.

    Energy Technology Data Exchange (ETDEWEB)

    Bates, J. K.; Buck, E. C.; Emery, J. W.; Finch, R. J.; Finn, P. A.; Fortner, J.; Hoh, J. C.; Mertz, C.; Neimark, L. A.; Wolf, S. F.; Wronkiewicz, D. J.

    1998-09-18

    This document reports on the work done by the Nuclear Waste Management Section of the Chemical Technology Division of Argonne National Laboratory in the period of October 1996 through September 1997. Studies have been performed to evaluate the behavior of nuclear waste glass and spent fuel samples under the unsaturated conditions (low-volume water contact) that are likely to exist in the Yucca Mountain environment being considered as a potential site for a high-level waste repository. Tests with actinide-doped waste glasses, in progress for over 11 years, indicate that the transuranic element release is dominated by colloids that continuously form and span from the glass surface. The nature of the colloids that form in the glass and spent fuel testing programs is being investigated by dynamic light scattering to determine the size distribution, by autoradiography to determine the chemistry, and by zeta potential to measure the electrical properties of the colloids. Tests with UO{sub 2} have been ongoing for 12 years. They show that the oxidation of UO{sub 2} occurs rapidly, and the resulting paragenetic sequence of secondary phases forming on the sample surface is similar to that observed for uranium found in natural oxidizing environments. The reaction of spent fuel samples in conditions similar to those used with UO{sub 2} have been in progress for over six years, and the results suggest that spent fuel forms many of the same alteration products as UO{sub 2}. With spent fuel, the bulk of the reaction occurs via a through-grain reaction process, although grain boundary attack is sufficient to have reacted all of the grain boundary regions in the samples. New test methods are under development to evaluate the behavior of spent fuel samples with intact cladding: the rate at which alteration and radionuclide release occurs when water penetrates fuel sections and whether the reaction causes the cladding to split. Alteration phases have been formed on fine grains of UO

  16. YUCCA Mountain Project - Argonne National Laboratory, Annual Progress Report, FY 1997 for activity WP 1221 unsaturated drip condition testing of spent fuel and unsaturated dissolution tests of glass

    International Nuclear Information System (INIS)

    Bates, J.K.; Buck, E.C.; Emery, J.W.; Finch, R.J.; Finn, P.A.; Fortner, J.; Hoh, J.C.; Mertz, C.; Neimark, L.A.; Wolf, S.F.; Wronkiewicz, D.J.

    1998-01-01

    This document reports on the work done by the Nuclear Waste Management Section of the Chemical Technology Division of Argonne National Laboratory in the period of October 1996 through September 1997. Studies have been performed to evaluate the behavior of nuclear waste glass and spent fuel samples under the unsaturated conditions (low-volume water contact) that are likely to exist in the Yucca Mountain environment being considered as a potential site for a high-level waste repository. Tests with actinide-doped waste glasses, in progress for over 11 years, indicate that the transuranic element release is dominated by colloids that continuously form and span from the glass surface. The nature of the colloids that form in the glass and spent fuel testing programs is being investigated by dynamic light scattering to determine the size distribution, by autoradiography to determine the chemistry, and by zeta potential to measure the electrical properties of the colloids. Tests with UO 2 have been ongoing for 12 years. They show that the oxidation of UO 2 occurs rapidly, and the resulting paragenetic sequence of secondary phases forming on the sample surface is similar to that observed for uranium found in natural oxidizing environments. The reaction of spent fuel samples in conditions similar to those used with UO 2 have been in progress for over six years, and the results suggest that spent fuel forms many of the same alteration products as UO 2 . With spent fuel, the bulk of the reaction occurs via a through-grain reaction process, although grain boundary attack is sufficient to have reacted all of the grain boundary regions in the samples. New test methods are under development to evaluate the behavior of spent fuel samples with intact cladding: the rate at which alteration and radionuclide release occurs when water penetrates fuel sections and whether the reaction causes the cladding to split. Alteration phases have been formed on fine grains of UO 2 in contact with

  17. Waste conditioning technology of radiocontaminated soil

    International Nuclear Information System (INIS)

    Chen Dahua; Wang Xiaoli; Chen Xin

    2012-01-01

    A special conditioning way for low level soil contaminated by 241 Am was discussed. Firstly, the contaminated soil was condensed in package container (200 L drum) by 20 t pressing machine. The contaminated soil was pressed from loose state to compaction state, and the volume reduction rate was from 1.1 to 1.4. Secondly, cement with thickness of 10 cm to 15 cm was poured on the package container for sealing. Thus, a cement sealing member was made up by contaminated soil and it could be described as normal solid waste. Finally, taking the cement sealing member as conditioning object, using Ⅶ steel trunk as package container and cement conditioning, Ⅶ steel trunk package was got. Through radiation monitoring, the Ⅶ steel trunk package can satisfy the transport requirement of radiation waste. Also, it can satisfy the accept and disposal requirements of national repository. (authors)

  18. Safety analysis of spent fuel transport and storage casks under extreme impact conditions

    International Nuclear Information System (INIS)

    Wolff, D.; Wieser, G.; Ballheimer, V.; Voelzke, H.; Droste, B.

    2005-01-01

    Full text: Worldwide the security of transport and storage of spent fuel with respect to terrorism threats is a matter of concern. In Germany a spent nuclear fuel management program was developed by the government including a new concept of dry on-site interim storage instead of centralized interim storage. In order to minimize transports of spent fuel casks between nuclear power plants, reprocessing plants and central storage facilities, the operators of NPPs have to erect and to use interim storage facilities for spent nuclear fuel on the site or in the vicinity of nuclear power plants. Up to now, 11 on-site interim storage buildings, one storage tunnel and 4 on-site interim storage areas (preliminary cask storage till the on-site interim storage building is completed) have been licensed at 12 nuclear power plant sites. Inside the interim storage buildings the casks are kept in upright position, whereas at the preliminary interim storage areas horizontal storage of the casks on concrete slabs is used and each cask is covered by concrete elements. Storage buildings and concrete elements are designed only for gamma and neutron radiation shielding reasons and as weather protection. Therefore the security of spent fuel inside a dual purpose transport and storage cask depends on the inherent safety of the cask itself. For nearly three decades BAM has been investigating cask safety under severe accident conditions like drop tests from more than 9 m onto different targets and without impact limiters as well as artificially damaged prototype casks. Since the terror attacks of 11 September 2001 the determination of casks' inherent safety also under extreme impact conditions due to terrorist attacks has been of our increasing interest. With respect to spent fuel storage one of the most critical scenarios of a terrorist attack for a cask is the centric impact of a dynamic load onto the lid-seal-system caused e.g. by direct aircraft crash or its engine as well as by a

  19. Assessment of conditions of the spent nuclear fuel stored in the stainless steel channel-holders

    International Nuclear Information System (INIS)

    Pesic, M.; Sotic, O.; Cupac, S.; Maksin, T.; Dasic, N.

    2003-01-01

    The IAEA technical co-operation project 'Safe Removal of Spent Fuel of the Vinca RA Research Reactor' is carried out at the Vinca Institute of Nuclear Sciences, Belgrade, Serbia and Montenegro, since January 2003. Present activities will provide up-to-date information on the conditions of the spent nuclear fuel, stored in the stainless steel channel-holders ('chekhols') and on the water quality in the storage basins. Water samples taken out from the chekhols and the basins are measured to determine their activity and chemical parameters. Until September 2003, about 1/3 of the chekhols containing spent fuel elements with initial enrichment of 2% and 80% of uranium were inspected. High activity of Cs-137 was found in several water samples taken out from chekhols. All water samples show very high electrical conductivity, while those taken from the basins show the presence of chlorides and aluminium ions, too. Information on established procedures and measuring results are given in this paper. The obtained results, so far, show that the spent nuclear fuel elements are leaking in about 10% of chekhols. (author)

  20. Performance Evaluation of the Neutron Coincidence Counter for the Advanced Spent Fuel Conditioning Process

    International Nuclear Information System (INIS)

    Lee, S.Y.; Li, T.K.; Menlove, Howard O.; Kim, H.D.; Ko, W.I.; Park, S.W.

    2005-01-01

    The Advanced Spent Fuel Conditioning Process (ACP) is a pyrochemical dry reprocessing technique to convert oxide-type spent nuclear fuel into a metallic form. The Korea Atomic Energy Research Institute (KAERI) has been developing this technology for the purpose of spent fuel management and is planning to perform a lab-scale demonstration in 2006. With this technology, a significant reduction of the volume and heat load of spent fuel is expected, which could decrease the burden of safety and economics. In this study, MCNPX code calculations were carried out to estimate the performance of a neutron coincidence counter designed for measruement of the process materials in the pilot-scale ACP facility. To verify the design requirement, the singles and doubles counting rates of the detectors were simulated with the latest coincidence capability of the MCNPX code. Then, the precision of the coincidence measurements were evaluated on various process materials from the ACP. It was verified that the performance of the neutron coincidence counter could meet the design criteria for all samples in the ACP, and the material accounting system for the pilot-scale ACP facility could meet the IAEA safeguards goals.

  1. Studies on the Conditioning Methods of Spent Tri-butyl Phosphate/Kerosene and its Degradation Product in Different Matrices

    International Nuclear Information System (INIS)

    El-Dessouky, M.I.; El-sourougy, M.R.; Abed El-Aziz, M.M.; Aly, H.F.

    1999-01-01

    The destruction of spent TBP/Kerosene (odourless Kerosene (OK)) with potassium permanganate have been investigated. Comparative studies on the immobilization of spent TBP/Kerosene and its degradation product into different matrices have been carried out. The matrices used include, ordinary Portland cement, silica fume, treated fly ash, epoxy resin and cement mixed with epoxy resin.The different factors affecting solidified waste forms such as, compressive strength, water resistance, thermal stability, chemical resistance, radiological stability and leachability have been investigated. It was found that, epoxy resin and cement mixed with 5,10,20, and 50% of epoxy resin enhance the compressive strength of the solidified waste forms with spent TBP/OK more than that obtained from degradation products. The leaching rates of 152 and 154 Eu and 181 Hf from waste forms containing TBP/OK was found lower than that with degradation product

  2. National Inventories and Management Strategies for Spent Nuclear Fuel and Radioactive Waste. Methodology for Common Presentation of Data

    International Nuclear Information System (INIS)

    Volckaert, Geert; George, Mathews; Kugel, Karin; Garamszeghy, Miklos; Leclaire, Arnaud; Dionisi, Mario; Deryabin, Sergey; Lebedev, Vladimir; ); Lemmens, A.; Cairns, B.; Neri, E.G.

    2016-01-01

    Radioactive waste inventory data are an important element in the development of a national radioactive waste management programme since these data affect the design and selection of the ultimate disposal methods. Inventory data are generally presented as an amount of radioactive waste under various waste classes, according to the waste classification scheme developed and adopted by the country or national programme in question. Various waste classification schemes have thus evolved in most countries, and these schemes classify radioactive waste according to its origin, to criteria related to the protection of workers or to the physical, chemical and radiological properties of the waste and the planned disposal method(s). The diversity in classification schemes across countries has restricted the possibility of comparing waste inventories and led to difficulties in interpreting waste management practices, both nationally and internationally. To help improve this situation, the Nuclear Energy Agency proposed to develop a methodology that would ensure consistency of national radioactive waste inventory data when presenting them in a common scheme. This report provides such a methodology and presenting scheme for spent nuclear fuel and for waste arising from reprocessing. The extension of the methodology and presenting scheme to other types of radioactive waste and corresponding management strategies is envisaged in a second phase. (authors)

  3. Leaching methods for conditioned radioactive waste

    International Nuclear Information System (INIS)

    Carpentiero, R.; Bienvenu, P.; Huebra, A. G. de la; Dale, C.; Grec, D.; Gallego, C.; Rodriguez, M.; Vanderlinden, F.; Voors, P. I.; Welbergen, J.; May, R.; Fays, J.

    2005-01-01

    The physico-chemical characterization of solidified, real or simulated, radioactive waste is essential in determining their long-term stability in conditions close to that which could be encountered during disposal. The evaluation or prediction of the performance of conditioned waste passes through many suitable studies and experiments, according to a documented qualification programme. In this respect the leaching test is among the first important techniques to evaluate the feasibility of a waste form and for comparing and selecting the best waste form. So the leaching behaviour of an immobilized radioactive waste is a relevant property to be studied. The objective of the present report is to collect and describe the most representative leaching methods used in international laboratories, mainly at European level, whether standard or standard-derived. In this instance the work is a summary of the Network knowledge and applications on leaching processes in order to exchange information and scientific and technical experiences in this respect. The focus is to express all the relevant parameters of the test and its field of application. all this background is the needed starting point to clarify the similarities and shortcomings of the methods used in the EN-TRAP laboratories and, subsequently, the possible equalities or differences which can be attributed to the characteristic parameters of the different type of wastes treated. In order to comprise the significance and the effects of the parameters involved in leaching phenomena, an initial discussion on leaching mechanisms and on achievable results is made in this document. The international standardised methods are summarised as being the origin for all the network leaching procedures. This work in a preliminary way represents a comparative review ordered to introduce an unique leaching procedure to be tested in an interlaboratory comparative exercise. Further the unique method would be a quick internal reference

  4. Spent fuels conditioning and irradiated nuclear fuel elements examination: the STAR facility and its abilities

    Energy Technology Data Exchange (ETDEWEB)

    Boussard, F.; Huillery, R. [CEA Centre d`Etudes de Cadarache, 13 - Saint-Paul-lez-Durance (France). Dept. d`Etudes des Combustibles; Averseng, J.L.; Serpantie, J.P. [Novatome Industries, 92 - Le Plessis-Robinson (France)

    1994-12-31

    This paper is a presentation of the STAR facility, a high activity laboratory located in Cadarache Nuclear Research Center (France). The purpose of the STAR facility and of the associated processes, is the treatment, cleaning and conditioning of spent fuels from Gas Cooled Reactors (GCR) and in particular of about 2300 spent GCR fuel cartridges irradiated more than 20 years ago in Electricite de France (EDF) or CEA Uranium Graphite GCR. The processes are: to separate the nuclear fuel from the clad remains, to chemically stabilize the nuclear material and to condition it in sealed canisters. An additional objective of STAR consists in non-destructive or destructive examinations and tests on PWR rods or FBR pins in the frame of fuel development programs. The paper describes the STAR facility conceptual design (safety design rules, hot cells..) and the different options corresponding to the GCR reconditioning process and to further research and development works on various fuel types. (J.S.). 3 figs.

  5. Spent fuels conditioning and irradiated nuclear fuel elements examination: the STAR facility and its abilities

    International Nuclear Information System (INIS)

    Boussard, F.; Huillery, R.

    1994-01-01

    This paper is a presentation of the STAR facility, a high activity laboratory located in Cadarache Nuclear Research Center (France). The purpose of the STAR facility and of the associated processes, is the treatment, cleaning and conditioning of spent fuels from Gas Cooled Reactors (GCR) and in particular of about 2300 spent GCR fuel cartridges irradiated more than 20 years ago in Electricite de France (EDF) or CEA Uranium Graphite GCR. The processes are: to separate the nuclear fuel from the clad remains, to chemically stabilize the nuclear material and to condition it in sealed canisters. An additional objective of STAR consists in non-destructive or destructive examinations and tests on PWR rods or FBR pins in the frame of fuel development programs. The paper describes the STAR facility conceptual design (safety design rules, hot cells..) and the different options corresponding to the GCR reconditioning process and to further research and development works on various fuel types. (J.S.). 3 figs

  6. Thermal performance of a buried nuclear waste storage container storing a hybrid mix of PWR and BWR spent fuel rods

    International Nuclear Information System (INIS)

    Johnson, G.L.

    1988-09-01

    Lawrence Livermore National Laboratory will design, model, and test nuclear waste packages for use at the Nevada Nuclear Waste Storage Repository at Yucca Mountain, Nevada. One such package would store lightly packed spent fuel rods from both pressurized and boiling water reactors. The storage container provides the primary containment of the nuclear waste and the spent fuel rod cladding provides secondary containment. A series of transient conduction and radiation heat transfer analyses was run to determine for the first 1000 yr of storage if the temperature of the tuff at the borehole wall ever falls below 97/degree/C and whether the cladding of the stored spent fuel ever exceeds 350/degree/C. Limiting the borehole to temperatures of 97/degree/C or greater helps minimize corrosion by assuring that no condensed water collects on the container. The 350/degree/C cladding limit minimizes the possibility of creep-related failure in the spent fuel rod cladding. For a series of packages stored in a 8 x 30 m borehole grid where each package contains 10-yr-old spent fuel rods generating 4.74 kW or more, the borehole wall stays above 97/degree/C for the full 1000-yr analysis period

  7. Criticality control during conditioning of spent nuclear fuel in the Fuel Cycle Facility

    International Nuclear Information System (INIS)

    Lell, R.M.; Khalil, H.S.

    1994-01-01

    Spent nuclear fuel may be unacceptable for direct repository storage because of composition, enrichment, form, physical condition, or the presence of undesirable materials such as sodium. Fuel types which are not acceptable for direct storage must be processed or conditioned to produce physical forms which can safely be stored in a repository. One possible approach to conditioning is the pyroprocess implemented in the Fuel Cycle Facility (FCF) at Argonne National Laboratory-West. Conditioning of binary (U-Zr) and ternary (U-Pu-Zr) metallic fuels from the EBR-2 reactor is used to demonstrate the process. Criticality safety considerations limit batch sizes during the conditioning steps and provide one constraint on the final form of conditioned material. Criticality safety during conditioning is assured by the integration of criticality safety analysis, equipment design, process development, a measurement program, accountability procedures, and a computerized Mass Tracking System. Criticality issues related to storage and shipment of conditioned material have been examined

  8. Comparison of national programs and regulations for the management of spent fuel and disposal of high-level waste in seven countries

    International Nuclear Information System (INIS)

    Numark, N.J.; Mattson, R.J.; Gaunt, J.

    1986-01-01

    This paper describes programs and regulatory requirements affecting the management of spent fuel and disposal of high-level radioactive waste in seven nations with large nuclear power programs. The comparison is intended to illustrate that the range of spent fuel management options is influenced by certain technical and political constraints. It begins by providing overall nuclear fuel cycle facts for each country, including nuclear generating capacities, rates of spent fuel discharge, and policies on spent fuel reprocessing. Spent fuel storage techniques and reprocessing activities are compared in light of constraints such as fuel type. Waste disposal investigations are described, including a summary of the status of regulatory developments affecting repository siting and disposal. A timeline is provided to illustrate the principle milestones in spent fuel management and waste disposal in each country. Finally, policies linking nuclear power licensing and development to nuclear waste management milestones and RandD progress are discussed

  9. Continuous primary fermentation of beer with yeast immobilized on spent grains : the effect of operational conditions

    OpenAIRE

    Brányik, Tomáš; Vicente, A. A.; Cruz, José Machado; Teixeira, J. A.

    2004-01-01

    A one-stage continuous primary beer fermentation with immobilized brewing yeast was studied. The objective of the work was to optimize the operational conditions (aeration and temperature) in terms of volumetric productivity and organoleptic quality of green beer. The system consisted of an internal-loop airlift reactor and a carrier material prepared from spent grains (a brewing by-product). An industrial wort and yeast strain were used. The immobilized biomass (in amounts from two to sevenf...

  10. Current issues in the transport of radioactive waste and spent fuel: work by the World Nuclear Transport Institute

    Energy Technology Data Exchange (ETDEWEB)

    Neau, H-J.; Bonnardel-Azzarelli, B. [World Nuclear Transport Inst., London (United Kingdom)

    2014-07-01

    Various kinds of radioactive waste are generated from nuclear power and fuel cycle facilities. These materials have to be treated, stored and eventually sent to a repository site. Transport of wastes between these various stages is crucial for the sustainable utilization of nuclear energy. The IAEA Regulations for the Safe Transport of Radioactive Material (SSR-6) have, for many decades, provided a safe and efficient framework for radioactive materials transport and continue to do so. However, some shippers have experienced that in the transport of certain specific radioactive wastes, difficulties can be encountered. For example, some materials produced in the decommissioning of nuclear facilities are unique in terms of composition or size and can be difficult to characterize as surface contaminated objects (SCO) or homogeneous. One way WNTI (World Nuclear Transport Institute) helps develop transport methodologies is through the use of Industry Working Groups, bringing together WNTI members with common interests, issues and experiences. The Back-End Transport Industry Working Group focuses on the following issues currently. - Characterization of Waste: techniques and methods to classify wastes - Large Objects: slightly contaminated large objects (ex. spent steam generators) transport - Dual Use Casks: transportable storage casks for spent nuclear fuels, including the very long term storage of spent fuel - Fissile Exceptions: new fissile exceptions provisions of revised TS-R-1 (SSR-6) The paper gives a broad overview of current issues for the packaging and transport of radioactive wastes and the associated work of the WNTI. (author)

  11. Experience and projects concerning treatment, conditioning and storage of all radioactive wastes from Tokai reprocessing plant

    International Nuclear Information System (INIS)

    Fukuda, G.; Matsumoto, K.; Miyahara, K.

    1984-01-01

    The active operation of Tokai reprocessing plant started in September 1977, and about 170 t U of spent fuel were reprocessed between then and December 1982. During this period, the low-level waste processing plant reduced the amount of radioactivity discharged into the environment. For radioactive liquid waste, the treatment procedures consist mainly of evaporation to keep the discharge into the sea at a low level. For combustible low-level solid waste and the solvent waste, which is of low tributyl phosphate content, incineration has been used successfully (burned: about 150 t of combined LLSW, about 50 m 3 of solvent waste, i.e. diluent waste). Most of the past R and D work was devoted to reducing the activity discharged into the environment. Current R and D work is concerned with the treatment of solvent waste, the conditioning of solid wastes, the bituminization of low-level liquid waste and the vitrification of high-level liquid waste. The paper describes present practices, R and D work and future aspects of the treatment, conditioning and storage of all radioactive wastes from Tokai reprocessing plant. (author)

  12. Modelling Spent Fuel and HLW Behaviour in Repository Conditions. A review of the state of the art

    International Nuclear Information System (INIS)

    Martinez-Esparza, A.; Esteban, J. A.; Quinones, J.; Pablo, J. de; Casas, I.; Gimenez, J.; Clarens, F.; Rovira, M.; Merino, J.; Cera, E.; Bruno, J.; Ripoll, S.

    2002-01-01

    The SFS (Spent Fuel Stability) project that is being carried out as part of the European Union's 5th Framework Programme has a dual objective, technical and sociologic. The technical objectives consists of developing a model of the behaviour of irradiated fuel and of the radionuclides contained therein, under the conditions of a deep geological disposal facility, incorporating the experimental part of this and previous. European projects. The sociological objectives is to develop a common scientific and technical opinion throughout the European Union, for consensus to be reached regarding the evolution of a deep geological disposal facility for high level wastes. With a view to achieving this dual objective, and as a project activity, a Seminar was organised in Avila in June 2002 (the presentations made of this Seminar will be the subject of another publication), the aim being to establish the bases for a new spent fuel behaviour model with and ample experimental basis and the consensus of the European countries participating in the project (France, Switzerland, Germany, Sweden, Belgium and Spain. (Author)

  13. Recycling of Dilute Deacetylation Black Liquor to Enable Efficient Recovery and Reuse of Spent Chemicals and Biomass Pretreatment Waste

    Directory of Open Access Journals (Sweden)

    Xiaowen Chen

    2018-06-01

    Full Text Available Deacetylation/dilute alkaline pretreatment followed by mechanical refining (DMR has been proven as an effective process for biomass sugar liberation without severe chemical modification to lignin. Previous research has been focused on optimizing deacetylation conditions, reducing energy consumptions in mechanical refining, and improving sugar yields and titers in enzymatic hydrolysis. To successfully commercialize this process, another critical challenge is to develop a robust process to balance water usage, recover spent chemicals, and utilize waste carbons from the dilute deacetylation waste liquor. In this work, a new process modification and strategy is pioneered to recycle and reuse the weak black liquor (WBL in order to reduce water, chemical, and energy usage while increasing both inorganic and organic contents in the WBLto facilitate downstream processing. Results suggest that the accumulation did not lower acetyl and lignin removal in alkaline pretreatment, resulting in comparable sugar yields in enzymatic hydrolysis. Sodium and potassium were found to be the two most important inorganic compounds in the recycled WBL. Moreover, the accumulated sodium and phenolic compounds did not inhibit the downstream ethanol fermentation processes. Finally, techno-economic analysis (TEA showed a decrease in the minimum ethanol selling price (MESP by ~5 to 15 cents per gallon of ethanol resulting from the inclusion of the recycling of weak black liquor when compared to a conventional non-recycling process.

  14. Use of natural materials from Northern Russia for the isolation of radioactive wastes and spent nuclear fuel

    International Nuclear Information System (INIS)

    Komlev, V.N.

