Sample records for waspaloy

  1. Creep Deformation by Dislocation Movement in Waspaloy

    Directory of Open Access Journals (Sweden)

    Mark Whittaker


    Full Text Available Creep tests of the polycrystalline nickel alloy Waspaloy have been conducted at Swansea University, for varying stress conditions at 700 °C. Investigation through use of Transmission Electron Microscopy at Cambridge University has examined the dislocation networks formed under these conditions, with particular attention paid to comparing tests performed above and below the yield stress. This paper highlights how the dislocation structures vary throughout creep and proposes a dislocation mechanism theory for creep in Waspaloy. Activation energies are calculated through approaches developed in the use of the recently formulated Wilshire Equations, and are found to differ above and below the yield stress. Low activation energies are found to be related to dislocation interaction with γ′ precipitates below the yield stress. However, significantly increased dislocation densities at stresses above yield cause an increase in the activation energy values as forest hardening becomes the primary mechanism controlling dislocation movement. It is proposed that the activation energy change is related to the stress increment provided by work hardening, as can be observed from Ti, Ni and steel results.

  2. Relating fundamental creep mechanisms in Waspaloy to the Wilshire equations

    Directory of Open Access Journals (Sweden)

    Deen C.


    Full Text Available Creep tests of the polycrystalline nickel alloy Waspaloy have been conducted at Swansea University, for varying stress conditions at 700 ∘C. Investigation through use of Transmission Electron Microscopy at Cambridge University has examined the dislocation networks formed under these conditions, notably those with stresses above and below the yield stress. This paper highlights how the dislocation structures vary throughout creep and proposes a dislocation mechanism theory for creep in Waspaloy. In particular, the roles of recovery, tertiary gamma prime particles and dislocation foresting are examined, and related back to observations from the Wilshire fits. The virgin (untested material has been forged and heat treated, containing some recrystallised material together with areas of more heavily deformed and recovered material clustered around the grain boundaries. Observations from tests below the 0.2% proof stress show relatively low dislocation densities away from grain boundaries and dislocation movement can be seen to be governed by interactions with the γ′ precipitates. In contrast, above the 0.2% proof stress, TEM observations show a substantially greater density of dislocations. The increased density provides an increment of strength through forest hardening. At stresses above the original yield point, determined by the precipitates, the creep rate is controlled by inter-action with the dislocation forest and results in an apparent activation energy change. It is proposed that the activation energy change is related to the stress increment provided by work hardening, as can be observed from Ti, Ni and steel results.

  3. Microstructure: Property correlation. [multiaxial fatigue damage evolution in waspaloy (United States)

    Jayaraman, N.


    Strain controlled torsional and biaxial (tension-torsion) low cycle fatigue behavior of Waspaloy was studied at room temperature as a function of heat treatment. Biaxial tests were conducted under proportional (when the axial and torsional strain cycles are in-phase) and non-proportional (when the axial and torsional strain cycles are 90 deg out-of-phase) cyclic conditions. The deformation behavior under these different cyclic conditions were evaluated by slip trace analysis. For this, a Schmidt-type factor was defined for multiaxial loading conditions and it was shown that when the slip deformation is predominant, non-proportional cycles are more damaging than proportional or pure axial or torsional cycles. This was attributed to the fact that under non-proportional cyclic conditions, deformation was through multiple slip as opposed single slip for other loading conditions, which gave rise to increased hardening. The total life for a given test condition was found to be independent of heat treatment. This was interpreted as being due to the differences in the cycles to initiation and propagation of cracks.

  4. Laser beam welding of Waspaloy: Characterization and corrosion behavior evaluation (United States)

    Shoja Razavi, Reza


    In this work, a study on Nd:YAG laser welding of Waspaloy sheets has been made. Microstructures, phase changes and hardness of the laser joint were investigated using optical microscopy, scanning electron microscopy (SEM), field emission scanning electron microscopy (FESEM), energy dispersive spectroscopy (EDS), X-ray diffraction analysis (XRD) and vickers microhardness (HV0.3). Corrosion behavior of the weldment at low temperature in 3.5%wt NaCl solution at room temperature was also investigated using open circuit potential and cyclic potentiodynamic polarization tests. Hot corrosion studies were conducted on samples in the molten salt environment (Na2SO4-60%V2O5) at 900 °C for 50 h. Results indicated that the microstructure of weld zone was mainly dendritic grown epitaxially in the direction perpendicular to the weld boundary and heat transfer. Moreover, the Ti-Mo carbide particles were observed in the structure of the weld zone and base metal. The average size of carbides formed in the base metal (2.97±0.5 μm) was larger than that of the weld zone (0.95±0.2 μm). XRD patterns of the weld zone and base metal showed that the laser welding did not alter the phase structure of the weld zone, being in γ-Ni(Cr) single phase. Microhardness profile showed that the hardness values of the weld zone (210-261 HV) were lower than that of the base metal (323-330 HV). Electrochemical and hot corrosion tests indicated that the corrosion resistance of the weld metal was greater than the base metal in both room and high temperatures.

  5. “Investigations on the machinability of Waspaloy under dry environment” (United States)

    Deepu, J.; Kuppan, P.; SBalan, A. S.; Oyyaravelu, R.


