WorldWideScience

Sample records for waste agencies contacts

  1. Southern routes for high-level radioactive waste: Agencies, contacts, and designations

    International Nuclear Information System (INIS)

    1991-05-01

    The Southern Routes for High-Level Radioactive Waste: Agencies, Contacts and Designations is a compendium of sixteen southern states' routing programs for the transportation of high-level radioactive materials. The report identifies the state-designated routing agencies as defined under 49 Code of Federal Regulations (CFR) Part 171 and provides a reference to the source and scope of the agencies' rulemaking authority. Additionally, the state agency and contact designated by the state's governor to receive advance notification and shipment routing information under 10 CFR Parts 71 and 73 are also listed. This report also examines alternative route designations made by southern states and the lessons that were learned from the designation process

  2. Agency practice and future policy in decay storage of radioactive wastes

    International Nuclear Information System (INIS)

    Mitchell, N.G.

    2002-01-01

    The Environment Agency issues authorisations under the Radioactive Substances Act 1993 for the accumulation of radioactive waste at non-nuclear sites prior to disposal. Radioactive decay during the accumulation period reduces the radioactive content of waste packages and provides a waste management option that has become known as decay-in-storage or decay storage. The project brief excluded nuclear licensed sites. A database of information in authorisations and application forms has been constructed. This information has been used alongside a literature review, international contacts, input from the Small Users Liaison Group and a dose assessment to look at the practice of decay storage. The basic principles behind decay storage are presented with specific sections on general safety, waste characterisation and segregation, storage containers, waste stores, and waste treatment and conditioning. The regulatory approach in seven other countries is described. The information collected from Agency public registers is summarised with particular attention given to storage periods of greater than 60 days and the corresponding information available from application forms. Operational experiences are presented. IAEA recommendations are compared with current practice based on the conditions found in authorisations, on the information from application forms and details provided by the Small Users Liaison Group

  3. Contact-Handled Transuranic Waste Acceptance Criteria for the Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    2005-01-01

    The purpose of this document is to summarize the waste acceptance criteria applicable to the transportation, storage, and disposal of contact-handled transuranic (CH-TRU) waste at the Waste Isolation Pilot Plant (WIPP). These criteria serve as the U.S. Department of Energy's (DOE) primary directive for ensuring that CH-TRU waste is managed and disposed of in a manner that protects human health and safety and the environment.The authorization basis of WIPP for the disposal of CH-TRU waste includes the U.S.Department of Energy National Security and Military Applications of Nuclear EnergyAuthorization Act of 1980 (reference 1) and the WIPP Land Withdrawal Act (LWA;reference 2). Included in this document are the requirements and associated criteriaimposed by these acts and the Resource Conservation and Recovery Act (RCRA,reference 3), as amended, on the CH-TRU waste destined for disposal at WIPP.|The DOE TRU waste sites must certify CH-TRU waste payload containers to thecontact-handled waste acceptance criteria (CH-WAC) identified in this document. Asshown in figure 1.0, the flow-down of applicable requirements to the CH-WAC istraceable to several higher-tier documents, including the WIPP operational safetyrequirements derived from the WIPP CH Documented Safety Analysis (CH-DSA;reference 4), the transportation requirements for CH-TRU wastes derived from theTransuranic Package Transporter-Model II (TRUPACT-II) and HalfPACT Certificates ofCompliance (references 5 and 5a), the WIPP LWA (reference 2), the WIPP HazardousWaste Facility Permit (reference 6), and the U.S. Environmental Protection Agency(EPA) Compliance Certification Decision and approval for PCB disposal (references 7,34, 35, 36, and 37). The solid arrows shown in figure 1.0 represent the flow-down of allapplicable payload container-based requirements. The two dotted arrows shown infigure 1.0 represent the flow-down of summary level requirements only; i.e., the sitesmust reference the regulatory source

  4. Contact-Handled Transuranic Waste Acceptance Criteria for the Waste Isolation Pilot Plant

    Energy Technology Data Exchange (ETDEWEB)

    Washington TRU Solutions LLC

    2005-12-29

    The purpose of this document is to summarize the waste acceptance criteria applicable to the transportation, storage, and disposal of contact-handled transuranic (CH-TRU) waste at the Waste Isolation Pilot Plant (WIPP). These criteria serve as the U.S. Department of Energy's (DOE) primary directive for ensuring that CH-TRU waste is managed and disposed of in a manner that protects human health and safety and the environment.The authorization basis of WIPP for the disposal of CH-TRU waste includes the U.S.Department of Energy National Security and Military Applications of Nuclear EnergyAuthorization Act of 1980 (reference 1) and the WIPP Land Withdrawal Act (LWA;reference 2). Included in this document are the requirements and associated criteriaimposed by these acts and the Resource Conservation and Recovery Act (RCRA,reference 3), as amended, on the CH-TRU waste destined for disposal at WIPP.|The DOE TRU waste sites must certify CH-TRU waste payload containers to thecontact-handled waste acceptance criteria (CH-WAC) identified in this document. Asshown in figure 1.0, the flow-down of applicable requirements to the CH-WAC istraceable to several higher-tier documents, including the WIPP operational safetyrequirements derived from the WIPP CH Documented Safety Analysis (CH-DSA;reference 4), the transportation requirements for CH-TRU wastes derived from theTransuranic Package Transporter-Model II (TRUPACT-II) and HalfPACT Certificates ofCompliance (references 5 and 5a), the WIPP LWA (reference 2), the WIPP HazardousWaste Facility Permit (reference 6), and the U.S. Environmental Protection Agency(EPA) Compliance Certification Decision and approval for PCB disposal (references 7,34, 35, 36, and 37). The solid arrows shown in figure 1.0 represent the flow-down of allapplicable payload container-based requirements. The two dotted arrows shown infigure 1.0 represent the flow-down of summary level requirements only; i.e., the sitesmust reference the regulatory source

  5. Audit Report on 'Waste Processing and Recovery Act Acceleration Efforts for Contact-Handled Transuranic Waste at the Hanford Site'

    International Nuclear Information System (INIS)

    2010-01-01

    The Department of Energy's Office of Environmental Management's (EM), Richland Operations Office (Richland), is responsible for disposing of the Hanford Site's (Hanford) transuranic (TRU) waste, including nearly 12,000 cubic meters of radioactive contact-handled TRU wastes. Prior to disposing of this waste at the Department's Waste Isolation Pilot Plant (WIPP), Richland must certify that it meets WIPP's waste acceptance criteria. To be certified, the waste must be characterized, screened for prohibited items, treated (if necessary) and placed into a satisfactory disposal container. In a February 2008 amendment to an existing Record of Decision (Decision), the Department announced its plan to ship up to 8,764 cubic meters of contact-handled TRU waste from Hanford and other waste generator sites to the Advanced Mixed Waste Treatment Project (AMWTP) at Idaho's National Laboratory (INL) for processing and certification prior to disposal at WIPP. The Department decided to maximize the use of the AMWTP's automated waste processing capabilities to compact and, thereby, reduce the volume of contact-handled TRU waste. Compaction reduces the number of shipments and permits WIPP to more efficiently use its limited TRU waste disposal capacity. The Decision noted that the use of AMWTP would avoid the time and expense of establishing a processing capability at other sites. In May 2009, EM allocated $229 million of American Recovery and Reinvestment Act of 2009 (Recovery Act) funds to support Hanford's Solid Waste Program, including Hanford's contact-handled TRU waste. Besides providing jobs, these funds were intended to accelerate cleanup in the short term. We initiated this audit to determine whether the Department was effectively using Recovery Act funds to accelerate processing of Hanford's contact-handled TRU waste. Relying on the availability of Recovery Act funds, the Department changed course and approved an alternative plan that could increase costs by about $25 million

  6. Development of agency guidance for nuclear industry submissions for conditioning intermediate level waste

    International Nuclear Information System (INIS)

    2001-01-01

    The project was carried out by RM Consultants with the overall intention of providing the Environment Agency with a sound basis on which to develop guidance on the conditioning of intermediate level waste (ILW). Waste producers are currently in the process of retrieving and conditioning many of its ILW waste streams. This is at a time where the nature and timing of any future disposal route for these wastes is uncertain. The Agency is concerned that decisions taken on how ILW should be conditioned take into account matters of interest to the Agency, such as the future disposability of wastes, the production of secondary wastes and releases to the environment. This study provides information on the arrangements by which waste producers' proposals for the conditioning of intermediate level waste are assessed, and on the Agency's role in liaising with the Nuclear Installations Inspectorate, waste producers and Nirex. The report makes recommendations on the content and handling of waste producers' proposals in order that the Agency can satisfy itself that the environmental impact of waste conditioning and the disposability of the resultant waste packages is addressed in a timely and consistent manner

  7. Certification document for newly generated contact-handled transuranic waste

    International Nuclear Information System (INIS)

    Box, W.D.; Setaro, J.

    1984-01-01

    The US Department of Energy has requested that all national laboratories handling defense waste develop and augment a program whereby all newly generated contact-handled transuranic (TRU) waste be contained, stored, and then shipped to the Waste Isolation Pilot Plant (WIPP) in accordance with the requirements set forth in WIPP-DOE-114. The program described in this report delineates how Oak Ridge National Laboratory intends to comply with these requirements and lists the procedures used by each generator to ensure that their TRU wastes are certifiable for shipment to WIPP

  8. Update on low-level waste compacts and state agencies

    International Nuclear Information System (INIS)

    Tenan, M.; Rabbe, D.; Thompson, P.

    1995-01-01

    This article updates information on the following agencies involved in low-level radioactive wastes: Appalachian States Low-Level Radioactive Waste Commission; Central Interstate Low-Level radioactive Waste Commission; Central Midwest Interstate Low-Level radioactive Waste Compact; Massachusetts Low-Level radioactive Waste Management Board; Michigan Low-Level Radioactive Waste Authority; Midwest Interstate Low-Level Radioactive Waste Commission; New York State Low-Level Radioactive Waste Siting Commission; Northeast Interstate Low-Level Radioactive Waste Compact; Northwest Interstate Compact on Low-Level Radioactive Waste Management; Rocky Mountain Low-Level Radioactive Waste Board; Southeast Compact Commission for Low-Level Radioactive Waste Management;Southwest Low-Level Radioactive Waste Commission; Texas Low-Level Radioactive Waste Disposal Authority

  9. The role of bureaucratic expertise in nuclear waste policy: Agency power and policy development

    International Nuclear Information System (INIS)

    Henkels, M.

    1989-01-01

    The role of agency expertise in the nuclear waste policy process is explored during three periods: (1) 1957-1959 when nuclear wastes entered the public agenda, (2) 1970-1972 when the Atomic Energy Commission attempted to establish a waste repository in Kansas, and (3) 1984-1986 during the Department of Energy's implementation of the Nuclear Waste Policy Act of 1982. The study evaluated whether the preconditions for dependence on or deference to agency expertise have become less favorable, weakening agency control of the policy process. Five factors of expertise power are evaluated, beginning with the agency's role in the nuclear-energy and radioactive-waste information system. Perspectives on nuclear energy generally and of waste issues specifically are examined next; both indicate attitudes on the tractability of the problem and the likelihood of policy success. References to agency behavior and policies are used to evaluate views of agency competency. Finally, views of agency trustworthiness are examined through the comparison of portrayals of agency priorities and motivations. Agency expertise is evaluated in four contexts: (1) Congressional hearings, (2) nationally prominent newspapers, (3) journals of the scientific community, and (4) state and local papers of affected areas. State and tribal officials involved in the 1980s' nuclear waste policy process were surveyed also

  10. Review of radioactive waste management research in the Agency

    International Nuclear Information System (INIS)

    2002-01-01

    The report presents a concise summary of the Programme of Radioactive Waste Management Research carried out by the Agency in the period 1996 to 2001. It not only provides information, which is relevant to the Agency's responsibilities, but also offers an input to the government's development of a policy for managing solid radioactive waste in the UK. The research projects have included laboratory and field scientific studies, reviews of existing scientific data and understanding, development of assessment methodologies, and development of technical support software and databases. The Agency has participated widely in internationally-supported projects and on jointly-funded projects amongst UK regulators, advisory bodies and industry

  11. Centralized processing of contact-handled TRU waste feasibility analysis

    International Nuclear Information System (INIS)

    1986-12-01

    This report presents work for the feasibility study of central processing of contact-handled TRU waste. Discussion of scenarios, transportation options, summary of cost estimates, and institutional issues are a few of the subjects discussed

  12. 78 FR 14774 - U.S. Environmental Solutions Toolkit-Universal Waste

    Science.gov (United States)

    2013-03-07

    ...--Universal Waste AGENCY: International Trade Administration, DOC. ACTION: Notice and Request for Comment... or services relevant to management of universal waste. The Department of Commerce continues to..., Web site address, contact information, and universal waste management category of interest from the...

  13. Transportation system (TRUPACT) for contact-handled transuranic wastes

    International Nuclear Information System (INIS)

    Romesberg, L.E.; Pope, R.B.; Burgoyne, R.M.

    1982-04-01

    Contact-handled transuranic defense waste is being, and will continue to be, moved between a number of locations in the United States. The DOE is sponsoring development of safe, efficient, licensable, and cost-effective transportation systems to handle this waste. The systems being developed have been named TRUPACT which stands for TRansUranic PACkage Transporter. The system will be compatible with Type A packagings used by waste generators, interim storage facilities, and repositories. TRUPACT is required to be a Type B packaging since larger than Type A quantities of some radionuclides (particularly plutonium) may be involved in the collection of Type A packagings. TRUPACT must provide structural and thermal protection to the waste in hypothetical accident environments specified in DOT regulations 49CFR173 and NRC regulations 10CFR71. Preliminary design of the systems has been completed and final design for a truck system is underway. The status of the development program is reviewed in this paper and the reference design is described. Tests that have been conducted are discussed and long-term program objectives are reviewed

  14. 78 FR 14773 - U.S. Environmental Solutions Toolkit-Medical Waste

    Science.gov (United States)

    2013-03-07

    ...--Medical Waste AGENCY: International Trade Administration, DOC. ACTION: Notice and Request for Comment... or services relevant to management of medical waste. The Department of Commerce continues to develop... encouraged to submit their company's name, Web site address, contact information, and medical waste...

  15. State of Nevada, Agency for Nuclear Projects/Nuclear Waste Project Office narrative report, January 1992

    International Nuclear Information System (INIS)

    1992-01-01

    The Agency for Nuclear Projects/Nuclear Waste Project Office (NWPO) is the State of Nevada agency designated by State law to monitor and oversee US Department of Energy (DOE) activities relative to the possible siting, construction, operation and closure of a high-level nuclear waste repository at Yucca Mountain and to carry out the State of Nevada's responsibilities under the Nuclear Waste Policy Act of 1982. During the reporting period the NWPO continued to work toward the five objectives designed to implement the Agency's oversight responsibilities: (1) Assure that the health and safety of Nevada's citizens are adequately protected with regard to any federal high-level radioactive waste program within the State; (2) Take the responsibilities and perform the duties of the State of Nevada as described in the Nuclear Waste Policy Act of 1982 (Public Law 97-425) and the Nuclear Waste Policy Amendments Act of 1987; (3) Advise the Governor, the State Commission on Nuclear Projects and the Nevada State Legislature on matters concerning the potential disposal of high-level radioactive waste in the State; (4) Work closely and consult with affected local governments and State agencies; (5) Monitor and evaluate federal planning and activities regarding high-level radioactive waste disposal. Plan and conduct independent State studies regarding the proposed repository

  16. Savannah River Certification Plan for newly generated, contact-handled transuranic waste

    International Nuclear Information System (INIS)

    Wierzbicki, K.S.

    1986-01-01

    This Certification Plan document describes the necessary processes and methods for certifying unclassified, newly generated, contact-handled solid transuranic (TRU) waste at the Savannah River Plant and Laboratory (SRP, SRL) to comply with the Waste Isolation Pilot Plant Waste Acceptance Criteria (WIPP-WAC). Section 2 contains the organizational structure as related to waste certification including a summary of functional responsibilities, levels of authority, and lines of communication of the various organizations involved in certification activities. Section 3 describes general plant operations and TRU waste generation. Included is a description of the TRU Waste classification system. Section 4 contains the SR site TRU Waste Quality Assurance Program Plan. Section 5 describes waste container procurement, inspection, and certification prior to being loaded with TRU waste. Certification of waste packages, after package closure in the waste generating areas, is described in Section 6. The packaging and certification of individual waste forms is described in Attachments 1-5. Included in each attachment is a description of controls used to ensure that waste packages meet all applicable waste form compliance requirements for shipment to the WIPP. 3 figs., 3 tabs

  17. 75 FR 50932 - Massachusetts: Final Authorization of State Hazardous Waste Management Program Revisions

    Science.gov (United States)

    2010-08-18

    ...: Final Authorization of State Hazardous Waste Management Program Revisions AGENCY: Environmental...-1990. FOR FURTHER INFORMATION CONTACT: Robin Biscaia, RCRA Waste Management Section, Office of Site... final [[Page 50933

  18. TRU [transuranic] waste certification compliance requirements for acceptance of newly generated contact-handled wastes to be shipped to the Waste Isolation Pilot Plant: Revision 2

    International Nuclear Information System (INIS)

    1989-01-01

    Compliance requirements are presented for certifying that unclassified, newly generated (NG), contact-handled (CH) transuranic (TRU) solid wastes from defense programs meet the Waste Isolation Pilot Plant (WIPP) Waste Acceptance Criteria (WAC). Where appropriate, transportation and interim storage requirements are incorporated; however, interim storage sites may have additional requirements consistent with these requirements. All applicable Department of Energy (DOE) orders must continue to be met. The compliance requirements for stored or buried waste are not addressed in this document. The compliance requirements are divided into four sections, primarily determined by the general feature that the requirements address. These sections are General Requirements, Waste Container Requirements, Waste Form Requirements, and Waste Package Requirements. The waste package is the combination of waste container and waste. 10 refs., 1 fig

  19. Neutron and gamma-ray nondestructive examination of contact-handled transuranic waste at the ORNL TRU Waste Drum Assay Facility

    International Nuclear Information System (INIS)

    Schultz, F.J.; Coffey, D.E.; Norris, L.B.; Haff, K.W.

    1985-03-01

    A nondestructive assay system, which includes the Neutron Assay System (NAS) and the Segmented Gamma Scanner (SGS), for the quantification of contact-handled (<200 mrem/h total radiation dose rate at contact with container) transuranic elements (CH-TRU) in bulk solid waste contained in 208-L and 114-L drums has been in operation at the Oak Ridge National Laboratory since April 1982. The NAS has been developed and demonstrated by Los Alamos National Laboratory (LANL) and the Oak Ridge National Laboratory (ORNL) for use by most US Department of Energy Defense Plant (DOE-DP) sites. More research and development is required, however, before the NAS can provide complete assay results for other than routine defense waste. To date, 525 ORNL waste drums have been assayed, with varying degrees of success. The isotopic complexity of the ORNL waste creates a correspondingly complex assay problem. The NAS and SGS assay data are presented and discussed. Neutron matrix effects, the destructive examination facility, and enriched uranium fuel-element assays are also discussed

  20. 75 FR 65625 - Agency Information Collection Activities; Proposed Collection; Comment Request; Hazardous Waste...

    Science.gov (United States)

    2010-10-26

    ... Activities; Proposed Collection; Comment Request; Hazardous Waste Specific Unit Requirements, and Special Waste Processes and Types, EPA ICR Number 1572.08, OMB Control Number 2050-0050 AGENCY: Environmental..., and Special Waste Processes and Types. ICR numbers: EPA ICR No. 1572.08, OMB Control No. 2050-0050...

  1. Hazardous Waste Disposal Costs for The Defense Logistics Agency

    National Research Council Canada - National Science Library

    1999-01-01

    This audit is part of the overall audit, "DoD Hazardous Waste Disposal Costs," (Project No. 9CK-5021). The overall audit was jointly conducted by the Inspector General, DoD, and the Army, Navy, and Air Force audit agencies...

  2. Radioactive waste management: a summary of state laws and administration. National Low-Level Radioactive Waste Mangement Program

    International Nuclear Information System (INIS)

    1983-05-01

    This is the first quarterly update of Radioactive Waste Management: A Summary of State Laws and Administration. Because states have been very active on waste management issues, the whole report is being reissued in this update. It covers the administration, the legislature and the laws in the 50 states related to radioactive waste. The report for each state is divided into four sections: Cover Page; Administrative; Legislative; and Applicable Legislation. The cover page indicates whether or not it is an Agreement State, the low-level waste compacts in which the state is listed as an eligible state, and the high-level waste repository site screening regions in which the state or a portion of it is located. The administrative section provides information on the governor, lead agencies, other involved administrative agencies, relevant commissions, boards and councils and various contacts. The Legislative section provides general information on the legislature and lists legislative leaders, the relevant committees and their chairs and a legislative contact. In the section covering Applicable Legislation, laws related to radiation protection, low-level waste and high-level waste have been summarized. Hazardous waste siting laws are included for states that do not have a siting law covering radioactive waste. The section also contains summaries of relevant bills introduced in 1982 and 1983 legislative sessions and their disposition. In general, the information in this report is accurate as of 15 April 1983

  3. Order of 7 November 1979 creating a National Radioactive Waste Management Agency within the Atomic Energy Commission

    International Nuclear Information System (INIS)

    1979-01-01

    The new Agency set up by this Decree succeeds the CEA Waste Management Bureau. It is responsible for long-term radioactive waste management operations and, in particular, the management of long-term waste repositories either directly or through third parties acting on its behalf. It is also in charge of designing and setting-up new long-term waste repositories, of preparing in consultation with waste producers, specifications for waste storage and conditioning prior to disposal, of contributing to research and work on long-term waste management processes. The Agency will be consulted on R and D programmes as well as on draft regulations on radioactive waste management. (NEA) [fr

  4. Molten salt hazardous waste disposal process utilizing gas/liquid contact for salt recovery

    International Nuclear Information System (INIS)

    Grantham, L.F.; McKenzie, D.E.

    1984-01-01

    The products of a molten salt combustion of hazardous wastes are converted into a cooled gas, which can be filtered to remove hazardous particulate material, and a dry flowable mixture of salts, which can be recycled for use in the molten salt combustion, by means of gas/liquid contact between the gaseous products of combustion of the hazardous waste and a solution produced by quenching the spent melt from such molten salt combustion. The process results in maximizing the proportion of useful materials recovered from the molten salt combustion and minimizing the volume of material which must be discarded. In a preferred embodiment a spray dryer treatment is used to achieve the desired gas/liquid contact

  5. Hazardous-waste landfill research, US EPA (United States Environmental Protection Agency) program

    Energy Technology Data Exchange (ETDEWEB)

    Schomaker, N.B.

    1988-08-01

    The Land Pollution Control Division (LPCD), Hazardous Waste Engineering Research Lab. (HWERL), U.S. Environmental Protection Agency, in Cincinnati, Ohio, has responsibility for research in solid- and hazardous-waste management with respect to land disposal of wastes. To fulfill the responsibility, the LPCD is developing concepts and is documenting the environmental effects of various waste-disposal practices; and is collecting data necessary to support implementation of disposal guidelines mandated by the Hazardous and Solid Waste Amendments of 1984 (HSWA). This paper presents an overview of the land-disposal research associated with the LPCD hazardous waste program plan and will report the current status of work in the following categorical areas: Hazardous-waste facilities - landfills and surface impoundments; Non-Hazardous waste facilities; and Technology transfer.

  6. Agency for Toxic Substances and Disease Registry (ATSDR) Hazardous Waste Site Polygon Data, 1996

    Data.gov (United States)

    National Aeronautics and Space Administration — The Agency for Toxic Substances and Disease Registry (ATSDR) Hazardous Waste Site Polygon Data, 1996 consists of 2042 polygons for selected hazardous waste sites...

  7. Waste management facilities cost information for transportation of radioactive and hazardous materials

    Energy Technology Data Exchange (ETDEWEB)

    Feizollahi, F.; Shropshire, D.; Burton, D.

    1995-06-01

    This report contains cost information on the U.S. Department of Energy (DOE) Complex waste streams that will be addressed by DOE in the programmatic environmental impact statement (PEIS) project. It describes the results of the task commissioned by DOE to develop cost information for transportation of radioactive and hazardous waste. It contains transportation costs for most types of DOE waste streams: low-level waste (LLW), mixed low-level waste (MLLW), alpha LLW and alpha MLLW, Greater-Than-Class C (GTCC) LLW and DOE equivalent waste, transuranic (TRU) waste, spent nuclear fuel (SNF), and hazardous waste. Unit rates for transportation of contact-handled (<200 mrem/hr contact dose) and remote-handled (>200 mrem/hr contact dose) radioactive waste are estimated. Land transportation of radioactive and hazardous waste is subject to regulations promulgated by DOE, the U.S. Department of Transportation (DOT), the U.S. Nuclear Regulatory Commission (NRC), and state and local agencies. The cost estimates in this report assume compliance with applicable regulations.

  8. Results from simulated contact-handled transuranic waste experiments at the Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    Molecke, M.A.; Sorensen, N.R.; Krumhansl, J.L.

    1993-01-01

    We conducted in situ experiments with nonradioactive, contact-handled transuranic (CH TRU) waste drums at the Waste Isolation Pilot Plant (WIPP) facility for about four years. We performed these tests in two rooms in rock salt, at WIPP, with drums surrounded by crushed salt or 70 wt % salt/30 wt % bentonite clay backfills, or partially submerged in a NaCl brine pool. Air and brine temperatures were maintained at ∼40C. These full-scale (210-L drum) experiments provided in situ data on: backfill material moisture-sorption and physical properties in the presence of brine; waste container corrosion adequacy; and, migration of chemical tracers (nonradioactive actinide and fission product simulants) in the near-field vicinity, all as a function of time. Individual drums, backfill, and brine samples were removed periodically for laboratory evaluations. Waste container testing in the presence of brine and brine-moistened backfill materials served as a severe overtest of long-term conditions that could be anticipated in an actual salt waste repository. We also obtained relevant operational-test emplacement and retrieval experience. All test results are intended to support both the acceptance of actual TRU wastes at the WIPP and performance assessment data needs. We provide an overview and technical data summary focusing on the WIPP CH TRU envirorunental overtests involving 174 waste drums in the presence of backfill materials and the brine pool, with posttest laboratory materials analyses of backfill sorbed-moisture content, CH TRU drum corrosion, tracer migration, and associated test observations

  9. Agency for Nuclear Projects/Nuclear Waste Project Office final progress report

    International Nuclear Information System (INIS)

    1992-01-01

    The Nevada Agency for Nuclear Projects/Nuclear Waste Project Office (NWPO) was formally established by Executive Policy in 1983 following passage of the federal Nuclear Waste Policy Act of 1982 (Act). That Act provides for the systematic siting, construction, operation, and closure of high-level radioactive defense and research by-products and other forms of high-level radioactive waste from around the country which will be stored at such repositories. In 1985 the Nevada legislature formally established the NWPO as a distinct and statutorily authorized agency to provide support to the Governor and State Legislature on matters concerning the high-level nuclear waste programs. The NWPO utilized a small, central staff supplemented by contractual services for needed technical and specialized expertise in order to provide high quality oversight and monitoring of federal activities, to conduct necessary independent studies, and to avoid unnecessary duplication of efforts. This report summarizes the results of this ongoing program to ensure that risks to the environment and to human safety are minimized. It includes findings in the areas of hydrogeology, geology, quality assurance activities, repository engineering, legislature participation, socioeconomic affects, risk assessments, monitoring programs, public information dissemination, and transportation activities. The bulk of the reporting deals with the Yucca Mountain facility

  10. Experimental Study on the Interaction Between Contacting Barrier Materials for Containment of Radioactive Wastes

    Science.gov (United States)

    Huang, W. H.; Chang, H. C.

    2017-12-01

    The disposal of low- and intermediate-level radioactive wastes requires use of multi-barriers for isolation of the wastes from the biosphere. Typically, the engineered barriers are composed of a concrete vault, buffer and backfill materials. Zhishin clay and Black Hill bentonite were used as raw clay material in making buffer and backfill materials in this study. These clays were compacted to make buffer material, or mixed with Taitung area argillite to produce backfill material for potential application as barriers for the disposal of low- and intermediate-level radioactive wastes. The interaction between concrete barrier and the buffer/backfill material is simulated by an accelerated migration test to investigate the effect of contacting concrete on the expected functions of buffer/backfill material. The results show buffer material close to the contact with concrete exhibits significant change in the ratio of calcium/sodium exchange capacity, due to the move of calcium ions released from the concrete. The shorter the distance from the contacting interface, the ratio of the calcium/sodium concentration in buffer/backfill materials increases. The longer the distance from the interface, the effect of the contact on alteration in clays become less significant. Also, some decreases in swelling capacity in the buffer/backfill material near the concrete-backfill interface are noted. Finally, a comparison is made between Zhisin clay and Balck Hill bentonite on the interaction between concrete and the two clays. Black Hill bentonite was found to be influenced more by the interaction, because of the higher content of montmorillonite. On the other hand, being a mixture of clay and sand, backfill material is less affected by the decalsification of concrete at the contact than buffer material.

  11. Specifications of the International Atomic Energy Agency's international project on safety assessment driven radioactive waste management solutions

    International Nuclear Information System (INIS)

    Ghannadi, M.; Asgharizadeh, F.; Assadi, M. R.

    2008-01-01

    Radioactive waste is produced in the generation of nuclear power and the production and use of radioactive materials in the industry, research, and medicine. The nuclear waste management facilities need to perform a safety assessment in order to ensure the safety of a facility. Nuclear safety assessment is a structured and systematic way of examining a proposed facility, process, operation and activity. In nuclear waste management point of view, safety assessment is a process which is used to evaluate the safety of radioactive waste management and disposal facilities. In this regard the International Atomic Energy Agency is planed to implement an international project with cooperation of some member states. The Safety Assessment Driving Radioactive Waste Management Solutions Project is an international programme of work to examine international approaches to safety assessment in aspects of p redisposal r adioactive waste management, including waste conditioning and storage. This study is described the rationale, common aspects, scope, objectives, work plan and anticipated outcomes of the project with refer to International Atomic Energy Agency's documents, such as International Atomic Energy Agency's Safety Standards, as well as the Safety Assessment Driving Radioactive Waste Management Solutions project reports

  12. Analysis of low-level wastes. Review of hazardous waste regulations and identification of radioactive mixed wastes. Final report

    International Nuclear Information System (INIS)

    Bowerman, B.S.; Kempf, C.R.; MacKenzie, D.R.; Siskind, B.; Piciulo, P.L.

    1985-12-01

    Regulations governing the management and disposal of hazardous wastes have been promulgated by the US Environmental Protection Agency under authority of the Resource Conservation and Recovery Act. These were reviewed and compared with the available information on the properties and characteristics of low-level radioactive wastes (LLW). In addition, a survey was carried out to establish a data base on the nature and composition of LLW in order to determine whether some LLW streams could also be considered hazardous as defined in 40 CFR Part 261. For the survey, an attempt was made to obtain data on the greatest volume of LLW; hence, as many large LLW generators as possible were contacted. The list of 238 generators contacted was based on information obtained from NRC and other sources. The data base was compiled from completed questionnaires which were returned by 97 reactor and non-reactor facilities. The waste volumes reported by these respondents corresponded to approximately 29% of all LLW disposed of in 1984. The analysis of the survey results indicated that three broad categories of LLW may be radioactive mixed wastes. They include: waste containing organic liquids, disposed of by all types of generators; wastes containing lead metal, i.e., discarded shielding or lead containers; wastes containing chromates, i.e., nuclear power plant process wastes where chromates are used as corrosion inhibitors. Certain wastes, specific to particular generators, were identified as potential mixed wastes as well. 8 figs., 48 tabs

  13. Westinghouse Hanford Company plan for certifying newly generated contact-handled transuranic waste for emplacement in the Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    Lipinski, R.M.; Sheehan, J.S.

    1992-07-01

    Westinghouse Hanford Company (Westinghouse Hanford) currently manages an interim storage site for Westinghouse Hanford and non-Westinghouse Hanford-generated transuranic (TRU) waste and operates TRU waste generating facilities within the Hanford Site in Washington State. Approval has been received from the Waste Acceptance Criteria Certification Committee (WACCC) and Westinghouse Hanford TRU waste generating facilities to certify newly generated contact-handled TRU (CH-TRU) solid waste to meet the Waste Acceptance Criteria (WAC). This document describes the plan for certifying newly generated CH-TRU solid waste to meet the WAC requirements for storage at the Waste Isolation Pilot Plant (WIPP) site. Attached to this document are facility-specific certification plans for the Westinghouse Hanford TRU waste generators that have received WACCC approval. The certification plans describe operations that generate CH-TRU solid waste and the specific procedures by which these wastes will be certified and segregated from uncertified wastes at the generating facilities. All newly generated CH-TRU solid waste is being transferred to the Transuranic Storage and Assay Facility (TRUSAF) and/or a controlled storage facility. These facilities will store the waste until the certified TRU waste can be sent to the WIPP site and the non-certified TRU waste can be sent to the Waste Receiving and Processing Facility. All non-certifiable TRU waste will be segregated and clearly identified

  14. Process Knowledge Summary Report for Materials and Fuels Complex Contact-Handled Transuranic Debris Waste

    Energy Technology Data Exchange (ETDEWEB)

    R. P. Grant; P. J. Crane; S. Butler; M. A. Henry

    2010-02-01

    This Process Knowledge Summary Report summarizes the information collected to satisfy the transportation and waste acceptance requirements for the transfer of transuranic (TRU) waste between the Materials and Fuels Complex (MFC) and the Advanced Mixed Waste Treatment Project (AMWTP). The information collected includes documentation that addresses the requirements for AMWTP and the applicable portion of their Resource Conservation and Recovery Act permits for receipt and treatment of TRU debris waste in AMWTP. This report has been prepared for contact-handled TRU debris waste generated by the Idaho National Laboratory at MFC. The TRU debris waste will be shipped to AMWTP for purposes of supercompaction. This Process Knowledge Summary Report includes information regarding, but not limited to, the generation process, the physical form, radiological characteristics, and chemical contaminants of the TRU debris waste, prohibited items, and packaging configuration. This report, along with the referenced supporting documents, will create a defensible and auditable record for waste originating from MFC.

  15. DOE assay methods used for characterization of contact-handled transuranic waste

    Energy Technology Data Exchange (ETDEWEB)

    Schultz, F.J. (Oak Ridge National Lab., TN (United States)); Caldwell, J.T. (Pajarito Scientific Corp., Los Alamos, NM (United States))

    1991-08-01

    US Department of Energy methods used for characterization of contact-handled transuranic (CH-TRU) waste prior to shipment to the Waste Isolation Pilot Plant (WIPP) are described and listed by contractor site. The methods described are part of the certification process. All CH-TRU waste must be assayed for determination of fissile material content and decay heat values prior to shipment and prior to storage on-site. Both nondestructive assay (NDA) and destructive assay methods are discussed, and new NDA developments such as passive-action neutron (PAN) crate counter improvements and neutron imaging are detailed. Specifically addressed are assay method physics; applicability to CH-TRU wastes; calibration standards and implementation; operator training requirements and practices; assay procedures; assay precision, bias, and limit of detection; and assay limitation. While PAN is a new technique and does not yet have established American Society for Testing and Materials. American National Standards Institute, or Nuclear Regulatory Commission guidelines or methods describing proper calibration procedures, equipment setup, etc., comparisons of PAN data with the more established assay methods (e.g., segmented gamma scanning) have demonstrated its reliability and accuracy. Assay methods employed by DOE have been shown to reliable and accurate in determining fissile, radionuclide, alpha-curie content, and decay heat values of CH-TRU wastes. These parameters are therefore used to characterize packaged waste for use in certification programs such as that used in shipment of CH-TRU waste to the WIPP. 36 refs., 10 figs., 7 tabs.

  16. DOE assay methods used for characterization of contact-handled transuranic waste

    International Nuclear Information System (INIS)

    Schultz, F.J.; Caldwell, J.T.

    1991-08-01

    US Department of Energy methods used for characterization of contact-handled transuranic (CH-TRU) waste prior to shipment to the Waste Isolation Pilot Plant (WIPP) are described and listed by contractor site. The methods described are part of the certification process. All CH-TRU waste must be assayed for determination of fissile material content and decay heat values prior to shipment and prior to storage on-site. Both nondestructive assay (NDA) and destructive assay methods are discussed, and new NDA developments such as passive-action neutron (PAN) crate counter improvements and neutron imaging are detailed. Specifically addressed are assay method physics; applicability to CH-TRU wastes; calibration standards and implementation; operator training requirements and practices; assay procedures; assay precision, bias, and limit of detection; and assay limitation. While PAN is a new technique and does not yet have established American Society for Testing and Materials. American National Standards Institute, or Nuclear Regulatory Commission guidelines or methods describing proper calibration procedures, equipment setup, etc., comparisons of PAN data with the more established assay methods (e.g., segmented gamma scanning) have demonstrated its reliability and accuracy. Assay methods employed by DOE have been shown to reliable and accurate in determining fissile, radionuclide, alpha-curie content, and decay heat values of CH-TRU wastes. These parameters are therefore used to characterize packaged waste for use in certification programs such as that used in shipment of CH-TRU waste to the WIPP. 36 refs., 10 figs., 7 tabs

  17. An evaluation of electric melter refractories for contact with glass used for the immobilisation of nuclear waste

    International Nuclear Information System (INIS)

    Hayward, P.J.; George, I.M.

    1987-01-01

    Corrosion tests have been performed on twelve candidate refractories in contact with borosilicate, titanosilicate, and aluminosilicate melts, in order to rank them for use in an all-electric melter for the production of waste form materials suitable for immobilising nuclear fuel recycle wastes. Viscosities and electrical conductivities of the melts have also been measured to enable optimum processing conditions to be determined. Of the materials tested, the choice of glass contact refractory for the Joule heated melting of the borosilicate and titanosilicate compositions is Monofrax K3 or SEPR 2161, in conjunction with tin oxide electrodes. The aluminosilicate glass waste form would require an alternative method of production (sol-gel processing, or sintering of a precursor frit), because of its high viscosity. (author)

  18. Waste management facilities cost information for transportation of radioactive and hazardous materials

    International Nuclear Information System (INIS)

    Feizollahi, F.; Shropshire, D.; Burton, D.

    1995-06-01

    This report contains cost information on the U.S. Department of Energy (DOE) Complex waste streams that will be addressed by DOE in the programmatic environmental impact statement (PEIS) project. It describes the results of the task commissioned by DOE to develop cost information for transportation of radioactive and hazardous waste. It contains transportation costs for most types of DOE waste streams: low-level waste (LLW), mixed low-level waste (MLLW), alpha LLW and alpha MLLW, Greater-Than-Class C (GTCC) LLW and DOE equivalent waste, transuranic (TRU) waste, spent nuclear fuel (SNF), and hazardous waste. Unit rates for transportation of contact-handled ( 200 mrem/hr contact dose) radioactive waste are estimated. Land transportation of radioactive and hazardous waste is subject to regulations promulgated by DOE, the U.S. Department of Transportation (DOT), the U.S. Nuclear Regulatory Commission (NRC), and state and local agencies. The cost estimates in this report assume compliance with applicable regulations

  19. Radioactive waste management: a summary of state laws and administration

    International Nuclear Information System (INIS)

    1983-09-01

    This is the second update of Radioactive Waste Management: A Summary of State Laws and Administration. It completely replaces the first update (15 April 1983). The updated report covers the administration, the legislature and the laws in the 50 states related to radioactive waste. The report for each state is divided into four sections: Cover Page; Administrative; Legislative; and Applicable Legislation. The cover page indicates whether or not it is an Agreement State, the low-level waste compacts in which the state is listed as an eligible state, and the high-level waste repository site screening regions in which the state or a portion of it is located. Included under the compacts is a description of what the state has done or currently plans to do, as well as the compact status of other eligible states in the region. The Administrative section provides information on the governor, lead agencies, other involved administrative agencies, relevant commissions, boards and councils and various contacts. In a number of states, Boards of Health or similar boards are lead agencies, so they have been listed in that section. Each board's administrative agency is listed under it. The Legislative section provides general information on the legislature and lists legislative leaders, the relevant committees and their chairs, and a legislative contact. Many legislatures do not set a date for session adjournment, so the date listed represents a combination of information provided by the states and by the history of past sessions. In the section covering Applicable Legislation, laws related to radiation protection, low-level waste and high-level waste have been summarized. Hazardous waste siting laws are included for states that do not have a siting law covering radioactive waste. The section also contains summaries of relevant bills introduced in 1982 and 1983 legislative sessions and this disposition. In general, the information in this report is accurate as of July 15, 1983

  20. Waste Management Facilities Cost Information for transportation of radioactive and hazardous materials. Revision 1

    International Nuclear Information System (INIS)

    Feizollahi, F.; Shropshire, D.; Burton, D.

    1994-09-01

    This report contains transportation costs for most types of DOE waste streams: low-level waste (LLW), mixed low-level waste (MLLW), alpha LLW and alpha MLLW, greater-than-Class C (GTCC) LLW and DOE equivalent waste, transuranic waste (TRU), spent nuclear fuel (SNF), and hazardous waste. Unit rates for transportation of contact-handled ( 200 mrem/hr contact dose) radioactive waste have been estimated previously, and a summary has been included in earlier WMFCI reports. In order to have a single source for obtaining transportation cost for all radioactive waste, the transportation costs for the contact- and remote-handled wastes are repeated in this report. Land transportation of radioactive and hazardous waste is subject to regulations promulgated by DOE, the US Department of Transportation (DOT), the US Nuclear Regulatory Commission (NRC), and state and local agencies. The cost estimates in this report assume compliance with applicable regulations. It should be noted that the trend is toward greater restrictions on transportation of radioactive waste (e.g., truck or rail car speed, shipping route, security escort, and personnel training requirements), which may have a significant impact on future costs

  1. The strategy of APO-Hazardous Waste Management Agency in forming the model of public acceptance of Croatian Waste Management Facility

    International Nuclear Information System (INIS)

    Klika, M.C.; Kucar-Dragicevic, S.; Lokner, V.

    1996-01-01

    Some of basic elements related to public participation in hazardous and radioactive waste management in Croatia are underlined in the paper. Most of them are created or led by the APO-Hazardous Waste Management Agency. Present efforts in improvement of public participation in the field of hazardous and radioactive waste management are important in particular due to negligible role of public in environmentally related issues during former Yugoslav political system. For this reason it is possible to understand the public fearing to be deceived or neglected again. Special attention is paid to the current APO editions related to public information and education in the field of hazardous and radioactive waste management. It is important because only the well-informed public can present an active and respectful factor in hazardous and radioactive waste management process

  2. Determination of Waste Isolation Pilot Plant (WIPP) management and institutional requirements documents for contact-handled (CH) critical systems

    International Nuclear Information System (INIS)

    1990-01-01

    This document lists the critical requirements documents applicable to the receipt of contact-handled waste at the Waste Isolation Pilot Plant. It also describes the processes used to determine the applicability of each document. This analysis is based on the applicable documents that were in effect in the February 1988 time frame. 2 refs

  3. 76 FR 29237 - Agency Information Collection Activities; Submission to OMB for Review and Approval; Comment...

    Science.gov (United States)

    2011-05-20

    ... Activities; Submission to OMB for Review and Approval; Comment Request; Hazardous Waste Generator Standards.... Environmental Protection Agency, 1200 Pennsylvania Avenue, NW., Washington, DC 20460; and (2) OMB, by mail to... Officer for EPA, 725 17th Street, NW., Washington, DC 20503. FOR FURTHER INFORMATION CONTACT: Jim O'Leary...

  4. The Environmental Agency's Assessment of the Post-Closure Safety Case for the BNFL DRIGG Low Level Radioactive Waste Disposal Facility

    International Nuclear Information System (INIS)

    Streatfield, I. J.; Duerden, S. L.; Yearsley, R. A.

    2002-01-01

    The Environment Agency is responsible, in England and Wales, for authorization of radioactive waste disposal under the Radioactive Substances Act 1993. British Nuclear Fuels plc (BNFL) is currently authorized by the Environment Agency to dispose of solid low level radioactive waste at its site at Drigg, near Sellafield, NW England. As part of a planned review of this authorization, the Environment Agency is currently undertaking an assessment of BNFL's Post-Closure Safety Case Development Programme for the Drigg disposal facility. This paper presents an outline of the review methodology developed and implemented by the Environment Agency specifically for the planned review of BNFL's Post-Closure Safety Case. The paper also provides an overview of the Environment Agency's progress in its on-going assessment programme

  5. Technical requirements for the actinide source-term waste test program

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, M.L.F.; Molecke, M.A.

    1993-10-01

    This document defines the technical requirements for a test program designed to measure time-dependent concentrations of actinide elements from contact-handled transuranic (CH TRU) waste immersed in brines similar to those found in the underground workings of the Waste Isolation Pilot Plant (WIPP). This test program wig determine the influences of TRU waste constituents on the concentrations of dissolved and suspended actinides relevant to the performance of the WIPP. These influences (which include pH, Eh, complexing agents, sorbent phases, and colloidal particles) can affect solubilities and colloidal mobilization of actinides. The test concept involves fully inundating several TRU waste types with simulated WIPP brines in sealed containers and monitoring the concentrations of actinide species in the leachate as a function of time. The results from this program will be used to test numeric models of actinide concentrations derived from laboratory studies. The model is required for WIPP performance assessment with respect to the Environmental Protection Agency`s 40 CFR Part 191B.