    1998-01-01

    The application of natural materials to the isolation of radioactive waste and spent nuclear fuel is being assessed, together with possible isolation technologies. The operational requirements for such materials are identified and a proposal for an inter-regional ecological and technological project is discussed. 39 refs

  15. Norwegian national report. Joint convention on the safety of spent fuel management and on the safety of radioactive waste management

    International Nuclear Information System (INIS)

    2011-11-01

    This report contains the national report from Norway to the fourth review meeting of the JointConvention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management to be held 14-23 May 2012. (Author)

  16. Study of (U,Pu)O2 spent fuel matrix alteration under geological disposal conditions: Experimental approach and geochemical modeling

    International Nuclear Information System (INIS)

    Odorowski, Melina

    2015-01-01

    To assess the performance of direct disposal of spent fuel in a nuclear waste repository, researches are performed on the long-term behavior of spent fuel (UO x and MO x ) under environmental conditions close to those of the French disposal site. The objective of this study is to determine whether the geochemistry of the Callovian-Oxfordian (CO x ) clay geological formation and the steel overpack corrosion (producing iron and hydrogen) have an impact on the oxidative dissolution of the (U,Pu)O 2 matrix under alpha radiolysis of water. Leaching experiments have been performed with UO 2 pellets doped with alpha emitters (Pu) and MIMAS MO x fuel (un-irradiated or spent fuel) to study the effect of the CO x groundwater and of the presence of metallic iron upon the oxidative dissolution of these materials induced by the radiolysis of water. Results indicate an inhibiting effect of the CO x water on the oxidative dissolution. In the presence of iron, two different behaviors are observed. Under alpha irradiation as the one expected in the geological disposal, the alteration of UO 2 matrix and MO x fuel is very strongly inhibited because of the consumption of radiolytic oxidative species by iron in solution leading to the precipitation of Fe(III)-hydroxides on the pellets surface. On the contrary, under a strong beta/gamma irradiation field, alteration tracers indicate that the oxidative dissolution goes on and that uranium concentration in solution is controlled by the solubility of UO 2 (am,hyd). This is explained by the shifting of the redox front from the fuel surface to the bulk solution not protecting the fuel anymore. The developed geochemical (CHESS) and reactive transport (HYTEC) models correctly represent the main results and occurring mechanisms. (author) [fr

  17. Hydrothermal conditions around a radioactive waste repository

    International Nuclear Information System (INIS)

    Thunvik, R.; Braester, C.

    1981-12-01

    Numerical solutions for the hydrothermal conditions around a hard rock repository for nuclear fuel waste are presented. The objective of the present investigation is to illustrate in principle the effect of heat released from a hypothetical radioactive waste repository with regard to anisotropy in the rock permeability. Permeability and porosity are assumed to be constant or to decrease exponentially with depth. The hypothetical repository is situated below a horizontal ground surface or below the crest of a hill, and it is assumed that the water table follows the topography. Major interest in the analysis is directed towards the influence of anisotropy in the permeability on the flow patterns and travel times for water particles, being traced from the repository to the ground surface. The presented results show that anisotropy in the permeability may have a significant influence on the flow conditions around the repository and subsequently also on the travel times from the repository. (Authors)

  18. Initial performance assessment of the disposal of spent nuclear fuel and high-level waste stored at Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Rechard, R.P.

    1993-12-01

    This performance assessment characterized plausible treatment options conceived by the Idaho National Engineering Laboratory (INEL) for its spent fuel and high-level radioactive waste and then modeled the performance of the resulting waste forms in two hypothetical, deep, geologic repositories: one in bedded salt and the other in granite. The results of the performance assessment are intended to help guide INEL in its study of how to prepare wastes and spent fuel for eventual permanent disposal. This assessment was part of the Waste Management Technology Development Program designed to help the US Department of Energy develop and demonstrate the capability to dispose of its nuclear waste, as mandated by the Nuclear Waste Policy Act of 1982. The waste forms comprised about 700 metric tons of initial heavy metal (or equivalent units) stored at the INEL: graphite spent fuel, experimental low enriched and highly enriched spent fuel, and high-level waste generated during reprocessing of some spent fuel. Five different waste treatment options were studied; in the analysis, the options and resulting waste forms were analyzed separately and in combination as five waste disposal groups. When the waste forms were studied in combination, the repository was assumed to also contain vitrified high-level waste from three DOE sites for a common basis of comparison and to simulate the impact of the INEL waste forms on a moderate-sized repository, The performance of the waste form was assessed within the context of a whole disposal system, using the U.S. Environmental Protection Agency's Environmental Radiation Protection Standards for Management and Disposal of Spent Nuclear Fuel, High-Level and Transuranic Radioactive Wastes, 40 CFR 191, promulgated in 1985. Though the waste form behavior depended upon the repository type, all current and proposed waste forms provided acceptable behavior in the salt and granite repositories

  19. Initial performance assessment of the disposal of spent nuclear fuel and high-level waste stored at Idaho National Engineering Laboratory. Volume 2: Appendices

    Energy Technology Data Exchange (ETDEWEB)

    Rechard, R.P. [ed.

    1993-12-01

    This performance assessment characterized plausible treatment options conceived by the Idaho National Engineering Laboratory (INEL) for its spent fuel and high-level radioactive waste and then modeled the performance of the resulting waste forms in two hypothetical, deep, geologic repositories: one in bedded salt and the other in granite. The results of the performance assessment are intended to help guide INEL in its study of how to prepare wastes and spent fuel for eventual permanent disposal. This assessment was part of the Waste Management Technology Development Program designed to help the US Department of Energy develop and demonstrate the capability to dispose of its nuclear waste, as mandated by the Nuclear Waste Policy Act of 1982. The waste forms comprised about 700 metric tons of initial heavy metal (or equivalent units) stored at the INEL: graphite spent fuel, experimental low enriched and highly enriched spent fuel, and high-level waste generated during reprocessing of some spent fuel. Five different waste treatment options were studied; in the analysis, the options and resulting waste forms were analyzed separately and in combination as five waste disposal groups. When the waste forms were studied in combination, the repository was assumed to also contain vitrified high-level waste from three DOE sites for a common basis of comparison and to simulate the impact of the INEL waste forms on a moderate-sized repository, The performance of the waste form was assessed within the context of a whole disposal system, using the U.S. Environmental Protection Agency`s Environmental Radiation Protection Standards for Management and Disposal of Spent Nuclear Fuel, High-Level and Transuranic Radioactive Wastes, 40 CFR 191, promulgated in 1985. Though the waste form behavior depended upon the repository type, all current and proposed waste forms provided acceptable behavior in the salt and granite repositories.

  20. Radioactive waste management, decommissioning, spent fuel storage. V.2. 3. ed.

    International Nuclear Information System (INIS)

    1986-10-01

    The aim of this book is to provide information on french technology achievements in the field of processing and conditioning of solid, liquid and gaseous radioactive wastes, through stationary or mobile units. It presents the facilities and services proposed by french industry, as well as the experience acquired. Separate abstracts were prepared for 16 papers [fr

  1. Thermal analysis on NAC-STC spent fuel transport cask under different transport conditions

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Yumei [Institute of Process Equipment, Zhejiang University, Hangzhou (China); Yang, Jian, E-mail: zdhjkz@zju.edu.cn [Institute of Process Equipment, Zhejiang University, Hangzhou (China); Xu, Chao; Wang, Weiping [Institute of Process Equipment, Zhejiang University, Hangzhou (China); Ma, Zhijun [Department of Material Engineering, South China University of Technology, Guangzhou (China)

    2013-12-15

    Highlights: • Spent fuel cask was investigated as a whole instead of fuel assembly alone. • The cask was successfully modeled and meshed after several simplifications. • Equivalence method was used to calculate the properties of parts. • Both the integral thermal field and peak values are captured to verify safety. • The temperature variations of key parts were also plotted. - Abstract: Transport casks used for conveying spent nuclear fuel are inseparably related to the safety of the whole reprocessing system for spent nuclear fuel. Thus they must be designed according to rigorous safety standards including thermal analysis. In this paper, for NAC-STC cask, a finite element model is established based on some proper simplifications on configurations and the heat transfer mechanisms. Considering the complex components and gaps, the equivalence method is presented to define their material properties. Then an equivalent convection coefficient is introduced to define boundary conditions. Finally, the temperature field is captured and analyzed under both normal and accident transport conditions by using ANSYS software. The validity of numerical calculation is given by comparing its results with theoretical calculation. Obtaining the integral distribution laws of temperature and peak temperature values of all vital components, the security of the cask can be evaluated and verified.

  2. Oxidation behavior of fuel cladding tube in spent fuel pool accident condition

    International Nuclear Information System (INIS)

    Nemoto, Yoshiyuki; Kaji, Yoshiyuki; Ogawa, Chihiro; Nakashima, Kazuo; Tojo, Masayuki

    2017-01-01

    In spent fuel pool (SFP) under loss-of-cooling or loss-of-coolant severe accident condition, the spent fuels will be exposed to air and heated by their own residual decay heat. Integrity of fuel cladding is crucial for SFP safety therefore study on cladding oxidation in air at high temperature is important. Zircaloy-2 (Zry2) and zircaloy-4 (Zry4) were applied for thermogravimetric analyses (TGA) in different temperatures in air at different flow rates to evaluate oxidation behavior. Oxidation rate increased with testing temperature. In a range of flow rate of air which is predictable in spent fuel lack during a hypothetical SFP accident, influence of flow rate was not clearly observed below 950degC for the Zry2, or below 1050degC for Zry4. In higher temperature, oxidation rate was higher in high rate condition, and this trend was seen clearer when temperature increased. Oxide layers were carefully examined after the TGA analyses and compared with mass gain data to investigate detail of oxidation process in air. It was revealed that the mass gain data in pre-breakaway regime reflects growth of dense oxide film on specimen surface, meanwhile in post-breakaway regime, it reflects growth of porous oxide layer beneath fracture of the dense oxide film. (author)

  3. A radioactive waste transportation package monitoring system for normal transport and accident emergency response conditions

    International Nuclear Information System (INIS)

    Brown, G.S.; Cashwell, J.W.; Apple, M.L.

    1993-01-01

    This paper addresses spent fuel and high level waste transportation history and prospects, discusses accident histories of radioactive material transport, discusses emergency responder needs and provides a general description of the Transportation Intelligent Monitoring System (TRANSIMS) design. The key objectives of the monitoring system are twofold: (1) to facilitate effective emergency response to accidents involving a radioactive waste transportation package, while minimizing risk to the public and emergency first-response personnel, and (2) to allow remote monitoring of transportation vehicle and payload conditions to enable research into radioactive material transportation for normal and accident conditions. (J.P.N.)

  4. New volume reduction conditioning options for solid alpha-bearing waste

    International Nuclear Information System (INIS)

    Jouan, A.; Jacquet-Francillon, N.; Kertesz, C.; Frotscher, H.; Ganser, B.; Klein, M.

    1990-01-01

    The current and future development of nuclear energy requires increasing allowance for nuclear waste treatment: α-bearing wastes destined for geological storage are already conditioned, generally in a cement matrix. Other containment processes producing higher quality matrices and allowing volume reduction have been investigated over the last five years by the General Directorate for Science Research and Development of the Commission of the European Communities. This paper discusses the work on conditioning α-bearing ashes produced by incineration of contaminated combustible materials, and on fuel cladding hulls resulting from spent fuel reprocessing

  5. Spent fuel transport cask thermal evaluation under normal and accident conditions

    Energy Technology Data Exchange (ETDEWEB)

    Pugliese, G. [Department of Mechanical, Nuclear and Production Engineering, University of Pisa, Via Diotisalvi, no 2-56126 Pisa (Italy); Lo Frano, R., E-mail: rosa.lofrano@ing.unipi.i [Department of Mechanical, Nuclear and Production Engineering, University of Pisa, Via Diotisalvi, no 2-56126 Pisa (Italy); Forasassi, G. [Department of Mechanical, Nuclear and Production Engineering, University of Pisa, Via Diotisalvi, no 2-56126 Pisa (Italy)

    2010-06-15

    The casks used for transport of nuclear materials, especially the spent fuel element (SPE), must be designed according to rigorous acceptance criteria and standards requirements, e.g. the International Atomic Energy Agency ones, in order to provide protection to people and environment against radiation exposure particularly in a severe accident scenario. The aim of this work was the evaluation of the integrity of a spent fuel cask under both normal and accident scenarios transport conditions, such as impact and rigorous fire events, in according to the IAEA accident test requirements. The thermal behaviour and the temperatures distribution of a Light Water Reactor (LWR) spent fuel transport cask are presented in this paper, especially with reference to the Italian cask designed by AGN, which was characterized by a cylindrical body, with water or air inside the internal cavity, and two lateral shock absorbers. Using the finite element code ANSYS a series of thermal analyses (steady-state and transient thermal analyses) were carried out in order to obtain the maximum fuel temperature and the temperatures field in the body of the cask, both in normal and in accidents scenario, considering all the heat transfer modes between the cask and the external environment (fire in the test or air in the normal conditions) as well as inside the cask itself. In order to follow the standards requirements, the thermal analyses in accidents scenarios were also performed adopting a deformed shape of the shock absorbers to simulate the mechanical effects of a previous IAEA 9 m drop test event. Impact tests on scale models of the shock absorbers have already been conducted in the past at the Department of Mechanical, Nuclear and Production Engineering, University of Pisa, in the '80s. The obtained results, used for possible new licensing approval purposes by the Italian competent Authority of the cask for PWR spent fuel cask transport by the Italian competent Authority, are

  6. Source study for a concept of spent nuclear fuel and radioactive waste management in the Czech Republic

    International Nuclear Information System (INIS)

    Vokal, A.; Trtilek, R.; Tarasova, J.; Popelova, E.; Podlaha, J.; Krmela, J.; Vojtechova, H.; Uhlir, J.

    2013-02-01

    The sections of the study are as follows: Purpose of the study; Basic principles of peaceful uses of nuclear energy and spent nuclear fuel and radioactive waste management; Basic starting facts and assumptions and assessment of the fulfilment of the targets; Low-level and medium-level radioactive waste management; Management of spent nuclear fuels and wastes not admitted to near-surface repositories; Description of / proposal for the methodology of transparency policy and proposal for a method to involve the entities affected, including municipalities and the public; Current financial arrangements (reserves for decommissioning, nuclear account); Refinement/modification of the plans and technical solutions; Proposed schedule and milestones for attaining the targets; Proposal for a research and development programme; Assessment of the costs of implementation of the targets. (P.A.)

  7. Cementation of secondary wastes generated from carbonisation of spent organic ion exchange resins from nuclear power plants

    International Nuclear Information System (INIS)

    Sathi Sasidharan, N.; Deshingkar, D.S.; Wattal, P.K.

    2004-07-01

    The spent IX resins containing radioactive fission and activation products from power reactors are highly active solid wastes generated during operations of nuclear reactors. Process for carbonization of IX resins to achieve weight and volume reduction has been optimized on 50 dm 3 /batch pilot test rig. The process generates carbonaceous residue, organic liquid condensates (predominantly styrene) and aqueous alkaline scrubber solutions as secondary wastes. The report discusses laboratory tests on leaching of 137 Cs from cement matrix incorporating carbonaceous residues and extrapolation of results to 200 liter matrix block. The cumulative fraction of 137 Cs leached from 200 liter cement matrix was estimated to be 0.0021 in 200 days and 0.0418 over a period of 30 years. Incorporation of organic liquid condensates into cement matrix has been tried out successfully. Thus two types of secondary wastes generated during carbonization of spent IX resins can be immobilized in cement matrix. (author)

  8. Reduction of radioactive waste by improvement of conditioning facilities

    Energy Technology Data Exchange (ETDEWEB)

    Radde, E.

    2014-07-01

    The NES (Nuclear Engineering Seibersdorf) is the only radioactive waste conditions and storage facility in Austria. It manages waste originating from research, industry and medicine. Its main goal is, not only to treat and store waste safety, but also to optimize processes to further reduce the waste volume. To achieve this goal, the New Handling Facility was built. In this paper we will show how the waste volume can be easily reduced by optimizing the conditioning and waste stream process. The NES owns a water treatment plant for cleaning of active waste water, an incineration plant that is used to burn radioactive waste. (Author)

  9. Performance assessment of the direct disposal in unsaturated tuff or spent nuclear fuel and high-level waste owned by USDOE: Volume 2, Methodology and results

    Energy Technology Data Exchange (ETDEWEB)

    Rechard, R.P. [ed.

    1995-03-01

    This assessment studied the performance of high-level radioactive waste and spent nuclear fuel in a hypothetical repository in unsaturated tuff. The results of this 10-month study are intended to help guide the Office of Environment Management of the US Department of Energy (DOE) on how to prepare its wastes for eventual permanent disposal. The waste forms comprised spent fuel and high-level waste currently stored at the Idaho National Engineering Laboratory (INEL) and the Hanford reservations. About 700 metric tons heavy metal (MTHM) of the waste under study is stored at INEL, including graphite spent nuclear fuel, highly enriched uranium spent fuel, low enriched uranium spent fuel, and calcined high-level waste. About 2100 MTHM of weapons production fuel, currently stored on the Hanford reservation, was also included. The behavior of the waste was analyzed by waste form and also as a group of waste forms in the hypothetical tuff repository. When the waste forms were studied together, the repository was assumed also to contain about 9200 MTHM high-level waste in borosilicate glass from three DOE sites. The addition of the borosilicate glass, which has already been proposed as a final waste form, brought the total to about 12,000 MTHM.

  10. Performance assessment of the direct disposal in unsaturated tuff or spent nuclear fuel and high-level waste owned by USDOE: Volume 2, Methodology and results

    International Nuclear Information System (INIS)

    Rechard, R.P.

    1995-03-01

    This assessment studied the performance of high-level radioactive waste and spent nuclear fuel in a hypothetical repository in unsaturated tuff. The results of this 10-month study are intended to help guide the Office of Environment Management of the US Department of Energy (DOE) on how to prepare its wastes for eventual permanent disposal. The waste forms comprised spent fuel and high-level waste currently stored at the Idaho National Engineering Laboratory (INEL) and the Hanford reservations. About 700 metric tons heavy metal (MTHM) of the waste under study is stored at INEL, including graphite spent nuclear fuel, highly enriched uranium spent fuel, low enriched uranium spent fuel, and calcined high-level waste. About 2100 MTHM of weapons production fuel, currently stored on the Hanford reservation, was also included. The behavior of the waste was analyzed by waste form and also as a group of waste forms in the hypothetical tuff repository. When the waste forms were studied together, the repository was assumed also to contain about 9200 MTHM high-level waste in borosilicate glass from three DOE sites. The addition of the borosilicate glass, which has already been proposed as a final waste form, brought the total to about 12,000 MTHM

  11. Boro Silicate Glass: The proven Conditioning of RTR ultimate Waste

    International Nuclear Information System (INIS)

    Bartagnon, O.; Petitjean, V.

    2002-01-01

    The possibility to dispose of the RTR spent fuel in a geological repository is neither internationally foreseen nor seems realistic. This due to degradation phenomena and possible criticality incidents. The conditioning by reprocessing is the only solution for back end management of TRT spent fuels

  12. Canister design concepts for disposal of spent fuel and high level waste

    Energy Technology Data Exchange (ETDEWEB)

    Patel, R.; Punshon, C.; Nicholas, J.; Bastid, P.; Zhou, R.; Schneider, C.; Bagshaw, N.; Howse, D.; Hutchinson, E. [TWI Ltd, Cambridge, (United Kingdom); Asano, R. [Hitachi Zosen Corporation, Osaka (Japan); King, S. [Integrity Corrosion Consulting Ltd, Calgary, Alberta (Canada)

    2012-10-15

    As part of its long-term plans for development of a repository for spent fuel (SF) and high level waste (HLW), Nagra is exploring various options for the selection of materials and design concepts for disposal canisters. The selection of suitable canister options is driven by a series of requirements, one of the most important of which is providing a minimum 1000 year lifetime without breach of containment. One candidate material is carbon steel, because of its relatively low corrosion rate under repository conditions and because of the advanced state of overall technical maturity related to construction and fabrication. Other materials and design options are being pursued in parallel studies. The objective of the present study was to develop conceptual designs for carbon steel SF and HLW canisters along with supporting justification. The design process and outcomes result in design concepts that deal with all key aspects of canister fabrication, welding and inspection, short-term performance (handling and emplacement) and long-term performance (corrosion and structural behaviour after disposal). A further objective of the study is to use the design process to identify the future work that is required to develop detailed designs. The development of canister designs began with the elaboration of a number of design requirements that are derived from the need to satisfy the long-term safety requirements and the operational safety requirements (robustness needed for safe handling during emplacement and potential retrieval). It has been assumed based on radiation shielding calculations that the radiation dose rate at the canister surfaces will be at a level that prohibits manual handling, and therefore a hot cell and remote handling will be needed for filling the canisters and for final welding operations. The most important canister requirements were structured hierarchically and set in the context of an overall design methodology. Conceptual designs for SF canisters

  13. Canister design concepts for disposal of spent fuel and high level waste

    International Nuclear Information System (INIS)

    Patel, R.; Punshon, C.; Nicholas, J.; Bastid, P.; Zhou, R.; Schneider, C.; Bagshaw, N.; Howse, D.; Hutchinson, E.; Asano, R.; King, S.

    2012-10-01

    As part of its long-term plans for development of a repository for spent fuel (SF) and high level waste (HLW), Nagra is exploring various options for the selection of materials and design concepts for disposal canisters. The selection of suitable canister options is driven by a series of requirements, one of the most important of which is providing a minimum 1000 year lifetime without breach of containment. One candidate material is carbon steel, because of its relatively low corrosion rate under repository conditions and because of the advanced state of overall technical maturity related to construction and fabrication. Other materials and design options are being pursued in parallel studies. The objective of the present study was to develop conceptual designs for carbon steel SF and HLW canisters along with supporting justification. The design process and outcomes result in design concepts that deal with all key aspects of canister fabrication, welding and inspection, short-term performance (handling and emplacement) and long-term performance (corrosion and structural behaviour after disposal). A further objective of the study is to use the design process to identify the future work that is required to develop detailed designs. The development of canister designs began with the elaboration of a number of design requirements that are derived from the need to satisfy the long-term safety requirements and the operational safety requirements (robustness needed for safe handling during emplacement and potential retrieval). It has been assumed based on radiation shielding calculations that the radiation dose rate at the canister surfaces will be at a level that prohibits manual handling, and therefore a hot cell and remote handling will be needed for filling the canisters and for final welding operations. The most important canister requirements were structured hierarchically and set in the context of an overall design methodology. Conceptual designs for SF canisters

  14. Ventilation and air conditioning system in waste treatment and storage facilities

    International Nuclear Information System (INIS)

    Kinoshita, Hirotsugu; Sugawara, Kazushige.

    1987-01-01

    So far, the measures concerning the facilities for treating and storing radioactive wastes in nuclear fuel cycle in Japan were in the state which cannot be said to be sufficient. In order to cope with this situation, electric power companies constructed and operated radioactive waste concentration and volume reduction facilities, solid waste storing facilities for drums, high level solid waste storing facilities, spent fuel cask preserving facilities and so on successively in the premises of nuclear power stations, and for the wastes expected in future, the research and the construction plan of the facilities for treating and storing low, medium and high level wastes have been advanced. The ventilation and air conditioning system for these facilities is the important auxiliary system which has the mission of maintaining safe and pleasant environment in the facilities and lowering as far as possible the release of radioactive substances to outside. The outline of waste treatment and storage facilities is explained. The design condition, ventilation and air conditioning method, the features of respective waste treatment and storage facilities, and the problems for the future are described. Hereafter, mechanical ventilation system continues to be the main system, and filters become waste, while the exchange of filters is accompanied by the radiation exposure of workers. (Kako, I.)

  15. Ageing management program for the Spanish low and intermediate level waste disposal and spent fuel and high-level waste centralised storage facilities

    Science.gov (United States)

    Zuloaga, P.; Ordoñez, M.; Andrade, C.; Castellote, M.

    2011-04-01

    The generic design of the centralised spent fuel storage facility was approved by the Spanish Safety Authority in 2006. The planned operational life is 60 years, while the design service life is 100 years. Durability studies and surveillance of the behaviour have been considered from the initial design steps, taking into account the accessibility limitations and temperatures involved. The paper presents an overview of the ageing management program set in support of the Performance Assessment and Safety Review of El Cabril low and intermediate level waste (LILW) disposal facility. Based on the experience gained for LILW, ENRESA has developed a preliminary definition of the Ageing Management Plan for the Centralised Interim Storage Facility of spent Fuel and High Level Waste (HLW), which addresses the behaviour of spent fuel, its retrievability, the confinement system and the reinforced concrete structure. It includes tests plans and surveillance design considerations, based on the El Cabril LILW disposal facility.

  16. Ageing management program for the Spanish low and intermediate level waste disposal and spent fuel and high-level waste centralised storage facilities

    Directory of Open Access Journals (Sweden)

    Andrade C.

    2011-04-01

    Full Text Available The generic design of the centralised spent fuel storage facility was approved by the Spanish Safety Authority in 2006. The planned operational life is 60 years, while the design service life is 100 years. Durability studies and surveillance of the behaviour have been considered from the initial design steps, taking into account the accessibility limitations and temperatures involved. The paper presents an overview of the ageing management program set in support of the Performance Assessment and Safety Review of El Cabril low and intermediate level waste (LILW disposal facility. Based on the experience gained for LILW, ENRESA has developed a preliminary definition of the Ageing Management Plan for the Centralised Interim Storage Facility of spent Fuel and High Level Waste (HLW, which addresses the behaviour of spent fuel, its retrievability, the confinement system and the reinforced concrete structure. It includes tests plans and surveillance design considerations, based on the El Cabril LILW disposal facility.

  17. Integrated Data Base report--1993: U.S. spent nuclear fuel and radioactive waste inventories, projections, and characteristics. Revision 10

    Energy Technology Data Exchange (ETDEWEB)

    1994-12-01

    The Integrated Data Base Program has compiled historic data on inventories and characteristics of both commercial and DOE spent nuclear fuel; also, commercial and US government-owned radioactive wastes through December 31, 1993. These data are based on the most reliable information available from government sources, the open literature, technical reports, and direct contacts. The information forecasted is consistent with the latest US Department of Energy/Energy Information Administration projections of US commercial nuclear power growth and the expected DOE-related and private industrial and institutional activities. The radioactive materials considered, on a chapter-by-chapter basis, are spent nuclear fuel, high-level waste, transuranic waste, low-level waste, commercial uranium mill tailings, DOE Environmental Restoration Program wastes, commercial reactor and fuel-cycle facility decommissioning wastes, and mixed (hazardous and radioactive) low-level waste. For most of these categories, current and projected inventories are given the calendar-year 2030, and the radioactivity and thermal power are calculated based on reported or estimated isotopic compositions. In addition, characteristics and current inventories are reported for miscellaneous radioactive materials that may require geologic disposal. 256 refs., 38 figs., 141 tabs.