    Nickel based superalloy, Waspaloy is extensively used in gas turbine, aerospace and automobile industries because of their unique combination of properties like high strength at elevated temperatures, resistance to chemical degradation and excellent wear resistance in many hostile environments. It is considered as one of the difficult to machine superalloy due to excessive tool wear and poor surface finish. The present paper is an attempt for removing cutting fluids from turning process of Waspaloy and to make the processes environmentally safe. For this purpose, the effect of machining parameters such as cutting speed and feed rate on the cutting force, cutting temperature, surface finish and tool wear were investigated barrier. Consequently, the strength and tool wear resistance and tool life increased significantly. Response Surface Methodology (RSM) has been used for developing and analyzing a mathematical model which describes the relationship between machining parameters and output variables. Subsequently ANOVA was used to check the adequacy of the regression model as well as each machining variables. The optimal cutting parameters were determined based on multi-response optimizations by composite desirability approach in order to minimize cutting force, average surface roughness and maximum flank wear. The results obtained from the experiments shown that machining of Waspaloy using coated carbide tool with special ranges of parameters, cutting fluid could be completely removed from machining process

  6. An electrochemical study of hydrogen uptake and elimination by bare and gold-plated waspaloy (United States)

    Danford, M. D.; Deramus, G. E., Jr.; Lowery, J. R.


    Two electrochemical methods for the determination of hydrogen concentrations in metals are discussed and evaluated. The take-up of hydrogen at a pressure of 5000 psi by Waspaloy metal was determined experimentally at 24 C. It was found that the metal becomes saturated with hydrogen after an exposure time of about 1 hr. For samples charged with hydrogen at high pressure, most of the hydrogen is contained in the interstitial solid solution of the metal. For electrolytically charged samples, most of the hydrogen is contained as surface and subsurface hydrides. Hydrogen elimination rates were determined for these two cases, with the rate for electrolytically charged samples being greater by over a factor of two. Theoretical effects of high temperature and pressure on hydrogen take-up and elimination by bare and gold plated Waspaloy metal was considered. The breakthrough point for hydrogen at 5000 psi, determined experimentally, lies between a gold thickness of 0.0127 mm (0.0005 in.) and 0.0254 mm (0.001 in.) at 24 C. Electropolishing was found to greatly reduce the uptake of hydrogen at high pressure by Waspaloy metal at 24 C. Possible implications of the results obtained, as they apply to the turbine disk of the space shuttle main engine, are discussed.

  7. A study of fatigue damage mechanisms in Waspaloy from 25 to 800 C (United States)

    Lerch, B. A.; Jayaraman, N.; Antolovich, S. D.


    The objective of the study was to examine the effect of various microstructures on the fatigue and damage accumulation behavior of Waspaloy, a nickel-base alloy commonly used in aircraft engines. Shearing was the dominant deformation mode in specimens with coarse grains and small (50-80 A) gamma prime particles, whereas Orowan looping was dominant in fine-grained specimens with large (about 900 A) gamma prime particles. At temperatures up to 500 C, cracks initiated transgranularly, while at 800 C the failure process was intergranular for both coarse-grained and fine-grained specimens. At temperatures above 500 C, a significant decrease in the fatigue life was observed for both coarse-grained and fine-grained material.

  8. Effect of temperature, microstructure, and stress state on the low cycle fatigue behavior of Waspaloy (United States)

    Stahl, D. R.; Antolovich, S. D.; Mirdamadi, M.; Zamrik, S. Y.


    Specimens of Waspaloy of two different microstructures were tested in uniaxial and torsional low-cycle fatigue at 24 and 649 C. For all specimens, deformation and failure mechanisms are found to be independent of stress state at 24 C; in both microstructures, failure is associated with the formation of shear cracks. At 649 C, deformation and failure mechanisms for the fine-grain large gamma-prime specimens are independent of stress state, and the mechanisms are similar to those observed at 24 C. For the coarse-grain small gamma-prime specimens, however, failure occurs on principal planes in torsion and on shear plane in uniaxial tension. The results are interpreted in terms of deformation mode and microstructural instability.

  9. A preliminary characterization of the tensile and fatigue behavior of tungsten-fiber/Waspaloy-matrix composite (United States)

    Corner, Ralph E.; Lerch, Brad A.


    A microstructural study and a preliminary characterization of the room temperature tensile and fatigue behavior of a continuous, tungsten fiber, Waspaloy-matrix composite was conducted. A heat treatment was chosen that would allow visibility of planar slip if it occurred during deformation, but would not allow growth of the reaction zone. Tensile and fatigue tests showed that the failed specimens contained transverse cracks in the fibers. The cracks that occurred in the tensile specimen were observed at the fracture surface and up to approximately 4.0 mm below the fracture surface. The crack spacing remained constant along the entire length of the cracked fibers. Conversely, the cracks that occurred in the fatigue specimen were only observed in the vicinity of the fracture surface. In instances where two fiber cracks occurred in the same plane, the matrix often necked between the two cracked fibers. Large groups of slip bands were generated in the matrix near the fiber cracks. Slip bands in the matrix of the tensile specimen were also observed in areas where there were no fiber cracks, at distances greater than 4 mm from the fracture surface. This suggests that the matrix plastically flows before fiber cracking occurs.

  10. Using internally cooled cutting tools in the machining of difficult-to-cut materials based on Waspaloy

    Directory of Open Access Journals (Sweden)

    Yahya Isik


    Full Text Available Nickel-based superalloys such as Waspaloy are used for engine components and in the nuclear industry, where considerable strength and corrosion resistance at high operating temperatures are called for. These characteristics of such alloys cause increases in cutting temperature and resultant tool damage, even at low cutting speeds and low feed rates. Thus, they are classified as difficult-to-cut materials. This article presents a cooling method to be used in metal cutting based on a tool holder with a closed internal cooling system with cooling fluid circulating inside. Hence, a green cooling method that does not harm the environment and is efficient in removing heat from the cutting zone was developed. A series of cutting experiments were conducted to investigate the practicality and effectiveness of the internally cooled tool model. The developed system achieved up to 13% better surface quality than with dry machining, and tool life was extended by 12%. The results clearly showed that with the reduced cutting temperature of the internal cooling, it was possible to control the temperature and thus prevent reaching the critical cutting temperature during the turning process, which is vitally important in extending tool life during the processing of Waspaloy.