  6. Amoco-US Environmental Protection Agency, pollution prevention project, Yorktown, Virginia: Solid waste data

    International Nuclear Information System (INIS)

    Kizior, G.J.

    1991-01-01

    In late 1989 Amoco and the US Environmental Protection Agency initiated a joint project to review pollution prevention alternatives at Amoco Oil Company's Yorktown, Virginia, Refinery as a case study site. The report summarizes the solid waste emissions inventory, solids source identification, and the solid waste sampling program that was conducted at the Amoco Yorktown Refinery on September 25-27, 1990, in support of the Pollution Prevention Project. Major findings showed that the majority of solid waste generation occurs as end-of-pipe solids resulting from the treatment of wastewaters from the refinery sewer. Based on a regression analysis of the composition data for samples collected during this project, major upstream contributors to these solids appear to be soils. Solids from process units are also significant contributors

  7. ANDRA - National Radioactive Waste Management Agency. Activity report 2015. Financial report 2015

    International Nuclear Information System (INIS)

    2016-01-01

    Created in 1979 within the CEA, the National Radioactive Waste Management Agency (ANDRA) was established by the December 1991 Waste Act as a public body in charge of the long-term management of all radioactive waste, under the supervision of the Ministry of Ecology, Energy, Sustainable Development and the Sea (formerly the Ministry of Industry and the Ministry of Environment), and the Ministry of Research. Its 3 basic missions were extended and their funding secured through the 2006 Planning Act: - a R and D mission to propose safe long-term solution for radioactive waste without current disposal system; this mission includes long-term storage, since the 2006 Planning Act, in order to propose interim solutions while final ones are being studied; - an industrial mission concerning, on one hand, waste acceptance criteria and control and, on the other hand, siting, construction, operation, closure and monitoring of repositories. This mission includes as well a public service mission in terms of i) collection of waste of the 'small-scale nuclear activities' producers or owners (including the so-called 'household' radioactive waste, i.e. waste owned by private individuals) and ii) clean-up and rehabilitation of orphan polluted sites; - an information mission, notably through the regular publication of the National Inventory of radioactive materials and waste. This mission includes as well an active policy of dialogue with stakeholders both at national and local level. This document is the activity and financial report of the Andra for the year 2015

  8. ANDRA - National Radioactive Waste Management Agency. Activity report 2016. Financial report 2016

    International Nuclear Information System (INIS)

    2017-01-01

    Created in 1979 within the CEA, the National Radioactive Waste Management Agency (ANDRA) was established by the December 1991 Waste Act as a public body in charge of the long-term management of all radioactive waste, under the supervision of the Ministry of Ecology, Energy, Sustainable Development and the Sea (formerly the Ministry of Industry and the Ministry of Environment), and the Ministry of Research. Its 3 basic missions were extended and their funding secured through the 2006 Planning Act: - a R and D mission to propose safe long-term solution for radioactive waste without current disposal system; this mission includes long-term storage, since the 2006 Planning Act, in order to propose interim solutions while final ones are being studied; - an industrial mission concerning, on one hand, waste acceptance criteria and control and, on the other hand, siting, construction, operation, closure and monitoring of repositories. This mission includes as well a public service mission in terms of i) collection of waste of the 'small-scale nuclear activities' producers or owners (including the so-called 'household' radioactive waste, i.e. waste owned by private individuals) and ii) clean-up and rehabilitation of orphan polluted sites; - an information mission, notably through the regular publication of the National Inventory of radioactive materials and waste. This mission includes as well an active policy of dialogue with stakeholders both at national and local level. This document is the activity and financial report of the Andra for the year 2016

  9. The International Atomic Energy Agency (IAEA) standards and recommendations on radioactive waste and transport safety

    International Nuclear Information System (INIS)

    Warnecke, E.; Rawl, R.

    1996-01-01

    The International Atomic Energy Agency (IAEA) publishes standards and recommendations on all aspects of nuclear safety in its Safety Series, which includes radioactive waste management and transport of radioactive materials. Safety Series documents may be adopted by a State into its national legal framework. Most of the States used the IAEA transport regulations (Safety Series No. 6) as a basis for their national regulation. The two highest ranking documents of the Radioactive Waste Safety Standards (RADWASS) programme, the Safety Fundamentals and the Safety Standard on the national waste management system, have been published. Both provide impetus into the waste management safety convention, a legally binding document for signatory states, which is being drafted. The already existing Convention on Nuclear Safety covers the management of radioactive waste at land-based civil nuclear power plants. (author) 1 fig., 18 refs

  10. Risk of Potential Exposure Incident in Non-healthcare Workers in Contact with Infectious and Municipal Waste

    Science.gov (United States)

    Kanisek, Sanja; Gmajnić, Rudika; Barać, Ivana

    2018-01-01

    Abstract Introduction The proper classification of sharp and infectious waste in situ by the healthcare workers is an important measure of prevention of sharps and other exposure incidents in non-healthcare workers, who handle such waste. The aim was to examine the practice of classifying sharp and infectious waste in family and dental practices. Methods An analysis of 50 bags of infectious and 50 bags of municipal waste from five family and five dental practices for five days in October 2016 at the Health centre Osijek. Results Healthcare workers in 70% of the practices deposited sharps in infectious waste. In 56% of infectious waste bags, sharp object were found. More risky bags of infectious waste were produced by family practices (64%), but with no significant differences in relation to dental practices (48%), (P=0.143). Disposing of infectious into municipal waste was the case in 90% of the practitioners, where in 60% of municipal waste bags, infectious waste was disposed. Dental practices produced more risky bags of municipal waste (76%) in relation to family practices (44%), but with no significant difference (P=0.714). Conclusions The results of this research point to importance of performing audits of proper disposal of sharps and infectious waste to reduce the risks of injury to non-healthcare workers who come into contact with the said waste. Given results could be used for framing written protocols of proper disposal of sharps and infectious waste that should be visibly available in family and dental practices and for education of healthcare workers. PMID:29651317

  11. Corrosion studies on mild steel in contact with cemented waste forms

    International Nuclear Information System (INIS)

    Platts, N.

    1987-03-01

    The internal corrosion of mild steel drums has been assessed in support of the proposed cementation of low level solid and sludge wastes arising from the Winfrith SGHWR. General corrosion rates are expected to be very low but while oxygen is present pitting, at least in principle, is possible. Passive currents for mild steel in contact with the different cement formulations have therefore been determined, thereby enabling the timescale for residual oxygen within the drums to be assessed. These measurements indicate that for BFS/OPC cement formulations the oxygen will be exhausted within 37 days, though potential monitoring suggests that sulphides present in the cement may reduce this figure. For PFA/OPC cement formulations the passive currents suggest that it would take ca. one year for the oxygen present in a drum to be exhausted. Therefore though pitting should not be a problem with the BFS/OPC cement formulations, further investigation of the extent of pitting that may occur in the PFA/OPC waste form is desirable. (author)

  12. Quantities and characteristics of the contact-handled low-level mixed waste streams for the DOE complex

    International Nuclear Information System (INIS)

    Huebner, T.L.; Wilson, J.M.; Ruhter, A.H.; Bonney, S.J.

    1994-08-01

    This report supports the Integrated Thermal Treatment System (ITTS) Study initiated by the Department of Energy (DOE) Office of Technology Development (EM-50), which is a system engineering assessment of a variety of mixed waste treatment process. The DOE generates and stores large quantities of mixed wastes that are contaminated with both chemically hazardous and radioactive species. The treatment of these mixed wastes requires meeting the standards established by the Environmental Protection Agency for the specific hazardous contaminants regulated under the Resource Conservation and Recovery Act while also providing adequate control of the radionuclides. The thrust of the study is to develop preconceptual designs and life-cycle cost estimates for integrated thermal treatment systems ranging from conventional incinerators, such as rotary kiln and controlled air systems, to more innovative but not yet established technologies, such as molten salt and molten metal waste destruction systems. Prior to this engineering activity, the physical and chemical characteristics of the DOE low-level mixed waste streams to be treated must be defined or estimated. This report describes efforts to estimate the DOE waste stream characteristics

  13. The interaction between contacting barrier materials for containment of radioactive wastes

    International Nuclear Information System (INIS)

    Chang, Hao-Chun; Wang, Chun-Yao; Huang, Wei-Hsing

    2012-01-01

    Document available in extended abstract form only. The disposal of low-level radioactive wastes requires multi-barrier facilities to contain the wastes from contamination. Typically, the engineered barrier is composed of a concrete vault backfilled with sand/bentonite mixture. The backfill material is a mixture of bentonite and sand/gravel produced from crushing the rocks excavated at the site. With a great swelling potential, bentonite is expected to serve the sealing function, while the crushed sand/gravel improves the workability of the mixture. Due to the nature of radioactive wastes, the disposal site is designed for a service life of 300 years or more, which is much longer than typical engineering or earth works. With such a long service life, the site is subject to groundwater intrusion and geochemical evolution. The near-field environment evolution can be a complex problem in a disposal site. In the vicinity of the concrete vault in a disposal site, the high-alkali concrete environment can cause changes in the pore solution and alter the nature of backfill materials. Therefore, the interaction between the concrete and the backfill material needs to be assessed, such that the barriers serve the expected functions for a long time. Materials and Methods A locally available Zhishin clay and a bentonite originated from Black Hill, Wyoming, USA were used as raw clay materials in this study. Zhishin clay and Black Hill (BH) bentonite are mixed with Taitung area hard shale to produce the backfill material. An experimental program was conducted analysing the soil properties of these 2 bentonites. And an accelerated migration test was devised to understand the loss of calcium leaching of concrete on characteristics of backfill material. The 2 barrier materials (concrete and backfill) were placed in contact and then an electric gradient applied to accelerate the move of cations between the 2 barriers. Fig. 1 shows a schematic diagram of the accelerated migration test

  14. Nuclear power. Nuclear fuel cycle and waste management. 1990-2002. International Atomic Energy Agency publications

    International Nuclear Information System (INIS)

    2002-02-01

    This document lists all sales publications of the International Atomic Energy Agency dealing with Nuclear Power, Nuclear Fuel Cycle and Waste Management, issued during the period 1990-2002. It gives a short abstract of these publications along with contents and their costs

  15. 78 FR 14549 - National Contact Center; Information Collection; National Contact Center Customer Evaluation Survey

    Science.gov (United States)

    2013-03-06

    ...] National Contact Center; Information Collection; National Contact Center Customer Evaluation Survey AGENCY... National Contact Center customer evaluation surveys. In this request, the previously approved surveys have... several months. These temporary surveys will allow the National Contact Center to compare its customer...

  16. 76 FR 4823 - Hazardous Waste Management System; Identifying and Listing Hazardous Waste Exclusion

    Science.gov (United States)

    2011-01-27

    ... Waste Management System; Identifying and Listing Hazardous Waste Exclusion AGENCY: Environmental... hazardous wastes. The Agency has decided to grant the petition based on an evaluation of waste-specific... excludes the petitioned waste from the requirements of hazardous waste regulations under the Resource...

  17. Update on waste management policies and programmes

    International Nuclear Information System (INIS)

    Anon.

    1997-01-01

    The NEA Nuclear Waste Bulletin has been prepared by the Radiation Protection and Waste Management Division of the OECD Nuclear Energy Agency to provide a means of communication amongst the various technical and policy groups within the waste management community. In particular, it is intended to provide concise information on current radioactive waste management activities, policies and programmes in Member countries and at the NEA. It is also intended that the Bulletin assists in the communication of recent developments in a variety of areas contributing to the development of acceptable technology for the management and disposal of nuclear waste (e.g., performance assessment, in-situ investigations, repository engineering, scientific data bases, regulatory developments, etc.). For practical purposes, the Bulletin does not include an exhaustive description of national programmes. The reader is therefore invited to go back to the information given in previous bulletins and, if necessary, to contact national correspondents in order to obtain a more complete picture of on-going activities. (authors)

  18. Test phase plan for the Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    1993-03-01

    The US Department of Energy (DOE) has prepared this Test Phase Plan for the Waste Isolation Pilot Plant to satisfy the requirements of Public Law 102-579, the Waste Isolation Pilot Plant (WIPP) Land Withdrawal Act (LWA). The Act provides seven months after its enactment for the DOE to submit this Plan to the Environmental Protection Agency (EPA) for review. A potential geologic repository for transuranic wastes, including transuranic mixed wastes, generated in national-defense activities, the WIPP is being constructed in southeastern New Mexico. Because these wastes remain radioactive and chemically hazardous for a very long time, the WIPP must provide safe disposal for thousands of years. The DOE is developing the facility in phases. Surface facilities for receiving waste have been built and considerable underground excavations (2150 feet below the surface) that are appropriate for in-situ testing, have been completed. Additional excavations will be completed when they are required for waste disposal. The next step is to conduct a test phase. The purpose of the test phase is to develop pertinent information and assess whether the disposal of transuranic waste and transuranic mixed waste in the planned WIPP repository can be conducted in compliance with the environmental standards for disposal and with the Solid Waste Disposal Act (SWDA) (as amended by RCRA, 42 USC. 6901 et. seq.). The test phase includes laboratory experiments and underground tests using contact-handled transuranic waste. Waste-related tests at WIPP will be limited to contact-handled transuranic and simulated wastes since the LWA prohibits the transport to or emplacement of remote-handled transuranic waste at WIPP during the test phase

  19. 48 CFR 15.604 - Agency points of contact.

    Science.gov (United States)

    2010-10-01

    ... agency: upcoming solicitations; Broad Agency Announcements; Small Business Innovation Research programs; Small Business Technology Transfer Research programs; Program Research and Development Announcements; or... CONTRACTING METHODS AND CONTRACT TYPES CONTRACTING BY NEGOTIATION Unsolicited Proposals 15.604 Agency points...

  20. Hazardous waste management system--Environmental Protection Agency. Notice of regulatory reform actions; request for comments.

    Science.gov (United States)

    1982-12-13

    In response to Executive Order 12291 and the President's Task Force on Regulatory Relief, the Environmental Protection Agency is reviewing and reassessing the hazardous waste regulations developed under the Resource Conservation and Recovery Act (RCRA). A variety of activities are underway that will simplify procedures and reduce paperwork, modify existing regulations to make them more workable and cost effective, and control new wastes and new processes. The purpose of this notice is to inform the public of these activities and invite comments on the general approaches being taken.

  1. Michigan high-level radioactive waste program. Technical progress report for 1985

    International Nuclear Information System (INIS)

    1986-01-01

    In 1985, five crystalline rock formations located in Michigan's Upper Peninsula were under consideration in the regional phase of the Department of Energy's (DOE) search for the site of the nation's second high-level radioactive waste repository. The Michigan Department of Public Health has been designated by the Governor as lead state agency in matters related to high-level radioactive waste (HLRW). Mr. Lee E. Jager, Chief of the Department's Bureau of Environmental and Occupational Health, has been designated as the state contact person in this matter, and the Bureau's Division of Radiological Health, Office of Radioactive Waste Management (ORWM), has been designated to provide staff support. Recognizing that adequate state involvement in the various aspects of the Federal high-level radioactive waste (HLRW) programs would require a range of expertise beyond the scope of any single state agency, Governor Blanchard established the High-Level Radioactive Waste Task Force in 1983. In support of the Task Force efforts concerning the implementation of its change, the Department negotiated and concluded an agreement with the DOE, under which federal funds are provided to support state HLRW activities. This report outlines state activities for the calendar year 1985, funded under that agreement

  2. ANDRA - National Radioactive Waste Management Agency. Activity report 2006. Management report - Financial statements 2006

    International Nuclear Information System (INIS)

    2007-06-01

    Created in 1979 within the CEA, the National Radioactive Waste Management Agency (ANDRA) was established by the December 1991 Waste Act as a public body in charge of the long-term management of all radioactive waste, under the supervision of the Ministry of Ecology, Energy, Sustainable Development and the Sea (formerly the Ministry of Industry and the Ministry of Environment), and the Ministry of Research. Its 3 basic missions were extended and their funding secured through the 2006 Planning Act: - a R and D mission to propose safe long-term solution for radioactive waste without current disposal system; this mission includes long-term storage, since the 2006 Planning Act, in order to propose interim solutions while final ones are being studied; - an industrial mission concerning, on one hand, waste acceptance criteria and control and, on the other hand, siting, construction, operation, closure and monitoring of repositories. This mission includes as well a public service mission in terms of i) collection of waste of the 'small-scale nuclear activities' producers or owners (including the so-called 'household' radioactive waste, i.e. waste owned by private individuals) and ii) clean-up and rehabilitation of orphan polluted sites; - an information mission, notably through the regular publication of the National Inventory of radioactive materials and waste. This mission includes as well an active policy of dialogue with stakeholders both at national and local level. This document is the activity report with the management and financial statements report of the Andra for the year 2006

  3. Continued oversight of the Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    Peake, R. Thomas

    2014-01-01

    The United States Environmental Protection Agency (EPA) developed environmental standards applicable to the disposal of defence-related transuranic wastes at the US Department of Energy's (DOE) Waste Isolation Pilot Plant (WIPP). By statute, EPA also serves as the regulator and implements these standards at WIPP, which has been in operation since 1999. The general environmental standards are set forth in the Agency's 40 Code of Federal Regulations (CFR), Part 191 Environmental Radiation Protection Standards for the Management and Disposal of Spent Nuclear Fuel, High-Level and Transuranic Radioactive Wastes (US NARA, 1985). These standards are implemented by site-specific compliance criteria at 40 CFR 194 (US NARA, 1996). The repository waste area is ∼650 meters below ground surface in a thick bedded salt formation that dips from west to east at ∼1 deg.. WIPP is located in the Chihuahuan Desert of south-eastern New Mexico, where the annual precipitation averages between 25 and 40 centimetres and there is high evapotranspiration. Much of the area around WIPP is federal land, managed by the Bureau of Land Management, and the area is sparsely populated. The transuranic waste disposed of at WIPP consists of materials such as radioactive sludges, soils and laboratory materials (e.g. chemical mixtures, contaminated glove boxes, paper and glass). Wastes are typically not treated unless necessary for shipping purposes (e.g. to limit hydrogen build-up). The waste is contaminated with plutonium, americium and other radionuclides, including some caesium and strontium. Transuranic waste is defined as waste with radionuclides heavier than uranium containing more than 3 700 Bq (100 nanocuries) of alpha-emitting transuranic isotopes per gram of waste; isotopes must have half-lives greater than 20 years. The WIPP Land Withdrawal Act limits the total disposal volume to ∼177 000 cubic meters (6.2 million cubic feet) and creates two categories of waste based on operational

  4. The Environmental and ethical basis of the geological disposal of long-lived radioactive waste. A collective opinion by the Radioactive Waste Management Committee (RWMC) of the OECD Nuclear Energy Agency

    International Nuclear Information System (INIS)

    1995-01-01

    The report presents a consensus position of the national authorities in their search for appropriate solutions in the safe disposal of radioactive wastes in the form of a Collective Opinion of the Radioactive waste Management Committee (RWMC) of the OECD Nuclear Energy Agency. The Collective Opinion addresses the strategy for the final disposal of long-lived radioactive wastes seen from an environmental and ethical perspective, including considerations of equity and fairness within and between generations. (7 refs.)

  5. ANDRA - National Radioactive Waste Management Agency. 2014 Activity report - Responsibility in action. Financial report 2014

    International Nuclear Information System (INIS)

    2015-01-01

    Created in 1979 within the CEA, the National Radioactive Waste Management Agency (ANDRA) was established by the December 1991 Waste Act as a public body in charge of the long-term management of all radioactive waste, under the supervision of the Ministry of Ecology, Energy, Sustainable Development and the Sea (formerly the Ministry of Industry and the Ministry of Environment), and the Ministry of Research. Its 3 basic missions were extended and their funding secured through the 2006 Planning Act: - a R and D mission to propose safe long-term solution for radioactive waste without current disposal system; this mission includes long-term storage, since the 2006 Planning Act, in order to propose interim solutions while final ones are being studied; - an industrial mission concerning, on one hand, waste acceptance criteria and control and, on the other hand, siting, construction, operation, closure and monitoring of repositories. This mission includes as well a public service mission in terms of i) collection of waste of the 'small-scale nuclear activities' producers or owners (including the so-called 'household' radioactive waste, i.e. waste owned by private individuals) and ii) clean-up and rehabilitation of orphan polluted sites; - an information mission, notably through the regular publication of the National Inventory of radioactive materials and waste. This mission includes as well an active policy of dialogue with stakeholders both at national and local level. This document is the activity and financial report of the Andra for the year 2014

  6. ANDRA - National Radioactive Waste Management Agency. Activity report and sustainable development 2013. Financial report 2013

    International Nuclear Information System (INIS)

    2014-01-01

    Created in 1979 within the CEA, the National Radioactive Waste Management Agency (ANDRA) was established by the December 1991 Waste Act as a public body in charge of the long-term management of all radioactive waste, under the supervision of the Ministry of Ecology, Energy, Sustainable Development and the Sea (formerly the Ministry of Industry and the Ministry of Environment), and the Ministry of Research. Its 3 basic missions were extended and their funding secured through the 2006 Planning Act: - a R and D mission to propose safe long-term solution for radioactive waste without current disposal system; this mission includes long-term storage, since the 2006 Planning Act, in order to propose interim solutions while final ones are being studied; - an industrial mission concerning, on one hand, waste acceptance criteria and control and, on the other hand, siting, construction, operation, closure and monitoring of repositories. This mission includes as well a public service mission in terms of i) collection of waste of the 'small-scale nuclear activities' producers or owners (including the so-called 'household' radioactive waste, i.e. waste owned by private individuals) and ii) clean-up and rehabilitation of orphan polluted sites; - an information mission, notably through the regular publication of the National Inventory of radioactive materials and waste. This mission includes as well an active policy of dialogue with stakeholders both at national and local level. This document is the activity and Sustainable Development Report, with the financial report, of the Andra for the year 2013

  7. Radioactive waste management perspectives in Malaysian Nuclear Agency

    International Nuclear Information System (INIS)

    Nurul Wahida Ahmad Khairuddin; Nik Marzukee Nik Ibrahim; Mat Bakar Mahusin; Mohamad Hakiman Mohamad Yusoff; Muhammad Zahid Azrmi

    2009-01-01

    Waste Technology Development Centre (WasTeC) has been mandated to carry out radioactive waste management activities since 1984. The main objective of WasTeC is to deal with radioactive waste in a manner that protects health and the environment now and in the future, without imposing undue burdens on the future generations. This centre provides services for waste generators within Nuclear Malaysia and also for external waste generators. Services provided include transportation of radioactive waste, decontamination, treatment and storage. This paper will discuss on procedure for applying for services, responsibility of waste generator, responsibility of waste operator, need to comply with waste acceptance criteria and regulations related to management of radioactive waste. (Author)

  8. Status of mixed-waste regulation

    International Nuclear Information System (INIS)

    Bahadur, S.

    1988-01-01

    Mixed waste is waste containing radionuclides regulated by the US Nuclear Regulatory Commission (NRC) under the Atomic Energy Act, as well as hazardous waste materials regulated by the Environmental Protection Agency (EPA) under the Resource Conservation and Recovery Act (RCRA). This has led to a situation of dual regulation in which both NRC and EPA regulate the same waste under requirements that at times appear conflicting. The NRC has been working with the EPA to resolve the issues associated with the dual regulation of mixed waste. Discussions between the two agencies indicate that dual regulation of mixed wastes appears technically achievable, although the procedures may be complex and burdensome to the regulated community. The staffs of both agencies have been coordinating their efforts to minimize the burden of dual regulation on state agencies and the industry. Three major issues were identified as sources of potential regulatory conflict: (a) definition and identification of mixed waste, (b) siting guidelines for disposal facilities, and (c) design concepts for disposal units

  9. Treatment of alpha bearing wastes

    International Nuclear Information System (INIS)

    1988-01-01

    This report deals with the current state of the art of alpha waste treatment, which is an integral part of the overall nuclear waste management system. The International Atomic Energy Agency (IAEA) defines alpha bearing waste as 'waste containing one or more alpha emitting radionuclides, usually actinides, in quantities above acceptable limits'. The limits are established by national regulatory bodies. The limits above which wastes are considered as alpha contaminated refer to the concentrations of alpha emitters that need special consideration for occupational exposures and/or potential safety, health, or environmental impact during one or more steps from generation through disposal. Owing to the widespread use of waste segregation by source - that is, based upon the 'suspect origin' of the material - significant volumes of waste are being handled as alpha contaminated which, in fact, do not require such consideration by reason of risk or environmental concern. The quantification of de minimis concepts by national regulatory bodies could largely contribute to the safe reduction of waste volumes and associated costs. Other factors which could significantly contribute to the reduction of alpha waste arisings are an increased application of assaying and sorting, instrumentation and the use of feedback mechanisms to control or modify the processes which generate these wastes. Alpha bearing wastes are generated during fabrication and reprocessing of nuclear fuels, decommissioning of alpha contaminated facilities, and other activities. Most alpha wastes are contact handled, but a small portion may require shielding or remote handling because of high levels of neutron (n), beta (β), or gamma (γ) emissions associated with the waste material. This report describes the sources and characteristics of alpha wastes and strategies for alpha waste management. General descriptions of treatment processes for solid and liquid alpha wastes are included. 71 refs, 14 figs, 9 tabs

  10. Radioactive waste management profiles. Compilation from the Waste Management Database. No. 3

    International Nuclear Information System (INIS)

    2000-07-01

    In 1989, the International Atomic Energy Agency began development of the Waste Management Data Base (WMDB) to, primarily, establish a mechanism for the collection, archival and dissemination of information about radioactive waste management in Member States. This current report is a summary and compilation of waste management collected from Member States from February 1998 to December 1999 in response to the Agency's 1997/98 WMDB Questionnaire. Member States were asked to report waste accumulations up to the end of 1996 and to predict waste accumulations up to the end of 2014

  11. 75 FR 71559 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste; Withdrawal of...

    Science.gov (United States)

    2010-11-24

    ... ENVIRONMENTAL PROTECTION AGENCY 40 CFR Part 261 [EPA-R06-RCRA-2010-0066; SW FRL-9231-4] Hazardous Waste Management System; Identification and Listing of Hazardous Waste; Withdrawal of Direct Final Exclusion AGENCY: Environmental Protection Agency (EPA). ACTION: Withdrawal of direct final exclusion...

  12. 75 FR 6032 - National Contact Center; Submission for OMB Review; National Contact Center Customer Evaluation...

    Science.gov (United States)

    2010-02-05

    ... for OMB Review; National Contact Center Customer Evaluation Survey AGENCY: Citizen Services and Communications, Federal Consumer Information Center, GSA. ACTION: Notice of request for comments regarding a... collection requirement regarding the National Contact Center customer evaluation survey. A request for public...

  13. Technical requirements for the actinide source-term waste test program

    International Nuclear Information System (INIS)

    Phillips, M.L.F.; Molecke, M.A.

    1993-10-01

    This document defines the technical requirements for a test program designed to measure time-dependent concentrations of actinide elements from contact-handled transuranic (CH TRU) waste immersed in brines similar to those found in the underground workings of the Waste Isolation Pilot Plant (WIPP). This test program wig determine the influences of TRU waste constituents on the concentrations of dissolved and suspended actinides relevant to the performance of the WIPP. These influences (which include pH, Eh, complexing agents, sorbent phases, and colloidal particles) can affect solubilities and colloidal mobilization of actinides. The test concept involves fully inundating several TRU waste types with simulated WIPP brines in sealed containers and monitoring the concentrations of actinide species in the leachate as a function of time. The results from this program will be used to test numeric models of actinide concentrations derived from laboratory studies. The model is required for WIPP performance assessment with respect to the Environmental Protection Agency's 40 CFR Part 191B

  14. Central waste complex interim safety basis

    International Nuclear Information System (INIS)

    Cain, F.G.

    1995-01-01

    This interim safety basis provides the necessary information to conclude that hazards at the Central Waste Complex are controlled and that current and planned activities at the CWC can be conducted safely. CWC is a multi-facility complex within the Solid Waste Management Complex that receives and stores most of the solid wastes generated and received at the Hanford Site. The solid wastes that will be handled at CWC include both currently stored and newly generated low-level waste, low-level mixed waste, contact-handled transuranic, and contact-handled TRU mixed waste

  15. US Environmental Protection Agency's assessment of environmental impacts of TENORM radiation sources: The example of uranium mining TENORM wastes

    International Nuclear Information System (INIS)

    Setlow, L.W.

    2002-01-01

    Over the last 30 years the US Environmental Protection Agency (EPA) has conducted field, laboratory, and scientific literature studies on a variety of technologically enhanced naturally occurring radioactive materials. In doing so, EPA has recognized that the physical and chemical characteristics of these wastes and products can vary significantly, and the Agency is conducting detailed evaluations of these radioactive materials on an industry-by-industry basis. An example of the Agency's current efforts to characterize and assess the risks of these materials from the uranium mining industry in a technical report is presented along with information on EPA's current field and laboratory studies. (author)

  16. Energy recovery from containerized waste

    International Nuclear Information System (INIS)

    Benoit, M.R.; Hansen, E.R.; Reese, T.J.

    1991-01-01

    This patent describes a method for achieving environmentally sound disposal of solid waste in an operating rotary kiln. It comprises: a heated, rotated cylinder containing in-process mineral material, the method comprising the steps of packaging the waste in containers and charging the containerized waste into the kiln to contact the mineral material at a point along the length of the kiln cylinder where the kiln gas temperature is sufficient to decompose volatile components of the waste released upon contact of the waste with the in-process mineral material

  17. Waste Isolation Pilot Plant Dry Bin-Scale Integrated Systems Checkout Plan

    International Nuclear Information System (INIS)

    1991-04-01

    In order to determine the long-term performance of the Waste Isolation Pilot Plant (WIPP) disposal system, in accordance with the requirements of the US Environmental Protection Agency (EPA) Standard 40 CFR 191, Subpart B, Sections 13 and 15, two performance assessment tests will be conducted. The tests are titled WIPP Bin-Scale Contact Handled (CH) Transuranic (TRU) Waste Tests and WIPP In Situ Alcove CH TRU Waste Tests. These tests are designed to measure the gas generation characteristics of CH TRU waste. Much of the waste will be specially prepared to provide data for a better understanding of the interactions due to differing degradation modes, waste forms, and repository environmental affects. The bin-scale test is designed to emplace nominally 146 bins. The majority of the bins will contain various forms of waste. Eight bins will be used as reference bins and will contain no waste. This checkout plan exercises the systems, operating procedures, and training readiness of personnel to safely carry out those specifically dedicated activities associated with conducting the bin-scale test plan for dry bins only. The plan does not address the entire WIPP facility readiness state. 18 refs., 6 figs., 3 tabs

  18. Corrosion of high-level radioactive waste iron-canisters in contact with bentonite.

    Science.gov (United States)

    Kaufhold, Stephan; Hassel, Achim Walter; Sanders, Daniel; Dohrmann, Reiner

    2015-03-21

    Several countries favor the encapsulation of high-level radioactive waste (HLRW) in iron or steel canisters surrounded by highly compacted bentonite. In the present study the corrosion of iron in contact with different bentonites was investigated. The corrosion product was a 1:1 Fe layer silicate already described in literature (sometimes referred to as berthierine). Seven exposition test series (60 °C, 5 months) showed slightly less corrosion for the Na-bentonites compared to the Ca-bentonites. Two independent exposition tests with iron pellets and 38 different bentonites clearly proved the role of the layer charge density of the swelling clay minerals (smectites). Bentonites with high charged smectites are less corrosive than bentonites dominated by low charged ones. The type of counterion is additionally important because it determines the density of the gel and hence the solid/liquid ratio at the contact to the canister. The present study proves that the integrity of the multibarrier-system is seriously affected by the choice of the bentonite buffer encasing the metal canisters in most of the concepts. In some tests the formation of a patina was observed consisting of Fe-silicate. Up to now it is not clear why and how the patina formed. It, however, may be relevant as a corrosion inhibitor. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. ANDRA - National Radioactive Waste Management Agency. Activity report 2007. Management report - Financial statements at December 31, 2007

    International Nuclear Information System (INIS)

    2008-09-01

    Created in 1979 within the CEA, the National Radioactive Waste Management Agency (ANDRA) was established by the December 1991 Waste Act as a public body in charge of the long-term management of all radioactive waste, under the supervision of the Ministry of Ecology, Energy, Sustainable Development and the Sea (formerly the Ministry of Industry and the Ministry of Environment), and the Ministry of Research. Its 3 basic missions were extended and their funding secured through the 2006 Planning Act: - a R and D mission to propose safe long-term solution for radioactive waste without current disposal system; this mission includes long-term storage, since the 2006 Planning Act, in order to propose interim solutions while final ones are being studied; - an industrial mission concerning, on one hand, waste acceptance criteria and control and, on the other hand, siting, construction, operation, closure and monitoring of repositories. This mission includes as well a public service mission in terms of i) collection of waste of the 'small-scale nuclear activities' producers or owners (including the so-called 'household' radioactive waste, i.e. waste owned by private individuals) and ii) clean-up and rehabilitation of orphan polluted sites; - an information mission, notably through the regular publication of the National Inventory of radioactive materials and waste. This mission includes as well an active policy of dialogue with stakeholders both at national and local level. This document is the activity report with the management and financial statements report of the Andra for the year 2007

  20. 40 CFR 268.35 - Waste specific prohibitions-petroleum refining wastes.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 26 2010-07-01 2010-07-01 false Waste specific prohibitions-petroleum refining wastes. 268.35 Section 268.35 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... generator may use knowledge of the waste. If the waste contains constituents in excess of the applicable...

  1. 40 CFR 268.36 - Waste specific prohibitions-inorganic chemical wastes

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 26 2010-07-01 2010-07-01 false Waste specific prohibitions-inorganic chemical wastes 268.36 Section 268.36 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... generator may use knowledge of the waste. If the waste contains regulated constituents in excess of the...

  2. The Environmental Protection Agency's waste isolation pilot plant certification process: The steps leading to our decision

    International Nuclear Information System (INIS)

    Wene, C.; Kruger, M.

    1999-01-01

    On May 13, 1998, the United States Environmental Protection Agency (EPA) issued its 'final certification decision' to certify that the U. S. Department of Energy's (DOE) Waste Isolation Pilot Plant (WIPP) will comply with the radioactive waste disposal regulations set and the WIPP Compliance Criteria set forth at 40 CFR Parts 191 (US EPA, 1993) and 194 (US EPA, 1996) respectively. The WIPP will be the nation's first deep underground disposal facility for transuranic (TRU) radioactive waste generated as a result of defence activities. Since WIPP is a first-of-a-kind facility EPA's regulatory program contains an abundance of unique technical questions, as well as controversial policy considerations and legal issues. This paper presents the process that EPA undertook to reach its final decision. Oversight of the WIPP facility by EPA is governed by the WIPP Land Withdrawal Act (WIPP LWA), passed initially by Congress in 1992 and amended in 1996. The LWA required EPA to evaluate whether the WIPP will comply with Subparts B and C of 40 CFR Part 191, known as the disposal regulations. The EPA's final certification of compliance will allow the emplacement of radioactive waste in the WIPP to begin, provided that all other applicable health and safety standards have been met. The certification also allows Los Alamos National Laboratory (LANL) to strip TRU waste from specific waste streams for disposal at the WIPP. However, the certification is subject to several conditions, most notably that EPA must approve site-specific waste characterisation measures and quality assurance plans before allowing sites other than LANL to ship waste for disposal at the WIPP

  3. Order of the 10 january 2003 authorizing the national agency for the radioactive wastes management to follow the gaseous and liquid effluents release for the exploitation of the radioactive wastes storage center of the Manche

    International Nuclear Information System (INIS)

    2003-01-01

    This document, took out from the Official Journal, is the law text relative to the order of the 10 january 2003 authorizing the national agency for the radioactive wastes management to follow the gaseous and liquid effluents release for the exploitation of the radioactive wastes storage center of the Manche. (A.L.B.)

  4. Law on the management of radioactive waste

    International Nuclear Information System (INIS)

    1999-01-01

    This law regulate the relations of legal persons, enterprises without the rights of legal persons, and natural persons in the management of radioactive waste in Lithuania and establish the legal grounds for the management of radioactive waste. Thirty one article of the law deals with the following subjects: principles of radioactive waste management, competence of the Government, State Nuclear Power Safety Inspectorate, Ministry of Economy, Ministry of Environment and Radiation Protection Center in the sphere of regulation of the radioactive waste management, activities subject to licensing, issue of licences and authorisations, duties and responsibilities of the waste producer, founding of the radioactive waste management agency, its basic status and principles of the activities, functions of the agency, management of the agency, transfer of the radioactive waste to the agency, assessment of the existing waste management facilities and their past practices, siting, design and construction, safety assessment, commissioning and operation of the radioactive waste management facilities, radiation protection, quality assurance, emergency preparedness, decommissioning of radioactive waste storage and other facilities, post-closure surveillance of the repository, disused sealed sources, transportation, export and transit of radioactive waste

  5. 40 CFR 148.10 - Waste specific prohibitions-solvent wastes.

    Science.gov (United States)

    2010-07-01

    ... injection unless the solvent waste is a solvent-water mixture or solvent-containing sludge containing less... 40 Protection of Environment 22 2010-07-01 2010-07-01 false Waste specific prohibitions-solvent wastes. 148.10 Section 148.10 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER...

  6. Ranking system for mixed radioactive and hazardous waste sites

    International Nuclear Information System (INIS)

    Hawley, K.A.; Napier, B.A.

    1985-01-01

    The Environmental Protection Agency's Hazard Ranking System (HRS) is a simplified management decision tool that provides a common basis for evaluating a multitude of hazardous waste sites. A deficiency in the HRS for application to Department of Energy mixed radioactive and hazardous waste sites is its inability to explicitly handle radioactive material. A modification to the basic HRS to add the capability to consider radioactivity is described. The HRS considers the exposure routes of direct contact, fire/explosion, atmospheric release, surface-water release, and ground-water release. Each exposure route is further divided into release, route, containment, waste, and target characteristics. To maintain the basic HRS structure, only the waste characteristics section of each exposure route was modified. A ranking system was developed, using radiation dose pathway analysis, to group radionuclides by dose factors. For mixed waste sites, the ranking factor derived for radionuclides is compared with the ranking factor obtained for hazardous chemicals and the most restrictive is used in the overall ranking. The modified HRS has the advantages of being compatible with the original HRS, has reasonable information requirements, and provides scientifically defensible conclusions. 17 references, 2 figures, 6 tables

  7. Nuclear power, nuclear fuel cycle and waste management, 1986-1999. International Atomic Energy Agency publications

    International Nuclear Information System (INIS)

    2000-04-01

    This catalogue lists all sales publications of the International Atomic Energy Agency dealing with nuclear power and nuclear fuel cycle and waste management and issued during the period of 1986-1999. Some earlier titles which form part of an established series or are still considered of importance have been included. Most publications are in English. Proceedings of conferences, symposia and panels of experts may contain papers in languages other than English, but all of these papers have abstracts in English

  8. Consolidated permit regulations and hazardous waste management system: Environmental Protection Agency. Notice of issuance of regulation interpretation memorandum.

    Science.gov (United States)

    1981-12-10

    The Environmental Protection Agency (EPA) is issuing today a Regulation Interpretation Memorandum (RIM) which provides official interpretation of the issue of whether a generator who accumulates hazardous waste pursuant to 40 CFR 262.34, may qualify for interim status after November 19, 1980. This issue arose when the requirements for submitting a Part A permit application (one of the prerequisites to qualifying for interim status) were amended on November 19, 1980. The provisions interpreted today are part of the Consolidated Permit Regulations promulgated under Subtitle C of the Solid Waste Disposal Act, as amended by the Resource Conservation and Recovery Act, as amended (RCRA).

  9. WCATS: Waste Documentation, Course No. 8504

    Energy Technology Data Exchange (ETDEWEB)

    Simpson, Sandy [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-04-14

    This course was developed for individuals at Los Alamos National Laboratory (LANL) who characterize and document waste streams in the Waste Compliance and Tracking System (WCATS) according to Environmental Protection Agency (EPA) Department of Transportation (DOT) regulations, Department of Energy Orders, and other applicable criteria. When you have completed this course, you will be able to recognize how waste documentation enables LANL to characterize and classify hazardous waste for compliant treatment, storage, and disposal, identify the purpose of the waste stream profile (WSP), identify the agencies that provide guidance for waste management, and more.

  10. 76 FR 16534 - Hazardous Waste Management System Identification and Listing of Hazardous Waste; Final Exclusion

    Science.gov (United States)

    2011-03-24

    ... Waste Management System Identification and Listing of Hazardous Waste; Final Exclusion AGENCY...) on a one-time basis from the lists of hazardous waste, a certain solid waste generated at its Mt... waste is [[Page 16535

  11. 75 FR 11002 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste; Final Rule

    Science.gov (United States)

    2010-03-10

    ... Waste Management System; Identification and Listing of Hazardous Waste; Final Rule AGENCY: Environmental... and specific types of management of the petitioned waste, the quantities of waste generated, and waste... wastes. This final rule responds to a petition submitted by Valero to delist F037 waste. The F037 waste...

  12. 75 FR 58346 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste

    Science.gov (United States)

    2010-09-24

    ... Waste Management System; Identification and Listing of Hazardous Waste AGENCY: Environmental Protection... Chemical Company-Texas Operations (Eastman) to exclude (or delist) certain solid wastes generated by its Longview, Texas, facility from the lists of hazardous wastes. EPA used the Delisting Risk Assessment...

  13. Extraction of cesium and strontium from nuclear waste

    Science.gov (United States)

    Davis, Jr., Milton W.; Bowers, Jr., Charles B.

    1988-01-01

    Cesium is extracted from acidified nuclear waste by contacting the waste with a bis 4,4'(5) [1-hydroxy-2-ethylhexyl]benzo 18-crown-6 compound and a cation exchanger in a matrix solution. Strontium is extracted from acidified nuclear waste by contacting the waste with a bis 4,4'(5') [1-hydroxyheptyl]cyclohexo 18-crown-6 compound, and a cation exchanger in a matrix solution.

  14. Waste Isolation Pilot Plant contact-handled transuranic waste preoperational checkout: Final report

    International Nuclear Information System (INIS)

    1988-07-01

    This report documents the results of the WIPP CH TRU Preoperational Checkout which was completed between June 8 and June 14, 1988 during which period, a total of 10 TRUPACT shipping containers were processed from site receipt through emplacement of the simulated waste packages in the underground storage area. Since the design of WIPP includes provisions to unload an internally contaminated TRUPACT, in the controlled environment of the Overpack and Repair Room, one TRUPACT was partially processed through this sequence of operations to verify this portion of the waste handling process as part of the checkout. The successful completion of the CH TRU Preoperational Checkout confirmed the acceptability of WIPP operating procedures, personnel, equipment, and techniques. Extrapolation of time-line data using a computer simulation model of the waste handling process has confirmed that WIPP operations can achieve the design throughput capability of 500,000 ft 3 /year, if required, using two waste handling shifts. The single shift throughput capability of 273,000 ft 3 /year exceeds the anticipated operating receival rate of about 230,000 ft 3 /year. At the 230,000 ft 3 /year rate, the combined CH TRU annual operator dose and the average individual dose (based on minimum crew size) is projected to be 13.7 rem and 0.7 rem, respectively. 6 refs., 27 figs., 3 tabs

  15. 75 FR 57686 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste Amendment

    Science.gov (United States)

    2010-09-22

    ... Waste Management System; Identification and Listing of Hazardous Waste Amendment AGENCY: Environmental...) 260.20 and 260.22 allows facilities to demonstrate that a specific waste from a particular generating facility should not be regulated as a hazardous waste. Based on waste-specific information provided by the...

  16. Reduction of INTEC Analytical Radioactive Liquid Wastes

    International Nuclear Information System (INIS)

    Johnson, V.J.; Hu, J.S.; Chambers, A.G.

    1999-01-01

    This report details the evaluation of the reduction in radioactive liquid waste from the analytical laboratories sent to the Process Effluent Waste system (deep tanks). The contributors are the Analytical Laboratories Department (ALD), the Waste Operations Department, the laboratories at CPP-637, and natural run off. Other labs were contacted to learn the methods used and if any new technologies had emerged. A waste generation database was made from the current methods in used in the ALD. From this database, methods were targeted to reduce waste. Individuals were contacted on ways to reduce waste. The results are: a new method generating much less waste, several methods being handled differently, some cleaning processes being changed to reduce waste, and changes to reduce chemicals to waste

  17. 40 CFR 260.30 - Non-waste determinations and variances from classification as a solid waste.