  18. Integrated Data Base report--1993: U.S. spent nuclear fuel and radioactive waste inventories, projections, and characteristics. Revision 10

    International Nuclear Information System (INIS)

    1994-12-01

    The Integrated Data Base Program has compiled historic data on inventories and characteristics of both commercial and DOE spent nuclear fuel; also, commercial and US government-owned radioactive wastes through December 31, 1993. These data are based on the most reliable information available from government sources, the open literature, technical reports, and direct contacts. The information forecasted is consistent with the latest US Department of Energy/Energy Information Administration projections of US commercial nuclear power growth and the expected DOE-related and private industrial and institutional activities. The radioactive materials considered, on a chapter-by-chapter basis, are spent nuclear fuel, high-level waste, transuranic waste, low-level waste, commercial uranium mill tailings, DOE Environmental Restoration Program wastes, commercial reactor and fuel-cycle facility decommissioning wastes, and mixed (hazardous and radioactive) low-level waste. For most of these categories, current and projected inventories are given the calendar-year 2030, and the radioactivity and thermal power are calculated based on reported or estimated isotopic compositions. In addition, characteristics and current inventories are reported for miscellaneous radioactive materials that may require geologic disposal. 256 refs., 38 figs., 141 tabs

  19. Integrated Data Base for 1992: US spent fuel and radioactive waste inventories, projections, and characteristics. Revision 8

    Energy Technology Data Exchange (ETDEWEB)

    Payton, M. L.; Williams, J. T.; Tolbert-Smith, M.; Klein, J. A.

    1992-10-01

    The Integrated Data Base (IDB) Program has compiled current data on inventories and characteristics of commercial spent fuel and both commercial and US government-owned radioactive wastes through December 31, 1991. These data are based on the most reliable information available from government sources, the open literature, technical reports, and direct contacts. The information forecasted is consistent with the latest US Department of Energy/Energy Information Administration (DOE/EIA) projections of US commercial nuclear power growth and the expected DOE-related and private industrial and institutional (I/I) activities. The radioactive materials considered, on a chapter-by-chapter basis, are spent nuclear fuel, high-level waste, transuranic waste, low-level waste, commercial uranium mill tailings, environmental restoration wastes, commercial reactor and fuel cycle facility decommissioning wastes, and mixed (hazardous and radioactive) low-level waste. For most of these categories, current and projected inventories are given through the year 2030, and the radioactivity and thermal power are calculated based on reported or estimated isotopic compositions. In addition, characteristics and current inventories are reported for miscellaneous radioactive materials that may require geologic disposal.

  20. Recycling of the rare earth oxides from spent rechargeable batteries using waste metallurgical slags

    Directory of Open Access Journals (Sweden)

    Tang K.

    2013-01-01

    Full Text Available A high temperature process for recycling spent nickel-metal hydride rechargeable batteries has been recently developed at SINTEF/NTNU. The spent battery modules were first frozen with liquid nitrogen for the de-activation and brittle fracture treatment. The broken steel scraps and plastics were then separated by the mechanical classification and magnetic separation. The remaining positive and negative electrodes, together with the polymer separator, were heated to 600-800oC in order to remove the organic components and further separate the Ni-based negative electrode. XRF analyses indicate that the heat-treated materials consist mainly of nickel, rare earth and cobalt oxides. The valuable rare earth oxides were further recovered by the high-temperature slagging treatment. The waste metallurgical slags, consist mainly of SiO2 and CaO, were used as the rare earth oxide absorbent. After the high temperature slagging treatment, over 98% of nickel and cobalt oxides were reduced to the metal phase; meanwhile almost all rare earth oxides remain in the molten slags. Furthermore, EPMA and XRF analyses of the slag samples indicate that the rare earth oxides selectively precipitate in the forms of solid xSiO2•yCaO•zRe2O3. The matrix of slag phase is Re2O3 deficient, typically being less than 5 wt%. This provides a sound basis to further develop the high-temperature process of concentrating the Re2O3 oxides in slags.

  1. Relations of equivalence of conditioned radioactive waste

    International Nuclear Information System (INIS)

    Kumer, L.; Szeless, A.; Oszuszky, F.

    1982-01-01

    A compensation for the wastes remaining with the operator of a waste management center, to be given by the agent having caused the waste, may be assured by effecting a financial valuation (equivalence) of wastes. Technically and logically, this equivalence between wastes (or specifically between different waste categories) and financial valuation has been established as reasonable. In this paper, the possibility of establishing such equivalences are developed, and their suitability for waste management concepts is quantitatively expressed

  2. Bituminization of simulated waste, spent resins, evaporator concentrates and animal ashes by extrusion process

    International Nuclear Information System (INIS)

    Grosche Filho, C.E.; Chandra, U.

    1987-01-01

    The results of the study of bituminization of simulated radwaste - spennt ion-exchange resins, borate evaporator/concentrates and animal ashes, are presented and discussed. Distilled and oxidizer bitumen were used. Characterization of the crude material and simulated wastes-bitumen mixtures of varying weigt composition (30, 40, 50, 60% by weight of dry waste material) was carried out. The asphaltene and parafin contents in the bitumens were also determined. Some additives and were used with an aim to improve the characteristcs of solidified wastes. For leaching studies, granular ion-exchange resins were with Cs - 134 and mixtures of resin-bitumen were prepared. The leaching studies were executed using the IAEA recommendation and the ISO method. A conventional screw-extruder, common in plastic industry, was used determine operational parameters and process difficulties. Mixtures of resin-bitumen and evaporator concentrate-bitumen obtained from differents operational conditions were characterized. (Author) [pt

  3. Achievements and Perspectives of the Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management

    International Nuclear Information System (INIS)

    Louvat, D.; Lacoste, A.C.

    2006-01-01

    The Joint Convention on the Safety of Spent Fuel management and on the Safety of Radioactive Waste Management is the first legal instrument to directly address the safety of spent fuel and radioactive waste management on a global scale. The Joint Convention entered into force in 2001. This paper describes its process and its main achievements to date. The perspectives to establish of a Global Waste Safety Regime based on the Joint Convention are also discussed. (authors)

  4. Safety evaluation report of hot cell facilities for demonstration of advanced spent fuel conditioning process

    International Nuclear Information System (INIS)

    You, Gil Sung; Choung, W. M.; Ku, J. H.; Cho, I. J.; Kook, D. H.; Park, S. W.; Bek, S. Y.; Lee, E. P.

    2004-10-01

    The advanced spent fuel conditioning process(ACP) proposed to reduce the overall volume of the PWR spent fuel and improve safety and economy of the long-term storage of spent fuel. In the next phase(2004∼2006), the hot test will be carried out for verification of the ACP in a laboratory scale. For the hot test, the hot cell facilities of α- type and auxiliary facilities are required essentially for safe handling of high radioactive materials. As the hot cell facilities for demonstration of the ACP, a existing hot cell of β- type will be refurbished to minimize construction expenditures of hot cell facility. Up to now, the detail design of hot cell facilities and process were completed, and the safety analysis was performed to substantiate secure of conservative safety. The design data were submitted for licensing which was necessary for construction and operation of hot cell facilities. The safety investigation of KINS on hot cell facilities was completed, and the license for construction and operation of hot cell facilities was acquired already from MOST. In this report, the safety analysis report submitted to KINS was summarized. And also, the questionnaires issued from KINS and answers of KAERI in process of safety investigation were described in detail

  5. Preliminary assessment of safeguardability on the concepture design of advanced spent fuel conditioning process

    International Nuclear Information System (INIS)

    Lee, Sang Yoon; Ha, Jang Ho; Ko, Won Il; Song, Dae Yong; Kim, Ho Dong

    2003-04-01

    In this report, a preliminary study on the safeguardability of ACP (Advanced spent fuel Conditioning Process) was conducted with Los Alamos National Laboratory. The proposed ACP concept is an electrometallurgical treatment technique to convert oxide-type spent nuclear fuels into metal forms, which can achieve significant reduction of the volume and heat load of spent fuel to be stored and disposed of. For the safeguardability analysis of the ACP facility, sub-processes and their KMPs (Key Measurement Points) were defined first, and then their material flows were analyzed. Finally, the standard deviation of the Inventory Difference (ID) value of the facility was estimated with assumption by assuming international target values for the uncertainty of measurement methods and their uncertainty. From the preliminary calculation, we concluded that if the assumptions regarding measurement instruments can be achieved in a safeguards system for the ACP facility, the safeguards goals of International Atomic Energy Agency (IAEA) could be met. In the second phase of this study, further study on sensitivity analyses considering various factors such as measurement errors, facility capacities, MBA periods etc. may be needed

  6. Preliminary assessment of safeguardability on the concepture design of advanced spent fuel conditioning process

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sang Yoon; Ha, Jang Ho; Ko, Won Il; Song, Dae Yong; Kim, Ho Dong

    2003-04-01

    In this report, a preliminary study on the safeguardability of ACP (Advanced spent fuel Conditioning Process) was conducted with Los Alamos National Laboratory. The proposed ACP concept is an electrometallurgical treatment technique to convert oxide-type spent nuclear fuels into metal forms, which can achieve significant reduction of the volume and heat load of spent fuel to be stored and disposed of. For the safeguardability analysis of the ACP facility, sub-processes and their KMPs (Key Measurement Points) were defined first, and then their material flows were analyzed. Finally, the standard deviation of the Inventory Difference (ID) value of the facility was estimated with assumption by assuming international target values for the uncertainty of measurement methods and their uncertainty. From the preliminary calculation, we concluded that if the assumptions regarding measurement instruments can be achieved in a safeguards system for the ACP facility, the safeguards goals of International Atomic Energy Agency (IAEA) could be met. In the second phase of this study, further study on sensitivity analyses considering various factors such as measurement errors, facility capacities, MBA periods etc. may be needed.

  7. The regulatory approach for spent nuclear storage and conditioning facility: The Hanford example

    International Nuclear Information System (INIS)

    Sellers, E.D.; Mooers, G.C. III; Daschke, K.D.; Driggers, S.A.; Timmins, D.C.

    1996-01-01

    Hearings held before the House Subcommittee on Energy and Mineral Resources in March 1994, requested that officials of federal agencies and other experts explore options for providing regulatory oversight of the US Department of Energy (DOE) facilities and operations. On January, 25, 1995, the DOE, supported by the White House Office of Environmental Quality and the Office of Management and Budget, formally initiated an Advisory Committee on External Regulation of DOE Nuclear Safety. In concert with this initiative and public opinion, the DOE Richland Operations Office has initiated the K Basin Spent Nuclear Fuel Project -- Regulatory Policy. The DOE has established a program to move the spent nuclear fuel presently stored in the K Basins to a new storage facility located in the 200 East Area of the Hanford Site. New facilities will be designed and constructed for safe conditioning and interim storage of the fuel. In implementing this Policy, DOE endeavors to achieve in these new facilities ''nuclear safety equivalency'' to comparable US Nuclear Regulatory Commission (NRC)-licensed facilities. The DOE has established this Policy to take a proactive approach to better align its facilities to the requirements of the NRC, anticipating the future possibility of external regulation. The Policy, supplemented by other DOE rules and directives, form the foundation of an enhanced regulatory, program that will be implemented through the DOE K Basin Spent Nuclear Fuel Project (the Project)

  8. Methods for estimating costs of transporting spent fuel and defense high-level radioactive waste for the civilian radioactive waste management program

    International Nuclear Information System (INIS)

    Darrough, M.E.; Lilly, M.J.

    1989-01-01

    The US Department of Energy (DOE), through the Office of Civilian Radioactive Waste Management, is planning and developing a transportation program for the shipment of spent fuel and defense high-level waste from current storage locations to the site of the mined geologic repository. In addition to its responsibility for providing a safe transportation system, the DOE will assure that the transportation program will function with the other system components to create an integrated waste management system. In meeting these objectives, the DOE will use private industry to the maximum extent practicable and in a manner that is cost effective. This paper discusses various methodologies used for estimating costs for the national radioactive waste transportation system. Estimating these transportation costs is a complex effort, as the high-level radioactive waste transportation system, itself, will be complex. Spent fuel and high-level waste will be transported from more than 100 nuclear power plants and defense sites across the continental US, using multiple transport modes (truck, rail, and barge/rail) and varying sizes and types of casks. Advance notification to corridor states will be given and scheduling will need to be coordinated with utilities, carriers, state and local officials, and the DOE waste acceptance facilities. Additionally, the waste forms will vary in terms of reactor type, size, weight, age, radioactivity, and temperature

  9. Bridging nuclear safety, security and safeguards at geological disposl of high level radioactive waste and spent nuclear fuel

    International Nuclear Information System (INIS)

    Niemeyer, Irmgard; Deissmann, Guido; Bosbach, Dirk

    2016-01-01

    Findings and recommendations: • Further R&D needed to identify concepts, methods and technologies that would be best suited for the holistic consideration of safety, security and safeguards provisions of geological disposal. • 3S ‘toolbox’, including concepts, methods and technologies for: ■ material accountancy, ■ measurement techniques for spent fuel verification, ■ containment and surveillance, ■ analysis of open source information, ■ environmental sampling and monitoring, ■ continuity of knowledge, ■ design implications. •: Bridging safety, security and safeguards in research funding and research activities related to geological disposal of high-level radioactive waste and spent nuclear fuel.

  10. Dry storage facility for spent fuel or high-level wastes

    International Nuclear Information System (INIS)

    Geoffroy, J.; Dobremelle, M.; Fabre, J.C.; Bonnet, C.

    1989-01-01

    The French Atomic Energy Commission (CEA) has specific irradiated fuels which, due to their properties, cannot be reprocessed directly in existing industrial facilities. Accordingly, for the spent fuels from the EL4 and OSIRIS power plants, the CEA has been faced with the problem of selecting a process that will allow the storage of these materials under satisfactory technical and economic conditions. The authors discuss how three conditions must be satisfied to store irradiated fuels releasing heat: containment of radioactive materials, biological shielding, and thermal cooling to guarantee an acceptable temperature- level throughout. In view of the need for an interim storage facility using a simple cooling process requiring only minimal maintenance and monitoring, dry storage in a concrete vault cooled by natural convection was selected. This choice was made within the framework of a research and development program in which theoretical heat transfer investigations and mock-up tests confirmed the feasibility of cooling by natural convection

  11. Experience and Lessons Learned from Conditioning of Spent Sealed Sources in Singapore - 13107

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Dae-Seok; Kang, Il-Sik; Jang, Kyung-Duk; Jang, Won-Hyuk [Korea Atomic Energy Research Institute, 1045 Daedeokdaero, Yuseong, Daejeon (Korea, Republic of); Hoo, Wee-Teck [National Environment Agency, 40 Scotts Road 228231 (Singapore)

    2013-07-01

    In 2010, IAEA requested KAERI (Korea Atomic Energy Research Institute) to support Singapore for conditioning spent sealed sources. Those that had been used for a lightning conductor, check source, or smoke detector, various sealed sources had been collected and stored by the NEA (National Environment Agency) in Singapore. Based on experiences for the conditioning of Ra-226 sources in some Asian countries since 2000, KAERI sent an expert team to Singapore for the safe management of spent sealed sources in 2011. As a result of the conditioning, about 575.21 mCi of Am-241, Ra-226, Co-60, and Sr-90 were safely conditioned in 3 concrete lining drums with the cooperation of the KAERI expert team, the IAEA supervisor, the NEA staff and local laborers in Singapore. Some lessons were learned during the operation: (1) preparations by a local authority are very helpful for an efficient operation, (2) a preliminary inspection by an expert team is helpful for the operation, (3) brief reports before and after daily operation are useful for communication, and (4) a training opportunity is required for the sustainability of the expert team. (authors)

  12. A strategy for upgrading management of spent fuel and radioactive waste at the Ignalina nuclear power plant

    International Nuclear Information System (INIS)

    Balan, V.; Penkov, V.; Bergman, C.; Gustafsson, B.

    2001-01-01

    The waste management strategy of the former Soviet Union, based on its Norms and Rules, was implemented at Ignalina nuclear power Plant (INPP). This means in brief that the spent nuclear fuel (SNF) should be reprocessed in the Soviet Union and the management of radioactive waste should be done in connection with the eventual decommissioning of the reactors, The major facilities for management of radioactive waste were evaporation of liquid waste and subsequent bitumenisation of the sludge, treatment of liquid with ion-exchange techniques and subsequent storage of the resins in tanks. Solid waste was sorted according to its activity content and stored on site. Following the independence of Lithuania in 1990, Lithuania is successively replacing the former Norms and Rules with Lithuanian laws and regulations. Lithuania has signed both the Convention of Nuclear Safety and the Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management. The paper will give an overview of the work done, in progress and planned, primarily from an operational point of view. It will give examples of practical problems which have to be overcome and how very tough prioritisation has to be made because of lack of resources. Many of the problems are associated with the fact that the waste management strategy successively has to be changed at the same time as the generation of SNF and radioactive waste is continued. A lot has already been achieved, especially regarding the SNF. However, the main work is still to be done until the INPP can declare that its waste is properly managed in full compliance with a national waste management strategy which eventually will end with the disposal in licensed repositories. (author)

  13. CONDITIONING OF INTERMEDIATE-LEVEL WASTE AT FORSCHUNGSZENTRUM JUELICH GMBH

    International Nuclear Information System (INIS)

    Krumbach, H.

    2003-01-01

    This contribution to the group of low-level, intermediate, mixed and hazardous waste describes the conditioning of intermediate-level mixed waste (dose rate above 10 mSv/h at the surface) from Research Centre Juelich (FZJ). Conditioning of the waste by supercompaction is performed at Research Centre Karlsruhe (FZK). The waste described is radioactive waste arising from research at Juelich. This waste includes specimens and objects from irradiation experiments in the research reactors Merlin (FRJ-1) and Dido (FRJ-2) at FZJ. In principle, radioactive waste at Forschungszentrum Juelich GmbH is differentiated by the surface dose rate at the waste package. Up to a surface dose rate of 10 mSv/h, the waste is regarded as low-level. The radioactive waste described here has a surface dose rate above 10 mSv/h. Waste up to 10 mSv/h is conditioned at the Juelich site according to different conditioning methods. The intermediate-level waste can only be conditioned by supercompaction in the processing facility for intermediate-level waste from plant operation at Research Centre Karlsruhe. Research Centre Juelich also uses this waste cell to condition its intermediate-level waste from plant operation

  14. Different Methods for Conditioning Chloride Salt Wastes

    International Nuclear Information System (INIS)

    De Angelis, G.; Fedeli, C.; Capone, M.; Marzo, G.A.; Mariani, M.; Da Ros, M.; Giacobbo, F.; Macerata, E.; Giola, M.

    2015-01-01

    Three different methods have been used to condition chloride salt wastes coming from pyro-processes. Two of them allow to synthesise sodalite, a naturally occurring mineral containing chlorine: the former, starting from Zeolite 4A, which transforms the zeolite into sodalite; the latter, which starts from kaolinite, giving sodalite as well. In addition, a new matrix, termed SAP (SiO 2 -Al 2 O 3 -P 2 O 5 ), has been synthesised. It is able to form different mineral phases which occlude fission metals. The products from the different processes have been fully characterised. In particular the chemical durability of the final waste forms has been determined using the standard product consistency test. According to the results obtained, SAP seems to be a promising matrix for the incorporation of chloride salt wastes from pyro-processes. Financial support from the Nuclear Fission Safety Programme of the European Union (projects ACSEPT, contract FP7-CP-2007- 211 267, and SACSESS, Collaborative Project 323282), as well as from Italian Ministry for Economic Development (Accordo di Programma: Piano Annuale di Realizzazione 2008-2009) is gratefully acknowledged. (authors)

  15. Studies on Brewers Spent Grains (BSG) Biomethanation: I - Optimal Conditions for Digestion

    International Nuclear Information System (INIS)

    Ezeonu, F. C.; Udedi, S. C.; Okaka, A. N. C.; Okonkwo, C. J.

    2002-01-01

    Laboratory studies were carried out to determine the effect of parameters such as water dilution and carbon to nitrogen ratio, on the anaerobic digestion of brewer's spent grains (BSG). Digesters were operated at between 270C and 330C and pH 6.0 - 7.0 The initiation of methane production was achieved using small volumes of cow rumen liquor (1: -10 v/v). The optimum conditions for anaerobic digestion are presented and the importance of the level of organic nitrogen, moisture content and in the digester starring materials emphasized

  16. Optimization of autohydrolysis conditions to extract antioxidant phenolic compounds from spent coffee grounds

    DEFF Research Database (Denmark)

    Ballesteros, Lina F.; Ramirez, Monica J.; Orrego, Carlos E.

    2017-01-01

    Autohydrolysis, which is an eco-friendly technology that employs only water as extraction solvent, was used to extract antioxidant phenolic compounds from spent coffee grounds (SCG). Experimental assays were carried out using different temperatures (160–200 °C), liquid/solid ratios (5–15 ml/g SCG.......46 mg TE/g SCG, and TAA = 66.21 mg α-TOC/g SCG) consisted in using 15 ml water/g SCG, at 200 °C during 50 min. Apart from being a green technology, autohydrolysis under optimized conditions was demonstrated to be an efficient method to extract antioxidant phenolic compounds from SCG....

  17. The release of cesium and the actinides from spent fuel under unsaturated conditions

    International Nuclear Information System (INIS)

    Finn, P.A.; Hoh, J.C.; Wolf, S.F.; Slater, S.A.; Bates, J.K.

    1995-01-01

    Tests designed to be similar to the unsaturated and oxidizing conditions expected in the candidate repository at Yucca Mountain are in progress with spent fuel at 90 degree C. The similarities and the differences in release behavior for 137 Cs during the first 2.6 years and the actinides during the first 1.6 years of testing are presented for tests done with (1) water dripped on the fuel at a rate of 0.075 and 0.75 mL every 3.5 days and (2) in a saturated water vapor environment

  18. Composite reprocessing of spent nuclear fuel - is a way to low waste nuclear power

    International Nuclear Information System (INIS)

    Kosyakov, Valentin

    2005-01-01

    Further development of nuclear power in many respects depend on the solution of the problems connected to high level radioactive wastes (HLRW), containing highly toxic long-lived radionuclides. Long-term controlled storage of HLRW manages expensively and any advanced technology of reprocessing of spent nuclear fuel (SNF), besides recovery of the basic products, should be aimed at the reduction of this waste amount. However, the existing SNF reprocessing technology, using PUREX - process, is aimed only at extraction of uranium and plutonium, considering the remaining fraction (other transuranium elements and all fission products) as HLRW. In this work an attempt is made to give quantitative and qualitative characteristics to the isotopes and the elements which are included in the composition of HLRW after 15-years storage. Depending on the radiation properties of the isotopes included, these elements were divided into three categories: 1. The elements represented by only stable isotopes; 2. The elements represented by mostly low radioactive isotopes; 3. The elements represented by highly toxic long-lived radionuclides. As a result it appeared, that the weight percentage of the elements of the first, the second and the third categories in HLRW was: 60, 25 and 15% respectively. It means, that the amount of the real HLRW to be disposed in a deep geological repository could be reduced at least by a factor of 6, if to recover completely only 7 most dangerous elements (Sr, J, Cs, Sm, Np, Am and Cm) from the solution remaining after extraction of uranium and plutonium. Then it is meaningful to recover the elements of the first category from the remaining mix. As the main part of this fraction is represented by rare earth elements and noble metals, which can easily find many useful application. (author)

  19. Integrated data base for 1993: US spent fuel and radioactive waste inventories, projections, and characteristics. Revision 9

    Energy Technology Data Exchange (ETDEWEB)

    Klein, J.A.; Storch, S.N.; Ashline, R.C. [and others

    1994-03-01

    The Integrated Data Base (IDB) Program has compiled historic data on inventories and characteristics of both commercial and DOE spent fuel; also, commercial and U.S. government-owned radioactive wastes through December 31, 1992. These data are based on the most reliable information available from government sources, the open literature, technical reports, and direct contacts. The information forecasted is consistent with the latest U.S. Department of Energy/Energy Information Administration (DOE/EIA) projections of U.S. commercial nuclear power growth and the expected DOE-related and private industrial and institutional (I/I) activities. The radioactive materials considered, on a chapter-by-chapter basis, are spent nuclear fuel, high-level waste (HLW), transuranic (TRU), waste, low-level waste (LLW), commercial uranium mill tailings, environmental restoration wastes, commercial reactor and fuel-cycle facility decommissioning wastes, and mixed (hazardous and radioactive) LLW. For most of these categories, current and projected inventories are given through the calendar-year (CY) 2030, and the radioactivity and thermal power are calculated based on reported or estimated isotopic compositions. In addition, characteristics and current inventories are reported for miscellaneous radioactive materials that may require geologic disposal.

  20. Comparison of the waste management aspects of spent fuel disposal and reprocessing: post-disposal radiological impact

    International Nuclear Information System (INIS)

    Mobbs, S.F.; Harvey, M.P.; Martin, J.S.; Mayall, A.; Jones, M.E.

    1991-01-01

    A joint project involving contractors from France, Germany and the UK was set up by the Commission of the European Communities to assess the implications of two waste management options: the direct disposal of spent fuel and reprocessing of that fuel. This report describes the calculation of the radiological impact on the public of the management and disposal of the wastes associated with these two options. Six waste streams were considered: discharge of liquid reprocessing effluents, discharge of gaseous reprocessing effluents, disposal of low-level solid wastes arising from reprocessing, disposal of intermediate-level solid wastes arising from reprocessing, disposal of vitrified high-level reprocessing wastes, and direct disposal of spent fuel. The results of the calculations are in the form of maximum annual doses and risks to individual members of the public, and collective doses to four population groups, integrated over six time periods. These results were designed for input into a computer model developed by another contractor, Yard Ltd, which combines costs and impacts in a multi-attribute hierarchy to give an overall measure of the impact of a given option

  1. Management of legacy spent nuclear fuel wastes at the Chalk River Laboratories: operating experience and progress towards waste remediation

    International Nuclear Information System (INIS)

    Cox, D.S.; Bainbridge, I.B.; Greenfield, K.R.