  11. The Concept Design of a Split Flow Liquid Hydrogen Turbopump (United States)


    Inconel 718 unk VINCI...Ti- (Powder) Inconel 718 Inconel 718 Inconel 718 Inconel 718 Ti 6-4 Ti 6-4 ALH PWA Ti-1240 Inconel 718 Inconel 718 Waspaloy Waspaloy...unshrouded and made of titanium. The inducer, pump impellers and turbine are on a single shaft. Four cast pieces each made of Inconel 718 make up the

  12. The effect of microstructure on the fatigue behavior of Ni base superalloys (United States)

    Antolovich, S. D.; Jayaraman, N.


    Nickel-base superalloys are used in jet engine components such as disks, turbine blades, and vanes. Improvements in the fatigue behavior will allow the life to be extended or the payloads to be increased. The first part of the present investigation deals primarily with the effects of microstructural variations on the fatigue crack propagation (FCP) behavior of nickel-base alloys, while the second part is concerned with low-cycle fatigue (LCF) behavior of Ni base systems. Waspaloy at low temperature is considered, taking into account material heat treatment and test procedures, a composite plot of Waspaloy FCP data, Paris law fatigue crack propagation constants, monotonic tensile data, and overload FCP test results for Waspaloy. It is found that the FCP and overload behavior of nickel-base alloys may be markedly improved by heat treating. Attention is given to effects of cyclic deformation on microstructure and substructure, environmental damage, and an environmental/deformation model of high temperature LCF.

  13. Influence of high pressure hydrogen on cyclic load crack growth in metals (United States)

    Jewett, R. P.; Walter, R. J.; Chandler, W. T.


    The effect of high pressure hydrogen on the crack growth rate of various nickel-base alloys was studied at ambient temperature. Considerable enhancement of the cyclic flaw growth rate was observed for Inconel 718, wrought and cast, and Waspaloy, a nickel-base alloy similar to Inconel 718. Only slight enhancement of the flaw growth rate for Alloy 903 was observed.

  14. Microstructural Effects on the Mechanical Properties of ATI 718Plus® Alloy (United States)

    Kearsey, R. M.; Tsang, J.; Oppenheimer, S.; McDevitt, E.


    Four microstructural variants of ATI 718Plus® alloy (718Plus) have been investigated to elucidate the effects of grain size, precipitate size, morphology, and phase fraction (δ and γ') on mechanical properties such as low cycle fatigue (LCF) life, fatigue crack growth rate (FCGR) properties, and dwell FCGR behavior at both 649°C and 704°C under 100 s dwell and nondwell conditions. Similar tests have also been performed on Waspaloy in two comparative microstructural conditions. LCF test results demonstrate that all four microstructural conditions of 718Plus have superior life compared with Waspaloy under all investigated test conditions. FCGR results show that, at both test temperatures, all microstructural conditions of 718Plus and Waspaloy exhibit identical behavior in the steady-state regime, except that 718Plus exhibits a much higher threshold stress intensity (Δ K TH). However, the dwell FCGR results show that Waspaloy displays better steady-state crack growth resistance under dwell conditions. However, with a thermal exposed precipitate microstructure, 718Plus shows considerable improvement in this response.

  15. Laser Engineered Net Shape (LENS) Technology for the Repair of Ni-Base Superalloy Turbine Components (United States)

    Liu, Dejian; Lippold, John C.; Li, Jia; Rohklin, Stan R.; Vollbrecht, Justin; Grylls, Richard


    The capability of the laser engineered net shape (LENS) process was evaluated for the repair of casting defects and improperly machined holes in gas turbine engine components. Various repair geometries, including indentations, grooves, and through-holes, were used to simulate the actual repair of casting defects and holes in two materials: Alloy 718 and Waspaloy. The influence of LENS parameters, including laser energy density, laser scanning speed, and deposition pattern, on the repair of these defects and holes was studied. Laser surface remelting of the substrate prior to repair was used to remove machining defects and prevent heat-affected zone (HAZ) liquation cracking. Ultrasonic nondestructive evaluation techniques were used as a possible approach for detecting lack-of-fusion in repairs. Overall, Alloy 718 exhibited excellent repair weldability, with essentially no defects except for some minor porosity in repairs representative of deep through-holes and simulated large area casting defects. In contrast, cracking was initially observed during simulated repair of Waspaloy. Both solidification cracking and HAZ liquation cracking were observed in the repairs, especially under conditions of high heat input (high laser power and/or low scanning speed). For Waspaloy, the degree of cracking was significantly reduced and, in most cases, completely eliminated by the combination of low laser energy density and relatively high laser scanning speeds. It was found that through-hole repairs of Waspaloy made using a fine powder size exhibited excellent repair weldability and were crack-free relative to repairs using coarser powder. Simulated deep (7.4 mm) blind-hole repairs, representative of an actual Waspaloy combustor case, were successfully produced by the combination use of fine powder and relatively high laser scanning speeds.

  16. Evaluation of mechanical properties of a low-cobalt wrought superalloy (United States)

    Dreshfield, R. L.


    In the late 1970s and early 1980s, cobalt was subjected to significant supply and market pressures. Those pressures caused renewed attention to the use of cobalt in aircraft engines. A NASA-sponsored program called Conservation of Strategic Aerospace Materials (COSAM) was created in response to the supply problems with cobalt and other aerospace metals. Among the work performed in the COSAM program and simultaneously by others were several studies on laboratory-size heats of wrought nickel-base super-alloys. These studies suggested that the cobalt levels of the alloys might be reduced by about half, with minimal negative impact on mechanical properties. The Lewis Research Center procured a 1365-kg (3000-lb) heat of a modified Waspaloy having a reduced cobalt level. This article reports the results of a program performed at four gas turbine manufacturers which evaluated the mechanical properties of forgings fabricated from that heat. The alloy chemistry selected reduced the nominal cobalt level from 13.5 to 7.75 wt%. To compensate for the anticipated strength reduction caused by a slight reduction in the amount of γ, the nominal aluminum was increased from 1.3 to 1.5% and the titanium was increased from 3.0 to 3.2%. The increase in aluminum and titanium were intended to increase the amount of γ in the al-loy. Tensile, creep-rupture, low-cycle fatigue, and cyclic crack growth tests were performed. In addition the effect of hydrogen on the alloy was determined. It was concluded that, in the event of a cobalt short-age, a low-cobalt modification of Waspaloy alloy could be substituted for Waspaloy with little develop-ment in those applications that are not creep-rupture limited. With some additional development to better control the grain size, it is probable that most of the current Waspaloy requirements might be met with a lower cobalt alloy.