    Science.gov (United States)

    2010-07-01

    ... from classification as a solid waste. 260.30 Section 260.30 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) HAZARDOUS WASTE MANAGEMENT SYSTEM: GENERAL Rulemaking Petitions § 260.30 Non-waste determinations and variances from classification as a solid waste. In...

  18. Intermediate, low, and very low level waste management at ANDRA (agence nationale pour la gestion des dechets radioactifs) in France

    International Nuclear Information System (INIS)

    Senoo, Muneaki

    2005-01-01

    On 28th September in 2004, RANDEC invited Mr. Jean-Louis Tison from ANDRA as a lecturer of the special session of the 16th RANDEC Annual Symposium. An ANDRA-RANDEC technical meeting was held on the next day, where Mr. Vincent Carlier invited from ANDRA, too participated. Here, present status of intermediate, low, and very low level waste management in France is reviewed based on the information which were obtained from the special session of the 16th RANDEC Annual Symposium and the ANDRA-RANDEC technical meeting. In France, ANDRA is implementing radioactive waste management under the following policy; 'Intermediate, low, and very-low-level (ILVLL) waste is managed in order to establish as soon as possible a final disposal system, the temporary or long term storage option being considered only for the high-level waste (HLW) such as the vitrified fission products or particular materials such as some sealed sources for which no final disposal solution still exists.' The Agency is financed on the basis of the 'polluter-pays' principle and contracts its services directly with waste owners. (author)

  19. Transportation considerations related to waste forms and canisters for Defense TRU wastes

    International Nuclear Information System (INIS)

    Schneider, K.J.; Andrews, W.B.; Schreiber, A.M.; Rosenthal, L.J.; Odle, C.J.

    1981-09-01

    This report identifies and discusses the considerations imposed by transportation on waste forms and canisters for contact-handled, solid transuranic wastes from the US Department of Energy (DOE) activities. The report reviews (1) the existing raw waste forms and potential immobilized waste forms, (2) the existing and potential future DOE waste canisters and shipping containers, (3) regulations and regulatory trends for transporting commercial transuranic wastes on the ISA, (4) truck and rail carrier requirements and preferences for transporting the wastes, and (5) current and proposed Type B external packagings for transporting wastes

  20. ANDRA - National Radioactive Waste Management Agency. Annual sustainable development and activity report 2011. Management report and financial statements 2011

    International Nuclear Information System (INIS)

    2012-01-01

    Created in 1979 within the CEA, the National Radioactive Waste Management Agency (ANDRA) was established by the December 1991 Waste Act as a public body in charge of the long-term management of all radioactive waste, under the supervision of the Ministry of Ecology, Energy, Sustainable Development and the Sea (formerly the Ministry of Industry and the Ministry of Environment), and the Ministry of Research. Its 3 basic missions were extended and their funding secured through the 2006 Planning Act: - a R and D mission to propose safe long-term solution for radioactive waste without current disposal system; this mission includes long-term storage, since the 2006 Planning Act, in order to propose interim solutions while final ones are being studied; - an industrial mission concerning, on one hand, waste acceptance criteria and control and, on the other hand, siting, construction, operation, closure and monitoring of repositories. This mission includes as well a public service mission in terms of i) collection of waste of the 'small-scale nuclear activities' producers or owners (including the so-called 'household' radioactive waste, i.e. waste owned by private individuals) and ii) clean-up and rehabilitation of orphan polluted sites; - an information mission, notably through the regular publication of the National Inventory of radioactive materials and waste. This mission includes as well an active policy of dialogue with stakeholders both at national and local level. This document is the activity and Sustainable Development Report, with the management and financial statements report, of the Andra for the year 2011

  1. ANDRA - National Radioactive Waste Management Agency. Annual sustainable development and activity report 2012. Management report and financial statements 2012

    International Nuclear Information System (INIS)

    2013-01-01

    Created in 1979 within the CEA, the National Radioactive Waste Management Agency (ANDRA) was established by the December 1991 Waste Act as a public body in charge of the long-term management of all radioactive waste, under the supervision of the Ministry of Ecology, Energy, Sustainable Development and the Sea (formerly the Ministry of Industry and the Ministry of Environment), and the Ministry of Research. Its 3 basic missions were extended and their funding secured through the 2006 Planning Act: - a R and D mission to propose safe long-term solution for radioactive waste without current disposal system; this mission includes long-term storage, since the 2006 Planning Act, in order to propose interim solutions while final ones are being studied; - an industrial mission concerning, on one hand, waste acceptance criteria and control and, on the other hand, siting, construction, operation, closure and monitoring of repositories. This mission includes as well a public service mission in terms of i) collection of waste of the 'small-scale nuclear activities' producers or owners (including the so-called 'household' radioactive waste, i.e. waste owned by private individuals) and ii) clean-up and rehabilitation of orphan polluted sites; - an information mission, notably through the regular publication of the National Inventory of radioactive materials and waste. This mission includes as well an active policy of dialogue with stakeholders both at national and local level. This document is the activity and Sustainable Development Report, with the management and financial statements report, of the Andra for the year 2012

  2. 75 FR 51678 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste; Final Exclusion

    Science.gov (United States)

    2010-08-23

    ...: Environmental Protection Agency. ACTION: Final rule. SUMMARY: Environmental Protection Agency (EPA) is granting.... How much waste did OxyChem propose to delist? C. How did OxyChem sample and analyze the waste data in... proposed rule? V. Statutory and Executive Order Reviews I. Overview Information A. What action is EPA...

  3. Buried waste integrated demonstration technology integration process

    International Nuclear Information System (INIS)

    Ferguson, J.S.; Ferguson, J.E.

    1992-04-01

    A Technology integration Process was developed for the Idaho National Energy Laboratories (INEL) Buried Waste Integrated Demonstration (BWID) Program to facilitate the transfer of technology and knowledge from industry, universities, and other Federal agencies into the BWID; to successfully transfer demonstrated technology and knowledge from the BWID to industry, universities, and other Federal agencies; and to share demonstrated technologies and knowledge between Integrated Demonstrations and other Department of Energy (DOE) spread throughout the DOE Complex. This document also details specific methods and tools for integrating and transferring technologies into or out of the BWID program. The document provides background on the BWID program and technology development needs, demonstrates the direction of technology transfer, illustrates current processes for this transfer, and lists points of contact for prospective participants in the BWID technology transfer efforts. The Technology Integration Process was prepared to ensure compliance with the requirements of DOE's Office of Technology Development (OTD)

  4. Order of 2 March 1984 amending Order of 7 November 1979 on the setting up, within the Atomic Energy Commission, of a National Radioactive Waste Management Agency

    International Nuclear Information System (INIS)

    1984-01-01

    This Order amends the Order of 7th November 1979 concerning the setting up, within the CEA, of a National Radioactive Waste Management Agency (ANDRA). In connection with implementing waste storage operations, ANDRA's role remains unchanged; however, it seemed desirable to further strengthen research, development and assessment in the area of radioactive waste policy. These tasks are included in the CEA's responsibilities and are financed by its research budget. (NEA) [fr

  5. The contact-temperature ignition (CTI) criteria for propagating chemical reactions including the effect of moisture and application to Hanford waste

    International Nuclear Information System (INIS)

    Cash, R.J.

    1995-01-01

    To assure the continued absence of uncontrolled condensed-phase chemical reactions in connection with the Hanford waste materials, efforts have been underway including both theoretical and experimental investigations to clarify the requirements for such reactions. This document defines the differences and requirements for homogeneous runaway and propagating chemical reactions incuding a discussion of general contact-temperature ignition (CTI) condition for propagating reactions that include the effect of moisture. The CTI condition implies that the contact temperature or interface temperature between reacted and unreacted materials must exceed the ignition temperature and is compared to experimental data including both synthetic ferrocyanide and surrogate organic materials. In all cases, the occurrences of ignition accompanied by self-propagating reactions are consistent with the theoretical anticipations of the CTI condition

  6. Radioactive wastes

    International Nuclear Information System (INIS)

    Dupuis, M.C.

    2007-01-01

    Managing radioactive wastes used to be a peripheral activity for the French atomic energy commission (Cea). Over the past 40 years, it has become a full-fledged phase in the fuel cycle of producing electricity from the atom. In 2005, the national radioactive waste management agency (ANDRA) presented to the government a comprehensive overview of the results drawn from 15 years of research. This landmark report has received recognition beyond France's borders. By broadening this agency's powers, an act of 28 June 2006 acknowledges the progress made and the quality of the results. It also sets an objective for the coming years: work out solutions for managing all forms of radioactive wastes. The possibility of recovering wastes packages from the disposal site must be assured as it was asked by the government in 1998. The next step will be the official demand for the creation of a geological disposal site in 2016

  7. 76 FR 13172 - Placer County Water Agency

    Science.gov (United States)

    2011-03-10

    ... Water Agency Notice of Application Tendered for Filing with the Commission and Establishing Procedural... County Water Agency e. Name of Project: Middle Fork American River Project f. Location: The Middle Fork...) h. Applicant Contact: Andy Fecko, Project Manager, Placer County Water Agency, 144 Ferguson Road...

  8. 77 FR 65351 - Missouri: Authorization of State Hazardous Waste Management Program Revisions

    Science.gov (United States)

    2012-10-26

    ...: Authorization of State Hazardous Waste Management Program Revisions AGENCY: Environmental Protection Agency (EPA... Jackson-Johnson, Environmental Protection Agency, Waste Enforcement & Materials Management Branch, 11201... its hazardous waste program under the Resource Conservation and Recovery Act (RCRA). EPA proposes to...

  9. 75 FR 60632 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste; Direct Final Rule

    Science.gov (United States)

    2010-10-01

    ... Waste Management System; Identification and Listing of Hazardous Waste; Direct Final Rule AGENCY... management and treatment of several F- and K-waste codes. These waste codes are F037, F038, K048, K049, K051... released from the waste, plausible and specific types of management of the petitioned waste, the quantities...

  10. An Assessment Of Plateau Environmental Protection And Sanitation Agency Pepsa As A Waste Management Institution In Jos City Nigeria.

    Directory of Open Access Journals (Sweden)

    Ogboji Frederick Eche

    2015-02-01

    Full Text Available Abstract Municipal solid waste constitutes mans unwanted materials that need to be discarded. It is consisting of substances materials and objects considered as worthless or defective and of no value for human economic productive activities at a point in time. Apart from constituting an eye sore to urban environment it constitute health hazards and threatens the health of man and animals in the city. This research attempts an assessment of the performance of Plateau Environmental agency the research made use of both primary and secondary data. Data generated was analyzed using descriptive statistics while inferential technique of chi-square was used to test the research hypothesis. Results obtained shows that majority of the respondents were traders 34.3 with secondary education 36. Forty-five percent 45 of landuse type responsible for waste generation is residential that 42 of waste generated is mostly ashes. Majority of waste containers used are plastic 33 and that 52 of respondents are aware of PEPSA activities in their locations. A focus group discussion FGD shaded more light on the prospect and limitations of PEPSA. The research concludes that there is the need to overhaul methods of municipal solid waste collection and disposal in metropolitan Jos. Relevant recommendations were made in respect of the study area.

  11. 77 FR 12293 - PCBs Bulk Product v. Remediation Waste

    Science.gov (United States)

    2012-02-29

    .... Remediation Waste AGENCY: Environmental Protection Agency (EPA). ACTION: Request for Public Comment. SUMMARY... biphenyl (PCB) disposal regulations regarding PCB bulk product and PCB remediation waste. The proposed... regarding PCB bulk product and PCB remediation waste under regulations promulgated at 40 CFR part 761. The...

  12. Improving radioactive waste management: an overview of the Environmental Protection Agency's low-activity waste effort.

    Science.gov (United States)

    Schultheisz, Daniel J; Czyscinski, Kenneth S; Klinger, Adam D

    2006-11-01

    Radioactive waste disposal in the United States is marked by a fragmented regulatory system, with requirements that often focus on the origin or statutory definition of the waste, rather than the hazard of the material in question. It may be possible to enhance public protection by moving toward a system that provides disposal options appropriate for the hazard presented by the waste in question. This paper summarizes aspects of an approach focusing on the potential use, with appropriate conditions, of Resource Conservation and Recovery Act Subtitle-C hazardous waste landfills for disposal of "low-activity" wastes and public comments on the suggested approach.

  13. EPA Alternative Dispute Resolution Contacts

    Science.gov (United States)

    The success of EPA's ADR efforts depends on a network of talented and experienced professionals in Headquarters offices and EPA Regions. For Agency-wide ADR information, please contact the Conflict Prevention and Resolution Center.

  14. 28 CFR 810.1 - Supervision contact requirements.

    Science.gov (United States)

    2010-07-01

    ... 28 Judicial Administration 2 2010-07-01 2010-07-01 false Supervision contact requirements. 810.1 Section 810.1 Judicial Administration COURT SERVICES AND OFFENDER SUPERVISION AGENCY FOR THE DISTRICT OF COLUMBIA COMMUNITY SUPERVISION: ADMINISTRATIVE SANCTIONS § 810.1 Supervision contact requirements. If you are an offender under supervision by th...

  15. 75 FR 60689 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste; Proposed Rule

    Science.gov (United States)

    2010-10-01

    ... Waste Management System; Identification and Listing of Hazardous Waste; Proposed Rule AGENCY... exclude (or delist) a certain solid waste generated by its Beaumont, Texas, facility from the lists of hazardous wastes. EPA used the Delisting Risk Assessment Software (DRAS) Version 3.0 in the evaluation of...

  16. Characterization of radioactive mixed wastes: The industrial perspective

    International Nuclear Information System (INIS)

    Leasure, C.S.

    1992-01-01

    Physical and chemical characterization of Radioactive Mixed Wastes (RMW) is necessary for determination of appropriate treatment options and to satisfy environmental regulations. Radioactive mixed waste can be classified as two main categories; contact-handled (low level) RMW and remote-handled RMW. Ibis discussion will focus mainly on characterization of contact handled RMW. The characterization of wastes usually follows one of two pathways: (1) characterization to determine necessary parameters for treatment or (2) characterization to determine if the material is a hazardous waste. Sometimes, however, wastes can be declared as hazardous waste without testing and then treated as hazardous waste. Characterization of radioactive mixed wastes pose some unique issues, however, that will require special solutions. Below, five issues affecting sampling and analysis of RMW will be discussed

  17. 77 FR 64361 - Report on Waste Burial Charges: Changes in Decommissioning Waste Disposal Costs at Low-Level...

    Science.gov (United States)

    2012-10-19

    ... Decommissioning Waste Disposal Costs at Low-Level Waste Burial Facilities AGENCY: Nuclear Regulatory Commission... 15, ``Report on Waste Burial Charges: Changes in Decommissioning Waste Disposal Costs at Low-Level... for low-level waste. DATES: Submit comments by November 15, 2012. Comments received after this date...

  18. Supplement analysis of transuranic waste characterization and repackaging activities at the Idaho National Engineering Laboratory in support of the Waste Isolation Pilot Plant test program

    International Nuclear Information System (INIS)

    1991-03-01

    This supplement analysis has been prepared to describe new information relevant to waste retrieval, handling, and characterization at the Idaho National Engineering Laboratory (INEL) and to evaluate the need for additional documentation to satisfy the National Environmental Policy Act (NEPA). The INEL proposes to characterize and repackage contact-handled transuranic waste to support the Waste Isolation Pilot Plant (WIPP) Test Phase. Waste retrieval, handling and processing activities in support of test phase activities at the WIPP were addressed in the Supplemental Environmental Impact Statement (SEIS) for the WIPP. To ensure that test-phase wastes are properly characterized and packaged, waste containers would be retrieved, nondestructively examined, and transported from the Radioactive Waste Management Complex (RWMC) to the Hot-Fuel Examination Facility for headspace gas analysis, visual inspections to verify content code, and waste acceptance criteria compliance, then repackaging into WIPP experimental test bins or returned to drums. Following repackaging the characterized wastes would be returned to the RWMC. Waste characterization would help DOE determine WIPP compliance with US Environmental Protection Agency regulations governing disposal of transuranic waste and hazardous waste. Additionally, this program supports onsite compliance with Resource Conservation and Recovery Act (RCRA) requirements, compliance with the terms of the No-Migration Variance at WIPP, and provides data to support future waste shipments to WIPP. This analysis will help DOE determine whether there have been substantial changes made to the proposed action at the INEL, or if preparation of a supplement to the WIPP Final Environmental Impact Statement (DOE, 1980) and SEIS (DOE, 1990a) is required. This analysis is based on current information and includes details not available to the SEIS

  19. Hospital waste management and other small producers

    International Nuclear Information System (INIS)

    Herbst, H.; Roy, J.C.

    1992-01-01

    This paper describes waste management in hospitals and other waste producers. Low-level radioactive wastes are collected by ANDRA (French Agency for radioactive waste management) and informations on waste processing or regulations on radiation sources are given

  20. 76 FR 5110 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste; Proposed Rule

    Science.gov (United States)

    2011-01-28

    ... will dispose of the leachate at a publicly owned treatment works or at an industrial waste disposal... classification of listed waste pursuant to Sec. Sec. 261.31 and 261.32. Specifically, in its petition, Gulf West... Waste Management System; Identification and Listing of Hazardous Waste; Proposed Rule AGENCY...

  1. Geological disposal of radioactive wastes: national commitment, local and regional involvement. A Collective Statement of the OECD Nuclear Energy Agency 'Radioactive Waste Management Committee', adopted March 2011

    International Nuclear Information System (INIS)

    2012-01-01

    Disposal in engineered facilities built in stable, deep geological formations is the reference solution for permanently isolating long-lived radioactive waste from the human biosphere. This management method is designed to be intrinsically safe and final, i.e. not dependent on human presence and intervention in order to fulfil its safety goal. Siting waste repositories brings up a range of issues that touch on scientific knowledge, technical capacity, ethical values, territorial planning, community well-being, and more. Bringing to fruition the multi-decades task of siting and developing a repository demands a strong national commitment and a significant regional and local involvement. This Collective Statement by the Radioactive Waste Management Committee of the OECD Nuclear Energy Agency recognizes the advances made toward greater transparency and dialogue among the diverse relevant stakeholders and identifies the fundamental ingredients needed to support national commitment and foster territorial involvement. It concludes that technical and societal partners can develop shared confidence in the safety of geological repositories and jointly carry these projects forward

  2. Geological disposal of radioactive waste: national commitment, local and regional involvement - A Collective Statement of the OECD Nuclear Energy Agency Radioactive Waste Management Committee Adopted March 2012

    International Nuclear Information System (INIS)

    2012-01-01

    Disposal in engineered facilities built in stable, deep geological formations is the reference solution for permanently isolating long-lived radioactive waste from the human biosphere. This management method is designed to be intrinsically safe and final, meaning that it is not dependent on human presence or intervention in order to fulfil its safety goal. Selecting the site of a waste repository brings up a range of issues involving scientific knowledge, technical capacity, ethical values, territorial planning, community well-being and more. Bringing to fruition the multi-decade task of siting and developing a repository demands a strong national commitment and significant regional and local involvement. This collective statement by the Radioactive Waste Management Committee of the OECD Nuclear Energy Agency recognises the advances made towards greater transparency and dialogue among the diverse stakeholders concerned and identifies the fundamental elements needed to support national commitment and to foster territorial involvement. It concludes that technical and societal partners can develop shared confidence in the safety of geological repositories and jointly carry these projects forward [fr

  3. Southern states' routing agency report

    International Nuclear Information System (INIS)

    1989-02-01

    The Southern states' routing agency report is a compendium of 16-southern states' routing programs relative to the transportation of high-level radioactive materials. The report identifies the state-designated routing agencies as defined under 49 Code of Federal Regulations (CFR) Part 171 and provides a reference to the source ad scope of the agencies' rulemaking authority. Additionally, the state agency and contact designated by the state's governor to receive advance notification and shipment routing information under 10 CFR Parts 71 and 73 are also listed

  4. Southern States' Routing Agency Report

    International Nuclear Information System (INIS)

    1990-03-01

    The Southern States' Routing Agency Report is a compendium of 16-southern states' routing program for the transportation of high-level radioactive materials. The report identifies the state-designated routing agencies as defined under 49 Code of Federal Regulations (CFR) Part 171 and provides a reference to the source and scope of the agencies' rulemaking authority. Additionally, the state agency and contact designated by the state's governor to receive advance notification and shipment routing information under 10 CFR Parts 71 and 73 are also listed

  5. 75 FR 61356 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste; Correction

    Science.gov (United States)

    2010-10-05

    ... Waste Management System; Identification and Listing of Hazardous Waste; Correction AGENCY: Environmental... thermal desorber residual solids with Hazardous Waste Numbers: F037, F038, K048, K049, K050, and K051. In... and correcting it in Table 1 of appendix IX to part 261--Waste Excluded Under Sec. Sec. 260.20 and 260...

  6. Regulatory issues for Waste Isolation Pilot Plant long-term compliance with U.S. Environmental Protection Agency 40 CFR 191B and 268

    International Nuclear Information System (INIS)

    Anderson, D.R.; Marietta, M.G.; Higgins, P.J. Jr.

    1993-10-01

    Before disposing of transuranic radioactive waste at the Waste Isolation Pilot Plant (WIPP), the United States Department of Energy (DOE) must evaluate compliance with long-term regulations of the United States Environmental Protection Agency (EPA), specifically the Environmental Standards for the Management and Disposal of Spent Nuclear Fuel, High-Level and Transuranic Radioactive Wastes (40 CFR 191), and the Land Disposal Restrictions (40 CFR 268) of the Hazardous and Solid Waste Amendments to the Resource Conservation and Recovery Act (RCRA). Sandia National Laboratories (SNL) is conducting iterative performance assessments (PAs) of the WIPP for the DOE to provide interim guidance while preparing for final compliance evaluations. This paper provides background information on the regulations, describes the SNL WIPP PA Departments approach to developing a defensible technical basis for consistent compliance evaluations, and summarizes the major observations and conclusions drawn from the 1991 and 1992 PAs

  7. Transuranic waste management program and facilities

    International Nuclear Information System (INIS)

    Clements, T.L. Jr.; Cook, L.A.; Stallman, R.M.; Hunter, E.K.

    1986-01-01

    Since 1954, defense-generated transuranic (TRU) waste has been received at the Radioactive Waste Management Complex (RWMC) at the Idaho National Engineering Laboratory (INEL). Prior to 1970, approximately 2.2 million cubic feet of transuranic waste were buried in shallow-land trenches and pits at the RWMC. Since 1970, an additional 2.1 million cubic feet of waste have been retrievably stored in aboveground engineered confinement. A major objective of the Department of Energy (DOE) Nuclear Waste Management Program is the proper management of defense-generated transuranic waste. Strategies have been developed for managing INEL stored and buried transuranic waste. These strategies have been incorporated in the Defense Waste Management Plan and are currently being implemented with logistical coordination of transportation systems and schedules for the Waste Isolation Pilot Plant (WIPP). The Stored Waste Examination Pilot Plant (SWEPP) is providing nondestructive examination and assay of retrievably stored, contact-handled TRU waste. Construction of the Process Experimental Pilot Plant (PREPP) was recently completed, and PREPP is currently undergoing system checkout. The PRFPP will provide processing capabilities for contact-handled waste not meeting WIPP-Waste Acceptance Criteria (WAC). In addition, ongoing studies and technology development efforts for managing the TRU waste such as remote-handled and buried TRU waste, are being conducted

  8. Transuranic Waste Management Program and Facilities

    International Nuclear Information System (INIS)

    Clements, T.L. Jr.; Cook, L.A.; Stallman, R.M.; Hunter, E.K.

    1986-02-01

    Since 1954, defense-generated transuranic (TRU) waste has been received at the Radioactive Waste Management Complex (RWMC) at the Idaho National Engineering Laboratory (INEL). Prior to 1970, approximately 2.2 million cubic feet of transuranic waste were buried in shallow-land trenches and pits at the RWMC. Since 1970, an additional 2.1 million cubic feet of waste have been retrievably stored in aboveground engineered confinement. A major objective of the Department of Energy (DOE) Nuclear Waste Management Program is the proper management of defense-generated transuranic waste. Strategies have been developed for managing INEL stored and buried transuranic waste. These strategies have been incorporated in the Defense Waste Management Plan and are currently being implemented with logistical coordination of transportation systems and schedules for the Waste Isolation Pilot Plant (WIPP). The Stored Waste Examination Pilot Plant (SWEPP) is providing nondestructive examination and assay of retrievably stored, contact-handled TRU waste. Construction of the Process Experimental Pilot Plant (PREPP) was recently completed, and PREPP is currently undergoing system checkout. The PREPP will provide processing capabilities for contact-handled waste not meeting WIPP-Waste Acceptance Criteria (WAC). In addition, ongoing studies and technology development efforts for managing the TRU waste such as remote-handled and buried TRU waste, are being conducted

  9. The International Conference on Radioactive Waste Management

    International Nuclear Information System (INIS)

    1983-01-01

    The IAEA has been concerned with radioactive waste management since its inception. Its programme in this area was expanded in the mid 1970s as questions related to the management and disposal of radioactive wastes came into focus in conjunction with the further industrial development of nuclear power. The objectives of the Agency's wastes management programme are to assist its Member States in the safe and effective management of wastes by organizing the exchange and dissemination of information, providing guidance and technical assistance and supporting research. The current programme addresses all aspects of the industrial use of nuclear power under the aspects (a) technology of handling and treatment of wastes, (b) underground disposal of wastes, (c) environmental aspects of nuclear energy, including sea disposal of radioactive wastes. Systematic reviews have been made and publications issued concerning the technology of handling, treating, conditioning, and storing various categories of wastes, including liquid and gaseous wastes, wastes from nuclear power plants, spent fuel reprocessing and mining and milling of uranium ores, as well as wastes from decommissioning of nuclear facilities. As waste disposal is the current issue of highest interest, an Agency programme was set up in 1977 to develop a set of guidelines on the safe underground disposal of low-, intermediate- and high-level wastes in shallow ground, rock cavities or deep geological repositories. This programme will continue until 1990. Eleven Safety Series and Technical documents and reports have been published under this programme so far, which also addresses safety and other criteria for waste disposal. The environmental part of the waste management programme is concerned with the assessment of radiological and non-radiological consequences of discharges from nuclear facilities, including de minimis concepts in waste disposal and environmental models and data for radionuclide releases. The Agency

  10. ACCELERATION OF LOS ALAMOS NATIONAL LABORATORY TRANSURANIC WASTE DISPOSITION

    International Nuclear Information System (INIS)

    O'Leary, Gerald A.

    2007-01-01

    One of Los Alamos National Laboratory's (LANL's) most significant risks is the site's inventory of transuranic waste retrievably stored above and below-ground in Technical Area (TA) 54 Area G, particularly the dispersible high-activity waste stored above-ground in deteriorating facilities. The high activity waste represents approximately 50% (by activity) of the total 292,000 PE-Ci inventory remaining to be disposed. The transuramic waste inventory includes contact-handled and remote-handled waste packaged in drums, boxes, and oversized containers which are retrievably stored both above and below-ground. Although currently managed as transuranic waste, some of the inventory is low-level waste that can be disposed onsite or at approved offsite facilities. Dispositioning the transuranic waste inventory requires retrieval of the containers from above and below-ground storage, examination and repackaging or remediation as necessary, characterization, certification and loading for shipment to the Waste Isolation Pilot Plant in Carlsbad New Mexico, all in accordance with well-defined requirements and controls. Although operations are established to process and characterize the lower-activity contact-handled transuranic waste containers, LAN L does not currently have the capability to repack high activity contact-handled transuranic waste containers (> 56 PE-Ci) or to process oversized containers with activity levels over 0.52 PE-Ci. Operational issues and compliance requirements have resulted in less than optimal processing capabilities for lower activity contact-handled transuranic waste containers, limiting preparation and reducing dependability of shipments to the Waste Isolation Pilot Plant. Since becoming the Los Alamos National Laboratory contract in June 2006, Los Alamos National Security (LANS) L.L.C. has developed a comprehensive, integrated plan to effectively and efficiently disposition the transuranic waste inventory, working in concert with the Department of

  11. Radioactive waste management status and trends. An overview of international status and trends in radioactive waste management. No. 3

    International Nuclear Information System (INIS)

    2003-08-01

    The purpose of this report is to compile and disseminate information about the status of and trends in radioactive waste management in Agency Member States in a timely manner. The report is suitable for radioactive waste managers and regulators, decision making organizations in both governmental and private sectors, and for Agency Departments, in both the regular and Technical Co-operation programmes. Currently, the report is targeted at readers with a good knowledge of radioactive waste management. The plan is to have the document evolve to serve a broader audience using easy-to-understand graphical and tabular data. For this, the third report in the series, contributions on a variety of topics in radioactive waste management were solicited from persons and organizations external to the Agency. Throughout the report, submissions received from external contributors are denoted. The preparation of this annual report involves (a) a meeting with a team of consultants from a variety of government and industrial organizations to compile a first draft, (b) the optional issuance of special service contracts to polish and supplement the first draft, (c) review by Agency staff and external contributors to the report and (d) final review and approval by the Director of the Nuclear Energy and Waste Technology Division, Nuclear Energy Department, in the Agency

  12. Radioactive waste management status and trends. An overview of international status and trends in radioactive waste management. No. 3

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-08-01

    The purpose of this report is to compile and disseminate information about the status of and trends in radioactive waste management in Agency Member States in a timely manner. The report is suitable for radioactive waste managers and regulators, decision making organizations in both governmental and private sectors, and for Agency Departments, in both the regular and Technical Co-operation programmes. Currently, the report is targeted at readers with a good knowledge of radioactive waste management. The plan is to have the document evolve to serve a broader audience using easy-to-understand graphical and tabular data. For this, the third report in the series, contributions on a variety of topics in radioactive waste management were solicited from persons and organizations external to the Agency. Throughout the report, submissions received from external contributors are denoted. The preparation of this annual report involves (a) a meeting with a team of consultants from a variety of government and industrial organizations to compile a first draft, (b) the optional issuance of special service contracts to polish and supplement the first draft, (c) review by Agency staff and external contributors to the report and (d) final review and approval by the Director of the Nuclear Energy and Waste Technology Division, Nuclear Energy Department, in the Agency.

  13. State Agency Administrative Boundaries

    Data.gov (United States)

    Kansas Data Access and Support Center — This database comprises 28 State agency boundaries and point of contact. The Kansas Geological Survey collected legal descriptions of the boundaries for various...

  14. Radioactive waste management

    International Nuclear Information System (INIS)

    Balek, V.

    1994-01-01

    This booklet is a publication by International Atomic Energy Agency for general awareness of citizens and policy-makers to clarify their concept of nuclear wastes. In a very simple way it tells what is radioactivity, radiations and radioactive wastes. It further hints on various medial and industrial uses of radiations. It discusses about different types of radioactive wastes and radioactive waste management. Status of nuclear power plants in Central and Eastern European countries are also discussed

  15. 40 CFR 148.5 - Waste analysis.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 22 2010-07-01 2010-07-01 false Waste analysis. 148.5 Section 148.5 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) HAZARDOUS WASTE INJECTION RESTRICTIONS General § 148.5 Waste analysis. Generators of hazardous wastes that are...

  16. Waste Facilities

    Data.gov (United States)

    Vermont Center for Geographic Information — This dataset was developed from the Vermont DEC's list of certified solid waste facilities. It includes facility name, contact information, and the materials...

  17. ITER waste management

    International Nuclear Information System (INIS)

    Rosanvallon, S.; Na, B.C.; Benchikhoune, M.; Uzan, J. Elbez; Gastaldi, O.; Taylor, N.; Rodriguez, L.

    2010-01-01

    ITER will produce solid radioactive waste during its operation (arising from the replacement of components and from process and housekeeping waste) and during decommissioning (de-activation phase and dismantling). The waste will be activated by neutrons of energies up to 14 MeV and potentially contaminated by activated corrosion products, activated dust and tritium. This paper describes the waste origin, the waste classification as a function of the French national agency for radioactive waste management (ANDRA), the optimization process put in place to reduce the waste radiotoxicity and volumes, the estimated waste amount based on the current design and maintenance procedure, and the overall strategy from component removal to final disposal anticipated at this stage of the project.

  18. Impacts of hazardous waste regulation on low-level waste management

    International Nuclear Information System (INIS)

    Sharples, F.E.; Eyman, L.D.

    1987-01-01

    Since passage of the 1984 amendments to the Resource Conservation and Recovery Act (RCRA), major changes have occurred in the regulation of hazardous waste. The US Environmental Protection Agency (EPA) has also greatly modified its interpretation of how these regulations apply to wastes from federal facilities, including defense wastes from US Department of Energy (DOE) sites. As a result, the regulatory distinctions between low-level radioactive waste (LLW) and hazardous waste are becoming blurred. This paper discusses recent statutory and regulatory changes and how they might affect the management of LLW at DOE facilities. 6 references

  19. Radioactive waste management in developing countries

    International Nuclear Information System (INIS)

    Thomas, K.T.; Baehr, W.; Plumb, G.R.

    1989-01-01

    The activities of the Agency in waste management have therefore laid emphasis on advising developing Member States on the management of wastes from the uses of radioactive materials. At the present time, developing countries are mostly concerned with the management of nuclear wastes generated from medical centres, research institutes, industrial facilities, mining operations, and research reactors. In certain instances, management of such wastes has lapsed causing serious accidents. Radiation source mismanagement has resulted in fatalities to the public in Mexico (1962), Algeria (1978), Morocco (1984), and Brazil (1987). The objective of these activities is to support the countries to develop the required expertise for self-sufficiency in safe management of radioactive wastes. What follows are details of the Agency mechanisms in place to meet the above objectives

  20. Radioactive waste management profiles

    International Nuclear Information System (INIS)

    1991-10-01

    In 1989, the International Atomic Energy Agency began development of the Waste Management Data Base (WMDB) to, primarily, establish a mechanism for the collection, integration, storage, and retrieval of information relevant to radioactive waste management in Member States. This report is a summary and compilation of the information contained in the data base. The WMDB contains information and data on several aspects of waste management and offer a ready source of information on such activities as R and D efforts, waste disposal plans and programmes, important programme milestones, waste volume projections, and national and regulatory policies. This report is divided into two parts. Part one describes the Waste Management Data Base system and the type of information it contains. The second part contains data provided by Member States between August 1989 and December 1990 in response to a questionnaire sent by the Agency. However, if a Member State did not respond to the questionnaire, data from IAEA sources, such as technical assistance mission reports, were used - where such data exist. The WMDB system became operational in January 1991. The type of information contained in the data base includes radioactive waste management plans, policies and activities in Member States

  1. Annual report 2001[International Atomic Energy Agency

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-07-01

    Article VI.J of the Agency's Statute requires the Board of Governors to submit 'an annual report to the General Conference concerning the affairs of the Agency and any projects approved by the Agency'. This report covers the period 1 January to 31 December 2001. The report outlines the IAEA activities in the following fields: nuclear power, nuclear fuel cycle and waste management technology, comparative assessment for sustainable energy development; food and agriculture, human health, marine environment and water resources, applications of physical and chemical sciences, nuclear safety, radiation safety, radioactive waste safety, co-ordination of safety activities, safeguards, security of material, verification in Iraq pursuant to UNSC resolutions, management of technical co-operation for development, policy-making, management and support.

  2. The Perennial Environment Observatory by A.N.D.R.A. (the French National Radioactive Waste Management Agency)

    International Nuclear Information System (INIS)

    Leclerc, E.

    2010-01-01

    The Perennial Environment Observatory [Observatoire Perenne de l'Environnement - OPE] is a unique approach and infrastructure developed and implemented by ANDRA, the French National Radioactive Waste Management Agency, as part of its overall project of deep geological disposal for radioactive waste. Its current mission is to assess the initial state of the rural (forest, pasture, open-field and aquatic) environment, prior to repository construction. This will be followed in 2017 (pending construction authorizations) and for a period exceeding a century, by monitoring of any impact the repository may have on the environment. In addition to serving its own industrial purpose of environmental monitoring, ANDRA also opens the OPE approach, infrastructure and acquired knowledge (database...) to the scientific community to support further research on long term evolution of the environment subjected to natural and anthropogenic stresses, and to contribute to a better understanding of the interaction between the various compartments of the environment. (author)

  3. Mixed waste, preparing for 1996

    International Nuclear Information System (INIS)

    Duke, D.L.

    1995-01-01

    The Environmental Protection Agency has recently approved an extension to the enforcement policy for the storage of restricted mixed waste. Under this policy, EPA assigns a reduced enforcement priority to violations of the 40CFR268.50 prohibition on storage of restricted waste. Eligibility for the lower enforcement priority afforded by the policy is subject to specified conditions. The recent extension is for a two year period, and agency personnel have advised that it may be difficult to extend the enforcement policy again. This paper reviews anticipated changes in mixed waste treatment and disposal capabilities. Types of mixed waste that may be generated, or in storage, at commercial nuclear power plants are identified. This information is evaluated to determine if the two year extension in the storage enforcement policy will be adequate for the nuclear power industry to treat or dispose of the mixed waste inventories that are identified, and if not, where potential problem areas may reside. Recommendations are then made on mixed waste management strategies

  4. Solid-Waste Management

    Science.gov (United States)

    Science Teacher, 1973

    1973-01-01

    Consists of excerpts from a forthcoming publication of the United States Environmental Protection Agency, Student's Guide to Solid-Waste Management.'' Discusses the sources of wastes from farms, mines, factories, and communities, the job of governments, ways to collect trash, methods of disposal, processing, and suggests possible student action.…

  5. Shipment and Disposal of Solidified Organic Waste (Waste Type IV) to the Waste Isolation Pilot Plant (WIPP)

    International Nuclear Information System (INIS)

    D'Amico, E. L; Edmiston, D. R.; O'Leary, G. A.; Rivera, M. A.; Steward, D. M.

    2006-01-01

    In April of 2005, the last shipment of transuranic (TRU) waste from the Rocky Flats Environmental Technology Site to the WIPP was completed. With the completion of this shipment, all transuranic waste generated and stored at Rocky Flats was successfully removed from the site and shipped to and disposed of at the WIPP. Some of the last waste to be shipped and disposed of at the WIPP was waste consisting of solidified organic liquids that is identified as Waste Type IV in the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC) document. Waste Type IV waste typically has a composition, and associated characteristics, that make it significantly more difficult to ship and dispose of than other Waste Types, especially with respect to gas generation. This paper provides an overview of the experience gained at Rocky Flats for management, transportation and disposal of Type IV waste at WIPP, particularly with respect to gas generation testing. (authors)

  6. Analytical technology in support of the Waste Isolation Pilot Plant (WIPP)

    International Nuclear Information System (INIS)

    Villareal, R.

    1994-01-01

    The need for long-term disposal of defense-related transuranic (TRU) wastes became apparent as the DOE recognized the environmental consequences of maintaining waste storage facilities designed for short or interim storage periods, not long-term storage. In 1979, Congress authorized the Waste Isolation Pilot Plant (WIPP), a research and development facility and full-scale pilot plant, to demonstrate the safe management, storage, and disposal of TRU wastes. Environmental Protection Agency (EPA) regulations governing disposal of TRU wastes in 40 CFR 191 require that TRU waste disposal systems be designed to limit migration of radionuclides to the accessible environment for 10,000 years based on performance assessment results. The actinide source-term waste test program (STTP) is an experiment designed to quantitatively measure the time-dependent concentrations of plutonium, uranium, neptunium, thorium, and americium in TRU wastes immersed in brines that simulate the chemistry that may occur in WIPP disposal rooms, partially or completely contacted with brines. The total concentration of each actinide in brine is the sum of its dissolved and colloidally suspended components, as determined by variables including pcH, oxidation-reduction potential (Eh), chelating and complexing agents, sorption capacity, and colloidal suspension capabilities. To determine the effect of influencing variables on the concentration of actinides in WIPP brines, several TRU waste types will be characterized and loaded into specially designed noncorrosive test containers filled with brine containing additives to enhance the action of each influencing variable. The test container brine and headspace gases will be analyzed

  7. 75 FR 81187 - South Dakota: Final Authorization of State Hazardous Waste Management Program Revision

    Science.gov (United States)

    2010-12-27

    ...: Final Authorization of State Hazardous Waste Management Program Revision AGENCY: Environmental Protection Agency (EPA). ACTION: Proposed Rule. SUMMARY: The Solid Waste Disposal Act, as amended, commonly... Agency (EPA) to authorize states to operate their hazardous waste management programs in lieu of the...

  8. Nuclear waste

    International Nuclear Information System (INIS)

    Anon.

    1996-01-01

    The NEA Nuclear Waste Bulletin has been prepared by the Radiation Protection and Waste Management Division of the OECD Nuclear Energy Agency to provide a means of communication amongst the various technical and policy groups within the waste management community. In particular, it is intended to provide timely and concise information on radioactive waste management activities, policies and programmes in Member countries and at the NEA. It is also intended that the Bulletin assists in the communication of recent developments in a variety of areas contributing to the development of acceptable technology for the management and disposal of nuclear waste (e.g., performance assessment, in-situ investigations, repository engineering, scientific data bases, regulatory developments, etc)

  9. Sustainable Materials Management (SMM) WasteWise Data

    Data.gov (United States)

    U.S. Environmental Protection Agency — EPA’s WasteWise encourages organizations and businesses to achieve sustainability in their practices and reduce select industrial wastes. WasteWise is part of EPA’s...

  10. 77 FR 29275 - Oklahoma: Incorporation by Reference of State Hazardous Waste Management Program

    Science.gov (United States)

    2012-05-17

    ...: Incorporation by Reference of State Hazardous Waste Management Program AGENCY: Environmental Protection Agency... ``Approved State Hazardous Waste Management Programs'', Oklahoma's authorized hazardous waste program. The... State regulations that are authorized and that the EPA will enforce under the Solid Waste Disposal Act...

  11. 77 FR 46994 - Oklahoma: Incorporation by Reference of State Hazardous Waste Management Program

    Science.gov (United States)

    2012-08-07

    ...: Incorporation by Reference of State Hazardous Waste Management Program AGENCY: Environmental Protection Agency... ``Approved State Hazardous Waste Management Programs'', Oklahoma's authorized hazardous waste program. The... State regulations that are authorized and that the EPA will enforce under the Solid Waste Disposal Act...

  12. 75 FR 36609 - Oklahoma: Incorporation by Reference of State Hazardous Waste Management Program

    Science.gov (United States)

    2010-06-28

    ...: Incorporation by Reference of State Hazardous Waste Management Program AGENCY: Environmental Protection Agency... ``Approved State Hazardous Waste Management Programs'', Oklahoma's authorized hazardous waste program. The... State regulations that are authorized and that the EPA will enforce under the Solid Waste Disposal Act...

  13. 76 FR 56708 - Ohio: Final Authorization of State Hazardous Waste Management Program Revision

    Science.gov (United States)

    2011-09-14

    ... Hazardous Waste Management Program Revision AGENCY: Environmental Protection Agency (EPA). ACTION: Proposed..., 1989 (54 FR 27170) to implement the RCRA hazardous waste management program. We granted authorization... December 7, 2004. Waste Combustors; Final Rule; Checklist 198. Hazardous Waste Management March 13, 2002...

  14. EPA, environmentalists feud over land ban waste rule

    International Nuclear Information System (INIS)

    Hanson, D.

    1990-01-01

    The publication of the Environmental Protection Agency's final, major hazardous waste regulation marks the end of a five-year effort to control land disposal of waste. This article discusses how the rule has ignited a major fight between the agency and environmental groups that fear the regulation is far too lenient to industry. The rule will affect everyone who handles chemical waste from researchers to truck drivers. Although it is the last, it is also the largest of the hazardous waste regulations, covering a vast array of substances. The rule's provisions encompass almost 350 listed wastes, multisource leachate, mixed radioactive and hazardous waste, alternative treatments for lab packs, and treatment standards for waste that exhibits one or more hazardous characteristics

  15. Metal loss from treated wood products in contact with municipal solid waste landfill leachate

    Energy Technology Data Exchange (ETDEWEB)

    Dubey, Brajesh [Department of Environmental Health, PO Box 70682, East Tennessee State University, Johnson City, TN 37614 (United States); Department of Environmental Engineering Sciences, University of Florida, Gainesville, FL 32611-6450 (United States); Townsend, Timothy, E-mail: ttown@ufl.edu [Department of Environmental Engineering Sciences, University of Florida, Gainesville, FL 32611-6450 (United States); Solo-Gabriele, Helena [Department of Civil, Architectural and Environmental Engineering, University of Miami, Coral Gables, FL 33124-0630 (United States)

    2010-03-15

    The research presented in this paper evaluates the potential impact of municipal solid waste (MSW) landfill leachate quality on the loss of metals from discarded treated wood during disposal. The loss of arsenic (As), chromium (Cr), copper (Cu), and boron (B) from several types of pressure-treated wood (CCA: chromated copper arsenate, ACQ: alkaline copper quaternary, CBA: copper boron azole, and DOT: disodium octaborate tetrahydrate) using leachate collected from 26 MSW landfills in Florida was examined. The toxicity characteristic leaching procedure (TCLP), the synthetic precipitation leaching procedure (SPLP), and California's waste extraction test (WET) were also performed. The results suggested that loss of preservative components was influenced by leachate chemistry. Copper loss from CCA-, ACQ- and CBA-treated wood was similar in magnitude when in contact with landfill leachates compared to synthetic TCLP and SPLP solutions. Ammonia was found as one of the major parameters influencing the leaching of Cu from treated wood when leached with MSW landfill leachates. The results suggest that disposal of ACQ- and CBA-treated wood in substantial quantity in MSW landfills may elevate the Cu concentration in the leachate; this could be of potential concern, especially for a bioreactor MSW landfill in which relatively higher ammonia concentrations in leachate have been reported in recent literature. For the As, Cr and B the concentrations observed with the landfill leachate as the leaching solutions were over a range from some sample showing the concentrations below and some showing above the observed value from corresponding SPLP and TCLP tests. In general the WET test showed the highest concentrations.