    2006-01-01

    AECL has been managing and storing a diversity of spent nuclear fuel, arising from operations at its Chalk River Laboratories (CRL) site over more than 50 years. A subset of about 22 tonnes of research reactor fuels, primarily metallic uranium, have been identified as a high priority for remediation, based on monitoring and inspection that has determined that these fuels and their storage containers are corroding. This paper describes the Fuel Packaging and Storage (FPS) project, which AECL has launched to retrieve these fuels from current storage, and to emplace them in a new above-ground dry storage system, as a prerequisite step to decommissioning some of the early-design waste storage structures at CRL. The retrieved fuels will be packaged in a new storage container, and subjected to a cold vacuum drying process that will remove moisture, and thereby reduce the extent of future corrosion and degradation. The FPS project will enable improved interim storage to be implemented for legacy fuels at CRL, until a decision is made on the ultimate disposition of legacy fuels in Canada. (author)

  2. Sol - gel inorganic ion exchangers for conditioning of medium level radioactive waste

    International Nuclear Information System (INIS)

    Arcangeli, G.; Traverso, D.M.; Gerontopoulos, P.; Fava, R.

    1988-01-01

    Decontamination of high-level liquid wastes and medium activity wastes streams by inorganic ion exchange combined with the conversion of the spent inorganic ion exchange material to waste ceramics presents a considerable potential for utilisation in waste conditioning. Ceramic waste forms are found superior to other candidate waste immobilisation forms but practical implementation is hampered because of the complexity of the related fabrication technology. This report shows the possibility of improving this situation by resorting to sol gel techniques earlier developed for preparation of nuclear fuel ceramics. The principal findings are: - superior quality ion exchange xerogel titanates in the form of mechanically resistant, size controlled microspheres can be prepared using a simple sol-gel technique; - the titanate particles can be also used as precursors in Evaporative Deposition on Xerogel Particles (EDXP) a new waste solidification process based on physical impregnation of the xerogel material with the waste liquid followed by evaporation; - waste loaded ion exchange microspheres can be converted to leach resistant ceramics by firing and/or cold pressing and sintering at 900 0 -1100 0 C; - sol-gel inorganic ion exchange and EDXP may find useful application in conditioning MAW streams. 44 figs., 43 refs

  3. Intermediate storage facility for vitrified high level waste from the reprocessing of spent nuclear fuel

    International Nuclear Information System (INIS)

    1978-04-01

    An intermediate storage facility for vitrified high level waste is described. The design was made specifically for Swedish conditions but can due to modular design be applied also for other conditions. Most of the plant is located underground with a rock cover of about 30 m in order to provide protection against external forces such as acts of war and sabotage. The storage area consists of four caverns each with 150 pits. Each pit can take 10 waste cylinders of 0.4 m diameter and 1.5 m length containing 150 liters of glass. The capacity can be increased by adding additional caverns. Cooling is obtained by forced air convection. Reception areas, auxiliary systems and operation of the plant are also described

  4. Radionuclides and isotopes release of spent fuel matrix. Conceptual and mathematical models of wastes behaviour

    International Nuclear Information System (INIS)

    Cera, E.; Merino, J.; Bruno, J.

    2000-01-01

    We have developed a conceptual and numerical model to calculate release of selected radionuclides from spent fuel under repository condition. This has been done in the framework of the Enresa 2000 performance assessment exercise. The model has been developed based on kinetic mass balance equations in order to study the evolution of the spent fuel water interface as a function of time. Several processes have been kinetically modelled: congruent dissolution, radioactive decay, ingrowth and water turnover in the gap. The precipitation/redissolution of secondary solid phases has been taken into account from a thermodynamic point of view. Both approaches have been coupled and the resulting equations solved for a number of radionuclides in both, a conservative and realistic approach. The results show three distinct groups of radionuclides based on their release behaviour: a first group is composed of radioisotopes of highly insoluble elements (e. g., Pu, Am, Pd) whose concentration in the gap is mainly controlled by their solubility and therefore their evolution is identical in both cases. Secondly, a set of radionuclides from soluble elements under these conditions (e. g., I, Cs, Ra) show concentrations kinetically controlled, decreasing with time following the congruent dissolution trend. Their release concentrations are one order of magnitude larger in the conservative case than in the realistic case. Finally, a third group has been identified (e. g., Se, Th, Cm) where a mixed behaviour takes place: initially their solubility limiting phases control their concentration in the gap but the situation reverts to a kinetic control as the chemical conditions change and the secondary precipitates become totally dissolved. The fluxes of the different radionuclides are also given as an assessment of the source term in the performance assessment. (Author)

  5. Prediction of temperature increases in a salt repository expected from the storage of spent fuel or high-level waste

    International Nuclear Information System (INIS)

    Llewellyn, G.H.

    1978-04-01

    Comparisons in temperature increases incurred from hypothetical storage of 133 MW of 10-year-old spent fuel (SF) or high-level waste (HLW) in underground salt formations have been made using the HEATING5 computer code. The comparisons are based on far-field homogenized models that cover areas of 65 and 25 sq miles for SF and HLW, respectively, and near-field unit-cell models covering respective areas of 610 ft 2 and 400 ft 2 . Preliminary comparisons based on heat loads of 150 kW/acre and 3.5 kW/canister indicated near-field temperature increases about 20% higher for the storage of the spent fuel than for the high-level waste. In these comparisons, it was also found that the thermal energy deposited in the salt after 500 years is about twice the energy deposited by the high-level waste. The thermal load in a repository containing 10-year-old spent fuel was thus limited to 60 kW/acre to obtain comparable far-field thermal effects as obtained in a repository containing 10-year-old high-level waste loaded at 150 kW/acre. Detailed far-field and unit-cell comparisons of transient temperature increases have been made based on these loadings. Unit-cell comparisons were made between a canister containing high-level waste with an initial heat production rate of 2.1 kW and a canister containing a PWR spent fuel assembly producing 0.55 kW. Using a three-dimensional unit-cell model, a maximum salt temperature increase of 260 0 F was calculated for the high-level waste prior to back-filling (5 years after burial), whereas a maximum temperature increase of 110 0 F was calculated for the spent fuel prior to backfilling (25 years after burial). Comparisons were also made between various configurational models for the high-level waste showing the applicability of each model

  6. Thermal performance of a buried nuclear waste storage container storing a hybrid mix of PWR and BWR spent fuel rods

    International Nuclear Information System (INIS)

    Johnson, G.L.

    1991-11-01

    Lawrence Livermore National Laboratory will design, model, and test nuclear waste packages for use at the Nevada Nuclear Waste Storage Repository at Yucca Mountain, Nevada. On such package would store tightly packed spent fuel rods from both pressurized and boiling water reactors. The storage container provides the primary containment of the nuclear waste and the spent fuel rod cladding provides secondary containment. A series of transient conduction and radiation heat transfer analyses was run to determine for the first 1000 yr of storage if the temperature of the tuff at the borehole wall ever falls below 97 degrees C and whether the cladding of the stored spent fuel ever exceeds 350 degrees C. Limiting the borehole to temperatures of 97 degrees C or greater helps minimize corrosion by assuring that no condensed water collects on the container. The 350 degrees C cladding limit minimizes the possibility of creep- related failure in the spent fuel rod cladding. For a series of packages stored in a 8 x 30 m borehole grid where each package contains 10-yr-old spent fuel rods generating 4.74 kW or more, the borehole wall stays above 97 degrees C for the full 10000-yr analysis period. For the 4.74-kW load, the peak cladding temperature rises to just below the 350 degrees C limit about 4 years after emplacement. If the packages are stored using the spacing specified in the Site Characterization Plan (15 ft x 126 ft), a maximum of 4.1 kW per container may be stored. If the 0.05-m-thick void between the container and the borehole wall is filled with loosely packed bentonite, the peak cladding temperature rises more than 40 degrees C above the allowed cladding limit. In all cases the dominant heat transfer mode between container components is thermal radiation

  7. STATE OF THE ART OF DRILLING LARGE DIAMETER BOREHOLES FOR DEPOSITION OF HIGH LEVEL WASTE AND SPENT NUCLEAR FUEL

    Directory of Open Access Journals (Sweden)

    Trpimir Kujundžić

    2012-07-01

    Full Text Available Deep geological disposal is internationally recognized as the safest and most sustainable option for the long-term management of high-level radioactive waste. Mainly, clay rock, salt rock and crystalline rock are being considered as possible host rocks. Different geological environment in different countries led to the various repository concepts. Main feature of the most matured repository concept is that canisters with spent nuclear fuel are emplaced in vertical or horizontal large diameter deposition holes. Drilling technology of the deposition holes depends on repository concept and geological and geomechanical characteristics of the rock. The deposition holes are mechanically excavated since drill & blast is not a possible method due to requirements on final geometry like surface roughness etc. Different methods of drilling large diameter boreholes for deposition of high-level waste and spent nuclear fuel are described. Comparison of methods is made considering performance and particularities in technology.

  8. Waste degradation and mobilization in performance assessments for the Yucca Mountain disposal system for spent nuclear fuel and high-level radioactive waste

    International Nuclear Information System (INIS)

    Rechard, Rob P.; Stockman, Christine T.

    2014-01-01

    This paper summarizes modeling of waste degradation and mobilization in performance assessments (PAs) conducted between 1984 and 2008 to evaluate feasibility, viability, and assess compliance of a repository for spent nuclear fuel and high-level radioactive waste at Yucca Mountain in southern Nevada. As understanding of the Yucca Mountain disposal system increased, the waste degradation module, or succinctly called the source-term, evolved from initial assumptions in 1984 to results based on process modeling in 2008. In early PAs, waste degradation had significant influence on calculated behavior but as the robustness of the waste container was increased and modeling of the container degradation improved, waste degradation had much less influence in later PAs. The variation of dissolved concentrations of radionuclides progressed from simple probability distributions in early PAs to functions dependent upon water chemistry in later PAs. Also, transport modeling of radionuclides in the waste, container, and invert were added in 1995; and, colloid-facilitated transport of radionuclides was added in 1998. - Highlights: • Progression of modeling of waste degradation in performance assessments is discussed for the proposed repository at Yucca Mountain. • Progression of evaluating dissolved concentrations of radionuclides in the source-term is discussed. • Radionuclide transport modeling in the waste, container, and invert in 1995 and thereafter is discussed. • Colloid-facilitated transport in the waste, container, and invert in 1998 and thereafter is discussed

  9. Resistance to radiation and concretes thermal cycles for conditioning of spent radioactive sources

    International Nuclear Information System (INIS)

    Gonzalez N, M.; Monroy G, F.; Gonzalez D, R. C.; Corona P, I. J.; Ortiz A, G.

    2014-10-01

    In order to know the concrete type most suitable for use as a matrix of conditioning of spent radioactive sources, concrete test tubes using 4 different types of cement were prepared: CPC 30-Rs Extra, CPC 30-R Impercem, CPC 30-R Rs and CPC 30-R with two gravel sizes >30 mm and <10 mm. The concrete test tubes were subjected to testing compressive strength after 28 days of hardening and after being irradiated and subjected to thermal cycles. Subsequently they were characterized by X-ray diffraction and scanning electron microscopy, in order to evaluate whether these concretes accredited the tests set by the NOM-019-Nucl-1995. The results show that the compressive strength of the hardened concretes to 28 days presents values between 36 and 25 MPa; applying irradiation the resistance may decrease to 30% of its original strength; and if subjected to high and low temperatures the ettringite formation also causes a decrease in resistance. The results show that concretes made from cement Impercem, Cruz Azul with gravel <10 mm comply with the provisions of standard and they can be used for conditioning of spent radioactive sources. (Author)

  10. Using cow dung and spent coffee grounds to enhance the two-stage co-composting of green waste.

    Science.gov (United States)

    Zhang, Lu; Sun, Xiangyang

    2017-12-01

    The objective of this study was to determine the effects of cow dung (CD) (at 0%, 20%, and 35%) and/or spent coffee grounds (SCGs) (at 0%, 30%, and 45%) as amendments in the two-stage co-composting of green waste (GW); the percentages refer to grams of amendment per 100g of GW based on dry weights. The combined addition of CD and SCGs improved the conditions during co-composting and the quality of the compost product in terms of composting temperature; particle-size distribution; mechanical properties; nitrogen changes; low-molecular weight compounds; humic substances; the degradation of lignin, cellulose, and hemicellulose; enzyme activities; the contents of total Kjeldahl nitrogen, total phosphorus, and total potassium; and the toxicity to germinating seeds. The combined addition of 20% CD and 45% SCGs to GW resulted in the production of the highest quality compost product and did so in only 21days. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Investigation of pharmaceuticals and medical devices containing 90Y extracted from high radioactive liquid waste in spent-fuel reprocessing

    International Nuclear Information System (INIS)

    Hosoma, Takashi

    2012-07-01

    Pharmaceuticals and medical devices containing radioactive 90 Y are realized, approved and placed on the international market where three products are available in Europe and the United States, and one product in Japan. These products are used not for diagnosis but for treatment by internal irradiation. It was estimated from the deliberative report of the approval in Japan that 90 Y was extracted in Europe from high radioactive liquid waste (HALW) yielded in spent-fuel reprocessing. In this report, products placed on the market and physical properties were reviewed, reasons of the realization and conditions to realize succeeding products were estimated, extraction method was compared with other methods, technical subjects, and relevant regulations were investigated. Although a medical device containing radioactive 90 Y has been studied in Japan and one pharmaceutical product was approved, a breakthrough would be necessary to put 90 Y utilization beyond alternative treatments. The breakthrough would become be promising; for example, if conventional treatments could be supported by technical development to deliver 90 Y more sharply to the target with shorter serum half-life. Extraction of 90 Y nuclide from HALW has advantages over thermal neutron irradiation of natural nuclide, a system is envisioned where 90 Sr as a parent nuclide is separated in the reprocessing then transported to and stored in a factory of radiopharmaceuticals followed by 90 Y extraction on demand. (author)

  12. Optimization Of Activated Carbon Preparation From Spent Mushroom Farming Waste (SMFW) Via Box- Behnken Design Of Response Surface Methodology

    International Nuclear Information System (INIS)

    Nurul Shuhada Md Desa; Zaidi Ab Ghani; Suhaimi Abdul-Talib; Chia-Chay, T.

    2016-01-01

    This study focuses on activated carbon preparation from spent mushroom farming waste (SMFW) via chemical activation using Box-Behnken design (BBD) of Response Surface Methodology (RSM). Potassium hydroxide (KOH) functions as activating reagent and it play an important role in enhancing the activated carbon porosity. Three input parameters and two responses were evaluated via this software generated experimental design. The effects of three preparation parameters of impregnation ratio, activation time and activation temperature as well as two responses of carbon yield and iodine number were investigated. The optimum conditions for preparing activated carbon from SMFW was found at SMFW: KOH impregnation ratio of 0.25, activation time of 30 min and activation temperature of 400 degree Celsius which resulted in 28.23 % of carbon yield and 314.14 mg/ g of iodine number with desirability of 0.994. The predicted results were well corresponded with experimental results. This study is important in economical large scale SMFW activated carbon preparation for application study of adsorption process for metal treatment in wastewater with minimum chemical and energy input. (author)

  13. Joint convention on the safety of spent fuel management and on the safety of radioactive waste management

    International Nuclear Information System (INIS)

    1997-01-01

    The Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management was adopted on 5 September 1997 by a Diplomatic Conference convened by the IAEA from 1 to 5 September 1997. The Joint Convention was opened for signature at Vienna on 29 September 1997 during the forty-first session of the General Conference of the IAEA. This document reproduces the text of the Convention

  14. Heat transfer analysis of the geologic disposal of spent fuel and high-level waste storage canisters

    International Nuclear Information System (INIS)

    Allen, G.K.

    1980-08-01

    Near-field temperatures resulting from the storage of high-level waste canisters and spent unreprocessed fuel assembly canisters in geologic formations were determined. Preliminary design of the repository was modeled for a heat transfer computer code, HEATING5, which used the Crank-Nicolson finite difference method to evaluate transient heat transfer. The heat transfer system was evaluated with several two- and three-dimensional models which transfer heat by a combination of conduction, natural convention, and radiation. Physical properties of the materials in the model were based upon experimental values for the various geologic formations. The effects of canister spacing, fuel age, and use of an overpack were studied for the analysis of the spent fuel canisters; salt, granite, and basalt were considered as the storage media for spent fuel canisters. The effects of canister diameter and use of an overpack were studied for the analysis of the high-level waste canisters; salt was considered as the only storage media for high-level waste canisters. Results of the studies on spent fuel assembly canisters showed that the canisters could be stored in salt formations with a maximum heat loading of 134 kw/acre without exceeding the temperature limits set for salt stability. The use of an overpack had little effect on the peak canister temperatures. When the total heat load per acre decreased, the peak temperatures reached in the geologic formations decreased; however, the time to reach the peak temperatures increased. Results of the studies on high-level waste canisters showed that an increased canister diameter will increase the canister interior temperatures considerably; at a constant areal heat loading, a 381 mm diameter canister reached almost a 50 0 C higher temperature than a 305 mm diameter canister. An overpacked canister caused almost a 30 0 C temperature rise in either case

  15. Joint convention on the safety of spent fuel management and on the safety of radioactive waste management

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-24

    The Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management was adopted on 5 September 1997 by a Diplomatic Conference convened by the IAEA from 1 to 5 September 1997. The Joint Convention was opened for signature at Vienna on 29 September 1997 during the forty-first session of the General Conference of the IAEA. This document reproduces the text of the Convention.

  16. A Review and Analysis of European Industrial Experience in Handling LWR Spent Fuel and Vitrified High-Level Waste

    Energy Technology Data Exchange (ETDEWEB)

    Blomeke, J.O.

    2001-07-10

    The industrial facilities that have been built or are under construction in France, the United Kingdom, Sweden, and West Germany to handle light-water reactor (LWR) spent fuel and canisters of vitrified high-level waste before ultimate disposal are described and illustrated with drawings and photographs. Published information on the operating performance of these facilities is also given. This information was assembled for consideration in planning and design of similar equipment and facilities needed for the Federal Waste Management System in the United States.

  17. Recovery of valuable metals from waste cathode materials of spent lithium-ion batteries using mild phosphoric acid

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xiangping, E-mail: chenxiangping101@163.com [School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi’an 710021 (China); College of Chemistry and Chemical Engineering, Central South University, Changsha 410083 (China); Ma, Hongrui, E-mail: mahr@sust.edu.cn [School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi’an 710021 (China); Luo, Chuanbao; Zhou, Tao [College of Chemistry and Chemical Engineering, Central South University, Changsha 410083 (China)

    2017-03-15

    Graphical abstract: Cobalt can be directly recovered as Co{sub 3}(PO{sub 4}){sub 2} from waste LiCoO{sub 2} using H{sub 3}PO{sub 4} as leaching and precipitating agent. - Highlights: • Phosphoric acid was innovatively used as leaching and precipitating agent. • Over 99% Co and Li can be separated and recovered in a single leaching step. • Co and Li can be separated under mild conditions of 40 °C and 0.7 M H{sub 3}PO{sub 4}. • Activation energy values for Co and Li are 7.3 and 10.168 kJ/mol. • Cobalt phosphate (97.1% in purity) can be obtained as the leaching product. - Abstract: Sustainable recycling of valuable metals from spent lithium-ion batteries (LIBs) may be necessary to alleviate the depletion of strategic metal resources and potential risk of environmental pollution. Herein a hydrometallurgical process was proposed to explore the possibility for the recovery of valuable metals from the cathode materials (LiCoO{sub 2}) of spent LIBs using phosphoric acid as both leaching and precipitating agent under mild leaching conditions. According to the leaching results, over 99% Co can be separated and recovered as Co{sub 3}(PO{sub 4}){sub 2} in a short-cut process involved merely with leaching and filtrating, under the optimized leaching conditions of 40 °C (T), 60 min (t), 4 vol.% H{sub 2}O{sub 2}, 20 mL g{sup −1} (L/S) and 0.7 mol/L H{sub 3}PO{sub 4}. Then leaching kinetics was investigated based on the logarithmic rate kinetics model and the obtained results indicate that the leaching of Co and Li fits well with this model and the activation energies (Ea) for Co and Li are 7.3 and 10.2 kJ/mol, respectively. Finally, it can be discovered from characterization results that the obtained product is 97.1% pure cobalt phosphate (Co{sub 3}(PO{sub 4}){sub 2}).

  18. The evolving image and role of the regulator for implementing repositories for nuclear waste and spent nuclear fuel

    International Nuclear Information System (INIS)

    Melin, J.

    2005-01-01

    A country introducing nuclear power in their energy strategy has a life long obligation. The obligation is not mainly a question of energy production. It is an obligation to maintain safety during the phase of construction, energy production and decommissioning as well as to take care of all the waste streams from nuclear installations. I believe that one of the most controversial siting projects in the society is a waste repository for spent nuclear fuel. Competence, available funds and a clear responsibility between the stakeholders as well as the trust of the public is indispensable to obtain a good result. The Swedish programme for managing nuclear waste and spent nuclear fuel has been in progress for more than 25 years. The pre-licensing process of a repository for spent nuclear fuel is much alike a pre-licensing process for the first nuclear power plant in a country. You need a clear political will, you have to involve the nuclear regulator without jeopardizing his integrity and you need the money to perform research and make the investments. The enthusiasm of politicians and industry may however differ between these two projects. (author)

  19. Uraninite and its alternation at Palmottu - A possible natural analogue for spent fuel under reducing conditions

    International Nuclear Information System (INIS)

    Ruskeeniemi, T.; Blomqvist, R.; Ahonen, L.

    1994-01-01

    Uraninite is the major uraniferous mineral in the Precambrian U-Th rich pegmatites at Palmottu. Most euhedral uraninite grains were partially altered by silica-rich hydrothermal solutions during the late stage pegmatitic crystallization. The dominant secondary mineral is uranium silicate, with a chemical composition similar to that of coffinite (USiO 4 * Nh 2 O). The simultaneous formation of galena and other sulfides with the uranium silicate indicates that the alteration took place under reducing conditions. Hence, uranium occurs predominantly in the uranous (U 4+ ) state. Preliminary mass balance calculations imply that significant amounts of U, Th, and Pb were released during the replacement process. As the Palmottu U-Th deposit extends from ground level to distinctly reduced parts of the bedrock, it affords the opportinity of studying the stability and alteration of uraninite as an analogue for spent nuclear fuel under various redox conditions. (orig.) (28 refs., 5 figs., 1 tab.)

  20. Hulls and structural material waste conditioning by high pressure compaction

    International Nuclear Information System (INIS)

    Frotscher, H.

    1991-01-01

    Since 1986 KfK is developing a conditioning process. Main subjects of the investigations were the development of the production technique and the planning of the most important equipments of the process under remote conditions. The process is based on an extensive program of experiments. Inactive bulks of hulls and structural material components were compacted using maximum axial pressure load of about 300 MPa. The product density as function of press force was experimentally determinated. The mechanical loads of the press and tools were estimated for the design of these equipments. The hydraulic press consists a horizontal four-cylinder press. The maximum force of the press is 25 MN. The main advantage is the modular design of the press which is open on all sides. Especially the free accessibility from top is ensured. The report also represents relevant radiological data of the alternative product. Co-60 is the dominating activity of the product due to the effects of the heat production. An amount of 10 kg hull waste or 25 kg top and bottom pieces of the spent fuel assemblies per package is already beyond the Co-60 limit of the KONRAD regulations. The nuclear thermal power of a filled container is approximately sixty times lower compared with a vitrified HLW-container. Since the product shows thermal stability beyond 200 0 C, this it is suited for a combined disposal together with vitrified HLW-containers in salt bore holes of a geological disposal. The preliminary cost evaluation is based on a reprocessing throughput of 500 t HM per year and volume reduction factor of 5.3. Accordingly there are produced 300 waste packages with hulls only or 625 units with hulls and top and bottom pieces which require 1.6 or 2.3 millions DM respectively

  1. Conditioning characterization of low level radioactive waste

    International Nuclear Information System (INIS)

    Osman, A. F.

    2010-12-01

    This study has been carried out in the radioactive waste management laboratory Sudan Atomic Energy Commission. The main purpose of this work is method development for treatment and conditioning of low level liquid waste in order to improve radiation protection level in the country. For that purpose a liquid radioactive material containing Cs-137 was treated using the developed method. In the method different type of materials (cement, sands, concrete..etc) were tested for absorption of radiation emitted from the source as well as suitability of the material for storage for long time. It was found that the best material to be used is Smsmia concrete. Where the surface dose reduced from 150 to 3μ/h. Also design of storage container was proposed (with specification: diameter 6.5 cm, height 6 cm, placed in internal cylinder of diameter 10.3 cm, height 12.3 cm) and all are installed on the concrete and cement in the cylinder. Method was used in the process of double-packaging configuration. For more protection it is proposed that a mixed of cement to fill the void in addition to the sand be added to ensure low amount of radiation exposure while transport or storage. (Author)

  2. Liquid waste handling facilities for a conceptual LWR spent fuel reprocessing complex

    International Nuclear Information System (INIS)

    Witt, D.C.; Bradley, R.F.