  17. Structural Uses for Ductile Ordered Alloys. Report of the Committee on Application Potential for Ductile Ordered Alloys (United States)


    a function of crystal orientation (Kuramoto and Pope 1978) and alloy content (Thornton et al. 1970). Alloying with zirconium and hafnium is...However, alloying of boron-modified Ni3Al with hafnium and zirconium provides creep resistance comparable to or better than that of Waspaloy, a nickel...Proprietes Mechaniques des Alliages Fer- Aluminium . Acta Met. 16:867. Nesbit, L. A., and D. E. Laughlin. 1980. The deformation microstructure of

  18. Eddy Current Residual Stress Profiling in Surface-Treated Engine Alloys (United States)


    during this process. This method is inherently destructive since it leaves a deep hole on the surface. Although the accuracy of XRD measurements is quite...SP), laser shock peening (LSP), and low-plasticity burnishing (LPB), significantly improve the fatigue resistance and foreign object damage...and XRD results in low-plasticity burnished Waspaloy of approximately 15% maximum plastic strain. There is a fairly good agreement between the non


    Directory of Open Access Journals (Sweden)

    S. S. Raza


    Full Text Available Nickel based superalloys are commonly used materials in the aero industry and more specifically in the hot section of aero engines. These nickel and nickel iron based superalloys are precipitation strengthened alloys with a face centered cubic gamma matrix. Alloy 718, Allvac 718Plus and Waspaloy have been of great interest in the present study. Alloy 718 is a precipitation strengthened nickel-iron based alloy having gamma double prime phase (Ni3Nb as a main strengthening phase up to 650 °C. Waspaloy, another precipitation strengthened nickel base superalloy, has a very good strength at temperatures up to ~750 °C whereas Allvac 718Plus is a newly developed nickel based precipitation strengthened superalloy which retains good mechanical properties at up to ~700 °C. These three alloys were investigated in terms of how their respective solidification process reveals upon cooling.Latent heat of soloidification has been estimated for all three alloys. Differential thermal analyses (DTA have been used to approach the task. It was seen that Waspaloy has the smallest solidification range whereas Allvac 718Plus has the largest solidification interval in comparison. 

  20. Experimental Study on Machining Shape Hole of Ni-based Super-heat-resistant Alloy

    Institute of Scientific and Technical Information of China (English)


    Inconel 718 and Waspaloy, Nickel-based super-heat-resistant alloy, are high-strength, thermal-resistant and corrosion-resistant alloy that are widely used in parts of gas turbines and airplane engines. Due to their extremely tough and thermal-resistant nature, they are well known as materials that are difficult to cut. Shape holes on a disc of an aircraft engine, made of Ni-based super-heat-resistant alloy, are required with good surface integrity and geometric accuracy. This kind of shape hole is produced ...

  1. Determination of emissivity coefficient of heat-resistant super alloys and cemented carbide

    Directory of Open Access Journals (Sweden)

    Kieruj Piotr


    Full Text Available This paper presents the analysis of emissivity engineering materials according to temperature. Experiment is concerned on difficult to machine materials, which may be turned with laser assisting. Cylindrical samples made of nickel-based alloys Inconel 625, Inconel 718, Waspaloy and tungsten-carbides based on cobalt matrix were analyzed. The samples’ temperature in contact method was compared to the temperature measured by non-contact pyrometers. Based on this relative, the value of the emissivity coefficient was adjusted to the right indication of pyrometers.

  2. Determination of emissivity coefficient of heat-resistant super alloys and cemented carbide (United States)

    Kieruj, Piotr; Przestacki, Damian; Chwalczuk, Tadeusz


    This paper presents the analysis of emissivity engineering materials according to temperature. Experiment is concerned on difficult to machine materials, which may be turned with laser assisting. Cylindrical samples made of nickel-based alloys Inconel 625, Inconel 718, Waspaloy and tungsten-carbides based on cobalt matrix were analyzed. The samples' temperature in contact method was compared to the temperature measured by non-contact pyrometers. Based on this relative, the value of the emissivity coefficient was adjusted to the right indication of pyrometers.

  3. Promoted combustion of nine structural metals in high-pressure gaseous oxygen - A comparison of ranking methods (United States)

    Steinberg, Theodore A.; Rucker, Michelle A.; Beeson, Harold D.


    The 316, 321, 440C, and 17-4 PH stainless steels, as well as Inconel 600, Inconel 718, Waspaloy, Monel 400, and Al 2219, have been evaluated for relative nonflammability in a high-pressure oxygen environment with a view to the comparative advantages of four different flammability-ranking methods. The effects of changes in test pressure, sample diameter, promoter type, and sample configuration on ranking method results are evaluated; ranking methods employing velocity as the primary ranking criterion are limited by diameter effects, while those which use extinguishing pressure are nonselective for metals with similar flammabilities.

  4. Investigations of the microstructural stability of wrought Ni-(Fe)-based syperalloys for steam turbine rotor application beyond 700 C; Untersuchungen der Strukturstabilitaet von Ni-(Fe)-Basislegierungen fuer Rotorwellen in Dampfturbinen mit Arbeitstemperaturen ueber 700 C

    Energy Technology Data Exchange (ETDEWEB)

    Seliga, T.