  16. Strategy for management of investigation-derived waste

    International Nuclear Information System (INIS)

    Russell, Laura E.; Hopkins, Gregory G.; Smith, Edward H.; Innis, Pamela S.; Stewart, Robert K.

    1992-01-01

    Large quantities of wastes containing hazardous and/or radiological constituents are being generated as part of the field investigations at the U.S. Department of Energy's Hanford Site in Richland, Washington. A problem exists with the integration of regulations under the Comprehensive Environmental Response, Compensation, and Liability Act of 1980, the Resource Conservation and Recovery Act of 1976, the Washington Hazardous Waste Management Act of 1976, and the Washington Administrative Code Waste management criteria under these regulations need to be consolidated into a single, acceptable management approach that can reasonably be applied to the Hanford Site cleanup effort. In response to this need, a Technical Task Team of representatives from the Washington Department of Ecology, U.S. Environmental Protection Agency, U.S. Department of Energy, and Westinghouse Hanford Company was organized. As a result of nearly two years of negotiations the Technical Task Team produced a specific waste management plan which is presented in the paper as the Strategy for Management of Investigation-Derived Waste. The paper outlines the strategy for handling and storing investigation-derived waste within a given operable unit until a waste unit-specific Record of Decision can be issued. To date, the Strategy for Management of Investigation-Derived Waste has not been finalized. However, formal approval by the U.S. Environmental Protection Agency is expected soon and will result in implementation of the management strategy at waste sites in which they have been identified as the lead regulatory agency. Negotiations with the Washington State Department of Ecology are ongoing. At the time of this writing, it is uncertain what the Washington State Department of Ecology's position will be regarding investigation-derived waste. Both the U.S. Environmental Protection Agency and the U.S. Department of Energy believe the Strategy for Management of Investigation-Derived Waste to be

  17. Waste water pilot plant research, development, and demonstration permit application

    International Nuclear Information System (INIS)

    1991-10-01

    Waste waters have been generated as result of operations conducted at the Hanford Facility for over 40 years. These waste waters were previously discharged to cribs, ponds, or ditches. Examples of such waste waters include steam condensates and cooling waters that have not been in contact with dangerous or mixed waste and process condensates that may have been in contact with dangerous or mixed waste. Many measures have been taken to reduce the amount of contamination being discharged in these effluents. However, some of these waste waters still require additional treatment before release to the environment. Systems are being designed and built to treat these waste waters along with any future waste waters resulting from remediation activities on the Hanford Facility

  18. Directions in low-level radioactive-waste management. Planning state policy on low-level radioactive waste

    International Nuclear Information System (INIS)

    1982-10-01

    The majority of states face a growing problem in the management of low-level radioactive waste generated within their borders. The current uncertainty regarding the availability of disposal sites for these waste products exacerbates their increasing generation rate. The purpose of this publication is to assist state governments in planning effective policy to address these problems. Background information is presented on the current situation, the responsibilities of state government, and the assistance available to states from federal agencies and national groups. The document then focuses on state policy planning, including: (a) methodology for assessing a state's current waste management status and for projecting future needs, (b) consideration of waste management options for a state, and (c) insight into the possible effects and implications of planned policies. This information is intended primarily for state officials - executive, legislative, and agency - and does not include detailed technical information on waste characteristics or handling techniques

  19. Nuclear waste management: the ocean alternative

    International Nuclear Information System (INIS)

    Jackson, T.C.

    1981-01-01

    Both the International Atomic Energy Agency (IAEA) and the Nuclear Energy Agency (NEA) are working on sea disposal. This forum related to this problem. Past practices and policies for sea disposal of radioactive wastes are examined in this paper by Robert S. Dyer, Office of Radiation Programs, US Environmental Protection Agency. Mr. Dyer's analysis served as the principal background paper for the Forum. He reviewed the scope of American sea disposal programs between 1946 and 1970; then he discussed the concentrations of radioactive wastes at 35 dump sites used by the United States. The US decision to halt sea disposal of low-level radioactive wastes in 1970 and current federal laws are also discussed. International regulations based on the London Dumping Convention and a review of sea disposal practices by other nations are included

  20. Proposed Changes to EPA's Transuranic Waste Characterization Approval Process

    International Nuclear Information System (INIS)

    Joglekar, R.D.; Feltcorn, E.M.; Ortiz, A.M.

    2003-01-01

    This paper describes the changes to the waste characterization (WC) approval process proposed in August 2002 by the U.S. Environmental Protection Agency (EPA or the Agency or we). EPA regulates the disposal of transuranic (TRU) waste at the Waste Isolation Pilot Plant (WIPP) repository in Carlsbad, New Mexico. EPA regulations require that waste generator/storage sites seek EPA approval of WC processes used to characterize TRU waste destined for disposal at WIPP. The regulations also require that EPA verify, through site inspections, characterization of each waste stream or group of waste streams proposed for disposal at the WIPP. As part of verification, the Agency inspects equipment, procedures, and interviews personnel to determine if the processes used by a site can adequately characterize the waste in order to meet the waste acceptance criteria for WIPP. The paper discusses EPA's mandate, current regulations, inspection experience, and proposed changes. We expect that th e proposed changes will provide equivalent or improved oversight. Also, they would give EPA greater flexibility in scheduling and conducting inspections, and should clarify the regulatory process of inspections for both Department of Energy (DOE) and the public

  1. Waste management progress report

    International Nuclear Information System (INIS)

    1997-06-01

    During the Cold War era, when DOE and its predecessor agencies produced nuclear weapons and components, and conducted nuclear research, a variety of wastes were generated (both radioactive and hazardous). DOE now has the task of managing these wastes so that they are not a threat to human health and the environment. This document is the Waste Management Progress Report for the U.S. Department of Energy dated June 1997. This progress report contains a radioactive and hazardous waste inventory and waste management program mission, a section describing progress toward mission completion, mid-year 1997 accomplishments, and the future outlook for waste management

  2. 75 FR 45583 - New York: Incorporation by Reference of State Hazardous Waste Management Program

    Science.gov (United States)

    2010-08-03

    ...: Incorporation by Reference of State Hazardous Waste Management Program AGENCY: Environmental Protection Agency... authorized hazardous waste program which is set forth in the regulations entitled ``Approved State Hazardous Waste Management Programs'', New York's authorized hazardous waste program. EPA will incorporate by...

  3. 76 FR 26681 - Wisconsin: Incorporation by Reference of Approved State Hazardous Waste Management Program

    Science.gov (United States)

    2011-05-09

    ... of Approved State Hazardous Waste Management Program AGENCY: Environmental Protection Agency (EPA... Hazardous Waste Management Programs,'' Wisconsin's authorized hazardous waste program. EPA will incorporate... that are authorized and that the EPA will enforce under the Solid Waste Disposal Act, commonly referred...

  4. 75 FR 62040 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste; Proposed Exclusion

    Science.gov (United States)

    2010-10-07

    ... the lists of hazardous waste listed at 40 CFR 261.31, both past and currently generated sludge... water production waste treatment system. Once- through non-contact cooling water does not require... grease, sulfide, water content, corrosivity and ignitability. The sludge characterization included...

  5. 78 FR 46447 - Conditional Exclusions From Solid Waste and Hazardous Waste for Solvent-Contaminated Wipes

    Science.gov (United States)

    2013-07-31

    ... section 307 of the Clean Water Act (CWA)); A municipal solid waste landfill that is regulated under 40 CFR... laundries and dry cleaners could dispose of sludge from cleaning solvent-contaminated wipes in solid waste landfills if the sludge does not exhibit a hazardous waste characteristic. \\8\\ The Agency stated in the...

  6. Management of radioactive mixed wastes in commercial low-level wastes

    International Nuclear Information System (INIS)

    Kempf, C.R.; MacKenzie, D.R.; Piciulo, P.L.; Bowerman, B.S.; Siskind, B.

    1986-01-01

    Potential mixed wastes in commercial low-level wastes have been identified and management options applicable to these wastes have been evaluated. Both the identification and management evaluation have necessarily been based on review of NRC and EPA regulations and recommendations. The underlying intent of both agencies is protection of man and/or environment, but differences may occur in the means by which intent is achieved. Apparent discrepancies, data gaps and unresolved issues that have surfaced during the course of this work are discussed

  7. A nationwide low-level waste management system

    International Nuclear Information System (INIS)

    1985-01-01

    The National Governors' Association, in conjunction with the Department of Energy's National Low-Level Waste Management Program, invited various representatives of states, regions, and federal agencies to comment on their perceptions of what major features would constitute a nationwide low-level waste management system. Three meetings were conducted and this report summarizes results of those meetings. The Low-Level Radioactive Waste Policy Act of 1980 placed primary responsibility on the states for disposal of low-level waste. Although initial efforts of states have been directed toward establishing compacts, it is evident that a successful long term system requires significant cooperation and communication among states, regions, federal agencies, and Congress

  8. Corrosion of high-level radioactive waste iron-canisters in contact with bentonite

    Energy Technology Data Exchange (ETDEWEB)

    Kaufhold, Stephan, E-mail: s.kaufhold@bgr.de [BGR, Bundesanstalt für Geowissenschaften und Rohstoffe, Stilleweg 2, D-30655 Hannover (Germany); Hassel, Achim Walter [Max-Planck-Institut für Eisenforschung GmbH, Max-Planck-Straße 1, D-40237 Düsseldorf (Germany); Institute for Chemical Technology of Inorganic Materials, Johannes Kepler University Linz, Altenberger Straße 69, 4040 Linz (Austria); Sanders, Daniel [Max-Planck-Institut für Eisenforschung GmbH, Max-Planck-Straße 1, D-40237 Düsseldorf (Germany); Dohrmann, Reiner [BGR, Bundesanstalt für Geowissenschaften und Rohstoffe, Stilleweg 2, D-30655 Hannover (Germany); LBEG, Landesamt für Bergbau, Energie und Geologie, Stilleweg 2, D-30655 Hannover (Germany)

    2015-03-21

    Graphical abstract: Corrosion at the bentonite iron interface proceeds unaerobically with formation of an 1:1 Fe silicate mineral. A series of exposure tests with different types of bentonites showed that Na–bentonites are slightly less corrosive than Ca–bentonites and highly charges smectites are less corrosive compared to low charged ones. The formation of a patina was observed in some cases and has to be investigated further. - Highlights: • At the iron bentonite interface a 1:1 Fe layer silicate forms upon corrosion. • A series of iron–bentonite corrosion products showed slightly less corrosion for Na-rich and high-charged bentonites. • In some tests the formation of a patina was observed consisting of Fe–silicate, which has to be investigated further. - Abstract: Several countries favor the encapsulation of high-level radioactive waste (HLRW) in iron or steel canisters surrounded by highly compacted bentonite. In the present study the corrosion of iron in contact with different bentonites was investigated. The corrosion product was a 1:1 Fe layer silicate already described in literature (sometimes referred to as berthierine). Seven exposition test series (60 °C, 5 months) showed slightly less corrosion for the Na–bentonites compared to the Ca–bentonites. Two independent exposition tests with iron pellets and 38 different bentonites clearly proved the role of the layer charge density of the swelling clay minerals (smectites). Bentonites with high charged smectites are less corrosive than bentonites dominated by low charged ones. The type of counterion is additionally important because it determines the density of the gel and hence the solid/liquid ratio at the contact to the canister. The present study proves that the integrity of the multibarrier-system is seriously affected by the choice of the bentonite buffer encasing the metal canisters in most of the concepts. In some tests the formation of a patina was observed consisting of Feâ

  9. Radioactive Substances Act 1993. Explanatory document and draft authorisation prepared by the Environment Agency to Assist public consultation on application by Devonport Royal Dockyard Limited to dispose of radioactive wastes from Devonport Royal Dockyard Plymouth Devon

    International Nuclear Information System (INIS)

    2000-01-01

    The Environment Agency (the Agency) is the independent public body responsible for regulating the use of radioactive substances and accumulation and disposal of radioactive wastes in order to ensure protection of people and the environment. Anyone who is proposing activities involving the use of radioactive substances or disposal of radioactive waste must apply for permission from the Agency. In 1993, the Government decided to locate all nuclear submarine refit work at Devonport. This will lead to increased amounts of radioactive waste arisings at Devonport and a decreased amount of waste arisings at Rosyth, where refit work was also previously carried out. In May 2000 Devonport Royal Dockyard Limited (DML) applied to the Agency for a variation to its authorisations under the Radioactive Substances Act 1993 to dispose of gaseous, liquid, and solid radioactive wastes from its site at Devonport in Plymouth. Once the application was received, the Agency made the information publicly available and held a well attended public meeting in Plymouth to highlight the issues. Since then the Agency has required DML to provide additional information in support of its application. Six rounds of questions were asked and responded to, and these responses have also been made publicly available. The application and responses from the company have been made publicly available. The Agency is now consulting widely on this information to assist its decision making. This Explanatory Document and the accompanying draft authorisation has been prepared by the Agency to assist the consultation process. They are intended to help members of the public and other consultees to understand the application and the Agency's considerations so far. The consultation is being carried out to enable the public and other consultees to draw the Agency's attention to any matters they would wish it to consider when reaching its decisions on this application. The Agency has not made any decisions on the DML

  10. The management of radioactive wastes

    International Nuclear Information System (INIS)

    1998-01-01

    This educative booklet describes the role and missions of the ANDRA, the French national agency for the management of radioactive wastes, and the different aspects of the management of radioactive wastes: goal, national inventory, classification, transport (organisation, regulation, safety), drumming, labelling, surface storage of short life wastes, environmental control, management of long life wastes (composition, research, legal aspects) and the underground research laboratories (description, public information, projects, schedules). (J.S.)

  11. 78 FR 20073 - Adequacy of Oregon's Municipal Solid Waste Landfill Permit Program

    Science.gov (United States)

    2013-04-03

    ...] Adequacy of Oregon's Municipal Solid Waste Landfill Permit Program AGENCY: Environmental Protection Agency... Oregon's approved Municipal Solid Waste Landfill Program. On March 22, 2004, EPA issued final regulations... waste landfills by approved states. On June 14, 2012, Oregon submitted an application to EPA Region 10...

  12. 76 FR 9772 - Adequacy of Arizona Municipal Solid Waste Landfill Permit Program

    Science.gov (United States)

    2011-02-22

    ... Solid Waste Landfill Permit Program AGENCY: Environmental Protection Agency (EPA). ACTION: Notice of... Region IX is proposing to approve a modification to Arizona's municipal solid waste landfill (MSWLF... final rule amending the municipal solid waste landfill criteria at 40 CFR 258.4 to allow for RD&D...

  13. 77 FR 65875 - Adequacy of Arizona Municipal Solid Waste Landfill Permit Program

    Science.gov (United States)

    2012-10-31

    ... Municipal Solid Waste Landfill Permit Program AGENCY: Environmental Protection Agency (EPA). ACTION: Notice... modification to Arizona's municipal solid waste landfill (MSWLF) permit program to allow the State to issue... amending the municipal solid waste landfill criteria at 40 CFR 258.4 to allow for Research, Development...

  14. Method for aqueous radioactive waste treatment

    Science.gov (United States)

    Bray, L.A.; Burger, L.L.

    1994-03-29

    Plutonium, strontium, and cesium found in aqueous waste solutions resulting from nuclear fuel processing are removed by contacting the waste solutions with synthetic zeolite incorporating up to about 5 wt % titanium as sodium titanate in an ion exchange system. More than 99.9% of the plutonium, strontium, and cesium are removed from the waste solutions. 3 figures.

  15. Federal Emergency Management Agency

    Science.gov (United States)

    ... Term(s): About the Agency Text Messages Federal Interagency Operational Plans Whole Community Technological Hazards Division - Contacts Accessible ASL ... content. Home About Us Download Plug-ins Doing Business with FEMA Privacy ... General Strategic Plan Whitehouse.gov DHS.gov Ready.gov USA.gov ...

  16. The French national inventory of radioactive waste. Elements of openness and responsibility

    International Nuclear Information System (INIS)

    Faussat, A.; Fernique, J.C.

    1995-01-01

    Article 13 of the Waste Act of 30 December 1991 calls for the Agence nationale pour la gestion des dechets radioactifs (ANDRA) ''to register the condition and location of all radioactive waste on national territory''. The establishment of a national inventory of radioactive waste and the broad distribution of inventory report to ensure that it becomes a matter of public record constitute a new approach to public information and an effective means of fulfilling the responsibility of the present generation vis-a-vis posterity. The National Waste Register goes beyond the low level radioactive waste disposal facilities to encompass 'all' waste, wherever it may be, including waste in storage at sites where waste is produced. As a result, the Register is multi-faceted, containing information on a variety of elements, from highly radioactive waste to hospital waste collected by ANDRA and to repositories with very low level radioactive material. Information must be provided about all of these widely divergent components. ANDRA has already published two inventories, which demonstrates the durability of its new mission. The Register now contains the inventory of radioactive waste generated by some activities connected with the defence programme. Data collection for the Register involves contacting the generators of waste and working with these entities, whether they are nuclear industry companies, defence organizations, non-nuclear industries, or the 25 Regional Directorates of Industry, Research and Environment, the control institutions or the environmental protection organizations. The yearly exchange of information among all partners involved in radioactive waste management is one of the basic tools of ANDRA, allowing it to be recognized as open and responsible, and to be more credible, fulfilling in this way one of the essential criteria for acceptability. (author). 4 refs

  17. Decree no. 2003-30 of the 10 january 2003 authorizing the national agency for the radioactive wastes management (ANDRA) to modify, for the survey step, the radioactive wastes storage center of the Manche (base nuclear installation no. 66), located on the Digulleville municipality territory (Manche)

    International Nuclear Information System (INIS)

    2003-01-01

    This document, took out from the Official Journal, is the law text relative to the decree no. 2003-30 of the 10 january 2003 authorizing the national agency for the radioactive wastes management (ANDRA) to modify, for the survey step, the radioactive wastes storage center of the Manche (base nuclear installation no. 66), located on the Digulleville municipality territory (Manche). (A.L.B.)

  18. Waste predisposal management

    International Nuclear Information System (INIS)

    2005-01-01

    All Member States have to a large or small extent nuclear activities that generate radioactive wastes. Hospitals, research in biomedicine or in agriculture, and some industrial applications, beside other large nuclear activities such as Nuclear Power Plants and Nuclear Research, generate unconditioned liquid or solid radioactive wastes that have to be treated, conditioned and stored prior final disposal. Countries with small nuclear activities require of organizations and infrastructure as to be able to manage, in a safe manner, the wastes that they generate. Predisposal management of radioactive waste is any step carried out to convert raw waste into a stable form suitable for the safe disposal, such as pre-treatment, treatment, storage and relevant transport. Transport of radioactive waste do not differ, in general, from other radioactive material and so are not considered within the scope of this fact sheet (Nevertheless the Agency, within the Nuclear Safety Department, has created a special Unit that might give advise Member States in this area). Predisposal management is comprised of a set of activities whose implementation may take some time. In most of the cases, safety issues and strategic and economical considerations have to be solved prior the main decisions are taken. The International Atomic Energy Agency provides assistance for the management of radioactive waste at national and operating level, in the definition and/or implementation of the projects. The services could include, but are not limited to guidance in the definition of national waste management strategy and its implementation, definition of the most adequate equipment and practices taking into account specific Member State conditions, as well as assisting in the procurement, technical expertise for the evaluation of current status of operating facilities and practical guidance for the implementation of corrective actions, assistance in the definition of waste acceptance criteria for

  19. Acid decomposition processing system for radioactive wastes

    International Nuclear Information System (INIS)

    Oomine, Toshimitsu.

    1984-01-01

    Purpose: To perform plutonium recovery at a low energy consumption irrespective of the plutonium density within the wastes. Method: In a decomposing and volume-reducing device for combustible or less combustible wastes containing transuranic elements using an acid, the wastes are in contact with nitric acid before feeding to a reactor. Then, the transuranic elements are transferred into the nitric acid, which is then in contact with ion exchange resins. After adsorbing the transuranic elements to the ion exchange resins, the nitric acid removed with the transuranic elements is caused to flow into a reaction vessel or heating vessel and used as a decomposing and oxidizing agent. (Seki, T.)

  20. 40 CFR 261.9 - Requirements for Universal Waste.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Requirements for Universal Waste. 261.9 Section 261.9 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) IDENTIFICATION AND LISTING OF HAZARDOUS WASTE General § 261.9 Requirements for Universal Waste...

  1. 78 FR 32161 - Oklahoma: Final Authorization of State Hazardous Waste Management Program Revision

    Science.gov (United States)

    2013-05-29

    ... Authorization of State Hazardous Waste Management Program Revision AGENCY: Environmental Protection Agency (EPA... waste management program. We authorized the following revisions: Oklahoma received authorization for... authorization of its program revision in accordance with 40 CFR 271.21. The Oklahoma Hazardous Waste Management...

  2. 76 FR 62303 - California: Final Authorization of State Hazardous Waste Management Program Revision

    Science.gov (United States)

    2011-10-07

    ... State Hazardous Waste Management Program Revision AGENCY: Environmental Protection Agency (EPA). ACTION... the revisions to California's hazardous waste management program shall be effective at 1 p.m. on... implement the RCRA hazardous waste management program. EPA granted authorization for changes to California's...

  3. 77 FR 15966 - Ohio: Final Authorization of State Hazardous Waste Management Program Revision

    Science.gov (United States)

    2012-03-19

    ... Hazardous Waste Management Program Revision AGENCY: Environmental Protection Agency (EPA). ACTION: Final..., 1989 (54 FR 27170) to implement the RCRA hazardous waste management program. We granted authorization... Combustors; Final Rule, Checklist 198, February 14, 2002 (67 FR 6968); Hazardous Waste Management System...

  4. Defense POW/MIA Accounting Agency > News & Stories > Recent News & Stories

    Science.gov (United States)

    Skip to main content (Press Enter). Toggle navigation Defense POW/MIA Accounting Agency Search Search DPAA: Search Search DPAA: Search Defense POW/MIA Accounting Agency Fulfilling Our Nation's Promise Defense POW/MIA Accounting Agency Home Families Family Events Posters Contact Information Our Missing Past

  5. Process and system for treating waste water

    Science.gov (United States)

    Olesen, Douglas E.; Shuckrow, Alan J.

    1978-01-01

    A process of treating raw or primary waste water using a powdered, activated carbon/aerated biological treatment system is disclosed. Effluent turbidities less than 2 JTU (Jackson turbidity units), zero TOC (total organic carbon) and in the range of 10 mg/l COD (chemical oxygen demand) can be obtained. An influent stream of raw or primary waste water is contacted with an acidified, powdered, activated carbon/alum mixture. Lime is then added to the slurry to raise the pH to about 7.0. A polyelectrolyte flocculant is added to the slurry followed by a flocculation period -- then sedimentation and filtration. The separated solids (sludge) are aerated in a stabilization sludge basin and a portion thereof recycled to an aerated contact basin for mixing with the influent waste water stream prior to or after contact of the influent stream with the powdered, activated carbon/alum mixture.

  6. Long-term management USDOE transuranic waste

    International Nuclear Information System (INIS)

    Bennett, W.S.; Gilbert, K.V.; Lowrey, R.Y.

    1982-01-01

    Activities for permanent disposal of US DOE TRU waste are presently focused on newly generated and stored waste. The buried waste and contaminated soils pose no near term problem. Decisions on any possible actions for these wastes will be deferred until the newly generated and stored wastes are being placed into disposal on a routine basis. Several elements must be in place before such disposal can become routine. These elements consist of: a disposal facility; waste acceptance criteria; waste certification mechanisms; waste processing facilities; and a waste transportation system. Each of these elements has been the subject of considerable activity in the recent past. Progress and plans for each element are summarized. As of January 1981, DOE has 60,500 m 3 of waste classified as Transuranic waste (TRU) in retrievable storage, and projects that additional TRU waste will be generated at an average rate of 4500 m 3 per year for the next 10 years. Over 99% of this waste is contact handled, with the remainder being remote handled, i.e., surface radiation dose levels exceeding 200 mrem/h. An estimated 273,000 m 3 of TRU waste were placed in shallow land burial prior to establishment of the 1970 policy. In addition, large quantities of soil at DOE sites are contaminated with TRU elements due to disposal of liquid wastes and by contact of soil with solid, buried waste whose original containers are now badly degraded. Possibly as much as 10,000,000 m 3 of soil are contaminated above 10 nCi/gm. Less than 1,000,000 m 3 are estimated to be contaminated above 100 nCi/gm

  7. Mixed Waste Integrated Program: A technology assessment for mercury-containing mixed wastes

    International Nuclear Information System (INIS)

    Perona, J.J.; Brown, C.H.

    1993-03-01

    The treatment of mixed wastes must meet US Environmental Protection Agency (EPA) standards for chemically hazardous species and also must provide adequate control of the radioactive species. The US Department of Energy (DOE) Office of Technology Development established the Mixed Waste Integrated Program (MWIP) to develop mixed-waste treatment technology in support of the Mixed Low-Level Waste Program. Many DOE mixed-waste streams contain mercury. This report is an assessment of current state-of-the-art technologies for mercury separations from solids, liquids, and gases. A total of 19 technologies were assessed. This project is funded through the Chemical-Physical Technology Support Group of the MWIP

  8. 40 CFR 262.60 - Imports of hazardous waste.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Imports of hazardous waste. 262.60 Section 262.60 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS APPLICABLE TO GENERATORS OF HAZARDOUS WASTE Imports of Hazardous Waste § 262.60 Imports...

  9. 75 FR 918 - Oregon: Final Authorization of State Hazardous Waste Management Program Revision

    Science.gov (United States)

    2010-01-07

    ... Authorization of State Hazardous Waste Management Program Revision AGENCY: Environmental Protection Agency (EPA... hazardous waste management program under the Resource Conservation and Recovery Act, as amended (RCRA). On... has decided that the revisions to the Oregon hazardous waste management program satisfy all of the...

  10. 77 FR 13200 - Texas: Final Authorization of State Hazardous Waste Management Program Revision

    Science.gov (United States)

    2012-03-06

    ... Authorization of State Hazardous Waste Management Program Revision AGENCY: Environmental Protection Agency (EPA... December 26, 1984 (49 FR 48300), to implement its Base Hazardous Waste Management Program. This... Waste 53478, September Annotated Sections Management facilities. 8, 2005. 5.103 and 5.105 (Checklist 210...

  11. Characteristics of Cement Solidification of Metal Hydroxide Waste

    Directory of Open Access Journals (Sweden)

    Dae-Seo Koo

    2017-02-01

    Full Text Available To perform the permanent disposal of metal hydroxide waste from electro-kinetic decontamination, it is necessary to secure the technology for its solidification. The integrity tests on the fabricated solidification should also meet the criteria of the Korea Radioactive Waste Agency. We carried out the solidification of metal hydroxide waste using cement solidification. The integrity tests such as the compressive strength, immersion, leach, and irradiation tests on the fabricated cement solidifications were performed. It was also confirmed that these requirements of the criteria of Korea Radioactive Waste Agency on these cement solidifications were met. The microstructures of all the cement solidifications were analyzed and discussed.

  12. Characteristics of cement solidification of metal hydroxide waste

    Energy Technology Data Exchange (ETDEWEB)

    Koo, Dae Seo; Sung, Hyun Hee; Kim, Seung Soo; Kim, Gye Nam; Choi, Jong Won [Dept. of Decontemination Decommission Technology Development, Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2017-02-15

    To perform the permanent disposal of metal hydroxide waste from electro-kinetic decontamination, it is necessary to secure the technology for its solidification. The integrity tests on the fabricated solidification should also meet the criteria of the Korea Radioactive Waste Agency. We carried out the solidification of metal hydroxide waste using cement solidification. The integrity tests such as the compressive strength, immersion, leach, and irradiation tests on the fabricated cement solidifications were performed. It was also confirmed that these requirements of the criteria of Korea Radioactive Waste Agency on these cement solidifications were met. The microstructures of all the cement solidifications were analyzed and discussed.

  13. 77 FR 47302 - South Dakota: Final Authorization of State Hazardous Waste Management Program Revisions

    Science.gov (United States)

    2012-08-08

    ...: Final Authorization of State Hazardous Waste Management Program Revisions AGENCY: Environmental... EPA proposed to authorize South Dakota's State Hazardous waste management Program revisions published... to the hazardous waste program revisions submitted by South Dakota. The Agency published a Proposed...

  14. 77 FR 59758 - Idaho: Incorporation by Reference of Approved State Hazardous Waste Management Program

    Science.gov (United States)

    2012-10-01

    ...: Incorporation by Reference of Approved State Hazardous Waste Management Program AGENCY: Environmental Protection..., (RCRA), allows the Environmental Protection Agency (EPA) to authorize State hazardous waste management... codification of the authorized Idaho hazardous waste management program and incorporates by reference...

  15. 78 FR 43842 - State of Kansas; Authorization of State Hazardous Waste Management Program

    Science.gov (United States)

    2013-07-22

    ... ENVIRONMENTAL PROTECTION AGENCY 40 CFR Part 271 [EPA-R07-RCRA-2013-0447; FRL-9833-6] State of Kansas; Authorization of State Hazardous Waste Management Program AGENCY: Environmental Protection Agency... its hazardous waste program under the Resource Conservation and Recovery Act (RCRA). EPA proposes to...

  16. 78 FR 32223 - Oklahoma: Final Authorization of State Hazardous Waste Management Program Revisions

    Science.gov (United States)

    2013-05-29

    ... ENVIRONMENTAL PROTECTION AGENCY 40 CFR Part 271 [EPA-R06-RCRA-2012-0821; 9817-5] Oklahoma: Final Authorization of State Hazardous Waste Management Program Revisions AGENCY: Environmental Protection Agency (EPA... changes to its hazardous waste program under the Resource Conservation and Recovery Act (RCRA). EPA...

  17. Experimental and numerical study of waste heat recovery characteristics of direct contact thermoelectric generator

    International Nuclear Information System (INIS)

    Kim, Tae Young; Negash, Assmelash; Cho, Gyubaek

    2017-01-01

    Highlights: • Energy harvesting performance of direct contact thermoelectric generator was studied. • Power-current and voltage-current curves were given for various operating conditions. • Output power prediction using numerical results and empirical correlation was verified. • A 1.0–2.0% conversion efficiency and 5.7–11.1% heat recovery efficiency were obtained. • A 0.25% increase in efficiency was found with a 10 K decrease in coolant temperature. - Abstract: In this study, waste heat recovery performance of a direct contact thermoelectric generator (DCTEG) is experimentally investigated on a diesel engine. In order to conduct an insightful analysis of the DCTEG characteristics, three experimental parameters—engine load, rotation speed, and coolant temperature—are chosen to vary over ranges during the experiments. Experimental results show that higher temperature differences across thermoelectric modules (TEM), larger engine loads, and rotation speeds lead to an improved energy conversion efficiency of the DCTEG, which lies in the range of approximately 1.0–2.0%, while the output power ranges approximately 12–45 W. The increase in the conversion efficiency for an increased engine load becomes more noticeable with a higher engine rotation speed. A 10 K decrease in the coolant temperature yields an approximately 0.25% increase in the conversion efficiency for the engine operating conditions tested. In addition, 3D numerical simulations were conducted to investigate the heat transfer and pressure characteristics of the DCTEG. Numerically obtained exhaust gas temperatures exiting the DCTEG were in good agreement with experimental results. It is also revealed that incorporation of the temperature fields from the numerical simulation and an empirical correlation for a temperature-power relationship provides a good predictor for output power from the DCTEG, especially at low engine load conditions, which deviates from experimental results as the

  18. Household Hazardous Waste

    Science.gov (United States)

    ... waste collection" near your zip code in the Earth 911 database Exit for more information. Contact your ... lemon juice in one pint of mineral or vegetable oil and wipe furniture. Rug Deodorizer Liberally sprinkle ...

  19. 40 CFR 261.2 - Definition of solid waste.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Definition of solid waste. 261.2 Section 261.2 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) IDENTIFICATION AND LISTING OF HAZARDOUS WASTE General § 261.2 Definition of solid waste. (a)(1) A...

  20. Contamination control aspects of attaching waste drums to the WIPP Waste Characterization Chamber

    International Nuclear Information System (INIS)

    Rubick, L.M.; Burke, L.L.

    1998-01-01

    Argonne National Laboratory West (ANL-W) is verifying the characterization and repackaging of contact-handled transuranic (CH-TRU) mixed waste in support of the Waste Isolation Pilot Program (WIPP) project located in Carlsbad, New Mexico. The WIPP Waste Characterization Chamber (WCC) was designed to allow opening of transuranic waste drums for this process. The WCC became operational in March of 1994 and has characterized approximately 240 drums of transuranic waste. The waste drums are internally contaminated with high levels of transuranic radionuclides. Attaching and detaching drums to the glove box posed serious contamination control problems. Prior to characterizing waste, several drum attachment techniques and materials were evaluated. An inexpensive HEPA filter molded into the bagging material helps with venting during detachment. The current techniques and procedures used to attach and detach transuranic waste drums to the WCC are described

  1. Perspectives concerning radioactive waste management

    International Nuclear Information System (INIS)

    Noynaert, L.

    2013-01-01

    The article presents a general overview of the principles of radioactive waste management as established by the International Atomic Energy Agency. Subsequently, research and development related to radioactive waste management at the Belgian Nuclear Research Center SCK·CEN is discussed. Different topical areas are treated including radioactive waste characterisation, decontamination and the long-term management of radioactive waste. The decommissioning of the BR3 reactor and the construction and the exploitation of the underground research laboratory HADES are cited as examples of the pioneering role that SCK·CEN has played in radioactive waste management.

  2. The International Atomic Energy Agency (IAEA) research program to improve safety assessment methodologies for near-surface radioactive waste disposal facilities (ISAM)

    International Nuclear Information System (INIS)

    Torres-Vidal, C.; Kozak, M.W.

    2000-01-01

    The International Atomic Energy Agency (IAEA) launched a Coordinated Research Program in November 1997 on Improvement of Safety Assessment Methodologies for Near Surface Radioactive Waste Disposal Facilities (ISAM). The purpose of this paper is to describe the program and its goals, and to describe achievements of the program to date. The main objectives of the ISAM program are outlined. The primary focus of ISAM is on the practical application of safety assessment methodologies. Three kinds of practical situations are being addressed in the program: safety assessments for large vaults typical of those in Western Europe and North America, smaller vaults for medium and industrial wastes typical in eastern Europe and the former Soviet Union, and a proposed borehole technology for disposal of spent sources in low-technology conditions. (author)

  3. Degradation of Remazol Red in batik dye waste water by contact glow discharge electrolysis method using NaOH and NaCl electrolytes

    Science.gov (United States)

    Saksono, Nelson; Putri, Dita Amelia; Suminar, Dian Ratna

    2017-03-01

    Contact Glow Discharge Electrolysis (CGDE) method is one of Plasma Electrolysis technology which has been approved to degrade organic waste water because it is very productive in producing hydroxyl radical. This study aims to degrade Remazol Red by CGDE method and evaluate important parameters that have influent in degradation process of Remazol Red in Batik dye waste water in batch system. The kind of electrolyte (acid and base) and the addition of metal ion such as Fe2+ have affected Remazol Red degradation percentage. Ultraviolet-Visible (UV-Vis) absorption spectra were used to monitor the degradation process. The result of study showed that percentage degradation was 99.97% which obtained by using NaCl 0.02 M with addition Fe2+ 20 ppm, applied voltage 700 volt, anode depth 0.5 cm, initial concentration of Remazol Red 250 ppm and the temperature of solutions was maintained 50-60 ËšC.

  4. Progress on the national low level radioactive waste repository and national intermediate level waste store

    International Nuclear Information System (INIS)

    Perkins, C.

    2003-01-01

    The Australian Government is committed to establishing two purpose-built facilities for the management of Australia's radioactive waste; the national repository for disposal of low level and short-lived intermediate level ('low level') waste, and the national store for storage of long-lived intermediate level ('intermediate level') waste. It is strongly in the interests of public security and safety to secure radioactive waste by disposal or storage in facilities specially designed for this purpose. The current arrangements where waste is stored under ad hoc arrangements at hundreds of sites around Australia does not represent international best practice in radioactive waste management. Environmental approval has been obtained for the national repository to be located at Site 40a, 20 km east of Woomera in South Australia, and licences are currently being sought from the Australian Radiation Protection and Nuclear Safety Agency (ARPANSA) to site, construct and operate the facility. The national repository may be operating in 2004 subject to obtaining the required licences. The national store will be located on Australian Government land and house intermediate level waste produced by Australian Government departments and agencies. The national store will not be located in South Australia. Short-listing of potentially suitable sites is expected to be completed soon

  5. Nuclear Solid Waste Processing Design at the Idaho Spent Fuels Facility

    International Nuclear Information System (INIS)

    Dippre, M. A.

    2003-01-01

    A spent nuclear fuels (SNF) repackaging and storage facility was designed for the Idaho National Engineering and Environmental Laboratory (INEEL), with nuclear solid waste processing capability. Nuclear solid waste included contaminated or potentially contaminated spent fuel containers, associated hardware, machinery parts, light bulbs, tools, PPE, rags, swabs, tarps, weld rod, and HEPA filters. Design of the nuclear solid waste processing facilities included consideration of contractual, regulatory, ALARA (as low as reasonably achievable) exposure, economic, logistical, and space availability requirements. The design also included non-attended transfer methods between the fuel packaging area (FPA) (hot cell) and the waste processing area. A monitoring system was designed for use within the FPA of the facility, to pre-screen the most potentially contaminated fuel canister waste materials, according to contact- or non-contact-handled capability. Fuel canister waste materials which are not able to be contact-handled after attempted decontamination will be processed remotely and packaged within the FPA. Noncontact- handled materials processing includes size-reduction, as required to fit into INEEL permitted containers which will provide sufficient additional shielding to allow contact handling within the waste areas of the facility. The current design, which satisfied all of the requirements, employs mostly simple equipment and requires minimal use of customized components. The waste processing operation also minimizes operator exposure and operator attendance for equipment maintenance. Recently, discussions with the INEEL indicate that large canister waste materials can possibly be shipped to the burial facility without size-reduction. New waste containers would have to be designed to meet the drop tests required for transportation packages. The SNF waste processing facilities could then be highly simplified, resulting in capital equipment cost savings, operational

  6. DEFENSE HIGH LEVEL WASTE GLASS DEGRADATION

    International Nuclear Information System (INIS)

    Ebert, W.

    2001-01-01

    The purpose of this Analysis/Model Report (AMR) is to document the analyses that were done to develop models for radionuclide release from high-level waste (HLW) glass dissolution that can be integrated into performance assessment (PA) calculations conducted to support site recommendation and license application for the Yucca Mountain site. This report was developed in accordance with the ''Technical Work Plan for Waste Form Degradation Process Model Report for SR'' (CRWMS M andO 2000a). It specifically addresses the item, ''Defense High Level Waste Glass Degradation'', of the product technical work plan. The AP-3.15Q Attachment 1 screening criteria determines the importance for its intended use of the HLW glass model derived herein to be in the category ''Other Factors for the Postclosure Safety Case-Waste Form Performance'', and thus indicates that this factor does not contribute significantly to the postclosure safety strategy. Because the release of radionuclides from the glass will depend on the prior dissolution of the glass, the dissolution rate of the glass imposes an upper bound on the radionuclide release rate. The approach taken to provide a bound for the radionuclide release is to develop models that can be used to calculate the dissolution rate of waste glass when contacted by water in the disposal site. The release rate of a particular radionuclide can then be calculated by multiplying the glass dissolution rate by the mass fraction of that radionuclide in the glass and by the surface area of glass contacted by water. The scope includes consideration of the three modes by which water may contact waste glass in the disposal system: contact by humid air, dripping water, and immersion. The models for glass dissolution under these contact modes are all based on the rate expression for aqueous dissolution of borosilicate glasses. The mechanism and rate expression for aqueous dissolution are adequately understood; the analyses in this AMR were conducted to

  7. 77 FR 46964 - Oklahoma: Incorporation by Reference of Approved State Hazardous Waste Management Program

    Science.gov (United States)

    2012-08-07

    ...: Incorporation by Reference of Approved State Hazardous Waste Management Program AGENCY: Environmental Protection... Agency (EPA) to authorize States to operate their hazardous waste management programs in lieu of the Federal program. The EPA uses the regulations entitled ``Approved State Hazardous Waste Management...

  8. 77 FR 29231 - Oklahoma: Incorporation by Reference of Approved State Hazardous Waste Management Program

    Science.gov (United States)

    2012-05-17

    ...: Incorporation by Reference of Approved State Hazardous Waste Management Program AGENCY: Environmental Protection... Agency (EPA) to authorize States to operate their hazardous waste management programs in lieu of the Federal program. The EPA uses the regulations entitled ``Approved State Hazardous Waste Management...

  9. 76 FR 26616 - Wisconsin: Incorporation by Reference of Approved State Hazardous Waste Management Program

    Science.gov (United States)

    2011-05-09

    ... Reference of Approved State Hazardous Waste Management Program AGENCY: Environmental Protection Agency (EPA... (RCRA) allows EPA to authorize States to operate their hazardous waste management programs in lieu of the Federal program. EPA uses the regulations entitled ``Approved State Hazardous Waste Management...

  10. 75 FR 45489 - New York: Incorporation by Reference of State Hazardous Waste Management Program

    Science.gov (United States)

    2010-08-03

    ...: Incorporation by Reference of State Hazardous Waste Management Program AGENCY: Environmental Protection Agency... (EPA) to authorize States to operate their hazardous waste management programs in lieu of the Federal program. EPA uses the regulations entitled ``Approved State Hazardous Waste Management Programs'' to...

  11. National Inventory of Radioactive Wastes, Edition 1998

    International Nuclear Information System (INIS)

    Pallard, Bernard; Vervialle, Jean Pierre; Voizard, Patrice

    1998-01-01

    The National Radioactive Waste Inventory is an annual report of French National Agency for Radioactive Waste Management (ANDRA). The issue on 1998 has the following content: 1. General presentation; 2. Location of radioactive wastes in France; 3. Regional file catalogue; 4. Address directory; 5. Annexes. The inventory establishes the producer and owner categories, the French overseas waste sources, location of pollutant sides, spread wastes (hospitals, universities and industrial sector), railways terminals

  12. 40 CFR 262.11 - Hazardous waste determination.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Hazardous waste determination. 262.11 Section 262.11 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES... Administrator under 40 CFR 260.21; or (2) Applying knowledge of the hazard characteristic of the waste in light...

  13. 40 CFR 265.13 - General waste analysis.

    Science.gov (United States)

    2010-07-01

    ... 265.13 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED... waste analysis requirements for specific waste management methods as specified in §§ 265.200, 265.225... analysis of test data; and, (iii) The annual removal of residues which are not delisted under § 260.22 -of...

  14. Corrosion of metal containers containing cemented radioactive wastes

    International Nuclear Information System (INIS)

    Duffo, G.S.; Farina, S.B.; Schulz, F.M.; Marotta, F

    2010-01-01

    Nuclear activities generate different kinds of radioactive wastes. In the case of Argentina, wastes classified as low and medium level are conditioned in metal drums for final disposal in a repository whose design is based on the use of multiple and independent barriers. Nuclear energy plants generate a large volume of mid-level radioactive wastes, consisting mainly of ion-exchange resins contaminated by fission products. Other contaminated products such as gloves, papers, clothing, rubber and plastic tubing, can be incinerated and the ashes from the combustion also constitute wastes that must be disposed of. These wastes (resins and ashes) must be immobilized in order to avoid the release of radionuclides into the environment. The wastes usually undergo a process of cementing to immobilize them. This work aims to systematically study the process of degradation by corrosion of the steel drums in contact with the cemented resins and with the ashes cemented with the addition of different types and concentrations of aggressive compounds (chloride and sulfate). The specimens are configured so that the parameters of interest for the steel in contact with the cemented materials can be measured. The variables of corrosion potential, electric resistivity of the matrix and polarization resistance (PR) were monitored and show that the presence of chloride increases the susceptibility to corrosion of the drum steel that is in contact with the cement resin matrix

  15. CONTACT ANGLE OF YUCCA MOUNTAIN WELDED TUFF WITH WATER AND BRINES

    International Nuclear Information System (INIS)

    H. Kalia

    2006-01-01

    A number of tests were performed to acquire contact angles between Yucca Mountain welded tuff from Topopah Springs Lower Lithophysal geologic unit and various brine solutions. The tests were performed on core disks received from Sample Management Facility (SMF), oven dried to a constant weight and the core disks vacuum saturated in: distilled water, J-13 water, calcium chloride brine and sodium chloride brine to constant weight. The contact angles were acquired from eight points on the surface of the core disks, four on rough surface, and four on polished surface. The contact angle was measured by placing a droplet of the test fluid, distilled water, J-13 water, calcium chloride brine and sodium chloride brine on the core disks. The objective of this test was to acquire contact angles as a potential input to estimating capillary forces in accumulated dust on the waste packages and drip shields slated for the proposed High-Level Radioactive Waste Repository at Yucca Mountain, Nevada. It was noted that once the droplet contacts the test surface, it continues to spread hence the contact angle continues to decrease with elapsed time. The maximum observed angle was at time 0 or when the drop contacted the rock surface. The measured contact angle, in all cases has significant scatter. In general, the time zero contact angles for core disks saturated in sodium chloride brine were smaller than those saturated in calcium chloride brine, distilled water, and J-13 water. The contact angles for samples saturated in distilled water, J-13 water and calcium chloride brine at time zero were similar. There was slight difference between the observed contact angles for smooth and rough surface of the test samples. The contact angles for smooth surfaces were smaller than for the rough surfaces

  16. The management and disposal of alpha-contaminated waste

    International Nuclear Information System (INIS)

    Duclos, J.; Farges, L.; Lavie, J.M.; Marque, Y.