    1978-01-01

    The waste evaporator systems and the methods for evaporating the liquid wastes of various radioactivity levels are discussed. After the liquid wastes are evaporated and nitric acid is recovered the high-level liquid waste is incorporated into borosilicate glass and the intermediate-level liquid waste into concrete for final disposal

  3. Test on Similarity between the Flooded and Optimum Moderation Conditions of the Spent Fuel Storage Pool

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Gil Soo; Jang, Chang Sun; Woo, Sweng Woong [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2009-05-15

    In the criticality safety analysis, uncertainty and bias should be considered. The final multiplication factor including uncertainty and bias in addition to calculated k-eff should be below the administrative limit. The administrative limit of spent fuel pool is 0.95 with flooded condition (filled with unborated water), and 0.98 with optimum moderation condition (filled with foggy unborated water, usually occurs near 0.1g/cc water density) for new fuel storage. The bias is determined by comparing the calculation results of the critical experiments ever performed. It is important to choose 'good' experiments which have 'similar' condition with application. To obtain realistic bias, many experiments with similar conditions should be chosen and considered. In previous approach, same critical experiment set are used to determine bias of the flooded and optimum moderation conditions. It would be correct way if two conditions are similar. The similarity test on this paper was performed by TSUNAMI code included in SCALE5.1 package. TSUNAMI code produces sensitivity data for each nuclear reaction by using first order perturbation theory. TSUNAMI code performs forward and adjoint multigroup Monte Carlo calculation. Sensitivity data are obtained by forward and adjoint results. TSUNAMI also produces uncertainty data with sensitivity data and cross section covariance data. In this paper, similarity is determined by comparing energy of average lethargy of fission (EALF), uncertainty data, sensitivity data, and correlation coefficient which is also output of the TSUNAMI code.

  4. Is Yucca Mountain a long-term solution for disposing of US spent nuclear fuel and high-level radioactive waste?

    Science.gov (United States)

    Thorne, M C

    2012-06-01

    On 26 January 2012, the Blue Ribbon Commission on America's Nuclear Future released a report addressing, amongst other matters, options for the managing and disposal of high-level waste and spent fuel. The Blue Ribbon Commission was not chartered as a siting commission. Accordingly, it did not evaluate Yucca Mountain or any other location as a potential site for the storage or disposal of spent nuclear fuel and high-level waste. Nevertheless, if the Commission's recommendations are followed, it is clear that any future proposals to develop a repository at Yucca Mountain would require an extended period of consultation with local communities, tribes and the State of Nevada. Furthermore, there would be a need to develop generally applicable regulations for disposal of spent fuel and high-level radioactive waste, so that the Yucca Mountain site could be properly compared with alternative sites that would be expected to be identified in the initial phase of the site-selection process. Based on what is now known of the conditions existing at Yucca Mountain and the large number of safety, environmental and legal issues that have been raised in relation to the DOE Licence Application, it is suggested that it would be imprudent to include Yucca Mountain in a list of candidate sites for future evaluation in a consent-based process for site selection. Even if there were a desire at the local, tribal and state levels to act as hosts for such a repository, there would be enormous difficulties in attempting to develop an adequate post-closure safety case for such a facility, and in showing why this unsaturated environment should be preferred over other geological contexts that exist in the USA and that are more akin to those being studied and developed in other countries.

  5. The Swedish Radiation Protection Institute's regulations concerning the final management of spent nuclear fuel and nuclear waste - with background and comments

    International Nuclear Information System (INIS)

    2000-11-01

    This report presents and comments on the Swedish Radiation Protection Institute's Regulations concerning the Protection of Human Health and the Environment in connection with the Final Management of Spent Nuclear Fuel or Nuclear Waste, SSI FS 1998: 1

  6. Appendix 4. Documentation of sufficient capacity facility for spent nuclear fuel and radioactive waste management and its compliance with the decommissioning strategy and schedule

    International Nuclear Information System (INIS)

    2007-01-01

    In this chapter the documentation of sufficient capacity facility for spent nuclear fuel and radioactive waste management and its compliance with the decommissioning strategy and schedule of the NPP A-1 are presented.

  7. Multistage leaching of metals from spent lithium ion battery waste using electrochemically generated acidic lixiviant.

    Science.gov (United States)

    Boxall, N J; Adamek, N; Cheng, K Y; Haque, N; Bruckard, W; Kaksonen, A H

    2018-04-01

    Lithium ion battery (LIB) waste contains significant valuable resources that could be recovered and reused to manufacture new products. This study aimed to develop an alternative process for extracting metals from LIB waste using acidic solutions generated by electrolysis for leaching. Results showed that solutions generated by electrolysis of 0.5 M NaCl at 8 V with graphite or mixed metal oxide (MMO) electrodes were weakly acidic and leach yields obtained under single stage (batch) leaching were poor (leaching with the graphite electrolyte solution improved leach yields overall, but the electrodes corroded over time. Though yields obtained with both electrolyte leach solutions were low when compared to the 4 M HCl control, there still remains potential to optimise the conditions for the generation of the acidic anolyte solution and the solubilisation of valuable metals from the LIB waste. A preliminary value proposition indicated that the process has the potential to be economically feasible if leach yields can be improved, especially based on the value of recoverable cobalt and lithium. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Anaerobic digestion of spent mushroom substrate under thermophilic conditions: performance and microbial community analysis.

    Science.gov (United States)

    Xiao, Zheng; Lin, Manhong; Fan, Jinlin; Chen, Yixuan; Zhao, Chao; Liu, Bin

    2018-01-01

    Spent mushroom substrate (SMS) is the residue of edible mushroom production occurring in huge amounts. The SMS residue can be digested for biogas production in the mesophilic anaerobic digestion. In the present study, performance of batch thermophilic anaerobic digestion (TAD) of SMS was investigated as well as the interconnected microbial population structure changes. The analyzed batch TAD process lasted for 12 days with the cumulative methane yields of 177.69 mL/g volatile solid (VS). Hydrolytic activities of soluble sugar, crude protein, and crude fat in SMS were conducted mainly in the initial phase, accompanied by the excessive accumulation of volatile fatty acids and low methane yield. Biogas production increased dramatically from days 4 to 6. The degradation rates of cellulose and hemicellulose were 47.53 and 55.08%, respectively. The high-throughput sequencing of 16S rRNA gene amplicons revealed that Proteobacteria (56.7%-62.8%) was the dominant phylum in different fermentative stages, which was highly specific compared with other anaerobic processes of lignocellulosic materials reported in the literature. Crenarchaeota was abundant in the archaea. The most dominant genera of archaea were retrieved as Methanothermobacter and Methanobacterium, but the latter decreased sharply with time. This study shows that TAD is a feasible method to handle the waste SMS.

  9. Melting process to condition decladding hulls generated by the reprocessing of LWR and FBR spent fuels

    International Nuclear Information System (INIS)

    Bonniaud, R.; Jacquet-Francillon, N.; Jouan, A.; Sombret, C.

    1981-01-01

    The fusion compaction of metallic waste from spent fuel hulls is shown to be easily feasible for both Zircaloy and for stainless steel, and volume reduction factors in the region of 5 to 7, corresponding to the theoretical density of the alloy obtained, are arrived at quite easily. The Zircaloy copper alloy, put into use to lower the fusion point of the Zircaloy, appears extremely interesting both as to the ease with which it can be used and the possibility which it offers of working at temperatures always lower than 1250 0 C. The decreasing of fusion temperature is less spectacular with stainless steel; only the use of silicon enabling the lowering of the temperature to around 1200 0 C appears really feasible. The use of decontaminating agents either during or at the end of the fusion operation seems to be a promising technique, especially in the case of stainless steel where the use of a borosilicated glass is easy. The choice of decontaminating agent is more difficult for Zircaloy which reduces the principal oxide components of glasses and makes necessary the use of molten salts mixtures, the composition of which has not yet been defined. The decontamination factors obtained during the tests run on steel are encouraging although they were obtained using artificially contaminated hulls; they should therefore be considered with precaution and be confirmed by further tests in hot cells using real hulls

  10. Pelleted organo-mineral fertilisers from composted pig slurry solids, animal wastes and spent mushroom compost for amenity grasslands.

    Science.gov (United States)

    Rao, Juluri R; Watabe, Miyuki; Stewart, T Andrew; Millar, B Cherie; Moore, John E

    2007-01-01

    In Ireland, conversion of biodegradable farm wastes such as pig manure spent mushroom compost and poultry litter wastes to pelletised fertilisers is a desirable option for farmers. In this paper, results obtained from the composting of pig waste solids (20% w/w) blended with other locally available biodegradable wastes comprising poultry litter (26% w/w), spent mushroom compost (26% w/w), cocoa husks (18% w/w) and moistened shredded paper (10% w/w) are presented. The resulting 6-mo old 'mature' composts had a nutrient content of 2.3% total N, 1.6% P and 3.1% K, too 'low' for direct use as an agricultural fertiliser. Formulations incorporating dried blood or feather meal amendments enriched the organic N-content, reduced the moisture in mature compost mixtures and aided the granulation process. Inclusion of mineral supplements viz., sulphate of ammonia, rock phosphate and sulphate of potash, yielded slow release fertilisers with nutrient N:P:K ratios of 10:3:6 and 3:5:10 that were suited for amenity grasslands such as golf courses for spring or summer application and autumn dressing, respectively. Rigorous microbiological tests carried out throughout the composting, processing and pelletising phases indicated that the formulated organo-mineral fertilisers were free of vegetative bacterial pathogens.

  11. Conditioning of Radioactive Wastes Prior to disposal; Segregation and Repackaging

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Il Sik; Kim, Ki Hong; Hong, Dae Seok; Lee, Bum Chul [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    We stored several types of radioactive wastes at interim storage facility of KAERI ; the combustible wastes (cloths, decontamination paper and vinyls) from Hanaro multipurpose research reactor, nuclear fuel cycle facility, RI production facility and laboratories, and the non-combustible wastes (metals and glass) dismantled and discarded from the apparatus of laboratories which deteriorated, and also the miscellaneous wastes (spent air-filters). After a segregation of these wastes as the same type, they were treated by using a proper method in order to meet both the national regulation and the waste acceptance criteria of Kyung-ju disposal site. For a safe disposal of waste drums, the waste characterization system including a scaling factor which is hard to measure special radionuclides is established completely. All data of those repackaged drums were input into an ANSIM system so that we could manage them clearly and effectively such like an easy transparent traceability. Through a decontamination of empty drums generated in a repackaging process of the stored drums, these drums can be reused or compressed to reduce their volume reduction for disposal. As a result, the space to store radioactive waste drums are secured more than before, and also the interim storage facility are maintained in a good state. The combustible wastes, which stored at the interim storage facility of KAERI, are managed safely in compliance with the specifications of the national regulations and disposal site. Through the classification and repackage of them, the storage space of drums at RWTF was secured more than before, and the storage facility was kept in a good state, and also the disposal cost of all stored waste drums of KAERI will be reduced due to the reduction of waste volume. Base on the experiences, the non-combustible wastes will be treated soon.

  12. Effects of post-disposal gas generation in a repository for spent fuel, high-level waste and long-lived intermediate level waste sited in opalinus clay

    International Nuclear Information System (INIS)

    Johnson, L.; Marschall, P.; Zuidema, P.; Gribi, P.

    2004-07-01

    This comprehensive report issued by the Swiss National Cooperative for the Disposal of Radioactive Waste NAGRA takes a look at post-disposal gas generation in a repository for spent fuel and highly radioactive wastes in Opalinus clay strata. This study provides a comprehensive treatment of the issue of gas generation in a repository for spent fuel (SF), vitrified high-level waste (HLW) and long-lived intermediate-level waste (ILW), sited in the Opalinus clay of the Zuercher Weinland in northern Switzerland. The issue of how gas generation in and transport from waste repositories may influence disposal system performance has been under study for many years, both at Nagra and internationally. The report consists of three main parts: (i) A synthesis of basic information on the host rock and on details of repository construction; (ii) A discussion on gas transport characteristics of the engineered barrier system and the geosphere; (iii) A discussion on the effects of gas on system performance, based on the available information on gas generation, gas transport properties and gas pathways provided in the previous parts of the report. Simplified model calculations based on a mass balance approach for the gas generated within the repository are presented and discussed

  13. Testing to evaluate the suitability of waste forms developed for electrometallurgically treated spent sodium-bonded nuclear fuel for disposal in the Yucca Mountain reporsitory.

    Energy Technology Data Exchange (ETDEWEB)

    Ebert, W. E.

    2006-01-31

    The results of laboratory testing and modeling activities conducted to support the development of waste forms to immobilize wastes generated during the electrometallurgical treatment of spent sodium-bonded nuclear fuel and their qualification for disposal in the federal high-level radioactive waste repository are summarized in this report. Tests and analyses were conducted to address issues related to the chemical, physical, and radiological properties of the waste forms relevant to qualification. These include the effects of composition and thermal treatments on the phase stability, radiation effects, and methods for monitoring product consistency. Other tests were conducted to characterize the degradation and radionuclide release behaviors of the ceramic waste form (CWF) used to immobilize waste salt and the metallic waste form (MWF) used to immobilize metallic wastes and to develop models for calculating the release of radionuclides over long times under repository-relevant conditions. Most radionuclides are contained in the binder glass phase of the CWF and in the intermetallic phase of the MWF. The release of radionuclides from the CWF is controlled by the dissolution rate of the binder glass, which can be tracked using the same degradation model that is used for high-level radioactive waste (HLW) glass. Model parameters measured for the aqueous dissolution of the binder glass are used to model the release of radionuclides from a CWF under all water-contact conditions. The release of radionuclides from the MWF is element-specific, but the release of U occurs the fastest under most test conditions. The fastest released constituent was used to represent all radionuclides in model development. An empirical aqueous degradation model was developed to describe the dependence of the radionuclide release rate from a MWF on time, pH, temperature, and the Cl{sup -} concentration. The models for radionuclide release from the CWF and MWF are both bounded by the HLW glass

  14. Spent fuel stability under repository conditions - final report of the european project

    International Nuclear Information System (INIS)

    Poinssot, Ch.; Ferry, C.; Kelm, M.; Cavedon, J.M.; Corbel, C.; Jegou, Ch.; Lovera, P.; Miserque, F.; Poulesquen, A.; Grambow, B.; Andriambololona, Z.; Martinez-Esparza, A.; Kelm, M.; Loida, A.; Rondinella, V.; Wegen, D.; Spahiu, K.; Johnson, L.; Cachoir, Ch.; Lemmens, K.; Quinones, J.; Bruno, J.; Christensen, H.; Grambow, B.; Pablo, J. de

    2005-01-01

    This report is the final report of the European Project 'Spent Fuel Stability under Repository Conditions' (FIKW-CT-2001-00192 SFS) funded by the European Commission from Nov.2000 to Oct.2004. Gathering the work performed by 13 partners from 6 countries, it aims to specifically focus on the spent nuclear fuel long term alteration in deep repository and the subsequent radionuclides release rate as a function of time. This report synthesised the wide experimental work performed within this project and enlightens the major outcomes, which can be summarised as follow: - A new model for defining the Instant Release Fraction was developed in order to consider the potential fuel evolution before the water penetrates the canister. Quantitative assessment has been produced and shows a significant contribution to the long term dose; - Based on new experimental data, kinetic radiolytic scheme have been upgraded and are used to determine the amount of oxidants produced at the fuel/water interface; - The existence of a dose threshold below which the water radiolysis does not influence the fuel alteration has been demonstrated and occurs between 3.5 and 33 MBq.g UO21. Above the threshold, the fuel alteration rates is directly related to the dose rate. - Hydrogen was experimentally demonstrated to be an efficient oxidants scavenger preventing therefore the fuel oxidation. Molecular mechanism still need to be understood. - Finally, a new Matrix Alteration Model integrating most of the SFS results (apart of the hydrogen effect) has been developed and used to assess the fuel long tern stability in representative conditions of deep repository in salt, clay-rock and granite. The breadth of the results and the significance of the conclusions testify of the success of the collaboration within the project. (authors)

  15. The development of a mobile hot cell facility for the conditioning of spent high activity radioactive sources

    International Nuclear Information System (INIS)

    Liebenberg, G.R.; Al-Mughrabi, M.

    2010-01-01

    The International Atomic Energy Agency (IAEA) Waste Technology Section with additional support from the U.S. National Nuclear Security Administration (NNSA) through the IAEA Nuclear Security Fund has funded the design, fabrication, evaluation, and testing of a portable hot cell intended to address the problem of disused Spent High Activity Radioactive Sources (SHARS) in obsolete irradiation devices such as teletherapy heads and dry irradiators. The project is initially targeting the African continent but expected soon to expand to Latin America and Asia. This hot cell allows source removal, characterization, consolidation, repackaging in modern storage shields, and secure storage of high risk SHARS at national radioactive waste storage facilities. (authors)

  16. Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs draft environmental impact statement. Volume 1, Appendix B: Idaho National Engineering Laboratory Spent Nuclear Fuel Management Program

    Energy Technology Data Exchange (ETDEWEB)

    1994-06-01

    The US Department of Energy (DOE) has prepared this report to assist its management in making two decisions. The first decision, which is programmatic, is to determine the management program for DOE spent nuclear fuel. The second decision is on the future direction of environmental restoration, waste management, and spent nuclear fuel management activities at the Idaho National Engineering Laboratory. Volume 1 of the EIS, which supports the programmatic decision, considers the effects of spent nuclear fuel management on the quality of the human and natural environment for planning years 1995 through 2035. DOE has derived the information and analysis results in Volume 1 from several site-specific appendixes. Volume 2 of the EIS, which supports the INEL-specific decision, describes environmental impacts for various environmental restoration, waste management, and spent nuclear fuel management alternatives for planning years 1995 through 2005. This Appendix B to Volume 1 considers the impacts on the INEL environment of the implementation of various DOE-wide spent nuclear fuel management alternatives. The Naval Nuclear Propulsion Program, which is a joint Navy/DOE program, is responsible for spent naval nuclear fuel examination at the INEL. For this appendix, naval fuel that has been examined at the Naval Reactors Facility and turned over to DOE for storage is termed naval-type fuel. This appendix evaluates the management of DOE spent nuclear fuel including naval-type fuel.

  17. Report on financing the disposal of commercial spent nuclear fuel and processed high-level radioactive waste

    International Nuclear Information System (INIS)

    Benny, R.I.; Sprecher, W.M.

    1983-06-01

    Projected revenues generated from the 1.0 mill per kWh fee mandated by the Act are sufficient to cover the full range of reference case program costs, assuming 3% annual inflation and nuclear installed capacity of 165 gigawatts-electric by the year 2000. Total estimated costs of the reference waste disposal program, encompassing either spent nuclear fuel disposal or reprocessing waste disposal, range between $18 to 20 billion in constant 1982 dollars. Sensitivity case analyses established upper and lower program cost bounds of $28 billion and $16 billion, respectively (in 1982 dollars). In terms of discounted levelized unit costs, the disposal of spent fuel equates to $122 to 125 per kilogram (uranium) compared with $115 to 119 per kilogram for the reprocessing waste equivalent. The levelized unit costs for reprocessing exclude the solidification of liquid wastes. Such costs are estimated to be $8 per kilogram. Discounted levelized unit costs corresponding to the upper and lower limits of the sensitivity cases equate to $176 per kilogram and $107 per kilogram. The 1.0 mill per kWh fee will be reviewed annually and adjusted, if necessary, to accommodate changes in program costs due to inflation and program shifts. When adjustments are made for applicable discount rates, inflation, repository design changes, and other factors, levelized unit costs for the reference case presented in this analysis agree closely with the results of two previous Department of Energy studies concerning charges for spent fuel storage and disposal services provided by the Federal government. The cost estimates developed for the program were based on the best available data

  18. High polymer composites for containers for the long-term storage of spent nuclear fuel and high level radioactive waste

    International Nuclear Information System (INIS)

    Bonin, H.W.; Vui, V.T.; Legault, J.-F.

    1997-01-01

    The feasibility of using polymeric composite materials as an alternative to metals in the design of a nuclear waste disposal container was examined. The disposal containers would be stored in deep underground vaults in plutonic rock formations within the Canadian Shield for several thousands of years. The conditions of disposal considered in the evaluation of the polymeric composite materials were based on the long-term disposal concept proposed by Atomic Energy of Canada Limited. Four different composites were considered for this work, all based on boron fibre as reinforcing material, imbedded in polymeric matrices made of polystyrene (PS), polymethyl methacrylate (PMMA), Devcon 10210 epoxy, and polyetheretherketone (PEEK). Both PS and PMMA were determined as unsuitable for use in the fabrication of the storage container because of thermal failure. This was determined following thermal analysis of the materials in which heat transfer calculations yielded the temperature of the container wall and of the surroundings resulting from the heat generated by the spent nuclear fuel stored inside the container. In the case of the PS, the temperature of the container, the buffer and the backfill would exceed the 100 degrees C imposed in the AECL's proposal as the maximum allowable. In the case of the PMMA, the 100 degrees temperature is too close to the glass transition temperature of this material (105 degrees C) and would cause structural degradation of the container wall. The other two materials present acceptable thermal characteristics for this application. An important concern for polymeric materials in such use is their resistance to radiations. The Devcon 10210 epoxy has been the object of research at the Royal Military College in the past years and fair, but limited, resistance to both neutrons and gamma radiation has been demonstrated, with the evidence of increased mechanical strength when subjected to moderate doses. Provided that the container wall could be

  19. Gold biorecovery from e-waste: An improved strategy through spent medium leaching with pH modification.

    Science.gov (United States)

    Natarajan, Gayathri; Ting, Yen-Peng

    2015-10-01

    Rapid technological advancement and relatively short life time of electronic goods have resulted in an alarming growth rate of electronic waste which often contains significant quantities of toxic and precious metals. Compared to conventional recovery methods, bioleaching is an environmentally friendly process for metal extraction. Gold was bioleached from electronic scrap materials (ESM) via gold-cyanide complexation using cyanide produced from pure and mixed cultures of cyanogenic bacteria Chromobacterium violaceum, Pseudomonas aeruginosa and Pseudomonas fluorescens. As ESM was toxic to the bacteria, a two-step bioleaching approach was adopted where the solid waste was added to the bacterial culture after it has reached maximum growth and cyanide production during early stationary phase. Pure culture of C. violaceum showed the highest cyanide production, yielding maximum gold recovery of 11.3% at 0.5% w/v pulp density of ESM in two-step bioleaching. At the same pulp density of ESM, spent medium bioleaching using bacterial cell-free metabolites achieved gold recovery of 18%. Recovery increased to 30% when the pH of the spent medium was increased to shift the equilibrium in favor of cyanide ions production. It is demonstrated for the first time that pH modification of spent medium further improved metal solubilization and yielded higher metal recovery (compared to two-step bioleaching). Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Recycling of spent catalyst and waste sludge from industry to substitute raw materials in the preparation of Portland cement clinker

    Directory of Open Access Journals (Sweden)

    Kae-Long Lin

    2017-09-01

    Full Text Available This study investigated the feasibility of using waste limestone sludge, waste stone sludge, iron oxide sludge, and spent catalyst as raw materials in the production of eco-cement. The compressive strength development of the Eco Cement-A (ECO-A paste was similar to that of ordinary Portland cement (OPC pastes. The compressive strength development of the ECO-B paste was higher than that of OPC pastes. In addition, the C2S (Ca2SiO4, C2S and C3S (Ca3SiO5 minerals in the eco-cement paste were continuously utilized to hydrate the Ca(OH2 and calcium silicate hydrates gel (Ca6Si3O12·H2O, C–S–H throughout the curing time. When ECO-C clinker contained 8% spent catalyst, the C3S mineral content decreased and C3A (3 CaO·Al2O3 content increased, thereby causing the structure to weaken and compressive strength to decrease. The results showed that the developed eco-cement with 4% spent catalyst possessed compressive strength properties similar to those of OPC pastes.

  1. Direct conversion of surplus fissile materials, spent nuclear fuel, and other materials to high-level-waste glass

    International Nuclear Information System (INIS)

    Forsberg, C.W.; Elam, K.R.

    1995-01-01

    With the end of the cold war the United States, Russia, and other countries have excess plutonium and other materials from the reductions in inventories of nuclear weapons. The United States Academy of Sciences (NAS) has recommended that these surplus fissile materials (SFMs) be processed so they are no more accessible than plutonium in spent nuclear fuel (SNF). This spent fuel standard, if adopted worldwide, would prevent rapid recovery of SFMs for the manufacture of nuclear weapons. The NAS recommended investigation of three sets of options for disposition of SFMs while meeting the spent fuel standard: (1) incorporate SFMs with highly radioactive materials and dispose of as waste, (2) partly burn the SFMs in reactors with conversion of the SFMs to SNF for disposal, and (3) dispose of the SFMs in deep boreholes. The US Government is investigating these options for SFM disposition. A new method for the disposition of SFMs is described herein: the simultaneous conversion of SFMs, SNF, and other highly radioactive materials into high-level-waste (HLW) glass. The SFMs include plutonium, neptinium, americium, and 233 U. The primary SFM is plutonium. The preferred SNF is degraded SNF, which may require processing before it can be accepted by a geological repository for disposal

  2. Initial performance assessment of the disposal of spent nuclear fuel and high-level waste stored at Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Rechard, R.P.

    1993-12-01

    This performance assessment characterized plausible treatment options conceived by the Idaho National Engineering Laboratory (INEL) for its spent fuel and high-level radioactive waste and then modeled the performance of the resulting waste forms in two hypothetical, deep, geologic repositories: one in bedded salt and the other in granite. The results of the performance assessment are intended to help guide INEL in its study of how to prepare wastes and spent fuel for eventual permanent disposal. This assessment was part of the Waste Management Technology Development Program designed to help the US Department of Energy develop and demonstrate the capability to dispose of its nuclear waste. Although numerous caveats must be placed on the results, the general findings were as follows: Though the waste form behavior depended upon the repository type, all current and proposed waste forms provided acceptable behavior in the salt and granite repositories

  3. Initial performance assessment of the disposal of spent nuclear fuel and high-level waste stored at Idaho National Engineering Laboratory. Volume 1, Methodology and results

    Energy Technology Data Exchange (ETDEWEB)

    Rechard, R.P. [ed.

    1993-12-01

    This performance assessment characterized plausible treatment options conceived by the Idaho National Engineering Laboratory (INEL) for its spent fuel and high-level radioactive waste and then modeled the performance of the resulting waste forms in two hypothetical, deep, geologic repositories: one in bedded salt and the other in granite. The results of the performance assessment are intended to help guide INEL in its study of how to prepare wastes and spent fuel for eventual permanent disposal. This assessment was part of the Waste Management Technology Development Program designed to help the US Department of Energy develop and demonstrate the capability to dispose of its nuclear waste. Although numerous caveats must be placed on the results, the general findings were as follows: Though the waste form behavior depended upon the repository type, all current and proposed waste forms provided acceptable behavior in the salt and granite repositories.