    There is a continuous trend to improve the efficiency of modern power plants with steam turbine require operating steam temperature from 700 to 720 C. For substantial parts like turbine rotors and discs this means increased requirements on the high temperature resistance, which can not longer be fulfilled by the presently used steel. As new materials for the components, which are thermo-mechanically loaded, only Ni-based superalloys are suitable for their fabrication, structure stability and thermo-mechanical characteristics. With view on creep and creep crack growth resistance as suitable candidates in the context a DFG research project wrought Ni-based superalloy Waspaloy and Ni-Fe-based alloy Inconel 706 were selected, which exhibited different hardening mechanisms. Waspaloy is a {gamma}'-hardened material with small portion of carbides on the grain boundaries. Inconel 706 is a particle hardened alloy with a very complex microstructure, it consists of {gamma}', {gamma}{sup ''}-particle, {eta}-phase und carbides. Concerning to their castability, forgeability, creep and creep crack growth and microstructural stability these candidate materials have been investigated and modelled. The knowledge about their long time stability of the microstructure, castability, forgeability and mechanical properties leads to the two new modification (Waspaloy{yields}DT750 and Inconel 706{yields}DT706). The modification of the Waspaloy to DT 750 served better castability (elimination of the Freckle formation). An improvement of the long-term stability of the microstructure was not necessary, by a changed heat treatment was reached a homogeneous, monomodale {gamma}'-particle distribution. The modification of Inconel 706 to DT 706 served to stabilize the {gamma}'-phase and to reduce of the {gamma}{sup ''} phase without suppressing the cellular {eta}-phase colonies on the grain boundaries. This work presents the test results for the structural

  5. Oxidation of low cobalt alloys (United States)

    Barrett, C. A.


    Four high temperature alloys: U-700, Mar M-247, Waspaloy and PM/HIP U-700 were modified with various cobalt levels ranging from 0 percent to their nominal commercial levels. The alloys were then tested in cyclic oxidation in static air at temperatures ranging from 1000 to 1150 C at times from 500 to 100 1 hour cycles. Specific weight change with time and X-ray diffraction analyses of the oxidized samples were used to evaluate the alloys. The alloys tend to be either Al2O3/aluminate spinel or Cr2O3/chromite spinel formers depending on the Cr/Al ratio in the alloy. Waspaloy with a ratio of 15:1 is a strong Cr2O3 former while this U-700 with a ratio of 3.33:1 tends to form mostly Cr2O3 while Mar M-247 with a ratio of 1.53:1 is a strong Al2O3 former. The best cyclic oxidation resistance is associated with the Al2O3 formers. The cobalt levels appear to have little effect on the oxidation resistance of the Al2O3/aluminate spinel formers while any tendency to form Cr2O3 is accelerated with increased cobalt levels and leads to increased oxidation attack.

  6. Time-dependent edge-notch sensitivity of oxide and gamma prime dispersion strengthened sheet materials at 1000 to 1800 F (538 - 982 C) (United States)

    Wilson, D. J.


    Research was carried out to determine whether an oxide dispersion hardened alloy, TD-Ni, Cr, and low volume fraction gamma prime strengthened nickel-base alloy, Modified Waspaloy, were susceptible to time-dependent edge-notch sensitivity. The results were evaluated in terms of the mechanical characteristics of the alloys and the dislocation motion mechanisms operative. As far as could be determined, the results of the investigation were consistent with the following important concepts developed for Waspaloy and Inconel 718: (1) Time-dependent edge-notch sensitivity occurs when notched specimens are loaded below the approximate 0.2 percent smooth specimen offset yield strength and when data from smooth specimens indicate that small amounts of creep consume large rupture life fractions. (2) When precipitate particles are sheared by dislocations, the deformation is localized and time-dependent notch sensitivity occurs. When dislocations by-pass precipitate particles the deformation is homogeneous. Under these conditions, no time-dependent notch sensitivity has been observed.

  7. Progress toward a tungsten alloy wire/high temperature alloy composite turbine blade (United States)

    Ritzert, F. J.; Dreshfield, R. L.


    A tungsten alloy wire reinforced high temperature alloy composite is being developed for potential application as a hollow turbine blade for advanced rocket engine turbopumps. The W-24Re-HfC alloy wire used for these composite blades provides an excellent balance of strength and wire ductility. Preliminary fabrication, specimen design, and characterization studies were conducted by using commercially available W218 tungsten wire in place of the W-24Re-Hfc wire. Subsequently, two-ply, 50 vol pct composite panels using the W-24Re-HfC wire were fabricated. Tensile tests and metallographic studies were performed to determine the material viability. Tensile strengths of a Waspaloy matrix composite at 870 C were 90 pct of the value expected from rule-of-mixtures calculations. During processing of this Waspaloy matrix composite, a brittle phase was formed at the wire/matrix interface. Circumferential wire cracks were found in this phase. Wire coating and process evaluation efforts were performed in an attempt to solve the reaction problem. Although problems were encountered in this study, wire reinforced high temperature alloy composites continue to show promise for turbopump turbine blade material improvement.


    Institute of Scientific and Technical Information of China (English)

    X.B.Liu; L.Z.Ma; K.M.Chang; E.Barbero


    Time-dependent Fatigue Crack Propagation (FCP) behaviors of five Ni-base superalloys were investigated at various temperatures under fatigue with various holding times and sustained loading conditions.The new concept of damage zone is defined and employed to evaluate the alloys' resistance to hold-time FCP.A special testing procedure is designed to get the maximum damage zone of the alloys.Udimet 720 and Waspaloy show shorter damage zones than alloys 706 and 718.The fractographical analyses show that the fracture surfaces of the specimens under hold-time fatigue conditions are mixtures with intergranular and transgranular modes.As the extension of holding time per cycle, the portion of intergranular fracture increases.The effects of loading stress intensity, temperature, holding time, alloy chemistry, and alloy microstructure on damage zone and the crack growth behaviors are studied.Hold-time usually increases the alloy's FCP rate, but there are few exemptions.For instance, the steady state hold-time FCP rate of Waspaloy at 760℃ is lower than that without hold-time.The beneficial effect of hold-time was attributed to the creep caused stress relaxation during the hold-time.