    1981-01-01

    The establishment of the French National Agency for Radioactive Waste Management (ANDRA) in November 1979 marked the beginning of industrial management of this type of waste in France. The organization of this Agency is sufficiently flexible to reconcile the need for the assumption of responsibility by the public authorities for a matter having considerable long-term implications; the importance of making available to all radioactive-waste producers the benefits of the research carried out by large national entities; (Commissariat a l'energie atomique, Electricite de France, etc.) and the obligation to satisfy all the scientific and financial requirements regarding optimal radioactive-waste management. The Centre de stockage de la Manche (CSM) is at present concerned with the special requirements relating to alpha waste. These are being analysed, together with their implications for technical specifications and industrial management. A strategy for alpha waste storage is defined in the light of the forecasts of waste deliveries for the next 20 years. (author)

  17. Storage of radioactive wastes

    International Nuclear Information System (INIS)

    1992-07-01

    Even if the best waste minimization measures are undertaken throughout radioisotope production or usage, significant radioactive wastes arise to make management measures essential. For developing countries with low isotope usage and little or no generation of nuclear materials, it may be possible to handle the generated waste by simply practicing decay storage for several half-lives of the radionuclides involved, followed by discharge or disposal without further processing. For those countries with much larger facilities, longer lived isotopes are produced and used. In this situation, storage is used not only for decay storage but also for in-process retention steps and for the key stage of interim storage of conditioned wastes pending final disposal. The report will serve as a technical manual providing reference material and direct step-by-step know-how to staff in radioisotope user establishments and research centres in the developing Member States without nuclear power generation. Considerations are limited to the simpler storage facilities. The restricted quantities and low activity associated with the relevant wastes will generally permit contact-handling and avoid the need for shielding requirements in the storage facilities or equipment used for handling. A small quantity of wastes from some radioisotope production cells and from reactor cooling water treatment may contain sufficient short lived activity from activated corrosion products to require some separate decay storage before contact-handling is suitable. 16 refs, 12 figs, 8 tabs

  18. Concerning enactment of regulations on burying of waste of nuclear fuel material or waste contaminated with nuclear fuel material

    International Nuclear Information System (INIS)

    1988-01-01

    The Atomic Safety Commission of Japan, after examining a report submitted by the Science and Technology Agency concerning the enactment of regulations on burying of waste of nuclear fuel material or waste contaminated with nuclear fuel material, has approved the plan given in the report. Thus, laws and regulations concerning procedures for application for waste burying business, technical standards for implementation of waste burying operation, and measures to be taken for security should be established to ensure the following. Matters to be described in the application for the approval of such business and materials to be attached to the application should be stipulated. Technical standards concerning inspection of waste burying operation should be stipulated. Measures to be taken for the security of waste burying facilities and security concerning the transportation and disposal of nuclear fuel material should be stipulated. Matters to be specified in the security rules should be stipulated. Matters to be recorded by waste burying business operators, measures to be taken to overcome dangers and matters to be reported to the Science and Technology Agency should be stipulated. (Nogami, K.)

  19. Verifying generator waste certification: NTS waste characterization QA requirements

    International Nuclear Information System (INIS)

    Williams, R.E.; Brich, R.F.

    1988-01-01

    Waste management activities managed by the US Department of Energy (DOE) at the Nevada Test Site (NTS) include the disposal of low-level wastes (LLW) and mixed waste (MW), waste which is both radioactive and hazardous. A majority of the packaged LLW is received from offsite DOE generators. Interim status for receipt of MW at the NTS Area 5 Radioactive Waste Management Site (RWMS) was received from the state of Nevada in 1987. The RWMS Mixed Waste Management Facility (MWMF) is expected to be operational in 1988 for approved DOE MW generators. The Nevada Test Site Defense Waste Acceptance Criteria and Certification Requirements (NVO-185, Revision 5) delineates waste acceptance criteria for waste disposal at the NTS. Regulation of the hazardous component of mixed waste requires the implementation of US Environmental Protection Agency (EPA) requirements pursuant to the Resource Conservation and Recovery Act (RCRA). Waste generators must implement a waste certification program to provide assurance that the disposal site waste acceptance criteria are met. The DOE/Nevada Operations Office (NV) developed guidance for generator waste certification program plans. Periodic technical audits are conducted by DOE/NV to assess performance of the waste certification programs. The audit scope is patterned from the waste certification program plan guidance as it integrates and provides a common format for the applicable criteria. The criteria focus on items and activities critical to processing, characterizing, packaging, certifying, and shipping waste

  20. Regulatory aspects of mixed waste

    International Nuclear Information System (INIS)

    Boyle, R.R.; Orlando, D.A.

    1990-01-01

    Mixed waste is waste that satisfies the definition of low-level radioactive waste in the Low-Level Radioactive Waste Policy Amendments Act of 1985 (LLRWPAA) and contains hazardous waste that is either: (1) listed as a hazardous waste in 40 CFR 261, Subpart D; or (2) causes the waste to exhibit any of the characteristics identified in 40 CFR 261, Subpart C. Low-level radioactive waste is defined in the LLRWPAA as radioactive material that is not high level waste, spent nuclear fuel, or byproduct material, as defined in Section 11e(2) of the Atomic Energy Act of 1954, and is classified as low-level waste by the U.S. Nuclear Regulatory Commission (NRC). This paper discusses dual regulatory (NRC and Environmental Protection Agency) responsibility, overview of joint NRC/EPA guidance, workshops, national mixed waste survey, and principal mixed waste uncertainties

  1. Nuclear Power, Nuclear Fuel Cycle and Waste Management 1980-1994. International Atomic Energy Agency Publications

    International Nuclear Information System (INIS)

    1995-05-01

    This catalogue lists all sales publications of the International Atomic Energy Agency dealing with Nuclear Power and Nuclear Fuel Cycle and Waste Management issued during the period 1980-1994. Most publications are issued in English. Proceedings of conferences, symposia and panels of experts may contain some papers in languages other than English (French, Russian or Spanish), but all of these papers have abstracts in English. If publications are also available in other languages than English, this is noted as C for Chinese, F for French, R for Russian and S for Spanish by the relevant ISBN number. It should be noted that prices of books are quoted in Austrian Schillings. The prices do not include local taxes and are subject to change without notice. All books in this catalogue are 16 x 24 cm, paper-bound, unless otherwise stated

  2. 75 FR 35127 - Hazardous and Solid Waste Management System; Identification and Listing of Special Wastes...

    Science.gov (United States)

    2010-06-21

    ... will not know your identity or contact information unless you provide it in the body of your comment... recommends that you include your name and other contact information in the body of your comment and with any... effects (such as taste, odor, or color) of drinking water. Special Wastes means any of the following...

  3. Order of the 10 january 2003 authorizing the national agency for the radioactive wastes management to follow the gaseous and liquid effluents release for the exploitation of the radioactive wastes storage center of the Manche; Arrete du 10 janvier 2003 autorisant l'Agence nationale pour la gestion des dechets radioactifs a poursuivre les rejets d'effluents gazeux et liquides pour l'exploitation du centre de stockage de dechets radioactifs de la Manche

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-01-01

    This document, took out from the Official Journal, is the law text relative to the order of the 10 january 2003 authorizing the national agency for the radioactive wastes management to follow the gaseous and liquid effluents release for the exploitation of the radioactive wastes storage center of the Manche. (A.L.B.)

  4. Final disposal of radioactive waste

    Directory of Open Access Journals (Sweden)

    Freiesleben H.

    2013-06-01

    Full Text Available In this paper the origin and properties of radioactive waste as well as its classification scheme (low-level waste – LLW, intermediate-level waste – ILW, high-level waste – HLW are presented. The various options for conditioning of waste of different levels of radioactivity are reviewed. The composition, radiotoxicity and reprocessing of spent fuel and their effect on storage and options for final disposal are discussed. The current situation of final waste disposal in a selected number of countries is mentioned. Also, the role of the International Atomic Energy Agency with regard to the development and monitoring of international safety standards for both spent nuclear fuel and radioactive waste management is described.

  5. 78 FR 15338 - New York: Final Authorization of State Hazardous Waste Management Program Revisions

    Science.gov (United States)

    2013-03-11

    ... authorization of changes to its hazardous waste program under the Solid Waste Disposal Act, as amended, commonly... ENVIRONMENTAL PROTECTION AGENCY 40 CFR Part 271 [EPA-R02-RCRA-2013-0144; FRL-9693-3] New York: Final Authorization of State Hazardous Waste Management Program Revisions AGENCY: Environmental...

  6. Present situation and issues for the French radioactive waste management agency

    International Nuclear Information System (INIS)

    Dupuis, M.C.

    2009-01-01

    This series of slides makes a status of the radioactive waste management in France: 1 - Planned disposal facilities: A - Low level long lived waste (LL-LL: Graphite Waste And Radium Bearing Waste): Implementation within a shallow clay formation (between 15 and 200 m in depth). For graphite waste: a 'repository with an intact cover' as a reference option. For radium-bearing waste: a 'repository with a reworked cover' under investigation. The required footprint on ground surface is in the order of 100 ha. Siting approach: June 2, 2008: letter from the Minister of State to the Chairman of ANDRA; June 2008: file addressed by ANDRA to the mayors of 3,115 communes. Until the end of October 2008: expression of interest by local communities. Possibility to confirm their application in late 2010. December 2008: assessment report by ANDRA and proposal of ranked zones to the government. Beginning of 2009: government decision concerning the pre-selection still pending. 2009-2010: geological surveys, consultations, territorial projects. B - High level and Intermediate level long lived waste (HL and IL-LL): Preparing disposal in a clay formation. 2012: public debate, 2013: site selection, 2015: application, 2025: start up. The Meuse Haute Marne Underground Research Laboratory Siting: the disposal facility (drilling campaigns), Construction of a Visitors' Centre designed to present the waste-repository project and its technological aspect. Inauguration scheduled in June 2009. 2 - Operated disposal facilities: A - Low and intermediate level short lived waste (LIL-SL) and Very low level waste (VLL). LIL-SL Manche Centre: 1969: start up, 1994: end of operation, 2003: institutional control period, Disposed volume (1969-1994): 527,000 m 3 , Impact of the facility ∼0,65 μSv/year (2008). Institutional control period monitoring: Radiological and chemical monitoring (Discharges, Underground water, Surface water), Capping system monitoring (Water-tightness performances, Rainfall water

  7. Mission Accomplished: Working with State Arts Agencies

    Science.gov (United States)

    Boyer, Johanna Misey

    2005-01-01

    Most everyone involved professionally in the non-profit arts comes in contact with a state arts agency. A person may be on the Teaching Artist roster, works for a grantee organization, or has directly received a grant or fellowship. The work that one does in the school is probably funded by the state arts agency. Or, at a more basic level, the…

  8. 77 FR 69769 - Solid Waste Rail Transfer Facilities

    Science.gov (United States)

    2012-11-21

    ...] Solid Waste Rail Transfer Facilities AGENCY: Surface Transportation Board, DOT. ACTION: Final rules. SUMMARY: These final rules govern land-use-exemption permits for solid waste rail transfer facilities. The... Transportation Board over solid waste rail transfer facilities. The Act also added three new statutory provisions...

  9. An approach to regulatory compliance with radioactive mixed waste regulations

    International Nuclear Information System (INIS)

    Baker, G.G.; Mihalovich, G.S.; Provencher, R.B.

    1991-01-01

    On May 7, 1990, radioactive mixed waste (RMW) at the West Valley Demonstration Project (WVDP) became subject to the State Of New York hazardous waste regulations. The facility was required to be in full compliance by June 6, 1990. Achievement of this goal was difficult because of the short implementation time frame. Compliance with the hazardous waste regulations also presented some potential conflicts between the hazardous waste requirements and other regulatory requirements specifically applicable to nuclear facilities. The potential conflicts involved construction, operation, and control measures. However, the facility had been working extensively with EPA Region 2 and the New York State Department of Environmental Conservation (NYSDEC) on the application of the hazardous waste regulations to the facility. During these preliminary contacts, WVDP identified three issues that related to the potential conflicts: 1. Equivalency of Design and Equipment, 2. Land Disposal Restrictions (LDR), and 3. The Principle of As Low As Reasonable Achievable (ALARA) Radiation Exposure. The equivalency of nuclear facility design and equipment to the hazardous waste requirements is based in part on the increased construction criteria for nuclear facilities, the use of remote radiological monitoring for leak detection, and testing of system components that are not accessible to personnel due to high levels of radiation. This paper discusses in detail: 1. The implementation and results of the WVDP's interaction with its regulators, 2. How the regulators were helped to understand the different situations and conditions of nuclear and chemical facilities, and 3. How, by working together, the result was not only mutually advantageous to the NWDP and the agencies, but it also assured that the health and safety of workers, the public, and the environment were protected

  10. Acid-digestion treatment of plutonium-containing waste

    International Nuclear Information System (INIS)

    Wieczorek, H.; Kemmler, G.; Krause, H.

    1981-01-01

    The Radioactive Acid-Digestion Test Unit (RADTU) has been constructed at Hanford to demonstrate the application of the acid-digestion process for treating combustible transuranic wastes and scrap materials. The RADTU, with its original tray digestion vessel, has recently completed a six-month campaign processing potentially contaminated non-glovebox wastes from a Hanford plutonium facility. During this campaign, it processed 2100 kg largely cellulosic wastes at an average sustained processing rate of 3 kg/h as limited by the acid-waste contact and the water boil-off rate from the acid feeds. The on-line operating efficiency was nearly 50% on a twelve-hour day, five-day week basis. Following this campaign, a new annular high-rate digester has been installed for testing. In preliminary tests with simulated wastes, the new digester demonstrated a sustained capacity of 10 kg/h with greatly improved intimacy of contact between the digestion acid and the waste. The new design also doubles the heat-transfer surface, which is expected to provide at least twice the water boil-off rate of the previous tray digester design. Following shakedown testing with simulated and low-level wastes, the new unit will be used to process combustible plutonium scrap and waste from Hanford plutonium facilities for the purposes of volume reduction, plutonium recovery, and stabilization of the final waste form. (author)

  11. Simultaneous treatment of SO2 containing stack gases and waste water

    Science.gov (United States)

    Poradek, J. C.; Collins, D. D. (Inventor)

    1978-01-01

    A process for simultaneously removing sulfur dioxide from stack gases and the like and purifying waste water such as derived from domestic sewage is described. A portion of the gas stream and a portion of the waste water, the latter containing dissolved iron and having an acidic pH, are contacted in a closed loop gas-liquid scrubbing zone to effect absorption of the sulfur dioxide into the waste water. A second portion of the gas stream and a second portion of the waste water are controlled in an open loop gas-liquid scrubbing zone. The second portion of the waste water contains a lesser amount of iron than the first portion of the waste water. Contacting in the openloop scrubbing zone is sufficient to acidify the waste water which is then treated to remove solids originally present.

  12. Westinghouse Hanford Company plan for certifying newly generated contact -- handled transuranic waste. Revision 1

    International Nuclear Information System (INIS)

    Lipinski, R.M.; Backlund, E.G.

    1995-09-01

    All transuranic (TRU) waste generators are required by US Department of Energy (DOE) Order 5820.2A to package their TRU waste in order to comply wit the Waste Isolation Pilot Plant (WIPP) -- Waste Acceptance Criteria (WAC) or keep non-certifiable containers segregated. The Westinghouse Hanford Company (WHC) Transuranic Waste Certification Plan was developed to ensure that TRU newly generated waste at WHC meets the DOE Order 5820.2A and the WHC-WAC which includes the State of Washington Department of Ecology -- Washington Administrative Code (DOE-WAC). The metho used at WHC to package TRU waste are described in sufficient detail to meet the regulations. This document is organized to provide a brief overview of waste generation operations at WHC. The methods used to implement this plan are discussed briefly along with the responsibilities and authorities of applicable organizations. This plan describes how WHC complies with all applicable regulations and requirements set forth in the latest approved revision of WHC-EP-0063-4

  13. Wood wastes: Uses

    International Nuclear Information System (INIS)

    Cipro, A.

    1993-01-01

    The 1,500 industrial firms manufacturing furniture in the Italian Province of Treviso can generate up to 190,000 tonnes of wood wastes annually. In line with the energy conservation-environmental protection measures contained in Italian Law No. 475/88, this paper indicates convenient uses for these wood wastes - as a raw material for fibreboards or as a fuel to be used in the furniture manufacturing plants themselves and in kilns producing lime. Reference is made to the wood wastes gasification/power generation system being developed by ENEA (the Italian Agency for New Technology, Energy and the Environment)

  14. State-of-the-art report on radioactive waste disposal

    International Nuclear Information System (INIS)

    Larsson, A.

    1989-01-01

    In view of the considerable work required to develop repositories for radioactive waste, an extensive international co-operation has evolved within the area. The work has also engaged the IAEA to a great extent. The Agency has published a number of reports, covering different aspects of waste disposal. Following a recommendation by its Technical Review Committee on Underground Disposal (TRCUD) the Agency will publish a ''state-of-the-art'' report on radioactive waste disposal. The report is still in the preparation stage. In this article the principal subjects of the future report are discussed

  15. Hanford Waste Management Plan, 1987

    International Nuclear Information System (INIS)

    1987-01-01

    The purpose of the Hanford Waste Management Plan (HWMP) is to provide an integrated plan for the safe storage, interim management, and disposal of existing waste sites and current and future waste streams at the Hanford Site. The emphasis of this plan is, however, on the disposal of Hanford Site waste. The plans presented in the HWMP are consistent with the preferred alternative which is based on consideration of comments received from the public and agencies on the draft Hanford Defense Waste Environmental Impact Statement (HDW-EIS). Low-level waste was not included in the draft HDW-EIS whereas it is included in this plan. The preferred alternative includes disposal of double-shell tank waste, retrievably stored and newly generated TRU waste, one pre-1970 TRU solid waste site near the Columbia River and encapsulated cesium and strontium waste

  16. 40 CFR 763.84 - General local education agency responsibilities.

    Science.gov (United States)

    2010-07-01

    ... exterminators) who may come in contact with asbestos in a school are provided information regarding the... 40 Protection of Environment 30 2010-07-01 2010-07-01 false General local education agency responsibilities. 763.84 Section 763.84 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC...

  17. 40 CFR 266.202 - Definition of solid waste.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 26 2010-07-01 2010-07-01 false Definition of solid waste. 266.202 Section 266.202 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES... MANAGEMENT FACILITIES Military Munitions § 266.202 Definition of solid waste. (a) A military munition is not...

  18. The different solutions for the waste storage

    International Nuclear Information System (INIS)

    Fillion, E.

    2001-01-01

    Created in 1979, the National agency for the management of radioactive waste (A.N.D.R.A.) is a public establishment in charge of the management of radioactive waste produced in France. It is independent from waste producers and watches over the long term protection of man and his environment, at any step of radioactive waste management. It has for mission to check the waste quality and to conceive, to establish, to build and to manage storage centers where waste are stored according their characteristics. (N.C.)

  19. Regulatory Support of Treatment of Savannah River Site Purex Waste

    International Nuclear Information System (INIS)

    Reid, L.T.

    2009-01-01

    This paper describes the support given by federal and state regulatory agencies to Savannah River Site (SRS) during the treatment of an organic liquid mixed waste from the Plutonium Extraction (Purex) process. The support from these agencies allowed (SRS) to overcome several technical and regulatory barriers and treat the Purex waste such that it met LDR treatment standards. (authors)

  20. Waste Encapsulation and Storage Facility (WESF) Dangerous Waste Training Plan (DWTP)

    International Nuclear Information System (INIS)

    SIMMONS, F.M.

    2000-01-01

    This Waste Encapsulation Storage Facility (WESF) Dangerous Waste Training Plan (DWTP) applies to personnel who perform work at, or in support of WESF. The plan, along with the names of personnel, may be given to a regulatory agency inspector upon request. General workers, subcontractors, or visiting personnel who have not been trained in the management of dangerous wastes must be accompanied by an individual who meets the requirements of this training plan. Dangerous waste management includes handling, treatment, storage, and/or disposal of dangerous and/or mixed waste. Dangerous waste management units covered by this plan include: less-than-90-day accumulation area(s); pool cells 1-8 and 12 storage units; and process cells A-G storage units. This training plan describes general requirements, worker categories, and provides course descriptions for operation of the WESF permitted miscellaneous storage units and the Less-than-90-Day Accumulation Areas

  1. Must we be afraid by the radioactive waste?

    International Nuclear Information System (INIS)

    2002-01-01

    In the framework of the information on radioactive waste, scientists and politicians give information on the radioactive waste management in France, the researches in the framework of the law of the 30 december 1991, the national agency for the radioactive waste (ANDRA) and its sites. (A.L.B.)

  2. National Association of Area Agencies on Aging

    Science.gov (United States)

    National Association of Area Agencies on Aging Search Member Login Forgot Password? Menu ABOUT n4a Mission, Vision & Work AAAs & Title VI Aging Programs Membership Board of Directors Staff Contact ...

  3. 78 FR 46940 - Hazardous and Solid Waste Management System: Identification and Listing of Special Wastes...

    Science.gov (United States)

    2013-08-02

    ...The U.S. Environmental Protection Agency (EPA or the Agency) invites comment on additional information obtained in conjunction with the proposed rule: Hazardous and Solid Waste Management System: Identification and Listing of Special Wastes; Disposal of Coal Combustion Residuals From Electric Utilities that was published in the Federal Register on June 21, 2010. This information is categorized as: additional data to supplement the Regulatory Impact Analysis and risk assessment, information on large scale fill, and data on the surface impoundment structural integrity assessments. EPA is also seeking comment on two issues associated with the requirements for coal combustion residual management units. The Agency is not reopening any other aspect of the proposal or underlying support documents, and will consider comments on any issues other than those raised in the NODA to be late comments and not part of the rulemaking record.

  4. Solid Waste Management Districts

    Data.gov (United States)

    Vermont Center for Geographic Information — The Solid waste management districts layer is part of a dataset that contains administrative boundaries for Vermont's Agency of Natural Resources. This dataset...

  5. Radioactive waste packages stored at the Aube facility for low-intermediate activity wastes. A selective and controlled storage

    International Nuclear Information System (INIS)

    2005-01-01

    The waste package is the first barrier designed to protect the man and the environment from the radioactivity contained in wastes. Its design is thus particularly stringent and controlled. This brochure describes the different types of packages for low to intermediate activity wastes like those received and stored at the Aube facility, and also the system implemented by the ANDRA (the French national agency of radioactive wastes) and by waste producers to safely control each step of the design and fabrication of these packages. (J.S.)

  6. 40 CFR 265.177 - Special requirements for incompatible wastes.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Special requirements for incompatible wastes. 265.177 Section 265.177 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT...

  7. 40 CFR 265.230 - Special requirements for incompatible wastes.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Special requirements for incompatible wastes. 265.230 Section 265.230 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT...

  8. 40 CFR 265.406 - Special requirements for incompatible wastes.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Special requirements for incompatible wastes. 265.406 Section 265.406 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT...

  9. 40 CFR 264.257 - Special requirements for incompatible wastes.

    Science.gov (United States)

    2010-07-01

    ... DISPOSAL FACILITIES Waste Piles § 264.257 Special requirements for incompatible wastes. (a) Incompatible... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Special requirements for incompatible wastes. 264.257 Section 264.257 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED...

  10. 40 CFR 264.313 - Special requirements for incompatible wastes.

    Science.gov (United States)

    2010-07-01

    ... DISPOSAL FACILITIES Landfills § 264.313 Special requirements for incompatible wastes. Incompatible wastes... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Special requirements for incompatible wastes. 264.313 Section 264.313 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED...

  11. Contact expert group for international radwaste projects. Fourth meeting

    International Nuclear Information System (INIS)

    1997-06-01

    The Contact Expert Group for International Radwaste Projects is the result of an IAEA seminar on ''International Co-operation on Nuclear Waste Management in the Russian Federation'', 15-17 May 1995, that was requested and sponsored by the Nordic countries. In two working groups at the Seminar, participants from the Russian Federation and 17 countries and international organizations co-operating with the Russian Federation in waste management projects recognized the need for setting up a contact group of experts to assist in co-ordinating their efforts. Such co-ordination would help avoid redundancy and duplication of effort, assure that priority needs were made known to the international community, and provide points of contact to facilitate co-operation. This report is a compilation of the 4. CEG meeting materials, both prepared by the CEG Secretariat and presented by meeting's participants. The materials discussed by the CEG and subsequently modified are presented in the finally approved version. As in the case of previous similar reports, the documentation presented was just compiled without any editing and thus should be considered only as ''working proceedings'' of the meeting

  12. CEA and its radioactive wastes

    International Nuclear Information System (INIS)

    Marano, S.

    1999-01-01

    CEA annually produces about 3500 tons of radioactive wastes in its 43 basic nuclear installations. CEA ranks third behind EDF and Cogema. Low-level wastes (A wastes) are sent to ANDRA (national agency for the management of nuclear wastes)whereas medium-level wastes (B wastes) are stored by CEA itself. CEA has checked off its storing places and has set up an installation Cedra to process and store ancient and new nuclear wastes. 3 other installations are planned to operate within 6 years: Agate (Cadarache) will treat liquid effluents, Stella (Saclay) will process liquid wastes that are beta or gamma emitters, and Atena (Marcoule) will treat and store radioactive sodium coming from Phenix reactor and IPSN laboratories. The use of plasma torch for vitrifying wastes is detailed, the management of all the nuclear wastes produced by CEA laboratories and installations is presented. (A.C.)

  13. Hazardous and mixed waste management at UMTRA sites

    International Nuclear Information System (INIS)

    Hampill, H.G.

    1988-01-01

    During the early stages of the Uranium Mill Tailings Remedial Action Project, there were some serious questions regarding the ownership of and consequently the responsibility for disposal of hazardous wastes at UMTRA sites. In addition to State and Indian Tribe waste disposal regulations, UMTRA must also conform to guidelines established by the NRC, OSHA, EPA, and DOT. Because of the differing regulatory thrusts of these agencies, UMTRA has to be vigilant in order to ensure that the disposal of each parcel of waste material is in compliance with all regulations. Mixed-waste disposal presents a particularly difficult problem. No single agency is willing to lay claim to the regulation of mixed-wastes, and no conventional waste disposal facility is willing to accept it. Consequently, the disposal of each lot of mixed-waste at UMTRA sites must be handled on a case by case basis. A recently published position paper which spells out UMTRA policy on waste materials indicates that wastes found at UMTRA sites are either residual radioactive wastes, or mixed-wastes, or for the disposal of hazardous waste is determined by the time the original material arrived. If it arrived prior to the termination of the AEC uranium supply contract, its disposal is the responsibility of UMTRA. If it arrived after the end of the contract, the responsibility for disposal lies with the former operator

  14. The IAEA's high level radioactive waste management programme

    International Nuclear Information System (INIS)

    Saire, D.E.

    1994-01-01

    This paper presents the different activities that are performed under the International Atomic Energy Agency's (IAEA) high level radioactive waste management programme. The Agency's programme is composed of five main activities (information exchange, international safety standards, R ampersand D activities, advisory services and special projects) which are described in the paper. Special emphasis is placed on the RADioactive WAste Safety Standards (RADWASS) programme which was implemented in 1991 to document international consensus that exists on the safe management of radioactive waste. The paper also raises the question about the need for regional repositories to serve certain countries that do not have the resources or infrastructure to construct a national repository

  15. Hazardous Medical Waste Management as a Public Health Issue

    OpenAIRE

    Marinković, Natalija; Vitale, Ksenija; Afrić, Ivo; Janev Holcer, Nataša

    2005-01-01

    The amount of waste produced is connected with the degree of a country’s economic development; more developed countries produce more waste. This paper reviews the quantities, manipulation and treatment methods of medical waste in Croatia, as well as hazardous potentials of medical waste for human health. Medical waste must be collected and sorted in containers suitable for its characteristics, amount, means of transportation and treatment method in order to prevent contact with environment an...

  16. ORNL results for Test Case 1 of the International Atomic Energy Agency's research program on the safety assessment of Near-Surface Radioactive Waste Disposal Facilities

    International Nuclear Information System (INIS)

    Thorne, D.J.; McDowell-Boyer, L.M.; Kocher, D.C.; Little, C.A.; Roemer, E.K.

    1993-01-01

    The International Atomic Energy Agency (IAEA) started the Coordinated Research Program entitled '''The Safety Assessment of Near-Surface Radioactive Waste Disposal Facilities.'' The program is aimed at improving the confidence in the modeling results for safety assessments of waste disposal facilities. The program has been given the acronym NSARS (Near-Surface Radioactive Waste Disposal Safety Assessment Reliability Study) for ease of reference. The purpose of this report is to present the ORNL modeling results for the first test case (i.e., Test Case 1) of the IAEA NSARS program. Test Case 1 is based on near-surface disposal of radionuclides that are subsequently leached to a saturated-sand aquifer. Exposure to radionuclides results from use of a well screened in the aquifer and from intrusion into the repository. Two repository concepts were defined in Test Case 1: a simple earth trench and an engineered vault

  17. Waste management assessment and technical review programme. WATRP. An international peer review service for radioactive waste management activities

    International Nuclear Information System (INIS)

    1994-09-01

    International Atomic Energy Agency provides international peer review services in radioactive waste management to those Member States that have established radioactive waste management programmes. Such services are provided within Waste Management Assessment and Technical Review Programme (WATRP). The main objective of WATRP is to provide international expertise and information on a requested subject in the field of radioactive waste management and to validate that programmes and activities are sound and performing well. Refs, figs and tabs

  18. Very low level waste disposal in France. A key tool for the management for decommissioning wastes in France

    Energy Technology Data Exchange (ETDEWEB)

    Duetzer, Michel [Andra - Agence Nationale pour la Gestion des Dechets Radioactives, Chatenay-Malabry (France). Direction Industrielle

    2015-07-01

    At the end of the 90{sup th}, France had to deal with the emerging issue of the management of wastes resulting from decommissioning operations of nuclear facilities. A specific regulation was issued and Andra, the French National Radioactive Waste Management Agency, developed a dedicated near surface disposal facility to accommodate very low level radioactive wastes. After more than 10 years of operation, this facility demonstrated it can provide efficient and flexible solutions for the management of decomissioning wastes.

  19. plastic waste recycling

    African Journals Online (AJOL)

    Dr Ahmed

    incinerators is increasing around the world. Discarded plastic products ... Agency (EPA) estimated that the amount of plastics throw away is. 50 % greater in the ... The waste plastics were identified using the Society of the Plastic. Industry (SPI) ...

  20. 40 CFR 265.257 - Special requirements for incompatible wastes.

    Science.gov (United States)

    2010-07-01

    ..., STORAGE, AND DISPOSAL FACILITIES Waste Piles § 265.257 Special requirements for incompatible wastes. (a... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Special requirements for incompatible wastes. 265.257 Section 265.257 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED...

  1. Survey and evaluation of handling and disposing of solid low-level nuclear fuel cycle wastes

    International Nuclear Information System (INIS)

    Mullarkey, T.B.; Jentz, T.L.; Connelly, J.M.; Kane, J.P.

    1976-10-01

    The report identifies the types and quantities of low-level solid radwaste for each portion of the nuclear fuel cycle, based on operating experiences at existing sites and design information for future installations. These facts are used to evaluate reference 1000 MWe reactor plants in terms of solid radwaste generation. The effect of waste volumes on disposal methods and land usage has also been determined, based on projections of nuclear power growth through the year 2000. The relative advantages of volume reduction alternatives are included. Major conclusions are drawn concerning available land burial space, light water reactors and fuel fabrication and reprocessing facilities. Study was conducted under the direction of an industry task force and the National Environmental Studies Project, a technical program of the Atomic Industrial Forum. Data was obtained from questionnaires sent to 8 fuel fabrication facilities, 39 reactor sites and 6 commercial waste disposal sites. Additional data were gathered from interviews with architect engineering firms, site visits, contacts with regulatory agencies and published literature

  2. Contact Us About Managing the Quality of Environmental Information

    Science.gov (United States)

    The contact us form for the EPA Quality Program regarding quality management activities for all environmental data collection and environmental technology programs performed by or for the Agency and the EPA Information Quality Guidelines.

  3. The Hazardous Waste/Mixed Waste Disposal Facility

    International Nuclear Information System (INIS)

    Bailey, L.L.

    1991-01-01

    The Hazardous Waste/Mixed Waste Disposal Facility (HW/MWDF) will provide permanent Resource Conservation and Recovery Act (RCRA) permitted storage, treatment, and disposal for hazardous and mixed waste generated at the Department of Energy's (DOE) Savannah River Site (SRS) that cannot be disposed of in existing or planned SRS facilities. Final design is complete for Phase I of the project, the Disposal Vaults. The Vaults will provide RCRA permitted, above-grade disposal capacity for treated hazardous and mixed waste generated at the SRS. The RCRA Part B Permit application was submitted upon approval of the Permit application, the first Disposal Vault is scheduled to be operational in mid 1994. The technical baseline has been established for Phase II, the Treatment Building, and preliminary design work has been performed. The Treatment Building will provide RCRA permitted treatment processes to handle a variety of hazardous and mixed waste generated at SRS in preparation for disposal. The processes will treat wastes for disposal in accordance with the Environmental Protection Agency's (EPA's) Land Disposal Restrictions (LDR). A RCRA Part B Permit application has not yet been submitted to SCDHEC for this phase of the project. The Treatment Building is currently scheduled to be operational in late 1996

  4. The long-term management of radioactive waste

    International Nuclear Information System (INIS)

    Faussat, A.

    1988-01-01

    After setting out the terms of reference of ANDRA (National agency for the management of radioactive waste), the author describes the current situation and the projects for the surface storage of waste of low and medium activity. He then discusses the work which has started on the construction of an underground laboratory for studying the storage of long life waste [fr

  5. Hazardous waste minimization tracking system

    International Nuclear Information System (INIS)

    Railan, R.

    1994-01-01

    Under RCRA section 3002 9(b) and 3005f(h), hazardous waste generators and owners/operators of treatment, storage, and disposal facilities (TSDFs) are required to certify that they have a program in place to reduce the volume or quantity and toxicity of hazardous waste to the degree determined to be economically practicable. In many cases, there are environmental, as well as, economic benefits, for agencies that pursue pollution prevention options. Several state governments have already enacted waste minimization legislation (e.g., Massachusetts Toxic Use Reduction Act of 1989, and Oregon Toxic Use Reduction Act and Hazardous Waste Reduction Act, July 2, 1989). About twenty six other states have established legislation that will mandate some type of waste minimization program and/or facility planning. The need to address the HAZMIN (Hazardous Waste Minimization) Program at government agencies and private industries has prompted us to identify the importance of managing The HAZMIN Program, and tracking various aspects of the program, as well as the progress made in this area. The open-quotes WASTEclose quotes is a tracking system, which can be used and modified in maintaining the information related to Hazardous Waste Minimization Program, in a manageable fashion. This program maintains, modifies, and retrieves information related to hazardous waste minimization and recycling, and provides automated report generating capabilities. It has a built-in menu, which can be printed either in part or in full. There are instructions on preparing The Annual Waste Report, and The Annual Recycling Report. The program is very user friendly. This program is available in 3.5 inch or 5 1/4 inch floppy disks. A computer with 640K memory is required

  6. The management of radioactive wastes from small producers

    International Nuclear Information System (INIS)

    1996-01-01

    Medicine, research and industry generate various type of radioactive wastes which have to be managed by the ANDRA, the French agency for the management of radioactive wastes. This educative booklet explains the missions of the ANDRA with respect to these small producers: collection, selection, conditioning, control and storage of wastes. (J.S.)

  7. 40 CFR 264.198 - Special requirements for ignitable or reactive wastes.

    Science.gov (United States)

    2010-07-01

    ... waste, mixture, or dissolved material no longer meets the definition of ignitable or reactive waste... comply with the requirements for the maintenance of protective distances between the waste management... reactive wastes. 264.198 Section 264.198 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY...

  8. Mixed waste treatment options for wastes generated at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Garcia, E.C.

    1991-01-01

    The Idaho National Engineering Laboratory has generated mixed wastes (MWs) during its daily operations. MWs contain both radioactive and hazardous components, as defined by the Department of Energy and the Environmental Protection Agency. Treatment and disposal of stored MWs, as well as future generated MWs, are required to meet all regulations specified by the regulating agencies. This report reviews proven and emerging technologies that can treat MWs. It also provides a method for selection of the appropriate technology for treatment of a particular waste stream. The report selects for further consideration various treatments that can be used to treat MWs that fall under Land Disposal Restrictions. The selection methodology was used to arrive at these treatments. 63 refs., 7 figs., 23 tabs

  9. Guidebook of radioactive wastes removal. From collection to storage

    International Nuclear Information System (INIS)

    2014-06-01

    This document, more particularly devoted to radioactive waste producers (except electronuclear industry), defines the technical specifications relative to the taking over of their wastes by the ANDRA, the French national agency of radioactive wastes. Content: general conditions (producers liability and obligations), instructions manual of the taking over demand, non-electronuclear wastes collecting, wastes conditioning specifications, specifications for each category of waste, the lightning arresters case, specifications for particular removals with prior consent

  10. Cleanups In My Community (CIMC) - Hazardous Waste Corrective Actions, National Layer

    Data.gov (United States)

    U.S. Environmental Protection Agency — This data layer provides access to Hazardous Waste Corrective Action sites as part of the CIMC web service. Hazardous waste is waste that is dangerous or potentially...

  11. Transuranic waste transportation issues in the United States

    International Nuclear Information System (INIS)

    Channell, J.K.; Rodgers, J.C.; Neill, R.H.

    1988-01-01

    The United States Department of Energy (DOE) expects to begin disposal of defence transuranic wastes at the Waste Isolation Pilot Plant (WIPP) in Southeastern New Mexico before the end of 1988. Approximately 25,000 truck shipments involving 35 million vehicle kilometers will be required to transport about 175,000 m 3 of contact-handled transuranic waste. Up to 5,000 shipments of remote-handled transuranic waste (RH-TRU) will also be shipped to WIPP in shielded casks. This paper addresses the shipment of CH-TRU wastes

  12. Managing mixed wastes: technical issues

    International Nuclear Information System (INIS)

    Lytle, J.E.; Eyman, L.D.; Burton, D.W.; McBrayer, J.F.

    1986-01-01

    The US Department of Energy manages wastes that are both chemically hazardous and radioactive. These mixed wastes are often unique and many have national security implications. Management practices have evolved over the more than forty years that the Department and its predecessor agencies have been managing these wastes, both in response to better understanding of the hazards involved and in response to external, regulatory influences. The Department has recently standarized its waste management practices and has initited an R and D program to address priority issues identified by its operating contractor organizations. The R and D program is guided by waste management strategy that emphasizes reduction of human exposure to hazardous wastes in the environment, reduction of the amount and toxicity of wastes generated, treatment of wastes that are generated to reduce volumes and toxicities, and identification of alternatives to land disposal of wastes that remain hazardous following maximum practicable treatment

  13. Disposal of toxic waste to Kualiti Alam

    International Nuclear Information System (INIS)

    Wilfred Paulus; Nik Marzukee; Syed Abd Malik

    2005-01-01

    The mandate to manage radioactive waste in this country was given to the Radioactive Waste Management Centre, MINT as the only agency allowed to handle the waste. However, wastes which are produced at MINT also include the non-radioactive toxic waste. The service to dispose off this non-radioactive toxic waste has been given to Kualiti Alam, the only company licensed to carry out such activity. Up to now, MINT's Radioactive Waste Management Centre has delivered 3 consignments of such waste to the company. This paper will detail out several aspects of managing the waste from the aspects of contract, delivering procedure, legislation, cost and austerity steps which should be taken by MINT's staff. (Author)

  14. Properties of radioactive wastes and waste containers

    International Nuclear Information System (INIS)

    Arora, H.S.; Dayal, R.

    1984-01-01

    Major tasks in this NRC-sponsored program include: (1) an evaluation of the acceptability of low-level solidified wastes with respect to minimizing radionuclide releases after burial; and (2) an assessment of the influence of pertinent environmental stresses on the performance of high-integrity radwaste container (HIC) materials. The waste form performance task involves studies on small-scale laboratory specimens to predict and extrapolate: (1) leachability for extended time periods; (2) leach behavior of full-size forms; (3) performance of waste forms under realistic leaching conditions; and (4) leachability of solidified reactor wastes. The results show that leach data derived from testing of small-scale specimens can be extrapolated to estimate leachability of a full-scale specimen and that radionuclide release data derived from testing of simulants can be employed to predict the release behavior of reactor wastes. Leaching under partially saturated conditions exhibits lower releases of radionuclides than those observed under the conventional IAEA-type or ANS 16.1 leach tests. The HIC assessment task includes the characterization of mechanical properties of Marlex CL-100, a candidate radwaste high density polyethylene material. Tensile strength and creep rupture tests have been carried out to determine the influence of specific waste constituents as well as gamma irradiation on material performance. Emphasis in ongoing tests is being placed on studying creep rupture while the specimens are in contact with a variety of chemicals including radiolytic by-products of irradiated resin wastes. 12 references 6 figures, 2 tables

  15. Waste Management Improvement Initiatives at Atomic Energy of Canada Limited - 13091

    Energy Technology Data Exchange (ETDEWEB)

    Chan, Nicholas; Adams, Lynne; Wong, Pierre [Atomic Energy of Canada Limited, Chalk River Laboratories, Chalk River, Ontario, K0J 1J0 (Canada)

    2013-07-01

    Atomic Energy of Canada Limited's (AECL) Chalk River Laboratories (CRL) has been in operation for over 60 years. Radioactive, mixed, hazardous and non-hazardous wastes have been and continue to be generated at CRL as a result of research and development, radioisotope production, reactor operation and facility decommissioning activities. AECL has implemented several improvement initiatives at CRL to simplify the interface between waste generators and waste receivers: - Introduction of trained Waste Officers representing their facilities or activities at CRL; - Establishment of a Waste Management Customer Support Service as a Single-Point of Contact to provide guidance to waste generators for all waste management processes; and - Implementation of a streamlined approach for waste identification with emphasis on early identification of waste types and potential disposition paths. As a result of implementing these improvement initiatives, improvements in waste management and waste transfer efficiencies have been realized at CRL. These included: 1) waste generators contacting the Customer Support Service for information or guidance instead of various waste receivers; 2) more clear and consistent guidance provided to waste generators for waste management through the Customer Support Service; 3) more consistent and correct waste information provided to waste receivers through Waste Officers, resulting in reduced time and resources required for waste management (i.e., overall cost); 4) improved waste minimization and segregation approaches, as identified by in-house Waste Officers; and 5) enhanced communication between waste generators and waste management groups. (authors)

  16. Waste acceptance criteria for the Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    1996-04-01

    The Waste Isolation Pilot Plant (WIPP) Waste Acceptance Criteria (WAC), DOE/WIPP-069, was initially developed by a U.S. Department of Energy (DOE) Steering Committee to provide performance requirements to ensure public health and safety as well as the safe handling of transuranic (TRU) waste at the WIPP. This revision updates the criteria and requirements of previous revisions and deletes those which were applicable only to the test phase. The criteria and requirements in this document must be met by participating DOE TRU Waste Generator/Storage Sites (Sites) prior to shipping contact-handled (CH) and remote-handled (RH) TRU waste forms to the WIPP. The WIPP Project will comply with applicable federal and state regulations and requirements, including those in Titles 10, 40, and 49 of the Code of Federal Regulations (CFR). The WAC, DOE/WIPP-069, serves as the primary directive for assuring the safe handling, transportation, and disposal of TRU wastes in the WIPP and for the certification of these wastes. The WAC identifies strict requirements that must be met by participating Sites before these TRU wastes may be shipped for disposal in the WIPP facility. These criteria and requirements will be reviewed and revised as appropriate, based on new technical or regulatory requirements. The WAC is a controlled document. Revised/changed pages will be supplied to all holders of controlled copies

  17. Solid Waste Processing Center Primary Opening Cells Systems, Equipment and Tools

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, Sharon A.; Baker, Carl P.; Mullen, O Dennis; Valdez, Patrick LJ

    2006-04-17

    This document addresses the remote systems and design integration aspects of the development of the Solid Waste Processing Center (SWPC), a facility to remotely open, sort, size reduce, and repackage mixed low-level waste (MLLW) and transuranic (TRU)/TRU mixed waste that is either contact-handled (CH) waste in large containers or remote-handled (RH) waste in various-sized packages.