  4. Effects of boundary conditions on thermomechanical calculations: Spent fuel test - climax

    International Nuclear Information System (INIS)

    Butkovich, T.R.

    1982-10-01

    The effects of varying certain boundary conditions on the results of finite-element calculations were studied in relation to the Spent Fuel Test - Climax. The study employed a thermomechanical model with the ADINA structural analysis. Nodal temperature histories were generated with the compatible ADINAT heat flow codes. The boundary conditions studied included: (1) The effect of boundary loading on three progressively larger meshes. (2) Plane strain vs plane stress conditions. (3) The effect of isothermal boundaries on a small mesh and on a significantly larger mesh. The results showed that different mesh sizes had an insignificant effect on isothermal boundaries up to 5 y, while on the smallest and largest mesh, the maximum temperature difference in the mesh was 0 C. In the corresponding ADINA calculation, these different mesh sizes produce insignificant changes in the stress field and displacements in the region of interest near the heat sources and excavations. On the other hand, plane stress produces horizontal and vertical stress differences approx. 9% higher than does plane strain

  5. Preparation of titanates and zeolites and their uses in radioactive waste management, particularly in the treatment of spent resins

    International Nuclear Information System (INIS)

    Hultgren, Aa.; Airola, C.; Forsberg, S.; Faelt, L.

    1983-05-01

    Work on the preparation of titanates and zeolites was started and their possible uses in the management of radioactive wastes proposed in the first years of the 1970's by the Department of Nuclear Chemistry at the Royal Institute of Technology in Stockholm and the Chemical Center of the University of Lund, respectively. The major part of these efforts was sponsored by the National Council for Radioactive Waste (Prav), while the concluding phase including an over-all system design study adapted to the Swedish nuclear power programme for an economic evaluation was sponsored by the KBS Division of the Swedish Nuclear Fuel Supply Co. The preparation work resulted in processes ready for industrial scale production of sorbents of qualities adequate for applications in radioactive waste treatment. The essential effort was devoted to the treatment of spent resins from nuclear power plants by transfer to their radioactive contents to titanates and zeolites, which can then be sintered to stabel ceramic bodies (the PILO process). The economic evaluation indicated a significant economic incentive for the introduction of the PILO process if an incineration step is included for all types of spent resins. The essential efforts and results from this programme are summarized in this report. (Authors)

  6. Spent fuel storage and isolation

    International Nuclear Information System (INIS)

    Bensky, M.S.; Kurzeka, W.J.; Bauer, A.A.; Carr, J.A.; Matthews, S.C.

    1979-02-01

    The principal spent fuel activities conducted within the commercial waste and spent fuel within the Commercial Waste and Spent Fuel Packaging Program are: simulated near-surface (drywell) storage demonstrations at Hanford and the Nevada Test Site; surface (sealed storage cask) and drywell demonstrations at the Nevada Test Site; and spent fuel receiving and packaging facility conceptual design. These investigations are described

  7. Conditioning and storage of spent fuel cladding hulls by rolling and embedding in concrete

    International Nuclear Information System (INIS)

    Spenk, G.; Frotscher, H.; Graebner, H.; Kapulla, H.

    1981-01-01

    Under a contract with the European Atomic Energy Community the Kernforschungszentrum Karlsruhe, KfK, developed a conditioning process for LWR cladding waste. After compaction of the hulls by rolling they are embedded in a concrete matrix. In addition to basic data of the cladding waste, the compaction process, consisting of a dosage system and a rolling mill, is described. Several embedding techniques are possible, but a final selection has still to be made. Best results will probably be achieved by a vacuum technique. To characterize the waste product, leach tests have been started. The compression strength of compacted hulls embedded in concrete was determined to 2300 N.cm -2 . Hydrogen release due to radiolyses lies around 3 μl.g -1 sub(concrete).Mrad -1 which corresponds to the values expected on account of the water content of the samples. Less hydrogen was determined in samples with Zircaloy added. The tritium release of tritiated Zircaloy hulls embedded in concrete is greatly dependent on temperature and irradiation. At 100 0 C and with γ-irradiation the tritium release is about two orders of magnitude higher compared with experiments without irradiation. The thermal conductivity of samples of Zircaloy hulls embedded in concrete was determined to be 1.4W.m -1 .K -1 . (author)

  8. Radioactive waste management, decommissioning, spent fuel storage. V. 1. Waste management principles, decommissioning, dismantling, operations in hot environment

    International Nuclear Information System (INIS)

    1985-01-01

    This book deals mainly with decommissioning problems concerning more particularly dismantling and decontamination techniques, and radioactive waste processing. Radioactive waste management in France and the French regulation are tackled. Equipments developed for works in hostile environment are also presented [fr

  9. Spent fuel, plutonium and nuclear waste: long-term management; Le combustible use et le plutonium en tant que dechets nucleaires: gestion a long terme

    Energy Technology Data Exchange (ETDEWEB)

    Collard, G

    1998-11-01

    Different options for the management of nuclear waste arising from the nuclear fuel cycle are discussed. Special emphasis is on reprocessing followed by geological disposal, geological disposal of reprocessing waste, direct geological disposal of spent nuclear fuel, long term storage. Particular emphasis is on the management of plutonium including recycling, immobilisation and disposal, partitioning and transmutation.

  10. Hazard Evaluation for Storage of Spent Nuclear Fuel (SNF) Sludge at the Solid Waste Treatment Facility

    International Nuclear Information System (INIS)

    SCHULTZ, M.V.

    2000-01-01

    As part of the Spent Nuclear Fuel (SNF) storage basin clean-up project, sludge that has accumulated in the K Basins due to corrosion of damaged irradiated N Reactor will be loaded into containers and placed in interim storage. The Hanford Site Treatment Complex (T Plant) has been identified as the location where the sludge will be stored until final disposition of the material occurs. Long term storage of sludge from the K Basin fuel storage facilities requires identification and analysis of potential accidents involving sludge storage in T Plant. This report is prepared as the initial step in the safety assurance process described in DOE Order 5480.23, Nuclear Safety Analysis Reports and HNF-PRO-704, Hazards and Accident Analysis Process. This report documents the evaluation of potential hazards and off-normal events associated with sludge storage activities. This information will be used in subsequent safety analyses, design, and operations procedure development to ensure safe storage. The hazards evaluation for the storage of SNF sludge in T-Plant used the Hazards and Operability Analysis (HazOp) method. The hazard evaluation identified 42 potential hazardous conditions. No hazardous conditions involving hazardous/toxic chemical concerns were identified. Of the 42 items identified in the HazOp study, eight were determined to have potential for onsite worker consequences. No items with potential offsite consequences were identified in the HazOp study. Hazardous conditions with potential onsite worker or offsite consequences are candidates for quantitative consequence analysis. The hazardous conditions with potential onsite worker consequences were grouped into two event categories, Container failure due to overpressure - internal to T Plant, and Spill of multiple containers. The two event categories will be developed into accident scenarios that will be quantitatively analyzed to determine release consequences. A third category, Container failure due to

  11. The development of a mobile hot cell facility for the conditioning of spent high activity radioactive sources (SHARS)

    International Nuclear Information System (INIS)

    Liebenberg, G.R.; Al-Mughrabi, M.

    2008-01-01

    The International Atomic Energy Agency (IAEA) Waste Technology Section with additional support from the U.S. National Nuclear Security Agency (NNSA) through the IAEA Nuclear Security Fund has funded the design, fabrication, evaluation, and testing of a portable hot cell intended to address the problem of disused SHARS in obsolete irradiation devices such as teletherapy heads and dry irradiators. The project is initially targeting the African continent but expected soon to expand to Latin America and Asia. This hot cell would allow source removal, characterization, consolidation, repackaging in modern storage shields, and secure storage of high risk SHARS at single sites in each IAEA Member State. The mobile hot cell and related equipment is transported in two shipping containers to a specific country where the following process takes place: 1-) Assembly of hot cell; 2-) Removal of SHARS from working shields, encapsulation into a stainless steel capsule and placement into a long term storage shield; 3-) Conditioning of any other spent sources the country may require; 4-) Dismantling of the hot cell; 5-) Shipping equipment out of country. The operation in a specific country is planned to be executed over a three week period. This presentation will discuss the development of the mobile hot cell facility as well as the demonstration of the state of readiness of the system for manipulation of SHARS and the planned execution of the conditioning operations. As a result of this project, excess SHARS could be managed safely and securely and possibly be more easily repatriated to their country of origin for appropriate final disposition. (author)

  12. Evaluation of the safe disposal of radioactive waste and spent fuel in the vicinity of Bashmachnaya Bay on the Novaya Zemlya Archipelago

    International Nuclear Information System (INIS)

    Melnikov, N.N.; Konukirn, V.P.; Komlev, V.N.

    1998-01-01

    The problem of disposing of the radioactive waste and spent fuel accumulated in north-west Russia, in the Novaya Zemlya Archipelago, is discussed in this paper. An analysis of risk factors associated with the construction of a pilot facility is given. The investigations carried out are considered to be insufficient in the context of guaranteeing long-term isolation of radioactive waste and spent fuel in permafrost carbonate rocks within Bashmachnaya Bay. Recommendations are proposed concerning the scientific approach to solving this radioactive waste management problem. 5 refs

  13. DEPENDENCE OF WASTE PAPER QUALITATIVE INDICES ON ITS STORAGE CONDITIONS

    Directory of Open Access Journals (Sweden)

    I. Karpunin

    2012-01-01

    Full Text Available The paper investigates an influence of component quantity (lignin, cellulose and hemicellulose on qualitative (physical and mechanical indices of waste-paper in relation to its storage period and weather conditions. It has been established that while storing (in waste dumps waste paper it is to be kept at a definite temperature and humidity in order to reduce impact of weather conditions.

  14. Update on ASME rules for spent nuclear fuel and high level radioactive material and waste storage containments

    International Nuclear Information System (INIS)

    Ralph S. Hill III; Foster, G.M.

    2005-01-01

    In 2004, a new Code Case, N-717, of the American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel Code (Code) was published. The Code Case provides rules for construction of containments used for storage of spent nuclear fuel and high level radioactive material and waste. The Code Case has been incorporated into Section III of the Code as Division 3, Subsection WC, Class SC Storage Containments, and will be published in the 2005 Addenda. This paper provides an informative background and insight for these rules to provide Owners, regulators, designers, and fabricators with a more comprehensive understanding of the technical basis for these rules. (authors)

  15. Oxidative degradation of low and intermediate level Radioactive organic wastes 2. Acid decomposition on spent Ion-Exchange resins

    International Nuclear Information System (INIS)

    Ghattas, N.K.; Eskander, S.B.

    1995-01-01

    The present work provides a simplified, effective and economic method for the chemical decomposition of radioactively contaminated solid organic waste, especially spent ion - exchange resins. The goal is to achieve volume reduction and to avoid technical problems encountered in processes used for similar purposes (incineration, pyrolysis). Factors efficiency and kinetics of the oxidation of the ion exchange resins in acid medium using hydrogen peroxide as oxidant, namely, duration of treatment and the acid to resin ratio were studied systematically on a laboratory scale. Moreover the percent composition of the off-gas evolved during the decomposition process was analysed. 3 figs., 5 tabs

  16. Oxidative degradation of low and intermediate level Radioactive organic wastes 2. Acid decomposition on spent Ion-Exchange resins

    Energy Technology Data Exchange (ETDEWEB)

    Ghattas, N K; Eskander, S B [Radioisotope dept., atomic energy authority, (Egypt)

    1995-10-01

    The present work provides a simplified, effective and economic method for the chemical decomposition of radioactively contaminated solid organic waste, especially spent ion - exchange resins. The goal is to achieve volume reduction and to avoid technical problems encountered in processes used for similar purposes (incineration, pyrolysis). Factors efficiency and kinetics of the oxidation of the ion exchange resins in acid medium using hydrogen peroxide as oxidant, namely, duration of treatment and the acid to resin ratio were studied systematically on a laboratory scale. Moreover the percent composition of the off-gas evolved during the decomposition process was analysed. 3 figs., 5 tabs.

  17. The Swedish Concept for Disposal of Spent Nuclear Fuel: Differences Between Vertical and Horizontal Waste Canister Emplacement

    International Nuclear Information System (INIS)

    Bennett, D.G.; Hicks, T.W.

    2005-10-01

    The Swedish Nuclear Power Inspectorate (SKI) is preparing for the review of licence applications related to the disposal of spent nuclear fuel. The Swedish Nuclear Fuel and Waste Management Company (SKB) refers to its proposals for the disposal of spent nuclear fuel as the KBS-3 concept. In the KBS-3 concept, SKB plans that, after 30 to 40 years of interim storage, spent fuel will be disposed of at a depth of about 500 m in crystalline bedrock, surrounded by a system of engineered barriers. The principle barrier to radionuclide release is a cylindrical copper canister. Within the copper canister, the spent fuel is supported by a cast iron insert. Outside the copper canister is a layer of bentonite clay, known as the buffer, which is designed to provide mechanical protection for the canisters and to limit the access of groundwater and corrosive substances to their surfaces. The bentonite buffer is also designed to sorb radionuclides released from the canisters, and to filter any colloids that may form within the waste. SKB is expected to base its forthcoming licence applications on a repository design in which the waste canisters are emplaced in vertical boreholes (KBS-3V). However, SKB has also indicated that it might be possible and, in some respects, beneficial to dispose of the waste canisters in horizontal tunnels (KBS-3H). There are many similarities between the KBS-3V and KBS-3H designs. There are, however, uncertainties associated with both of the designs and, when compared, both possess relative advantages and disadvantages. SKB has identified many of the key factors that will determine the evolution of a KBS-3H repository and has plans for research and development work in many of the areas where the differences between the KBS-3V and KBS-3H designs mean that they could be significant in terms of repository performance. With respect to the KBS-3H design, key technical issues are associated with: 1. The accuracy of deposition drift construction. 2. Water

  18. Monte Carlo calculational design of an NDA instrument for the assay of waste products from high enriched uranium spent fuels

    International Nuclear Information System (INIS)

    Eccleston, G.W.; Schrandt, R.G.; MacDonald, J.L.; Cverna, F.H.

    1979-01-01

    The Monte Carlo design of the waste assay region of a dual assay system, to be installed at the Fluorinal and Storage Facility, is described. The instrument will be used by the facility operator to assay high-enriched spent fuel packages and waste solids produced from dissolution of the fuels. The fissile content discharged in the waste is expected to vary between 0 and 400 g of 235 U. Material accountability measurements of the waste must be obtained in the presence of large neutron (0.5 x 10 6 n/s) and gamma (50,000 R/hr) backgrounds. The assay system employs fast-neutron irradiation of the sample, using a 5 mg 252 Cf source, followed by delayed neutron counting after the source is transferred to storage. Calculations indicate a +-4-g (2 sigma) assay for a waste canister containing 300 g of 235 U is achievable with an end-of-life (1 mg) 252 Cf source and a background rate of 0.5 x 10 6 n/s

  19. Final disposal of spent fuels and high activity waste: the European model for a shared regional repository. Part 3

    International Nuclear Information System (INIS)

    Herscovich de Pahissa, Marta

    2009-01-01

    Geological disposal is a essential element and the only available approach to the management strategy for spent nuclear fuel and high level radioactive waste from reprocessing and also for other long-lived waste from nuclear technology applications. It is technically feasible and offers the required long term safety. The growth of existing nuclear programmes and the expansion of nuclear technology to new countries will have effects on the fuel cycle because of the increased concern on proliferation and waste management. The crucial task is to ensure that all countries that use nuclear energy now or will do it in the future, have defined and agreed safety and security standards for all facilities and a credible waste disposal strategy , accepted by the community, when this become necessary. Multinational cooperation on essential aspects of fuel cycle, particularly the geological disposal, is required for several countries with relatively small nuclear energy programmes or small quantities of radioactive waste. For these countries, that can be in different stages of development, the possibility to share a deep geological repository could be convenient. The European Union SAPIERR project is described in this paper as an example of a regional multinational cooperation. (author) [es

  20. Spent nuclear fuel system dynamic stability under normal conditions of transportation

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Hao; Wang, Jy-An John, E-mail: wangja@ornl.gov

    2016-12-15

    Highlights: • A conformational potential effect of fuel assembly contact interaction induced transient shock. • Complex vibration modes and vibration load intensity were observed from fuel assembly system. • The project was able to link the periodic transient shock to spent fuel fatigue strength reduction. - Abstract: In a horizontal layout of a spent nuclear fuel (SNF) assembly under normal conditions of transportation (NCT), the fuel assembly’s skeleton formed by guide tubes and spacer grids is the primary load bearing structure for carrying and transferring the vibration loads within an SNF assembly. Therefore, the integrity of guide tubes and spacer grids will dictate the vibration amplitude/intensity of the fuel assembly during transport, and must be considered when designing multipurpose purpose canister (MPC) for safe SNF transport. This paper investigates the SNF assembly deformation dynamics during normal vibration mode, as well as the transient shock mode inside the cask during NCT. Dynamic analyses were performed in the frequency domain to study frequency characteristic of the fuel assembly system and in the time domain to simulate the transient dynamic response of the fuel assembly. To further evaluate the intensity of contact interaction induced by the local contacts’ impact loading at the spacer grid, detailed models of the actual spring and dimples of the spacer grids were created. The impacts between the fuel rod and springs and dimples were simulated with a 20 g transient shock load. The associated contact interaction intensities, in terms of reaction forces, were estimated from the finite element analyses (FEA) results. The bending moment estimated from the resultant stress on the clad under 20 g transient shock can be used to define the loading in cyclic integrated reversible-bending fatigue tester (CIRFT) vibration testing for the equivalent condition. To estimate the damage potential of the transient shock to the SNF vibration

  1. On the corrosion behavior of zircaloy-4 in spent fuel pools under accidental conditions

    International Nuclear Information System (INIS)

    Lavigne, O.; Shoji, T.; Sakaguchi, K.

    2012-01-01

    Highlights: ► Corrosion behavior of oxidized Zr-4 in alkaline media in presence of chloride and radical forms. ► Generation of radical forms by sonolysis of water. ► Limited increase of the passive current densities under polarization with the increase of pH and the presence of radicals. ► Decrease of the passive range of oxidized Zr-4 with presence of Cl − (E pit ∼ 0.6 V SCE ). ► Decrease of the pitting potential when oxide layer is scratched or damaged (E pit ∼ 0.16 V SCE ). - Abstract: After zircaloy cladding tubes have been subjected to irradiation in the reactor core, they are stored temporarily in spent fuel pools. In case of an accident, the integrity of the pool may be affected and the composition of the coolant may change drastically. This was the case in Fukushima Daiichi in March 2011. Successive incidents have led to an increase in the pH of the coolant and to chloride contamination. Moreover, water radiolysis may occur owing to the remnant radioactivity of the spent fuel. In this study, we propose to evaluate the corrosion behavior of oxidized Zr-4 (in autoclave at 288 °C for 32 days) in function of the pH and the presence of chloride and radical forms. The generation of radicals is achieved by the sonolysis of the solution. It appears that the increase in pH and the presence of radicals lead to an increase in current densities. However, the current densities remain quite low (depending on the conditions, between 1 and 10 μA cm −2 ). The critical parameter is the presence of chloride ions. The chloride ions widely decrease the passive range of the oxidized samples (the pitting potential is measured around +0.6 V (vs. SCE)). Moreover, if the oxide layer is scratched or damaged (which is likely under accidental conditions), the pitting potential of the oxidized sample reaches the pitting potential of the non-oxidized sample (around +0.16 V (vs. SCE)), leaving a shorter stable passive range for the Zr-4 cladding tubes.

  2. Spent fuel's behavior under dynamic drip tests

    International Nuclear Information System (INIS)

    Finn, P.A.; Buck, E.C.; Hoh, J.C.; Bates, J.K.

    1995-01-01

    In the potential repository at Yucca Mountain, failure of the waste package container and the cladding of the spent nuclear fuel would expose the fuel to water under oxidizing conditions. To simulate the release behavior of radionuclides from spent fuel, dynamic drip and vapor tests with spent nuclear fuel have been ongoing for 2.5 years. Rapid alteration of the spent fuel has been noted with concurrent release of radionuclides. Colloidal species containing americium and plutonium have been found in the leachate. This observation suggests that colloidal transport of radionuclides should be included in the performance assessment of a potential repository

  3. Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs Draft Environmental Impact Statement

    International Nuclear Information System (INIS)

    1994-06-01

    This volume contains the following attachments: transportation of Naval spent nuclear fuel; description of Naval spent nuclear receipt and handling at the Expended Core Facility at the Idaho National Engineering Laboratory; comparison of storage in new water pools versus dry container storage; description of storage of Naval spent nuclear fuel at servicing locations; description of receipt, handling, and examination of Naval spent nuclear fuel at alternate DOE facilities; analysis of normal operations and accident conditions; and comparison of the Naval spent nuclear fuel storage environmental assessment and this environmental impact statement

  4. THE CONDITION OF WASTE MANAGEMENT IN ROMANIA

    Directory of Open Access Journals (Sweden)

    Diana ZAGAN ZELTER

    2009-01-01

    Full Text Available The present article approaches a very important and actual theme andthat is the problem of generating waste in Romania which, on one hand,affects the environment and human health, and on the other hand itreflects the inefficient way of using the natural resources in society.Probably the majority of us have thought or hoped that the naturalresources are inexhaustible, but we can see today that the unwiseexploitation of these resources is threatening our future.Waste management is a difficult and complex problem in Romania whichis far from being solved according to the environment rules of theEuropean Union. The worsening of the waste problem, especially of thedomestic waste is generated by the significant increase of its quantity, aswell as by the inappropriate way of solving different stages of wasteprocessing.

  5. Public acceptability of the use of gamma rays from spent nuclear fuel as a hazardous waste treatment process

    International Nuclear Information System (INIS)

    Mincher, B.J.; Wells, R.P.; Reilly, H.J.

    1992-01-01

    Three methods were used to estimate public reaction to the use of gamma irradiation of hazardous wastes as a hazardous waste treatment process. The gamma source of interest is spent nuclear fuel. The first method is Benefit-Risk Decision Making, where the benefits of the proposed technology are compared to its risks. The second analysis compares the proposed technology to the other, currently used nuclear technologies and estimates public reaction based on that comparison. The third analysis is called Analysis of Public Consent, and is based on the professional methods of the Institute for Participatory Management and Planning. The conclusion of all three methods is that the proposed technology should not result in negative public reaction sufficient to prevent implementation

  6. State fund of decommissioning of nuclear installations and handling of spent nuclear fuels and nuclear wastes (Slovak Republic)

    International Nuclear Information System (INIS)

    Kozma, Milos

    2006-01-01

    State Fund for Decommissioning of Nuclear Installations and Handling of Spent Nuclear Fuels and Nuclear Wastes was established by the Act 254/1994 of the National Council of the Slovak Republic as a special-purpose fund which concentrates financial resources intended for decommissioning of nuclear installations and for handling of spent nuclear fuels and radioactive wastes. The Act was amended in 2000, 2001 and 2002. The Fund is legal entity and independent from operator of nuclear installations Slovak Power Facilities Inc. The Fund is headed by Director, who is appointed and recalled by Minister of Economy of the Slovak Republic. Sources of the Fund are generated from: a) contributions by nuclear installation operators; b) penalties imposed by Nuclear Regulatory Authority of the Slovak Republic upon natural persons and legal entities pursuant to separate regulation; c) bank credits; d) interest on Fund deposits in banks; e) grants from State Budget; f) other sources as provided by special regulation. Fund resources may be used for the following purposes: a) decommissioning of nuclear installations; b) handling of spent nuclear fuels and radioactive wastes after the termination of nuclear installation operation; c) handling of radioactive wastes whose originator is not known, including occasionally seized radioactive wastes and radioactive materials stemming from criminal activities whose originator is not known, as confirmed by Police Corps investigator or Ministry of Health of the Slovak Republic; d) purchase of land for the establishment of nuclear fuel and nuclear waste repositories; e) research and development in the areas of decommissioning of nuclear installations and handling of nuclear fuels and radioactive wastes after the termination of the operation of nuclear installations; f) selection of localities, geological survey, preparation, design, construction, commissioning, operation and closure of repositories of spent nuclear fuels and radioactive wastes

  7. The Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management

    International Nuclear Information System (INIS)

    Risoluti, P.