  9. Wear and Reactivity Studies of Melt infiltrated Ceramic Matrix Composite (United States)

    Jarmon, David C.; Ojard, Greg; Brewer, David N.


    As interest grows in the use of ceramic matrix composites (CMCs) for critical gas turbine engine components, the effects of the CMCs interaction with the adjoining structure needs to be understood. A series of CMC/material couples were wear tested in a custom elevated temperature test rig and tested as diffusion couples, to identify interactions. Specifically, melt infiltrated silicon carbide/silicon carbide (MI SiC/SiC) CMC was tested in combination with a nickel-based super alloy, Waspaloy, a thermal barrier coating, Yttria Stabilized Zirconia (YSZ), and a monolithic ceramic, silicon nitride (Si3N4). To make the tests more representative of actual hardware, the surface of the CMC was kept in the as-received state (not machined) with the full surface features/roughness present. Test results include: scanning electron microscope characterization of the surfaces, micro-structural characterization, and microprobe analysis.

  10. Alkali metal compatibility testing of candidate heater head materials for a Stirling engine heat transport system (United States)

    Noble, Jack E.; Hickman, Gary L.; Grobstein, Toni

    The authors describe work performed as part of the 25-kWe advanced Stirling conversion system project. Liquid alkali metal compatibility is being assessed in an ongoing test program to evaluate candidate heater head materials and fabrication processes at the temperatures and operating conditions required for Stirling engines. Specific materials under evaluation are alloy 713LC, alloy 713LC coated with nickel aluminide, and Udimet 720, each in combination with Waspaloy. The tests were run at a constant 700 C. A eutectic alloy of sodium and potassium (NaK) was the working fluid. Titanium sheet in the system was shown to be an effective oxygen getter. Metallographic and microchemical examination of material surfaces, joints, and their interfaces revealed little or no corrosion after 1000 h. Tests are in progress, with up to 10,000 h exposure.

  11. Standard Materials. A Descriptive List with Prices. (United States)


    150 10.00 162a ’onel-type (Ni64-Cu3l) -------- 150 10.00 184 Bronze, leaded-tin ------------- 150 10.00 169 Ni77-Cr2O alloy --------------- 150 10.00...0.045 1.28 1.56 0.47 15.01 16.886------------- 0.342 0.006 169 Ni-Cr ----------------- 77.26 .015 0.073 1.42 . 19 0.54 20.26 0.095 0.006 .043 .002 162a ... 162a Monel type_- 349 Waspaloy --------------. 002 .081------------------------4.04 ɘ.01 0.0046 ɘ.01 ɘ. 01 TITANIUM- AND

  12. Feasibility Study for Casting of High Temperature Refractory Superalloy Composites (United States)

    Lee, Jonathan A.


    Abstract This study investigated the feasibility of using conventional casting technique to fabricate refractory wires reinforced superalloy composites. These composites were being developed for advanced rocket engine turbine blades and other high temperature applications operating up to 2000 F. Several types of refractory metal wires such as W- Th, W-Re, Mo-Hf-C and W-HF-C reinforced waspaloy were experimentally cast and heat treated at 2000 F up to 48 hrs. Scanning electron microscope analysis was conducted in regions adjacent to the wire-matrix interface to determine the reaction zone and chemical compatibility resulting from material interdiffusion. It was concluded that fabrication using conventional casting may be feasible because the wire-matrix reaction zone thickness was comparable to similar composites produced by arc-sprayed monotape with hot isostatic pressing technique, Moreover, it was also found that the chemical compatibility could be improved significantly through a slight modification of the superalloy matrix compositions.

  13. A study of microstructural characteristics and differential thermal analysis of Ni-based superalloys (United States)

    Aggarwal, M. D.; Lal, R. B.; Oyekenu, Samuel A.; Parr, Richard; Gentz, Stephen


    The objective of this work is to correlate the mechanical properties of the Ni-based superalloy MAR M246(Hf) used in the Space Shuttle Main Engine with its structural characteristics by systematic study of optical photomicrographs and differential thermal analysis. The authors developed a method of predicting the liquidus and solidus temperature of various nickel based superalloys (MAR-M247, Waspaloy, Udimet-41, polycrystalline and single crystals of CMSX-2 and CMSX-3) and comparing the predictions with the experimental differential thermal analysis (DTA) curves using Perkin-Elmer DTA 1700. The method of predicting these temperatures is based on the additive effect of the components dissolved in nickel. The results were compared with the experimental values.

  14. Corrosion and wear in plasma electrosurgical devices (United States)

    Gaspredes, J.; Ryan, T. P.; Stalder, K. R.; Woloszko, J.


    Data were previously reported on studies of the effects of electrical discharges on the corrosion and wear of simple, single-wire test devices immersed in isotonic saline 1 . This work showed that there are a wide variety of mechanisms that can explain various aspects of electrode mass loss, even with very simple electrode geometries and operating conditions. It was found that the electrode material composition played an important role. Subsequently, our studies were expanded to include more realistic device geometries and operating conditions. This paper shows the results of studies on wear characteristics of electrodes made from a variety of highly corrosion resistant metals and alloys, including Waspaloy, Hastelloy, Inconel, Havar, Monel, and other pure metals such as Hafnium. All of these metals underwent wear testing under clinically relevant conditions. Depending on the operating conditions, multiple discrete physical and chemical effects were observed at different locations on the surface of an individual millimeter-scale device electrode. Scanning electron microscope (SEM) micrographs, Energy-dispersive X-ray spectroscopy (EDS) and area loss data will be presented for a variety of test conditions and electrode materials.