  18. 77 FR 47797 - Arkansas: Final Authorization of State Hazardous Waste Management Program Revisions

    Science.gov (United States)

    2012-08-10

    ... ENVIRONMENTAL PROTECTION AGENCY 40 CFR Part 271 [EPA-R06-RCRA-2010-0307; FRL-9713-2] Arkansas: Final Authorization of State Hazardous Waste Management Program Revisions AGENCY: Environmental... authorization of the changes to its hazardous waste program under the Resource Conservation and Recovery Act...

  19. 76 FR 19004 - Oklahoma: Final Authorization of State Hazardous Waste Management Program Revisions

    Science.gov (United States)

    2011-04-06

    ... ENVIRONMENTAL PROTECTION AGENCY 40 CFR Part 271 [EPA-R06-RCRA-2010-0307; FRL-9290-9] Oklahoma: Final Authorization of State Hazardous Waste Management Program Revisions AGENCY: Environmental... authorization of the changes to its hazardous waste program under the Resource Conservation and Recovery Act...

  20. 77 FR 38566 - Louisiana: Final Authorization of State Hazardous Waste Management Program Revisions

    Science.gov (United States)

    2012-06-28

    ... ENVIRONMENTAL PROTECTION AGENCY 40 CFR Part 271 [EPA--R06-RCRA-2012-0367; FRL-9692-6] Louisiana: Final Authorization of State Hazardous Waste Management Program Revisions AGENCY: Environmental... authorization of the changes to its hazardous waste program under the Resource Conservation and Recovery Act...

  1. 78 FR 54200 - Virginia: Final Authorization of State Hazardous Waste Management Program Revisions

    Science.gov (United States)

    2013-09-03

    ... ENVIRONMENTAL PROTECTION AGENCY 40 CFR Part 271 [EPA-R03-RCRA-2012-0294; FRL-9900-37-Region3] Virginia: Final Authorization of State Hazardous Waste Management Program Revisions AGENCY: Environmental... of revisions to its hazardous waste program under the Resource Conservation and Recovery Act (RCRA...

  2. 76 FR 37048 - Louisiana; Final Authorization of State Hazardous Waste Management Program Revisions

    Science.gov (United States)

    2011-06-24

    ... ENVIRONMENTAL PROTECTION AGENCY 40 CFR Part 271 [EPA-R06-RCRA-2010-0307; FRL-9323-8] Louisiana; Final Authorization of State Hazardous Waste Management Program Revisions AGENCY: Environmental... authorization of the changes to its hazardous waste program under the Resource Conservation and Recovery Act...

  3. 77 FR 15343 - Oklahoma: Final Authorization of State Hazardous Waste Management Program Revisions

    Science.gov (United States)

    2012-03-15

    ... ENVIRONMENTAL PROTECTION AGENCY 40 CFR Part 271 [EPA-R06-RCRA-2012-0054; FRL-9647-8] Oklahoma: Final Authorization of State Hazardous Waste Management Program Revisions AGENCY: Environmental... authorization of the changes to its hazardous waste program under the Resource Conservation and Recovery Act...

  4. New Mexico waste plant sits idle amid controversy

    International Nuclear Information System (INIS)

    Lovejoy, L.A. Jr.

    1994-01-01

    The Department of Energy (DOE) hopes to permanently dispose of radioactive waste from its weapons program at a Waste Isolation Pilot Plant about 26 miles from Carlsbad, New Mexico. The plant has been plagued by problems, according to Lindsay A. Lovejoy, Jr., an assistant attorney general of New Mexico. Among them are cracks in the walls of some of the underground rooms slated for storage of radioactive waste. Meanwhile, above-ground problems involve DOE's struggle toward regulatory compliance. The Environmental Protection Agency (EPA), under the Resource Conservation Recovery Act, has assumed a regulatory role over DOE's radioactive waste-disposal efforts, which is a new role for the agency. Lovejoy proposes that EPA, in its regulation of the New Mexico plant, develop compliance criteria and involve DOE and the public in ongoing open-quotes dialogue aimed at ferreting out any and all problems before a single scrap of radioactive waste is deposited into the earth beneath new Mexico.close quotes

  5. Hanford site waste tank characterization

    International Nuclear Information System (INIS)

    De Lorenzo, D.S.; Simpson, B.C.

    1994-08-01

    This paper describes the on-going work in the characterization of the Hanford-Site high-level waste tanks. The waste in these tanks was produced as part of the nuclear weapons materials processing mission that occupied the Hanford Site for the first 40 years of its existence. Detailed and defensible characterization of the tank wastes is required to guide retrieval, pretreatment, and disposal technology development, to address waste stability and reactivity concerns, and to satisfy the compliance criteria for the various regulatory agencies overseeing activities at the Hanford Site. The resulting Tank Characterization Reports fulfill these needs, as well as satisfy the tank waste characterization milestones in the Hanford Federal Facility Agreement and Consent Order

  6. Potential problems from shipment of high-curie content contact-handled transuranic (CH-TRU) waste to WIPP

    International Nuclear Information System (INIS)

    Neill, R.H.; Channell, J.K.

    1983-08-01

    There are about 1000 drums of contact-handled transuranic (CH-TRU) wastes containing more than 100 Ci/drum of Pu-238 that are stored at the Savannah River Plant and at the Los Alamos National Laboratory. Studies performed at DOE laboratories have shown that large quantities of gases are generated in stored drums containing 100 Ci of 238 Pu. Concentrations of hydrogen gas in the void space of the drums are often found to be high enough to be explosive. None of the analyses in the DOE WIPP Final Environmental Impact Statement, Safety Analysis Report, and Preliminary Transportation Analysis have considered the possibility that the generation of hydrogen gas by radiolysis may create an explosive or flammable hazard that could increase the frequency and severity of accidental releases of radionuclides during transportation or handling. These high 238 Pu concentration containers would also increase the estimated doses received by individuals and populations from transportation, WIPP site operations, and human intrusion scenarios even if the possibility of gas-enhanced releases is ignored. The WIPP Project Office has evaluated this effect on WIPP site operations and is suggesting a maximum limit of 140 239 Pu equivalent curies (P-Ci) per drum so that postulated accidental off-site doses will not be larger than those listed in the FEIS. The TRUPACT container, which is being designed for the transportation of CH-TRU wastes to WIPP, does not appear to meet the Nuclear Regulatory Commission regulations requiring double containment for the transportation of plutonium in quantities >20 Ci. A 20 alpha Ci/shipment limit would require about 200,000 shipments for the 4 million curies of alpha emitters slated for WIPP

  7. Radioactive Waste Management Program Activities in Croatia

    International Nuclear Information System (INIS)

    Matanic, R.

    2000-01-01

    The concept of radioactive waste management in Croatia comprises three major areas: management of low and intermediate level radioactive waste (LILRW), spent fuel management and decommissioning. All the work regarding radioactive waste management program is coordinated by Hazardous Waste Management Agency (APO) and Croatian Power Utility (HEP) in cooperation with other relevant institutions. Since the majority of work has been done in developing low and intermediate level radioactive waste management program, the paper will focus on this part of radioactive waste management, mainly on issues of site selection and characterization, repository design, safety assessment and public acceptance. A short description of national radioactive waste management infrastructure will also be presented. (author)

  8. Radioactive wastes management

    International Nuclear Information System (INIS)

    Albert, Ph.

    1999-01-01

    This article presents the French way to deal with nuclear wastes. 4 categories of radioactive wastes have been defined: 1) very low-level wastes (TFA), 2) low or medium-wastes with short or medium half-life (A), 3) low or medium-level wastes with long half-life (B), and 4) high-level wastes with long half-life (C). ANDRA (national agency for the management of radioactive wastes) manages 2 sites of definitive surface storage (La-Manche and Aube centers) for TFA-wastes. The Aube center allows the storage of A-wastes whose half-life is less than 30 years. This site will receive waste packages for 50 years and will require a regular monitoring for 300 years after its decommissioning. No definitive solutions have been taken for B and C wastes, they are temporarily stored at La Hague processing plant. Concerning these wastes the French parliament will have to take a decision by 2006. At this date and within the framework of the Bataille law (1991), scientific studies concerning the definitive or retrievable storage, the processing techniques (like transmutation) will have been achieved and solutions will be proposed. These studies are numerous, long and complex, they involve fresh knowledge in geology, chemistry, physics,.. and they have implied the setting of underground facilities in order to test and validate solutions in situ. This article presents also the transmutation technique. (A.C.)

  9. 75 FR 43944 - Membership of the Defense Logistics Agency (DLA) Senior Executive Service (SES) Performance...

    Science.gov (United States)

    2010-07-27

    ... CONTACT: Ms. Lisa Novajosky, SES Program Manager, DLA Human Resources (J-14), Defense Logistics Agency... DEPARTMENT OF DEFENSE Defense Logistics Agency Membership of the Defense Logistics Agency (DLA... management of the SES cadre. DATES: Effective Date: September 16, 2010. ADDRESSES: Defense Logistics Agency...

  10. Adsorption of Lead Content in Leachate of Sukawinatan Landfill Using Solid Waste of Tofu

    Directory of Open Access Journals (Sweden)

    Sri Hartati

    2016-08-01

    Full Text Available A study on the adsorption of lead content in the leachate from the landfill by using solid waste of tofu. This study assed the effects of weight of the solid waste of tofu and the contact time on the efficiency of the Pb adsorption. The sample used in this study was artificial sample of a solution of Pb metal ion and the sample of the leachate of the landfill waste. The study was carried out with a batch system, with the variables of weight of waste of tofu of 0.5; 1.0; 1.5 g. While the variables of the contact time were 0, 30, 60, 90, 120 and 150 minutes. To determine the optimum conditions, the waste of tofu was dissolved in 50 mL of Pb metal ion solution with a concentration of 20.27 mg/L and stirred with a shaker for 30 minutes at a speed of 180 rpm. The same thing was done by varying the contact time. When the optimum condition was obtained, it was applied with varying concentrations of Pb metal ion solution and garbage landfill leachate. The initial and the final levels of the Pb metal ion solution were analyzed by using the Atomic Adsorption Spectroscopy (AAS. The initial and the final results of the heavy metals were analyzed for disclosing the adsorption efficiency. To reveal the effects of the weight of the waste of tofu and the contact time, the data were analyzed with graphs. The waste of tofu with a weight of 1.5 g and a contact time of 90 minutes, had an adsorption efficiency of 97.68% at a concentration of 20.27 mg / L for Pb ion solution and 28.57% for the leachate from the landfill waste in 100 mL of leachate.

  11. TRU waste transportation package development

    International Nuclear Information System (INIS)

    Eakes, R.G.; Lamoreaux, G.H.; Romesberg, L.E.; Sutherland, S.H.; Duffey, T.A.

    1980-01-01

    Inventories of the transuranic wastes buried or stored at various US DOE sites are tabulated. The leading conceptual design of Type-B packaging for contact-handled transuranic waste is the Transuranic Package Transporter (TRUPACT), a large metal container comprising inner and outer tubular steel frameworks which are separated by rigid polyurethane foam and sheathed with steel plate. Testing of TRUPACT is reported. The schedule for its development is given. 6 figures

  12. Hospital infections waste and its proper disposal

    International Nuclear Information System (INIS)

    Bhatti, A.Q.; Memon, A.A.; Mahar, R.B.

    2002-01-01

    Hazardous hospital waste is a unique in several ways. There are a large variety of wastes but volume is a small relative to industrial wastes. Hospital infections solid waste is getting to be serious problem day by day. This waste contribute to the overall pollution in the city; much of it is also hazardous, thus putting at risk the health of those who come into contact with it. This paper addresses the various aspects of incineration, recycling and landfill process with detailed illustration. Hospital waste management in rural hospitals of Pakistan with particular reference to Gambat Hospital is discussed in this paper, including study of existing waste management system, estimation of waste production per day from different sources of Hospital and suitable waste management system is recommended. (author)

  13. Status of DOE defense waste management policy

    International Nuclear Information System (INIS)

    Oertel, K.G.; Scott, R.S.

    1983-01-01

    This paper very briefly traces the statutory basis for DOE management of atomic energy defense activity wastes, touches on the authority of the Federal agencies involved in the regulation of defense nuclear waste management, and addresses the applicable regulations and their status. This background sets the stage for a fairly detailed discussion of management and disposal strategies of the Defense Waste and Byproducts Management Program

  14. Application of contact stabilization activated sludge for enhancing biological phosphorus removal (EBPR in domestic wastewater

    Directory of Open Access Journals (Sweden)

    Ehab M. Rashed

    2014-04-01

    Full Text Available The experiment has been performed in order to investigate the effect of using contact stabilization activated sludge as an application of enhancing biological phosphorous removal (EBPR by using contact tank as a phosphorus uptake zone and using thickening tank as a phosphorus release zone. The study involved the construction of a pilot plant which was setup in Quhafa waste water treatment plant (WWTP that included contact, final sedimentation, stabilization and thickening tanks, respectively with two returns sludge in this system one of them to contact tank and another to stabilization tank. Then observation of the uptake and release of total phosphorus by achievement through two batch test using sludge samples from thickener and final sedimentations. Results showed the removal efficiencies of COD, BOD and TP for this pilot plant with the range of 94%, 85.44% and 80.54%, respectively. On the other hand the results of batch tests showed that the reason of high ability of phosphorus removal for this pilot plant related to the high performance of microorganisms for phosphorus accumulating. Finally the mechanism of this pilot plant depends on the removal of the phosphorus from the domestic waste water as a concentrated TP solution from the supernatant above the thickening zone not through waste sludge like traditional systems.

  15. 76 FR 303 - Alaska: Adequacy of Alaska's Municipal Solid Waste Landfill Permit Program

    Science.gov (United States)

    2011-01-04

    ... ENVIRONMENTAL PROTECTION AGENCY 40 CFR Parts 239 and 258 [EPA-EPA-R10-RCRA-2010-0953; FRL-9247-5] Alaska: Adequacy of Alaska's Municipal Solid Waste Landfill Permit Program AGENCY: Environmental... modification of its approved Municipal Solid Waste Landfill (MSWLF) permit program. On March 22, 2004, EPA...

  16. An integrated approach to the management of radioactive waste in Australia

    International Nuclear Information System (INIS)

    Woollett, S.M.

    2002-01-01

    This paper draws attention to the practices and progress in radioactive waste management in Australia. A National Repository for the disposal of low-level and short-lived intermediate- level radioactive waste and a National Store for the storage of long-lived intermediate-level radioactive waste are presently being established. This has necessitated considerable activity in addressing emerging issues in the management of radioactive waste. The Australian Radiation Protection and Nuclear Safety Agency (ARPANSA) has a major role in developing an integrated approach to manage radioactive waste in Australia. This approach begins with the development of a radioactive waste management policy and identification of the issues in radioactive waste management requiring attention. ARPANSA is developing national standards and guidance documents for the safe and responsible management of waste prior to its acceptance at the National Repository or National Store. This contributes to the Agency's promotion of uniformity of radiation protection and nuclear safety policy and practices across Australia's Commonwealth, State and Territory jurisdictions. (author)

  17. Radioactive waste management of health services

    International Nuclear Information System (INIS)

    Silva, Eliane Magalhaes Pereira da; Miaw, Sophia Teh Whei

    2001-01-01

    In health care establishment, radioactive waste is generated from the use of radioactive materials in medical applications such as diagnosis, therapy and research. Disused sealed sources are also considered as waste. To get the license to operate from Comissao Nacional de Energia Nuclear - CNEN, the installation has to present a Radiation Protection Plan, in which the Waste Management Programme should be included. The Waste Management Programme should contain detailed description on methodologies and information on technical and administrative control of generated waste. This paper presents the basic guidelines for the implementation of a safe waste management by health care establishments, taking into account the regulations from CNEN and recommendations from the International Atomic Energy Agency - IAEA. (author)

  18. Federal Environmental Agency. Annual report 1994

    International Nuclear Information System (INIS)

    Brackemann, H.; Rehring, R.

    1995-01-01

    The switches for the future course of the Umweltbundesamt were shifted by the reorganization that took place in September 1994. It has made the agency one of the most modern ones in Europe, also with organizational regards. The new organizational structure has model character for the federal and land authorities in the area of environmental protection. In the old form of organization according to media, which is still mainly to be found in environmental laws, water, air, waste, etc. were dealt with separately; the new department ''Methods and Products'' is organized according to industrial sectors. It permits in the future to make better use of integral environmental protection strategies by combining the environmental problems caused by an industrial sector, from emissions into air and water to waste, in one administrative unit. Purposely in opposition to this technical department is a watchdog department whose function it is to formulate quality targets and quality demands. The executive tasks of the agency are combined in a further department. (DG) [de

  19. Cleanup Verification Package for the 600-259 Waste Site

    Energy Technology Data Exchange (ETDEWEB)

    J. M. Capron

    2006-02-09

    This cleanup verification package documents completion of remedial action for the 600-259 waste site. The site was the former site of the Special Waste Form Lysimeter, consisting of commercial reactor isotope waste forms in contact with soils within engineered caissons, and was used by Pacific Northwest National Laboratory to collect data regarding leaching behavior for target analytes. A Grout Waste Test Facility also operated at the site, designed to test leaching rates of grout-solidified low-level radioactive waste.

  20. Cleanup Verification Package for the 600-259 Waste Site

    International Nuclear Information System (INIS)

    Capron, J.M.

    2006-01-01

    This cleanup verification package documents completion of remedial action for the 600-259 waste site. The site was the former site of the Special Waste Form Lysimeter, consisting of commercial reactor isotope waste forms in contact with soils within engineered caissons, and was used by Pacific Northwest National Laboratory to collect data regarding leaching behavior for target analytes. A Grout Waste Test Facility also operated at the site, designed to test leaching rates of grout-solidified low-level radioactive waste

  1. Treating landfill gas hydrogen sulphide with mineral wool waste (MWW) and rod mill waste (RMW).

    Science.gov (United States)

    Bergersen, Ove; Haarstad, Ketil

    2014-01-01

    Hydrogen sulphide (H2S) gas is a major odorant at municipal landfills. The gas can be generated from different waste fractions, for example demolition waste containing gypsum based plaster board. The removal of H2S from landfill gas was investigated by filtering it through mineral wool waste products. The flow of gas varied from 0.3 l/min to 3.0 l/min. The gas was typical for landfill gas with a mean H2S concentration of ca. 4500 ppm. The results show that the sulphide gas can effectively be removed by mineral wool waste products. The ratios of the estimated potential for sulphide precipitation were 19:1 for rod mill waste (RMW) and mineral wool waste (MWW). A filter consisting of a mixture of MWW and RMW, with a vertical perforated gas tube through the center of filter material and with a downward gas flow, removed 98% of the sulfide gas over a period of 80 days. A downward gas flow was more efficient in contacting the filter materials. Mineral wool waste products are effective in removing hydrogen sulphide from landfill gas given an adequate contact time and water content in the filter material. Based on the estimated sulphide removal potential of mineral wool and rod mill waste of 14 g/kg and 261 g/kg, and assuming an average sulphide gas concentration of 4500 ppm, the removal capacity in the filter materials has been estimated to last between 11 and 308 days. At the studied location the experimental gas flow was 100 times less than the actual gas flow. We believe that the system described here can be upscaled in order to treat this gas flow. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Achieving RCRA compliance in DOE defense waste management operations

    International Nuclear Information System (INIS)

    Frankhauser, W.A.; Shepard, M.D.

    1989-01-01

    The U.S. Department of Energy (DOE) generates significant volumes of radioactive mixed waste (RMW) through its defense-related activities. Defense RMW is co-regulated by DOE and the U.S. Environmental Protection Agency/State agencies in accordance with requirements of the Resource Conservation and Recovery Act (RCRA) and the Atomic Energy Act (AEA). This paper highlights some of the problems encountered in co-regulation and discusses achievements of the defense waste management program in integrating RCRA requirements into RMW operations. Defense waste sites are planning facility modifications and major new construction projects to develop treatment, storage and disposal capacity for existing RMW inventories and projected needs

  3. Contact: Releasing the news

    Science.gov (United States)

    Pinotti, Roberto

    The problem of mass behavior after man's future contacts with other intelligences in the universe is not only a challenge for social scientists and political leaders all over the world, but also a cultural time bomb as well. In fact, since the impact of CETI (Contact with Extraterrestrial Intelligence) on human civilization, with its different cultures, might cause a serious socio-anthropological shock, a common and predetermined worldwide strategy is necessary in releasing the news after the contact, in order to keep possible manifestations of fear, panic and hysteria under control. An analysis of past studies in this field and of parallel historical situations as analogs suggests a definite "authority crisis" in the public as a direct consequence of an unexpected release of the news, involving a devastating "chain reaction" process (from both the psychological and sociological viewpoints) of anomie and maybe the collapse of today's society. The only way to prevent all this is to prepare the world's public opinion concerning contact before releasing the news, and to develop a long-term strategy through the combined efforts of scientists, political leaders, intelligence agencies and the mass media, in order to create the cultural conditions in which a confrontation with ETI won't affect mankind in a traumatic way. Definite roles and tasks in this multi-level model are suggested.

  4. Treatment of waste waters with peat moss

    Energy Technology Data Exchange (ETDEWEB)

    Coupal, B; Lalancette, J M

    1976-01-01

    Waste waters containing heavy metals such as Hg, Cd, Zn, Cu, Fe, Ni, Cr/sup 6 +/, Cr/sup 3 +/, Ag, Pb, Sb or cyanide, phosphates and organic matters such as oil, detergents and dyes can be treated efficiently after a crude settling by contacting with peat moss. Chromium, as Cr/sup 6 +/, can be eliminated in one step from a starting solution of low turbidity to give effluent containing less than 10 ppb of Cr/sup 6 +/ and less than 40 ppb of Cr/sup 3 +/. The characteristics and performances of a contacting machine of 20,000 gal/day capacity for the treatment of industrial waste waters are reported.

  5. Waste management/waste certification plan for the Oak Ridge National Laboratory Environmental Restoration Program

    International Nuclear Information System (INIS)

    Clark, C. Jr.; Hunt-Davenport, L.D.; Cofer, G.H.

    1995-03-01

    This Waste Management/Waste Certification (C) Plan, written for the Environmental Restoration (ER) Program at Oak Ridge National Laboratory (ORNL), outlines the criteria and methodologies to be used in the management of waste generated during ORNL ER field activities. Other agreed upon methods may be used in the management of waste with consultation with ER and Waste Management Organization. The intent of this plan is to provide information for the minimization, handling, and disposal of waste generated by ER activities. This plan contains provisions for the safe and effective management of waste consistent with the U.S. Environmental Protection Agency's (EPA's) guidance. Components of this plan have been designed to protect the environment and the health and safety of workers and the public. It, therefore, stresses that investigation derived waste (IDW) and other waste be managed to ensure that (1) all efforts be made to minimize the amount of waste generated; (2) costs associated with sampling storage, analysis, transportation, and disposal are minimized; (3) the potential for public and worker exposure is not increased; and (4) additional contaminated areas are not created

  6. The Effects of Prospective Naturalistic Contact on the Stigma of Mental Illness

    Science.gov (United States)

    Couture, Shannon M.; Penn, David L.

    2006-01-01

    The primary aim of this study was to determine whether naturalistic, interpersonal contact with persons with a severe mental illness (SMI) could reduce stigma. Participants from the agency Compeer (which pairs volunteers with people with SMI) were compared to volunteers from a control agency and to nonvolunteer participants from the community on…

  7. 77 FR 40817 - Low-Level Radioactive Waste Regulatory Management Issues

    Science.gov (United States)

    2012-07-11

    ...-2011-0012] RIN-3150-AI92 Low-Level Radioactive Waste Regulatory Management Issues AGENCY: Nuclear... regulatory time of compliance for a low-level radioactive waste disposal facility, allowing licensees the... system, and revising the NRC's licensing requirements for land disposal of radioactive waste. DATES: The...

  8. Radioactive waste management in perspective

    International Nuclear Information System (INIS)

    1996-01-01

    This report drafted by the Nuclear Energy Agency (NEA) deals with the basic principles and the main stages of radioactive waste management. The review more precisely focuses on what relates to environment protection, safety assessment, financing, social issues, public concerns and international co-operation. An annex finally summarises the radioactive waste management programs that are implemented in 15 of the NEA countries. (TEC). figs

  9. 76 FR 6564 - Florida: Final Authorization of State Hazardous Waste Management Program Revisions

    Science.gov (United States)

    2011-02-07

    ... hazardous pharmaceutical waste to the list of wastes that may be managed under the Universal Waste rule...: Final Authorization of State Hazardous Waste Management Program Revisions AGENCY: Environmental... authorization of the changes to its hazardous waste program under the Resource Conservation and Recovery Act...

  10. Overview of EPA's environmental standards for the land disposal of LLW and NARM waste - 1988

    International Nuclear Information System (INIS)

    Gruhlke, J.M.; Galpin, F.L.; Holcomb, W.F.

    1988-01-01

    The Environmental Protection Agency program to develop proposed generally applicable environmental standards for land disposal of low-level radioactive waste (LLW) and certain naturally occurring and accelerator-produced radioactive wastes has been completed. The elements of the proposed standards include the following: (a) exposure limits for predisposal management and storage operations, (b) criteria for other regulatory agencies to follow in specifying wastes that are below regulatory concern; (c) postdisposal exposure limits, (d) groundwater protection requirements, and (e) qualitative implementation requirements. In addition to covering those radioactive wastes subject to the Atomic Energy Act, the Agency also intends to propose a standard to require the disposal of high concentration, naturally occurring and accelerator-produced radioactive materials wastes exceeding 2 nCi/g, excluding a few consumer items, in regulated LLW disposal facilities

  11. Impact of hazardous waste handling legislation on nuclear installations and radioactive waste management in the United States

    International Nuclear Information System (INIS)

    Trosten, L.M.

    1988-01-01

    The United States has enacted complex legislation to help assure proper handling of hazardous waste and the availability of funds to cover the expenditures. There are a number of uncertainties concerning the impact of this legislation, and regulations promulgated by the Environmental Protection Agency and the states, upon nuclear installations and radioactive waste management. This report provides an overview of the U.S. hazardous waste legislation and examines the outlook for its application to the nuclear industry (NEA) [fr

  12. 75 FR 66116 - Agency Information Collection Activities: Proposed Collection; Comment Request, OMB No. 1660-NEW...

    Science.gov (United States)

    2010-10-27

    ...; Logistics Capability Assessment Tool (LCAT) AGENCY: Federal Emergency Management Agency, DHS. ACTION: Notice... FURTHER INFORMATION CONTACT: Nicole Kelsey, Program Analyst, Logistics Management Directorate, Logistics... DEPARTMENT OF HOMELAND SECURITY Federal Emergency Management Agency [Docket ID: FEMA-2010-0061...

  13. Radioactive wastes management: what is the situation?

    International Nuclear Information System (INIS)

    2002-01-01

    This presentation takes stock on the situation of the radioactive wastes management in France. It gives information on the deep underground disposal, the public information, the management of the radioactive wastes in France, the researches in the framework of the law of the 30 december 1991, the underground laboratory of Meuse/Haute-Marne, the national agency for the radioactive wastes management (ANDRA) and its sites. (A.L.B.)

  14. 78 FR 70255 - West Virginia: Final Authorization of State Hazardous Waste Management Program Revisions

    Science.gov (United States)

    2013-11-25

    ... ENVIRONMENTAL PROTECTION AGENCY 40 CFR Part 271 [EPA-R03-RCRA-2013-0571; FRL-9903-07-Region 3] West Virginia: Final Authorization of State Hazardous Waste Management Program Revisions AGENCY... final authorization of revisions to its hazardous waste program under the Resource Conservation and...

  15. Michigan State Briefing Book for low-level radioactive waste management

    International Nuclear Information System (INIS)

    1980-11-01

    The Michigan State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Michigan. The profile is the result of a survey of NRC licensees in Michigan. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the discussion of relevant government agencies and activities, all of which may impact waste management practices in Michigan

  16. Illinois State Briefing Book for low-level radioactive waste management

    International Nuclear Information System (INIS)

    1980-11-01

    The Illinois State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Illinois. The profile is the result of a survey of NRC licensees in Illinois. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Illinois

  17. International Atomic Energy Agency activities in decommissioning

    International Nuclear Information System (INIS)

    Reisenweaver, D W.; )

    2005-01-01

    Full text: The International Atomic Energy Agency (IAEA) has been addressing the safety and technical issues of decommissioning for over 20 years, but their focus has been primarily on planning. Up to know, the activities have been on an ad hoc basis and sometimes, important issues have been missed. A new Action Plan on the Decommissioning of Nuclear Facilities has recently been approved by the Agency's board of Governors which will focus the Agency's efforts and ensure that our Member States' concerns are addressed. The new initiatives associated with this Action Plan will help ensure that decommissioning activities in the future are performed in a safe and coherent manner. The International Atomic Energy Agency (IAEA) has been preparing safety and technical documents concerning decommissioning since the mid-1980's. There have been over 30 documents prepared that provide safety requirements, guidance and supporting technical information. Many of these documents are over 10 years old and need updating. The main focus in the past has been on planning for decommissioning. During the past five years, a set of Safety Standards have been prepared and issued to provide safety requirements and guidance to Member States. However, decommissioning was never a real priority with the Agency, but was something that had to be addressed. To illustrate this point, the first requirements documents on decommissioning were issued as part of a Safety Requirements [1] on pre-disposal management of radioactive waste. It was felt that decommissioning did not deserve its own document because it was just part of the normal waste management process. The focus was mostly on waste management. The Agency has assisted Member States with the planning process for decommissioning. Most of these activities have been focused on nuclear power plants and research reactors. Now, support for the decommissioning of other types of facilities is being requested. The Agency is currently providing technical

  18. Hazardous waste management in the Pacific basin

    Energy Technology Data Exchange (ETDEWEB)

    Cirillo, R.R.; Chiu, S.; Chun, K.C.; Conzelmann, G. [Argonne National Lab., IL (United States); Carpenter, R.A.; Indriyanto, S.H. [East-West Center, Honolulu, HI (United States)

    1994-11-01

    Hazardous waste control activities in Asia and the Pacific have been reviewed. The review includes China (mainland, Hong Kong, and Taiwan), Indonesia, Korea, Malaysia, Papua New Guinea, the Philippines, Singapore, and Thailand. It covers the sources of hazardous waste, the government structure for dealing with hazardous waste, and current hazardous waste control activities in each country. In addition, the hazardous waste program activities of US government agencies, US private-sector organizations, and international organizations are reviewed. The objective of these reviews is to provide a comprehensive picture of the current hazardous waste problems and the waste management approaches being used to address them so that new program activities can be designed more efficiently.

  19. 40 CFR 258.16 - Closure of existing municipal solid waste landfill units.

    Science.gov (United States)

    2010-07-01

    ... waste landfill units. 258.16 Section 258.16 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES CRITERIA FOR MUNICIPAL SOLID WASTE LANDFILLS Location Restrictions § 258.16 Closure of existing municipal solid waste landfill units. (a) Existing MSWLF units that cannot make the...

  20. 77 FR 12594 - Agency Forms Undergoing Paperwork Reduction Act Review

    Science.gov (United States)

    2012-03-01

    ... Script. Refusal Questions Form.. 62 1 2/60 Individual Consent Form. 250 1 3/60 Contact Information Form... Screening 92 1 5/60 Survey. Informed Consent........ 50 1 1/60 Interview Questionnaire. 50 1 1 Network Size...-12-12BL] Agency Forms Undergoing Paperwork Reduction Act Review The Agency for Toxic Substances and...

  1. Remediation of lead from lead electroplating industrial effluent using sago waste.

    Science.gov (United States)

    Jeyanthi, G P; Shanthi, G

    2007-01-01

    Heavy metals are known toxicants, which inflict acute disorders to the living beings. Electroplating industries pose great threat to the environment through heavy load of metals in the wastewater discharged on land and water sources. In the present study, sago processing waste, which is both a waste and a pollutant, was used to adsorb lead ions from lead electroplating industrial effluent. Two types of sago wastes, namely, coarse sago waste and fine sago waste were used to study their adsorption capacity with the batch adsorption and Freundlich adsorption isotherm. The parameters that were considered for batch adsorption were pH (4, 5 and 6), time of contact (1, 2 and 3 hrs), temperature (30, 37 and 45 degrees C) and dosage of the adsorbent (2,4 and 6 g/L). The optimal condition for the effective removal of lead was found to be pH 5, time of contact 3 hrs, temperature 30 degrees C and dosage 4 g/L with coarse sago waste than fine sago waste.

  2. Recent IAEA activities to support utilisation of cementitious materials in radioactive waste management

    International Nuclear Information System (INIS)

    Ojowan, M.I.; Samanta, S.K.

    2015-01-01

    The International Atomic Energy Agency promotes a safe and effective management of radioactive waste and has suitable programmes in place to serve the needs of Member States in this area. In support of these programmes the Waste Technology Section fosters technology transfer, promotes information exchange and cooperative research, as well as builds capacity in Member States to manage radioactive wastes, resulting both from the nuclear fuel cycle and nuclear applications. Technical assistance in pre disposal area covers all of these activities and is delivered through established Agency mechanisms including publication of technical documents. While the Agency does not conduct any in-house research activities, its Coordinated Research Projects (CRPs) foster research in Member States. There are 2 CRPs concerning cementitious materials: a CRP on cements and an on-going CRP on irradiated graphite waste. The CRP on cements has resulted in the recent IAEA publication TECDOC-1701. An important activity concerned with characterisation of cementitious waste forms is the LABONET network of laboratory-based centres of expertise involved in the characterization of low and intermediate level radioactive wastes. The Waste Technology Section is preparing a series of comprehensive state of the art technical handbooks

  3. 29 CFR 1904.3 - Keeping records for more than one agency.

    Science.gov (United States)

    2010-07-01

    ... and illness recordkeeping requirements, OSHA will consider those records as meeting OSHA's part 1904 recordkeeping requirements if OSHA accepts the other agency's records under a memorandum of understanding with... you to record. You may contact your nearest OSHA office or State agency for help in determining...

  4. Special Report: Hazardous Wastes in Academic Labs.

    Science.gov (United States)

    Sanders, Howard J.

    1986-01-01

    Topics and issues related to toxic wastes in academic laboratories are addressed, pointing out that colleges/universities are making efforts to dispose of hazardous wastes safely to comply with tougher federal regulations. University sites on the Environmental Protection Agency Superfund National Priorities List, costs, and use of lab packs are…

  5. Radioactive wastes transport. A safety logic

    International Nuclear Information System (INIS)

    2005-01-01

    The safety principle which applies to transport operations of radioactive wastes obeys to a very strict regulation. For the conditioning of wastes in package, the organisation of shipments and the qualification of carriers, the ANDRA, the French national agency of radioactive wastes, has implemented a rigorous policy based on the respect of a quality procedure and on the mastery of delivery fluxes. This brochure presents in a simple, illustrated and detailed manner the different steps of these transports. (J.S.)

  6. Waste retrieval plan for the Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    1993-03-01

    The US DOE has prepared this plan to meet the requirements of Public Law 102579, the Waste Isolation Pilot Plant (WIPP) LWA, The purpose. is to demonstrate readiness to retrieve from the WIPP underground transuranic radioactive waste that will be used for testing should retrieval be needed. The WIPP, a potential geologic repository for transuranic wastes generated in national-defense activities, has been constructed in southeastern New Mexico. Because the transuranic wastes will remain radioactive for a very long time, the WIPP must reasonably ensure safe performance over thousands of years. The DOE therefore decided to develop the facility in phases, to preclude premature decisions and to conduct the performance assessments needed to demonstrate long-term safety. Surface facilities for receiving waste have been built, and considerable underground excavation, 2150 feet below the surface, has been completed. The next step is a test phase, including underground experiments called ''bin tests'' and ''alcove test(s)'' with contact-handled transuranic waste. The objective of these waste tests is to collect relevant data about the gas-generation potential and volatile organic compound (VOC) source term of the waste for developing a basis for demonstrating long term safety by compliance with the applicable disposal regulations (40 CFR 191, 264 and 268). The test phase will end when a decision is made to begin disposal in the WIPP or to terminate the project if regulatory compliance cannot be determined and demonstrated. Authorization to receive transuranic waste at the WIPP for the test phase is given by the WIPP LWA provided certain requirements are met

  7. Managing nuclear projects: a design agency experience in the design-build of waste management facilities in Canada

    International Nuclear Information System (INIS)

    Brewer, R.; Calzolari, L.

    2006-01-01

    Quality Assurance guarantees the quality of a product; it does not guarantee that it is a quality product. As procedures develop to satisfy QA programs and regulatory needs it is necessary to find ways to ensure that procedural management reinforces project management and does not detract from it. CANATOM NPM's experience in bidding for and executing the design or design and construction of nuclear waste management facilities demonstrates how design excellence and innovation can still be achieved while successfully managing the challenge of technical administration. The sourcing of expertise, the intricacies of design definition and the coordinating efforts required in the execution of the projects (one fully completed, the other into its engineering phase) will provide a valuable insight into the role and activities of an engineering company engaged in a 'Design Agency' (DA) role. (author)

  8. Radioactive waste management: A status report

    International Nuclear Information System (INIS)

    1985-08-01

    This publication briefly summarizes the activities of the IAEA and its Member States in the area of radioactive waste management. The information is presented in two major sections. One section presents a brief overview of the Agency's programme, and the other section provides a status report on the activities in many of the Agency's Member States

  9. Mixed waste study, Lawrence Livermore National Laboratory Hazardous Waste Management facilities

    International Nuclear Information System (INIS)

    1990-11-01

    This document addresses the generation and storage of mixed waste at Lawrence Livermore National Laboratory (LLNL) from 1984 to 1990. Additionally, an estimate of remaining storage capacity based on the current inventory of low-level mixed waste and an approximation of current generation rates is provided. Section 2 of this study presents a narrative description of Environmental Protection Agency (EPA) and Department of Energy (DOE) requirements as they apply to mixed waste in storage at LLNL's Hazardous Waste Management (HWM) facilities. Based on information collected from the HWM non-TRU radioactive waste database, Section 3 presents a data consolidation -- by year of storage, location, LLNL generator, EPA code, and DHS code -- of the quantities of low-level mixed waste in storage. Related figures provide the distribution of mixed waste according to each of these variables. A historical review follows in Section 4. The trends in type and quantity of mixed waste managed by HWM during the past five years are delineated and graphically illustrated. Section 5 provides an estimate of remaining low-level mixed waste storage capacity at HWM. The estimate of remaining mixed waste storage capacity is based on operational storage capacity of HWM facilities and the volume of all waste currently in storage. An estimate of the time remaining to reach maximum storage capacity is based on waste generation rates inferred from the HWM database and recent HWM documents. 14 refs., 18 figs., 9 tabs

  10. Alpha waste management at the Valduc Research Center

    International Nuclear Information System (INIS)

    Jouan, A.; Cartier, R.; Durec, J.P.; Flament, T.

    1995-01-01

    Operation of the reprocessing facilities at the Valduc Research Center of the French Atomic Energy Commission (CEA) generates waste with a variety of characteristics. The waste compatible with surface storage requirements is transferred to the French Radioactive Waste Management Agency (ANDRA); rest is reprocessed under a program which enables storage in compliance with the requirements of permits issued by safety Authorities. The waste reprocessing program provides for the construction of an incinerator capable of handling nearly all of the combustible waste generated by the Center and vitrification facility for treating liquid waste generated by the plutonium handling plant. (authors)

  11. Contaminant Leach Testing of Hanford Tank 241-C-104 Residual Waste

    Energy Technology Data Exchange (ETDEWEB)

    Cantrell, Kirk J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Snyder, Michelle M.V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Wang, Guohui [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Buck, Edgar C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-07-01

    Leach testing of Tank C-104 residual waste was completed using batch and column experiments. Tank C-104 residual waste contains exceptionally high concentrations of uranium (i.e., as high as 115 mg/g or 11.5 wt.%). This study was conducted to provide data to develop contaminant release models for Tank C-104 residual waste and Tank C-104 residual waste that has been treated with lime to transform uranium in the waste to a highly insoluble calcium uranate (CaUO4) or similar phase. Three column leaching cases were investigated. In the first case, C-104 residual waste was leached with deionized water. In the second case, crushed grout was added to the column so that deionized water contacted the grout prior to contacting the waste. In the third case, lime was mixed in with the grout. Results of the column experiments demonstrate that addition of lime dramatically reduces the leachability of uranium from Tank C-104 residual waste. Initial indications suggest that CaUO4 or a similar highly insoluble calcium rich uranium phase forms as a result of the lime addition. Additional work is needed to definitively identify the uranium phases that occur in the as received waste and the waste after the lime treatment.

  12. Modeling for speciation of radionuclides in waste packages with high-level radioactive wastes

    International Nuclear Information System (INIS)

    Weyand, Torben; Bracke, Guido; Seher, Holger

    2016-10-01

    Based on a literature search on radioactive waste inventories adequate thermodynamic data for model inventories were derived for geochemical model calculations using PHREEQC in order to determine the solid phase composition of high-level radioactive wastes in different containers. The calculations were performed for different model inventories (PWR-MOX, PWR-UO2, BWR-MOX, BMR-UO2) assuming intact containers under reduction conditions. The effect of a defect in the container on the solid phase composition was considered in variation calculations assuming air contact induced oxidation.

  13. Nevada National Security Site Waste Acceptance Criteria

    International Nuclear Information System (INIS)

    2012-01-01

    This document establishes the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO), Nevada National Security Site Waste Acceptance Criteria (NNSSWAC). The NNSSWAC provides the requirements, terms, and conditions under which the Nevada National Security Site (NNSS) will accept DOE non-radioactive classified waste, DOE non-radioactive hazardous classified waste, DOE low-level radioactive waste (LLW), DOE mixed low-level waste (MLLW), and U.S. Department of Defense (DOD) classified waste for permanent disposal. Classified waste is the only waste accepted for disposal that may be non-radioactive and will be required to meet the waste acceptance criteria for radioactive waste as specified in this document. The NNSA/NSO and support contractors are available to assist you in understanding or interpreting this document. For assistance, please call the NNSA/NSO Waste Management Project (WMP) at (702) 295-7063, and your call will be directed to the appropriate contact.

  14. Nevada National Security Site Waste Acceptance Criteria

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Management

    2012-02-28

    This document establishes the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO), Nevada National Security Site Waste Acceptance Criteria (NNSSWAC). The NNSSWAC provides the requirements, terms, and conditions under which the Nevada National Security Site (NNSS) will accept DOE non-radioactive classified waste, DOE non-radioactive hazardous classified waste, DOE low-level radioactive waste (LLW), DOE mixed low-level waste (MLLW), and U.S. Department of Defense (DOD) classified waste for permanent disposal. Classified waste is the only waste accepted for disposal that may be non-radioactive and will be required to meet the waste acceptance criteria for radioactive waste as specified in this document. The NNSA/NSO and support contractors are available to assist you in understanding or interpreting this document. For assistance, please call the NNSA/NSO Waste Management Project (WMP) at (702) 295-7063, and your call will be directed to the appropriate contact.

  15. Differing approaches to waste disposal

    International Nuclear Information System (INIS)

    Greenhalgh, G.

    1983-01-01

    The social, political, and economic problems of radioactive waste management, which are discussed at a scientific afternoon meeting held during the IAEA general conference on 12 October, with speakers from Argentina, West Germany, France, India, Japan, Sweden, Britain and the United States, are described. An OECD Nuclear Energy Agency report on the demonstration of long-term safety of deep underground disposal of high level radioactive waste is discussed. (U.K.)

  16. Method of draining water through a solid waste site without leaching

    Science.gov (United States)

    Treat, Russell L.; Gee, Glendon W.; Whyatt, Greg A.

    1993-01-01

    The present invention is a method of preventing water from leaching solid waste sites by preventing atmospheric precipitation from contacting waste as the water flows through a solid waste site. The method comprises placing at least one drain hole through the solid waste site. The drain hole is seated to prevent waste material from entering the drain hole, and the solid waste site cover material is layered and graded to direct water to flow toward the drain hole and to soil beneath the waste site.

  17. Management of Radioactive Wastes

    International Nuclear Information System (INIS)

    Tchokosa, P.