    2004-01-01

    The Joint Convention on the Safety of Spent Fuel Management and the Safety of Radioactive Waste Management (the Joint Convention) is the only legally binding international treaty in the area of radioactive waste management. It was adopted by a Diplomatic Conference in September 1997 and opened for signature on 29 September 1997. The Convention entered into force on 18 June 1998, and to date (September 04) has been signed by 42 States, of which 34 have formally ratified, thus becoming Contracting Parties. The Joint Convention applies to spent fuel and radioactive waste resulting from civilian application. Its principal aim is to achieve and maintain a high degree of safety in their management worldwide. The Convention is an incentive instrument, not designed to ensure fulfillment of obligations through control and sanction, but by a peer pressure. The obligations of the Contracting Parties are mainly based on the international safety standards developed by the IAEA in past decades. The Convention is intended for all countries generating radioactive waste. Therefore it is relevant not only for those using nuclear power, but for any country where application of nuclear energy in medicine, conventional industry and research is currently used. Obligations of Contracting Parties include attending periodic Review Meetings and prepare National Reports for review by the other Contracting Parties. The National Reports should describe how the country is complying with the requirements of the Articles of the Convention. The first such meeting was held at the IAEA headquarters in November 2003. This paper will describe the origin of the Convention, present its content, the expected outcome for the worldwide safety, and the benefits for a country to be part of it

  8. Fission product release in conditions of a spent fuel pool severe accident

    International Nuclear Information System (INIS)

    Ohai, Dumitru

    2007-01-01

    Full text: Depending on the residence time, fuel burnup, and fuel rack configuration, there may be sufficient decay heat for the fuel clad to heat up, swell, and burst in case of a loss of pool water. Initiating event categories can be: loss of offsite power from events initiated by severe weather, internal fire, loss of pool cooling, loss of coolant inventory, seismic event, aircraft impact, tornado, missile attack. The breach in the clad releases the radioactive gases present in the gap between the fuel and clad, what is called 'gap release'. If the fuel continues to heat up, the zirconium clad will reach the point of rapid oxidation in air. This reaction of zirconium and air, or zirconium and steam is exothermic. The energy released from the reaction, combined with the fuel's decay energy, can cause the reaction to become self-sustaining and ignite the zirconium. The increase in heat from the oxidation reaction can also raise the temperature in adjacent fuel assemblies and propagate the oxidation reaction. Simultaneously, the sintered UO 2 pellets resulting from pins destroying are oxidized. Due to the self-disintegration of pellets by oxidation, fission gases and low volatile fission products are released. The release rate, the chemical nature and the amount of fission products depend on powder granulation distribution and environmental conditions. The zirconium burning and pellets self-disintegration will result in a significant release of spent fuel fission products that will be dispersed from the reactor site. (author)

  9. Structural evaluation and analysis under normal conditions for spent fuel concrete storage cask

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Taechul; Baeg, Changyeal; Yoon, Sitae [Korea Radioactive waste Management Agency, Daejeon (Korea, Republic of); Jung, Insoo [Korea Nuclear Engineering and Service Co., Daejeon (Korea, Republic of)

    2014-05-15

    The purpose of this paper is the verification of stabilities of the structural elements that influence the safety of a concrete storage cask. The evaluation results were reviewed with respect to every design criterion, in terms of whether the results satisfy the criteria, provided by 10CFR 72 and NUREG-1536. The basic information on the design is partially explained in 2. Description of spent fuel storage system and the maintainability and assumptions included in the analysis were confirmed through detailed explanations of the acceptable standards, analysis model, and analysis method. ABAQUS 6.10, a widely used finite element analysis program, was used in the structural analysis. The storage cask shall maintain the sub-criticality, shielding, structural integrity, thermal capability and confinement in accordance with the requirements specified in US 10 CFR 72. The safety of storage cask is analyzed and it has been confirmed to meet the requirements of US 10 CFR 72. This paper summarizes the structural stability evaluation results of a concrete storage cask with respect to the design criteria. The evaluation results of this paper show that the maximum stress was below the allowable stress under every condition, and the concrete storage cask satisfied the design criteria.

  10. Shield wall evaluation of hot cell facility for advanced spent fuel conditioning process

    International Nuclear Information System (INIS)

    Cho, I. J.; Kuk, D. H.; Ko, J. H.; Jung, W. M.; Yoo, G. S.; Lee, E. P.; Park, S. W.

    2002-01-01

    The future hot cell is located in the Irradiated Material Experiment Facility (IMEF) at the Korea Atomic Energy Research Institute (KAERI). It is β-γ type hot cell that was constructed on the base floor in IMEF building for irradiated material testing. And this hot cell will be used for carrying out the Advanced spent fuel Conditioning Process (ACP). The radiation shielding capability of hot cell should be sufficient to meet the radiation dose requirements in the related regulations. Because the radioactive sources of ACP are expected to be higher than radioactive sources of IMEF design criteria, the future hot cell in current status is unsatisfactory to hot test of ACP. So the shielding analysis of the future hot cell is performed to evaluate shielding ability of concrete shield wall. The shielding analysis included (a) identification of ACP source term; (b) photon source spectrum; (c) shielding analysis by QADS and MCNP-4C; and (d) enhancement of concrete shield wall. In this research, dose rates are obtained according to ACP source, geometry and hot cell shield wall thickness. And the evaluation and reinforcement thickness of the shield wall about future hot cell are concluded

  11. Design information verification for spent fuel conditioning plants and for geological repositories

    International Nuclear Information System (INIS)

    Myatt, J.; Ward, M.D.

    1995-01-01

    The disposal of spent fuel is a major option for the back-end of the nuclear fuel cycle. It will require the construction, operation and eventual closure of conditioning plants and geological repositories. Consequently, a safeguards approach including Design Information Verification (DIV) must be developed for these facilities. DIV Is the examination of a completed facility to verify that it has been built to the design declared by the operator. Although DIV takes place chiefly before a plant begins routine operation, there is a continuing interest in ensuring that the plant remains as declared. That is, that the continuity of knowledge of design information is maintained during the operational phase of the plant and also post closure if necessary. A major problem with DIV of a repository is that there will be continuous structural changes during its operational life requiring advanced or special techniques for reverification. Some of these are briefly reviewed. Furthermore, since a disposal facility is expected to be operational for several decades, new mining technology may also have an impact on the DIV methods employed. Another factor in the safeguards supervision of a repository is that when the fuel has been backfilled and/or scaled in place a reassay will be a very costly exercise. The role of DIV in such novel circumstances must, therefore, be fully considered

  12. Overview of treatment and conditioning of low-level wastes

    International Nuclear Information System (INIS)

    Trevorrow, L.

    1986-01-01

    The consideration of alternative technologies in low-level waste management is assumed to be partly a response to current demands for lower risk in waste disposal. One of the determinants of risk in waste disposal is the set of characteristics of the materials placed into disposal cells, i.e., the products of treatment and conditioning operations. The treatment and conditioning operations that have been applied to waste streams are briefly examined. Three operations are the most important determinants of the stability that will contribute to reducing risk at the disposal cell: compaction, high-integrity containers, and solidification. The status of these three operations is reviewed

  13. Interfaces between transport and geological disposal systems for high level radioactive waste and spent nuclear fuel

    International Nuclear Information System (INIS)

    1994-09-01

    This document is an IAEA publication which identifies and discusses the interfaces and the interface requirements between high level waste, the waste transport system used for carriage of the waste to the disposal facility, and the high level waste disposal facility. The development of this document was prompted in part by the initiatives in various Member States to select, characterize and design the facilities for potential high level waste geological repositories. These initiatives have progressed to the point where an international document would be useful in calling attention to the need for establishing, in a systematic way, interfaces and interface requirements between the transport systems to be used and the waste disposal packages and geological repository. Refs, figs and tabs

  14. National waste terminal storage repository in a bedded salt formation for spent unreprocessed fuel. Volume I. Conceptual design report

    International Nuclear Information System (INIS)

    1978-12-01

    In February 1976, the Energy Research and Development Administration (ERDA), now the Department of Energy (DOE), established a National Waste Terminal Storage (NWTS) program. As a part of this program, two parallel conceptual design efforts were initiated in January 1977. One was for deep geologic storage, in domed salt, of high level waste resulting from the reprocessing of spent fuel. The other was for deep geologic storage of unreprocessed spent fuel in bedded salt. These two concepts are identified as NWTS Repository 1 and Repository 2, respectively. Repository 2 (NWTSR2) is the concept which is covered by this Conceptual Design Report. Volume I of the conceptual design report contains the following information: physical description of the report; project purpose and justification; principal safety, fire, and health hazards; environmental impact considerations; quality assurance considerations; assessment of operational interfaces; assessment of research and development interfaces; project schedule; proposed method of accomplishment; summary cost estimate; and outline specifications. The conceptual design for Repository 2 was developed in sufficient detail to permit determination of scope, engineering feasibility, schedule, and cost estimates, all of which are necessary for planning and budgeting the project

  15. Current status and future considerations for a transportation system for spent fuel and radioactive waste

    International Nuclear Information System (INIS)

    Anderson, R.T.; Darr, D.G.; Godfrey, W.L.; Keely, R.B.; Lusk, E.C.; Peterson, R.W.; Ridihalgh, J.L.; Shallo, F.A.; Young, M.

    1978-02-01

    This report is part of the OWI Transportation/Logistics systems analysis of problems associated with shipping these wastes to waste terminal storage facilities. It covers governmental regulations and functional responsibilities, highway and rail transportation status and economic considerations, assessment of present industry capabilities and business-related considerations, important receiving facility considerations, necessary engineering and licensing-related aspects of packaging systems, and essential elements of reprocessing plant waste activities including packaging and transportation

  16. Reference design for a centralized spent sealed sources facility. Technical manual for the management of low and intermediate level wastes generated at small nuclear research centres and by radioisotope users in medicine, research and industry

    International Nuclear Information System (INIS)

    1995-07-01

    To assist Member States in establishing facilities in which the most frequently occurring spent sealed sources can be safely conditioned, the IAEA has financed the development of a generic design for a Spent Sealed Sources Facility (SSS Facility). The purpose of this TECDOC is to provide enough general information about the functions and capabilities of the SSS Facility to enable the reader to understand what the facility can do to contribute towards the management of spent sealed sources without providing all the technical and/or design information available. Sufficient information is provided to enable the reader to judge how and to what extent such a facility can contribute to national radioactive waste management infrastructure. 2 refs, 5 figs, 1 tab

  17. Reference design for a centralized spent sealed sources facility. Technical manual for the management of low and intermediate level wastes generated at small nuclear research centres and by radioisotope users in medicine, research and industry

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-01

    To assist Member States in establishing facilities in which the most frequently occurring spent sealed sources can be safely conditioned, the IAEA has financed the development of a generic design for a Spent Sealed Sources Facility (SSS Facility). The purpose of this TECDOC is to provide enough general information about the functions and capabilities of the SSS Facility to enable the reader to understand what the facility can do to contribute towards the management of spent sealed sources without providing all the technical and/or design information available. Sufficient information is provided to enable the reader to judge how and to what extent such a facility can contribute to national radioactive waste management infrastructure. 2 refs, 5 figs, 1 tab.

  18. Spent fuel waste disposal: analyses of model uncertainty in the MICADO project

    International Nuclear Information System (INIS)

    Grambow, B.; Ferry, C.; Casas, I.; Bruno, J.; Quinones, J.; Johnson, L.

    2010-01-01

    The objective was to find out whether international research has now provided sufficiently reliable models to assess the corrosion behavior of spent fuel in groundwater and by this to contribute to answering the question whether the highly radioactive used fuel from nuclear reactors can be disposed of safely in a geological repository. Principal project results are described in the paper

  19. 78 FR 56775 - Waste Confidence-Continued Storage of Spent Nuclear Fuel

    Science.gov (United States)

    2013-09-13

    ... structures that are constructed from thick, reinforced concrete walls and slabs that vary between 0.7 and 3... are being proposed to address continued storage for license renewal? C. Decision C1. Introduction C2... confinement of the spent fuel. Each cylinder is surrounded by additional steel, concrete, or other material to...

  20. CASTOR(r) and CONSTOR(r) type transport and storage casks for spent fuel and high active waste

    International Nuclear Information System (INIS)

    Kuehne, B.; Sowa, W.

    2002-01-01

    The German company GNB has developed, tested, licensed, fabricated, loaded, transported and stored a large number of casks for spent fuel and high-level waste. CASTOR(r) casks are used at 18 sites on three continents. Spent fuel assemblies of the types PWR, BWR, VVER, RBMK, MTR and THTR as well as vitrified high active waste (HAW) containers are stored in these kinds of casks. More than 600 CASTOR(r) casks have been loaded for long-term storage. The two decades of storage have shown that the basic requirements, which are safe confinement, criticality safety, sufficient shielding and appropriate heat transfer have been fulfilled in each case. There is no indication that problems will arise in the future. Of course, the experience of 20 years has resulted in improvements of the cask design. One basic improvement is GNB's development since the mid 1990s of a sandwich cask design using heavy concrete and steel as basic materials, for economical and technical reasons. This CONSTOR(r) cask concept also fulfils all design criteria for transport and storage given by the IAEA recommendations and national authorities. By May 2002 40 CONSTOR(r) casks had been delivered and 15 had been successfully loaded and stored. In this paper the different types of casks are presented. Experiences gained during the large number of cask loadings and more than 4000 cask-years of storage will be summarised. The presentation of recent and future development shows the optimisation potential of the CASTOR(r) and CONSTOR(r) cask families for safe and economical management of spent fuel. (author)

  1. Approaches to overall architecture of transport systems for spent fuel and high level waste: examples from Europe and Canada

    International Nuclear Information System (INIS)

    Roland, V.; Neider, T.

    2006-01-01

    As over the years, the nuclear industry worldwide was developing and building a clean, efficient and safe energy supply, it also built along the essential link for any global industry, transportation. The early approach at IAEA of creating international recommendations that then would be integrated into national laws came as a blessing to the structuration of transport This enabled a clear, recognized safety regime that has a proven world track record of outstanding safety. It also gave us a common language, and one may say that within the nuclear community, there is indeed a nuclear transport community. Because of steady and large flows of material for the nuclear cycles, countries where reprocessing of spent fuel takes place had to implement early on large transport structures and organizations. In most countries where reprocessing is not yet the main path for spent fuel management, like in the USA and in Canada, large scale transport for the back-end is still at the inception stage. Today the industry must demonstrate that waste is properly managed and that the peaceful use of nuclear energy delivers indeed the best economic and environmental value. Transport has to answer a part of this challenge if the industry is to grow further. The paper will illustrate how the current continental Europe systems of transport progressively evolved so as to make daily deliveries of spent nuclear fuel to the COGEMA La Hague reprocessing plant a strong, dependable and effective system. It also shows that this experience is in the background of a major study ordered by Ontario Power Generation from COGEMA Logistics, as a contribution to the work of the trust now examining approaches to long-term management of spent fuel in Canada. (author)

  2. A radioactive waste transportation package monitoring system for normal transport and accident emergency response conditions

    International Nuclear Information System (INIS)

    Brown, G.S.; Cashwell, J.W.; Apple, M.L.

    1991-01-01

    Shipments of radioactive material (RAM) constitute but a small fraction of the total hazardous materials shipped in the United States each year. Public perception, however, of the potential consequences of a release from a transportation package containing RAM has resulted in significant regulation of transport operations, both to ensure the integrity of a package in accident conditions and to place operational constraints on the shipper. Much of this attention has focused on shipments of spent nuclear fuel and high level wastes which, although comprising a very small number of total shipments, constitute a majority of the total curies transported on an annual basis. This report discusses the shipment of these highly radioactive materials

  3. Use of depleted uranium silicate glass to minimize release of radionuclides from spent nuclear fuel waste packages

    International Nuclear Information System (INIS)

    Forsberg, C.W.

    1996-01-01

    A Depleted Uranium Silicate Container Backfill System (DUSCOBS) is proposed that would use small, isotopically-depleted uranium silicate glass beads as a backfill material inside repository waste packages containing spent nuclear fuel (SNF). The uranium silicate glass beads would fill the void space inside the package including the coolant channels inside SNF assemblies. Based on preliminary analysis, the following benefits have been identified. DUSCOBS improves repository waste package performance by three mechanisms. First, it reduces the radionuclide releases from SNF when water enters the waste package by creating a local uranium silicate saturated groundwater environment that suppresses (a) the dissolution and/or transformation of uranium dioxide fuel pellets and, hence, (b) the release of radionuclides incorporated into the SNF pellets. Second, the potential for long-term nuclear criticality is reduced by isotopic exchange of enriched uranium in SNF with the depleted uranium (DU) in the glass. Third, the backfill reduces radiation interactions between SNF and the local environment (package and local geology) and thus reduces generation of hydrogen, acids, and other chemicals that degrade the waste package system. Finally, DUSCOBS provides a potential method to dispose of significant quantities of excess DU from uranium enrichment plants at potential economic savings. DUSCOBS is a new concept. Consequently, the concept has not been optimized or demonstrated in laboratory experiments

  4. Mining and engineering aspects and variants for the underground construction of a deep geological repository for radioactive waste and spent nuclear fuel

    International Nuclear Information System (INIS)

    Milchev, M.; Michailov, B.; Nanovska, E.; Harizanov, A.

    2003-01-01

    The aim of the present report is to investigate and to describe systematically the foreign experience, scientific and technical achievements and stages of development concerning the mining and engineering aspects and variants for underground construction of a deep geological repository for radioactive waste (RAW) and spent nuclear fuel (SNF). The ideal solution in managing the problems with harmful wastes seems to be either to remove them permanently from Earth (which is related with high risks and high costs) or to transform long-lived radionuclides to short-lived radionuclides using nuclear transmutation processes in a reactor or a particle accelerator. The latter is also a complex and immensely costly process and it can only reduce the quantities of some long-lived radionuclides, which can be then disposed in a geological repository. At present, the deep geological disposal remains the only solution for solving the problem with the hazard of storing radioactive wastes. The report submits a brief description and systematization of the performed investigations, accompanied by analysis of the scientific and technical level on world scale. The analysis is related with the particular geological conditions and the existing scientific studies available so far in Bulgaria. The main conclusions are that the complex scientific-technical and engineering problems related with the construction of a deep geological repository for RAW and SNF require long-term scientific investigations and preliminary complex works and it is high time to launch them in Bulgaria. (authors)

  5. Information about activity, status and radiation conditions of Republic radioactive waste repository

    International Nuclear Information System (INIS)

    Saidumarov, P.

    2000-01-01

    All radioactive wastes in the Republic of Uzbekistan are stored in the Republic Radioactive Waste Repository in Parkent district of Tashkent region. In the facility there are 2 tanks for solid radioactive waste, each of 800 m 3 , one of them is full, second is in operation; 2 tanks for liquid radioactive waste each tank of 200 m 3 , both of them are empty; 6 storages, each of 3 m 3 all of them are empty; 3 storages for spent radioactive sources, one of them is full, 2 of them are in operation; 4 storages for high level radioactive waste, each storage of 3.5 m 3 , one of them is in operation, 3 are empty; one sealed storage containing 135 m 3 of concrete blocks with waste from electronic industry. According to conclusions of a few competent examinations RRWR does not cause damage to the environment. Geographic location and technical conditions of the repository are satisfactory. Low deposition of underground water (62 m) excludes penetration of radioisotopes. There were no radiation accidents during the repository operation

  6. Conditioning of uranium-containing technological radioactive waste

    International Nuclear Information System (INIS)

    Smodis, B.; Tavcar, G.; Stepisnik, M.; Pucelj, B.

    2006-01-01

    Conditioning of mostly liquid uranium containing technological radioactive waste emerging from the past research activities at the Jozef Stefan Institute is described. The waste was first thoroughly characterised, then the radionuclides present solidified by appropriate chemical treatment, and the final product separated and prepared for storage in compliance with the legislation. The activities were carried out within the recently renewed Hot Cells Facility of the Jozef Stefan Institute and the overall process resulted in substantial volume reduction of the waste initially present. (author)

  7. The relationship between the Resource Conservation and Recovery Act and the storage and disposal of spent nuclear fuel and high-level waste

    International Nuclear Information System (INIS)

    Gertz, C.P.; Cloke, P.L.

    1993-01-01

    This paper addresses the potential applicability of the requirements of the Resource Conservation and Recovery Act (RCRA) to the disposal of spent commercial nuclear fuel and of high-level (vitrified) radioactive waste. The Atomic Energy Act of 1954, as amended, and the associated regulations issued by the US NRC provides many requirements that apply to these waste forms and largely, if not entirely, pre-empts the applicability of RCRA. The RCRA would apply only to the non-radioactive components of these wastes, and then only in respect to hazardous components. In view of these restrictions it becomes important to evaluate whether any components of spent fuel or high-level waste are toxic, as defined by the RCRA regulations. Present indications are that they are not and, hence, the US DOE is proceeding on the basis that these wastes and others that may be generated in the future are non-hazardous in respect to RCRA definitions

  8. Handling and storage of high-level liquid wastes from reprocessing of spent fuel

    International Nuclear Information System (INIS)

    Finsterwalder, L.

    1982-01-01

    The high level liquid wastes arise from the reprocessing of irradiated nuclear fuels, which are dissolved in aqueous acid solution, and the plutonium and unburned uranium removed in the chemical separation plant. The remaining solution, containing more than 99% of the dissolved fission products, together with impurities from cladding materials, corrosion products, traces of unseparated plutonium and uranium and most of the transuranic elements, constitutes the high-level waste. At present, these liquid wastes are usually concentrated by evaporation and stored as an aqueous nitric acid solution in high-integrity stainless-steel tanks. There is now world-wide agreement that, for the long term, these liquid wastes should be converted to solid form and much work is in progress to develop techniques for the solidification of these wastes. This paper considers the design requirements for such facilities and the experience gained during nearly 30 years of operation. (orig./RW)

  9. Conditioning of low- and intermediate-level radioactive wastes

    International Nuclear Information System (INIS)

    1983-01-01

    The nuclear fuel cycle, together with the use of separated radioisotopes, in many endeavours generates a variety of low- and intermediate-level radioactive wastes. These waste materials contain quantities of radionuclides sufficient to present potential health risks to people if the wastes are not adequately managed, but usually insufficient quantities to require heat removal. Adequate management involves a series of steps which lead from the arising of the wastes to their safe disposal, steps which may include collection, segregation, treatment, volume reduction, conditioning, transport, interim storage and disposal. Each step is defined by the need to accommodate to the preceding one and to facilitate the ones that follow. This technical report describes primarily the technologies available for the conditioning steps (i.e., immobilization and packaging) and relates them to the other steps. In broad terms, the purpose of conditioning is to convert the wastes into packages that are suitable for transport, storage and disposal

  10. Handling and storage of conditioned high-level wastes

    International Nuclear Information System (INIS)

    Heafield, W.

    1984-01-01

    This paper deals with certain aspects of the management of one of the most important radioactive wastes arising from the nuclear fuel cycle, i.e. the handling and storage of conditioned high-level wastes. The paper is based on an IAEA report of the same title published during 1983 in the Technical Reports Series. The paper provides illustrative background material on the characteristics of high-level wastes and, qualitatively, their requirements for conditioning. The principles important in the storage of high-level wastes are reviewed in conjunction with the radiological and socio-political considerations involved. Four fundamentally different storage concepts are described with reference to published information and the safety aspects of particular storage concepts are discussed. Finally, overall conclusions are presented which confirm the availability of technology for constructing and operating conditioned high-level waste storage facilities for periods of at least several decades. (author)

  11. Market driven strategy for acquisition of waste acceptance and transportation services for commercial spent fuel in the united states

    International Nuclear Information System (INIS)

    Lemeshewsky, W.; Macaluso, C.; Smith, P.; Teer, B.

    1998-01-01

    The Office of Civilian Radioactive Waste Management (OCRWM) in the United States Department of Energy (DOE) has the responsibility under the Nuclear Waste Policy Act of 1982 (the Act) for the shipment of spent nuclear fuel (SNF) from commercial reactors to a Federal facility for storage and/or disposal. The Act requires the use of private industry to the 'fullest extent possible' in the transportation of spent fuels. An OCRWM goal is to develop a safe, efficient and effective transportation system while meeting the mandate of the Act. OCRWM has then develop a strategy for a market driven approach for the acquisition of transportation services and equipment. To implement this strategy, OCRWM is planning to issue a Request for Proposal (RPF) for the provision of the required services and equipment to accept SNF from the utilities and transport the SNF to a Federal facility. Two draft RPFs have been issued with the second draft incorporating comments on the first draft from potential contractors and other interested parties. The overall strategy as outlined in the draft RPF relies on private industry to use the innovative powers of the marketplace to help DOE accomplish its mission objectives. DOE intends to pursue this procurement strategy whether or not the OCRWM program includes interim storage. The concept described in the draft RPF provides for DOE to purchase services and equipment from a contractor-operated waste acceptance and transportation organization. The contractor is expected to provide initial financing for the project including that necessary for initial acquisition of operational equipment, establish the necessary management organization, and mobilize the necessary resources and capabilities to provide the SNF delivery services at a fixed rate. DOE will retain final approval on all routes and maintain primary responsibility to the States, tribes, and local units of government for assuring appropriate interaction and consideration of their input on

  12. Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs draft environmental impact statement

    International Nuclear Information System (INIS)

    1994-06-01

    The US Department of Energy (DOE) has prepared this report to assist its management in making two decisions. The first decision, which is programmatic, is to determine the management program for DOE spent nuclear fuel. The second decision is on the future direction of environmental restoration, waste management, and spent nuclear fuel management activities at the Idaho National Engineering Laboratory. Volume 1 of the EIS, which supports the programmatic decision, considers the effects of spent nuclear fuel management on the quality of the human and natural environment for planning years 1995 through 2035. DOE has derived the information and analysis results in Volume 1 from several site-specific appendixes. Volume 2 of the EIS, which supports the INEL-specific decision, describes environmental impacts for various environmental restoration, waste management, and spent nuclear fuel management alternatives for planning years 1995 through 2005. This Appendix B to Volume 1 considers the impacts on the INEL environment of the implementation of various DOE-wide spent nuclear fuel management alternatives. The Naval Nuclear Propulsion Program, which is a joint Navy/DOE program, is responsible for spent naval nuclear fuel examination at the INEL. For this appendix, naval fuel that has been examined at the Naval Reactors Facility and turned over to DOE for storage is termed naval-type fuel. This appendix evaluates the management of DOE spent nuclear fuel including naval-type fuel

  13. 40 CFR 261.5 - Special requirements for hazardous waste generated by conditionally exempt small quantity...

    Science.gov (United States)

    2010-07-01

    ...(e). (2) A total of 100 kilograms of any residue or contaminated soil, waste, or other debris... accumulation, only in an on-site process subject to regulation under 40 CFR 261.6(c)(2); or (4) Is used oil... waste, so long as the hazardous waste that is treated was counted once; or (3) Spent materials that are...