  15. The effect of variations of cobalt content on the cyclic oxidation resistance of selected Ni-base superalloys (United States)

    Barrett, Charles A.


    Cobalt levels were systematically varied in the Ni-base turbine alloys U-700 (cast), U-700m (PM/HIP), Waspaloy, Mar-M-247, In-738, Nimonic-115, U-720, and SX-R-150. the cobalt levels ranged from 0 wt pct to the nominal commercial content in each alloy. the alloys were tested in cyclic oxidation in static air at 1000, 1100 and 1150 C for 500, 200, and 100 hr, respectively. An oxidation attack parameter, Ka, derived from the specific weight change versus time data was used to evaluate the oxidation behavior of the alloys along with X-ray diffraction analysis of the surface oxides. The alloys tend to form either Cr2O3/chromite spinel or Al2O3/aluminate spinel depending on the Cr/Al ratio in the alloys. Alloys with a ratio of 3.5 or higher tend to favor the Cr oxides while those under 3.0 form mostly Al oxides. In general the Al2O3/aluminate spinel forming alloys have the better oxidation resistance. Increased cobalt content lowers the scaling resistance of the higher Cr allys while a 5.0 wt pct Co content is optimum for the Al controlling alloys. The refractory metals, particularly Ta, appear beneficial to both types of oxides, perhaps due to the formation of the omnipresent trirutile Ni(Ta, Cb, Mo, W)2O6. Both scales break down as increasing amounts of NiO are formed.

  16. Modification of creep and low cycle fatigue behaviour induced by welding

    Directory of Open Access Journals (Sweden)

    A. Carofalo


    Full Text Available In this work, the mechanical properties of Waspaloy superalloy have been evaluated in case of welded repaired material and compared to base material. Test program considered flat specimens on base and TIG welded material subjected to static, low-cycle fatigue and creep test at different temperatures. Results of uniaxial tensile tests showed that the presence of welded material in the gage length specimen does not have a relevant influence on yield strength and UTS. However, elongation at failure of TIG material was reduced with respect to the base material. Moreover, low-cycle fatigue properties have been determined carrying out tests at different temperature (room temperature RT and 538°C in both base and TIG welded material. Welded material showed an increase of the data scatter and lower fatigue strength, which was anyway not excessive in comparison with base material. During test, all the hysteresis cycles were recorded in order to evaluate the trend of elastic modulus and hysteresis area against the number of cycles. A clear correlation between hysteresis and fatigue life was found. Finally, creep test carried out on a limited number of specimens allowed establishing some changes about the creep rate and time to failure of base and welded material. TIG welded specimen showed a lower time to reach a fixed strain or failure when a low stress level is applied. In all cases, creep behaviour of welded material is characterized by the absence of the tertiary creep.


    Institute of Scientific and Technical Information of China (English)

    W.D.Cao; R.L.Kennedy


    Research and development efforts are still very active on 718-type alloys although two major members of this widely used family, 718 and 625, were invented almost a half-century ago.Emphasis in this type of work at ATI Allvac is directed at improving existing alloys and developing new alloys to meet ever-increasing industrial demands.The improvement of existing alloys is exemplified by addition of minor elements P and B in alloy 718.The discovery of the beneficial effect of P and B in wrought alloy 718 led to development of a new, modified alloy, AllvacR 718ERR.A large effort has also been directed at studying the effects of major element modifications in 718-type alloys, and a new alloy, AllvacR 718PlusTM, has been developed.The new alloy has much better high temperature capability, especially thermal stability, approaching the level of Waspaloy but retains excellent processing characteristics, similar to alloy 718.Alloy 718PlusTM should be useful in any 718-type application requiring a higher working temperature.The properties and processing of this alloy are introduced in this paper.

  18. Microstructural analysis of weld cracking in 718 Plus superalloy (United States)

    Vishwakarma, Krutika

    Allvac 718RTM PLUS(TM) (718 Plus) is a new Ni-base superalloy developed to be used in land and aero gas turbine applications. 718 Plus was developed to have high temperature properties superior to its baseline superalloy Inconel 718, while maintaining its workability. Besides its high temperature properties superior to Inconel 718, limited information exists about its physical metallurgy or weldability. This project studied the microstructure and electron beam welding response of this new superalloy in two selected pre-weld heat treated conditions. To further understand the effect of minor alloying elements on its weldability, two versions of 718 Plus with varying concentrations of boron and phosphorus, HC 49 with higher B and P and HC 20 with normal B and P, were also studied. Finally, the weldability of 718 Plus alloys was compared to that of Inconel 718 and Waspaloy under similar welding conditions. Hot rolled wrought plates of Inconel 718, Waspaloy and 718 Plus alloys were supplied by ALLVAC Inc. 12.7 mm x 12.7 mm x 101.6 mm sections were cut normal to the rolling direction of the plates and were subjected to their recommended respective solution heat treatments, viz., 950°C for 1 hour for 718 Plus alloys and Inconel 718 and 1020°C for 1 hour for Waspaloy. 718 Plus alloys and Inconel 718 were also examined after another solution heat treatment at 1050°C for 1 hour. All the heat treatments were followed by water quenching. Thorough microstructural characterization before and after welding was carried out using optical microscopy, analytical scanning electron microscopy, electron microprobe analysis and analytical transmission electron microscopy. In addition, Secondary Ion Mass Spectrometer (SIMS) was used to study the grain boundary segregation in the two 718 Plus alloys. Interestingly, the microstructure of 718 Plus alloy, in the heat treated conditions it was studied, was very similar to that of Inconel 718 despite of the considerable difference in their

  19. A study of microstructural characteristics of Ni-based superalloys at high temperatures (United States)

    Lal, Ravindra B.; Aggarwal, M. D.