    2010-01-01

    Management of Radioactive Wastes is to protect workers and the public from the radiological risk associated with radioactive waste for the present and future. It application of the principles to the management of waste generated in a radioisotope uses in the industry. Any material that contains or is contaminated with radionuclides at concentrations or radioactivity levels greater than ‘exempt quantities’ established by the competent regulatory authorities and for which no further use is foreseen or intended. Origin of the Radioactive Waste includes Uranium and Thorium mining and milling, nuclear fuel cycle operations, Operation of Nuclear power station, Decontamination and decommissioning of nuclear facilities and Institutional uses of isotopes. There are types of radioactive waste: Low-level Waste (LLW) and High-level Waste. The Management Options for Radioactive Waste Depends on Form, Activity, Concentration and half-lives of the radioactive waste, Storage and disposal methods will vary according to the following; the radionuclides present, and their concentration, and radio toxicity. The contamination results basically from: Contact between radioactive materials and any surface especially during handling. And it may occur in the solid, liquid or gas state. Decontamination is any process that will either reduce or completely remove the amount of radionuclides from a contaminated surface

  18. Low-Level Waste (LLW) forum meeting report

    International Nuclear Information System (INIS)

    1995-01-01

    The Low-Level Radioactive Waste Forum (LLW Forum) is an association of state and compact representatives, appointed by governors and compact commissions, established to facilitate state and compact implementation of the Low-Level Radioactive Waste Policy Act of 1980 and the Low-Level Radioactive Waste Policy Amendments Act of 1985 and to promote the objectives of low-level radioactive waste regional compacts. The LLW Forum provides an opportunity for state and compact officials to share information with one another and to exchange views with officials of federal agencies and other interested parties

  19. Low-Level Waste (LLW) forum meeting report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    The Low-Level Radioactive Waste Forum (LLW Forum) is an association of state and compact representatives, appointed by governors and compact commissions, established to facilitate state and compact implementation of the Low-Level Radioactive Waste Policy Act of 1980 and the Low-Level Radioactive Waste Policy Amendments Act of 1985 and to promote the objectives of low-level radioactive waste regional compacts. The LLW Forum provides an opportunity for state and compact officials to share information with one another and to exchange views with officials of federal agencies and other interested parties.

  20. Solid Waste Management Holistic Decision Modeling

    OpenAIRE

    World Bank

    2008-01-01

    This study provides support to the Bank's ability to conduct client dialogue on solid waste management technology selection, and will contribute to client decision-making. The goal of the study was to fully explore the use of the United States Environmental Protection Agency and the Research Triangle Institute (EPA/RTI) holistic decision model to study alternative solid waste systems in a ...

  1. Colorado State Briefing Book for low-level radioactive-waste management

    International Nuclear Information System (INIS)

    1981-10-01

    The Colorado State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Colorado. The profile is the result of a survey of NRC licensees in Colorado. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Colorado

  2. Texas State Briefing Book for low-level radioactive waste management

    Energy Technology Data Exchange (ETDEWEB)

    1981-08-01

    The Texas State Briefing Book is one of a series of state briefing books on low-level radioactivee waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Texas. The profile is the result of a survey of NRC licensees in Texas. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Texas.

  3. Tennessee State Briefing Book for low-level radioactive waste management

    Energy Technology Data Exchange (ETDEWEB)

    1981-08-01

    The Tennessee State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Tennessee. The profile is the result of a survey of NRC licensees in Tennessee. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Tennessee.

  4. Florida State Briefing Book for low-level radioactive-waste management

    Energy Technology Data Exchange (ETDEWEB)

    None

    1981-06-01

    The Florida State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Florida. The profile is the result of a survey of NRC licensees in Florida. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Florida.

  5. California State Briefing Book for low-level radioactive-waste management

    International Nuclear Information System (INIS)

    1981-12-01

    The California State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in California. The profile is the result of a survey of NRC licensees in California. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in California

  6. Massachusetts State Briefing Book for low-level radioactive waste management

    International Nuclear Information System (INIS)

    1981-01-01

    The Massachusetts State Briefing Book is one of a series of State briefing books on low-level radioactive waste management practices. It has been prepared to assist State and Federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Massachusetts. The profile is the result of a survey of NRC licensees in Massachusetts. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Massachusetts

  7. Delaware State Briefing Book on low-level radioactive-waste management

    International Nuclear Information System (INIS)

    1981-07-01

    The Delaware State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Delaware. The profile is the result of a survey of NRC licensees in Delaware. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Delaware

  8. Massachusetts State Briefing Book for low-level radioactive waste management

    Energy Technology Data Exchange (ETDEWEB)

    1981-03-12

    The Massachusetts State Briefing Book is one of a series of State briefing books on low-level radioactive waste management practices. It has been prepared to assist State and Federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Massachusetts. The profile is the result of a survey of NRC licensees in Massachusetts. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Massachusetts.

  9. Utah State Briefing Book for low-level radioactive waste management

    Energy Technology Data Exchange (ETDEWEB)

    1981-10-01

    The Utah State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Utah. The profile is the result of a survey of NRC licensees in Utah. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Utah.

  10. Indiana State Briefing Book for low-level radioactive-waste management

    International Nuclear Information System (INIS)

    Mitter, E.L.; Hume, R.D.; Briggs, H.R.; Feigenbaum, E.D.

    1981-01-01

    The Indiana State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Indiana. The profile is the result of a survey of NRC licensees in Indiana. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Indiana

  11. Kentucky State Briefing Book for low-level radioactive waste management

    International Nuclear Information System (INIS)

    1981-08-01

    The Kentucky State Briefing Book is one of a series of State briefing books on low-level radioactive waste management practices. It has been prepared to assist State and Federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Kentucky. The profile is the result of a survey of NRC licensees in Kentucky. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Kentucky

  12. Hawaii State briefing book for low-level radioactive waste management

    International Nuclear Information System (INIS)

    1981-07-01

    The Hawaii State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Hawaii. The profile is the result of a survey of NRC licensees in Hawaii. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Hawaii

  13. Georgia State Briefing Book for low-level radioactive-waste management

    International Nuclear Information System (INIS)

    1981-08-01

    The Georgia State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Georgia. The profile is the result of a survey of NRC licensees in Georgia. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Georgia

  14. Oklahoma State Briefing Book for low-level radioactive waste management

    International Nuclear Information System (INIS)

    1981-08-01

    The Oklahoma State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Oklahoma. The profile is the result of a survey of NRC licensees in Oklahoma. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Oklahoma

  15. Louisiana State Briefing Book for low-level radioactive waste management

    International Nuclear Information System (INIS)

    1981-08-01

    The Louisiana State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Louisiana. The profile is a result of a survey of NRC licensees in Louisiana. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Louisiana

  16. Georgia State Briefing Book for low-level radioactive waste management

    International Nuclear Information System (INIS)

    1981-01-01

    The Georgia State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. This report contains a profile of low-level radioactive waste generators in Georgia. The profile is the result of a survey of NRC licensees in Georgia. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Georgia

  17. Wyoming State Briefing Book for low-level radioactive waste management

    Energy Technology Data Exchange (ETDEWEB)

    1981-10-01

    The Wyoming State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Wyoming. The profile is the result of a survey of NRC licensees in Wyoming. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Wyoming.

  18. Kansas State Briefing Book on low-level radioactive waste management

    International Nuclear Information System (INIS)

    1981-07-01

    The Kansas State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Kansas. The profile is the result of a survey of radioactive material licensees in Kansas. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may affect waste management practices in Kansas

  19. Vermont State Briefing Book on low-level radioactive waste management

    International Nuclear Information System (INIS)

    1981-07-01

    The Vermont State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Vermont. The profile is the result of a survey of Nuclear Regulatory Commission licensees in Vermont. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may affect waste management practices in Vermont

  20. Tennessee State Briefing Book for low-level radioactive-waste management

    International Nuclear Information System (INIS)

    1981-08-01

    The Tennessee State Briefing Book is one of a series of State briefing books on low-level radioactive waste management practices. It has been prepared to assist State and Federal Agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Tennessee. The profile is the result of a survey of NRC licensees in Tennessee. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Tennessee

  1. Tennessee State Briefing Book for low-level radioactive waste management

    International Nuclear Information System (INIS)

    1981-08-01

    The Tennessee State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Tennessee. The profile is the result of a survey of NRC licensees in Tennessee. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Tennessee

  2. Wisconsin State Briefing Book for low-level radioactive waste management

    Energy Technology Data Exchange (ETDEWEB)

    1980-11-01

    The Wisconsin State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Wisconsin. The profile is the result of a survey of NRC licensees in Wisconsin. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Wisconsin.

  3. Pennsylvania State Briefing Book for low-level radioactive waste management

    Energy Technology Data Exchange (ETDEWEB)

    1981-04-01

    The Pennsylvania State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Pennsylvania. The profile is the result of a survey of NRC licensees in Pennsylvania. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Pennsylvania.

  4. Mississippi State Briefing Book for low-level radioactive waste management

    Energy Technology Data Exchange (ETDEWEB)

    None

    1981-08-01

    The Mississippi State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state an federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Mississippi. The profile is the result of a survey of NRC licensees in Mississippi. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Mississippi.

  5. Alabama State Briefing Book for low-level radioactive waste management

    International Nuclear Information System (INIS)

    1981-08-01

    The Alabama State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. This report contains a profile of low-level radioactive waste generators in Alabama. The profile is the result of a survey of NRC licensees in Alabama. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Alabama

  6. Florida State Briefing Book for low-level radioactive waste management

    International Nuclear Information System (INIS)

    1981-06-01

    The Florida State Briefing Book is one of a series of State briefing books on low-level radioactive waste management practices. It has been prepared to assist State and Federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Florida. The profile is the result of a survey of NRC licensees in Florida. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Florida

  7. Ohio State Briefing Book for low-level radioactive waste management

    International Nuclear Information System (INIS)

    1981-04-01

    The Ohio State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Ohio. The profile is the result of a survey of NRC licensees in Ohio. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Ohio

  8. Oklahoma State Briefing Book for low-level radioactive waste management

    International Nuclear Information System (INIS)

    1981-08-01

    The Oklahoma State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Oklahoma. The profile is the result of a survey of NRC licensees in Oklahoma. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal cmmunications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Oklahoma

  9. Arizona State Briefing Book for low-level radioactive-waste management

    International Nuclear Information System (INIS)

    1981-10-01

    The Arizona State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Arizona. The profile is the result of a survey of NRC licensees in Arizona. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Arizona

  10. Iowa State Briefing Book for low-level radioactive waste management

    International Nuclear Information System (INIS)

    1981-08-01

    The Iowa State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. This report contains a profile of low-level radioactive waste generators in Iowa. The profile is the result of a survey of NRC licensees in Iowa. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Iowa

  11. Wyoming State Briefing Book for low-level radioactive waste management

    International Nuclear Information System (INIS)

    1981-10-01

    The Wyoming State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Wyoming. The profile is the result of a survey of NRC licensees in Wyoming. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Wyoming

  12. Washington State Briefing Book for low-level radioactive waste management

    Energy Technology Data Exchange (ETDEWEB)

    1980-12-01

    The Washington State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Washington. The profile is the result of a survey of NRC licensees in Washington. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Washington.

  13. Arkansas State Briefing Book for low-level radioactive-waste management

    International Nuclear Information System (INIS)

    1981-08-01

    The Arkansas State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Arkansas. The profile is the result of a survey of NRC licensees in Arkansas. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Arkansas

  14. Vermont State Briefing Book on low-level radioactive waste management

    Energy Technology Data Exchange (ETDEWEB)

    1981-07-01

    The Vermont State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Vermont. The profile is the result of a survey of Nuclear Regulatory Commission licensees in Vermont. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may affect waste management practices in Vermont.

  15. Connecticut State Briefing Book for low-level radioactive-waste management

    International Nuclear Information System (INIS)

    1981-06-01

    The Connecticut State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Connecticut. The profile is the result of a survey of Nuclear Regulatory Commission licensees in Connecticut. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may affect waste management practices in Connecticut

  16. Wisconsin State Briefing Book for low-level radioactive waste management

    International Nuclear Information System (INIS)

    1980-11-01

    The Wisconsin State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Wisconsin. The profile is the result of a survey of NRC licensees in Wisconsin. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Wisconsin

  17. Idaho State Briefing Book for low-level radioactive-waste management

    International Nuclear Information System (INIS)

    1980-12-01

    The Idaho State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Idaho. The profile is the result of a survey of NRC licensees in Idaho. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Idaho

  18. Virginia State Briefing Book for low-level radioactive-waste management

    International Nuclear Information System (INIS)

    1980-11-01

    The Virginia State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Virginia. The profile is the result of a survey of NRC licensees in Virginia. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Virginia

  19. Oregon State Briefing Book for low-level radioactive waste management

    International Nuclear Information System (INIS)

    1980-12-01

    The Oregon State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Oregon. The profile is a result of a survey of NRC licensees in Oregon. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Oregon

  20. Washington State Briefing Book for low-level radioactive waste management

    International Nuclear Information System (INIS)

    1980-12-01

    The Washington State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Washington. The profile is the result of a survey of NRC licensees in Washington. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Washington

  1. Mississippi State Briefing Book for low-level radioactive waste management

    International Nuclear Information System (INIS)

    1981-08-01

    The Mississippi State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state an federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Mississippi. The profile is the result of a survey of NRC licensees in Mississippi. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Mississippi

  2. Arkansas State Briefing Book for low-level radioactive waste management

    International Nuclear Information System (INIS)

    1981-08-01

    The Arkansas State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. This report contains a profile of low-level radioactive waste generators in Arkansas. The profile is the result of a survey of NRC licensees in Arkansas. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Arkansas

  3. Florida State Briefing Book for low-level radioactive-waste management

    International Nuclear Information System (INIS)

    1981-06-01

    The Florida State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Florida. The profile is the result of a survey of NRC licensees in Florida. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Florida

  4. Texas State Briefing Book for low-level radioactive waste management

    International Nuclear Information System (INIS)

    1981-08-01

    The Texas State Briefing Book is one of a series of state briefing books on low-level radioactivee waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Texas. The profile is the result of a survey of NRC licensees in Texas. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Texas

  5. Utah State Briefing Book for low-level radioactive waste management

    International Nuclear Information System (INIS)

    1981-10-01

    The Utah State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Utah. The profile is the result of a survey of NRC licensees in Utah. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Utah

  6. Ohio State Briefing Book for low-level radioactive waste management

    Energy Technology Data Exchange (ETDEWEB)

    1981-04-01

    The Ohio State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Ohio. The profile is the result of a survey of NRC licensees in Ohio. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Ohio.

  7. Oregon State Briefing Book for low-level radioactive waste management

    Energy Technology Data Exchange (ETDEWEB)

    1980-12-01

    The Oregon State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Oregon. The profile is a result of a survey of NRC licensees in Oregon. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Oregon.

  8. Pennsylvania State Briefing Book for low-level radioactive waste management

    International Nuclear Information System (INIS)

    1981-04-01

    The Pennsylvania State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Pennsylvania. The profile is the result of a survey of NRC licensees in Pennsylvania. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Pennsylvania

  9. 40 CFR 265.281 - Special requirements for ignitable or reactive waste.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Special requirements for ignitable or reactive waste. 265.281 Section 265.281 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE...

  10. 40 CFR 265.176 - Special requirements for ignitable or reactive waste.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Special requirements for ignitable or reactive waste. 265.176 Section 265.176 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE...

  11. 40 CFR 265.405 - Special requirements for ignitable or reactive waste.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Special requirements for ignitable or reactive waste. 265.405 Section 265.405 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE...

  12. 40 CFR 264.176 - Special requirements for ignitable or reactive waste.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Special requirements for ignitable or reactive waste. 264.176 Section 264.176 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE...

  13. 40 CFR 265.198 - Special requirements for ignitable or reactive wastes.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Special requirements for ignitable or reactive wastes. 265.198 Section 265.198 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE...

  14. 40 CFR 264.229 - Special requirements for ignitable or reactive waste.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Special requirements for ignitable or reactive waste. 264.229 Section 264.229 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE...

  15. 40 CFR 264.256 - Special requirements for ignitable or reactive waste.

    Science.gov (United States)

    2010-07-01

    ..., AND DISPOSAL FACILITIES Waste Piles § 264.256 Special requirements for ignitable or reactive waste... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Special requirements for ignitable or reactive waste. 264.256 Section 264.256 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY...

  16. 40 CFR 265.312 - Special requirements for ignitable or reactive waste.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Special requirements for ignitable or reactive waste. 265.312 Section 265.312 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE...

  17. 14 CFR 1261.408 - Use of consumer reporting agency.

    Science.gov (United States)

    2010-01-01

    ... Management Division, shall be the focal contact between NASA and consumer reporting agencies. The following... documentary evidence, verified written statements by the debtor or the responsible official may be requested...

  18. Architecture Design Issues of a Reversible Deep Geological Repository for HL and IL/LL Waste

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, C.; Londe, L.; Poisson, J.B. [Andra (France)

    2009-06-15

    In accordance with the Planning Act of 28 June 2006, the French National Radioactive Waste Management Agency (Agence nationale pour la gestion des dechets radioactifs - ANDRA) is currently investigating the possibility of disposing of high-level (HL) and intermediate-level long-lived (IL/LL) radioactive waste in a deep geological formation. The waste inventory intended for geological disposal is significant and represents approximately 80,000 m{sup 3} of primary waste. The required drifts and cells for such disposal are developing in a long and complex network, with plans calling for a total of about 300 km of drifts to be opened over the next century. This paper describes various issues relating to the architecture design and the way they are integrated. Long-term safety is at the basis of the major principles not only for dividing the different waste categories into separate disposal areas, but also for identifying the relevant constraints involving the topology of the network (fragmentation of disposal areas into modules, dead-end architecture) and the orientation of certain structures. In the case of exothermal waste, since the control over the phenomenological evolution also leads to selecting a thermal criterion in the geological layer in contact with the waste, there is an impact on the density of the repository and, consequently, on its architecture. Operational security and safety issues are reflected in ventilation needs and in personnel-evacuation requirements in case of fire, both of which require additional intersections and drifts. The section of drifts is also conditioned often by those security aspects. Nuclear zoning may also induce requirements for special structures having a potential impact on the architecture. Operation, taken into its broader sense encompassing construction and nuclear activities, imposes its own share of constraints quite independently from any security or safety considerations. Impacted areas include structure slopes, the

  19. Annual Report on Waste Generation and Waste Minimization Progress, 1991--1992

    International Nuclear Information System (INIS)

    1994-02-01

    This report is DOE's first annual report on waste generation and waste minimization progress. Data presented in this report were collected from all DOE sites which met minimum threshold criteria established for this report. The fifty-seven site submittals contained herein represent data from over 100 reporting sites within 25 states. Radioactive, hazardous and sanitary waste quantities and the efforts to minimize these wastes are highlighted within the fifty-seven site submittals. In general, sites have made progress in moving beyond the planning phase of their waste minimization programs. This is evident by the overall 28 percent increase in the total amount of materials recycled from 1991 to 1992, as well as individual site initiatives. During 1991 and 1992, DOE generated a total of 279,000 cubic meters of radioactive waste and 243,000 metric tons of non-radioactive waste. These waste amounts include significant portions of process wastewater required to be reported to regulatory agencies in the state of Texas and the state of Tennessee. Specifically, the Pantex Plant in Texas treats an industrial wastewater that is considered by the Texas Water Commission to be a hazardous waste. In 1992, State regulated wastewater from the Pantex Plant represented 3,620 metric tons, 10 percent of the total hazardous waste generated by DOE. Similarly, mixed low-level wastewater from the TSCA Incinerator Facility at the Oak Ridge K-25 Site in Tennessee represented 55 percent of the total radioactive waste generated by DOE in 1992

  20. Annual Report on Waste Generation and Waste Minimization Progress, 1991--1992

    Energy Technology Data Exchange (ETDEWEB)

    1994-02-01

    This report is DOE`s first annual report on waste generation and waste minimization progress. Data presented in this report were collected from all DOE sites which met minimum threshold criteria established for this report. The fifty-seven site submittals contained herein represent data from over 100 reporting sites within 25 states. Radioactive, hazardous and sanitary waste quantities and the efforts to minimize these wastes are highlighted within the fifty-seven site submittals. In general, sites have made progress in moving beyond the planning phase of their waste minimization programs. This is evident by the overall 28 percent increase in the total amount of materials recycled from 1991 to 1992, as well as individual site initiatives. During 1991 and 1992, DOE generated a total of 279,000 cubic meters of radioactive waste and 243,000 metric tons of non-radioactive waste. These waste amounts include significant portions of process wastewater required to be reported to regulatory agencies in the state of Texas and the state of Tennessee. Specifically, the Pantex Plant in Texas treats an industrial wastewater that is considered by the Texas Water Commission to be a hazardous waste. In 1992, State regulated wastewater from the Pantex Plant represented 3,620 metric tons, 10 percent of the total hazardous waste generated by DOE. Similarly, mixed low-level wastewater from the TSCA Incinerator Facility at the Oak Ridge K-25 Site in Tennessee represented 55 percent of the total radioactive waste generated by DOE in 1992.

  1. Waste management plan for the remedial investigation of Waste Area Grouping 2 at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    Baron, L.A.

    1994-10-01

    This Project Waste Management Plan defines the criteria and methods to be used for managing waste generated during activities associated with Waste Area Grouping 2 at Oak Ridge National Laboratory. The waste management strategy is based on the generation and management of waste on a systematic basis using the most appropriate combination of waste reduction, segregation, treatment, storage, and disposal practices while protecting the environment and human health, maintaining as low as reasonably achievable limits. This plan contains provisions for safely and effectively managing soils and sediments, sampling water, decontamination fluids, and disposable personal protective equipment consistent with the US Environmental Protection Agency guidance. This plan will be used in conjunction with the ORNL ER Program Waste Management Plan

  2. 40 CFR 264.230 - Special requirements for incompatible wastes.

    Science.gov (United States)

    2010-07-01

    ... DISPOSAL FACILITIES Surface Impoundments § 264.230 Special requirements for incompatible wastes... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Special requirements for incompatible wastes. 264.230 Section 264.230 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED...

  3. Leptospira Exposure and Waste Pickers: A Case-Control Seroprevalence Study in Durango, Mexico

    Science.gov (United States)

    Alvarado-Esquivel, Cosme; Hernandez-Tinoco, Jesus; Sanchez-Anguiano, Luis Francisco; Ramos-Nevarez, Agar; Cerrillo-Soto, Sandra Margarita; Guido-Arreola, Carlos Alberto

    2015-01-01

    Background Infection with Leptospira may occur by contact with Leptospira-infected animals. Waste pickers are in contact with rodents and dogs while picking in the garbage. Whether waste pickers are at risk for Leptospira infection is largely unknown. This study was aimed to determine the association of Leptospira IgG seroprevalence with the occupation of waste picking, and to determine the epidemiological characteristics of the waste pickers with Leptospira exposure. Methods Through a case-control study, we determined the seroprevalence of anti-Leptospira IgG antibodies in 90 waste pickers and 90 age- and gender-matched control subjects in Durango City, Mexico using an enzyme immunoassay. Data were analyzed by bivariate and multivariate analyses. Results The prevalence of anti-Leptospira IgG antibodies was similar in waste pickers (4/90: 4.4%) to that in control subjects (5/90: 5.6%) (P = 1.00). Bivariate analysis showed that Leptospira exposure in waste pickers was associated with increasing age (P = 0.009), no education (P = 0.008), and consumption of rat meat (P = 0.04). However, these associations were no longer found by multivariate analysis. Leptospira exposure in waste pickers was not associated with health status, duration in the activity, wearing hand gloves and facemasks, history of injuries with sharp material of the garbage, or contact with animals or soil. Conclusions This is the first study about Leptospira exposure in waste pickers. Results suggest that waste pickers are not at increasing risk for Leptospira exposure in Durango City, Mexico. Further research with a larger sample size to elucidate the association of Leptospira exposure with waste picking activity is needed. PMID:26124911

  4. Leptospira Exposure and Waste Pickers: A Case-Control Seroprevalence Study in Durango, Mexico.

    Science.gov (United States)

    Alvarado-Esquivel, Cosme; Hernandez-Tinoco, Jesus; Sanchez-Anguiano, Luis Francisco; Ramos-Nevarez, Agar; Cerrillo-Soto, Sandra Margarita; Guido-Arreola, Carlos Alberto

    2015-08-01

    Infection with Leptospira may occur by contact with Leptospira-infected animals. Waste pickers are in contact with rodents and dogs while picking in the garbage. Whether waste pickers are at risk for Leptospira infection is largely unknown. This study was aimed to determine the association of Leptospira IgG seroprevalence with the occupation of waste picking, and to determine the epidemiological characteristics of the waste pickers with Leptospira exposure. Through a case-control study, we determined the seroprevalence of anti-Leptospira IgG antibodies in 90 waste pickers and 90 age- and gender-matched control subjects in Durango City, Mexico using an enzyme immunoassay. Data were analyzed by bivariate and multivariate analyses. The prevalence of anti-Leptospira IgG antibodies was similar in waste pickers (4/90: 4.4%) to that in control subjects (5/90: 5.6%) (P = 1.00). Bivariate analysis showed that Leptospira exposure in waste pickers was associated with increasing age (P = 0.009), no education (P = 0.008), and consumption of rat meat (P = 0.04). However, these associations were no longer found by multivariate analysis. Leptospira exposure in waste pickers was not associated with health status, duration in the activity, wearing hand gloves and facemasks, history of injuries with sharp material of the garbage, or contact with animals or soil. This is the first study about Leptospira exposure in waste pickers. Results suggest that waste pickers are not at increasing risk for Leptospira exposure in Durango City, Mexico. Further research with a larger sample size to elucidate the association of Leptospira exposure with waste picking activity is needed.

  5. Vitrification technology for Hanford Site tank waste

    International Nuclear Information System (INIS)

    Weber, E.T.; Calmus, R.B.; Wilson, C.N.

    1995-04-01

    The US Department of Energy's (DOE) Hanford Site has an inventory of 217,000 m 3 of nuclear waste stored in 177 underground tanks. The DOE, the US Environmental Protection Agency, and the Washington State Department of Ecology have agreed that most of the Hanford Site tank waste will be immobilized by vitrification before final disposal. This will be accomplished by separating the tank waste into high- and low-level fractions. Capabilities for high-capacity vitrification are being assessed and developed for each waste fraction. This paper provides an overview of the program for selecting preferred high-level waste melter and feed processing technologies for use in Hanford Site tank waste processing

  6. 76 FR 63252 - Hazardous and Solid Waste Management System: Identification and Listing of Special Wastes...

    Science.gov (United States)

    2011-10-12

    ...This Notice announces and invites comment on additional information obtained by the Environmental Protection Agency (Agency or EPA) in conjunction with the proposed rule: Hazardous and Solid Waste Management System: Identification and Listing of Special Wastes; Disposal of Coal Combustion Residuals From Electric Utilities that was published in the Federal Register on June 21, 2010 (75 FR 35127). This information is generally categorized as: Chemical constituent data from coal combustion residuals (CCRs); Facility and waste management unit data; Information on additional alleged damage cases; Adequacy of State programs; and Beneficial Use. In addition, EPA is considering a variety of possible approaches to update and enhance the risk assessment and the regulatory impact analysis (RIA) supporting the development of the final rule. EPA is specifically soliciting comments on the validity and propriety of the use of all new information, data, and potential analyses being noticed today. The Agency is only requesting comment on the information either specifically identified in this Notice or located in the docket for this Notice and is not reopening any other aspect of the proposal or the underlying support documents that were previously available for comment. Comments submitted on any issues other than those specifically identified in this Notice will be considered ``late comments,'' and EPA will not respond to such comments, nor will they be considered part of the rulemaking record.

  7. ANDRA - National Radioactive Waste Management Agency. Activity and sustainable development report 2010 - a year with Andra. Management report and financial statements 2010 - Managing today to prepare for tomorrow

    International Nuclear Information System (INIS)

    2011-01-01

    Created in 1979 within the CEA, the National Radioactive Waste Management Agency (ANDRA) was established by the December 1991 Waste Act as a public body in charge of the long-term management of all radioactive waste, under the supervision of the Ministry of Ecology, Energy, Sustainable Development and the Sea (formerly the Ministry of Industry and the Ministry of Environment), and the Ministry of Research. Its 3 basic missions were extended and their funding secured through the 2006 Planning Act: - a R and D mission to propose safe long-term solution for radioactive waste without current disposal system; this mission includes long-term storage, since the 2006 Planning Act, in order to propose interim solutions while final ones are being studied; - an industrial mission concerning, on one hand, waste acceptance criteria and control and, on the other hand, siting, construction, operation, closure and monitoring of repositories. This mission includes as well a public service mission in terms of i) collection of waste of the 'small-scale nuclear activities' producers or owners (including the so-called 'household' radioactive waste, i.e. waste owned by private individuals) and ii) clean-up and rehabilitation of orphan polluted sites; - an information mission, notably through the regular publication of the National Inventory of radioactive materials and waste. This mission includes as well an active policy of dialogue with stakeholders both at national and local level. This document is the activity and Sustainable Development Report, with the management and financial statements report, of the Andra for the year 2010

  8. Low-Level Burial Grounds Dangerous Waste Permit Application

    International Nuclear Information System (INIS)

    1989-01-01

    The single dangerous waste permit identification number issued to the Hanford Site by the US Environmental Protection Agency and the Washington State Department of Ecology is US Environmental Protection Agency/State Identification Number WA 7890008967. This identification number encompasses a number of waste management units within the Hanford Site. Westinghouse Hanford Company is a major contractor to the US Department of Energy-Richland Operations Office and serves as co-operator of the Low-Level Burial Grounds, the waste management unit addressed by this permit application. The Low-Level Burial Grounds Dangerous Waste Permit Application consists of both a Part A and a Part B Permit Application. The original Part A, submitted in November 1985, identified landfills, retrievable storage units, and reserved areas. An explanation of subsequent Part A revisions is provided at the beginning of the Part A section. Part B consists of 15 chapters addressing the organization and content of the Part B checklist prepared by the Washington State Department of Ecology

  9. Alaska State Briefing Book for low-level radioactive waste management

    International Nuclear Information System (INIS)

    1981-08-01

    The Alaska State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste generators in Alaska. The profile is the result of a survey of NRC licensees in Alaska. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Alaska

  10. Evaluating awareness and practices pertaining to radioactive waste management among scrap dealers in Delhi, India.

    Science.gov (United States)

    Makkar, Nayani; Chandra, Tany; Agrawal, Prachi; Bansal, Harshit; Singh, Simranjeet; Anand, Tanu; Gupta, Mannan Kumar; Kumar, Rajesh

    2014-01-01

    With nuclear technology rapidly taking the spotlight in the last 50 years, radiation accidents seem to be a harsh reality of the modern world. The Mayapuri Radiation accident of 2010 was the worst radiation accident India has yet dealt with. Two years thereafter, we designed a study to assess the awareness and practices regarding radioactive waste among scrap dealers aiming to assess deficiencies in radiation disaster preparedness. A community based cross-sectional study. The study population consisted of 209 volunteers (from 108 scrap dealerships) including 108 shop-owners and 101 workers segregated as Group A consisting of 54 dealerships in Mayapuri and Group B of 54 dealerships from the rest of the city. Subjects were then interviewed using a semi-structured questionnaire. Awareness about radioactive waste varied significantly with level of education (p = 0.024), Kuppuswamy's socio-economic scale (p = 0.005), age of the scrap dealer (p = 0.049) and his work experience (p = 0.045). The larger dealerships in Mayapuri were more aware about radioactive waste (p = 0.0004), the accident in 2010 (p = 0.0002), the symbol for radiation hazard (p = 0.016), as well as the emergency guidelines and the agencies to contact in the event of a radiation accident. Our findings seem to signify that while governmental and non-governmental agencies were successful in implementing prompt disaster response and awareness programs, the community continues to be inadequately prepared. These go on to suggest that though concerted awareness and training programs do benefit the affected community, economic and social development is the key to disaster prevention and mitigation.

  11. Mixed Waste Management Options: 1995 Update. National Low-Level Waste Management Program

    Energy Technology Data Exchange (ETDEWEB)

    Kirner, N.; Kelly, J.; Faison, G.; Johnson, D. [Foster Wheeler Environmental Corp. (United States)

    1995-05-01

    In the original mixed Waste Management Options (DOE/LLW-134) issued in December 1991, the question was posed, ``Can mixed waste be managed out of existence?`` That study found that most, but not all, of the Nation`s mixed waste can theoretically be managed out of existence. Four years later, the Nation is still faced with a lack of disposal options for commercially generated mixed waste. However, since publication of the original Mixed Waste Management Options report in 1991, limited disposal capacity and new technologies to treat mixed waste have become available. A more detailed estimate of the Nation`s mixed waste also became available when the US Environmental Protection Agency (EPA) and the US Nuclear Regulatory Commission (NRC) published their comprehensive assessment, titled National Profile on Commercially Generated Low-Level Radioactive Mixed Waste (National Profile). These advancements in our knowledge about mixed waste inventories and generation, coupled with greater treatment and disposal options, lead to a more applied question posed for this updated report: ``Which mixed waste has no treatment option?`` Beyond estimating the volume of mixed waste requiring jointly regulated disposal, this report also provides a general background on the Atomic Energy Act (AEA) and the Resource Conservation and Recovery Act (RCRA). It also presents a methodical approach for generators to use when deciding how to manage their mixed waste. The volume of mixed waste that may require land disposal in a jointly regulated facility each year was estimated through the application of this methodology.

  12. Mixed Waste Management Options: 1995 Update. National Low-Level Waste Management Program

    International Nuclear Information System (INIS)

    Kirner, N.; Kelly, J.; Faison, G.; Johnson, D.

    1995-05-01

    In the original mixed Waste Management Options (DOE/LLW-134) issued in December 1991, the question was posed, ''Can mixed waste be managed out of existence?'' That study found that most, but not all, of the Nation's mixed waste can theoretically be managed out of existence. Four years later, the Nation is still faced with a lack of disposal options for commercially generated mixed waste. However, since publication of the original Mixed Waste Management Options report in 1991, limited disposal capacity and new technologies to treat mixed waste have become available. A more detailed estimate of the Nation's mixed waste also became available when the US Environmental Protection Agency (EPA) and the US Nuclear Regulatory Commission (NRC) published their comprehensive assessment, titled National Profile on Commercially Generated Low-Level Radioactive Mixed Waste (National Profile). These advancements in our knowledge about mixed waste inventories and generation, coupled with greater treatment and disposal options, lead to a more applied question posed for this updated report: ''Which mixed waste has no treatment option?'' Beyond estimating the volume of mixed waste requiring jointly regulated disposal, this report also provides a general background on the Atomic Energy Act (AEA) and the Resource Conservation and Recovery Act (RCRA). It also presents a methodical approach for generators to use when deciding how to manage their mixed waste. The volume of mixed waste that may require land disposal in a jointly regulated facility each year was estimated through the application of this methodology

  13. Radioactive waste management and regulation

    International Nuclear Information System (INIS)

    Willrich, M.; Lester, R.K.; Greenberg, S.C.; Mitchell, H.C.; Walker, D.A.

    1977-01-01

    Purpose of this book is to assist in developing public policy and institutions for the safe management of radioactive waste, currently and long term. Both high-level waste and low-level waste containing transuranium elements are covered. The following conclusions are drawn: the safe management of post-fission radioactive waste is already a present necessity and an irreversible long-term commitment; the basic goals of U.S. radioactive waste policy are unclear; the existing organization for radioactive waste management is likely to be unworkable if left unchanged; and the existing framework for radioactive waste regulation is likely to be ineffective if left unchanged. The following recommendations are made: a national Radioactive Waste Authority should be established as a federally chartered public corporation; with NRC as the primary agency, a comprehensive regulatory framework should be established to assure the safety of all radioactive waste management operations under U.S. jurisdiction or control; ERDA should continue to have primary government responsibility for R and D and demonstration of radioactive waste technology; and the U.S. government should propose that an international Radioactive Waste Commission be established under the IAEA

  14. Radioactive waste management: International peer reviews

    International Nuclear Information System (INIS)

    Warnecke, E.; Bonne, A.

    1995-01-01

    The Agency's peer review service for radioactive waste management - known as the Waste Management Assessment and Technical Review Programme (WATRP) - started in 1989, building upon earlier types of advisory programmes. WATRP's international experts today provide advice and guidance on proposed or ongoing radioactive waste management programmes; planning, operation, or decommissioning of waste facilities; or on legislative, organizational, and regulatory matters. Specific topics often cover waste conditioning, storage, and disposal concepts or facilities; or technical and other aspects of ongoing or planned research and development programmes. The missions can thus contributed to improving waste management systems and plans, and in raising levels of public confidence in them, as part of IAEA efforts to assist countries in the safe management of radioactive wastes. This article presents a brief overview of recent WATRP missions in Norway, Slovak Republic, Czech Republic and Finland

  15. Engineering considerations for the Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    Scully, L.W.

    1978-01-01

    The WIPP, located at Los Medanos in New Mexico, is to be used for DOE transuranic and high-level defense wastes. On the surface, there are contact-handled and remote-handled waste facilities. Package size, delivery rates, shipping, shielding and thermal considerations, underground transport and emplacement, retrievability, ventilation, and hoist conveyence safety are discussed

  16. 40 CFR 264.13 - General waste analysis.

    Science.gov (United States)

    2010-07-01

    ... 264.13 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED... waste management methods as specified in §§ 264.17, 264.314, 264.341, 264.1034(d), 264.1063(d), 264.1083... analysis of test data; and, (iii) The annual removal of residues which are not delisted under § 260.22 of...

  17. Authorization of radioactive waste disposal under RSA93: regulatory experience and developments

    International Nuclear Information System (INIS)

    McHugh, J.O.

    1997-01-01

    The Environment Agency was formed in 1996 and is responsible for regulating radioactive waste disposal in England and Wales. In determining applications for disposal authorizations, it consults other statutory bodies including the Ministry of Agriculture, Fisheries and Food and the Health and Safety Executive. The Agency has published updated guidance on the principles and requirements for authorization of geological disposal of low and intermediate level waste. It will apply a risk target of 10 -6 per year in determining authorizations for waste disposal. Further work is required to elaborate the concept of 'critical group' to which the risk target should be applied. The Agency has also considered amending the methodology it uses for regulation of radioactive waste discharges from nuclear installations. Concerns expressed by the nuclear industry about the lack of operational flexibility in discharge authorizations, led the Agency to develop an alternative method of regulation. Responses to this initiative were mixed. In the future, the Department of the Environment will be reviewing the principles underpinning regulation of discharges, with the intention of setting out guidance on the objectives to be achieved and factors to be taken into account. (author)

  18. Transuranic waste examination quality assurance at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Bower, J.M.

    1987-01-01

    Since 1954, defense-generated transuranic (TRU) waste has been received at the Radioactive Waste Management Complex (RWMC) at the Idaho National Engineering Laboratory (INEL). A major objective of the Department of Energy (DOE) Nuclear Waste Management Programs is the proper management of the defense-generated TRU waste. The Stored Waste Examination Pilot Plant (SWEPP) is providing nondestructive examination and assay of retrievably stored contact handled TRU waste in order to certify it to the Waste Isolation Pilot Plant Waste Acceptance Crtieria (WIPP-WAC). SWEPP's capabilities for certifying contact handled waste containers include weighing, real-time radiographic examination, fissile material assay examination, container integrity examination, radiological surveys and labeling of waste containers. These processes involve not only instrument accuracy but also a wide range of technician interpretation from moderate on the assay to 100% on the radiograph. This, therefore, requires a variety of quality assurance techniques to ensure that the examinations and certifications are being performed correctly. The purpose of this paper is to discuss the methods utilized by SWEPP for checking on the examination process and to ensure that waste certifications are being properly performed. Included is the application of the quality assurance techniques to each examination system, the management of the data generated by the examination, and the verifications to ensure accurate certification. 1 ref

  19. Optimization of waste transportation route at waste transfers point in Lowokwaru District, Malang City

    Science.gov (United States)

    Hariyani, S.; Meidiana, C.

    2018-04-01

    Increasing population led to the emergence of the urban infrastructure services issue including waste problems especially waste transportation system. Data in 2016 shows that the amount of waste in Malang was 659.21 tons / day. The amount of waste transported to landfill only reached 464.74 tons / day. This indicates that not all waste can be transported to the landfill Supiturang because Level of Service (LoS) reached 70.49%. This study aims to determine the effectiveness of waste transportation system and determine the fastest route from waste transfers point in Lowokwaru district to the landfill Supiturang. The data collection method in this research were 1) primary survey by interview officials from the Sanitation and Gardening Agency which questions related to the condition of the waste transportation system in waste transfer point, 2) Secondary survey related to data of waste transportation system in Malang City i.e the amount of waste generation in waste transfer point, number of garbage trucks and other data related to the garbage transportation system. To determine the fastest route analyzed by network analyst using ArcGIS software. The results of network analyst show that not all routes are already using the fastest route to the landfill Supiturang.

  20. 77 FR 14307 - Water and Waste Disposal Loans and Grants

    Science.gov (United States)

    2012-03-09

    ... CFR 1777 RIN 0572-AC26 Water and Waste Disposal Loans and Grants AGENCY: Rural Utilities Service, USDA... pertaining to the Section 306C Water and Waste Disposal (WWD) Loans and Grants program, which provides water... to assist areas designated as colonias that lack access to water or waste disposal systems and/or...

  1. Waste disposal

    International Nuclear Information System (INIS)

    2005-01-01

    Radioactive waste, as a unavoidable remnant from the use of radioactive substances and nuclear technology. It is potentially hazardous to health and must therefore be managed to protect humans and the environment. The main bulk of radioactive waste must be permanently disposed in engineered repositories. Appropriate safety standards for repository design and construction are required along with the development and implementation of appropriate technologies for the design, construction, operation and closure of the waste disposal systems. As backend of the fuel cycle, resolving the issue of waste disposal is often considered as a prerequisite to the (further) development of nuclear energy programmes. Waste disposal is therefore an essential part of the waste management strategy that contributes largely to build confidence and helps decision-making when appropriately managed. The International Atomic Energy Agency provides assistance to Member States to enable safe and secure disposal of RW related to the development of national RWM strategies, including planning and long-term project management, the organisation of international peer-reviews for research and demonstration programmes, the improvement of the long-term safety of existing Near Surface Disposal facilities including capacity extension, the selection of potential candidate sites for different waste types and disposal options, the characterisation of potential host formations for waste facilities and the conduct of preliminary safety assessment, the establishment and transfer of suitable technologies for the management of RW, the development of technological solutions for some specific waste, the building of confidence through training courses, scientific visits and fellowships, the provision of training, expertise, software or hardware, and laboratory equipment, and the assessment of waste management costs and the provision of advice on cost minimisation aspects

  2. Liquid Secondary Waste Grout Formulation and Waste Form Qualification

    Energy Technology Data Exchange (ETDEWEB)

    Um, Wooyong [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Williams, B. D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Snyder, Michelle M. V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Wang, Guohui [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-05-23

    This report describes the results from liquid secondary waste (LSW) grout formulation and waste form qualification tests performed at Pacific Northwest National Laboratory (PNNL) for Washington River Protection Solutions (WRPS) to evaluate new formulations for preparing a grout waste form with high-sulfate secondary waste simulants and the release of key constituents from these grout monoliths. Specific objectives of the LSW grout formulation and waste form qualification tests described in this report focused on five activities: 1.preparing new formulations for the LSW grout waste form with high-sulfate LSW simulants and solid characterization of the cured LSW grout waste form; 2.conducting the U.S. Environmental Protection Agency (EPA) Method 1313 leach test (EPA 2012) on the grout prepared with the new formulations, which solidify sulfate-rich Hanford Tank Waste Treatment and Immobilization Plant (WTP) off-gas condensate secondary waste simulant, using deionized water (DIW); 3.conducting the EPA Method 1315 leach tests (EPA 2013) on the grout monoliths made with the new dry blend formulations and three LSW simulants (242-A evaporator condensate, Environmental Restoration Disposal Facility (ERDF) leachate, and WTP off-gas condensate) using two leachants, DIW and simulated Hanford Integrated Disposal Facility (IDF) Site vadose zone pore water (VZPW); 4.estimating the 99Tc desorption Kd (distribution coefficient) values for 99Tc transport in oxidizing conditions to support the IDF performance assessment (PA); 5.estimating the solubility of 99Tc(IV)-bearing solid phases for 99Tc transport in reducing conditions to support the IDF PA.

  3. THE UTILIZATION OF Fe(III WASTE OF ETCHING INDUSTRY AS QUALITY ENHANCHEMENT MATERIAL IN CERAMIC ROOFTILE SYNTHESIS

    Directory of Open Access Journals (Sweden)

    Eva Vaulina Yulistia Delsy

    2015-11-01

    Full Text Available Waste is produced from various industrial activities. FeCl3 used in this study as an addition to the material quality in synthesis of ceramic rooftile from Kalijaran village clay, Purbalingga. Etching industrial waste FeCl3 contacted with clay. Waste being varied waste as diluted and undiluted while clay grain size varied as 60, 80, 100, 140, and 230 mesh. Both clay and waste are contacted at 30-100 minutes. The results showed that the optimum of time and grain size variation is clay with 80 mesh grain size within 70 minutes. While physical properties of the rooftile contained Fe meet all ISO standards and are known to tile, the best quality is to use clay that has been in contact with the waste that is created 1000 times dilution. The stripping test of Fe (III by rain water and sea water showed that the average rate of Fe-striped of the tile body that is made with soaked with diluted waste are 0.068 ppm/day and 0.055 ppm/day while for tile bodies soaked with waste is not diluted are 0.0722 ppm/day and 0.0560 ppm/day.