  14. Evolution of spent nuclear fuel in dry storage conditions for millennia and beyond

    Energy Technology Data Exchange (ETDEWEB)

    Wiss, Thierry, E-mail: thierry.wiss@ec.europa.eu [European Commission, Joint Research Centre, Institute for Transuranium Elements, P.O. Box 2340, 76125 Karlsruhe (Germany); Hiernaut, Jean-Pol [European Commission, Joint Research Centre, Institute for Transuranium Elements, P.O. Box 2340, 76125 Karlsruhe (Germany); Roudil, Danièle [Commissariat à l’Energie Atomique et aux Energie Alternatives, Centre de Marcoule, BP 30207 Bagnols-sur-Cèze (France); Colle, Jean-Yves; Maugeri, Emilio; Talip, Zeynep; Janssen, Arne; Rondinella, Vincenzo; Konings, Rudy J.M.; Matzke, Hans-Joachim [European Commission, Joint Research Centre, Institute for Transuranium Elements, P.O. Box 2340, 76125 Karlsruhe (Germany); Weber, William J. [Department of Materials Science and Engineering, The University of Tennessee, Knoxville, TN 37996 (United States); Division of Materials Science and Technology, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States)

    2014-08-01

    Significant amounts of spent uranium dioxide nuclear fuel are accumulating worldwide from decades of commercial nuclear power production. While such spent fuel is intended to be reprocessed or disposed in geologic repositories, out-of-reactor radiation damage from alpha decay can be detrimental to its structural stability. Here we report on an experimental study in which radiation damage in plutonium dioxide, uranium dioxide samples doped with short-lived alpha-emitters and urano-thorianite minerals have been characterized by XRD, transmission electron microscopy, thermal desorption spectrometry and hardness measurements to assess the long-term stability of spent nuclear fuel to substantial alpha-decay doses. Defect accumulation is predicted to result in swelling of the atomic structure and decrease in fracture toughness; whereas, the accumulation of helium will produce bubbles that result in much larger gaseous-induced swelling that substantially increases the stresses in the constrained spent fuel. Based on these results, the radiation-ageing of highly-aged spent nuclear fuel over more than 10,000 years is predicted.

  15. Development, implementation, and experiences of the Swedish spent fuel and waste sea transportation system

    International Nuclear Information System (INIS)

    Gustafsson, B.; Dybeck, P.; Pettersson, S.

    1989-01-01

    In Sweden, electrical production from the first commercial nuclear plant commenced in 1972, i.e. 17 years ago. There are now 12 nuclear reactors in operation, the last two were connected to the grid in fall 1985. These 12 reactors produced about 50% of the present electrical demand in Sweden. The remaining 50% are mainly covered by hydro power stations. The operating record for the Swedish reactors has generally been very good. Nevertheles, the Swedish parliament has taken a decision, that nuclear power shall be phased out from the Swedish system not later than the year 2010. Many of them - to use a mild expression-question the wisdom of this decision. The efforts in the waste management area will, however, be given a continued high priority. The primary responsibility for the management of nuclear waste lies with the waste producer. In order to achieve a good coordination and an effective management the four Swedish nuclear power utilities have delegated these responsibilities to the jointly owned Swedish Nuclear Fuel and Waste Management Co., SKB. This means that SKB is responsible for measures required for the implementation of the national nuclear waste management program such as planning, design, construction and operation of waste facilities including the necessary R and D work. The responsibility of the nuclear power utilities also includes the financing of the waste management program. A special funding system, controlled by the authorities, has been established for this purpose

  16. Assessment of the impacts of spent fuel disassembly alternatives on the Nuclear Waste Isolation System

    International Nuclear Information System (INIS)

    1984-07-01

    The objective of this report was to evaluate four possible alternative methods of preparing and packaging spent fuel assemblies for geologic disposal against the Reference Process of unmodified spent fuel. The four alternative processes were: (1) End fitting removal, (2) Fission gas venting and resealing, (3) Fuel bundle disassembly and close packing of fuel pins, and (4) Fuel shearing and immobilization. Systems analysis was used to develop a basis of comparison of the alternatives. Conceptual processes and facility layouts were devised for each of the alternatives, based on technology deemed feasible for the purpose. Assessments were made of 15 principal attributes from the technical, operational, safety/risk, and economic considerations related to each of the alternatives, including both the surface packaging and underground repository operations. Specific attributes of the alternative processes were evaluated by assigning a number for each that expressed its merit relative to the corresponding attribute of the Reference Process. Each alternative process was then ranked by summing the numbers for attributes in each of the four assessment areas and collectively. Fuel bundle disassembly and close packing of fuel pins was ranked the preferred method of disposal of spent fuel. 63 references, 46 figures, 46 tables

  17. Responsible and safe management of spent fuel and radioactive waste in Germany

    International Nuclear Information System (INIS)

    Caspers, Mechthild; Schulte, Lukas; Rüger, Jörg

    2016-01-01

    Key points of the National Programme: • Radioactive Waste Management is to be carried out within German national responsibility and disposal is to be on German territory. • Disposal facilities are to be established at two sites: • Konrad facility for waste with negligible heat generation (commissioning expected in 2022, operation for 40 years); • Disposal facility for, in particular, high level waste according to Site Selection Act (site to be determined by 2031). • Dismantling of NPPs and other nuclear facilities is to be executed in due time so that arising LILW can be emplaced in Konrad facility

  18. Status of nuclear fuel reprocessing, spent fuel storage, and high-level waste disposal. Nuclear Fuel Cycle Committee, California Energy Resources Conservation and Development Commission. Draft report

    International Nuclear Information System (INIS)

    Anon.

    1978-01-01

    An analysis of the current status of technologies and issues in the major portions of the back-end of the nuclear fuel cycle is presented. The discussion on nuclear fuel reprocessing covers the reprocessing requirement, reprocessing technology assessment, technology for operation of reprocessing plants, and approval of reprocessing plants. The chapter devoted to spent fuel storage covers the spent fuel storge problem, the legislative response, options for maintaining full core discharge capacity, prospective availability of alterntive storage options, and the outlook for California. The existence of a demonstrated, developed high-level waste disposal technology is reviewed. Recommendations for Federal programs on high-level waste disposal are made

  19. Neutron interrogator assay system for the Idaho Chemical Processing Plant waste canisters and spent fuel: preliminary description and operating procedures manual

    International Nuclear Information System (INIS)

    Menlove, H.O.; Eccleston, G.; Close, D.A.; Speir, L.G.

    1978-05-01

    A neutron interrogation assay system is being designed for the measurement of waste canisters and spent fuel packages at the new Idaho Chemical Processing Plant to be operated by Allied Chemical Corp. The assay samples consist of both waste canisters from the fluorinel dissolution process and spent fuel assemblies. The assay system is a 252 Cf ''Shuffler'' that employs a cyclic sequence of fast-neutron interrogation with a 252 Cf source followed by delayed-neutron counting to determine the 235 U content

  20. The Management of the Solid Radioactive Waste and Used (Spent) Fuel in South Africa: An Overview of Past, Present and Future Practices

    International Nuclear Information System (INIS)

    Maree, V.

    2015-01-01

    As a country with a nuclear program, the Republic of South Africa (RSA) generates radioactive waste through numerous activities. Radioactive waste, for legal and regulatory purposes, is defined as “material that contains or is contaminated with radio-nuclides at concentrations or activities greater than clearance levels as established by the regulatory body and for which no use is foreseen”. The RSA recognises the importance of the safe management of spent fuel and radioactive waste, for this reason the country is a contracting party to the International Atomic Energy Agency (IAEA) Joint Convention on the Safety of Spent Nuclear Fuel Management and Safety of Radioactive Waste Management. South Africa fulfils its obligations under the Joint Convention by the establishment of a Radioactive Waste Management Policy and Strategy for the Republic of South Africa (Policy and Strategy). It lists the principles and provides direction relating to solid radioactive waste management. Although all key players i.e. government agencies and the private sector are participating to implement the national commitment in a coordinated and cooperative manner, huge uncertainty remains. This poster presents the South African National Radioactive Waste Management Model with a description of – the radioactive waste generated, – the hierarchy of waste management options, – the waste classification scheme adopted, – the current disposal option, – the current management of used (spent) fuel. Good intentions have not always been matched by action and measures are still needed to improve safety especially to integrate the lessons learnt from the Fukushima accident, management of legacy waste, monitoring of disused sealed sources, recovery of orphan sources and additional waste due to operation of potential new nuclear power plants etc. This poster also addresses current discussions and ideas relating to the above challenges. (author)

  1. Risk-informed assessment of radionuclide release from dissolution of spent nuclear fuel and high-level waste glass

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Tae M., E-mail: tae.ahn@nrc.gov

    2017-06-15

    Highlights: • Dissolution of HLW waste form was assessed with long-term risk informed approach. • The radionuclide release rate decreases with time from the initial release rate. • Fast release radionuclides can be dispersed with discrete container failure time. • Fast release radionuclides can be restricted by container opening area. • Dissolved radionuclides may be further sequestered by sorption or others means. - Abstract: This paper aims to detail the different parameters to be considered for use in an assessment of radionuclide release. The dissolution of spent nuclear fuel and high-level nuclear waste glass was considered for risk and performance insights in a generic disposal system for more than 100,000 years. The probabilistic performance assessment includes the waste form, container, geology, and hydrology. Based on the author’s previous extended work and data from the literature, this paper presents more detailed specific cases of (1) the time dependence of radionuclide release, (2) radionuclide release coupled with container failure (rate-limiting process), (3) radionuclide release through the opening area of the container and cladding, and (4) sequestration of radionuclides in the near field after container failure. These cases are better understood for risk and performance insights. The dissolved amount of waste form is not linear with time but is higher at first. The radionuclide release rate from waste form dissolution can be constrained by container failure time. The partial opening area of the container surface may decrease radionuclide release. Radionuclides sequestered by various chemical reactions in the near field of a failed container may become stable with time as the radiation level decreases with time.

  2. The conditioning of low-level waste and of hazardous waste in Austria

    International Nuclear Information System (INIS)

    Krejsa, P.

    1988-01-01

    In 1978 in Austria some 50% (total 30%) of the people voted against the use of nuclear power for the production of electricity. Nevertheless radioactive wastes are produced in Austria from hospitals, industrial and research activities. The concept of waste management was therefore not altered. This paper discusses how, due to the low amounts of wastes (some 200 m 3 /y), of high costs of the waste treatment and of the concept of a central final disposal for radwastes the research center Seibersdorf was charged with the task to act as central storage and conditioning plant for the wastes arising from Austria

  3. Handling of spent nuclear fuel and final storage of vitrified high level reprocessing waste

    International Nuclear Information System (INIS)

    1978-01-01

    A summary of the planning of transportation and plant design in the Swedish KBS project on management and disposal reprocessed radioactive waste. It describes a transportation system, a central storage facility for used fuel elements, a plant for intermediate storage and encapsulation and a final repository for the vitrified waste. Accounts are given for the reprocessing and vitrification. The safety of the entire system is discussed

  4. Quality control of concretes for conditioning of spent radioactive sources; Control de calidad de concretos para acondicionamiento de fuentes radiactivas gastadas

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez N, M.

    2015-07-01

    The spent sealed radioactive sources are considered as a specific type of radioactive wastes and should be properly stored to ensure their integrity and prevent or limit the release of radionuclides in the geosphere. For this, these sources can be put up in concrete matrices. This research presents the evaluation and characterization of five concretes prepared with 4 brands of commercial cements: CPC Extra RS, CPC 30R Impercem of Cemex, Cruz Azul CPC 30R and CPC 30R of Apasco; three sizes of coarse aggregate (<30 mm, 29-11 mm and <10 mm) and fine aggregate (0.0797 mm) used as matrices for conditioning of spent sealed radioactive sources, in order to verify if these specific concretes accredit the standard NOM-019-Nucl-1995. After hardening for 28 days the concrete specimens were subjected to the tests: compressive strength; thermal cycles, irradiation, leaching and permeability, later to be characterized by: 1) X-ray diffraction in order to meet their crystalline phases; 2) scanning electron microscopy, to determine changes in morphology; 3) infrared spectroscopy, to determine the structural changes of concrete from its functional groups; 4) Raman spectroscopy to determine their structural changes and 5) Moessbauer spectroscopy, which determines changes in the oxidation state of iron in the concrete. According to the results and the changes presented by each concrete after applying the tests set by NOM-019-Nucl-1995, is concluded that the concrete made with cement Cemex brand (CPC 30-RS Extra), gravel of particle size 11-29 mm and sieved sand (0.0797 mm) can be used as matrices of spent sealed sources conditioning. Is remarkable a morphological and structural change of the concrete due to gamma irradiation and heat treatment. (Author)

  5. Management of Spent Radiation Source from Radiotherapy

    International Nuclear Information System (INIS)

    Aisyah

    2008-01-01

    Nowadays the use of radioactive source for both radiodiagnostic and radiotherapy in Indonesia hospital increases rapidly. Sealed source used in radiotherapy among others for brachytherapy, teletherapy, bone densitometry, whole blood irradiation and gamma knife (radiosurgery). In line with this, the waste of spent radiation sources will be generated in hospitals. Of course these spent radiation sources must be treated correctly in order to maintain the safety of both the public and the environment. According to the Act No. 10/1997, BATAN, in care of the Radioactive Waste Management Center is the national appointed agency for the management of radioactive waste. The option for waste management by hospitals needs to be expound, either by re-exporting to the supplier of origin, re-exporting to other supplier, re-use by other licensee or sending to the Radioactive Waste Management Center. Usually the waste sent by the hospitals to the center comprises of sealed radiation source of 60 Co, 137 Cs or 226 Ra. The management of spent radiation source in the center is carried out in several steps i.e. conditioning, temporary storage, and long-term storage (final disposal). The conditioning of non 226 Ra is carried out by placing the waste in a 200 litter drum shell, 950 or 350 litter concrete shells, depends on the activity and dimension of the spent radiation source. The conditioning of 226 Ra is carried out by encapsulating the waste in a stainless steel container for long-term storage shield which then placed in a 200 litter drum shell. The temporary storage of the conditioned spent radiation source is carried out by storing it in the center’s temporary storages, either low or medium activity waste. Finally, the conditioned spent radiation source is buried in a disposal facility. For medium half-life spent radiation source, the final disposal is burial it in a shallow-land disposal; mean while, for long half-life spent radiation source, the final disposal is burial it in

  6. Conditioning matrices from high level waste resulting from pyrochemical processing in fluorine salt

    International Nuclear Information System (INIS)

    Grandjean, Agnes; Advocat, Thierry; Bousquet, Nicolas; Jegou, Christophe

    2007-01-01

    Separating the actinides from the fission products through reductive extraction by aluminium in a LiF/AlF 3 medium is a process investigated for pyrometallurgical reprocessing of spent fuel. The process involves separation by reductive salt-metal extraction. After dissolving the fuel or the transmutation target in a salt bath, the noble metal fission products are first extracted by contacting them with a slightly reducing metal. After extracting the metal fission products, then the actinides are selectively separated from the remaining fission products. In this hypothesis, all the unrecoverable fission products would be conditioned as fluorides. Therefore, this process will generate first a metallic waste containing the 'reducible' fission products (Pd, Mo, Ru, Rh, Tc, etc.) and a fluorine waste containing alkali-metal, alkaline-earth and rare earth fission products. Immobilization of these wastes in classical borosilicate glasses is not feasible due to the very low solubility of noble metals, and of fluoride in these hosts. Alternative candidates have therefore been developed including silicate glass/ceramic system for fluoride fission products and metallic ones for noble metal fission products. These waste-forms were evaluated for their confinement properties like homogeneity, waste loading, volatility during the elaboration process, chemical durability, etc. using appropriate techniques. (authors)

  7. Long-term management of Canada's spent nuclear fuel: the nuclear waste management organizations recommendation to government

    International Nuclear Information System (INIS)

    Shaver, K.

    2006-01-01

    Full text: Like many countries with nuclear power programs, Canada is in the process of addressing the long-term management of its spent fuel. The Nuclear Waste Management Organization (NWMO) was tasked through federal legislation to conduct a three-year study of approaches for the long-term management of spent fuel, and to recommend a preferred approach to the Government of Canada. Legislation required NWMO to compare at least three approaches -approaches based on deep geological disposal in the Canadian Shield, storage at nuclear reactor sites, and centralized storage either above or below ground. In assessing the options, NWMO sought a recommendation that would be socially acceptable, technically sound, environmentally responsible and economically feasible. The study drew on a vast base of social, technical, engineering, and financial research, and included an extensive engagement program with the public and Aboriginal peoples. The recommendation emerged from a collaborative dialogue with specialists and citizens, for an approach that is built on sound science and technology and responsive to citizen values. NWMO submitted its completed options study, with recommendation, to the Government in November 2005. NWMO has proposed an alternative approach, Adaptive Phased Management, which has as its key attributes: central containment and isolation of spent fuel in a deep repository, in an appropriate geological formation; contingency provision for central shallow storage; monitoring and retrievability; and a staged, adaptive process of concept implementation, reflecting the complex nature of the task and the desire of citizens to proceed through cautious, deliberate steps of technical demonstration and social acceptance. This paper will review: 1) the development of the assessment framework for comparing the technical options, which incorporated social and ethical considerations expressed by citizens; 2) findings of the assessment; and 3) features of the proposed

  8. Advisory group meeting on safeguards related to final disposal of nuclear material in waste and spent fuel

    International Nuclear Information System (INIS)

    1988-07-01

    This paper is primarily concerned with Section 11 of INFCIRC/153 which provides for the possible termination of safeguards based on a determination that the nuclear material in question has been consumed, has been diluted, or has become practicably irrecoverable. Two distinctly different categories of nuclear material have been suggested for possible termination of safeguards based on a determination that the nuclear material has become practicably irrecoverable: One relates to a variety of low concentration waste materials, meaning thereby materials which the State or plant operator considers to be of questionable economic recoverability and the other relates to the spent fuel placed in facilities described as ''permanent repositories'' which are at least claimed to represent ''final disposal'' facilities and are candidates for a possible determination of practicably irrecoverable. 26 refs, tabs

  9. Advisory group meeting on safeguards related to final disposal of nuclear material in waste and spent fuel (AGM-660)

    International Nuclear Information System (INIS)

    1988-12-01

    The Advisory Group was asked to advise the Agency on the circumstances under which the Agency might logically implement Section 11 of INFCIRC/153, or the comparable Section 26c of INFCIRC/66/rev2, which provides for a determination that nuclear material is 'practicably irrecoverable', and that therefore safeguards could be terminated. This advice was sought, and in the paragraphs that follow is given, in two areas. One relates to 'waste', which the Group understands as referring to material which contains nuclear material that the State/facility operator believes has no economically recoverable value and for which no further use is foreseen. The other relates to spent fuel, which in some cases may be placed in geological 'permanent repositories'

  10. Research programme on the conditioning of nuclear power waste

    International Nuclear Information System (INIS)

    Hultgren, Aa.

    1981-01-01

    Main parts of this programme have included the use of zeolites and titanates to improve reactor waste treatment, the fractionation of high level reprocessing waste by extraction, and a study of liquid partition chromotographic technique for the removal of impurities from reactor cooling circuits. Preparation of large crystal zeolites has been continued and refined. For titanate production new routes are tried to produce material of a form suitable for use in a sorption process. The possibility of lithium-7 recovery from spent PWR resins in the elution process is under study. Final products from different routes of heat treatment of loaded zeolites and titanates are characterized and compared. In parallell to this work a full-scale system is under study including transport, system design, integrated process flowsheets and cost estimates. The aim is to have basis early in 1982 to decide on the merits of a plant at the planned repository for low and medium level waste (SFR), to be commissioned around 1990. In the high level waste fractionation project, a demonstration of the developed process has been performed on a fission product solution from the reprocessing of low burn-up fuel. Disregarding some equipment malfunction the design goal of better than 99.99 % actinide removal from the high level waste waste solution was reached. The basic chemistry of the process seems to be quite tolerant against reasonable flow rate deviations in the extraction cycles. Also the concluding sorption step on mordenite-titanate worked quite well. The small scale experiments on liquid partition chromatographic techniques have included studies of the capacity of various carrier materials treated with NH 4 DEHP or Aliquat-336 to sorb radioactive impurities from reactor water, both in the laboratory and at the Ringhals-1 BWR. (author)

  11. Combined storage system for LWR spent fuel and high-level waste

    International Nuclear Information System (INIS)

    Baxter, B.J.; Ganley, J.T.; Washington, J.A.

    1983-01-01

    The MODREX storage system consists of four basic elements: (1) the storage canister, (2) the storage module, (3) the storage cask, and (4) the transport cask. The storage canister is the heart of the system and, when used in combination with the module or either of the casks, allows the MODREX system to respond quickly to varied storage system requirements. The MODREX system can be used to hold either spent fuel assemblies or canistered solidified HLW. The ability to combine a basic storage canister with either a concrete module or a metal cask provides flexibility to meet a wide range of storage requirements. The spent fuel is stored in a dry, inert atmosphere, which essentially eliminates corrosion or deterioration of the cladding during extended storage periods. The storage canister and concrete storage module provide additional barriers against radioactivity release, enhancing long-term safety. Heat dissipation is passive, eliminating the need for additional emergency cooling systems or special redundancy. Modular, expandable construction permits minimum initial investment and capital carrying charges; additional capacity is built and paid for only as it is needed, retaining flexibility. 6 references, 2 figures, 1 table

  12. Vitrifiable concrete for disposal of spent nuclear fuel reprocessing waste at I.N.E.L

    International Nuclear Information System (INIS)

    Gougar, M.L.D.; Scheetz, B.E.; Siemer, D.D.

    1996-01-01

    A cement capable of being Hot Isostatically Pressed (HIP'ed) into a glass-ceramic has been proposed for use as the waste form for SNF reprocessing wastes at the Idaho National Engineering Laboratories. Such an ''intermediate'' cement, with a composition based on that of common glasses, has been designed and tested. The cement formulations included mixed I.N.E.L. wastes, blast furnace flag, reactive silica, alumina, and I.N.E.L. soil or vermiculite, which was activated with potassium or sodium hydroxide. Modified FUETAP processing was performed and the cement was subsequently characterized. Results of compressive strength testing ranged from 1,452 psi to 4,163 psi, exceeding the NRC-suggested standard of >500 psi. Total dissolved solids concentrations in waste form leachates were calculated from a static leach test in which leachate conductivity was measured. Effective diffusivities for radioisotopes Cs and Sr were calculated from leachate analysis data. Diffusivity values were on the order of 10 -15 to 10 -10 cm 2 /sec, which compare favorably with diffusivities in other materials

  13. Waste isolation facility description for the spent fuel cycle, bedded salt

    International Nuclear Information System (INIS)

    1977-05-01

    Details are given on surface facilities, shafts and hoists, mine facilities, ventilation systems, land improvements, and utilities. Accidents, confinement, and safety criteria are covered. Appendices are provided on mine layout and development, mine operations, shaft construction information, and analysis concerning canister rupture inside the proposed waste isolation facility

  14. Depleted uranium oxides as spent-nuclear-fuel waste-package fill materials

    International Nuclear Information System (INIS)

    Forsberg, C.W.

    1997-01-01

    Depleted uranium dioxide fill inside the waste package creates the potential for significant improvements in package performance based on uranium geochemistry, reduces the potential for criticality in a repository, and consumes DU inventory. As a new concept, significant uncertainties exist: fill properties, impacts on package design, post- closure performance

  15. Challenges in development of matrices for vitrification of old legacy waste and high-level radioactive waste generated from reprocessing of AHWR and FBR spent fuel

    International Nuclear Information System (INIS)

    Kaushik, C.P.

    2012-01-01

    Majority of radioactivity in entire nuclear fuel cycle is concentrated in HLW. A three step strategy for management of HLW has been adopted in India. This involves immobilization of waste oxides in stable and inert solid matrices, interim retrievable storage of the conditioned waste product under continuous cooling and disposal in deep geological formations. Glass has been accepted as most suitable matrix world-wide for immobilization of HLW, because of its attractive features like ability to accommodate wide range of waste constituents, modest processing temperatures, adequate chemical, thermal and radiation stability. Borosilicate glass matrix developed by BARC in collaboration with CGCRI has been adopted in India for immobilization of HLW. In view of compositional variation of HLW from site to site, tailor make changes in the glass formulations are often necessary to incorporate all the waste constituents and having the product of desirable characteristics. The vitrified waste products made with different glass formulations and simulated waste need to be characterized for chemical durability, thermal stability, homogeneity etc. before finalizing a suitable glass formulation. The present extended abstract summarises the studies carried out for development of glass formulations for vitrification of legacy waste and futuristic waste likely to be generated from AHWR and FBR having wide variations in their compositions. The presently stored HLW at Trombay is characterized by significant concentrations of uranium, sodium and sulphate in addition to fission products, corrosion products and small amount of other actinides

  16. Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs draft environmental impact statement

    International Nuclear Information System (INIS)

    1994-06-01

    This document analyzes at a programmatic level the potential environmental consequences over the next 40 years of alternatives related to the transportation, receipt, processing, and storage of spent nuclear fuel under the responsibility of the US Department of Energy. It also analyzes the site-specific consequences of the Idaho National Engineering Laboratory sitewide actions anticipated over the next 10 years for waste and spent nuclear fuel management and environmental restoration. For programmatic spent nuclear fuel management, this document analyzes alternatives of no action, decentralization, regionalization, centralization and the use of the plans that existed in 1992/1993 for the management of these materials. For the Idaho National Engineering Laboratory, this document analyzes alternatives of no action, ten-year plan, minimum and maximum treatment, storage, and disposal of US Department of Energy wastes

  17. Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs Draft Environmental Impact Statement

    International Nuclear Information System (INIS)

    1994-06-01

    This document analyzes at a pregrammatic level the potential environmental consequences over the next 40 years of alternatives related to the transportation, receipt, processing, and storage of spent nuclear fuel under the responsibility of the US Department of Energy. It also analyzes the site-specific consequences of the Idaho National Engineering Laboratory sitewide actions anticipated over the next 10 years for waste and spent nuclear fuel management and environmental restoration. For pregrammatic spent nuclear fuel management, this document analyzes alternatives of no action, decentralization, regionalization, centralization and the use of the plans that existed in 1992/1993 for the management of these materials. For the Idaho National Engineering Laboratory, this document analyzes alternatives of no action, ten-year plan, minimum and maximum treatment, storage, and disposal of US Department of Energy wastes

  18. Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs Draft Environmental Impact Statement. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    1994-06-01

    This