    The microstructural characteristics of the Ni-based superalloy MAR-M245(Hf) which is used in manufacturing the components of the Space Shuttle main engine are studied. These superalloys need optimum heat treatment to get the best results. To find out the optimum heat treatment, the techniques of differential thermal analysis (DTA) and the optical photomicrographs were utilized. In the first phase, the existing experimental equipment like cutting, grinding/polishing machines and metallurgical microscope were set up to cut/polish and take the photomicrographs. In the beginning of the project a Perkin Elmer differential thermal analyzer DTA1700 along with a temperature programmed and the needed computer interface was procured and made operational. In the second year a Leitz Metallux-3 hot state research microscope was also procured and installed for in-situ observation of the superalloy samples. The hot stage when tested for the first time alloyed the thermocouple with the Tantalum heating element and has now been installed. Samples of MAR-M246(Hf), MAR-M247, Waspaloy, Udimet-41, CMSX-3, and CMSX-3 (Polycrystalline and single crystals) were studied using a differential thermal analyzer and the results are reported. Photomicrographs of the Ni-based superalloy MAR-M246 (Hf) were recorded before and after heat treatment at certain temperatures. More heat treatments need to be done before a final inference can be reached.

  20. Ultrasonic characterization of shot-peened metal surfaces (United States)

    Lavrentyev, Anton I.; Veronesi, William A.


    Shot peening is a well-known method for extending the fatigue life of metal components by introducing near-surface compressive residual stresses. The capability to nondestructively evaluate near-surface residual stress would greatly aid the assurance of proper fatigue life in shot-peened components. This paper describes our work on near-surface residual stress measurement by an ultrasonic surface wave method. In this method, a variation of ultrasonic surface wave speed with shot peening intensity is measured. Since the effective wave penetration depth is inversely related to the excitation frequency, the method has the potential to provide the stress-depth profile. The paper presents results from an ultrasonic characterization study of shot peened Al-7075 and Waspaloy surfaces. Rayleigh wave velocity measurements by a V(z)-curve method were made on smooth and shot peened samples using line-focus ultrasonic transducers. Several factors were found to contribute to the surface wave velocity measurements: surface roughness, near-surface grain reorientation (texture), dislocation density increase, and residual stress. In this paper we estimate quantitatively the effects of each factor and discuss how these effects can be separated and accounted for during residual stress measurement.

  1. Materials for Advanced Ultrasupercritical Steam Turbines Task 3: Materials for Non-Welded Rotors, Buckets, and BoltingMaterials for Advanced Ultrasupercritical Steam Turbines

    Energy Technology Data Exchange (ETDEWEB)

    Saha, Deepak


    The primary objective of the task was to characterize the materials suitable for mechanically coupled rotor, buckets and bolting operating with an inlet temperature of 760°C (1400°F). A previous study DOE-FC26-05NT42442, identified alloys such as Haynes®282®, Nimonic 105, Inconel 740, Waspaloy, Nimonic 263, and Inconel 617 as potential alloys that met the requirements for the necessary operating conditions. Of all the identified materials, Waspaloy has been widely utilized in the aviation industry in the form of disk and other smaller forgings, and sufficient material properties and vendor experience exist, for the design and manufacture of large components. The European program characterizing materials for A-USC conditions are evaluating Nimonic 263 and Inconel 617 for large components. Inconel 740 has been studied extensively as a part of the boiler consortium and is code approved. Therefore, the consortium focused efforts in the development of material properties for Haynes®282® and Nimonic 105 to avoid replicative efforts and provide material choices/trade off during the detailed design of large components. Commercially available Nimonic 105 and Haynes®282® were evaluated for microstructural stability by long term thermal exposure studies. Material properties requisite for design such as tensile, creep / rupture, low cycle fatigue, high cycle fatigue, fatigue crack growth rate, hold-time fatigue, fracture toughness, and stress relaxation are documented in this report. A key requisite for the success of the program was a need demonstrate the successful scale up of the down-selected alloys, to large components. All property evaluations in the past were performed on commercially available bar/billet forms. Components in power plant equipment such as rotors and castings are several orders in magnitude larger and there is a real need to resolve the scalability issue. Nimonic 105 contains high volume fraction y’ [>50%], and hence the alloy is best suited

  2. New knowledge about 'white spots' in superalloys

    Energy Technology Data Exchange (ETDEWEB)

    Jackman, L.A. (Teledyne Allvac, Monroe, N.C. (United States)); Maurer, G.E. (Special Metals Corp., New Hartford, N.Y. (United States)); Widge, S. (Carpenter Technology Corp., Reading, PA (United States))


    In April 1991, the first in a series of workshops was held to discuss ways in which the gas turbine industry could better understand defects in nickel-base superalloys. The group's primary objective was to better define, and expand knowledge about, segregation in superalloys such as Alloy 718 and Waspaloy,with emphasis on light-etching areas referred to as solute-lean defects or 'white spots'. This 'White Spots Committee' formed four subcommittees to focus efforts on classification, inspection, mechanisms, and mechanical properties. Completion of the tasks that these subcommittees have undertaken should greatly improve the gas turbine industry's understanding of the physical and mechanical nature of white spots. The primary purpose of this article is to formalize the characterization and classification of white spots in high-strength superalloys so that the metallurgical community can begin to use a common vocabulary when referring to them. An overview of formation mechanisms is presented along with a brief description of detection methods. Also discussed are preliminary test results, which should help shed light on the effects of solute-lean microstructures on tensile and fatigue properties. Although white spots are not limited to any single superalloy or class of superalloy, Alloy 718 is emphasized because it is so widely used, and because its relatively large solidus-liquidus temperature interval ([approximately]75 C, 135 F) and high niobium content ([approximately]5.3% Nb) make it prone to segregation. Three distinct types of white spots have been identified and named by the committee: discrete, dendritic, and solidification white spots.