  4. Public issues in hazardous waste management in the Republic of Croatia

    International Nuclear Information System (INIS)

    Klika, M.C.

    1995-01-01

    Public acceptance of sites for radioactive and other hazardous waste disposal facilities represents one of most important factors in decision making on definite sites of these facilities. The Republic of Croatia, as a newly independent state, faces the problem of public involvement in site selection of radioactive/hazardous waste disposal facility very seriously, specially having in mind that in the past, in former Yugoslavia almost all decisions had been made without participation of the public. Because of that it is very important now to gain confidence of the public and to enable its active role in decision making. Operation of the APO-Hazardous Waste Management Agency as a state agency which has been established firstly for management of radioactive waste, and later widening its competencies also to other types of hazardous wastes and relations to the public, is going to be presented in the paper. Description of some basic elements related to public participation in site selection of radioactive waste repository in Croatia will be also done

  5. Contact mechanics: contact area and interfacial separation from small contact to full contact

    International Nuclear Information System (INIS)

    Yang, C; Persson, B N J

    2008-01-01

    We present a molecular dynamics study of the contact between a rigid solid with a randomly rough surface and an elastic block with a flat surface. The numerical calculations mainly focus on the contact area and the interfacial separation from small contact (low load) to full contact (high load). For a small load the contact area varies linearly with the load and the interfacial separation depends logarithmically on the load. For a high load the contact area approaches the nominal contact area (i.e. complete contact), and the interfacial separation approaches zero. The numerical results have been compared with analytical theory and experimental results. They are in good agreement with each other. The present findings may be very important for soft solids, e.g. rubber, or for very smooth surfaces, where complete contact can be reached at moderately high loads without plastic deformation of the solids

  6. Leaching test of bituminized waste and waste solidified by epoxy resin

    International Nuclear Information System (INIS)

    Yoshinaka, Kazuyuki; Sugaya, Atsushi; Onizawa, Toshikazu; Takano, Yugo; Kimura, Yukihiko

    2008-10-01

    About 30,000 bituminized waste drums and about 1800 drums of waste solidified by epoxy resin, generated from Tokai Reprocessing Plant, were stored in storage facilities. And study for disposal of these waste is performed. It was considered that radioactive nuclides and chemical components were released from these waste by contact of underground water, when disposed there waste. This paper is reported that result of leaching tests for these waste, done from 2003 to 2006. We've get precious knowledge and data, as follows. (1) In leaching tests for bituminized waste, it has detected iodine-129 peak, considered difficult too low energy gamma to detect. We've get data and knowledge of iodine-129 behavior first. Leached radioactivity for 50 days calculated by peak area was equal for about 40% and 100% of including radioactivity in bituminized waste sample. And we've get data of behavior of nitric acid ion and so on, important to study for disposal, in various condition of sample shape or leaching liquid temperature. (2) In leaching test for waste solidified by epoxy resin, we've get data of behavior of TBP, radionuclides and so on, important to study for disposal. Leached TBP was equal about 1% of including of sample. And we've get data of iodine-129 behavior, too. It was confirmed that leached iodine-129 was equal for about 60% and 100% of including sample, for 90 days. (author)

  7. 77 FR 59879 - Idaho: Incorporation by Reference of Approved State Hazardous Waste Management Program

    Science.gov (United States)

    2012-10-01

    ...: Incorporation by Reference of Approved State Hazardous Waste Management Program AGENCY: Environmental Protection... ``Approved State Hazardous Waste Management Programs,'' Idaho's authorized hazardous waste program. The EPA... Federal Register, the EPA is codifying and incorporating by reference the State's hazardous waste program...

  8. 77 FR 3224 - New Mexico: Incorporation by Reference of State Hazardous Waste Management Program

    Science.gov (United States)

    2012-01-23

    ... Mexico: Incorporation by Reference of State Hazardous Waste Management Program AGENCY: Environmental... entitled ``Approved State Hazardous Waste Management Programs,'' New Mexico's authorized hazardous waste... of the State regulations that are authorized and that the EPA will enforce under the Solid Waste...

  9. 40 CFR 264.199 - Special requirements for incompatible wastes.

    Science.gov (United States)

    2010-07-01

    ... DISPOSAL FACILITIES Tank Systems § 264.199 Special requirements for incompatible wastes. (a) Incompatible... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Special requirements for incompatible wastes. 264.199 Section 264.199 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED...

  10. 40 CFR 265.313 - Special requirements for incompatible wastes.

    Science.gov (United States)

    2010-07-01

    ..., STORAGE, AND DISPOSAL FACILITIES Landfills § 265.313 Special requirements for incompatible wastes... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Special requirements for incompatible wastes. 265.313 Section 265.313 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED...

  11. 40 CFR 265.282 - Special requirements for incompatible wastes.

    Science.gov (United States)

    2010-07-01

    ..., STORAGE, AND DISPOSAL FACILITIES Land Treatment § 265.282 Special requirements for incompatible wastes... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Special requirements for incompatible wastes. 265.282 Section 265.282 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED...

  12. Radioactive waste management services. Safety and technical advisory services available from the IAEA

    International Nuclear Information System (INIS)

    2000-09-01

    This brochure provides updated information about the services and assistance the International Atomic Energy Agency (IAEA) is able to render, upon request by Member States, in the area of radioactive waste management. The ultimate objective is to ensure that all wastes are managed safely and in a way which protects both individual and the environment, now and in the future. The IAEA is the sole global international organization with the statutory authority to establish safety standards for the protection of health against exposure to ionizing radiation. These include safety standards for radioactive waste management. A comprehensive set of such standards is being established, and continuously updated, under the Agency's aegis, which lay out the requirements for the safe management of all types of radioactive waste. The Agency has a further statutory obligation ro provide for the application of these standards at the request of States. The safety of radioactive waste management is not attainable through safety standards alone but requires special technology. An additional function of the IAEA is thus to foster the transfer of technology among States, including the specific technology needed to ensure safe radioactive waste management

  13. Radionuclide Retention in Concrete Waste Forms

    Energy Technology Data Exchange (ETDEWEB)

    Mattigod, Shas V.; Bovaird, Chase C.; Wellman, Dawn M.; Wood, Marcus I.

    2010-09-30

    Assessing long-term performance of Category 3 waste cement grouts for radionuclide encasement requires knowledge of the radionuclide-cement interactions and mechanisms of retention (i.e., sorption or precipitation); the mechanism of contaminant release; the significance of contaminant release pathways; how waste form performance is affected by the full range of environmental conditions within the disposal facility; the process of waste form aging under conditions that are representative of processes occurring in response to changing environmental conditions within the disposal facility; the effect of waste form aging on chemical, physical, and radiological properties; and the associated impact on contaminant release. This knowledge will enable accurate prediction of radionuclide fate when the waste forms come in contact with groundwater. The information presented in the report provides data that 1) quantify radionuclide retention within concrete waste form materials similar to those used to encapsulate waste in the Low-Level Waste Burial Grounds (LLBG); 2) measure the effect of concrete waste form properties likely to influence radionuclide migration; and 3) quantify the stability of uranium-bearing solid phases of limited solubility in concrete.

  14. Status and prospects of radioactive waste management in France

    International Nuclear Information System (INIS)

    Gonnot, F.M.

    2012-01-01

    The chairman of ANDRA (French agency for the management of radioactive waste) presents the activities of the agency in the framework of the 2006 Planning Act that took in principle the decision to dispose of the high-level and the long-lived radioactive waste in a geological repository (Cigeo project). One of the important aspects of the Cigeo project is the requirement by law, to study the reversibility and therefore to demonstrate the capability to retrieve already disposed waste packages. In March 2010 the Government accepted the 30 km 2 area proposed by ANDRA for the location of the future repository. At present, ANDRA teams are fully busy on 2 fronts: first in preparing the license application for Cigeo to be submitted in 2015, and secondly in preparing the industrial phase of the Cigeo project. Low-level and intermediate-level radioactive waste are disposed of in surface facilities. (A.C.)

  15. Waste Isolation Pilot Plant Title I operator dose calculations. Final report, LATA report No. 90

    International Nuclear Information System (INIS)

    Hughes, P.S.; Rigdon, L.D.

    1980-02-01

    The radiation exposure dose was estimated for the Waste Isolation Pilot Plant (WIPP) operating personnel who do the unloading and transporting of the transuranic contact-handled waste. Estimates of the radiation source terms for typical TRU contact-handled waste were based on known composition and properties of the waste. The operations sequence for waste movement and storage in the repository was based upon the WIPP Title I data package. Previous calculations had been based on Conceptual Design Report data. A time and motion sequence was developed for personnel performing the waste handling operations both above and below ground. Radiation exposure calculations were then performed in several fixed geometries and folded with the time and motion studies for individual workers in order to determine worker exposure on an annual basis

  16. Mixed waste treatment capabilities at Envirocare

    International Nuclear Information System (INIS)

    Rafati, A.

    1994-01-01

    This presentation gives an overview of the business achievements and presents a corporate summary for the whole handling company Envirocare located in Clive, Utah. This company operates a permitted low-level radioactive and mixed waste facility which handles waste from the United States Department of Energy, Environmental Protection Agency, Department of Defense, and Fortune 500 companies. A description of business services and treatment capabilities is presented

  17. Guide book of radioactive wastes collecting. Producers, from collection to storage

    International Nuclear Information System (INIS)

    2003-01-01

    This document, more particularly devoted to radioactive waste producers (except electronuclear industry), defines the technical specifications and the financial conditions relative to the taking over of their wastes by the ANDRA, the French national agency of radioactive wastes. Content: general principles, instructions manual of the taking over demand, practical conditions of wastes collecting, packaging and containers, specifications for each category of waste, particular cases, price table, disputes. (J.S.)

  18. Minnesota State Briefing Book on low-level radioactive waste management

    International Nuclear Information System (INIS)

    1981-07-01

    The Minnesota State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Minnesota. The profile is the result of a survey of Nuclear Regulatory Commission licensees in Minnesota conducted by the Minnesota Department of Health. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may affect waste management practices in Minnesota

  19. Engineering evaluation/cost analysis for 100-N area waste

    International Nuclear Information System (INIS)

    Mihalik, L.A.

    1996-08-01

    The 100 Area of the Hanford Site was placed on the U.S. Environmental Protection Agency's National Priorities List (NPL) in November 1989 under the 'Comprehensive Environmental Response, Compensation, and Liability Act of 1980.' The 100 Area NPL site includes the 100-N Area, which is in the early stages of the cleanup process. To facilitate the disposal of wastes generated in preparation for cleanup, the U.S. Department of Energy, Richland Operations Office in cooperation with the Washington State Department of Ecology and the U.S. Environmental Protection Agency, has prepared this Engineering Evaluation/Cost Analysis (EE/CA). The scope of this EE/CA includes wastes from cleanout of the EDB and deactivation facilities. Volumes and costs for disposal of investigation-derived waste are also included

  20. 78 FR 5350 - Adequacy of Massachusetts Municipal Solid Waste Landfill Permit Program

    Science.gov (United States)

    2013-01-25

    ...] Adequacy of Massachusetts Municipal Solid Waste Landfill Permit Program AGENCY: Environmental Protection... modification of its approved Municipal Solid Waste Landfill Program. On March 22, 2004, EPA issued final... solid waste landfills by approved states. On December 7, 2012 Massachusetts submitted an application to...

  1. Long term radioactive waste management

    International Nuclear Information System (INIS)

    Lavie, J.M.

    1984-01-01

    In France, waste management, a sensitive issue in term of public opinion, is developing quickly, and due to twenty years of experience, is now reaching maturity. With the launching of the French nuclear programme, the use of radioactive sources in radiotherapy and industry, waste management has become an industrial activity. Waste management is an integrated system dealing with the wastes from their production to the long term disposal, including their identification, sortage, treatment, packaging, collection and transport. This system aims at guaranteing the protection of present and future populations with an available technology. In regard to their long term management, and the design of disposals, radioactive wastes are divided in three categories. This classification takes into account the different radioisotopes contained, their half life and their total activity. Presently short-lived wastes are stored in the shallowland disposal of the ''Centre de la Manche''. Set up within the French Atomic Energy Commission (CEA), the National Agency for waste management (ANDRA) is responsible within the framework of legislative and regulatory provisions for long term waste management in France [fr

  2. 75 FR 60398 - California: Proposed Authorization of State Hazardous Waste Management Program Revision

    Science.gov (United States)

    2010-09-30

    ...: Proposed Authorization of State Hazardous Waste Management Program Revision AGENCY: Environmental... its hazardous waste management program by November 1, 2010. ADDRESSES: Submit your comments... waste management program. EPA continues to have independent enforcement authority under RCRA sections...

  3. RCRA Permit for a Hazardous Waste Management Facility Permit Number NEV HW0101 Annual Summary/Waste Minimization Report Calendar Year 2011

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Restoration

    2012-02-16

    This report summarizes the U.S. Environmental Protection Agency (EPA) identification number of each generator from which the Permittee received a waste stream; a description and quantity of each waste stream in tons and cubic feet received at the facility; the method of treatment, storage, and/or disposal for each waste stream; a description of the waste minimization efforts undertaken; a description of the changes in volume and toxicity of waste actually received; any unusual occurrences; and the results of tank integrity assessments. This Annual Summary/Waste Minimization Report is prepared in accordance with Section 2.13.3 of Permit Number NEV HW0101.

  4. 78 FR 58608 - Proposed Collection; Comment Request for the EFTPS Primary Contact Information Change Form

    Science.gov (United States)

    2013-09-24

    ... form is being submitted for renewal purposes only. Type of Review: Extension of a currently approved... EFTPS Primary Contact Information Change Form AGENCY: Internal Revenue Service (IRS), Treasury. ACTION... effort to reduce paperwork and respondent burden, invites the general public and other Federal agencies...

  5. The Waste Negotiator's mission

    International Nuclear Information System (INIS)

    Bataille, Christian

    1993-01-01

    The mission of the Waste Negotiator is to seek out sites for deep underground laboratories to study their potential for disposal of high level radioactive waste. Although appointed by the government, he acts independently. In 1990, faced by severe public criticism at the way that the waste disposal was being handled, and under increasing pressure to find an acceptable solution, the government stopped the work being carried out by ANDRA (Agence nationale pour la gestion des dechets radioactifs) and initiated a full review of the issues involved. At the same time, parliament also started its own extensive investigation to find a way forward. These efforts finally led to the provision of a detailed framework for the management of long lived radioactive waste, including the construction of two laboratories to investigate possible repository sites. The Waste Negotiator was appointed to carry out a full consultative process in the communities which are considering accepting an underground laboratory. (Author)

  6. 40 CFR 266.203 - Standards applicable to the transportation of solid waste military munitions.

    Science.gov (United States)

    2010-07-01

    ... transportation of solid waste military munitions. 266.203 Section 266.203 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR THE MANAGEMENT OF SPECIFIC HAZARDOUS... applicable to the transportation of solid waste military munitions. (a) Criteria for hazardous waste...

  7. 40 CFR 266.205 - Standards applicable to the storage of solid waste military munitions.

    Science.gov (United States)

    2010-07-01

    ... solid waste military munitions. 266.205 Section 266.205 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR THE MANAGEMENT OF SPECIFIC HAZARDOUS... applicable to the storage of solid waste military munitions. (a) Criteria for hazardous waste regulation of...

  8. 75 FR 17332 - Idaho: Incorporation by Reference of Approved State Hazardous Waste Management Program

    Science.gov (United States)

    2010-04-06

    ...: Incorporation by Reference of Approved State Hazardous Waste Management Program AGENCY: Environmental Protection... ``Approved State Hazardous Waste Management Programs,'' Idaho's authorized hazardous waste program. The EPA... regulations that are authorized and that the EPA will enforce under the Solid Waste Disposal Act, commonly...

  9. Solid Waste Management: A List of Available Literature.

    Science.gov (United States)

    Environmental Protection Agency, Cincinnati, OH.

    Information, demonstration projects, and other activities, pertaining to solid-waste-related research, available from the U.S. Environmental Protection Agency (EPA), are contained in this document. These EPA publications are reports of the research, development, and demonstrations in progress as authorized by the Solid Waste Disposal Act of 1965.…

  10. The management of radioactive wastes; La gestion des dechets radioactifs

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-31

    This educative booklet describes the role and missions of the ANDRA, the French national agency for the management of radioactive wastes, and the different aspects of the management of radioactive wastes: goal, national inventory, classification, transport (organisation, regulation, safety), drumming, labelling, surface storage of short life wastes, environmental control, management of long life wastes (composition, research, legal aspects) and the underground research laboratories (description, public information, projects, schedules). (J.S.)

  11. Critical (public) masses: a case study of a radioactive waste site

    International Nuclear Information System (INIS)

    Williams, R.G.; Payne, B.A.

    1985-01-01

    Increasing public sensitivity to radioactive and other hazardous waste issues often results in opposition that ranges from presentations by individuals at various public meetings to organizations initiating legal action in the courts. Organized opposition to proposed plans by the US Department of Energy (DOE) for a Surplus Facilities Management Program site near Weldon Spring, Missouri, has emerged during the two years that DOE has been involved in developing plans for this waste management site. An important aspect in the development of the major interest group in this case was the reliance on extra-local expertise at both the state and national levels. The group received organizational strategies, information on radioactive waste, legal advice, and direction from state and local environmental interest groups and various state agencies. In this paper, the authors present the historical development of organized public response and agency response to DOE's plans for the Weldon Spring site. The role of the interest group has emerged as one of a watchdog, scrutinizing and evaluating data publications, and plans. Other organizations now rely on the group as a clearinghouse for information. This case is of particular importance to other waste management projects because it demonstrates the effective use of networking between various interest groups and agencies from the local to the national level. The authors believe that the emergence of such groups and their ties with a variety of extra-local organizations will be the rule rather than the exception in future waste projects. Agency personnel and project sponsors will find that an interactive, cooperative approach with such groups is an effective way to resolve waste issues. 9 references

  12. Critical (public) masses: a case study of a radioactive waste site

    International Nuclear Information System (INIS)

    Williams, R.G.; Payne, B.A.

    1985-01-01

    Increasing public sensitivity to radioactive and other hazardous waste issues often results in opposition that ranges from presentations by individuals at various public meetings to organizations initiating legal action in the courts. Organized opposition to proposed plans by the US Department of Energy (DOE) for a Surplus Facilities Management Program site near Weldon Spring, Missouri, has emerged during the two years that DOE has been involved in developing plans for this waste management site. An important aspect in the development of the major interest group in this case was the reliance on extra-local expertise at both the state and national levels. The group received organizational strategies, information on radioactive waste, legal advice, and direction from state and local environmental interest groups and various state agencies. In this paper, we present the historical development of organized public response and agency response to DOE's plans for the Weldon Spring site. The role of the interest group has emerged as one of a watchdog, scrutinizing and evaluating data, publications, and plans. Other organizations now rely on the group as a clearinghouse for information. This case is of particular importance to other waste management projects because it demonstrates the effective use of networking between various interest groups and agencies from the local to the national level. We believe that the emergence of such groups and their ties with a variety of extra-local organizations will be the rule rather than the exception in future waste projects. Agency personnel and project sponsors will find that an interactive, cooperative approach with such groups is an effective way to resolve waste issues

  13. 40 CFR 264.177 - Special requirements for incompatible wastes.

    Science.gov (United States)

    2010-07-01

    ... DISPOSAL FACILITIES Use and Management of Containers § 264.177 Special requirements for incompatible wastes... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Special requirements for incompatible wastes. 264.177 Section 264.177 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED...

  14. 40 CFR 265.199 - Special requirements for incompatible wastes.

    Science.gov (United States)

    2010-07-01

    ..., STORAGE, AND DISPOSAL FACILITIES Tank Systems § 265.199 Special requirements for incompatible wastes. (a... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Special requirements for incompatible wastes. 265.199 Section 265.199 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED...

  15. 40 CFR 264.282 - Special requirements for incompatible wastes.

    Science.gov (United States)

    2010-07-01

    ... DISPOSAL FACILITIES Land Treatment § 264.282 Special requirements for incompatible wastes. The owner or... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Special requirements for incompatible wastes. 264.282 Section 264.282 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED...

  16. 78 FR 23246 - Underground Injection Control Program; Hazardous Waste Injection Restrictions; Petition for...

    Science.gov (United States)

    2013-04-18

    ... ENVIRONMENTAL PROTECTION AGENCY [FRL-9804-8] Underground Injection Control Program; Hazardous Waste Injection Restrictions; Petition for Exemption--Class I Hazardous Waste Injection; BASF... exemption to the land disposal Restrictions, under the 1984 Hazardous and Solid Waste [[Page 23247...

  17. Separation of technetium from nuclear waste stream simulants. Final report

    International Nuclear Information System (INIS)

    Strauss, S.H.

    1995-01-01

    The author studied liquid anion exchangers, such as Aliquat-336 nitrate, various pyridinium nitrates, and related salts, so that they may be applied toward a specific process for extracting (partitioning) and recovering 99 TcO 4 - from nuclear waste streams. Many of the waste streams are caustic and contain a variety of other ions. For this reason, the author studied waste stream simulants that are caustic and contain appropriate concentrations of selected, relevant ions. Methods of measuring the performance of the exchangers and extractant systems included contact experiments. Batch contact experiments were used to determine the forward and reverse extraction parameters as a function of temperature, contact time, phase ratio, concentration, solvent (diluent), and other physical properties. They were also used for stability and competition studies. Specifically, the author investigated the solvent extraction behavior of salts of perrhenate (ReO 4 - ), a stable (non-radioactive) chemical surrogate for 99 TcO 4 - . Results are discussed for alternate organic solvents; metalloporphyrins, ferrocenes, and N-cetyl pyridium nitrate as alternate extractant salts; electroactive polymers; and recovery of ReO 4 - and TcO 4 -

  18. Conceptual design report for regional low-level waste interim storage site

    International Nuclear Information System (INIS)

    Bird, M.V.; Thompson, J.D.

    1981-08-01

    An interim storage site design concept was developed for receiving 100,000 ft 3 low-level waste per year, in the form of solidified wastes in 55-gallon drums with a dose rate of < 200 mrem per hour at contact

  19. Recent activity on disposal of uranium waste

    International Nuclear Information System (INIS)

    Fujiwara, Noboru

    1999-01-01

    The concept on the disposal of uranium waste has not been discussed in the Atomic Energy Commission of Japan, but the research and development of it are carried out in the company and agency which are related to uranium waste. In this paper, the present condition and problems on disposal of uranium waste were shown in aspect of the nuclear fuel manufacturing companies' activity. As main contents, the past circumstances on the disposal of uranium waste, the past activity of nuclear fuel manufacturing companies, outline and properties of uranium waste were shown, and ideas of nuclear fuel manufacturing companies on the disposal of uranium waste were reported with disposal idea in the long-term program for development and utilization of nuclear energy. (author)

  20. Waste disposal

    CERN Multimedia

    2006-01-01

    We should like to remind you that you can have all commonplace, conventional waste (combustible, inert, wood, etc.) disposed of by the TS-FM Group. Requests for the removal of such waste should be made by contacting FM Support on tel. 77777 or by e-mail (Fm.Support@cern.ch). For requests to be acted upon, the following information must be communicated to FM Support: budget code to be debited for the provision and removal of the skip / container. type of skip required (1m3, 4 m3, 7 m3, 15 m3, 20 m3, 30 m3). nature of the waste to be disposed of (bulky objects, cardboard boxes, etc.). building concerned. details of requestor (name, phone number, department, group, etc.). We should also like to inform you that the TS-FM Group can arrange for waste to be removed from work-sites for firms under contract to CERN, provided that the prior authorisation of the CERN Staff Member in charge of the contract is obtained and the relevant disposal/handling charges are paid. You are reminded that the selective sorting o...

  1. Waste disposal

    CERN Multimedia

    2006-01-01

    We should like to remind you that you can have all commonplace, conventional waste (combustible, inert, wood, etc.) disposed of by the TS-FM Group. Requests for the removal of such waste should be made by contacting FM Support on tel. 77777 or by e-mail (Fm.Support@cern.ch). For requests to be acted upon, the following information must be communicated to FM Support: budget code to be debited for the provision and removal of the skip / container; type of skip required (1m3, 4 m3, 7 m3, 15 m3, 20 m3, 30 m3); nature of the waste to be disposed of (bulky objects, cardboard boxes, etc.); building concerned; details of requestor (name, phone number, department, group, etc.). We should also like to inform you that the TS-FM Group can arrange for waste to be removed from work-sites for firms under contract to CERN, provided that the prior authorisation of the CERN Staff Member in charge of the contract is obtained and the relevant disposal/handling charges are paid. You are reminded that the selective sorting...

  2. Characterization of low-level waste from the industrial sector, and near-term projection of waste volumes and types

    International Nuclear Information System (INIS)

    MacKenzie, D.R.

    1988-01-01

    A telephone survey of low-level waste generators has been carried out in order to make useful estimates of the volume and nature of the waste which the generators will be shipping for disposal when the compacts and states begin operating new disposal facilities. Emphasis of the survey was on the industrial sector, since there has been little information available on characteristics of industrial LLW. Ten large industrial generators shipping to Richland, ten shipping to Barnwell, and two whose wastes had previously been characterized by BNL were contacted. The waste volume shipped by these generators accounted for about two-thirds to three-quarters of the total industrial volume. Results are given in terms of the categories of LLW represented and of the chemical characteristics of the different wastes. Estimates by the respondents of their near-term waste volume projections are presented

  3. Characterization of low-level waste from the industrial sector, and near-term projection of waste volumes and types

    International Nuclear Information System (INIS)

    MacKenzie, D.R.

    1988-01-01

    A telephone survey of low-level waste generators has been carried out in order to make useful estimates of the volume and nature of the waste which the generators are shipping for disposal when the compacts and states begin operating new disposal facilities. Emphasis of the survey was on the industrial sector, since there has been little information available on characteristics of industrial LLW. Ten large industrial generators shipping to Richland, ten shipping to Barnwell, and two whose wastes had previously been characterized by BNL were contacted. The waste volume shipped by these generators accounted for about two-thirds to three-quarters of the total industrial volume. Results are given in terms of the categories of LLW represented and of the chemical characteristics of the different wastes. Estimates by the respondents of their near-term waste volume projections are presented

  4. Proposed waste form performance criteria and testing methods for low-level mixed waste

    International Nuclear Information System (INIS)

    Franz, E.M.; Fuhrmann, M.; Bowerman, B.

    1995-01-01

    Proposed waste form performance criteria and testing methods were developed as guidance in judging the suitability of solidified waste as a physico-chemical barrier to releases of radionuclides and RCRA regulated hazardous components. The criteria follow from the assumption that release of contaminants by leaching is the single most important property for judging the effectiveness of a waste form. A two-tier regimen is proposed. The first tier consists of a leach test designed to determine the net, forward leach rate of the solidified waste and a leach test required by the Environmental Protection Agency (EPA). The second tier of tests is to determine if a set of stresses (i.e., radiation, freeze-thaw, wet-dry cycling) on the waste form adversely impacts its ability to retain contaminants and remain physically intact. In the absence of site-specific performance assessments (PA), two generic modeling exercises are described which were used to calculate proposed acceptable leachates

  5. New Jersey State Briefing Book for low-level radioactive waste management

    Energy Technology Data Exchange (ETDEWEB)

    1981-04-01

    The New Jersey state Briefing Book is one of a series of State briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in New Jersey. The profile is the result of a survey of NRC licensees in New Jersey. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in New Jersey.

  6. New Mexico State Briefing Book for low-level radioactive waste management

    International Nuclear Information System (INIS)

    1981-10-01

    The New Mexico State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in New Mexico. The profile is the result of a survey of NRC licensees in New Mexico. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in New Mexico

  7. New York State Briefing Book for low-level radioactive-waste management

    International Nuclear Information System (INIS)

    1981-06-01

    The New York State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in New York. The profile is the result of a survey of NRC licensees in New York. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in New York

  8. South Carolina State Briefing Book for low-level radioactive waste management

    International Nuclear Information System (INIS)

    1981-08-01

    The South Carolina State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in South Carolina. The profile is the result of a survey of NRC licensees in South Carolina. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as definied by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in South Carolina

  9. North Dakota State Briefing Book for low-level radioactive waste management

    Energy Technology Data Exchange (ETDEWEB)

    None

    1981-10-01

    The North Dakota State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in North Dakota. The profile is the result of a survey of NRC licensees in North Dakota. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in North Dakota.

  10. West Virginia State Briefing Book for low-level radioactive waste management

    International Nuclear Information System (INIS)

    1981-07-01

    The West Virginia State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in West Virginia. The profile is the result of a survey of NRC licensees in West Virginia. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in West Virginia

  11. North Carolina State Briefing Book for low-level radioactive waste management

    International Nuclear Information System (INIS)

    1981-08-01

    The North Carolina State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in North Carolina. The profile is the result of a survey of NRC licensees in North Carolina. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in North Carolina

  12. Rhode Island State Briefing Book on low-level radioactive-waste management

    Energy Technology Data Exchange (ETDEWEB)

    1981-07-01

    The Rhode Island State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Rhode Island. The profile is the result of a survey of radioactive material licensees in Rhode Island. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may affect waste management practices in Rhode Island.

  13. New Jersey State Briefing Book for low-level radioactive waste management

    International Nuclear Information System (INIS)

    1981-04-01

    The New Jersey state Briefing Book is one of a series of State briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in New Jersey. The profile is the result of a survey of NRC licensees in New Jersey. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in New Jersey

  14. North Dakota State Briefing Book for low-level radioactive waste management

    International Nuclear Information System (INIS)

    1981-10-01

    The North Dakota State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in North Dakota. The profile is the result of a survey of NRC licensees in North Dakota. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in North Dakota

  15. Rhode Island State Briefing Book on low-level radioactive-waste management

    International Nuclear Information System (INIS)

    1981-07-01

    The Rhode Island State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Rhode Island. The profile is the result of a survey of radioactive material licensees in Rhode Island. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may affect waste management practices in Rhode Island

  16. South Dakota State Briefing Book for low-level radioactive waste management

    International Nuclear Information System (INIS)

    1981-10-01

    The South Dakota State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in South Dakota. The profile is the result of a survey of NRC licensees in South Dakota. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in South Dakota

  17. South Carolina State Briefing Book for low-level radioactive waste management

    Energy Technology Data Exchange (ETDEWEB)

    1981-08-01

    The South Carolina State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in South Carolina. The profile is the result of a survey of NRC licensees in South Carolina. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as definied by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in South Carolina.

  18. Puerto Rico State Briefing Book for low-level radioactive waste management

    International Nuclear Information System (INIS)

    1981-10-01

    The Puerto Rico State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Puerto Rico. The profile is the result of a survey of NRC licensees in Puerto Rico. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Puerto Rico

  19. North Carolina State Briefing Book for low-level radioactive waste management

    Energy Technology Data Exchange (ETDEWEB)

    1981-08-01

    The North Carolina State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in North Carolina. The profile is the result of a survey of NRC licensees in North Carolina. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in North Carolina.

  20. Puerto Rico State Briefing Book for low-level radioactive waste management

    Energy Technology Data Exchange (ETDEWEB)

    1981-10-01

    The Puerto Rico State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Puerto Rico. The profile is the result of a survey of NRC licensees in Puerto Rico. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Puerto Rico.

  1. 76 FR 10810 - Public Workshop to Discuss Low-Level Radioactive Waste Management

    Science.gov (United States)

    2011-02-28

    ... Radioactive Waste Management AGENCY: Nuclear Regulatory Commission. ACTION: Public Workshop and Request for... regulatory framework for the management of commercial low-level radioactive waste (LLW). The purpose of this...-level radioactive wastes that did not exist at the time part 61 was promulgated. The developments...

  2. Radioactive waste management profiles. A compilation of data from the Net Enabled Waste Management Database (NEWMDB). No. 5

    International Nuclear Information System (INIS)

    2003-05-01

    The document consists of two parts: Overview and Country Waste Profile Reports for Reporting Year 2000. The first section contains overview reports that provide assessments of the achievements and shortcomings of the Net Enabled Waste Management Database (NEWMDB) during the first two data collection cycles (July 2001 to March 2002 and July 2002 to February 2003). The second part of the report includes a summary and compilation of waste management data submitted by Agency Member States in both the first and second data collection cycles

  3. 40 CFR 264.101 - Corrective action for solid waste management units.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Corrective action for solid waste management units. 264.101 Section 264.101 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Releases From Soli...

  4. Use of Formal Procedures in Developing Dialogue Between Operator and Regulator on Radioactive Waste Disposal

    International Nuclear Information System (INIS)

    Yearsley, Roger; Duerden, Susan; Bennett, David

    2001-01-01

    The Environment Agency (the Agency) is responsible, in England and Wales, for authorisation of radioactive waste disposal under the Radioactive Substances Act 1993. British Nuclear Fuels plc (BNFL) is currently authorised to dispose of solid low level radioactive waste at its Drigg site near Sellafield in Cumbria. Drigg is the primary site for the disposal of solid low level radioactive waste generated by the UK nuclear industry. A small facility operated by United Kingdom Atomic Energy Authority (UKAEA) at Dounreay on the north coast of Scotland is used solely for wastes arising on the UKAEA site. Drigg also offers a disposal route for smaller users of radioactive substances, such as hospitals and universities. Significant benefits have been derived from implementing a formal Issue Resolution Procedure as part of a soundly based process for dialogue between the Agency and BNFL. Benefits include improved understanding of the Agency's expectations, which has in turn led to improvements in BNFL's documentation and technical approach. The Agency considers the use of a formal Issue Resolution Procedure has placed the dialogue with BNFL on firm foundations for the planned assessment of the PostClosure Safety Case for Drigg when it is submitted in September 2002

  5. The handling and disposal of fusion wastes

    International Nuclear Information System (INIS)

    Broden, K.; Hultgren, Aa.; Olsson, G.

    1985-02-01

    The radioactive wastes from fusion reactor operation will include spent components, wastes from repair operations, and decontamination waste. Various disposal routes may be considered depending on i.a. the contents of tritium and of long-lived nuclides, and on national regulations. The management philosophy and disposal technology developed in Sweden for light water reactor wastes has been studied at STUDSVIK during 1983--84 and found to be applicable also to fusion wastes, provided a detritiation stage is included. These studies will continue during 1985 and include experimental work on selected fusion activation nuclides. The work presented is associated to the CEC fusion research programme. Valuable discussions and contacts with people working in this programme at Saclay, Ispra and Garching are deeply appreciated. (author)

  6. ANDRA - National Radioactive Waste Management Agency. Activity report 2009 - Managing today to prepare for tomorrow. Management report and financial statements at December 31, 2009. Annual Sustainable Development Report 2009

    International Nuclear Information System (INIS)

    2010-01-01

    Created in 1979 within the CEA, the National Radioactive Waste Management Agency (ANDRA) was established by the December 1991 Waste Act as a public body in charge of the long-term management of all radioactive waste, under the supervision of the Ministry of Ecology, Energy, Sustainable Development and the Sea (formerly the Ministry of Industry and the Ministry of Environment), and the Ministry of Research. Its 3 basic missions were extended and their funding secured through the 2006 Planning Act: - a R and D mission to propose safe long-term solution for radioactive waste without current disposal system; this mission includes long-term storage, since the 2006 Planning Act, in order to propose interim solutions while final ones are being studied; - an industrial mission concerning, on one hand, waste acceptance criteria and control and, on the other hand, siting, construction, operation, closure and monitoring of repositories. This mission includes as well a public service mission in terms of i) collection of waste of the 'small-scale nuclear activities' producers or owners (including the so-called 'household' radioactive waste, i.e. waste owned by private individuals) and ii) clean-up and rehabilitation of orphan polluted sites; - an information mission, notably through the regular publication of the National Inventory of radioactive materials and waste. This mission includes as well an active policy of dialogue with stakeholders both at national and local level. This document is the activity report, with the management and financial statements report, and the Sustainable Development Report of the Andra for the year 2009

  7. Medical and Biohazardous Waste Generator's Guide (Revision 2)

    International Nuclear Information System (INIS)

    Waste Management Group

    2006-01-01

    These guidelines describe procedures to comply with all Federal and State laws and regulations and Lawrence Berkeley National Laboratory (LBNL) policy applicable to State-regulated medical and unregulated, but biohazardous, waste (medical/biohazardous waste). These guidelines apply to all LBNL personnel who: (1) generate and/or store medical/biohazardous waste, (2) supervise personnel who generate medical/biohazardous waste, or (3) manage a medical/biohazardous waste pickup location. Personnel generating biohazardous waste at the Joint Genome Institute/Production Genomics Facility (JGI/PGF) are referred to the guidelines contained in Section 9. Section 9 is the only part of these guidelines that apply to JGI/PGF. Medical/biohazardous waste referred to in this Web site includes biohazardous, sharps, pathological and liquid waste. Procedures for proper storage and disposal are summarized in the Solid Medical/Biohazardous Waste Disposal Procedures Chart. Contact the Waste Management Group at 486-7663 if you have any questions regarding medical/biohazardous waste management

  8. Radioactive Waste Management Complex low-level waste radiological performance assessment

    Energy Technology Data Exchange (ETDEWEB)

    Maheras, S.J.; Rood, A.S.; Magnuson, S.O.; Sussman, M.E.; Bhatt, R.N.

    1994-04-01

    This report documents the projected radiological dose impacts associated with the disposal of radioactive low-level waste at the Radioactive Waste Management Complex at the Idaho National Engineering Laboratory. This radiological performance assessment was conducted to evaluate compliance with applicable radiological criteria of the US Department of Energy and the US Environmental Protection Agency for protection of the public and the environment. The calculations involved modeling the transport of radionuclides from buried waste, to surface soil and subsurface media, and eventually to members of the public via air, groundwater, and food chain pathways. Projections of doses were made for both offsite receptors and individuals inadvertently intruding onto the site after closure. In addition, uncertainty and sensitivity analyses were performed. The results of the analyses indicate compliance with established radiological criteria and provide reasonable assurance that public health and safety will be protected.

  9. Radioactive Waste Management Complex low-level waste radiological performance assessment

    International Nuclear Information System (INIS)

    Maheras, S.J.; Rood, A.S.; Magnuson, S.O.; Sussman, M.E.; Bhatt, R.N.

    1994-04-01

    This report documents the projected radiological dose impacts associated with the disposal of radioactive low-level waste at the Radioactive Waste Management Complex at the Idaho National Engineering Laboratory. This radiological performance assessment was conducted to evaluate compliance with applicable radiological criteria of the US Department of Energy and the US Environmental Protection Agency for protection of the public and the environment. The calculations involved modeling the transport of radionuclides from buried waste, to surface soil and subsurface media, and eventually to members of the public via air, groundwater, and food chain pathways. Projections of doses were made for both offsite receptors and individuals inadvertently intruding onto the site after closure. In addition, uncertainty and sensitivity analyses were performed. The results of the analyses indicate compliance with established radiological criteria and provide reasonable assurance that public health and safety will be protected

  10. 77 FR 15273 - Oklahoma: Final Authorization of State Hazardous Waste Management Program Revision

    Science.gov (United States)

    2012-03-15

    ...: Final Authorization of State Hazardous Waste Management Program Revision AGENCY: Environmental... hazardous waste management program. We authorized the following revisions: Oklahoma received authorization... its program revision in accordance with 40 CFR 271.21. The Oklahoma Hazardous Waste Management Act...

  11. 77 FR 26755 - Underground Injection Control Program; Hazardous Waste Injection Restrictions; Petition for...

    Science.gov (United States)

    2012-05-07

    ... ENVIRONMENTAL PROTECTION AGENCY [FRL-9669-6] Underground Injection Control Program; Hazardous Waste Injection Restrictions; Petition for Exemption--Class I Hazardous Waste Injection; Diamond... reissuance of an exemption to the land disposal Restrictions, under the 1984 Hazardous and Solid Waste...

  12. 76 FR 55908 - Underground Injection Control Program; Hazardous Waste Injection Restrictions; Petition for...

    Science.gov (United States)

    2011-09-09

    ... ENVIRONMENTAL PROTECTION AGENCY [FRL-9461-5] Underground Injection Control Program; Hazardous Waste Injection Restrictions; Petition for Exemption--Class I Hazardous Waste Injection; Great Lakes... of an exemption to the land disposal restrictions, under the 1984 Hazardous and Solid Waste...

  13. 76 FR 36129 - Underground Injection Control Program; Hazardous Waste Injection Restrictions; Petition for...

    Science.gov (United States)

    2011-06-21

    ... ENVIRONMENTAL PROTECTION AGENCY [FRL-9321-3] Underground Injection Control Program; Hazardous Waste Injection Restrictions; Petition for Exemption--Class I Hazardous Waste Injection; ExxonMobil... disposal Restrictions, under the 1984 Hazardous and Solid Waste Amendments to the Resource Conservation and...

  14. 78 FR 42776 - Underground Injection Control Program; Hazardous Waste Injection Restrictions; Petition for...

    Science.gov (United States)

    2013-07-17

    ... ENVIRONMENTAL PROTECTION AGENCY [FRL9834-8] Underground Injection Control Program; Hazardous Waste Injection Restrictions; Petition for Exemption--Class I Hazardous Waste Injection; Blanchard Refining... disposal Restrictions, under the 1984 Hazardous and Solid Waste Amendments to the Resource Conservation and...

  15. 77 FR 52717 - Underground Injection Control Program; Hazardous Waste Injection Restrictions; Petition for...

    Science.gov (United States)

    2012-08-30

    ... ENVIRONMENTAL PROTECTION AGENCY [FRL-9724-1] Underground Injection Control Program; Hazardous Waste Injection Restrictions; Petition for Exemption--Class I Hazardous Waste Injection; Cornerstone... exemption to the land disposal Restrictions, under the 1984 Hazardous and Solid Waste Amendments to the...

  16. radioactive waste disposal standards abroad

    International Nuclear Information System (INIS)

    Lu Yan; Xin Pingping; Wu Jian; Zhang Xue

    2012-01-01

    With the world focus on human health and environmental protection, the problem of radioactive waste disposal has gradually become a global issue, and the focus of attention of public. The safety of radioactive waste disposal, is not only related to human health and environmental safety, but also an important factor of affecting the sustainable development of nuclear energy. In recent years the formulation of the radioactive waste disposal standards has been generally paid attention to at home and abroad, and it has made great progress. In China, radioactive waste management standards are being improved, and there are many new standards need to be developed. The revised task of implement standards is very arduous, and there are many areas for improvement about methods and procedures of the preparation of standards. This paper studies the current situation of radioactive waste disposal standards of the International Atomic Energy Agency, USA, France, Britain, Russia, Japan, and give some corresponding recommendations of our radioactive waste disposal standards. (authors)

  17. 40 CFR 60.1010 - Does this subpart apply to my municipal waste combustion unit?

    Science.gov (United States)

    2010-07-01

    ... waste combustion unit? 60.1010 Section 60.1010 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Performance for Small Municipal Waste Combustion Units for Which Construction is Commenced After August 30....1010 Does this subpart apply to my municipal waste combustion unit? Yes, if your municipal waste...

  18. 76 FR 28128 - Reports, Forms, and Record Keeping Requirements; Agency Information Collection Activity Under OMB...

    Science.gov (United States)

    2011-05-13

    ... information (106 agencies x 8 hours each = 848 hours total). These 8 hours will be expended on internal agency... the questionnaire, and speaking with the researchers should follow-up contacts be required. Personnel...

  19. Cementation unit for radioactive wastes

    International Nuclear Information System (INIS)

    Dellamano, Jose Claudio; Vicente, Roberto; Lima, Jose Rodrigues de

    2001-01-01

    This communication describes the waste cementation process and facility developed at Instituto de Pesquisas Energeticas e Nucleares - IPEN. The process is based on 200 litres batch operation, in drum mixing, with continuous cement feeding. The equipment is a single recoverable helicoidal mixer and a turning table that allows the drum to rotate during the mixing operation, simulating a planetary mixer. The facility was designed to treat contact handled liquids and wet solid wastes, but can be adapted for shielded equipment and remote operation. (author)

  20. Andra. Everything on the management of radioactive wastes

    International Nuclear Information System (INIS)

    2014-08-01

    This publication briefly presents the ANDRA, the French National Agency for the management of radioactive wastes, its mission, its activities, its financing, and some key figures. It briefly presents the phenomenon of radioactivity, radioactive wastes and their storage. It presents the different classes of radioactive wastes (very-low-level, low- and intermediate-level and short-lived, low-level and long-lived, high-level and intermediate-level and long-lived) and their storage principles. It sketches the pathway followed by a waste from its production to its storage. It presents the various ANDRA sites